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Message from the Program Chair

Welcome to the 15th International Conference on High Performance Computing (HiPC
2008), held at Bangaluru (formerly called Bangalore), India. Features at this year’s
conference included a single-track program with 46 technical papers selected from
317 submissions, four keynote talks by renowned experts from academia, two tutori-
als from industry, five workshops, a student research symposium, and a user/industry
symposium.

As in recent years, a large number of technical papers were submitted for considera-
tion, covering six topic areas of focus: algorithms, applications, architecture, communi-
cation networks, mobile/sensor computing, and systems software. In reviewing the 317
submissions, we used a two-phase approach as done over the last few years with HiPC.
A first screening pass was made through all papers by the area Vice Chairs to identify
papers that were clearly out of scope for the conference, either because the topic did
not fit the conference or the paper was of a survey nature, without original research
content. After the first pass, the remaining 285 submissions were reviewed, seeking at
least three reviews from Program Committee members. A number of external reviewers
also provided reviews for papers. A total of 978 reviews were obtained for the papers.
For papers with significantly differing opinions among Program Committee members,
e-mail discussions were used to find consensus. Finally 46 papers were selected for
presentation in 8 sessions.

One outstanding paper was selected for the best paper award. Each area Vice Chair
first nominated one or two of the best papers from their area. These papers and their
reviews were studied by the Vice Chairs, who then made their recommendations for
the best paper award. Based on the recommendations from the Vice Chairs, the pa-
per “Scalable Multi-cores with Improved Per-core Performance Using Off-the-Critical
Path Reconfigurable Hardware,” authored by Tameesh Suri and Aneesh Aggarwal, was
selected for the best paper award.

This year’s program featured keynote presentations from four distinguished speak-
ers: Wolfgang Gentzsch on the European distributed supercomputing infrastructure,
David Peleg on networked computers, Mary Wheeler on a computational environment
for subsurface modeling, and Laxmikant Kale on the “the excitement in parallel
computing.”

The quality of the technical program is critically dependent on the efforts of the
Program Committee members in providing reviews for the submitted papers. I thank
the 103 members of this year’s Program Committee. The assignment of papers to mem-
bers of the Program Committee was managed by the area Vice Chairs. I was extremely
fortunate to work with dedicated Vice Chairs. The Vice Chairs were David Bader (Algo-
rithms), Alan Sussman (Applications), David Kaeli and Martin Schulz (Architecture),
José de Souza (Communication Networks), Chen-Khong Tham (Mobile and Sensor
Computing), and Cho-Li Wang (Systems Software). I am very grateful to them for their
hard work in handling the reviewing within their areas and their significant contributions
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at the distributed virtual Program Committee meeting. Each paper’s review recommen-
dations were carefully checked for consistency; in many instances, the Vice Chairs read
the papers themselves when the reviews did not seem sufficient to make a decision.

Throughout the reviewing process, I received a tremendous amount of help and
advice from General Co-chair Manish Parashar, Steering Chair Viktor Prasanna, and
last year’s Program Chair Srinivas Aluru; I am very grateful to them. My thanks also
go to the Publications Chair Sushil Prasad for his outstanding efforts in putting the
proceedings together. Finally, I thank all the authors for their contributions to a high-
quality technical program. I wish all the attendees a very enjoyable and informative
meeting.

December 2008 P. Sadayappan



Message from the General Co-chairs and the Vice
General Co-chairs

On behalf of the organizers of the 15th International Conference on High-Performance
Computing (HiPC), it is our pleasure to present these proceedings and we hope you will
find them exciting and rewarding.

The HiPC call for papers, once again, received an overwhelming response, attracting
317 submissions from 27 countries. P. Sadayappan, the Program Chair, and the Program
Committee worked with remarkable dedication to put together an outstanding technical
program consisting of the 46 papers that appear in these proceedings.

Several events, complementing this strong technical program, made HiPC 2008 a
special and exciting meeting. As in previous years, the HiPC 2008 keynotes were pre-
sented by internationally renowned researchers. HiPC 2008 also featured a full-day
student research symposium prior to the main conference, which consisted of presenta-
tions and posters by students highlighting their research. The conference once again had
an industry and user symposium focused on “High-Performance Computing Technolo-
gies, Applications and Experience,” which ran in parallel to the main track, to bring
together the users and providers of HPC. This symposium and the main conference
came together for a special plenary panel on “Cloud Computing.” There were several
industry and research exhibits complementing the symposium and the conference main
track. The meeting was preceded by a set of tutorials and workshops highlighting new
and emerging aspects of the field.

Arranging an exciting meeting with a high-quality technical program is easy when
one is working with an excellent and dedicated team and can build on the practices and
levels of excellence established by a quality research community. HiPC 2008 would not
have been possible without the tremendous efforts of the many volunteers. We would
like to acknowledge the critical contributions of each one.

We would like to thank P. Sadayappan, Program Chair, and the Program Committee
for their efforts in assembling such an excellent program, and the authors who submitted
the high-quality manuscripts from which that program was selected. We would also
like to thank the presenters of the keynotes, posters and tutorials, the organizers of the
workshops, and all the participants, who completed the program.

We would specially like to thank Viktor Prasanna, Chair of the HiPC Steering Com-
mittee, for his leadership, sage guidance, and untiring dedication, which have been key
to the continued success of the conference. We would also like to welcome our new vol-
unteers to the team - your efforts are critical to the continued success of this conference.
Finally, we would like to gratefully acknowledge our academic and industry sponsors
including IEEE Computer Society, ACM SIGARCH, Infosys, DELL, NetApp, Intel,
HP, IBM, Yahoo!, Cray and Mellanox.

December 2008 Manish Parashar
Ramamurthy Badrinath

Rajendra V. Boppana
Rajeev Muralidhar



Message from the Steering Chair

It is my pleasure to welcome you to the proceedings of the 15th International Con-
ference on High Performance Computing and to Bengaluru, the leading center of IT
activity in India.

My “thank you” goes to many volunteers whose dedicated effort over the past year
has made this conference a successful endeavor. P. Sadayappan, our Program Chair,
has done an outstanding job in putting together an excellent technical program. I am
indebted to him for his thorough evaluation of the submitted manuscripts and his re-
lentless efforts to further improve the quality of the technical program. Manish Parashar
and Ramamurthy Badrinath as General Co-chairs provided the leadership in resolving
numerous meeting-related issues and putting together the overall program including
the workshops and tutorials. They were ably assisted by Rajeev Muralidhar, Vice Gen-
eral Co-chair. The industry track was coordinated by Rama Govindaraju with assistance
from Frank Baetke and Santosh Sreenivasan. We have several continuing as well as new
workshops. These workshops were coordinated by Manimaran Govindarasu. The web-
site was maintained by Yinglong Xia. Animesh Pathak acted as the Production Chair
overseeing various activities related to the Web and creating publicity materials. The
Student Research Symposium was organized by Ashok Srinivasan and Rajeev Thakur.
Rajeev Sivaram assisted us with the tutorials. The local arrangements were handled
by C. Kalyana Krishna and Raghavendra Buddi. Sushil Prasad interfaced with the au-
thors and Springer to bring out the proceedings. Manisha Gajbe and Ashok Srinivasan
handled the publicity for us. Sally Jelinek and Jyothsna Kasthurirengan acted as the
Registration Co-chairs. Ajay Gupta and Thondiyil Venugopalan were in charge of the
meeting finances. Sumam David and Madhusudan Govindaraju administered the stu-
dent scholarships.

I would like to thank all our volunteers for their tireless efforts. The meeting would
not be possible without the enthusiastic effort and commitment of these individuals.

Major financial support for the meeting was provided by several leading IT compa-
nies and multinationals operating in India. I would like to acknowledge the following
individuals and their organizations for their support:

– N.R. Narayana Murthy, Infosys
– Kris Gopalakrishnan, Infosys
– David Ford, NetApp
– Siddhartha Nandi, NetApp
– B. Rudramuni, Dell India
– Ramesh Rajagopalan, Dell India
– Reza Rooholamini, Dell
– V. Sridhar, Satyam
– Prabhakar Raghavan, Yahoo! Inc.
– Arun Ramanujapuram, Yahoo! India R&D
– Vittal Kini, Intel Research, India
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– Biswadeep Chatterjee, Intel Research, India
– Venkat Natarajan, Intel Research, India
– Manish Gupta, IBM India
– Dinkar Sitaram, HP India
– Faisal Paul, HP India
– Venkat Ramana, Hinditron Infosystems

December 2008 Viktor K. Prasanna
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Stéphane Zuckerman, Marc Pérache, and William Jalby

The Design and Architecture of MAQAOAdvisor: A Live Tuning
Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Lamia Djoudi, Jose Noudohouenou, and William Jalby

A Load Balancing Framework for Clustered Storage Systems . . . . . . . . . . 57
Daniel Kunkle and Jiri Schindler

Construction and Evaluation of Coordinated Performance Skeletons . . . . 73
Qiang Xu and Jaspal Subhlok

Session II: Parallel Algorithms and Applications

Data Sharing Analysis of Emerging Parallel Media Mining
Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Yu Chen, Wenlong Li, Junmin Lin, Aamer Jaleel, and Zhizhong Tang



XXII Table of Contents

Efficient PDM Sorting Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Vamsi Kundeti and Sanguthevar Rajasekaran

Accelerating Cone Beam Reconstruction Using the CUDA-Enabled
GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Yusuke Okitsu, Fumihiko Ino, and Kenichi Hagihara

Improving the Performance of Tensor Matrix Vector Multiplication in
Cumulative Reaction Probability Based Quantum Chemistry Codes . . . . 120

Dinesh Kaushik, William Gropp, Michael Minkoff, and Barry Smith

Experimental Evaluation of Molecular Dynamics Simulations on
Multi-core Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Sadaf R. Alam, Pratul K. Agarwal, Scott S. Hampton, and Hong Ong

Parsing XML Using Parallel Traversal of Streaming Trees . . . . . . . . . . . . . 142
Yinfei Pan, Ying Zhang, and Kenneth Chiu

Session III: Scheduling and Resource Management

Performance Analysis of Multiple Site Resource Provisioning: Effects of
the Precision of Availability Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Marcos Dias de Assunção and Rajkumar Buyya

An Open Computing Resource Management Framework for Real-Time
Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Vuk Marojevic, Xavier Revés, and Antoni Gelonch

A Load Aware Channel Assignment and Link Scheduling Algorithm for
Multi-channel Multi-radio Wireless Mesh Networks . . . . . . . . . . . . . . . . . . . 183

Arun A. Kanagasabapathy, A. Antony Franklin, and
C. Siva Ram Murthy

Multi-round Real-Time Divisible Load Scheduling for Clusters . . . . . . . . . 196
Xuan Lin, Jitender Deogun, Ying Lu, and Steve Goddard

Energy-Efficient Dynamic Scheduling on Parallel Machines . . . . . . . . . . . . 208
Jaeyeon Kang and Sanjay Ranka

A Service-Oriented Priority-Based Resource Scheduling Scheme for
Virtualized Utility Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Ying Song, Yaqiong Li, Hui Wang, Yufang Zhang, Binquan Feng,
Hongyong Zang, and Yuzhong Sun

Session IV: Sensor Networks

Scalable Processing of Spatial Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Bhuvan Bamba, Ling Liu, Philip S. Yu, Gong Zhang, and
Myungcheol Doo



Table of Contents XXIII

Coverage Based Expanding Ring Search for Dense Wireless Sensor
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Kiran Rachuri, A. Antony Franklin, and C. Siva Ram Murthy

An Energy-Balanced Task Scheduling Heuristic for Heterogeneous
Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Lee Kee Goh and Bharadwaj Veeravalli

Energy Efficient Distributed Algorithms for Sensor Target Coverage
Based on Properties of an Optimal Schedule . . . . . . . . . . . . . . . . . . . . . . . . . 269

Akshaye Dhawan and Sushil K. Prasad

In-Network Data Estimation for Sensor-Driven Scientific
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Nanyan Jiang and Manish Parashar

Localization in Ad Hoc and Sensor Wireless Networks with Bounded
Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Mark Terwilliger, Collette Coullard, and Ajay Gupta

Session V: Energy-Aware Computing

Optimization of Fast Fourier Transforms on the Blue Gene/L
Supercomputer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Yogish Sabharwal, Saurabh K. Garg, Rahul Garg,
John A. Gunnels, and Ramendra K. Sahoo

ScELA: Scalable and Extensible Launching Architecture for Clusters . . . 323
Jaidev K. Sridhar, Matthew J. Koop, Jonathan L. Perkins, and
Dhabaleswar K. Panda

Parallel Information Theory Based Construction of Gene Regulatory
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Jaroslaw Zola, Maneesha Aluru, and Srinivas Aluru

Communication Analysis of Parallel 3D FFT for Flat Cartesian Meshes
on Large Blue Gene Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

Anthony Chan, Pavan Balaji, William Gropp, and Rajeev Thakur

Scalable Multi-cores with Improved Per-core Performance Using
Off-the-critical Path Reconfigurable Hardware . . . . . . . . . . . . . . . . . . . . . . . 365

Tameesh Suri and Aneesh Aggarwal

Session VI: Distributed Algorithms

TrustCode: P2P Reputation-Based Trust Management Using Network
Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Yingwu Zhu and Haiying Shen



XXIV Table of Contents

Design, Analysis, and Performance Evaluation of an Efficient Resource
Unaware Scheduling Strategy for Processing Divisible Loads on
Distributed Linear Daisy Chain Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Bharadwaj Veeravalli and Jingxi Jia

A Novel Learning Based Solution for Efficient Data Transport in
Heterogeneous Wireless Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

B. Venkata Ramana, K. Srinivasa Pavan, and C. Siva Ram Murthy

Scalable Data Collection in Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . 415
Asad Awan, Suresh Jagannathan, and Ananth Grama

Task Scheduling on Heterogeneous Devices in Parallel Pervasive
Systems (P 2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Sagar A. Tamhane and Mohan Kumar

A Performance Guaranteed Distributed Multicast Algorithm for
Long-Lived Directional Communications in WANETs . . . . . . . . . . . . . . . . . 439

Song Guo, Minyi Guo, and Victor Leung

Session VII: Communication Networks

Maintaining Quality of Service with Dynamic Fault Tolerance in
Fat-Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Frank Olaf Sem-Jacobsen and Tor Skeie

Designing a High-Performance Clustered NAS: A Case Study with
pNFS over RDMA on InfiniBand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

Ranjit Noronha, Xiangyong Ouyang, and Dhabaleswar K. Panda

Sockets Direct Protocol for Hybrid Network Stacks: A Case Study with
iWARP over 10G Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

Pavan Balaji, Sitha Bhagvat, Rajeev Thakur, and
Dhabaleswar K. Panda

Making a Case for Proactive Flow Control in Optical Circuit-Switched
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

Mithilesh Kumar, Vineeta Chaube, Pavan Balaji,
Wu-Chun Feng, and Hyun-Wook Jin

FBICM: Efficient Congestion Management for High-Performance
Networks Using Distributed Deterministic Routing . . . . . . . . . . . . . . . . . . . 503
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Extreme Computing on the Distributed European
Infrastructure for Supercomputing

Applications – DEISA

Wolfgang Gentzsch

Distributed European Initiative for Supercomputing Applications,
Duke University, USA

Abstract. Scientists’ dream of accessing any supercomputer in the world, inde-
pendently from time and space, is currently coming true, to perform even larger
and more accurate computer simulations, at their finger tip. Today, high-speed
networks transport data at the speed of light, middleware manages distributed
computing resources in an intelligent manner, portal technology enable secure,
seemless, and remote access to resources, applications, and data, and sophisti-
cated numerical methods approximate the underlying mathematical equations in
a highly accurate way. With the convergence of these core technologies into one
complex service oriented architecture, we see the rise of large compute and data
grids currently being built and deployed by e-Infrastructure initiatives such as
DEISA, EGEE, NAREGI, and TERAGRID.

With the aid of one example, in this keynote presentation, we will elaborate on
the Distributed European Infrastructure for Supercomputing Applications,
DEISA, which recently entered its second phase. We will describe the system ar-
chitecture, called the DEISA Common Production Environment (DCPE) and the
DEISA Extreme Computing Initiative DECI attracting scientists all over
Europe to use the networked supercomputing environment, and we will high-
light a few impressive success stories from scientists who achieved breakthrough
results so far which would not have been possible without such an infrastruc-
ture. Finally, we will summarize main lessons learned and provide some useful
recommendations.

Biography: Wolfgang Gentzsch is Dissemination Advisor for the DEISA Distributed
European Initiative for Supercomputing Applications. He is an adjunct professor of
computer science at Duke University in Durham, and a visiting scientist at RENCI
Renaissance Computing Institute at UNC Chapel Hill, both in North Carolina. From
2005 to 2007, he was the Chairman of the German D-Grid Initiative. Recently, he was
Vice Chair of the e-Infrastructure Reflection Group e-IRG; Area Director of Major
Grid Projects of the OGF Open Grid Forum Steering Group; and he is a member of
the US President’s Council of Advisors for Science and Technology (PCAST-NIT).
Before, he was Managing Director of MCNC Grid and Data Center Services in North
Carolina; Sun’s Senior Director of Grid Computing in Menlo Park, CA; President, CEO,
and CTO of start-up companies Genias and Gridware, and professor of mathematics
and computer science at the University of Applied Sciences in Regensburg, Germany.
Wolfgang Gentzsch studied mathematics and physics at the Technical Universities in
Aachen and Darmstadt, Germany.
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Towards Networked Computers: What Can Be Learned
from Distributed Computing?

David Peleg

Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science, Israel

Abstract. The talk will discuss some key ideas and concepts developed by the
distributed computing community and examine their potential relevance to the
development of networked computers.

Biography: David Peleg received the B.A. degree in 1980 from the Technion, Israel,
and the Ph.D. degree in 1985 from the Weizmann Institute, Israel, in computer science.
He then spent a post-doctoral period at IBM and at Stanford University. In 1988 he
joined the Department of Computer Science and Applied Mathematics at The Weiz-
mann Institute of Science, where he holds the Norman D. Cohen Professorial Chair
of Computer Sciences. His research interests include distributed network algorithms,
fault-tolerant computing, communication network theory, approximation algorithms
and graph theory, and he is the author of a book titled “Distributed Computing: A
Locality-Sensitive Approach,” as well as numerous papers in these areas.
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Computational Environments for Coupling Multiphase
Flow, Transport, and Mechanics in Porous Media

Mary F. Wheeler

Center for Subsurface Modeling
Institute for Computational Engineering and Sciences

The University of Texas at Austin, USA

Abstract. Cost-effective management of remediation of contamination sites and
carbon sequestration in deep saline aquifers is driving development of a new gen-
eration of subsurface simulators. The central challenge is to minimize costs of
cleanup and/or maximize economic benefit from an environment whose proper-
ties are only poorly known and in which a variety of complex chemical and phys-
ical phenomena take place. In order to address this challenge a robust reservoir
simulator comprised of coupled programs that together account for multicompo-
nent, multiscale, multiphase flow and transport through porous media and through
wells and that incorporate uncertainty and include robust solvers is required. The
coupled programs must be able to treat different physical processes occurring si-
multaneously in different parts of the domain, and for computational accuracy
and efficiency, should also accomodate multiple numerical schemes. In addition,
this problem solving environment or framework must have parameter estimation
and optimal control capabilities. We present a “wish list” for simulator capabili-
ties as well as describe the methodology employed in the IPARS software being
developed at The University of Texas at Austin. This work also involves a close
cooperation on middleware for multiphysics couplings and interactive steering
with Parashar at Rutgers University.

Biography: After 24 years at Rice University, Professor Mary Fanett Wheeler, a world-
renowned expert in massive parallel-processing, arrived at The University of Texas in
the Fall of 1995 with a team of 13 interdisciplinary researchers, including two associate
professors, three research scientists, three postdoctoral researchers, and four Ph.D. stu-
dents. Professor Wheeler is not completely new to UT, however, having received a B.S.,
B.A., and M.S. degrees from here before transferring to Rice for her Ph.D. under the
direction of Henry Rachford and Jim Douglas, Jr. Drs. Rachford and Douglas, both of
whom conducted some of the first applied mathematics work in modeling engineering
problems, have greatly influenced her career.

With the oil industry’s strong presence in Houston, she was at the right place at the
right time to advance the leap from theoretical mathematics to practical engineering.
She correctly theorized that parallel algorithms would spur a technological revolution,
offering a multitude of applications in the fields of bioengineering, pharmaceuticals
and population dynamics. Her reputation as a first class researcher has led to several
national posts, including serving on the Board of Mathematical Sciences, on the Ex-
ecutive Committee for the NSF’s Center for Research on Parallel Computation and in
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the National Academy of Engineering. Housed in the Texas Institute for Computational
and Applied Mathematics (TICAM) on the UT campus, Professor Wheeler has brought
a level of prominence to UT that many believe will bring us into the forefront of applied
mathematics.

As Head of UT’s new Center for Subsurface Modeling (CSM), which operates as
a subsidiary of TICAM, Professor Wheeler and her team focus their computer-based
research on finding solutions for societal and environmental dilemmas using computer
simulations to help with, among other things, effective reservoir management within
the oil and gas industry. Understanding contaminant movement and enhanced oil re-
covery techniques can save billions of dollars in cleanup as well as production over the
next couple of decades. Hazardous waste cleanup is incredibly important to society, she
believes, and is an area of study that has only begun to be explored.

Because of the complexity of the problems, Wheeler and her associates must ob-
tain data about the geology, chemistry, and mechanics of a site before they can begin
to construct algorithms to accurately depict a simulation. Hence, the interdisciplinary
nature of the work, which no one individual within a single department could tackle
on his/her own. Yet Professor Wheeler has indeed made great strides toward obtaining
expertise in several disciplines key to the success of parallel computing. Indeed, she
holds joint appointments in the Departments of Petroleum and Geosystems Engineer-
ing, Aerospace Engineering and Engineering Mechanics, and Mathematics. She is also
the first woman to hold an endowed Chair in UT’s College of Engineering (the Ernest
and Virginia Cockrell Chair in Engineering).

Dr. Wheeler’s own research interests include numerical solution of partial differential
systems with application to the modeling of subsurface and surface flows and parallel
computation. Her numerical work includes formulation, analysis and implementation
of finite-difference/finite-element discretization schemes for nonlinear coupled pde’s
as well as domain decomposition iterative solution methods. Her applications include
reservoir engineering and contaminant transport in groundwater and bays and estuar-
ies. Current work has emphasized mixed finite-element methods for modeling reactive
multi-phase flow and transport in a heterogeneous porous media, with the goal of simu-
lating these systems on parallel computing platforms. Dr. Wheeler has published more
than 100 technical papers and edited seven books. She is currently an editor of four
technical journals and managing editor of Computational Geosciences. In 1998 she was
elected to the National Academy of Engineering.



The Excitement in Parallel Computing

Laxmikant Kale

Department of Computer Science
University of Illinois at Urbana-Champaign, USA

Abstract. The almost simultaneous emergence of multicore chips and petascale
computers presents multidimensional challenges and opportunities for parallel
programming. Machines with hundreds of TeraFLOP/S exist now, with at least
one having crossed the 1 PetaFLOP/s rubicon. Many machines have over 100,000
processors. The largest planned machine by NSF will be at University of Illinois
at Urbana-Champaign by early 2011. At the same time, there are already hun-
dreds of supercomputers with over 1,000 processors each. Adding breadth, mul-
ticore processors are starting to get into most desktop computers, and this trend is
expected to continue. This era of parallel computing will have a significant impact
on the society. Science and engineering will make breakthroughs based on com-
putational modeling, while the broader desktop use has the potential to directly
enhance individual productivity and quality of life for everyone. I will review the
current state in parallel computing, and then discuss some of the challenges. In
particular, I will focus on questions such as: What kind of programming models
will prevail? What are some of the required and desired characteristics of such
model/s? My answers are based, in part, on my experience with several applica-
tions ranging from quantum chemistry, biomolecular simulations, simulation of
solid propellant rockets, and computational astronomy.

Biography: Professor Laxmikant (Sanjay) Kale has been working on various aspects of
parallel computing, with a focus on enhancing performance and productivity via adap-
tive runtime systems, and with the belief that only interdisciplinary research involving
multiple CSE and other applications can bring back well-honed abstractions into Com-
puter Science that will have a long-term impact on the state-of-art. His collaborations
include the widely used Gordon-Bell award winning (SC’2002) biomolecular simula-
tion program NAMD, and other collaborations on computational cosmology, quantum
chemistry, rocket simulation, space-time meshes, and other unstructured mesh appli-
cations. He takes pride in his group’s success in distributing and supporting software
embodying his research ideas, including Charm++, Adaptive MPI and the ParFUM
framework. Prof. Kale received the B.Tech degree in Electronics Engineering from
Benares Hindu University, Varanasi, India in 1977, and a M.E. degree in Computer
Science from Indian Institute of Science in Bangalore, India, in 1979. He received a
Ph.D. in computer science in from State University of New York, Stony Brook, in 1985.

P. Sadayappan et al. (Eds.): HiPC 2008, LNCS 5374, p. 5, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Improving Performance of Digest Caches in
Network Processors

Girish Chandramohan1,� and Govindarajan Ramaswamy2

1 Akamai Technologies India Pvt. Ltd.
2 Supercomputer Education and Research Centre,

Indian Institute of Science, Bangalore 560 012, India
gchandra@akamai.com, govind@serc.iisc.ernet.in

Abstract. Digest caches have been proposed as an effective method to
speed up packet classification in network processors. In this paper, we
show that the presence of a large number of small flows and a few large
flows in the Internet has an adverse impact on the performance of these
digest caches. In the Internet, a few large flows transfer a majority of
the packets whereas the contribution of several small flows to the total
number of packets transferred is small. In such a scenario, the LRU
cache replacement policy, which gives maximum priority to the most
recently accessed digest, tends to evict digests belonging to the few large
flows. We propose a new cache management algorithm called Saturating
Priority (SP) which aims at improving the performance of digest caches
in network processors by exploiting the disparity between the number of
flows and the number of packets transferred. Our experimental results
demonstrate that SP performs better than the widely used LRU cache
replacement policy in size constrained caches. Further, we characterize
the misses experienced by flow identifiers in digest caches.

1 Introduction

Network applications such as IP forwarding and packet classification involve
complex lookup operations. These operations have to be performed at wire
speeds and are the bottleneck in achieving faster processing rates in routers [1, 2].
Algorithmic techniques used for packet classification [2, 3] in routers need large
tables and require multiple accesses to main memory. Architectural optimiza-
tions proposed for speeding up this processing involve caching the data structures
used [1, 4, 5] or caching the results of the lookup [6, 7]. Cache based methods
exploit temporal locality observed in Internet packets. Consequently, the effi-
ciency of these schemes is dependent on the access characteristics observed in
real traces from the Internet. A clear understanding of the cache access patterns
is important in order to design a cache management policy for such applications.

Network processors (NPs) [8, 9, 10] have emerged as a viable option to im-
plement network processing applications. The generic architecture of a network

� This study was conducted when the first author was at SERC, IISc.
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processor consists of a number of simple in-order cores that perform the data
plane operations [11]. These cores have support for multiple threads aimed at ex-
ploiting packet-level parallelism present in network applications. The cores have
small data and instruction caches to speedup network processing applications.
These caches are of size 2KB to 8KB typically [8, 9, 11].

In digest caching [7], a fixed, smaller length digest is obtained by hashing the
fields used in packet classification. This digest is stored along with the flow class
in a cache. Due to reduced the cache entry sizes, a digest cache of a few kilobytes
is effective in maintaining a higher hit rate than a result cache.

Previous studies propose maintaining the cache entries with the LRU cache
replacement strategy as it performs better than the LFU and probabilistic inser-
tion policies [7]. LRU cache replacement works well in the presence of temporal
locality. Internet flows however exhibit distinct characteristics which may be
used to obtain higher performance from these constrained caches. In the Inter-
net, a large number of flows have a single packet, whereas a small number of
flows have multiple packets and contribute to the majority of the traffic [12].
From a caching perspective, we observe that flows with a single packet do not
exhibit any (temporal) locality and hence it is not beneficial to store such entries
in the digest cache. More importantly, these single packet flows may evict digests
belonging to flows with multiple packets. We propose to exploit this character-
istic of Internet flows to improve the performance of a digest cache by using
a new cache replacement policy called Saturating Priority (SP). Under the SP
cache replacement policy, a new digest entry is inserted in a cache set with the
lowest priority. Its priority increases and reaches the maximum priority as more
accesses are made to it. During cache replacement, the item with the lowest
priority in the set is removed. Such a policy ensures that digests belonging to
single packet flows do not replace multiple packet flow digests. We evaluate the
miss rate with SP and LRU cache replacement policies using real traces collected
from different sites in the Internet. The SP policy outperforms the LRU policy
for all traces and cache sizes considered. For a 512-entry 4-way set associative
cache, it covers 74% of the gap between LRU cache replacement and an oracle
cache replacement policy which places digest entries in the cache only for flows
that contain multiple packets.

Further, we characterize the misses incurred by a LRU managed digest cache
and show that conflict misses are small compared to capacity and cold misses.
This shows that although digest caches can reduce a majority of packet classifi-
cation lookups, the size of the cache has to be substantially increased in order
to reduce the misses to a small fraction.

The rest of the paper is organized as follows. In the next section, we present the
necessary background for digest caches. In Sec. 3, we present the characteristics
of Internet traffic in terms of flow size distribution and describe our Saturating
Priority cache replacement algorithm. Sec. 4 deals with the performance results
of the Saturating Priority algorithm. We present the related research proposals
in this area in Sec. 5. Finally we conclude in Sec. 6.
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2 Background

In this study, we consider a packet classification application [3] in which a tuple
consisting of the source IP address and port, destination IP address and port
and the protocol field are used to identify packets belonging to a particular
network flow. This 5 tuple, called the flow identifier, is used to map the packets
of a flow to a particular traffic QoS class. This methodology may also be used
in packet forwarding application where the port on which the packet has to be
forwarded is stored along with the flow identifier. In network address translation
(NAT) application, the digest cache can be used to lookup the address translation
information. A digest cache is a generic method for improving the table lookup
rate, a commonly used operation in network processing applications.

Fig. 1. Result cache entry for packet classification

In case of packet classification for IPv4, result caching involves storing the 104
bit 5-tuple along with the QoS or forwarding information of size r bits as shown
in Fig. 1. The memory size required to realize such a cache with sufficiently high
hit rate could be large due to the large size of the entries. A recent proposal has
been to use a smaller digest of the 5-tuple instead of the actual values in the
fields [7].

2.1 Operation of a Digest Cache

We now describe the operation of the digest cache which was presented by Chang
et al. [7]. In case of packet classification, a digest cache works by using a hashing
algorithm on the 104-bit 5 tuple to generate a 32-bit hash 1. The least significant
s bits are used to index into a set associative cache of 2s sets. The remaining
(32− s) bits of the hash are used for tag check, after which a cache hit or miss is
known. Each cache block stores the r-bit result which is either the classification
information or the forwarding information, depending on the application, for
which the digest cache is used. Each cache block stores the result of only one tuple
as spatial locality is low in these applications. In case of a miss, the processing
proceeds by using a full classification algorithm. The digest that missed in the
cache replaces another entry in the set using a cache eviction policy that chooses
the victim. Steps involved in accessing a digest cache are shown in Fig. 2.

The digest cache acts as a filter, servicing the frequently accessed digests.
Only those packets whose digests miss, go through the slower packet classification
1 NPs such as the IXP2400 and IBM PowerNP have a hash unit which may be used

to compute the digest.
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Fig. 2. Accessing an entry in a 4-way set associative digest cache

algorithm. A higher hit rate in the digest cache is critical for higher classification
rates as it decreases the number of packets going through the slower packet
classification step [5].

Each entry in the digest cache consists of a tag of (32− s) bits and r bits of
classification information. Thus the total size of a digest cache with 2s sets and
k blocks per set (associativity) is

Digest Cache Size =
((32− s + r) ∗ 2s ∗ k)

8
bytes (1)

The size of a cache with different number of entries and associativities are shown
in Table 1. Here, we assumed that 1 byte IP lookup or classification information
is stored along with the digest. This is sufficient for various diff serve classes for
which classification has to be performed.

Table 1. Cache sizes for different number of entries and associativities

Entries 4-way assoc. 8-way assoc.
512 2112 bytes 2176 bytes
1024 4096 bytes 4224 bytes
2048 7936 bytes 8192 bytes

The IXP 2400 has 2560 bytes of local memory, a 16 entry content accessible
memory and a hash unit that may be used to implement a digest cache under
software control [8]. The CAM supports LRU replacement. However, we show
that using a different cache replacement policy could improve the performance
of the cache. The local cache in each processing core of an NP is small, around
2KB. In this study, we consider the performance of digest caches in a network
processor environment and consider cache sizes up to 8KB.

3 Improving the Performance of Digest Caches

Li et al., [6] evaluate digest caches with different associativities, hash functions
and cache management policies. They propose a probabilistic insertion policy
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which only partially addresses the problem of the presence of large number of
flows. The benefit of this algorithm is comparable to the LRU replacement policy.
In fact, the probabilistic replacement policy and LFU replacement policies have
a higher miss rate than the LRU cache replacement with two of the edge traces
that they considered. On the other hand, we first study the distribution of flow
lengths in the Internet and their effect on LRU cache replacement. The number
of flows in the Internet, their lengths and rates influences the performance of the
digest cache. We then propose SP cache replacement policy which exploits the
widely observed disparity in flow sizes to find cache entries for replacement.

3.1 Flow Length Distribution in the Internet

An Internet packet flow is considered active from the time it sends the first
packet until it is idle, i.e, it does not send a packet, for 1 second. A similar
definition is used in [12]2. Flow length is defined as the number of packets sent
when a flow is active. The traces from [13] that we use in our study are shown in
Table 2. Only Abilene trace has packets that are in both directions3. However we
show that irrespective of the direction of the flow of packets, there is a disparity
in the flow lengths and the number of packets transferred by these flows.

Table 2. Traces from the Internet used in this study

Trace (Label) Type Trace Direction Files
Abilene Indianapolis Abilene Core Bidirectional I2K-1091235140-1.erf.gz to
router (Abilene) I2K-1091308171-2.erf.gz
National Center for Atmospheric Edge Unidirectional 20031229-223500.gz to
Research (NCAR) 20031229-221000.gz

Front Range Gigapop (FRG) Edge Unidirectional FRG-1133754905-1.tsh.gz to
FRG-1133818534-1.tsh.gz

Pittsburgh Supercomputing Edge Unidirectional PSC-1145580225-1.tsh.gz to
Center (PSC) PSC-1145742328-1.tsh.gz
San Diego Supercomputer Center Edge Unidirectional SDA-1141865872.erf.gz to
to Abilene connection (SDA) SDA-1142027975.erf.gz

For the three traces, Abilene, NCAR and SDA, Fig. 3 shows the cumulative
percentage of flows having packets less than the value on the x-axis. The graph
also shows the cumulative percentage of the packets that are transferred by
these flows. These traces have 3.1 million, 15.4 million and 4.4 million flows
respectively. In NCAR trace, more than 95% of the flows have only a single
packet. Abilene and SDA traces have 58% single packet flows. Fig. 3 also shows
2 In [12], the authors use a time out of 60 seconds. Even with a time out of 1 second,

there are about 6000 concurrent flows in all our traces. This is more than the number
of entries in the digest cache.

3 The packets were merged according to their timestamp to obtain a proper interleav-
ing of the packets as seen by the router.
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the cumulative percentage of the traffic (in terms of packets) contributed by
flows of different sizes. It can be seen that, irrespective of the direction of the
traces, single packet flows, which are a significant part of the total number of
flows, contribute less than 6% of the packets transferred in Abilene and SDA
traces. In NCAR trace, single packet flows transfer 25% of the total packets.
Less than 0.2% of the flows have more than 1000 packets, but they transfer 52%
of the packets on an average. Thus Internet traffic exhibits the phenomenon of
mass-count disparity [14], i.e. a few important flows transfer a significant number
of packets. From the above observations, we see that a large number of flows in
the Internet have only a single packet. These flows get entries into the digest
cache, but will never be accessed again. Presence of a large number of such flows
has a detrimental effect on the performance of the digest cache as they tend to
evict the digests of few flows that contain a large number of packets.
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Fig. 3. Disparity in the flow lengths and packets transferred

3.2 A New Replacement Algorithm for Digest Caches

The above observations provide an insight into the functioning of the digest
cache in a network processor. The cache has to service a large number of flows,
but only a small fraction of the flows have multiple packets that are accessed
again. From Fig. 3, we infer that the cache replacement policy of a digest cache
must strive to retain the digests belonging to large flows within the cache while
preventing the single packet flows from occupying entries in the cache.

Given the large number of single packet flows in the Internet and the small
cache size, an LRU managed digest cache may suffer from degraded performance
due to cache pollution. Previous studies using digest caches used LRU cache re-
placement strategy as it performed better than LFU and probabilistic insertion
policies [6, 7]. LRU cache management gives preference to the most recently ac-
cessed entry in the set and puts it in the most-recently-used (MRU) location. In
case of network processing applications, the most recently accessed digest usu-
ally belongs to a single packet flow and it will never be accessed again. But such
digests stay in the cache until they are slowly pushed out by the LRU replace-
ment algorithm. This suggests that LRU may not be the best cache management
policy.

In order to overcome this effect, we propose a Saturating Priority cache re-
placement policy that exploits the disparity between the number of flows and
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the residency of the digests in the cache. Each entry in a set has a priority that
increases each time the entry is accessed, until it reaches a maximum value. Fur-
ther accesses to the same entry do not increase its priority. Whenever an entry
with a lower priority is accessed, it swaps its priority with an entry that has the
next higher precedence. A new entry is added to a set with the least priority,
after evicting the item with the lowest priority.

Fig. 4. Saturating Priority cache replacement policy

Fig. 4 illustrates the change in priorities of the entries in a 4-way set associative
set. The set initially contains the digests marked a,b,c and d. Their priorities
are also marked in the figure. Here, a larger number signifies a higher priority.
When digest d is accessed two times, it swaps its priority with digests c and b
respectively. It thus has a priority of 3. The priority of digests b and c decrease.
Digest c now has the lowest priority in the set. As a result, the miss caused by
digest e evicts digest c from the cache. The last access in the sequence, access
to digest a, does not increase its priority as it has already got the maximum
priority.

SP cache replacement evicts any entry that was brought into the cache, but is
not subsequently accessed. Entries that are accessed only a few times are likely
to be evicted. Also in a digest cache, entries are accessed a number of times
when the a flow is active, but the accesses stop when the flows end. The cache
replacement policy proactively removes such entries as their priority decreases
rapidly.

SP scheme can be implemented in a d way associative cache by maintaining
two log2(d) bit pointers per cache entry, which point to cache entries with imme-
diately higher and lower priority. When the priority of an element changes, the
pointers in the (at most four) affected cache entries can be updated in parallel.

4 Performance Evaluation

As mentioned in Sec. 1, IP lookup or packet classification is the bottleneck in
achieving higher processing rates in routers [1, 2]. By reducing the miss rate of
digest caches, higher processing rates can be achieved as the packets are pro-
cessed from the cache entries instead of the slower off-chip memory. We therefore
compare the miss rate of SP scheme with that of the widely used LRU scheme.
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In order to understand the maximum improvement in performance of the digest
cache that is possible by preventing the detrimental effect of single packet flows,
we implemented an oracle cache management policy that inserts a digest into
the cache only when it has more than one access in a window of 10,000 accesses
in the future. The cache entries are managed with a LRU policy. We call this
PRED policy as a simple predictor may be able to predict single packet flows
reasonably well.

We consider cache sizes ranging from 2KB to 8KB because as explained in
Sec. 1 these are the typical memory sizes available in network processors to
implement digest caches. 32-bits from the MD5 hash of the flow identifier is
used to obtain the digest. The cache sizes for different configurations are shown
in Table 1.

(a) 512 entries, 4-way set (b) 1024 entries, 4-way set (c) 2048 entries, 4-way set

Fig. 5. Normalized misses for a 4-way associative digest cache

For the traces listed in Table 2. Fig. 5 shows the percentage of misses with SP
and PRED replacement policies. The misses are normalized wrt. misses incurred
with LRU replacement for 4-way set associative caches. The SP policy performs
better than the LRU cache replacement policy in terms of miss rates for all 4-
way set associative caches. As expected, the PRED cache management policy
has lower miss rate than the other two policies.

Table 3 shows the miss rates for LRU and SP policies for 4-way and 8-way
associative caches. We see that for almost all the configurations, SP replacement
for a 4-way set associative cache has a lower miss rate than LRU replacement for

Table 3. Cache miss rates with SP and LRU policies

Trace
512 Entries 1024 Entries 2048 Entries

4 way 8 way 4 way 8 way 4 way 8 way
LRU SP LRU SP LRU SP LRU SP LRU SP LRU SP

Abil. 32.6% 32.5% 32.2% 32.8% 29.3% 27.5% 29.1% 26.7% 24.9% 22.2% 24.7% 21.3%
FRG 18.6% 16.1% 18.2% 15.3% 11.9% 10.5% 11.0% 9.8% 7.4% 7.0% 6.7% 6.7%
NCA. 42.1% 34.5% 42.1% 32.8% 35.4% 29.6% 34.6% 28.4% 29.7% 27.3% 28.6% 27.2%
PSC 20.8% 17.9% 19.9% 16.9% 13.0% 11.8% 11.8% 11.1% 8.2% 8.1% 7.4% 8.1%
SDA 49.8% 49.4% 49.1% 50.0% 40.2% 37.9% 39.2% 37.6% 29.7% 26.8% 28.9% 25.8%
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a 8-way set associative cache. In SP cache replacement, the maximum priority
that an element can get is equal to its set associativity. An element that attains
higher priority occupies the cache for a longer duration before it is evicted from
the set. As a result, when a flow becomes inactive, it takes longer to be evicted
from the cache. This explains the low reduction in miss rate with SP policy for
caches with higher associativity.

(a) 512 entries, 4-way set (b) 1024 entries, 4-way set (c) 2048 entries, 4-way set

Fig. 6. Miss rate improvement over LRU replacement for 4-way assoc. caches with SP
and PRED policies

Fig. 6 shows the improvement in miss rate over LRU scheme for 4-way set as-
sociative caches with SP and PRED cache replacement. The NCAR trace shows
18% improvement in miss rate for a 512-entry cache and 8% improvement for a
2048-entry cache. For a 512-entry cache, with the FRG, NCAR and PSC traces,
SP covers more than 74% of the gap between the LRU and PRED cache man-
agement policy. Even for higher cache sizes, SP covers substantial gap between
LRU and PRED replacement. With the PSC trace, SP cache replacement does
not show much improvement with large caches, however the miss rate for this
trace is already low. For a 512-entry cache with the SDA trace, SP replace-
ment policy has a small improvement over LRU replacement policy. But it has
10% improvement over LRU replacement policy for a 2048-entry cache, covering
41% of the gap between LRU and PRED policies. For 512-entry and 1024-entry
caches, SP shows more than 10% miss rate improvement of an average whereas
for a 2048-entry cache, the average improvement is 7.08%.

With a 2048-entry cache, the PSC trace with SP cache replacement shows
a slightly higher miss rate of 8.1% compared to LRU cache replacement with
a miss rate of 7.4%. We observe that with this cache size, the PSC trace has
insignificant capacity misses (refer Fig. 7). In this case, the SP cache replacement
policy that evicts the most recently accessed digests incurs slightly higher misses
as the digests are removed before their priority can increase. But with smaller
caches such as those seen in NPs, SP policy has lower miss rate than LRU cache
replacement.

We see that the Abilene, NCAR and SDA traces suffer more than 13% miss
rate even for a 2048-entry cache with LRU cache replacement. In order to un-
derstand the reason for this, we classified the misses in a LRU managed cache as
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cold, capacity and conflict misses. Misses due to accesses that were not present
in a window of previous 10,000 accesses are classified as cold misses. We used
this definition of cold misses because when network flows stop, their digests are
evicted from the cache. When a packet with the same digest is seen next, it
is considered a new flow. Accesses to digests that are present in the window
of previous 10,000 accesses but not in a fully associative cache are classified as
capacity misses. Conflict misses are those which occur when a set associative
cache is used instead of a fully associative cache of the same size.

(a) 512 entries, 4-way set (b) 1024 entries, 4-way set (c) 2048 entries, 4-way set

Fig. 7. Types of misses in digest caches

Conflict misses may be reduced by using a better cache placement and man-
agement policy. From Fig. 7 we observe that for a 1024-entry, 4-way set associa-
tive digest cache less than 10% of the misses are due to cache conflicts in case of
Abilene, NCAR and SDA traces. Traces that already have a high hit rate, such
as FRG and PSC, have about 25% conflict misses. This observation shows that
the cold and capacity misses dominate the misses in a digest cache. As expected,
for larger caches, the ratio of capacity misses decreases but the number of cold
misses does not decrease. This is mainly because of the large number of small
flows (refer Fig. 3). As a result, continuously increasing the cache size leads to
small improvements in performance. Instead, it may be worthwhile to use better
algorithmic or data structure caching approaches to improve the hit rate.

5 Related Work

Zhang et al. [12] use traces from different locations in the core and edge of
the Internet to study the characteristics of Internet traffic flows. Disparity in the
flow lengths is shown to be more drastic than the disparity in the rate of the
flows. They also show that there is a correlation between the size of the flow and
its rate. This disparity in the number of packets present in a few flows inspired
us to propose a new cache management scheme for digest caches.

Feitelson [14] proposed metrics to quantify mass-count disparity, a phenomenon
seen in a number of computer applications such as network traffic, job time
distribution in operating systems, file size distribution. In [15], Feitelson et al.
use the same phenomenon to design a filter for identifying and retaining common
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addresses in a direct mapped cache L1 cache of a superscalar processor. Since
a few addresses are accessed a large number of times, the authors show that a
randomly chosen reference to the cache belongs to an address that is accessed
many times.

Mudigonda et al. [4] propose the use of caches for data structures used in
network processing applications as it benefits a large number of such programs.
Similarly, Gopalan et al. [5], propose an intelligent mapping scheme to reduce
conflict misses in IP lookup data structure caches and to enable frequent updates
of the routing table. On the other hand, we exploit the traffic patterns observed
in real traces to improve the effectiveness of small digest caches for packet clas-
sification application. The insight gained from the traffic patterns can also be
applied to data structure caches. We leave this to future work.

Qureshi et al. [16] propose a LRU insertion policy (LIP) for L2 caches in
general purpose processors which, like SP, inserts the cache lines in the least
recently used location in the set instead of the MRU location. Lines are moved
to the MRU location in case they are accessed in the LRU location whereas
the SP policy allows the cache entries to slowly percolate to the MRU position.
LIP is aimed at applications that have a larger working set than the cache size.
For applications that have a cyclic reference pattern, it prevents thrashing of the
cache by retaining some entries in the cache so that they contribute to cache hits.
On the other hand, we observe that the large disparity in the flow sizes in the
internet leads to poor performance of LRU managed result caches in network
applications. In SP, the priorities are managed such that cache replacement
policy can recognize digests belonging to large flows.

6 Conclusions

Digest caches provide an effective mechanism to reduce the number of expen-
sive off-chip lookups. However, they suffer from poor performance due to the
large number of single packet flows in the Internet. We proposed a new cache
replacement policy, called Saturating Priority, that overcomes the detrimental
effects of these flows on the performance of digest caches. This policy performs
better the widely used the LRU cache replacement policy for space constrained
caches. We showed that Saturating Priority covers nearly three fourth of the gap
between the LRU cache replacement and the oracle cache replacement policy,
which places an entry in the cache only when there are multiple packets in the
flow. Further, we showed that the majority of the misses in a digest are cold
misses. This emphasizes the need for algorithmic innovations to improve packet
classification performance.
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Abstract. The unique architecture of the heterogeneous multi-core
Cell processor offers great potential for high performance computing.
It offers features such as high memory bandwidth using DMA, user
managed local stores and SIMD architecture. In this paper, we present
strategies for leveraging these features to develop a high performance
BLAS library. We propose techniques to partition and distribute data
across SPEs for handling DMA efficiently. We show that suitable pre-
processing of data leads to significant performance improvements when
the data is unaligned. In addition, we use a combination of two kernels –
a specialized high performance kernel for the more frequently occurring
cases and a generic kernel for handling boundary cases – to obtain better
performance. Using these techniques for double precision, we obtain up
to 70–80% of peak performance for different memory bandwidth bound
level 1 and 2 routines and up to 80–90% for computation bound level 3
routines.

Keywords: Cell processor, multi-core, Direct Memory Access (DMA),
BLAS, linear algebra.

1 Introduction

The Cell Broadband Engine, also referred to as the Cell processor, is a
multi-core processor jointly developed by Sony, Toshiba and IBM. The Cell
is a radical departure from conventional multi-core architectures – combining
a conventional high-power PowerPC core (PPE) with eight simple Single-
Instruction, Multiple-Data (SIMD) cores, called Synergistic Processing Element
(SPE) in a heterogeneous multi-core offering. It offers extremely high compute-
power on a single chip combined with a power-efficient software-controlled
memory hierarchy. The theoretical peak performance of each SPE for single
precision floating point operations is 25.6 GFLOPS leading to an aggregate
performance of 204.8 GFLOPS for 8 SPEs. The theoretical peak performance for
double precision is 12.8 GFLOPS per SPE and 102.4 GFLOPS aggregate. Each
SPE has 256 KB of Local Store for code and data. An SPE cannot directly access

P. Sadayappan et al. (Eds.): HiPC 2008, LNCS 5374, pp. 18–29, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Optimization of BLAS on the Cell Processor 19

the data stored in an off-chip main memory and explicitly issues Direct Memory
Access (DMA) requests to transfer the data between the main memory and its
local store. Access to the external memory is handled via a 25.6 GB/s Rambus
extreme data rate (XDR) memory controller. The PPE, eight SPEs, memory
controller and input/output controllers are connected via the high bandwidth
Element Interconnect Bus (EIB) [9].

Distinctive features of the Cell such as the XDR memory subsystem, coherent
EIB interconnect, SPEs, etc. make it suitable for computation and data
intensive applications. There has been a considerable amount of work that has
demonstrated the computational power of the Cell processor for a variety of
applications, such as dense matrix multiply [16], sparse matrix-vector multiply
[16], fast Fourier transforms [3], sorting [6], ray tracing [4] and many others.

Basic Linear Algebra Subprograms (BLAS) is a widely accepted standard
for linear algebra interface specifications in high-performance computing and
scientific domains, and forms the basis for high quality linear algebra packages
such as LAPACK [1] and LINPACK [5]. BLAS routines [13] are categorized into
three classes – level 1 routines (vector and scalar operations), level 2 routines
(vector-matrix operations) and level 3 routines (matrix-matrix operations).

BLAS has been tuned and optimized for many platforms to deliver good
performance, e.g. ESSL on IBM pSeries and Blue Gene [11], MKL for Intel [12],
GotoBLAS on a variety of platforms [7], etc. Successful efforts have also been
made towards automatic tuning of linear algebra software (ATLAS) [2] to provide
portable performance across different platforms using empirical techniques. Some
of these portable libraries give good performance when executed on the Cell
PPE. However, given the unique architecture of the Cell processor and the SPE
feature set, specialized code needs to be designed and developed for obtaining
high performance BLAS for the Cell processor. Williams et al. [16], [15] have
discussed optimization strategies for the general matrix-multiply routine on the
Cell processor, obtaining near-peak performance. However, existing literature
and optimization strategies of linear algebra routines on the Cell make simplified
assumptions regarding the alignment, size, etc. of the input data. A BLAS library
needs to address many issues for completeness, such as different alignments of
the input vectors/ matrices, unsuitable vector/ matrix dimension sizes, vector
strides, etc., that can have significant impact on the performance.

In this paper, we discuss the challenges and opportunities involved in
optimizing BLAS for the Cell processor. We focus on the optimization strategies
used for producing the high performance BLAS library that is shipped with the
Cell Software Development Kit (SDK). The library consists of single and double
precision routines ported to the PPE; a selected subset of these routines have
been optimized using the SPEs. The routines conform to the standard BLAS
interface at the PPE level. This effort, of offering a high performance BLAS
library, is the first of its kind for the Cell. We propose techniques to partition
and distribute data across SPEs for handling DMA efficiently. We show that
suitable pre-processing of data leads to significant performance improvements
when the data is unaligned. In addition, we use a combination of two kernels – a
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specialized high performance kernel for the more frequently occurring cases and
a generic kernel for handling boundary cases – to obtain better performance.

The rest of the paper is organized is as follows. In Section 2 we discuss
the challenges and opportunities that the Cell offers with respect to BLAS. In
Section 3, we discuss the optimization strategies followed by performance results
in Section 4. We conclude in Section 5 with a brief discussion of the ongoing and
future planned work.

2 Challenges and Opportunities

On the Cell processor, the memory hierarchy of the PPE is similar to
conventional processors whereas SPEs have a distinctive three-level hierarchy:
(a) 128×128-bit unified SIMD register file, (b) 256 KB of local store memory,
and (c) shared off-chip main memory. Each SPE works only on the code and
data stored in its local store memory and uses DMA transfers to move data
between its local store and the main memory (or the local stores of other SPEs).

These DMA transfers are asynchronous and enable the SPEs to overlap com-
putation with data transfers. Although the theoretical peak memory bandwidth
is 25.6 GB/s, the effective bandwidth obtained may be considerably lower if the
DMA transfers are not setup properly. This can degrade performance of BLAS
routines, particularly level 1 and level 2 routines, which are typically memory
bandwidth bound.

DMA performance is best when both source and destination buffers are 128-
byte (one cache line) aligned and the size of the transfer is a multiple of 128 bytes.
This involves transfer of full cache lines between main memory and local store. If
the source and destination are not 128-byte aligned, then DMA performance is
best when both have the same quadword offset within a cache line. This affects
the data partitioning strategy. Typically, an SPE works on blocks of the input
data by iteratively fetching them from main memory to its local store, performing
required operation on these blocks and finally storing back the computed data
blocks to main memory. Therefore, it is important to partition the input data in
a manner such that the blocks are properly aligned so that their DMA transfers
are efficient.

Transfer of unaligned or scattered data (e.g. vectors with stride greater
than 1) may result in the use of DMA lists. However, direct (contiguous) DMA
transfers generally lead to better bandwidth utilization in comparison to DMA
list accesses as every list element consumes at least 128 bytes worth of bandwidth,
independent of the size of the transfer. To illustrate this, consider a block of size
16x + 12 bytes starting at a 128 byte aligned address. DMA transfers can be
done in units of 1, 2, 4, 8 and multiple of 16 bytes starting at memory addresses
that are 1, 2, 4, 8 and 16 byte aligned, respectively. One way of transferring this
block is to construct a DMA list that has 3 list elements, one each for (1) the 16x
byte aligned part, (2) the 8 byte part and (3) the 4 byte part. As each transfer
consumes 128 bytes worth of bandwidth, there may be close to 128 bytes worth
of bandwidth loss for each transfer. A better strategy is to transfer some extra
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bytes at the tail, making the transfer size a multiple of 16 bytes so that a direct
DMA transfer can be used. When fetching data, the extra fetched bytes can be
discarded by the SPE. However this strategy cannot be used for writing data
back to main memory as it can lead to memory inconsistencies. Hence, DMA
lists need to be used for writing back unaligned data.

Selection of an appropriate block size is also critical for high performance.
Large data block size not only improves DMA efficiency due to larger data
transfers but also results in sufficient computations to hide overlapped DMA
latencies. However, the data block size is limited by 256 KB of SPE local store.

3 Optimization Strategies

Algorithmic and architecture specific optimizations of linear algebra libraries
such as BLAS and LAPACK, have been well studied [1,2,7,12,13]. However,
several factors have to be taken into consideration when applying these proven
strategies on the Cell. Besides, new techniques are required for enabling high
performance of routines like BLAS on the Cell, as discussed in Section 2. In this
section we discuss the different strategies used for optimizing BLAS on the Cell.
It should be noted that these strategies are targeted for a single Cell processor,
large data sets, column-major matrices and huge memory pages (16 MB).

3.1 Data Partitioning and Distribution

Data partitioning and distribution are a critical part of designing linear algebra
subprograms on multi-cores. The proposed strategy for data partitioning and
distribution differs across the three categories of the BLAS routines. For the
memory bandwidth bound level l and level 2 routines, data partitioning is carried
out with an objective to get close to the peak memory bandwidth, whereas for
the computation bound level 3 routines the objective is to get close to the peak
computation rate.

BLAS Level 1 Routines: Level 1 routines typically operate on one or two
vectors and produce as output a vector or a scalar. The goal is to partition the
data into equal-sized blocks that can be distributed to the SPEs with each SPE
getting roughly an equal number of blocks. In our strategy, when the output is
a vector, the output or the I/O vector (data that is both read and updated) is
divided by taking into considerations the memory alignment of the blocks such
that they are 128-byte aligned, are multiple of 128 bytes and large enough (16 KB
– the maximum transfer size for a single DMA operation). This ensures that
the DMA writes from local store to main memory can be performed without the
need for DMA lists. These blocks are then divided (almost) equally, among the
SPEs, with each SPE getting a contiguous set of blocks. The other input vector
(if any) is divided with respect to the output or I/O vector, without considering
the memory alignment, such that their blocks have the same range of elements.
In cases where the output is a scalar (e.g. in DDOT), partitioning with memory
alignment considerations can be carried out for any of the vectors.
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When the vector being partitioned does not start or end on a 128-byte
boundary, there may be small parts of the vector at the start (head) and the
end (tail) that do not satisfy the alignment and size criteria mentioned above.
These are handled directly on the PPE.

In the case where access for one or more vectors is strided, the size of each
block is restricted to 2048 elements (the maximum number of DMA transfers
that can be specified in a single DMA list operation).

BLAS Level 2 Routines: Level 2 routines perform matrix-vector operations
and their output can either be a vector or a matrix. The complexity of these rou-
tines is determined by the memory bandwidth requirements for fetching/storing
the matrix. Thus, data partitioning and distribution for these routines is done
keeping in mind efficient DMA considerations for the matrix. The column-major
matrix is divided into rectangular blocks which are distributed among the SPEs.
The SPEs typically operate on one block in an iteration. A block is fetched
using a DMA list where each list element transfers one column of the block. To
improve the efficiency of the DMA, column sizes of the block should be large and
multiples of 128 bytes. The block dimensions are appropriately chosen depending
on the number of vectors used and SPE local store size.

If the output is a vector and there are two vectors – an input and a I/O
vector (e.g. in DGEMV), the I/O vector is divided into blocks by taking memory
alignment into consideration and distributed to the SPEs, as it is done for level
1 routines. Each SPE fetches an I/O vector block, iteratively fetches the blocks
of the matrix and the input vector required for the computation, carries out
the computation and writes back the I/O vector block to the main memory. If
there is only one I/O vector (e.g. in DTRMV), a block of elements cannot be
updated until all the computations involving it are completed. To resolve this
dependency, a copy of the vector is created and is used as the input vector. The
SPEs can then independently update the blocks of the output vector.

BLAS Level 3 Routines: Level 3 routines perform matrix-matrix operations
and are computationally intensive. Thus, the key consideration in data par-
titioning and distribution for these routines is computational efficiency. The
matrices are partitioned into square blocks (to maximize computations in order
to hide DMA latencies) instead of rectangular blocks (which are more DMA
efficient) as in the case of level 2 routines. The blocking factor of the matrices
is decided based on factors such as SPE local store size and the number of
input and output matrices being operated upon. Another important factor
influencing the blocking factor is that when up to 16 SPEs are used on multi-Cell
processor platforms, such as the IBM BladeCenter, the block size should result in
sufficient computations so that the routine does not become memory bandwidth
bound. Taking all these constraints into consideration, we have determined that
a blocking factor of 64×64 can be used with the given memory constraints and
is sufficient to keep the level 3 routines computation bound, even with 16 SPEs.
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When there are no dependencies in the computation of the output matrix
blocks (e.g. in DGEMM), these blocks are distributed across the SPEs and each
SPE determines at runtime the output matrix block to process. This dynamic
distribution of the blocks ensures a better load balancing across the SPEs. An
SPE fetches an output matrix block, iteratively fetches the input matrices blocks
required for the computation of the output block, carries out the computation
and stores back the computed block to main memory. Since input matrix blocks
are used multiple times in the computation of different output matrix blocks,
the input matrices are reformatted before the computation (see section 3.2 for
more details) to improve the DMA efficiency for the transfer of these blocks.

In the case where there are dependencies in the computation of the output
matrix blocks, sets of the blocks are distributed across the SPEs such that
the computation across these sets are independent as much as possible. The
order of computation of the blocks within a set is routine specific, e.g. in the
case of TRSM while computing B ← A−1 · B, where A is a lower triangular
matrix, dependencies exists in the computation of the elements along a column
but there is no dependency among elements in different columns. Therefore the
columnsets1 can be computed independently. Thus for TRSM, the columnsets of
the output matrix are distributed across the SPEs and the blocks are processed
in the top-down order within a columnset. Similar distribution can be used for
other input parameter combinations as well. The SPEs determine at runtime the
sets they should process.

For particular combinations of input parameters, we carry out the complete
computation on the PPE if it is more beneficial – for instance when the
matrix/vector dimensions are so small that SPE launching overheads exceed
computation time.

3.2 Efficient DMA Handling

Efficient DMA is critical for high performance of level 1 and level 2 routines
since they are memory bandwidth bound. Even though level 3 routines are
computation bound, the blocks of the matrices are fetched multiple times.
Therefore, unless careful attention is given to DMA related aspects, especially
alignment related issues, there can be significant performance degradation in the
form of creation of DMA lists, packing/unpacking of data in the SPE local store,
etc. We discuss some of the DMA related optimizations for BLAS in this section.

Pre-Processing of Input Matrices for BLAS Level 3 Routines: Pre-
processing such as data layout transformation, padding, etc. of the input data
[8,14,17] is useful in improving the efficiency of the underlying DMA operations of
level 3 routines on the Cell. We rearrange the column-major input matrices into
block-layout form, using block size of 64×64, before performing the operation, so
that the columns of a block are stored contiguously starting at 128-byte aligned

1 A set of blocks along the column of the matrix; columnset i refers to the set of all
the ith blocks in each row of the matrix.



24 V. Saxena et al.

addresses. This pre-processing is done within the scope of current BLAS routine
only. The reformatted matrices are discarded upon completion of the routine.
The advantages of pre-processing are:

– Transfer of Blocks Using Direct DMA: The block columns are not contiguous
in memory, and therefore fetching the blocks requires a DMA list of 64
elements where each list element transfers 64 matrix elements. This DMA list
has to be created every time a block is transferred between main memory and
local store. When a column does not begin at a 128-byte aligned address,
this can lead to significant bandwidth loss. Though this may not impact
performance when few SPEs are in service, it can significantly deteriorate
performance when there are 16 SPEs – pushing the memory bandwidth to its
limits. With pre-processing, each block can be fetched using direct DMA.

– Reduction in the Number of SPE Kernels: Several transformations can be
applied to input matrices during the pre-processing phase itself. These
transformations enhance productivity by reducing the number of different
kernels required for different combinations of input parameters such as
transpose, triangularity (upper or lower), side (left or right), unit or non-
unit triangular, etc. For example, the GEMM operation C = αAT B + βC
can be performed using the same kernel as the one used for C = αAB + βC
by simply transposing the matrix A during the pre-processing phase. For the
DTRSM routine, we implemented only 2 kernels to cater to 8 different input
parameter combinations by applying such transformations. Similar reductions
in kernel implementations were achieved for other routines.

– Simpler and More Efficient SPE Kernels: The computational kernels on the
SPEs are designed to handle matrix blocks which are properly aligned in the
local store. This leads to design of simpler kernels that make effective use
of the SIMD features of the SPEs without having to realign the vectors/
matrices based on their current alignment offsets. In the absence of pre-
processing, either the vector/ matrix blocks would have to be realigned in
memory before invoking the SPE kernels, leading to performance degradation,
or more complex SPE kernels would have to be designed.

– Reduction in Computation within SPE Kernels : Level 3 routines typically
involve scaling of the input matrices. This scaling is carried out in the pre-
processing stage itself. This eliminates the requirement of scaling being carried
out by the SPE kernel thereby reducing its computation.

– Reduction in Page Faults and Translation Lookaside Buffer (TLB) Misses:
In the absence of pre-processing, adjacent columns may be in different pages
when smaller page sizes are used. Pre-processing can potentially reduce TLB
misses under such circumstances [14].

We do not reformat the output matrices. This is because blocks of these matrices
are typically updated only once (or few times in some cases) after a large number
of computations. Therefore, the cost of fetching blocks of these matrices and
reformatting them on the SPEs is fairly small and does not lead to significant
performance loss.
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Clearly, the suggested pre-processing techniques are feasible only for level
3 routines as level 2 routines have complexity comparable to the memory
bandwidth requirements for fetching/ storing the matrix. However, it is feasible
to similarly pre-process the vectors in case of level 2 routines. For instance, a
strided vector can be pre-processed and copied into contiguous locations so that
parts of the vectors can be fetched using direct DMA instead of DMA lists.

All the pre-processing is carried out using SPEs since the SPEs together
can attain better aggregate memory bandwidth compared to the PPE. The
reformatting of the matrix blocks is independent and therefore lends itself
naturally to parallel operations.

Use of Pool of Buffers for Double Buffering: For double buffering statically
assigning buffers for all the matrices may not leave enough space in the SPE local
store for code and other data structures. However not all the buffers are required
at all times. Therefore, in our optimization strategy, we use a pool of buffers from
which buffers are fetched and returned back as and when required.

Reuse of DMA Lists: When DMA lists are used for data transfers, creation
of the lists is an additional overhead. In the case of I/O data, lists are created
both while fetching and storing the data. In our implementation, we minimize
the overhead of creating the lists by retaining the list created while fetching the
data and reusing it while storing it back.

3.3 Two-Kernel Approach for Level 3 Routines

Highly optimized and specialized SPE kernels are a key component of high
performance BLAS routines, especially level 3 routines. We adopt a two-kernel
strategy where a set of two kernels is developed for each required combination –
a 64×64 kernel (kernels optimized for blocks of 64×64 elements) and a generic
kernel which can process blocks of any dimension which is a multiple of 16
elements and is 16-byte aligned. As mentioned in Section 3.1, the matrices are
partitioned into blocks of 64×64 elements and typically a matrix would have a
larger fraction of 64×64 blocks as compared to border blocks which may not be
of dimension 64×64. If the dimension of a matrix is not a multiple of 64, zeros are
padded along that dimension to make it a multiple of 16. This approach limits
the maximum number of padded rows or columns to 15 in the worst case and at
the same time ensures that the performance of the generic kernel is acceptable
because it can still perform SIMD operations. The generic kernels typically show
a degradation of less than 10% in comparison to the 64×64 kernel performance,
as shown in Fig. 1(a).

The use of two-kernel approach places significant demand on the memory
requirements in the SPE local store. This is also the case when kernels such as
GEMM are reused for performing other level 3 operations. However, not all the
kernels are required at all times. We use SPE overlays [10] to share the same
region of local store memory across multiple kernels. Since one kernel routine
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is used for most computations (e.g. GEMM in level 3 routines), the amortized
overheads of dynamic code reloading are small.

3.4 Efficient Use of Memory

BLAS routines allocate memory internally for pre-processing and rearranging
input matrices/ vectors at runtime. There are overheads associated with
allocation of memory and accessing it for the first time due to page faults and
TLB misses. To minimize this overhead across multiple BLAS calls, a small
portion of memory, called swap space, can be allocated by the user (using
environment variables) and retained across multiple calls of the BLAS routines.
The swap space is allocated using huge pages. If the internal memory required by
the BLAS routine is less than the size of the swap space, the routine uses the swap
space else it allocates fresh memory. This leads to considerable improvement in
the performance of the BLAS routines when the input data size is small, as
shown for DGEMM in Fig. 1(b).

4 Performance Results

In this section, we report the performance of the BLAS routines obtained with
our optimizations. The performance is profiled on IBM Cell Blade (QS22 with
8 GB RAM, Fedora 7, Cell SDK 3.0) with enhanced Double Precision pipeline
using GCC 32-bit compiler. Huge pages are used by default. For level 1 and 2
routines, the performance is reported in units of GigaBytes per second (GB/s)
since they are memory bandwidth bound and for level 3 routines the performance
is reported in units of GigaFlops (GFLOPS).

Figure 1(c) shows the performance results for level 1 routines – IDAMAX,
DSCAL, DCOPY, DDOT and DAXPY for ideal input data combinations (i.e.
when the starting addresses are 128-byte aligned, stride is 1, dimensions are
an exact multiple of their block sizes). We achieve performance in the range
of 70–85% of the peak performance (25.6 GB/s) depending on the routine –
routines that largely perform unidirectional transfers (e.g. IDAMAX, DDOT)
are observed to perform better than the routines that perform transfers in both
directions. For level 1 routines, the performance for non-ideal cases, e.g. when
vectors are not 128-byte aligned, is almost the same and hence not reported.

Figure 1(d) compares the performance of level 2 routines – DGEMV, DTRMV
and DTRSV for ideal input cases (i.e. when data is 128-byte aligned, dimensions
are an exact multiple of their block sizes and vector strides are 1). We achieve
performance in the range of 75–80% of the peak performance (25.6 GB/s) for
level 2 routines. Performance for non-ideal cases (i.e., when data is not properly
aligned, leading dimensions are not suitable multiples and vector strides are
not 1) is expected to be worse for level 2 routines. Figure 1(e) compares the
performance of the DGEMV routine for ideal and non-ideal cases. Performance
degrades by about 30% for the unaligned cases. As these routines are memory
bandwidth-bound, it is not possible to pre-process the matrix for efficient DMA
for unaligned matrices.
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(a) Comparison of performance of 64x64
and generic SPE kernels for level 3
routines

(b) Comparison of performance with and
without swap space for DGEMM with
square matrices and 8 SPEs. Swap space
size is 16MB.

(c) Comparison of ideal case performance
of all level 1 routines with 4 SPEs

(d) Comparison of ideal case performance
of all level 2 routines with 4 SPEs

(e) Comparison of ideal and non-ideal case
performance of DGEMV with 4 SPEs

(f) Comparison of ideal case performance
of all level 3 routines with square matrices
for 8 SPEs

(g) Comparison of ideal and non-ideal case
performance of DGEMM and DTRSM
with square matrices for 8 SPEs

(h) Comparison of ideal case performance
of SGEMM and DGEMM with square
matrices for 8 SPEs

Fig. 1. Performance Results
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For level 1 and level 2 routines, performance is reported using 4 SPEs. This
is because, typically 4 SPEs are enough to exhaust the memory bandwidth and
we do not observe significant performance improvement using more SPEs.

Figure 1(f) shows the performance results of level 3 routines – DGEMM,
DSYMM, DSYRK, DTRSM and DTRMM for ideal input combinations (i.e.
when matrix starting addresses are 128-byte aligned and dimensions are multi-
ples of 64). We achieve up to 80–90% of the peak performance (102.4 GFLOPS).
Figure 1(g) compares the performance of DGEMM and DTRSM routines for
ideal and non-ideal cases. For the non-ideal cases, the leading dimension is made
not to be a multiple of 128 bytes. The performance difference for the non-ideal
case is mostly within 10% of the ideal case, demonstrating to a large extent that
the pre-processing restricts the performance loss for the non-ideal cases.

We performed additional experiments to determine the performance impact of
pre-processing. We found that for ideal cases (described above), the performance
with and without pre-processing is comparable, whereas for non-ideal cases, per-
formance degrades by more than 20% when the matrices are not pre-processed.
The drop in performance is attributed to the pre-processing required in aligning
the fetched blocks and/ or performing matrix related operation (e.g. transpose)
before invoking the SPE kernel, and the overhead associated in using DMA lists.

In Fig. 1(h), we compare the performance of SGEMM and DGEMM for ideal
input combinations to give an idea of the difference in the performance of the
single and double precision routines. It is observed that the performance of the
single precision routines shows trends similar to the double precision routines.

5 Conclusions and Future Work

We have discussed the strategies used for optimizing and implementing the BLAS
library on the Cell. Our experimental results for double precision show that
the performance of level 1 routines is up to 70–85% of the theoretical peak
(25.6 GB/s) for both ideal and non-ideal input combinations. The performance
of level 2 routines is up to 75–80% of the theoretical peak (25.6 GB/s) for ideal
input combinations. The performance of level 3 routines is up to 80–90% of the
theoretical peak (102.4 GFLOPS) for ideal input combinations with less than
10% degradation in performance for non-ideal input combinations. These results
show the effectiveness of our proposed strategies in producing a high performance
BLAS library on the Cell.

The BLAS routines discussed in this paper have been optimized for a single
Cell processor, large size data sets and huge memory pages. There is scope
for optimizing these routines to optimally handle special input cases, normal
memory pages and for multi-processor Cell platforms.
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Abstract. Multicore systems are becoming ubiquituous in scientific
computing. As performance libraries are adapted to such systems, the
difficulty to extract the best performance out of them is quite high. In-
deed, performance libraries such as Intel’s MKL, while performing very
well on unicore architectures, see their behaviour degrade when used on
multicore systems. Moreover, even multicore systems show wide differ-
ences among each other (presence of shared caches, memory bandwidth,
etc.) We propose a systematic method to improve the parallel execution
of matrix multiplication, through the study of the behavior of unicore
DGEMM kernels in MKL, as well as various other criteria. We show that
our fine-tuning can out-perform Intel’s parallel DGEMM of MKL, with
performance gains sometimes up to a factor of two.

Keywords: BLAS, multicore, cache coherency.

1 Introduction

Dense linear algebra, being the first of Berkeley’s seven dwarfs [1], is an impor-
tant part of the scientific programmer’s toolbox. BLAS (Basic Linear Algebra
Subroutines), and in particular its third level, DGEMM (double general matrix
multiplication), are widely used, in particular within dense or banded solvers.
It is then no surprise that decades have been spent studying and improving
this particular set of subroutines. Over time, theoretical complexity has been
improved, while at the same time architecture-conscious algorithms for both
sequential and parallel computations have emerged (cf for example Cannon’s
algorithm [2], Fox’s algorithms [4], or more recently SRUMMA [7] and [3]).

There are some reservation to be asserted, however. First, numerous papers
focused on the square matrix multiplication case, and not the truly general one.
This is particularly damaging because for example the block version of the LU
decomposition relies heavily on rank-k updates which are products of an (N×k)
matrix by a (k × N) matrix with k, typically between 10 and 100, being much
smaller than N (typically several thousands); [9] studies this matter extensively.
Unfortunately, dealing with these rectangular matrices requires specific strategies
fairly different from the standard, easier, square case.

Second, most of the algorithms proposed have a fairly high level view of the
target architecture and their underlying model is much too coarse to get the
best performance – in terms of gigaflops – of the recent architectures. More
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precisely, most of the practical algorithms relies on matrix blocking and spread-
ing the block computations across the processors. However fine tuning (choos-
ing the right block size) is still mandatory to get peak performance. This fine
tuning process is fairly complex because many constraints have to be simulta-
neously taken into account: uniprocessor/core performance, including both ILP
and locality optimization, has to be optimized, coherency traffic/data exchange
between cores has to be minimized and finally the overhead of scheduling the
block computations must remain low. In particular, a systematic methodology
has to be developed to take into account all of these factors which might have
major impact on overall performance. It should be noted that the simpler case
of optimizing unicore performance of a matrix multiplication requires a fairly
complex methodology (relying on experimental architectural characterization,
cf. ATLAS[10]) to reach good performance.

In this paper, we try to develop a parallelization strategy for taking into ac-
count all of the architectural constraints of recent multicore architectures. Our
contributions are twofold. First we experimentally analyze in detail all of the
key factors impacting performance on two rather different multicore architec-
tures (Itanium Montecito and Woodcrest). Second, summarizing our experimen-
tal study, we propose a parallelization strategy and shows its efficiency with
respect to the well known MKL libraries.

This paper is structured as follows: section 2 describes a motivating example
showing the difficulty in selecting the right block sizes, as well as our experi-
mental framework. Section 3 presents experimental analysis of various blocking
strategies. Section 4 presents our parallelization methodology and compares the
resulting codes with Intel’s parallel implementation of MKL.

2 Motivating Example

Experimental Setup
All the experiments shown in this paper have been carried out on the following
architectures:

– A dual-socket Xeon Woodcrest (5130) board with dual-core processors,
2GHz CPU (32GFLOPS 4 cores peak performance), and 533 MHz FSB
(i.e. ≈ 8.6 GB/s). Each dual-core processor has a 4 MB L2-cache shared by
two cores. This machine will be denoted by “x86” in the remaining of this
paper.

– A 4-way SMP node, equipped with dual-core Itanium 2 Montecito proces-
sors (with HyperThreading Technology deactivated1), with 1.6GHz CPU
(51.2GFLOPS 8 cores peak performance). Each core has a private 12MB
L3-cache, 256 kB L2-cache and 667 MHz FSB (i.e., ≈ 10.6 GB/s). This ma-
chine will be denoted as “ia64” in the remaining of this paper.

1 HTT is mainly useful when dealing with I/O-bound programs, much less with
compute-bound ones. Limited testing showed no improvement by using HTT in our
computations, while increasing risks of cache-thrashing.
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ICC v10.0 and MKL v10.0 were used to make our benchmarks. Two versions
of MKL were used: MKL Parallel denotes the orginal parallel version provided
by Intel, MKL Unicore (or Sequential) refers to the MKL specially tuned for
unicore/sequential use. The operating system is Linux in both cases, with a
2.6.18 kernel.

It should be noted that the MKL Sequential was used as a “black box”. It is a
very high performance library, on both x86 and IA64 architectures. It shows ex-
tremely good results on monocore systems. Thus, aside from the parallel strategy
we describe in section 4, a fair amount of tiling, copying and so forth is being
performed by the MKL sequential functions. For the remaining of the paper,
we will compare our parallelized version of DGEMM based on Sequential MKL
kernels with MKL Parallel.

All of the arrays are stored following the “row major” organization, as we
used C for our programs. Although the original BLAS library is implemented in
FORTRAN, all matrices are stored in a unidimensional array. Experiments show
no significant differences between row- and column-major storage strategies in
the MKL/BLAS library.

Instead of using OpenMP or directly POSIX threads, we used a performant
M:N threading library, Microthread, which was developed internally, and served
as a basis for MPC’s [8] OpenMP runtime. It relies on a fork-join approach as
OpenMP does, but allows for more flexibility – for example by permitting us to
chose to which processor we want to assign a given sub-DGEMM, while reducing
thread handling complexity inherent to classic POSIX threads. Moreover, thread
creation and destruction overheads are kept minimal. However, in terms of per-
formance, the gain offered by Microthread over a solution based on OpenMP
remains limited: between 5 and 10% when block computations are small and
less than 5% when blocks are large. However, on truly small kernels, where the
amount of data makes it difficult to find enough ILP per core, the overhead of
Microthread becomes too large (just like any OpenMP runtime). Of course, this
is a case where parallelizing a task might prove less beneficial than running a
sequential job.

Notations/General Principles of Our Parallelization
For the remainder of this paper, we will look at the simplest form of DGEMM,
which performs the following task : CN1,N3 = AN1,N2 ×BN2,N3 . We denote NBi

the number of blocks resulting from the partitionning of i-th dimension.
Our parallelization strategy relies on a standard decomposition of the three

matrices in blocks ([4, 7]). All of the block computation on a unicore are per-
formed using the MKL library which achieves very good performance on a uni-
core when the blocks fit in the cache. It should be noted that the blocks resulting
from our decomposition are not necessarily square (they can have arbitrary rect-
angular shape) and second our parallelization strategy is not limited to having
a number of block computation exactly equal to the number of available cores.
We allow to have much more block computations than cores, i.e. overloading of
cores is used.
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A Simple Performance Test
Figure 1 describes performance variations of various partitionning strategies for
a simple parallel CN,N = AN,10 × B10,N : the X axis (resp. Y axis) refers to
the number of blocks (NB3) along the third dimension (resp. the first dimension
(NB1)). Instead of showing absolute performance numbers, relative performance
(with respect to the best performance) is displayed: the whiter areas corresponds
to best partitionning strategies (i.e. white means between 95% and 100% of the
best performance), while the darker areas identify poor choices of partitionning
parameters.

In the upper three plots (1(a), 1(b), 1(c)) displayed, the size of the matrices
are such that they entirely fit in the L2 (resp. L3) cache of the x86 (resp. ia64).
Now for these three cases, the white area is much narrower: only one or two
partitionning strategies achieve top performance.

In the lower three plots (1(d), 1(e), 1(f)) displayed, the size of the matrices
exceed the L2 (resp. L3) cache size of the x86 (resp. ia64). For these three cases,
the white areas are fairly large, meaning that many partitionning strategies
allow to reach close to the best performance. Now which is much more difficult
to predict is the shape of the white area and why the shapes are so different

(a) x86 2 × 2-core
A500,10 × B10,500

(b) ia64 2 × 2-core
A1000,10 × B10,1000

(c) ia64 4×2-cores A1000,10×
B10,1000

(d) x86 2 × 2-core
A2000,10 × B10,2000

(e) ia64 2 × 2-core
A3000,10 × B10,3000

(f) ia64 4 × 2-core
A4000,10 × B10,4000

Fig. 1. Figure 1(a) (resp. Fig. 1(b), 1(c)): the size of the matrices is such that they
fit entirely within the L2 (resp. L3) cache of the x86 (resp. ia64). For figures fig. 1(d)
(resp. Fig. 1(e), 1(f)), the size of the matrices is such that they exceed the L2 (resp.
L3) cache of the x86 (resp. ia64).
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between x86 and ia64. Furthermore, it is a bit surprising that the NB1 and
NB3 parameters do not have a similar effect on the ia64.

Our Approach
Our goal is to develop a strategy allowing to identify quickly what are good
choices for the block values NB1, NB2 and NB3. By “good” we mean within
10% of the best performance achievable when varying arbitrarily block sizes.

To achieve that goal, 3 subproblems have to be carefully taken into account:

1. The block computation running on a unicore must be close to top speed. If
the block is too small, there is not enough ILP to get the best performance
of the unicore, loop overhead becomes the main reason for slowdowns. If
the block exceeds the L2/L3 cache size, the blocking method used by MKL
might not be adequate.

2. The number of blocks must be carefully chosen first to achieve a good load
balancing and second to keep a low parallelization overhead.

3. The scheduling of block computations to different cores might induce co-
herency traffic between the cores. For example if a row of C is spread across
several cores, each core will write part of the row, some cache lines being
shared between two cores (cf Section 3.1).

Finally, it is important to note that we are aiming at the best 10% as far as
performance is concerned, which is symbolized by white or light-grey colors on
all our figures.

3 DGEMM Performance Analysis

3.1 Limiting Cache Coherency Traffic

The amount of coherency traffic will depend how blocks are allocated to different
cores. We will use two opposite strategies: Write Columns versus Write Rows.

In the Write Columns scheme, every core is computing and writing into differ-
ent sets of columns of the result matrix C. In this scheme, the A matrix will be
read by all cores while each core will read different sets of B columns. Since C
is stored row-wise, some cachelines (containing C values) can be shared by dif-
ferent cores leading to coherency traffic. The resulting performance, depending
on various blocking strategies are shown in figure 2(b) and 2(c).

In the Write Rows strategy, every core is computing and writing into different
sets of rows of the result C matrix. In this scheme, the B matrix will be read
by all cores while each will read different sets of rows of the A matrix. In this
case, very few cachelines of C are shared between different cores. The resulting
performance, depending on various blocking strategies are shown in figure 3(b)
and 3(c).

The two strategies are illustrated in figure 2(a) and 3(a).
Although best performance between the two strategies is comparable, one

(the Write Columns one) produces a much narrower area of good values for
the good block values. On the other hand, the Write Rows strategy gives us an
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(a) Write Columns al-
location strategy

(b) MC 4× 2 cores A1000,100 ×
B100,1000

(c) MC 4× 2 cores A4000,100 ×
B100,4000

Fig. 2. AN,k × Bk,N blocking with a Write Columns strategy

(a) Write Rows alloca-
tion strategy

(b) MC 4× 2 cores A1000,100 ×
B100,1000

(c) MC 4× 2 cores A4000,100 ×
B100,4000

Fig. 3. AN,k × Bk,N blocking with a Write Rows strategy

advantage: the “good” areas encompass the ones in the Write Columns strategy,
but are much larger, hence allowing for a bigger blocking factor without hurting
performance.

This behavior is clearly due to false-sharing of cachelines: when using the
Write Columns strategy, one creates many “frontiers” where a set of cache lines
may be shared between two cores. By ensuring that a single core writes for the
longest possible time in a same set of rows in C, we reduce these “frontiers” to a
minimum. This works because we are in a row-major setup; the strategy would
give inverse results in a column-major one.

3.2 DGEMM Analysis

In this section, we will study three extreme cases of matrix multiplication of
rectangular matrices, which allows us to uncover most of the key problems in
matrix multiplication parallelization. A large set of experiments were carried out.
Only the most impressive ones are shown and analyzed. Moreover, we observed a
continuous performance behavior when varying parameters such as for example k
(where k is the number of columns of A). More precisely, a performance behavior
for k = 20 can be easily interpolated from the behavior of k = 10 and k = 30.

Performance counters were not used for this parallel analysis, because effi-
cient tools that give correct and fine measurements in a multicore environment
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are almost inexistant. You can find good sequential measurement tools such as
Perfmon or Intel VTune. Of course, the sequential behavior of a given kernel
can help to fine-tune its parallel counterpart (for example, a kernel that already
saturates the main memory bandwidth is going to be trouble in parallel). But
nothing can be said about cache coherency, and additional bus contention due
to several cores trying to write to main memory, for example. However, we do
use performance counters while evaluating unicore performance (cf. section 4).

Both the AN,k×Bk,k and Ak,k ×Bk,N kernels (studied below) behave well in
a sequential, unicore environment: performance counters tell us that there is no
bandwidth shortage, nor real performance issues.

3.3 Performance Analysis of CN,k = AN,k × Bk,k(Fig. 4)

Since k is small, the only opportunity for parallelization lies in partitioning along
the first dimension. Each core has its own copy of B, and only relevant rows of
A are read. Moreover, writing to C is done row-wise, which prevents most false-
sharing from occurring. In figure 4(a) (x86 4 cores) the three matrices fit within
the cache and minimizing the partitioning on A i.e. NB1 = 4 or 8 is a fairly good
strategy. On the other hand, in fig. 4(b), when we exceed the cache size, larger
partitioning degrees of A are required. In figure 4(c) where the three arrays fit
again in cache, a minimum number of blocks of A is a very good strategy.

(a) x86 2 × 2-core
A2000,k × Bk,k

(b) x86 2 × 2-core
A6000,k × Bk,k

(c) ia64 4×2-core A6000,k×Bk,k

Fig. 4. Figures 4(a), 4(b) (resp. 4(c)) present performance variations of the primitive
CN,k = AN,k ×Bk,k on x86 (resp. ia64). The Y axis refers to the number of horizontal
blocks used for partitioning A and B, while the X axis refers to different values of k.
For each value of k, performance numbers have been normalized with respect to the
best performance number obtained for this value of k. For Figure 4(a) (resp. Fig 4(c)),
the size of the matrices is such that they fit entirely within the L2 (resp. L3) cache of
the x86 (resp. ia64) while for Fig 4(b), the size of the matrices exceed the L2 x86 cache
size.

3.4 Performance Analysis of Ck,N = Ak,k × Bk,N(Fig. 5)

This is the symmetrical counterpart of the previous case. In theory, it should
behave exactly the same way, but in practice, there is a huge performance gap.
Several factors explain this. The first one is that the performance behaviour of the



Fine Tuning Matrix Multiplications on Multicore 37

(a) x86 2×2-core Ak,k×
Bk,2000

(b) x86 2×2-core Ak,k×
Bk,6000

(c) ia64 4×2-core Ak,k×Bk,6000

Fig. 5. Ck,N = Ak,k × Bk,N DGEMMs on x86 (fig. 5(a),5(b)) and ia64 (fig. 5(b))
architectures. Data sets fit in the x86 cache (fig. 5(a)) while data sets in fig. 5(b)
exceed its cache size. Fig. 5(c) presents results on ia64 with a data set fitting in L3.

unicore block MKL kernel Bk,k×Ck,N is fairly different from the performance of
the unicore block kernel (BN,k×Ck,k). Second, generating blocks means dividing
in a column-wise manner, which is prone to provoke false-sharing.

3.5 Performance Analysis of CN,N = AN,k × Bk,N (Fig. 1)

Here we have a combination between the two previous cases, rendering perfor-
mance prediction difficult at best. However, there is a clear trend to see: when
the sub-matrices fit in cache, there is only one good partitionning strategy, i.e.
dividing according to the number of cores. On the contrary, for matrices larger
than cache size (see figures 1(d), 1(e) and 1(f)) higher degrees of partitionning
are required.

3.6 A Quick Summary of These Experiments

First, basic block performance is essential. Second, as long as we are performing
DGEMMs where (sub-)matrices fit in L2 or L3 cache, there is no need to go
further than divide the work according to the number of cores available. How-
ever, as soon as we are on the verge of getting out of cache, it is important to
increase the blocking degree so as to fit in cache once again, with a good se-
quential computation kernel. So far, all our experiments have shown that this
in-cache/out-of-cache strategy (see next section) is sufficient to get good results.

4 A Strategy to Fine-Tune Matrix Multiplication

Methodology for Fine-Tuning DGEMM Parallelization
The major difficulty in the parallelization strategy is in fact the right choice
of block sizes (i.e. partitioning of the matrices). Let us first introduce a few
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notations. Our focus is the parallelization of the computation of CN1,N3 =
AN1,N2 × BN2,N3 . The number of blocks along the first dimension N1 (resp.
N2, N3) will be denoted NB1 (resp. NB2, NB3). The corresponding block sizes
will be denoted B1, B2, B3, in fact Bi = Ni/NBi, i ∈ {1, 2, 3}.

The first step of the method consists in first benchmarking unicore perfor-
mance of the basic blocks multiplication. This will give us constraints on the
block sizes of the form Bmin

1 < B1 < Bmax
1 (and the similar ones for B2 and

B3), meaning that if B1 satisfies such inequalities, we are within 10% of the
peak performance of a unicore matrix multiply. This step requires systematic
benchmarking and integrates most of the particularities of the underlying uni-
core architecture and of the library used for unicore computations. This step is
done once for all for a given unicore architecture. The results are stored in a
database and used in a later step of our strategy. It should be noted that not only
GFLOPS performance numbers are stored in this database but also bandwidth
consumption between the various cache levels (this is obtained by measuring
cache misses using hardware counters).

The second step consists in exhaustively searching all of the partitionings such
that:

1. The resulting block sizes satisfy the unicore good performance constraints
2. The sum of the sizes of the three blocks (corresponding to an elementary

block computation) is less than a quarter of the last level cache size B1B2 +
B1B3 +B2B3 < CS/4. Aiming at using only a quarter of the available cache
size, allows us to be on the safe side (i.e. being sure that the three blocks
remain in cache) and second results still in good cache miss ratio due to the
large size of L2 and L3 caches

3. The quantity NB1 × NB2 × NB3 is a multiple of the number of cores (to
insure perfect load balancing). If NB1×NB2×NB3 is less than the number
of available cores, the number of cores used is reduced accordingly to still
match the load balancing constraint

Then in third step, all of the solutions are lexicographically sorted according
to the values of NB1, NB2 NB3. This sort aims at taking into account the fact
that from the parallelization point of view the three dimensions are far from
being equivalent:

– partitioning along the first dimension induces a simple parallel construct
(DOALL type) with minimal overhead and the induced partitioning on ma-
trix C is row-wise and does not induce false-sharing

– partitioning along the third dimension induces also a simple parallel con-
struct with minimal overhead but the induced partitioning on the C matrix
is column-wise and will generate false-sharing of cache lines

– partitioning along the second dimension is more complex because it requires
synchronization to accumulate the results. In our parallelization strategy, we
chose to perform the block computations in parallel, each core accumulating
in a different temporary array. Once all of the blocks have been computed,
a single core sums up all of the temporary arrays into the final C block.
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(a) x86 2 × 2-core A2000,k × Bk,2000 (b) ia64 2 × 2-core A3000,k × Bk,3000

(c) ia64 4×2-core A4000,k×Bk,4000

Fig. 6. Intel’s parallel MKL/DGEMM versus our own parallelization

Therefore, the final solution picked up is the one corresponding with the min-
imum NB2 value, then the minimum NB3 value; this corresponds to a lexico-
graphic sort of the solutions. However, in order to minimize cache thrashing,
it is important that each thread is given “contiguous” blocks: for each block of
lines in A, a given thread which has not reached its maximum number of tasks
is given a certain amount of “contiguous” blocks in B.

Very convincing results were obtained using our parallelization strategy (see
fig. 6). The most impressive ones relate to the CN,N = AN,k ×Bk,N case, where
operands do not fit in cache. This is due to the fact that MKL uses a constant
strategy of minimizing the number of blocks used (the number of blocks MKL
uses is exactly equal to the number of cores). When operands fit in cache, this
strategy works fairly well (except in Ck,N = Ak,k × Bk,N ) but performs poorly
when operands do no longer fit in cache. Although these experiments show how
much gain can be obtained with a good parallel strategy, the results are far from
reaching peak performance. On the CN,N = AN,k ×Bk,N case, there are almost
ten times more memory writes than memory reads – i.e., even though there is
enough ILP to exploit per core here, writing the results back to memory is tried
all at once by all the cores, hence saturating the memory bus.

Comparison with Related Work
ATLAS. ATLAS [10] is a powerful “auto-tuned” library, i.e. upon installa-
tion, it performs various measurements (such as determining cache latencies
and throughput) in order to choose the best computation kernel adapted to the
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underlying system. These kernels are either already supplied by expert program-
mers for a given architecture, or code generated when the underlying system is
unknown. ATLAS relies mainly on a good blocking strategy which mixes hand-
tuned kernels as well as automatically-generated code at install-time to produce
a highly optimized BLAS library. It can also be built into multithreaded library.
However, first the number of cores thus supported is fixed, and can never be in-
creased at run-time: one must recompile the whole library each time the number
of cores change. Second, ATLAS cannot take easily advantage of already existing
DGEMM libraries: it requires very specific kernels.

GotoBLAS. On the opposite side, the GotoBLAS [5, 6] provide a highly hand-
tuned BLAS library, with computation kernels programmed directly in assembly
language, and very efficient sequential performance as a result. However, these
kernels work only on very specific systems (those for which the kernels exist),
and do not exactly respect the BLAS semantics (contrary to ATLAS and Intel
MKL). Thus, although the changes to one’s code are minimal, one can not simply
“swap” BLAS libraries with GotoBLAS.

Our approach. It differs from ATLAS and GotoBLAS in different ways. AT-
LAS and GotoBLAS are above all a work to take advantage of sequential perfor-
mance. They provide hand-tuned and automatically-tuned BLAS libraries, with
an emphasis on blocking. Our approach aims parallel performance only, relying
on good sequential BLAS routines. More precisely, our blocking strategy focuses
only on parallel performance, with parallel criteria in mind, i.e. sequential ones,
as well as memory contention, false-sharing risks, etc. We could take the kernels
provided by ATLAS or (with some code modifications) GotoBLAS. Although
ATLAS does provides a way to get multi-thread BLAS, this number must be
fixed at compile-time, while our method scales with the number of cores.

5 Conclusion

Although matrix multiplication seems to be a solved problem at first, it is clear
that in the parallel case and for shared memory systems, a large amount of work
remains to be done to get peak performance. It is not enough to use a good
and efficient unicore library. Special care has to be taken to take into account
behavior of such libraries which are far from being uniform when varying matrix
sizes. To get the best out of the MKL in our case, it was necessary to make
various trade-offs between data locality, false-sharing avoidance, load-balancing,
sequential kernel selection (to get the best sub-DGEMMs cases when distributing
tasks) and memory bus contention. This has enabled us to get as much as twice
the performance offered by the MKL parallelized by Intel in the best case, in a
systematic manner. The methodology we propose is fairly systematic and can
be easily automated. However it should be noted that for some specific (small)
matrix sizes, the performance obtained is far from peak, due probably to a lack
of performance of a unicore version. Further work include improving such cases
by generating better unicore kernels then developing a fully automated version
of the library and dealing with ccNUMA aspects for larger multicore systems.
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Abstract. Program performance is tightly linked to the assembly code,
this is even more emphasized on EPIC architectures. Assessing precisely
quality of compiled code is essential to deliver high performance. The
most important step is to build a comprehensive summary for end-user
and extract manageable information. In this paper, we present our first
prototype called MAQAOAdvisor, a key MAQAO(Modular Assembly
Quality Optimizer) module that drives the optimization process through
assembly code analysis and performance evaluation. It performs compre-
hensive profiling, hot-loop and hot-spot detection, fast evaluation and
guides local optimizations. An originality of MAQAOAdvisor is to de-
port part of optimizations from the driver to a post-compiler evaluation
stage. It is based on static analysis and dynamic profile of assembly code.
It feeds information back to help end-user detect and understand per-
formance problems. It proposes optimization recommendations to guide
a user to perform the best transformations to get the best performance.

1 Introduction

The quest for performance leads to an ever increasing processor complexity. Sim-
ilarly compilers are following the same trend with deeper optimization chains
involving numerous sets of techniques. As a result code performance is becom-
ing more and more complex to guarantee, it is sensitive to butterfly effects and
difficult to assess without extensive tuning and experiments. The Three funda-
mental points for code optimization are to detect, understand and fix potential
performance problems. Nowadays this issue is mostly tackled by using hardware
counters and dynamic profiling. An array of tools is used to handle these three
stages of performance tuning. Consequently, tuning is a time consuming task,
burdensome with a poor productivity. Therefore, a modern approach is much
needed, to address the complexity of the task in order to support the multidi-
mensional aspect of performance and complemented existing methods.

We propose an approach which allows us to find the best orientation to guide
a user to perform the best transformations to get the best performance. Under-
standing of how and why the compiler bottleneck occurs, through the feed-back
of more information, helps us to execute the code much faster.

P. Sadayappan et al. (Eds.): HiPC 2008, LNCS 5374, pp. 42–56, 2008.
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Source
File

Assembly
Expert System ExecutionCompilerDriver

//
n timesi times

//

Fig. 1. Adding a stage is a way to cut through the cost of evaluation (by preventing
useless execution) as well as to limit the number of evaluations (by preventing the
iterative process to apply useless optimizations)

The novelty of our approach is:

1-The optimization part: Which is transferred from the driver to a post-compiler
evaluation stage. Being after the compilation phase allows us a precise diagnostic
of compiler optimization successes and/or failures, or if due to some obscure com-
piler decision, the resulting code contains under-performing patterns. Assembly
level is the natural place to observe performance, because it is close enough to
the hardware and it is possible to check the job done by the compiler. The idea
is to enrich the performance ecosystem with a new actor in a collaborative way
with the compiler.

2-The assembly code analysis: Our approach gives the first decision about the
code quality and which transformation should be applied to improve the quality
of assembly code and by consequence it’s performance. The use of both static
analysis and dynamic profiling within a single framework seems to provide a
great amount of flexibility for designers to try out new optimization patterns. By
combining static and dynamic analysis, we centralize all low level performance
and build correlations.

3-The modification of iterative compilation process: As depicted in Figure 1,
our system includes an extra stage between the compiler and the execution.
Our approach is located between a model-driven optimization and with ma-
chine learning optimization without training. The advantage of this method is
to have less N executions than the original iterative compilation so, we speed-up
the execution time of the search engine. The driver keeps track of the different
transformations to apply next. It reads a list of transformations that it needs
to examine together with the range of their parameters. With the original ap-
proach, we have only the feedback with the execution time or a few hardware
counters. In our approach, we can have more detailed information on the assem-
bly code with an expert system which is in charge of collecting information from
an inner-view perspective in contrast with execution time or hardware counters
which provide an outer-view. Furthermore, the feed-back provided to the com-
piler is richer than simple raw cycle counts. This feed-back contains the set of
pre-selected transformations than the expert system supposed to be relevant.

In this paper, we present our first prototype called MAQAOAdvisor which is
used to provide a live tuning guide capable of improving performance and/or code
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quality that is not caught by existing tools. It aims to simplify the understanding
of the compiler optimizations. To answer the question: is it possible to learn a
decision rule that select the parameters involved in loop (application) optimiza-
tion efficiency ?. We build a summary that defines an abstract representation of
loops(application) in order to capture the parameters influencing performance.

MAQAOAdvisor advocates a new approach which can be combined with tra-
ditional iterative compilation. This module is characterized by a finer granularity
and a richer feed-back. It alleviates the cost of iterative compilation and enlarges
the spectrum of candidate codes for optimization.

MAQAOAdvisor, a key MAQAO module drives the optimization process
through assembly code analysis and performance evaluation. It is fully imple-
mented in MAQAO (information is presented to the user in a hierarchical manner
in a GUI application) MAQAO[1] is a tool which allows the analysis, the ma-
nipulation and the optimization of assembly code generated by the compiler.
MAQAO tries to identify the optimizations done (or not) by the compiler. De-
veloping MAQAOAdvisor as an expert system seems to be a suitable answer as
the other generic methods that are not adapted to the highly specific problem
of code optimization. It implements a set of rules to help end-user to detect and
understand performance problems and make optimization recommendations to
guide a user to perform the best transformations to get the best performance.

This paper is organized as follows: Section 2 details MAQAOAdvisor overall
design. Section 3 illustrates MAQAOAdvisor outputs. Section 4 details the guided
optimization. Section 5 presents related work. And we conclude in Section 6.

2 Overall Design of MAQAOAdvisor

Gathering data and statistics is necessary for a performance tool, but it remains
only a preliminary stage. The most important step is to build a comprehen-
sive summary for end-user and extract manageable information. MAQAOAd-
visor acts as an expert system to drive user attention within the performance
landscape. Providing an expert system to help the user to deal with complex ar-
chitecture was done by CRAY’s AutoTasking Expert [2]. It was focused on par-
allelization issue and was neither as extensible nor as sophisticated as MAQAO’s
performance module. MAQAOAdvisor is built over a set of rules and metrics:

2.1 Performance Rules

Relying on static as well as dynamic information, MAQAOAdvisor implements a
set of rules to help end-user to detect and understand performance problem. All
rules are written with the support of MAQAO API which allows manipulating
MAQAO internal program representation and quickly writing compact rules.
Rules can be sorted in three categories:

Transformations Rules: Once assembly code parsing data are stored, the
application of the transformations rules will format and gather them according
to some conditions in a data table. We detailed four transformations rules:
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Issue cost per iteration, jointly with cycle cost, this metric allows to evaluate
the cost of data dependences for the loop. A large gap induced by data depen-
dency hints that the loop should be unrolled more aggressively or targeted by
other techniques to increase the available parallelism.

Cycle cost per iteration, is expressed as a function of the number of iterations,
for non-pipelined loop it is simply in the form of: a×N where N is the number
of iterations. This static cycle evaluation is a reference point to estimate the
effectiveness of dynamic performance.

Theoretical cycle bounds per iteration, estimate the data dependency weight
in the critical path. This metric[3] indicates if the loop is computationally or
memory-wise bound. Knowing whether a loop is computationally or memory-
wise bound is a powerful indicator of the kind of optimization techniques to use.
Typically computationally bound loops imply that lots of cycles are available to
tolerate memory latency problems.

Pipeline loop, where the cost function is: a × N + b. N being the number of
iterations, a the cost per iteration and b the filling-up/draining pipeline cost.

Deduction Rules: From the data table of transformation rules, other rules are
deduced to help the end-user to (1) detect and understand the performance prob-
lem, (2) search effective optimizations, (3) understand optimization failures and
obscure compiler decision and to propose code transformations. The deduction
rules can be sorted in three categories:

High Level Rules, add semantic to assembly code loop structures. Based on
heuristic they are able to compute unrolling factor, degree of versioning, inlin-
ing, presence of tail code and report suspicious pipeline depth. These rules also
evaluate cost of data dependencies, compute the gap with bound of optimality
or hint for vectorization opportunities. Some rules are also dedicated to estimate
the purpose of loop versioning. The main cost of loop versioning is the intro-
duction of (a limited) decision tree overhead to select the relevant version, and
code size expansion. Several optimizations bring an improvement large enough
to overcome this additional cost, but when the gain is questionable, versioning
should be turned off.

Code Pattern Rules, are dedicated to rules based on known bad code patterns.
For instance on Itanium 2, in some cases the couple of setf/getf instructions
are used to convert values from the general purpose to the floating point reg-
ister file. These conversions are costly and in some cases available. Therefore it
is valuable to report presence of such patterns. Additionally some rules based
on pattern matching evaluate if loops are performing memcpy or memset. With
MAQAOPROFILE, we can have the number of iterations. Also, in MAQAO, we
have a summary about some specific functions. For example, the insert of memcpy
is interesting when the number of iterations is greater than 1000. In this case, a
message is reported advising to modify the source code and insert a library call.
Additionally spill/fill operations are detected, as well as memory operations
prone to bank conflicts. On the source level, MAQAOAdvisor also detects if a
code is badly written and proposes some high level transformations.
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Low Level Rules, address performance problems due to some architecture spec-
ifications. For instance in Itanium architecture, it can be: branch buffer saturation
with 1 cycle long loop body (i.e. one branch to process every cycle). Hardware
can not sustains the branch throughput and this leads to some extra stall cycles
of the pipeline. Other architecture specific problems like register pressure, or
lack of prefetch instruction in a loop with memory operations, and so on.

Additional Rules: MAQAOAdvisor is a library of high level rules which can be
extended according to user needs. Users can easily extend the MAQAOAdvisor
by writing their own rules.

2.2 Hierarchical Reporting Approach

The needs of the end-user differ, depending on which level, the decision is going
to be made: is it to chose between two compilers? To select different compilation
flags for the whole application? To tune specifically a given loop? Being aware
of this, MAQAOAdvisor organizes information hierarchically. Each level of the
hierarchy is suitable for a given level of decision to be taken: complete loop
characterization, loop performance analysis, function or whole code analysis.

At the first level, the instructions are coalesced per family (e.g. integer arith-
metics, load instructions) and counted on a per basic block basis.

The second level, which is already an abstraction layer, only reports loops
where some important performance features are detected, thus filters out a large
amount of non-essential data. Additionally results are reported in a user-friendly
way. This level summarizes the tables of:

(i) selected instruction counts and built-in metrics are displayed which require
some knowledge to be interpreted but they represent the exact and complete
input of what MAQAO is going to process in the upper stages. However the goal
is to detail instructions that have been determined as being of special interest.

(ii) instruction count enriched by built-in metrics : Cycle cost per iteration, is-
sue cost per iteration and theoretical cycle bounds per iteration. Together counts
and metrics are exploited by MAQAOAdvisor rules which process results gath-
ered during application execution (instrumentation, hardware counters, cycle
counts).

(iii) versioning summary for each hot loop. The idea is to perform a study of
different versions based on the number of iterations, to decide which is the best
version for each interval of iterations, to classify the versions as function of the
number of iterations, and choose for each interval of iterations the best one in
order to improve parallelism in the original code or in the new optimized code
(very interesting to improve the compositional versioning[4]).

The third and forth level, respectively, for each routine and the whole code, a
report counting the number of detected performance issues. Reading these tables
is quick and was designed to facilitate comparison.

The fifth level summarizes different optimizations. When MAQAOAdvisor
orients user to generate different versions of each hot loop, MAQAO has the
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possibility to perform a global study (static analysis, profiling) for all versions
at the same time. This automatic process is the ”mode project” in MAQAO.

The sixth level, gives a comparison between different transformations, i.e. for
the same code, compiled with different compiler flags; it is possible to do a
paired comparison (graphical or tabular). One can perform this comparison for
each level (1 to 4) or generate a comparison report.

The seventh level, performs code comparison, i.e. for the same code, compiled
with different compilers; here also it is possible to do a paired comparison.

3 MAQAOAdvisor Outputs

Based on the static and dynamic results at all levels, MAQAOAdvisor sorts
functions, loops and projects by their respective weight.

3.1 MAQAOAdvisor Modes

MAQAOAdvisor results are displayed in the MAQAO interface or in a report
by using the batch mode. MAQAOAdvisor rules and those written by users, can
be applied automatically to a large set of files in batch or interactive mode.

3.2 Static Analysis Results

As an analyzer, MAQAO’s static module extracts the entire code structure.
The structure is expressed through a set of graphs. These graphs are simple yet
powerful to analyze a code. Several types of static analysis are also displayed
in MAQAOAdvisor. It provides a diagnosis of selected functions, loops or basic
blocks like the number of instructions and the information about inner loops.

Call Graph (CG): By selecting one function in CG, MAQAOAdvisor gives all
its loops static/dynamic information.

Control Flow Graph (CFG): Represents the predecessor/successor relation
among basic blocks and facilitates to display MAQAOAdvisor results for one
selected loop (see Figure 2 (a)).

Data Dependency Graph (DDG): Computing the DDG is a key issue to
(1) determine critical path latency in a basic block, (2) perform instructions
re-scheduling or any code manipulation technique, (3) allow an accurate under-
standing of dynamic performance hazards, (4) determine the shortest depen-
dency that corresponds to the overlapping bottleneck (see Figure 2 (b)).

Versioning: If the user chooses one loop and click on versioning button, MAQAO
provides a new window with a summary of the versions of this loop generated
by the compiler. If he had performed an instrumentation before, and he clicks
on graph versioning, MAQAOAdvisor provides the distribution of loop iteration
count for each version. This information helps us to decide which optimization
and version is the best. At this level, MAQAOAdvisor can also give a guiding
report to do better optimization.
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(a) MAQAOAdvisor displays analysis. (b) Data Dependence graph

Fig. 2. SPECFP 2000 benchmark. (a) 178.galgel: close inspection of the loop loop
b1 20. In front of each loop of the source code, i© gives access to the information
computed by the MAQAOAdvisor concerning this loop. (b) 187.facerec: DDG of hot
loop in gaborRoutine. User can choose RAW, RAW, WAR, WAW or intra dependence.
It can also visualize them at the same time.

Static Statistics: are the representation of transformations rules detailed in
section 2.1 and they can be displayed in the MAQAO interface.

3.3 Dynamic Analysis Results

MAQAO proceeds to code instrumentation automatically[5]. It measures the real
application behavior with minimal disturbance. An interesting side effect of our
instrumentation is its very low run-time overhead. Profiling information is used
to build an execution summary, they can be transparently accessed by end-user
or used by MAQAOAdvisor.

3.4 Combining Static/Dynamic Analysis

Example of static/dynamic results:

Prefetch impact: By applying prefetch transformation rules, MAQAOAdvisor
detects if a loop containing load or store instructions does not contain prefetch.
It warns and advocates for first checking the source code (to consider if data
streams are manipulated) and if necessary to use prefetch intrinsics. Intrinsics
force the compiler to generate prefetch instructions. This prefetch warning is not
emitted in the case of loop tail code, because loop tail codes have only a limited
number of iterations. In such a case, the lack of prefetch instruction makes sense.

Value Profiling Results: Time profiling is of limited help for such a fine granular-
ity, but value profiling leads to numerous optimizations. For instance, it is the
key metric for code specialization. Additionally, extracting some characteristics
of address streams is useful to prevent bank conflicts, aliasing problems or to
detect the prefetch distances. Prefetch distances could theoretically be computed
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off-line with an assembly code analysis. However, it remains easier and safer to
rely on dynamic traces, since for instance on Itanium architecture some opti-
mizations allow a single prefetch instruction to retrieve several data streams.

Summary Analysis: By comparing static and dynamic analysis, MAQAOAdvisor
detects the value undecidable by a pure static scheme and gives more information
to take the best decision.

4 Guided Optimization

MAQAOAdvisor helps end-user to navigate through his code and isolate the
particularly important or suspicious pieces of code. For these isolated pieces
which are the hot loops, MAQAOAdvisor provides as many guidances as possible
to help the decision making process. This ”guided-profile” allows to understand
the compiler optimizations and guides to improve code quality and performance.
As detailed in Figure 3, MAQAOAdvisor is designed as a set of interlinked levels
each of them being loosely coupled to the others. User can take decisions at the
end of each level. The best decision is taken at the end of the process.

4.1 Automatic Hot Loops Selection

In this stage, we must find the hot loops to be optimized. MAQAOPROFILE[5]
allows us to give a precise weight to all executed loops, therefore underscoring

Fig. 3. MAQAOAdvisor Process
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hotspots. Correlating this information provides the relevant metrics: (1) Identi-
fying the hotpath at run-time which passes through the whole program where
the application spends the most of its time is a key for understanding applica-
tion behavior. (2) Monitoring trip count is very rewarding, by default most of
compiler optimizations target asymptotic performance. Knowing that a loop is
subjected to a limited number of iterations allows us to choose the optimizations
that characterized by a cold-start cost.

4.2 First Decisions

Based on static analysis, MAQAOAdvisor takes first deductions of compiler op-
timizations and proposes to:

(i) Add ”pragma” to avoid (1) the register pressure in order to avoid the spill/fill,
(2) the check instructions (that mean compiler had take a bad optimizations),
(3) and to inform the user that lot of calls can decrease performance.
(ii) Improve code quality in order to improve performance. Code quality de-
pends of the first ratio R1 (issue/bound). It evaluates the matching between
static bounds[3] and observed performance. If it is equal to one, then the func-
tion/loop is removed from the list of optimization candidates. Otherwise, candi-
dates are evaluated according to several factors: value profiling is used to detect
stability.

If we have just one version with R1 ≤ 1.2 and there is no problem of spill
/fill, check instructions and functions calls, MAQAOAdvisor decides that is the
best one and the process can be stopped here.

If R1 ≥ 1.3, we generate the first guided optimization. It combines the static
and dynamic analysis of the original version of each hot loop. Then it allows
user to apply the first optimization for the hot loops in source or assembly
level to improve code quality and the performance. For example, it can propose
optimization on source level, like software pipelining, unrolling, add prefetch.

At this level, applying different transformations for several hot loops in as-
sembly or source level, implies the generation of several versions of code. The
analysis of these versions allows to find the best version or what kind of trans-
formations user must take, to have the best performance at the second level of
the MAQAOAdvisor. It is possible that the compiler may not improve the code
quality, so MAQAOAdvisor orients user to the second decisions.

4.3 Second Decisions

Once at this level, we are sure that we can improve the performance more than
the previous level. To find the trade-off between quality and performance it is
interesting to calculate the second ratio R2.

R2 = c2(N)
c1(N) where: c2(N) = number of cycles executed for N iterations.

c1(N) = A1.N + B1, where A1 is the static cycles of the body, B1 is static
cycles spent in overheads and N is the number of iterations of the loop.
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If the compiler unrolls the original loop and generates a remainder loop, the
formula of c1 is: c1(N) = A1.N+B1+a1.(N mod UF )+b1 where a1 and b1 are the
parameters of the loop corresponding to remainder iterations and (N mod UF )
is the remainder iterations and UF is the unrolling factor. This ratio answers
the question: Does the static code represent a good dynamic behavior?

To take a decision to what we do, MAQAOAdvisor combines the information
like R1 and R2 values of one or more versions for each hot loop:

Simple Optimizations decisions: MAQAOAdvisor follows this path for the
good R2 value (R2 ≤ 3) and decides to guide user to:

Combining best versions in the same source code, where R1 ≤ 1.2. It is a high
level optimization. To achieve a trade-off between code quality and performance,
MAQAOAdvisor combines for each hot loop and their best versions: (1) the un-
rolling factors, (2) the loop and code size, (3) R1 and R2. All this process is auto-
matic. This information is given to a solver that finds the trade-off. Rescheduling,
where R1 ≥ 1.2. A generation of the DDG of the loop can help us to reschedule
the assembly instructions in order to improve the code quality. We choose the
version that corresponds to the small R2.

Compositional loop specialization, we can also apply a low level optimization.
It’s indepent of the R2 value and it can complete and give more performance than
the two first optimizations. Knowing the number of iterations, this technique[4]
can generate and combine sequentially several versions at the assembly level.
We can get best performance with this technique because we improve the best
versions using the MAQAOAdvisor decisions.

Complex Optimizations decisions: If we have a bad R2 value (R2 ≥ 3),
MAQAOAdvisor guides user to use hardware counters. An interesting advantage,
the hardware counters are implemented in MAQAO. Executing a simple script
in MAQAO, MAQAOAdvisor combines the hardware counters and MAQAO
results to guide user to take a decision. For example to solve the cache misses,
MAQAOAdvisor can propose one of the decisions:

Memory reuse, by modifying the stride of the loop or aggregating the data.
Optimization cache, taking a copy of data or a blocking cache decrease the

TLB.
Recovery of Data access latencies, by adding a pragma in source code or mod-

ify the prefetch distance in assembly code. This modification is still in progress
in the compositional approach implemented in MAQAO.

4.4 Optimization Results

In this section, we evaluate our proposed technique. We consider three bench-
marks: CX3D application, a JACOBI code, and a benchmark from the
SPECFP2000.

Experiments were run on a BULL Itanium 2 Novascale system, 1.6GHz, 3MB
of L3. On the software side, codes were compiled using Intel ICC/IFORT 9.1.
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CX3D: CX3D is an application used to simulate Czochralski crystal growth a
method applied in the silicon-wafer production. It covers the convection processes
occurring in a rotating cylindrical crucible filled with liquid melt.

Based on hardware counters technique, we count the cycles, instructions and
nop retired as well as back end bubble all stall cycles, we remark that back end
bubble all stall cycles are the most important (more than 50%). To know the
reason of this stall, we must analyze the subevents. The BE L1D FPU BUBBLE
dominates (86.21%). To know the reason of this stall, we must observe two
events where BE L1D FPU BUBBLE L1D takes 99.54%. To have more preci-
sion, we observe different sub-events for this event. The cause in this level is
that the compiler had a problem to load integer variables from L1D in one cy-
cles (BE L1D FPU BUBBLE L1D DCURCIR takes 51%). Arriving at this level,
we do not have more precise information and we must take another approach to
understand the problem.

But if we use our process, we are sure that we take less time than trying to
understand the hardware counters results in order to identify the problem and
then give a solution. With our approach, firstly we can just base on static analysis
giving the first diagnostic. Combining static and dynamic analysis, our system
can give a precise diagnostic and a precise solution to improve performance. For
example, for this loop, one of the suggestions is the memory access aliasing. Our
aliasing memory module proves that we have an aliasing problem. After that a
precise solution proposed by our system is ”you must apply an interchange”. The
process is organized as follows: first a fine grain profiling is done to get accurate
hot functions and for the hot functions we give the accurate hot spots. Then
the most time consuming inner loops are optimized according to their static and
dynamic analyses of our method.

1 - MAQAOPROFILE Information:

(i) Hot functions: the time attributed to the highest routine (velo) is 70.12 %.
(ii) Hot loops: to isolate the most time consuming loops. The hot loop which is
at the source line 787. Other loops have been omitted for sake of clarity.

2 - Optimization sequence: Based on MAQAOAdvisor process, we try to im-
prove code quality in order to improve performance. Our approach is applied
to loop id 75. Before applying different transformations and relying only on
the combination of static and dynamic information, MAQAOAdvisor (i) collects
compiler optimization information applied to this loop , (ii) proposes different
solutions (unrolling, prefetching and interchange) for this loop. Generating these
versions and the summary of the static information, the GLPK solver indicates
that the interchange transformation is better. The gain is 60% and R1 becomes
1 (good code quality). To prove our approach, we have also applied profiling
for these transformations. We have remarked that there is a correspondence
between solver solution or proposition and dynamic results. That proves, it is
not necessary to execute different versions in order to find the best execution
time corresponding to the best transformations. But just with the useful static
information, we can find the best transformations.
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(a) Static guided-profile (b) Dynamic guided-profile

Fig. 4. Hot file (relax jacobi), hot loop (2655 source line), selected versions: (a) first
and second ratio. (b) static cycles and dynamic cycles.

(a) Compositional versioning of jacobi (b) Compositional versioning of Applu

Fig. 5. CPU cycles for different compositional versioning: (a) loop 23 (source line) in
relax jacobi, (b) loop 2655 (source line) of 173.applu

JACOBI: Jacobi code solves the Helmholtz equation on a regular mesh, using
an iterative Jacobi method with over-relaxation. The first level of our approach
demonstrates that Jacobi contains one important hot loop (source line 2655).
This level allows us to generate some versions of this loop using pragma. Intro-
ducing all guided-profile important information to the GLPK[10] solver, it finds
a trade-off and decides the version unroll 6 is the best one (see Figure 4 ). For
the best version, we have applied different transformations. See Figure 5(a).

173.APPLU: It is a benchmark from SPECFP2000 which leads to the per-
formance evaluation of the solver for five coupled parabolic/elliptic partial dif-
ferential equations. The same process of jacobi was applied for this benchmark
and the best version is the version unroll 6. Accurate results of compositional
versioning are provided in Figure 5(b).

5 Related Work

Very few tools focus at providing user with transformation code advices for per-
formance tuning. Tools such as foresys [6] or FORGExplorer [7] propose code
analyses as well as code transformations but no techniques to identify the tun-
ing transformation to use. Vtune[12] is mainly a profiling tool. Its usage is so
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widespread that an API gets standardized to describe their access. CAHT[8]
shares the same goal as Vtune: ”discover performance-improvement opportuni-
ties often not considered by a compiler, either due to its conservative approach
or because it is not up-to-date with the latest processor technology”. CAHT
also formalized the search of tuning advices and so builds an easily extensible
system based on case-based reasoning (CBR). The solution proposed by CAHT
is not precise when there are no similar cases because it must ignore some char-
acteristics to provide a solution. We propose to extend the MAQAOAdvisor to
incorporate the case-based reasoning but just for similar case. With each new
case and the use of an expert system, we are sure we will enrich the knowledge
base with very precise cases. In addition to the combination between the CBR
and expert system, we will propose precise solutions.

ATOM [11] and Pin [15] instrument assembly codes (or even binary for Pin)
in a way that when specific instructions are executed, they are caught and user
defined instrumentation routines are executed. While being very useful Atom and
Pin are more oriented toward prospective architecture simulation than code per-
formance analysis. EEL[9] belongs to the same categories of tools. This C++ li-
brary allows editing a binary and adding code fragment on edges of disassembled
application CFG. Therefore it can be used as a foundation for an analysis tool
but does not provide performance analysis by itself. Currently EEL is available
on SPARC processors. Vista [13], is an interesting cross-over between compiler
and performance tool. Plugged with its own compiler, Vista allows to interac-
tively test and configure compilation phases for code fragment. Everything is
done in a very visual way. While being conceptually close to MAQAO, Vista
remains more a compiler project than a performance analyzer.

Shark [14] offers a comprehensive interface for performance problems. Like
MAQAO, it is located at the assembly level for its analyzes, displays source code
as well as profiling information. As most of Apple’s software the GUI is extremely
well designed. However Shark lacks instrumentation and value profiling. Code
structures are not displayed and the Performance Oracle advices are currently
limited to very few messages: alignment, unrolling or altivec (vectorization).
Additionally as most of Apple’s software it is very proprietary and does not offer
open-source scripting language or standard database. Nevertheless it remains
an advanced interface, with an extensive support of dynamic behavior and it
underlines the need to think performance software beyond gprof.

6 Conclusion

MAQAO is a tool that centralizes performance information and merges them
within a representation of the assembly code. MAQAO also provides several
views on the internal representation of an input program that the user can
navigate through. MAQAOAdvisor module drives the optimization process by
providing support through assembly code analysis and performance evaluation.
It explores the possibility to let a user interact with program analysis and opens
new ways of exploring, modifying and optimizing assembly and source code.
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Taking advantage of precise profiling information, our system is able to select
the most suitable optimizations among a list defined by the user (Deep Jam,
. . . ) or using directives (unroll, software pipelining, prefetch,. . . ). A trustable
API to drive exactly the sequence of optimizations through the compiler would
be useful to unleash the potential of our (any) feed-back approach.

Our goal is to improve MAQAOAdvisor to a real expert system. The idea is
to present a prototype which is a design expert system for MAQAO incorporat-
ing case-based reasoning. The case-based reasoning is the method in which we
create a knowledge base. If you have a new application, the system searches a
domain dependent case-base for a similar case:

(i) If there is one, the system uses it to propose solutions to improve performance
and/or code quality with minimum user interaction. To do this we must analyze
the application and identify its characteristics and its context.
(ii) When there is no similar case, instead ignoring certain characteristics (the
case of case-based reasoning), we can leave it to the user or an intelligent system.
With each new case and the use of an expert system, we are sure we will en-
rich the knowledge base with very precise cases. In addition to the combination
between the CBR and expert system, we will propose precise solutions.

As a compiler construction tool, our framework can be useful to compare
different compilers. For instance, it is easy to track regressions between two
versions of a compiler or to have an accurate picture of compilation flag impact.

The main goal is to export MAQAO to different VLIW compilers. The im-
plementation of Trimedia architecture is still in progress. The assembly code
generated by Trimedia is very similar to Itanium 2 and we implement an inter-
face in MAQAO in order avoid writing another MAQAO specific to Trimedia.

In the future, MAQAO will include improving optimization module by adding
new optimization techniques, based on powerful mathematical models.
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Systems
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Abstract. The load balancing framework for high-performance clustered stor-
age systems presented in this paper provides a general method for reconfiguring
a system facing dynamic workload changes. It simultaneously balances load and
minimizes the cost of reconfiguration. It can be used for automatic reconfigura-
tion or to present an administrator with a range of (near) optimal reconfiguration
options, allowing a tradeoff between load distribution and reconfiguration cost.
The framework supports a wide range of measures for load imbalance and re-
configuration cost, as well as several optimization techniques. The effectiveness
of this framework is demonstrated by balancing the workload on a NetApp Data
ONTAP GX system, a commercial scale-out clustered NFS server implementa-
tion. The evaluation scenario considers consolidating two real world systems,
with hundreds of users each: a six-node clustered storage system supporting en-
gineering workloads and a legacy system supporting three email severs.

1 Introduction

The basic premise of clustered storage systems is to offer fine-grained incremental ca-
pacity expansion and cost-effective management with performance that scales well with
the number of clients and workloads [1,2,3,4,5,6]. To address load imbalance, most
previously proposed architectures either dynamically redistribute individual data ob-
jects and hence load among individual nodes in response to changing workloads [2,5],
or use algorithmic approaches for randomized data allocation (e.g., variants of linear
hashing [7]) to distribute workload across cluster nodes [4,6].

However, the first approach is not well suited for enterprise storage systems. First,
deployed systems typically collect only cumulative statistics over a period of time [8,9],
as opposed to detailed traces with per-request timings [10,11]. Yet, systems with data
migration at the level of individual objects [2,5] typically use techniques that require de-
tailed traces to make informed decisions [12]. Second, workloads do not always change
gradually. They often do so in distinct steps, for example, during consolidation when an
existing system inherits a legacy system workload.

A complementary approach to balancing load across system components is to use
offline solvers [8,13]. They typically use a variant of the bin-packing or knapsack prob-
lem [14] to find a cost-efficient system configuration (solution). They require only a
high-level workload description [15] and capacity or performance system model. While
such solvers have been shown to be effective for building an enterprise-scale system
from the ground up, they are less suitable when already deployed systems grow or
experience workload changes over time. Previous work proposed to iteratively apply

P. Sadayappan et al. (Eds.): HiPC 2008, LNCS 5374, pp. 57–72, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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constraint-based search with bin packing [16]. However, doing so does not take into ac-
count the cost of the system configuration change and the resulting impact of potential
data movement on system performance.

To address the shortcomings of the existing solutions, we have developed a load-
balancing framework with two primary objectives: (1) It should be modular and flexible,
allowing for a range of definitions for system load and imbalance, as well as for many
types of optimization techniques instead of using one specific algorithm. (2) The cost
of reconfiguration should be a primary constraint, guiding which solutions are feasible
and preferred. We use a combination of analytical and empirical estimates of cost, along
with a measure of system imbalance, to define a multiobjective optimization problem.

Using this framework, we implemented a load balancing system tailored to the
specifics of the NetApp Data ONTAP GX cluster [1]. Our approach is grounded in real
features of our deployed systems. We are motivated to find practical solutions to prob-
lems experienced by real users of our systems; for example, how to best consolidate
existing application workloads and legacy systems into one easier-to-manage cluster.
We focus on balancing the load of an already operational system; a scenario more likely
to arise in practice than designing a new system from the ground up. We also explore
the use of more formal techniques in the context of production enterprise systems. This
motivation has been recently echoed by a call to employ optimization methods already
in use by the operations-research community in place of more ad-hoc techniques preva-
lent in the computer systems community [17]. We demonstrate the applicability of our
approach using an internally deployed Data ONTAP GX cluster hosting engineering
workloads and home directories. We examine a scenario of consolidating storage in a
data center—rolling a legacy Data ONTAP 7G system with e-mail server workload into
a Data ONTAP GX cluster supporting software development.

2 Load Balancing Framework Overview

The primary goal of our framework is to provide an abstract method for load balancing
that is applicable to a wide range of workloads and systems, as well as allowing for
many different policies and strategies. To facilitate this, we have divided the framework
into four modules, each of which can be modified without requiring significant changes
to any of the others. At a high level, the framework represents a canonical decision
system with a feedback loop—a model that has previously been shown to work well for
storage system configuration [16].

Figure 1 shows the general structure and components of our modular load-balancing
framework. The Observe Load module records, stores, and makes available a set of
statistics that characterize the load on the system. The Detect Imbalance module cal-
culates the imbalance factor of the system—a measure of how evenly the load is dis-
tributed. If the imbalance factor passes some threshold, the Optimize Reconfiguration
Plan module is invoked. It determines a set of system reconfigurations that will mitigate
the load imbalance while minimizing the cost of those reconfigurations. The module
Execute Reconfiguration Plan executes a series of system-level operations.

We now describe each module in greater detail. We first give a general definition of
the module, followed by the details of how that module is applied to the specifics of the
Data ONTAP GX cluster. The system architecture is detailed elsewhere [1].
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Fig. 1. Flow diagram of the load-balancing framework

2.1 Observe Load

We characterize load with two concepts: element and load component. An element is an
object in the storage system that handles load, that is, something that can be overloaded.
This can be a hardware component (e.g., a controller with CPU and memory), an archi-
tectural component, or a software module. A load component is an indivisible source of
load that can be migrated, or otherwise reconfigured, to alleviate the overloading of an
element. This can be a single data object (e.g., a file) or a logical volume.

An important factor for observing load is the frequency of data collection. In practice,
this is driven by the constraints of the collection method used, for example, tracing every
request versus having an agent periodically sample various counters. Another important
factor is the time period over which the load is observed and decisions are made. If that
time period is too short, the system may react too quickly, attempting to re-balance
after a transitory spike in load. Conversely, if the time period is too long, the system
may remain in an imbalanced state for an extended period of time. This period also
depends on how long it takes to implement changes. In particular, it should be long
enough to allow a new steady state to be reached and evaluated before acting again.
Finally, load can be expressed by one or more variables, for example, we can collect
both the throughput and latency of I/O operations over some time period.

Application: Load imbalance in the Data ONTAP GX cluster can be caused in two
ways. First, nodes (Nblades) can be overloaded by client requests, which they must
process and forward. This imbalance can be mitigated by directing client requests away
from heavily loaded nodes by moving an existing virtual interface (VIF) from one
Nblade to another. Second, a node (Dblade) may be overloaded if the data it contains
is heavily requested. This imbalance can be mitigated by migrating data (i.e., volumes
with separate file system instances), or by creating load-balancing volume mirrors on
other nodes with lighter load. Dblades and Nblades constitute elements, each with their
respective load components. We demonstrate their interrelationship with two scenarios.

Scenario 1: Balancing Client-Request Handling. An element is a networking compo-
nent (Nblade), which handles client connections and routes requests to the target data
component (Dblade). A load component is a virtual interface (VIF), through which
clients requests are handled. Each VIF is assigned to a single Nblade. The system can
be reconfigured by migrating a VIF from one Nblade to another; the new node will
handle all future client requests through that VIF.
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Scenario 2: Balancing Data Serving. An element is a data component (Dblade), a
compute node that receives requests from Nblades and serves the requested data to the
client. A load component is a volume, a file system subtree, containing the directories
and files in that subtree. The system can be reconfigured by migrating a volume from
one Dblade to another or mirroring the volume on another Dblade.

For our evaluation in Section 3, we consider the second scenario, defining load in
terms of operations per second contributed by each load component (volume).

2.2 Detect Imbalance

Module 2 compresses the multidimensional expression of load to a single value. This
imbalance factor describes the extent to which the load on the system is evenly dis-
tributed. When this value passes some threshold, Module 3 is invoked to produce a set
of possible reconfiguration plans. Even though this module reduces the load description
to a single value to determine when rebalancing is appropriate, the full load description
is still made available to the optimization methods in Module 3.

The imbalance factor computation uses two different functions to (i) compress the
temporal load on each element to a single scalar value and (ii) calculate the final im-
balance factor from the set of per element load values. We have developed a number of
possible functions for each of these steps. By using different functions, one can choose
under which conditions rebalancing occurs and which possible reconfigurations are op-
timal. For purposes of describing these functions, we define the following notation. Let
ue

t be the load on element e at time t. For example, ue
t could be the number of I/O oper-

ations performed through element (node) e over some period of time (e.g. one minute).
The values ue

1,u
e
2, . . . ,u

e
n would then define the number of I/O operations served by

e over the last n minutes. Let Le define the load on e with the temporal component
removed.

Reduction of Temporal Component. First, we present three possible functions for re-
moving the temporal component from the load observed on each element. Note that the
functions are applicable regardless of the frequency of observations (i.e., the granular-
ity of our measurements) or the period over which we apply the given function. The
functions are defined in Table 1. The simple sum function adds the load on e at each
time, placing equal weight on all possible load values. This is equivalent to a moving
average of the load on an element.

The polynomial function emphasizes large utilization values. This can be useful in
identifying situations where an element sees a large spike in utilization for a small
period of time. With the simple sum function above, this spike would be lost. With this
polynomial function, the spike is emphasized and corresponds to a larger increase in

Table 1. Reduction of temporal component functions

Simple Sum Polynomial Threshold

Le =
n

∑
i=1

ue
i Le =

n

∑
i=1

(ue
i )

α Le =
n

∑
i=1

(ue
i ·T (ue

i ,k)); T (ue
i ,k) =

{
0 if ue

i < k
1 if ue

i ≥ k
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Table 2. Requirements for imbalance function

Definition Description

0≤ f (L)≤ 1 The range of values is from zero to one.
f (0,0, . . . ,1)→ 1 The maximum value is defined as a single element han-

dling all load. Any load handled by more than one element
should have a value less than one.

f (1/n,1/n, . . . ,1/n)→ 0 The minimum value is defined as a perfectly balanced load.
Any other load should have a value greater than zero.

f (a,a+ ε, . . .) > f
(
a+ ε

2 ,a+ ε
2 , . . .

)
Moving load from a more loaded element to a less loaded
one reduces the value.

f (L) < f (0,L) Adding a new element with zero load increases the value.

Le than if that same load had been evenly spread over time. In the polynomial function
definition α > 1; larger values of α emphasize more high utilization values.

In some cases, we may care only about imbalances that cause elements to be over-
loaded. Imbalances that do not cause overloading can be more easily tolerated, and may
not require reconfiguration (especially if that reconfiguration is costly). We define a
threshold function, T (ue

i ,k), where k is a parameter defining the threshold utility value
at which we consider an element to be overloaded.

Imbalance Function. Once we have compressed the temporal component of the load
description, we use another function to calculate the imbalance factor. Instead of choos-
ing a function directly, we first construct a set of requirements for such a function (listed
in Table 2). These requirements formally capture the intuitive notion of balanced. Given
these requirements, we develop a function, f (L), that satisfies them. Note that there are
multiple functions that satisfy the necessary criteria, but we consider only one here.

First, we normalize all load values λe = Le/∑n
i=1 Li and let L =

{
λ1,λ2, . . . ,λn

}
be the set of load values over all elements. None of the common statistical measures
of dispersion satisfies all of the requirements, including range, variance, and standard
deviation. One possible function that takes into account all of the properties in Table 2
is one based on entropy. We define the normalized entropy of a load distribution to be

f (L) = 1− ∑n
i=1

(
λi logλi

)
log 1

n

where the numerator is the traditional definition of entropy, and the denominator is the
normalizing factor. We orient the scale by taking the difference with 1.

Application: This module is independent of the target system. It acts only on the ab-
stract elements and load components defined in Module 1.

2.3 Optimize Reconfiguration Plan

Once an imbalance has been detected, we determine a set of configuration changes that
rebalance the load. The framework does not limit the kinds of configuration changes
that are possible. Instead, the constraints are imposed by the system architecture. For
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example, this could include migrating a data unit such as single volume from one node
to another or creating a load-balancing volume mirror. Each of these changes could
potentially increase or decrease the load observed on each element in the system. We
call a set of configuration changes a reconfiguration plan.

The goal of Module 3 is to determine a reconfiguration plan that minimizes both the
imbalance of the system and the cost of the reconfiguration. Because of these two com-
peting objectives, there may not be a single reconfiguration plan that optimizes both.
Instead, we discover a range of reconfiguration plans, which emphasize each of the ob-
jectives to a different degree. Module 3 is further broken down into two independent
components: evaluation, which calculates the objectives and total cost of any possible
reconfiguration plan; and search, which determines which of the many possible recon-
figuration plans to evaluate. In any practical scenario, it is not feasible to evaluate all
possible reconfiguration plans, and so the search component must be more intelligent
than exhaustive search.

There are many possible search techniques we could apply—one of our goals is to
compare a number of these methods. We choose three methods: greedy algorithms, evo-
lutionary (or genetic) algorithms, and integer programming. The following paragraphs
outline how we estimate reconfiguration costs and describe the details of each of the
three optimization methods applied within our framework.

Objectives and Costs. The objective of a system reconfiguration is to mitigate a load
imbalance. Specifically, we seek to minimize the imbalance factor of the resulting load,
while simultaneously minimizing the cost of the reconfiguration. We define the resulting
load to be what the load would have been had the reconfigurations been made before
the current load was observed. Calculating the cost of a reconfiguration is specific to
the target system and is covered at the end of this section.

Greedy Algorithm. Greedy algorithms, such as hill climbing, are a search technique
that combines a series of locally optimal choices to construct a complete solution. We
are optimizing with respect to multiple objectives, and so there is usually not just a
single optimal choice at each step. Our approach is to randomly select one of the non-
dominated possibilities at each step. A non-dominated solution is one for which there
is no other solution with both a lower cost and lower imbalance factor. Algorithm 1
defines our greedy approach. It is specific to data migration but can be easily adapted to
other reconfiguration options.

Evolutionary Algorithm. Evolutionary algorithms work by maintaining a population
of possible solutions, and explore the search space by recombining solutions that are
found to perform better. In this way, they are similar to natural selection. We use an
algorithm based on the Strength Pareto Evolutionary Algorithm (SPEA) [18], a type of
multiobjective evolutionary algorithm (MOEA).

The algorithm uses three primary input parameters: the population size, s; the num-
ber of generations, n; and the archive size, m. The population size is the number of
possible solutions considered at one time. One generation is defined as the process
of creating a new population of solutions, by recombining solutions from the current
population. So the total number of possible solutions evaluated by the algorithm is the
product of the population size and number of generations. In general, increasing either
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Algorithm 1. Greedy algorithm for load balancing by data migration.

1. let s, the system state currently under consideration, be the original system state.
2. initialize global solutions, S = {current state}.
3. repeat
4. let emax and emin be the elements with maximum and minimum load (in s, respectively).
5. initialize list of locally non-dominated solutions, T = /0.
6. for all load components � on emax do
7. let t be the state of the system after migrating � from emax to emin.
8. calculate the imbalance factor of t and the cost of the migration.
9. if t is non-dominated with respect to T and S, add t to T .

10. end for
11. if T 	= /0 then
12. choose a random element r ∈ T .
13. add r to S.
14. update the current state s← r.
15. end if
16. until T = /0

of these two parameters will improve the quality of the final solutions, in exchange for
a longer running time. The archive is a collection of the best (non-dominated) solu-
tions seen by the algorithm at a given time. The size of the archive determines the final
number of solutions produced by the algorithm.

Given the three input parameters m, n, and s, the algorithm generates as output
archive A, a set of non-dominated solutions. At a high level, it works as follows:

1. Initialize: Create a population P of s possible reconfiguration plans, where each
possible plan has a small number of random migrations specified.

2. Evaluate: Find the cost and imbalance factor for each solution in the current pop-
ulation P.

3. Archive: Add all non-dominated solutions from the population P to the archive A.
4. Prune: If the size of the archive A exceeds the maximum size m, remove some of

the solutions based on measures of crowding. This is used to ensure the solutions
take on the full range of possible values, in both imbalance factor and cost.

5. Check Stopping Condition: If the maximum number of generations has been
reached, return A. Otherwise, continue.

6. Select and Recombine: Select individuals from the archive A and recombine them
to form the next population P. A new solution is produced by combining two ran-
dom subsets of migrations, each selected from an existing solution.

7. Return to Step 2.

Integer Programming. Another optimization technique used within our load-balancing
framework is binary integer programming. Integer program solvers guarantee that the
solution found will be optimal with respect to the given formulation. However, this
method places several restrictions on such a formulation. The most important of these
restrictions is that all of the equations, including the objective function, must be lin-
ear. That is, we cannot use arbitrary functions for the cost or imbalance functions.
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Second, the method is not naturally multiobjective. To overcome this, we solve a se-
ries of integer-programming problems, with successively larger cost restrictions.

There are several variables and functions that describe our binary integer program.
We use the following notation in its definition:

Ne The number of elements
Nl The number of load components

yi j =

⎧⎨⎩
0 if load component i was originally

assigned to element j
1 otherwise

wi the weight of load component i
ci j the cost of migrating load component i to

element j
C the maximum allowed cost of all migrations
U the target load on each element

Decision variables x1, . . . ,xn are binary variables that the program will solve for.

xi j =
{

1 if load component i assigned to element j
0 otherwise

Objective function is a function of the form ∑n
i=1 cixi, where ci are any

constants, and xi are the decision variables. The goal is to maximize
the total weight of all assigned load components:

max
Nl

∑
i=1

wi ·
Ne

∑
j=1

xi j

Constraint functions are of the form ∑m
i=1 cixi < C, where ci are constants, xi are some subset

of the decision variables, and C is a constant.

Ensure that no load component is assigned to more than one element: ∀i≤ Nl :
Ne

∑
j=1

xi j ≤ 1

Ensure that maximum cost is not exceeded:
Nl

∑
i=1

Ne

∑
j=1

xi jyi jci j < C

Ensure that no element is overloaded: ∀ j≤Ne :
Nl

∑
i=1

xi jwi j ≤U

Note that it is possible that some load components will not be assigned to any ele-
ment, either because doing so would exceed the target load or because it would exceed
the maximum reconfiguration cost. These unassigned load components are assumed to
remain on their original elements. The load components that the solver assigns to a new
element make up the reconfiguration plan.

Application: We consider reconfiguration plans that consist of a set of volumes to be
migrated from one Dblade to another (Scenario 2 from Section 2.1). The reconfiguration
plans are evaluated with respect to two objectives: minimizing the imbalance factor
calculated by Module 2; and minimizing the cost of the reconfiguration.

We define four functions for calculating cost, representing both linear and non-linear
functions. The first function assigns a constant cost for each volume migration. The
second function assigns a cost proportional to the total size of the volumes being moved.
The third function uses empirically derived costs as encoded in a table-based model (see
Table 3). The cost is the average latency of all operations while the migrations are taking
place. This cost depends on both the number of volumes being simultaneously migrated
and the workload being handled by the system at the time of reconfiguration. The fourth
function is non-linear and estimates the total time of impairment.

Table 3 shows a sampling of (sanitized) values measured on a four-node cluster with
midrange nodes running a SPECsfs benchmark [19]. The rows represent the relative
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Table 3. Reconfiguration costs measured as average request latency in ms

Volume Load (ops/s)
Moves Base (500) 2× 4× 8× 16×

0 0.5 ms 0.5 0.5 0.7 0.8
1 1.0 ms 0.8 0.9 1.0 1.1

Volume Load (ops/s)
Moves Base (500) 2× 4× 8× 16×

2 1.2 ms 1.0 1.0 1.2 1.5
3 1.2 ms 1.2 1.3 1.5 1.9

costs when moving zero, one, two, or three volumes simultaneously. The columns rep-
resent the “load level” of the benchmark (in SPECsfs terms, the targeted number of
operations per second). The baseline column corresponds to a very light load; the other
columns represent a load-level that is a double, quadruple, and so on, of the baseline
load. A performance engineering group generates similar tables for other cluster config-
urations, system versions and hardware types for other workload classes e.g., Exchange
Server [20], during system development.

We implemented the hill-climbing and integer programming optimization methods
directly in MATLAB. The Strength Pareto Evolutionary Algorithm (SPEA) is written
primarily in JavaTM and controlled by MATLAB. Hence, the SPEA runtime is domi-
nated by interprocess communications. Because of this, we compare the efficiency of
the methods by the number of possible solutions they evaluate, and not runtime.

The integer-programming method is restricted to using only linear cost and objective
functions. It uses only a form of the simple sum function for calculating imbalance, and
uses only the constant and linear cost functions. This corresponds to a form of tradi-
tional bin-packing problems. The greedy and evolutionary algorithms also correspond
to traditional bin-packing when using the simple sum function and constant costs.

2.4 Execute Reconfiguration Plan

As described previously, Module 3 provides a set of (near) optimal reconfiguration
plans, with a range of costs and resulting imbalance factors. The job of Module 4 is
to select one of these possible solutions and perform a series of system-level opera-
tions to execute that plan. The choice of which of the nondominated solutions to choose
depends primarily on the reconfiguration cost that the system can tolerate at the time,
which can be specified by service level objectives (SLOs).

Application: In our case of performing load balancing through the migration of vol-
umes, this module handles the details such as when to perform the migrations, in what
order, and at what rate. In our experiments, we chose to perform all migrations simul-
taneously at the maximum rate. Our system performs this operation on-line with no
client-perceived disruptions (though performance is affected, as described by Table 3).

2.5 Assumptions and Limitations

As presented here, the framework makes a few assumptions. First, we assume that the
load on the system is sufficiently stable. That is, the load we have observed in the recent
past is a good approximation of the load we will experience in the near future. If this
were not the case, the steps taken to rebalance the system would likely be ineffective or
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even detrimental. If a system does not meet this criterion, the load-balancing framework
would need some other means for predicting future load in order to determine a viable
reconfiguration. However, in practice, enterprise system workloads tend to experience
cyclical workloads with daily and weekly periodicities.

Second, we assume that the system is composed of (nearly) homogeneous nodes.
For example, our model does not take into account the amount of memory each node
has. We believe that our framework is applicable without any loss of generality to
non-homogeneous systems. In practice, this requires more performance characteriza-
tion with larger cost-model tables.

3 Experimental Analysis

We evaluate our framework in two different ways. First, using a description of a week-
long workload from an internally deployed system, we explore the various implemented
functions and optimization techniques. Second, we examine the model in a real-world
scenario—a recent hardware upgrade and consolidation effort in one of our data centers.

We compare optimization methods for various imbalance and cost functions using
a data center storage consolidation scenario. In this scenario, we study the effects of
taking an existing stand-alone system with e-mail workload from MS Exchange Servers
and integrating it into the existing six-node system. The first step involves rolling the
existing hardware with its data into a cluster. The second step, and the one targeted by
our framework, involves moving data (volumes) between the nodes of the combined
system to achieve a more balanced load.

3.1 System and Workload Description

Clustered system. A six-node NetApp Data ONTAP GX system with 120 TB of stor-
age across 794 disks and 396 total volumes stores the home directories of approximately
150 users, mostly engineers. Each user has a 200 GB primary volume with a remote site
replica and a secondary RAID-protected volume with additional 200 GB of space that
is not replicated. The home directory volumes are accessible by both NFS and CIFS
protocols. The cluster is used predominantly for software development (compilation of
source code) by individual users as well as build-server farms. There are several large
volumes, one per cluster node, for a build- and regression-testing farm of a few dozen
servers. We do not consider these volumes in our experiments because by manual as-
signment (and in practice), the load from these volumes is already “balanced.” It is this
kind of manual load balancing that we aim to replace with our framework.

Figure 2 shows the load on the cluster over a one-week period. The load is charac-
terized by the total number of file operations performed by the system (aggregated over
30 minute periods). There were a total of approximately 1.4 billion operations, or an
average of 8 million operations per hour. The load has a strong periodic component,
with large spikes occurring during workdays, both during business hours (software de-
velopment) and at night (regression tests). The bars at the top show the daily cumulative
per-node load. Although the cluster has six nodes, it currently uses only the first four—
the other ones have been recently added for future system expansion. We show later on
how our framework redistributes load and populates these nodes with data.
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Fig. 3. Comparison of three load-flattening functions

Stand-alone system. There are 12 volumes supporting e-mail workload from three MS
Exchange Servers with mailboxes for several hundred users. As shown in Figure 2, it
also experiences load at night due to data consolidation and backup.

3.2 Results

Load Imbalance Expression. Figure 3 compares the three flattening functions from
Module 2 with a 24-hour time window. Here, and for the remainder of this paper, we
apply optimizations over a week-long period, since our workload has strong weekly
periodicity. The input is the combined load from the two consolidated systems, shown
in the background. The polynomial and threshold functions emphasize spikes in load
more than the simple sum function, fulfilling their intended purpose. These two func-
tions are also more variable in general, and require larger time windows to avoid rapid
oscillations. Given our workload profile, a 24-hour window is sufficient to remove the
daily load periodicity and more accurately reflect any underlying load imbalance.

Comparison of Optimization Methods. We use four cost functions—constant, lin-
ear, empirical, and non-linear; and three imbalance functions—sum, polynomial, and
threshold, for our comparison of the different optimization methods in Figure 4. For the
constant function, each volume move has a cost of 1. For the linear function, the cost
of moving a set of volumes is the total number of bytes in all moved volumes. For the
empirical function, we use the data from Table 3 and, more specifically, only the last
column of the table with the base latency as 0.8 ms. Moving 1, 2, or 3 volumes increases
the latency to 1.1, 1.5, or 1.9 ms, or respectively, 1.375, 1.875, and 2.375× the base.
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Fig. 4. Comparison of three optimization methods using various measures of imbalance and re-
configuration cost. The three rows correspond to the sum, polynomial, and threshold temporal-
flattening functions. The four columns correspond to different cost models: constant (number of
volumes moved); linear (number of bytes moved); empirical (latency increase); and, nonlinear
(time period of impairment). The experiment using the sum-flattening function and constant mi-
gration cost compares all three optimization methods: greedy algorithm, evolutionary algorithm
(EA), and integer programming. The others exclude integer programming because of their non-
linear objectives. We use two cases for EA with 800 and 1600 solution evaluations respectively.
For all cases, solutions closer to the origin are better.

When moving more than three volumes, we interpolate using the last two values.
So each volume move beyond three adds latency with a 0.5× latency multiplier. In
practice, this linear penalty is too large for several volume moves. Therefore, we use
data with approximate costs that are non-linear when moving more than three volumes
simultaneously. The fourth column in Figure 4 shows the results for this approximation
of a more realistic cost function.

The greedy algorithm uses an unbounded number of solution evaluations, halting
when no further improvements can be made. The graphs display a set of 10 interme-
diate points along the hill-climbing path. The evolutionary algorithm uses a constant
number of solution evaluations based on input parameter settings. The total number of
evaluations is equal to the product of the population size and the number of generations.
We show two settings: population size of 40 and 20 generations (for 800 evaluations)
and population size 50 and 32 generations (for 1,600 evaluations). The results of the
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integer programming method are found in the experiment using only linear objectives
(sum flattening function and constant cost).

We can draw the following general conclusions from the experimental results:

– The greedy algorithm is superior for the constant cost case. That is, it provides
solutions with lower cost and lower imbalance factors.

– The evolutionary algorithm is superior for the linear cost case. With this more com-
plex cost function, the greedy algorithm is more likely to be stuck in a local opti-
mum early in the search, and requires more solution evaluations in total: in this
case, up to 3,815 evaluations.

– The empirical cost function is nearly equivalent to the constant cost function. This
is because each additional volume move adds a nearly constant latency multiplier,
around 0.5×. Consequently, the experimental results of the third column are very
similar to the first column. The greedy results are identical, with the same solution
curves and number of evaluations. The evolutionary algorithm returns different so-
lutions, due to the randomized starting point.

– The greedy algorithm tends to require more evaluations as the imbalance functions
get more complex, moving from sum to polynomial to threshold.

– The integer-programming results are comparable with those found by the greedy
algorithm. Some of its solutions perform slightly worse because the predicted im-
balance of all solutions are evaluated using the normalized entropy function, but
this nonlinear function is not used by the integer program.

Executing a Reconfiguration Plan. The optimization provides a set of nondominated
solutions. The choice of which is most suitable depends on how much additional load
(e.g., the expected increase in request latency) the system can tolerate during data mi-
gration. These are set as service-level objectives (SLOs) by a system administrator,
allowing the reconfiguration plan to be executed automatically. If a single reconfigura-
tion plan cannot reach a sufficiently balanced state without violating some SLOs, the
framework iterates the process, as shown in Figure 1. By executing a small number of

imbf: 0.206

imbf: 0.027
500 GB

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

imbf: 0.010
860 GB

Fig. 5. Comparison of predicted load imbalance after reconfiguration and plan execution. The top
graph is the baseline with imbalance factor (imbf) 0.207 for the combined load from both systems.
The middle graph shows the reconfiguration plan with total cost of 500 GB. and the bottom graph
shows the “best” reconfiguration plan—860 GB of data moved. A single volume contributes to
Thursday’s load on node 4; the spike cannot be flattened by data migration alone. Both graphs
correspond to evolutionary algorithm solutions with the polynomial flattening function and linear
cost function. The line at 1/3 graph height is a visual aid to more easily spot differences.
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migrations over a longer time, or during off-peak hours, load imbalance can be elimi-
nated without sacrificing system performance.

Figure 5 shows the effects of a subset of reconfiguration plans suggested by the
evolutionary algorithm. These graphs illustrate how the load on each cluster node would
change as a result of implementing a reconfiguration plan. The “best” plan at the bottom
would be executed in about eight hours.

4 Related Work

Many components of our framework build upon previous work. Aqueduct, a tool for
executing a series of data-migration tasks, with the goal of minimizing their effect on
the current foreground work [21], is similar to Module 4 of our framework. The table
lookup model in Module 3 is based on previous work of Anderson [22]. Our framework
is similar in many aspects to Hippodrome [16], which iteratively searches over different
system designs and uses Ergastulum to find the least-cost design in each step. Ergastu-
lum is a system for designing storage systems with a given workload description and
device model [13]. It uses a form of bin packing and solves the problem using a random-
ized greedy algorithm. Ergastulum was motivated by and improved upon Minerva [23],
which uses a similar problem formulation but less-efficient search. Both of these sys-
tems focus on new system design for a specific workload. In contrast, our framework
searches for load-balanced configurations of already-deployed systems, where reconfig-
uration cost if of importance. It is also suited for exploring what-if scenarios for system
consolidation and upgrades. Stardust, which performs a function similar to Module 1,
collects detailed per-request traces as requests flow through node and cluster compo-
nents [11]. Other approaches mine data collected by Stardust for exploring what-if
scenarios [10,24]. However, unlike our system, they use simple heuristics rather than
optimization techniques. Our framework uses only high-level workload descriptions
and performance levels similar to relative fitness models [25].

5 Conclusions

The modularity of our framework allows users to explore functions that best fit their
workloads and systems. The use of multiple optimization methods and explicitly taking
into account the cost of rebalancing when considering optimal configurations is one of
the contributions of this work. Previous approaches have chosen a single method and
designed their load-balancing systems around it.

To the best of our knowledge, we show the first application of evolutionary algorithms
for optimizing storage system configurations. While not provably optimal, evolutionary
algorithm is in our view the most general and versatile approach; it can leverage non-
linear imbalance functions and empirical system models. Integer programming is most
applicable with simple, that is, linear, cost and objective functions and with fewer ele-
ments and load components.

Our framework is practical in terms of (i) using high-level workload descriptions
from periodic collections of performance data, (ii) its applicability to real-world sce-
narios for consolidating data center storage, and (iii) the use of high-level empirical
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performance models. Generating detailed storage models is typically quite difficult.
In contrast, collecting performance data for the table-based lookup model is “easy”,
though it can be resource intensive and time consuming. System characterization under
different system configurations, workloads, and operations (e.g., volume moves) is an
integral part of system development similar to qualifications of a storage system against
a myriad of client host controller cards, operating systems, and so on. Dedicated engi-
neering teams across manufacturers of enterprise storage routinely undergo such tests.
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Abstract. Performance prediction is particularly challenging for dynamic envi-
ronments that cannot be modeled well due to reasons such as resource sharing
and foreign system components. The approach to performance prediction taken
in this work is based on the concept of a performance skeleton which is a short
running program whose execution time in any scenario reflects the estimated exe-
cution time of the application it represents. The fundamental technical challenge
addressed in this paper is the automatic construction of performance skeletons
for parallel MPI programs. The steps in the skeleton construction procedure are
1) generation of process execution traces and conversion to a single coordinated
logical program trace, 2) compression of the logical program trace, and 3) conver-
sion to an executable parallel skeleton program. Results are presented to validate
the construction methodology and prediction power of performance skeletons.
The execution scenarios analyzed involve network sharing, different architectures
and different MPI libraries. The emphasis is on identifying the strength and limi-
tations of this approach to performance prediction.

1 Introduction

Traditional performance prediction and scheduling for distributed computing environ-
ments is based on modeling of application characteristics and execution environments.
However, this approach is of limited value in some dynamic and unpredictable execu-
tion scenarios as modeling is impractical or impossible for a variety of reasons. Some
example scenarios are execution with sharing of network or compute resources, ex-
ecution with varying number of available processors, or execution with new system
architectures or software libraries.

A new approach to performance prediction in such foreign environments is based
on the concept of a performance skeleton which is defined to be a short running pro-
gram whose execution time in any scenario reflects the estimated execution time of
the application it represents. When the performance skeleton of an application is avail-
able, an estimate of the application execution time in a new environment is obtained
by simply executing the performance skeleton and appropriately scaling the measured
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skeleton execution time. The main challenge in this approach is automatic construction
of performance skeletons from applications. Earlier work in this project developed ba-
sic procedures for construction of communication and memory skeletons and explored
their usage in distributed environments [1,2,3].

This paper introduces scalable construction of coordinated performance skeletons
and evaluates their ability to predict performance in a variety of execution scenarios. The
skeletons developed are “coordinated” implying that a single SPMD skeleton program
is constructed instead of a family of process level skeletons. Improved compression
procedures were developed that allow fast and nearly linear time skeleton construction.
Validation experiments were conducted in a wide variety of scenarios including shared
network bandwidth, shared processors, variable number of processors, different clus-
ter architectures, and different MPI communication libraries. The results highlight the
power and limitations of this approach.

We outline the procedure for the construction of performance skeletons for parallel
MPI programs. Clearly a performance skeleton must capture the core execution and
communication characteristics of an application. The skeleton construction procedure
begins with the generation of process traces of an MPI application, primarily consisting
of the message passing calls interspersed with computation segments. The first process-
ing step is trace logicalization which is the conversion of the suite of MPI process level
execution traces into a single logical trace. This is followed by trace compression which
involves identification of the loop structure inherent in the execution trace to capture the
core execution behavior. Final skeleton construction consists of generation of a dead-
lock free skeleton SPMD program from the compressed logical trace. The key steps are
illustrated in Figure 1.

Record execution trace for each process

Logicalize process traces into a single program trace

Compress the program trace by identifying the loop structure

Construct  executable
performance skeleton program

APPLICATION

Data Model

Sim 1

Sim 2

Pre

Vis

Stream skeleton

Data Model

Sim 1

Sim 2

Pr
e

Vi
s

Stream

Fig. 1. Skeleton construction

The state of the art in performance prediction and scheduling for distributed com-
puting environments is based on modeling of application characteristics and execution
environments, with some example systems discussed in [4,5,6]. The research presented
in this paper is fundamentally different in being based on synthetically generated
executable code as the primary vehicle for performance prediction. Trace analysis
has also been addressed in the context of trace replay tools such as the work in [7].
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DIMEMAS [8] presents a promising approach to performance prediction in distributed
environments based on replay of an execution trace in a simulated environment. The
underlying problems addressed in skeleton construction have many aspects in common
with on-the-fly trace compression methods, in particular the work presented in [9,10].
However, the approaches are algorithmically different; specifically the approach pre-
sented performs logicalization first and compresses only the logical trace.

The paper is organized as follows. Section 2 presents the procedure for logicalization
of MPI traces and section 3 presents the procedures developed for the compression of
the logical trace. Section 4 introduces deadlock free skeleton program generation from
the compressed trace. Section 5 presents and discusses results from the application of
performance skeletons for performance prediction. Section 6 contains conclusions.

2 Trace Logicalization

As high performance scientific applications are generally SPMD programs, in most
cases, the traces for different processes are similar to each other and the communica-
tion between processes is associated with a well defined global communication pattern.
A study of DoD and DoE HPC codes at Los Alamos National Labs [11] and analysis
of NAS benchmarks [12] shows that an overwhelming majority of these codes have a
single low degree stencil as the dominant communication pattern. These characteristics
expose the possibility of combining all processor traces into a single logical program
trace that represents the aggregate execution of the program - in the same way as an
SPMD program represents a family of processes that typically execute on different
nodes. For illustration, consider the following sections of traces from a message ex-
change between 4 processes in a 1-dimensional ring topology.

Process 0 Process 1 Process 2 Process 3
... ... ... ...
snd(P1,...) snd(P2,...) snd(P3,...) snd(P0,...)
rcv(P3,...) rcv(P0,...) rcv(P1,...) rcv(P2,...)
... ... ... ...

The above physical trace can be summarized as the following logical trace:

Program
...
snd(PR,...)
rcv(PL,...)
...

where PL and PR refer to the logical left and logical right neighbors, respectively, for
each process in a 1-dimensional ring topology.

Beside reducing the trace size by a factor equal to the number of processes, the
logical program trace captures the parallel structure of the application. Note that this
logicalization is orthogonal to trace compression discussed in the following section.

The logicalization framework has been developed for MPI programs and proceeds
as follows. The application is linked with the PMPI library to record all message ex-
changes during execution. Summary information consisting of the number of messages
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and bytes exchanged between process pairs is recorded and converted to a binary ap-
plication communication matrix that identifies process pairs with significant message
traffic during execution. This matrix is then analyzed to determine the application level
communication topology. Once this global topology is determined, a representative pro-
cess trace is analyzed in detail and transformed into a logical program trace where all
message sends and receives are to/from a logical neighbor in terms of a logical commu-
nication topology (e.g a torus or a grid) instead of a physical process rank. An example
physical trace and the corresponding logical trace are shown in Table 1.

Table 1. Logical and physical trace for the 16-process BT benchmark

PHYSICAL TRACE

...... ......

MPI Isend(... 1, MPI DOUBLE, 480, ...)

MPI Irecv(... 3, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

...... ......

MPI Isend(... 4, MPI DOUBLE, 480, ...)

MPI Irecv(...12, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

...... ......

MPI Isend(... 7, MPI DOUBLE, 480, ...)

MPI Irecv(...13, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

...... ......

LOGICAL TRACE

...... ......

MPI Isend(...EAST, MPI DOUBLE, 480, ...)

MPI Irecv(...WEST, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

...... ......

MPI Isend(...SOUTH, MPI DOUBLE, 480, ...)

MPI Irecv(...NORTH, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

...... ......

MPI Isend(...SOUTHWEST, MPI DOUBLE, 480, ...)

MPI Irecv(...NORTHEAST, MPI DOUBLE, 480, ...)

MPI Wait() /* wait for Isend */

MPI Wait() /* wait for Irecv */

...... ......

The key algorithmic challenge in this work is the identification of the application
communication topology from the application communication matrix which represents
the inter-process communication graph. The communication topology is easy to iden-
tify if the processes are assigned numbers (or ranks) in a well defined order, but is a
much harder problem in general. This is illustrated with a very simple example in Fig-
ure 2. The figure shows 9 executing processes with a 2D grid communication topology.
In Figure 2(a) the processes are assigned numbers in row major order in terms of the
underlying 2D grid. However, if the processes were numbered diagonally with respect
to the underlying 2D grid pattern as indicated in Figure 2(b), the communication graph
with process nodes laid out in row major order would appear as Figure 2(c). Clearly, the
underlying 2D grid topology is easy to identify in the scenario represented in Figure 2(a)
by a pattern matching approach but much harder when process numbering follows an
unknown or arbitrary order, a relatively simple instance of which is the scenario rep-
resented in Figure 2(c). The state of the art in identifying communication topologies
assumes that a simple known numbering scheme is followed [11].

The reasons topology identification is difficult are 1) establishing if a given commu-
nication graph matches a given topology is equivalent to solving the well known graph
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Fig. 2. 2D grid topology with row major and other numberings

isomorphism problem for which no polynomial algorithms exist and 2) there are many
different types of topologies (different stencils on graph/torus, trees, etc.) and many in-
stantiations within each topology type (e.g., different number and sizes of dimensions
even for a fixed number of nodes). A framework consisting of the following tests was
employed for topology identification:

1. Simple tests: All possible sizes of grid/tori/tree based on the number of processes
N are identified with prime factoring. The number of edges and the degree ordered
sequence of nodes for the given communication matrix are compared to instances
of known topologies and those that do not match are eliminated.

2. Graph Spectrum test: Eigenvalue sets of isomorphic graphs are identical. The
topologies whose eigenvalues do not match those of the communication matrix are
eliminated.

3. Graph Isomorphism test: Graph isomorphism checking procedure is applied to
establish that a given communication matrix exactly represents a specific topology.
The VF2 graph matching algorithm [13] was used.

The above steps are listed in increasing order of computation complexity and ap-
plied in that order as a decision tree. The simple tests and the graph spectrum test are
employed to eliminate topologies that are provably not a match for the given commu-
nication matrix, but they cannot prove a match. Only the graph isomorphism test can
establish an exact match.

Table 2 presents observations from the application of the logicalization procedure to
selected NAS benchmarks running with 121/128 processes. The topologies that remain

Table 2. Identification of communication topologies of NAS benchmarks. Unique topologies are
listed in boldface with other isomorphic topologies below them.

Benchmark Simple Tests Graph Spectrum Test Isomorphism Test Trace Length Time
(Processes) Records(size) (secs)
BT (121) 11×11 6-p stencil 11×11 6-p stencil 11×11 6-p stencil 50874 30.76

(2106KB)
SP (121) 11×11 6-p stencil 11×11 6-p stencil 11×11 6-p stencil 77414 49.16

(3365KB)
LU (128) 16×8 grid 16×8 grid 16×8 grid 203048 134.30

(9433KB)
CG (128) 3-p stencil 3-p stencil 3-p stencil 77978 47.89

16×2×2×2 grid (3224KB)
MG (128) 8×2×2×2×2 torus 8×2×2×2×2 torus 8×2×2×2×2 torus 9035 7.33

8×4×2×2 torus 8×4×2×2 torus 8×4×2×2 torus (386KB)
8×4×4 torus 8×4×4 torus 8×4×4 torus
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as candidates after each test and the final established topology are listed in columns
corresponding to the tests. The trace length and size as well as the trace processing
times are also listed. The tracing overhead is low as only gross communication data,
such as the number of messages and bytes exchanged are recorded and analyzed. It
is clear that the simple tests are very effective in reducing the number of topologies
that are possible match candidates which is the key to the overall efficiency of the
framework. The logicalization process and performance characteristics are described in
detail in [14].

3 Trace Compression

An important step in the process of construction of performance skeletons is the iden-
tification of repeating patterns in MPI message communication. Since the MPI com-
munication trace is typically a result of loop execution, discovering the executing loop
nest from the trace is central to the task of skeleton construction. The discovery of
“loops” here technically refers to the discovery of tandem repeating patterns in a trace
(presumably) due to loop execution.

Common compression procedures include gzip [15] that constructs a dictionary of
frequently occurring substrings and replaces each occurrence with a representative sym-
bol, and Sequitur [16,17] that infers the hierarchical structure in a string by automatically
constructing and applying grammar rules for reduction of substrings. Such methods can-
not always identify long range loop patterns because of early reductions. An alternate
approach is to attempt to identify the longest matching substring first. However, simple
algorithms to achieve this are at least quadratic in trace length and hence impractical
for long traces. A practical tradeoff is to limit the window size for substring matching,
which again risks missing long span loops [9].

Our research took a novel approach to identifying the loop structure in a trace based
on Crochemore’s algorithm [18] that is widely used in pattern analysis in bioinfor-
matics. This algorithm can identify all repeats in a string, including tandem, split, and
overlapping repeats, in O(nlogn) time. A framework was developed in this research
to discover the loop nest structure by recursively identifying the longest span tandem
repeats in a trace. The procedure identifies the optimal (or most compact) loop nest in
terms of the span of the trace covered by loop nests and the size of the compressed
loop nest representation. However, the execution time was unacceptable for long traces;
processing of a trace consisting of approximately 320K MPI calls took over 31 hours.

The results motivated us to develop a greedy procedure which intuitively works bot-
tom up - it selectively identifies and reduces the shorter span inner loops and replaces
them with a single symbol, before discovering the longer span outer loops. While the
loop nest discovered by the greedy algorithm may not be optimal, it has well defined
theoretical properties. A key analytical result is that the reduction of a shorter span in-
ner loop as prescribed in the greedy algorithm can impact the discovery of a longer
span outer loop only in the following way: if the optimal outer loop is Lo then a corre-
sponding loop Lg will be identified despite the reduction of an inner loop. Lo and Lg

have identical but possibly reordered trace symbols, but Lg may have up to 2 less loop
iterations than Lo. Hence, the loop structure discovered by the greedy algorithm is near
optimal. The theoretical basis for this procedure is treated in depth in [19].
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Table 3. Results for optimal and greedy compression procedures

Raw Compression Time Trace Span Compressed Compression
Name Trace Greedy Optimal Major Loop Structure Covered Trace Ratio

Length (secs) (secs) by Loops Length
BT B/C 17106 8.91 311.18 (85)200 = (13 + (4)3 + ... + (4)3)200 99.38% 44 388.77
SP B/C 26888 7.61 747.73 67400 99.67% 89 302.11
*CG B/C 41954 8.48 2021.78 (552)75 = ((21)26 + 6)75 98.68% 10 4195.4
MG B 8909 8.64 113.48 (416)20 93.39% 590 15.1
MG C 10047 10.88 144.54 (470)20 93.56% 648 15.5
LU B 203048 33.16 44204.82 (812)249 = ((4)100 + (4)100 + 12)249 99.58% 63 3222.98
LU C 323048 61.9 113890.21 (1292)249 = ((4)160 + (4)160 + 12)249 99.58% 63 5127.75

The optimal and greedy loop nest discovery procedures were implemented and em-
ployed to discover the loop nests in the MPI traces of NAS benchmarks. The key results
are listed in Table 3. The loop nest structure is represented in terms of the number of
loop elements and the number of loop iterations. As illustration, the CG benchmark loop
structure is denoted by (552)75 = ((21)26 + 6)75 implying that there is an outer loop
with 75 iterations enclosing 552 elements in the form of an inner loop with 21 elements
iterated 26 times, and another 6 elements. As expected, the optimal algorithm discov-
ered perfect loop nests as validated by direct observation. The loop nests discovered by
the greedy algorithm were, in fact, identical to the optimal loop nests except for a minor
difference in the case of CG benchmark - the compressed trace had 21 symbols instead
of 10 and the loop structure was slightly different. However, the time for greedy loop
discovery was dramatically lower, down from 31 hours to 61 seconds for one trace. To
the best of our knowledge, this is the first effort toward extracting complete loop nests
from execution traces.

4 Construction of Performance Skeletons

The final step in building a performance skeleton is converting a logicalized and com-
pressed trace into an executable program that recreates the behavior represented in the
trace. The trace at this stage consists of a loop nest with loop elements consisting of a
series of symbols, each symbol representing an MPI Call or computation of a certain
duration of time. The trace is converted to executable C code with the following basic
steps:

– The loop nest in the trace is converted to a program loop nest with the number of
iterations reduced to match the desired skeleton execution time.

– The collective and point-to-point communication calls in the trace are converted
to MPI communication calls that operate on synthetic data. The point to point calls
generate a global stencil communication pattern matching the application topology.

– The computation sections are replaced by synthetic computation code of equal du-
ration without regard to the actual computation characteristics.

The procedure is simplistic in reproducing computation. The instruction mix may
be different and memory behavior is not reproduced. This is a limitation of the current
work although memory skeletons have been investigated separately in [1].
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A direct conversion of MPI trace symbols to MPI calls can result in executable code
that may deadlock. The key issues in ensuring deadlock free communication in a skele-
ton program are as follows:

1. Identifying local communication. Most MPI calls in a logical trace are matched:
there is a Recv in the trace corresponding to every Send. We refer to these calls as
global and their inclusion in the performance skeleton leads to a stencil commu-
nication pattern across executing nodes. However, typically some unmatched MPI
Send/Recv calls exist in a trace even when there is a dominant global communica-
tion pattern, i.e. there may be Send to WEST in the trace but no corresponding Send
to EAST. Such calls are labeled local and ignored for code generation. An alternate
approach is to match the local calls with synthetically generated calls. While local
calls imply inaccuracy, they are rare in structured codes and necessary to ensure
deadlock free execution. The procedure for marking communication calls as local
or global is outlined in Figure 3. It is based on the basic deadlock free patterns
of point to point communication which are 1) a non blocking Send/Recv with a
matching Recv/Send before a corresponding Wait and 2) One or more blocking
Send/Recv calls followed by matching Recv/Send calls. Note that in the latter case,
the code generated for end nodes in the stencil is different from others, e.g. Send
followed by Recv, when it is Recv followed by Send for all other nodes.

2. Unbalanced global communication. Even when a pair of communication calls
is matched, it may not be balanced, meaning an MPI Send/Receive and its

while next-call= First unmarked Send or Recv call in the code exists do
if next-call is a non-blocking iSend (iRecv) then

Let match-wait be the corresponding matching Wait call.
Let match-call be the next matching Recv/iRecv (Send/iSend) in the code.
if match-call is after match-wait or match-wait or match-call does not exist then

Mark next-call as local communication.
else

Mark next-call and match-call as global communication.
end if

else
next-call is a blocking Send (Recv).

Let match-call be the next matching Recv/Irecv (Send/Isend) in code.
if no match-call exists or there is a blocking Send or Recv between next-call and match-
call then

Mark next-call as local communication.
else

Mark next-call and match-call as global communication.
end if

end if
end while

Note: Matching calls have the same datatypes and match in terms of the directions in a commu-
nication pattern, e.g, logical East and West in a 2D torus.

Fig. 3. Identification of Global and Local Send and Recv communication calls
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corresponding MPI Receive/Send may not be equal in size. Analysis is employed
to identify these and force a match by using the median message size of a Send and
Recv.

5 Experiments and Results

A framework for automatic construction of performance skeletons has been imple-
mented. Automatically generated skeletons were employed to estimate the execution
time of corresponding applications in a variety of scenarios. Prediction accuracy was
measured by comparing the predicted performance with actual application performance.

5.1 Skeleton Construction and Properties

Skeletons were constructed on “PGH201”, a compute cluster composed of 10 Intel
Xeon dual CPU 1.7 GHz machines with 100 Mbps network interfaces. The execu-
tion was under MPICH 2.0 library. Results are reported for 16-process class C NAS
benchmarks. Execution is on 16 dedicated processors, except when noted otherwise.
The methodology employed allows skeletons to be constructed to approximate a target
skeleton execution time (or equivalently, a target ratio between application and skeleton
execution times). However, there is a minimum execution time for a “good skeleton”
which corresponds to the execution of a single iteration of the main execution loop. For
the experiments conducted, the objective was to build the longest running skeleton with
execution time under one minute or a skeleton that executes for approximately 10% of
the application execution time, whichever was lower. The reference execution times of
NAS benchmarks and their skeletons are shown in Table 4.

Table 4. Benchmark and skeleton execution times for NAS benchmarks on 16 processors

Benchmark Execution Time(s)
Name Skeleton Benchmark

BT 45.6 1129.6
CG 40.3 607.6
MG 8.3 79.1
LU 39.1 637.4
SP 43.1 1069.2

An application and the corresponding performance skeleton should have approxi-
mately the same percentage of time spent in computation and communication. These
were measured for execution under MPICH 2.0 as well as execution under Open MPI li-
brary. The results are presented in Figure 4. We note that the computation/communication
time percentage is generally very close for benchmarks and corresponding skeletons. One
exception is the CG benchmark, where the difference is especially striking for execution
under Open MPI. We will present the performance results for other benchmarks first and
then specifically analyze the CG benchmark.
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Fig. 4. Computation/communication time percentage for benchmarks (uppercase) and skeletons
(lowercase)

5.2 Prediction Across MPI Libraries and Cluster Architectures

Skeletons constructed with MPICH 2.0 on PGH201 cluster were employed to predict
performance under Open MPI library and on a different cluster called “Shark” which is
composed of 24 SUN X2100 nodes with 2.2 GHz dual core AMD Opteron processor
and 2 GB main memory. All nodes are connected through 4x InfiniBand Network Inter-
connect and Gigabit Ethernet Network Interconnect. The results are plotted in Figure 5.

0

5

10

15

20

25

BT MG LU SP Average

E
rr

o
r 

(%
)

(a) Across architectures (PGH201 to Shark)

0

5

10

15

20

25

BT MG LU SP Average

E
rr

o
r 

(%
)

Shark PGH201

(b) Across libraries (MPICH 2.0 to OpenMPI)

Fig. 5. Prediction results on 16 processors across MPI libraries/architectures

The prediction errors across the architectures average around 15%. The skeleton
construction procedure employed makes no effort to reproduce the precise execution or
memory behavior and only reproduces the execution times in skeletons with synthetic
computation code. Hence, inaccuracy is expected across clusters with different proces-
sor and memory architectures. In the remainder of this paper, for validation purposes,
the skeletons employed on Shark were “retuned” implying that the length of the com-
putation blocks was adjusted to maintain the original ratio between reference skeleton
and application execution.

Figure 5(b) shows the accuracy of performance predicted for OpenMPI with skele-
tons constructed with MPICH 2.0 on the two clusters. The errors are modest averaging
below 10% for both clusters.
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5.3 Prediction for Bandwidth Sharing

Figure 6 shows results from performance prediction with network sharing simulated
by artificially reducing the available bandwidth to 50, 20, and 5Mbytes/sec with Linux
iproute2. The results are presented for the older MPICH 1.2.6 MPI library, in addition
to the MPICH 2.0 library. We consider the predictions to be excellent; the maximum
prediction error is below 10% and the avarage prediction error varies between 2% and
6% for different scenarios. The results validate that the methodology employed models
communication accurately.
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Fig. 6. Prediction results on 16 processors with reduced bandwidth availability

5.4 Prediction for Processor Sharing

A set of experiments was conducted to estimate the accuracy of performance prediction
with processor sharing. Each node has an independent CPU scheduler and no gang
scheduling is employed. First, 16 process jobs and corresponding skeletons were run
on 8 and 4 processors. (The results are shown for the Shark cluster in this case as all
cases cannot run on the PGH 201 cluster because of limited memory). The results in
Figure 7(a) show that the average prediction error is around 10% for 8 processors and
5% for 4 processors, but the maximum errors are over 20% for 8 processors and over
30% for 4 processors. Figure 7(b) plots the accuracy of performance prediction on 16
processors with 2 or 4 synthetic competing compute bound processes on each node.
The prediction errors are rather high averaging around 30%.

These results point out the limitation of the methodology employed as it does not
model computation, synchronization, or memory behavior accurately. Performance with
independent CPU schedulers and sharing is sensitive to these factors. We speculate that
the main reason for the relatively low accuracy in the above scenarios is that the skeleton
construction procedure does not model the idle periods caused due to synchronization
accurately and some of them are replaced by computations in skeletons. In the case
of processor sharing, the idle periods will be effectively used by other competing pro-
cesses making the performance as predicted by skeletons to be inaccurate. In this set of
experiments, errors were the result of the application execution times being less than
those predicted by skeleton execution.
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Fig. 7. Prediction results for execution of 16 process jobs with processor sharing

5.5 CG Benchmark

The prediction errors for the CG benchmark were significantly higher than the rest of
the benchmark suite for most scenarios, and the results were not included in earlier
charts in order to streamline the discussion. As examples, the prediction error for CG
was around 4 times the average for other benchmarks for prediction across libraries and
prediction with reduced bandwidth. CG benchmark is very communication intensive
and it was observed that the performance of the CG benchmark was very sensitive to
the placement of processes on nodes. The communication topology of CG benchmark
is shown on the left in Figure 8. The table on the right shows the execution time for
various mappings of processes to nodes. The execution time varies by a factor of two
depending on the location of the processes. The skeleton construction procedure makes
no effort to manage placement of processes on nodes, and the placement for the skeleton
can be different from the placement of the application. Since the performance is place-
ment sensitive, the framework cannot deliver meaningful results. No other benchmark
examined exhibited such strong sensitivity to process placement.

0 2 8 10

1 3 9 11

4 6 12 14

5 7 13 15

Config Node 1 Node 2 Node 3 Node 4 Time(s)
A 0,1,8,9 2,3,10,11 4,5,12,13 6,7,14,15 496
B 0,1,4,5 2,3,6,7 8,9,12,13 10,11,14,15 568
C 0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15 272

Fig. 8. CG Topology and prediction results. The picture shows the communication topology. The
table shows the execution time of the benchmark for various placements of processes on nodes.
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6 Conclusions and Future Work

This paper has presented and evaluated a framework for the construction of performance
skeletons for message passing MPI programs from execution traces. The objective is
prediction of application performance in scenarios where modeling of performance is
challenging. A key innovation is that the performance skeletons developed are coordi-
nated, i.e., a single SPMD skeleton program is generated for a family of process level
traces. The paper outlines the logicalization and compression procedures and lists re-
lated publications that contain the details.

Results presented validate the prediction ability of performance skeletons in differ-
ent scenarios. It is observed that the skeletons are very effective in predicting perfor-
mance when dynamics of communication change, e.g., when the bandwidth is limited
or a new communication library is deployed. However, the prediction power is limited
where the computation dynamics change, e.g., when multiple processes must share a
processor. This is not entirely unexpected as the methodology captures the communi-
cation primitives precisely but attempts to recreate the periods of execution coarsely. If
the computation regions in the skeleton were created to represent the instruction level
execution and memory behavior, the approach would be significantly enhanced.

A basic limitation of this approach to performance prediction in its current form
is that it is only applicable to structured applications with a repeating communication
pattern for which a representative input data set is sufficient to capture the execution
behavior. Extending this approach to unstructured applications and building skeletons
that can simply take the data size as a parameter and predict performance appropriately
are significant challenges to be addressed in future research.
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Abstract. This paper characterizes the sharing behavior of emerging parallel 
media mining workloads for chip-multiprocessors. Media mining refers to tech-
niques whereby users retrieve, organize, and manage media data. These appli-
cations are important in defining the design and performance decisions of future 
processors. We first show that the sharing behaviors of these workloads have a 
common pattern that the shared data footprint is small but the sharing activity is 
significant. Less than 15% of the cache space is shared, while 40% to 90% ac-
cesses are to the shared footprint in some workloads. Then, we show that for 
workloads with such significant sharing activity, a shared last-level cache is more 
attractive than private configurations. A shared 32MB last-level cache outper-
forms a private cache configuration by 20 – 60%. Finally, we show that in order 
to have good scalability on shared caches, thread-local storage should be mini-
mized when building parallel media mining workloads. 

1   Introduction 

Processor and system architects use well chosen workloads to help design systems that 
perform well when running under targeted scenarios. As more hardware thread con-
texts are put on chip, future applications will exploit thread-level parallelism for higher 
performance and more functionality. Recognition, mining, and synthesis (RMS) 
workloads are emerging applications [2], where thread-level parallelism can be effec-
tively exploited, thus are the design target of future multi-core processors. Within these 
workloads, one of the most important and growing application domain is the field of 
media mining, where workloads can extract meaningful knowledge from large amounts 
of multimedia data, to help end users search, browse, and manage enormous amounts of 
multimedia data [1].  

As chip-multiprocessors (CMP) become pervasive and the number of cores in-
creases, a key design issue will be the hierarchy and policies for the on-chip last-level 
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cache (LLC). The most important application characteristics that drive this issue are the 
amount and type of sharing exhibited by the emerging workloads. This paper investi-
gates the sharing behavior of the emerging parallel media mining applications. Our 
study makes the following contributions: 

• Our study reveals that for most of the parallel media mining workloads, the sharing 
behaviors are in a common pattern that the shared data footprint is small but the 
sharing activity on the shared data is significant. The total portion of shared data is 
less than 15% while the portion of sharing accesses can be as large as 40 – 90% on 
some workloads. We then correlate this behavior with the nature of the algorithms in 
these workloads. 

• Based on the sharing characteristics, we show that for these workloads, a shared 
LLC is preferred than private configurations on future CMPs. We investigate the 
performance of various configurations of LLC, and find that for most workloads, 
shared configurations can capture most amount of data-sharing and outperform 
private configurations by 20 – 60% in terms of cache misses. 

• We show that minimizing the overhead of thread-local storage is important in par-
allelization and optimization to have good scalabilities on future CMPs with shared 
caches. For workloads which have large amount of sharing accesses with negligible 
thread-local storage, the performance of shared caches could scale well with in-
creased thread count. On the contrary, for some workloads which involve large 
thread-local storage, scaling thread count from 4 to 16 can result in increase in cache 
miss rate from 0% to 18%, and decrease in sharing degree from 40% to 30%.  

Both industry and academia have already invested resources in characterizing the 
scalability and performance of emerging data-mining applications. Chen et al. investi-
gated the scalability and performance of emerging Tera-scale media mining applications 
[1]. Zambreno et al. composed the data-mining benchmark suite, Minebench, and ana-
lyzed some important performance characteristics on 8-way shared memory machines 
[12]. Jaleel et al. characterized the LLC performance of parallel bioinformatics work-
loads [4]. However, the sharing characteristics of media mining workloads revealed in 
this paper are very different from those of other domains such as bioinformatics. 

2   Metrics and Methodology 

We characterize the sharing behavior on the parallel media mining workloads by ex-
amine the following three metrics: 

(i). Shared Cache Line: We define a shared cache line as one that is accessed during 
its lifetime by more than one thread. 

(ii). Sharing Access: An access to a shared cache line is defined as a sharing access.  
(iii). Type of Sharing: We further classify shared cache lines and sharing activities into 

read-only sharing and read-write sharing. 

We use CMP$im, an instrumentation driven cache simulator for CMPs [3]. We 
focus on the sharing behavior of the parallel media mining workloads in this paper. The 
impact of latency on overall performance is part of our on-going work. 
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We assume a perfect instruction cache and unchanged private 32KB, 8-way L1 data 
caches. L2 cache (the last-level cache) is either private or shared, 8/16/32MB in size, 
and 16-way set associative. All caches use 64B line size, are non-inclusive, and use 
write-back and true LRU replacement policy. MSI invalidate-based coherence is 
maintained. We set the number of cores equals to the numbers of threads. 

Our host machine is a 16-way Intel® Xeon® shared memory multi-processor (SMP) 
system. All workloads are compiled with optimization flags -O3 on a Windows 2003 
32-bit system using Intel’s C/C++ compilers. 

3   Overview of the Workloads 

The rapid advances in the hardware technology of media capture, storage, and com-
putation power have contributed to an amazing growth in digital media content. As 
content generation and dissemination grows, extracting meaningful knowledge from 
large amounts of multimedia data becomes increasingly important. Media mining re-
fers to a kind of technology whereby a user can retrieve, organize, and manage large 
amounts of multimedia data. It yields a wide range of emerging applications with 
various mass-market segments, e.g., image/video retrieval, video summarization, scene 
understanding, visual surveillance, etc. The six media mining workloads studied in this 
paper are from a real media mining system which is recently developed by Intel 
[1][5][6], and representative for the emerging media mining domain. Table 1 gives a 
description of workloads. Fig. 1 gives some examples of output frames. 

   
Player Detection and Tracking Face Detection and Tracking Visual Keyword Detection 

Fig. 1. Sample Output Frames from some Workloads 

Table 1. Description of Workloads. IC is instruction count (in billion), and L1 MPKI is L1 
misses per 1000 instructions. 

Workload Description Algorithm IC 
L1 

MPKI 
Player 

Detection 
Find multiple players 
within the playfield, 
track their moving tra-
jectories, and identify 
their labels (two teams 
and referee) in the soc-
cer video [8]. 

Players are first positioned by a 
person detector composed by 
boosted cascade Haar features [10]. 
Then based on unsupervised prior 
learned player appearance models, 
each player is automatically cate-
gorized. 

158.4 17.25 
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Table 1. (continued) 

Ball 
Detection 

Locate the ball and track 
its moving trajectory in 
soccer video [9]. 

The algorithm includes image 
thresholding, connect-component 
analysis, Kalman filtering, the 
shortest path finding via Dijkstra 
algorithm, etc. 

152.9 32.06 

Face 
Detection 

Face tracking [7] is to 
detect person’s con-
tinuous faces from a 
video sequence. 

A boosting detector slides by a 
window over the input image to 
detect whether the window contain 
a face or not. 

228.9 5.94 

Goalmouth 
Detection 

Locate the two vertical 
poles and the horizontal 
bar. Used for virtual 
advertisement insertion 
and scene analysis [11]. 

Image filtering and Hough trans-
form, region growing, pole pairing 
and height constraint 

117.1 7.43 

Shot 
Detection 

Detects shot boundary in 
videos. To analyze the 
video content semanti-
cally, shot boundary 
detection is a prerequi-
site step [5]. 

Color histograms are used to in-
troduce spatial information. The 
pixel intensity, mean grey value, 
and motion vector of each frame are 
calculated. 

108.3 7.52 

Visual 
Keyword 
Detection 

View type indicates play 
status of the sports game 
and presents scene tran-
sition context of seman-
tic events. Key frames 
are classified into dif-
ferent types: global, me-
dium, close-up, and out 
of view. 

The corresponding low-level proc-
essing includes playfield segmen-
tation by the HSV dominant color 
of playfield and con-
nect-component analysis. The 
dominant color of the playfield is 
adaptively trained by the accumu-
lation of the HSV color histogram 
on a lot of frames [6]. 

160.2 9.79 

All these media mining workloads are naturally data intensive, evidenced by the high 
L1 cache misses shown on the last column of the table. The high ratio of memory in-
structions, especially memory read instructions, can be explained as these workloads 
work through large amount of multimedia data in order to discover meaningful patterns. 

4   Characterization Results 

4.1   Cache Space Utilization 

We investigate the cache space utilization by measuring how much portion of cache 
space is occupied by private and shared data respectively, as shown in Fig. 2. All cache 
lines are classified into unused, private, read-only, and read-write shared. A cache line 
of unused type denotes that it is not filled with any valid data during whole execution. 
We count the number of cache lines of each type, and present the averaged data over the 
periodic logs generated by our cache simulator. 

The overall footprint of shared data is small. From Fig. 2, we can see the total portion 
of shared data, including read-only shared and read-write shared, is less than 15%, 
except for Face Detection on an 8MB LLC. This can be explained by the way of 
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Fig. 2. Distribution of Last-level Cache Lines on Type of Sharing. The number of threads is set at 
8, and the cache size varies from 8MB to 32MB. A cache line of unused type denotes that it is not 
filled with any valid data during whole execution. 

processing video frames. The same arithmetic computation is applied to each frame 
independently in these workloads. For example, in Ball Detection, different threads 
work on different frames of the input video to perform video decoding and feature ex-
traction. The threads only share a small global queue for synchronization purpose. 

The shared data footprint is mainly consisting of read-write shared data, except for 
Face Detection. As we can see from the above figures, read-only shared data footprint 
is far smaller than read-write shared data footprint in Player Detection, Visual Keyword 
Detection, Ball Detection, and Goalmouth Detection. For Shot Detection, read-only 
shared data can hardly be seen. This is because in these workloads, the primary shared 
data structure is used for synchronization or task scheduling. 

Based on Fig. 2, we can see that the amount of shared cache lines varies with the 
cache size. Increasing the cache size can either increase or decrease the portion of 
shared cache lines. For example, in Face Detection, shared data footprint goes down 
from 25% to 15% when the cache size varies from 8MB to 32MB. This indicates that 
the shared data footprint can be fit in to the cache and not be evicted by the private data 
in a smaller cache size. Second, increase in cache size may increase the portion of 
shared data footprints. This can be observed in Shot Detection, Visual Keyword De-
tection, Ball Detection, and Goalmouth Detection. For example, in Shot Detection, 
shared data footprint increases from 0% to 15% when the cache size varies from 16MB 
to 32MB. This behavior is due to the eviction of shared data by conflict and capacity 
miss of private data in smaller caches. We will further explain the eviction by com-
paring the access distribution on shared and private data in the following section. 

4.2   Cache Access Distribution 

We investigate the sharing activity by measuring how much portion of the last-level 
cache accesses is taken by sharing and private accesses respectively, as shown in Fig.3. 
All cache accesses are classified into miss, private, read-only sharing, and read-write 
sharing. 
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Fig. 3. Distribution of Last-level Cache Accesses on Type of Sharing. The number of threads is 
set at 8, and the cache size varies from 8MB to 32MB. 

The overall amount of sharing activities is significant except for Shot Detection, but 
can be varying across different workloads. From Fig. 3, we can see that for Player 
Detection and Face Detection, the sharing accesses are as much as 40 – 90%, while for 
Visual Keyword Detection, Ball Detection, and Goalmouth Detection, the portion of 
sharing accesses varies from 5% to 30%. The higher portion of sharing accesses to 
private accesses in Player Detection and Face Detection indicates that the shared data is 
more frequently accessed than private data in these two workloads. This cross-validates 
the observation of shared data not being evicted by private data in a smaller cache 
discussed in the previous section. On the other hand, the lower portion of sharing ac-
cesses to private accesses in Visual Keyword Detection, Ball Detection, and Goal-
mouth Detection indicates that the shared data is less frequently accesses than private 
data. Thus shared data can be evicted by private data in smaller caches. 

Further looking into the type of sharing, we can see that the major type of sharing 
varies from workloads to workloads. The sharing accesses mainly consist of read-only 
sharing in Player Detection and Face Detection, but mainly consist of read-write 
sharing in Visual Keyword Detection, Ball Detection, and Goalmouth Detection. The 
first two workloads need frequently read a global training model shared among their 
threads, while the last three workloads have to read from and write to a global syn-
chronization or task scheduling data structure. 

We can observe that the amount of sharing activity varies with the cache size in 
several workloads. A cache with more space can capture more sharing activity. For 
example, in Visual Keyword Detection, the portion of sharing access increases from 
5% to 25% when the cache size increases from 8MB to 32MB. The same behaviors can 
also be observed in Shot Detection, Ball Detection and Goalmouth Detection. This is 
because shared data in these workloads is usually accessed in outer loops by operations 
such as reductions and synchronizations. Thus the time between two adjacent accesses 
to the same shared data element may become too large to let the data be reused in a 
smaller cache. For Player Detection and Face Detection, the amount of sharing activi-
ties remains roughly flat with varying cache size, indicating that the shared footprint in 
these two workloads can be fit into smaller caches. 
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Based on the cache space utilization and cache access distribution analysis in this 
and above sections, we conclude that these parallel media mining workloads have small 
shared data footprint but significant sharing activities on the shared data. The ratio of 
sharing accesses is much larger than the ratio of shared data footprint. We project that 
for these parallel media mining workloads, a shared last-level cache can deliver better 
performance than a private configuration, in terms of cache misses. 

4.3   Performance Comparison between Private and Shared Caches 

We compare the performance of shared and private cache configurations as shown in 
Fig. 4, the miss of private configuration with 8MB total size serves as the baseline, and 
all other configurations are normalized to this one. The performance of a private con-
figuration is presented as the average performance of all private caches. From the fig-
ure, we can see that for Player Detection, Face Detection, Visual Keyword Detection, 
Ball Detection, and Goalmouth Detection, the shared cache configurations always 
outperform the private cache configurations by about 20 – 60%, in terms of cache 
misses. For Player Detection and Face Detection which exhibit large amount of 
read-only sharing, the higher miss rates of private caches come from the multiple 
misses of the same shared cache line. For Visual Keyword Detection, Ball Detection, 
and Goalmouth Detection which expose significant read-write sharing, the higher miss 
rates of private caches than shared caches come from the frequent invalidation of the 
read-write shared data. For Shot Detection, the shared cache configuration only pro-
vides marginal improvement, since it exhibits very small portion of both shared data 
footprint and sharing activities. 

Based on the data presented, we conclude that for the parallel media mining work-
loads in our study, a shared LLC is preferred on future CMPs. Although most of the  
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Fig. 4. Performance comparison between private and shared last-level cache configurations. The 
number of threads is set to 8, and the cache size is varying from 8MB to 32MB. A private cache 
configuration of S MB means there are totally 8 private caches, and the size of each cache is S/8 
MB. 
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media mining workloads exhibit little shared data footprint, they have large amount of 
sharing activities, thus prefer a shared configuration of last-level cache. A shared 
last-level cache can utilize the inherent sharing behavior of these workloads, thus is 
more attractive for these workloads. 

4.4   Effect of Scaling Thread Count 

After demonstrating the benefit of shared LLCs, we now investigate the impact of 
varying the number of threads to the sharing behavior by comparing our metrics with 
varying thread counts, as shown in Fig. 5 and Fig. 6. 

It can be observed that the amount of shared data footprint varies with the number of 
threads. As Fig. 5 illustrates, Shot Detection, Visual Keyword Detection, Ball Detec-
tion and Goalmouth Detection all experience significant decrease in sharing degree  
when adding more threads. This can be explained by the increasing amount of 
thread-local storage in these workloads. For example, in Ball Detection, each thread 
adds a private copy of large data structures storing intermediate computation result. As  
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Fig. 5. Distribution of Last-level Cache Lines on Type of Sharing. The cache size is set at 32MB, 
and the number of threads varies from 4 to 16. 
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Fig. 6. Distribution of Last-level Cache Accesses on Type of Sharing. The cache size is set at 
32MB, and the number of threads varies from 4 to 16. 
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the number of threads increase, the number of private copies also increases. Thus the 
portion of shared data footprint decreases with increasing thread count. 

The increased footprint of private data could translate into the increase of cache 
misses and decrease in sharing activity, as shown in Fig. 6. For example, when scaling 
the number of threads from 8 to 16, the private data footprint of Shot Detection in-
creased from 85% to almost 100%, and the cache misses in turn increase from 0% to 
18%. In Visual Keyword Detection, the portion of sharing access decreases from 40% 
to 30% when the number of threads increases from 4 to 16. The same behavior can be 
observed in Shot Detection, Ball Detection, and Goalmouth Detection. This is because 
some of the shared data is evicted by the increased thread-local storage in these 
workloads. However, for Player Detection and Face Detection, the portion of sharing 
activities remains flat with increasing thread count, and these two workloads do not 
experience increase in cache miss.  

Based on the observations from varying thread count, we conclude that minimizing 
the thread-local storage is important for building well scaling parallel media mining 
workloads on future CMPs with shared caches. For workloads which have significant 
amount of sharing activities, and have negligible thread-local storage, the cache per-
formance of them can scale well when adding more thread contexts. On the other hand, 
for some workloads which involve large thread-local storage, scaling thread count can 
result in increase in cache miss rate and decrease in sharing degree. 

5   Conclusion 

The study in this paper gives insights into workloads that will be very important in 
future high-performance processors. We first show that most parallel media mining 
workloads studied in this paper exhibit a common sharing behavior that small shared 
data footprint but tremendous amount of data sharing activities. Thus, rather than par-
titioning the last-level cache into multiple private caches, a shared cache is more at-
tractive in delivering better performance for media mining workloads on future high 
performance platforms. Furthermore, we find that in order to have good scalabilities on 
future CMPs with shared caches, the overhead of thread-local storages should be 
minimized when parallelizing and optimizing these workloads. 
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Abstract. In this paper we present efficient algorithms for sorting on
the The Parallel Disks Model (PDM). Numerous asymptotically optimal
algorithms have been proposed in the literature. However many of them
have large underlying constants in the time bounds. We present prac-
tical and optimal algorithms in this paper. We have implemented these
algorithms and evaluated their performance. Experimental data are very
promising.

1 Introduction

Sorting is a fundamental problem that has numerous applications and hence has
been studied extensively. When the amount of data to be processed is large,
secondary storage devices such as disks have to be employed in which case the
I/O becomes a bottleneck. To alleviate this bottleneck computing models with
multiple disks have been proposed. One such model is the Parallel Disks Model
(PDM). In a PDM, there is a (sequential or parallel) computer that has access
to D(≥ 1) disks. In one I/O operation, it is assumed that a block of size B can
be fetched into the main memory from each disk. One typically assumes that
the main memory has size M where M is a (small) constant multiple of DB.

A number of algorithms can be found in the literature for sorting on the PDM.
Many of these algorithms are asymptotically optimal. However the underlying
constants in the run time of many of these algorithms are high and hence it is
not clear how practical these will be. In this paper we present algorithms that
are asymptotically optimal and promising to be practical. We support our claim
with experimental data.

The performance of any PDM sorting algorithm is measured in terms of the
number of parallel I/O operations performed by the algorithm. The time taken
for local computations is typically ignored since it tends to be much less than the
time taken by I/O. A lower bound of Ω

(
N

DB
log(N/B)
log(M/B)

)
on the number of parallel

I/O operations to sort N keys has been proven by Aggarwal and Vitter [2].1

Notation. We say the amount of resource (like time, space, etc.) used by a
randomized algorithm is Õ(f(N)) if the amount of resource used is no more
� This research has been supported in part by the NSF Grant ITR-0326155 and a

UTC endowment.
1 In this paper we use log to denote logarithms to the base 2 and ln to denote loga-

rithms to the base e.
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than cαf(N) with probability ≥ (1−N−α) for any N ≥ n0, where c and n0 are
constants and α is a constant ≥ 1. We could also define the asymptotic functions
Θ̃(.), õ(.), etc. in a similar manner.

2 Prior Algorithms and Our Results

Two kinds of algorithms can be found in the literature for PDM sorting. The
first kind of algorithms (see e.g., [8,15,16]) distribute keys based on their values
and hence are similar to bucket sort. The second kind of algorithms (see e.g.,
[1,4,5,9,10]) use R-way merging for a suitable value of R.

Ensuring full write parallelism is a challenge in distribution based algorithms
and ensuring read parallelism is difficult in the case of merge based algorithms.
The algorithm of Barve, Grove, and Vitter [4] ia based on merging and it uses a
value of R = M/B. This algorithm called Simple Randomized Mergesort (SRM)
stripes the runs across the disks. For each run the first block is stored in a random
disk and the other blocks are stored in a cyclic fashion starting from the random
disk. SRM has been shown to have an optimal expected performance only when
the internal memory size M is Ω(BD log D). No high probability bounds have
been proven for SRM. The typical assumption made on M is that M = O(DB).

SRM algorithm has been modified by Hutchinson, Sanders and Vitter [7].
Their approach is based on an algorithm of Sanders, Egner and Korst [14] who
use lazy writing at the expense of an internal buffer. They employ Fully Ran-
domized (FR) scheduling to allocate blocks of each stream to disks.An expected
parallelism of Ω(D) is proven using asymptotic queuing theoretic analysis. Vit-
ter and Hutchinson extended the above scheme to a scheduling scheme called
Random Cycling (RC). The FR schedule is more complicated to implement and
is not read-optimal for M = o(BD log D).

Many asymptotically optimal algorithms are known for sorting on the PDM
(see e.g., [3], [9], [10], [15], etc.). Recently, Rajasekaran and Sen [11] have come up
with practical and optimal algorithms for sorting on the PDM. In particular, they
present an asymptotically optimal randomized algorithm for sorting. for the first
time they have been able to obtain high probability bounds using basic principles.

In the next section we summarize the ideas in the algorithms of [11]. In this
paper we present variants of the randomized algorithm presented in [11]. Our
analysis indicates that the underlying constant in the run time of the new al-
gorithm is less than that of [11]’s algorithm by 40%. Also, our implementation
results show that the number of parallel I/Os made by the new algorithm is
around 2.5 times the lower bound known on this number.

3 A Summary of Rajasekaran and Sen’s Algorithm

The basic scheme of Rajasekaran and Sen’s algorithm is to first randomly per-
mute the given input sequence and then use a D-way merge on the permuted se-
quence. The random permutation is achieved using an integer sorting algorithm.
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3.1 Integer Sorting

Consider the case when the keys to be sorted are integers in the range [1, Q]
for some integer Q. Integer sorting is a well studied problem in sequence and in
parallel. For example, we can sort n integers in O(n) time if the keys are in the
range [1, nc] (for any constant c) (see e.g., [6]). There are two types of integer
sorting algorithms, namely, forward radix sorting (or Most Significant Bit (MSB)
first sorting) and backward radix sorting (or Least Significant Bit (LSB) first
sorting). Rajasekaran and Sen [11] make use of backward radix sorting. The keys
are sorted in phases where in each phase the keys are sorted only with respect
to some number of bits.

The following Theorems are due to Rajasekaran and Sen [11]:

Theorem 1. N random integers in the range [1, R] (for any R) can be sorted
in an expected (1+ν) log(N/M)

log(M/B) +1 passes through the data, where ν is a constant
< 1. In fact, this bound holds for a large fraction (≥ 1 − N−α for any fixed
α ≥ 1) of all possible inputs.

The above integer sorting algorithm can be used to randomly permute N given
keys such that each permutation is equally likely. The idea is to assign a random
label with each key in the range [1, N1+β] (for any fixed 0 < β < 1) and sort
the keys with respect to their labels. When the key labels are in the range
[1, N1+β], the labels may not be unique. The maximum number of times any
label is repeated is Õ(1). Keys with equal labels are permuted in one more pass
through the data.

The following Theorem is proven in [11]:

Theorem 2. We can permute N keys randomly in O( log(N/M)
log(M/B) ) passes through

the data with probability ≥ 1 −N−α for any fixed α ≥ 1, where µ is a constant
< 1, provided B = Ω(log N).

3.2 Randomized Sorting

An asymptotically optimal randomized algorithm can be developed using the
random permutation algorithm and merge sort [11]. A simple version of the
algorithm (called RSort1) works as follows: 1) Randomly permute the input N
keys; 2) In one pass through the data form runs each of length M = DB; 3) Use
a D-way merge sort to merge the N/M runs. Let an iteration refer to the task
of merging D runs. At the beginning of any iteration 2 blocks are brought in
from each disk. The D runs are merged to ship DB keys out to the disks. From
thereon, maintain the invariant that for each run there are two leading blocks
in the memory. This means that after shipping DB keys to the disks, bring in
enough keys for each run so that there will be two leading blocks per run.

Even though RSort1 makes an optimal number of scans through the input,
each scan may take more than an optimal number of I/Os. This is because the
runs get consumed at different rates. For instance, there could come a time when
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we need a block from each run and all of these blocks are in the same disk. At
the beginning of any iteration, each run is striped across the disks one block per
disk. Also, the leading blocks of successive runs will be in successive disks. For
example, the leading block of run 1 could be in disk i, the leading block of run 2
could be in disk i + 1, etc. If this property could be maintained always, we can
get perfect parallelism in reading the blocks. If the blocks are consumed at the
same rate then this property will be maintained.

RSort1 is modified in [11] to get RSort2. In RSort2 leading blocks of successive
runs are either in successive disks or very nearly so. When the leading blocks of
successive runs deviate significantly in terms of their disk locations, a rearrange-
ment operation is performed. This operation involves rearranging the leading
DB keys of each run so that the above property is reinstated after the rear-
rangement. As time progresses, the leading blocks will deviate more and more
from their expected disk locations. Call the step of bringing in enough keys to
have 2 blocks per run, merging them and outputting DB keys as a stage of the
algorithm. After every D stages RSort2 performs a rearrangement of runs.

Theorem 3. RSort2 takes Õ
(

log(N/M)
log(M/B)

)
read passes through the data provided

B = Ω(
√

M log N).

RSort2 assumes that B = Ω(
√

M log N). This assumption is relaxed using a
value of R = Dε for any constant 1 > ε > 0. In the resultant algorithm RSort,
rearrangements are done every Dε stages.

For choice of ε = 1/2, the number of iterations made by the algorithm is no
more than 2(1 + ν) · log(N/M)

log(M/B) where each iteration involves 2(1 + ν) read passes
including rearrangement. The number of write passes is the same. This gives a
total of 8(1 + ν) log(N/M)

log(M/B) passes with probability ≥ (1−N−α) for any constant
α ≥ 1. Here ν, µ are constants between 0 and 1. To this, we must add the time
for generating the initial random permutation.

When B is large, we can decrease the number of read passes made by RSort
[11]. For instance if B = Mβ, the number of read passes made by RSort is
(4− 4β)(1 + ν) log(N/M)

log(M/B) + (1 + µ) log(N/M)
log(M/B) + 2.

4 New Ideas

In Algorithm RSort2, a rearrangement is done every R = D stages. This rear-
rangement involves reading the leading DB keys of each run and writing them
back so that the leading blocks of the runs are in successive disks. One of the
key ideas is not to do the rearrangements. Instead remove leading relevant keys
from each run so that after removing these keys, the leading keys of each run
start from successive disks. The removed keys are stored in the disks as a dirty
sequence. After the algorithm completes execution in this fashion, there will be
a long sorted sequence and a dirty sequence. The dirty sequence is sorted and
merged with the long sorted sequence. We will show that the length of the dirty
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sequence is much smaller than the length of the main sorted sequence and hence
the final merging step does not take much time. Call this algorithm RSort3.

First we consider the problem of merging a sorted sequence X of length n and
an unsorted sequence Y of length m. First we can sort Y using any of the optimal
algorithms. This can be done in O

(
m

DB
log(m/M)
log(M/B)

)
parallel I/O operations. Let

the sorted order of Y be Z. We can merge X and Z as follows. Assume that X
is striped starting from disk 1 and Z is striped starting from disk (D/2)+1. We
can use a simple merging algorithm where at the beginning we bring D blocks
from each run. Get the DB smallest keys out of these and ship them out to the
disks. Now bring in enough keys from each run so that there are DB keys from
each run. Get the DB smallest keys from these and ship them out, and so on.
For every DB keys output, we have to perform at most two parallel read I/O
operations. Thus the total number of parallel read I/O’s needed to merge X and
Z is ≤ 2(m+n)

DB . As a result, we infer the following:

Theorem 4. We can merge a sorted sequence X with an unsorted sequence Y

in O
(

m
DB

log(m/M)
log(M/B)

)
+ 2(m+n)

DB parallel read I/O operations.

Length of the Dirty Sequence: Note that a rerrangement is done in RSort2
every R stages, i.e., for every RDB keys output. The contribution to the length
of the dirty sequence by every R stages is at most three blocks from every run
(with high probability). In other words, the length of the dirty sequence increases
by 3RB for every RDB keys output. This means that the length of the dirty
sequence during the entire algorithm is no more than (1 + ν) log(N/DB)

log(D) × N ×
3RB
RDB = (1 + ν) log(N/DB)

log(D) × 3N
D with high probability (where ν is any constant

> 0 and < 1).
Following the analysis of RSort2, we get the following:

Theorem 5. RSort3 is asymptotically optimal and since it eliminates the re-
arrangement step completely, the underlying constant is smaller than that of
RSort2. For example, when β = 1/2, the constant reduces roughly by a factor
of 40%.

The case of R = Dε: The constraint on B is relaxed in [11] by choosing a
value of R = Dε (for some constant ε > 0). For this version (called RSort) of the
algorithm, a rearrangement is done every Dε stages. The total number of keys
output in these many stages is DBDε. The corresponding contribution to the
length of the dirty sequence is (DB/R)Dε. Thus the length of the dirty sequence
in the entire algorithm does not exceed (1+ν)

ε
log(N/DB)

log(D)
N
Dε with high probability.

When ε = 1/2, the length of the dirty sequence is no more than 2(1 +
ν) log(N/DB)

log(D)
N√
D

with high probability (for any constant ν > 0). In this case

the initial permutation takes (1 + µ) log(N/DB)
log(D) passes through the data (for any

constant µ > 0). Initial runs can be formed in one pass. Merging of runs takes
2 (1+ν)

ε
log(N/DB)

log(D) read passes through the data. If we neglect the time taken to
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process and merge the dirty sequence, then the number of passes taken by RSort3
is roughly 40% less than that of RSort.

5 Implementation and Experimental Details

We have simulated the PDM on a single disk computer with a focus on count-
ing the number of parallel I/Os needed. Random data has been employed.
We have compared the number of parallel I/Os with that of the lower bound of
N

DB

log N
DB

log(D) . Please note that this way of measuring the performance of a
PDM algorithm is preferable since the results obtained could be easily
translated onto any other implementation (hardware or otherwise) of
a PDM.

A simple way of simulating a PDM with a single disk is to have a file correspond-
ing to each disk. If we are only interested in counting the number of parallel I/O
operations needed, the detail on how the disks are implemented is immaterial.

The specific algorithm we have implemented works as follows: In one pass
through the data we form initial runs of length DB each. We employ a D-way
merge to merge the runs. This in particular means that there will be log(N/DB)

log D

levels of merging (such that in each level we reduce the number of runs by a
factor of D). In each level there will be many iterations. In each iteration we
merge D runs into one.

Consider any iteration of the algorithm where we merge the runs
R1, R2, . . . , RD. At the beginning of the iteration, the runs will be stored in the
disks as follows. Let the leading block of R1 be in disk i (for some 0 ≤ i ≤ (D−1)).
The second block of R1 will be in disk (i + 1) mod D, the third block of R1 will
be in disk (i+2) mod D, and so on. Also, the leading block of R2 will be in disk
(i + 1) mod D, the second block of R2 will be in disk (i + 2) mod D, etc.

At any time during an iteration of the algorithm, we keep two leading blocks
per run in the main memory. In particular, we begin any iteration by bringing in
two leading blocks per run. We identify the smallest DB keys from the D runs.
It can be shown (using Chernoff bounds) that, with high probability, we will not
have to bring in any more keys from the disks to produce these DB smallest
keys. These DB keys are shipped to the disks in one parallel I/O operation.
After this, we examine the runs in the memory and refill the runs so that we will
have two leading blocks per run. This refill operation involves reading from the
disks enough keys per run so that we will have the required two blocks per run.

The above process is repeated until the D runs are merged. An important
question is how many I/O operations will be needed to do the refill operation.
In the ideal case each run will be consumed at exactly the same rate. In this
case the refill operation can be done in one parallel I/O operation. But this may
not be the typical case. The runs may be consumed at different rates and hence
we may have to read multiple blocks from each disk. Therefore, for each refill
operation we figure out the maximum number of blocks that we may have to
read in from any disk and charge the refill operation with these many I/Os. All
the I/O counts reported in this paper are based on this scheme.
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One can employ either the rearrangement scheme of [11] or the dirty sequence
idea proposed in this paper to modify the algorithm. For example, when the
maximum number of blocks to be fetched from any disk in a refill operation
exceeds a threshold value (e.g., 3) we can either do a rearrangement or clean up
with the creation of a dirty sequence.

5.1 Simulating the PDM Using a Single Disk

We use a single disk machine to simulate the PDM model. We start with a single
binary input file (key file) consisting of integers and create runs each of size DB
and put them in a file called run file. Every run in the run file is preceded by
a 4-byte unsigned long which is the size of the run following it. As described in
the algorithm the runs are striped across the disks and a parallel read or write
operation would read or write DB keys. In this section we give the details of
how we simulated the parallel I/O operations. Every run i in the run file has
an offset pointer run offset[i] which tells us at which position the next block of
the run starts in the run file. This section assumes that the readers are familiar
with UNIX lseek, read and write system calls. Please see [17] for details of UNIX
system calls.

5.2 Counting Parallel I/O’s

A parallel I/O (for D disks) read operation can be simulated as follows. The fol-
lowing operations show how to initialize the run offset[i] values of the consecutive
runs. Assume that the file descriptor for the run file is runfd.

– lseek(runfd,(off t)0,SEEK SET).
– read(runfd,&run size,sizeof(unsigned long).
– run offset[i] = lseek(runfd, (off t)0, SEEK CUR).

The above steps will read the length of the run and keep track of its offset for
the next read of the block. Once we read the current run its length is stored in
run size. We can use this to read the next run as follows.

– lseek(runfd,(off t)run size,SEEK CUR)
– read(runfd,&run size,sizeof(unsigned long))
– run offset[i + 1] = lseek(runfd, (off t)0, SEEK CUR).

The above steps indicate how to fill run offset[i] for each run i. Now we show
how we can do a parallel read. The following steps basically position the disk
head corresponding to each run at run offset[i] and reads a block of size B and
updates the run offset[i] so that the next read can get the next block. The block
size (page size) on a 32-bit UNIX machine is B = 4096.

– lseek(runfd,(off t)run offset[i],SEEK SET)
– read(runfd,(void *)buf,4096)
– run offset[i] = lseek(runfd, (off t)0, SEEK CUR)

With this background on how to simulate the PDM model on a single disk
we describe the algorithm based on this framework in the next section.
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5.3 Algorithm Implementation

Algorithm 1 gives an outline of the ideas. We start off with N
DB runs and merge

D runs each time and during the merge we handle two situations. In the first
situation during the D-way merge we may be able to fill upto DB keys without

Algorithm 1. Outline of our PDM sorting algorithm
INPUT : A Binary file of integers, parameters N and D
OUTPUT: A Binary file of sorted integers
Scan through the data once to form initial runs of length DB each.
// Keep merging until you get a single run
while runs > 1 do

Merge the next D runs as follows:
Let R1, R2, . . . , RD be these runs
for i = 1;i ≤ D;i + + do

Bring two leading blocks from Ri;
while the runs are not merged do

Get the smallest DB keys from the D runs;
If keys from the disks are needed to get these
DB smallest keys, quit and start all over;
Ship the smallest DB keys to the disks in one I/O;
These keys will add to the run corresponding to the
merge of R1, R2, . . . , RD;
for i = 1;i ≤ D;i + + do

Bring enough keys from Ri so that there will be
two leading blocks of Ri in memory;

Algorithm 2. GetMaxParIO computes parallel I/O’s to refill
INPUT : runheads of the D runs
OUTPUT: Parallel I/O’s to refill
//Find the disk number of leading block
//of each run
for i = 0 to D do

disk number[k] = (� runhead[i]
B

� + k)mod(D) ;
Sort(disk number) ;
temp par io ← 1 ;
max par io ← 1 ;
for i = 1 to D do

if disk number[i − 1] == disk number[i] then
temp par io = temp par io + 1 ;

else
if temp par io > max par io then

max par io = temp par io ;
temp par io = 1 ;

return max par io ;
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Table 1. Parallel I/0’s for D=4

N N
DB

log( N
DB

)

log(D)
Our Algo OurAlgo

Lowerbound

216 32 76 2.3750
218 192 414 2.1562
220 1024 2102 2.0527
222 5120 10136 1.9797
224 24576 48404 1.9696
226 114688 221257 1.9292
228 524288 995356 1.8985
228 524288 995356 1.8985

Table 2. Parallel I/0’s for D=8

N N
DB

log( N
DB

)

log(D)
Our Algo OurAlgo

Lowerbound

219 128 324 2.5312
222 1536 3579 2.3301
225 16384 37562 2.2926
228 163840 388585 2.3717
228 163840 388585 2.3717

Table 3. Parallel I/0’s for D=16

N N
DB

log( N
DB

)

log(D)
Our Algo OurAlgo

Lowerbound

222 512 1287 2.5137
226 12288 30200 2.4577

Table 4. PARALLEL I/0 frequency D=4

N Total I/0’s Max(in 1 refill) Frequency
220 1778 2 [1]=610 [2]=584
222 8948 2 [1]=2656 [2]=3146
224 42881 3 [1]=11742 [2]=15553

[3]=11
226 199800 3 [1]=52428 [2]=72174

[3]=1008
228 915091 3 [1]=226981 [2]=334881

[3]=6116

running out of keys from the merge buffers of the D runs. This will successfully
complete a refill step. The refill steps contribute to the bulk of the parallel I/O’s
because the disk heads may not move uniformly. To compute the parallel I/O’s
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Table 5. PARALLEL I/0 frequency D=8

N Total I/0’s Max(in 1 refill) Frequency
219 241 2 [1]=51 [2]=95
222 2978 2 [1]=386 [2]=1296
225 32323 4 [1]=3233 [2]=13874

[3]=446 [4]=1
[1]=26319 [2]=126770

228 343753 5 [3]=16830[4]=3011
[5]=272

Table 6. PARALLEL I/0 frequency D=16

N Total I/0’s Max(in 1 refill) Frequency
222 1007 2 [1]=85 [2]=461
226 25254 4 [1]=1371 [2]=10514

[3]=941 [4]=8

required to refill we keep track of how much of a run is consumed (or read into
main memory) in a variable called runhead. So runhead[i] at any stage of the
D-way merge indicates how much of run i has been consumed. This runhead
information is passed to the parallel I/O computation algorithm in Algorithm 2.
This algorithm finds for each run in which disk the leading block of the run is
found and then sorts these numbers and finds the maximum number of times a
disk is repeated. This gives the maximum number of parallel I/O’s needed for
the refill operation.

5.4 Program Download and Tests

The program implementing our idea can be downloaded from http://trinity.
engr.uconn.edu/ vamsik/PDMSorting/PDMSorting.tgz.

6 Conclusions

In this paper we have presented simple algorithms that are asymptotically opti-
mal. We have implemented these algorithms and the number of I/O operations
is very close to the lower bound indicating that our algorithms are practical.
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Appendix A: Chernoff Bounds

If a random variable X is the sum of n independent and identically distributed
Bernoulli trials with a success probability of p in each trial, the following equa-
tions give us concentration bounds of deviation of X from the expected value of
np. The first equation is more useful for large deviations whereas the other two
are useful for small deviations from a large expected value.

Prob(X ≥ m) ≤
(np

m

)m

em−np (1)

Prob(X ≤ (1− ε)pn) ≤ exp(−ε2np/2) (2)

Prob(X ≥ (1 + ε)np) ≤ exp(−ε2np/3) (3)

for all 0 < ε < 1.
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Abstract. Compute unified device architecture (CUDA) is a software develop-
ment platform that enables us to write and run general-purpose applications on
the graphics processing unit (GPU). This paper presents a fast method for cone
beam reconstruction using the CUDA-enabled GPU. The proposed method is ac-
celerated by two techniques: (1) off-chip memory access reduction; and (2) mem-
ory latency hiding. We describe how these techniques can be incorporated into
CUDA code. Experimental results show that the proposed method runs at 82%
of the peak memory bandwidth, taking 5.6 seconds to reconstruct a 5123-voxel
volume from 360 5122-pixel projections. This performance is 18% faster than
the prior method. Some detailed analyses are also presented to understand how
effectively the acceleration techniques increase the reconstruction performance
of a naive method.

1 Introduction

Cone beam (CB) reconstruction is an imaging process for producing a three-dimensional
(3-D) volume from a sequence of 2-D projections obtained by a CB computed tomog-
raphy (CT) scan. This reconstruction technique is integrated into many mobile C-arm
CT systems in order to assist the operator during image-guided surgery. In general, a
CB reconstruction task should be completed within ten seconds because the operator
has to stop the surgical procedure until obtaining the intraoperative volume. However,
it takes 3.21 minutes to obtain a 5123-voxel volume on a single 3.06 GHz Xeon pro-
cessor [1]. Accordingly, many projects are trying to accelerate CB reconstruction using
various accelerators, such as the graphics processing unit (GPU) [2,3,4,5,6], Cell [1],
and FPGA [7].

To the best of our knowledge, Xu et al. [2] show the fastest method using the GPU,
namely a commodity chip designed for acceleration of graphics tasks. Their method is
implemented using the OpenGL library in order to take an advantage of graphics tech-
niques such as early fragment kill (EFK). It takes 8.3 seconds to reconstruct a 5123-
voxel volume from 360 projections. In contrast to this graphics-based implementation
strategy, a non-graphics implementation strategy is proposed by Scherl et al. [3]. They
use compute unified device architecture (CUDA) [8] to implement CB reconstruction

� This work was partly supported by JSPS Grant-in-Aid for Scientific Research (A)(2)
(20240002), Young Researchers (B)(19700061), and the Global COE Program “in silico
medicine” at Osaka University.

P. Sadayappan et al. (Eds.): HiPC 2008, LNCS 5374, pp. 108–119, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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on the GPU. The reconstruction of a 5123-voxel volume from 414 projections takes
12.02 seconds, which is slightly longer than the graphics-based result [2]. However, it
is still not clear whether the CUDA-based strategy will outperform the graphics-based
strategy, because their implementation is not presented in detail. In particular, opti-
mization techniques for CUDA programs are of great interest to the high-performance
computing community.

In this paper, we propose a CUDA-based method capable of accelerating CB recon-
struction on the CUDA-enabled GPU. Our method is based on the Feldkamp, Davis,
and Kress (FDK) reconstruction algorithm [9], which is used in many prior projects
[1,2,3,4,5,7,10]. We optimize the method using two acceleration techniques: (1) one is
for reducing the number and amount of off-chip memory accesses; and (2) another for
hiding the memory latency with independent computation. We also show how effectively
these techniques contribute to higher performance, making it clear that the memory band-
width and the instruction issue rate limit the performance of the proposed method.

2 Related Work

Xu et al. [2] propose an OpenGL-based method accelerated using the graphics pipeline in
the GPU. They realize a load balancing scheme by moving instructions from fragment
processors to vertex processors, each composing the pipeline. This code motion tech-
nique also contributes to reduce the computational complexity [11]. Furthermore, their
method uses the EFK technique to restrict computation to voxels within the region of in-
terest (ROI). Although this fragment culling technique leads to acceleration, we cannot
obtain the correct data outside the ROI, where fragments are culled from rendering. In
contrast, our goal is to achieve higher reconstruction performance for the entire volume.

Scherl et al. [3] show a CUDA-based method with a comparison to a Cell-based
method. They claim that their method reduces the number of instructions and the usage
of registers. In contrast, our acceleration techniques focus on reducing the number and
amount of off-chip memory accesses and hiding the memory latency with computa-
tion. Such memory optimization is important to improve the performance of the FDK
algorithm, which can be classified into a memory-intensive problem.

Another acceleration strategy is to perform optimization at the algorithm level. For
example, the rebinning strategy [12] rearranges and interpolates CB projections to con-
vert them into parallel beam projections. This geometry conversion simplifies the back-
projection operation needed for the FDK reconstruction. One drawback of the rebinning
strategy is that it creates artifacts in the final volume. Using this rebinning strategy, Li
et al. [10] develop a fast backprojection method for CB reconstruction. Their method
is implemented using CUDA and takes 3.6 seconds to perform backprojection of 360
5123-pixel projections. In contrast, our method accelerates the entire FDK algorithm
for CB projections without rebinning.

3 Overview of CUDA

Figure 1 illustrates an overview of the CUDA-enabled GPU. The GPU consists of mul-
tiprocessors (MPs), each having multiple stream processors (SPs). Each MP has small
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Fig. 1. Architecture of CUDA-enabled GPU. SP denotes a stream processor.

on-chip memory, called shared memory, which can be accessed from internal SPs as
fast as registers. However, it is not shared between different MPs. Due to this con-
straint, threads are classified into groups and each group is called as a block, which
is the minimum allocation unit assigned to an MP. That is, developers have to write
their code such that there is no dependence between threads in different blocks. On the
other hand, threads in the same block are allowed to have dependence because they can
communicate each other by shared memory.

CUDA also exposes the memory hierarchy to developers, allowing them to maxi-
mize application performance by optimizing data access. As shown in Fig. 1, there is
off-chip memory, called device memory, containing texture memory, constant memory,
local memory, and global memory. Texture memory and constant memory have a cache
mechanism but they are not writable from SPs. Therefore, developers are needed to
transfer (download) data from main memory in advance of a kernel invocation. Texture
memory differs from constant memory in that it provides a hardware mechanism that
returns linearly interpolated texels from the surrounding texels. On the other hand, local
memory and global memory are writable from SPs but they do not have a cache mech-
anism. Global memory achieves almost the full memory bandwidth if data accesses can
be coalesced into a single access [8]. Local memory cannot be explicitly used by devel-
opers. This memory space is implicitly used by the CUDA compiler in order to avoid
resource consumption. For example, an array will be allocated to such space if it is too
large for register space. Local memory cannot be accessed in a coalesced manner, so
that it is better to eliminate such inefficient accesses hidden in the kernel code.

4 Feldkamp Reconstruction

The FDK algorithm [9] consists of the filtering stage and the backprojection stage.
Suppose that a series of U × V -pixel projections P1, P2, . . . PK are obtained by a scan
rotation of a detector in order to create an N3-voxel volume F . The algorithm then
applies the Shepp-Logan filter [13] to each projection, which gives a smoothing effect
to minimize noise propagation at the backprojection stage. At this filtering stage, the
pixel value Pn(u, v) at point (u, v) is converted to value Qn(u, v) such that:

Qn(u, v) =
S∑

s=−S

2
π2(1− 4s2)

W1(s, v)Pn(s, v), (1)
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Fig. 2. Coordinate system for backprojection. The xyz space represents the volume while the uv
plane represents a projection that is to be backprojected to the volume.

where S represents the filter size and W1(s, v) represents the where d′ represents the
distance between the X-ray source and the origin of the detector (projection), as shown
in Fig. 2.

A series of filtered projections Q1, Q2, . . . QK are then backprojected to the volume
F . In Fig. 2, the xyz space corresponds to the target volume F while the uv plane
represents the n-th projection Pn that is to be backprojected to volume F from angle
θn, where 1 ≤ n ≤ K . Note here that the distance dn between the X-ray source and the
volume origin is parameterized for each projection, because it varies during the rotation
of a real detector. On the other hand, distance d′ can be modeled as a constant value in
C-arm systems.

Using the coordinate system mentioned above, the voxel value F (x, y, z) at point
(x, y, z), where 0 ≤ x, y, z ≤ N − 1, is computed by:

F (x, y, z) =
1

2πK

K∑
n=1

W2(x, y, n)Qn(u(x, y, n), v(x, y, z, n)), (2)

where the weight value W2(x, y, n), the coordinates u(x, y, n) and v(x, y, z, n) are
given by:

W2(x, y, n) =
( dn

dn − xcosθn − ysinθn

)2
, (3)

u(x, y, n) =
d′(−xsinθn + ycosθn)
dn − xcosθn − ysinθn

, (4)

v(x, y, z, n) =
d′z

dn − xcosθn − ysinθn
. (5)

The coordinates u(x, y, n) and v(x, y, z, n) are usually real values rather than integer
values. Since projections P1, P2, . . . PK are given as discrete data, we need an interpo-
lation mechanism to obtain high-quality volume.
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5 Proposed Method

To make the description easier to understand, we first show a naive method and then the
proposed method with acceleration techniques.

5.1 Parallelization Strategy

Since a 5123-voxel volume requires at least 512 MB of memory space, it is not easy for
commodity GPUs to store both the entire volume and the projections in device memory.
To deal with this memory capacity problem, we have decided to store the entire volume
in device memory because earlier projections can be processed and removed before the
end of a scan rotation. In other words, this decision allows us to structure the recon-
struction procedure into a pipeline. Figure 3 shows an overview of our reconstruction
method. In the naive method, the first projection P1 is transferred to global memory,
which is then filtered and backprojected to the volume F in global memory. This oper-
ation is iteratively applied to the remaining projections to obtain the final accumulated
volume F . See also Fig. 4 for the pseudocode of the naive method.

In Fig. 4, the filtering stage is parallelized in the following way. Eq. (1) means that
this stage performs a 1-D convolution in the u-axis direction. Thus, there is no data
dependence between different pixels in a filtered projection Qn. However, pixels in the
same column u refer partly the same pixels in projection Pn. Therefore, it is better to
use shared memory to save the memory bandwidth. Thus, we have decided to write the
filtering kernel such that a thread block is responsible for applying the filtering operation
to pixels in a column. On the other hand, a thread is responsible for computing a pixel
value Qn(u, v). As shown in Fig. 4, threads in the same block cooperatively copy a
column u to shared memory at line 13, which are then accessed instead of the original
data in global memory at line 15.

Similarly, there is no constraint at the backprojection stage in terms of parallelism.
That is, any voxel can be processed at the same time. However, it is better to use 1-D
or 2-D thread blocks rather than 3-D thread blocks in order to reduce the computational
complexity by data reuse. This data reuse technique can be explained by Eqs. (3) and

CPU GPU

Projections

Volume

1. Download of projections

2. Filtering

3. Backprojection

5. Readback of volume
Volume

Projections

Filtered Projections

CPU GPU

Projections

Volume

1. Download of projections

2. Filtering

4. Repeat steps 1.-3.
3. Backprojection

5. Readback of volume
Volume

Projections

Filtered Projections

Fig. 3. Overview of the proposed method. Projections are serially sent to the GPU in order to
accumulate their pixels into the volume in video memory.
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Input: Projections P1 . . . PK , filter size S and
parameters d′, d1 . . . dK , θ1 . . . θK

Output: Volume F

Algorithm NaiveReconstruction()
1: Initialize volume F
2: for n = 1 to K do
3: Transfer projection Pn to global memory
4: Q ← FilteringKernel(Pn, S)
5: Bind filtered projection Q as a texture
6: F ← BackprojectionKernel(Q, d′, dn, θn, n)
7: end for
8: Transfer volume F to main memory

Function FilteringKernel(P, S)
9: shared float array[U ] // U : projection width

10: u ← index(threadID) // returns responsible u
11: v ← index(blockID)
12: Initialize Q(u, v)
13: array[u] ← W1(u, v) ∗ P (u, v) ∗ 2/π2

14: for s = −S to S do
15: Q(u, v) ← Q(u, v) + array[u + s]/(1 − 4s2)
16: end for
Function BackprojectionKernel(Q, d′, dn, θn, n)
17: x ← index(blockID)
18: y ← index(threadID)
19: u ← u(x, y, n) // Eq. (4)
20: v ← v(x, y, 0, n) // Eq. (5)
21: v′ ← v′(x, y, n) // Eq. (6)
22: for z = 0 to N − 1 do
23: F (x, y, z) ← F (x, y, z) + W2(x, y, n) ∗ Q(u, v)
24: v ← v + v′

25: end for

Fig. 4. Pseudocode of the native method. This code is a simplified version.

(4), which indicate that W2(x, y, n) and u(x, y, n) do not depend on z. Therefore, these
two values can be reused for voxels in a straight line along the z-axis: line (X, Y, 0)−
(X, Y, N − 1), where X and Y are constant values in the range [0, N − 1]. To perform
this data reuse, our naive method employs 1-D thread blocks (but 2-D blocks after
optimization shown later in Section 5.2) that assign such voxels to the same thread. In
summary, a thread is responsible for a line while a thread block is responsible for a set
of lines: plane x = X for thread block X , where 0 ≤ X ≤ N − 1.

The data reuse can be further applied to reduce the complexity of Eq. (5). Although
v(x, y, z, n) depends on z, it can be rewritten as v(x, y, z, n) = v′(x, y, n)z, where

v′(x, y, n) =
d′

dn − xcosθn − ysinθn
. (6)

Therefore, we can precompute v′(x, y, n) for any z (line 21), in order to incrementally
compute Eq. (5) at line 24.
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Function OptimizedBackprojectionKernel(Q[I ∗ J ], d′, dn[I ∗ J ], θn[I ∗ J ], n)
1: var u[I ], v[I ], v′[I ], w[I ]
2: x ← index(blockID, threadID)
3: y ← index(blockID, threadID)
4: for j = 0 to J − 1 do // unrolled
5: for i = 0 to I − 1 do
6: w[i] ← W2(x, y, 3j + i + n) // Eq. (3)
7: u[i] ← u(x, y, 3j + i + n) // Eq. (4)
8: v[i] ← v(x, y, 0, 3j + i + n) // Eq. (5)
9: v′[i] ← v′(x, y, 3j + i + n) // Eq. (6)

10: end for
11: for z = 0 to N − 1 do
12: F (x, y, z) ← F (x, y, z) + w[0] ∗ Q[3j](u[0], v[0])

+ w[1] ∗ Q[3j + 1](u[1], v[1])
· · ·
+ w[I − 1] ∗ Q[3j + (I − 1)](u[I − 1], v[I − 1])

13: for k = 0 to I − 1 do
14: v[k] ← v[k] + v′[k]
15: end for
16: end for
17: end for

Fig. 5. Pseudocode of the proposed method. The actual code is optimized by loop unrolling, for
example.

Note that the filtered projection data is accessed as a texture. As we mentioned in
Section 4, the coordinates u(x, y, n) and v(x, y, z, n) are usually real values. There-
fore, we load the data Qn(u, v) from a texture, which returns a texel value interpolated
by hardware. This strategy contributes to a full utilization of the GPU, because the
interpolation hardware is separated from processing units.

5.2 Accelerated Backprojection

The acceleration techniques we propose in this paper optimize the backprojection kernel
of the naive method. These techniques are motivated to maximize the effective memory
bandwidth because the backprojection stage is a memory-intensive operation. We max-
imize the effective bandwidth by two techniques which we mentioned in Section 1. The
naive method presented in Fig. 4 is modified to the optimized code shown in Fig. 5 by
the following five steps.

1. Memory access coalescing [8]. This technique is important to achieve a full utiliza-
tion of the wide memory bus available in the GPU. We store the volume data in
global memory so that the memory accesses can be coalesced into a single contigu-
ous, aligned memory access. This can be realized by employing 2-D thread blocks
instead of 1-D blocks. It also improves the locality of texture access, which leads
to a higher utilization of the texture cache.

2. Global memory access reduction. We modify the kernel to perform backprojection
of I projections at a time, where I represents the number of projections processed by
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a single kernel invocation. This modification reduces the number of global memory
accesses to 1/I because it allows us to write temporal voxel values to local memory
before writing the final values to global memory. We cannot use registers because a
large array of size N is needed to store the temporal values for all z (line 23 in Fig. 4).
Note that the increase of I results in more consumption of resources such as registers.
We currently use I = 3, which is experimentally determined for the target GPU.

3. Local memory access reduction. The technique mentioned above decreases ac-
cesses to global memory but increases those to local memory. In order to reduce
them, we pack I successive assignments into a single assignment. This modifica-
tion is useful if the assignments have the same destination variable placed in local
memory.

4. Local memory access elimination. We now have a single assignment for accumu-
lation, so that we can write the accumulated values directly to global memory, as
shown at line 12 in Fig. 5.

5. Memory latency hiding. We pack J successive kernel calls into a single call by
unrolling the kernel code. A kernel invocation now processes every I projections J
times. This modification is useful to hide the memory latency with computation. For
example, if SPs are waiting for memory accesses needed for the first I projections,
they can perform computation for the remaining I(J − 1) projections. As we did
for I , we have experimentally decided to use J = 2.

6 Experimental Results

In order to evaluate the performance of the proposed method, we now show some ex-
perimental results including a breakdown analysis of execution time and a comparison
with prior methods: the OpenGL-based method [2]; the prior CUDA-based method [3];
the Cell-based method [1]; and the CPU-based method [1]. For experiments, we use
a desktop PC equipped with a Core 2 Duo E6850 CPU, 4GB main memory, and an
nVIDIA GeForce 8800 GTX GPU with 768MB video memory. Our implementation
runs on Windows XP with CUDA 1.1 and ForceWare graphics driver 169.21. Figure 6
shows the Shepp-Logan phantom [13], namely a standard phantom widely used for
evaluation. The data size is given by U = V = N = 512, K = 360, and S = 256.

6.1 Performance Comparison

Table 1 shows the execution time needed for reconstruction of the Shepp-Logan phan-
tom. Since the number K of projections differs from prior results [1,3], we have nor-
malized them to the same condition (K = 360 and U = V = 512) as prior work [1,2]
did in the paper. The proposed method achieves the fastest time of 5.6 seconds, which
is 29% and 18% faster than the OpenGL-based method [2] and the prior CUDA-based
method [3], respectively. This performance is equivalent to 64.3 projections per second
(pps), which represents the throughput in terms of input projections. On the other hand,
the image acquisition speed in recent CT scans ranges from 30 to 50 pps [2]. There-
fore, the performance achieved by the proposed method is sufficient enough to produce
the entire volume immediately after a scan rotation. Note here that the OpenGL-based
method is also faster than the image acquisition speed if it is accelerated by the EFK
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(a) (b)

Fig. 6. Sectional views of the Shepp-Logan phantom [13] reconstructed (a) by the GPU and (b)
by the CPU

Table 1. Performance comparison with prior methods. Throughput is presented by projections
per second (pps).

Method Hardware Execution time (s) Throughput (pps)
CPU [1] Xeon 3.06 GHz 135.4 2.8
Cell [1] Cell Broadband Engine 9.6 37.6
OpenGL [2] GeForce 8800 GTX 8.9 40.5
Prior CUDA [3] GeForce 8800 GTX 7.9 45.5
OpenGL w/ EFK [2] GeForce 8800 GTX 6.8 52.9
Proposed method GeForce 8800 GTX 5.6 64.3

technique. However, as we mentioned in Section 2, this technique does not reconstruct
the volume area outside the ROI. In contrast, the proposed method reconstructs the
entire volume within a shorter time.

Table 2 shows a breakdown of execution time comparing our method with the prior
CUDA-based method. We can see that the acceleration is mainly achieved at the back-
projection stage. As compared with the prior method, our method processes multiple
projections at a kernel invocation. Therefore, we can reduce the number and amount of
global memory accesses by packing I assignments into a single assignment, as shown
at line 12 in Fig. 5. This reduction technique cannot be applied to the prior method,
which processes a single projection at a time. Since we use I = 3, the proposed method
achieves 67% less data transfer between MPs and global memory. With respect to the fil-
tering stage, our method achieves the same performance as the prior method, which uses
the nVIDIA CUFFT library. In this sense, we think that our filtering kernel achieves per-
formance competitive to the vendor library. We also can see that the proposed method
transfers the volume three times faster than the prior method. We think that this is due
to the machine employed for the prior results, because the transfer rate is mainly deter-
mined by the chipset in the machine. Actually, there is no significant difference between
the download rate and the readback rate in our method.
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Table 2. Breakdown of execution time

Breakdown item Proposed method (s) Prior CUDA [3] (s)
Initialization 0.1 N/A
Projection download 0.2 0.2
Filtering 0.7 0.7
Backprojection 4.3 6.1
Volume readback 0.3 0.9
Total 5.6 7.9

Table 3. Effective floating point performance and memory bandwidth of our kernels. We assume
that the GPU issues a single instruction per clock cycle and a stream processor executes two
floating point (multiply-add) arithmetics per clock cycle. The effective memory bandwidth can
be higher than the theoretical value due to cache effects.

Performance measure
Measured value Theoretical

Filtering Backprojection value
Instruction issue (MIPS) 1391 980 1350

Floating point
Processing units 105.8 38.3 345.6

(GFLOPS)
Texture units — 124.3 172.8
Total 105.8 162.6 518.4

Memory bandwidth (GB/s) 130.5 71.0 86.4

Table 3 shows the measured performance with the theoretical peak performance. We
count the number of instructions in assembly code to obtain the measured values. This
table indicates that the instruction issue rate limits the performance of the filtering kernel.
Due to this bottleneck, the floating point performance results in 105.8 GFLOPS, which
is equivalent to 20% of the peak performance. On the other hand, the effective memory
bandwidth reaches 130.5 GB/s, which is higher than the theoretical value. This is due to
the cache mechanism working for constant memory. The filtering kernel accesses 130
times more constant data, as compared with the variable data in global memory.

In contrast, the memory bandwidth is a performance bottleneck in the backprojec-
tion kernel. This kernel has more data access to global memory, which does not have
cache effects. Actually, global memory is used for 40% of total amount. Thus, the back-
projection kernel has lower effective bandwidth than the filtering kernel. However, the
backprojection kernel achieves higher floating point performance because it exploits
texture units for linear interpolation. The effective performance reaches 162.6 GFLOPS
including 124.3 GFLOPS observed at texture units. Exploiting this hardware interpo-
lation is important (1) to reduce the amount of data accesses between device memory
and SPs and (2) to offload workloads from SPs to texture units. For example, SPs must
fetch four times more texel data if we perform linear interpolation on them.

6.2 Breakdown Analysis

In order to clarify how each acceleration technique contributes to higher performance,
we develop five subset implementations and measure their performance. Table 4 shows
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Table 4. Backprojection performance with different acceleration techniques

Technique
Method

Naive #1 #2 #3 #4 Proposed
1. Memory access coalescing × © © © © ©
2. Global memory access reduction × × © © © ©
3. Local memory access reduction × × × © © ©
4. Local memory access elimination × × × × © ©
5. Memory latency hiding × × × × × ©
Backprojection time (s) 436.7 27.0 15.6 13.5 5.7 4.3

the details of each implementation with the measured time needed for backprojection of
the Shepp-Logan phantom. Although the naive method is slower than the CPU-based
method, the acceleration techniques reduce the backprojection time to approximately
1/102. This improvement is mainly achieved by memory access coalescing that reduces
backprojection time to 27.0 seconds with a speedup of 16.2. In the naive method, every
thread simultaneously accesses voxels located on the same coordinate x. This access
pattern is the worst case, where 16 accesses can be coalesced into a single access [8],
explaining why memory access coalescing gives such a speedup. Thus, the coalescing
technique is essential to run the GPU as an accelerator for the CPU.

Reducing off-chip memory accesses further accelerates the backprojection kernel.
As compared with method #1 in Table 4, method #4 has 66% less access to local mem-
ory and global memory, leading to 44% reduction of device memory access. On the
other hand, the backprojection time is reduced to 5.7 seconds with a speedup of 4.7,
whereas the speedup estimated from the reduction ratio of 44% becomes approximately
1.8. Thus, there is a gap between the measured speedup and the estimated speedup. We
think that this gap can be explained by cache effects.

The last optimization technique, namely memory latency hiding, reduces the time by
25%. We analyze the assembly code to explain this reduction. Since we use J = 2 for
the proposed method, we think that memory accesses for j = 0 can be overlapped with
computation for j = 1 (line 4 in Fig. 5). We find that such overlapping computation
takes approximately 1.3 seconds under the optimal condition, where MPs execute an
instruction on each clock cycle. This probably explains why the time is reduced from
5.7 to 4.3 seconds.

7 Conclusion

We have presented a fast method for CB reconstruction on the CUDA-enabled GPU.
The proposed method is based on the FDK algorithm accelerated using two techniques:
off-chip memory access reduction; and memory latency hiding. We have described how
these techniques can be incorporated into CUDA code. The experimental results show
that the proposed method takes 5.6 seconds to reconstruct a 5123-voxel volume from
360 5122-pixel projection images. This execution time is at least 18% faster than the
prior methods [2,3], allowing us to obtain the entire volume immediately after a scan
rotation of the flat panel detector. We also find that the filtering and backprojection
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performances are limited by the instruction issue rate and the memory bandwidth, re-
spectively. With respect to acceleration techniques, memory access coalescing is essen-
tial to run the GPU as an accelerator for the CPU.

References

1. Kachelrieß, M., Knaup, M., Bockenbach, O.: Hyperfast parallel-beam and cone-beam back-
projection using the cell general purpose hardware. Medical Physics 34(4), 1474–1486
(2007)

2. Xu, F., Mueller, K.: Real-time 3D computed tomographic reconstruction using commodity
graphics hardware. Physics in Medicine and Biology 52(12), 3405–3419 (2007)

3. Scherl, H., Keck, B., Kowarschik, M., Hornegger, J.: Fast GPU-based CT reconstruction
using the common unified device architecture (CUDA). In: Proc. Nuclear Science Symp. and
Medical Imaging Conf (NSS/MIC 2007), October 2007, pp. 4464–4466 (2007)

4. Riabkov, D., Xue, X., Tubbs, D., Cheryauka, A.: Accelerated cone-beam backprojection us-
ing GPU-CPU hardware. In: Proc. 9th Int’l. Meeting Fully Three-Dimensional Image Recon-
struction in Radiology and Nuclear Medicine (Fully 3D 2007), July 2007, pp. 68–71 (2007)

5. Zhao, X., Bian, J., Sidky, E.Y., Cho, S., Zhang, P., Pan, X.: GPU-based 3D cone-beam CT
image reconstruction: application to micro CT. In: Proc. Nuclear Science Symp. and Medical
Imaging Conf. (NSS/MIC 2007), October 2007, pp. 3922–3925 (2007)

6. Schiwietz, T., Bose, S., Maltz, J., Westermann, R.: A fast and high-quality cone beam recon-
struction pipeline using the GPU. In: Proc. SPIE Medical Imaging 2007, February 2007, pp.
1279–1290 (2007)

7. Gac, N., Mancini, S., Desvignes, M.: Hardware/software 2D-3D backprojection on a SoPC
platform. In: Proc. 21st ACM Symp. Applied Computing (SAC 2006), pp. 222–228 (April
2006)

8. nVIDIA Corporation: CUDA Programming Guide Version 1.1 (November 2007),
http://developer.nvidia.com/cuda/

9. Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Optical Society
of America 1(6), 612–619 (1984)

10. Li, M., Yang, H., Koizumi, K., Kudo, H.: Fast cone-beam CT reconstruction using CUDA
architecture. Medical Imaging Technology 25(4), 243–250 (2007) (in Japanese)

11. Ikeda, T., Ino, F., Hagihara, K.: A code motion technique for accelerating general-purpose
computation on the GPU. In: Proc. 20th IEEE Int’l. Parallel and Distributed Processing
Symp. (IPDPS 2006), 10 pages (April 2006) (CD-ROM)
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Abstract. Cumulative reaction probability (CRP) calculations provide
a viable computational approach to estimate reaction rate coefficients.
However, in order to give meaningful results these calculations should
be done in many dimensions (ten to fifteen). This makes CRP codes
memory intensive. For this reason, these codes use iterative methods to
solve the linear systems, where a good fraction of the execution time
is spent on matrix-vector multiplication. In this paper, we discuss the
tensor product form of applying the system operator on a vector. This
approach shows much better performance and provides huge savings in
memory as compared to the explicit sparse representation of the system
matrix.

1 Introduction and Motivation

The prevalence of parallel processors makes many areas of simulation accessi-
ble that was only possible in the recent past on specialized facilities. One area
of application is the use of computational methods to calculate reaction rate
coefficients. These coefficients are often estimated experimentally. However, the
simulations approaches [1,2] provide a reasonable alternative. Typically the ab
initio approach is only applicable to small atomic systems. In these models the
dimensionality of the problem is the number of degrees of freedom in the molec-
ular system. If we consider torsion, stretching, etc., the maximum number of
degrees of freedom (DOF) for a molecule is proportional to N, the number of
atoms. Thus dealing with problems of only three to five degrees of freedom is
quite restrictive. The alternative to ab initio methods is the use of statistical
studies of reaction paths and thus obtain the reaction rate coefficients statisti-
cally. This approach is founded however on a less solid theoretical basis.

Reaction rate calculation involves a dimensional effect based upon DOF. That
is we consider the reactions that involve molecules having various independent
coordinates. For a simple two atom molecule in which we only consider one di-
mension and a variable representing the distance between the two atoms, we
would have one DOF. However, if we add the angle between the atoms in two
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c© Springer-Verlag Berlin Heidelberg 2008



Improving the Performance of Tensor Matrix Vector Multiplication in CRP 121

Fig. 1. Sample parallel performance of the CRP code on up to 128 processor of IBM
SP3 at NERSC

dimensional space and also add the torsion effect we would have three DOF. We
are interested in problems of up to ten or more DOF. This leads to large-scale
problems in which parallel computation is a central aspect of the algorithmic ap-
proach. For such problems the Green’s function solutions (see Section 2) cannot
be done by direct linear solvers. A standard approach even applied to lower DOF
is to use iterative methods such as GMRES [3] for solving the linear systems.
The solution of these linear systems is the fundamental computational cost in
the method as we and others have observed. In some of our computational ex-
periments (see Figure 1) we have obtained an accurate eigenvalue in only two to
three iterations, however we require from five hundred to a thousand GMRES
iterations for each of the Green’s function solves. Thus the principal focus of this
paper is on studying an efficient implementation of matrix-vector multiplication.

Normally the matrix vector multiplication is done by first building up the
large sparse matrix from the tensor products of one dimensional operators with
the identity matrix. The sparse matrix vector product is well known to give poor
performance since it is memory bandwidth limited computation with poor data
reuse [4,5]. Since this kernel is responsible for a large fraction (over 80 %) of
overall execution time, addressing its performance issues is crucial to obtain a
reasonable percentage of machine peak. In this paper, we suggest an alternative
approach (in Section 4) that transforms the memory bandwidth limited sparse
matrix vector products to matrix-matrix multiplications with high level of data
locality. This approach holds the potential to improve the performance of the
overall code by a large factor.

The rest of the paper is organized as follows. We discuss the background of the
CRP approach in Section 2.1. Next we analyze the performance characteristics
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of the sparse matrix vector multiplication approach in Section 3. We present the
details of the tensor matrix vector multiplication approach in Section 4. Then we
compare the performance of these two choices for matrix vector multiplication
on Intel Madison processor in Section 5.

2 Background of the CRP Approach

The Cumulative Reaction Probability function is:

k(T ) = [2πh̄Qr(T )]−1
∫ ∞

−∞
dEe−E/kT N(E) (1)

where Qr is the reactant partition function. The rate constant is given as

k(E) = [2πh̄ρr(E)]−1N(E) (2)

Therefore the CRP is key in calculating the rate constant. In fact, N(E) can
be expressed in terms of the trace of the reaction probability operator, P̂

N(E) = tr[P̂ (E)] ≡
∑

kpk(E) (3)

and
P̂ (E) = 4ε̂1/2

r Ĝ(E)ε̂pĜ(E)ε̂1/2
r (4)

The Green’s function is

Ĝ(E) = (E + iε̂− Ĥ)−1 (5)

Ĥ is the Hamiltonian and ε̂ = ε̂r + ε̂p where ε̂ is a given absorbing potential,
and ε̂r and ε̂p are, respectively are the part of ε̂ in the reactant and product
regions (see [1,2,6] for details).

In summary, we seek to obtain the major components of the trace of P̂ (E).
Thus we seek the largest few eigenvalues of this operator. This can be accom-
plished by means of a Lanczos iteration of (4). For each Lanczos iteration we
require the solution of two linear systems (5):

(E + iε̂− Ĥ)y = x (6)

and its adjoint when x is known. The matrix on the left hand side of Equation 6
is obtained from one dimensional operators as described next.

2.1 Matrix Vector Multiplication in CRP

For simplicity, let us consider a three dimensional system with n mesh points in
each dimension. Then, we need to multiply matrix A (n3 × n3) with a vector v
of size n3.

w = Av (7)
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with w being the output vector of size n3. The system matrix A is sparse with
the following components:

A = Bz ⊗ I ⊗ I + I ⊗By ⊗ I + I ⊗ I ⊗Bx (8)

Where, ⊗ denotes the tensor (Kronecker) product of one dimensional operators
(Bx, By, Bz) with the identity matrix(I). The operators Bx, By, and Bz are
dense matrices of size n× n.

For d dimensions, we will have d terms in Equation 8 involving d tensor products
of densematrices of sizen×nwith the identitymatrices of ordern. As stated earlier,
doing the matrix vector multiplication (Equation 7) is a key operation in the CRP
algorithm. Next we discuss the sparse representation of matrix A.

3 Sparse Matrix Vector Product

The sparse matrix-vector product is an important part of many iterative solvers
used in scientific computing. While a detailed performance modeling of this op-
eration can be complex, particularly when data reference patterns are included
[5,7,8], a simplified analysis can still yield upper bounds on the achievable perfor-
mance of this operation. To illustrate the effect of memory system performance,
we consider a generalized sparse matrix-vector multiply that multiplies a matrix
by N vectors. This code, along with operation counts, is shown in Figure 2.

3.1 Estimating the Memory Bandwidth Bound

To estimate the memory bandwidth required by this code, we make some sim-
plifying assumptions. We assume that there are no conflict misses, meaning that

for (i = 0, i < m; i++) {

jrow = ia(i+1) // 1 Of, AT, Ld

ncol = ia(i+1) - ia(i) // 1 Iop

Initialize, sum1, ..., sumN // N Ld

for (j = 0; j < ncol; j++) { // 1 Ld

fetch ja(jrow), a(jrow),

x1(ja(jrow)), ..., xN(ja(jrow)) // 1 Of, N+2 AT, N+2 Ld

do N fmadd (floating multiply add) // 2N Fop

jrow++

} // 1 Iop, 1 Br

Store sum1, ..., sumN in

y1(i), ..., yN(i) // 1 Of, N AT, N St

} // 1 Iop, 1 Br

Fig. 2. General form of sparse matrix-vector product algorithm: storage format is AIJ
or compressed row storage; the matrix has m rows and nz non-zero elements and gets
multiplied with N vectors; the comments at the end of each line show the assembly
level instructions the current statement generates, where AT is address translation, Br is
branch, Iop is integer operation, Fop is floating-point operation, Of is offset calculation,
LD is load, and St is store
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each matrix and vector element is loaded into cache only once. We also assume
that the processor never waits on a memory reference, that is, any number of
loads and stores can be issued in a single cycle.

For the algorithm presented in Figure 2, the matrix is stored in compressed
row storage format (similar to PETSc’s AIJ format [9]). For each iteration of the
inner loop in Figure 2, we transfer one integer (ja array) and N +1 doubles (one
matrix element and N vector elements), and we do N floating-point multiply-add
(fmadd) operations or 2N flops. Finally, we store the N output vector elements.
If we just consider the inner loop and further assume that vectors are in cache
(and not loaded from memory), we load one double and one integer for 2N flops
or 6 bytes/flop for one vector and 1.5 bytes/flop for four vectors (see [4] for
more detailed treatment). The STREAM [10] benchmark bandwidth on Intel
Madison processor is about 4,125 MB/s. This gives us the maximum achievable
performance of 687 Mflops/s for one vector and 2,750 Mflops/s for four vectors
while the corresponding observed numbers are 627 Mflops/s and 1,315 Mflops/s
(out of the machine peak of 6 Gflops/s).

Following a similar procedure, we show the memory bandwidth bound, the
actual performance and the peak performance for IBM Power 4, Intel Xeon, IBM
BlueGene, and Intel Madison processors (assuming only one vector) in Figure 3.
It is clear that the performance of sparse matrix vector multiplication is memory
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3000

4000
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6000

Power 4 (1.3 GHz) Pentium 4 Xeon (2.4 GHz) BlueGene (700 MHz) Madison (1.5 GHz)

Theoretical Peak Mem BW Peak Observed

Fig. 3. Memory bandwidth bound for sparse matrix-vector product. Only one vector
(N = 1) is considered here. The matrix size has m = 90,708 rows and nz = 5,047,120
nonzero entries. The processors are 1.3 GHz IBM Power 4, 2.4 GHz Intel Xeon, 700
MHz IBM BlueGene, and 1.5 GHz Intel Madison. The memory bandwidth values are
measured using the STREAM benchmark.
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bandwidth limited and the peak processor performance is pretty much irrelevant
for this computation. We next discuss the tensor product form of the system
operator that does not suffer from this limitation.

4 Tensor Matrix Vector Product

The system matrix in the CRP code comes from the tensor products of one direc-
tional dense operators with the identity matrix. This allows us to do the matrix
vector multiplication without ever forming the large sparse matrix. Though a
cheap approximation to the system matrix is usually needed for preconditioning
purpose, we assume that it can be obtained in some suitable way (for example,
see [11]) or one can possibly apply the same technique (of tensor matrix vector
multiplication) while carrying out the matrix vector products of the precondi-
tioned system.

We can combine the identity matrix tensor products in Equation 8 (and its
higher dimensional counterparts). In general, the matrix vector product of Equa-
tion 7 will be the sum of the terms made from the three types of operations: (I⊗
B)v, (B⊗ I)v, and (I⊗B⊗ I)v. We describe how to carry out each of these op-
erations efficiently next. The three dimensional case is described in detail in [12].

Type A: (I ⊗ B)v

We need to evaluate
(Ip×p ⊗Bm×m)v

with v = (v1, v2, ..., vpm)T . We can view the vector v as a matrix (V ) of size
m× p and then

(Ip×p ⊗Bm×m)v = Bm×m × Vm×p

It should be noted that the memory layout of the vectors v and w does
not change in this operation. Since the matrix V is stored columnwise, its data
access pattern in the above matrix-matrix multiplication is ideal (unit stride).
As the number of dimensions increases, the order (p) of the identity matrix
gets larger and larger. Therefore, the above algorithm multiplies a small square
matrix (B) with a highly rectangular matrix (V ) for large dimensions. We will
see in Section 5 that many matrix-matrix multiplication implementations do not
perform well under this situation.

Type B: (B ⊗ I)v

Here we need to evaluate
(Bm×m ⊗ Ip×p)v

We can view the vector v as a matrix (V ) of size p×m and then

(Bm×m ⊗ Ip×p)v = Vp×m ×BT
m×m
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where BT
m×m is the transpose of Bm×m ([12]). Again, the memory layout of the

vector v and w does not change with this operation and this is also a matrix-
matrix multiplication. The data access pattern for the matrix V is not unit stride
here (with the normal triply nested loop implementation) and transposing this
matrix may bring significant performance gains.

Type C: (I ⊗ B ⊗ I)v

Here we need to evaluate

(Ip×p ⊗Bm×m ⊗ Ir×r)v

with v = (v1, v2, ..., vpmr)
T .

This can be evaluated by looping over Type B term algorithm p times [12].
Each iteration of this loop will evaluate the Type B term Vr×m×BT

m×m. Again
this can be done without changing the memory layout of the vectors v and w.

5 Results and Discussion

In the previous section, we saw that all terms of the generalized form (for d di-
mensions) of Equation 8 can be evaluated as dense matrix-matrix multiplication,

Fig. 4. Performance of the tensor matrix vector multiplication for three dimensions
on Intel Madison (1.5 GHz) processor. The custom code is manually optimized code,
MXM code is from [12] and DGEMM() routine is from Intel’s MKL library. Note that
the sparse matrix vector multiplication will only do at most about 687 Mflops/s based
on the memory bandwidth bound on this processor.
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which inherently has very high data reuse and usually performs at a large frac-
tion of machine peak (if implemented properly). We present here some sample
performance results on Intel Madison processor (1.5 GHz, 4 MB L2 cache, and
4GB memory). We discuss three implementations:

– Custom code: this is the hand optimized code specifically written for eval-
uating the Type A, B, and C terms.

– MXM code: this is taken from Deville, et al. [12].
– DGEMM: this is from a vendor library (Intel MKL).

We show the performance advantage of the tensor matrix vector multiplication
in three dimensions for n = 5 to 100 in Figure 4. If we had done the matrix
vector multiplication by explicitly building the sparse matrix, the performance
would have been limited to about 687 Mflops/s (see the dotted line in Figure 4,
which is based on the memory bandwidth bound) on this processor. All the
three variants give good performance for reasonably large n (≥ 15). Note that
there are slightly more floating point operations while doing the tensor matrix
vector multiplication as compared to the explicit sparse matrix formation case.
However, the execution time is less for the former since the computation is cpu
bound and not memory bandwidth limited (which is the case for the later).

Fig. 5. Performance of the tensor matrix vector multiplication for n = 7 in all dimen-
sions. The sharp drop in performance is due to the working set of the problem going out
of the L2 cache (4 MB) of the Intel Madison processor. We are trying to contain this
drop (to some extent) with better implementation (with extra blocking). Notice that
the DGEMM() does not perform well for small values of matrix sizes and especially
when the two matrix sizes are vastly different (large dimension case).
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Fig. 6. This case has 51 points along the reaction path and 7 points in other dimensions.
This represents the CRP code more closely. The performance advantage of the tensor
matrix vector multiplication over the sparse approach is still maintained.

While vendors have invested considerable effort in optimizing the matrix-
matrix multiplication, it is usually done for large and balanced matrix sizes. The
CRP code involves matrix-matrix multiplications between small square matrices
(typically 7 × 7 to 10 × 10) and highly rectangular matrices (arising from the
matrix view of the input vector v). We show this situation in Figure 5 for n = 7.
The DGEMM gives the worst performance of all for this case, especially for
higher dimensions (when the matrix coming from the input vector becomes very
elongated, e.g., 7 × 77 for eight dimensional problem). The custom code also
shows sharp drop in performance (typically characteristic of the working set
getting out of a fast memory level). We are trying some other implementations
to reduce this performance drop.

Figure 6 shows the same scenario as in Figure 5 except that there are more
mesh points (51) along the reaction coordinate than in the other directions (7).
This is more consistent with the linear systems being solved in the CRP code
(Figure 1). Again the performance is much better with the custom code than
is possible with the corresponding sparse matrix-vector multiplication code (the
dotted line in Figure 6).

5.1 Storage Advantage

The chemistry codes work with many dimensions and are memory intensive for
that reason. If we never form the large sparse system matrix, there is huge saving
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in memory. The memory needed for tensor representation of the operator in d
dimensions is O(dn2) while it will be O(nd+1) if we explicitly store it as sparse
matrix. Therefore, the tensor product form of the operator will allow larger
problems to be solved for the same amount of available memory.

6 Conclusions and Future Work

We have demonstrated memory and performance advantages of applying the sys-
tem operator in the tensor product form (rather than as a sparse matrix). Since
matrix-vector multiplication takes a large chunk of the overall execution time, a
big improvement in the overall performance of the CRP code is expected when
the tensor product form of the operator is employed. Further, this technique
can be applied to any discretization scheme where the system matrix originates
from some form of tensor products of smaller dense matrices (and work is in
progress to demonstrate its applicability in a real application code). This paper
has compared the performance of some implementations of matrix-matrix prod-
uct for small size matrices. We observe that many common implementations of
this operation do not perform well for small size and highly rectangular matri-
ces. In future, we will evaluate some more competing implementations such as
transposing the input vector for a more efficient evaluation of Type B terms,
doing more blocking to contain the performance drops when the computation
goes out of L2 cache, and DGEMM from some other libraries.
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Abstract.  Multi-core processors introduce many challenges both at the system 
and application levels that need to be addressed in order to attain the best per-
formance. In this paper, we study the impact of the multi-core technologies in 
the context of two scalable, production-level molecular dynamics simulation 
frameworks. Experimental analysis and observations in this paper provide for a 
better understanding of the interactions between the application and the under-
lying system features such as memory bandwidth, architectural optimization, 
and communication library implementation. In particular, we observe that paral-
lel efficiencies could be as low as 50% on quad-core systems while a set of 
dual-core processors connected with a high speed interconnect can easily out-
perform the same number of cores on a socket or in a package. This indicates that 
certain modifications to the software stack and application implementations are 
necessary in order to fully exploit the performance of multi-core based systems. 

Keywords: Multicore, Performance, Molecular Dynamics Simulation, HPC. 

1   Introduction 

The shift in processor architecture from the traditional improvement in clock speed to 
using multiple cores provides a solution to increase the performance capability on a 
single chip without introducing a complex system and increasing the power require-
ments. As a result, multi-core processors have emerged as the dominant architectural 
paradigm for both desktop and high-performance systems. However, multi-core sys-
tems have presented many challenges in maximizing application performance. There-
fore, it is important to identify the factors that could potentially limit the performance 
and scalability of application through benchmarking. 

Most existing benchmarks are not targeted specifically at multi-core architectures 
and thus are not able to expose potential limitations of these devices such as shared 
cache coherence overhead, memory resource contention, and intra- as well as inter- 
communication bottlenecks. Consequently, a systematic evaluation of these proces-
sors using pertinent applications to discover the critical performance path is crucial to 
discovering problem areas. In this study, we present a methodology for characterizing 
the performance of a diverse range of multi-core devices in the context of two scal-
able, production-level molecular dynamics (MD) simulation frameworks: AMBER 
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PMEMD [1] and LAMMPS [2]. Our aim is to improve the overall MD simulation per-
formance on multi-core systems through finding answers to the following questions: 

• Can the MD simulation scale well on a multi-core system? 
• What are the factors that affect the MD simulation performance/scaling on a 

multi-core system?  
• Are these factors due to the implementation of the MD simulation, the under-

lying system services, or both?  
• How could these limiting factors be avoided? 

The rest of this paper is organized as follows: We briefly introduce the background 
knowledge of MD simulation in Section 2. The experimental methodology is ex-
plained in Section 3. The evaluation, results, and analysis are presented in Section 4 
and Section 5. We discuss our observations and analysis in Section 6.  Finally, we 
conclude and indicate future work directions in Section 7. 

2   Background 

MD is being widely used to study everything from material properties, to protein fold-
ing, and even drug design. Briefly, it is a method for studying the properties of a set 
of particles as they evolve over time. The particles interact through various pair-wise 
forces according to Newton's second law of motion, which states that the sum of the 
forces on an object is equal to the product of its mass and acceleration, i.e., F = ma.   

During an MD run, the positions and velocities of the system are used to compute 
instantaneous averages of macroscopic properties such as potential and kinetic ener-
gies, pressure, and temperature. From a computational perspective, there are two key 
challenges for MD programs. First, it is important to compute the forces with a rela-
tively high degree of accuracy. Unfortunately, this is an expensive operation, as each 
atom needs to know the position of the other N-1 atoms. In the worst case, calculating 
the forces is an O(N2) algorithm. However, there exist efficient approximations that 
can lower the algorithmic cost to O(N) for large N.  

The second challenge is that MD often requires a large amount of computational 
time in order to accurately measure desired quantities. For example, in biological 
simulations, the typical MD step simulates about 10-15 seconds of real time. Events of 
biological interest typically occur on the scale of 10-9–10-3 seconds or longer. This 
difference of 6 to 12 orders of magnitude suggests that MD would not be possible if it 
was not for parallel computing [3][4].   

3   Experimental Methodology 

In this study, we attempt to understand the performance of two scalable, production-
level MD simulations on multi-core systems. Our target platforms include a four-socket, 
dual-core AMD Opteron 8216 system [5], a quad-core Intel Clovertown processor sys-
tem [6], and dual-core Opteron Cray XT3 and XT4 systems [7][8]. Cray XT4 contains 
Rev F Opteron while the Cray XT3 system is composed of an earlier release of dual-
core Opteron processors. The system configuration details are listed in Table 1.  
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Table 1. Target systems 

 AMD  
Opteron 
 8216 

Intel  
Clovertown 

Cray XT3 
(Dual-core  
Opteron) 

Cray XT4  
(Dual-core  
Opteron) 

Clock frequency 2.6 GHz 2.4 GHz 2.6 GHz 2.6 GHz 

L1 Cache 128 Kbyte 16 Kbyte 64 Kbytes 64 Kbytes 

L2 Cache 1 Mbyte 4 Mbytes per die, 8 
Mbytes total 

1 Mbytes 1 Mbytes 

Memory  
bandwidth 

10.6 GB/s 17 GB/s (FSB) at
1066 MHz 

6.4 GB/s 10.6 GB/s 

Operating System Linux Linux Catamount Catamount 

Compiler PGI Intel PGI PGI 
MPI library MPICH2 Intel MPI Cray MPI Cray MPI 

From the hardware perspective, there are key differences between Intel and AMD 
processor designs that can influence the application performance. For instance, the 
AMD systems are considered as NUMA (Non Uniform Memory Architecture) be-
cause it provides a memory controller as part of the direct connect architecture, which 
gives each core in a multi-core processor low latency and high-bandwidth connections 
to its local memory stores. The other approach, adopted by Intel in its Xeon and Pen-
tium processors, creates a single shared pool of memory, which all the cores access 
memory through an external front-side bus (FSB) and a memory controller hub. 

From the software stack perspective, there are also some notable differences. The 
Cray XT systems use a lightweight kernel called Catamount, while the other two sys-
tems run standard Linux distribution. The systems have different Math library: the 
Cray XT systems have the AMD‘s ACML API, the Clovertown system has the Intel’s 
MKL, and the Opteron system has the ATLAS package. The systems also have dif-
ferent MPI library: the Opteron system has the MPICH library compiled with the PGI 
compiler, the Clovertown system has the Intel MPI library, and the Cray XT systems 
have an MPI-2 compliant library, which is derived from the MPICH-2 library. Fur-
thermore, the Cray XT systems allow additional control over MPI task placement 
schemes.  

For measurements, we first ascertain system characteristics using a set of micro 
benchmarks from the HPC Challenge benchmark suite (HPCC) [9], cache benchmark, 
and MPI performance benchmarks [10]. We anticipate that the memory bandwidth on 
the multi-core systems is one of the major issues. In particular, we expect that the 
memory bandwidth per core would not scale with the floating-point performance per 
socket. However, it is unclear how this will impact different memory access patterns 
within an application. We therefore use the HPCC benchmark suite to characterize 
application kernels in terms of spatial and temporal locality of their memory access 
patterns. For instance, DGEMM and High Performance Linpack (HPL) exhibit high 
spatial and temporal locality. The Fast Fourier Transform (FFT) calculations show 
high temporal but poor spatial locality. Lastly, we want to understand how the MD 
application performance and scaling achieved on these systems are sensitive to some 
key features of the target multi-core devices.   
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4   Experimental Results and Analysis 

4.1   Notation and Test Parameters 

The HPCC benchmark suite tests multiple system performance attributes and provides 
performance indicators for processing power, interconnect, and memory subsystems. 
In the context of multi-core system performance, experiments can be configured to 
run in serial (one core per socket), embarrassingly parallel (work per core remains 
same and no interactions between cores), and strong scaling (all cores contribute to a 
given task).  

The naming convention we used for serial runs is ‘‗single’, embarrassingly parallel 
is ‘‗Star’, and strong scaling mode is ‘_MPI’. For the Cray XT results, we choose two 
placement schemes namely ‘‗default’ and ‘‗reorder’. The default scheme allocates 
MPI tasks in a round-robin scheme, for example, MPI task 0 is mapped on core 0 of 
processor 0 and MPI task 1 will be mapped to core 0 of processor 1. In the reorder 
scheme MPI tasks 0 and 1 are assigned to core 0 and 1 of processor 0. In total, 8 XT3 
and XT4 cores are used. 

4.2   Cache Characteristics 

We ran cachebench in serial (see left graph of Figure 1) and Embarrassingly Parallel 
(EP) or Star mode (see right graph of Figure 1) on our target systems. On the Clover-
town system we observe a very high bandwidth on up to 32K vector lengths accesses 
but then drops significantly as the L2 cache is saturated. Poor performance scaling for 
very large vectors and the difference in single and EP modes performance is only 
noted for very large vectors. 

4.3   Memory Characteristics 

HPL benchmark captures the peak floating-point performance of a system by solving 
a (random) dense linear system in double precision (64 bits) arithmetic on distributed-
memory computers.  

Figure 2 shows HPL performance in GFLOPS/s. These results are gathered on 16 
XT cores, and 8 Opteron 8216 and Clovertown cores. The size of the matrix is an 
input parameter, which is slightly smaller for the 8 cores runs as compared to the 16 
cores runs. There is approximately 2% difference between XT4 and XT3 runtimes 
and the placement scheme has negligible impact on the HPL performance. Opteron 
performance is approximately 3% lower than the Clovertown performance.  

Figure 3 shows DGEMM performance in GFLOPS per core for serial and embar-
rassingly parallel (EP) execution modes. DGEMM (double-precision general matrix 
multiply) is a test similar to the HPL benchmark in that it tests the system for high 
local and spatial memory locality calculations. The results show that the Clovertown 
system attains maximum DGEMM performance as compared to the other systems. On 
the other hand, it shows nearly 10% performance variation in the EP execution mode, 
while the difference on the Opteron based systems was negligible. This result clearly 
shows benefit and impact of a large, shared L2 cache in the Clovertown design. 
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Fig. 1. Cache bench performance (Mbytes/s) 

  

Fig. 2. HPL Performance (GFLOPS/s) Fig. 3. DGEMM performance (GFLOPS/s) 

The Fast Fourier Transform (FFT) benchmark has a high temporal but low spatial 
locality. Figure 4 show global, EP, and single-core view of the performance on 16 
cores on the Cray XT systems and 8 cores on the standalone Opteron and Clovertown 
platforms. Clovertown shows the highest serial version performance and the lowest 
performance in global and EP modes. We also note that the placement of the MPI 
tasks result in about 10% performance variations on the Cray XT system runs. 

4.4   Communication Characteristics 

We then focused on communication performance, namely the MPI benchmarks. The 
HPC MPI test cases measure two different communication patterns. First, it measures 
the single-process-pair latency and bandwidth. Second, it measures the parallel all-
processes-in-a-ring latency and bandwidth. For the first pattern, ping-pong communi-
cation is used on a pair of processes. In the second pattern, all processes are arranged 
in a ring topology and each process sends and receives a message from its left and its 
right neighbor in parallel. Two types of rings are reported: a naturally ordered ring 
(i.e., ordered by the process ranks in MPI_COMM_WORLD), and the geometric 
mean of the bandwidth of ten different randomly chosen process orderings in the ring.  

Figure 5 shows that the Cray XT4 system benefits from the higher injection band-
width of its SeaStar2 network. In fact, the SeaStar2 increases the peak network  
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injection bandwidth of each node from 2.2 GB/s to 4 GB/s when compared to 
SeaStar, and increases the sustained network performance from 4 GB/s to 6 GB/s. 
Opteron performance is slightly higher than the Clovertown’s performance except in 
the case of naturally ordered ring bandwidth. Overall these results show that the MPI 
communication performance is sensitive to the placement of the MPI tasks and the 
communication pattern. However, the difference in performance behavior is not ap-
parent from the HPCC benchmark results. We therefore collected additional data us-
ing the Intel MPI benchmark (IMB) suite that reports latencies for different MPI 
communication patterns [4]. 

MPI applications typically make use of collective communication operations such 
as MPI_Allreduce. The latencies for MPI_Allreduce operations generated by the IMB 
benchmark are shown in Figure 6 for 16 cores on the Cray XT systems and 8 cores for 
the standalone multi-core systems. The Clovertown system has the lowest latencies 
for the MPI_Allreduce operations using Intel MPI library. Since the MPI latencies 
depend on a deep software and hardware stack, it cannot be attributed to a single 
hardware of software feature of the target systems. 

 

  

Fig. 4. FFT performance (GFLOPS/s) Fig. 5. MPI bandwidth (Mbytes/s) 

  

Fig. 6. MPI_Allreduce Latency (msec) Fig. 7. IMB Exchange benchmark latency 
(msec) 
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Similarly, typical MPI applications perform data exchange between groups or 
pairs. The IMB exchange benchmark exhibits behavior of boundary exchange pattern 
in periodic manner. Figure 7 shows latencies of the MPI exchange benchmark. Like 
the MPI_Allreduce results, the Intel system outperforms the other systems for small 
message sizes. However, for large messages, there is very little variation on different 
target systems. 

  

Fig. 8. Hardware counter values for LAMMPS 
per MPI task (JAC benchmark) 

Fig. 9. MPI communication profile per MPI 
task for LAMMPS (JAC benchmark) 

5   Application Performance and Scaling 

We next characterize our two MD simulations, AMBER PMEMD (F90 and MPI) and 
LAMMPS (C++ and MPI), in terms of their computation, memory and communica-
tion requirements. For both simulations, we use an identical input deck, namely the 
Joint Amber Charmm (JAC), which is publicly available [11]. Furthermore, we pro-
file these simulations using a set of performance tools that are composed of the hard-
ware counter from PAPI [12] and the MPI profiling interface. The MPI requirements 
are independent of the target platform but the computation and memory access re-
quirements depend on the compiler infrastructure. We normalize these requirements 
for the three systems.  

Figure 8 shows floating-point requirements and data cache access requests for 
LAMMPS when running JAC benchmark for 1 psec simulation. Because of the inher-
ent C++ pointer structure, the memory access operations are higher than the number 
of floating-point operations. We also note that both computation and memory opera-
tions requirements scale with the number of MPI tasks or cores. 

Communication profile for the JAC experiment is shown in Figure 9. There are 
two dominant point-to-point communication patterns, non-blocking send followed by 
a blocking receive and Sendrecv and MPI_Allreduce collective communication opera-
tions in which all MPI tasks participate. The non-blocking send operations per MPI 
task increase with the 2^(MPI tasks), while the others operation count and sized re-
main constant. 
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Fig. 10. Number of floating-point and memory 
access operations for PMEMD (JAC benchmark) 

Fig. 11. Communication profile for PMEMD 
(JAC benchmark) 

 

  

Fig. 12. Performance and speedup with compiler optimization (JAC with LAMMPS) 

Similarly we obtain runtime profile for PMEMD experiments shown in Figure 10. 
Unlike LAMMPS, the floating-point computation and memory access requirements in 
the Fortran and MPI application are balanced and scale with the number of MPI tasks. 
Figure 11 shows communication profile for PMEMD experiments. Only two types of 
messages are dominant in the calculation: non-blocking point-to-point messages and 
collective MPI_Allreduce operations. Overall the messaging pattern is similar to 
LAMMPS but the behavior of collective communication operations is slightly differ-
ent. Although the message sizes per processors decrease with the increase of the 
number of MPI tasks, the aggregate message count to volume ratio is higher than the 
LAMMPS simulation. 

Figure 12 shows runtime and speedup for LAMMPS runs with optimization on. 
The single-core performance was optimal on the Clovertown platform but the speedup 
numbers are the lowest. On the Cray XT platforms, the runtimes are similar but slight 
variation is shown in the speedup. Overall the dual core performance is optimal on 
standalone systems but scaling is optimal on systems connected with a high speed 
interconnect. 
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Fig. 13. Performance and scaling comparison with and without compiler optimization 

  

Fig. 14. Performance and scaling in the optimized mode running PMEMD (JAC benchmark) 

Figure 13 compares performance and speedup on the optimized and un-optimized 
versions of the applications. Although the compiler optimization results are apparent 
on small number of cores, the shared memory access and communication costs offset 
the sophisticated compiler optimization. 

Performance and scaling of the PMEMD test case are shown in Figure 14. The lower 
performance on the Opteron core in this case is attributed to the MPI_Allreduce latencies, 
which are significantly higher as the message sizes and the number of MPI tasks increase.  

We attempted several placement schemes but there were no notable changes in 
MPI_Allreduce latencies. Additionally, the impact of a high bandwidth interconnect 
is shown in the Cray XT as the performance of 4 dual-core Opteron processors ex-
ceeds the 4 quad-core Clovertown processors. We also attempted both single and dual 
core processor placement on the Cray XT systems; however, there is negligible run-
time difference when both cores and a single core participate in the calculations. Cray 
XT4 times are about 5% higher then the subsequent Cray XT3 times. 

6   Discussion 

The results with an identical test case using two scalable simulation frameworks on a 
diverse set of multi-core technologies reveal several key workload characteristics and 
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impact of their mapping on the multi-core devices. Here we attempt to describe these 
findings in terms of the micro benchmark results that are collected on our target sys-
tems. Note that there are a numbers of parameters that are fixed for these experiments 
including compiler infrastructure and runtime systems.  

First, we found by executing the HPCC memory locality benchmarks that the 
memory bandwidth on the applications is the lowest on the Intel Clovertown platform, 
especially when all cores participate in running the benchmark in embarrassingly par-
allel mode. This characteristic is shown in the scaling of both applications. Second, 
we note that the performance and scaling of the HPCC FFT benchmarks is representa-
tive of the MD applications performance. Another finding was the impact of a poor 
implementation of an MPI collective operation. PMEMD shows sensitivity to this 
metric while the LAMMPS code that only involves exchanging small size messages 
did not show an impact of this workload characteristic. We also demonstrate that 
high-level of compiler level optimization that are targeted towards better exploitation 
of the execution units only provide marginal benefits, particularly at the higher core 
count. Finally, we found that HPL and DGEMM based benchmarks are not represen-
tative of the MD workloads and cannot be considered for performance projections on 
emerging multi-core processors.  

This study enables us the answer some of the questions that we posed earlier. We 
demonstrate that the scaling of the MD applications on multi-core systems, particu-
larly on four and more cores require some reorganization of data structures and sub-
sequently the access patterns to achieve high performance and parallel efficiencies. 
Furthermore, we note that the there are two key factors that limit the scaling on multi-
core system: memory bandwidth and MPI collective operations performance. The 
high cache bandwidth as shown by a cache performance benchmark does not reflect 
the runtime characteristics of MD applications. MPI collective performance on the 
other hand does not impact both applications in a similar manner. Hence, the per-
formance and scaling limiting factors are not only induced by system and software 
stack but also by the application implementation. 

7   Conclusions 

In this paper, we have chosen the HPC Challenge (HPCC) benchmark suite to test the 
system performance including floating point, compute power, memory subsystem, 
and global network issues.  We have also chosen the JAC, which contains approxi-
mately 24K atoms, as an input to the two parallel versions of the MD simulation 
frameworks: Amber PMEMD and LAMMPS. From our experiments, we find that 
parallel efficiencies could be as low as 50% on the quad-core systems while a set of 
dual-core processors connected with a high speed interconnect can easily outperform 
the same number of cores on a socket or in a package. This trend indicates that opti-
mizing intra-node communication is as important as optimizing inter-node communication.  

For our future work, we plan to parameterize the runtime system to identify the 
impact of their performance attributes on the molecular dynamics applications. After 
identifying the performance and scaling limiting factors, we plan to propose and imple-
ment approaches for avoiding and reducing the performance limiting factors at the ap-
plication and system software levels for a range of production-level MD simulation 
frameworks. 
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Parsing XML Using Parallel Traversal of Streaming
Trees
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Abstract. XML has been widely adopted across a wide spectrum of applica-
tions. Its parsing efficiency, however, remains a concern, and can be a bottleneck.
With the current trend towards multicore CPUs, parallelization to improve per-
formance is increasingly relevant. In many applications, the XML is streamed
from the network, and thus the complete XML document is never in memory at
any single moment in time. Parallel parsing of such a stream can be equated to
parallel depth-first traversal of a streaming tree. Existing research on parallel tree
traversal has assumed the entire tree was available in-memory, and thus cannot
be directly applied. In this paper we investigate parallel, SAX-style parsing of
XML via a parallel, depth-first traversal of the streaming document. We show
good scalability up to about 6 cores on a Linux platform.

1 Introduction

XML has become the de facto standard for data transmission in situations requiring
high degrees of interoperability, flexibility and extensibility, and exhibiting large de-
grees of heterogeneity. Its prevalence in web services has contributed to the success
of large-scale, distributed systems, but some of the very characteristics of XML that
have led to its widespread adoption, such as its textual nature and self-descriptiveness,
have also led to performance concerns [5,6]. To address these concerns, a number of
approaches have been investigated, such as more efficient encodings of XML to re-
duce parsing and deserialization costs [4], differential techniques to exploit similarities
between messages [17], schema-specific techniques [8,19], table-driven methods [21],
and hardware acceleration [7].

On the CPU front, manufacturers are shifting towards using increasing transistor den-
sities to provide multiple cores on a single chip, rather than faster clock speeds. This has
led us to investigate the use of parallelization to improve the performance of XML pars-
ing. In previous work, we have explored parallelizing DOM-style parsing [20], where an
in-memory DOM tree is generated from an entire document. In many situations, how-
ever, SAX-style parsing is preferred [1]. SAX-style parsing is often faster because no
in-memory representation of the entire document is constructed. Furthermore, in some
situations, the XML itself is streaming, for which an event-based API like SAX is much
more suitable. Thus, in this paper, we investigate how SAX parsing can be parallelized.
Parallel SAX parsing may seem to be an oxymoron, since SAX is inherently sequen-
tial. However, even though the sequence of SAX callbacks (representing the events) are
sequential, we show that it is possible to parallelize the parsing computations prior to
issuing the callbacks, and only sequentialize just before issuing the callbacks.

P. Sadayappan et al. (Eds.): HiPC 2008, LNCS 5374, pp. 142–156, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In some applications, application-level processing in the callbacks themselves may
dominate the total time. Parallel SAX parsing could alleviate that, however, by lever-
aging schema information to determine which elements are not ordered (such as those
in an <xsd:all> group). With applications that are multicore-enabled, callbacks for
such elements could be issued concurrently. We do not leverage such information in
current work, but see this current work as a necessary precursor to such techniques.
Furthermore, we note that XML parsing is also a necessary first step for more complex
processing such as XPath or XSLT. Though on a single core, the XML parsing may not
dominate this more complex processing, Amdahl’s law [2] shows that even relatively
short sequential phases can quickly limit speedup as the number of cores increases.
Parallel parsing is thus more important than a single core analysis might suggest.

Previous researchers have investigated parallel, depth-first traversal, but with the as-
sumption that the the entire tree was always available [14,15]. Streaming situations, on
the other hand, are different because the incoming stream can present itself as a possi-
ble source of new work. Furthermore, in a streaming situation, it is important to process
work in a depth-first and left-right order when possible, so that nodes become no longer
needed and can be freed.

A number of previous researchers have also explored parallel XML processing. Our
previous work in [9,10,11,12] has explored DOM-style parsing. The work in [13] takes
the advantage of the parallelism existing between different XML documents and then
structures the XML data accordingly. This approach, however, is focused on process-
ing a certain class of queries, as opposed to XML parsing. The work in [18] uses an
intermediary-node concept to realize a workload-aware data placement strategy which
effectively declusters XML data and thus obtains high intra-query parallelism. It also
focuses on queries, however.

2 Background

Parallelism can be broadly categorized into pipelining, task-parallelism, and data-
parallelism, depending on whether the execution units are distributed across different
sequential stages in the processing of a single data unit, different independent tasks
that may be executed in any order, or different, independent pieces of the input data,
respectively.

A pipelined approach to XML parsing would divide the parsing into stages, and
assign one core to each stage. Such a software pipeline can have satisfactory perfor-
mance, but if followed strictly and used in isolation, suffers from inflexibility due to the
difficulty of balancing the pipeline stages. Any imbalance in the stages results in some
cores remaining idle while other cores catch up. Furthermore, adding a core generally
requires redesign and re-balancing, which can be a challenge.1

1 To improve cache locality, cores may be assigned to data units rather to stages. So, a single
core might execute all stages for a given data unit. This does not resolve the stage balancing
issue, however, except when there are no dependencies between data units, in which case we
can simply use data parallelism. If there are dependencies between data units, then a core C2
processing data unit D2 in stage 1 must still wait for core C1 to complete data unit D1 in stage
2, before C2 can begin stage 2 processing on D2.
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Task parallel approaches divide the processing into separate tasks which can then be
performed concurrently. The difference between pipelining and task parallelism is that
in the former, the output of one stage is fed into the input of the other, while in the
latter, the tasks are independent (though the final output will depend on the completion
of all tasks). Task parallelism also suffers from inadaptability to a varying number of
cores. The code must be specifically written to use a given number of cores, and taking
advantage of another core would require rewriting the code such that an additional task
could be assigned to the additional core, which may be difficult and time-consuming.
Tasks must be carefully balanced so that no cores are left idle while waiting for other
tasks to complete.

In a data-parallel approach, the input data is divided into pieces, and each piece is
assigned to a different core. All processing for that piece is then performed by the same
core. Applied to streaming XML, each core would parse separate pieces of the XML
stream independently. As each core finishes, the results would be spliced back together,
in parallel. Adding an additional core would only require reading in an additional chunk
for the new core to process. The code does not need to be re-implemented, and thus it
is possible to dynamically adjust to a variable number of cores on-the-fly.

Under dynamic conditions as typically encountered in software systems (as opposed
to hardware systems that do not change unless physically modified), data parallelism is
often more flexible when the number of cores may change dynamically, and may have
reduced bus bandwidth requirements. The major issue with data parallelism, however,
is that the N pieces must be independent of each other. That is, it must be possible to
parse a piece of the data without any information from any other piece. Applied to an
incoming XML stream, this poses a problem, since XML is inherently sequential, in
the sense that to parse a character at position p, all characters at position 1 to p− 1 may
first need to be parsed.

2.1 Hybrid Parallelism

We note that in practice there is no need to adhere strictly to a single style of parallelism
in a program. Combining the forms, such as pipelined and data parallelism, to form
a hybrid can improve flexibility and load balancing. For example, data dependencies
can be handled in the first stage of a pipeline by strictly sequential processing. This
processing can annotate the output stream of the first stage to address such ordering
dependencies. The second stage could then process chunks of the incoming data stream
independently in a data-parallel fashion, using the annotations to resolve any ordering
dependencies. For such a technique to be beneficial, it must be possible to address data
dependencies using a fast sequential stage, and defer more computationally intensive
processing to a data-parallel later stage.

The improved flexibility can be illustrated when we consider adding a core to a sim-
plified example. Consider a balanced, two-stage pipeline, where dependencies prevent
a datum from entering a stage until the previous datum has completed that stage. Thus,
to add a core, a new stage would need to be created, requiring recoding the software
while maintaining stage balance. Now assume that the second stage is data parallel, and
that the second stage takes much longer for a given datum than the first stage. That is, a
datum cannot enter the first stage until the preceding datum has finished the first stage,
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but a datum can begin the second stage as soon as it has finished the first stage, without
waiting for previous datum to finish the second stage. In this case, an additional core
can simply be added to the data-parallel second stage. Since this stage is slow relative
to the first stage, sufficient data units can be in second stage processing to keep the
additional core busy.

Stage balancing is thus no longer required, as long as the data parallel stage is slower
than all sequential stages. In a pure pipelined parallelism, stage balancing is required
because any stage that executes slower will block (or starve) other stages. The core that
is assigned to an idle stage cannot be re-assigned to other stages, because all stages
are sequential and so cannot utilize another core. If one of the stages is data parallel,
however, any idle core can be assigned to the data parallel stage, as long as the data
parallel stage has work to do. This will be true as long as it is the slowest stage.

2.2 Amdahl’s Law under Hybrid Parallelism

Amdahl’s Law states that if the non-parallelizable part of a particular computation takes
s seconds, and the parallelizable part takes p seconds for a single core, then the speedup
obtainable for N cores is (s + p)/(s + p/N). Amdahl’s Law is a particular perspective
from which to view parallel performance. It assumes that there is a single, fixed-size
problem, and models the computation as consisting of mutually exclusive sequential
phases and parallel phases. It then considers the total time to compute the answer when
using a varying number of processors, holding the problem size fixed. It shows that the
speedup is dramatically limited, even by relatively small amounts of sequential com-
putation. Fundamentally, the problem is because during the sequential phase, all other
processors are idle. The more processors are used, the greater the amount of wasted
processing power during this idling.

When considering streaming input, however, the input presents as a continuous
stream, rather than a fixed-size, discrete problem. Thus, speedup of the throughput can
be a more useful metric than speedup of a fixed-size work unit. If there is no pipelining,
then Amdahl’s law can be applied to throughput directly. The throughput is inversely
proportional to the total time to process any unit of data, and that will simply be the
sequential time plus the total parallel computation divided by the number of processors.
Without pipelining, when the sequential computation is occurring, all other cores are
idle, as in the non-streaming case.

If we consider hybrid parallelism under streaming, however, the picture can appear
significantly different. Consider a pipeline consisting of an initial sequential stage fol-
lowed by a data-parallel stage. While one core is performing the sequential computa-
tion, all other cores are working in parallel on the second stage. When cores are added,
they are assigned to the second stage, where they always have work, as long as the first
stage is not the bottleneck. Assuming that the sequential stage can be made fast, often
the core assigned to the first stage will have no work to do. Since the second stage is
data-parallel, however, this core can simply be time-sliced between the first stage and
the second stage to achieve load balancing.

To illustrate this, in Figure 1 we compare the throughput speedup of a two-stage
computation under two different scenarios: pipelined, streaming; and non-streaming,
non-pipelined. In this manufactured example, we assume that for a given datum, the
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Fig. 1. Throughput speedup of a two-
stage computation under streaming,
pipelined; and non-streaming, non-
pipelined scenarios

Fig. 2. This shows a conceptual representation of a
streaming XML document, in left-to-right order. Ele-
ments are shown here as split ovals, representing two
nodes. The left half is the start-tag node, and the right
half is the end-tag node. Note that the child links ac-
tually only point to the start-tag node; end-tag nodes
are not actually linked into the tree, but are rather
pointed-to by the start-tag node. Nodes in different
categories (explained in the text) are shown in differ-
ent colors.

sequential first stage takes 1 second, and the data-parallelizable second stage takes 10
seconds, for a single core. If a single, discrete problem is presented, and the first stage
and the second stage are not pipelined, then the total time per datum is simply 1 +
10/N , where N is the number of cores. Speedup is then given by 11/(1+ 10/N) per a
straightforward application of Amdahl’s Law. If, however, a stream of data is presented,
and we allow the first and second stages to be pipelined, we can assume that one core
is time-sliced between the sequential first stage and the data-parallel second stage, and
that all other cores are always working on the second stage. If there are 11 cores or
fewer, the time taken per datum is then simply 11/N , since the total computation time
for a datum is 11 seconds (for a single core), and no cores are ever idle. The throughput
is then given by N/11. If there are more than 11 cores, the first stage becomes the
bottleneck, and throughput then becomes rate-limited at 1 datum/second by the first
stage, which we have assumed cannot be parallelized.

As the graph shows, speedup under hybrid parallelism is limited by the throughput of
the slowest sequential stage. Prior to that point, however, the speedup is in fact linear.
This observation means that speedup for stream-oriented processing under multicore
processing can have significantly different characteristics than the usual non-streaming
case, though asymptotically they reach the same limit.

3 Parallel Parsing of Streaming XML

To perform namespace prefix lookup, some kind of data structure is necessary. We
could use a stack for this, but a tree is a natural representation that makes the inherent
parallelism more explicit, and we chose this model. Thus, we represent start-tags, end-
tags, and content as nodes. Only start-tags are actually linked into the tree via parent-
child links, since only start-tags need actual namespace prefix lookup. An end-tag is
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linked-in via a pointer to it in the corresponding start-tag, as well as by the SAX event
list discussed below. Content nodes are linked-in via the SAX event list only.

Although the tree structure is required for the namespace prefix lookups, the nodes
are also used to represent and maintain SAX events. To facilitate this usage, we also
maintain a linked list of the nodes in SAX order (depth-first). Thus, two types of orga-
nization are superimposed on each other within a single data structure. The first orga-
nization is that of a tree, and is used for namespace prefix lookup. The second is that
of a linked list, and is used for the callback invocations used to send SAX events to the
application.

The primary challenge with parallel SAX parsing is that when an XML document is
streamed in, only part of the tree is resident in memory at any one moment. This resident
part consists of open start-tags, closed start-tags that are still needed for namespace
prefix lookup, and nodes that have not yet been sent to the application as SAX callbacks.
This rooted, partial tree is called the main tree. More precisely, we can divide the nodes
of a streaming tree into four categories, as shown in Figure 2. The first category is nodes
that have not been received at all yet. Nodes <g>, </g>, </c>, <h>, </h>, and </a>
are in this category. The second category is nodes that have been received, but have not
yet been invoked. Nodes <e>, </e>, <f>, and </f> are in this category.

Since prefix-to-URI bindings are stored with the nodes, a node needs to stay resident
even after it has been sent to the application, as long as it has descendants that have
not yet completed namespace prefix lookup. An open start-tag may still have children
on the wire, and so must also stay resident. Note that the root start-tag is only closed
at the end of the document, and so is always resident. These types of nodes form the
third category, and nodes <a> and <c> are examples of this. The last category is nodes
that are no longer needed in any way. These nodes represent events that have already
been sent to the application via callbacks, and will not be needed for further namespace
prefix lookups. These nodes can be deleted from memory. Nodes <b>, </b>, <d>, and
</d> are in this category. In summary, category 2 and 3 nodes are resident in memory,
while the rest are either still out on the network, or have been deallocated.

3.1 Stages

Our SAX parsing thus uses a five-stage software pipeline with a combination of sequen-
tial and data-parallel stages. Stage one (PREPARSE) reads in the input XML stream by
chunks, and identifies the state at the beginning of each chunk via a fast, sequential scan
(called a preparse). Stage two (BUILD) then takes the data stream from the PREPARSE
stage, and builds fragments of the XML tree in a data-parallel, out-of-order fashion.
Each chunk from the PREPARSE stage generates a forest of XML fragments. Stage
three (MERGE) sequentially merges these forests into the current main tree to allow
namespace prefix lookup to occur. Stage four (LOOKUP) then performs lookup pro-
cessing on nodes in a parallel, depth-first order (though the actual lookup itself goes
up the tree). Finally, in stage five (INVOKE), SAX events are sequentially invoked as
callbacks to the application.

This pipelining of sequential and parallel stages into a hybrid parallelism provides
greater scheduling flexibility as explained in Section 2.1. The fundamental benefit of
hybrid parallelism is that it allows cores that might otherwise be idle due to stage
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imbalance to be assigned to data-parallel stages, in most cases. Though the PREPARSE,
MERGE, and INVOKE stages are still intra-stage sequential, the stages are designed so
that as much as computation as possible is moved out of these stages, and into data
parallel stages, thus enhancing scalability.

The data unit between the stages changes as the data flows. In stage one, the XML
stream is partitioned into chunks, and passed to stage two. In stage two, the chunks are
parsed into tree fragments consisting of graph-based nodes. Stage three merges these
fragments into the current tree. Stage four can now operate on a tree, and remain mostly
oblivious to the fact that it is actually a stream. Stage five operates on a sequence of
SAX events.

There is an approximate, but inexact correspondence between the stages and the
categories shown in Figure 2 and explained in the previous section. Any node that has
been deallocated or not yet received is not in any stage, of course. A node that is in
the PREPARSE, BUILD, or LOOKUP stage is in category two, since they have been
received, but not yet invoked. A node that has passed the INVOKE stage could be in
category three, if it needs to stay resident for children nodes to perform LOOKUP stage;
or, it could be deallocated, and thus in category four.

We now describe the stages in more detail.

3.2 Stage One (PREPARSE): Preparse Chunks

To obtain data-parallelism, in the ideal case we could simply divide the incoming XML
document into chunks, and then parse each chunk in parallel to build the tree. The
problem with this, however, is that we do not know which state to begin parsing each
chunk, since the first character is of unknown syntactic role at this point. Thus, a parser
that begins parsing at some arbitrary point in an XML stream (without having seen all
previous characters) will not know which state in which to begin.

To address this, and still allow parallelism, we use a fast PREPARSE stage to first
identify the basic structure of the XML stream. We divide the incoming XML stream
into chunks, and then push each chunk through a table-driven DFA that identifies the
major syntactic structures within the document. This gives us the state at the end of
the chunk, and thus the state at which to begin the next chunk. This initial state is then
passed to the next stage, along with the actual chunk data. For example, this DFA will
determine if a chunk begins within a start-tag, end-tag, character content, etc. The effect
is to “fast-forward” through the XML stream.

Because the preparse process is sequential, this technique works only as long as the
PREPARSE stage can be much faster than the actual full parsing. In practice, we have
found this to be true. If the preparse itself starts to become a bottleneck, we have shown
in previous work how the preparse itself can be parallelized [11].

3.3 Stage Two (BUILD): Build Tree Fragments

The BUILD stage parses chunks in parallel, and builds tree fragments from each chunk,
corresponding to the XML fragment in the chunk. The work of the BUILD stage can
occur in a data parallel fashion, and so can have multiple cores assigned to it, one for
each chunk. It obtains the proper state at which to begin parsing each chunk from the
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previous PREPARSE stage. The DFA for this stage, called the bt-DFA (Build Tree
Fragment DFA), parses the syntactic units in detail. For example, in the start-tag, the
element name will be parsed into namespace prefix and local part. The attribute will be
parsed into namespace prefix, attribute name’s local part, and attribute value.

The bt-DFA is different from the DFA for the preparse stage, because it more pre-
cisely identifies the syntactic units in XML. We thus need to map the preparsing DFA
state given by the PREPARSE stage to the state of the more detailed bt-DFA.

In the preparsing DFA, a single state 3 is used to identify any part inside a start-tag
that is not inside an attribute value. So, inside an element name is treated the same
as inside an attribute name. In the bt-DFA, the start-tag is treated in greater detail, so
preparser DFA state 3 may map to a number of different states in the bt-DFA. The
preparser DFA, however, simply does not provide enough information to know which
bt-DFA state should be used for state 3. To solve this ambiguity, we create a special
auxiliary state in the bt-DFA, state 0. Preparse state 3 will map to bt-DFA state 0, but
as soon as it receives enough input to distinguish further which syntactic unit it is in, it
will go to the corresponding bt-DFA state.

In XML documents, start-tags and end-tags are organized in a paired fashion in depth
first order. To assist in building the tree fragments, we maintain a stack of start-tag
nodes. When we encounter a start-tag, we add it as a child of the top start-tag node,
and then push it on to the stack. When we encounter an end-tag, we close the top start-
tag, and pop the stack. Although the tree structure is required for the namespace prefix
lookups, the SAX event list must also be maintained, as explained near the beginning of
Section 3. Therefore, as the DFA progresses, it also creates the event list. Every time a
start-tag, end-tag, or character content SAX event is recognized, its corresponding node
is linked to the last such node. This creates the list in SAX event order, which is actually
the same as XML document order.

For well-formed XML fragments, the start-tags and end-tags inside will be all paired,
thus, the stack at the end of parsing such fragment will be empty. But because the XML
fragments are partitioned in an arbitrary manner, there will usually be more start-tags
than end-tags, or more end-tags than start-tags. If there are more start-tags than end-
tags, there will be start-tags remaining on the stack when this stage finishes a chunk.
This stack is preserved for merging in the next stage. The output of this stage is thus a
set of tree fragments, and a stack remnant, as shown in Figure 3. The nodes in the tree
fragments are linked together in a SAX event list in addition to the tree links.

3.4 Stage Three (MERGE): Merge Tree Fragments

The result of the BUILD stage are disconnected tree fragments. These fragments are not
connected to the root, or nodes in previous chunks, and so namespace prefix lookups
cannot be done. The purpose of the MERGE stage is thus to merge these fragments into
the main, existing tree. The merge is performed using the stack from the tree fragment
created from the preceding chunk, and the event list of the successor chunk. The merge
occurs by traversing the successor fragment event list and matching certain nodes to the
predecessor stack, but in such a manner that only the top edge of the successor fragment
is traversed, since only the top edge of the successor fragment needs to be merged.
The internal portion of the successor fragment is already complete. The algorithm for



150 Y. Pan, Y. Zhang, and Kenneth Chiu
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stack

Content Content Content

Event list: <a> <b> C1 <c>

</c> C2 </b> <d> <e> </e> C3

Fig. 3. This diagram shows a tree fragment
created by the BUILD stage. Solid-line ar-
rows show actual child links. Dotted line
arrows show conceptual child relationships
that are not embodied via actual pointers.
The dashed line shows how the nodes are
linked into an event list for this fragment.
The start-tag stack holds unclosed start-
tags, to be closed in later fragments.

</d>

<b> </b>

Event list

<a>
<f>

Start-tag
stack

<d>

<a>

</c><c>

C1

Content

 Predecessor fragment
Successor fragment

<f>

<e> </e>

Fig. 4. This diagram shows two tree fragments
immediately after they have been merged, in-
cluding the stack after the merge. Nodes <e>,
</e>, </c>, and <f> were in the successor
fragment, while the other nodes were in the pre-
ceding fragment. The double vertical line be-
tween nodes c1 and <e> shows the division
between the event list of the predecessor tree
fragment from the event list of the successor
tree fragment. If successor fragment is not the
last fragment in the document, some start-tags
will be unclosed, such as <a> and <f> in this
example.

merging is given in Algorithm 1. Figure 4 shows two tree fragments after they have
been merged.

In addition, the chunking process of the PREPARSE stage creates chunk boundaries
which fall at arbitrary character positions. Thus, some XML syntactic units, such as
an element name, will be split across two chunks. The MERGE stage also resolves
these split units, completing them so that their corresponding nodes can be processed
normally in later stages.

3.5 Stage Four (LOOKUP): Namespace Prefix Lookup

The purpose of this stage is to lookup namespace prefixes. The actual lookup is per-
formed by going up the tree to the root. But the order in which nodes undergo lookup
processing is top-down. In other words, a child cannot undergo lookup processing un-
less its parent has already undergone the LOOKUP stage. Thus, lookup processing is
ordered using a parallel depth-first traversal of the main tree.

To assist in load-balancing, work queues of nodes that should next be traversed are
maintained. These queues essentially contain nodes that are at the “traversal front”.
Each thread maintain a work queue of rooted sub-trees, represented by the root node of
the sub-tree. As each sub-tree root is processed, each child of this root then becomes the
root of another, new sub-tree, and so is added to the thread-local work queue. Because
new tree fragments are being merged into the main tree concurrently with this traversal,
it is possible that after a node is processed, there are still unmerged, “future” children.
These children would not be added to the local work queue, because they were not
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Algorithm 1: Merge two tree fragments

Data: Tree fragment prev, Tree fragment next
Result: The merged tree fragment into prev
EventNode p ← next.event list.head;
while p exists AND prev.stack �= ∅ do

if is StartTag(p) then
Set p.parent refer to prev.stack.top();
Link p as a child node of p.parent;
if p.EndTag exists then

p ← p.EndTag;
Set p.parent refer to prev.stack.top();

else
break;

else if is EndTag(p) then
StartElement s ← prev.stack.top();
Set s.EndTag refer to p;
Set p.parent refer to s.parent;
Pop prev.stack;

p ← p.next event;

Stack next.stack onto prev.stack;
Concatenate prev.event list with next.event list;

Fig. 5. The algorithm for merging two tree fragments

linked in as children when the parent was processed, and thus would never be processed
by the LOOKUP stage.

To address this, when a node is merged into the main tree, a check is performed on
the parent node. If the node has already undergone namespace prefix lookup, then the
node is instead added to a global, unassigned work queue. When a thread runs out of
work, it first checks the unassigned work queue, and if non-empty, it grabs it as its new
work.

3.6 Stage Five (INVOKE): Invoke Callbacks

Finally, the actual SAX events must be sent to the application by invoking callbacks. We
assume in this paper that the callbacks must be issued sequentially, though it is possible
that a multi-core enabled application could handle concurrent callbacks in schema types
that are order independent, such as <all>. One way of invoking callbacks would be
to have a single thread invoke them. This would result in poor cache locality, however,
since this thread would likely not belong to the core that last accessed the node currently
being invoked.

To improve locality, we utilize a virtual token that is passed along the SAX event
chain, called the NEXT token. This token is implemented via a flag. To pass the token
from an earlier node to a later node, the flag is set in the later node and cleared in the
earlier node. Chained locking is used to prevent race conditions.

When a thread finishes namespace lookup on a node, it checks to see if it is the next
node, by virtue of holding the token. If it is, it invokes it, and passes the token to the
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next node in the chain, and continues to invoke it also, if it has been completed and is
ready to be invoked. The chain continues until encountering a node that is not ready to
be invoked. Though multiple threads could be in the LOOKUP stage at the same time,
the mechanism used to pass the token down the chain ensures that the INVOKE stage
is sequential.

Another way of doing something similar would be have a special global pointer that
always points to the next node to be invoked. This would require that all cores continu-
ously read and update the same pointer, however. By using the NEXT token, we avoid
excessive operations to the same memory location, avoiding cache-line ping-pong.

3.7 Execution

One way of implementing the stages would be to start a set of threads for every stage,
with each sequential stage having just one thread. Parallel stages would have as many
threads as there are cores. This architecture relies on the OS to perform all scheduling,
however. Furthermore, as work moves along the pipeline, it may jump from one core to
another, resulting in poor cache locality.

To address this, another way of implementing the stages is to represent each stage
as a set of work units, and is what we use. Each thread then examines each stage, and
decides what work to pick up. Once a thread accepts work, it can perform more than
one stage on the same data, improving cache locality. In other words, rather than cores
exhibiting affinity to stages, cores exhibit affinity to data, and so the core and the data
move together through the stages.

At the beginning of execution, a thread is started for every core. It then executes a
main loop that examines each stage, deciding which stage has work that should be done,
and of those, which stage has the highest priority work. It first checks to see whether
or not there is any unassigned LOOKUP stage work to perform. If so, it accepts that
work. If not, it then checks to see whether or not there is any new data to be read
from the network and pushed through the PREPARSE stage. After pushing the data
through the PREPARSE stage, the same thread will execute BUILD and MERGE on it.
All LOOKUP stage work is initiated through the unassigned work list. INVOKE stage
work is initiated internally by the LOOKUP stage itself. If there is no work in the main
loop, work stealing is done from a randomly chosen victim. We currently only steal a
single sub-tree from a thread at a time, rather than half of the remaining work.

Thus, this is an explicit form of scheduling, which gives us control over what work to
do next. Note that if we simply had a set of threads for each stage, the OS may decide to
run a thread which is runnable, but may not be best choice for temporal cache locality
or other efficiency reasons.

3.8 Memory Management

Memory management is a challenging problem in parallel programs. The complex, dy-
namic data structures needed for load-balancing and concurrency, complicate determin-
ing exactly when an object can be freed. To handle this, we have adopted the commonly
used technique of reference counting. In this technique, a count is maintained with ev-
ery object, indicating the number of pointers that are currently pointing to it. When
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the count goes to zero, this means that the object is no longer referenced, and can be
freed. Atomic increment and decrement operations are used to reduce the cost of lock-
ing needed to maintain the counts.

Another issue is thread-optimized memory allocation. This has been the subject of
significant research, and since our goal in this paper is not to address this separate topic,
we use a simple, free list that we maintain separately for each thread. Thread specific
data is used to keep the bookkeeping for each thread separate from the others, thus
obviating the need for expensive locking.

4 Performance Results

Our experiments were conducted on a 8-core Linux machine with two Intel Xeon L5320
CPUs at 1.86 GHz. Each test was run five times and the first measurement was dis-
carded, so as to measure performance with the file data already cached. The remaining
measurements were averaged. The programs were compiled with g++ 4.0 with the op-
tion -O. The SAX callbacks fulfilled by our hybrid parallel SAX parser are based on the
SAX2 [1,3] API, through a C++-style binding. The test file is a file named 1kzk.xml
which contains molecular information representing the typical shape of XML docu-
ments. We obtained this XML document from the Protein Data Bank [16]. We varied
the number of atoms in the document to create a 34 MB XML document.

The speedup of our parallel SAX parser is shown in Figure 6. The speedup is com-
pared to our parallel SAX parser running with one thread. We obtain reasonable speedup
up to about six or seven cores. The corresponding wall clock time is shown in Figure 8.
To get a better sense of scalability, we plot the parallel efficiency in Figure 7.

To investigate where time was being spent, we also graphed the time spent in the
PREPARSE, BUILD, and MERGE stages, in Figures 9, 10, and 11, respectively.
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Measurements for these were done using using the real-time cycle counter based clock
available on Intel CPUs. The BUILD time is summed over all threads, and so is greater
than the total wall clock time given in Figure 8. The PREPARSE stage is currently se-
quential, and takes a relatively small amount of the total time. We note that the time
spent in this stage does not have the same type of impact that would result from us-
ing this directly in an Amdahl’s Law calculation, as explained in Section 2.1. This is
because this PREPARSE stage is pipelined with other stages. Eventually, however, fur-
ther improvements in scalability will need to address the PREPARSE stage. In previous
work [11], we have shown how to parallelize the preparsing, and so this work would
need to be incorporated at some point. The MERGE stage is currently sequential, but
could actually be parallelized. That is, it is possible to merge fragment F1 and F2 at the
same time that F2 is being merged with F3. We note that the MERGE stage takes a rela-
tively small fraction of the total time, however, so parallelizing it might be of somewhat
lower priority.

To investigate how to improve scalability further, we conducted additional timing
tests, and manually instrumented the code. Part of the problem is due simply to load bal-
ancing. Some thread convoy effects are causing some periods of idle threads, which are
exacerbated when the number of cores are high. Better work-stealing, better schedul-
ing, and perhaps introducing feedback though control-theoretic techniques can improve
this. Another problem is that large XML documents tend to be broad, and thus have an
upper-level node that has a large number of children. This results in a hot-spot on the
child list of that node, and also the reference count. This can partially be seen by the
fact that even though the total amount of work remains constant, the time taken by the
BUILD stage increases as the number of threads increases. Future work will address
this by using shadow nodes to turn long children lists into trees of descendants, thereby
reducing hot-spots. The shadow nodes will help disperse the hot spots, but will simply
be skipped during callbacks.

5 Conclusion

To improve memory usage and performance, streaming XML applications are common-
place. For these, SAX-style parsing is the natural choice due to the stream-orientation of
event-based callbacks. However, since XML is inherently sequential, parallelization of
SAX-style parsing is challenging. To address this, we have devised a parallel, depth-first
traversal technique for streaming trees that is effective in parallel, SAX-style parsing of
XML. We have shown how this can be used in a five-stage hybrid pipeline which ef-
fectively extracts data parallelism from the parsing process, allowing multiple cores to
work concurrently within those stages. The sequential requirements of the SAX parsing
will be fulfilled by sequential stages. Since the major computational work are done by
the data parallel stages, we are able to achieve good performance gain. The design of
this approach allows the flexible utilization of a varying number of cores.

Using this approach, we show scalability up to about 6 or 7 cores. As manufacturers
increase the number of cores, our future work will seek to further reduce the sequential
stages, and thus exploit future CPUs. Techniques such as lock-free synchronization may
also be employed to reduce synchronization costs. We note that when considering the
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scalability of processing that has not been parallelized by previous research, the alterna-
tive is not to use parallelism at all, which would result in no speedup. For applications
that can benefit from faster SAX performance, cores may end up being wasted.
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Abstract. Emerging deadline-driven Grid applications require a num-
ber of computing resources to be available over a time frame, starting
at a specific time in the future. To enable these applications, it is im-
portant to predict the resource availability and utilise this information
during provisioning because it affects their performance. It is impracti-
cal to request the availability information upon the scheduling of every
job due to communication overhead. However, existing work has not
considered how the precision of availability information influences the
provisioning. As a result, limitations exist in developing advanced re-
source provisioning and scheduling mechanisms. This work investigates
how the precision of availability information affects resource provision-
ing in multiple site environments. Performance evaluation is conducted
considering both multiple scheduling policies in resource providers and
multiple provisioning policies in brokers, while varying the precision of
availability information. Experimental results show that it is possible to
avoid requesting availability information for every Grid job scheduled
thus reducing the communication overhead. They also demonstrate that
multiple resource partition policies improve the slowdown of Grid jobs.

1 Introduction

Advances in distributed computing have resulted in the creation of computa-
tional Grids. These Grids, composed of multiple resource providers, enable col-
laborative work and resource sharing amongst groups of individuals and organi-
sations. These collaborations, widely known as Virtual Organisations (VOs) [1],
require resources from multiple computing provider sites, which are generally
clusters of computers managed by queueing-based Resource Management Sys-
tems (RMSs), such as PBS and Condor.

Emerging deadline-driven Grid applications require access to several resources
and predictable Quality of Service (QoS). A given application may require a
number of computing resources to be available over a time frame, starting at a
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specific time in the future. However, it is difficult to provision resources to these
applications due to the complexity of providing guarantees about the start or
completion times of applications currently in execution or waiting in the queue.
Current RMSs generally use optimisations to the first come first served policy
such as backfilling [2] to reduce the scheduling queue fragmentation, improve
job response time and maximise resource utilisation. These optimisations make
it difficult to predict the resource availability over a time frame as the jobs’ start
and completion times are dependent on resource workloads.

To complicate the scenario further, users may access resources via mediators
such as brokers or gateways. The design of gateways that provision resources
to deadline-driven applications relying on information given by current RMSs
may be complex and prone to scheduling decisions that are far from optimal.
Moreover, it is not clear how gateways can obtain information from current
RMSs to provision resources to QoS demanding applications. Existing work
on resource provisioning in Grid environments has used conservative backfill-
ing wherein the fragments of the scheduling queue are given to be provisioned
by a broker [3]. These fragments are also termed availability information or free
time slots. We consider impractical to request the free time slots from providers
upon the scheduling of every job due to potential communication overhead.

In this paper, we investigate how the precision of availability information af-
fects resource provisioning in multiple site environments. In addition, we enhance
traditional schedulers, allowing the obtention of availability information required
for resource provisioning. We evaluate the reliability of the provided information
under varying conditions by measuring the number of provisioning violations.
A violation occurs when the information given by the resource provider turns
out to be incorrect when it is used by the gateway. Additionally, we evaluate
the impact of provisioning resources to Grid applications on providers’ local re-
quests by analysing the job bounded slowdown. We investigate whether EASY
backfilling [4] and multiple partition policies provide benefits over conservative
backfilling if job backfilling is delayed, enabling large time slots to be provided
to the gateway.

2 Related Work

The performance analysis and the policies proposed in this work are related to
previous systems and techniques in several manners.

Modelling providers’ resource availability: AuYoung et al. [5] consider a
scenario wherein service providers establish contracts with resource providers.
The availability information is modelled as ON/OFF intervals, which correspond
to off-peak and peak periods respectively. However, they do not demonstrate in
practice how this information can be obtained from RMSs.

Advance reservations and creation of alternatives to rejected requests:
Mechanisms for elastic advance reservations and generation of alternative time
slots for advance reservation requests have been proposed [6,7]. These models can
be incorporated in the provisioning scenario described in this work to improve
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resource utilisation and generate alternative offers for provisioning violations.
However, we aim to reduce the interaction between resource providers and gate-
ways by allowing the providers to inform the gateways about their spare capacity.
We focus on how the availability information can be obtained from RMSs and
how reliable it is under different conditions.

Multiple resource partition policies: Work on multiple resource partitions
and priority scheduling has shown to reduce the job slowdown compared to
EASY backfilling policies [8]. We build on this effort and extend it to enable other
multiple partition policies. We also propose a new multiple resource partition
policy based on load forecasts for resource provisioning.

Resource allocation in consolidated centres: Padala et al. [9] apply con-
trol theory to address the provision of resources to multi-tier applications in a
consolidated data centre. Garbacki and Naik [10] consider a scenario wherein cus-
tomised services are deployed on virtual machines which in turn are placed into
physical hosts. Although the provisioning of resources to applications in utility
data centres is important, here we focus on traditional queue-based RMSs.

Resource provisioning: Singh et al. [3,11] present a provisioning model where
Grid sites provide information on the time slots over which sets of resources
are available. The sites offer their resources to the Grid in return for payments,
thus they present a cost structure consisting of fixed and variable costs over
the resources provided. The main goal is to find a subset of the aggregated
resource availability, termed as resource plan, such that both allocation costs
and application makespan are minimised. Our work is different in the sense that
we investigate multiple approaches to obtain availability information and how
reliable this information can be in multiple site environments.

3 Multiple-Site Resource Provisioning

The multiple site scenario is depicted in Figure 1, which shows DAS-2’s config-
uration used later in the experiments. A Resource Provider (RP) contributes a
share of computational resources to a Grid in return for regular payments. An
RP has local users whose resource demands need to be satisfied, yet it delegates
provisioning rights over spare resources to an InterGrid Gateway (IGG) by pro-
viding information about the resources available in the form of free time slots.
A free time slot describes the number of resources available, their configuration
and time frame over which they will be available. The delegation can be made
through a secure protocol such as SHARP [12].

A Grid can have peering arrangements with other Grids managed by IGGs
and through which they co-ordinate the use of resources. This work does not ad-
dress peering arrangements [13]. Here, we investigate how an IGG can provision
resources to applications based on the availability information given by RPs.

Problem Description: An IGG attempts to provision resources to meet its
users’ QoS demands, improve the job slowdown and minimise the number of
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Fig. 1. Resource providers contribute to the Grid but have local users

violations. A violation occurs when a user tries to use the resources allocated by
the IGG and they are no longer available due to wrong or imprecise availability
information given by the RP. RPs, on the other hand, are willing to increase the
resource utilisation without compromising their local users requests. IGG should
achieve allocations that minimise the response time and slowdown of Grid users’
requests without perceivable impact on the slowdown of the RPs’ local requests.

Grid Requests: A request received by an IGG is contiguous and needs to be
served with resources from a single resource provider. They contain a description
of the required resources and the time duration over which they are required.
A request can demand either QoS or a best effort service. A QoS constrained
request has an execution estimate, a deadline and a ready time before which the
request is not available for scheduling. A best effort job has an execution time
estimate but does not have a deadline.

4 Policies Investigated

We have extended traditional scheduling policies in order to obtain the free time
slots from resource providers. The policies utilise an ‘availability profile’ similar
to that described by Mu’alem and Feitelson [2]. The availability profile is a list
whose entries describe the CPUs available at particular times in the future. These
entries correspond to the completion or start times of jobs and advance reserva-
tions. By scanning the availability profile and using other techniques described
here, the resource providers inform the gateway about the free time slots; the
gateway in turn can carry out provisioning decisions based on this information.

Conservative Backfilling Based Policies: Under conservative backfilling, a
job is used to backfill and start execution earlier than expected, given that it does
not delay any other job in the scheduling queue [2]. In order to reduce complexity,
the schedule for the job is generally determined at its arrival and the availability
profile is updated accordingly. Given those conditions, it is possible to obtain
the free time slots by scanning the availability profile. This approach, depicted
in Figure 2a, was also used by Singh et. al [3,11]. In that case, the availability
profile is scanned until a given time horizon thus creating windows of availability
or free time slots; the finish time of a free time slot is either the finish time of
a job in the waiting queue or the planning horizon. We have also implemented
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Fig. 2. Obtaining free time slots: (a) conservative backfilling, (b) multiple partitions

a conservative backfilling policy that uses multiple resource partitions based on
the EASY backfilling proposed by Lawson and Smirni [8].

Multiple Resource Partition Policies: We have implemented 3 policies based
on multiple resource partitions. In our implementation, each policy divides the
resources available in multiple partitions and assigns jobs to these partitions ac-
cording to partition predicates. A partition can borrow resources from another
when they are not in use by the latter and borrowing is allowed by the sched-
uler. One policy implements the EASY backfilling (also termed as aggressive
backfilling) described by Lawson and Smirni [8]. In this case, each partition uses
aggressive backfilling and has a pivot, which is the first job in the waiting queue
for that partition. A job belonging to a given partition can start its execution if
it does not delay the partition’s pivot and the partition has enough resources.
In case the partition does not have enough resources, the job can still start ex-
ecution if additional resources can be borrowed from other partitions without
delaying their pivots. Additionally, the policy uses priority scheduling wherein
the waiting queue is ordered by priority when the scheduler is backfilling. In
order to evaluate this policy, we attempt to maintain the configuration provided
by Lawson and Smirni [8], which selects partitions according to the jobs’ run-
times. The partition p ∈ {1, 2, 3} for a job is selected according to Equation 1,
where tr is the job’s runtime in seconds.

p =

8><
>:

1, 0 < tr < 1000
2, 1000 � tr < 10000
3, 10000 � tr

(1)

We also introduce a new policy, depicted in Figure 2b, in which, the partitions
are resized by the scheduler at time intervals based on a load forecast computed
from information collected at previous intervals. As load forecasts are prone to
be imprecise, when the scheduler resizes partitions, it also schedules reallocation
events. At a reallocation event, the scheduler evaluates whether the load forecast
has turned out to be an underestimation or not. If the load was underestimated,
the policy resizes the partitions according to the load from the last resizing
period until the current time and backfill the jobs, starting with the local jobs.
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Algorithm 1. Provider’s load forecasting policy

procedure getFreeTimeSlots()1
begin2

set number of pivots of local and Grid partitions to ∞3
schedule / backfill jobs in the waiting queue4
set number of pivots of local and Grid partitions to 15
actualLoad ← load of waiting/running jobs6
forecast ← get the load forecast7
percToProvide ← min{0, 1 − actualLoad}8
slots ← obtain the free time slots9
slots ← resize slots according to percToProvide10
if percToProvide > 0 then11

inform gateway about slots and schedule reallocation event12

schedule next event to obtain free time slots13
end14

procedure reallocationEvent()15
begin16

localLoad ← obtain the local load17
forecast ← get the previously computed forecast18
if localLoad > forecast then19

set number of pivots of local partition to ∞20
schedule / backfill jobs in the waiting queue21
set number of pivots of Grid partition to ∞22
schedule / backfill jobs in the waiting queue23
slots ← obtain the free time slots24
inform gateway about slots25

else26
schedule next reallocation event27

end28

We use EASY backfilling with configurable maximum number of pivots, similarly
to MAUI scheduler [14]. The policy can be converted to conservative backfilling
by setting the number of pivots to a large value, here represented by ∞.

Algorithm 1 describes two procedures of the load forecast policy; getFreeTimeS-
lots is invoked when the provider needs to send the availability information to the
IGG whereas reallocationEvent is triggered by getFreeTimeSlots to verify whether
the previous forecast has turned out to be precise or if a reallocation is required.
From line 1 to 1 the scheduler becomes conservative backfilling based by setting
the number of pivots in each partition to∞. It also schedules the jobs in the wait-
ing queue. After that, the scheduler returns to EASY backfilling (line 1). Then,
from line 1 to 1, the scheduler obtains the load forecast and the free time slots,
which are resized by modifying the number of CPUs according to the number of
resources expected to be available over the next interval. Next, the scheduler trig-
gers a reallocation event. At line 1 the scheduler verifies whether the forecast was
underestimated. If that is the case, it turns the policy to conservative backfilling
and informs the gateway about the availability. We have also implemented a mul-
tiple resource partition policy based on conservative backfilling.

The policies we consider for the gateway are described as follows:

-Least loaded resource: The gateway submits a job to the least loaded
resource based on utilisation information sent by the resource providers
every ten minutes.
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-Earliest start time: This policy is employed for best effort and deadline
constrained requests when the resource providers are able to inform the
gateway about the free time slots. When scheduling a job using this policy,
the scheduler is given the provider’s availability information and the job.
If the providers send the information at regular time intervals, this infor-
mation is already available at the gateway; otherwise, the gateway requests
it from the resource providers. If the job is not deadline constrained, the
gateway selects the first provider and submits the job to it. When the job
is deadline constrained, the gateway attempts to make a reservation for it.
If the reservation cannot be accepted by the provider, the provider updates
its availability information at the gateway.

5 Performance Evaluation

5.1 Scenario Description

We have modelled DAS-2 Grid [15] configuration because job traces collected
from this Grid and its resources’ configuration are publicly available and have
been previously studied [16]. As depicted beforehand in Figure 1, DAS-2 is a Grid
infrastructure deployed in the Netherlands comprising 5 clusters. The evaluation
of the proposed mechanism is performed through simulation by using a modi-
fied version of GridSim.1 We resort to simulation as it provides a controllable
environment and enables us to carry out repeatable experiments.

The resource providers’ workloads have been generated using Lublin and Fei-
telson [17]’s model, here referred to as Lublin99. Lublin99 has been configured
to generate four month long workloads of type-less jobs (i.e. we do make distinc-
tions between batch and interactive jobs); the maximum number of CPUs used
by the generated jobs is set to the number of nodes in the clusters. Grid jobs’
arrival rate, number of processors required and execution times are modelled
using DAS-2 job trace available at the Grid Workloads Archive.2 We use the
interval from the 9th to the 12th month. The jobs’ runtimes are taken as runtime
estimates. Although this generally does not reflect the reality, it provides the
basis or bounds for comparison of scheduling approaches [18].

To eliminate the simulations’ warm up and cool down phases from the results,
the last simulated event is the arrival of the last job submitted in any of the
workloads and we discard the first two weeks of the experiments. In the case
of the forecast based policy, the second week is used as training period. We
select randomly the requests that are deadline constrained. In order to generate
the request deadlines we use a technique described by Islam et al. [19], which
provides a feasible schedule for the jobs. To obtain the deadlines, we perform the
experiments by using the same Grid environment using aggressive backfilling at
the resource providers and ‘submit to the least loaded resource’ policy at the
gateway. A request deadline is the job completion under this scenario multiplied
1 More information available at: http://www.gridbus.org/intergrid/gridsim.html
2 Grid Workloads Archive website: http://gwa.ewi.tudelft.nl/pmwiki/
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by a stringency factor. The load forecasting uses a weighted exponential moving
average [20], considering a window of 25 intervals.

Performance Metrics: One of the metrics considered is the bounded job slow-
down (bound=10 seconds) hereafter referred to as job slowdown for short [18].
Specifically, we measure the bounded slowdown improvement ratio R given by
Equation 2, where sbase is the job slowdown using a base policy used for com-
parison; and snew is the job slowdown given by the policy being evaluated. We
calculate the ratio R for each job and then take the average. The graphs pre-
sented in this section show average ratios.

R =
sbase − snew

min(sbase, snew)
(2)

We also measure the number of violations and messages exchanged between
providers and IGG to schedule Grid jobs. The reduction in the number of mes-
sages required is used for estimating the tradeoff between precision of information
and communication overhead. A given job j faces a violation when the inequality
jpst − jgst > T is true, where jgst is the job start time assigned by the gateway
based on the free time slots given by providers; jpst is the actual job start time
set by the provider’s scheduler; and T is a tolerance time. The experiments
performed in this work use a T of 20 seconds. A violation also occurs when a
resource provider cannot accept a reservation request made by the gateway.

Policy Acronyms: Due to space limitations, we abbreviate the name of the
evaluated policies in the following manner. A policy name comprises two parts
separated by +. The first part represents the policy employed by the provider
whereas the second is the gateway policy. In the resource provider’s side, Ar
stands for Advance reservation, Eb for EASY backfilling, Cb for Conservative
backfilling, M for Multiple partitions and Mf for Multiple partitions with load
forecast. For the gateway’s policy, least-load means ‘submit to least loaded
resource’, earliest represents ‘select the earliest start time’, partial indicates
that providers send free time slot information to the gateway on a periodical
basis and ask means that the gateway requests the free time slot information
before scheduling a job. For example, ArEbMf+earliest-partial indicates that
providers support advance reservation, EASY backfilling, multiple partitions and
load forecasts, whereas the gateway submits jobs selecting the earliest start time
based on the availability information sent by providers at regular intervals.

5.2 Experimental Results

The first experiment measures the number of messages required by the policies
supporting advance reservation and conservative backfilling (i.e. ArCb), both
that request the free time slots and those in which the time slots are informed
by providers at time intervals. We investigate whether we can reduce the number
of messages required by making the resource providers publish the availability
information at gateways at time intervals. We vary the interval for providing the
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availability information; we also measure the number of violations and average
job slowdown to check the tradeoff between the precision of scheduling decisions
and the freshness of the information. The planning horizon is set to∞, so that a
provider always informs all the free time slots available. In addition, we consider
a two phase commit protocol for advance reservations. The time interval for
providing the time slots to the gateway is described in the last part of the name
of the policies (e.g. 15 min., 30 min.). The stringency factor is 5 and around 20%
of the Grid requests are deadline constrained.
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Fig. 3. ArCb+earliest-* policies: (a) number of messages; (b) number of violations;
and (c) average job slowdown

Figure 3a shows that the number of messages required by the policy in
which the gateway asks for the time slots upon the schedule of every job (i.e.
ArCb+earliest-ask) is larger compared to other policies. In contrast, policies that
provide the free time slots at regular intervals or when an advance reservation
request fails lead to a lower number of messages.

The number of violations increases as the providers send the availability in-
formation at larger intervals (Figure 3b). If the scheduling is made based on
information provided every 15 minutes, the number of violations is 973, which
accounts for 0.43% of the jobs scheduled. To evaluate whether these violations
have an impact on the resource provisioning for Grid jobs, we measure the av-
erage bounded slowdown of Grid jobs (Figure 3c). As shown in the figure, there
is an increase in the job slowdown as the interval for providing the free time
slots increases. However, when the providers send availability information every
15 minutes, the average slowdown is improved. We can conclude that for a Grid
like DAS-2 wherein providers send the availability information at intervals of
15 to 30 minutes resource provisioning can be possible using a simple policy
supporting conservative backfilling.

The second experiment measures the average of jobs ratio R described in
Equation 2 proposed by Lawson and Smirni [8]. The values presented in the
graphs are averages of 5 simulation rounds, each with different workloads for
providers’ local jobs. The set of policies used as basis for comparison are EASY
backfilling in the providers and ‘submit to the least loaded resource’ in the gate-
way. This way, the experiment measures the average improvement ratio wherein
the base policies are EASY backfilling and submit to the least loaded resource.
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The resource providers send the availability information to the gateway every
two hours. In this experiment we do not consider deadline constrained requests,
as they could lead to job rejections by some policies, which would then impact
on the average bounded slowdown.

The results conservative backfilling and ‘least loaded resource’ policies (i.e.
ArCb+least-load and ArCbM+least-load) tend to degrade the bounded slow-
down of Grid jobs (Figure 4a). The reason is that submitting a job to the least
loaded resource, wherein utilisation is computed by checking how many CPUs
are in use at the current time, does not ensure immediate start of a job because
other jobs in the waiting queue may have been already scheduled. Moreover, the
gateway is not aware of the time slot the job will in fact utilise.
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The multiple resource partition policies with conservative backfilling without
priorities and providing the free time slots to the gateway improve the average
slowdown of both Grid jobs (Figure 4a) and providers’ local jobs (Figure 5b).
ArEbM+least-load, proposed by Lawson and Smirni [8], improves the slowdown
of local jobs (Figure 4b) providing little changes in the slowdown of Grid jobs.
That occurs because in the original implementation of this policy, higher priority
is given to local jobs. The EASY backfilling policy that resizes the resource
partitions according to load estimates improves the slowdown of both Grid jobs
(Figure 4a) and providers’ local jobs but not as much as that of the other multiple
partition policies.

We also vary the intervals for providing the free time slots in the previous ex-
periment. Figure 5a shows that for small planning horizons, the multiple resource
partition policy with EASY backfilling and load estimates (i.e. ArEbMf+earliest-
partial) improves the average ratio, but not as much as the other policies. However,
as the time interval for providing the availability information increases, the policy
outperforms the other multiple partition policies. The slowdown improves com-
pared to the other policies when the interval increases. The reason for the better
performance under long intervals is probably because if a load estimate is wrong,
the policy becomes a multiple partition conservative backfilling. When an incor-
rect estimate is identified in a long interval, it may take a while to approach the
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next interval when the policy will become EASY backfilling again. This conser-
vative backfilling provides a better slowdown and updating the availability in the
middle of an interval provides an advantage over the other policies. However, to
confirm that, we require further investigation. Furthermore, we expect that better
load forecast methods can improve the jobs slowdown under varying intervals.

6 Conclusions and Future Work

This work investigates resource provisioning in multiple site environments. It
evaluates whether it is possible to provision resources for Grid applications based
on availability information given by resource providers using existing resource
management systems. We present empirical results that demonstrate that in an
environment like DAS-2, a gateway can provision resources to Grid applications if
the resource providers inform the available time slots between 15 and 30 minutes.
Additionally, multiple resource partition policies can improve the slowdown of
both local and Grid jobs if conservative backfilling is used. Future investigations
include more sophisticated resource provisioning policies for the gateways and
more accurate load forecasting techniques.
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Abstract. This paper introduces an open computing resource management 
framework for real-time computing systems. The framework is modular and 
consists of a general computing resource modeling that facilitates a policy-
based (open) computing resource management. The computing resource model-
ing contains two resource model templates, which may be instantiated as often 
as necessary to capture a platform’s computing resources and an application’s 
computing requirements. The computing resource management approach fea-
tures a parametric algorithm (tw-mapping with window size w) and a generic 
and parametric cost function, which implements the computing resource man-
agement policy. We present simulations using a simple instance of this cost 
function to demonstrate the suitability and versatility of the framework. We 
compute a metric that relates the computing resource management success to its 
complexity and conclude that adjusting the cost function’s parameter is more 
efficient than augmenting the tw-mapping’s window size. 

Keywords: computing resource management, real-time computing, open 
framework. 

1   Introduction 

Many applications require huge amounts of computing resources. Multimedia appli-
cations or mobile communications systems, for example, need high processing pow-
ers for real-time data processing. Moreover, applications are often personalized for a 
particular user or user group, which demands more and more sophisticated services. 
This includes communication services but also other types of popular services, such 
as videostreaming. The solution to these computing demands is multiprocessing, 
where applications are processed in parallel on arrays of processors that offer much 
higher processing powers than single-processor execution environments. A single 
application can, generally, be parallelized and may then be executed together with 
other applications. In software-defined radio (SDR) [1], for example, a single-user 
mobile terminal would normally execute only a few applications, the radio and user 
applications in the most basic case, whereas a multi-user base station serves many 
users at a time and thus executes many applications concurrently. 

Parallel or multiprocessing is more complicated than sequential processing because 
the available resources need to be shared spatially and temporally. A single processor 
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executes applications sequentially, where pseudo-parallelism is achieved through 
assigning processing time slots to different applications or application’s parts. Multi-
processor execution environments, on the other hand, allow for distributed computing, 
enabling true parallelism. The distributed resources though require an appropriate 
computing resource management. Computing resources include processing powers, 
inter-processor bandwidths, memory, and energy resources; in general, all those re-
sources that are required for the execution of applications. Their time management is 
necessary for a real-time execution. 

This paper introduces a new approach to real-time computing resource management. 
It presents a general framework that can efficiently manage the limited computing re-
sources of multiprocessor platforms while providing the necessary amount of resources 
to real-time applications. The framework is not optimized for a specific objective but 
rather open to different management policies. We call this an open computing resource 
management framework. It is more general than our earlier proposal [2]. 

This framework bases itself on previous research results (section 2). It is a modular 
design that consists of two principal modules: the computing system modeling (sec-
tion 3) and the computing resource management (section 4). The letter is further di-
vided into the mapping algorithm (section 4.1) and the cost function (section 4.2). 
This modular design, in particular, the independence between the algorithm and its 
objective (cost function), facilitates exchanging the computing resource management 
policy. Numerous simulations demonstrate the versatility and suitability of the entire 
framework (section 5), leading to interesting conclusions that pave the path for future 
research (section 6). 

2   Related Work 

This work focuses on real-time computing systems. It particularly addresses real-time 
capable execution environments of limited computing resources and applications with 
real-time processing demands. We assume that the system’s constraints─the applica-
tions’ real-time computing requirements and the platforms’ limited computing re-
sources─have just to be met. Additional or other objectives, such as speeding up an 
application (more than strictly necessary to meet the given timing constraints), are 
thus irrelevant here. The framework accounts for platforms and applications with 
heterogeneous computing resources and requirements (heterogeneous computing). 

Related work considers almost any problem and objective in heterogeneous com-
puting. A vast amount of literature particularly addresses the mapping of real-time 
applications to multiprocessor platforms and the scheduling of processes and data 
flows. We consider mapping and scheduling as two complementary computing re-
source management methods and try to generalize previous efforts in heterogeneous 
computing, taking advantage of their results and conclusions. Due to space limita-
tions, the following paragraphs detail only a few related contributions. 

References [3] and [4] address the problem of optimally allocating periodic tasks, 
which are subject to task precedence and timing constraints, to processing nodes of a 
distributed real-time system. The efficient local scheduling of tasks in a real-time 
multiprocessor system is the topic of [5]. If a task’s deadline cannot be met on a 
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particular processing node, this task can be sent to another node [6]. The task model, 
which is identical in both papers, accounts for worst case computation times, dead-
lines, and resource requirements; no precedence constraints are assumed. 

Instead of assuming worst-case application requirements, [7] proposes to adapt the 
resource allocation to face the runtime changes in the application environment. It 
describes and evaluates models and mechanisms for adaptive resource allocation in 
the context of embedded high performance applications with real-time constraints. 
Based on the same principle, [8] presents a mathematical modeling for an adaptive 
resource management in dynamic application environments. It precisely models fixed 
hardware─a network of processors─and dynamic, real-time software at different 
abstraction layers. It also proposes a framework for allocation algorithms, supporting 
the three constraints application-host validity, minimum security level, and real-time 
deadlines, while maximizing the overall utility of the system. Security is a common 
issue in recent publications, such as [9] which allocates computing resources to real-
time and security-constrained parallel jobs. 

A list scheduling framework for the run-time stabilization of static and dynamic 
tasks with hard and soft deadlines, respectively, is described in [10]. It allows for 
dynamic or static task-to-processor allocations and implements mechanisms that con-
trol the degree of resource reclaiming to increase the processor utilization and the 
response time of the dynamic workload. Reference [11] tackles hard real-time stream-
ing applications in a scenario where jobs enter and leave a particular homogeneous 
multiprocessor system at any time during operation. It combines global resource allo-
cation (mapping) with local resource provisioning (scheduling). 

Other related contributions are [12]-[14]. Although they do not specifically address 
real-time systems, they deal with particular aspects that this framework adopts. The 
dynamic level scheduling (DLS) approach [12], for example, accounts for inter-
processor communication overheads. It maps precedence-constrained, communicating 
tasks to heterogeneous processor architectures with limited or irregular interconnec-
tion structures. Alhusaini et al. introduce the problem of resource co-allocation, which 
refers to simultaneous allocations of different types of resources that are shared 
among applications, and formulate the mapping problem in the presence of co-
allocation requirements [13]. Reference [14], finally, introduces a theory for schedul-
ing directed acyclic graphs (DAGs) in internet-based computing. It applies graph 
theory techniques to model precedence-constrained computing tasks and to derive 
optimal schedules for different types of DAGs. 

3   Computing System Modeling 

This section presents a mathematical modeling of computing resources (section 3.1) 
and requirements (section 3.2). It features resource model templates that can be in-
stantiated as many times as necessary to capture the relevant resources and require-
ments. We assume the availability of a middleware or hardware abstraction layer, 
such as [15], that facilitates the information about hardware capacities and software 
requirements in the units specified below. 
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3.1   Computing Resources 

Rt∈  
+
 x + represents the template for modeling the computing environment. ( + 

symbolizes non-negative real numbers.) It is an X(t) times Y(t) matrix (X(t), Y(t)∈ ), 
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where t∈1, 2, …, T denotes the resource model index and T the number of Rt in-
stances. Rt is apt for characterizing different types of computing architectures and 
capturing the available computing resources, such as processing powers and inter-
processor bandwidths. It is therefore unitless. 

R1 = C = [C1, C2, …, CN] MOPS (2) 

models the processing powers of processors P1, P2, …, PN in million operations per 

second (MOPS). It instantiates (1) with X(1) = 1, Y(1) = N, and .1
1 ii CR = Without loss 

of generality, we label devices in order of decreasing processing capacities, that is, C1 
≥ C2 ≥ … ≥ CN. 

R2 = I =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

NNNN

N

N

III

III

III

L

MOMM

L

L

21

22221

11211

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1

1

1

21

221

112

L

MOMM

L

L

NN

N

N

II

II

II

 (3) 

represents the logical interconnection model. A logical link corresponds to a directed 
(unidirectional) communication line between a pair of processor. These logical links 
map to physical links: A logical link between any two processors maps to a physical 
link of a certain bandwidth if the two processors are actually connected; otherwise it 
maps to an imaginary physical link of zero bandwidth. Mathematically, I holds the 
indexes that point to the physical link bandwidths, which we model as 

R3 = B = [B1, B2, B3, …, BN·[N–1]+1] = [∞, B2, B3, …, BN·[N–1]+1] MBPS. (4) 

Bx, where x = I32 for instance, is the maximum bandwidth in mega-bits per second 
(MBPS) that is available for the directed data transfer from the local data memory of 
processor P3 to the local data memory of processor P2. B1 models the processor-
internal bandwidth capacities, assuming direct memory access (DMA) or pointer 
transfers for processor-internal data flows. 

Equations (3) and (4) facilitate modeling shared or bidirectional buses, mapping 
the corresponding logical links to a single entry in B. Unnecessary positions in (4) are 
then filled with zeros. I can be organized in such a way that B2 ≥ B3 ≥ … ≥ BN·[N–1]+1. 

This section has presented three instances of (1); one captures the communication 
architecture (I) and two actual computing resources (C and B). We introduce t’∈1, 2, 
…, T’, which indexes the instances of (1) that are actual computing resources. Then, 



 An Open Computing Resource Management Framework for Real-Time Computing 173 

t’ = 1 and t’ = 2 index C and B. Modeling the actual computing resources per time 
unit facilitates handling real-time applications with limited resources (section 4). 

3.2   Computing Requirements 

Matrix rt∈ +
 x + is the applications’ general computing model. It is, equivalently to 

Rt, an x(t) times y(t) matrix (x(t), y(t)∈ ): 

rt =
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We model an application as M processes that process and propagate data. Then we 
can introduce instances of (5) that correspond to instances (2)–(4) of (1). 

r1 = c = [c1, c2, …, cM] MOPS, (6) 

particularly, resumes the processing requirements of processes p1 to pM. We assume 
that applications’ processing chains represent directed acyclic graphs (DAGs) [12]-
[14]; cyclic dependencies are then process-internal. DAGs can be logically numbered: 
If px sends data to py, then y > x [16]. This leads to 
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and 

r3 = b =[b1, b2, b3, …, bM·[M–1]/2+1] = [0, b2, b3, …, bM·[M–1]/2+1] MBPS. (8) 

Equation (7) indicates an application’s precedence constraints and together with (8) 
represents the dataflow requirements: bx, where x = i12, for instance, is the minimum 
bandwidth that is necessary to transmit data from process p1 to process p2 in real time. 
Unreferenced elements in b are filled with zeros. Organizing the upper diagonal of i 
so that b2 ≥ b3 ≥ … ≥ bM·[M–1]/2+1 facilitates implementing certain mapping techniques. 

Separating the precedence constraints from the bandwidth demands facilitates dis-
tinguishing between dependent and independent data flows. For example, if p1 sends 
the same data to p3 and p4, i13 and i14 may point to the same entry in b (i13 = i14 – de-
pendent data flows), whereas if p1 sends two different data chunks, one to p3 and one 
to p4, i13 and i14 should point to the different entries in b (i13 ≠ i14 – independent data 
flows). This paper considers independent data flows. 

The processing or bandwidth requirements can be obtained from multiplying the 
number of operations or bits that need to be processed or propagated by the available 
time for doing so. This correctly models applications’ real-time requirements. 
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4   Computing Resource Management 

4.1   The tw-Mapping 

The tw-mapping was introduced in [2]. Here we summarize its principal characteris-
tics. It is a windowed dynamic programming algorithm, where w indicates the win-
dow size. It is organized through the tw-mapping diagram (Fig. 1), which contains a 
trellis of N x M (row x column) t-nodes. A t-node is identified as {Pk(l), ps} and ab-
sorbs the mapping of process ps to processor Pk(l). Any t-node at step s (column s in 
the tw-mapping diagram) connects to all t-nodes at step s+1. The sequence of proces-
sors [Pk(0) Pk(1) ... Pk(w)]s identifies the w-path, a path of length w, that is associated 
with {Pk(1), ps}, where Pk(0) is the w-path’s origin processor at step s–1 and Pk(w) the 
destination processor at step s+w–1. Table 1 contains the most important variables 
and expressions that appear in the rest of the paper. 

The main feature of the tw-mapping is that it is cost function independent. That is, 
any cost function can, in principle, be applied. The cost function guides the mapping 
process. It is responsible for managing a platform’s available computing resources 
and an application’s real-time processing requirements (section 4.2). 

The algorithm sequentially pre-assigns, or pre-maps, processes to processors, start-
ing with process p1 and finishing with process pM (parts I and II of the tw-mapping). 
This is followed by a post processing that determines the final mapping (part III). 

Table 1. Ranges and descriptions of variables and expressions 

Variable or     
expression 

Range (Argument range) Description 

N 1, 2, … number of processors 
M 1, 2, … number of processes 
w 1, 2, …, M–1 window size 

k(l) 1, 2, …, N; (l∈0, 1, …, w) 
processor index k(l) with its rela-
tive position l in the w-path 

Pk(l) P1, P2, …, PN processor 
s 1, 2, …, M step index (process index) 
ps p1, p2, …, pM process 

{Pk(l), ps}  
t-node indicating the mapping of ps 
to Pk(l) 

[Pk(0) Pk(1) ... Pk(w)]s (s∈2, 3, …, M–w+1) w-path associated with {Pk(1), ps} 
h = s + (l – 1) (l ≠ 0; s∈2, 3, …, M–w+1) step index h substitutes s + (l – 1) 

[Pk(l–1) Pk(l)]h (l ≠ 0; s∈2, 3, …, M–w+1) 
edge between {Pk(l–1), ph–1} and 
{Pk(l), ph} 

WT[Pk(l–1) Pk(l)]h (l ≠ 0; s∈2, 3, …, M–w+1) edge weight 

Rt’ @{k(l), h}  
remaining computing resources of 
type t’ at {Pk(l), ph} 

rt’ @{k(l), h}  
required computing resources of 
type t’ at {Pk(l), ph} 
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(P1)

(P2)

(P3)

ps–1 ps ps+1 ps+w–2 ps+w–1

…

origin reference
decision  

Fig. 1. Extract of the tw-mapping diagram for three processors (N = 3). The black edges indicate 
those w-paths that are examined at t-node {P1, ps}, assuming w ≥ 3. 

Part I consists of pre-mapping process p1 to all N processors and storing the pre-
mapping costs at t-nodes {P1, p1} through {PN, p1}. Costs are computed due to some 
cost function. 

At step s of part II (2 ≤ s ≤ M–w+1) the tw-mapping examines all Nw w-paths that 
are associated with {Pk(1), ps}. These w-paths originate at a t-node at step s–1, pass 
through {Pk(1), ps}, and terminate at a t-node at step s+w–1. Fig. 1 illustrates this for 
Pk(1) = P1. 

In case that s < M–w+1, the algorithm highlights the edge between a t-node at step 
s–1 and t-node {Pk(1), ps} that corresponds to the minimum-cost w-path. The mini-
mum-cost w-path is the path that is associated with the minimum accumulated cost 
due to the corresponding pre-mappings of p1, p2, …, and ps+w–1, where the w-path’s 
origin t-node provides the pre-mapping information of p1 to ps–1. The algorithm then 
stores the cost and the remaining resources up to t-node {Pk(1), ps} at {Pk(1), ps}. It 
(simultaneously) processes all t-nodes at step s before considering those at step s+1. 

If s = M–w+1, however, the entire minimum-cost w-path is highlighted. The total 
cost and finally remaining resources are then stored at {Pk(1), pM–w+1}. After having 
processed all N t-nodes at step M–w+1, part III of the algorithm follows. 

Part III tracks the tw-mapping diagram back- and forward along the highlighted 
edges, starting at the t-node at step M–w+1 that holds the minimum cost. This process 
finds the complete mapping solution for the given problem and cost function. 

The algorithm’s complexity depends on the cost function. Assuming that the complex-
ity of the cost function (ccf) is constant throughout the mapping process, we can write 

complexity(tw-mapping) .
1

1
)( 2 ccf

N

N
NwM

w

⋅
−
−⋅⋅−≈  (9) 

Considering that M >> w and ccf = 1, the order of magnitude becomes 

complexity-order(tw-mapping) = O(M · N w+1). (10) 

This indicates that the algorithm is not computing efficient for large N. We therefore 
suggest to cluster (huge) arrays of processors, which will eventually execute many 
applications, and to apply the tw-mapping on each cluster. 
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4.2   Cost Function 

This section proposes a generic cost function that manages the available comput-
ing resources based on our modeling concept. We define it through the edge 
weight: 

WT[Pk(l–1)  Pk(l)]h = ,
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[Pk(l–1) Pk(l)]h represents any edge in the tw-mapping diagram; it is for w > 1 part of a 
w-path. Each summand in (11a) stands for the weighted cost for the allocations of 
resource type t’ at t-node {Pk(l), ph}. Equation (11b) defines this cost as the sum of 

ratios between the required resources ( 't
ijr ) and the corresponding remaining ones    

( '
''

t
jiR ) at {Pk(l), ph}. This implies a dynamic resource update. 

Each ratio between a resource requirement and its availability is either less, equal, 
or greater than 1. In the latter case, it is mapped to infinity (11b). Hence, assuming qt’ 
≠ 0 ∀ t’, the weighted sum in (11a) returns either a finite or infinite value. A finite 
edge weight indicates a feasible, an infinite an infeasible pre-mapping. This permits 
identifying and discarding infeasible solutions, which cannot meet the system’s real-
time computing constraints. 

Cost function (11) defines the computing resource management policy through pa-
rameter q, where q = [q1, q2, …, qT’] weights the cost terms. The higher qt’ the higher 
the relative importance of resource type t’. The sum of all weights can be normalized 
to 1. Then, q1 = q2 = … = qT’ = 1/T’ would mean equally weighted cost terms. 

4.3   Scheduling 

On the basis of a feasible mapping─a mapping of finite cost─N processor-local 
schedulers need to schedule processes, data transfers, and possibly other resource 
allocations to guarantee that real-time constraints will finally be met. Finding such 
schedules is possible if we assume that processing chains can be pipelined, that data 
processing and data transfers can overlap, and that partial results can be immediately 
forwarded to the next process [2]. 

Access to any shared resource requires its temporal management or scheduling. 
Each shared link, for example, requires a scheduler. Assuming the availability of data 
buffers, these schedulers can use a simple policy to ensure timely data transfers: 
Transfer data immediately to output data buffers. This data is sent to the correspond-
ing input buffer as soon as the bus becomes available, gaining access to the different 
processors that share the bus in a round-robin fashion. 
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5   Simulations 

5.1   Simulation Setup 

The following simulations serve for demonstrating the suitability and possibilities of 
the framework. Due to space limitations we consider a single computing platform and 
two computing resources (T’ = 2)─processing powers (t’ = 1) and inter-processor 
bandwidths (t’ = 2)─based on the system model instances of section 3. Fig. 2 shows 
the computing platform model. This platform may represent a stand-alone computing 
cluster of three heterogeneous devices or be connected to an array of processors. 

We randomly generate 100,000 DAGs, which model different applications, where 

• the number of processes is M = 25, 
• process pi is connected to pj with a probability of 0.2 if j > i (we allow discon-

nected subgraphs, modeling parallel chains, but connect any isolated node to its 
next neighbor), 

• the processing demands are uniformly distributed in [1, 2, ..., 600] MOPS, and 
• the bandwidth demands are uniformly distributed in [1, 2, ..., 500] MBPS. 

These parameters have been derived from a real SDR application [2]. Nevertheless, 
this random DAG generation results in many different application topologies (prece-
dence constraints) and computing requirements. The mean processing requirement is 
7429.8 MOPS, which is slightly less than 25·(600+1)/2 = 7512.5 MOPS, because we 
discard applications which need more than the 9000 available MOPS (Fig. 2). 7429.8 
MOPS correspond to 82.6 % of the platform’s total processing resources. An applica-
tion’s total bandwidth requirement is 15,069.2 MBPS in the mean, being 167.4 % of 
the available inter-processor communication bandwidths. 

5.2   Results I: Ordering 

The tw-mapping with cost function (11) maps computing requirements to computing 
resources. It does so sequentially, starting with process p1 and finishing with process 
pM (section 4). Related work demonstrated the importance of the mapping or schedul-
ing order. Reference [12], for instance, assigns dynamic levels to determine the next 
process to be scheduled. 

The modeling of section 3.2 facilitates the reordering or relabeling of processes 
through basic matrix operations. In particular, to change process pi for pj, exchange ci 
and cj in (6) and switch rows and columns i and j in (7). Switching rows i and j in (7) 
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Fig. 2. Computing platform model 
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changes the successors of pi for those of pj and vice versa, whereas switching columns 
i and j changes the predecessors of pi for those of pj and vice versa. This maintains the 
same DAG with another labeling of processes. 

Here we study static reordering techniques. Dynamic reordering of the remaining 
processes to be mapped will be examined in future work. We consider 3 approaches: 

• no reordering (ORD-0), 
• reordering by decreasing processing requirements (ORD-C), and 
• reordering by decreasing bandwidth demands (ORD-B). 

ORD-0 assumes the initial order based on a logical numbering, which is generally 
not unique. ORD-C leads to c1 ≥  c2 ≥  … ≥  cM, whereas in case of ORD-B, the pair of 
processes with the heaviest data flow demand become p1 and p2, the next highest 
bandwidth requirement specifies p3 (and p4), and so forth. The flexibility of mapping 
lower computing requirements to the remaining computing resources is the reason for 
choosing ORD-C or ORD-B. Simulations will show which approach is more suitable 
for the considered scenario. 

Table 2 shows the tw-mapping results for three values of q1. We observe that ORD-
B and ORD-C outperform ORD-0. This can be explained as follows: Bandwidth re-
sources, as opposed to processing resource, can be saved if (heavily) communicating 
processes are mapped to the same processor. (This is why we can map applications that 
have a higher total bandwidth requirement than the platform’s total inter-processor 
bandwidth capacity.) Saving bandwidths is only possible if there is a processor with 
sufficient processing capacities for executing two communicating processes. If heavily 
communicating processes are considered first (ORD-B), it is most probable that heavy 
links can be solved processor-internally. Correspondingly, the flexibility of mapping 
lower processing requirements can potentially merge heavily communicating processes 
and explains the good behavior of ORD-C. 

Additional simulations have shown that ORD-C is more suitable than ORD-B if 
the processing resources are the bottleneck, whereas ORD-B performs better than 
ORD-C if the bandwidth requirements are dominating.  Here, the high processing and 
bandwidth loads (section 5.1) explain the similar performances of ORD-C and ORD-
B. Since the best results are obtained for q1 = 0.7 and ORD-B (Table 2), the following 
simulations apply the ORD-B algorithm before executing the tw-mapping. 

Table 2. Results I 

 w = 1 w = 3 
 q1 ORD-0 ORD-C ORD-B ORD-0 ORD-C ORD-B 
0.3 33.73 15.39 16.12 19.06 7.39 8.95 
0.5 25.07 11.48 11.31 13.61 6.05 6.05 
0.7 21.97 13.09 9.92 11.71 6.58 5.13 

5.3   Results II: Cost Function Parameter q vs. Window Size w 

Methods. First we consider a fixed q vector for all 100,000 DAGs. We examine q1 = 
0.1, 0.2, …, 0.9 to obtain the optimal q in the mean (Method A). Then we propose to 
choose q1 dynamically, trying different values until either a feasible mapping is found 
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or all values have been examined. In particular, q1 is iteratively updated in the 
following order: 0.5, 0.4, 0.6, 0.3, 0.7, 0.2, 0.8, 0.1, 0.9 (Method B). This is a simple 
method that considers q1 at a granularity of 0.1, starting with equally weighted cost 
terms and discarding single-term cost functions. The number of iterations, or mapping 
intents per application, is then between 1 (for a successful mapping with q1 = 0.5) and 
9 (if q1 = 0.9 is finally examined). The mean number of iterations (m-iter) is the 
number of iterations averaged over the considered DAGs. 

Metric. In order to compare the two methods and to formalize the significance of the 
cost function parameter q versus the window size w, we introduce 

metric-I = quality / complexity. (12) 

This metric relates the quality of the computing resource management approach to its 
computing complexity. It may be considered an efficiency indicator, because effi-
ciency indicates good results at little effort. 

Here we define quality as follows: If the algorithm fails in mapping x % of the ap-
plications, its quality is 1/x. We measure the complexity in two ways, theoretically 
and practically. In both cases we count the number of multiply-accumulate operations 
(MACs), where 1 MAC stands for one multiplication or division followed by a sum-
mation. 

The theoretical complexity for the given two-term cost function can be approxi-
mated as 

theoretical-complexity 
⎭
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The different terms in (13) are: 

• (M – w) is the number of steps that pertain to part II of the tw-mapping, 
• N is the number of t-nodes per step, and 
• {·} represents the complexity of computing the cost due to processing and 

bandwidth requirements at a t-node of part II, where 2N w are the additional 2 
MACs for multiplying each w-path’s cost term with q1 and q2. 

Equation (13) approximates the theoretical maximum complexity. It accounts for 
fully connected DAGs, dividing the bandwidth requirement of each possible link 
between processes by the corresponding finite or infinite bandwidth capacity. 

The theoretical complexity for method B is computed as m-iter times (13). The 
practical complexity model accounts for code optimizations: The practical complexi-
ties are obtained from C-code implementations, counting each MAC that is actually 
realized. 

Results. Fig. 3a shows the percentage of unfeasibly mapped DAGs due to method A 
as a function of q1 and w. It clearly indicates that the mapping success is a function of 
the window size. We further observe that the lowest number of infeasible mappings is 
achieved with q1 = 0.7 for any w. The number of infeasible allocations is two to three 
times lower with q1 = 0.7 than it is with the least favorable q1, which is q1 = 0.1. This 
justifies Method B’s order of examining the different q1 values. (Another order would 
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Fig. 4. metric-I for methods A and B based on theoretical (a) and practical (b) complexities 

affect m-iter but not the percentage of infeasible allocations.) Fig. 3b shows the 
corresponding results. We again observe that the higher w the fewer the number of 
infeasible mappings. The mean number of iterations decreases correspondingly. It is 
generally low because more than 87.5 % of the DAGs are successfully mapped for q1 
= 0.5 (Fig. 3a), that is, after 1 iteration. 

Fig. 3 shows that choosing q dynamically significantly reduces the number of in-
feasible results. This leads to the conclusion that q should be chosen on application 
basis (Method B) but also reinforces its importance within cost function (11). 

We compute metric-I to formally compare the two methods and to discuss the dy-
namic selection of q versus the increase of w. Fig. 4 illustrates the results as a function 
of w for both, the theoretical and practical complexities. The practical complexities 
and the qualities for method A are based on q = [0.7, 0.3]. 

We observe that metric-I based on theoretical complexity numbers (Fig. 4a) is 
qualitatively equivalent to metric-I for practical complexities (Fig. 4b). We interpret 
this as a validation of the theoretical and practical complexity models. 

Fig. 4 shows that searching for a suitable q on application basis─even with the ba-
sic q-selection algorithm of method B─approximately doubles the proposed metric for 
any w. This metric considerably decreases with w; adjusting q is thus more interesting 
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than increasing w. In particular, if the quality of the tw-mapping results for some w 
and q is insufficient, we can improve it trying other q vectors without sacrificing effi-
ciency. For example, a mapping success of 95 % is achieved with w = 1 in case of 
method B (Fig. 3b), whereas method A needs at least a window size of 3 (Fig. 3a). 
Relating the corresponding values of metric-I, we obtain a difference of one order of 
magnitude in favor of method B (Fig. 4). On the other hand, we argue for a comple-
mentary adjustment of both parameters. For instance, to achieve less than 3 % infea-
sible allocations, apply method B with w = 2 (instead of method A with w = 5). 

The above conclusions demonstrate the suitability of the two parameters w and q 
but also validate metric-I. These conclusions are valid for the above simulations. 
Other problems may behave differently and so may require similar simulations to 
derive corresponding conclusions and appropriate parameter adjustments. 

6   Conclusions 

This paper has introduced a computing resource management framework for real-time 
systems. It consists of a modular design, which features systematically extensible 
computing system models and an open computing resource management approach. 
This approach comprises the tw-mapping─a cost function independent mapping algo-
rithm─and a generic cost function, which manages the available computing resources 
of any type to satisfy the applications’ real-time execution demands. 

The simulations have demonstrated the suitability of the entire framework as well 
as the significance of the two independent parameters w and q; the proper adjustment 
of these parameters can significantly enhance the efficiency of the computing re-
source management. There is still room for improvement: A low-complex algorithm 
that dynamically reorders the remaining processes to be pre-mapped or dynamic ad-
justments of parameters w and q throughout the tw-mapping process may further in-
crease metric-I. We will investigate these issues as well as simulate scenarios with 
additional computing resource types, such as memory and energy. 

This work is focused on real-time computing systems, where the objective is to meet 
real-time execution demands with limited computing resources. We are currently exam-
ining how to adapt the framework to other types of systems and objectives.  
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Abstract. Wireless Mesh Networks with multiple channels and multi-
ple radios on the mesh routers, have a great potential to increase the
overall capacity of the network. To obtain the complete benefit of the
increased capacity of such networks, efficient Channel Assignment (CA)
and Link Scheduling (LS) algorithms are extremely important. A static
CA and LS may not be optimal, in terms of utilization of underlying
network resources, for every traffic demand in the network. In this pa-
per, we find the optimal CA and LS for the given traffic demand by
formulating an MILP by considering the traffic demand for each source-
destination pairs, with the objective of maximizing the total achieved
throughput of the network. We also propose a simple, but effective Load
aware Channel Assignment and Link Scheduling (LoCALS), a polyno-
mially bound heuristic algorithm for CA and LS. We show that LoCALS
performs on par with the optimal solution. Finally, we compare LoCALS
with a distributed channel assignment algorithm which is unaware of the
traffic demand, in order to demonstrate the importance of considering
the traffic demand for CA and LS.

1 Introduction

Wireless Mesh Networks (WMNs) have become the most cost-effective option
for wide scale deployment in the last mile wireless networks. WMNs consist
of two kinds of network elements namely mesh routers and mesh clients. The
mesh routers form the backbone network and the mesh clients are users of the
WMN that generate traffic in the network. The mesh routers with the gateway
functionality provide easy integration with wired networks and in particular
provide connectivity to the Internet to the mesh clients. Several commercial
deployments of WMN are already operational in the real world.

The capacity of a WMN can be increased by using multiple orthogonal (non-
overlapping) channels for transmission and thereby improving the channel spatial
reuse. To tap the complete potential of the multiple channels, the mesh routers
must be equipped with multiple radios. Raniwala et al. [1] showed that there is
a non-linear increase in capacity with the increase in number of radios in a Mul-
tiple Channel - Multiple Radio (MC-MR) networks. Though there is a potential
increase in capacity due to the usage of MC-MR, a poor Channel Assignment
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(CA) scheme can lead to under-utilizing the network’s capabilities. Intelligent
CA schemes need to be adopted to spatially separate the nodes transmitting in
the same channel as much as possible. Nevertheless, owing to the constraint on
the number of channels and the number of radios available at each router, the
co-channel interference can not be avoided completely. A network, employing
carrier sensing techniques like CSMA/CA for transmission of data, consumes
more power and loses bandwidth due to interference in the network. Also the
carrier remains idle during the back-off time after every collision. The static
nature of the mesh routers can be utilized to provide link level synchronization
among the mesh routers. Efficient Link Scheduling (LS) can make the network
interference free and thus improving the capacity of the network further.

There has been significant amount of work done in WMNs in recent years
to exploit the usage of MC-MR in order to increase the achievable capacity of
the network using new MAC and routing protocols. Bahl et al. [2] developed
Slotted Seeded Channel Hopping (SSCH), a link layer solution for enhancing
capacity of the network. Raniwala et al. [1] presented a centralized heuristic
algorithm for CA and routing which iterates between routing and CA until the
process converges in terms of the aggregate capacity of the network. The worst
performance bound on their heuristic is not known. Tang et al. [3] proposed
Linear Programming (LP) and Convex Programming (CP) based schemes for
computing end-to-end fair rate allocation for WMNs. Their work heavily depends
upon the ability of the transceivers to change the transmission power for every
time slot, which may not be practically viable. Also Alicherry et al. [4] proposed
a centralized joint CA, LS, and routing for WMNs. The objective is to increase
the per node throughput in the network. The proposed heuristic algorithm is
quite complex and spans multiple stages.

In this work, we design a CA and LS algorithm according to the traffic de-
mand in the network. In a typical WMN, the traffic on the backbone network
consists of the traffic between clients in the network and between clients and
the Internet. This problem when modelled with the mesh routers alone (by not
considering the mesh clients in the model), reduces to each node pair having
certain amount of traffic to send between them. The assumption here is that
the communication between the client and mesh router does not interfere with
the communication between the mesh routers as they use different technologies
for communication. The traffic demand between every node (mesh router) pair
is known prior to the CA and LS. The problem of an efficient CA and LS, suiting
a particular traffic demand is NP complete [1]. So, we are only concerned with
the efficient CA and LS and not in their actual propagation from the central
agent to the mesh routers. This can be easily achieved as demonstrated in [5].
The complexity of the CA and LS algorithm is of greater importance in the case
of dynamically changing traffic. We propose LoCALS, a polynomial time algo-
rithm, to perform CA and LS. To compare the performance of LoCALS with the
optimal solution, we formulate an MILP to get the optimal solution. The main
contributions of our work compared to the existing CA and LS approaches are
as follows:
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– It provides with a polynomially bounded single-pass heuristic, that combines
the need for fairness and tries to maximize the total achieved throughput of
the network.

– It does not require any specific system support like fast channel switching
or any other specific MAC layer support. It can be used with the existing
commodity 802.11 based networks without any modifications.

– It decouples CA from routing, thus making the CA and LS algorithms more
efficient in terms of computational complexity.

– We show the benefit of considering the traffic demand in CA and LS for max-
imizing the total achieved throughput by comparing the proposed algorithm
with a distributed algorithm that does not consider the traffic demand.

The rest of the paper is organized in the following manner. We discuss our
network model and assumptions in Section 2 and then the formal problem state-
ment in Section 3. The MILP formulation is described in Section 4. In Section 5,
we propose LoCALS, an efficient heuristic algorithm, for CA and LS. We present
the simulation results in Section 6 and conclude the paper in Section 7.

2 Network Model and Assumptions

In this paper, we limit our study only to the mesh routers which form the back-
bone. Hereafter, whenever we use the term node, we mean a mesh router. The
network is given in the form of an undirected graph G = (V , E), where V rep-
resents the set of nodes in the network and E represents the set of edges. G
represents the topology of the network, having all potential transmissions repre-
sented by edges. V = {n1, n2, . . . , nV } represents the set of nodes in the network.
Each node ni has Kni radios installed in it. These radios can operate simultane-
ously independent of each other. Logically, to operate them simultaneously, they
need to be tuned to orthogonal channels. We assume that C = {c1, c2, . . . , cC}
is the set of orthogonal channels available for the WMN. We denote by V , C,
and E the cardinality of the sets V , C, and E respectively. We assume that the
number of channels available in the network is greater than the number of radios
in the nodes. The number of available orthogonal channels depends on the radio
frequency spectrum used. IEEE 802.11a and IEEE 802.11g support 12 and 3
orthogonal channels, respectively.

An edge e ∈ E exists between a node pair i− j iff the nodes i and j are in the
transmission range of each other. The assumption of an undirected graph forces
the transmission ranges of the radio interfaces to be equal. Also, we assume that
as long as the nodes i and j are in the transmission range of each other, there is
no degradation of the capacity in the transmission between i− j pair with the
distance between them. We assume a two-hop interference model which serves
as a reasonable abstraction of the real scenario [6]. In this model, a transmission
in an edge e = (i, j) will interfere with any transmission in one-hop and two-
hop neighbors of both the incident nodes i and j. We denote by FG the conflict
graph of G. By conflict graph, we represent the graph with all the edges e ∈ E
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represented by nodes. An edge exists between the nodes e, e′ ∈ E in the conflict
graph if the edges in G interfere with each other.

We assume that a link level synchronization exists among the nodes. The
transmission between two nodes takes place only during the time slots assigned
to the links. This aids in making the WMN interference free, thus avoiding in-
terferences and ensuring proper resource sharing. This property enhances the
capacity of the network and gives the provision for unequal sharing of the re-
sources among the interfering edges. Due to the static nature of the WMNs and
the presence of a centralized agent, link level synchronization can be achieved.
We assume that source-destination pair1 can transmit data along more than one
alternate path simultaneously and that the traffic is infinitely divisible. These
alternate paths can be found by any existing routing protocols. We assume the
existence of a traffic profiler which observes the network and makes the central-
ized agent aware of the traffic demand that exists between every node pair.

3 Problem Statement

We consider the CA and LS problem for a WMN consisting of V nodes and E
edges. Each node n ∈ V has Kn radios that can function simultaneously and
there are C orthogonal channels available. Two nodes i and j can communicate
with each other only if ∃e ∈ E such that e = (i, j) and both the nodes have at
least one radio tuned to a common channel. For the sake of network connectivity,
we impose that any CA algorithm must assign a channel to every edge in G, i.e.,
any two neighbors i and j in G must have at least one radio tuned to a common
channel. Note that this is a sufficient condition for network connectivity. We
denote the CA in the edges by We,c ∈ {0, 1}, where We,c = 1 if the edge e ∈ E
is allocated the channel c ∈ C. We denote by Yn,c ∈ {0, 1} the radio allocation
at the node n. Then Yn,c = 1 implies that the node n has a radio tuned to the
channel c.

There are a total of T slots for transmission and the links must be scheduled to
transmit in these slots. We denote the slot schedules by Xt

e,c ∈ {0, 1}. Xt
e,c = 1

if an edge e ∈ E is assigned a slot t ∈ {1, 2, . . . , T} in the channel c ∈ C.
Note that a link can be scheduled slots only in the channel assigned to it, i.e.,
Xt

e,c ≤ We,c ∀e ∈ E, ∀c ∈ C. The interference graph of the network is given
by a Link Interference Matrix (LIM) [7]. If two edges a, b ∈ E interfere with
each other then LIMa,b = 1 otherwise LIMa,b = 0. Due to the assumption on
homogeneous transmission ranges, the resulting LIM is a symmetric matrix.

The alternate paths between every source-destination pair, discovered by the
routing algorithm, are given by fe

i−j,k ∈ {0, 1} where i, j ∈ V and e ∈ E and
k denotes the kth path between node pair i − j. If the kth path between node
pair i − j passes through the edge e then the variable fe

i−j,k = 1 else fe
i−j,k =

0 and any achieved throughput between i − j (denoted by xi−j) is given by
1 Note that we use source-destination pair and node pair interchangeably. In our net-

work, all the nodes are sources and destinations. There are a total of
`

V
2

´
source-

destination pairs in the network.
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∑
k xi−j,k. We denote the achieved throughput in the kth path between node pair

i − j by xi−j,k ≥ 0. The demanded flow between the source-destination pair is
given by ti−j . The allocation must also guarantee that the minimum throughput
achieved must be greater than a minimum fraction (λ) of the demanded flow.
This condition ensures the fairness in the network by not neglecting the flows
with small demands. The objective of the CA and LS is to maximize the total
achieved throughput of the network.

4 MILP Formulation

We adopt a link model wherein we allocate channels to edges, keeping in mind
the constraint on the number of radios in each node, i.e., the total number of
channels assigned to all the edges incident to a node (n ∈ V) cannot exceed
the number of radios in the node (Kn). A link exists between any two nodes
which are in the transmission range of each other. According to our assumption,
every link must be assigned a channel. This ensures the connectivity of the given

Maximize:
X X

1≤i<j≤V

xi−j (1)

Subject to:
xi−j ≤ ti−j ∀i, j ∈ V (2)

xi−j ≥ λ × ti−j ∀i, j ∈ V (3)

xi−j ≤
X

k

xi−j,k ∀i, j ∈ V (4)

X

c∈C

We,c = 1 ∀e ∈ E (5)

Yn,c ≥ We,c ∀e ∈ E, ∀n ∈ Inc(e) (6)

where Inc(e) is the incident nodes of edge e

X

c∈C

Yn,c ≤ Kn ∀n ∈ V (7)

Xt
e,c ≤ We,c ∀e ∈ E,∀c ∈ C, ∀t ∈ {1, 2, . . . , T} (8)

Xt
e,c + Xt

e′,c ≤ 1 ∀c ∈ C, ∀t ∈ {1, 2, . . . , T}, ∀e, e′ ∈ E, LIMe,e′ = 1 (9)

X X X

1≤i<j≤V, k

fe
i−j,k × xi−j,k ≤ Cmax ×

P P
c∈C,t∈{1,2,...,T}

Xt
e,c

T
∀e ∈ E (10)

Fig. 1. MILP-CALS. MILP formulation for the CA and LS for WMNs with multiple
radios and multiple channels.
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undirected graph G = (V , E). The links must also be scheduled to be functional2

in appropriate slots so that there is no interference in the network. Once the links
are given slots, we essentially have shared the resource (channel’s bandwidth)
in an efficient way. The optimal routes selection (from the available alternate
routes) for each node pair needs to be done with the objective of maximizing
the total achieved throughput of the network. We denote the MILP formulation
for CA and LS as MILP-CALS and is given in Fig. 1.

Eq. 1 represents the objective of maximizing the total achieved throughput.
Eq. 2 and Eq. 3 impose the constraints on the achieved throughput. Any value of
the achieved throughput above the demand is useless and the achieved through-
put must be above a certain minimum fraction (λ) of the demand. The total
end-to-end throughput between a node pair i − j is the sum of throughput on
each of the alternate paths (Eq. 4). The condition of each edge being assigned
exactly one channel is imposed in Eq. 5. The next two equations ensure that the
assignment of the channels to the edges is feasible. For an edge to be assigned
a channel, there must be at least one radio on both the incident nodes that are
tuned to this channel (Eq. 6). Also, number of distinct channels that can be
assigned to the radios on a node cannot exceed the total number of radios at
that node (Eq. 7). Eq. 8 and Eq. 9 ensure that no two interfering edges, that
are assigned the same channel, be assigned the same slot. Eq. 10 represents the
capacity constraint. The RHS denotes the total capacity supported on an edge
and the LHS denotes the sum of all flows passing through the edge.

5 Channel Assignment and Link Scheduling Algorithm

The MILP can be solved for relatively small networks. But as the size of the net-
work increases the computational complexity increases exponentially. More often
the problem becomes intractable. This renders the MILP formulation practically
incapable of handling real life networks. So, we propose a polynomially bounded
algorithm for load aware CA and LS, LoCALS, which performs comparable to
the optimal solution.

The algorithm addresses the problem of CA, LS, and flow allocation sepa-
rately. The key idea behind LoCALS is that the CA and LS is done using the
expected loads on the edges. We calculate the expected loads on the edges based
on the traffic demand. On the basis of these expected loads, CA is done in order
to provide diverse set of channels to the “hot-spots” where the expected load on
the edges are high. The bandwidth allocation to the edges is done on the basis
of the relative proportions of the expected loads during LS. Finally, we solve
an LP (polynomially bound) [8]) for final route allocation and to compute the
total achieved throughput. The routing algorithm gives a set of alternate paths
that are represented by the binary variables fe

i−j,k. Now, each node pair can
choose a subset of the available alternate paths to send the traffic. The optimal
subset selection can be done only after the CA and LS. But the CA algorithm is
2 By functional, we mean that the links can be used to send and receive in their allotted

slot. The direction of the traffic for that slot is decided by the incident nodes.
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highly dependent on the initial set of routes selected. This leads to a cyclic inter-
dependency between CA and route selection. We break this inter-dependency by
initially including all the possible alternate routes for each node pair for the pur-
pose of CA. We assign probabilities to the routes using the hop-count of each
path, where the probability denotes the likelihood of the particular route to be
included in the final route selection.

As the hop-count of the path increases, the probability of choosing the path
for the final solution must decrease and the path with least hop-count must be
given higher probability. Let Pathi−j,k = {e| fe

i−j,k = 1} denote the set of edges
e ∈ E that belong to the kth path between the node pairs i − j ∈ V . Let us
define a quantity αi−j,k for each path between node pairs i− j, such that

αi−j,k =

{
1

|Pathi−j,k| if |Pathi−j,k| 	= 0
0 otherwise

(11)

The expected load on each path is given by Pi−j,k × ti−j , where Pi−j,k is the
probability assigned to each path ( αi−j,kP

k′
αi−j,k′ ). With the expected load on each

path for each node pair i− j ∈ V , the expected load on each edge is given by

Exp(e) =
∑

1≤i<j≤V

∑
k

fe
i−j,k × Pi−j,k × ti−j (12)

These loads give us means of assigning weights to the edges proportional to
load. The CA and LS use these weights to assign channels and slots, respectively.
We also define another useful quantity ExpReg(e) for each edge e. This captures
the expected load on all the edges e′ ∈ E that could potentially interfere with
the edge e.

ExpReg(e) = Exp(e) +
∑
e′∈E

LIMe,e′ × Exp(e′) (13)

5.1 Channel Assignment

The underlying objective of our CA algorithm is to minimize the co-channel
interference among edges with high expected load. Note that the CA depends
on the demanded flow, because the expected load of the edges changes with
demanded flow. The CA algorithm is described in Algorithm 1.

We construct a new set E ′ which is initialized to E and an empty set SatNodes.
As the edges are assigned channels, they are removed from the set E ′. This is
repeated until all the edges are assigned a channel. From lines 6-20, we find a new
edge e ∈ E ′ with the highest ExpReg(e). The edge with the highest ExpReg(e)
represents the edge with highest potential to interfere with other edges and
decrease the throughput. In case there is a tie in this value, we choose the edge
with the highest expected load. Once the channel is assigned to an edge, it is
likely that the last radio in one (both) of the incident node(s) is utilized for
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Algorithm 1. Channel Allocation
1. Input: A Graph G = (V, E) of E links, and Exp(e) for each link e ∈ E
2. Output: Channel Allocation for edges, We,c

3. Set We,c ← 0 ∀e ∈ E, c ∈ C /*Initializing the We,c variables */
4. Let E′ ← E, cx ← c1, SatNodes ← Φ
5. while E′ is not empty do
6. if SatNodes is empty then
7. /* Finding the edge which is maximally interfered */
8. Find the edge e ∈ E in G′ with largest ExpReg(e). The edge with higher load is chosen in

case of a tie.
9. /* Calculating the current load on each channel in edge e’s neighborhood */

10. Load(e, c) =
P

e′
LIMe,e′ × We′,c × Exp(e′) ∀c ∈ C

11. Choose c with the least Load(e, c), with preference to lower index of c to break tie
12. cx ← c, We,cx ← 1, E′ ← E′ − {e} /*Assigning channel cx to edge e */
13. Yi,cx ← 1, Yj,cx ← 1 where e = (i, j) /*Assigning the chosen channel to the

incident nodes */
14. /*Checking for saturation of radios on the incident nodes*/
15. if

PC
c′=1 Yi,c′ = Ki then

16. SatNodes ←− SatNodes ∪ {i}
17. end if
18. if

PC
c′=1 Yj,c′ = Kj then

19. SatNodes ←− SatNodes ∪ {j}
20. end if
21. else {SatNodes is not empty}
22. /*Assigning the remaining edges of the currently saturated nodes with the last channel

chosen */
23. while SatNodes is not empty do
24. Set i ← GetOneElement(SatNodes)
25. Construct UnassignedEdges(i) = {e|e ∈ E, i ∈ Inc(e), We,c = 0 ∀c ∈ C}
26. for all e ∈ UnassignedEdges(i) do
27. /*Assigning the channel cx, the last assigned channel to the other edges*/
28. We,cx ← 1, SatNodes ← SatNodes − {e}, Yi,cx ← 1, Yj,cx ← 1 where e = (i, j)
29. /*Checking if the other incident node is saturated*/
30. if

PC
c′=1 Yj,c′ = Kj then

31. SatNodes ←− SatNodes ∪ {j}
32. end if
33. end for
34. SatNodes ← SatNodes − {i}
35. end while
36. end if
37. end while

this assignment, in which case the node(s) is(are) called saturated. We add a
saturated node to the set SatNodes. When the loop at line 5 is entered again, if
the SatNodes is non empty, then there are some nodes that became saturated in
the previous step. This implies that the links that are incident on these saturated
nodes and are yet to be assigned any channel, cannot be assigned a new channel.
These unassigned links are then assigned that channel, whose assignment to one
of the neighboring links in the previous step, led to the saturation of the node
(lines 24-34).

5.2 Link Scheduling

Once the channels are allocated, the LS must be done for proper resource sharing.
We provide a greedy heuristic algorithm for LS. The slots must be allotted in
such a way that any two interfering links sharing a common channel must not
be given the same slot. Hence, the total of T slots must be divided among the
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Algorithm 2. Link Scheduling
1. Input: LIM , W , Frac(e), T and conflict graph FG

2. Output: The slot schedules, Xt
e,c

3. Sort the edges in the decreasing order of their degree. Let (e1, e2, . . . , eE) denote the sorted
order

4. for i = 1 to E do
5. N(ei) = ceil(T · Frac(ei)), the maximum number of time slots ei will be active
6. Let ei = (u, v). allocated ← 0, t ← 0.
7. Let c ∈ C be the channel allocated to edge ei

8. while allocated ≤ N(ei) and t ≤ T do
9. if Xt

e′,c
= 0 ∀e′ ∈ E and LIMe,e′ = 1 then

10. Xt
e,c ← 1, allocated + +, t + +

11. end if
12. end while
13. end for

Maximize :
X X

1≤i<j≤V

xi−j

Subject to:

xi−j ≤ ti−j ∀i, j ∈ V

xi−j ≥ λ × ti−j ∀i, j ∈ V

xi−j ≤
X

k

xi−j,k ∀i, j ∈ V

X X X

1≤i<j≤V, k

f
e
i−j,k × xi−j,k ≤ Cmax ×

P P
c∈C,t∈{1,2,...,T}

Xt
e,c

T
∀e ∈ E

Fig. 2. LoCALS - Flow allocation (LP)

interfering links sharing the same channel. The division can be made on the basis
of the expected loads calculated for each edge. We calculate the tentative fraction
of channel that needs to be provided to each edge in the following manner:

Frac(e) =
Exp(e)∑

e′∈E
LIMe,e′ ×We′,c × Exp(e′)

, (14)

where e ∈ E , c ∈ C, and We,c = 1.
Essentially the number of slots a link can potentially get is proportional to its

expected load. The number of slots can be calculated by N(e) = �T ×Frac(e)�.
Since we are using a ceiling function, this indicates the maximum number of slots
the link e can be given. Our LS algorithm is presented in Algorithm 2. The edges
are sorted in the descending order of their interference degree in their conflict
graph FG. We start allocating slots from the edge with the highest degree. Note
that this is a greedy algorithm and sometimes it could lead to poor LS. For each
edge e, we check its interfering edges for free slots and assign them to the current
edge e.
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5.3 Flow Allocation

After the first two phases of the heuristic algorithm, we get the binary vari-
ables We,c and Xt

e,c for the original MILP formulation given in Fig. 1. They are
found using probabilistic methods by assigning expectation to the selection of
a particular route (Eq. 11, 12). Now the actual route selection (from the set of
alternate routes provided by the routing algorithm) and flow allocation (deci-
sions on how much traffic to send through each selected route) need to be done.
This problem is similar to the MILP formulation except that the binary vari-
ables are already decided. Hence, we reformulate the problem with the relevant
constraints in Fig. 2 that has only linear variables. The amortized complexity of
an LP is bound by polynomial time [8].

6 Simulation Results

In this section, we study the performance of LoCALS. We compare the opti-
mal solution obtained through MILP-CALS with the solution obtained through
LoCALS on a 2 × 3 grid network. We then compare LoCALS with a load un-
aware CA algorithm called SAFE [9] on a 7× 7 grid topology. Finally, we study
the effect of the number of radios and channels on the performance of LoCALS.
In what follows, we define the load as the sum of the demands between every
node-pair (

∑∑
1≤i<j≤V

ti−j). The value of λ in the minimum guarantee constraint

(Eq. 3) is fixed at 0.01 in all the simulations. In each simulation, 10 random
traffic patterns are generated and the results are averaged over these 10 traffic
matrices.

6.1 MILP-CALS vs LoCALS

Here, we compare the performance of LoCALS with the optimal solution on a
2 × 3 grid topology with 2 radios, 3 channels, and maximum channel capacity
of 10 Mbps for each channel. From Fig. 3, we find that LoCALS performs on
par with the optimal solution. As the load increases, the achieved throughput
increases which is quite intuitive. When the load is low (below 15 Mbps), the
network is able to serve the highest traffic demand, but as the traffic demand
increases further, the achieved throughput is unable to match the highest traffic
demand. This trend is noticed in with LoCALS starting from load of 15 Mbps.
The MILP is becoming intractable for more reasonable scenarios with bigger
networks and hence, extensive comparisons could not be done.

6.2 Comparison with Load Unaware Algorithm (SAFE)

In order to demonstrate the need for load awareness in the context of efficient
utilization of network resources, we perform comparisons of LoCALS with SAFE,
a load unaware CA algorithm. One important thing to note is, LoCALS does
both CA and LS, whereas SAFE only does the CA. For the sake of comparison,
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we assign slots to the links after the CA is done using SAFE. The general as-
sumption made in most of the works that does not explicitly dealing with LS or
bandwidth allocation, is that the channel bandwidth is split equally among the
links that share the same channel. Hence, we modify our LS to accommodate
this criterion in assigning the slots for SAFE’s CA algorithm. In our LS, we
set the expected load of each link to be of unit value. Under this setting, the
LS algorithm essentially tries to split the channel bandwidth equally among the
interfering links sharing the same channel. As SAFE is a randomized algorithm,
the performance depends upon the random seed to a great extent. Hence, for
each scenario, we average the results of SAFE over 25 seeds. We take a 7 × 7
grid network and the routing algorithm gives 5 paths of the least hop length
between any two node pairs. Fig. 4 shows the achieved throughput for 3 radios
and 5 channels. It can be clearly seen that LoCALS out-performs SAFE as the
load in the network increases.

6.3 Impact of Number of Radios and Channels

With increasing radios and channels, we expect the overall network capacity to
increase and thus higher achieved throughput. We conduct the simulations on
the 7×7 grid. Fig. 5 and Fig. 6 show the impact of increasing radios and channels,
respectively, on LoCALS. In Fig. 5, we fix the number of orthogonal channels in
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the network to be 6 and vary the number of radios, whereas in Fig. 6, we fix the
number of radios to 3 and vary the number of channels. For lower loads, there is
not much of an impact for increase in radios as well as channels. However, as the
load increases, the increased network capacity is utilized by LoCALS to provide
better channel allocations with higher achieved throughput.

7 Conclusion

WMNs with the potential to integrate with several kinds of external network is
the future of last mile networks. The provision of the routers possessing multiple
radios and the existence of multiple orthogonal channels has led to improved ca-
pacity of WMNs thus making it more relevant to replace the wired counterparts
in the LANs. We have proposed an MILP formulation and a polynomially bound
heuristic algorithm for efficient channel assignment and link scheduling given the
prior traffic demands. Our results indicate that the heuristic algorithm is quite
comparable to the optimal solution. Our work combines the need for fairness and
maximizing the total achieved throughput of the network. Our work does not re-
quire any special modifications to the existing MAC protocols. In the future, we
would like to investigate the effect of changing traffic demands, in terms of the
cost of reconfigurations and efficient utilization of underlying network resources.

References

1. Raniwala, A., Gopalan, K., Chiueh, T.: Centralized Channel Assignment and Rout-
ing Algorithms for Multi-Channel Wireless Mesh Networks. ACM SIGMOBILE Mo-
bile Computing and Communications Review 8(2), 50–65 (2004)

2. Bahl, P., Chandra, R., Dunagan, J.: SSCH: Slotted Seeded Channel Hopping for
Capacity Improvement in IEEE 802.11 Ad Hoc Wireless Networks. In: Proceedings
of the 10th Annual International Conference on Mobile Computing and Networking
(MobiCom 2004), October 2004, pp. 216–230 (2004)

3. Tang, J., Xue, G., Zhang, W.: End-to-End Rate Allocation in Multi-Radio Wire-
less Mesh Networks: Cross-Layer Schemes. In: Proceedings of the ACM Interna-
tional Conference on Quality of Service in Heterogeneous Wired/Wireless Networks
(QShine, 2006) (2006)

4. Alicherry, M., Bhatia, R., Li, L.E.: Joint Channel Assignment and Routing for
Throughput Optimization in Multi-Radio Wireless Mesh Networks. In: Proceed-
ings of the ACM International Conference on Mobile Computing and Networking
(MobiCom 2005), August 2005, pp. 58–72 (2005)

5. Ramachandran, K.N., Belding, E.M., Almeroth, K.C., Buddhikot, M.M.:
Interference-Aware Channel Assignment in Multi-Radio Wireless Mesh Networks.
In: Proceedings of the IEEE International Conference on Computer Communica-
tions (INFOCOM 2006), April 2006, pp. 1–12 (2006)

6. Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: End-to-End
Packet-Scheduling in Wireless Ad Hoc Networks. In: Proceedings of the ACM-SIAM
symposium on Discrete algorithms (SODA 2004), January 2004, pp. 1021–1030
(2004)



A Load Aware CA and LS Algorithm for Multi-channel Multi-radio WMNs 195

7. Das, A.K., Alazemi, H.M.K., Vijayakumar, R., Roy, S.: Optimization Models for
Fixed Channel Assignment in Wireless Mesh Networks with Multiple Radios. In:
Proceedings of the IEEE Communication Society Conference on Sensor and Ad
Hoc Communications and Networks (SECON 2005), September 2005, pp. 463–474
(2005)

8. Gonzaga, C.C.: On the Complexity of Linear Programming. Resenhas - IME-USP
Journal, special issue dedicated to Paul Erdos 2(2), 197–207 (1995)

9. Shin, M., Lee, S., Kim, Y.: Distributed Channel Assignment for Multi-Radio Wire-
less Networks. In: Proceedings of the IEEE International Conference on Mobile
Adhoc and Sensor Systems (MASS 2006), October 2006, pp. 417–426 (2006)



Multi-round Real-Time Divisible Load
Scheduling for Clusters�

Xuan Lin, Jitender Deogun, Ying Lu, and Steve Goddard

Department of Computer Science and Engineering
University of Nebraska - Lincoln, Lincoln, NE 68588

{lxuan,deogun,ylu,goddard}@cse.unl.edu

Abstract. Quality of Service (QoS) provisioning for divisible loads in
cluster computing has attracted more attention recently. To enhance QoS
and provide performance guarantees in cluster computing environments
for divisible loads, in this paper, we integrate a Simplified Multi-Round
(SMR) strategy into the design of real-time scheduling algorithms for di-
visible load applications. Four contributions are made in this paper. First,
we present algorithm SMR and extend it to compute a closed form for-
mula for minimum number of processors required to meet an application
deadline. Second, we derived a closed form solution for execution time
of the optimized SMR. Third, we formally prove that optimized SMR
results in better completion time than the single round strategy. Finally,
we integrate SMR with our algorithm framework and propose two sets
of efficient algorithms.

1 Introduction

Scheduling parallel applications in distributed computing resources has been
studied extensively for a variety of application models, such as the well-known
directed acyclic task graph model. Another type of model is arbitrary divisible
load application model. Arbitrarily divisible applications consist of an amount
of data that can be divided arbitrarily into any number of independent load
fractions, and each fraction itself is arbitrarily divisible. The arbitrarily divisible
applications represent problems of great significance for cluster-based research
computing facilities such as the U.S. CMS (Compact Muon Solenoid) Tier-2
sites [1] , which are associated with the Large Hadron Collider (LHC) at CERN
(European Laboratory for Particle Physics).

Divisible Load Theory (DLT) initially motivated by the objective of integrating
communication and computation in distributed sensor networks, was developed
to determine load distribution strategies for arbitrarily divisible loads in dis-
tributed computing environments [2,3]. A great deal of significant progress has
been made in the Divisible Load Theory (DLT). However, all of the work focuses
on scheduling a single divisible-load task. And the goal, is usually to minimize
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the makespan, that is, to minimize the execution time of a task. Morever, the
amount of computing resources to be assigned to a task is usually assumed to
be known before scheduling.

In recent years, efficient utilization of large-scale computing resources like clus-
ters, for providing QoS guarantees, has become more and more important. In our
recent work [4,6,5], we are the first to propose cluster-based, real-time schedul-
ing algorithms which integrate divisible load theory [3] and real-time scheduling
algorithms for online scheduling of divisible load applications to provide QoS.
Evaluations show that integrating DLT into real-time scheduling algorithms out-
performs other FIFO and EDF based algorithms. However, in our previous work
we only address a single-round scheduling strategy, where the load is divided and
distributed to the processing nodes in a single round. In single round scheduling,
if the application is data intensive, the processing nodes may face long idle times
while waiting for data transmission. Multi-round strategies [2,7], have been pro-
posed to solve this problem. By subdividing the fractions of data further and
distributing them in a repetitive sequence, the multi-round strategy incorporates
pipelining and reduces the processor idle time. However, as discussed above,
these work only consider a single task. While for online scheduling of multiple
tasks, the problem becomes much more complicated. In this paper, we investi-
gate how to integrate multi-round strategy into real-time scheduling of divisible
loads to provide QoS guarantees. Four contributions are made in this paper.
First, a multi-round algorithm UMR (Uniform Multi-Round) [7] is modified and
extended to develop SMR (Simplified Multi-Round) algorithm. SMR is designed
to fit into our model and is extended to compute the minimum number of pro-
cessors required to meet an application’s deadline, which is a critical factor for
the real-time scheduling algorithm to determine the task’s partition and sched-
ule. Second, we formally prove that optimized SMR results in better completion
time than the single round strategy. Third, we derive a closed form formula for
the execution time of the optimized SMR. Finally, we integrate SMR with our
algorithm framework and propose and evaluate two sets of efficient algorithms.

The remainder of this paper is organized as follows. Related work is pre-
sented in Section 2. We describe both task and system models in Section 3. In
Section 4 we discuss real-time scheduling algorithms investigated in this paper.
We evaluate the performance of algorithms in Section 5 and conclude the paper
in Section 6.

2 Related Work

Development of clusters and Grid computing have recently gained considerable
momentum. By linking a large number of computers together, a cluster provides
cost-effective power for solving complex problems. In a large-scale Grid, a re-
source management system (RMS) is central to its operation. In order to serve
end-users in a timely fashion, it is essential for the underlying cluster RMS to
provide performance guarantees or QoS.
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Research has been carried out in utility-driven cluster computing [8] to im-
prove the value of utility delivered to the users. Proposed cluster RMSs [9] have
addressed the scheduling of both sequential and parallel workloads. The goal of
these schemes is similar to ours—to harness the power of resources based on user
objectives.

Divisible load theory [2,3,7,10] provides an in-depth study of distribution
strategies for arbitrarily divisible loads in multiprocessor/multicomputer sys-
tems subject to system constraints like link speed, processor speed and inter-
connection topology. The goal of divisible load theory is to exploit parallelism
in computational data so that the workload can be partitioned and assigned to
several processors such that execution completes in the shortest possible time
[2]. The DLT has extensive application [10]. An example related to our work
is its applications [11,12] and implementation in Grid computing [13]. However,
all the previous work on DLT focuses on minimizing the makespan of a single
application, while we deal with multiple, dynamic tasks in the system. Besides,
our goal is to provide QoS for the whole system instead of optimizing one single
application.

In our previous work [5,4,6], we applied single round divisible load strategy
to the design of real-time scheduling algorithms for cluster computing; specifi-
cally, divisible load theory is applied to the scheduling of applications, such as
CMS [1], to provide QoS. As discussed in [2], for a single task, multi-round algo-
rithm will have better performance than the single round algorithm. However, in
our scenario, we have multiple, dynamic tasks arriving to the system. It is still
unknown whether integrating multi-round strategy has any advantages in the
context of providing QoS guarantees. Moreover, the multi-round algorithm dis-
cussed in [2] are complicated and can not be easily implemented. Thus, in [14],
Y. Yang et. al. proposed an algorithm UMR. In this paper, we extended our
previous work by integrating SMR, a simplified and extended version of UMR,
into our algorithmic framework.

3 Task and System Models

In this section, we present our task and system model.

Task Model. We investigate real-time scheduling of arbitrarily divisible tasks
that arrive aperiodically and execute non-preemptively (once subtasks are allo-
cated to processors). In our model, a divisible task Ti = (Ai, σi, Di) is a single
invocation, where Ai is the arrival time of the task, σi is the total data size of
the task, and Di is the relative deadline. Task execution time is dynamically de-
termined using σi and allocated resources—processing nodes and bandwidth—
by leveraging the modeling power of divisible load theory [3], as explained in
Section 4.

System Model. A cluster consists of head node, denoted P0, and N processing
nodes, denoted by P1, . . . ,PN . The system model assumes a typical cluster envi-
ronment in which the head node does not participate in computation. The role
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of the head node is to accept or reject incoming tasks, execute the scheduling
algorithm, and divide and distribute the workload to processing nodes. A star
network topology is used to represent the communication requirements of the
cluster. Since tasks and subtasks are independent, there is no need for processing
nodes to communicate with each other.

In this work, a homogenous cluster and sequential transmission of the work-
load is assumed. Thus, (1) all processing nodes have the same computational
power; (2) all links from the head node to the processing nodes have the same
bandwidth; and (3) in each round, the head node begins to distribute the work-
load to node Pi+1 only after it has completed its workload transmission to
node Pi.

As with DLT, we use linear models to represent processing and transmission
times [3]. In the simplest scenario, the computation time of a load σ is calculated
by a cost function σχ, where χ represents the time to compute a unit of workload
on a single processing node. The communication time of a load σ is calculated by
a cost function στ , where τ is the time to transmit a unit of workload from the
head node to a processing node. For many applications the output data is just a
short message and is negligible, particularly considering the very large size of the
input data. Therefore, in this paper we only model the transfer of application
input data but not the transfer of output data. The extension to consider the
output data transfer using DLT is straightforward.

The following notations, partially adopted from [3], are used in this paper,

– Ti = (Ai, σi, Di), where Ai is the arrival time of the task, σi is the total data
size of the task, and Di is the relative deadline;

– α = (α1, α2, ..., αn): Data distribution vector, where n is the number of
processing nodes allocated to the task, αj is the data fraction allocated to
the jth node, i.e., αjσ, is the amount of data that is to be transmitted to
the jth node for processing, 0 < αj ≤ 1 and Σn

j=1αj = 1;
– τ : Cost of transmitting a unit workload;
– χ: Cost of processing a unit workload.
– nmin: Minimum number of processors needed by a task to meet its deadline.

4 Algorithms

In Section 4.1, we first briefly discuss our algorithm framework and then we
present SMR, a simplified and extended version of UMR [7] algorithm. We then
describe how to integrate SMR into our algorithm in Section 4.2. The minimum
number of nodes to be assigned to a task is derived as well as the number of
rounds we need to deliver the workloads. Finally, we prove that applying SMR
will result in a better execution time for a task in Section 4.3.

4.1 Algorithm Framework

As is typical for dynamic real-time scheduling algorithms [15,16], when a task
arrives, the scheduler dynamically determines if it is feasible to schedule the
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new task without compromising the guarantees for previously admitted tasks.
Upon completion of the schedulability test, if all tasks are schedulable a feasible
schedule is developed and the new task is accepted, otherwise, it is rejected.

The general framework for a schedulability test is discussed in our previous
work [4]. The framework can be configured to generate various real-time divisible
load scheduling algorithms by configuring the following three components of
schedulability test:

1. Scheduling policy (e.g., FIFO, EDF).
2. Node assignment method (assigning a task all N or its nmin nodes).
3. Task partitioning rule (single-round DLT or SMR).

In [4], we have already investigated single-round algorithms and show that
algorithms that assign nmin nodes have their advantages. Thus, in this paper,
for the second and third components, we only investigate algorithms with nmin

nodes and SMR. First two algorithms, FIFO-MN-SMR and EDF-MN-SMR, are
developed by configuring the first module to adopt FIFO and EDF accordingly.
By applying the optimized algorithm described in Section 4.2, we have two op-
timized algorithms, FIFO-MN-SMR∗ and EDF-MN-SMR∗.

4.2 Simplified Multi-Round (SMR)

In this subsection, we describe how to integrate a simplified UMR [7], a multi-
round DLT, into our algorithmic framework. In subsection 4.2, we briefly describe
the SMR algorithm, a simplified version of UMR. UMR was first introduced in [7]
and one of its motivations is to reduce the complexity of the original multi-round
DLT algorithm introduced in [2]. In this paper, our system model is different
since we do not consider the setup cost. We modify the UMR algorithm to fit
into our model and thus develop a simplified multi-round approach, named SMR.
In Subsection 4.2, we derive a formula for the minimum number of nodes to be
assigned to a task, which is a critical factor for the real-time scheduling algo-
rithms to determine the task partitioning and schedule. In [14], an optimization
of UMR is proposed, but no details of the derivation of the task execution time
are given. However, we present a detailed derivation for our model (no setup cost
is considered) in Subsection 4.2. We also derive the minimum number of nodes
and the number of rounds for the optimized algorithm.

Illustration of SMR. SMR is a multi-round scheduling algorithm that is
based on simplifying UMR [7]. It dispatches a load in many rounds, and in each
round the load fraction is further equally subdivided among all the nodes. Let M
denote the number of rounds used by UMR/SMR. Figure 1 shows the operation
of SMR in the jth and j +1th round (for j ∈ {1, 2, · · ·M − 1}). The approach is
presented in detail in [7]. And since in our model we do not consider the setup
cost, the notion and equations in the figures are modified accordingly. At time
T0, the head node begins to dispatch chunks of size CHj for the jth round. At
T1 node P1 receives its data for the jth round and begins execution, and at time
T2 node P2 receives its data for that round and begins to compute. At time T3,
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Fig. 1. Timing Diagram of SMR

the head node finishes dispatching data for the jth round and begins to send
data for the j + 1th round.

According to [14], utilization of processing nodes is maximized if the time
needed by processing node PN to compute the jth round load is equal to the
time used by the head node to transmit the load for the j+1th round (in Figure 1,
it is the time interval between T3 and T4). That is, ∀j ∈ {1, 2, · · ·M − 1}

CHj × χ = N × CHj+1 × τ. (1)

By simple transformation, we get

CHj+1 =
χ

N × τ
× CHj . (2)

This equation gives the relation of chunk sizes for consecutive rounds. It im-
plies that for the SMR strategy once the data chunk size for the first round is
determined, the data chunk sizes for all other rounds can be derived following
equation (2).

Minimum Number of Nodes Analysis. Unlike DLT, where the number
of processing nodes allocated to a task is assumed to be given, we derive the
minimum number of nodes needed to meet the task deadline, which is a critical
factor for the real-time scheduling algorithm to determine the task partitioning
and schedule.

Observe the behavior of the algorithm in Figure 1, we notice that PN is the last
processing node to complete its computation. Therefore, the task’s completion
time is the time when node PN completes its computation for the last round. The
task’s execution time is the difference between its completion and start times. In
SMR, data sent to all the nodes has the same size. Thus, the processing time on
a node is equal to σ

N χ. The total execution time of the task is σ
N χ+N×CH1×τ ,

where the first term is the processing time and the second term is the idle time
of node PN waiting for the data of the first round to arrive. That is,

E =
σ

N
χ + N × CH1 × τ (3)
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Fig. 2. Parabola Y = τ ×N2 − D̂ ×N + σ × χ

By analyzing the above equation, we conclude that the minimum execution time
of a task scheduled by SMR on N processing nodes is achieved when the chunk
size for the first round, CH1, is infinitely small.

Assuming the minimum chunk size is a unit of workload, equation (3) becomes

E =
σ

N
χ + N × τ (4)

If the task T = (A, σ, D) has start time s, then the completion time C = s+E ≤
A + D, because the task must satisfy its deadline. It follows that,

E =
σ

N
χ + N × τ ≤ A + D − s (5)

Let D̂ = A + D − s. The above inequality is equivalent to

τ ×N2 − D̂ ×N + σ × χ ≤ 0 (6)

Since τ > 0, Y = τ ×N2− D̂×N + σ×χ is a parabola that opens upward. See
Fig. 2.

Fig. 2 shows three positions of parabola Y corresponding to negative, zero
and positive value of D̂2 − 4τχσ. To derive the minimum N that will satisfy
constraint (6), we need to analyze the three cases.

In the first case, when D̂2−4τχσ < 0, the parabola has no real axis intercepts,
which implies that the value of τ ×N2 − D̂ ×N + σ × χ will always be greater
than 0. Therefore constraint (6) can not be satisfied for any real number N ,
implying it is not possible to meet the task deadline.

In the second case, when D̂2 − 4τχσ = 0, the parabola has only one real
axis intercept where N = D̂

2τ . This is the only possible value of N that satisfies
constraint (6). In addition, N , the number of processing nodes, must be a positive
integer. Thus, the task can meet its deadline if and only if N = D̂

2τ is a positive
integer.

In the third case, when D̂2 − 4τχσ > 0, the parabola has two real axis in-
tercepts. From Figure 2, we can see that in order to satisfy (6), the value of N
should fall between the two real roots of equation τ ×N2 − D̂×N + σ× χ = 0.
That is

D̂−
√

D̂2−4τχσ
2τ ≤ N ≤ D̂+

√
D̂2−4τχσ
2τ .
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Since N must be a positive integer, we can obtain a reasonable minimum number
for N only if the following constraint holds.

1 ≤
⌈

D̂−
√

D̂2−4τχσ
2τ

⌉
≤ D̂+

√
D̂2−4τχσ
2τ .

Satisfying the above constraint, the minimum number of nodes a task needs to
complete before its deadline is

N =
⌈

D̂−
√

D̂2−4τχσ
2τ

⌉
.

Last Round Optimization. V. Bharadwaj et al. [2] show that in an optimal
divisible workload partition, all nodes finish computing at the same time. As
discussed above, for each round, each node is assigned chunks of the same size.
Thus, the computing nodes finish at different times. Morever, when the τ is
large, that is, when the communication cost is high, the first node will finish
computation much earlier than the last. This problem is fixed by repartitioning
the chunks in the last round. Thus, in the optimized SMR, the chunk size for
each node is the same in all rounds except the last round.

After the optimization, we have

E∗ =
σ

N
χ +

N

2
τ (7)

Now, applying the same process as in Sec. 4.2, we can calculate the minimum
number of nodes N∗ as follows:

N∗ =

⎧⎪⎪⎨⎪⎪⎩
D̂
τ if D̂2 − 2στχ = 0 and D̂

τ is an interger,

� D̂−
√

D̂2−2τpsσ
2τ � if D̂2 − 2στχ > 0 and

1 ≤ � D̂−
√

D̂2−2τpsσ
2τ � ≤ D̂+

√
D̂2−2τpsσ
2τ .

(8)

4.3 The Optimized SMR Theorem

Intuitively, the multi-round algorithm will perform better than the single-round
algorithm since the data transmission and computation are better pipelined.
However, for UMR [7], no formal proof is given. Thus, in this section, for our
model we formally develop the theorem that the optimized SMR has better
performance than the single-round strategy. The following notions are used in
the theorem.

– Em: the completion time for optimized SMR.
– Es: the completion time for Single-round strategy.
– T m

I : the total idle time due to waiting for data transmission for optimized
SMR.

– T s
I : the total idle time due to waiting for data transmission for Single-round

strategy.
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Lemma 1. The total idle time due to waiting for data transmission for opti-
mized SMR is less than single round algorithm. That is, T m

I < T s
I .

Theorem 1. By assigning all N computing nodes to a task, the optimized SMR
results in a shorter execution time than the single round algorithm. That is,
Em < Es.

5 Performance Evaluation

In this section, we evaluate the proposed two sets of real-time scheduling algo-
rithms: Set 1 = {FIFO-MN-SMR and FIFO-MN-SMR∗} and Set 2 = {EDF-
MN-SMR and EDF-MN-SMR∗}.

5.1 Simulation Configurations

We use a discrete simulator to simulate a collections of homogeneous clusters that
are compliant with the system model presented in Section 3. Three parameters,
N , τ and χ are specified for every cluster.

A task Ti is represented by (Ai, σi, Di), where Ai, the task arrival time, is spec-
ified by assuming that the interarrival times follow an exponential distribution
with a mean of 1/λ, task data sizes σi are assumed to be normally distributed
with the mean and the standard deviation equal to Avgσ, and task relative dead-
lines (Di) are assumed to be uniformly distributed in the range [AvgD

2 , 3AvgD
2 ],

where AvgD is the mean relative deadline. To specify AvgD, we use the term
DCRatio [4]. It is defined as the ratio of the mean deadline to the mean mini-
mum execution time (cost), that is AvgD

E(Avgσ,N) , where E(Avgσ, N) is the execution
time assuming the task has an average data size Avgσ and is allocated to run
on all N nodes simultaneously [4]. Given a DCRatio, the cluster size N and the
average data size Avgσ, AvgD is implicitly specified as DCRatio×E(Avgσ, N).
Thus, task relative deadlines are related to the average task execution time. In
addition, a task relative deadline Di is chosen to be larger than its minimum
execution time E(σi, N). In summary, we could specify the following parameters
for a simulation: (N, τ , χ, 1/λ, Avgσ, DCRatio).

We use the metric SystemLoad [4] to analyze the cluster load for a simulation.
It is defined as, SystemLoad = E(Avgσ,N)

λ , which is the same as, SystemLoad =
TotalTaskNumber×E(N,Avgσ)

TotalSimulationTime . To evaluate the performance of the real-time
scheduling algorithms, we use the metric, Task Reject Ratio, defined as the ratio
of the number of task rejections to the number of task arrivals [4]. The smaller
the Task Reject Ratio, the better the real-time scheduling algorithm.

For all figures in this paper, a point on a curve corresponds to the average
performance of ten simulations. For all ten runs, the same parameters (N, τ ,
χ, SystemLoad, Avgσ, DCRatio) are specified but different random numbers
are generated for task arrival times Ai, data sizes σi, and deadlines Di. For
each simulation, the TotalSimulationT ime is 10,000,000 time units, which is
sufficiently long.
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5.2 Advantages of SMR

As proved in Section 4.3, for a single task, applying SMR will result in better per-
formance. In our model, there are multiple dynamic tasks in the system. It is still
unknown whether integrating SMR will give better performance than integrating
the single round algorithm. Thus, in this section we compare two sets of real-
time scheduling algorithms: Set 1 = {FIFO-MN-SMR and FIFO-MN-SMR∗}
and Set 2 = {EDF-MN-SMR and EDF-MN-SMR∗} with algorithms FIFO-MN-
Single and EDF-MN-Single, respectively [4]. We conducted simulations under
the baseline system configuration N = 16, τ = 1, χ = 100, Avgσ = 200, DCRa-
tio= 2.
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Fig. 3. Advantages of Integrating SMR

Figures 3a and 3b respectively show the comparison of algorithms FIFO-MN-
SMR and EDF-MN-SMR, FIFO-MN-SMR∗ and EDF-MN-SMR∗ with their cor-
responding single-round algorithms FIFO-MN-Single and EDF-MN-Single. From
Figure 3a we observe that FIFO-MN-SMR has a lower Task Reject Ratio than
FIFO-MN-Single, which shows that applying SMR leads to better performance.
We also observe that FIFO-MN-SMR∗ has even better performance. Figure 3b
shows similar results. We conclude that it is very beneficial to integrate SMR
with real-time divisible load scheduling.

5.3 Effects of Communication Cost (τ) on SMR

As discussed in [2], for multi-round algorithms, overlapping the data transmis-
sions to different nodes are the key to shorten the execution time. Thus, the
cost of communication has become an important issues that affects the perfor-
mance. For this reason, we investigate the effect of communication cost on the
performance of our approach.

For the simulation, we varied the values of τ from 1 to 2, 4 and 8, while keep-
ing the other parameters constant as the baseline configuration. Each point in
Figure 4a represents the difference in Task Reject Ratios for EDF-MN-Single
and EDF-MN-SMR∗ algorithms. The three curves represent the cases when
SystemLoad is equal to 0.1, 0.3 and 0.5 respectively. We observe that, as the
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communication cost increases, the difference in Task Reject Ratios becomes
larger. This indicates that applying SMR has significant impact on the system
performance as the communication cost increases. The reason is that compared
to single round algorithms, the multi-round algorithms can pipeline the data
transmission among different nodes, resulting in saving more communication
time. Thus, when communication cost is high, algorithms integrating SMR will
show more advantages.

We now compare the algorithm SMR with its optimized version. As discussed
in Section 4.2, for the unoptimized SMR, the computing nodes finish at different
times. Thus, when τ is large, that is, when the communication cost is high, the
first node will finish computation much earlier than the last node. The optimized
SMR fixes this problem by optimizing the partition of the last round. We now
try to verify this effect by simulation.

We varied the values of τ from 1 to 2, 4, 8 and 20, while keeping the other
parameters constant as the baseline configuration . Each point in Figure 4b
represents the difference in Task Reject Ratios for EDF-MN-SMR and EDF-
MN-SMR∗ algorithms. The three curves represent the cases when SystemLoad is
equal to 0.1, 0.3 and 0.5 respectively. We can observe that, as the communication
cost increases, the difference in Task Reject Ratios becomes larger. Thus, when
the communication cost is higher, the optimized SMR performs better. This
verifies the conclusion above.

6 Conclusion

In this paper, we extend multi-round DLT to provide deterministic QoS to ar-
bitrarily divisible applications executing in a cluster. SMR (Simplified Multi-
Round) strategy is integrated into our previous algorithm framework [4]. We
show that algorithms that integrate SMR perform better than the single-round
algorithms in our model. We also investigate the effects of the communication
costs on these algorithms. Experimental results show that when the communica-
tion cost is increasing, the algorithms integrating SMR have better performance.
We theoretically prove that by assigning same number of nodes to a task, the
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optimized SMR will result in a shorter completion time than the single round
approach.
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Abstract. Energy consumption is a critical issue in parallel and distributed 
systems. Workflows consist of a number of tasks that need to be executed to 
complete an application. These tasks typically have precedence relationships 
that have to be observed during execution for correctness. DAGs (Directed 
Acyclic Graphs) can be used to represent many such workflows. The static 
algorithms to schedule for energy minimization under the deadline constraints 
are based on estimating worst case execution time for each task to guarantee 
that the application completes by a given deadline. During execution, many 
tasks may complete earlier than expected during the actual execution. This 
allows for adjusting the schedule for the tasks that have not yet begun execution 
to incorporate the extra slack.  This has to be done with the dual goal of 
reducing the energy requirements while still meeting the deadline constraints. In 
this paper, we present a novel dynamic algorithm for remapping tasks for 
energy efficient scheduling of DAG based applications for DVS enabled 
systems. Our experimental results show that the combination of our dynamic 
assignment and dynamic slack allocation leads to significantly better energy 
minimization compared to not changing the static schedule and/or only 
performing dynamic slack allocation. Furthermore, its execution time 
requirements are small enough to be useful for a large number of applications. 

1   Introduction 

Computers use a significant and growing portion of the energy consumption in US. A 
study by Dataquest [10] reported that the world-wide total power dissipation of 
processors in PCs was 160MW in 1992, and by 2001 it had grown to 9000MW. 
Energy-aware computing is crucial for large-scale systems that consume considerable 
amount of energy and embedded systems that utilize battery for their power. Most 
effective energy minimization techniques are based on Dynamic Voltage Scaling 
(DVS). The DVS technique assigns differential voltages to each task to minimize 
energy requirements of an application. Assigning differential voltages is the same as 
allocating additional time or slack to a task. This technique has been found to be a 
very effective method for reducing energy in DVS enabled processors. 

Workflows consist of a number of tasks that need to be executed to complete an 
application. These tasks typically have precedence relationships that have to be 
observed during execution for correctness. DAGs (Directed Acyclic Graphs) can be 
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used to represent many such workflows. A DAG consists of nodes that represent 
computations or tasks and edges that represent the dependency between the nodes. 
DAGs have been shown to be representative of a large number of applications. A 
number of algorithms have been designed to schedule DAGs on parallel machines for 
energy minimization while meeting deadline. The following two step process is 
generally used for scheduling tasks with the goal of energy minimization while still 
meeting the deadline constraints: 

1. Assignment: This step determines the mapping of tasks to processors and the 
ordering to execute tasks within a processor. Note that the finish time of DAG at 
the maximum voltage has to be less than or equal to the deadline for any feasible 
schedule. 

2. Slack allocation: Once the assignment of each task is known, this step allocates 
variable amount of slack to each task so that the total energy consumption is 
minimized while the DAG can execute within a given deadline. 

Most static algorithms for energy minimization developed in the literature for 
parallel and distributed machines use algorithms that minimize the total time 
requirements (the term makespan is also used for this purpose) during the assignment 
phase. Slack allocation algorithms are then used to minimize energy while still 
ensuring that the deadline constraints are met. The deadline is assumed to be longer 
than the makespan for obvious reasons. We have shown that incorporating energy 
requirements of tasks during the assignment process can lead to better overall energy 
minimization for homogeneous and heterogeneous processors. For heterogeneous 
machines, the energy requirements for a given task may be substantially different for 
each processor. We have shown that our algorithms can exploit the differential energy 
profiles effectively [6]. 

Worst-case execution time is used to guarantee that an application completes in a 
given time bound when the static scheduling is applied. In practice, many tasks may 
complete earlier than expected during the actual execution. This allows for other 
unexecuted tasks to potentially start earlier than what was envisioned during the static 
scheduling. This extra available slack can then be allocated to the tasks that have not 
yet begun execution such that the total energy requirements are reduced while still 
meeting the deadline constraints. Several runtime approaches for slack allocation have 
been studied in the literatures for independent tasks [1, 3, 8]. For DAG based 
workflows, a few dynamic scheduling algorithms have been recently proposed [4, 7]. 
These methods are based on allocating the slack generated (due to a task completing 
earlier than expected) at runtime. We have shown that reallocating slack at runtime 
(i.e., dynamic slack allocation) leads to better energy minimization [4]. We also 
showed that applying our dynamic slack allocation methods not only outperform the 
existing greedy method but also are comparable to static near optimal methods 
applied at runtime in terms of energy [4]. 

In this paper, we explore whether reassignment of tasks along with reallocation of 
slack during runtime can lead to even better performance in terms of energy 
minimization. For an approach that is effective at runtime, its overhead should be 
small for it to be useful. We present a novel dynamic scheduling algorithm that leads  
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to good performance in terms of both computational time (i.e., runtime overhead) and 
energy requirements. The main features of our algorithm are as follows: 

1. A small subset of tasks is chosen for reassignment to reduce the energy requirements. 
2. The reassignment step is followed by a dynamic slack allocation step. 
3. The original deadline constraints are met. 

Our experimental results show that the combination of our dynamic assignment 
along with dynamic slack allocation leads to significantly better performance in terms 
of energy compared to (a) not changing the static schedule and (b) not changing the 
static mapping and only performing dynamic slack allocation. Furthermore, the time 
requirements are small enough that it should be useful for a large number of 
application workflows. 

The remainder of this paper is organized as follows. In Section 2, we describe the 
energy model, the application model, and the overview of DVS scheme and assignment 
scheme. Section 3 presents our proposed dynamic scheduling algorithm for energy 
minimization. In Section 4, we present the performance of our algorithm through the 
experiment results. Section 5 provides the conclusion.  

2   Preliminaries 

Energy Model. Dynamic voltage scaling (DVS) technique reduces the dynamic 
power dissipation by dynamically scaling the supply voltage and thes clock frequency 
of processors. The relationship between power dissipation Pd, supply voltage Vdd, and 

frequency f is represented by Pd = Cef ⋅Vdd
2 ⋅ f  and f = k ⋅ Vdd − Vt( )2

/Vdd , where Cef 

is the switched capacitance, k is the constant of circuit, and Vt is the threshold voltage 
[2]. The energy consumed to execute task τi, Ei, is expressed by Ei = Cef ⋅Vdd

2 ⋅ci , 

where ci is the number of cycles required to execute the task. The supply voltage can 
be reduced leading to decreasing the processor speed and the energy consumption. 

Application Model. Directed Acyclic Graph (DAG) represents the workflow among 
tasks. Fig. 1 (b) depicts the assignment for the DAG of Fig. 1 (a). The assignment is 
various depending on mapping methods while it satisfies a given deadline of the 
DAG. We assume that the deadline is larger than or equal to the finish time of the 
DAG (i.e., completion time of the DAG based on the assignment). Fig. 1 (c) represent 
an assignment DAG, which is the direct workflow among tasks generated after the 
assignment. The direct precedence relationship of tasks may change from one in an 
original DAG depending on the given assignment. For instance, tasks τ1 and τ4 have a 
direct dependency in the original DAG, but, in the assignment DAG, they have no 
direct dependency. 

Slack Allocation Scheme. The slack allocation scheme (i.e. DVS scheme) allocates 
slack to tasks to minimize energy. The problem of slack allocation can be posed as the 
following: Allocate variable amount of slack to each task so that the total energy 
consumption is minimized while the deadlines can still be met. A Linear Programming 
(LP) based approach performs near optimal slack allocation has been described in [9].  
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Fig. 1. (a) DAG, (b) Assignment on two processors, (c) Assignment DAG 

Recently, we have developed another method for near optimal slack allocation that 
requires significantly lower computational time requirements [5]. It is worth noting 
that both the approaches have similar performance from the energy minimization 
perspective.  

The path based algorithm in [5] (i.e., PathDVS) is an iterative approach that 
allocates a small amount of slack (called unit slack) in each iteration and finds a 
solution to the following problem: Find the subset of tasks that can be allocated this 
unit slack so that the total energy consumption is minimized while the deadline 
constraint is also met. This process is applied iteratively till all the slack is used. The 
dependency relationships in an assignment DAG constrain the total slack which can 
be allocated to different tasks. Each iteration of the problem can be reduced to finding 
a weighted maximal independent set of tasks, where the weight is given by the 
amount of energy reduction by allocating unit slack. The characteristic that each task 
is allocated the entire unit slack or no slack during each iteration allows for the use of 
search techniques to find the optimal slack allocation.  

Assignment Scheme to Minimize DVS based Energy. The assignment determines 
the ordering to execute tasks and the mapping of tasks to processors based on the 
computation time at the maximum voltage level. Most of prior research on scheduling 
for energy minimization has not concentrated on the assignment process. Simple list 
based assignment algorithm with the goal of minimizing finish time were used for this 
purpose. However, we have recently shown that incorporating energy requirements of 
tasks during the assignment process can lead to significantly better overall energy 
minimization as compared to other existing algorithms [6]. The main feature of our 
assignment algorithm [6] is to consider the energy requirements based on potential 
slack during the assignment step. In other words, the algorithm assigns an appropriate 
processor for each task such that the total energy expected after slack allocation (i.e., 
expected DVS based energy) is minimized. The goal of the assignment is to minimize 
the total expected energy while still satisfying deadline constraints. Consider a 
scenario where the assignment of a subset of tasks has already been completed and a 
given next task in the prioritization list has to be assigned. The choice of the 
processors that can be assigned to this task should be limited to the ones where 
expected finish time from the overall assignment will lead to meeting the deadline 
constraints (else this will result in an infeasible assignment). Clearly, there is no 
guarantee that the schedule derived will be a feasible schedule (i.e., a schedule 
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meeting deadline) at the time when the assignment for a given task is being 
determined because the feasibility of the schedule depends on the assignment of the 
other remaining tasks whose assignment is not determined. There are two main steps 
involved in the process of assigning a task to a processor [6]. These are briefly 
described below: 

• Estimating the Deadline for a given task: The algorithm calculates the estimated 
deadline for each task, that is, deadline expected to enable a feasible schedule if the 
task can finish within its estimated deadline. The estimated deadline of a task is set 
to the latest finish time in order to allow more flexibility for processor assignment 
as the task can take a longer time to complete (while the probability of feasible 
schedule for DAG may be lower due to the higher probability of the increase of 
finish time). Here the latest finish time of a task is different based on its potential 
assigned processor due to the assignment-based dependency relationship among 
tasks. Thus, the time limit, which a task should be finished within, will vary for 
processors.  

• Processor Selection: The task is assigned to a processor such that the total 
expected DVS based energy for the tasks that have already been assigned so far 
(and including the new task that is being considered for assignment) is minimized 
while trying to meet estimated deadline of the task. The candidate processors for 
the task are selected such that the task can execute by its estimated deadline. Note 
that the estimated deadline of a task may be different based on processors. Also, 
the processor selection process for the task depends on the number of candidate 
processors. 

Details of each of the above steps are provided in [6]. It is worth noting the proposed 
dynamic scheduling algorithm is relatively independent of the static assignment 
scheme as the main benefits are to limit the actual tasks that are considered for 
applying the assignment process during runtime. 

3   Dynamic Scheduling 

We assume that a static scheduling algorithm has already been applied before 
executing tasks and the schedule needs to be adjusted whenever a task finishes before 
its scheduled time. Thus this schedule is updated whenever a dynamic scheduling is 
applied. When a task finishes before its estimated time, two changes may occur for all 
the remaining tasks (i.e., tasks that have not yet executed). Its processor mapping may 
change along with the start time and finish time. Also, the amount of slack (time over 
minimum execution time for that processor based on executing the task at maximum 
voltage) may change. The proposed dynamic scheduling algorithm utilizes several 
threads to generate a schedule: (1) one set for reallocating slack while keeping the 
assignment in the current schedule and (2) another set for changing the assignment 
and then reallocating slack. Then a schedule providing the minimum energy 
consumption is selected. For the dynamic scheduling (i.e., rescheduling), there are 
two steps that need to be addressed: 

1. Select the subset of tasks for rescheduling: The potentially rescheduled tasks via 
the dynamic scheduling algorithm are tasks which have not yet started when the 
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algorithm is applied. We assume that the voltage can be selected before a task 
starts executing. The dynamic scheduling is applied to the subset of tasks among 
the tasks. The tasks considered for rescheduling are limited in order to minimize 
the overhead of reassigning processors and reallocating the slack during runtime. 
Clearly, this should be done so that the other goal of energy reduction is also met 
simultaneously.  

2. Determine the time range for the selected tasks: The time range of the selected 
tasks has to be changed as some of the tasks have completed earlier than expected. 
Based on the computation time in the schedule and assignment-based dependency 
relationships among tasks, we recompute the time range (i.e., earliest start time and 
latest finish time) where the selected tasks should be executed. The time range is 
defined differently for reassignment and slack reallocation – time range over 
processors for reassignment and time range for the selected tasks given an 
assignment for slack reallocation. However, the main concept is same as the 
selected tasks have to be reassigned and reallocated slack within this time range in 
order to meet deadline constraints. 

At this stage our proposed reassignment algorithm and slack reallocation approach 
are applied to the subset of tasks within the time range as described above. The 
computational time (i.e., runtime overhead) is kept small due to the limited number of 
tasks selected for rescheduling. While several assignment methods can be applied 
using threads, we propose a reassignment method based on our method described in 
[6]. This incorporates the expected DVS based energy information during the 
reassignment process.  

The computation time of each selected task is set to its estimated execution time 
used in the assignment algorithm (before any static slack allocation) for rescheduling. 
In other words, the slack that was allocated during the static scheme is ignored for 
reassignment and slack reallocation. This effectively ensures that maximum flexibility 
is available for rescheduling. Furthermore, this will, in general, lead to better energy 
requirements as considering the change of assignment-based dependency 
relationships among tasks from the early finished task.  

3.1   Choosing a Subset of Tasks for Rescheduling 

The proposed dynamic scheduling algorithm, k lookahead approach, is based on 
choosing a subset of tasks for which the schedule will be readjusted [4]. The schedule 
for the remaining tasks (i.e., tasks not selected for the rescheduling) is not affected. 
Using k lookahead approach, all tasks within a limited range of time are considered 
for the readjustment of schedule. The range of time is limited with to k * maximum 
computation time of any task. The set of tasks selected for the rescheduling when task 
τl finishes early is defined by 

Γallocation = {τ i | staticSTimei ≥ ftimel, staticFTimei ≤ ftimel + k* max
τ j ∈Γ

compTime j },

where τ l  s.t. ftimel ≠ staticFTimel   
 (1)

where staticSTimei is the start time of task τi in the static or previous schedule, 
staticFTimei is the finish time of task τi in the static or previous schedule, ftimel is thes 
actual finish time of task τl at runtime, and compTimej is the computation time of task 
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τj on its assigned processor, a.k.a., the estimated execution time at the maximum 
voltage. 

The approach with ‘all’ option for k (i.e., k-all lookahead approach) corresponds to 
the static scheduling approach without the limitation on the time range for tasks 
considered for rescheduling. Thus, the k-all lookahead approach is same as applying 
the static scheduling algorithm to all the remaining tasks at runtime. One would 
expect this to be close to the best that can be achieved. The set of tasks selected for 
the rescheduling when task τl finishes early is defined by  

Γallocation = {τ i | staticSTimei ≥ ftimel },where τ l  s.t. ftimel ≠ staticFTimel  (2)

3.2   Time Range for Selected Tasks 

The schedule for tasks not in the set of reschedulable tasks is kept to be the same (this 
is based on static schedule or schedule generated by last rescheduling). For the set of 
reschedulable tasks, a range of time to execute each task is defined based on the 
current feasible solution (before applying the dynamic scheduling algorithm). The 
time range is differently defined for reassignment and slack reallocation. For 
reassignment, the time range is defined for each processor as the task may be mapped 
to more than one processor. And, for slack reallocation, the time range is defined for a 
particular processor. 

For reassignment, the time range of processors is computed as follows: 

1. The available start time of each processor is the possible earliest start time of each 
processor for the tasks. It is set to the expected finish time (i.e., the finish time in the 
current schedule) of the last task that is not in the set of reschedulable tasks and 
already started when applying an algorithm (currently executing or already finished) 
on each processor (i.e., a task with the latest finish time on each processor among 
tasks not in the set of reschedulable tasks). It is worth noting that it is not the earliest 
start time of reschedulable tasks on each processor. The earliest start time of the 
tasks on a processor is different due to the precedence relationships among other 
tasks. The available start time of a processor pj, procSTimej, is defined by 

procSTime j = staticFTimei,

where proci = p j & staticSTimei < ftimel & max
i

staticSTimei
 (3)

2. The deadline of each processor is the possible latest finish time of each processor 
for the tasks. It is set to the expected start time (i.e., the start time in the current 
schedule) of the first task that is not in the set of reschedulable tasks and is not 
started yet when applying an algorithm on each processor (i.e., a task with the 
earliest start time on each processor among tasks not in the set of reschedulable 
tasks). It is worth noting that it is not the latest finish time of reschedulable tasks 
on each processor. Like the earliest start time, the latest finish times of the tasks on 
a processor are different due to the precedence relationships among other tasks. 
The deadline of a processor pj, procDeadlinej, is defined by  
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procDeadline j = staticSTimei ,  

where  τ i ∈ Γallocation
c & proci = p j & min

i
staticSTimei

 (4)

Given an assignment, for slack reallocation, the time range is defined as follows [4]: 

1. The start time of the tasks is changed as flexibly as possible to meet the deadline 
constraints as well as the finish times of assignment-based predecessors of each 
task. In particular, the finish time of the predecessors that have already completed 
or are not part of the selected tasks is fixed.  

2. The finish time (or deadlines) of the tasks is changed so that they can be completed 
as late as possible while ensuring that the deadline constraints are met.  

Using the above constraints, each reschedulable task has different amount of the 
maximum available slack. The actual slack is computed to be within the time range 
for reschedulable tasks. The maximum available slack for each task is used while 
computing the estimated energy for reassignment and reallocating slack after 
reassignment. The maximum available slack of reschedulable task τi, slacki, is defined 
by the difference of the latest start time of τi, LSTi, and the earliest start time of slack 
reallocable task τi, ESTi. These values are computed as follows:  

LSTi = min deadlinei ,LSTpSucci
, min
τ j ∈succi

LST j − commTimeij( )⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − staticCTimei  (5)

ESTi = max
starti , ESTpPred i

+ staticCTimepPredi( ),
max

τ j ∈ predi

EST j + staticCTime j + commTimeij( )
⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 (6)

slack i = LST i − EST i (7)

where deadlinei is the deadline of task τi, staticCTimei is the computation time of task 
τi in the current schedule, commTimeij is the communication time between task τi and 
task τj on their assigned processors, starti is the start time of task τi, succi is the set of 
direct successors of task τi in a DAG, pSucci is the task assigned next to task τi on the 
same assigned processor, predi is the set of direct predecessors of task τi in a DAG, 
and pPredi is the task assigned prior to task τi on the same assigned processor. Here 
the earliest start time and the latest start time of a task not included in the set of slack 
reallocable tasks are equal to its static start time or its actual start time at runtime if it 
already finished (i.e., EST j = LST j = staticSTime j ,  where  τ j ∈ Γallocation

c ). Please 

note that the static start time of a finished task is same to the actual start time. 

4   Experimental Results 

In this section, we compare the performance of the combination of dynamic assignment 
and dynamic slack allocation proposed in this paper (i.e., DynamicAssgn) with the 
following two main methods which outperform other existing in each given state: 
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• Static scheduling (i.e., StaticDVS) [5]: This static scheduling provides near 
optimal solutions for energy minimization given an assignment. However, it keeps 
the schedule generated at compile time during runtime. 

• Dynamic slack allocation (i.e., DynamicDVS) [4]: This dynamic slack allocation 
readjusts the schedule whenever a task finishes earlier than expected during 
runtime while keeping a given assignment. In our experiments, k-3 time lookahead 
slack allocation approach which gives good performance in terms of energy is 
used.   

The dynamic algorithms (i.e., DynamicDVS, DynamicAssgn) are applied to a 
static schedule that is based on a known assignment algorithm and a static slack 
allocation algorithm. We use a static scheduling algorithm presented in [5]. Also, for 
a fair comparison with DynamicDVS, k-3 time lookahead approach for 
DynamicAssgn is used and PathDVS [5] is used as a slack allocation method 
applied at runtime.  

DAG Generation: We randomly generated a large number of graphs with 50 and 100 
tasks. The execution time of each task on each processor at the maximum voltage is 
varied from 10 to 40 units and the communication time between a task and its child 
task for a pair of processors is varied from 1 to 4 units. The energy consumed to 
execute each task on each processor is varied from 10 to 80. The execution of graphs 
is performed on 4, 8, 16, and 32 processors. 

Dynamic Environments Generation: There are two broad parameters for dynamic 
environments: earlyFinishedTaskRate and timeDecreaseRate. 

• The number of tasks that finish earlier than expected in the schedule is given by the 
earlyFinishedTaskRate (i.e., number of early finished tasks = earlyFinishedTaskRate 
* total number of tasks).  

• The amount of decrease for each task that finishes early is given by timeDecreaseRate 
(i.e., amount of decrease = timeDecreaseRate * estimated execution time).  

We experimented with earlyFinishedTaskRates equal to 0.2, 0.4, 0.6, and 0.8 and 
timeDecreaseRates equal to 0.1, 0.2, 0.3, and 0.4. In this paper, only the results for 
earlyFinishedTaskRates equal to 0.2 and 0.8 are presented due to space limitations. 

Performance measures: The deadline is defined by deadline = (1 + deadline 
extension rate) * total finish time from assignments without DVS scheme. We 
experimented with deadline extension rates equal to 0 (no extension), 0.01, 0.02, 0.05, 
0.1, and 0.2, but only the results for no deadline extension are presented due to space 
limitations. To compare algorithms, the normalized energy consumption, that is, total 
energy normalized by the energy obtained from the static assignment (before applying 
static slack allocation), is used. The computational time (i.e., runtime overhead) is 
also performed as an important measure for algorithms in dynamic environments. 

Fig. 2 shows the comparison of our algorithm with static scheduling and dynamic 
slack allocation in terms of energy consumption with respect to different time 
decrease rates and different early finished task rates for 4, 8, 16, and 32 processors. 
Based on the results, the combination of dynamic assignment and dynamic slack  
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Fig. 2. Normalized energy consumption for 50 and 100 tasks on different number of processors 

allocation (i.e., DynamicAssgn) significantly outperforms static scheduling (i.e., 
StaticDVS) and dynamic slack allocation (i.e., DynamicDVS) in terms of energy 
consumption. For instance, for 32 processors, DynamicAssgn improves energy 
requirements by 15-26% and 8-12% compared to StaticDVS and DynamicDVS 
respectively. These results show that both adjusting the assignment as well as 
adjusting the slack is necessary for minimizing the energy requirements. Furthermore, 
the improvement of DynamicAssgn over the other two algorithms increases as the 
timeDecreaseRate increases. Note that the performance of StaticDVS is 
independent of the timeDecreaseRate because it does not change the generated 
schedule during runtime. 



218 J. Kang and S. Ranka 

 

Fig. 3. Computational time to readjust the schedule from an early finished task with respect to 
different time decrease rates (unit: ns – via logarithmic scale) 

Fig. 3 shows the average time requirement to readjust the schedule due to a single 
task’s early finish (i.e., runtime overhead). The computational time of 
DynamicAssgn is two orders of magnitude larger than DynamicDVS since 
DynamicAssgn requires assignment process as well as slack allocation process. 
However, DynamicAssgn requires 0.02-0.04 seconds in average to readjust the 
schedule at runtime – this small time should make it applicable for a large number of 
compute intensive applications. 

5   Conclusion 

We have presented a novel scheduling algorithm to minimize energy consumption for 
dynamic environments, where the actual execution time of a task may be different 
from its estimated time. We showed that our algorithm (i.e., the combination of 
reassignment and slack reallocation) provides considerably better energy minimization 
compared to static scheduling. It also provides significant improvements over only 
reallocating the slack at runtime without changing the assignment.  
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Abstract. In order to provide high resource utilization and QoS assurance in 
utility computing hosting concurrently various services, this paper proposes a 
service computing framework-RAINBOW for VM(Virtual Machine)-based 
utility computing. In RAINBOW, we present a priority-based resource 
scheduling scheme including resource flowing algorithms (RFaVM) to optimize 
resource allocations amongst services. The principle of RFaVM is preferentially 
ensuring performance of some critical services by degrading of others to some 
extent when resource competition arises. Based on our prototype, we evaluate 
RAINBOW and RFaVM. The experimental results show that RAINBOW 
without RFaVM provides 28%~324% improvements in service performance, 
and 26% higher the average CPU utilization than traditional service computing 
framework (TSF) in typical enterprise environment. RAINBOW with RFaVM 
further improves performance by 25%~42% for those critical services while 
only introducing up to 7% performance degradation to others, with 2%~8% 
more improvements in resource utilization than RAINBOW without RFaVM. 

Keywords: Resource scheduling, utility computing, virtualization. 

1   Introduction 

It’s a new trend towards providing heterogeneous services concurrently by enterprise 
data centers, for example, of Google and Amazon. Google provides services consisting 
of Google search, Google office, and Youtube. In the past, those services were provided 
by different platforms. In such a case, QoS guaranteeing of services with the time-
varying capacities (including computing, storage, and communication) demands as the 
result of request arrival distributions resulted in over-provision each service. Such 
datacenters were often underutilized. One approach to increase the resource utilization is 
consolidating services in a shared infrastructure-utility computing [2]. In such a shared 
platform, isolation among the hosted services is crucial. As virtualization is increasingly 
popular, utility computing is incorporating virtualization technology such as virtual 
machines (VMs) with effective isolation among services. Many companies envisioning  
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Fig. 1. The evolution of resource management 

this popular trend have devoted themselves to developing new utility computing 
infrastructures based on virtualization technologies such as VMware [17] and 
XenSource [11]. 

VM-based utility computing has some obvious advantages like consolidation, 
isolation, flexibility resource management. Dynamic load changes of services give 
rise to dynamic capacities demands, which implies it is necessary to control resource 
flowing among services on-demand. Resource flowing denotes the process in which 
resources released by VMs are allocated to others. The VM-based resource 
management differs from the previous works in the granularity (from nodes to 
components) and dimensions (from one to two), illustrated in fig.1. Traditional 
resource management corresponds to the scheduler in fig.1(a), which dispatches jobs 
onto a set of exclusively servers. As to the VM-based resource management (fig.1(b)), 
scheduler #1 corresponding to the traditional resource management dispatches jobs 
onto a set of VMs. It adds a new dimensioned resource scheduler (scheduler #2) to 
optimize the usage of finer-grained resources via resource flowing among VMs. Any 
contemporary VMMs (Virtual Machine Monitor, i.e. Xen and VMware) with resource 
reallocating scheme provide technical support rather than strategy to resource 
flowing. They need better scheduler#2 to optimize the usage of resources. Optimizing 
resource flowing among VMs is a challenge in such a platform. 

In order to address above challenge, we propose a novel service computing 
framework --RAINBOW for VM-based utility computing. RAINBOW integrates 
separate resources into a shared virtual computing platform, ensuring QoS and higher 
resource utilization. We model the resource flowing using optimization theory. Based 
on this model, we present a priority-based resource scheduling scheme including a set 
of algorithms of resource flowing among VMs (RFaVM). The principle of RFaVM is 
preferentially ensuring performance of some critical services by degrading of others 
to some extent when resource competition arises. We implement a Xen-based 
prototype to evaluate RAINBOW and RFaVM. We consider CPU and memory 
flowing schemes which could be generally applicable to other resources. The 
experimental results indicate that RAINBOW with RFaVM effectively improves the 
resource utilizations, and meets QoS goals of services, in the typical enterprise IT 
environment with inappreciable overheads. 

This paper has the following contributions. 1) We propose a novel service 
computing framework (RAINBOW) for VM-based utility computing. 2) We model 
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the resource flowing in RAINBOW and present a priority-based resource scheduling 
scheme including a set of algorithms of resource flowing among VMs (RFaVM). 

The rest of this paper is organized as follows: RAINBOW is introduced in Section 2. 
Section 3 describes resource scheduling scheme, while Section 4 discusses the 
experimental results. Section 5 presents related work. Section 6 concludes the paper. 

2   A Novel Service Computing Framework – RAINBOW 

2.1   RAINBOW Statement 

We present a novel service computing framework (RAINBOW, illustrated in fig.2(b)) 
to improve the resource utilization and QoS. Different from the traditional service 
computing framework (TSF, illustrated in fig.2(a)) in which one service runs on a set 
of dedicated servers, RAINBOW uses virtualization to isolate concurrent services in a 
shared physical infrastructure. We observe that diverse services may be various 
resource-bound, for example, VoD service is I/O-bound, HPC service is CPU-bound. 
Further, we obtain another observation that diverse services may have various time-
varying resource demands as the result of request arrival distributions [4][13]. Those 
two observations motivate our design of RAINBOW. In order to minimize the 
interaction among the hosted services due to their competitions for resources, services 
with the same resource-bound should be distributed onto different physical servers. In 
RAINBOW, a set of VMs serving a particular service is called a group. The key 
principle is that VMs belonging to a single group may be split onto multiple physical  
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servers, while each server hosts VMs belonging to different groups. Each service 
dispatches workloads to VMs in its group according to its scheduling algorithms. 
RAINBOW provides resources to the hosted services on-demand via resource flowing 
taking the priority of service into account. This allows better resource utilization and 
QoS at the service level compared to previous proposals [12] in scenarios where there 
is competition for the same resource by similar service components. 

Resource flowing strategy should solve four problems. 1) Which resource will 
flow? 2) When will such resource flow? 3) Which VMs will be the source and target 
of flow? 4) How many resources will flow? In order to answer these four problems, 
we model the resource flowing in RAINBOW first. 

2.2   Resource Flowing Model 

We consider the problem of resource flowing among VMs in RAINBOW, and model 
it by optimization theory. This model is a general one which can be respectively used 
by CPU, memory or other resources. Based on the model, we present a set of 
algorithms of resource flowing amongst VMs (RFaVM) to provide resources to the 
hosted services on-demand. First we introduce the following notations and concepts: 

 R - The total CPU, memory or other resources in a server. 
 K - The number of VMs resided in the server. 
 Ci-min - The minimum threshold of resources allocated to VMi, which is used to 

avoid huge interaction among VMs when competition for resources arises. It is set 
by experience in our experiments, and will be justified in the near future. 

 Rit - Resources allocated to VMi at time t. It obeys: ∑
=

≥
K

i
itRR

1 and Rit≥Ci-min>0. 
 Dit - Resources demands by VMi at time t. It is proportional to the requests arrival 

rate. 
 SPi - The static priority of service hosted in VMi. It indicates how critical the 

requirement for QoS. If i>j, SPi≥SPj. SPi is determined by administrator. 
 Фi - The tolerable QoS threshold of service hosted in VMi. 
 Qit - Quality of service hosted in VMi at time t. The smaller the Qit is, the better 

QoS the service gains. As we all know QoS (i.e. response time) is decided by the 
required and allocated resources, namely, Qit=fi(Rit,Dit). The relationships can be 
found by studying the typical services, which is our ongoing work. In order to 
fairly weight various services using their QoS, we use the rate of QoS of service 
hosted in VMi at time t and of the tolerable QoS (Qit/Фi, QoS-rate for short). 

The goal of resource flowing is to optimize QoS taking the priority into account, 
giving the limited resources. It is an optimization problem with limiting conditions. 
Thus, we select the programming model of optimization theory to model the resource 
flowing. In order to provide resource flowing with a utility function, which maps QoS 
of the target to a benefit value, we define the utility function UFt[1]. UFt is related to 
the static priorities and QoS-rates of the hosted services. The resource flowing is how 
to control resource allocation among VMs with the goal of minimizing the utility 
function UFt, giving the limited resources, formulated as formula (1). 

We simplify the above model to design our resource flowing algorithms. All the 
functions fi(Rit,Dit)/Фi are set as: if Dit>Rit, fi(Rit,Dit)/Фi=Dit-Rit; else, fi(Rit,Dit)/Фi=0. 
Applying the Simplex Method, we get the resolution of this simplified model. If D≤R, 
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Rit=Dit; else, we give priority to allocating resources to VMs with higher priority. The 
relationship between Dit and Rit can be directly reflected by the resource utilization of 
VMi. Thus, our algorithms control resource flowing according to the resource 
utilization of each VM and static priority of each service. 
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3   Priority-Based Resource Scheduling Scheme 

We consider CPU and memory flowing algorithms. We assume that there are K VMs 
hosting various services in a server. The efficacy of our algorithms is intimately 
dependent on how well it can predict resource utilization. We take a simple low-
overhead last-value-like prediction as reference [15] does, in which the resource 
utilization during the last interval is used as a predictor in the next interval. 

3.1   CPU Flowing Amongst VMs Algorithm (CFaVM) 

The hypervisor (Xen) we used provides a credit scheduler that can operate in two 
modes: capped and non-capped. We select the non-capped mode to prevent from the 
degradation of CPU utilization. In the non-capped mode, if multiple VMs require idle 
processing units, the scheduler distributes idle processing units to the VMs in 
proportion to their weights. There is no support on automatically changing weights of 
VMs according to its workloads and QoS. CFaVM uses a hybrid priority scheme to 
adjust the dynamic priority (weight) of each VM according to its static priority and 
resource utilization. Some VMs with high priority are preferentially guaranteed with 
the rapidly increased dynamic priorities, while others suffer performance degradations 
via the slowly increased dynamic priorities when competition for CPU arises. 

W refers to the weight assigned to a VM, OW refers to the weight of a VM in the 
prior interval, △W means the increased weight when a VM is CPU overload. We fix 
W1 to avoid frequent changes of Wi when CPU competitions arise. The changes of 
other Wi alter the CPU share of VM1. We define △W to be in proportion to SP. 
Formula (2) gives the relationship of △Wi and △Wj. We define the minimum CPU 
resources allocated to VMi (Ci-min), which could be denoted by the maximum (Wi-max) 
and minimum (Wi-min) weight thresholds assigned to VMi. We define Wj-max to be in 
proportion to SPj as formula (3). 

△Wi=(SPi/SPj)*△Wj. (2) 

Wj-max=(SPj/SPj)*Wj-max. (3) 
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Fig. 3. CFaVM 

Based on the CPU utilization of each VM, CFaVM (fig.3) determines whether the 
CPU is overload in a VM or not. We choose Tu as the threshold of CPU overload and 
Td as the desired CPU utilization. If the CPU utilization of VMi reaches Tu, CPU 
resources should flow in VMi (we call it a consumer VM). CFaVM increases △Wi on 
the weight of VMi to increase CPU resources. Other VMs will be the provider VMs, 
which flow out CPU in proportion to their weights. If the CPU utilization of VMj is 
lower than Td, CPU should flow out from VMj. The weight of VMj is decreased to 
decrease CPU resources. In order to let the CPU utilization of VMj reach Td, the new 
weight of VMj is calculated as formula (4). 
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3.2   Lazy Memory Flowing amongst VMs Algorithm (LMFaVM) 

In LMFaVM, M refers to the total memory which could be used by the K VMs. Each 
VM is initially allocated M/K memory. The minimum memory threshold of VMi (Mi-

min), corresponding to Ci-min in section 2.2, is defined as formula (5). 
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(5) 

△Mi= (SPi/SP1)*△M1 (6) 

Based on the static priority and the collected idle memory of VMi (IMi), LMFaVM 
(fig.4) determines whether there is memory overload in a VM or not. If idle memory 
of each VM is higher than the threshold Ψ, no memory flows. If IMi is lower than Ψ, 
LMFaVM increases △Mi (illustrated as formula (6)) or less memory to VMi 
(consumer VM), as long as there is another VM (provider VM) which can give its 
memory to VMi. A VM can be a provider when its memory is more than its minimum  
 



226 Y. Song et al. 

 

Fig. 4. LMFaVM 

memory threshold and either of the two conditions is satisfied: 1) it has idle memory; 
2) its priority is lower than that of the consumer VM. We define E to be the rate of IM 
and SP (E=IM/SP) to select the provider VM. If memory of a VM is overload, 
LMFaVM compares E of VMs which can be the provider, and selects the VM with 
maximum E to be the final provider VM. 

4   Implementation and Performance Evaluation 

The implementation of our prototype is based on Xen. In our servers pool, there are 
four servers each of which has two 2190MHz Dual Core AMD Opteron(tm) 
processors with 1024KB of cache and 4GB of RAM. We use CentOS4.4, and Xen-
3.0.4. We use other four machines to be clients of services. The systems are 
connected with a Gigabit Ethernet. Using our prototype, we do a set of experiments to 
evaluate RAINBOW and RFaVM. The experiments are classified into two groups: 
Group-I evaluates RAINBOW without resource flowing (‘RAINBOW-NF’ for short); 
Group-II verifies RFaVM in RAINBOW. 

Group-I: We evaluate the strengths and weaknesses of our RAINBOW-NF using the 
following two comparisons with various scenarios. 

Comparison-I: We compare RAINBOW-NF with TSF using the following three 
typical enterprise services: web, HPC, and office services. On each server, we create 3 
VMs. Each VM is allocated 1 VCPU and 1GB memory. VMs devoted to a service are 
distributed onto the four servers. Apache [14], LVS [19] with Round Robin algorithm, 
and the e-commerce workloads of SPECWeb2005 [22] are used for the web server. 
We use Condor [16] to dispatch Linpack [20] jobs to the HPC VMs. The office 
service is provided by our office applications virtualization product. It separates the 
display from the running of applications based on virtual desktop, and it distributes 
applications to servers according to workloads in these servers. We use Xnee [3] to 
emulate the real-world office applications based on the trace collected by [6]. 

As to the office service, we collect the starting up time of eight applications (FTP, 
mozilla, openoffice, etc.) for 4 times as the performance metric which is captured by 
the modified VNC. We compare the average starting up time of all the applications. 
The number of requests with good response (respond within 3 seconds) defined by 
SPECWeb, is the performance metric of the web service. The HPC service is 
evaluated by throughput (the number of completed linpack jobs during 3 hours). The 
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experiment results show that RAINBOW-NF provides dramatic improvements both in 
service performance (28%~324%) and in the CPU utilization (26%) over TSF. 

Comparison-II: We evaluate RAINBOW-NF using two I/O-bound services (VoD and 
web). Helix [21] is used for the VoD server and we make the VoD workloads 
generator according to ref[4]. Figure 5(a)(b) show the comparisons of TSF and 
RAINBOW-NF by the two services. From these figures we can see that service 
performance is degrading by RAINBOW-NF, especially for the web service in its 
third iteration when the VoD service reaches its peak of workloads. 
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Fig. 5. Comparisons between TSF and RAINBOW 

Analysis and Conclusion on Group-I: In Comparison-I, since the three services are 
different resource-bound, their resource bottlenecks are different. Distributing the 
same service onto multiple physical servers reduces the demands on its bottleneck 
resources on each server. On the other hand, each server hosts concurrently multiple 
services with diverse resource-bound, which avoids frequent competitions for the 
same resource. Thus, RAINBOW-NF provides huge improvements. In Comparison-II, 
the two services are I/O-bound. Frequent competitions for I/O, as well as Xen’s I/O 
overhead, leads to huge interactive impacts between services in RAINBOW. 

Group-II: We verify RFaVM using the same experimental scenario and benchmarks 
as in the Comparison-I of Group-I. On each physical server, we create 3 VMs. We 
initially allocate various resources to VMs (table 1) to provide different conditions 
(BN denotes the bottleneck resources when services reach their peaks of workloads). 

Table 1. Initial resources allocation to VMs on various conditions 

BN CPU memory 
CPU 1 VCPU (VCPUs of the 3 VMs running on the 

same server are pinned to the same physical core) 
1G 

memory 1 VCPU (mapping to all the physical cores) 600M 
CPU& mem 1 VCPU (the same as BN=CPU) 600M 

 
The baseline system RAINBOW-NF provides static resources allocation to VMs. 

‘CFaVM’ refers to RAINBOW adopting CPU flowing algorithm. ‘LMFaVM’ uses 
memory flowing algorithm in RAINBOW. ‘RFaVM’ adds CFaVM and LMFaVM. 
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SPoffice:SPweb:SPhpc is initialized as 4:3:1. We choose 50MB idle memory as the 
threshold of memory overload, 90% as the threshold of CPU overload (Tu), and 70% 
as the desired CPU utilization (Td) for VMs. These parameters are decided by our 
experience. Table 2 illustrates the comparisons results on various conditions (A:B 
denotes that A compares with B). From these results we can see that RFaVM provides 
great improvements (42%) in performance of the office service and tiny 
improvements (2%) in performance of the web service, while introducing small 
impairments (up to 7%) in performance of the HPC service. This is the result that 
RFaVM preferentially ensures performance of the office service by degrading of 
others to some extent, and it gives preference to the web service when the web service 
competes for resources with the HPC service. 

Table 2. Various scheduling algorithms in RAINBOW vs. RAINBOW-NF (‘NF’ for short) 

BN Comparisons Office web HPC Resource utility 
CPU CFaVM: NF 25% 1% -7% CPU:2 % 
mem LMFaVM: NF 37% 1% 1% mem:8% 
CPU&mem RFaVM: NF 42% 2% 1% CPU:2%; mem:6% 

 
We compare our resource flowing in RAINBOW (‘RAINBOW’ for short) with 

ref[12] in table 3. Ref[12] only focuses on CPU reallocation, while RAINBOW 
focuses on both CPU and memory flowing. The working intervals of RAINBOW are 
1s for CPU and 5s for memory, which are smaller than that of ref[12] (10s). This 
implies that RAINBOW has faster response to the change of resource requirements by 
services. We compute the improvement and degradation introduced by ref[12] using 
its fig.14-15 of response time with and without their controller. The improvement 
provided by ref[12] (28%) is smaller than that provided by RAINBOW (42%) for the 
critical service. The degradation introduced by ref[12] (41%) is much larger than that 
introduced by RAINBOW (7%) for other services. These results imply that our 
scheme is better than ref[12] in the aspect of assuring QoS. 

Table 3. RAINBOW vs. ref[12] 

 resources working interval Improvement Degradation 
ref[12] CPU 10s 28% 41% 
RAINBOW CPU&mem 1s(CPU), 5s(mem) 42% 7% 

 
We use CPU flowing as an example of analyzing the reason why RFaVM further 

improves performance of the critical services by slightly impairing of others using 
fig.6(a)-(b) and fig.7. Figure 6(a)-(b) illustrate the behaviors of adjusting CPU 
weights and memory of VMs controlled by RFaVM. In fig.6(a), woff denotes weight 
of office VM, wweb and whpc are similar. Figure 6(b) illustrates memory allocated to 
services (denoted by service_alloc) adopting RFaVM and memory used by services 
(denoted by service_used). Figure 7 shows the CPU requirement by workloads of 
each service. From fig.7 we can see that in the first 3000 seconds (3000s for short) 
and after 7000s, competitions for CPU arise between web and HPC services. The  
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Fig. 6. Behaviors of resources flowing using RFaVM 

 

Fig. 7. CPU utilization of VMs 

priority of web service is higher than that of HPC service. RFaVM controls CPU flow 
to the web VM (fig.6(a)). From 3000s to 7000s, office service with the highest 
priority requires more CPU than in other periods. Thus RFaVM controls CPU flow to 
the office VM when CPU competitions arise, resulting in more CPU allocated to the 
office VM in this period than in other periods (fig.6(a)). The priority of HPC service 
is the lowest one. RFaVM controls CPU flow out from the HPC VM when CPU 
competitions arise, which results in less CPU allocated to the HPC VM than others 
(fig.6(a)). As the result, CPU flowing improves the performance of office and web 
services by impairing that of HPC service. 

In our experiments, the interval of resource flowing ranges from 1s to 1118s for 
CPU, and ranges from 5s to 2555s for memory. Our scheme leads to the overhead of 
collecting information and controlling resource flow. Collecting information leads to 
8M memory overhead. Each resource flow leads to 0%~0.3% CPU overhead. Such 
overhead can be ignored since it is inappreciable to the system. 

5   Related Work 

Currently, a large body of papers is on managing data center in a utility computing 
environment that provides on-demand resources, such as HP’s SoftUDC [9], IBM’s 
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PLM [5], and VMware DRS [17]. To the best of our knowledge, no other studies 
proposed the same service computing framework and scheduling algorithms as ours. 

Several studies provide on-demand resources at the granularity of servers in the 
data center. Oceano [8] dynamically reallocates whole servers for an e-business 
computing utility. SoftUDC [9] proposes a software-based utility data center. It 
adopts the strategy of on-the-fly VM migration, which is also implemented by 
VMware’s VMotion [10], to provide load balancing. Ref[18] dynamically allocates 
resources to applications via adding/removing VMs on physical servers. They are in 
contrast to our scheme that controls resource allocation at the granularity of CPU time 
slots and memory. 

There is a growing body of work on providing on-demand fine-grained resources 
in the shared data center. IBM’s PLM [5] and VMware DRS [17] dynamically 
allocate resources to partitions/VMs according to shares specified statically and 
resource utilization, ignoring QoS. In [7], a two-level resource management system 
with local controllers at the VM level and a global controller at the server level is 
proposed. Ref[12] dynamically adjusts CPU shares to individual tiers of multi-tier 
applications in the VM-based data center. They choose the design where one server 
hosts multiple VMs which provide the same service. This is different from our 
RAINBOW that puts various services hosted in VMs onto the same physical server 
and distributes the same service onto different physical servers. Ref[12] uses the CPU 
capped mode to provide performance isolation between VMs, which decreases QoS 
and resource utilization. Based on the resource flowing model, our scheme focuses on 
both CPU and memory flowing and uses the CPU non-capped mode to achieve better 
QoS than [12]. 

6   Conclusion 

This paper presents a novel service computing framework (RAINBOW) for VM-
based utility computing. In RAINBOW, a priority-based resource scheduling scheme 
including a set of algorithms of resource flowing amongst VMs (RFaVM) is proposed 
according to the time-varying resources demands and QoS goals of various services. 
We implement a Xen-based prototype to evaluate RAINBOW and RFaVM. The 
results indicate that RAINBOW without RFaVM gains improvements in the typical 
enterprise IT environment (improves 28%~324% in service performance, as well as 
26% in CPU utilization over TSF), while introducing degradation in the case of 
hosting multiple I/O-bound services, which results from competitions for I/O and 
Xen’s I/O overhead. RFaVM further improves performance by 25%~42% for those 
critical services while only introducing up to 7% performance impairment to others, 
with 2%~8% improvements in average physical resource utilization than RAINBOW 
without RFaVM. Compared with ref[12], our resource scheduling is better in assuring 
QoS. Such results indicate that RFaVM gains its goals of service differentiation as 
well as improvements in resource utilization. 

Some inviting challenges remain in this research. The parameters in our algorithms 
will be justified in the near future. In order to ensure RAINBOW work smoothly, 
admission control in RAINBOW is still open. 
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Abstract. Spatial alarms can be modeled as location-based triggers
which are fired whenever the subscriber enters the spatial region around
the location of interest associated with the alarm. Alarm processing re-
quires meeting two demanding objectives: high accuracy, which ensures
zero or very low alarm misses, and system scalability, which requires
highly efficient processing of spatial alarms. Existing techniques like pe-
riodic evaluation or continuous query-based approach, when applied to
the spatial alarm processing problem, lead to unpredictable inaccuracy
in alarm processing or unnecessarily high computational costs or both.
In order to deal with these weaknesses, we introduce the concept of
safe period to minimize the number of unnecessary spatial alarm evalu-
ations, increasing the throughput and scalability of the server. Further,
we develop alarm grouping techniques based on locality of the alarms
and motion behavior of the mobile users, which reduce safe period com-
putation costs at the server side. An evaluation of the scalability and
accuracy of our approach using a road network simulator shows that the
proposed approach offers significant performance enhancements for the
alarm processing server.

1 Introduction

Time-based alarms are effective reminders of future events that have a definite
time of occurrence associated with them. Just as time-based alarms are set to
remind us of the arrival of a future reference time point, spatial alarms are set to
remind us of the arrival of a spatial location of interest. Thus, spatial alarms can
be modeled as location-based triggers which are fired whenever a mobile user
enters the spatial region of the alarms. Spatial alarms provide critical capabilities
for many location-based applications ranging from real time personal assistants,
inventory tracking, to industrial safety warning systems.

A mobile user can define and install many spatial alarms; each alarm is typ-
ically shared by one or many other users. Alarms can be classified into three
categories based on the publish-subscribe scope of the alarm as private, shared
or public alarms. Private alarms are installed and subscribed to exclusively by
the alarm owner. Shared alarms are installed by the alarm owner with a list of
� This work was performed while the author was at IBM T.J. Watson Research Center.
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k (k > 1) authorized subscribers and the alarm owner is typically one of the
subscribers. Mobile users may subscribe to public alarms by topic categories or
keywords, such as “traffic information on highway 85North”, “Top ranked local
restaurants”, to name a few. Each alarm is associated with an alarm target which
specifies the location of interest to the user; a region surrounding the alarm target
is defined as the spatial alarm region. The alarm trigger condition requires that
subscribers of the alarm be notified as soon as they enter the spatial alarm region.

Processing of spatial alarms requires meeting two demanding objectives: high
accuracy, which ensures no alarms are missed, and high scalability, which guar-
antees that alarm processing is efficient and scales to large number of spatial
alarms and growing base of mobile users. The conventional approach to similar
problems involves periodic evaluations at a high frequency. Each spatial alarm
evaluation can be conducted by testing whether the user is entering the spatial
region of the alarm. Though periodic evaluation is simple, it can be extremely
inefficient due to frequent alarm evaluation and the high rate of irrelevant evalu-
ations. This is especially true when the mobile user is traveling in a location that
is distant from all her location triggers, or when all her alarms are set on spatial
regions that are far apart from one another. Further, even a very high frequency
of alarm evaluations may not guarantee that all alarms will be successfully trig-
gered. The spatial continuous query approach would process a spatial alarm by
transforming the alarm into a user-centric continuous spatial query. Given the
alarm region of radius r around the alarm target and the mobile user’s current
location, the transformed spatial query is defined by the query range r with the
mobile alarm subscriber as the focal object of the query. The query processor
checks if the obtained query results contain the alarm target object. This pro-
cess repeats periodically until the alarm target is included in the query results at
some future time instant. The obvious drawback of this approach is the amount
of unnecessary processing performed in terms of both the number of evaluations
and the irrelevant query result computation at each evaluation. A more detailed
discussion of the weaknesses can be found in our technical report [6].

Spatial alarms can be processed using server-based infrastructure or client-
based architecture. A server-based approach must allow optimizations for pro-
cessing spatial alarms installed by multiple mobile clients, whereas a client-based
approach focuses more on energy-efficient solutions for evaluating a set of spa-
tial alarms installed on a single client. Bearing in mind the problems inherent
with the continuous spatial query evaluation approach and drawbacks of the
periodic alarm evaluation approach, we develop a safe period-based alarm eval-
uation approach. The goal of applying safe period optimization is to minimize
the amount of unnecessary alarm evaluations while ensuring zero or very low
alarm miss rate. The other technical challenge behind safe period optimization
is to minimize the amount of safe period computation, further improving system
scalability and achieving higher throughput. We describe our basic approach for
safe period computation in the next section and address the challenge of reducing
the amount of safe period computations in Section 3. We evaluate the scalability
and accuracy of our approach using a road network simulator and show that our
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proposed framework offers significant performance enhancements for the alarm
processing server while maintaining high accuracy of spatial alarms.

2 Safe Period Computation

Safe period is defined as the duration of time for which the probability of an
alarm being triggered for a subscriber is zero. Consider a subscriber Si (1 ≤
i ≤ N) and a spatial alarm Aj (1 ≤ j ≤ M), where N is the total number of
mobile users and M is the total number of alarms installed in the system. The
safe period of alarm Aj with respect to subscriber Si, denoted by sp(Si, Aj) can
be computed based on the distance between the current position of Si and the
alarm region Rj , taking into account the motion characteristics of Si and alarm
target of Aj . Concretely, for alarms with mobile subscribers and static targets,
the two factors that influence the computation of safe period sp(Si, Aj) are (i)
the velocity-based motion characteristic of the subscriber Si, denoted by f(VSi)
and (ii) the distance from the current position of subscriber Si to the spatial
region Rj of alarm Aj , denoted by d(Si, Rj). Thus the safe period sp(Si, Aj) can
be computed as follows:

sp(Si, Aj) =
d(Si, Rj)
f(VSi)

(1)

2.1 Distance Measurements

We use Euclidean distance as the basic distance measure for safe period com-
putation. It measures the minimum distance from the current position of the
mobile user, denoted as Pm = (xm, ym), to the spatial alarm region R. Consider
a spatial alarm region R covering the rectangular region represented by four
vertices of a rectangle (P1, P2, P3, P4), as shown in Figure 1(a). The minimum
Euclidean distance from Pm to the spatial alarm region R, denoted by dm,R,
can be computed by considering the following four scenarios: 1© when the mo-
bile subscriber lies inside the spatial alarm region the distance dm,R is zero; 2©
when the mobile subscriber is within the y scope of the spatial alarm region, the
minimum euclidean distance is the distance from the mobile subscriber to the
nearer of the two spatial alarm edges parallel to the x-axis; 3© when the mobile
subscriber is within the x scope of the spatial alarm region, minimum euclidean
distance is the distance from the mobile subscriber to the nearer of the two
spatial alarm edges parallel to the y-axis; and 4© when the mobile subscriber is
outside both the x and y scope then the distance is the minimum of the euclidean
distance to the four vertexes. Formally, dm,R, the minimum Euclidean distance
from mobile position Pm to the spatial alarm region R, is computed using the
following formula:

dm,R =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, x1 ≤ xm ≤ x2

and y1 ≤ ym ≤ y2
min(|xm − x1|, |xm − x2|), y1 ≤ ym ≤ y2 only
min(|ym − y1|, |ym − y2|), x1 ≤ xm ≤ x2 only
min(dm,1, dm,2, dm,3, dm,4), otherwise
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(a) Euclidean Distance (b) Steady Motion (c) Dead Reckoning

Fig. 1. Basic Safe Period Computation

dm,k, k ∈ {1, 2, 3, 4} denotes the Euclidean distance from Pm to rectangle vertex
Pk. The distance function di,j =

√
(xi − xj)2 + (yi − yj)2 is used to compute

the Euclidean distance between two points Pi and Pj .
The safe period formula in equation 1 assumes that the subscriber heads to-

wards the alarm region in a straight line along the direction of the minimum
Euclidean distance, an assumption that rarely holds true. One way to relax this
stringent condition is to use the steady motion assumption: If the subscriber is
heading towards the alarm region R, then the deviation in her motion direction
is not likely to be extreme. Figure 1(b) shows a scenario where the bounded
deviation in subscriber motion is taken into account for calculating average safe
period for subscriber S approaching alarm region R. In order for the subscriber
S to enter the alarm region R at some future time instant, the average angle
of motion for the subscriber S over the safe period must lie between −θL and
+θR (as shown in the figure), which we refer to as alarm trigger angular range.
Assume that the mobile subscriber heads towards the alarm region R in a di-
rection at an angle θ to the minimum Euclidean distance vector; we refer to
the distance from the subscriber position to the alarm region as the steady mo-
tion distance, denoted as smdist(θ). The steady motion-based safe period can
be determined by smdist(θ)/f(VS). Using the average steady motion distance
obtained by computing smdist(θ) over all θ values ranging from −θL to +θR,
the steady motion-based safe period over the alarm trigger angular range can be
calculated as,

sp =

∫ +θR

−θL
smdist(θ)dθ

f(VS)
∫ +θR

−θL
dθ

=
l + h

f(VS)(θR + θL)
, (2)

where l, h denote the length and height of the spatial alarm region. The steady
motion assumption provides a more realistic and optimistic measure for safe
period computations compared to the minimum Euclidean distance approach.

2.2 Velocity Measurements

The use of maximum travel speed of the mobile client for the velocity function
f(VS) carries both advantages and disadvantages. On one hand, the ‘maximum
travel speed’ can be set by pre-configuration based on a number of factors, such
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as the nature of the mobile client (car on the move or a pedestrian walking
on the street), or the type of road used. On the other hand, maximum speed-
based estimation is often pessimistic, especially in the following two scenarios:
(i) when the mobile client stops for an extended period of time, or (ii) when
the mobile client suddenly turns onto a road with very low speed limit. Another
issue related to the use of maximum speed of a mobile client for the velocity
function f(VS) is related to alarm misses. The maximum velocity-based approach
may fail to trigger alarms in cases where the maximum speed for the mobile
subscriber increases suddenly. For example, a vehicle moving from a street onto
a state highway would experience a sudden increase in its velocity, which may
invalidate safe period computations. One way to address such sudden increase
in velocity is to use dead reckoning techniques which require the mobile user
to report to the server when her velocity increases over a certain threshold, as
shown in Figure 1(c). The use of dead reckoning or similar techniques will allow
the server to recompute the safe period for mobile client upon any significant
velocity change. In Figure 1(c), the mobile client keeps track of its predicted
positions based on its maximum speed and its actual positions. As soon as the
difference between the predicted position and the actual position exceeds a given
threshold value (say δ), the client provides its current speed to the server.

2.3 Safe Period-Based Alarm Evaluation

The safe period-based approach processes a spatial alarm in three stages. First,
upon the installation of a spatial alarm, the safe period of the alarm with respect
to each authorized subscriber is calculated. Second, for each alarm-subscriber
pair, the alarm is processed upon the expiration of the associated safe period and
a new safe period is computed. In the third stage, a decision is made regarding
whether the alarm should be fired or wait for the new safe period to expire.

When compared to periodic alarm evaluation, the safe period approach for
spatial alarm processing reduces the amount of unnecessary alarm evaluation
steps, especially when the subscriber is far away from all her alarms. On the
other hand, the main cost of the basic safe period approach described in this
section is due to the excessive amount of unnecessary safe period computations,
as the basic safe period approach performs safe period computation for each
alarm-subscriber pair. One obvious idea to reduce the amount of unnecessary safe
period computations is to group spatial alarms based on geographical proximity
and calculate safe period for each subscriber and alarm group pair instead of
each alarm-subscriber pair.

3 Alarm Grouping Techniques

The basic premise behind alarm grouping is to reduce the number of safe pe-
riod computations while ensuring no alarm misses. In this section, we present
three alternative grouping techniques, each of which offers different degree of
improvement for safe period computations. First, we group all alarms based on
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Fig. 2. Alarm Locality-based Grouping

their spatial locality. Alternatively, we apply spatial locality based-grouping to
alarms of each individual subscriber. Our experimental study shows that this
approach is more effective. The third locality-based alternative is to employ the
nearest alarms-based grouping, which is effective but costly when there are fre-
quent alarm additions and removals.

3.1 Spatial Locality-Based Grouping

Spatial locality-based (SL) grouping considers the set of alarms from all users
and groups together the nearby alarms. This approach outperforms basic safe
period alarm evaluation if each group has a large number of alarms belonging to
the same subscriber. Figure 2(a) displays the alarm regions for a set of installed
alarms. The alarms for user 1 are marked by shaded regions. Basic safe period
evaluation computes the distance from each of the six alarms {Ai | 1 ≤ i ≤ 6}. In
comparison, Figure 2(b) shows three groups derived from spatial locality-based
grouping technique. We use a simple R-tree implementation in order to group
alarms and identify the minimum bounding rectangles (MBRs) for alarm groups
which are also referred to as alarm monitoring regions. Instead of computing
distance for each alarm-subscriber pair, spatial locality-based grouping calculates
the distance for each subscriber and alarm group pair. However, on entering a
monitoring region the distance to all relevant alarms within the alarm group
also needs to be computed. Despite this additional evaluation step, the number
of safe period computations may be considerably reduced by grouping alarms
according to spatial locality. Instead of six computations required by the basic
safe period technique, only three computations need to be performed as all three
alarm groups, {AGi | 1 ≤ i ≤ 3}, contain alarms relevant to user 1. Further
computations are dependent on the number of relevant alarms within the users’
current alarm monitoring region. Even though this approach reduces the number
of computations it requires considerable additional processing to determine the
set of relevant alarm groups for each subscriber and the set of relevant alarms
for each subscriber within an alarm group. The lack of subscriber-specificity
in the underlying data structure, R-Tree, leads to retrieval of large number of
unnecessary alarms. This technique proves to be efficient in presence of large
number of public alarms as the effect of subscriber-specificity is reduced in this
situation.
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3.2 Subscriber-Specific Spatial Locality-Based Grouping

In contrast to spatial locality-based grouping, subscriber-specific spatial locality-
based (SSSL) grouping performs a two level grouping: the first level grouping is
on all subscribers and the second level grouping is on spatial alarms relevant to
each subscriber. We use a B-tree based implementation to speed up search on
subscribers and an R-Tree implementation to capture spatial locality of alarms
for each subscriber. The underlying data structure is a hybrid structure which
uses a B-tree for subscriber search at the first level and an R-tree for subscriber
specific spatial alarm search at the second level. Figure 2(c) shows an example
of this grouping. Alarms installed by user 1 are grouped together in AG1 and
AG4 and may be fired only when the user is entering the MBRs of AG1 or AG4.
Subscriber specific spatial locality-based grouping has two advantages over the
previous approaches. First, the number of safe period computations is signifi-
cantly reduced. Second, each alarm group contains alarms relevant to a single
user, thus no irrelevant processing is performed. Our experimental results show
that this approach is efficient in the presence of large number of subscribers and
for large number of private and shared alarms.

3.3 Nearest Alarms-Based Grouping

Nearest alarms-based grouping allows the system to perform one or only a few
alarm checks dependent on the current subscriber position. The idea is to have
each location on the map associated with the nearest spatial alarm region(s). In
order to perform nearest alarms-based grouping we use an extension of the well
known Voronoi diagram geometric structure [5]. The Voronoi diagram for a given
set of points P in d -dimensional space Rd partitions the space into regions where
each region includes all points with a common closest point ε P. The Voronoi
region VR(p) corresponding to any point p ε P contains all points pi ε Rd such
that,

∀p′εP, p′ 	= p, dist(pi, p) ≤ dist(pi, p
′) (3)

Figure 3(a) shows the Voronoi diagram for a set of points in two-dimensional
space R2 with euclidean distance metric. The shaded area marks out the Voronoi
region VR(p) for the point p.

In order to create a Voronoi diagram for spatial alarms we first represent each
spatial alarm region R by its center point (xcr, ycr) and l, h representing the
length and height of the alarm region. We consider the center point of each alarm
region as a Voronoi site and create the Voronoi diagram as shown in Figure 3(b).
But alarm regions may overlap with adjacent Voronoi regions as for alarm A3 in
the figure. Also, consider the subscriber S in the figure residing in the Voronoi re-
gion of alarm A1. S is at a minimum Euclidean distance d1 from the alarm region
of A1 and at a minimum Euclidean distance d2 to the alarm region of A2. Even
though d2 < d1, A1 is incorrectly identified as the nearest alarm on the basis of
the underlying Voronoi diagram. In order to rectify this problem, we introduce
an extension to the original Voronoi diagram by extending the boundary of each
Voronoi region by the extension radius r associated with each point p where
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r =
√

( l
2 )2 + (h

2 )2. l, h denote the length and height of the alarm region associ-
ated with center point p. The extended Voronoi regions for alarms A1, A2, A3
and A4 are shown in Figure 3(c). Extending the Voronoi region boundaries leads
to overlaps among neighboring Voronoi regions; subscribers inside overlapping
regions (probabilistic nearest alarm region) may have more than one possible
nearest alarm whereas subscribers inside non-overlapping regions (deterministic
nearest alarm region) can have only one nearest alarm.

Nearest alarm grouping is efficient for systems that have infrequent addition
or removal of alarms and have no hotspots. However, it fails when there is fre-
quent addition/removal of spatial alarms, since Voronoi diagrams need to be
reconstructed each time an alarm is added or removed. In addition, high density
of alarms in some areas may also lead to large overlaps among Voronoi regions,
reducing the efficiency of this technique.

4 Experimental Evaluation

In this section, we report our experimental evaluation results. We show that
our safe period-based framework and optimization techniques for spatial alarm
processing are scalable while maintaining high accuracy.

4.1 Experimental Setup

Our simulator generates a trace of vehicles moving on a real-world road network
using maps available from the National Mapping Division of the U.S. Geological
Survey (USGS [4]) in Spatial Data Transfer Format (SDTS [3]). Vehicles are
randomly placed on the road network according to traffic densities determined
from the traffic volume data in [9]. We use a map from Atlanta and surrounding
regions of Georgia, which covers an area larger than 1000 km2, to generate the
trace. Our experiments use traces generated by simulating vehicle movement for
a period of fifteen minutes, results are averaged over a number of such traces.
Default traffic volume values allow us to simulate the movement of a set of 20,000
vehicles. The default spatial alarm information consists of a set of 10,000 alarms
installed uniformly over the entire map region; around 65% of the alarms are
private, 33% shared and the rest are public alarms.
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4.2 Experimental Results

The first set of experiments measures the performance of periodic alarm evalu-
ation by varying the time period of updates and shows that this approach does
not scale. The second set of experiments compares the basic safe period approach
against periodic evaluation and shows that safe period-based alarm processing
offers higher success rate with lower evaluation time. The last set of experi-
ments compares the performance of the various grouping-based optimizations
against the basic safe period approach exhibiting the scalability of our grouping
optimizations.

Scalability Problems of Periodic Alarm Evaluation Technique: In this
first set of experiments, we measure the scalability of the periodic alarm evalu-
ation technique with varying number of users. Figure 4 displays the results as
we vary the number of users from 2K to 20K. The time period tp for periodic
alarm evaluation is varied from 1 second to 50 seconds. As can be seen from
Figure 4(a), the success rate for alarm evaluation is 100% only if tp= 1 second;
for higher tp success rate starts falling, even with tp= 2 seconds the success rate
does fall to 99.9% which may not be acceptable from QoS viewpoint as this
translates to a significant number of alarm misses. The sequence of alarms to
be triggered for 100% success rate are determined from a trace generated with
highly frequent location updates for each user. The alarm processing time is
plotted in Figure 4(b). Our traces are of fifteen minutes duration; considering
that the system has around 80% of this time for processing spatial alarms we
set the maximum processing time available to the system at t=12 minutes as
indicated by the horizontal dotted line in Figure 4(b). For 10K users the system
is unable to process alarms at tp=1 seconds, thus failing to attain 100% success
rate. For 20K users, this scalability problem becomes worse and the system is
able to evaluate alarms only at tp=5 seconds. Thus, we conclude that periodic
evaluation approach does not scale.

Performance Comparison with Basic Safe Period Approach: In this
section, we compare the performance of basic safe period approach against peri-
odic evaluation. We display the results for periodic approach with tp=2 seconds,
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tp= 5 seconds, tp=10 seconds and the basic safe period optimization as discussed
in Section 2 (P2, P5, P10 and SP in Figure 5(b)). Figure 5 displays the success
rate and processing time as we increase the number of alarms from 10K to 40K.
Figure 5(a) displays that the success rate is 100% for basic safe period approach
and all periodic approaches miss at least a few alarm triggers. Figure 5(b) dis-
plays the alarm processing time for P2, P5, P10 and SP with varying number of
alarms. The alarm processing time, as shown in Figure 5(b), displays the inability
of our basic safe period approach to scale to large number of alarms. In presence
of even 20K installed alarms, the approach has excessive safe period computation
time which pushes the overall processing time beyond the 12 minute limit de-
termined earlier. Our alarm grouping and subscriber mobility-based techniques
provide optimizations to overcome this problem.

Scalability of Safe Period Evaluation Techniques: We now discuss the per-
formance of the safe period optimization techniques to test the scalability of our
framework. Figure 6 shows the number of alarm evaluation steps, number of safe
period computations and the alarm processing time required by each approach:
Basic Safe Period Optimization (BS), Subscriber-Specific Spatial Locality (SS),
Voronoi Grid-Based (VG) and a Range-based Subscriber-Specific Grouping Op-
timization (RB). VG and RB approaches consider alarms only in the vicinity of
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the current subscriber position for safe period computation. Results for Spatial
Locality-based grouping show expected trends but this approach has high overall
processing time as the system needs to perform significant amount of computa-
tion to determine relevance of alarms/alarm groups for each subscriber. Hence,
we exclude this approach from the results.

Figure 6(a) displays the number of alarm evaluation steps required by each
approach. Basic safe period measures the safe period to each relevant alarm and
uses this safe period to avoid further evaluations. As a result, this approach has
to perform a low number of alarm evaluations but each evaluation step involves
a very large number of safe period computations. Hence the number of safe
period computations for this approach is extremely large (Figure 6(b)) which
makes this approach overall computationally expensive as can be seen from the
total alarm processing times in Figure 6(c). Subscriber-specific spatial locality
grouping incurs a large number of alarm evaluation steps as can be seen from
Figure 6(a). This approach first evaluates safe period for each alarm group; once
the user enters an alarm monitoring region another evaluation step is required
to determine the safe period to all alarms lying within the alarm monitoring
region. Further, this approach needs to keep a check on subscriber position inside
the alarm monitoring region and switch to per alarm group-based safe period
computations once the subscriber moves outside the current alarm monitoring
region. These additional evaluation steps imply that this approach will incur a
larger number of alarm evaluation steps with each evaluation step requiring a
small number of safe period computations: either for each alarm group or for all
alarms lying within the current alarm monitoring region. Thus the number of
safe period computations required by this approach is much lower than the basic
approach despite the larger number of alarm evaluation steps. Consequently, the
overall processing time for SS is lower than the BS approach as can be seen from
Figure 6(c). The VG and RB approaches lower the number of alarm evaluation
steps by considering only alarms or alarm groups in the vicinity of the client.
In this set of experiments, the RB approach considers alarms within a radius
of 1000m from the client position. VG approach overlays a grid with cell size
1000m × 1000m on top of the Voronoi extension and considers alarms only
within the current subscriber grid cell. The number of evaluation steps for these
approaches is still larger than the number of evaluation steps used by the basic
approach as the safe periods computed by this approach may be lower than the
safe period computed by the basic approach, in case no relevant alarms/alarm
groups lie within the radius range or the current grid cell of the subscriber.
However, each alarm evaluation step involves a very small number of safe period
calculations leading to an extremely small number of safe period computations
(in Figure 6(b) results for VG and RB are overlapping and values are much
smaller than other two approaches). Consequently, the overall processing times
for these two approaches are significantly lower than other approaches. From
these results we can conclude that our safe period optimizations significantly aid
the scalability of the system.
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5 Related Work

An event-based location reminder system has been advocated by many human
computer interaction projects [8,10,12,13,14]. Understandably, the primary fo-
cus of the work is from the point of view of the usability of such systems. None of
these approaches deal with the system oriented issues which need to be resolved
to make such systems feasible. In the realm of information monitoring, event-
based systems have been developed to deliver relevant information to users on
demand [7,11]. In addition to monitoring continuously evolving user information
needs, spatial alarm processing systems also have to deal with the complexity
of monitoring user location data in order to trigger relevant alerts in a non-
intrusive manner. Applications like Geominder [1] and Naggie [2] already exist
which provide useful location reminder services using cell tower ID and GPS tech-
nology, respectively. Client-based solutions for spatial alarm processing should
focus on efficiently evaluating spatial alarms while preserving client energy. Our
server-centric architecture makes it possible for users to share alarms and make
use of external location information monitoring services which provide relevant
location-based alerts. A server-centric approach is also essential for extending
the technology to clients using cheap location detection devices which may not
possess significant computational power.

6 Conclusion

The paper makes two important contributions towards supporting spatial alarm-
based mobile applications. First, we introduce the concept of safe period to min-
imize the number of unnecessary alarm evaluations, increasing the throughput
and scalability of the system. Second, we develop a suite of spatial alarm group-
ing techniques based on spatial locality of the alarms and motion behavior of
the mobile users, which reduces the safe period computation cost for spatial
alarm evaluation at the server side. We evaluate the scalability and accuracy
of our approach using a road network simulator and show that the proposed
safe period-based approach to spatial alarm processing offers significant perfor-
mance enhancements for alarm processing on server side while maintaining high
accuracy of spatial alarms.

Acknowledgements

This work is partially supported by grants from NSF CyberTrust, NSF SGER,
NSF CSR, AFOSR, IBM SUR grant and IBM faculty award. The authors would
like to thank Bugra Gedik for providing the mobile object simulator.

References

1. Geominder, http://ludimate.com/products/geominder/
2. Naggie 2.0: Revolutionize Reminders with Location, http://www.naggie.com/
3. Spatial Data Transfer Format, http://www.mcmcweb.er.usgs.gov/sdts/

http://ludimate.com/products/geominder/
http://www.naggie.com/
http://www.mcmcweb.er.usgs.gov/sdts/


244 B. Bamba et al.

4. U.S. Geological Survey, http://www.usgs.gov
5. Aurenhammer, F.: Voronoi Diagrams–A Survey of a Fundamental Geometric Data

Structure. ACM Computing Surveys 23(3), 345–405 (1991)
6. Bamba, B., Liu, L., Yu, P.S.: Scalable Processing of Spatial Alarms. Technical

Report, Georgia Institute of Technology (2008)
7. Bazinette, V., Cohen, N., Ebling, M., Hunt, G., Lei, H., Purakayastha, A., Stewart,

G., Wong, L., Yeh, D.: An Intelligent Notification System. IBM Research Report
RC 22089 (99042) (2001)

8. Dey, A., Abowd, G.: CybreMinder: A Context-Aware System for Supporting Re-
minders. In: Second International Symposium on Handheld and Ubiquitous Com-
puting, pp. 172–186 (2000)

9. Gruteser, M., Grunwald, D.: Anonymous Usage of Location-Based Services
Through Spatial and Temporal Cloaking. In: MobiSys (2003)

10. Kim, S., Kim, M., Park, S., Jin, Y., Choi, W.: Gate Reminder: A Design Case of
a Smart Reminder. In: Conference on Designing Interactive Systems, pp. 81–90
(2004)

11. Liu, L., Pu, C., Tang, W.: WebCQ - Detecting and Delivering Information Changes
on the Web. In: CIKM, pp. 512–519 (2000)

12. Ludford, P., Frankowski, D., Reily, K., Wilms, K., Terveen, L.: Because I Carry
My Cell Phone Anyway: Functional Location-Based Reminder Applications. In:
SIGCHI Conference on Human Factors in Computing Systems, pp. 889–898 (2006)

13. Marmasse, N., Schmandt, C.: Location-Aware Information Delivery with ComMo-
tion. In: Thomas, P., Gellersen, H.-W. (eds.) HUC 2000. LNCS, vol. 1927, pp.
157–171. Springer, Heidelberg (2000)

14. Sohn, T., Li, K., Lee, G., Smith, I., Scott, J., Griswold, W.: Place-Its: A Study of
Location-Based Reminders on Mobile Phones. In: Beigl, M., Intille, S.S., Rekimoto,
J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660. Springer, Heidelberg (2005)

http://www.usgs.gov


Coverage Based Expanding Ring Search for
Dense Wireless Sensor Networks

Kiran Rachuri, A. Antony Franklin, and C. Siva Ram Murthy�

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Chennai-600036, India
{kiranr,antony}@cse.iitm.ac.in, murthy@iitm.ac.in

Abstract. Expanding Ring Search (ERS) is a prominent technique used
for information discovery in multi-hop networks where the initiator of
search is unaware of any of the γ locations of the target information. ERS
reduces the overhead of search by successively searching larger number
of hops starting from the location of search initiator. Even though ERS
reduces overhead of search compared to flooding, it still incurs huge cost
which makes it unsuitable especially to energy constrained networks like
Wireless Sensor Networks (WSNs). Moreover, the cost of search using
ERS increases with node density, which limits its scalability in densely
deployed WSNs. In this paper, we apply the principles of area coverage
to ERS and propose a new protocol called Coverage Based Expanding
Ring Search (CERS(k), where k is the amount of parallelism in search)
for energy efficient and scalable search in WSNs. CERS(k) is config-
urable in terms of energy-latency trade-off which enables it applicable to
varied application scenarios. The basic principle of CERS(k) is to route
the search packet along a set of ring based trajectories that minimizes
the number of messages transmitted to find the target information. We
believe that query resolution based on the principles of area coverage
provides a new dimension for conquering the scale of WSN. We compare
CERS(k) with the existing query resolution techniques for unknown tar-
get location such as, ERS, Random walk search, and Gossip search.

1 Introduction

Wireless Sensor Networks (WSNs) consist of a huge number of tiny sensor nodes
and one or more sink nodes. Sensor nodes are battery powered and possess very
limited computation and communication capabilities. Therefore the energy of
sensor nodes should be used judiciously. Sink nodes are powered and are storage
points for most of the data emerging from environmental sensing of sensor nodes.
The authors of [1], based on how data is gathered, categorize WSNs as follows:

– PUSH or CONTINUOUS COLLECTION: Sensor nodes periodically sense
environment and send data to the sink node.
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– PULL or QUERYING: Sensor nodes sense environment and store the infor-
mation locally. On need basis, the sink node queries for the required infor-
mation.

– PUSH-PULL: This paradigm involves both PUSH and PULL. Sensor nodes
push the sensed events to different sensor nodes in the terrain in a pre-
determined way that is used by the search initiator for finding the target
information.

Usage of PUSH, PULL, or PUSH-PULL approach depends on various factors
such as, application requirements, memory constraints, and energy savings. As
sensor nodes are battery powered, energy is a premium resource and in most cases
energy efficiency is always a requirement irrespective of the other requirements.
PUSH approach is efficient when continuous sensing is required and PULL ap-
proach is efficient for low frequency data gathering. In PULL paradigm, WSN
can be considered as a distributed database and on need basis, the sink node
sends queries for data collection. Some of the factors that influence the usage
of PUSH-PULL approaches are the rate of occurrence of events, the query rate,
the type of events sensed, and available memory resources on sensor nodes. If
the query rate is low and the rate of occurrence of events is high or event type
is audio or video then it is clearly not feasible to store them in multiple sensor
nodes as they may consume the memory completely.

Querying or searching in WSNs is an active research area and there are many
proposals for reducing the overhead of search cost [1,2,3] based on the query
type. The authors of [4] classify the types of WSN queries as the following:

– Continuous vs one-shot queries.
– Aggregate vs non-aggregate queries.
– Complex vs simple queries.
– Queries for replicated data vs queries for unique data.

There are various proposals for the above listed query types such as, Directed
Diffusion routing [5] for continuous and aggregate queries, Acquire mechanism [4]
for one-shot and complex queries for replicated data, and Random walk [6] for
simple one-shot queries.

In this paper, we focus on PULL and UNSTRUCTURED [7] WSNs where,
the sink node sends simple and continuous/one-shot queries for replicated data.
In UNSTRUCTURED WSNs, the search initiator has no clue about the location
of target information. In this paper, the meaning of replicated data is different
from the one used in PUSH-PULL WSNs. In PUSH-PULL, events are replicated
and stored in multiple sensor nodes but, we consider a case where events occur
uniformly in the terrain and events of a type occur at γ locations [8] which are
uniformly distributed in the given terrain. In PUSH-PULL, an event is replicated
in a pre-determined way at γ locations (by the sensor node which sensed it) and
in our case, an event of a type occurs at γ locations. An example of simple and
continuous query for replicated data is to find a sensor node which sensed an
event of a type and then request a stream of data to be sent from that sensor
node to the sink node. This involves searching for at least one sensor node which
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sensed an event of the target event type, and that event type has occurred at
multiple places in the terrain and is stored locally by multiple sensor nodes.
Once a target node is found, a continuous stream of data is sent from that
sensor node to the sink node for a certain amount of time. Since this scenario
involves sending continuous data, the replica should be the nearest one to the
search initiator, otherwise the energy consumed for transmitting the information
continuously from the sensor node to the sink node will be huge. We refer to
the information to be searched as the target information and a node which
has the target information as a target node. Based on the above example, we
now define two types of cost viz., SearchCost, which is the cost of search and
DataTransferCost, which is the cost of transmitting data from the discovered
target node to the sink node. For a fixed amount of data to be transferred,
the DataTransferCost is directly proportional to the proximity of the discovered
target node to the sink node. Therefore, the search techniques should not only
reduce the SearchCost but also find the nearest replica of the target information
to minimize the DataTransferCost.

One of the prominent techniques used for searching in PULL and UNSTRUC-
TURED WSNs is Expanding Ring Search (ERS) [2,3]. ERS reduces the overhead
of search by successively searching larger number of hops starting from the lo-
cation of search initiator and finds the nearest replica of the target information.
Even though ERS reduces overhead of search compared to flooding, it still incurs
huge cost which makes it unsuitable especially to energy constrained networks
like WSNs. Moreover, the cost of search using ERS increases with node density,
which limits its scalability in densely deployed WSNs. In this paper, we apply
the principles of area coverage to ERS and propose a new protocol called Cov-
erage Based Expanding Ring Search (CERS(k)) for energy efficient and scalable
search in WSNs. CERS(k) not only consumes less cost than ERS but also is in-
dependent of node density which makes it scalable especially in densely deployed
WSNs.

CERS(k) operates by dividing the terrain into concentric rings. The width of
each ring is twice the transmission radius of sensor nodes. Each ring is character-
ized by a Median which is the circular trajectory that divides the ring into two
halves of equal width (i.e.,width = transmission radius of sensor nodes). Based
on the value of parameter k, CERS(k) searches the rings either sequentially or
in parallel for finding the target information. CERS(k) searches for the target
information until it is found or all rings are searched. In each ring, by exploiting
the localization capabilities of sensor nodes, query packet travels along the Me-
dian of ring via beacon-less forwarding to cover the entire area of ring. When
a target node receives the query packet, a response packet is sent back to the
sink node. For a fixed terrain, the number of transmissions required to cover the
entire terrain area is constant due to which, the cost of CERS(k) is independent
of node density for a given terrain size. Hence, CERS(k) is highly advantageous
for densely deployed WSNs. We prove that the cost of CERS(k) is independent
of node density via simulations in Section 5.
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2 Assumptions

– The terrain is considered to be circular. The sink node is static and is placed
at the center of the circular terrain.

– Sensor nodes are stationary and are deployed uniformly in the terrain.
– Sensor nodes are aware of their own location coordinates. Since sensor nodes

are stationary, assigning location coordinates to sensor nodes is a one time
task and is part of the initial setup of WSN.

– We consider PULL and UNSTRUCTURED WSN where the sink node (search
initiator) sends simple, one-shot/continuous queries for replicated data.

– The search initiator is unaware of the locations of target information replicas.
– Events occur uniformly in the given terrain.
– To relay the search packet along the Medians of the rings, we assume that

the density of sensor nodes is high.

3 Related Work

In [1], the authors propose a PUSH-PULL strategy for information dissemina-
tion and gathering where the storage is replicated at more than one node. The
topology is considered to be static square grid with the sink node located at the
bottom corner. In Trajectory Based Forwarding (TBF) [9], the authors propose
a general framework for routing packets via a predefined curve or a trajectory.
TBF is related to our work as CERS(k) also involves routing search packets over
rings. But the authors of TBF have not presented analysis or simulation results
for any specific trajectory, to fully understand its benefits in terms of energy
efficiency and scalability. In [8], the authors propose a biased walk which resem-
bles a spiral walk for information discovery in WSNs. The query packet visits
all nodes whose distance from the sink node is less than the distance between
the discovered target node and the sink node. Due to this, the protocol does not
scale well in dense WSNs.

For UNSTRUCTURED WSNs where the sink node is not aware of the location
of target information, search proceeds blindly for tracing the target information.
The following are the most widely used techniques for searching in UNSTRUC-
TURED WSNs: ERS [2,3], Random walk search [6], and Gossip search [10].
ERS avoids network-wide broadcast by searching for the target information
with increasing order of TTL (Time-To-Live) values. TTL limits the number
of hops to be searched from the source node. If search fails continuously up to
TTL Threshold hops, ERS initiates network-wide broadcast. The main disad-
vantage of this protocol is that it resembles flooding in the worst case.

In Random walk search, when a node has to forward the search packet, it
randomly selects one of its neighbors and forwards the search packet to the
selected neighbor. The basic idea here is the random wandering in the network
in search of the target information until TTL (number of hops) is expired or
the target information is found. The main disadvantage of Random walk is that
the probability of finding the nearest replica of the target information is low
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and due to this, the DataTransferCost will be very high especially in the case of
continuous queries.

In Gossip search, the source node broadcasts the search packet and all re-
ceivers either forward it with a probability p or drop it with a probability 1− p.
In some cases, gossip dies early without reaching reasonable number of nodes
even for higher values of p which increases the non-determinism of Gossip search.
For this reason, in [10], the authors propose GOSSIP (p, k) where k is the num-
ber of hops for which the search packet has to be transmitted with probability
1 i.e., for first k hops the search packet is always forwarded after which it is
forwarded with a probability p. The main disadvantage of Gossip search is that
of sending message to most of the sensor nodes even when the target information
is located close to the source node.

4 Protocol Design

The basic principle of CERS(k) is that if a subset of the total sensor nodes
transmit the search packet such that, the entire circular terrain area is covered
by these transmissions, then at least one target node will definitely receive the
search packet. However, if the search packet is broadcasted to the entire circular
terrain, even though we find the target information, the number of messages
transmitted will be huge. To minimize the number of message transmissions,
CERS(k) divides the circular terrain into concentric rings such that if the area
in all these rings are covered, then the entire area of circular terrain will be
covered. In CERS(k), the concentric rings are searched either sequentially or
in parallel depending on the value of k until the target information is found or
all the rings are searched. Each ring is of width equal to twice the transmission
range of sensor nodes. The Median of a ring is the circular trajectory that divides
the ring into two concentric rings of width equal to the transmission radius (r)
of sensor nodes. In Figure 1, the Medians of rings are shown as solid lines and
the borders of rings are shown as dotted lines.

The fields of the search packet used by CERS(k) are listed in Table 1 and the
terminology used in explaining CERS(k) is listed in Table 2. When CERS(k) is

Fig. 1. Circular terrain divided into concentric rings
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Table 1. Search Packet Fields of CERS(k)

(rX, rY ) Location coordinates of RelayedNode.

(dX, dY ) Location coordinates of DestinationPoint.

SeqNo. Sequence number of search packet, required to avoid duplicate forwards.

Radius Radius of the current ring.

Target Target event information.

Angle Angle constraints for relaying.

Table 2. CERS(k) Terminology

SinkNode Node which initiated the search.

RelayedNode (R) Node which relayed the search packet after receiving from
previous Relayed/SinkNode.

CurrentNode (C) Node which received the search packet from RelayedNode.

DestinationPoint (D) Next destination point on the current ring.

Distr,d Distance between RelayedNode and DestinationPoint.

Distc,d Distance between CurrentNode and DestinationPoint.

Distc,m Distance between CurrentNode and the Median of ring.

initiated for searching the target information, the sink node broadcasts search
packet by embedding the identification (Radius) of first ring in it, with Angle =
30◦. This search packet travels along the Median of the first ring, starting at
a point on it and ending at a point close to the starting point. The Median of
first ring is represented by the circle equation with the center as sink node and
radius equal to twice the transmission range of sensor nodes. In a ring the search
packet is advanced in increments of transmission radius of sensor nodes based on
the following logic: A node which relays the search packet is called RelayedNode.
Each RelayedNode embeds the information about the DestinationPoint in the
search packet. The DestinationPoint is a point on the Median of ring at a
distance of r from the RelayedNode. A node which receives the search packet
from RelayedNode is referred as CurrentNode. All CurrentNodes evaluate the
following two conditions to check whether they are eligible to forward the search
packet or not:

1. Distc,d < Distr,d

2. ∠DRC < Angle

A node which satisfies both these conditions is referred as EligibleNode. The
first condition makes sure that the EligibleNode is closer to DestinationPoint
compared to RelayedNode. The second condition makes sure that if one of the
EligibleNodes relays the search packet, all other EligibleNodes can receive this
packet and drop the packet which should be relayed by them. An EligibleNode
has to wait for a time proportional to its proximity to the DestinationPoint and
the Median of ring before relaying the packet. The time to wait before relaying
is given by

Twait ∝ Distc,d + Distc,m
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Fig. 2. Area covered by a single ring (1st ring)

The EligibleNode which is closer to the Median of current ring and closer to the
DestinationPoint will have lesser waiting time compared to other EligibleNodes.
The EligibleNode with smaller waiting time relays the search packet while oth-
ers drop it. This continues until the search packet travels the entire length of
the Median of ring or there is no other node to relay the search packet further.
The idea behind forwarding via the Median of ring is to cover the entire region
of ring as illustrated in Figure 2. The protocol used for forwarding the search
packet is similar to the position based beacon-less routing [11] with some modifi-
cations. If there are no nodes eligible to relay the search packet, the RelayedNode
re-broadcasts the search packet without angle constraints i.e., Angle = 360◦.
This might result in an increase in the number of EligibleNodes and it is possi-
ble that when an EligibleNode relays the search packet, all other EligibleNodes
may not receive the search packet. As a result of this, there might be multiple
EligibleNodes relaying the search packet. This is a compromise as there are no
EligibleNodes to relay the search packet. Under high node density, the proba-
bility of not finding EligibleNodes with 30◦ angle constraint is very less and we
validate this via simulations in Section 5. When a target node is in the region
of current ring, it receives the search packet and responds to the sink node by
sending a response packet. The sink node continues to search until all the rings
are searched or the target information is found. From Figure 2, one can observe
that some portions of the ring are not covered by transmissions of any of the
sensor nodes. Because of this, CERS(k) is not a deterministic protocol but, the
probability of finding target information is very high under high node density,
which will be shown via simulations in Section 5.

In CERS(k), the parameter k determines the parallelism in searching rings. In
particular, k determines the number of rings to be searched in parallel. CERS(1)
searches the rings one after other, due to which the search cost is low but latency
is high. CERS(2) searches in two rings at a time until the target information is
discovered. As the k value increases, the cost of search using CERS(k) increases
and latency decreases. Let N be the total number of rings for a given terrain,
then CERS(N) searches with utmost parallelism i.e., searches all rings in one
iteration. The case of CERS(N) is best in terms of latency of search and worst in
terms of cost of search. Since the value of k is instrumental in cost-latency trade-
off, its value should be carefully chosen based on the application requirements.
We will validate these claims via simulations in the next section.
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5 Simulations

To validate our claims in Section 4, we simulate CERS(k), ERS, Random walk,
and Gossip protocols in the ns-2 [12], a popular discrete event network simulator.

5.1 Performance Metrics Used

– Number of transmitted bytes (Cost of search): Average number of bytes trans-
mitted for finding the target information. As the message formats are not
uniform across protocols, we measured the number of bytes transmitted in-
stead of the number of messages transmitted.

– Energy consumed : The total energy consumed for finding the target informa-
tion. This includes the number of bytes transmitted and received for finding
the target information.

– Latency: Time taken to find the target information.
– Probability of finding the target information: Probability of finding the target

information is a measure of non-determinism for search protocols.
– Number of hops between the sink node and the discovered target node: This

metric reflects the proximity of the discovered target node and the sink node.
DataTransferCost is directly proportional to this metric.

5.2 Simulation Setup

We consider a circular terrain where sensor nodes are uniformly deployed and
the sink node is placed at the center of terrain. The transmission radius of
sensor nodes is fixed at 30m. The TTL Threshold value for ERS is fixed at
3 as this value is found to be optimum [2]. The Gossip probability is fixed at
0.65 as this value is found to gossip the search message to most of the nodes
in WSN [10]. All the graphs for the performance metrics are plotted for 95%
confidence level. Simulations are performed for the following scenarios: (i) Node
density variation: We consider a WSN with fixed terrain radius (200m) and
fixed number of target replicas (5) and, the number of nodes is varied from
200 to 1200 in increments of 200. (ii) Terrain size variation: We consider a
WSN with fixed node density (0.00884 nodes/sq.m.) and fixed number of target
replicas (5) and vary the terrain radius from 75m to 200m in increments of 25.

5.3 Simulation Results

Node density variation: Figure 3 shows the effect of increase in node density
on the number of bytes transmitted to find the target information. We can
observe that the number of bytes transmitted is lowest for CERS(k). For ERS
and Gossip protocols, it increases linearly with node density whereas for Random
walk protocol, it is invariant to node density. Based on this result, we can infer
that the cost of search using CERS(k) and Random walk are invariant to node
density and between the two, CERS(k) incurs less cost. Even though Random
walk fares well with respect to this metric, it finds inferior paths to target replicas
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which increases the DataTransferCost. This fact will be presented later in this
section.

Figure 4 shows the effect of increase in node density on the total number
of transmitted and received bytes. As the node density increases, the energy
consumption of CERS(k) is much lower compared to the other protocols. The
increasing trend in energy consumption for all protocols is due to increase in
number of nodes receiving the search packet with increase in node density. Fig-
ure 5 shows the effect of k on the total number of transmitted and received bytes
using CERS(k) (this figure is zoomed version of Figure 4, due to which the con-
fidence intervals are so high). We can observe that the energy consumption of
search using CERS(k) increases with k.

Figure 6 shows the latency of the search techniques. It is clear from the results
that the difference in latencies of the search techniques is less at high node
density values. At low node density values, CERS(k) takes more time than the
existing search techniques and this can be attributed to failure in finding the
EligibleNodes. As node density increases, the latency of CERS(k) comes very
close to the existing protocols. Gossiping is the fastest of all as there is only one
iteration in which the search packet is broadcasted to most of the nodes in the
network. In ERS, there is wait time involved for each ring until TTL Threshold
and this slows down the protocol compared to Gossip. From Figure 7, we can
observe that the latency of CERS(k) decreases with increase in k value (this
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figure is zoomed version of Figure 6) which is in accordance with our claims in
Section 4.

Figure 8 shows the probability of successfully finding the target information.
When the node density is low, it is quite possible that none of the target nodes
are connected because of which the probability of successful search is very less.
As the node density increases, the probability increases and reaches unity for
high node density values. The probability of finding the target information using
CERS(k), reaches unity at a slower rate compared to ERS, Gossip, and Random
walk protocols. This is due to failure in finding EligibleNodes to relay the search
packet at lower densities. This shows that the non-determinism of CERS(k) is
very less and it almost finds the target information at high node densities.

Figure 9 shows that the number of hops from the sink node to the discov-
ered target node is between 2 and 2.5 for CERS(k), ERS, and Gossip protocols
whereas for Random walk, it is higher. This shows that even though the cost
of Random walk is invariant to node density, the target replicas discovered are
inferior in terms of proximity to the sink node because of which, the DataTrans-
ferCost will be very high for continuous type of queries. We can also observe
that the values of Number of hops for ERS and Gossip protocols are slightly
higher than CERS(k). This can be attributed to failure in finding the closest
replica of target information on some occasions because of collisions. However,
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the probability of ERS and Gossip not finding the closest replica of the target
information is very less.

Terrain size variation: From Figure 10, we can infer that the cost of all
the search techniques increases with increase in terrain size. However, CERS(k)
consumes the least energy of all the search techniques, irrespective of the terrain
size. Figure 11 shows that the latency of CERS(k) is very close to the existing
proposals i.e., the average latency of CERS(k) is in the order of 200ms. The
latency of CERS(k) decreases with increase in k value as the parallelism of search
increases. Figure 12 shows that the number of hops between the discovered target
node and the sink node for CERS(k), ERS, and Gossip protocols is almost at
the same level and is lower than Random walk. Moreover, for Random walk, it
increases linearly with terrain size. This is a big disadvantage of Random walk
protocol for continuous type of queries.

6 Conclusion

In this paper, we presented CERS(k), an energy efficient and scalable query
resolution protocol for simple, one-shot/continuous queries for replicated data.
The conclusion drawn from the paper is that under high node density, CERS(k)
consumes less energy compared to the existing search techniques such as, ERS,
Random walk, and Gossip protocols and it is unaffected by the variation in node
density. Random walk comes very close to CERS(k) in terms of cost of search
but, due to the inferior target replicas (in terms of proximity to the sink node)
discovered by the Random walk, the DataTransferCost will be huge and makes it
unsuitable for resolving continuous type of queries. The parameter k in CERS(k)
can be adjusted to balance cost and latency and this makes it applicable to vast
and varied application scenarios. We believe that query resolution based on the
principles of area coverage provides a new dimension for enhancing the scalability
of query protocols in WSN. The following are the main advantages of CERS(k):

– Energy is the most premium resource in WSNs and CERS(k) achieves sig-
nificant energy savings for dense WSNs.
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– Cost of search is unaffected by variation in node density, which makes CERS(k)
scalable for highly dense WSNs.

– The cost-latency trade-off can be adjusted using k based on the application
requirements.
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Abstract. In this paper, we propose a static scheduling algorithm for
assigning tasks with precedence constraints onto a cluster of heteroge-
neous sensor nodes connected by a single-hop wireless network so as to
maximize the lifetime of the sensor network. The processing element on
each sensor node is equipped with dynamic voltage scaling capability. In
our algorithm, we assign the tasks to the sensor nodes so as to minimize
the energy consumption of the tasks on each sensor node while keeping
the energy consumption as balanced as possible. We also propose an al-
gorithm to generate a second schedule that can improve the lifetime of
the network further when it is used together with the original schedule.
We observe up to 311% lifetime improvement in our simulations when
our algorithms are compared to the baseline case where dynamic voltage
scaling is not used.

Keywords: Energy-aware scheduling, power management, dynamic
voltage scaling, heterogeneous multiprocessor scheduling, wireless sen-
sor network.

1 Introduction

Today, wireless sensor networks (WSNs) are used in a wide variety of applications
such as health monitoring, target tracking and surveillance. These applications
often require each sensor node to sense and collect information from the sur-
rounding environment, process the information collected, and communicate the
results to other sensor nodes in the network. Based on the collective information
gathered from several sensor nodes, a decision can then be made to determine
the action to be taken.

In many WSNs, the sensors are individually operated by battery. Efficient
energy management is required to prolong the lifetime of such sensor networks.
While there are many energy-aware scheduling algorithms in the literature for
both homogeneous [3, 4, 6, 7, 8, 10] and heterogeneous [5, 9, 11, 12, 13, 15]
multiprocessor systems, these algorithms are designed mainly for tightly coupled
systems and are not suitable for wireless sensor networks. These algorithms try
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to minimize the overall total energy consumption of the system in order to
maximize its lifetime. This works for tightly coupled system since the processors
in the system share the same energy source. However, for wireless sensor network,
minimizing the total energy consumption does not necessarily maximize the
lifetime of the network. For example, if many tasks are assigned to a single
node, the battery on this node will be drained at a rate much faster than other
nodes. As a result, the lifetime of the network is completely determined by
the lifetime of this single node even when other nodes have an abundance of
remaining energy. Therefore, in order to maximize the lifetime of a WSN, we
should try to distribute the tasks among the sensor nodes in such a way that the
energy consumption on each sensor node is as balanced as possible. Yu et al. [2]
did so using a 3-phase heuristic approach. In the first phase, the tasks are grouped
into clusters by eliminating communications with high execution times. Next,
the clusters are assigned to the sensor nodes in a way such that the norm-
energies of the sensor nodes are balanced. Here, the norm-energy is defined as
the total energy consumption of the tasks scheduled on a node normalized by the
remaining energy of that node. In the last phase, the voltage levels of the tasks
are adjusted to reduce the energy consumption further. However, the 3-phase
heuristic approach is only applicable to a WSN with homogeneous sensor nodes.

In this paper, we propose an energy-balanced task scheduling algorithm for
assigning tasks with precedence constraints as represented by a task precedence
graph onto a wireless network of heterogeneous sensor nodes. Each sensor node
is equipped with dynamic voltage scaling (DVS) capability. In our algorithm, we
try to minimize the maximum norm-energy among the sensor nodes during each
step of assigning the tasks to the sensor nodes while ensuring that the deadline
constraints will be met. We also try to minimize the total energy consumption
for the whole network as well. In order to improve the lifetime of the network
further, we propose another algorithm to generate a second schedule to be used
together with the original schedule. We compare our algorithms to the baseline
case where no DVS is used. We also apply our algorithms to a wireless network
of homogeneous sensor nodes and compare their performance to the 3-phase
heuristic [2].

The remainder of the paper is organized as follows: We introduce the system
and task model in the next section. Sections 3 and 4 describe our proposed al-
gorithms in detail. Simulation results and discussions are presented in Section 5.
Lastly, we present our conclusions in Section 6.

2 Problem Formulation

2.1 System Model

Our system consists of a set of m heterogeneous sensor nodes, {PE1, PE2,
. . . , PEm}, connected by a single-hop wireless network with K communication
channels. Each sensor node is equipped with DVS functionality. Without loss
of generality, we assume that each sensor node has D discrete voltage levels for
simplicity. The computational speed of PEi at voltage level Vj are given by Sij .
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The time cost and energy consumption for transmitting one unit of data between
two sensor nodes PEi and PEj is denoted by τij and ξij respectively. We assume
that the time and energy cost of wireless transmission is the same at both the
sender and the receiver and no techniques such as modulation scaling [14] are
used for energy-latency tradeoffs of communication activities. We also assume
that negligible power is consumed by the sensor nodes and the radios when they
are idle.

2.2 Task Model

We consider an application that is run periodically in the sensor network. Let P
be the period of the application. Therefore, an instance of the application will
be activated at time iP and it must be completed before the next instance is
activated at time (i + 1)P , where i = 0, 1, 2, . . .. The application is represented
by a directed acyclic task graph (DAG) G = (T, E), which consists of a set of n
dependent tasks {T1, T2, . . . , Tn} connected by a set of e edges {E1, E2, . . . , Ee}.
Each edge Ei from Tj to Tk has a weight Ci, which represents the number
of units of data to be transmitted from Tj to Tk. The source tasks in G (i.e.
tasks with no incoming edges) are used for measuring or collecting data from
the environment and so they have to be assigned to different sensor nodes. We
denote the time and energy cost of executing Ti on PEj at the voltage level Vk

by tijk and εijk respectively. Let θ(Ti) denotes the sensor node to which Ti is
assigned. The energy consumption of PEi in one period of the application πi is
given by:

πi =
n∑

j=1

D∑
k=1

(xjk · εjik) +
e∑

j=1

(yj · Cj · ξθ(Ta)θ(Tb)) (1)

where Ta and Tb are connected by the edge Ej and xjk and yj are defined as
follows:

xjk =

⎧⎨⎩
1 if Tj is scheduled on PEi at

the voltage level Vk

0 otherwise

yj =

⎧⎨⎩
1 if either Ta or Tb (but not

both) is scheduled on PEi

0 otherwise

Let Ri be the remaining energy of PEi. We define the norm-energy ηi [2] of
PEi as its energy consumption in one period normalized by its remaining energy:

ηi =
πi

Ri
(2)

The lifetime of the whole sensor network L is therefore determined by the sensor
node with the largest norm-energy and is given by:

L = � 1
maxi(ηi)

� (3)
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3 Energy-Balanced Task Scheduling

In this section, we shall describe our Energy-Balanced Task Scheduling algorithm
(EBTS) in detail. The pseudocode for our algorithm can be seen in Algorithm 1.
In Step 1, we first calculate the average computational time of each task over
all the sensor nodes and the average communication time of each edge over all
pairs of sensor nodes. Next, we calculate the upper rank ranku, as defined in [1],
recursively using the following equation:

ranku(Ti) = ti + max
Tj∈succ(Ti)

(τθ(Ti)θ(Tj) + ranku(Tj)) (4)

where ti is the average computational time of Ti over all the sensor nodes,
τθ(Ti)θ(Tj) is the average communication time of the edge from Ti to Tj over
all sensor node pairs and succ(Ti) denotes the immediate successors of Ti.

In Step 2, the tasks are assigned in descending order of upper rank. For each
task, we calculate the priority assuming that the task is assigned to each sensor
node. We then assign the task to the sensor node that gives the lowest priority
value, provided that its finish time when assigned to this sensor node does not
exceed a threshold value σ(Ti).

σ(Ti) =
P

ms
· f ′

i (5)

where ms is the makespan of the schedule generated by a general list scheduling
algorithm and f ′

i is the finish time of Ti using the list scheduling algorithm. If
the threshold is exceeded, the task will be assigned to the sensor node that gives
the earliest finish time. We impose a threshold to the finish time to reduce the
probability of many tasks being assigned to the same sensor node as this may
result in deadlines to be missed.

In Step 3, we first identify the sensor node with the largest norm-energy.
Among the tasks that are assigned to this sensor node, we select the one that
has the largest energy reduction when assigned to the next voltage level with-
out violating the deadline constraints. If no such tasks exists, the sensor node
is removed permanently from the priority queue and does not need to be con-
sidered further. Otherwise, the new norm-energy of the sensor node is updated
accordingly and the node is reinserted back into the priority queue. The pro-
cess continues until no tasks can be executed at a lower voltage level without
exceeding the deadline.

4 Energy-Balancing Using Two Schedules

Although our EBTS algorithm tries to improve the lifetime of the sensor network
by balancing the energy consumption among the sensor nodes, it is often very
difficult to obtain a perfectly energy-balanced schedule in practice. As a result,
when the batteries of some sensor nodes are depleted, there is still a significant
amount of remaining energy in other sensor nodes. If we can reassign the tasks
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Algorithm 1. EBTS
1: Step 1: Calculate Upper Rank
2: Assign computation time of tasks with the mean values over all sensor nodes. Assign

communication time of edges with mean values overall all pairs of sensor nodes.
3: Compute the upper rank of all the tasks by traversing the DAG upwards, starting

from the sink tasks.
4:
5: Step 2: Assign Tasks to Sensor Nodes
6: Sort the tasks in non-increasing order of upper rank.
7: while there are unscheduled tasks do
8: Select the first task Ti from the sorted list.
9: for each sensor node PEj in the system do

10: Assume that Ti is allocated to PEj .
11: Compute the norm-energy ηk for all sensor nodes where k = 1, 2, · · ·m.
12: Compute the finish time fj of Ti.
13: Calculate the priority function prj = α · max(ηk) + (1 − α) ·

P
ηk, where

α ∈ [0, 1] is a user-defined parmeter. If Ti is a source task and another source
task is already assigned to PEj, Set prj = ∞.

14: end for

15: Assign Ti to the sensor node with the least value of prj , provided that the finish
time fj of this assignment is less than or equal to the threshold σ(Ti).

16: If no such sensor node exists, assign Ti to the sensor node that gives the smallest
value of fj .

17: end while
18:
19: Step 3: Assign Voltage Levels
20: Insert the sensor nodes into a priority queue Q sorted in non-increasing order of

norm-energy.
21: while Q is not empty do
22: Remove the first sensor node PEj from Q.
23: Sort the tasks assigned to this sensor node in non-increasing order of the differ-

ence in energy consumption when their voltage is lowered by one level.
24: for each task Ti in the sorted list do
25: Lower voltage of Ti to the next lower voltage level.
26: if deadline is not exceeded then
27: Update the schedule.
28: Insert this sensor node back into Q with the updated value of norm-energy.

Break out of for loop.
29: end if
30: end for
31: end while

from a sensor node that is low in remaining energy to one that is high in remain-
ing energy in an effective way, the lifetime of the network can be increased fur-
ther. In view of this, we propose to use two static schedules for executing the tasks
instead of a single schedule. Our aim is to use a second schedule that compliments
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Algorithm 2. EBTS-DS
1: Run the EBTS algorithm to obtain an initial schedule S and the energy consump-

tion per cycle πi of all sensor nodes, ∀i = 1, 2, · · · , m.
2: Calculate the expected lifetime L using Equation 3
3: Set the first schedule S1st ← S, the energy consumption per cycle π1st

i ← πi and
the remaining energy capacity R1st

i ← Ri, ∀i = 1, 2, · · · , m.
4: Set δ ← � L

10
.

5: for j ← 1 to 9 do
6: Set Ri ← (R1st

i − j × δ × π1st
i ), ∀i = 1, 2, · · · , m.

7: Run the EBTS algorithm to schedule the non-source tasks using these values of
Ri as the remaining energies of the sensor nodes. Update S and πi using the new
schedule.

8: if S is feasible then
9: Solve the following linear program:

10: • Maximize C1 + C2

11: • Subjected to C1 × π1st
i + C2 × πi ≤ R1st

i , ∀i = 1, 2, · · · , m.
12: if (�C1 + �C2) > L then
13: Update L ← (�C1 + �C2).
14: Update ζ1st ← �C1 and ζ2nd ← �C2, where ζ1st and ζ2nd are the number

of cycles to run S1st and S2nd respectively.
15: Update S2nd ← S, π2nd

i ← πi and R2nd
i ← Ri, ∀i = 1, 2, · · · , m.

16: end if
17: end if
18: end for
19: if S2nd is found then
20: Use S1st for ζ1st cycles followed by S2nd for ζ2nd cycles.
21: else
22: Use S1st for the entire lifetime of the sensor network.
23: end if

the first one such that the lifetime of the network can be increased by the com-
bined use of both schedules compared to using each schedule individually. The
EBTS with Dual Schedule (EBTS-DS) algorithm is shown in Algorithm 2.

In EBTS-DS, we first generate a schedule using our EBTS algorithm. This
will be the first schedule S1st. Next, we try to generate a series of candidate
schedules. Each candidate schedule is generated in the following way. We assume
that S1st has been run for j

10 of its lifetime, where j = 1, 2, · · · , 9. We then
recalculate the remaining energy of each sensor node in the network. Based
on the remaining energy, we reschedule the non-source tasks using our EBTS
algorithm to obtain a new schedule. Since the source tasks are usually used to
collect measurements from the environment, they are assigned to specific sensor
nodes and cannot be reassigned. We then use a linear program to calculate the
maximum possible lifetime that can be obtained using both the first schedule and
the current candidate schedule. Lastly, we choose the candidate schedule that
maximizes the network lifetime if it is used together with the first schedule.
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5 Simulation

5.1 WSN with Heterogeneous Sensor Nodes

In this section, we describe the simulation study performed to evaluate the per-
formance of our algorithms. First, we applied our algorithms to a WSN with
heterogeneous nodes and compared their performance to the baseline case when
EBTS is used without applying DVS. The algorithms were implemented us-
ing C++ in a Cygwin environment on a Pentium-IV /3.2GHz /2GB RAM PC
running Windows XP. The task graphs used in the experiment were randomly
generated using TGFF [16]. The maximum in-degree and out-degree of each task
is set at 5. The number of source tasks in each task graph is equal to the number
of sensor nodes used in the experiment. The average computation time and en-
ergy consumption of each task over all the sensor nodes at the maximum speed
were randomly generated using a gamma distribution with a mean of 2msec and
4mJ respectively. The computation time and energy consumption of the task
on each individual sensor node were then randomly generated using another
gamma distribution with the mean equal to the average values generated ear-
lier. We assumed that all the tasks executed at their worst-case execution time
for every periodic cycle of the application. We also assumed that the minimum
computational speed is 1

Nv
of the maximum computational speed and all other

levels of computational speed are uniformly distributed between the minimum
and maximum speed.

We set the time and energy cost of transmitting one bit of data to be 10
µsec and 1 µJ respectively. The number of bits of data to be transmitted be-
tween 2 tasks with precedence constraints was uniformly distributed between
200CCR(1 ± 0.2), where CCR represents the communication to computation
ratio. The period of the application P was generated using the same method as
described in [2] in the following way. For each task, its distance is defined as the
number of edges in the longest path from any of the source tasks to that task.
The tasks are then divided into layers according to their distance. Assuming
that all the tasks in the same layer are executed in parallel, the estimated com-
putation time required for each layer is tl�nl

m �, where nl is the number of tasks
in that layer and tl denotes the average computational time of the tasks in the
layer. In addition, the expected number of communication activities initiated by
any task is estimated to be (dout − 1) where dout is the out-degree of the task.
The total communication time required for each layer is therefore estimated as
tl · CCR� q

K � where q is the sum of the expected number of communication ac-
tivities initiated by the tasks in that layer. P is then calculated as the sum of
computation and communication time of all the layers divided by u, where u is
the utilization of the sensor network. Lastly, the remaining energy at each sensor
node is uniformly generated between (1 ± 0.2)× 106mJ.

We conducted the simulation experiments for a wireless sensor network con-
sisting of 10 sensor nodes, 8 voltage levels, 4 channels, 100 tasks (with 10 source
tasks), CCR between 2 and 20, and u between 0 and 1. All the data in the ex-
periment are obtained by averaging the values obtained using 100 different task
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graphs. We first set CCR to be 4, u to be 0.5 and varied the value of α from 0 to
1. The results are shown in Figure 1(a). We observed that when α = 0, both our
EBTS and EBTS-DS algorithms tried to minimize the total energy consumption
of the sensor network without considering the maximum norm-energy of each
sensor node. Therefore the average lifetime of the sensor network obtained using
our algorithms are shorter. On the other hand, when α is around 0.4 to 0.6, the
average lifetimes reach the maximum values before decreasing slightly when α
increases further. This is because when α is around 0.4 to 0.6, our algorithms
take into consideration the maximum norm-energy while trying to minimize the
total energy consumption at the same time. As a result, the sensor nodes have
more remaining energy and our algorithms are therefore able to generate better
schedules. At α = 0.5, there is about 198% improvement in the lifetime when
EBTS is used with DVS, compared to the baseline case of using EBTS without
DVS. When our EBTS-DS algorithm is used to generate a second schedule, the
lifetime improvement increases to 290%. We shall use the value α = 0.5 in our
subsequent experiments.

Next, we varied CCR between 2 to 20. The lifetime improvement of our algo-
rithms for different values of CCR is shown in Figure 1(b). Here, we define the
lifetime improvement as ( Lalg

Lbase
−1), where Lalg is the lifetime of the WSN when

a particular algorithm is used and Lbase is the lifetime of the WSN in the base-
line case when our EBTS algorithm is used without DVS. When CCR = 2, our
EBTS algorithm is able to obtain a lifetime improvement of about 219% while our
EBTS-DS achieves a lifetime improvement of 311%. However, as CCR increases,
this improvement decreases. At CCR = 20, the lifetime improvements that we
could achieve using EBTS and EBTS-DS decrease to about 142% and 222%
respectively. This is because as CCR increases, the communication energy be-
comes more significant when compared to the computational energy. Therefore,

(a) Average lifetime with varying α
and CCR = 4

(b) Lifetime improvement with varying
CCR and α = 0.5

Fig. 1. Performance of EBTS and EBTS-DS for WSN consisting of heterogeneous
nodes (10 sensor nodes, 8 voltage levels, 4 channels, 100 tasks, u = 0.5). The values
for the lifetime improvement are calculated as the improvement over the baseline case
when EBTS is used without DVS. The vertical bars show the confidence intervals at
95% confidence level.
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Fig. 2. Miss rate of EBTS with varying values of u for WSN consisting of heterogeneous
nodes (10 sensor nodes, 8 voltage levels, 4 channels, 100 tasks, CCR = 0)

the lifetime improvement obtained by reducing the computational energy using
DVS becomes more limited as a result.

We now varied the utilization u of the sensor network and observed the rate at
which deadlines were missed. Figure 2 shows the simulation results. We observed
that our algorithm provides a very low miss rate. Even when u = 1, only 24%
of the application task graphs missed their deadlines.

5.2 WSN with Homogeneous Sensor Nodes

We also compared our algorithms with the 3-phase heuristic [2] for WSNs with
homogeneous nodes. The task graphs and parameters are generated in the same
way as in the previous experiment, except that the computational time and
energy consumption for each task does not vary across different sensor nodes.
We compared the performance of the algorithms to the baseline case when the
3-phase heuristic is used without applying DVS.

Figure 3(a) shows the results when α is varied from 0 to 1. We observed similar
results as in the previous experiment. When α = 0, the lifetime improvements
of EBTS and EBTS-DS are only 15% and 156% respectively compared to 192%
improvement obtained using the 3-phase heuristic. On the other hand, when α =
1, lifetime improvement of EBTS and EBTS-DS are 258% and 360% respectively.
The best performance is obtained when α = 0.5. At this value of α, the lifetime
improvement of EBTS and EBTS-DS are 275% and 383% respectively. Even
when our EBTS algorithm is used without DVS, there is an improvement of
25% at α = 0.5 compared to the baseline case of using the 3-phase heuristic
without DVS.

Next, we studied the performance of the algorithms with respect to varying
values of CCR. The results are shown in Figure 3(b). The lifetime improvement
is calculated by comparing the lifetime generated by the algorithms to the base-
line case where the 3-phase heuristic is used without DVS. When CCR = 2, our
EBTS and EBTS-DS algorithms obtain lifetime improvements of 335% and 468%
respectively while the 3-phase heuristic obtains an improvement of only 171%.
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(a) Lifetime improvement with varying
α and CCR = 4

(b) Lifetime improvement with varying
CCR and α = 0.5

Fig. 3. Lifetime improvement of 3-phase heuristic, EBTS and EBTS-DS for WSN con-
sisting of homogeneous nodes (10 sensor nodes, 8 voltage levels, 4 channels, 100 tasks,
u = 0.5). These values are calculated as the improvement over the baseline case when
the 3-phase heuristic is used without DVS. The vertical bars show the confidence in-
tervals at 95% confidence level.

Fig. 4. Miss rate of 3-phase heuristic and EBTS with varying values of u for WSN
consisting of homogeneous nodes (10 sensor nodes, 8 voltage levels, 4 channels, 100
tasks, CCR = 0)

However, as CCR increases, the improvement of EBTS and EBTS-DS over the
3-phase heuristic decreases. At CCR = 20, EBTS and EBTS-DS achieve lifetime
improvements of about 105% and 168% respectively compared to 60% achieved
by the 3-phase heuristic.

Lastly, we studied the deadline miss rates of our EBTS algorithm and the 3-
phase heuristic for homogeneous WSNs. The results are shown in Figure 4. We
observed that our EBTS algorithm provides a lower deadline miss rate compared
to the 3-phase heuristic, especially at higher values of u. At u = 1, the miss
rate of our algorithm is 50% while the miss rate for the 3-phase heuristic is as
high as 96%. From these experiments, we conclude that although our algorithms
are designed for WSNs with heterogeneous sensor nodes, they can be used for
homogeneous sensor nodes as well.
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6 Conclusion

In this paper, we have proposed a static energy-balanced task scheduling (EBTS)
algorithm for assigning tasks with precedence constraints to a single-hop WSN
consisting of heterogeneous nodes. Our objective is to maximize the lifetime of
the WSN by assigning the tasks in a balanced way such that the lifetime of the
sensor node which consumes the most energy is maximized. We also proposed
the EBTS-DS algorithm, which generates a second schedule that is used to ex-
tend the lifetime of the WSN further when it is used together with the original
schedule.

We compared our EBTS and EBTS-DS algorithms to the baseline case when
DVS was not used for a WSN with heterogeneous nodes and observed up to 219%
and 311% improvement in the lifetime of the sensor network respectively. We also
compared our EBTS and EBTS-DS algorithms to the 3-phase heuristic in the
literature for sensor networks with homogeneous nodes and demonstrated that
there is up to 96% and 174% increase in the lifetime improvement respectively
when our algorithms are used instead of the 3-phase heuristic.
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10. Zhu, D., AbouGhazaleh, N., Mossé, D., Melhem, R.G.: Power Aware Scheduling
for AND/OR Graphs in Multi-Processor Real-Time Systems. In: Proceedings of
31st International Conference on Parallel Processing, August 2002, pp. 593–601
(2002)

11. Schmitz, M.T., Al-Hashimi, B.M., Eles, P.: Energy-Efficient Mapping and Schedul-
ing for DVS Enabled Distributed Embedded Systems. In: Proceedings of 2002 De-
sign, Automation and Test in Europe Conference and Exposition, March 2002, pp.
514–521 (2002)

12. Schmitz, M.T., Al-Hashimi, B.M.: Considering Power Variations of DVS Process-
ing Elements for Energy Minimisation in Distributed Systems. In: Proceedings of
International Symposium on Systems Synthesis, October 2001, pp. 250–255 (2001)

13. Gruian, F., Kuchcinski, K.: LEneS: Task Scheduling for Low-Energy Systems Using
Variable Supply Voltage Processors. In: Proceedings of Asia and South Pacific
Design Automation Conference, January 2001, pp. 449–455 (2001)

14. Schurgers, C., Aberthorne, O., Srivastava, M.B.: Modulation Scaling for Energy-
aware Communication Systems. In: Proceedings of International Symposium on
Low Power Electronics and Design, pp. 96–99 (2001)

15. Luo, J., Jha, N.K.: Power-conscious Joint Scheduling of Periodic Task Graphs and
Aperiodic Tasks in Distributed Real-time Embedded Systems. In: Proceedings of
International Conference on Computer-Aided Design, November 2000, pp. 357–364
(2000)

16. Dick, R.P., Rhodes, D.L., Wolf, W.: TGFF: Task Graphs for Free. In: Proceedings
of 6th International Workshop on Hardware/Software Codesign, March 1998, pp.
97–101 (1998)



Energy Efficient Distributed Algorithms for
Sensor Target Coverage Based on Properties of

an Optimal Schedule

Akshaye Dhawan and Sushil K. Prasad

Georgia State University, Department of Computer Science, Atlanta, Ga 30303
akshaye@cs.gsu.edu, sprasad@cs.gsu.edu

Abstract. A major challenge in Wireless Sensor Networks is that of
maximizing the lifetime while maintaining coverage of a set of targets,
a known NP-complete problem. In this paper, we present theoretically-
grounded, energy-efficient, distributed algorithms that enable sensors to
schedule themselves into sleep-sense cycles. We had earlier introduced
a lifetime dependency (LD) graph model that captures the interdepen-
dencies between these cover sets by modeling each cover as a node and
having the edges represent shared sensors. The key motivation behind
our approach in this paper has been to start with the question of what
an optimal schedule would do with the lifetime dependency graph. We
prove some basic properties of the optimal schedule that relate to the
LD graph. Based on these properties, we have designed algorithms which
choose the covers that exhibit these optimal schedule like properties. We
present three new sophisticated algorithms to prioritize covers in the
dependency graph and simulate their performance against state-of-art
algorithms. The net effect of the 1-hop version of these three algorithms
is a lifetime improvement of more than 25-30% over the competing al-
gorithms of other groups, and 10-15% over our own; the 2-hop versions
have additional improvements, 30-35% and 20-25%, respectively.

1 Introduction

Wireless Sensor Networks (WSNs) consist of a number of low cost sensors that
are equipped with a radio interface. These devices are deployed in large numbers
over an area of interest and they monitor the targets in this region and send
information to a base station or a gateway node [1].

Since these sensors are powered by batteries, energy is a key constraint for
these networks. The lifetime of the network is defined as the amount of time that
the network can cover its area or targets of interest. A standard approach taken
to maximize the lifetime is to make use of the overlap in the sensing regions
of individual sensors caused by the high density of deployment. Hence, only a
subset of all sensors need to be in the “on” state, while the other sensors can
enter a low power “sleep” state. The members of this active cover set, are then
periodically updated. In using such a scheduling scheme, there are two problems
that need to be addressed. First, we need to determine how long to use a given
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cover set and then we need to decide which set to use next. This problem has
been shown to be NP-complete [2, 3].

Existing work on this problem has looked at both centralized and distributed
algorithms to come up with such a schedule. Initial approaches to maximize the
lifetime in [2, 3, 4] considered the problem of finding the maximum number of
disjoint covers. However, [5, 6] and others showed that using non-disjoint covers
allows the lifetime to be extended further and this has been adopted since. A
common approach taken with centralized algorithms is that of formulating the
problem as an optimization problem and using linear programming (LP) to solve
it [3, 6, 7, 8]. The distributed algorithms typically operate in rounds. At the
beginning of each round, a sensor exchanges information with its neighbors, and
makes a decision to either switch on or go to sleep. In most greedy algorithms
[2, 4, 5, 9, 10, 11], the sensor with some simple greedy criteria like the largest
uncovered area [9], maximum uncovered targets [10], etc. is selected to be on.

A key problem here is that since a sensor can be a part of multiple covers,
these covers have an impact on each other, as using one cover set reduces the
lifetime of another set that has sensors common with it. By making greedy
choices, the impact of this dependency is not being considered. In [12], we capture
this dependency between covers by introducing the concept of a local Lifetime
Dependency (LD) Graph. This consists of the cover sets as nodes with any two
nodes connected if the corresponding covers intersect (See Section 2 for a more
detailed description). We also presented a generalized framework based on this
approach and applied it to the area and k -coverage problems [13].

Our Contributions: The key motivation behind our approach in this paper has
been to start with the question of what an optimal schedule (henceforth called
OPT ) would do with the LD graph. We have been able to prove certain basic
properties of the OPT schedule that relate to the LD graph. Based on these
properties, we have designed algorithms which choose the covers that exhibit
these OPT schedule like properties. We present three new heuristics - Sparse-
OPT based on the sparseness of connectivity among covers in OPT , Bottleneck-
Target based on selecting covers that optimize the use of sensors covering local
bottleneck targets, and Even-Target-Rate based on trying to achieve an even
burning rate for all targets. These heuristics are at a higher level and operate
on top of degree-based heuristics to prioritize the local covers. Our experiments
show an improvement in lifetime of 10-15% over our previous work in [12] and
25-30% over competing work in [10, 11] and 35% improvement for a two-hop
version over the two-hop algorithm of [11].

The remainder of this paper is organized as follows. We begin by defining the
notation we use and review the Lifetime Dependency Graph model in Section
2. In Section 3 we present and prove some key properties of the OPT sequence.
This is followed by Section 4 where we introduce new algorithms based on these
properties. All the proposed heuristics are then simulated and evaluated in Sec-
tion 5. Finally, we conclude in Section 6.
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2 Preliminaries and Background Work

Definitions: Let the sensor network be represented using graph SN where, S =
{s1, s2, . . . , sn} is the set of sensors, and an edge between sensor si and sj exists if
the two sensors are in communication range of each other. Let the set of targets
be T = {t1, t2, . . . , tm}. In this paper we consider the problem of covering a
stationary set of targets. This can easily be translated into the area coverage
problem by mapping the area to a set of points which need to be covered [4, 14].
In addition to this, we define the following notation:

• b(s): The battery available at a sensor s.
• T (s): The set of targets in the sensing range of sensor s.
• N(s, k): The closed neighbor set of sensor s at k communication hops.
• Cover C: Cover C ⊆ S to monitor targets in T is a minimal set of sensors

s.t. each target t ∈ T has a nearby sensor s ∈ C which can sense t, i.e., t ∈ T (s).
• lt(C): Maximum lifetime of a cover C is lt(C) = mins∈Cb(s).
• lt(ti): The lifetime of a target ti ∈ T is given by lt(ti) =

∑
{s|ti∈T (s)} b(s).

• Bottleneck Sensor: Bottleneck sensor s of cover C is the sensor s ∈ C with
minimum battery, i.e., it is the sensor s that upper bounds lt(C).
• Bottleneck Target (tbot): The target with the smallest lifetime lt(tbot).
• Lifetime of a schedule of covers: We can view the set of currently active

sensors as a cover Ci that is used for some length of time li.Given a schedule of
covers of the form, (C1, l1), (C2, l2), ..., (Cr, lr). The lifetime of this schedule is
given by

∑r
i=1 li.

• OPT : The optimal schedule of covers that achieves the maximum lifetime.
Note that this includes both the covers and their corresponding time periods.

The Lifetime Dependency (LD) Graph [12]: The Lifetime dependency graph
LD = (V, E) where V is the set of all possible covers to monitor targets in T
and two covers C and C′ are joined by an edge in E if and only if C ∩ C′ 	= ∅.

The LD graph effectively captures the dependency between two cover sets by
representing their intersection by the edge between them. Further, we define,

• w(e): Weight of an edge e between covers C and C′ is w(e) = mins∈C∩C′ b(s).
• d(C): Degree of a node or cover C is d(C) = Σe incident to C w(e).

The reasoning behind this definition of the edge weight comes from considering
a simple two-node LD graph with two covers C1 and C2 sharing an edge e. The
lifetime of the graph is upper bounded by min(lt(C1) + lt(C2), w(e)). Similarly,
in defining the degree of a cover C by summing the weights of all the edges
incident on the cover, we are getting a measure of the impact it would have on
all other covers with which it shares an edge.

Basic Algorithmic Framework: Our distributed algorithms consist of a initial
setup phase followed by rounds of predetermined duration during which sensors
negotiate with their neighbors to determine their sense/sleep status.

Setup: In the setup phase, each sensor s communicates with each of its neighbor
s′ ∈ N(s, 1) exchanging battery levels b(s) and b(s′), and the targets covered T (s)
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and T (s′). Then it finds all the local covers using the sensors in N(s, 1) for the
target set being considered. It then constructs the local LD graph LD = (V, E)
over those covers, and calculates the degree d(C) of each cover C ∈ V in the
graph LD. Note that the maximum number of covers that each sensor constructs
is a function of the number of neighbors and the number of local targets it
has. Both of these are relatively small for most graphs (but theoretically is
exponential in the number of targets).

Prioritize and Negotiate solutions: Once the LD graph has been constructed by
each sensor, it needs to decide which cover to use. In order to do this, a priority
function can be defined to prioritize the local covers. We base the priority of
cover C on its degree d(C). A lower degree is better since this corresponds to
a smaller impact on other covers. Note that the priority function is computed
at the beginning of every round by exchanging current battery levels among
neighbors since the degrees may have changed from the previous round.

The goal is to try and satisfy the highest priority cover. However, a cover
comprises of multiple sensors and if one of these switches off, this cover cannot
be satisfied. Hence, each sensor now uses the automaton in Fig. 1 to decide
whether it can switch off or if it needs to remain on. The automaton starts with
every sensor s in its highest priority cover C. The sensor s keeps trying to satisfy
this cover C and eventually if the cover C is satisfied, then s switches on if s ∈ C
else s switches off. If a cover C cannot be satisfied, then the sensor s transitions
to its next best priority cover C′, C′′ and so on, until a cover is satisfied.

We simulated this Degree-Based heuristic along with a few of its variants over
a range of sensor networks and compared the lifetime of their schedules with
the current state-of-art algorithms, LBP [10] and DEEPS [11], and showed an
improvement of 10-20% in network lifetime. One clear distinction between our
algorithm and others is that while all previous algorithms work on sensor network
graph (SN), ours work on dependency graphs (LD), a higher level abstraction.

Fig. 1. The state transitions to decide the sense/sleep status
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3 Properties of the Optimal Sequence

In this paper, our approach to the problem of further extending the lifetime of
the network has been to turn the argument on its head. Instead of trying to come
up with different schemes of scheduling sensors into cover sets, let us suppose we
know the best schedule. Such a schedule OPT comprises a collection of covers
and the time for which each cover is used in the optimal schedule,

OPT = {(Copt1 , l1), (Copt2 , l2), ..., (Coptr , lr)}.
The optimal sequence can be viewed as a partition of the space of covers into

those covers that are in OPT and those that are not. Now visualize all possible
cover sets in the LD graph. How would one identify from amongst all these sets,
those that are candidates for being in OPT? Our goal is to identify certain
properties of the OPT that can help make this decision.

Lemma 1. OPT burns all the covers.

Proof: Suppose there is a cover C′ that is not burned by OPT, i.e., its weakest
sensor has some battery left. Burning this cover would further increase the life-
time of the network by an amount lt(C′). This implies that OPT is non-optimal,
which gives us a contradiction. �

Lemma 2. If a cover C is not used in OPT, C has at least one neighboring
cover in the LD Graph in OPT.

Proof: If a cover C is not used in OPT, then it has at least one sensor s ∈ C that
has exhausted its battery. If this is not true, then C still has some lifetime left
and this gives us a contradiction according to Lemma 1. The fact that sensor s
has been completely burned for cover C implies that there is at least one other
cover in OPT that contains this sensor s. Otherwise, s would not be burned.
This means that there is at least one cover which is a neighbor of C in the LD
graph (because they share the sensor s) and is also in OPT. �

Corollary: If a cover C is not used in OPT , C has one or more neighboring
covers in OPT such that total span of these neighbors in OPT is at least the
life of C.

Lemma 3. The covers in OPT form a dominating set of the LD Graph.

Proof: A dominating set of a graph is a set of vertices such that every vertex is
either in this set or is a neighbor of a node in the dominating set.

Let us consider a cover C. Either it is in OPT , in which case it is a dominating
node, or it is not in OPT . By Lemma 2, if it is not in OPT , it has to have at
least one neighbor in OPT . Hence it is a dominated node. Hence, the covers in
OPT dominate the set of all covers in the LD graph. �
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Lemma 4. All permutations of OPT are optimal.

Proof: This lemma shows that the ordering of individual covers in the OPT
sequence is irrelevant. Any permutation OPT ′ of OPT can be obtained by re-
peatedly moving (COPTi , li) to its position j in OPT ′ for all eligible i. We prove
that each such move preserves optimality.

Moving COPTi to position j changes its relative ordering with its neighboring
covers in the LD graph which lie between position i and j. Let us call these
neighbors N ′(COPTi ). Other neighbors of COPTi do not see any change, nor
do other covers which are not neighbors. For each neighboring cover COPTk

∈
N ′(COPTi ), w(COPTi ∩ COPTk

) ≥ li + lk, as each edge upper bounds the cu-
mulative lifetime. Therefore, if i > j burning COPTi before COPTk

will leave
w(COPTi ∩COPTk

)− li ≥ lk of battery in COPTi ∩COPTk
. Therefore, COPTk

can
be burnt for a duration of lk, for each COPTk

∈ N ′(COPTi ).
On the other hand, if i < j, each COPTk

∈ N ′(COPTi ) will be burnt for lk
time, leaving w(COPTk

∩ COPTi) − lk ≥ li of battery in COPTk
∩ COPTi . Thus,

COPTi can be burnt for duration of li at position j. �

Corollary: If C occurs more than once in OPT , all its occurrences can be
brought together, thereby burning C all at once for the cumulative duration.

Lemma 5. Due to OPT, all sensors around at least one target are completely
burnt.

Proof: This relates to Lemma 1, because if there is no such bottleneck target,
then it is still possible to cover all targets, implying that a cover exists, and
hence OPT is not optimal. �

4 Optimal Schedule Based Algorithms

Recall from our discussion on the Lifetime Dependency Graph model in Section 2
that we used the degree d(C) of a cover C in order to determine its priority. The
definition of the degree as the key prioritization criteria is limited since it only
considers a local property of the LD graph. As we saw in the previous section,
there are properties which show how an OPT schedule would choose covers in
the LD graph. Our goal in this section is to design heuristics that utilize these
properties in the prioritization phase of the algorithm described in Section 2. We
introduce three heuristics based on the properties of the OPT schedule. Each of
these heuristics define a different way to prioritize the local covers. Note that if
all remaining covers are tied on the new priority functions, we revert to using the
degree to break ties. Hence, these heuristics can be viewed as defining a higher
level priority function, that acts on top of the degree d(C) function.

Heuristic 1: Sparse-OPT
This heuristic is based on Lemma 2 and works on the idea that the covers in
OPT are sparsely connected. Suppose we have a subsequence of OPT available
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and we were to pick a cover to add to this sequence. Clearly any cover we add to
the OPT sequence should not be a neighbor of a cover that is already in OPT .
By Lemma 2, we know that if a cover C is in OPT for time l, then its neighbors
in the LD graph can only be in OPT if their shared sensor s has a battery
b(s) > l. This implies that covers in OPT are likely to be sparsely connected.
Hence, for any two nodes (covers) in OPT, their degree in the induced subgraph
of the LD graph should be low. For a cover C, we define its degree to other covers
already selected (in OPT ) as: dOPT (C) = Σe incident to C and to C′∈OPT w(e).

This leads us to a simple heuristic: When choosing a cover Ci, pick the cover
with the lowest degree to nodes already chosen.

Implementation: When implementing this heuristic, the exchange of messages
during the setup phase remains unchanged from before. The next step in the
algorithm would be to prioritize the covers in the local LD graph. Instead of
prioritizing a cover C by its degree d(C), the heuristic we defined gives us a
higher level of prioritization. Initially, there are no covers that have been selected
for use so the heuristic starts off as before. A sensor orders its local covers by
d(C) (battery and id’s can be used to break ties), and then enters a negotiation
phase with its neighbors in order to decide which cover to use. This would result
in some cover C′ being selected for use.

In the subsequent round the sensor recomputes the priority function for its
covers. Now, in computing the priority of a cover C, we can look at its degree
to the previously used cover C′, given by dOPT (C), and prioritize the covers in
the order of lowest degree first. Note that if dOPT is the same for several covers,
we can break ties by using d(C) as before. As the set of previously used covers
increases over time, we compute the priorities at the beginning of each round by
looking at the dOPT of any cover to this set and assigning a higher priority to
the covers with the lowest degree.

Heuristic 2: Bottleneck-Target
This heuristic is based on the property that covers in OPT should optimize the
local bottleneck target and makes use of the ideas presented in Lemma 5.

Let us consider the set of all targets T . Some of these targets are more im-
portant than others because they represent bottlenecks for the lifetime of the
network. Consider a target ti. Then, the total amount of time this target can be
monitored by any schedule is given by: lt(ti) =

∑
{s | ti∈T (s)} b(s).

Clearly there is one such target with the smallest lt(ti) value, that is a bot-
tleneck for the entire network. Since the network as a whole cannot achieve a
lifetime better than this bottleneck, it follows that any cover should not use
multiple sensors from the set of sensors that cover this bottleneck. However,
without a global picture, it is not possible for any sensor to determine if one
of its local targets is this global bottleneck. However, every sensor is aware of
which of its local targets is a local bottleneck. The key thing to realize is the
fact that if every sensor optimizes its local bottleneck target, then one of these
local optimizations is also optimizing the global bottleneck target. Let tbot be
this local bottleneck target. Let Cbot be the set of sensors that can cover this
local bottleneck target.That is, Cbot = {s | tbot ∈ T (s)}.
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Ideally, we would like to use a cover that has only one sensor in Cbot as
a part of this cover. However this may not always be possible. Hence, while
prioritizing the local covers, we can pick a cover that minimizes the cardinality
of its intersection with Cbot. Hence, the cover selected should be the cover C that
minimizes |C ∩ Cbot|.
Implementation: The implementation is similar to Heuristic 1. Again, the
setup and LD graph construction phase remain unchanged. Every sensor s now
computes its local bottleneck target tbot ∈ T (s) and the set of sensors that covers
this target Cbot. Note that this can be done since at the end of the setup phase,
every sensor knows who its neighbors are, which targets they cover, and how
much battery they have. When calculating the priority of each cover C in the
LD graph, the priority function defined by this heuristic calculates the value of
|C ∩ Cbot| for each cover, since this gives us the number of sensors in Cbot that
are a part of the cover C. The heuristic then prioritizes covers in descending
order of this cardinality. Again, if this value is the same for multiple covers, we
break ties by using the degree d(C).

Heuristic 3: Even-Target-Rate
This heuristic is based on the idea that OPT should try and burn all targets at
the same rate. Consider a target ti ∈ T . Let lt(ti) be the sum of the battery
of all sensors covering ti. Clearly the network cannot be alive for longer than
lt(tbot) where tbot is the target with the smallest lifetime. Heuristic 2 stated
above tries to maximize the time this bottleneck can be used. However, the
danger in this is that by doing so, a different target may become the bottleneck
due to repeated selection of its covering sensors. To avoid this problem, and at
the same time optimize the bottleneck target, we want to keep an even rate
of burning for all targets. In order to arrive at a normalized burning rate for
each target ti, we define the impact of a cover C on a target ti as given by,

Impact(C, ti) = |{ s ∈ C | ti ∈ T (s)}|
lt(ti)

.

The Impact should give a measure of how this cover C is reducing the lifetime
of a target ti. Since each round lasts for one time unit, the impact is measured
by the number of sensors covering ti that are in C. Hence, the definition. This
gives us the heuristic: Any cover chosen should be the best fitting cover in that
it burns all targets at an even rate.

Implementation: After setup and constructing its LD Graph as before, each
sensor s enters the prioritization phase. For every target being considered, s
computes the impact of a cover C on that target, i.e., the sensor s calculates
Impact(C, ti) for all ti ∈ T (s). Let Impactmax(C) be the highest impact of
this cover C and let Impactmin(C) be the lowest impact of C for all targets.
A good cover will have a similar impact on all targets, since it burns them at
the same normalized rate. Hence, we prioritize covers in descending order of this
difference, given by Impactmax(C) − Impactmin(C). Once again, if the impact
is the same, we can break ties using d(C).
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5 Experimental Evaluation

In this section, we first evaluate the performance of the one-hop and two-hop ver-
sions of the three heuristics based on OPT schedule as compared to the 1-hop
algorithm LBP [10], the 2-hop algorithm DEEPS [11], and our basic Degree-
Based heuristic from our previous work in [12]. Next, we create appropriate
hybrids of the three 1-hop heuristics in various combinations, showing that all
three combined together yield around 30% improvement over 1-hop LBP and
25% over the 2-hop DEEPS algorithm (Fig. 2 and 3). Even though theoreti-
cally our algorithms are exponential in the number of targets, practically their
computation time was no more than three times the LBP algorithm with same
communication complexities. We also implement the 2-hop versions of these
heuristics and obtain a 35% improvement in lifetime over DEEPS (Fig. 4). As
compared to an upper bound on the longest network lifetime (the lifetime of the
global bottleneck target), our 1-hop algorithms have moved the state of art to
no worse than 30-40% on an average (Fig. 5). The 2-hop algorithms are no worse
that 25% on an average.

The load balancing protocol (LBP) [10] is a simple one-hop protocol which
works by attempting to balance the load between sensors. Sensors can be in
one of three states sense, sleep or vulnerable/undecided. Initially all sensors are
vulnerable and broadcast their battery levels along with information on which

Fig. 2. Lifetime with 25 Targets

Fig. 3. Comparing LBP [3] against the 1-hop OPT-based heuristics
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Fig. 4. Comparing DEEPS [11] against the 2-hop OPT-based heuristics

Fig. 5. Comparing 1-hop and 2-hop Degree-Based [12] heuristics against OPT-based
heuristics

targets they cover. Based on this, a sensor decides to switch to off state if its
targets are covered by a higher energy sensor in either on or vulnerable state.
On the other hand, it remains on if it is the sole sensor covering a target.

The second protocol we consider is a two-hop protocol called DEEPS [11].The
main intuition behind DEEPS is to try to minimize the energy consumption rate
around those targets with smaller lives. A target is defined as a sink if it is the
shortest-life target for at least one sensor covering that target. Otherwise, it is a
hill. To guard against leaving a target uncovered during a shuffle, each target is
assigned an in-charge sensor. For each sink, its in-charge sensor is the one with
the largest battery for which this is the shortest-life target. For a hill target, its
in-charge is that neighboring sensor whose shortest-life target has the longest
life. An in-charge sensor does not switch off unless its targets are covered by
someone. Apart from this, the rules are identical as those in LBP protocol.

In order to compare the algorithm against LBP, DEEPS, and our previous
work, we use the same experimental setup and parameters as employed in [10].
We carry out all the simulations using C++. For the simulation environment,
a static wireless network of sensors and targets scattered randomly in 100m×
100m area is considered. We conduct the simulation with 25 targets randomly
deployed, and vary the number of sensors between 40 and 120 with an increment
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of 20 and each sensor with a fixed sensing range of 60m. We assume that the
communication range of each sensor is two times the sensing range [15, 16]. For
these simulations, we use the linear energy model wherein the power required
to sense a target at distance d is proportional to d. We also experimented with
the quadratic energy model (power proportional to d2). The results are similar
to [12] and the same trends as the linear model apply. Due to space constraints,
we only show a snapshot of these results in Fig. 5.

The results are shown in Fig. 2. As can be seen from the figure, among the
three heuristics, the Bottleneck-Target heuristic performs the best giving about
10-15% improvement in lifetime over our previous 1-hop Degree-Based heuristic
and about 25-30% over LBP and DEEPS. Sparse-OPT and Even-Target-Rate
also improve over the Degree-Based heuristic. We also ran simulations with
a combination of the heuristics. (2, 1) denotes the combination of heuristic 2,
Bottleneck-Target, followed by heuristic 1, Sparse-OPT, and so on. For these
experiments, the priority function was modified to implement the priority func-
tion of both heuristics in the same algorithm. For example, in (2, 1), we first
optimize the local bottleneck target (based on heuristic 2) and in case of ties,
we break them by checking the degree to previously selected covers (based on
heuristic 1). Other implementations follow similarly. The combination of heuris-
tics give a better lifetime than the individual heuristics; the best hybrid was
(2,3,1) plotted in Fig. 2.

In Fig. 3, we highlight the performance of the three heuristics as compared
to LBP. The simulation is run for 40, 80 and 120 sensors, with 25 targets and
a linear energy model. As can be seen, a similar trend in improvements is ob-
served. Overall lifetime improvements are in the range of 25-30% over LBP as the
baseline. Since DEEPS is a 2-hop algorithm, we also compared 2-hop versions of
our proposed heuristics, where the target set T (s) of each sensor is expanded to
include ∪s′∈N(s,1)T (s′) and the neighbor set is expanded to all 2-hop neighbors,
i.e., N(s, 2). The results are shown in Fig. 4. As can be seen, the 2-hop versions
give a further gain in lifetime over DEEPS, with overall improvement of 35% for
the hybrid of the three heuristics.

Finally, we highlight the comparison of the proposed heuristics against our
previous work [12] in Fig. 5. We show results here for the median value of n = 80
sensors. The two series compare the 1-hop version of the Degree-Based heuristic
against the 1-hop version of the OPT heuristics and then repeat these compar-
isons for the 2-hop versions of both. Overall, we achieve gains of 10-15% for the
1-hop heuristics and between 20-25% for the 2-hop heuristics. We also show (i)
how far these heuristics are compared to the upper bound on network lifetime,
and (2) that both linear and quadratic energy models follow similar trends.

6 Conclusion

In this paper, we address the problem of scheduling sensors to extend the life-
time of a Wireless Sensor Network. We examine the properties that an optimal
schedule would exhibit and use these to design three new heuristics that work
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on the lifetime dependency graph model. Simulations show an improvement of
25-30% over the algorithms in [10, 11] and 10-15% over our previous work in [12]
for the 1-hop algorithms. Two-hop versions show additional improvements over
their counterparts. These heuristics are designed to work on higher level proper-
ties of the dependency graph. The net effect is a significant improvement in the
state of art, with our algorithms performing no worse than 30-40% compared to
the optimal network lifetime on an average. Future work includes dealing with
the exponential nature of the problem space by designing heuristics that can
effectively sample good quality local covers.
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Abstract. Sensor networks employed by scientific applications often
need to support localized collaboration of sensor nodes to perform in-
network data processing. This includes new quantitative synthesis and
hypothesis testing in near real time, as data streaming from distributed
instruments, to transform raw data into high level domain-dependent
information. This paper investigates in-network data processing mech-
anisms with dynamic data requirements in resource constrained het-
erogeneous sensor networks. Particularly, we explore how the temporal
and spatial correlation of sensor measurements can be used to trade off
between the complexity of coordination among sensor clusters and the
savings that result from having fewer sensors involved in in-network pro-
cessing, while maintaining an acceptable error threshold. Experimental
results show that the proposed in-network mechanisms can facilitate the
efficient usage of resources and satisfy data requirement in the presence
of dynamics and uncertainty.

Keywords: Sensor system programming, In-network data estimation,
Sensor-driven scientific applications.

1 Introduction

Technical advances in sensing technologies are rapidly leading to a revolution in
the type and level of instrumentation of natural and engineered systems, and
is resulting in pervasive computational ecosystems that integrate computational
systems with these physical systems through sensors and actuators. This in turn
is enabling a new paradigm for monitoring, understanding, and managing nat-
ural and engineered systems – one that is information/data-driven and that
opportunistically combines computations and real-time information to model,
manage, control, adapt, and optimize.
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Several scientific and engineering application domains, such as waste man-
agement [1], volcano monitoring [2], city-wide structural monitoring [3], and
end-to-end soil monitoring system [4], are already experiencing this revolution
in instrumentation. This instrumentation can also potentially support new
paradigms for scientific investigations by enabling new levels of monitoring,
understanding and near real-time control of these systems. However, enabling
sensor-based dynamic data-driven applications presents several challenges, pri-
marily due to the data volume and rates, the uncertainty in this data, and the
need to characterize and manage this uncertainty. Furthermore, the required
data needs to be assimilated and transported (often from remote sites over low
bandwidth wide area networks) in near real-time so that it can be effectively
integrated with computational models and analysis systems. As a result, data in
most existing instrumented systems is used in a post-processing manner, where
data acquisition is a separate offline process.

The overall goal of this research is to develop sensor system middleware and
programming support that will enable distributed networks of sensors to func-
tion, not only as passive measurement devices, but as intelligent data processing
instruments, capable of data quality assurance, statistical synthesis and hypothe-
ses testing, as they stream data from the physical environment to the computa-
tional world [5]. This paper specifically investigates abstractions and mechanisms
for in-network data processing that can effectively satisfy dynamic data require-
ments and quality of data and service constraints, as well as investigate tradeoffs
between data quality, resource consumptions and performance. In this paper, we
first present the iZone programming abstractions for implementing in-network
data estimation mechanisms. We then explore optimizations that can use the
spatial and temporal correlation in sensor measurements to reduce estimation
costs and handle sensor dynamics, while bounding estimation errors. For exam-
ple, an appropriate subset of sensors might be sufficient to satisfy the desired
error bounds, while reducing the energy consumed. The optimized in-network
data estimation mechanisms are evaluated using a simulator. The evaluations
show that these mechanisms can enable more efficient usage of the constrained
sensor resources while satisfying the applications requirements for data quality,
in spite of sensor dynamics.

The rest of the paper is organized as follows. Section 2 describes the iZone
programming abstraction and in-network data estimation mechanisms. Section 3
presents space, time and resource aware optimizations for in-network interpola-
tion. Section 4 presents an experimental evaluation. Related work is discussed
in Section 5. Finally, Section 6 presents conclusions.

2 In-Network Data Estimation

Scientific applications often require data measurements at pre-defined grid points,
which are often different from the locations of the raw data provided directly by
the sensor network. As a result, a sensor-driven scientific/engineering applica-
tion requires a virtual layer, where the logical representation of the state of the
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environment provided to the applications may be different from the raw mea-
surements obtained from the sensor network. The iZone abstractions described
in this section enables applications to specify such a virtual layer as well as im-
plement the models (e.g., regression models, interpolation functions, etc.) that
should be used to estimate data on the virtual layer from sensor readings.

2.1 The iZone Abstraction

As mentioned above, there is often a mismatch between the discretization of
the physical domain used by the application and the physical data measured by
the sensor network and as a result, data from the sensors has to be processed
before it can be coupled with simulations. The goal of the iZone abstraction is
to support such an integration. It essentially abstracts away the details of the
underlying measurement infrastructure and hides the irregularities in the sensor
data by virtualizing the sensor field. The result is a consistent representation
over time and space to match what is used by the simulations.

The iZone itself is thus a representation of the neighborhood that is used to
compute a grid point of the virtual layer, and can be specified using a range of
coordinates, functions, etc. The iZone abstraction enables the implementation
of the estimation mechanisms within the sensor network. For example, inter-
polation algorithms, such as regressions, inverse distance weighing (IDW), and
kriging, require the definition of an interpolation zone, an iZone, which defines
the neighborhood around the grid point to be estimated, and such neighbor-
hood is then used to compute that interpolation point. Note that for several
interpolation algorithms, this zone may change on the fly based on the con-
straints provided by the application. The iZone abstraction provides operators
for obtaining sensor measurements corresponding to the region of interest, as
well as for defining in-network processing operators to compute a desired grid
point from sensor values of this region. The semantics of operators of discover,
expand, shrink, get, put and aggregate are listed in Table 1.

Once an iZone is defined, computing the data value at a grid point consists
of (1) identifying a master node that coordinates the estimation process, which
could be the sensor node that is closest to the grid point and has the required
capabilities and resources, (2) discovering the sensors in the iZone that will be

Table 1. The iZone operators

Operator Semantics
discover Discover sensors within an iZone

expand Expand an iZone by adding additional sensors
shrink Shrink an iZone by removing sensors
get Collect data from sensor(s) in the iZone

put Send data to sensor(s) in the iZone

aggregate Aggregate sensor data using reduction operators,
such as max, min, weighted avg, etc.
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used in the estimation, (3) planning the in-network estimation strategy based on
desired cost/accuracy/energy tradeoffs, and (4) performing the estimation and
returning the computed data value at the desired grid point.

3 STaR: Space, Time and Resource Aware Optimization

This section explores temporal and spatial correlations in the sensor measure-
ments to reduce costs and handle sensor dynamics, while bounding estimation
errors for a given iZone. For example, a subset of the sensors in an iZone may
be sufficient to satisfy the desired error bounds while reducing the energy con-
sumed. Further, temporal regression models can be used to handle transient data
unavailability, which may otherwise lead to a significant increase in costs and
energy consumption (see Section 4.1).

3.1 Saving Energy Using iSets

Typically, for a densely deployed sensor network, a subset of sensors consisting
of members in an iZone may be sufficient to meet the quality requirements for
in-network data estimation. In this case, sensors in an iZone are divided into
multiple interpolation sets, i.e., iSets, each of which can be used to estimate the
data points while still satisfying the error bounds, and reducing costs and energy
consumed. The iSets are generated and maintained at runtime to balance cost
and energy as well as to tolerate failures.

The problem of generating the iSets can be formalized as follows: assume
that an iZone Z is divided into m exclusive subsets {S1, S2, ..., Sm} (such that
Si∩Sj = ∅ and S1∪S2, ...,∪Sm = Z), and each subset k (k = 1, 2, ...m) contains
Nak

number of sensors. The objective is to find “best” collection of iSets that
satisfies data quality requirements.

The iSets should satisfy three requirements: (1) the interpolation error for each
iSet should be less than the specified error tolerance; (2) the average number of
sensor measurements for each iSet should be minimized in order to reduce the
energy consumed; (3) the average aggregated error (i.e., 1/m

∑
k err(Sk)) should

be minimized in order to achieve data quality whenever possible. In addition to
these basic requirements, further constraints may be added to satisfy additional
resource consumption and scheduling requirements. For example, the sizes of the
iSets should be similar to make resource consumption more balanced and the
scheduling easier. Similarly, the variance of interpolation errors across the iSets
should be as small as possible.

The iZone is thus divided into m iSets, only one iSet of which needs to be
active at a time. These iSets can now be scheduled in a round-robin fashion. Note
that, as the number of iSets increases (i.e., the average size of iSets decreases),
the efficiency of the approach increases as well. The generation and maintenance
of iSets is illustrated in Figure 1 and is described below.
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Fig. 1. An overview of generating and maintaining iSets

3.2 Generating iSets

Determining the sizes of iSets: The appropriate size of the iSets used for
interpolation is determined based on the specifications provided by the appli-
cation, and computed (offline or online) using a stochastic approach as follows.
The size of an iSet is first initialized to 3 (i.e., k = 3). The sensors used for
interpolation tests are randomly selected, and the number of tests is set to some
reasonable number (i.e., Ntr = 50). If the interpolation error is within the error
tolerance threshold Qth, the successful interpolation counter succ is incremented.
If the success rate (i.e., succ/Ntr) is greater than a specified percentage θ, the
algorithm terminates and the current size of the iSet is returned as the desired
iSet size. If the success rate is less than θ after all the tests are completed, the
size of iSet is incremented and the procedure is repeated until the size equals
the size of the iZone. Note that this is only done once.

Selecting members of the iSets: Once the size of an iSet is determined, the
members of each iSet are selected so as to satisfy the criteria discussed earlier.
A straightforward approach is to use an exhaustive search to find the optimal
collection of iSets. This approach is obviously expensive for reasonably sized
iZones, and as a result, we propose approximate algorithms, i.e., the random,
semi-random and greedy algorithms, for finding near optimal iSets, as described
below.

Random algorithm. Given N sensors in an iZone, this algorithm randomly
generates m mutually exclusive iSets, each approximately of size k (i.e., Nak

≈
k), and

∑m
k=1 Nak

= N . The interpolation error of each iSet is then evaluated.
If the error for every iSet is below the error threshold, Qth, the aggregated er-
ror across all the iSets is computed and saved. This process is repeated several
times. The collection of iSets that leads to the smallest aggregated error is fi-
nally selected as the initial collection of iSets. The number of trials Ntr may
be explicitly specified or computed based on observed (or historical) data. The
actual value depends on the characteristics of sensor data. For example, for the
dataset used in the experiments in the paper (see Section 4), a suitable value is
between 50 and 100.

Semi-random algorithm. This algorithm is based on the heuristic that if
the sensors in an iSet are more uniformly distributed across the iZone, the
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estimation has higher chance to be more accurate. This algorithm attempts to
assign neighboring nodes to different iSets. This is done using locality preserved
space filling curves [6] as the indexing mechanism. First, each sensor is indexed
using the Hilbert space filling curve (SFC) based on their locations. Within
a given iZone, sensors with neighboring identifiers are then virtually grouped
based on their SFC indices, so that the size of each virtual group is equal to
the number of iSets required. For example, if m iSets are needed, each group
would have m members. The iSets are now constructed by randomly selecting
one sensors from each of the virtual groups.

Greedy algorithms. Three of greedy algorithms are also devised to select ap-
propriate sensors for the iSets. These algorithms are described below.

Greedy Algorithm 1 – “Remove one node at a time”: In this algorithm, we
start with one iSet containing all sensors in the iZone. Sensors are then removed
one at a time until the desired iSet size is achieved. The removed sensor is the
one that leads to minimal interpolation error at each step. That is, given the
iSet k, sensor node j is removed from the iSet, such that

j = arg min
i∈Sk

err(Sk − i).

To find the optimal iSets, the last two iSets are chosen using one of the other
methods, such as random algorithm or the second greedy algorithm.

Greedy Algorithm 2 – “Add one node at a time”: The second algorithm starts
with a single sensor node in the initial iSet, and adds one node at a time while
maintaining the interpolation error constraints. That is, given the iSet k, node
j is added to the iSet to minimize the interpolation error, such that

j = arg min
i∈Z\Sk

err(Sk ∪ i).

This process is repeated until all nodes are assigned to iSets.
Greedy Algorithm 3: This algorithm uses the heuristic that nodes which are

far from each other are less correlated and as a result are good candidates to
add to an existing iSets. The idea is to select sensors that are far from the last
selected sensor. To implement this algorithm, we use the SFC-based indexing
method described as part of the semi-random algorithm. Sensor nodes are first
indexed using the Hilbert SFC. Virtual groups with sizes equal to number of
iSets are then formed based on their SFC indices.

The algorithm is initialized by randomly assigning sensors of one virtual group
to each iSet. Next, sensors are permutated from one of remaining virtual groups,
and are mapped to each of m iSets. The permutation leading to the least aggre-
gated interpolation error is added to each of them respectively at a time. This
step is repeated until all the sensors are assigned to the iSets. Since the order
in which virtual group are processed has the impact on the interpolation errors,
a pre-processing step is used to find the sequence(s) to be used. Note that this
only needs to be done once.

Next, we describe how to maintain iSets when the underlying system changes
at runtime.
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3.3 Maintaining iSets at Runtime

Due to the dynamics of underlying physical environment and the sensor system,
currently valid iSets may not satisfy data quality requirements in the future. As
a result, mechanisms are needed to maintain iSets to ensure that they continue
to meet data quality requirements. In this section, we describe such mechanisms.
In this discussion, we assume that the sensor network is clustered to construct
a two level self-organizing overlay of sensors, in which cluster heads perform
coordination of the iZone.

Our overall approach is as follows. First, interpolation errors are tracked by
using localized error models at each individual cluster. The error models are
localized so that a violation of error thresholds can be detected locally with-
out communicating with other clusters. When a threshold violation is detected,
a greedy algorithm is used to update the involved iSet to improve estimation
quality whenever possible.

Generating models for interpolation errors: It is noted that interpola-
tion errors are often correlated with relevant sensor measurements. As a result,
regression models can be used to describe the relationship, e(t) = f(vk(t)), be-
tween interpolation errors e(t) and the current measurement vk(t) of sensor k. A
combination of offline and online estimation methods can be used to learn such a
relationship, in which the coarse trends of error models are learned using offline
methods using historical data, while specific local parameters can be learned at
runtime. For example, an offline study may suggest that a regression model of
degree one, i.e., a1vk + b1, should be used. The model parameters a1 and b1 are
estimated using previous values of sensor k and the corresponding interpolation
errors at runtime at individual cluster heads. These models can then be used to
estimate interpolation errors using measurement of sensor k from local cluster.

Maintaining iSets using a greedy algorithm: When an iSet only temporar-
ily exceeds error thresholds, the greedy “remove one at a time” algorithm can
be used at each cluster to temporarily remove sensor measurements from that
iSet. Each cluster makes recommendation of which node(s) to remove, and the
recommendation that provides the least interpolation error is enforced. Note
that if the interpolation error still exceeds error threshold, the iSets needs to be
regenerated.

Transient unavailability using temporal estimation: Since temporarily
unavailability of scheduled sensors requires re-collection of raw data and thus
results in expensive communication and energy consumption, temporal models
are used to estimate the missing sensor measurement. The idea is to use the
fact that neighboring sensor nodes would experience similar changes. As a re-
sult, samples from neighboring sensors can be used to facilitate the estimation
of temporal model parameters, such as degree of regression model, length of
time-series. Note that these parameters would change as the underlying physical
characteristics vary. The actual coefficients of temporal model are determined
based on previous values of the missing sensor data. The evaluations of these
optimized in-network mechanisms are presented next in Section 4.
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4 Experimental Evaluation

In this section a simulator is used to evaluate the performance of in-network
data estimation mechanisms. The simulator implements the space, time, and
resource aware optimization mechanisms for realistic scenarios. The scenarios
in the experiments are driven by a real-world sensor dataset obtained from an
instrumented oil field with 500 to 2000 sensors, and consisting of pressure mea-
surements sampled 96 time per day. A two-tiered overlay with about 80 clusters
is initialized. More powerful nodes are elected as cluster heads and also perform
the in-network estimations.

In each experiment, about 500 instances of in-network interpolations are per-
formed on pressure values obtained from simulated sensor nodes. Communication
costs are evaluated with and without optimizations. The accuracy and costs are
also evaluated in the presence of dynamics of physical environments and sen-
sor systems. Finally, the cost of generating iSets is examined using the random,
semi-random and greedy algorithms. The primary metrics used in the evaluation
are communication cost, measured in terms of number of messages transmitted
within the network, and accuracy, measured in terms of relative or absolute
interpolation errors.

4.1 Communication Costs

The current iZone prototype implements a distributed in-network mechanism, in
which parameters corresponding to the estimation model are first computed at the
cluster heads. The cluster heads coordinate the estimation process, and distribute
those parameters to the selected iZone sensors. A decentralized energy-efficient
aggregation scheme is then used to estimate the data. To simulate transient un-
availability of sensors, each sensors are given the same unavailability rates, which
are the frequencies that scheduled sensors are not available at the time of interpo-
lation. The communication costs are normalized to the cost of the baseline central-
ized approach, where a coordinator sensor collects raw measurement from selected
iZone sensors and does the estimation. As plotted in Figure 2, the distributed ap-
proach performs best when the sensor system is static. With a small unavailability
rate of 0.5%, the communication cost increases by over 50% for an iZone radius of
60, and over 4 times for a radius of 140. The cost also increases as the unavailability
rate increases.
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Effectiveness of temporal estimation: In this experiment, the performance
of using temporal estimation for temporarily unavailable sensor data is evaluated.
Model parameters such as the order of regression functions, and the window size
of historical data used for the estimation, are chosen at runtime. The estimation
parameters varies over time. For example, the window size of historical data is
changed from 8 to 6 after the sixth measurement, and the degree of regression
models is changed from 3 to 2 after the fifth measurement. The adaptive tempo-
ral estimation using spatial-temporal information from neighboring nodes (i.e.,
circles in Figure 3) is much closer to the actual values (i.e., solid line) than that
using only historical measurements from sensors with temporarily unavailable
data (i.e., crosses in Figure 3). This is because when using the spatial-temporal
models of neighboring nodes, the changes of the underlying physical character-
istics can be better detected than that using the historical data only from tem-
porarily unavailable sensor. Furthermore, as plotted in Figure 2, by using adap-
tive temporal estimations for transient unavailability, the communication cost is
reduced by about 25% for a radius of 60, and about 60% for a radius of 140.

4.2 Costs of Generating iSets

In these experiments, the costs and effectiveness of using random, semi-random
and greedy algorithms to generate iSets for in-network interpolation tasks are
investigated, and three iSets are formed within the given iZones for this set of
experiments.

Costs of random-based algorithms. The histograms of average interpolation
errors for each of three generated iSets are plotted in Figure 4 using random
and semi-random algorithms respectively. The probability of smaller average
interpolation errors using the semi-random algorithm is much higher than that
using the random algorithm. For example, for an average interpolation error
less than 0.2%, the semi-random algorithms (e.g., with probability about 32%)
have higher probability to generate iSets meeting quality requirements than that
using the random algorithms (e.g., with probability about 12%).

In Figure 5, the standard deviation of interpolation errors is examined for the
two algorithms. The random algorithm gives much larger variation than the semi-
random algorithm. For the random-based algorithms, within the same range of
interpolation error (i.e., 0.62%), the standard deviation of random method is
still much larger than that of semi-random algorithm. This tells us that the
semi-random algorithm is generally more effective in finding the collections of
iSets having both small interpolation errors and a small variation of such errors.

In Figure 6, the number of collections of iSets is counted in terms of the
absolute average interpolation errors and deviations (i.e., δ) among iSets. A
larger number of candidates that meet these requirements is available when the
semi-random algorithm is used than when the random algorithm is used. For
example, with small variance 1 (i.e., δ = 1), the available number of collec-
tions using semi-random algorithm is five more times than that using random
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algorithm, which indicates the effectiveness using the semi-random algorithm
especially with higher quality requirements.

Effectiveness of greedy algorithms. First the three greedy algorithms, as well
as random and semi-random algorithms are compared in terms of interpolation
errors. Three iSets are generated in this example. As shown in Figure 7, the
first greedy algorithm, i.e., “remove one at a time”, behaves well for most of the
generated iSets except the last one. For this algorithm, the last iSet exhibits
high error since it has no chance to exploit local optimization. The last two iSets
are thus chosen using other algorithms, such as random algorithms or “add one
at a time” greedy algorithm. The second algorithm, “add one at a time” gives
relatively balanced results. The overall errors are higher than those of random
and semi-random algorithms. The third greedy algorithm gives good accuracy
performance comparing to random and semi-random algorithms. The tradeoff is
that it needs pre-processing to find good sequence of the next explored sensors.
However, the pre-processing could be performed offline and the costs are much
less than that for random and semi-random algorithms.

4.3 Tradeoffs between Accuracy and Energy Consumption

In this section, the tradeoff of accuracy and energy consumption is examined. The
energy consumption is normalized to one when all sensors in an iZone are active
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at each time. As shown in Figure 8, as the sizes of iSets becomes smaller, less
energy is consumed and the interpolation errors become greater. For example,
when half of the nodes are active, approximately half of the energy can be saved.
The maximum error is slightly greater than when using all nodes. When only
one third or one fourth of nodes are active, the maximum error is similar to that
of using only half of all nodes. This means that only a portion of active sensors
is able to meet accuracy requirements while saving additional energy. However,
when only one fifth of nodes are active, the errors (both maximum and average)
become much larger and cannot meet application requirements anymore.

4.4 Cost of Maintaining iSets

In this experiment, the communication cost of maintaining iSets at local clus-
ter heads is examined. The cost primarily consists of exchanging information,
such as calibration information, identifiers of temporarily removed sensors be-
tween cluster heads. As shown in Figure 9, the cost of maintaining iSets at clus-
ter head introduces much less communication overhead than regenerating iSets.
Furthermore, the original error before removing a sensor is .06069% (threshold
is .06%), and after removing one of them using greedy algorithm, the result
becomes .00922%, which is far lower than the threshold. This method is quite
effective when the change of physical phenomenon is just temporary. After this,
the original iSet can be used again with the error rate lowered to .04681%. As a
result, this method significantly reduced the frequency to regenerate the whole
iSets in the iZone.

5 Related Work

There are some recent research efforts [7,8] that use the concept of virtual sen-
sors to support sensor applications. VNLayer [7] provides abstraction layers that
mask uncertainty of underlying sensor networks through consistency manage-
ment. Virtual sensor [8] provides a virtual sensor model and application APIs to
support heterogeneous aggregation and hierarchical specifications. However, the
underlying concepts and implementation of the system described in this paper
is quite different from these approaches in that it uses virtualization to address
the mismatch between the instrumentation of the physical domain and its dis-
cretization in the computational model, rather than to create, for example, a
virtual sensor for a derived data type.

Data aggregation is an essential functionality in sensor networks, and has been
addressed by a number of research efforts [9,10]. Optimizations techniques such
as aggregation trees are used to resolve queries efficiently. Homogeneous aggre-
gation operations are supported. The approach presented in this paper supports
used-defined functions using in-network coordination and optimization mecha-
nisms. The sensor selection schemes are also closely related to our work. The
sensor selection approach described in [11] uses approximation algorithms to se-
lect near-optimal subsets of k sensors that minimize the worst-case prediction
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error. Entropy-based approaches [12] are used for the sensor selection problems
of target tracking and localization applications. The goal of our proposed al-
gorithms is to find a “best” collection of subsets, all of which satisfy the error
tolerance rate (and minimize aggregated errors), while saving and balancing the
energy consumptions among sensors in the long run.

6 Conclusion

This paper investigated abstractions and mechanisms for in-network data pro-
cessing that can effectively satisfy dynamic data requirements and quality of data
and service constraints, as well as investigate tradeoffs between data quality, re-
source consumptions and performance. Specifically, the proposed mechanisms
(i) allow flexibility in the specification of relevant subsets of a sensor network
with iZones and iSets; (ii) explore space, time and resource aware optimizations
that utilize the spatial and temporal correlation among sensor measurements to
reduce costs while bounding estimations errors; (iii) are robust with respect to
network dynamics; and (iv) provide a virtualization of the physical sensor grid
to match the representation of the physical domain used by the models, and can
dynamically discover and access sensor data independent of any change to the
sensor network itself. Experimental results show that the proposed in-network
mechanisms can facilitate the efficient usage of constraint resources and satisfy
data requirement in the presence of dynamics and uncertainty.
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Abstract. With the proliferation of wireless networks and mobile computing 
devices, providing location-aware technology and services to new applications 
has become important for developers. Our main contribution is an efficient 
location discovery algorithm that bounds the localization error. Providing an 
efficient localization technique is critical in resource-constrained environments 
that include mobile devices and wireless networked sensors. Applicable in 
centralized and distributed environments, our algorithm, based on finding the 

smallest circle enclosing the intersection of n disks, runs in 2( )O n  time. We 
then extend our work to the problem of finding the smallest disk that includes 
the set of points common to n  disks and excluded from the interiors of m  
other disks. Finally, we show performance results from the implementation of 
our algorithms in which, under some conditions, localization estimates for 500 
nodes in a 500x500 ft region can be found with a mean error of one foot and a 
two-foot error bound. 

Keywords: Localization, error bound, sensor network, position, distance estimates. 

1   Introduction 

Advancements in low-power electronic devices integrated with wireless communica-
tion capabilities and sensors have opened up an exciting new field in computer 
science. Wireless sensor networks (WSN) can be developed at a relatively low-cost 
and can be deployed in a variety of different settings. A WSN is typically formed by 
deploying many sensor nodes in an ad hoc manner. These nodes sense physical 
characteristics of the world. The sensors could be measuring a variety of properties, 
including temperature, acoustics, light, and pollution. Base stations are responsible for 
sending queries to and collecting data from the sensor nodes. Some of the main 
characteristics of a networked sensor include: (1) small physical size, (2) low power 
consumption, (3) limited processing power, (4) short-range communications, and (5) a 
small amount of storage. 

Localization is the process of determining the positions of nodes in an ad hoc 
network. It is an important problem that has attracted much attention in this decade 
[1]. Providing robust localization services remains a fundamental research challenge 
facing the entire WSN development community [2]. 

A common practice when locating an object is to use estimated distances to known 
positions, or anchors. Suppose two objects are actually separated by distance d . If the  
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Fig. 1. (i) A disk, (ii) A washer, (iii) smallest enclosing circle covering intersection of disks 

estimate to a position is given by 'd  and the possible error for this distance is ε± , 
then the object must be located within a disk with radius 'd ε+  as shown in Fig. 1(i). 
If we remove the inside disk with radius 'd ε− , we can further say that the object 
must be located in a washer as illustrated in Fig. 1(ii). 

If we have distance bounds 'd ε+  from n known positions to an object, we know that 
the object must be located in the intersection of those n  disks. We find the smallest 
circle enclosing this intersection. By choosing the center of this circle as the location 
estimate, we guarantee that the localization error cannot be larger than the circle's 
radius. See Fig. 1(iii). 

In this paper, we provide algorithms that find the smallest enclosing circle for both 
the intersection of disks, as well as washers. In addition to providing each step of our 
location discovery algorithms and we analyze their efficiency. We first provide an 

3( )O n -time complexity algorithm for finding a location estimate along with a 

corresponding error bound. We then use a novel approach to improve our technique to 
2( )O n  for the intersection of n  disks. Our technique has the following advantages. 

1) For every location estimate that is made, a bound on the maximum possible 
error is also provided. 

2) The network just has to be connected. As opposed to many localization 
techniques, we have no restrictions on the number of neighbors each node must have 
to other nodes or anchors. 

3) The algorithms work in both a centralized, as well as, a distributed environment. 
4) This technique applies to both ad hoc mobile computing and sensor networks. 
5) The algorithms are independent of the ranging technique used by nodes to 

estimate distances between neighbors. 

The remainder of this paper is organized as follows: In Section 2, we define 
specifically the problems that we are attempting to solve. We describe related work in 
Section 3. We provide our solution to the Disk Problem in Section 4 and the Washer 
Problem in Section 5. Performance results are given in Section 6. We make final 
conclusions and talk about future work in Section 7. 

2   Problem Description 

The standard localization problem can be defined as follows: "Reconstruct the 
positions of all the nodes in a network given the relative pairwise distances among all 
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the nodes that are within some radius r of each other." While we are given 1-
dimensional measures of the relative distances, we are required to compute the 
positions either in a 2-dimensional or a 3-dimensional space, which makes the 
problem interesting and challenging. Throughout this paper, without loss in 
generality, we target our algorithms for the resource constrained and energy-critical 
WSNs, however, our solutions are applicable to more general wireless ad-hoc 
networks. 

The localization problem is even more important in wireless sensor networks for 
the following reasons: 

1. Many WSN protocols and applications simply assume that all nodes in the 
system are location-aware.  

2. If a sensor is reporting a critical event or data, we must know the location of 
that sensor.  

3. If a WSN is using a geographical routing technique, all of the nodes must be 
aware of their location.  

Given known exact distances between neighbors, the localization problem has been 
shown to be NP-hard [3]. An added challenge is the fact that in practice, the exact 
distances between pairs of sensor nodes are not known. Instead, estimates are used to 
approximate the distances.  

Therefore, there are two sources of errors in localization techniques – errors in 
relative pairwise distance estimates and even if exact distances are known, errors in 
computing the global coordinates. One must try to minimize these for heuristic 
techniques to be effective. 

This paper addresses the problem of finding the location of all the nodes in a 
network given the location of a small subset of the nodes and estimates of the relative 
distances between pairs of nodes (i.e., relative distances are not known exactly). Our 
solution is in the form of a point estimate along with an error bound. 

The first problem that we address is called the Disk Problem: Given centers and 
radii of n distinct disks, the goal is to find the center and radius of the smallest disk 

* [ *, *, *]D x y r=  that includes the intersection of the n input disks. 

The second problem that we address is the Washer Problem. This is similar to the 
Disk Problem, but the goal is to now find the center and radius of the smallest disk 

* [ *, *, *]D x y r=  that includes the set of points included in all of the input washers. 

3   Related Work 

Most localization techniques consist of two steps or phases. In the first phase, 
distances or angles are measured between known points and the object to be located. 
This first phase is referred to as the ranging phase. In the second phase, these 
distance or angle measurements are combined to produce the location of the object. 
This phase is referred as the localization phase. 

Some of the prominent techniques for the ranging phase include: 1. Received 
Signal Strength Indicator (RSSI), 2. Incremental Stepping of Transmission Power, 3. 
Time of Arrival (ToA), and 4. Angle of Arrival (AoA) [1,4]. 

 



298 M. Terwilliger, C. Coullard, and A. Gupta 

Depending on the method used for ranging, an appropriate localization technique is 
applied in the second phase. The following localization strategies have been proposed 
[1,4]: 

1. Trilateration – This is one of the more popular strategies and is used when the 
exact distances between known points and an object to be located are available. 
When the distance between an object and three points are given, the object's 
location can be computed as the intersection of three circles. 

2. Bounded Intersection – The trilateration technique works well when the three 
circles intersect at a single point, but this is rarely the case when estimates are used 
in ranging. When using incremental stepping of transmission power for ranging, 
maximum values can be used for estimating the distances. The object to be located 
would fall into a geometric region that is the intersection of three circles. 

3. Triangulation – The triangulation method is useful if the angle between two 
objects can be measured. 

4. Maximum Likelihood – When estimates are used for ranging, it is possible that 
region of intersection is empty. This will occur if at least one ranging estimate is too 
small. One method that overcomes this problem selects the point for localization that 
gives the minimum total error between measured estimates and distances.  

The most obvious solution to the localization problem is to simply equip every 
node with its own GPS device. This strategy might be feasible in some scenarios, but 
it suffers from several limitations of GPS such as it does not work indoors or when 
the line-of-sight is blocked. The size, cost and power consumption of a GPS receiver 
are also factors that make it impractical to equip all of the nodes in a WSN with this 
technology. Therefore, one must develop alternate low-cost and low-power solutions. 

We presented one such solution based on evolution strategies that combined 
information about anchor positions with distance estimates between neighboring 
nodes [5]. In this paper, we present a deterministic algorithm that includes an error 
bound with each localization estimate. 

The current landscape of location sensing systems is filled with a variety of 
technologies. The most popular system, GPS [6], uses radio time-of-flight lateration 
via satellites, but has some limitations. A good discussion of location systems is found 
in [1]. Most of the location systems discussed rely on known positions or distances in 
the location or calibration process and they rely on an a priori infrastructure. This 
leads to two problems: (1) The system will not scale well to a large topology, and (2) 
It is very difficult to do location sensing in an ad-hoc manner.  

The problem of finding the location of all nodes in a wireless sensor network given 
the location of a subset of nodes has been approached by many researchers. A system 
called AHLoS (Ad-Hoc Localization System) [7] assumed that beacon nodes are 
aware of their positions. The rest of the nodes in the system are referred to as 
unknown, as these nodes will try to discover their location. The beacon nodes 
broadcast their location. An unknown node within range of three or more beacons 
estimates its position to minimize the mean square error. A technique called iterative 
multilateration is then used to handle the localization of all the nodes in the system. 
The accuracy of ranging in AHLoS was very precise, but it comes with a substantial 
cost in CPU power, energy consumption, and hardware circuitry. The percentage of 
beacons necessary to perform collaborative multilateration is relatively high. For 
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example, for 90% of the network to localize in a network of 300 nodes, it is necessary 
for 45 of these nodes to be designated as beacons.  

Many of the other existing localization algorithms, such as ABC [8], TERRAIN 
[9], and the work proposed by Meguerdichian et al [10], consist of two phases: 1) 
Estimate Position, and 2) Iterative Refinement The iterative refinement phase consists 
of approximately 25 iterations of every node sending its location to all of its 
neighbors. This process must be repeated when changes to the topology occur. 
Although this technique seems to provide good results as far as localization accuracy 
is concerned, the energy utilization in the wake of every node continuously 
broadcasting its location can be overwhelming, particularly when energy is one of the 
most precious resources for nodes in sensornets. 

Our algorithms do not include an iterative refinement phase, making them more 
efficient as far as energy conservation is concerned. In [11], rectangular bounds were 
placed around possible positions of nodes by using linear programming. To the best 
of our knowledge, no one has done work on bounding the localization error by finding 
the intersection of disks or washers.  

4   The Disk Problem 

As described in the Introduction, our work relies on finding the smallest circle that 
encloses the intersection of an arbitrary number of input disks. The intersection of the 
disks is the region in which the object of interest lies. The center of the smallest 
enclosing circle is our estimate of its location; the radius is our bound on the error. By 
choosing the center as our estimate, it minimizes the error bound. In this section, we 

first present an 3( )O n -time algorithm for finding this smallest circle, analyze its 

computational complexity, and then describe how to improve it to 2( )O n . In [12], we 

prove the correctness of our algorithms. 
 

3( )O n  Algorithm for the Disk Problem 

Input: Centers and radii of n distinct disks: [ , , ],  1, ,i i i iD x y r i n= = K ,where 

1 2 nr r r≤ ≤ ≤L . 

Output: Center and radius of the smallest disk * [ *, *, *]D x y r=  that includes the 

intersection nS  of the n input disks. 

1. [ 2( )O n ] Find all pairwise intersection points of the associated circles of the 

input disks. (There can be at most 2 intersection points for each pair of circles, for a 
total of ( 1)n n −  intersection points.) 

2. [ 3( )O n ] For each intersection point, determine if this point lies in all of the 

input disks. Let {( , )}k ka b  be the set of these corner points, each of which lies in all 

of the input disks. (Although this step takes 3( )O n -time, we show that the number of 

corner points can be reduced to ( )O n , and they can be found in 2( )O n  time.) 



300 M. Terwilliger, C. Coullard, and A. Gupta 

3. [ 2( )O n ] For each corner point that lies on the smallest input circle 1C , check to 

see if its antipodal point on 1C  lies in all of the input disks. If no corner points lie on 

1C , then pick any antipodal pair of 1C  and check if both points lie in all of the input 

disks. If any antipodal pair lies in all of the input disks, return 1C  as the smallest 

enclosing circle. Otherwise, proceed to Step 4. 
4. [ ( )O n ] Return Smallest({( , )}k ka b , the smallest disk containing the ( )O n  

corner points {( , )}k ka b . Megiddo's linear programming algorithm finds the smallest 

disk containing a set of input points in linear time [13]. 

Next, we explain the steps of the algorithm, improve Step 2 to 2( )O n , and verify 

the 2( )O n  time complexity of the overall algorithm. 

STEP 1: Finding the Pairwise Intersection Points 
In [14], an (1)O -time complexity algorithm is provided for finding the intersection of 

two circles. Using this algorithm ( 1) / 2n n −  times, once for each pair of the n circles, 

we can find all pairwise intersection points in 2( )O n -time. 

STEP 2: Finding the Corner Points in 2( )O n  time 
In [12], we establish that the number of corner points can be reduced to at most 

2 2n − . Now, we will show how these corner points can be found in  2( )O n  time.  

For each input circle iC , order the intersection points with all circles :1jC j i≤ < , 

in a counter-clockwise (increasing-angle) direction. For each intersection point, label 
that point “+” if the segment from that point in the positive direction lies in both 
circles meeting at that point, and label it “ − ” otherwise. Traverse the circle in a 
positive-angle direction until a “+” is followed immediately by a “ − ”. Those two 
points, which we will call a + −  pair, are the only corner points of jS  on iC . This 

process is illustrated for three circles in Fig. 2(i). If there are two such + −  pairs, then 
we can conclude iC  contributes no corner points. Doing this for all input circles 

except for the smallest one, 1C , results in an 2( log )O n n  method for finding all the 

corner points, which is better than 3( )O n , at least. 

 
Fig. 2. (i) final plus/minus pair, (ii) processing plus/minus pairs 
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In this approach, we are finding all of the corner points of 2S , 3S , …, and nS , and 

we proved this is at most 2 2n −  total points. A final step to eliminate those not in 

nS , then can be done in 2( )O n  time. 

We can modify the above approach to avoid the ( log )O n n  work required to sort 

each circle’s intersection points, as follows. While processing circle iC , keep the 

current + −  pair. If the “+” point of the next intersection pair is greater than the 
current “+” point, then replace the current with the next. If the “ − ” point of the next 
intersection pair is less than the current “ − ” point, then replace the current with the 
next. If either the next “+” point is greater than the current “ − ” point or the next “ − ” 
point is less than the current “+” point, then we can conclude iC  contributes no corner 

points to iS . If there is an input circle :1jC j i≤ <  that does not intersect iC , then 

there are 2 cases: If jC  is contained in iC , we again conclude iC  contributes no 

corner points to iS . If iC and jC are disjoint, the intersection set nS  is empty. This 

approach requires only ( )O n  work for each input circle, leading to an 2( )O n  method 

for finding all the corner points. 
This process of using the plus/minus pairs to find the contributing corner points of 

iC  is illustrated in Fig. 2(ii). With two circles, there is one plus/minus pair indicating 

the two corner points of iC . When a third circle is added, the "-" point is replaced. 

The "+" point is replaced when the fourth circle is added, and the final plus/minus pair 
represents the two corner points contributed by iC . 

We leave as an open question whether this can be improved to ( log )O n n , or even 

( )O n . 

STEPS 3 and 4: Checking the Antipodal of each Corner Point 
If a diameter of 1D  is contained in nS  (see Fig. 3), then 1D  is the solution to the Disk 

problem. Otherwise, the solution is the smallest enclosing disk containing all of the 
corner points. This smallest disk can be obtained by Megiddo’s linear-time algorithm 
[13]. The checks are made in Steps 3 and 4 of the algorithm and their validity was 
established in [12]. 

Next we discuss the computational aspects of Steps 3 and 4. 
Given the center of a circle ( , )c cx y  and a point on that circle ( , )p px y , the 

antipodal point ( , )a ax y  can be found as ( )a c c px x x x= + −  and ( )a c c py y y y= + − . 

 

Fig. 3. Antipodal lies in nS , thus 1 *D D=  
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To check if an antipodal point ( , )a ax y  lies in all n input disks ( , , )i i i iC x y r= , you 

would simply examine if 2 2 2( ) ( )a i a i ix x y y r− + − ≤  is true for each 1,...,i n= . 

To test whether each of the ( )O n  corner points of 1C  has an antipodal point in 

each of the n input disks exhaustively would require 2( )O n  work. Perhaps we can do 

better. Can we improve this step to ( )O n ? It is true that there can be ( )O n  corner 

points on the smallest circle. Therefore, we would like to be able to check to see if the 
antipodal point of each is in the intersection, without having to explicitly check its 
inclusion in all the input disks. 

By using the Disk Method to find *D , the point ( *, *)x y  is used to estimate an 

object's location and the localization error is bounded by *r . 

5   The Washer Problem 

We now consider the Washer Problem. If we can place a minimum bound, 'd ε− , on 
the distance between an object and an anchor, we are sure that the object will lie 
outside of the disk centered at the anchor and having a radius of 'd ε− . This forms 
the basis of the Washer Problem detailed below: 

3( )O n  Algorithm for the Washer Problem 

Input: Centers and radii of n (inclusion) disks: [ , , ],  1, ,i i i iD x y r i n= = K , where 

1 2 nr r r≤ ≤ ≤L , and m (exclusion) disks: ' [ ' , ' , ' ]i i i iD x y r= , 1, ,i m= K , where 

1 2' ' 'mr r r≤ ≤ ≤L . All input disks are pair-wise distinct. 

Output: Center and radius of the smallest disk * [ *, *, *]D x y r=  that  

includes the set of points S I E= − , where ( )1 2 nI D D D= ∩ ∩ ∩L  and 

1 1 2 2( ' ' ) ( ' ' ) ( ' ' )m mE D C D C D C= − ∪ − ∪ ∪ −L . That is, S  is the set of points 

included in all the inclusion disks and excluded from the interiors of all the exclusion 
disks. In Fig. 4(i), the set S  is indicated by the shaded region. In the following 
algorithm, we assume that the number of inclusion disks and exclusion disks are 
approximately the same ( 2m n≤ ). Therefore, ( ) ( )O n O m= . 

  

Fig. 4. (i) the Washer problem, (ii) set S  broken into multiple pieces 
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1. [ 2( )O n ] Find all pairwise intersection points of the associated circles of the n  

inclusion disks and m  exclusion disks. There can be at most 2 intersection points for 
each pair of circles, for a total of ( )( 1) / 2m n m n+ + −  intersection points. 

2. [ 3( )O n ] For each intersection point, determine if this point lies in all of the 

inclusion disks and outside all of the exclusion disks. Let {( , )}k ka b  be the set of 

these corner points. 

3. [ 2( )O n ] For each of the ( )O n  corner points that lies on the smallest input circle 

1C , check to see if its antipodal point on 1C  lies in all of the inclusion disks and 

outside all of the exclusion disks. If any such antipodal passes this check, return 1C  

as the smallest enclosing circle. Otherwise, proceed to Step 4.  

4. [ 2( )O n ] Return Smallest({( , )}k ka b , the smallest disk containing all of the 

corner points {( , )}k ka b  using Meggido’s linear-time linear programming algorithm 

[13]. Note that corner points ≤ 2( )O n . 

As shown in Fig. 4(ii), it is possible that the inclusion disks and exclusion disks 
will break the set S into multiple disjoint pieces. Because of this, our proof of the 

( )O n  bound on the number of corner points does not carry over to the washer case. 

We leave open the questions of whether the number of corner points is less than 
2( )O n  and whether they can be found in less than 3( )O n  time. 

We can, however, still establish the validity of Step 4, which results in our 3( )O n  

algorithm above. The proof is similar to that of the Disk Method. As with the Disk 
Method, the smallest enclosing circle *D  is used in the localization problem by 
estimating an object's location at ( *, *)x y  with an error bound of *r . 

6   Performance Results 

A program was developed to implement our algorithms in order to simulate the 
localization process under varying conditions. We used the Delphi programming 
environment because its excellent graphics capabilities make it ideal for illustrating 
visually the washers used in our technique. 

The system assumes a node can estimate the distance between itself and each of its 
neighbors. Although more accurate ranging techniques will produce smaller 
localization errors, our approach is not dependent on any one ranging technique. The 
system also assumes that a small subset of the nodes, anchors, are aware of their 
location. Anchor nodes are either physically placed at known positions or they are 
equipped with a positioning technology such as GPS. Finally, for simplicity, the 
system assumes: (1) signals are omni directional and symmetric, (2) all nodes have 
the same transmission range, and (3) and the network is connected. 

In our simulation experiments, we randomly deployed 500 sensor nodes over a 
250,000 ft2 region (500 x 500 foot square). The anchor nodes were placed in a mesh 
configuration. When running trials based on radio transmission, the radio range was 



304 M. Terwilliger, C. Coullard, and A. Gupta 

assumed to be 100 feet. This range was based on experimental results using second-
generation MICA2 motes [15]. 

When calculating perceived distance between 2 nodes, a random normally 
distributed error [ , ]e ε ε∈ −  is generated and added to the actual distance d . The 

resulting perceived distance 'd d e= +  is thus within d ε± , where ε  is the 
maximum ranging error. Next, to ensure a correct bound, the disk radius of 'd ε+  is 
used in the algorithm. When we use the Washer method, the inner disk's radius is 
taken to be 'd ε− . 

By having each node find an upper bound on its multi-hop distance to every anchor 
node, we can localize the nodes using any or all of the anchors, not just the 
neighboring ones. To accomplish this, each anchor node broadcasts its position to 
initialize the localization process. All other nodes will then broadcast these anchor 
positions as well as their maximum distance estimate to each anchor. After several 
iterations of this process, each node will now have an upper bound on the distance to 
every anchor node in the network. These upper bounds are used as the circles in the 
Disk method. If a node is a neighbor to an anchor node, it uses the distance estimate 

'd ε− as the radius of the washer’s inner circle. If the node is not a neighbor to an 
anchor, the best we can do is to use the maximum transmission range (e.g., 100 feet) 
as the washer’s inner circle. 

When using the exclusion disks in addition to the inclusion disks, the size of the 
smallest enclosing circle is sometimes reduced (see Fig. 4(i)). A node uses the 
distances, 'd ε± , from multiple anchors to form the washers for localization. Each 
node chooses its closest anchors when selecting anchors to be used. In our 
experiments, we varied the number of anchors, or washers, used in the localization 
calculations from 2 to 10. A 500-node network was generated and a 6x6 mesh of 36 
anchors was used. An ε  of 10 feet was used for the maximum ranging error. 

Fig. 5(i) shows averaged results of localizing the 500-node network. The Washer 
method had a slightly smaller mean actual localization error than Disk. When using 
10 anchors, for example, the actual error of the Disk method was 5.29 feet and 
Washer was 4.60 feet. When looking at the bound on the localization error, recall that 
it is the radius of the smallest enclosing circle of the intersecting washers. The Washer 
method gave a slightly tighter bound on the error than Disk. The error bound for Disk 
was 14.07 feet and Washer was 10.96 feet. 

First, note that the average actual error is quite small on the order of / 2ε , or half 
of the maximum ranging error. This is a bit surprising since the actual error is in 2 
dimensions, whereas the ranging error is a 1-dimensional measure. Second, our error 
bound is also generally quite small, being approximately twice the actual error. 

In Fig. 5(ii), we show how increasing the density of the anchors affects the 
localization error. Keeping constant the 500x500 feet region and the 100-foot radio 
range, we ran experiments using a 500-node network and varied the mesh sizes of 
anchors to be 16, 36, 64, and 100. As one might expect, the networks with more 
anchors per square foot produced lower errors. Having more anchors as neighbors 
provided smaller inclusion disks compared to the disks resulting from multi-hop 
paths. With 10 anchors contributing, the mean actual error for 16, 36, 64, and 100  
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Fig. 5. (i) Disk versus Washer, (ii) Varying the number of anchors 

anchors were 7.07, 5.29, 4.08, and 3.63 feet, respectively. The mean error bounds for 
these same networks were 20.19, 14.07, 11.33, and 10.58 feet. 

In most cases, increasing the number of anchors, or washers, used for localization 
improved the results. This increasing of anchors used eventually plateaus. As you can 
see from Fig. 5(i and ii), this plateau appears to occur at about 4 or 5 anchors. As 
more anchors are used, however, this increases the number of computations a node 
must perform to localize. This can have an effect on energy utilization of a node, 
which in turn, affects the lifetime of a wireless sensor network. Therefore, even 

though we showed the efficiency for the Disk and Washer algorithms to be 2( )O n  

and 3( )O n , respectively, it appears that using values of n  larger than 4 or 5 will 

require more work but add no significant degree of accuracy. 
As mentioned previously, our technique does not rely on any specific ranging 

technique. In Fig. 6(i), we show how the accuracy of the ranging method affects the 
localization error. We are using disks with radius 'd ε+  based on distance estimates 
using values of 1, 10, and 30 feet for the maximum ranging error ε . In these 
experiments when 10 inclusion disks were used, a maximum ranging error ε  of 1, 10, 
and 30 feet produced mean actual errors of 1.05, 5.29, and 12.66 feet respectively. 
The error bounds were 2.18, 14.07, and 31.72 feet. As one would expect, the smaller 
values of ε  produce better localization accuracy. When ε  of 30 feet was used, the 
error bound was approximately ε  and the actual errors were less than / 2ε . 

In all of the previous examples, we deployed the anchors in a mesh configuration. 
We decided to consider an anchor configuration that places all of the anchors along 
the perimeter of the region. The perimeter configuration might make sense when 
placing anchors in a region was difficult (military, volcano, heavy foliage, etc.). We 
used a 500-node network of 16 anchors and compared the accuracy of a 4x4 mesh of  
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Fig. 6. (i) Varying the ranging error, (ii) Varying the number of anchors 

anchors versus a perimeter arrangement with 5 anchors along each side of the region. 
In the perimeter scenario, over half of the nodes did not have any neighbors that were 
anchors. 

As illustrated in Fig. 6(ii), when only a few washers were used in the computation, 
the perimeter configuration produced much larger errors than the mesh. As more 
washers contributed to the localization, however, the two configurations produced 
comparable results. With 10 anchors used, for example, the mean actual error was 
7.76 feet for mesh and 9.31 feet for perimeter. The mean error bounds for mesh and 
perimeter were 21.87 and 23.97 feet, respectively. It is worth noting that when more 
anchors are used in the perimeter configuration, it tended to give larger errors. This 
was because a node would choose all of its neighboring anchors from the same 
boundary. The resulting smallest enclosing circle would thus be along that border 
instead of towards the interior of the region where the node actually lies. When using 
perimeter, one could address this by choosing anchors from different boundaries.  

7   Conclusions and Future Work 

We have shown that we can bound the error on the localization of a node by finding the 
smallest enclosing circle that covers the intersection of multiple disks. The disks are 
constructed by taking the maximum distances 'd ε+  from anchor nodes as the disk 
radius and use the anchor's position as the disk center. We use the center of the smallest 
enclosing circle as the location estimate of the node and the radius of the circle as the 

error bound. We provided a novel 2( )O n  algorithm for finding this location estimate 

and error bound, where n  is the number of anchors used by each node. We believe that 
Step 2 of our Disk algorithm in which we compute the corner points can be improved 
and we leave this problem as part of our future work.  
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We extended our Disk technique to what we called the Washer method. Based on 
the distance to anchors, the washers are constructed using the inclusion disks as the 
exterior circle and exclusion disks with radius 'd ε−  as the inner circle. We provided 

an 3( )O n  algorithm for solving the Washer problem and are hopeful that we can 

improve on this efficiency in the future. 
Providing a location estimate for a device is more meaningful if you can say 

something about the confidence that you have in the estimate. In our technique, we 
are saying that there must be a bound on the ranging estimate between two 
neighboring devices. For example, we say that there exists some maximum error ε  in 
which distance estimates between the two devices will always fall into the range 
d ε± , where d  is the actual distance between the devices. In some conditions, the 
ranging estimate may be very accurate most of the time, but occasionally produces a 
large error. This type of environment would yield a large value of ε  and, as illustrated 
in Fig. 6(i), a bigger localization error. To address this, we would like to extend our 
work so that confidence intervals can be used in conjunction with the location 
estimates and error bounds. 

It is important to note that our technique does not depend on the number of nodes 
in the network or the percentage of nodes that need to be anchors. Given a region and 
a set of anchor nodes in that region, our system will produce the same accuracy and 
amount of work per device for locating 10,000 devices as it does for locating one 
device. The important factors in the localization accuracy, as reported in the previous 
section, are anchor density, maximum ranging error, number of anchors used in the 
computations, and anchor configuration. 
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Abstract. We analyze the bottlenecks in the parallel FFT algorithm
and describe optimizations carried out for the algorithm on the Blue
Gene/L Supercomputer. We identified three avenues for improving the
performance of the algorithm – single-node FFT performance, Alltoall col-
lective performance and overlap of computation and communication. Per-
formance at all these levels has been optimized using the double-hummer
intrinsics of the Blue Gene/L CPU, careful ordering and synchronization
of messages in Alltoall communications and suitable interleaving of mes-
sage exchangeswith computations.Using these optimizations, we obtained
20% performance improvement over the baseline version on the 64 racks
Blue Gene/L system.Wegive a brief overview of theAlltoall optimizations,
describe our computation-communication overlap strategy and present re-
sults for strong scaling and weak scaling of parallel FFT on Blue Gene/L.
We also discuss the fundamental limits to scaling of the parallel transpose
algorithm for computing FFT.

1 Introduction

The Discrete Fourier Transform (DFT) plays an important role in many sci-
entific and technical applications, including time-series and waveform analysis,
solutions to linear partial differential equations, convolution, digital signal pro-
cessing, and image filtering [13, 15, 16]. Cooley and Tukey designed an algorithm
[4] to compute the DFT of an n point series in O(n log n) operations, signifi-
cantly improving over previously known methods. Many algorithms have since
been proposed to compute DFTs with similar efficiency. This class of efficient
algorithms is generally referred to as fast Fourier transform (FFT) algorithms.
One of the most widely used FFT implementations in both academia and the
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industry is FFTW [7]. It provides excellent performance on a variety of machines
– even competitive with or faster than equivalent libraries supplied by vendors.

Many parallel algorithms have been proposed and designed for computation
of FFTs on parallel computers (see [1, 6, 17, 20] and references therein). There
are two basic approaches to parallelizing FFT algorithms based on the under-
lying interconnection network topology – the binary-exchange algorithms and
the transpose based algorithms. The former is suited for systems where the bi-
section bandwidth of the interconnect scales linearly with the number of nodes,
whereas, the latter is more suitable for systems where the bisection bandwidth
scales sub-linearly. For more details the reader is referred to [12].

Implementation of the transpose algorithm [12] carries out two basic opera-
tions - parallel computation of FFT on individual nodes with (almost) perfectly
balanced load and perfectly balanced Alltoall communications where every pair
of nodes exchanges the same amount of data. On a system where bisection
bandwidth does not scale linearly with the number of processors, the Alltoall
communication ends up taking most of the time. Moreover, as the number of
processors is increased (while keeping the same problem size), the amount of
data exchanged between every pair of nodes decreases quadratically. As a result,
the header overheads start dominating in Alltoall communications. This leads
to an absolute limit for strong as well as weak scaling of this algorithm.

There were three avenues for performance optimization of the transpose-based
parallel FFT algorithm single node performance, performance of Alltoall com-
munication and overlap of communication and communication. The single node
performance was optimized using a cache efficient decomposition of FFT (using
the Cooley-Tukey algorithm), Blue Gene/L specific dual floating point intrin-
sics and several hints to the compiler in the C code. The Alltoall performance
was optimized by organizing the communication into several short phases such
that each node exchanges data with exactly four other nodes in each phase. The
phases were then bundled into groups which were separated using an efficient
hardware-based barrier. Curiously, inserting a barrier between groups of phases
improves performance by as much as 35% on the 64 racks Blue Gene/L system.
This is primarily due to congestion avoidance. The computation and communi-
cation was overlapped by carefully dividing the data into smaller subsets. This
results in hiding (to a large extent) the latency of the faster of the two oper-
ations behind the other. With these optimizations, we obtained a peak FFT
performance of 2875 Gflops – which is the best reported FFT performance on
any system built so far.

The rest of this paper is organized as follows. We discuss fast Fourier trans-
forms and its parallel algorithms in Section 2. This is followed, in Section 3 by an
analysis of the bottlenecks for the transpose based parallel FFT algorithms. The
Blue Gene/L specific optimizations for single CPU performance, Alltoall com-
munication and for overlap of computation and communication are described in
Section 4. We present results for strong scaling and weak scaling of optimized
parallel FFT on Blue Gene/L in Section 5. Finally, we conclude in Section 6.
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2 Fast Fourier Transforms

The Discrete Fourier Transform (DFT) for a sequence of n complex numbers
x0, ..., xn−1 is another sequence of n complex numbers yo, ..., yn−1, where yk =∑n−1

j=0 xjω
jk ; k = 0, .., n − 1 and ω is the primitive nth root of unity in the

complex plane, i.e., ω = e2π
√−1/n.

Cooley and Tukey [4] presented an efficient algorithm that recursively breaks
down the computations of a DFT into computation of smaller DFTs. More
formally, let n be a composite and n1, n2 be its factors such that n = n1n2.
Rewriting the indices in the above equation as k = k1 · n2 + k2 where 0 ≤ k1 <
n1, 0 ≤ k2 < n2 and j = j2 · n1 + j1 where 0 ≤ j1 < n1, 0 < j2 ≤ n2, we get

yk = y(n2k1+k2) =
n1−1∑
j1=0

n2−1∑
j2=0

x(n1j2+j1) · ω(n1j2+j1).(n2k1+k2)
n1n2

=
n1−1∑
j1=0

⎡⎣⎛⎝n2−1∑
j2=0

x(n1j2+j1) · ωj2k2
n2

⎞⎠ · ωj1k2
n

⎤⎦ · ωj1k1
n1

(1)

Therefore, the DFT of size n can now be evaluated by first computing n1 DFTs
of size n2, multiplying by twiddle factors (complex roots of unity) and then
computing n2 DFTs of size n1. Many algorithms [2, 3, 9, 18, 19] have since been
proposed, that achieve similar efficiency. This class of algorithms are referred to
as fast Fourier transform (FFT) algorithms.

The transpose based parallel FFT algorithms are designed for systems with
interconnects that do not scale linearly with the number of nodes. These algo-
rithms consider the input as a logical multi-dimensional matrix and break down
the DFT computations using Cooley-Tukey algorithm into smaller DFT compu-
tations operating along each of the dimensions of the matrix. These algorithms
then iterate over the different dimensions of the matrix computing DFTs along
those dimensions. In order to ensure that the data required for the DFT com-
putations in the current iteration lie on the same processor, matrix-transpose
operations are required along two-dimensional planes of the matrix. Hence, the
name transpose FFT algorithms. The simplest form of the transpose FFT algo-
rithm is the two-dimensional FFT algorithm. This is described in Section 2.1.
The FFTE algorithm is a variant of the transpose algorithm (c.f. Section 2.2).

2.1 Two-Dimensional Transpose Algorithm

The 2D-transpose FFT algorithm considers the input vector as a logical two-
dimensional matrix and breaks down the DFT into sub-steps based on the
Cooley-Tukey algorithm. The main idea behind the algorithm is to logically
express the vector, x, of size N , whose DFT is required to be computed, as a
two-dimensional matrix of dimension n1 × n2, where n = n1 · n2. The Cooley-
Tukey algorithm (see equation 1) can now be used to recursively compute the
DFT of x.
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Algorithm 1. Two-dimensional Transpose FFT Algorithm
1. Distribute columns on each processor - Global Transpose (Alltoall)
2. Compute

√
n/p DFTs of size

√
n along the matrix columns

3. Distribute rows on each processor - Global Transpose (Alltoall)
4. Multiply by twiddle factors and Rearrange
5. Compute

√
n/p DFTs of size

√
n along the matrix rows

6. Rearrange the output data elements - Global Transpose (Alltoall)

A high level description of the 2D-Transpose FFT algorithm is presented in
Algorithm 1. For simplicity of exposition, we assume that n is an even power of
2 and n1 = n2 =

√
n. The data can therefore be considered to form a

√
n×√n

matrix. The transpose algorithm stripes the matrix into
√

n/p columns on each
processor. Each processor computes

√
n/p DFTs of size

√
n (along each column

of the matrix). All processors then performs the twiddle factor multiplications
on their local data. The next phase is to perform the DFTs along each row of
the matrix. However, since the rows of the matrix are distributed amongst the
processors, the algorithm first performs a matrix-transpose in order to transform
the rows into columns that reside on the same processor. Each processor then
performs the

√
n/p DFTs of size

√
n (along the new columns).

Typically the input vector is initially distributed over the processors in a way
such that n/p contiguous elements of the vector lie on each processor – this can
also logically be viewed as a two-dimensional

√
n× √n row-major matrix with√

n/p rows distributed on each processor. Therefore an additional matrix trans-
pose is required in order to have the columns distributed amongst the processors
as required by the transpose algorithm. Similarly, another transpose is required
at the end in order to rearrange the output vector so that the contiguous ele-
ments reside on the same processor. The matrix transpose can be performed by
using the Alltoall collective in conjunction with local transpose of blocks received
from each processor (or sent to each processor).

2.2 FFTE Parallel Algorithm

The FFTE algorithm is a variant of the Transpose algorithm which is more suited
for vector processors. In this algorithm, the input vector is logically considered
as a two-dimensional matrix. For simplicity of exposition, we assume the matrix
dimensions to be n2/3 × n1/3. There are three Alltoall phases as before. In the
first computation phase, each processor computes n2/3/p DFTs, each of size n1/3.
In the second computation phase, there is a small variation. Each processor,
instead of computing n1/3/p DFTs of size n2/3 each, breaks down each of these
computations in a manner similar to the two-dimensional transpose algorithm
itself. Therefore It considers each vector of size n2/3 as a matrix of size n1/3×n1/3

and applies the Transpose algorithm again. Note however, that each of these
n1/3 × n1/3 matrices lie on a single processor; hence the matrix transpose is a
local transpose operation – not requiring any communication between the nodes.
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3 Bottleneck Analysis

As described in the previous Section, parallel FFT algorithms perform FFT com-
putations in five phases, with three phases of global transpose (Alltoall commu-
nication) interleaved with two phases of parallel single-node FFTs. If there is
no computation-communication overlap the time taken for performing the FFT
can be broken down into two parts – the computation time (tcomp) and the
communication time (tcomm): tfft = tcomp + tcomm.

3.1 Computation Time

In each computation phase, a node performs one dimensional FFT computations
on a set of vectors present in the local memory. The number of floating point op-
erations needed to compute FFT of a vector of size n is 5n log(n). The time taken
for this computation is 5c · n logn, where 1/c is the floating point performance
(FLOPS) of the single-node FFT implementation on the architecture.

Consider the 2D-transpose FFT algorithm. For a vector of size n distributed
over p processors, in each of the two computation phases, each node computes√

n/p DFTs each of size
√

n. Therefore the parallel computation time is

tcomp = 5 · 2
√

n
p · c

√
n log

√
n = 5 c · n

p · log n

The computation time is inversely proportional to the number of nodes.

3.2 Communication Time

In this subsection we discuss the communication performance of the parallel
2-dimensional transpose-FFT algorithm, implemented on a system with a d-
dimensional torus network. We first discuss strong and weak scaling limits when
the communication and header overheads are ignored and then we modify the
analysis take the overheads into account.

Performance without header overheads. Consider the FFT computation of
a vector of size n distributed over p processors. Let b be the size (in bytes) of each
element of the vector and B be the bisection bandwidth of the underlying inter-
connection network in bytes-per-second. All the data (ignoring self-transfers) is
exchanged in each phase of the Alltoall communication. Note that one-fourth of
the data would cross any bisection in one direction. Therefore, the communica-
tion time for performing the Alltoall collective is at least ta2a = nb/(4B).

For a symmetric d-dimensional torus network with link bandwidth l and p1/d

processors in each dimension, the bisection bandwidth is B = 2P (d−1)/dl. There-
fore, the communication time for performing three Alltoall collective on such a
system is tcomm = 3nb/(8 · l · p(d−1)/d). For the more generic case, when the di-
mensions of the torus are not equal it is tcomm = 3nb/(8 · l · (p/pm)) where pm is
the size of the longest dimension. Thus, the performance of parallel FFT based
on a two-dimensional transpose algorithm is

FLOPS =
5p

5c + 3
8

b
l

p1/d

log(n)

(2)
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Strong Scaling. For determining strong scaling, the problem size (n) is kept
fixed and the number of processors (p) is varied. For small values of p (when
l/b
1/c >> 3

40
p1/d

log(n) ) the scaling is linear as FLOPS ≈ p/c. Note that the ratio
(l/b)/(1/c), called “flops-to-bandwidth ratio”, represents the ratio of time taken
to transfer one floating-point element to the time taken to perform one floating-
point operation. As p is increased, the second term in denominator of equation 2

begins to dominate the first term (when p >>
[
40/3

(
l/b
1/c

)
log(n)

]d

). In this
case the FFT performance is

FLOPS ≈ 40
3

l

b
log(n)p(d−1)/d

In the transpose algorithm, the Alltoall size (data exchanged between a pair
of nodes) is nb/p2. Therefore, the maximum value of p is equal to

√
n which

gives a maximum performance of

FLOPS ≈ 40
3

l

b
n(d−1)/2d log(n)

Weak Scaling. In this case, the problem size per node is kept constant as the
number of processors is varied. Thus n = pM/b where M is per-node memory
allocated to the problem. Considering p2 ≤ n, the maximum value p can take
is M/b. Therefore, the maximum achievable performance under weak scaling is

FLOPS =
5M

5bc + 3
16

b(2d−1)/d

l
M1/d

log(M/b)

Including header overheads. Considering header overheads, the amount of
data exchanged between every pair of nodes is

nb

p2 +
⌈

nb

p2Dmax

⌉
h

where, h is the overhead per packet in bytes (including header, trailer, acknowl-
edgments, etc.), and Dmax is the largest payload size (in bytes) that can be sent
in a packet. In case nb/p2 >> Dmax, the amount of data exchanged between any
pair of nodes can be approximated as nb

p2 (1+ h
Dmax

). In this case the performance
of the FFT algorithm will be same as before with b replaced by b(1 + h

Dmax
).

In the case when nb
p2 ≤ Dmax, the amount of data exchanged between all the

node pairs is nb
p2 + h. Therefore, the total communication time is

tcomm =
3

4B
· p2

[
nb

p2 + h

]
=

3
8

(nb + p2h)
p(d−1)/dl

.

The FFT performance in this case is

FLOPS =
5p

5c + 3
8 ( b

l + hp2

nl ) p1/d

log(n)

(3)
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Strong Scaling. Recall that for the transpose algorithm, p2 ≤ n. So, if the
header overhead, h, is significantly larger than the size of a vector element, b, and
l/h
1/c =<< 3

40
p1/d

log (n) , then the numerator scales as O(p) whereas the denominator
scales as O(p2+1/d). Therefore, in this range, increasing the number of processors
will degrade performance.

Weak Scaling. In this case, n = Mp/b and also p2 ≤ n. Therefore, under
the conditions stated above, the numerator scales as O(p) while the denomina-
tor scales as O(p1+1/d). Even in this case, there is an absolute limit to which
performance may scale.

The absolute performance limits can be estimated from equation 3.

4 Optimizations to Parallel FFT

There are three avenues for optimization of the FFT algorithm – (i) decrease
the computation time, (ii) decrease the communication time, i.e. improve All-
toall performance and (iii) overlap the computation with communication. We
describe how we optimized the parallel FFT algorithm on the Blue Gene/L Su-
percomputer, using all the three optimizations. Since Blue Gene/L is based on a
3-dimensional torus network, the bottleneck for FFT switches from computation
to communication as the number of nodes is increased. Therefore, all the opti-
mizations are required for good performance over the full range of Blue Gene/L
system sizes. We start with a brief overview of the Blue Gene/L Supercomputer
followed by a discussion on our optimizations in the following subsections. The
best FFT performance know till date is using the HPC Challenge benchmark
[5]. We use this benchmark to study the the effect of our optimizations.

4.1 Blue Gene/L Overview

The Blue Gene/L is a massively parallel supercomputer that scales up to 104K
dual-processor nodes [8]. Each node has two embedded 700 MHz PPC440 proces-
sor cores. The Blue Gene/L uses five interconnect networks, the most significant
of which is the three-dimensional torus that has the highest aggregate bandwidth
and handles the bulk of all communication. Each node supports six independent
1.4 Gbps bidirectional nearest neighbor links, with an aggregate bandwidth of
2.1 GB/s. The torus network uses both dynamic (adaptive) and determinis-
tic routing with virtual buffering and cut-through capability. The messaging is
based on variable size packets, each n × 32 bytes, where n = 1 to 8 “chunks”.
The first eight bytes of each packet contain link-level information, routing in-
formation and a byte-wide cyclic redundancy check (CRC) that detects header
data corruption during transmission. In addition, a 32-bit trailer is appended to
each packet that includes a 24-bit CRC.

4.2 Single-Node Performance

In order to utilize the SIMD load-store and FMA units, we replaced the C
code with Blue Gene/L intrinsics, which have a one-to-one correspondence with
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assembly instructions. These instructions are not identical to assembly instruc-
tions because the individual instructions are still scheduled by, and the registers
allocated/managed by, the compiler. This is advantageous in terms of produc-
tivity and, typically, the compiler does a good job with register allocation and
scheduling. However, there are disadvantages to this arrangement that one can
address in a number of different ways.

Because the compiler handles the register allocation, there can be register
spills. While the compiler spills and restores in a very efficient manner, these
spills do take up execution slots that could be used for other purposes and they
can degrade performance. This can be addressed in two ways. First, it is our
experience that reducing the number of pseudo registers asked of the compiler,
the spill rate will go down. Second, we could replace the intrinsics with assembly
instructions and handle the register allocation ourselves.

Further, the compiler appears to schedule instructions as if the data of interest
was resident in the L1 data cache. During FFT operations this is not always the
case. Unfortunately, the appropriateness of this approximation made to reality
(by the compiler) becomes apparent when the remedies are considered. While
it is possible to schedule the instructions in assembler (or by turning off the
scheduler and using intrinsics) so as to allow a longer load to use latency (12
cycles for covering L2 latency instead of 5 for covering L1 latency), there are
resource limitations that force this strategy to yield limited returns. The cores
of the Blue Gene/L system are limited to handling 4 outstanding (non-L1) loads
in 3 different cache lines. By arranging the strides of the load so consecutive loads
address different cache lines (and loading the following quad-words in the shadow
of the L1 load), it is possible to improve the covered latency by approximately
50%, but further improvements appear difficult. It should be pointed out that
the L2 prefetch unit makes this limitation considerably less problematic than it
would be on a system not so equipped.

4.3 Alltoall Collective Algorithm

As shown in Section 3, the performance of the Alltoall communication collective
is bandwidth bound on systems such as Blue Gene/L, where the bisection band-
width does not scale linearly with the number of nodes. Therefore congestion
build-up can have adverse effects on the performance of the Alltoall perfor-
mance. In this Section, we discuss an algorithm for the Alltoall collective, called
barrier-synchronization algorithm that we proposed [11] for the Alltoall collec-
tive, specially designed for the torus-interconnect. This Alltoall algorithm gives
significant improvements over the Blue Gene/L product MPI Alltoall – up to
35% on 64K systems. We briefly summarize the approach here for completeness.

The main idea behind the barrier-synchronization algorithm is to periodically
clear up any congestion that may have built up in the communication network by
draining the network completely. This eliminates long term effects of congestion
build-ups. In order to do this, we divide the Alltoall communication into multiple
phases and require these phases to exhibit certain properties:
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Fig. 1. Communication patterns (for sender A) in different phases on a 2D 8x8 torus

Load-balancing of links: We ensure that in each phase, the load on all the
links of the 3D-torus interconnect is the same. This is to avoid local hot-spots
as far as possible.

Load-balancing of phases: We ensure that in each phase, the total traffic load
(in terms of byte-hops) is the same.

Synchronization: We group these phases and then separate them with the fast
Blue Gene/L hardware barrier. This has two advantages. First, it ensures that
the network is completely drained after each phase – so that congestion effects are
not carried over across the grouped phases. Second, it prevents network buffers
from becoming full by limiting the total number of packets entering the network.
The number of phases to be grouped together is determined by the amount of
data to be exchanged with each node and the network buffers available on the
Blue Gene/L.

In order to ensure good load-balancing of links, it is very important to decide
which other nodes a given node will communicate with in each iteration. Consider
a 3D-torus of dimension px×py×pz. In each phase, a node (x, y, z) sends data to
exactly four other nodes given by1 (x+i, y+j, z+k), (x−i, y−j, z−k), (x+px/2−
i, y+py/2−j, z+pz/2−k) and (x−px/2+i, y−py/2+j, z−pz/2+k). The values of
i, j, k are chosen in phases such that the full space of nodes is spanned. It can be
verified that except in the cases (i, j, k) ∈ {(0, 0, 0), (±Px/2,±Py/2,±Pz/2)}: (a)
the four nodes are always distinct (b) load across bottleneck links is perfectly bal-
anced and (c) all phases have the same load (byte-hops). The phases correspond-
ing to (i, j, k) ∈ {(0, 0, 0), (±Px/2,±Py/2,±Pz/2)} require special handling but
are few and do not take significant time. Figure 1 shows the traffic pattern for
node A in a 2 dimensional 8x8 torus network. One may verify that with this
scheme, the links in each dimension as well as the phases are perfectly balanced.

1 Addition and subtraction along dimensions x, y, z are modulo px, py, pz respectively.
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Algorithm 2. Block-vector Transpose FFT Algorithm Pseudo-code
1. Distribute columns on each processor - Global Transpose (Alltoall)
2. /* Compute DFTs of matrix columns and overlap with Alltoall */

a. Compute DFTs of 1st block of column vectors, i.e., 1st √
n/pm columns

b. For j = 1 to m − 1 do
i. Initiate DFTs of (j + 1)th block of column vectors on 2nd core
ii. Distribute jth block of column vectors using Alltoall

c. Distribute mth block of column vectors using Alltoall
3. Multiply by twiddle factors and Rearrange
4. /* Compute column DFTs and overlap with Alltoall */ Similar to Step 2
5. Rearrange the output data elements - Global Transpose (Alltoall)

We implemented our Alltoall algorithm directly using the underlying lower
layer communication primitives.

4.4 Computation Communication Overlap

The partitioning of parallel FFT algorithms into computation and communica-
tion phases makes it an attractive option to overlap computation and commu-
nication. This requires careful partitioning of data into smaller data sets which
are independent of each other.

For this optimization, we replace the FFTE algorithm with the simpler two-
dimensional Transpose FFT algorithm. It is easier to conceptualize and imple-
ment the computation-communication overlap for this simpler case. Although
this is not the most efficient implementation for FFT, it allows us to achieve the
overlap more easily.

Note that the
√

n/p DFT computations involved in step 2 of the transpose
FFT algorithm (Algorithm 1) along each column are independent of each other.
Similarly the DFT computations in step 5 along each row are also independent of
each other. Therefore, it is possible to overlap the computations of phases 2 and 5
with the communication of phases 3 and 6 respectively. The optimized algorithm
incorporating computation-communication overlap is illustrated in Algorithm 2.
In order to achieve the overlap, the

√
n/p vectors on each processor in each phase

are divided into m blocks of b =
√

n/pm vectors each. The Alltoall communi-
cation of phase 3 and 6 are also split into m Alltoall communication calls each.
The computation of the (j + 1)th block of vectors can now be overlapped with
the Alltoall communication of the jth block of vectors (already computed in the
previous iteration).

When the computation and communication are divided into m sub-phases,
the smaller of the two costs (computation and communication) gets hidden be-
hind the other, except for one iteration of pre-processing/post-processing that is
not overlapped. Therefore, the total time taken by the FFT algorithm reduces
to max{(1/m)tcomp + tcomm, tcomp + (1/m)tcomm}, where the first term corre-
sponds to the case where communication is the bottleneck and the second term
corresponds to the case where computation is the bottleneck.
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Some of these overlap optimizations have been previously discussed in [10] –
however there, the authors proposed the use of asynchronous send and receive
operations for performing the communication. This rules out the use of optimized
Alltoall collectives for which many optimization techniques can be applied (as
described in the previous section) therefore obtaining much better performance
for the communication phase in comparison to asynchronous send/receives. We
propose techniques for overlapping computation and communication that still
use the Alltoall collective which can be implemented on systems supporting
multiple threads – with one thread being dedicated to computation and the
other to Alltoall communication. This technique lends itself naturally to the
Blue Gene/L system that has dual-core nodes whereby one of the cores can be
dedicated to computation and the other to Alltoall communication.

On Blue Gene/L, the dual-core nodes are used in the overlapping of compu-
tation and communication. The main thread executes on core 0 (master-core).
It allocates the work of DFT computations to core 1 in Step 2.b.i. (and Step
4.b.i.) of the algorithm above. After initiating the DFT computations, it pro-
ceeds to perform the Alltoall communication for the already computed DFTs
(Steps 2.b.ii. and 4.b.ii.). Once it completes the communication, it waits on core
1 to complete the computations, so that it can proceed to the next iteration. As
mentioned in Section 4.1, the caches of the dual-core nodes on Blue Gene/L are
not coherent. Therefore special care needs to be taken to flush/invalidate the
caches. We flush the cache on core 0 before initiating work on core 1 and we
flush the cache on core 1 after it completes the computations. This ensures that
there is no stale data in either of the caches.

5 Performance Results

In this Section, we discuss the performance of parallel FFT obtained with our
optimizations. We present weak scaling and strong scaling results.

Weak Scaling. Figure 2 compares the performance of the FFT algorithm with
various optimizations. The base algorithm refers to the HPC Challenge FFT al-
gorithm in which the single node FFT code is optimized to use the double hum-
mer features of Blue Gene/L. The A2A algorithm refers to the base algorithm
with the Alltoall collective modified to use the optimizations mentioned in Sec-
tion 4.3. Finally, the A2A+Ovlp algorithm refers to the base algorithm modified
to include both – the Alltoall optimizations and the computation-communication
overlap optimizations. The size of the vectors in these runs are determined such
that the vector size per-node ranges between 2M to 4M elements per node and
the total vector size is a perfect square.

It can be seen that the performance of A2A algorithm is a little worse than the
base algorithm but improves with increasing number of nodes. This is expected
because the proposed Alltoall algorithm introduces barrier overheads to clear up
the network. These overheads degrade performance for small sizes. The Alltoall
optimizations are intended to regularly clear up congestion hot-spots, which im-
pact performance much more for large number of nodes. The performance of the
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Fig. 2. Comparison of base FFT algorithm with algorithm incorporating optimized All-
toall (A2A), and both Alltoall and computation-communication overlap (A2A+Ovlp)

optimized algorithm with both optimizations improves over the base algorithm
by as much as 20% for large systems.

On the 64K node Blue Gene/L system, the FFT time is dominated by the
Alltoall communication time. For a vector of size 274877906944 of double pre-
cision complex numbers (b = 16), the base algorithm performs the FFT in 22.6
seconds at a rate of 2311 Gflops. The time spent in the computation and com-
munication phases is 5.5 seconds and 17.1 seconds respectively. More than 75%
of the time is spent in performing global Alltoall collectives. Our calculations
indicate that this Alltoall performance is 63% of the theoretically achievable
peak performance (after factoring in header and other overheads). Our Alltoall
algorithm takes 4.1 seconds for the same communication – about 85% of the the-
oretically achievable peak performance. This gives a performance of 2875 Gflops
for the FFT algorithm using the Alltoall optimizations alone, which is a 20%
improvement over the base algorithm. The performance does not improve using
computation-communication overlap optimizations along with the Alltoall op-
timizations (2779 Gflops). The reason is that the overlap techniques result in
dividing the Alltoall into multiple phases as well - resulting in an Alltoall size
of 256 bytes in each subphase. Therefore nb/p2 < Dmax, resulting in overheads
related to header, trailer and acknowledgments becoming relatively costly (See
Section 3.2). Hence, the overlapping techniques are useful only if the Alltoall
size is sufficiently large.

Strong Scaling. In Figure 3, we compare the FFT performance for different
vector sizes ranging from 1G to 16G elements over different number of nodes. Per-
formance scales well with increasing number of nodes. However, after scaling to
a certain number of nodes, the performance starts to drop. This can be observed
for the case of 1 GigaElements vector size, where the performance drops on 64K
nodes. This is because the Alltoall size drops to nb/p2 = 230 · 16/163482 = 64
bytes for this case. This is much smaller than the maximum data transferable
per packet which is Dmax = 240 bytes. Therefore, as discussed in Section 3.2,
the header/trailer and acknowledgment overheads become large compared to the
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Fig. 3. Performance of optimized FFT algorithm for different vector sizes

data being transferred, resulting in inefficient use of the communication network.
Hence, performance scales well as long as the Alltoall size nb/p2 > Dmax.

6 Conclusions

In this paper, we analyzed the performance of two-dimensional transpose-based
FFT algorithm on a massively parallel system with a d-dimensional torus net-
work. On the Blue Gene/L Supercomputer, which is based on a 3-dimensional
torus network, we identified the performance bottlenecks and optimized the per-
formance by (i) improving the performance of the single-node FFT algorithm; (ii)
improving the Alltoall algorithm and (iii) overlapping computation and commu-
nication. These optimization resulted in significant performance improvement.

Techniques discussed in this paper are also applicable to parallel transpose-
based algorithms for computing 2D and 3D-FFT. These algorithms also use
single-node FFT computations and Alltoall communication. In these cases, the
Alltoall is generally restricted to smaller communicators (a subset of the nodes).
On torus interconnects, these communicators are typically mapped to planes
of the torus. Therefore the Alltoall optimizations can still be applied in two-
dimensions. Finally, the computation-communication overlap techniques are also
applicable as these algorithms also perform computations and matrix transposi-
tions in separate phases.
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Abstract. As cluster sizes head into tens of thousands, current job
launch mechanisms do not scale as they are limited by resource constraints
as well as performance bottlenecks. The job launch process includes two
phases – spawning of processes on processors and information exchange be-
tween processes for job initialization. Implementations of various program-
ming models follow distinct protocols for the information exchange phase.
We present the design of a scalable, extensible and high-performance job
launch architecture for very large scale parallel computing. We present im-
plementations of this architecture which achieve a speedup of more than
700% in launching a simple Hello World MPI application on 10, 240 pro-
cessor cores and also scale to more than 3 times the number of processor
cores compared to prior solutions.

1 Introduction

Clusters continue to increase rapidly in size, fueled by the ever-increasing com-
puting demands of applications. As an example of this trend we examine the
Top500 list [1], a biannual list of the top 500 supercomputers in the World. In
2000 the largest cluster, ASCI White, had 8, 192 cores. By comparison, last year
the top-ranked BlueGene/L had over 200, 000 cores. Even as clusters increase
in node counts, an emerging trend is increase in number of processing cores per
node. For instance, the Sandia Thunderbird [2] cluster introduced in 2006 has
4K nodes – each with dual CPUs for a total of 8K processors, while the TACC
Ranger cluster introduced in 2008 has 4K nodes – each with four quad-core
CPUs for a total of 64K processors.

Programming models and their scalability have been a large focus as cluster
size continues to increase. In addition to these concerns, other more basic con-
cerns with regard to the system software must also be addressed. In particular,
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the mechanism by which jobs are launched on these large-scale clusters must also
be examined. All programming models require some executable to be started on
each node in the cluster. Others, such as the Message Passing Interface (MPI)
[3], may have multiple processes per node – one per core. Our work shows that
current designs for launching of MPI jobs can take more than 3 minutes for
10, 000 processes and have trouble scaling beyond that level.

In this paper we present a scalable and extensible launching architecture
(ScELA) for clusters to address this need. We note that the initialization phase of
most parallel programming models involve some form of communication to dis-
cover other processes in a parallel job and exchange initialization information.
Our multi-core aware architecture provides two main components: a scalable
spawning agent and a set of communication primitives. The spawning agent
starts executables on target processors and the communication primitives are
used within the executables to communicate necessary initialization informa-
tion. As redundant information is exchanged on multi-core systems, we design a
hierarchical cache to reduce the amount of communication.

To demonstrate the scalability and extensibility of the framework we redesign
the launch mechanisms for both MVAPICH [4], a popular MPI library, and the
Process Management Interface (PMI), a generic interface used by MPI libraries
such as MPICH2 [5] and MVAPICH2 [6]. We show that ScELA is able to improve
launch times at large cluster sizes by over 700%. Further, we demonstrate that
our proposed framework is also able to scale to at least 32, 000 cores, more than
three times the scalability of the previous design.

Although our case studies use MPI, ScELA is agnostic as to the programming
model or program being launched. We expect other models such as Unified Par-
allel C (UPC) [7] to be able to use this architecture as well. In addition, ScELA
can be used to run commands remotely on other nodes in parallel, such as sim-
ple commands like ‘hostname’ or maintenance tasks. It is a generic launching
framework for large-scale systems.

The remaining parts of this paper are organized as follows: In Section 2 we
describe the goals and design issues of our launch framework. We use our frame-
work to redesign two job launch protocols and present these case studies in
Section 3. Section 4 contains a performance evaluation of the ScELA design.
Related work is discussed in Section 5. We conclude and give future directions
in Section 6.

2 Proposed Design

In this section we describe the ScELA framework. The main goals of the design
are scalability towards a large number of processing cores, ease of extensibility
and elimination of bottlenecks such as network congestion and resource limits.
For ease of extensibility the various components of ScELA are divided into dis-
tinct layers. Figure 1 shows an overview of the framework. The following sections
describe each of these layers in detail.
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Launcher

Node Launch Agent (NLA) Interconnection Layer

Point-to-Point Collective Bulletin-Board

Cache

PMI PMGR

. . .

Communication Protocols

Communication Primitives

Fig. 1. ScELA Framework

2.1 Launcher

The launcher is the central manager of the framework. The job-launch process
starts with the launcher and it is the only layer that has user interaction. The
main task of the launcher is to identify target nodes, set up the runtime envi-
ronment and launch processes on the target nodes.

Process Launching. Modern clusters deploy multi-core compute nodes that
enable multiple processes to be launched on a node. On such systems, a launcher
would have to duplicate effort to launch multiple processes on a node. ScELA has
a Node Launch Agent (NLA) which is used to launch all processes on a particular
node. The launcher establishes a connection to target nodes and sets up a NLA
on each of them. This mechanism allows the Launcher to make progress on
launching processes on other nodes while local NLAs handle node level process
launching. The NLAs are active for the duration of the launched process after
which they terminate, hence the framework is daemon-less.

Consider a cluster with n compute nodes and c processor cores per node.
Table 1 shows a comparison of times taken to spawn n × c processes on such a
cluster. Tconn is the time taken to establish a connection to a node, Tlaunch is the
time taken to spawn a single process and Tnla is the time taken to setup a NLA.
We see that as the number of cores per node increases, the time taken to start
the job decreases with the NLA approach. Since the dominant factor on most
clusters is Tconn (around 5 ms on our testbed), the use of NLAs on multi-core
systems keeps the spawn time practically constant for a fixed number of nodes
irrespective of the number of cores per node.

Process Health. An important task of job launchers is to handle process ter-
mination. When a process fails, a job launcher must clean up other processes.
Failure to do so would impact performance of future processes. Having a node

Table 1. Time Taken to Spawn Processes With and Without NLAs

With NLAs Without NLAs
n × (Tconn + Tnla) + c × Tlaunch (n × c) × (Tconn + Tlaunch)
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level agent allows ScELA to handle monitoring of process health in parallel.
The NLAs monitor the health of local processes. When a failure is observed the
NLA sends a PROCESS FAIL notification message to the central launcher. The
Launcher then sends a PROCESS TERMINATE message to all other NLAs which
terminate all processes. User signals such as SIGKILL are handled similarly.

2.2 NLA Interconnection Layer

Many programming models require some form of information exchange and syn-
chronization between processes before they complete initialization. For instance,
MPI processes may need to discover other processes on the same node to utilize
efficient shared memory communication channels or processes may need a bar-
rier synchronization before they can enter a subsequent phase of initialization.
Having a connection between every process does not scale for a large number
of processes as the number of connections required is O(n2). Other approaches
have all processes connect to a central controller which coordinates information
exchange and synchronization. However, when a large number of processes ini-
tiate connections to a central controller, it becomes a bottleneck. The resultant
network congestion causes TCP SYN packets being dropped. Since SYN retrans-
mission timeouts increase with every attempt on most TCP implementations [8],
this introduces a large delay in the overall launch process. In addition, most op-
erating systems limit the number of connections that can be kept open which
makes a central controller unfeasible.

We have designed a communication layer over the NLAs to facilitate commu-
nication and synchronization between processes. Each NLA aggregates initial-
ization information from all processes on the node. This aggregation limits the
total number of network connections needed per entity (process, NLA or the
Launcher) on the system. NLAs from different nodes form a hierarchical k-ary
tree [9] for communication of information between processes across nodes. The
hierarchical tree improves overall parallelism in communication. A k-ary tree
allows ScELA to launch processes over an arbitrary number of nodes while also
keeping the number of steps required for synchronization and other collective
operations such as broadcast or gather at a minimum at logk(n) where n is the
number of nodes. An example of a 3-ary tree of depth 3 is given in Figure 2.

The degree k of the k-ary tree determines the scalability and the performance
of ScELA. An NLA in the hierarchical tree should be able to handle connection
setup and communication from all processes on a node as well as the parent

Fig. 2. Example 3-ary NLA Interconnection (with depth 3)
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and children in the NLA tree. If the degree of the tree is too high, each NLA
would have to process too many connections which would create further bottle-
necks. If the degree is too low, the depth of the tree would result in too many
communication hops.

We determine the degree k dynamically. If n is the number of nodes, we de-
termine an ideal degree k such that the number of levels in the tree, logk(n),
is as follows: logk(n) ≤ MAX DEPTH . If c is the number of cores per node
and c + k + 1 ≤MAX CONN , then we select k as the degree. If not, we select
k = MAX CONN − 1 − c. The parameter MAX CONN is the number of
connections that an entity can process in parallel without performance degra-
dation. From our experiments (Section 4.2) we have determined that a process
can handle up to 128 connections with acceptable performance degradation on
current generation systems.

2.3 Communication Primitives

The characteristics of the information exchange between processes depends on
the programming model as well as specific implementations. The communication
pattern could be point-to-point, collective communication such as broadcast,
reduce, or a protocol such as a global bulletin board. We have designed the
following communication primitives over the NLA Interconnection Layer for use
by the processes for efficient communication.

Point-to-point Communication Primitives: Some initialization protocols
have processes communicating directly with each other. For such protocols, we
have designed two sided point-to-point communication primitives – NLA Send
and NLA Recv.

The data from a sender is forwarded to the receiver over the NLA tree. Each
process is assigned a unique identifier. During the setup of the NLA Intercon-
nection Layer, every NLA discovers the location of each process. A process is
either on the same node as the NLA, or it can be found in specific lower branch
of the NLA tree or higher up the NLA tree.

Collective Communication Primitives: In most programming models, all
processes go through identical initialization phases with identical communi-
cation patterns. These communication protocols resemble MPI-style collective
communication. To support such protocols, we have designed MPI-style col-
lective communication primitives NLA Gather, NLA Broadcast, NLA AllGather,
NLA Scatter and NLA AllToAll over the NLA tree.

Bulletin Board Primitives: Some communication protocols have processes
publish information about themselves on a global bulletin board and processes
needing that information read it off the bulletin board. To support such protocols
over ScELA we have designed two primitives – NLA Put and NLA Get.

NLA Put publishes data to all NLAs up the tree up to the root. When a process
needs to read data, it invokes the NLA Get primitive. When data is not available
at a NLA, it forwards the request to the parent NLA. When data is found at a
higher level NLA, it is sent down the tree to the requesting NLA.
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Synchronization Primitive: In some programming models, the information
exchange phase consists of smaller sub-phases with synchronization of the pro-
cesses at the end of each sub-phase. For instance, in MVAPICH, processes can-
not initiate InfiniBand [10] channels until all processes have pre-posted receive
buffers on the NIC.

We have designed a synchronization primitive – NLA Barrier which provides
barrier synchronization over the NLA tree. Processes are released from an invo-
cation of NLA Barrier primitive only when all other processes have invoked the
primitive. The NLA Barrier primitive can be used in conjunction with NLA Send
and NLA Recv to design other forms of communication required by a specific
communication protocol.

2.4 Hierarchical Cache

On multi-core nodes, with communication patterns such as the use of a bulletin
board, many processes on a node may request the same information during ini-
tialization. To take advantage of such patterns, we have designed a NLA level
cache for frequently accessed data. When a process posts information through
NLA Put, the data is sent up to the root of the NLA tree while also being cached at
intermediate levels. When a process requests information through NLA Get, the
request is forwarded up the NLA tree until it is found at a NLA. The response
gets cached at all intermediate levels of the tree. Hence subsequent processes
requesting the same piece of information are served from a nearer cache. This
reduces network traffic and improves the overall responsiveness of the informa-
tion exchange.

Such a cache is advantageous even on non multi-core nodes or communication
patterns without repeated access to common information because the caching
mechanism propagates information down the NLA tree. Subsequent requests
from other sub-branches of the tree may be served from an intermediate NLA
and would not have to go up to the root. In Section 3.1 we describe an extension
to the PMI Put primitive that enables better utilization of the Hierarchical Cache.

2.5 Communication Protocols

As described in Section 2.3, the processes being launched may have their own
protocol for communicating initialization information. We have designed the
ScELA framework to be extensible so that various communication protocols can
be developed over it by using the basic communication primitives provided. In
Section 3 we describe two implementations of such protocols over the ScELA
architecture.

3 Case Studies

In this section we describe implementations of two startup protocols over ScELA.
We first describe an implementation of the Process Management Interface (PMI),
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an information exchange protocol used by popular MPI libraries such as MPICH2
and MVAPICH2 over the ScELA framework. In addition, we describe an imple-
mentation of another startup protocol – PMGR used by MPI libraries such as
MVICH [11] and MVAPICH.

3.1 Designing the PMI Bulletin Board with ScELA

When MPI processes start up, they invoke MPI Init to set up the parallel envi-
ronment. This phase involves discovery of other processes in the parallel job and
exchange of information. The PMI protocol defines a bulletin board mechanism
for information exchange. Processes do a PMI Put operation on a (key, value)
pair to publish information followed by a PMI Commit to make the published
information visible to all other processes. When other processes need to read
information, they perform a PMI Get operation by specifying a key. The PMI
protocol also defines a barrier synchronization primitive PMI Barrier.

To implement the PMI bulletin board over the ScELA framework, we utilized
the NLA Put and NLA Get primitives. A PMI Put by a process invokes a corre-
sponding NLA Put to propagate information over the NLA tree. When a process
does a PMI Get, a corresponding NLA Get is invoked to search for information
in the Hierarchical Cache. Since the PMI Puts are propagated immediately, we
ignore PMI Commit operations.

We have observed that with the PMI protocol, information reuse is high
for some information. In such cases it is beneficial to populate the node level
caches even before the first PMI Get request. We have designed an extension
to the NLA Put primitive that propagates information to all NLAs in the tree
so that all NLA Gets can be served from a local cache. To reduce the num-
ber of NLA Puts active in the tree, we aggregate puts from all processes on a
node before propagating this information over the tree. When processes invoke
PMI Barrier, we invoke the NLA Barrier primitive to synchronize processes. We
evaluate our design against the current startup mechanism in MVAPICH2 in
Section 4.1.

3.2 Designing PMGR (Collective Startup) with ScELA

The PMGR protocol defines MPI style collectives for communication of ini-
tialization data during MPI Init. These operations also act as implicit syn-
chronization between processes. The PMGR interface defines a set of collective
operations – PMGR Gather, PMGR Broadcast, PMGR AlltoAll, PMGR AllGather
and PMGR Scatter and an explicit synchronization operation PMGR Barrier.

In our implementation when a process invokes a PMGR primitive, it is di-
rectly translated to an invocation of the corresponding collective communication
primitive designed over the NLA tree. We evaluate our design against the current
startup mechanism in MVAPICH in Section 4.2.
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4 Performance Evaluation

In this section we evaluate the two case studies described in Section 3. We
evaluate our designs against the previous launching mechanisms in MVAPICH2
and MVAPICH respectively. Our testbed is a 64 node InfiniBand Linux cluster.
Each node has dual 2.33 GHz Intel Xeon “Clovertown” quad-core processor for
a total of 8 cores per node. The nodes have a Gigabit Ethernet adapter for
management traffic such as job launching. We represent cluster size as n × c,
where n is the number of nodes and c is the number of cores per node used.

We have written an MPI microbenchmark to measure the time taken to launch
MPI processes and time spent in MPI Init, which represents the information
exchange phase. For the purpose of these microbenchmark level tests, we disable
all optional features that impact job initialization.

4.1 PMI over ScELA

In this section, we compare the performance of our implementation of PMI
over ScELA (ScELA-PMI) against the default launch framework in MVAPICH2
(MVAPICH2-PMI). The default startup mechanism of MVAPICH2 utilizes a
ring of daemons – MPD [12] on the target nodes. The launcher – mpiexec identifies
target nodes and instructs the MPD ring to launch processes on them. PMI
information exchange is done over the MPD ring. Figure 3 shows the time taken
to establish the initial ring. We observe a linear increase which is not scalable
over larger number of nodes. We have also observed that the MPD ring cannot
be setup on larger sizes such as thousands of nodes. While a MPD ring can be
reused for launching subsequent MPI jobs, most job schedulers elect to establish
a separate ring as both target nodes and job sizes may be different. Figure 4
shows a comparison of the launch times for various system sizes. On ScELA-
PMI, the spawn phase represents the time taken for the Launcher to setup
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Fig. 4. Comparison of Startup Time on MVAPICH2

NLAs on the target nodes and for the NLAs to launch the MPI processes. The
MPI Init phase represents the time taken to establish the NLA Interconnection
Layer and for PMI information exchange. On MVAPICH2-PMI the mpdboot
phase represents the time taken to establish the ring of MPD daemons. The
spawn phase represents time taken to launch MPI processes over the MPD ring
and the MPI Init phase represents the time taken for information exchange.

We observe that as we increase the number of processes per node, ScELA-
PMI demonstrates better scalability. For a fixed node count, the duration of
the spawn phase in ScELA-PMI is constant due to parallelism achieved through
NLAs. In Figure 4(d) we see the spawn time for MVAPICH2-PMI increase from
around 1s to 6.7s when the number of cores used per node is increased from 1
to 8 but ScELA-PMI is able to keep spawn time constant at around 0.5s. At
larger job sizes, for instance 512 processes on 64 nodes (64× 8 in Figure 4(d)),
we see an improvement in the MPI Init phase from around 2.5s to 0.7s due to
the better response times of communication over the NLA Interconnection Layer
and due to reduced network communication due to NLA cache hits.
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4.2 PMGR over ScELA

In this section we compare our design of PMGR over ScELA (ScELA-PMGR)
against the default startup mechanism in MVAPICH (MVAPICH-PMGR). The
default startup mechanism in MVAPICH has a central launcher that establishes a
connection to target nodes and launches each process individually. On multi-core
systems, this launcher needs several connections to each node. Also, each MPI
process establishes a connection to the central controller which facilitates the
PMGR information exchange. As the number of processes increase, this causes a
flood of incoming connections at the central controller, which leads to delays due
to serialization of handling these requests and network congestion. The number
of MPI processes that can be handled simultaneously is also limited by resource
constraints such as open file descriptor limits, which is typically 1024.

Figure 5 shows a comparison of the launch times. With ScELA-PMGR, the
spawn phase represents the time taken to setup NLAs on the target nodes and for
the NLAs to launch MPI processes on the node. The MPI Init phase represents
the time taken to setup the NLA Interconnection Layer and the PMGR infor-
mation exchange between MPI processes. With MVAPICH-PMGR, the spawn
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phase represents the time taken for the central controller to launch each MPI
process on target nodes. In the MPI Init phase, the MPI processes establish
connections to the central controller and exchange information over the PMGR
protocol. We see that for a fixed node count, ScELA-PMGR takes constant time
for the spawn phase as it benefits from having NLAs while the spawn phase with
MVAPICH-PMGR grows with increase in number of processes per node. For in-
stance in 5(d), we see that ScELA-PMGR is able to keep spawn time constant
at 0.6s, but on MVAPICH-PMGR the spawn phase increases from 0.5s to 3.6 as
we increase the number of cores used per node from 1 to 8. When the overall job
size is small, the central controller in the MVAPICH startup mechanism is not
inundated by a large number of connections. We see that the central controller
is able to handle connections from up to 128 processes with little performance
degradation in the MPI Init phase. Hence the MVAPICH startup performs bet-
ter at a small scale, but as the job sizes increase we observe larger delays in
the MPI Init phase. From figure 5(d) we see that for 512 processes (64× 8), the
MPI Init phase takes 4.3s on MVAPICH-PMGR, but on ScELA-PMGR it takes
around 0.3s. For 512 processes we see an improvement of 800% in the overall
launch time.

Figure 6 shows a comparision of ScELA-PMGR and MVAPICH-PMGR on
a large scale cluster – the TACC Ranger [13]. The TACC Ranger is an Infini-
Band cluster with 3, 936 nodes with four 2.0 GHz Quad-Core AMD “Barcelona”
Opteron processors making a total of 16 processing cores per node. The Fig-
ure shows the runtime of a simple hello world MPI program that initializes the
MPI environment and terminates immediately. In terms of number of processing
cores, ScELA-PMGR scales up to at least three times more than MVAPICH-
PMGR (based on MVAPICH version 0.9.9). On 10, 240 cores, we observe that
MVAPICH-PMGR takes around 185s while ScELA-PMGR takes around 25s
which represents a speedup of more than 700%. We also see that MVAPICH-
PMGR is unable to scale beyond 10, 240 cores, while ScELA-PMGR is able to
scale to at least 3 times that number.
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5 Related Work

The scalability and performance of job startup mechanisms in clusters have been
studied in depth before. Yu, et. al. [14] have previously explored reducing the
volume of data exchanged during initialization of MPI programs in InfiniBand
clusters.

In our work, we have assumed availability of executable files on target nodes
through network based storage as this is a common model on modern clusters.
Brightwell, et. al. [15] have proposed a job-startup mechanism where network
storage is not available.

SLURM [16] is a resource manager for Linux clusters that implements various
interfaces such as PMI and PMGR for starting and monitoring parallel jobs.
Unlike ScELA, SLURM has persistent daemons on all nodes through which it
starts and monitors processes.

6 Conclusion and Future Work

Clusters continue to scale in core counts. Node counts are increasing significantly,
but much of the growth in core counts is coming from multi-core clusters. In this
paper we have demonstrated a scalable launching architecture that improves the
launch performance on multi-core clusters by more than an order of magnitude
than previous solutions. Although our case studies have been with two MPI
libraries, we have presented an architecture extensible to any cluster launch-
ing requirements. For launching parallel jobs, we provide scalable and efficient
communication primitives for job initialization.

With an implementation of our architecture, we have achieved a speedup of
700% in MPI job launch time on a very large scale cluster at 10, 240 processing
cores by taking advantage of multi-core nodes. We have demonstrated scalability
up to at least 32, 768 cores.

These solutions are being used by several large scale clusters running MVA-
PICH such as the TACC Ranger – currently the largest InfiniBand based com-
puting system for open research.

In our solution, the Launcher launches Node Launch Agents serially. As node
counts increase, this could be a potential bottleneck. However, this can be easily
extended so that NLAs are launched hierarchically by other previously launched
NLAs. We plan to explore this mechanism in the future.

With the recent demonstration of a 80 core processor by Intel, the number
of cores per node on large scale clusters is projected to increase further. We can
use more efficient communication channels such as UDP or shared memory for
communication between processes and the NLA on a node so that the degree of
the NLA tree can be decoupled from the number of cores on a node.

Software Distribution: Our implementation of PMGR over ScELA (ScELA-
PMGR) is integrated with the 1.0 release of MVAPICH. The PMI implementa-
tion over ScELA (ScELA-PMI) will be available with the upcoming 1.2 release
of MVAPICH2 [17].
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Abstract. We present a parallel method for construction of gene regu-
latory networks from large-scale gene expression data. Our method in-
tegrates mutual information, data processing inequality and statistical
testing to detect significant dependencies between genes, and efficiently
exploits parallelism inherent in such computations. We present a novel
method to carry out permutation testing for assessing statistical signifi-
cance while reducing its computational complexity by a factor of Θ(n2),
where n is the number of genes. Using both synthetic and known regu-
latory networks, we show that our method produces networks of quality
similar to ARACNE, a widely used mutual information based method.
We present a parallelization of the algorithm that, for the first time, al-
lows construction of whole genome networks from thousands of microar-
ray experiments using rigorous mutual information based methodology.
We report the construction of a 15,147 gene network of the plant Ara-
bidopsis thaliana from 2,996 microarray experiments on a 2,048-CPU
Blue Gene/L in 45 minutes, thus addressing a grand challenge problem
in the NSF Arabidopsis 2010 initiative.

Keywords: gene networks, mutual information, parallel computational
biology, systems biology.

1 Introduction

Biological processes in every living organism are governed by complex inter-
actions between thousands of genes and gene products. Modeling and under-
standing these interactions is essential to progress in many important research
areas such as medicine, e.g. drug design, agriculture, e.g. pest-resistant crops,
renewable energy, e.g. efficient production of biofuels, or more recently synthetic
biology. Such interactions are typically modeled as gene regulatory networks [1],
whose inference is one of the principal challenges in systems biology. A gene
regulatory network is represented as a graph with vertices representing genes
and edges representing regulatory interactions between genes. The functioning
of a gene regulatory network in an organism determines the expression levels
of various genes to help carry out a biological process. Network inference is the
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problem of predicting the underlying network from multiple observations of gene
expressions (outputs of the network).

Rapid advances in high-throughput technologies, for instance microarrays [2]
or the more recent short-read sequencing [3], enable simultaneous measurement
of the expression levels of all genes in a given organism. The goal of network infer-
ence is to reconstruct the network from observations of gene expression data. The
task is challenging due to several reasons: There are tens of thousands of genes
in any complex organism, and in many cases it is impossible to find a reliable
way to limit analysis to only a subset of them. Second, the number of available
expression measurements falls significantly short of what is required by the un-
derlying computational methods, with even the number of genes in the network
significantly outnumbering the number of available measurements. At the same
time, the computational complexity of the problem increases with increasing
number of observations. Third, microarray measurement of expression data is
inherently noisy and significantly influenced by many experimental-specific at-
tributes, making it hard to derive meaningful conclusions. Finally, little is known
about general regulatory mechanisms (e.g. post-transcriptional effects) and thus
no satisfactory models of genetic regulation are available.

In spite of its difficulty the problem of reconstructing gene regulatory net-
works has been addressed by many researchers, and techniques like relevance
networks [4,5], Gaussian graphical models [6,7] or Bayesian networks [8,9] have
been widely adopted as possible approaches. While simple models like relevance
networks or Gaussian graphical models perform well under the assumption of
linear dependency between genes, they fail to detect non-linear types of interac-
tions [5,10]. On the other hand more flexible models, like Bayesian networks, are
limited by their exponential computational complexity, and require very large
number of experiments even for networks of modest size [11]. As a result only sim-
ple models have been used to reconstruct genome-level regulatory networks [12].
In [13,14] Butte and Kohane and later Basso et al. suggested the use of mutual
information [15] as a powerful method to detect any type of interactions between
genes. Moreover, through experiments on synthetic data it has been shown that
mutual information can be competitive to Bayesian networks [11,13] in terms of
quality of generated solutions.

Microarray experiments are often conducted by individual research groups in
small numbers (typically 6-10) to aid in specific biological investigations. How-
ever, such data is normally deposited in public microarray repositories (see for
instance [16,17,18]), thus collectively providing a large number of experiments.
Analyzing this data is even harder due to the significant variability in experimen-
tal protocols and conditions across laboratories, which render direct comparison
of expression level data invalid. Sophisticated statistical methods are being de-
veloped for cross-platform comparisons, and having expression profile of every
gene under different biological conditions enables scientists to ask more profound
questions about nature of genetic interactions with the ultimate goal of accurate
modeling of mechanisms that allow functioning of cells and organisms. The goal
of our research was to develop parallel methods that can scale up to collectively
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analyzing all the microarray experiments available for an organism and build
robust gene networks from this experimental data, whose collective economic
value already runs into millions of dollars per organism for several organisms.

In this paper we present a method that combines mutual information, statis-
tical testing and parallel processing to construct large whole genome regulatory
networks. To reduce computational cost, we propose the B-spline mutual in-
formation estimator of Daub et al. [10] supported by permutation testing. We
present a novel method to reduce the complexity of permutation testing by

(
n
2

)
,

where n is the number of genes. Using synthetic and known regulatory networks
we show that our method produces networks of quality similar to ARACNE [13],
a widely used mutual information based network reconstruction software. We
present a parallelization of the algorithm that allows construction of accurate
whole genome networks from thousands of microarray experiments, a task which
is beyond capabilities of sequential methods. We report the construction of a
15,147 gene network of Arabidopsis thaliana from 2,996 microarray experiments
on a 2,048-CPU IBM Blue Gene/L in 45 minutes. This is the largest whole
genome network published to date, both in terms of the number of genes and
the number of microarray experiments analyzed to derive the network.

The remainder of this paper is organized as follows: In Section 2 we introduce
the basic theory underlying mutual information and data processing inequality.
In Section 3, we present a new way to carry out permutation testing whose cost
is significantly reduced by amortizing over all pairs of genes. We propose a B-
splines based mutual information estimator augmented with our permutation
testing approach and demonstrate that it provides results of comparable quality
to best currently known methods, which are limited in their scale. Our parallel
method and its implementation are described in Section 4. In Section 5 we
provide experimental results demonstrating quality and scalability, and report on
the construction of the whole-genome network for the plant Arabidopsis thaliana.
We conclude the paper in Section 6.

2 Concepts and Definitions

The problem of reconstructing a gene regulatory network can be formalized as
follows: Consider a set of n genes {g1, g2, . . . , gn}, where for each gene a set of
m expression measurements is given. We represent expression of gene i (gi) as a
random variable Xi with marginal probability pXi derived from some unknown
joint probability characterizing the entire system. This random variable is de-
scribed by observations xi,1, . . . , xi,m, where xi,j corresponds to the expression
level of gi under condition j. We call the vector 〈xi,1, xi,2, . . . , xi,m〉 profile of gi.
Given a profile matrix Mn×m, Mi,j = xi,j we want to find a network N that
best explains the data in M .

2.1 Mutual Information and Data Processing Inequality

Intuitively, we assume that expression profiles of genes that are interacting will be
correlated. To reconstruct regulatory network we first connect all pairs of genes
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that show statistically significant patterns of correlation, and then eliminate
those edges that can be result of an indirect interaction (e.g. when two genes are
coregulated by a third gene). This requires two principal components: a method
to identify significant correlation, and a strategy to differentiate between direct
and indirect interactions. Because interactions between genes are the result of
sophisticated biochemical processes, and expression measurements are inherently
noisy, we expect that many gene interactions will be exhibited in non-linear
dependencies between their profiles. To address the above issues we follow results
in [13] and we use information theoretic concepts of mutual information and data
processing inequality [15].

Mutual information I(Xi; Xj) is arguably the best measure of correlation
between two random variables Xi and Xj when the underlying relationship is
non-linear [15]. It is defined based on entropy H(·) in the following way:

I(Xi; Xj) = H(Xi) +H(Xj)−H(Xi, Xj), (1)

where differential entropy H(X) of continuous variable X is given by:

H(X) = −
∫

pX(ξ) log pX(ξ)dξ, (2)

and pX is a probability density function for X . In our case pX is unknown and
has to be estimated based on available gene expression observations, a problem
which we discuss in the next section. Mutual information is symmetric and al-
ways non-negative. One way to interpret it is as a measure of information one
variable provides about another. Therefore, I(Xi; Xj) = 0 if and only if Xi

and Xj are independent. Consequently, we will connect two genes in the recon-
structed network if mutual information between their profiles is greater than a
carefully chosen threshold. Note that estimating pairwise relationships between
genes provides only partial knowledge about the underlying joint probability
distribution. Unfortunately, analysis of higher order interactions would require
much larger number of observations [19].

Having defined a correlation measure we are left with the task of identifying
indirect interactions between genes. One way to solve this problem is to rely
on conditional mutual information [15,19]. This approach, however, is not gen-
erally feasible because the number of available observations does not allow for
accurate estimation of conditional mutual information. Therefore in [13] Basso
et al. suggested to employ data processing inequality (DPI), another interest-
ing property of mutual information. DPI states that if three random variables
Xi, Xj , Xk form a Markov chain in that order (i.e., conditional distribution of Xk

depends only on Xj and is independent of Xi), then I(Xi, Xk) ≤ I(Xi, Xj) and
I(Xi, Xk) ≤ I(Xj , Xk). These inequalities can be used to discard indirect inter-
actions: each time the pair (Xi, Xk) satisfies both inequalities the corresponding
edge between gi and gk is removed from the network.

2.2 Mutual Information Estimation

To obtain mutual information between two random variables Xi and Xj, their
marginal probability densities pXi and pXj , and their joint probability density
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pXi,Xj , should be known or estimated (see equations (1) and (2)). Rather than
make hard to justify assumptions about underlying probability distributions, we
estimate them based on observed gene expression measurements. The estimates
are then used to compute estimated mutual information. As the computed mu-
tual information is an estimate of the true (but unknown and undeterminable)
mutual information, a method to compute its statistical significance must be
used for accurate assessment.

Several different techniques to estimate mutual information have been pro-
posed (for example, see [20]). These methods differ on precision and computa-
tional complexity: simple histogram methods (used for example in [14]) are very
fast but inaccurate, especially when the number of observations is small. On
the other hand, kernel based methods, e.g. Gaussian kernel estimators utilized
in [13], provide very good precision but are computationally demanding when
the number of observations is large. Finally, to the best of our knowledge, all
available mutual information estimators depend on some kind of parameter, like
for example number of bins for the histogram estimator, or kernel bandwidth
for kernel based techniques.

Consider random variable Xi and its m observations. The simplest way to
estimate its probability density is to divide observations into fixed number of bins
b and then count observations that fall into each bin. This technique is extremely
fast but at the same time imprecise and sensitive to the selection of boundaries of
bins [21]. To overcome this limitation Daub et al. have proposed to use B-splines
as a smoothing criterion: each observation belongs to k bins simultaneously with
weights given by B-spline functions up to order k. It is shown that the B-splines
method produces results that are nearly perfectly correlated with the Gaussian
kernel estimator, which is believed to be the most accurate procedure. In our
own experiments, we found this to be true with a Pearson correlation coefficient
of 0.9994 (1.0 denotes perfect correlation). Note that computational complexity
of B-spline estimator is linear in m compared to O(m4) for the Gaussian kernel.
Due to these reasons, we employ the B-splines technique.

3 A Novel Method for Permutation Testing

An important component to using I(Xi; Xj) to determine if there is significant
dependency between genes gi and gj requires assessing the statistical signifi-
cance of the quantity I(Xi; Xj) itself. This assessment is done through permu-
tation testing. Let 〈xi,1, xi,2, . . . , xi,m〉 denote the sequence of m observations
of gi. Let π(Xi) = π(〈xi,1, xi,2, . . . , xi,m〉) denote a permutation of the vector
of m observations. If there is significant dependency between Xi and Xj , it is
expected that I(Xi; Xj) is significantly higher than I(π(Xi); Xj). The permu-
tation testing method involves computing I(π(Xi); Xj) for all m! permutations
of 〈xi,1, xi,2, . . . , xi,m〉 and accepting the dependency between Xi and Xj to be
statistically significant only if I(Xi; Xj) > I(π(Xi); Xj) for at least a fraction
(1− ε) of the m! permutations tested, for some small constant ε > 0. As testing
all m! permutation is computationally prohibitive for large m, a large sampling
of the permutation space is considered adequate in practice.
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Permutation testing is generally accepted as the benchmark for assessing sta-
tistical significance. However, all mutual information methods to assess signifi-
cant dependencies between expression profiles avoid permutation testing due to
its computational complexity. For example, ARACNE uses an equation derived
from the large deviation theory that connects number of observations m and
desired confidence level ε. Permutation tests for sample data sets of independent
variables (sizes ranging from 100 to 360 observations) have been performed,
and corresponding distribution of mutual information has been obtained. This
distribution was then used to estimate parameters of the equation. Note that
this is a one time effort to estimate the parameters using permutation tests on
some sample data sets. The parameter fitted equation is what is recalled when
ARACNE is normally used. This method has the obvious disadvantage of inaccu-
rately estimating threshold values for input data sets with distribution of mutual
information different than the one used to obtain parameters of the equation.

Ideally, permutation testing should be conducted for assessing the significance
of each pair I(Xi; Xj) using a large number P of random permutations. This
is clearly computationally prohibitive, increasing run time by a factor of P . In
this paper, we present a novel method to collectively assess all pairwise mutual
informations such that the permutation testing conducted for one pair can be
used to assess the statistical significance of any other pair. Formally, we present
a method to test P/

(
n
2

)
random permutations per pair, while obtaining results

equivalent to assessing each pair using P random permutations. This allows us
to use only a few random permutations per pair, while obtaining statistically
meaningful results. Our method works as follows:

It is well known that mutual information has the property of being invariant
under homeomorphic transformations [15,22], that is:

I(Xi; Xj) = I(f(Xi); h(Xj)), (3)

for any homeomorphisms f and h. Consider replacing the vector of observa-
tions for gi, i.e., 〈xi,1, xi,2, . . . , xi,m〉 with the vector 〈rank(xi,1), rank(xi,2), . . . ,
rank(xi,m)〉, where rank(xi,l) denotes the rank of xi,l in the set {xi,1, xi,2, . . . ,
xi,m}; i.e., we replace each gene expression value with its rank in the set of ob-
served expression values for the gene. The transformation, which we term rank
transformation, while not continuous, is considered a good approximation to
homeomorphism [22]. Instead of computing mutual information of pairs of gene
expression vectors directly, we equivalently compute the mutual information of
their rank transformed counterparts. With this change, each gene expression
vector is now a permutation of {1, 2, . . . , m}. Therefore, a permutation π(Xi)
corresponds to some permutation of the observation vector of any other random
variable Xj . Moreover, estimation of marginal probabilities required in equa-
tion (1) depends only on the number of observations, and thus can be computed
collectively once for all expression profiles. More formally, consider applying per-
mutation testing to a specific pair I(Xi; Xj) by computing I(π(Xi); Xj) for some
randomly chosen permutation π. For any other pair I(Xk; Xl), ∃π′, π′′ such that
π(Xl) = π′(Xj) and π(Xi) = π′′(π′(Xk)). Since π is a random permutation, so is
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π′′ and I(π(Xi); Xj) is a valid permutation test for assessing the statistical sig-
nificance of I(Xk; Xl) as well. Thus, each permutation test is a valid test for all(
n
2

)
pairs of observations. Therefore, one can use a total of P permutation tests,

instead of P permutation tests for each pair, reducing the work in permutation
testing by a factor of Θ(n2).

There are important side benefits to our approach with regards to both quality
and computational efficiency: While permutation testing of a pair by itself is an
agreed upon statistical technique, evaluating the significance of I(Xi; Xj) with
respect to all I(Xi; Xk) (for j 	= k) is important to extract the more prominent
interactions for a gene. This is naturally incorporated in our scheme as a fixed
number of permutation tests are conducted on each pair, and then collectively
used to assess the statistical significance of every pair. As for computational
efficiency, if the observation vector for any Xi is a permutation of 1, 2, . . . , m,
then H(Xi) is the same for all Xi. Thus, equation (1) reduces to:

I(Xi; Xj) = 2H(〈1, 2, . . . , m〉)−H(Xi, Xj). (4)

Hence, one can directly work with H(Xi, Xj). Because rank transformed data
consists of equispaced observations, it also improves the performance of major-
ity of mutual information estimators. Using our permutation testing technique
combined with B-splines mutual information estimator, we have been able to
obtain results of about the same quality as rigorous Gaussian kernel based pro-
grams such as ARACNE, with significantly faster run-times. These results are
presented in Section 5.

4 Parallel Gene Network Reconstruction

Gene network reconstruction is both compute and memory intensive. Memory
consumption arises from the size of input data if the number of observations is
large, and also from the dense initial network generated in the first phase of the
reconstruction algorithm. While network construction based on large number of
observations is out of the scope of sequential computers, the computational costs
are prohibitive as well. For example, in our experiments on an Intel Xeon 3GHz
desktop, ARACNE took over seven days for constructing a network on 5,000
genes of Arabidopsis thaliana from 700 microarray experiments. Thus, parallel
computers are essential to building robust whole genome networks from ever
increasing repositories of gene expression data.

4.1 Our Parallel Method

Let p denote the number of processors. We use row-wise data distribution where
each processor stores up to �n

p � consecutive rows of the expression matrix M , and
the same number of rows of the corresponding gene network adjacency matrix
D. To start, each processor reads and parses its block of input data, and applies
rank transformations to convert each gene expression vector to a permutation
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of ranks. The algorithm then proceeds in three phases: In the first phase, mu-
tual information is computed for each of the

(
n
2

)
pairs of genes, and q randomly

chosen permutations per pair. Note that the total number of permutations used
in the test P = q · (n

2

)
, allowing a small constant value of q for large n. We em-

ploy the frequently utilized all-pairs parallel algorithm where the processors are
treated as if connected in a ring, with p−1 shift permutations utilized such that
expression vectors of all genes are streamed through each processor. This allows
each processor to compute its portion of the adjacency matrix in p rounds. The
q permutation tests per pair are also stored to determine threshold value in the
second phase. The parallel run-time of the first phase is O

(
qn2

p + pts + nmtw

)
,

where ts is the network latency and 1
tw

is the network bandwidth.
In the second phase, the threshold value used as cutoff to assess significance of

mutual information is computed, and edges below this threshold are discarded.
The threshold is computed by finding the element with rank (1−ε)·q ·(n

2

)
among

the q · (n
2

)
mutual information values computed as part of permutation testing.

While this can be computed using a parallel selection algorithm, note that ε is
a small positive constant close to zero, and hence the threshold value is close
to the largest value in the sorted order of the computed mutual information
values. Let r = ε ·q ·(n

2

)
. In our approach, each processor sorts its O( qn2

p ) values,
and picks the r largest values. A parallel reduction operation is applied using
the r largest values in each processor. The reduction operator performs linear
merging of two samples of size r and retains the r largest elements. Once the rth

globally largest value is found, each processor eliminates from its local adjacency
matrix edges that are below the threshold. The parallel run-time of this phase is
O
(

qn2 log n
p + log p · (r + ts + rtw)

)
. Assuming ε < 1

p , linear scaling is expected.
The final phase of the algorithm is to apply data processing inequality. To de-

cide if a given edge Di,j is the result of indirect interaction, complete information
about rows i and j are needed. Because matrix D is stored row-wise, we need to
stream row j to the processor responsible for row i. Moreover, because matrix
D is symmetric it is sufficient to analyze its upper (or lower) triangular part.
Once again, this is achieved in p − 1 communication rounds, where in round i
only processors with ranks 0, 1, . . . , p− i participate in communication and pro-
cessing. The parallel run-time of this phase is O

(
n3

p + pts + n2tw

)
. Note that

while this worst case analysis indicates this to be the most compute intensive
phase of the algorithm, it is not so. This is because DPI needs to be applied
only to current existing edges in the network, and the network is expected to
be significantly sparse. This observation is borne by experimental results which
confirm that the run-time of the algorithm is dominated by the first phase of
dense matrix computation.

4.2 Parallel Implementation

We developed a parallel gene regulatory network inference program implement-
ing the methodology described in this paper. The program, termed TINGe for
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Tool for Inferring Networks of Genes, is developed in C++ and MPI. While
omitted due to brevity and scope issues, the program uses sophisticated statis-
tical normalization techniques to make valid inferences across a large number
of microarray experiments prior to execution of the presented methodology. To
our knowledge, this is the first parallel gene network construction software, and
it can scale to whole genome networks and the largest collections of microarray
data collections presently available.

Apart from an implementation of the algorithms presented, we carried out a
number of low level optimizations, and architecture specific optimizations tar-
geted to our experimental platform, the Blue Gene/L. The mutual information
estimator of Daub et al. consists of three main elements: a procedure to compute
values of B-spline function, a joint probability calculation, and entropy calcula-
tion. We implemented B-spline functions based on the de Boor algorithm [23].
With the help of the PAPI profiler, we optimized main loops in the probabil-
ity computations to efficiently exploit fused multiply-add instruction of Blue
Gene/L PPC440 CPU. Finally, our implementation relies on highly optimized
implementations of the log function provided by vendor’s math kernel library
(e.g. IBM’s MASS library for Blue Gene). Because of the large size of the input
data sets we tested (about 2GB for the largest one), we used collective MPI-IO
operations which we found to be the most efficient on the Blue Gene/L system.

5 Experimental Results

To validate our approach and its implementation, we present experimental re-
sults that fall into three categories: First, we compare the accuracy and efficiency
of our method with ARACNE [13], the best currently available program that uses
mutual information and DPI to reconstruct gene regulatory networks. We also
compare ARACNE with a sequential implementation of our approach, to show
that the presented permutation testing with B-splines approach enables faster
network construction even on a sequential basis. We then present a scalability
analysis of our parallel implementation by testing on varying numbers of pro-
cessors. Finally, we report on the construction of the whole genome network of
the model plant Arabidopsis thaliana from 2,996 microarray experiments, which
is the largest whole genome network reported to date.

5.1 Quality and Run-Time Assessment

We assessed the accuracy of our method using both synthetic and biological
networks. It is common practice to validate network inference algorithms using
the SynTReN package [24], a widely used software developed with the express
purpose of providing common benchmark data sets with desired sizes (number
of genes and experiments) and known underlying networks. We generated two
synthetic regulatory networks using SynTReN, each consisting of 100 genes, but
differing in the number of expression profiles (500 and 900, respectively). We
used ARACNE and TINGe to reconstruct each network from expression data
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Table 1. Comparison of ARACNE and TINGe using a 100 gene synthetic network
with two different expression profiles

m = 500 m = 900
ARACNE TINGe ARACNE TINGe

Time (in sec) 90 6 400 10
Specificity 0.95 0.95 0.95 0.95
Sensitivity 0.59 0.60 0.61 0.61
Precision 0.25 0.26 0.25 0.25
TP 82 85 85 86
TN 4566 4562 4555 4550
FP 244 248 255 260
FN 58 55 55 54

and compared the generated networks with the known true network to check
correctness of the predicted edges. Table 1 summarizes results obtained on a
Pentium D 3GHz computer with 4GB of RAM running 64-bit Red Hat Linux
OS (both codes have been compiled with the g++ 4.1.2 compiler). Here we
use TP, TN, FP and FN to denote number of true positives (edges correctly
predicted), number of true negatives (edges correctly avoided), number of false
positives (edges incorrectly predicted) and number false negatives (incorrectly
avoided edges), respectively. We assess the performance of both softwares using
standard measures: i) Specificity – fraction of missing edges correctly classified
( TN

TN+FP ), ii) Sensitivity – fraction of correct edges predicted ( TP
TP+FN ), and iii)

Precision – fraction of predicted edges that are correct ( TP
TP+FP ).

As can be seen from Table 1, TINGe outperforms ARACNE in execution
times while it preserves high specificity and sensitivity. Note that as expected B-
spline estimator scales linearly with the size of expression profile, while the over-
head due to permutation testing does not offset resulting gain in efficiency. This
demonstrates that our proposed approach of B-splines augmented with permu-
tation testing can generate high quality networks with lower computational cost.

We also tested both programs on an extracted sample regulatory subnet-
work of Arabidopsis thaliana from the AtRegNet database [25] (see Fig. 1). This
network consists of 56 genes and 60 edges, and provides information about in-
teractions that have been confirmed through biological experiments. We used
expression profile of 2,996 microarrays (see Section 5.3 for explanation of how
the data has been prepared) to reconstruct this network using both ARACNE
and TINGe. At this point we should explain that verifying obtained results with
simple criteria such as those used for synthetic data are hardly insightful. In par-
ticular, we have to be very mindful when interpreting false positive predictions.
Very often such predictions correspond to indirect interactions that cannot be
rejected without carefully designed and targeted biological experiments. More-
over, predictions of this type can still be highly valuable for biologists, especially
when little is known about the investigated network. With these caveats in mind,
TINGe provided 18 true positive predictions with 40 false negatives and 121
false positive predictions. ARACNE generated 11 true positives while rendering
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Fig. 1. Topology of a known gene regulatory network of Arabidopsis thaliana obtained
from the AtRegNet database. Rectangular nodes denote transcription factors.

47 false negatives and 134 false positives. The time required to reconstruct this
network was 10 seconds for TINGe, and 2,580 seconds for ARACNE.

5.2 Parallel Performance

To assess scalability of our approach, we performed a series of tests on our
2,048-CPU Blue Gene/L system using two data sets containing 424 and 2,996
microarray experiments, and 2,048 and 4,096 genes. Run-time for network recon-
struction was measured as a function of the number of processors. The results
are summarized in Table 2 and Fig. 2.

Table 2. TINGe runtime in seconds for different number of genes n, and different
number of expression observations m

m = 424 m = 2996
# CPU n = 2048 n = 4096 n = 2048 n = 4096

32 293 1173 2688 10731
64 151 602 1385 5524
128 77 306 704 2798
256 39 155 360 1421
512 21 80 188 723
1024 12 42 103 377

As can be seen, TINGe maintains linear scalability up to 1,024 CPUs. In
each case the total execution time is dominated by pairwise mutual information
computations, with second and third phases of the algorithm accounting for less
than 5 seconds in the worst case. While the third stage of computing indirect
edges is O(n3) in the worst-case, the actual complexity is O(en), where e is
the number of predicted edges (TP+FP). As expected, e � n2 and the overall
computation is dominated by the first phase with total work of Θ(n2). While this
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Fig. 2. Execution time (left) and relative speedup (right) as a function of number of
CPUs for the data sets with 2,996 observations

may suggest that second and third phase could be handled sequentially, it should
be kept in mind that this is infeasible for whole-genome scale problems due to
memory constraints. As expected, the parallel run-time grows quadratically with
the number of genes and linearly with the number of experiments.

5.3 Reconstructing Gene Regulatory Network of Arabidopsis
thaliana

The main motivation behind this work is to enable, for the first time, genome-
level reconstruction of gene regulatory networks based on robust and sensitive
criterion of mutual information applied to large number of microarray experi-
ments. The organism of particular interest to us is the model plant Arabidopsis
thaliana. Understanding the functional roles of all of its genes and inferring the
whole genome network of this organism are the primary goals of the 10-year U.S.
National Science Foundation Arabidopsis 2010 initiative, launched in year 2000.

To reconstruct the gene regulatory network of Arabidopsis, we obtained a
set of Affymetrix ATH1 microarrays from the main Arabidopsis repository at
NASC [18]. This data, so called “Super Bulk Gene Download”, is preliminarily
processed using Affymetrix MAS-5.0 protocol [26]. Because the data is aggre-
gation of experiments performed by different laboratories around the world, it
is necessary to normalize the data to remove variability due to non-biological
sources. This process is itself quite difficult and challenging [2,27]. In our case,
we first removed experiments with missing values, which suggest errors in exper-
iment preparation, and subjected the remaining set of profile data to quantile
normalization. The latter step should guarantee that expression measurements
are comparable across different experiments. From the resulting profile matrix we
removed genes for which expression measurements did not cover a wide enough
range of expression. This is because uniformly expressed genes are not informa-
tive and cannot be accurately correlated with others. At the end of the above
process we obtained a profile matrix consisting of 15,147 genes and 2,996 mi-
croarray experiments. To our knowledge, it is the largest data set used to date for
reconstructing a gene regulatory network. TINGe constructed a whole-genome
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network on this data on a 2,048-CPU Blue Gene/L in 45 minutes, where IO
operations took 4 minutes, finding threshold value required 1 second and appli-
cation of DPI ran in 16 seconds. Preliminary analysis of the network for both
validation and discovery purposes has yielded significant results, and further
research is ongoing.

6 Conclusions

In this paper, we presented the first parallel method to construct gene regulatory
networks that can scale to whole genome networks and large number of cumu-
lative microarray experiments conducted worldwide. We present an approach
to significantly reduce the cost of permutation testing, while obtaining results
equivalent to a much larger sampling of the permutation space. Using a com-
bination of these techniques, we reported on building the largest whole-genome
plant network known to date. This network is being used to understand several
biological pathways and has already met with some early success in identifying
unknown genes in partially characterized biological pathways.

The TINGe software is freely available together with documentation at the
following URL: http://www.ece.iastate.edu/∼zola/tinge.
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Abstract. Parallel 3D FFT is a commonly used numerical method in
scientific computing. P3DFFT is a recently proposed implementation
of parallel 3D FFT that is designed to allow scalability to massively
large systems such as Blue Gene. While there has been recent work
that demonstrates such scalability on regular cartesian meshes (equal
length in each dimension), its performance and scalability for flat carte-
sian meshes (much smaller length in one dimension) is still a concern. In
this paper, we perform studies on a 16-rack (16384-node) Blue Gene/L
system that demonstrates that a combination of the network topology
and the communication pattern of P3DFFT can result in early network
saturation and consequently performance loss. We also show that remap-
ping processes on nodes and rotating the mesh by taking the communi-
cation properties of P3DFFT into consideration, can help alleviate this
problem and improve performance by up to 48% in some special cases.

1 Introduction

Fast Fourier Transform (FFT) has been one of the most popular and widely
used numerical methods in many areas of scientific computing, including digital
speech and signal processing, solving partial differential equations, molecular dy-
namics [3], many-body simulations and monte carlo simulations [1,2,14]. Given
its importance, there have been a large number of libraries that provide differ-
ent implementations of FFT (both sequential and parallel) aimed at achieving
high-performance in various environments. FFTW [15], IBM PESSL [13], and
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the Intel Math Kernel Library (MKL) [9] are a few examples of such implemen-
tations. P3DFFT [6] is a recently proposed parallel implementation of 3D FFT
that is designed to allow scalability for large problem sizes on massively large
systems such as Blue Gene (BG) [16]. It aims at achieving such scalability by
limiting communication to processes in small local sub-communicators instead
of communicating with all processes in the system.

While there has been previous work that demonstrates the scalability of
P3DFFT for regular 3D cartesian meshes, where all dimensions of the mesh
are of equal length [7], its inability to achieve similar scalability for flat 3D
cartesian meshes, where one dimension is much smaller than the other two, is
a known problem [18]. Flat 3D cartesian meshes are a good tool in studying
quasi-2D systems that occur during the transition of 3D systems to 2D systems
(e.g., in superconducting condensate [17], Quantum-Hall effect [20] and turbu-
lence theory in geophysical studies [19]). Thus, such loss of scalability can be a
serious problem that needs to be addressed.

In this paper, we analyze the performance of P3DFFT for flat 3D cartesian
meshes on a large 16-rack (16384-node) Blue Gene/L (BG/L) system. Specifi-
cally, we perform detailed characterization of the communication pattern used by
P3DFFT and its behavior on the BG network topology. We observe that a com-
bination of the network topology and the communication pattern of P3DFFT
can result in parts of the communication to over-saturate the network, while
other parts under-utilize the network. This causes overall loss of performance on
large-scale systems. We also show that carefully remapping processes on nodes
and rotating the mesh by taking the communication properties of P3DFFT into
consideration can help alleviate this problem. Our experimental results demon-
strate up to 48% improvement in performance in some cases.

2 Overview of Parallel 3D FFT Techniques

FFT [8] is an efficient algorithm to compute the Discrete Fourier Transform
(DFT) and its inverse. Fourier transform consists of a forward and a backward
transform. The forward operation transforms a function f(x) in real space X to
a function F(k) in Fourier space K. The backward transform does the reverse
operation that transforms F(k) in Fourier space K to f(x) in real space X. In this
section, we will mainly discuss the forward fourier transform, but the backward
fourier transform can be similarly performed by reversing the steps in the forward
transform.

A typical 3D forward fourier transform for a real-space function f(x,y,z) can
be expressed as follows:

f(kx, ky, kz) =
∑

z

[∑
y

[∑
x

f(x, y, z) · eikxx

]
eikyy

]
eikzz (1)

The goal here is to perform a 1D fourier transform on each of the three di-
mensions of the 3D data mesh, distributed over P processes. There are two
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Fig. 1. 2D Decomposition: 1D FFT in each dimension followed by a transpose

basic approaches for doing this [11], distributed FFT and transpose-based FFT.
Distributed FFT relies on a parallel implementation of 1D-FFT, with each pro-
cess communicating the necessary data with other processes. Transpose-based
FFT, on the other hand, relies on a sequential version of 1D-FFT that performs
the transform on one dimension at a time, and transposing the data grid when
needed. There are two different transpose-based FFT strategies for 3D meshes,
which differ in their data decomposition pattern. Let us consider a data grid of
size: nx × ny × nz .

– 1D Decomposition: In the 1D data decomposition technique, the data grid is
divided across P processes such that each process gets a 2D slab of the grid
(size of nx ·ny ·nz/P ). Each process carries out a typical sequential 2D-FFT
on its local slab, and thus does not require any communication during this
operation. Once the 2D-FFT has completed, it transposes the mesh using an
MPI Alltoallv() operation. This allows it to receive data corresponding to
the third dimension, on which a 1D-FFT is applied. Thus, only one global
transpose is used in this technique. However, the drawback is that it only
scales max(nx,ny,nz) number of processes.

– 2D Decomposition: In the 2D data decomposition technique (shown in Fig-
ure 1), one face (2D) of the mesh is divided over P = Prow×Pcol pro-
cesses, so each process contains a column (pencil) of the data mesh of size
nx×(ny/Prow)×(nz/Pcol). Each process first performs a 1D-FFT along
the length of the column (say x-axis). Then it does a transpose on the remain-
ing two axes (y- and z-axis) and performs 1D-FFT on the y-axis. Finally, it
performs a transpose on the y- and z-axes and performs a 1D-FFT on the
z-axis. Two transposes are performed altogether. P3DFFT uses this strategy
as it can theoretically scale up to nx ·ny ·nz / min(nx,ny,nz) processes.

Neither of the transpose based FFT techniques allows for easy overlap of
communication and computation as the transpose where the communication
takes places has to be finished before the local 1D-FFT can be carried out.

3 Related Work

A number of implementations of Parallel 3D FFT exist. FFTW [4] has been a
popular implementation of parallel 3D FFT. While there has been prior litera-
ture [10] that identified issues with its performance and improved its scalability
to some extent, FFTW itself relies on 1D decomposition (described in Section 2)
which allows it to only scale up to a theoretical limit of max(nx,ny,nz) number
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of processes. That is, with a problem size of 40963, FFTW cannot use more
than 4096 processors. Thus, it is not ideal to use on massively parallel systems
such as BG which support hundreds of thousands of processors. P3DFFT has
recently been proposed to deal with such scalability issues and allow 3D FFT to
be effectively used on such systems.

Like P3DFFT, IBM recently proposed an alternate implementation of Parallel
3D FFT, specifically for their BG system, known as BGL3DFFT [12]. However,
BGL3DFFT has several limitations. First, it is a closed source implementation
that restricts much utility for open research. Second, owing to its lack of Fortran
support, it has not gained too much popularity in mainstream scientific comput-
ing. Third, while there is published literature that shows its scalability for small
3D grids (up to 128×128×128) [12], there is no evidence of its scalability for
larger problem sizes. Keeping the drawbacks of BGL3DFFT aside, we believe
that the problems in handling flat cartesian problems exist in the BGL3DFFT
implementation as well, and that our observations are relevant there too.

There is also previous literature that shows that P3DFFT scales reasonably
well with large regular cubical 3D meshes [7]. However, recently, Joerg Schu-
macher pointed out the importance of 3D-FFT on flat cartesian meshes where
nx = ny > nz in his crossover study from 3D to quasi-2D turbulence systems [18]
and found that 3D-FFT on flat cartesian meshes does not scale as well as regular
cartesian meshes. Our paper uses Joerg’s study as a motivation to understand
the scalability issues of P3DFFT for flat cartesian meshes.

4 Communication Overheads in P3DFFT

In this section, we first present relevant details about the BG network in Sec-
tion 4.1. We next present the communication characteristics of P3DFFT in Sec-
tion 4.3 and an analysis of network saturation caused by such communication in
Section 4.2.

4.1 BG/L Network Overview

BG/L has five different networks [5]. Two of them (1G Ethernet and 100M
Ethernet with JTAG interface) are used for file I/O and system management
while the other three (3-D Torus Network, Global Collective Network and Global
Interrupt Network) are used for MPI communication. The 3-D torus network is
used for point-to-point MPI and multicast operations and connects all compute
nodes to form a 3-D torus; thus, each node has six neighbors. Each link provides
a bandwidth of 175 MB/s per direction for a total of 1.05 GB/s bidirectional
bandwidth per node.

4.2 Analyzing Network Saturation Behavior in P3DFFT on BG/L

As described earlier, unlike regular clusters that use switched network fabrics,
the Blue Gene family of supercomputers relies on a torus network for intercon-
nectivity. Thus, each node is directly connected with only six other nodes. To
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Fig. 2. (a) Mapping the row and column communicator processes in a 2D process grid
to a 3D torus; (b) Jumpshot’s communicator view on P3DFFT’s communication

reach any other node, the message has to traverse more than one link; this leads
to network link sharing by multiple messages, leading to network saturation.

Since P3DFFT does not directly perform communication with all processes in
the system, but rather communicates only with processes in its row and column
sub-communicators, the network saturation behavior is tricky. In Figure 2(a), we
show the mapping of the processes in the row and column sub-communicators
to the physical torus on BG/L. This example considers a system size of 512 pro-
cesses, with the row sub-communicator containing 32 processes and the column
sub-communicator containing 16 processes, i.e., a 32×16 process grid. Thus, the
first row would have processes 1 to 32, the second row would have processes 33
to 64 and so on.

Note that the size of different dimensions in the BG/L torus is fixed based
on the available allocation. In this case, we pick a torus topology of 8×8×8.
Therefore, the first row of processes in the process grid (1 to 32) map to the
first four physical rows on the BG/L torus (shown as red circles in Figure 2(a)).
Similarly, the second row of processes in the process grid (33 to 64) map to the
next four physical rows (shown as pink rectangles). It is to be noted that all
processes in the row communicator are always allocated adjacent to each other.
That is, any communication within the row sub-communicator will not require
the message to go outside these four rows.

The mapping of the processes corresponding to the column communicator is,
unfortunately, more complicated than the row communicator. Processes corre-
sponding to the first column are 1, 33, 65, 97, etc. These processes are not all
topologically adjacent. In other words, as shown in Figure 2, messages travers-
ing the non-adjacent portions of the column communicator have to pass through
more links, oftentimes contending with messages from other communicators, and
can thus saturate the network significantly faster as compared to the row com-
municator.

4.3 Communication Characterization of P3DFFT

Consider a 3D data grid of size N =nx×ny×nz which needs to be solved on a
system with P processes. P3DFFT decomposes the 3D grid into a 2D processor
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mesh of size Prow×Pcol, where Prow×Pcol =P . It splits the 2D processor mesh into
two orthogonal sub-communicators—one in each dimension. Thus, each process
will be a part of a row and a column sub-communicator. As shown in Figure 2(b),
the first global transpose of the forward 3D-FFT consists of nz/Pcol iterations
of MPI Alltoallv over the row sub-communicator (the short red states), with
the message count per process-pair being mrow defined in Equation 2. The total
message count per process for the first transpose becomes nx ·ny ·nz/(Prow ·Pcol).

mrow =
nx · ny

P 2
row

=
N

nz · P 2
row

(2)

The second global transpose consists of one single iteration of MPI Alltoallv
over the column communicator (the long red states in Figure 2(b)), with message
count per process being nx · ny · nz/(Prow · Pcol), which is the same as the first
transpose. The corresponding message count per process-pair is mcol, where

mcol =
nx · ny · nz

Prow · Pcol · Pcol
=

N · Prow

P 2 (3)

The total communication cost for the two global transposes becomes:

T (nz, Prow) =
nz

Pcol
· Trow (mrow) + Tcol (mcol)

=
nz · Prow

P
· Trow

(
N

nz · P 2
row

)
+ Tcol

(
N · Prow

P 2

) (4)

where Trow() and Tcol() are functions of communication latency for the row
and column communicators. The 2D processor decomposition and the symme-
try requirement of the real-to-complex 3D-FFT together demands the following
conditions:

nz

Pcol
≥ 1,

ny

Prow
≥ 1, and

nx

Prow
≥ 2 (5)

Prow and nz are chosen as independent variables that affect the total commu-
nication time. Prow can take different values depending on how the processors
are arranged as a 2D processor mesh, while satisfying the validity conditions
presented in Equation 5. As Prow decreases, Pcol could become bigger than nz

and violates the first condition in Equation 5. However, by rotating this grid,
the values of nx and nz can be interchanged to maintain the inequality as Prow

decreases further. We will study this possibility in our experiments later.

4.4 Understanding the Trends in P3DFFT Performance

The total communication time in P3DFFT is impacted by three sets of variables:
(i) message size, (ii) communicator size and (iii) congestion in the communica-
tor topology. The first two variables (message size and communicator size) are
directly related to the Prow parameter described in Equation 4. The third param-
eter, however, depends on the physical topology of the processes present in the
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Fig. 3. MPI Alltoallv Congestion Behavior

communicator and their communication pattern, as these conditions determine
how many messages share the same link on the torus network.

P3DFFT internally uses MPI Alltoallv to transpose the data grid. For most
implementations of MPI, including the one on Blue Gene, this is implemented as
a series of point-to-point communication operations, with each process sending
and receiving data to/from every other process in the communicator. For this
communication pattern, even in a communicator where all the processes are
topologically adjacent (row communicator), the number of messages that need
to traverse the same network link in the torus network can increase quadratically.

Figure 3 illustrates this behavior. Let us consider a torus of 8 × 8 × 8 pro-
cesses. For a row communicator with only 2 processes, the two processes just
exchange data between each other. Thus, there is only one message per link in
each direction (BG/L links are bidirectional). For a row communicator with 4
processes, the exchange is more complicated with the busiest link serving up
to 4 messages in each direction. Though not represented in Figure 3, it can be
shown that the number of messages traversing the busiest link in each direc-
tion increases quadratically with increasing communicator size. The exception
to this rule is when one dimension of the torus completes. For example, for a
communicator with 8 processes, the first dimension in the torus is fully utilized;
thus, since BG/L uses a 3-D torus, this would mean that these processes can
use an extra wrap-around link along this dimension. In this case, the maximum
number of messages on the busiest link would be half the value it would have
been without this wrap-around link.

In summary, if the first dimension of the torus has a processors, for communi-
cator sizes of 1, 2, 4, ..., a/2, a, the number of messages on the busiest link would
increase as 1, 4, 16, ..., (a/4)2, (a/2)2×2, i.e., a quadratic increase in congestion
with increasing communicator size. This trend continues for the second and third
dimensions as well. Using this analysis, we can observe that a small system that
has a torus configuration of 8 × 8 × 8 would have a much smaller amount of
congestion as compared to a large system that has a torus configuration of 8 ×
32 × 16.

The top 4 graphs in Figure 5 illustrate the total bandwidth per process
achieved by MPI Alltoallv for different message sizes on a small system (P =
512). The diamonds and triangles marked on the figures show the different mes-
sage sizes (and corresponding bandwidths) that are used within P3DFFT for
data grid configurations of 512×512×128 and 128×512×512. We notice that as
long as the message size is larger than about 1 KB, both the row and column com-
municator achieve the peak bandwidth; thus, for best performance, it is preferred



Communication Analysis of Parallel 3D FFT for Flat Cartesian Meshes 357

1 8 64 512 4096
SubCommunicator_Size

0

0.01

0.02

0.03

0.04

Su
bC

om
m

un
ic

at
or

_A
sy

m
pt

ot
ic

_S
lo

pe
 / 

Su
bc

om
m

_S
iz

e

P=512
P=1024
P=2048
P=4096

Slope_of_Aspmptotic_Fit/Subcomm_Size vs Subcomm_Size

1 8 64 512 4096
SubCommunicator_Size

-150

-100

-50

0

50

100

Su
bC

om
m

un
ic

at
or

_A
sy

m
pt

ot
ic

_I
nt

er
ce

pt
 / 

Su
bc

om
m

_S
iz

e

P=512
P=1024
P=2048
P=4096

Intercept_of_Aspmptotic_Fit/Subcomm_Size vs Subcomm_Size

Fig. 4. Plots of scaled slope, S(), and intercept, I(), of asymptotic fit of the latency
of the MPI Alltoallv at P=512,1024,2048,4096. The graphs show that the slope and
intercept scales with the subcommunicator size in a meaningful way.

that a large message size be used. However, as illustrated in Equation 4, when
Prow becomes large, the message size used by the row communicator drops
quadratically. This causes it to use a very small message size for large Prow

values resulting in the network not being saturated, and consequently perfor-
mance loss. Thus, a small Prow value is preferred. For large systems (P = 4096),
the large impact of congestion, as described above, can be observed in the bot-
tom 4 graphs in Figure 5. The congestion causes a two-fold difference in the
MPI Alltoallv bandwidths achieved by the row and column communicators.

In the network saturation region, the time taken by MPI Alltoallv can be
approximated as a linear function, i.e. Tsub(msub) ≈ αsub · (r · msub) + βsub

where sub is the sub-communicator label for either row or col, and r is the
precision of the datatype that r · msub is the message size in byte. In order
to use the asymptotic function meaningfully, we investigated how the α and β
change with their corresponding sub-communicator size. The results are shown
in Figure 4. Notice that the Y-axes of both pictures are divided by the size of the
sub communicator. This is necessary to scale out the effect of the communicator
size. Four system sizes, P = 512, 1024, 2048, 4096 are plotted in the figures. They
all overlap nicely to some universal functions. The scaled slope and intercept
functions will be called S(Psub) and I(Psub) respectively. They are defined as

S (Psub) =
αsub (Psub)

Psub
and I (Psub) =

βsub (Psub)
Psub

(6)

For small systems P = 512, 1024, S(Psub) increases linearly in Psub = 1, 2, 4 and
then becomes a constant afterward. But for system P = 1024 which is similar
to P = 512, except a step jump appears from Psub = 16 to Psub = 32. For
P = 2048, S(Psub) increases linearly in Psub = 1, 2, 4, 8, and then stays as a
constant afterward. For P = 4096 which is similar to P = 2048, except with a
step jump from Psub = 32 to Psub = 64. We believe the step jumps are due to
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the sudden increase of contention as Psub’s topology changes as explained earlier
in this section.

With Equations 6, 2 and 3, Equation 4 can be simplified to

T (nz, Prow) ≈ nz

Pcol
(αrow(r · mrow) + βrow) + (αcol(r · mcol) + βcol)

=
nz

Pcol

„
αrow

Prow

rN

nzProw
+ βrow

«
+

„
αcol

Pcol

rN

P
+ βcol

«

= r

»
S (Prow) + S

„
P

Prow

«–
N

P
+ I (Prow) nz

P 2
row

P
+ I

„
P

Prow

«
P

Prow

(7)

The T (nz, Prow) is linear in nz but its dependence on Prow is rather compli-
cated. Since the behaviors of S() and I() in Psub are known from Figure 4, we
can reasonably describe how the total transpose time changes with Prow. Based
on Figure 4, S() is always positive and monotonic in Psub. For large systems
(P = 4096), S() < 0.035. For small systems (P = 512), S() < 0.007. I() is more
of less a positive constant of order O(10) except the big negative spike occurs
at Psub = 64. For the system parameters being considered here, we are mainly
interested in Prow <

√
P , each term in Equation 7 can be estimated as follows:

1st
term ∝

N

P
� P,

2nd
term ∝ nz

P 2
row

P
< nz < P,

3rd
term ∝ Pcol < P

However, all the terms in Equation 7 are made equally important by S()� I().
For simplicity, let’s ignore any terms that is O(P 2

row) or higher and consider
the small Prow limit, where S(Prow) → s0 · Prow, S(P/Prow) → S∞, and
I(P/Prow)→ I∞. Equation 7 can be approximated as:

T (nz, Prow) ≈ r [s0 · Prow + S∞]
N

P
+ I∞

P

Prow
(8)

=⇒ Pmin
row = P

√
I∞

rs0N
and T (nz, P

min
row ) ≈ rS∞

N

P
+ 2

√
rs0NI∞ (9)

Pmin
row is where the minimum of T (nz, Prow) occurs.
For N =512×512×128 and P = 512, r = 4, s0 ∼ 0.002, S∞ ∼ 0.007, I∞ ∼ 3,

then Pmin
row ∼

√
3 ∼ 1.73 and T (nz, P

min
row ) ∼ 3.5 msec. For N =2048×2048×512

and P = 4096, r = 4, s0 ∼ 0.002, S∞ ∼ 0.035, I∞ ∼ 7, then Pmin
row ∼ 2

√
7 ∼ 5.3

and T (nz, P
min
row ) ∼ 93 msec. Both predicted T (nz, P

min
row ) values are within few

percents of the actual measured experimental values.
For more accurate estimation, O(P 2

row) terms and the full features of S() and
I() are all needed. I() has a negative spike of O(102) at Prow = 64 =

√
P as

in Figure 4. The negative spike will certainly produce a local minimum of total
transpose time for N = 4096. If the flat cartesian grid is rotated to increase nz

to avoid violating the validity conditions in Equation 5, Prow can get a lot closer
to 1. Also, the discrete jumps seen in S() in Figure 4 could be reflected in the
observed total trasnpose time as sudden jump seen in the corresponding S().
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5 Experimental Evaluation and Analysis

In this section, we experimentally evaluate the P3DFFT library using a fortran
physics program1 that uses a flat cartesian mesh. Specifically, in this program,
some of the variables only have x- and y-components, but no z-component. This
means that the physical system emulated by this program is a quasi-2D system
with preferential treatment in the z-axis. Therefore, our analysis of total commu-
nication time with respect to change in Prow in Equation 7 is applicable to this
program, but not the communication analysis with respect to change in nz. This
is because the variation in Prow and Pcol affects only the MPI Alltoallv used
in the two global transposes employed by the 3D-FFT which is being applied
uniformly to all variables. In order words, the variation of the fortran program
with respect to Prow is equivalent to the variation of 3D-FFT algorithm. But the
variation of the fortran program with respect to nz includes both the variation
of the 3D-FFT algorithm and the special asymmetric treatment of the z-axis in
the phyical problem. In Section 5.1, we first observe the communication behavior
for a small half-rack (512-node) system and verify our analysis. Then, in Sec-
tion 5.2, we utilize this understanding to evaluate and optimize the performance
of P3DFFT for a large-scale system.

5.1 Communication Analysis on a Small-Scale System

In this section, a small BG/L system of 512 nodes is used to study the behavior
of P3DFFT. These 512 nodes form a regular torus of 8×8×8 dimensions. We
ran our fortran program that uses the P3DFFT library with various data grid
configurations on different processor mesh arrangements. Table 1 presents the
timing data from this run.

Table 1. Timing of the fortran P3DFFT program (in second) with P =512 (8×8×8
torus). P: Processor mesh configuration. N: FFT data grid configuration.

P \ N 256×256×64 64×256×256 512×512×128 128×512×512
8×64 1.294 1.37 9.08 9.98
16×32 1.276 1.65 9.08 10.73
32×16 1.41 2.34 9.62 11.86
64×8 1.74 10.66 15.01

Four data grid configurations (256×256×64, 64×25×256, 512×512×128
and 128×512×512), and four different processor mesh decompositions (8×64,
16×32, 32×16 and 64×8), were attempted on the 512-node system. In Table 1,
we can see that the best timing for each data grid configuration occurs at the
processor-mesh with the shortest row dimension, i.e., shortest Prow. Also, we
see that the fortran program is taking longer to finish as Prow increases. Both
features are consistent with our findings with Equation 8 in the last section.
1 The program, provided by Joerg Schumacher, has been modified for our benchmark-

ing purpose.
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5.2 Evaluation on a Large-Scale System

In this section, we evaluate the performance of P3DFFT on a large-scale (16-
rack or 16384-node) BG/L system. Specifically, we evaluated the performance
of a 2048×2048×512 data grid, with different processor-mesh configurations, on
4 racks (4096 nodes), 8 racks (8192 nodes) and 16 racks (16384 nodes). For the
4-rack system, we also tried out two different torus topologies (16×32×16 and
16×16×16). Further, we also study the impact of rotating the data grid.

Tables 7, 6, 4 and 3 show the performance results for the different system sizes
and configurations with our fortran test program. All these results indicate that
the best performance occurs at the smallest Prow and largest nz, i.e. rotated data
grid, shown in the tables, when the number of processors P and the problem size
N (FFT data grid size) are fixed. The small Prow giving the best performance
is consistent with our findings of Equation 8. The best performance occuring
at largest nz for fixed problem size N is more a feature of the physics problem
being solved in the fortran program and not a feature of P3DFFT as explained
in the beginning of section 5.

Tables 4 and 3 show the performance numbers of the fortran with the same
problem sizes (2048×2048×512 and 512×2048×2048) and the same number of nodes
(4096 nodes). The only difference between these two tables is that the different
torus configurations are used. Table 4 is evaluated on a 8×32×16 torus, while
Table 3 is evaluated on a 16×16×16 torus. The fastest performance at 64×64 can
be explained by the big negative spike of I() seen in Figure 4 and Equation 7. We
notice that for the processor-mesh, 64×64, P3DFFT is 10% faster in the 16×16×16
torus as compared to the 8×32×16 torus. The reason for this behavior is the
layout of the column communicator as described in Section 4.2. Specifically, in
the 8×32×16 torus configuration, each row (64 processes) takes up eight physical
rows on the torus. Thus, the processes in the column communicator can be up
to 8 rows apart. On the other hand, in the 16×16×16 torus configuration, each
row takes up only four rows, thus reducing the distance between the processes
in the column communicator and consequently improving their performance.

Next, let us consider Table 6 that shows the performance for 8192 processors.
If we notice the 2048×2048×512 FFT data grid configuration, we see that in this
case, the smallest value of Prow (16×512 configuration) does not provide the best

Table 2. Timing from fortran P3DFFT program (in second) with one processor size
4096 but different torus configurations. P: Processor mesh configuration. N: FFT data
grid configuration.

Table 3. P = 4096 (16×16×16 torus)

P \ N 2048×2048×512 512×2048×2048
16×256 185.9 151.2
64×64 179.2
256×16 194.1

Table 4. P = 4096 (8×32×16 torus)

P \ N 2048×2048×512 512×2048×2048
8×512 215.2 181.36
32×128 218.4 190.4
64×64 201.7 179.3
128×32 198.2 194.4
512×8 239.1
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Table 5. Timing from fortran P3DFFT program (in second) with two different pro-
cessor sizes, 8192 and 16384. P: Processor mesh configuration. N: FFT data grid con-
figuration.

Table 6. P = 8192 (16×32×16 torus)

P \ N 2048×2048×512 512×2048×2048
16×512 146.5 113.1
64×128 142.5 115.3
128×64 144.3 125.7
512×16 165.0

Table 7. P = 16384 (32×32×16 torus)

P \ N 2048×2048×512 512×2048×2048
16×1024 79.6
32×512 117.9 84.4
128×128 118.1 91.1
512×32 128.2
1024×16 160.1

performance. Instead, 64×128 provides a better performance. This again can be
explained by the big negative spike of I() seen in Figure 4 and Equation 7. This
suggests 8192 processor configuration is similar to the non-cubical torus 4096
processor configuration discussed earlier in Equation 8 with the existence of at
least two optimal configurations. Comparing the performance impact of the data
grid rotation from the 2048×2048×512 configuration to the 512×2048×2048
configuration, we notice that the performance improves by about 26%. Not all
the improvement is from the communication time.

The final result we present is for the large 16-rack (16384-node) system. We
notice that this case is a little different from the 4-rack (4096-node) and the
8-rack (8192-node) results where two optimal configurations can be obtained.
However, the overall performance is still consistent with the other results. That
is, performance improves with decreasing Prow and with increasing nz. Specifi-
cally, reducing Prow can improve performance by about 15% as compared to the
default 128×128 processor mesh configuration. Increasing nz, on the other hand,
can improve performance by close to 48%.

Based on all the experimental results, we notice that there could be multiple
optimal system configurations, two possible ones are 1) small Prow in rotated
data grid with larger nz. 2) Prow �

√
P in the regular data grid with smaller

nz. The later optimal configuration may not exist in all system sizes and config-
urations. But the first optimal configuration seems to always exist. Rotating the
FFT data grid furthers the path of performance improvements that have been
stopped by Equation 5. This indicates that as we move to even larger problem
sizes, the lessons learnt in this paper will have increasingly higher importance.

6 Concluding Remarks and Future Work

P3DFFT is a recently proposed implementation of parallel 3D FFT for large-
scale systems such as IBM Blue Gene. While there have been a lot of studies that
demonstrate the scalability of P3DFFT on regular cartesian meshes (where all
dimensions are equal in length), there seems to be no previous work that studies
its scalability for flat cartesian meshes (where the length of one dimension is
much smaller than the rest). In this paper we studied the performance and
scalability of P3DFFT for flat cartesian meshes on a 16-rack (16384-node) Blue
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Gene system and demonstrated that a combination of the network topology and
the communication pattern of P3DFFT can result in parts of the communication
to over-saturate the network, while other parts under-utilize the network. This
can cause overall loss of performance on large-scale systems. We further showed
that remapping processes on nodes and rotating the FFT data grid by taking
the communication properties of P3DFFT into consideration, can help alleviate
this problem and improve performance by up to 48% in some cases.

While our work alleviates the issue of network saturation, it does not com-
pletely avoid it. For future work, we would like to further the study of alleviation
of network contention by rotating the torus configuration through environment
variable BG MAPPING which allows user to rearrange process layout in the torus,
and we would also like to study the impact of split-collectives to hide communi-
cation time that can be aggravated due to such saturation.
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Abstract. Scaling the number of cores in a multi-core processor con-
straints the resources available in each core, resulting in reduced per-
core performance. Alternatively, the number of cores have to be reduced
in order to improve per-core performance. In this paper, we propose a
technique to improve the per-core performance in a many-core proces-
sor without reducing the number of cores. In particular, we integrate a
Reconfigurable Hardware Unit (RHU) in each core. The RHU executes
the frequently encountered instructions to increase the core’s overall ex-
ecution bandwidth, thus improving its performance. We also propose a
novel integrated hardware/software methodology for efficient RHU re-
configuration. The RHU has low area overhead, and hence has minimal
impact on the scalability of the multi-core. Our experiments show that
the proposed architecture improves the per-core performance by an av-
erage of about 12% across a wide range of applications, while incurring
a per-core area overhead of only about 5%.

1 Introduction

Recently, there has been a major shift in the microprocessor industry towards
multi-core processors. Multi-core processors have considerably fewer resources
available in each core. For instance, in going from a 6-way issue single core
superscalar processor to a quad-core processor, the issue width in each core has
to be reduced to two to keep the same die area [24]. The per-core resources are
reduced to be able to integrate more number of cores on a single chip. A 56-entry
issue queue on a four-way issue PA-8000 processor takes up about 20% of the
die area [22]. It is obvious that a similar sized scheduler cannot be integrated in
each core of a multi-core processor with large number of cores.

Fewer per-core resources degrades the performance of each thread of execu-
tion [12]. Scaling the number of cores on a chip may further reduce the per-core
resources. Increasing the number of cores also exacerbates the reduction in re-
sources by increasing die area required for peripheral hardware such as inter-
connects [20]. Hence, it may be argued that in a typical multi-core processor,
the design choice is between increasing the number of cores with poor per-core

P. Sadayappan et al. (Eds.): HiPC 2008, LNCS 5374, pp. 365–377, 2008.
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performance and having a good per-core performance but with fewer cores on
the chip.

In this paper, we propose a multi-core architecture that improves the per-
formance of the resource-constrained cores of multi-cores with large number of
cores, while maintaining the scalability of the number of cores. The per-core per-
formance is improved by integrating an off-the-critical path reconfigurable hard-
ware unit (RHU) in its datapath. The RHU operates entirely asynchronously
with the core’s datapath and is reconfigured to execute the frequently executed
traces of instructions. These trace instructions do not consume the core’s re-
sources, which are then available to other instructions, effectively increasing the
per-core resources, and hence the per-core performance. The proposed RHU
structure also has only a small area overhead, and hence only a small impact on
the scalability of the number of cores.

We also propose a novel methodology for run-time RHU reconfiguration, in
which RHU reconfiguration bits are generated using a hardware/software co-
design and are divided into reconfiguration instructions. The reconfiguration bits
are generated at run-time to avoid recompilation of legacy code. Our experiments
show that per-core performance improves by about 12% across a wide variety of
applications. The area overhead to achieve the improvement is about 5% per core.

2 Multi-core Design

2.1 Basic Idea

Each core in a multi-core has an integrated RHU that is reconfigured to execute
frequently executed instructions from the thread executing on the core. Once
a RHU is reconfigured for a trace of instructions, those instructions are only
executed on the RHU and not on the core’s original datapath, thus effectively
increasing the resources for other instructions. On an exception or a branch mis-
prediction from within the trace, the execution is restarted from the start of
the trace and is performed entirely on the core’s original datapath. The RHU is
reconfigured through dynamically generated reconfiguration bits organized into
chunks of 32-bits, called reconfiguration instructions. We assume 32-bit long in-
structions in our architecture. The proposed architecture also supports static
(compile-time) reconfiguration instruction generation by making these instruc-
tions visible in the external ISA. Each reconfiguration instruction consists of a
specialized operation code (opcode) followed by reconfiguration bits.

2.2 Core Microarchitecture

Different instructions are simultaneously executed on the RHU and the core’s
original datapath. We call the original instructions (not the reconfiguration in-
structions) that are part of a trace executed on the RHU as RHU-instructions
(RIs) and those executed on the core’s original datapath as Proc-instructions
(PIs). The results of RIs consumed by PIs are defined as live-outs, and those
of PIs consumed by RIs are defined as live-ins. To maximize the benefit of the
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Fig. 1. Schematic diagram of the core datapath

RHU and to keep the architecture simple, RIs are selected from within the in-
nermost loops in the applications; starting from the first instruction in the loop
and forming a trace of contiguous instructions. Figure 1 shows the schematic
diagram of the core datapath.

The trace detection logic detects traces of frequently executing instructions.
Once a trace is detected, reconfiguration instructions are generated for it, as
discussed later. To limit area overhead, we store the reconfiguration instructions
in the thread’s address space, at the end of its code section. When the start
of a trace is detected in the fetch stage, its reconfiguration instructions are
fetched instead of the original instructions. The reconfiguration instructions are
decoded and the RHU is reconfigured using the reconfiguration bits. After the
trace reconfiguration instructions are over, the fetch continues from the original
instruction following the last instruction in the trace.

RHU Structure: To keep the RHU structure simple, only integer ALU oper-
ations are performed on the RHU. The most intuitive RHU structure is a two-
dimensional array of interconnected ALUs. This RHU structure exploits ILP and
is also able to execute strings of dependent instructions. We use a non-clocked
RHU, i.e. the RHU is just a combinational logic. A non-clocked RHU reduces the
RHU complexity, the RHU power consumption, and the overall live-in to live-out
latency of the RHU. To drastically reduce the RHU-interconnect complexity, an
ALU’s output is forwarded only to the left operand of four ALUs in the next
row. This also ensures a FO4 delay for each ALU output. The number of live-ins
and live-outs per row are also limited to further reduce the RHU-complexity.

Communication between RHU and core datapath: Our approach uses a
pseudo instruction – move to rhu: mtrhu Rs, Rt, en1, en2 – to forward the live-in
values to the RHU. This instruction is executed on the core’s original datapath.
When an mtrhu instruction issues, it forwards the two source registers (Rs and
Rt), and en1 and en2 to the RHU, as shown in Figure 1. The Rs and Rt values
are latched in the live-in latches specified by en1 and en2. Once a live-in value
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Fig. 2. An example illustrating: (a) Trace of RIs along with the associated mappings,
mtrhu instructions, and dependent PIs (b) Trace layout on a 4x4 RHU

is latched, it is not overwritten in the execution of that instance of the trace on
the RHU.

The live-outs from the RHU are also numbered. PIs dependent on RIs are re-
named to the appropriate live-out numbers. The live-out values are directly for-
warded into the functional units using the live-out muxes, as shown in Figure 1.
Figure 2(a) shows an example of a trace of RIs along with the live-out registers
to live-out numbers mapping (this mapping is also a part of the reconfiguration
instructions), the mtrhu instructions, and the renaming of the dependent PIs.
This example is taken from the applu Spec2K benchmark. Figure 2(b) shows
an example of a trace mapped on a 4x4 RHU, using a simple trace formation
technique discussed later.

To wakeup PIs dependent on live-outs, each entry in the issue queue CAM
portion is provided with live-out bits, equal to the maximum number of live-
outs, as is shown in Figure 1. The live-out bits for live-outs required by a PI are
set at dispatch, if those live-outs are not available. A ready bit is propagated in
the RHU from all live-in values along all the datapaths in the RHU. Each live-
out ready bit from the RHU resets the corresponding live-out bit in the CAM
entries; the operand becomes ready when all live-out bits are reset.

Trace Detection: The trace detection logic records the most recently encoun-
tered backward branching instruction, and the outcome bits of a few following
branches to detect innermost loops. When a frequently executed trace is de-
tected from within an innermost loop, following actions are taken for the trace:
(i) if it is already mapped onto the RHU or generation of its reconfiguration in-
structions is pending, nothing is done, (ii) if its reconfiguration instructions are
already generated, they are mapped onto the RHU, and (iii) if it is an entirely
new trace, its reconfiguration instructions are generated.

RHU Reconfiguration and Trace Execution: To generate longer traces,
trace formation continues beyond instructions that cannot be executed on the
RHU, such as complex integer and floating-point instructions, and halts when a
RI candidate cannot be mapped on the RHU. The intermediate PIs are included
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as part of the reconfiguration instructions. Load and store instructions are also
executed as PIs to simplify the memory disambiguation. Figure 3 shows a trace
consisting of the reconfiguration instructions and the intermediate PIs. The next
PC is the address of the PI immediately following the end of the trace. The in-
structions for reconfiguring the RHU are executed only the first time the RHU is
reconfigured for a trace. The rest of the reconfiguration instructions are required
every time the trace is executed. Hence, two memory addresses – starting and
repeating – are stored for each trace as shown in Figure 3.

In our implementation, we store the three most recently encountered traces;
a new trace replaces the least recently used trace. We found that storing more
traces did not give any noticeable improvement. The traces are stored at the
end of the code section for the thread, as shown in Figure 3. An additional 3-
entry trace address buffer is also provided to maintain the status of the traces.
Every backward branching instruction’s target is compared with the start PC of
the traces in the trace buffer, and the execution is accordingly directed. On an
exception or branch misprediction from within the trace, the execution restarts
from the start of the trace, using original instructions, and is performed entirely
on the core’s datapath. It is important to note that the RHU cannot be reused
before the current instance of the trace mapped on it commits.

2.3 Reconfiguration Instructions Generation

Performance overhead of exclusive software mechanisms to generate reconfigura-
tion instructions is high, while area overhead of exclusive hardware mechanisms
is high. In this paper, we explore an integrated hardware/software mechanism for
reconfiguration instructions generation, where the reconfiguration bits are gen-
erated in hardware and then converted into reconfiguration instructions using
an embedded software.

The reconfiguration instruction generation hardware includes the trace buffer.
The trace instructions are fetched, decoded, and forwarded only to the trace
buffer. The thread is not context-switched out of the core, and its instructions
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already in the pipeline continue to execute. The trace buffer hardware (shown in
Figure 4) has two buffers, instruction buffer to store the instruction information
and row buffer to store the availability of live-ins, live-outs, and slots in the RHU
rows. We observed that a 30-entry instruction buffer, requiring about 195 bytes,
is sufficient to form the traces for a RHU with 36 instruction slots. The row buffer
requires about 6-12 bytes depending on the number of live-ins and live-outs per
row. Additional logic is also needed to control the trace buffer operations, as
discussed later in this section. To optimize the hardware for reconfiguration bits
generation, only one instruction is fetched and analyzed at a time.

Reconfiguration Bits Generation: The RHU reconfiguration bits are gen-
erated in two phases as shown in Figure 5. In phase 1, the trace buffer entries
are filled for each instruction. In parallel, the dependencies are resolved by com-
paring the operands and destinations of instructions. In this phase, the rows
and columns are also allocated to instructions depending on the availability of
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operands. If an instruction cannot be assigned a row, its entry is invalidated and
phase 1 is halted. Phase 1 for each instruction requires 3 cycles. Phase 2 starts af-
ter phase 1 and operates only on the instructions in the instruction buffer. Phase
2 has a forward pass(Figure 5(b)) and a reverse pass (Figure 5(c)) through the
instruction buffer. In the forward pass, the live-outs are determined. If a live-out
port is not available, then the forward pass is halted. The forward pass of phase
2 requires three cycles per instruction.

The reverse pass is used to remove any live-out violations in the forward pass.
It invalidates the last valid entry in the instruction buffer, and attempts to restart
the forward pass after every invalidation. If the forward pass is restarted, then
reverse pass is halted and the forward pass is continued till another violation is
encountered, and the process goes on. The reverse pass requires four cycles per
instruction.

Reconfiguration Instructions Generation: Once phase 2 completes, embed-
ded software (part of the operating system) instructions are fetched and executed
to form the reconfiguration instructions. The embedded software reads each in-
struction buffer entry and generates the reconfiguration instructions. Since the
embedded software is initiated by the hardware, switching to the supervisor mode
may not be required. We use a specialized load instruction – ldib Rs immediate
– in the embedded software to directly access the data in the instruction buffer.
The immediate value specifies the instruction buffer entry to be read. The em-
bedded software instructions are executed in-order when the all in-flight thread
instructions have committed. These instructions use only the speculative regis-
ter file; they do not update the architectural register files, as shown in Figure
1. These instructions do not access the memory as well. Hence, the context of
the thread is intact in the core. The embedded software loads the instruction
buffer entries into the core’s registers. Shift and compare operations are then
performed on these registers to extract the reconfiguration bits for each row.
The extracted reconfiguration bits are shifted into one of the registers to form
reconfiguration instructions.

3 Experimental Results

3.1 Experimental Setup

We experiment with a quad-core processor. In this paper, we experiment with
non-data-sharing threads scheduled on the cores. The hardware features and
default parameters of each core are given in Table 1. The per-core resources
are constrained to depict a core in a multi-core processor with large number
of cores, and are similar to those in the current multi-core implementations.
For benchmarks, we use a collection of Spec2K and MiBench [11] benchmarks.
The statistics are collected for 200M instructions after skipping 1B instructions
for Spec2K benchmarks and 50M instructions for the rest. For better legibility,
we present the individual results of a representative set of nine benchmarks
(art, equake, mesa, mgrid, vpr, sha, susan, CRC32, and FFT). We evaluate the



372 T. Suri and A. Aggarwal

Table 1. Experimental parameters for each core

Parameter Value Parameter Value

Commit Width 4 instr. Instr. Window Size 8 Int/8 Mem/16 FP
ROB Size 96 instr. Issue Width 1 Int/1 Mem/2 FP

Spec. Register File 48 Int/48 FP, Int. FUs 1 ALU, 1 Mul/Div, 1 AGU
Load/store buffer 40 entries FP FUs 2 ALU, 1 Mul/Div
Branch Predictor gshare L2 - cache unified 2M,

4K entries (shared by 4-cores) 8-way assoc
20 cycles

L1 - I-cache 16K L1 - D-cache 16K
direct-mapped 4-way assoc.

1 cycle 64 bytes block, 1 cycle

performance of each benchmark after averaging its performance with different
combinations of benchmarks running on the four cores. We assume the delay in
each RHU row to be equal to one CPU clock cycle.

3.2 Area Results

We integrated a 4x9 RHU with one SUN T1 OpenSource core [25] of an eight-
core processor, to get the area requirement. The design was synthesized using
Synopsys Design Compiler using a TSMC 90nm Standard cell library [31], and
was placed and routed using Cadence SoC Encounter. After integrating the
additional hardware, the core area increased by about 5%. Figure 6(a) shows
the die image of the modified core.

The per core resources of the SUN T1 Opensource core may not exactly match
the per core parameters given in Table 1. However, integration of the additional
hardware into the SUN T1 core gives a reasonably accurate measure of the
per-core area overhead of our approach in an eight-core processor. The RHU
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is placed close to the functional and the load/store units as the RHU interacts
with them, whereas the reconfiguration bits generation hardware is placed close
to the fetch/decode and the functional units.

3.3 Trace Results

We observed that two live-ins and two live-outs per intermediate row are enough
to form maximum-sized traces. Row one is provided with nine live-ins and one
live-out is extracted from each ALU in the last row. Our experiments showed that
the average trace sizes were considerably smaller than the maximum possible 36
instructions for the 6x6 RHU. The traces were small primarily because they were
terminated due to column unavailability, i.e. an instruction had to be placed in
a row, but no free slots were available in that row. Hence, we also explored 5x7
and 4x9 RHUs that provide more columns than rows, while requiring almost the
same number of ALUs as 6x6 RHU.

Figure 6(b) compares the trace sizes for 6x6, 5x7, and 4x9 RHUs. The 5x7
and 4x9 RHUs have significantly larger traces than the 6x6 RHU. The 4x9 RHU
performs the best with an overall average trace size of about 15 instructions.

We also studied the reasons for trace termination on the best performing 4x9
RHU; the detailed results are not shown to conserve space. We observed that the
traces were mostly terminated because of two reasons: column unavailability in
the top two rows, and row unavailability, where a dependent needs to be placed
beyond the last row. This suggests that more columns are required in the top
two rows. To further increase the trace sizes, we investigate an asymmetrical
RHU structure – AsymmRHU – for the 36 ALUs. AsymmRHU is provided 11
columns in the first and second rows, six columns in the third row, five columns
in the fourth row, and three columns in a fifth row. A fifth row is added to
reduce the trace terminations due to row unavailability. The live-ins and live-
outs per intermediate row are kept at two. All the ALUs in rows four and five
are provided with live-outs. In AsymmRHU, each ALU output is still forwarded
to atmost four ALU-inputs in the next row. Figure 7(a) compares the trace sizes
of AsymmRHU with the 4x9 RHU. The trace sizes increase with AsymmRHU,
with the overall average reaching almost 16 instructions.

RHU Coverage: We observed that the RIs formed about 17% fraction of the
overall instructions executed for the 4x9 RHU, and about 21% for AsymmRHU.
The percentage of instructions executed as RIs depends on the size of the inner-
most loops and the percentage of the total instructions in the application that
lay within the inner-most loops.

3.4 Performance Results

Next, we present the performance (IPC) improvement of RHU-cores, with 6x6
RHU, 4x9 RHU, and AsymmRHU, over the base core. The IPC speedup is shown
in Figure 7(b). Figure 7(b) also shows the IPC speedup of cores with double-
sized integer scheduler. A double-sized scheduler doubles the issue queue size and
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issue width of the base case shown in Table 1. The number of functional units
are accordingly increased. Doubling the schedulers for better performance may
have much higher impact on the scalability than our approach because of the
increased scheduler size and additional functional units, forwarding paths and
register file ports. The maximum average IPC speedup of about 12% is obtained
with AsymmRHU. The 4x9 RHU achieves about 10% IPC speedup.

Interestingly, our approach performs significantly better than the double-sized
scheduler configuration for art, mgrid, and sha. This is because the double-sized
scheduler is still limited by other resources such as the fetch width, registers, etc.,
the pressure on which is somewhat relieved by the RHU. Additionally, when
instructions are executing on the RHU, the effective issue queue size and issue
width may more than double during that time. Still, the average performance of
AsymmRHU is about 5% lower than the double-sized scheduler.

Our experiments showed an average of about 2 million cycles between suc-
cessive reconfiguration instruction generation and an average of about 800,000
cycles between successive RHU reconfigurations. Hence, the overhead of our ap-
proach is minimal. The performance results in Figure 7(b) include the overhead
of generating and executing the reconfiguration instructions.

4 Related Work

Previous studies integrate FPGA modules with a processor to improve perfor-
mance. PRISM [1], Spyder [16], Piperench [5], and Garp [4] use a loosely coupled
FPGA as a co-processor. Similar co-processor based proposals [18], [23], [32], [28],
[30], [34] target application specific architectures.

Chimaera [13], PRISC [26], and OneChip [33] integrate the FPGA as a func-
tional unit (RFU) in the processor datapath with direct access to the proces-
sor register file. The compiler statically generates the RFU instructions and
FPGA reconfiguration bit-streams, which are used to dynamically reconfigure
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the FPGA. FPGAs have high area overhead, are considerably slower, and have
higher energy consumption as compared to the ICs. Furthermore, FPGAs in-
cur extensive overhead in generating and communicating the huge bit-streams
required for reconfiguring them.

Other approaches execute aggregated instructions on custom functional units,
for instance, [14], [15], [17], [19] fuse x86 micro-op pairs. These approaches tar-
get pairs of ALU instructions. Dynamic strands [29] extend beyond pair-wise
aggregation still targeting Integer ALU instructions. The authors in [2], [3], [9]
fuse a dependence chain to form a special instruction, which is then executed on
non-reconfigurable custom functional unit.

Clark et al. [8] propose a restrictive reconfigurable custom compute accel-
erator (CCA) that has a maximum of four inputs and two outputs, executing
subgraphs of a small number of instructions terminating at branch and memory
instructions. The authors acknowledge the performance limitations of terminat-
ing at branch and memory instructions in [6], a restriction not present in our
approach. Hence, in [6], they also propose execution of more arbitrary acyclic
sub graphs that cross branch boundaries and include memory instructions. This
approach requires store-load collapsing within the sub-graph, and is targeted for
single-issue in-order embedded processors.

Commit time trace formation has also been proposed to improve the fetch
bandwidth and perform dynamic optimizations in superscalar processors [10].
However, the reconfiguration instruction generation in our approach is signifi-
cantly different from the trace formations for superscalar processors.

5 Conclusion

In a multi-core processor, scalability of the number of cores and per-core per-
formance conflict one another. In this paper, we explore an architecture that
improves per-core performance, with minimal impact on area. In the architec-
ture, the cores have integrated reconfigurable hardware unit (RHU) to improve
their performance. We propose innovative mechanisms to integrate the RHU
in the core’s datapath, to generate reconfiguration instructions using a hard-
ware/software co-design, and to reconfigure the RHU. The proposed architecture
improves the average per-core performance by about 12% with about 5% area
overhead.
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Abstract. Trust management is very important for participating users
to assess trustworthiness of peers and identify misbehaving peers in
the open P2P environment. In this paper, we present TrustCode, a
framework for P2P reputation-based trust management. Leveraging ran-
dom network coding, TrustCode spreads coded feedbacks massively
among peers, thereby achieving bandwidth-efficient dissemination, en-
suring data availability, and yielding efficient feedback retrieval. Our sim-
ulations show that TrustCode is resilient to failures and robust against
malicious nodes. To exhibit applicability of TrustCode, we also present
two applications that can be built on top of TrustCode.

1 Introduction

While P2P systems have become an appealing platform to build a wide range
of large-scale distributed applications (e.g., file sharing, content delivery, multi-
media streaming), the open and anonymous nature of P2P systems opens the
door to possible misuses and abuses of the overlay network by selfish, dishonest
and malicious peers. For instance, malicious peers exploit the Gnutella overlay
to spread tampered with information such as unauthenticated files and mal-
wares (i.e., Trojan horses and viruses). Thus, reputation-based trust manage-
ment, which builds trust by utilizing community-based feedbacks about past
experiences of peers, has been proposed to suppress peer misbehaving, enabling
peers to gauge trustworthiness of others and to selectively interact with more
reputable ones.

Challenges for P2P reputation-based trust management include feedback ex-
pression, computation of trust, and storage and dissemination of trust data.
Prior work [1,2,3] has well addressed the first two challenges, if not perfectly. In
this paper, we focus our work on the last challenge. That is, we aim to provide ef-
ficient and robust trust data management in the P2P network where node churn
is the norm and malicious peers are present. Current solutions are either central-
ized or distributed. Centralized solutions like eBay and Amazon, using a central
server to store user feedbacks and compute user reputation, while simple, pose

P. Sadayappan et al. (Eds.): HiPC 2008, LNCS 5374, pp. 378–389, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



TrustCode: P2P Reputation-Based Trust Management 379

the problem of scalability. Prior work [1,2,3] stores (or aggregates distributed)
feedbacks and computes a global trust value for each peer over P2P overlays
like DHTs [4,5,6], through the notion of trust manager or score manager. For
example, a trust manager for a peer i is the peer node that is responsible for the
hash of i’s ID. To compute the column trust vector for peers, the trust managers
collaborate to aggregate distributed feedbacks and repeatedly compute the trust
vector until it converges.

However, the distributed solutions have some limitations: (1) A misbehaving
trust manager or peer storing feedbacks could intentionally ignores/drops some
feedbacks, resulting in a “distorted” trust vector. (2) Malicious nodes could
launch attacks against the trust manager or the node storing the feedbacks for
the specific peer, attempting to discredit the peer or simply void the peer’s
reputation. (3) The number of trust managers is proportional to the number
of peers in the large-scale system since the hashes of each peer’s IDs are very
likely uniformly distributed over the DHT. Consequently, computation of the
trust vector incurs high message overhead among trust managers. Worse, if the
feedbacks for a peer are stored in a different node other than its trust manager,
the feedback retrieval traffic is massive. (4) Node churn could make unavailable
the trust manager for a peer or the node storing the peer’s feedbacks, resulting
in unavailability of trust information and failure of trust computation. Although
replication (e.g., by using multiple trust managers or feedback storage nodes
for each peer) is able to alleviate the problem, the problem of ensuring data
availability in the presence of node churn itself is still nontrivial in the P2P
environment [7,8]. (5) The trust manager or the node storing the feedbacks of
a popular peer (which provided a high amount of services to others) may be
overburdened, incurring load imbalance.

With these research problems in mind, we propose a P2P reputation-based
trust management framework called TrustCode, which addresses the issue of dis-
semination, storage, and retrieval of feedbacks in the P2P network. TrustCode
has three main design goals. First, availability of trust data is emphasized be-
cause a complete set of feedbacks is key to computation of the trust vector that
closely characterizes the peers’ reputation, while node churn and presence of
malicious nodes in the P2P environment are very likely to make some feedbacks
unavailable. Second, retrieval of feedbacks for trust computation needs to be
efficient by contacting only a small number of nodes if the feedbacks cannot
be found locally on the computing node. Finally, the dissemination of feedbacks
needs to be efficient and robust against node/link failures and node misbehavior;
in the meantime, it needs to ensure data availability and facilitate the retrieval
of feedbacks for trust computation.

To meet the goals, TrustCode exploits random network coding [9] to dissemi-
nate feedbacks over the underlying overlay network. In particular, we make the
following contributions: (1) To the best of our knowledge, TrustCode is the first
to exploit network coding in P2P trust management. By using network cod-
ing, TrustCode makes feedback dissemination bandwidth-efficient and resilient
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to failures. With massive distribution of coded trust information, TrustCode
improves data availability and facilitates retrieval of feedbacks for trust compu-
tation. (2) TrustCode is independent of feedback expression, trust computation
models, and overlay structures. It can be easily adapted to any reputation-based
system as the trust information management layer. Our simulations show Trust-
Code has good performance in terms of dissemination speed, bandwidth cost,
feedback retrieval, data availability, and failure resilience. (3) We present exam-
ple applications that can be built on top of TrustCode, exhibiting applicability
of TrustCode.

The remainder of the paper is structured as follows. Section 2 provides back-
ground on network coding and review of related work. We discuss TrustCode’s
design and its two applications in Section 3. Section 4 provides experimental
setup and results. We conclude the paper in Section 5.

2 Background and Related Work

Background: Network Coding. Network coding [10] was first proposed to
improve multicast session throughput. It allows an intermediate node to create
outgoing packets by encoding its received packets instead of simply repeating
the received packets. With random network coding [9], the encoding generates a
new coded packet by the linear combination of the received packets over a Galois
field GF (2s) (s with a typical value of 8 or 16), where coefficients are randomly
chosen, and addition and multiplication are performed over the Galois field. Lin-
ear combination is not concatenation: the resulting encoded packet is of length
of L if it is combined from a set of packets of length L. A receiver which wants
to receive all the original packets, needs to receive a sufficient number of coded
packets, and then performs Gaussian elimination over a matrix constructed from
the coefficients and data blocks contained in each received encoded packet, to
decode the original packets. The most compelling benefits of network coding are
bandwidth efficiency, data dissemination simplicity, and failure resilience. Due
to space constraints, please refer to [11] for more detail on network coding.

Related Work. Aberer et al. [12] proposed storing complaints as trust data
in a P2P overlay P-Gid, and using replication to handle malicious nodes. In
P2Prep [13], each peer aggregates others’ opinions about a servant by flooding
requests across the network for votes, and computes a reputation value for the
servant by considering votes and credibility of the voters. Prior proposals such
as EigenTrust [1], PeerTrust [2], and PowerTrust [3], are similar in the sense
that they all compute a global trust vector iteratively by taking into account
both feedbacks and credibility of feedback sources. Trust data are stored (and
replicated) into peer nodes by the use of the underlying DHT data location
mechanism. As mentioned earlier, such trust management is vulnerable to node
failures and misbehavior. TrustCode differs from the prior proposals in that
it exploits random network coding to disseminate coded feedbacks and stores
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them massively among peers. TrustCode and the prior proposals complement
each other. TrustCode can provide a robust trust data management layer for the
prior proposals to access the data and compute the trust vector.

3 System Design

3.1 Overview

TrustCode disseminates feedbacks across the overlay network using random net-
work coding, which increases diversity of coded feedbacks among nodes and
improves resilience to failures during dissemination, while achieving bandwidth
efficiency. Leveraging slack storage capacity of peers, TrustCode spreads coded
feedbacks massively among peers to provide data availability guarantee in the
presence of node churn and malicious nodes; in the meanwhile, TrustCode is very
efficient in retrieval of feedbacks for trust computation by contacting only a small
number of nodes. While informed feedback dissemination is a plausible alterna-
tive 1, it requires coordination among nodes by exchanging information to make
informed decisions. Leveraging network coding, TrustCode does not require such
coordination. Each node independently makes local distribution decisions (i.e.,
simply distributing encoded packets each of which is an arbitrary combination
of some packets cached locally) while still achieving fast and efficient feedback
dissemination. Not defying the informed dissemination alternative, TrustCode
takes a different, complementary approach to resilient and efficient dissemination
over the dynamic P2P environment.

TrustCode manages feedbacks in an epoch-based manner. An epoch is referred
to a time window of length T (e.g., days, weeks or months). The feedbacks
generated within an epoch are aggregated for trust computation 2. Consequently,
dissemination, storage and retrieval of feedbacks are all epoch-based. A feedback
is locally generated when two peers have done a transaction. For example, if peer
A requests a service from peer B. After B provides the service, A will produce
and submit a feedback for B regarding the satisfaction of the transaction. In this
paper, we term peer A feedback source and peer B feedback target. A feedback
contains a unique ID, epoch, timestamp, feedback source and feedback target.
Due to space limitation, please refer to our technical report [14] for details. It is
worth pointing out TrustCode is insensitive to feedback expression. Mentioning
feedbacks here is only to ease exposition of subsequent subsections.

3.2 Packet Structure

When a peer wants to send feedback data to a neighbor node, the peer uses
random network coding to create a packet by encoding its cached data which

1 E.g., nodes exchange Bloom filters that contain their feedback information to
make informed feedback distribution, thereby reducing bandwidth consumption over
blindly random distribution.

2 The feedbacks of multiple epochs may also be aggregated for trust computation.
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target epoch # of feedbacks coded feedback blockC1 fid1 · · · Ck fidk

Fig. 1. Packet format

may include original feedbacks (i.e., locally generated feedbacks or decoded
feedbacks) and coded feedbacks contained in the received packets. TrustCode
makes two restrictions on feedback encoding: (1) Only feedbacks within the
same epoch can be combined; and (2) Only feedbacks for the same feed-
back target can be combined. Figure 1 shows the packet format. As an ex-
ample, M is a packet for feedback target B produced by using network coding:
M = {h(PB), epoch, k, C1, fid1, · · ·, Ck, fidk, CB}, where h(PB) uniquely identifies
the feedback target (PB is B’s public key and h() is a hash function), k is the
number of feedbacks encoded in the packet, and Ci is the coefficient randomly
chosen from a Galois field of a proper size for the feedback with ID fidi. Coded
feedback block CB is a data block encoded from the k feedbacks. Assume all
original feedbacks have a same length of L. The coded feedback block also has
the length of L due to network coding. Note that the TrustCode packet incurs
overhead due to the list of coefficients and feedback IDs encapsulated in the
packet header.

How is a packet created from received packets by using network coding?
Suppose a peer caches two received packets M1 and M2 for feedback tar-
get B within epoch e1: M1 = {h(PB), e1, 2, C1, fid1, C2, fid2, CB1} and M2 =
{h(PB), e1, 2, C3, fid3, C4, fid4, CB2}. By combining the two packets with ran-
domly chosen coefficients a and b for M1 and M2 respectively, the peer pro-
duces a packet M from the coded feedbacks contained in the two packets:
M = {h(PB), e1, 4, C′

1, fid1, C
′
2, fid2, C

′
3, fid3, C

′
4, fid4, CB}, where C′

1 = C1⊗a,
C′

2 = C2⊗a, C′
3 = C3⊗b, C′

4 = C4⊗b, and CB = (CB1⊗a)⊕(CB2⊗b) (⊕ and ⊗
are addition and multiplication operations over a Galois field). CB is the coded
feedback block, containing only part of information about the four original feed-
backs, which means that CB alone cannot decode any of the four feedbacks. In
particular, if a packet M is encoded only from a single original feedback F , then
we have: M = {h(PB), e, 1, C, Fc}, where Fc = C⊗F . If C = 1, then Fc = F .

3.3 Local Storage Structure on Peers

Leveraging abundant storage capacity, each peer caches (coded) feedbacks mas-
sively to combat node failures and node misbehaving. Each peer maintains two
buffers for each epoch 3: decoding buffer and decoded buffer. Each entry in both
buffers contains feedback data for a particular feedback target. When a peer A
receives a packet M , it inserts M into the corresponding entry of the decoding
buffer. A then may perform Gaussian elimination on this entry 4: If there are
3 A peer may remove the feedback data in past epochs.
4 In our implementation, the Gaussian elimination is actually performed on a decoding

matrix which is composed of the coefficients and coded feedback blocks contained in
the packets in this entry.
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one or more original feedbacks decoded in this process, the original feedbacks
are inserted into the corresponding entry of the decoded buffer. If the cache size
for each entry is limited, we may randomly pick a packet in the corresponding
entry of the decoding buffer, producing a new packet from the chosen packet and
received packet using network coding. Then we replace the chosen packet with
the new packet in the decoding buffer. Note that we assume an infinite buffer
size on nodes in this paper and leave finite buffer sizes to our future work.

3.4 Dissemination Protocol

When a new epoch starts, TrustCode spreads coded feedback data for the current
epoch 5. For feedbacks in the past epochs, TrustCode allows a peer to retrieve
them from other peers. For example, a newly joined peer can not only imme-
diately participate in coded feedback dissemination for the current epoch, but
also retrieve coded feedbacks in past epochs it misses.

The dissemination protocol is fully distributed. Each peer independently
makes local decisions about what to spread to its neighbors. Moreover, the pro-
tocol is an iterative network coding approach. That is, each node further divides
an epoch of length T into multiple time slices of length t (t�T ). In each time
slice, each peer generates a packet encoded from the data in the decoding and
decoded buffers for each neighbor and sends the packet to the neighbor. Algo-
rithm 1 outlines the dissemination algorithm on peer x. Note that in Line 7,
TrustCode sets a limit on the number of received packets and decoded feedbacks
that can be encoded in one packet, in order to limit the number of coefficients
and feedback IDs in the packet header and thus the packet overhead. Note that
in Algorithm 1, a peer sends each neighbor only one packet for each time slice. In
practice, we allow multiple packets (for different feedback targets) to be included
in a single message to each neighbor peer, to speed up the dissemination process
and reduce message overhead (i.e., TCP/IP header). Once an epoch ends, each
peer stops dissemination of the feedbacks for this epoch 6. However, a peer may
inform its upstream neighbors of stopping sending packets if the peer deems it
has already cached sufficient data; Or a peer may decides to stop dissemination
if it has not received any new (or innovative) feedback data for a certain number
of consecutive time slices. Algorithm 2 shows the algorithm of receiving a packet.

During dissemination, TrustCode treats locally generated feedbacks differ-
ently. If a peer generates a feedback after a transaction, the peer immediately
floods the feedback (in the form of packets but with a typical coefficient of 1) to
all its neighbors disregarding the time slice concept. The intuition is that Trust-
Code makes a few replicas of the feedback to the direct neighbors right away
in case that the failures of the feedback source peer extinct the newly created
feedback.

5 We assume the Network Time Protocol(NTP) is used in the overlay network to
synchronize clocks.

6 We may allow a grace period for last epoch because the feedbacks generated in the
very end of last epoch may not have been spreaded massively among peers.
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Algorithm 1. x.disseminate()
1. targets ← gather all distinct feedback targets from the decoding and decoded

buffers for the current epoch
2. if targets is empty then
3. return
4. end if
5. for each neighbor node ni do
6. randomly choose a target k∈targets
7. generate a packet p for the target k by combining randomly chosen packets and

decoded feedbacks in two buffers
8. send p to ni which in turn calls receive(p)
9. end for

Algorithm 2. x.receive(Packet p)
1. e ← extract epoch # from p
2. k ← extract feedback target from p
3. CL ← extract the list of coefficients and feedback IDs from p
4. CB ← extract coded feedback block from p
5. Insert CL and CB into the decoding buffer corresponding to the entry of k for

epoch e, which triggers Gaussian elimination
6. if any original feedback is decoded then
7. insert it into the decoded buffer corresponding to the entry of k for epoch e
8. end if

3.5 Feedback Retrieval

TrustCode allows a peer to contact other nodes to retrieve feedbacks for a spe-
cific epoch and even a specific feedback target. The contacted nodes serve the
retrieval request from their decoding and decoded buffers. Upon receiving the
responses, the requesting node inserts them into the decoding buffer, which trig-
gers Gaussian elimination and thus decodes original feedbacks. As shown in our
simulations, feedback retrieval in TrustCode is very efficient, contacting only a
small number of nodes. Moreover, when a new peer joins the network, it can
immediately populate its caches by retrieving coded feedbacks from only a small
number of nodes.

3.6 Using TrustCode

Due to space constraints, we here briefly present two potential applications of
TrustCode. Please refer to our technical report for details.

The first application is trust computation using social links or votes. With
TrustCode, a peer can exploits its social relationships such as friend lists to com-
pute the trust vector. Due to the fact that TrustCode stores coded feedbacks
massively among the peers and feedback retrieval is very efficient by contacting
only a small number of nodes, a small set of friend peers can recover and aggre-
gate all the feedbacks, cooperating in trust computation by playing the role of
trust managers in the prior work [1,2,3]. Leveraging TrustCode and social links,
we expect the trust computation is resilient to node failures and misbehavior.
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We may also use FoF (friends-of-friends) to do trust computation, splitting the
load over more peers. As an alternative, the system may recruit multiple groups
of peers to do trust computation. The peers in each group act as trust man-
agers to compute a trust vector (because of TrustCode, each group should be
able to recover all the feedbacks). Each group reports its trust vector as a vote.
Upon receiving all the votes, we choose a trust vector which is agreed on by the
majority.

The second application is trust monitoring and versioning. Each epoch in
TrustCode represents a version and the trust data in each epoch is a snapshot
of system. A trust collector node can gather and version the feedbacks of each
epoch by contacting only a small number of nodes. A primary purpose of trust
versioning is for monitoring and diagnosis. For example, if a peer consistently
has a low trust value, the system may evict the peer from the network. If a
large percentage of nodes in the network consistently have low trust values,
the system is very likely unhealthy and needs to be alarmed. With versioning,
the system keeps track of each peer’s reputation history, which is important to
system monitoring.

4 Evaluation

4.1 Experimental Setup

A 500-node Chord was used as the underlying overlay network. Due to large
memory requirement by network coding and packet caching, we did not simulate
a larger network size. The Galois field of size is 8 for random network coding.
Simulations were limited to one epoch where 5, 000 feedbacks were generated for
50 feedback targets each of which on average had 100 randomly chosen nodes
as feedback sources. We ran our simulations in a controlled manner: We stop
dissemination of coded feedbacks, if, for each feedback target, there are at least
x% nodes each of which has the number of cached packets (including packets
in the decoding buffer and decoded feedbacks as special packets in the decoded
buffer) that is equal to or larger than a threshold m (1≤m≤100). x and m
indicate degree of distribution of coded feedbacks among peers, with a default
value of 20 and 30 respectively. The size of a feedback is 312 bytes while the
TCP/IP header is counted as 40 bytes for each message during dissemination.

We also simulated random feedback dissemination w/o network coding (called
Random) for comparison against TrustCode. During dissemination, each message
contains up to 5 packets (each of which is encoded from up to 10 randomly chosen
packets in the node’s buffers) for different feedback targets in TrustCode, while
in Random each message contains up to 5 feedbacks for different, randomly
chosen targets.

Three main metrics were used: (1) # of time slices required to reach the
dissemination stop condition. It indicates how fast TrustCode spreads coded
feedbacks among peers. (2) Bandwidth cost per node. It exposes the overhead of
TrustCode in dissemination. (3) # of nodes contacted to recover all feedbacks.
It exhibits how efficiently a peer can collect all feedbacks. It also implies level of
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data availability: If the # of nodes contacted is small, TrustCode provides high
data availability guarantee.

After dissemination of coded feedbacks, we scheduled a collector node which
joins the network, retrieves the feedbacks for the current epoch by contacting
a set of randomly chosen nodes till it recovers all the original feedbacks, and
finally leaves. 1, 000 collector nodes were scheduled in turn to perform the same
operations. Then, we averaged the results in terms of # of nodes contacted
which represents efficiency of feedback retrieval and also implies availability of
trust data. If the set of randomly chosen nodes is small, then we believe feedback
retrieval is efficient and trust data is highly available in TrustCode.

4.2 Results

We summarize our results before presenting the details: (1) TrustCode shows su-
perior performance over Random which disseminates feedbacks without network
coding, in terms of dissemination speed, bandwidth cost, data availability, and
feedback retrieval efficiency. (2) The packet overhead in bandwidth due to the
list of coefficients and feedback IDs in a packet is big (e.g., about 60− 68.9% for
various values of x and m), rendering room for improvement, e.g., using compres-
sion to reduce the overhead. (3) TrustCode exhibits strong resilience to failures
in dissemination and feedback retrieval. (4) TrustCode well balances coded feed-
back distribution among the peers (see Figure 3(c)). Due to space constraints,
some data are omitted and please refer to our technical report for more details
of the results.

Performance with Different Configurations. The first set of experiments
investigate performance of TrustCode under different dissemination stop con-
ditions. Figure 2 shows performance of TrustCode for various values of x and
m. We can see that more massive distribution of coded feedbacks (bigger x and
m) makes feedback retrieval more efficient and data more available, but at the
expense of more time slices and higher bandwidth consumption. Contacting a
small number of randomly chosen nodes is able to recover or decode all original
feedbacks. This is very encouraging, especially for the P2P settings where node
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Fig. 2. Performance of TrustCode for various values of x and m. (a) # of time slices
required to reach the dissemination stop condition. (b) Bandwidth cost per node. (c)
# of nodes contacted to decode all the original feedbacks.
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Fig. 3. m = 30, x = 20. (a) CDF of collector nodes. (b) CDF of collector nodes for
various percentages of malicious nodes. (c) CDF of nodes with respect to load (defined
as the number of packets in two buffers). The mean load of peers is 1, 331 and standard
deviation is 318.

churn and failures are the norm. When m = 30 and x = 20 (see Section 4.1
for specifications), a small number 5-6 of arbitrarily chosen nodes are able to
recover all the original feedbacks, showing strong resilience to failures and high
efficiency in feedback retrieval, while incurring low bandwidth cost in dissemi-
nation. The main reason for such high data availability and feedback retrieval
efficiency is due to network coding which maximizes diversity of coded feedbacks
among peers. Figure 3(a) shows CDF of 1, 000 collector nodes with respect to
# of nodes contacted in order to retrieve all the original feedbacks. We can see
that at most 7 nodes are needed in order to decode all original feedbacks. In
the rest of the paper, we focus on TrustCode with m = 30 and x = 20 unless
specified otherwise.

Comparison with Random. We compared Random against TrustCode (m =
30 and x = 20) when they have similar level of data availability — that is, a same
small number of nodes are able to recover all original feedbacks, thus providing
same degree of data availability and retrieval efficiency. Table 1 presents the
comparison when # of nodes contacted for TrustCode and Random is 5.23 and
5.33 respectively with 1, 000 collector nodes tested. Note that Random needs
to replicate feedbacks of each feedback target with m = 86 and x = 55 in
order to yield the similar degree of data availability and retrieval efficiency.
This means that each peer in Random needs to devote more storage to cache
feedbacks and more bandwidth to disseminate feedbacks. As shown in Table 1,
TrustCode achieves one order of magnitude faster dissemination of feedbacks
than Random and saves about 73% bandwidth over Random. Figure 3(a) plots
CDF of collector nodes for TrustCode and Random. TrustCode has superior
performance over Random because it spreads coded feedbacks more diversely
and thus are more resilient to failures.

Impact of Malicious Nodes. In this set of experiments, we explored the im-
pact of malicious nodes on TrustCode. Malicious nodes receive coded feedbacks
but do not disseminate any coded feedbacks during dissemination, and they do
not respond to feedback retrieval requests (from collector nodes). The parameter
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Table 1. Performance comparison

# of nodes contacted # of time slices Bandwidth (MB) m x

TrustCode 5.23 11 1.25 30 20
Random 5.33 138 4.59 86 55

Table 2. Impact of malicious nodes (m = 30, x = 20)

% of malicious nodes
Metrics 0 10 20 30 40 50 60
# of time slices 11 12 13 15 17 21 25
bandwidth cost (MB) 1.25 1.35 1.44 1.65 1.85 2.26 2.63
# of nodes contacted 5.23 5.9 6.87 8.13 9.43 11.24 14.79

x in the dissemination stop condition represents redundancy of coded feedbacks
among peers: In the presence of malicious peers, we disregard coded feedbacks in
malicious nodes, and x represents redundancy of coded feedbacks for each feed-
back target among only benign peers. Table 2 shows performance of TrustCode
with respect to various fractions of malicious nodes. Figure 3(b) plots CDF of
1, 000 collector nodes with respect to different percentages of malicious nodes.
TrustCode shows strong resilience to failures in dissemination with modest in-
crease in bandwidth cost, and it is very efficient in feedback retrieval even when a
large percentage of nodes are malicious. The driving reason for failure resilience
is the diversity of coded feedbacks among peers by using network coding.

5 Conclusions

Exploiting network coding and storage capacity on peers, TrustCode provides a
framework to manage trust data in P2P networks. Thanks to diversity of coded
feedbacks cached among peers, TrustCode exhibits strong resilience to failures
and high efficiency in feedback retrieval. Our simulations show that TrustCode is
able to distribute coded feedbacks across the network in a fast, failure-resilient,
and bandwidth-efficient manner. By contacting a small number of random nodes,
TrustCode is capable of recovering all the feedbacks, ensuring high data avail-
ability.
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Abstract. In this paper, we present a generalized and novel load distri-
bution strategy for scheduling divisible loads on linear networks, when
speeds of the computing nodes and the communication links are un-
known a priori. This strategy, which is referred to as Wait and Com-
pute Strategy (WCS), uses a portion of the total load to estimate speed
parameters and then use processors in an iterative manner in phases
to minimize the overall processing time. We present an analysis of this
strategy with respect to time performance and compare its performance
with the previous works both analytically and through simulation stud-
ies under several influencing parameters. From our findings, we will show
that the proposed generalized strategy achieves a better performance in
most cases.

Keywords: Divisible Loads, Linear Networks, communication delays,
processing time.

1 Introduction

Handling computationally intensive tasks on a networked set-up is a challenging
problem. The complexity of the problem becomes multi-fold when computing
and communication resource capabilities are unknown during the scheduling
phases. Divisible load paradigm has been proposed as an effective technique in
handling large scale computationally intensive tasks on networks. Initial stud-
ies were done by Cheng and Robertazzi [1] in 1988, and later the theory was
formally referred to as Divisible Load Theory (DLT) [2]. DLT proposes elegant
solutions, optimal in many cases with regular graphs, to handle large scale pro-
cessing loads on networks using a linear (and also affine) model. The computation
and communication delays in the nodes and links are explicitly captured in the
problem formulation to seek optimal solutions. A recent survey article [3] present
important results from the literature.
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In the recent past the works in DLT literature emphasized on application
oriented research as well as fundamental research on a fair basis. In the appli-
cation oriented research, several application problems are shown to have direct
use of DLT paradigm in seeking efficient fast solutions. Some related works that
can be mentioned are multimedia applications [4], large-scale database search
problems [5], and use of DLT paradigm with clusters of workstations [6]. On the
other hand, work pertaining to fundamental research includes design of efficient
strategies with buffer constraints [7], considering communication start-up cost
[8], and scheduling divisible loads with multiround algorithms [9].

Most works referred to above are based on a fundamental assumption that
the computing and communication capabilities of the resources (nodes and links)
are known a priori to the scheduler which facilitates to generate an optimal, if
not, a feasible schedule. Only one of the earlier works [10] digressed from this
assumption and considered a time-varying nature of processor speeds and link
speeds for a bus topology. A recent work [11] proposes a strategy in which speed
parameters are estimated as opposed to the idea/assumption in [10] wherein
the time-varying nature of the speeds is also assumed to be known in advance.
However, the work in [11] is primarily designed for bus-like network, and it
seems to be inapplicable in the context of linear networks. Work reported in
[12] extends the previous work to linear networks using a greedy methodology.
Below, we shall highlight our key contributions in this paper.

In this paper, we propose a generalized scheduling strategy for processing di-
visible loads on linear networks. The challenge lies in tackling the scheduling
problem when the processor and link speeds are unaware to the scheduler. Our
proposed strategy, which is referred to as Wait and Compute Strategy (WCS),
works in an incremental fashion, in phases, to progressively accommodate proces-
sors as and when they respond to probe messages. At present, in the literature,
there are only two works that addresses this problem of scheduling divisible
loads under unknown network conditions (speeds of processors and links). The
strategy proposed here attempts to generalize the methodologies proposed so far
in the literature. While algorithms PSD and PCD in [11] are very much akin to
bus networks, algorithm ESS proposed in [12] is a greedy approach. We present
a rigorous analysis of WCS and quantify its performance with respect to several
influencing parameters.

The paper is organized as follows. In Section 2, we introduce the mathemat-
ical model and useful notations that are used throughout this paper. We also
introduce our motivation in this section. In Section 3 we present the design and
the analytical results of WCS. Simulation results and relative study are included
in Section 4, and Section 5 concludes the paper.

2 Mathematical Model, Notations and Motivations

A linear network with processing nodes and communication links is shown in
Figure 1. Each node or processor is equipped with a front-end processor which
off-loads the communication responsibilities of that processor. This enables
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Fig. 1. Linear Daisy Chain Network Architecture with n processors and (n − 1) links

computation and communication to be carried out simultaneously [13]. We also
assume that each node has adequate buffers to hold and process the data.

The total load to be processed is initially stored on the root processor P1. In
this setting, we assume that the computing speeds of the nodes (except the root
processor, where our scheduler resides) and communication delays of the links
are not known in advance. Further, a linear cost model for communication and
computation is adopted as in the literature. Thus our objective is to minimize
the total processing time of the entire load (time to complete processing from
t = 0) under the above assumptions.

Now, we define some notations that will be used throughout this paper. We
define L to be the total load to be processed and Li to be the amount of load to be
processed in the ith computation phase. We will explain and define the computa-
tion phase in the next subsection. We use αi

j to denote the fraction of the load Li

dispatched to the jth processor Pj during the ith computation phase. Notations
ωi, zi, Tcm and Tcp, are widely defined in the literature [2]: ωi(zi) is the ratio of
the standard processor(link) speed to the processor Pi(link li) speed; Tcp(Tcm) is
the time taken by a standard processor(link) to process(communicate) one unit
of load. Finally, we define η as the fraction of the total load used in the probing
phase as a Probing Load (PL). A PL is a load fraction which is used to probe
the processor and link speeds.

2.1 Motivation

To schedule divisible loads in resource unaware environments, the work [11] pro-
posed several algorithms with probing technique. However, the algorithms in
[11] have a continuous dispatching nature, which has an adverse effect in linear
network set-up, as processors may get overloaded because of continuous dis-
patching. To solve the above problem, [12] proposed a phase based algorithm
Early Start Strategy (ESS). ESS uses a two-phase approach - a probing phase
(PP) followed by several computation phases. At the beginning of the PP, the
root processor P1 sends a probing load (PL) to P2. P2 will start to compute
PL immediately after it receives PL, while at the same time it sends a copy
of PL to P3. This process continues with every processor. Each processor will
record two important time stamps – the time it finishes receiving PL (denoted
as T c

i ) and the time it finishes processing PL (denoted as T p
i ), and will send back

these time stamps through a processing task completion (PTC) message to P1
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when it finishes processing PL. From this information, P1 can estimate zi and
ωi. Furthermore, as PTC is short message, the transmission time is negligible.

Notice that the arrival of PTC messages is arbitrary in time. To make full
use of the first processor to respond, in ESS, the scheduler divides the remaining
part of load (total load minus PL) into several parts (L1, L2, ..., Lm), and the
processing time of each part is referred to as one computation phase, denoted
as phase1, phase2, ..., phasem. After the first PTCs has been received, P1 will
apply divisible load scheduling paradigm on the first part of the load 1 for this
processor and itself. During phase1, it is possible that other processors may
respond to their processing of PL via PTC messages one after another. Now,
to accommodate these processors, P1 employ divisible load paradigm again for
all the detected processors at the end of phase1, and that triggers phase2. This
recursive way of working continues until the entire load has been taken up, or
all the processors have been detected by P1. In the latter case, P1 will dispatch
the remaining load to all the processors.

As described above, we can see that ESS is a greedy strategy which takes dis-
tinct advantage in utilizing the first processor to respond. Other fast processors,
which return their PTCs during phase1, should wait till the beginning of phase2.
It will not be a problem for those processors responding a bit earlier than the
phase2’s start time. However, those processors responding a little bit later than
the first responded processor will suffer a nearly entire phase idle time. This is a
waste of computation power. A natural idea is waiting for more responses before
starting phase1, hence derives the name Wait-and-Compute Strategy (WCS).

3 Design of Wait-and-Compute Strategy

In WCS, we introduce a parameter k, which controls how many responses WCS
will wait before triggering the phase1. In a very special case, when k = 1, WCS
becomes ESS. However, when k is larger than 1, WCS will attempt to wait for
more processors returning their PTCs, before starting phase1. This is in the hope
of accumulating more processing power to accommodate the load in the initial
phase. An interesting and noteworthy point at this juncture is as follows, WCS
(When k > 1) adds some idle time before starting the computation. This later
start approach by WCS may be compensated with the presence of additional
fast processors whose PTC would have been just-in-time when the phase1 of
ESS would have started. This has both advantages and disadvantages as shown
via our simulation studies later.

Assuming that WCS waits for k processors, and Pl is the last processor to issue
its PTC in this k processor set. Using set Aphase1 to denote these processors,
we have Aphase1 = {P1} ∪ {Pj | T p

j < T p
l , j = 2, . . . , n} and |Aphase1| = k + 1.

Notice that, P1 cannot obtain the respective link speeds. However, if we align all
processors in Aphase1 in an ascending order according to their subscripts, P1 can

1 Since in ESS, P1 will start to compute the rest of load immediately after it sends
out PL, the first part of load is actually equal to L1 minus the load consumed by P1

before the first PTC comes.
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estimate the cumulative communication delay between Pi (Pi ∈ Aphase1) and its
adjacent processor Pj (i < j) in Aphase1

2, denoted as Zj , by (1).

Zj =
j−1∑

i

zk =
T c

j − T c
i

ηL · Tcm
(1)

To clarify this point, let k = 2, and Pi and Pj (i < j) be the first two
responded processors in the linear network except the root. After P1 receives
the PTCs from Pi and Pj , it will trigger phase1. The remaining load of L1,

which is equal to (L1 − max(T p
i ,T p

j )
KTcp

) 3, will be distributed among P1, Pi and Pj

following the optimality principle [2]. This principle states that the load should
be distributed in a manner such that all participating processors (within the
current phase) should stop computing at the same time instant. To obtain the
load distribution, P1 should solve the following recursive equations,

α1
1KTcp = (α1

i + α1
j)ZiTcm + α1

i ωiTcp (2)

α1
i ωiTcp = α1

jZjTcm + α1
jωjTcp (3)

together with
α1

1 + α1
i + α1

j = 1 (4)

Solve (2) - (4) to obtain α1
1 as,

α1
1 =

λ(1 + γ)Zi + γωi

λ(1 + γ)Zi + γωi + K(γ + 1)
(5)

where,

γ =
ωj + λZj

ωi
, λ =

Tcm

Tcp
(6)

Then, P1 can estimate the time consumed for processing in phase1 is given by,

T1 = K(L1 −
max(T p

i , T p
j )

KTcp
)

λ(1 + γ)Zi + γωi

λ(1 + γ)Zi + γωi + K(γ + 1)
Tcp (7)

Therefore, P1 knows when to trigger phase2. Notice that before the end of
phase1, more processors may have returned their PTCs. They will be engaged
in computation in phase2 together with the processors in phase1. Thus, at the
beginning of phase2, P1 will solve the recursive equations for all available pro-
cessors to obtain the optimal load distribution (within the current phase).

The above process continues until either all the processors have been detected
and used or the last load has been dispatched. Thus, supposing there are totally
m phases, the overall processing time of the entire load is

Toverall = T p
i + T1 + T2 + . . . + Tm (8)

where Tj is the duration of phasej, and T p
i is the kth PTC response time.

2 Pj and Pi may not be the adjacent processors in the underlying network.
3 Part of L1 is processed. This is because P1 is allowed to start computing at time

t = 0, the same as ESS [12].
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From what we have discussed above, we notice that the key difference between
ESS and WCS (When k > 1) exists in the phase1. ESS triggers an earlier start of
phase1, while WCS has more computation power in phase1. Thus, it is interesting
to compare the phase1’s finish time of ESS and WCS.

Let the first two processors returning their PTCs be Pj and Pi such that
T p

j < T p
i . From [12], we can obtain the time when ESS finishes phase1, denoted

as T ESS
phase1

, by (9)

T ESS
phase1

= θESS(L1 − T p
j /KTcp) + T p

j (9)

where θESS is,

θESS = KTcp
λz1j + ωj

λz1j + ωj + K
(10)

Notice that z1j is defined as the cumulative communication delay between P1
and Pj .

On the other hand, when k = 2, from the discussion above, we can obtain the
time when WCS finishes phase1, denoted as T WCS

phase1
, by (11),

T WCS
phase1

= θWCS(L1 − T p
i /KTcp) + T p

i (11)

where θWCS is,

θWCS = KTcp
λ(1 + γ)Zi + γωi

λ(1 + γ)Zi + γωi + K(γ + 1)
(12)

Then, by equating the expressions (9) and (11), we can obtain the critical size
for L1, denoted as Lc

1, by (13).

Lc
1 = (

θESST p
j − θWCST p

i

KTcp
+ T p

i − T p
j )/(θESS − θWCS) (13)

When L1 = Lc
1, WCS and ESS will have exactly the same performance. Further,

since WCS has more computation power in phase1, when L1 > Lc
1, WCS will

finish phase1 earlier. On the other hand, when L1 < Lc
1, WCS does not have

enough time to catch up with ESS, and hence ESS will finish phase1 earlier.
Remarks: A strategy that finishes phase1 earlier does not guarantee to fin-

ish the whole load earlier. However, processors which are engaged or respond
in phase1 are fast processors. Finishing phase1 earlier implies starting phase2
earlier with most fast processors in the network, and hence will highly probably
have a shorter overall processing time. This is verified by our simulation later.
Further we assume k = 2 for WCS in above analysis, but this does not mean
k = 2 is the best choice. In the next section, we conduct experiments to iden-
tify the best possible value of k with respect to certain information about the
network.
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4 Simulation Results and Discussions

Since the algorithms in [11] are not applicable in linear networks, in this section,
we present simulation tests to compare the performance of ESS, WCS and a
conservative DLT strategy (denoted as “pureDLT”). In the pureDLT strategy,
P1 will wait until receiving all the PTCs, and then start to compute. However,
before that, we further discuss some key assumptions on the choice of certain
parameters and networks below.

The first issue is on our decision of parameter η. one may prefer a small η, as a
larger η indicates more unimportant computation. However, a too small probing
load cannot accurately detect the speed parameters, as there may be small-term
perturbations of processor and link speeds. In this sense, large η is needed. Thus,
to strike a balance, we let parameter η fall into the range (0.03, 0.07), which is
seen to be appropriate in our experiments.

The second issue is on partitioning the total load prior to the load distribution.
Since more and more processors will be engaged in the computation work as time
progresses, to fully exploit this property, the total load can also be divided in an
increasing fashion. One such load partition that satisfies such a property is as
follows. For an n processor system, the total load is partitioned as follows and
a partition Lk is to be distributed in phasek among processors in the set Ak,
respectively.

Li = (2i + 1)(L − ηL− L1)/
∑m

2 (2k + 1) i = 2, . . .m

L1 = ε ∗ L

where m = �log2n� + 1. Notice that ε is a parameter of the load distribution,
which defines the size of L1. We refer to the above load partitions as Π4.

Let L = 100, z and ω fall into the ranges (0.2, 0.7) and (2, 7) respectively, and
the root processor has an average speed given by, ω1 = K = 4.5. We let Tcm = 1
and Tcp = 2. For WCS, we first assume k = 2. We refer to the processing time
for ESS, WCS, and pureDLT as T-ESS, T-WCS, and T-pureDLT, respectively.
Notice that the “pureDLT” serves as an upper bound on the time performance
of our strategy. We denote the fraction of the fast processors and links in the
network by rf

5. All the parameters in our simulation experiments are generated
in a random fashion following a uniform distribution in their respective ranges.
Each category of experiments is repeated 25 times and an average values are
reported. Tables 1 and 2 show the results of our experiments. We will now
present our results that demonstrate the influence of parameters η, ε and n.

Effect of η : Parameter η fundamentally determines the size of PL. Although all
strategies’ processing times increase as η increases, the increase in the processing
4 Notice that as we allow P1 to participate in computation, when it is very fast, it

may even finish computing L1 before the first PTC. Then we let it to compute L2

and re-index L2 to L′
1,. . . Lk to L′

k−1, and so on.
5 We designate a processor and a link as fast when their speeds fall in (0.2, 0.3) and

(2, 3), respectively, as smaller numbers represent faster links/processors and vice-
versa.
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Table 1. Experimental Results when rf = 0.75

ε n η = 0.03 η = 0.07
T-ESS T-WCS T-pure T-ESS T-WCS T-pure

5 189.70 185.50 195.70 203.43 202.99 228.34
0.07 8 173.73 169.29 182.32 190.06 188.51 221.19

13 161.83 156.27 177.48 175.17 173.43 227.45
20 157.01 153.60 182.86 170.99 171.31 242.57
5 194.77 186.59 195.70 207.20 203.49 228.34

0.12 8 182.41 172.32 182.32 192.60 189.56 221.19
13 171.99 159.49 177.48 182.02 174.18 227.45
20 167.27 156.22 182.86 176.98 173.06 242.57

Table 2. Experimental Results when rf = 0.25

ε n η = 0.03 η = 0.07
T-ESS T-WCS T-pure T-ESS T-WCS T-pure

5 244.65 241.87 249.71 278.81 282.13 283.45
0.07 8 220.59 219.12 228.85 252.98 254.50 271.78

13 204.40 202.77 220.78 227.69 227.31 270.37
20 201.57 199.42 224.98 224.39 223.90 286.82
5 247.70 242.12 249.71 262.31 264.60 283.45

0.12 8 226.93 219.75 228.84 244.85 244.44 271.78
13 213.16 206.04 220.78 227.67 226.79 270.37
20 211.94 204.80 249.71 225.44 224.91 286.82

time of both ESS and WCS is less when compared to pureDLT strategy. This
is due to the fact that the waiting time for the last PTC to arrive penalizes the
performance significantly. Also, for a given η, as we increase the network size,
the processing time decreases. However, The difference in the processing time
between two different values of η for pureDLT increases dramatically as network
size increases, but this difference almost remains the same for ESS and WCS.
Thus each of the strategies seem to be robust in behavior with respect to the
variation of η and n. This behavior can also be observed for different rf values.

When comparing the performance of ESS and WCS with respect to η, we find
that when η is small, WCS shows a better performance than ESS, however, when
η is large, the performance of ESS and WCS are almost the same. This is because
as η grows, the range of PTC responses (i.e., the time difference between the
last PTC and the first PTC) will increase correspondingly, which will naturally
benefit ESS, as WCS has to wait longer to start computing.

Effect of ε : Parameter ε determines the size of L1 and here, ESS and WCS
are our only concern. As shown in Tables 1 and 2, both ESS and WCS have a
better performance for a smaller ε. This is because that a smaller L1 implies a
shorter phase1; and hence, those processors responded during phase1 will start
their computation earlier than for a larger L1 choice. We also observe that the
influence of ε to WCS is less significant than to ESS. This is because WCS
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has more computation power in phase1 than ESS. Therefore, WCS shows a
significantly better performance than ESS with a larger ε.

In fact, the sizes of L1, L2, ...Lk all influence the performance of ESS and
WCS, but choice of L1 plays a crucial role. In general, if we partition the load
into several smaller portions, the performance of ESS and WCS will increase
dramatically, and will be close to the lower bound where computation and com-
munication speeds parameters are known in advance. However, in practice one
cannot partition the load into infinitesimally small size portions for processing.

An inverse effect of ε can be observed when both rf and n are small, and η is
big. In this case, as opposed to a common expectation that the finish time would
increase as we tend to increase ε, our results show that the finish time decreases.
An explanation to this anomalous behavior may be explained as follows. When
rf and n are small, there are limited number of fast processors in the network.
Furthermore, as η is large, the range of PTC response is also large. In this
situation, a small ε implies that few processors will return their PTCs during
phase1, while a larger ε gives more chance for these processors to respond during
phase1, and this computation power can be utilized earlier. From this point, we
can see that the fact that an unequal partitioning of load among the phases
may also under-utilize processors. For instance, a smaller choice of L1 and a
larger choice of L2 may have an adverse effect, as there may be fewer processors
returning their PTCs during phase1, and hence, very few processors will be
engaged in phase2.

Effect of rf : The ratio of fast processors in network is important in determining
the performance of ESS and WCS. As we can see from Tables 1 and 2, when rf

increases, overall finish time decreases, which is expected. Further, comparing
the performances of ESS and WCS with respect to rf , we find that WCS prefers
a network with a large ratio of fast processors. This is because the fact that when
a network has a large number of fast processors, there is higher chance that more
fast processors will return their PTCs immediately after the first response. In
ESS, these fast processors will wait until the end of phase1 to be engaged in
computation, while in WCS, this fast processor will be used much more earlier.
Thus, when rf = 0.75, we find WCS shows a significant improvement than ESS.
However, when a network has only a few fast processors, WCS may have to wait
more time for the response from another processor than ESS. Therefore, when
rf = 0.25, WCS and ESS exhibit approximately the same performance.

Effect of network size (n) : Network size is crucial to handle large scale data
processing. From Tables 1 and 2, we observe that as the network size increases,
the finish time for both ESS and WCS decreases. However, this may not be the
case for pureDLT. After n grows to some extent, increasing n further will have
an adverse effect on pureDLT, as its finish time starts to increase rather than
decreasing. This is because the range of PTCs stretches as n increases, which
penalizes pureDLT for its “greedy” waiting nature. Also, notice that when the
network size becomes large, the performance of ESS and WCS saturates. This is
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because that the processors residing at the end of the long chain actually receive
very little amount of load due to the cumulative communication delay.

In the above experiments, WCS only waits for two processors before starting
phase1. Actually, WCS can be allowed to wait for more processors. We use
WCS(k) to denote the algorithm that will wait on k processors before starting
phase1. Thus, ESS is WCS(1). For a given network, with fixed ε and η, the finish
time obtained in computing L is a function of k (we denote this finish time as
TWCS(k)). The performances for different k with respect to ε and η can be seen
from Figures 2 and 3, for different rf distribution.

In general, for a given η and ε value, as k increases, TWCS(k) is observed
to decline first, reaching a minimum point (shown as point A in the figures)
and then increases (See Figure 2 and 3). However, as we decrease η, the entire
curve TWCS(k) shifts down, which means less finish time is achieved. Further,

Fig. 2. Figure of TWCS(i) for Different ε and η when n = 15 rf = 0.75

Fig. 3. Figure of TWCS(i) for Different ε and η when n = 15 rf = 0.25
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the minimum point A starts to shift to right, which means that minimum finish
time will be obtained for larger k values. This observation could be useful while
implementing the strategies. Thus, if we choose a small η, it would be appropriate
to choose a relatively larger k, say 3 or more, to minimize finish time. L1 is
another factor that affects the shape of the curve TWCS(k). When L1 decreases,
the curve TWCS(k) shifts down, and its minimum point shifts to left, which
means minimum finish time is obtained for a small k. Furthermore, as shown in
Figures 1 and 2, rf also affects TWCS(k). Larger rf naturally benefits WCS as
discussed above, which drives the minimum point of TWCS(k) to right.

As we have seen above, the value of k which achieves the minimum finish
time (point A in the figures) is affected by the combined effect of η, ε, rf and n,
where η and ε are determined by the strategy, while rf and n are characteristics
of the network. n is usually a known parameter. Hence, if we have some prior
knowledge about rf , we can choose a suitable k according to the value of η and ε.
The following simulations reveal the most probable best value of k with respect
to certain η, ε, rf and n.

For a network with 15 processors, we first set η = 0.03 and ε = 0.12, and vary
the value of rf to 0.2, 0.5, and 0.8, respectively. Each category of experiments is
repeated 25 times. We find that when rf = 0.2, most of the times (19/25) the
minimum finish time is obtained at k = 2. When rf increase to 0.5, to obtain
the minimum finish time, k should increase to 3 (17/25), and when rf = 0.8,
most of the times the minimum finish time is obtained at i = 4 (13/25) or k = 5
(9/25). Then we adjust η to 0.07, ε to 0.07 and redo the experiment. We find
when rf = 0.2, the best value of k equals to 1 (15/25), and when rf = 0.5 or
rf = 0.8, most of times (around 21/25) k = 2 is the best choice.

5 Conclusions

In this paper we have presented a novel strategy WCS, for scheduling and pro-
cessing a divisible load on resource unaware linear networks. Since the underlying
network is a linear chain of processors, the choice of including the processors for
computation becomes crucial in deciding the overall performance of the strategy,
as the processor and link speeds are not known a priori. Any inadvertent choice
of processors, may slow down the computation. WCS takes distinct advantage in
utilizing the first k responded processors earlier in the computation and progres-
sively including other fast processors as time progresses. This special design is ac-
tually a general form of an early proposed strategy ESS. We have compared their
performance both analytically and through simulation studies. We have also an-
alyzed the performance of a strategy that serves as an upper bound (pureDLT).
Our simulation reveals that although in some rare case ESS may have better
performance, k ≥ 2 seems to be a wiser choice in most cases. Notice that a more
dedicated network model is considered in this paper. However, to incorporate the
long-term perturbations of processor and link speeds, one may attempt to probe
during each phase to estimate the speeds dynamically. In this case, strategies
may incur large overheads and implementation becomes more complex.
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Abstract. There has been a spectacular growth in the use of wireless
networks in recent times and consequently, adapting TCP to the wire-
less networks is a hot topic of current research. However, most of the
existing works proposed for this problem have been designed for specific
wireless networks, or they necessitate changes at either the receiver, at
the intermediate nodes, or at both, because of which their deployment
become very difficult. Therefore, here we propose a TCP variant which
works over both multi-hop ad hoc wireless networks as well as single-
hop wireless networks. We use a learning based method to dynamically
change the congestion window size according to the network conditions.
Our protocol does not rely on any explicit feedback from the network
and requires only sender-side modifications. Through extensive simula-
tions we show that our protocol achieves the performance improvement,
in terms of goodput, packet loss, and fairness to the competing flows.

1 Introduction

Transport Control Protocol (TCP) dominates today’s communication in various
networks. While responding to congestion in the network, it offers reliable data
transport service to the applications. To prevent buffer overflow at the routers,
it controls its rate of transmission by maintaining a congestion window (cwnd),
which is an upper bound on the maximum number of unacknowledged packets
in the network. TCP adjusts its cwnd in a deterministic fashion according to the
network events. Refer [1] for more details about TCP.

1.1 A Brief Introduction to Various Wireless Networks

Ad hoc wireless networks are multi-hop networks in which the nodes use multi-
hop relaying to communicate with the nodes that are not directly reachable.
They have limited bandwidths and high wireless losses. These networks typically
have a low bandwidth-delay product (BDP). Satellite links are characterized by
high wireless losses, latency, and bandwidth. These networks have high BDP
and link asymmetry, where the bandwidth on downlink is usually much higher
than that on uplink. Cellular networks have moderately high bandwidth and

P. Sadayappan et al. (Eds.): HiPC 2008, LNCS 5374, pp. 402–414, 2008.
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high latencies. They have moderate wireless losses and link asymmetry, and
they often experience bandwidth oscillations and high delay variations due to
handoffs. Wireless LANs have low latencies and high bandwidth. However, due
to the link level retransmission scheme to handle the wireless losses, WLANs
also have delay fluctuations. In WLANs, uplink and downlink are same and
both compete with each other for shared bandwidth.

1.2 Limitations of TCP in Wireless Networks

There is a huge growth in the use of wireless networks in recent times and con-
sequently, adapting TCP to the wireless networks is a hot research topic. The
following are some of the problems faced by TCP in wireless networks ([2]).

Wireless losses: Congestion is the main cause of packet loss in wired networks.
However, in wireless networks packet loss could also happen due to erroneous
wireless links or user mobility. TCP assumes these losses to be congestion losses
and reduces its cwnd, which adversely affects the throughput. Bandwidth-delay
product: Satellite links have high BDP. So, TCP should increase its cwnd ag-
gressively. In contrast, as ad hoc networks have low BDP, TCP should follow
a conservative approach to increase its cwnd. However, in congestion avoidance
(CA) phase, TCP increases its cwnd by 1

cwnd for every TCP acknowledge (ack)
it receives, which is too small in satellite networks and too large in ad hoc net-
works. Hence, TCP should dynamically adjust its increment factor depending
on the network in which it operates. Reactive nature: TCP keeps increasing its
cwnd until it experiences a packet loss. Thus, it is reactive rather than proactive
in avoiding losses. TCP needs to resend these lost packets which not only reduces
the throughput, but also severely affects the network resources.

1.3 Goals

We aim to design a TCP variant which works in both the single-hop wireless
networks (WLANs, cellular, and satellite networks) as well as in multi-hop ad
hoc networks, while attaining the following goals.

– Throughput improvement while reducing the packet losses.
– No explicit feedback from any of the network components (i.e., the receiver

node or the intermediate nodes). Because in reality, one cannot expect
changes at all the network components.

– Fairness among competing flows.

2 Related Work

Extensive research has been done to adapt TCP to address the challenges in
the wireless domain. However, most of the work was done for specific wireless
network paradigms. For example, the proposals TCP-Peach+ [3] (for satellite
networks), WTCP [4] (cellular networks), Snoop [5] (WLANs), and LTCP [6]
(ad hoc networks) are designed for a specific wireless network.
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The proposals [7]-[9] are designed for more than one kind of network. TCP-
NewJersey [7] was shown to perform well in WLANs and cellular networks. How-
ever, it relies on explicit congestion warnings from the network. TCP-Westwood
[8] claims improved performance over TCP in WLANs and LEO satellite net-
works, while achieving fairness. However, it dependents on the acks because of
which its performance degrades when it is used in high delay links. This is due
to the poorer accuracy in the bandwidth estimation done based on the delayed
acks [9]. Adaptive Transport Layer (ATL) [9] has been designed for the single-
hop wireless networks, which uses the TCP Friendly Rate Control equation to
estimate the throughput of the TCP flow in the wired part of the network, and
varies its additive increase parameter α to attain a similar throughput. We com-
pare our work with ATL as it was claimed to work in WLANs, satellite, and
cellular networks and had a significant performance gain over Snoop, WTCP,
Peach+, and Westwood. However, ATL has several limitations which make its
deployment extremely difficult. (a) ATL needs the receiver to explicitly supply
the wireless link loss and delay values at the receiver’s side. (b) ATL tries to
attain the throughput of the wired part of the network by increasing its α ag-
gressively. This causes an aggressive increase in cwnd and consequent unfairness
to the competing flows in the wireless part of the network. (c) ATL was not
designed for ad hoc networks. (d) ATL is a reactive protocol.

3 Overview of Our Protocol

TCP increments its cwnd by a deterministic value. In CA phase, it increases its
cwnd by 1 MSS (Maximum Segment Size) for every RTT (Round-Trip Time).
This is a big drawback and limits its extensibility to various networks. For in-
stance, satellite networks with high BDP require a larger cwnd increment to
quickly utilize the large bandwidth available, which is in contrast to ad hoc net-
works. Also because of its reactive nature, TCP experiences high packet loss,
which leads to a poor utilization of network resources. To overcome these prob-
lems, we propose a learning-based mechanism, which uses Finite Action Learning
Automata (FALA), to dynamically update the cwnd based on the network con-
ditions. The idea behind FALA is that there is a set of actions and a set of action
probabilities for choosing these actions. These probabilities are updated in such
a way that the favorable actions have a higher probability of being chosen. In
our case, the actions are the absolute increment (or decrement) in the cwnd.

The advantages of our protocol (Learning-TCP) are the following. Learning-
TCP has a wide range of actions, because of which it can increase its cwnd
aggressively or conservatively, based on the network it is operating in. In addi-
tion, as the actions are learnt from the network conditions, it becomes a proactive
protocol. Hence, when incipient congestion is detected, it reduces cwnd and re-
duces the congestion-related losses. This proactive decrease in cwnd not only
reduces the packet loss, but also leads to better fairness to the competing flows.

The following steps, also shown in Fig. 1, give a brief description of the pro-
tocol. They are explained in detail in Section 4.
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Fig. 1. Learning-TCP – inferring network conditions and selecting appropriate action

1. Get the network conditions: Using the RTTs and the forward path through-
put, we capture the congestion and throughput fluctuations in the forward
path into the parameters λ1 and λ2, respectively. Further, in order to reduce
the number of timeouts, using the cwnd values at which previous timeouts
have happened, we compute the cwnd at which the next timeout is likely to
happen. Taking this as a reference point, we obtain the degree of aggressive-
ness needed in cwnd increase as a parameter λ3.

2. Map λ1, λ2, and λ3 to a single parameter γ, which corresponds to the network
response or network feedback.

3. Map network feedback γ to β (input to FALA) and using which update the
action probabilities.

4. Select an action stochastically and update the cwnd accordingly.

4 Protocol Details

A learning automata system [10] consists of a finite set of states (φ1, φ2, . . . , φn)
and a finite set of actions corresponding to these states (α1, α2, . . . , αn), hence
called as Finite Action-set Learning Automata (FALA), which can be operated
in a random environment. At a time instant n, based on the previous actions
and their responses from the environment, the FALA selects an action from the
action set. Then, it may receive either favorable or unfavorable feedback from the
environment by the next time instant n+1; using a transition function and taking
feedback into account, FALA will decide on the new state φ(n+1) and performs
the corresponding action of this new state. The transition function is such that
the FALA will move to states where the favorable actions are chosen more often.
The advantages of learning automata are (a) The learning equations are fairly
simple and their convergence proofs are well established. (b) It does not require
any modeling of the environment. (c) It works in any random environment and
dynamically learns by observing the environment conditions.

We use FALA to learn and probabilistically decide on the amount of absolute
change in the cwnd. In our case, we have nine actions (α1, α2, . . . , α9) which
correspond to the amount of increase or decrease in cwnd when the respective
action is performed. The actions, their corresponding increase or decrease in
cwnd, and the values of the network feedback γ at which these actions are
favored are given in Table 1. For an action performed at time instant n, α(n),
we obtain the input to the FALA, β(n), from the network feedback γ.
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Table 1. Actions and their effective changes in cwnd size in FALA

Action Change in Favorable Calculation
(α1, α2, . . . , α9) cwnd size value of γ of β from γ

max inc cwnd += 2*MSS 1 1 − γ

mul inc cwnd += MSS 0.9 |0.9−γ|
0.9

add inc cwnd += 1
cwnd 0.7 |0.7−γ|

0.7
min inc cwnd += 0.01

cwnd 0.6 |0.6−γ|
0.6

no chng cwnd = cwnd 0.5 |0.5−γ|
0.5

min dec cwnd -= 0.01
cwnd 0.4 |0.4−γ|

0.6
add dec cwnd -= 1

cwnd 0.3 |0.3−γ|
0.7

mul dec cwnd -= MSS 0.1 |0.1−γ|
0.9

max dec cwnd -= 2*MSS 0 γ

4.1 Inferring Network Conditions

As we do not rely on any explicit support from the network, we infer the network
conditions (as we discuss in this section) from the acks which are our only source
of knowledge about the network.

Mapping of Congestion: RTT is potentially a good metric to estimate the
congestion in the network. In order to estimate congestion, we keep the mean
and standard deviation (sdev) of most recent n RTTs. As we can observe from
Fig. 2, in the presence of congestion there is a sharp increase in the RTTs.
Further, sdev increases with the increasing level of congestion. Hence, we can
detect the incipient congestion, from the sdev of RTTs. The RTTs which are
above mean + sdev indicate a sign of congestion in the network. However, in
order to reduce the chances of wireless fluctuations from being falsely identified as
congestion, we take the upper bound for indicating congestion as mean+2×sdev.
Since the RTTs below mean− sdev indicate the availability of free bandwidth
in the network, we take the lower bound for RTTs as mean− sdev.

On a linear scale between 0 and 1, with the normalized values of mean + 2×
sdev and mean− sdev as the upper and lower bounds, respectively, the mean of
k recent RTTs (k < n), is mapped to a parameter λ1 (see Fig. 4.a). We consider
mean of k recent RTTs (meank) instead of only the current RTT. This is to deal
with the fluctuations in RTTs which are caused by the bandwidth fluctuations
and link-level error control. Any value below mean − sdev is mapped to 1, to
indicate absence of congestion in the network and any value above mean+2×sdev
is mapped to 0 to indicate that the network is congested. We empirically found
the values for n and k as 100 and 15, respectively. These values allow us to
consider reasonable amount of history for making decisions about congestion.

Mapping of Throughput: Throughput in the forward path is another impor-
tant parameter in wireless networks because of asymmetric paths. From the time
stamp in the ack, the sender infers the arrival time of data packet at the receiver.
To avoid the fluctuations in the estimation, the sender computes the throughput
over recent k acks. Fig. 3 shows the trends in forward path throughput.

To map the throughput to λ2, we keep the maximum throughput (tputmax)
observed so far. However, taking just the tputmax will not completely indicate



A Novel Learning Based Solution for Efficient Data Transport 407

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 15  20  25  30  35  40  45  50

L
a

te
n

c
y
 (

s
e

c
)

Simulation Time (sec)

RTT
mean + sdev
mean - sdev

Fig. 2. RTTs of a TCP flow
along with the mean+sdev,
and mean − sdev of RTTs,
in the presence of back-
ground traffic between the
time 25 secs and 40 secs

 0

 50

 100

 150

 200

 250

 300

 350

 400

 15  20  25  30  35  40  45  50

T
h

ro
u

g
h

p
u

t 
(K

b
p

s
)

Simulation Time (sec)

Throughput

Fig. 3. The corresponding
forward path throughput
which drops drastically
when background traffic
exists and this drop persists
until the congestion ends

λ2

λ1

3λ(c) Mapping of current cwnd values to 

(b) Mapping of throughput values to

(a) Mapping of RTT values to 

0 0.33 0.67 1

mean − devmean + sdev mean

0 10.5

tput_loss tput_max0

0 1

min_cwnd

0.5

cwnd_cutoff

*

*

mean + 2 x sdev

Fig. 4. Mapping of network
conditions to λ1, λ2, λ3.
Note that ∗ denotes the fa-
vorable bound of λ1 and λ3

for cwnd increase action; for
λ2, the bound varies with
network conditions.

the current network conditions as one best case tputmax will always try to in-
crease the cwnd to achieve this value. Hence, we introduce the throughput at
the previous loss (tputloss) as a second reference point, at the mid scale. In the
new mapping, the values between 0 and tputloss are mapped to [0,0.5] and the
values between tputloss and tputmax are mapped to [0.5,1] (see Fig. 4.b). Hence,
when the throughput is very low, (1-λ2) will be close to 1 and we favor increase
actions. When the throughput is close to tputloss, we favor no chng action, and
when the throughput is close to tputmax, we favor decrease actions.

Avoiding Timeouts: As Learning-TCP may increase the cwnd by more than 1
MSS in the CA phase, there could be successive timeouts due to multiple losses.
To avoid this, we bring cwnd into feedback. We maintain the values for parame-
ters cwndprev and cwndmean, which represent the cwnd at the previous timeout
and the mean of the cwnd sizes at all previous timeouts, respectively. At each
ack arrival, using an auto-regressive technique shown in Eq. 1, we obtain the
cwnd at which the next timeout is likely to occur (cwndcutoff ).

cwndcutoff = f(t)× cwndprev + (1− f(t))× cwndmean (1)

Here 0 < f(t) < 1 and f(t) is a monotonically decreasing function with time t.
The idea is that initially cwndcutoff will be close to the cwndprev. However, if
there is no timeout for a long time, cwndprev may become a bottleneck. Hence,
as time progresses, cwndcutoff is gradually shifted towards the average cwnd at
which most of the timeouts happened. Using cwndcutoff as a reference point, we
capture the degree of aggressiveness needed in cwnd increase into λ3. On a linear
scale between 0 and 1, with the normalized values of cwndcutoff and minimum
cwnd as the upper and lower bounds, respectively, the current cwnd is mapped
to λ3 (see Fig. 4.c). Any cwnd size above cwndcutoff is mapped to 0.
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4.2 Mapping Network Conditions into a Single Parameter γ

Here, we discuss how to combine λ1, λ2, and λ3 into a parameter γ, which pro-
vides the network feedback. A high γ indicates a favorable sign for cwnd increase
and a low γ indicates a favorable sign for cwnd decrease. The first three cases
shown below combine λ1 and λ2 into γ, then the fourth case combines λ3 and γ.

1. We detect the congestion if meank > mean + sdev (≡ λ1 < 0.33), in
which case throughput will also be low. In this case, we determine the degree
of intensity needed in decreasing cwnd size, by taking γ = min {λ1,λ2}.
Depending on γ the FALA favors either max dec, add dec, or min dec.

2. When the meank is around or lower than mean (≡ λ1 > 0.66), the network
is probably not congested hence, the feedback should favor the cwnd increase
actions. In this case, we take γ = max {λ1,1−λ2}. This case is very useful in
quickly increasing the cwnd after congestion. Just after congestion, the RTTs
fall and hence, λ1 will be high. Besides, just after congestion the throughput
will be low and so 1−λ2 will be high indicating that there is a lot of unused
bandwidth in the network. We take the maximum of these two values as a
feedback to the FALA to quickly increase the cwnd.

3. For the remaining values of meank (i.e., mean + sdev < meank < mean),
we take γ = λ1+λ2

2 , which gives equal importance to both the RTT and
throughput parameters. For instance, when both λ1 and λ2 are high, a high
value of λ1 indicates that the network is not congested. However, λ2 is high
implies that we are close to the maximum throughput and so we should be
cautious, and γ = λ1+λ2

2 takes both these factors into account.
4. Then γ is adjusted as γ = γ+λ3

2 . When λ3 is close to 1, γ will be adjusted
between 1 and 0.5 and thus increase actions will be further favored. When
λ3 is close to 0.5, γ will be mapped between 0.75 and 0.25, and consequently
additive increase/decrease actions will be favored. Finally, when λ3 is close to
0, γ will be mapped between 0.5 and 0, and decrease actions will be favored.

4.3 Learning Algorithm and Action Selection

After mapping the network conditions to γ, using the equations in Table 1, we
map γ to β, which forms an input to FALA. The idea behind the mapping is
that for a favorable feedback (i.e., reward), β expects a value close to 0, so that
the probability for the action selected at previous time step will be increased,
making it a more favorable, and accordingly other action probabilities will be
decreased. For unfavorable feedback (i.e., penalty) it reacts just oppositely. For
instance, when max inc action is performed and if the feedback is favorable
(i.e., γ ≡ 1) then the corresponding equation 1− γ in the table assigns β a value
close to 0, which further increases the probability for selecting max inc action.

Due to the continuous nature of β and the possibility of multiple actions, we
use the S-model reinforcement scheme with multi-action linear reward-penalty
scheme LR−P , known as SLR−P for updating the action probabilities [10]. In
the SLR−P scheme, responses may be partly favorable and partly unfavorable
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to the action. The extent of favorability is specified as a value between 0 and 1.
Eq. 2 gives equations for SLR−P reinforcement scheme.

pi(n + 1)=pi(n)− (1− β(n))gi(p(n)) + β(n)hi(p(n)) if α(n) 	= αi

pi(n + 1)=pi(n) + (1 − β(n))
∑

j �=i gj(p(n))− β(n)
∑

j �=i hj(p(n)), if α(n)=αi
(2)

The action probabilities pi(n + 1) at time step n + 1 are computed from action
probabilities pi(n) at time step n and the current input values of β(n). The αi,
in the equation, refers to the action selected at time step n. The functions gj(.)
and hj(.) correspond to reward and penalty functions of the multi-action LR−P

scheme, respectively and are computed based on Eq. 3.

gj(p) = apj(n)

hj(n) =
a

r − 1
− apj(n) (3)

The terms a and r in these equations correspond to the learning factor and
number of actions, respectively. In order to maintain convergence property, we
take a as 0.01, which is a small value.

Action selection is done stochastically. To select an action, FALA generates
a uniform random number and then using the updated action probabilities, it
determines the probability that closely matches the random number and the
corresponding action is selected. This feature helps FALA to perform various
actions efficiently and accordingly adapt to changing network conditions. Since
the preferred actions are assigned higher probabilities, there is a high probability
for these actions to be selected, and at the same time the actions with lower
probabilities are not completely ignored.

5 Simulation Results

We carry out our simulations over ns-2.28. For the single-hop wireless networks
(WLAN, cellular, and satellite networks) we take a dumbbell topology. Over
a wireless link, the senders are connected to a router R1, which in turn con-
nected to Router R2 with a wired link; all the receivers are connected over wired
links to R2. The wired links have 10 Mbps bandwidth and 10 ms delay. The
results produced in this section are obtained with 95% confidence level. In all
the sumulations, we discard the first 2000 packets and then collect statistics over
the next 500 secs. We use FTP traffic and UDP flows as background flows, where
each UDP flow sends 100 pkts/sec. We compare our Learning-TCP against TCP
NewReno and Sack enabled ATL [9] for the following performance metrics.

1. Goodput is the number of bytes successfully transmitted per unit time.
2. Loss Percentage or Packet Loss is total bytes lost

total bytes transmitted .
3. Bandwidth Stolen is a measure of inter-protocol fairness. If a NewReno

flow has a goodput of T1 when competing with another NewReno flow and
T2 when competing with an aggressive protocol, then bandwidth stolen by
the aggressive one is (T1 − T2)/T1 if T1 > T2, and 0 otherwise.
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5.1 Simulations in Ad Hoc Wireless Networks

We now study the performance of Learning-TCP in ad hoc networks and compare
it with that of TCP NewReno and LTCP [6]. We perform simulations on chain
and grid topologies. One main advantage of Learning-TCP over NewReno in ad
hoc networks is its conservative and proactive nature, which should intuitively
result in a higher goodput for Learning-TCP with a lower packet loss.

Figs. 5 and 6 show the goodput and packet loss for the three protocols at vary-
ing hop lengths. At all hop lengths, Learning-TCP outperforms the other two
protocols. Learning-TCP shows upto 62% higher goodput and upto 64% lower
packet loss than NewReno, where as LTCP shows upto 30% higher goodput and
upto 38% lower packet loss, than NewReno. Next, on an 8x8 grid, leaving the
four corner points, we took 6 horizontal and 6 vertical flows of hop length of 7
each. This is an extremely congested network. Fig. 7 shows the goodput attained
by each of the 12 flows. Cumulative goodput of NewReno, LTCP, and Learning-
TCP are 29, 34.4, and 50.5 Kbps, respectively, and their corresponding loss % are
43.5%, 37.9%, and 24.3%, respectively. LTCP has an 18% improvement in cumu-
lative goodput and 13% reduction in packet loss, than NewReno. Learning-TCP
is the best among the three, with a 74% improvement in cumulative goodput
and 44% reduction in packet loss than NewReno.

5.2 Simulations in Satellite Networks

Here, we discuss the performance of Learning-TCP over satellite links. We use
satellite MAC in ns-2.28 and set the uplink and downlink bandwidths as 11 Mbps
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and 40 Mbps, respectively. The one way link delay is taken as 250 ms. The advan-
tage over NewReno is that Learning-TCP quickly increases its cwnd to use the
bandwidth available and thereafter fluctuates around the cwndcutoff . Besides,
even on encountering losses, Learning-TCP quickly reaches the cwndcutoff .

First, in the presence of background traffic (9 UDP flows), we study the per-
formance of a flow of Learning-TCP at various loss probabilities. The results
are shown in Fig. 8. At all loss probabilities, Learning-TCP shows significantly
higher goodput than NewReno, with a peak improvement of 168% at 0.005 loss
probability. Because of its aggressive nature, ATL attains significantly higher
goodput over Learning-TCP and NewReno. However, soon we show that this
improvement is at the cost of a high unfairness to the competing TCP flows and
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a high packet loss. As we increase the loss probability, wireless losses become
dominant, due this the goodputs of these three protocols are decreasing with
increasing loss probabilities. Fig. 9 shows the comparison of packet loss for these
three protocols. We notice that Learning-TCP shows marginally lower packet
loss than NewReno. ATL, on the other hand, has a significantly higher packet
loss than both NewReno and Learning-TCP.

Next, we show that the goodput improvement shown by Learning-TCP is not
at the cost of unfairness to the competing TCP flows. We first take ten NewReno
flows and compute the mean goodput, then replace five of the NewReno flows
with five Learning-TCP flows, and subsequently with five ATL flows and observe
the bandwidth stolen in both the cases. The comparison of bandwidth stolen for
varying loss probabilities is given in Fig. 10. Learning-TCP has significantly bet-
ter fairness than ATL. The bandwidth stolen by Learning-TCP is nil in most
of the cases. On the other hand, ATL increases its cwnd aggressively, causes
congestion losses, and forces the competing flows to half their cwnd even before
they get their fair share of the bottleneck bandwidth. This is clearly visible at
low loss probabilities where congestion losses are dominant. For instance, ATL
steals 91.5% of the NewReno bandwidth at a loss probability of 10−4, which is
certainly not acceptable. Fig. 11 shows the cumulative goodput attained by both
Learning-TCP and NewReno when we have five flows of each type competing
together. At all loss probabilities, Learning-TCP has a significant improvement
in cumulative goodput upto 120% over NewReno. Also, we can notice that ATL
is achieving higher cumulative goodput by causing severe unfairness to the com-
peting NewReno flows. As a result of this the NewReno flows are almost starved
by losing upto 91.5% of their bandwidth.

5.3 Simulations in Cellular Networks

We discuss the performance of Learning-TCP over cellular networks. As shown
in [2], we use a wired link to simulate cellular link by setting uplink delays and
bandwidth as 100 ms and 500 Kbps, respectively; downlink delays and band-
widths are taken as 100 ms and 1 Mbps, respectively. UDP flows generate traf-
fic at 50 pkts/sec; and all other details are same those for satellite network
studies.

Figs. 12 and 13 show the goodput and packet loss for varying wireless loss
probability. The trends are similar to those of the corresponding studies in
satellite networks. Learning-TCP shows significantly higher goodput than
NewReno, with a peak improvement of 136% at 0.005 loss probability and about
76% at the typical cellular wireless loss probability of 10−3. ATL shows higher
goodput over the other two protocols, however it has higher packet loss than
both NewReno and Learning-TCP. Figs. 14 and 15 show the bandwidth stolen
and cumulative goodput results, respectively. Learning-TCP shows better fair-
ness to the competing NewReno flows than ATL. The bandwidth stolen by
Learning-TCP is almost nil. ATL on the other hand steals upto 68.8% from
NewReno.



A Novel Learning Based Solution for Efficient Data Transport 413

5.4 Simulations in Wireless LANs

Here, we study the performance of Learning-TCP over WLANs by using IEEE
802.11 MAC operating at 2 Mbps. The other simulation details are same as those
of satellite networks.

Figs. 16 and 17 show the goodput and packet loss, respectively, for varying
wireless loss probabilities. Learning-TCP shows upto 25% higher goodput over
NewReno. ATL shows higher goodput among these, and has extremly a high
packet loss over NewReno and Learning-TCP, whereas NewReno shows higher
losses over Learning-TCP. Further, we carried out a study by increasing the
number of TCP flows at a typical WLAN loss probability of 10−4. Figs. 18 and
19 show the cumulative goodput and packet loss, respectively. We can observe
that while showing lower packet loss, Learning-TCP shows consistently higher
goodput over NewReno which is clearly visible at higher number of flows.

6 Conclusions

In this work, we proposed a unified reliable data transport protocol (Learning-
TCP) for heterogeneous wireless networks. Learning-TCP seeks neither explicit
network support nor changes at network components, thus enabling its easier
deployment. It can operate aggressively in high BDP networks and conservatively
in low BDP networks. When the incipient congestion is detected, it reduces cwnd
proactively and avoids multiple losses and timeouts, thereby conserving battery
power and bandwidth. Through extensive simulations, we showed that Learning-
TCP provides higher goodput over NewReno while reducing the packet losses
across all the wireless networks. We also compared Learning-TCP against ATL
and observed higher goodput for ATL. However, this improvement came at the
cost of high packet loss and unfairness to the competing flows which are certainly
unacceptable. Learning-TCP improves the throughput in a fair manner without
the need for explicit network support thereby achieving the desired goals.
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Abstract. Dense sensor deployments impose significant constraints on aggre-
gate network data rate and resource utilization. Effective protocols for such
data transfers rely on spatio-temporal correlations in sensor data for in-network
data compression. The message complexity of these schemes is generally lower
bounded by n, for a network with n sensors, since correlation is not collocated
with sensing. Consequently, as the number of nodes and network density increase,
these protocols become increasingly inefficient. We present here a novel proto-
col, called SNP, for fine-grained data collection, which requires approximately
O(n−R) messages, where R, a measure of redundancy in sensed data generally
increases with density. SNP uses spatio-temporal correlations to near-optimally
compress data at the source, reducing network traffic and power consumption.
We present a comprehensive information theoretic basis for SNP and establish
its superior performance in comparison to existing approaches. We support our
results with a comprehensive experimental evaluation of the performance of SNP
in a real-world sensor network testbed.

1 Introduction

With the goal of building a comprehensive systems infrastructure for scalable sensor
networks, we have developed a distributed data-driven processing runtime and an as-
sociated flexible programming environment [1] for structural health monitoring. Our
experience with this testbed (Bowen Labs), and the experience of other real-world de-
ployments motivate efficient data collection mechanisms from sensor networks. Sup-
porting fine-grained data collection in dense sensornets is rendered challenging by the
scarce network and energy resources at sensor nodes. Increasing network density, and
hence data rate, results in rapid degradation in wireless neighborhood network capac-
ity [4]. Similarly, increasing data rate results in high energy consumption [3]. Conse-
quently, reducing data traffic is critical to both throughput and longevity of the network.
In-network compression using spatio-temporal correlations is a viable application-
independent technique for fine-grained data collection.

Several existing protocols (e.g., [2, 8]) exploit spatio-temporal correlations by parti-
tioning the network into disjoint clusters. Data from each node in the cluster is routed
to a cluster representative, which then performs correlation driven compression. Com-
pressed data from cluster representatives is then relayed to the sink. The resulting mes-
sage overhead of such protocols is approximately O(n · kh) + O(nc · ks). Here, n is
the number of nodes in the network, kh is the average number of hops from a source
to the cluster head, nc is the average number of messages with compressed data, and

P. Sadayappan et al. (Eds.): HiPC 2008, LNCS 5374, pp. 415–426, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



416 A. Awan, S. Jagannathan, and A. Grama

ks is the average number of hops from the cluster representatives to the sink. The first
term in this overhead results from data sharing for correlation and the second term is the
actual compressed data. As the density and number of nodes in the network increase,
the first term dominates overhead. Furthermore, while such protocols reduce network
congestion near the sink, congestion near the sources increases rapidly.

In this paper, we present a novel protocol called spatial neighborhood protocol (SNP)
for exploiting spatio-temporal correlations in dense sensornets. The critical differenti-
ating aspect of SNP is that correlation-based compression is collocated with sensing.
Each node independently determines whether it should communicate its data based on
data received from other nodes in its spatial neighborhood1. Based on the assumption
that correlations are likely to be spatially localized, a node requires data only from a few
other nodes in its neighborhood to (near) optimally compress its data. In this manner,
only a subset of the nodes in the network need to broadcast their data. As a result the
overhead of SNP is O(n−R)+O(nc ·k). Here, k is the average number of hops from a
source to the sink, nc is the number of messages containing compressed data, and R is a
measure of redundancy in the network. The increasing redundancy, R, as a function of
node density, is key to the scalability of SNP. We show that SNP achieves near optimal
compression without the O(n) overhead for computing correlations.

2 Information Theoretic Underpinnings

In this section we develop the spatial neighborhood (SN) model (Section 2.4), which
forms the basis for the SNP protocol. We also present the partitioning model (PT),
which forms the basis of existing protocols (Section 2.5). We show that the compression
overhead of the SN model is much less than that of the PT model. We also show that the
compression rate of the SN model is better than that of the PT model. In demonstrating
the near-optimality of compression overhead and rate for the SN model, we establish it
as the basis for data gathering protocols in sensornets.

2.1 Preliminaries

Shannon entropy, or simply entropy, of a random variable X , denoted by H(X) is
a measure of the uncertainty (randomness) of a variable. If X is a random variable
whose values are drawn from the probability distribution of the data generated by a
sensor node, then H(X) denotes the entropy of the source. To model a network with
n nodes, we define N as a set of random variables. Xi ∈ N represents the random
variable associated with the data originating at node i andH(Xi) represents its entropy.
Joint entropy of multiple sources corresponds to the minimum amount of information
that can be used to reconstruct data from each source. Notationally, we represent joint
entropy as H(X1, X2, . . . , Xn), or simply H(N). Jointly coding data from correlated
sources results in transmission of H(N) bits of information instead of

∑n
i=1H(Xi).

Note that H(N) <
∑n

i=1H(Xi), in the existence of any data correlations. Temporal
correlations further reduce data since only H(Nt|Nt−1, . . .) (i.e., conditional entropy

1 In a wireless network, a message broadcast transmission can be received by all nodes within
the radio range of the broadcasting node.
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of data at time t, given data from previous time steps) bits of information need to be
transmitted, instead ofH(N). In this section we focus primarily on spatial correlations.
Temporal correlations can be computed from history buffers at source nodes.

2.2 Joint Entropy of Two Sources

The joint entropy of two source nodes is expressed as:

H(X1, X2)=H(X1)+H(X2|X1)=H(X1)+H(X2)−I(X1, X2)≤H(X1)+H(X2).
(1)

Here, H(X2|X1) is the conditional entropy of X2 given X1 and I(X1, X2) is the mu-
tual information between the two random variables X1 and X2. Mutual information is
a quantity that measures the correlation between two random variables.

As an example, consider a two-node system in which data transmitted by node 2
can be deterministically calculated using data from node 1. In this case, H(X1, X2) =
H(X1), and only data from source 1 needs to be transmitted. Conversely, if no correla-
tions exist (i.e., there is no mutual information), thenH(X1, X2) = H(X1) +H(X2),
and data from both sources must be transmitted. In sensor networks, data from one node
is often correlated with nearby sources. Therefore,H(X1, X2) < H(X1) +H(X2). In
such cases, only uncorrelated bits of X2 (called error bits or ε) need to be transmitted
to exactly reconstruct the data of node 2 using the data from node 1. In many cases,
exact reconstruction of data is not required and a maximum error constraint, εm, can be
provided by the user. In this case, if ε ≤ εm, no data needs to be transmitted.

Mutual information in sensor networks quantifies correlations, which typically re-
sult from spatial locality of nodes in the network. Based on this spatial locality re-
lation, mutual information for a pair of nodes can be expressed as I(X1, X2) =
D(d) · min(H(X1),H(X2)). Here, D(d), is a correlation scaling function defined
in terms of the distance d between nodes 1 and 2, and takes values in the range
0 ≤ D(d) ≤ 1. The lower of the two source entropies provides a trivial bound on the
maximum mutual information. The exact characteristics of the function D(d) depend
on applications, and deployments within specific applications of sensornets. In typical
applications, though, it is reasonable to expect that correlations are inversely related to
proximity. We formally state this as:

Lemma 1. Monotonicity of D(d): D(d) ≥ D(d′) iff d ≤ d′.

We have, thus far, discussed the abstract correlation scaling function, D(·) in terms of
spatial distance, i.e., as D(d). However, in different deployments the scaling function
may be defined in terms of other parameters, leading to the generalization D(Ri,j).
Here, Ri,j represents the parameter set.

2.3 Joint Entropy of N Sources

A precise expression for (optimal) joint entropy must incorporate application features.
To provide an application independent description, we define an approximation to the
optimal joint entropy of the sensornet in terms of pair-wise mutual information. This
approximation suffices to show that the spatial neighborhood model, which is the basis
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for SNP, achieves better compression than existing approaches. The joint entropy of the
network is represented by H(N). Correlation-based compression induces an implicit
ordering of sources. This is because data from a node i can only be coded with respect
to the data from a node j, which itself is not encoded with respect to i. Therefore, an
iterative construction2 is required to evaluate Hn, our approximation toH(N):

Procedure 1. Evaluating Hn.

1. Initialize: Let, S be the set of nodes {v2, v3, . . . , vn} and V be the set of a single
node {v1}. We set H1 = H(Xv1), where Xv1 is the random variable associated
with data from node v1.

2. Iterate: for i = 2 to n
(a) Select node vk from S and vj from V such that I(Xvk

, Xvj ) is maximized.
(b) Set Hi = Hi−1 + (H(Xvk

)− I(Xvk
, Xvj )).

(c) Remove node vk from S and add it to set V.
3. Hn is the approximation ofH(N).

In the above procedure, step 2.a induces the ordering required for coding nodes with re-
spect to each other. By selecting a node vk that is maximally correlated (maximum mu-
tual information) to some node in V, this step minimizes joint entropy of the iteratively
growing set, V. Hn is an approximation to H(N) since pair-wise mutual information
does not capture the information that vk can extract from (all) other nodes in the set V.
Therefore, in generalH(N) ≤ Hn.

As stated earlier, the task of a distributed in-network compression protocol is to sup-
port efficient sharing of data from sources in the network to enable joint encoding of
correlated data. In the context of Procedure 1, node vk must have access to the data
from node vj . Furthermore, it is desirable that this data sharing be independent of the
underlying network layout and routing topology. Existing approaches share data be-
tween nodes by partitioning the network into disjoint clusters and compressing the data
at the cluster representative. However, this process has high compression overhead (i.e.,
data sharing overhead). Furthermore, the compression performance is sensitive to the
optimality of partitioning.

2.4 Spatial Neighborhood Model (SN)

The SN model is based on the

r_b

r_a

Fig. 1. (a) Overview of the SN model; (b) Overview of the
PT model

following construction: let S be
the set of n nodes in the net-
work. For each node i, we de-
fine a spatial neighborhood set
Sri

i , which is a subset of S
containing all nodes within dis-
tance ri (except i itself). Here,
ri is called the correlation ra-
dius of node i. Corresponding

to each set Sri

i , we build a set of random variables Mi, such that ∀k ∈ Sri

i : Xk ∈ Mi.
From Lemma 1, nodes that are close to a given node i have a high spatial correlation

2 This model is similar to the one presented in [8]. However, ours is a more general formulation.
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with i. Therefore, the value of ri can be chosen such the set Sri

i contains all nodes
whose mutual information w.r.t. i is above threshold c. In the SN model, each node i
receives messages from nodes in its spatial neighborhood set Sri

i . Since a node k may
be in several spatial neighborhood sets, it can communicate with all nodes i for which
k ∈ Sri

i using a single message, assuming radio range exceeds ri.
The construction of SN, thus far, implies that n broadcast messages are required,

since each node must be in the spatial neighborhood set of at least one other node.
However, due to redundancy in dense networks, we can prune the spatial neighborhood
sets in such a way that a number of nodes (R) can be unaffiliated, i.e., are not in any set.

Definition 1. A node k ∈ Sri

i is redundant w.r.t. to Sri

i if there exists a node j ∈ Sri

i

such that I(Xi, Xk) ≈ I(Xi, Xj) and the mutual information between k and j is high
(i.e., I(Xk, Xj) > c, for some threshold c).

To maximize R (and therefore, minimize message broadcast count), joint pruning of all
the spatial neighborhood sets is needed. This is straightforward to achieve because, if
the mutual information of two nodes, say k and j, is high, they are spatially close to each
other. Therefore, the distance of node k and node j from another node i is approximately
the same. Hence, I(Xi, Xk) ≈ I(Xi, Xj) for all other nodes i. Note that identifying
R redundant nodes results in message reduction from n to n − R. This result is useful
and important because redundancy typically increases with number of network nodes,
implying that protocols based on the SN model scale well with increasing density.

Theorem 1. Redundancy (R) increases monotonically with network density.

Proof. Consider a pair of spatially proximate nodes k and j. From Lemma 1, their mu-
tual information is potentially high, i.e., I(Xk, Xj) > c. Furthermore, as these nodes
come closer (increasing density), they belong to the neighborhood sets of an increasing
number of nodes together. It then follows that I(Xi, Xk) ≈ I(Xi, Xj). Consequently,
one of k or j can be removed from all spatial neighborhood sets (cf. Definition 1). It
is easy to show that as the density of the network increases, the number of spatially
proximate pairs increases linearly. One node from each such pair can be removed, if
correlated, increasing R. If the network has uniform density this increase is linear as
well. Note, though, that this relies on correlation (mutual information)–if there is no
correlation, even with increasing density, R does not increase.

Figure 1(a) illustrates the SN model for a sample network layout. Two nodes a and
b (shaded red and green, respectively) and their correlation radius ra and rb are shown.
Solid (black outline) circles mark a few of the redundant pairs. One such pair is in the
intersection of the correlation radius of nodes a and b. One of these nodes need not
broadcast its data, without affecting the compression rate of the nodes a and b. We now
show that the SN model achieves the bound set of joint entropy (i.e., compression rate)
quantified by Hn.

Theorem 2. The spatial neighborhood model (SN) achieves joint entropy, ≤ Hn.

Proof. This follows from the observation that the spatial neighborhood set of node i,
Sri

i , includes all nodes that have high mutual information w.r.t. node i (cf. Lemma 1).
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Thus, it must include the node vj from step 2.a of Procedure 1. Therefore, the SN model
achieves joint entropy of ≤ Hn.

An implication of the above theorem is that the SN model can achieve in-network com-
pression such that at most Hn bits are transmitted to the sink. Let nc denote the number
of messages required to transmit Hn bits, and k be the average number of hops from the
source to the sink (e.g., in a tree topology k is the height of the tree). Then the overhead of
transmitting compressed data is O(nc ·k). As stated earlier, the overhead of data sharing
in the network is O(n−R). Therefore, we can derive the following theorem:

Theorem 3. The network overhead of the SN model is O(n−R) + O(nc · k).

The key observation from this theorem is that the SN model scales well with increasing
density of the network. This is because: (i) R increases with density, (ii) nc decreases
with density, and (iii) k remains approximately constant as the density increases.

2.5 Partitioning Model (PT)

An overview of the partitioning model for a random sensor network topology is pre-
sented in Figure 1(b). Here, the sensor network is portioned into m disjoint clusters
of neighboring nodes in the network (in the figure m = 6). A cluster representative
(shaded nodes in the figure), chosen within each partition, is responsible for receiving
data from all nodes in the partition (see lower right partition). At each cluster represen-
tative, all collected data is then jointly coded and the compressed information is relayed
to the sink. To evaluate the resulting joint entropy we let Ci be the set of random vari-
ables associated with the nodes in the ith cluster. The joint entropy achieved by the PT
model is therefore given by:HPT (N) =

∑m
i=1H(Ci).

Theorem 4. HPT (N) ≥ Hn.

Proof. If the number of clusters m = n, then HPT (N) =
∑n

i=1(H(Xi)) ≥ Hn. If
m = 1, clearly HPT = Hn. For any other value of m the entropy of each cluster can
be found using Procedure 1; the sum of these entropies is greater than or equal to Hn.

Corollary 1. The spatial neighborhood model (SN) achieves better compression rate
than the portioning model (PT) becauseHSN(N) ≤ Hn ≤ HPT (N).

Protocols based on the PT model (e.g., [2, 5]) reduce the number of messages by push-
ing compression (or processing) of information into the network, i.e., to the cluster
representatives. This decreases the network messages delivered to the sink. Unfortu-
nately, such protocols still have a transmission overhead of O(n · kh) because each
node must necessarily transmit its data to the respective cluster representative. Here, kh

is the number of hops to the cluster representative. Thus, the compression overhead of
the PT model is at least O(n). Due to its construction, the PT model can not reduce
this overhead to O(n−R), which the SN model achieves. Therefore, in dense networks
SN has significantly lower compression overhead than the PT model.

From Corollary 1, we see that the SN model achieves better compression than the
PT model. Let, nc be the number of messages required for transmitting the compressed
data from the cluster representatives to the sink. Then, O(nc ·ks) messages are required
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for transmitting data to the sink. Here, ks is the average number of hops from the clus-
ter representative to the sink. Recall that the SN model requires O(n′

c · k) messages,
where n′

c ≤ nc and in general k > ks. However, as the density of the network in-
creases, the O(n) term dominates for PT, while O(n − R) dominates for SN. Since
R increases with density, the total overhead of SN is much lower. Therefore, the key
aspect of the SN model is that it achieves a low compression overhead, while achieving
similar compression rates as prior approaches.

3 The SNP Protocol

SNP is a distributed and self-organizing protocol that efficiently implements the SN
model, achieving high associated compression rates at low overheads. It is practical
and can be implemented on lean sensor nodes.

Protocol Overview. In the SN model, each node needs data from its neighbors, using
which it can compress (correlate) its own data. This data is communicated through
broadcasts. Other, correlated nodes, suppress their own broadcasts in response. The key
unresolved issue is to construct a symmetric distributed coding and decoding scheme.
Specifically, if node i codes its data w.r.t. node j, then node j may not code its data w.r.t.
node i. Furthermore, the sink should be aware that node i used data from node j for
reconstruction. Clearly, an ordering based on which coding can take place is required.
The task of SNP is to induce such an ordering, while conforming to the SN model. The
ordering induced by SNP is based on spatial relationships (and consequently, likelihood
of correlation) between nodes.

Protocol Details. SNP partitions time into intervals of user-defined epochs (based on
the data rate). Within each epoch, a node communicates (or suppresses its communica-
tion) at an allocated time. This time-ordering of nodes in a spatial neighborhood can be
established using several protocols. SNP designates a subset of spatially distant (with
distance ≈ D between them) nodes that initiate this ordering process. In this step, the
designated nodes broadcast their data and go to sleep until the next epoch. Upon re-
ceiving this broadcast from a designated node, each node time-orders itself based on its
distance from the designated node. This is done by initializing a count-down timer at
node i to Ti = α×d2

i,j +βi. Here, α ∝ epoch/D2, di,j represents the distance between
node i and designated node j, and βi is calculated using the hash of node id of i to the
space (0, α). Note that SNP does not depend on the exact measurement of distance. A
relative measure that is monotonic w.r.t. distance suffices. If nodes do not have a GPS,
radio signal strength can be used [10]. Node locations can also be hard-coded into node
IDs. The hash term, β prevents collisions between nodes that may be the same distance
from a designated node. If a node receives messages from two nodes with different
distances from it, the node chooses the closer of the two to synchronize its timer.

Once all timers have been initialized, we have an induced time-ordering of nodes in
a spatial neighborhood (Figure 2). We refer to this ordering as Spatial Neighborhood
Node ordering (SNO). This technique for deriving SNO has several desirable features:
(i) it is resilient to node failures and insertions, (ii) it provides relative synchronization
of the nodes and hence has much lower overhead than absolute time division and
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Fig. 2. Spatial neighborhood ordering in the SNP protocol. Node a initiates the ordering process.

synchronization protocols, (iii) it is independent of the radio range because nodes syn-
chronize with messages from nearby neighbors. For the same reason it does not suffer
from the hidden station problem, and (iv) it minimizes collisions in the network by
providing a simple means of time division slotting (TDMA).

Prediction Functions. A prediction function,Fθ , estimates the data at a node from data
at correlated sources: x̂t

i = Fθ(xt
i|xt

j , x
t
k, . . . , xt−1

i , xt−1
j , . . .). Here, x̂t

i is an estimate
of xt

i (the data at node i at time step t) computed from data at other nodes. Note that
data from previous time steps (e.g., xt−1

j ) can also be used by the prediction function.
The prediction error |ε| is given by |xt

i − x̂t
i|. Higher correlation implies lower predic-

tion error. Note that the prediction function has a model parameter θi for each node.
These parameters are evaluated at the sink and transmitted to the nodes. Thus, the com-
putationally intensive task of calculating parameters is performed at the sink, while the
nodes use simple operations to predict data. θi can be updated at the sink if the cor-
relations change. SNP is, itself, independent of the prediction function. The prediction
function used in our implementation is discussed in Section 4.1.

Correlation Radius. Instead of defining correlation radius in terms of distance, SNP
keeps two sets of nodes, PREDi (predecessors in time ordering) and SUCCi (succes-
sors in time ordering) at each node, that serve the same practical purpose. These sets are
constructed locally at each node. For example, for node e in Figure 2, PREDe = {a, c}
and SUCCe = {g, b, f, d}. Note that these sets are sorted in terms of the distance of
nodes from node e. A node can predict its data using data from the current time step
from nodes in PREDi and data from the previous time steps using data from nodes
PREDi ∪ SUCCi. The number of nodes in these sets is γp (predecessors) and γs

(successors), respectively. Large predecessor and successor sets improve compression,
however, they also have associated memory overheads. In SNP, these parameters to be
tunable by users. We show in our experiments that a small constant set size suffices in
practice (Section 4).

Suppressing Data Broadcasts. A node determines whether it must broadcast its data
or not based on the value predicted using its predecessors (and successors from prior
epochs). This results in a self-adjusting mechanism, with varying density and corre-
lations. Due to this broadcast suppression mechanism, SNP achieves scalability with
increasing density, as with the SN model. The above mechanism is implemented using
two thresholds, δl and δh. If the prediction error |ε| < δl, the node does not broadcast its
data. In subsequent epochs, the node continues to suppress communication of its data
unless |ε| > δh. This hysteresis based thresholding results in stability across slight cor-
relation changes. Stability is an important part of this decision process, since a change in
the decision at a node can affect the PRED and SUCC sets of other nodes. Conversely,
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if the decision process is over-damped, the system can not adapt to changing correla-
tions. We show using experiments that this is not a major concern for SNP. Note that, as
nodes broadcast their data, nodes that might not have heard the SNO initiators can set
their timers based on messages heard from their neighbors and, thus, find their position
in the SNO ordering. This overcomes the hidden station problem.

Data Compression and Transmission. Locally, each node i finds an estimate, x̂t
i, of its

data xt
i as: x̂t

i = Fθ(xt
i| PREDt

i ∪ SUCCt−1
i ∪ PREDt−1

i ∪ . . .). The prediction
error is given by εt

i = xt
i − x̂t

i . Users can specify εm, the maximum error tolerance
(which can be zero). If |εt

i| ≤ εm, no data is transmitted, otherwise only εt
i (which uses

fewer bits) needs to be transmitted to the sink. Since data is communicated in packets,
sending a packet with a few bits will have high overhead. Consequently, we buffer the
prediction errors from multiple time epochs until the buffer is large enough to offset
the packet overhead. We also use a threshold thresh, so that if |εt

i| > thresh, the
sensor measurement is immediately transfered to the sink3. In this manner, outlier data
is immediately transmitted to the sink, while well correlated data is transfered lazily. By
using the data from both its predecessor and successors for compression, SNP faithfully
implements the SN model and achieves compression rates of the SN model.

The final step of the SNP protocol runs at the sink, which reconstructs data from
compressed values, i.e., εt

i, received from each node. For this, the sink must be able to
execute the same prediction operation. Once the estimate, x̂t

i, is evaluated at the sink, the
actual value can be computed using the compressed bits received from the node. Clearly,
for the sink to apply the prediction operation it needs to know the SUCCi and PREDi

sets of a node. Recall that data at node xt
i is predicted using data from the same time

step from its PREDi set or data from previous time steps from its PREDi ∪ SUCCi

set. Thus, all data required to re-construct xt
i is available at sink. Each node communi-

cates its PREDi and SUCCi sets to the sink. This needs to be done only once, when
the sets are first constructed. This amortizes, over time, the overhead of communicating
these lists. Note that these sets are stable because the broadcast suppression mecha-
nism (which affects the nodes that can be in the SUCC and PRED sets) is stable, as
discussed earlier and demonstrated in our experiments.

Resilience to Packet Losses. Packet losses can disrupt prediction, since data used for
prediction at source may not have been received by the sink. Due to the use of spatial
neighborhood ordering and data sharing, SNP minimizes packet losses from collisions
and radio attenuation (due to spatial locality). Furthermore, the PREDi and SUCCi

sets can be adapted so that nodes with repeated losses relative to the node i are removed
from the sets.

4 Experimental Evaluation

We present a comprehensive evaluation of the performance of SNP over a 25 Mica2
node deployment, and using detailed simulations for parameter studies. We show that
SNP provides up to 60% savings in network messages for fine-grained data collection.

3 Data is transmitted to the sink using the underlying sensor network routing protocol, e.g., tree
routing. Note that SNP is independent of this routing layer.
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We compare SNP with existing approaches for in-network compression based on net-
work partitioning, and show that these protocols require 25% to 50% more messages
than SNP. Using simulation we evaluate the performance of SNP with increasing den-
sity and number of nodes in the network. Our results show that SNP scales well, ex-
ploiting both correlations and redundancy in dense networks. Finally, we evaluate the
effect of different parameters of SNP on its performance and describe how they can be
used to tune SNP for different environments.

4.1 Experimental Setup

We have implemented SNP on Mica2 nodes using COSMOS [1]. COSMOS supports a
high-level programming model for sensor networks, with a lean runtime environment.
The underlying source to sink data delivery uses tree routing. We present results using
a lab testbed of 25 nodes. To evaluate SNP, we use data traces that are seeded on the
sensor nodes. Thus, instead of sending data read from its sensors, the Mica2 nodes send
data from the trace for repeatability. The trace, corresponds to temperature data from
the Sonoma forest deployment [12].

To enable a comparative study we also implement the PT protocol, and a simple data
collection (SDC) protocol for baseline measurements. SDC does not use any in-network
compression. The PT protocol implementation uses the same prediction function as the
SNP protocol. To allow a fair comparison, we do not incorporate the cost of partitioning
the network in the PT protocol. All other overheads, e.g., hop-by-hop messages due to
the routing tree are incorporated. We also fix the tree routing structure so that measure-
ments are comparable across runs. We have also built a simulator for the SNP, PT, and
SDC protocols, which allows us to evaluate different operational ranges in detail.

Prediction Function. We use Autoregressive Moving Average (ARMA) based predic-
tion to exploit spatio-temporal correlations. A node exploits data from multiple neigh-
bors by taking a weighted average, or auto-regression, (based on spatial distance) of
data. In addition to spatial correlations, each node exploits temporal correlations by
maintaining a history of its own data and the data from its neighbors.

4.2 SNP Performance

We evaluate the performance of SNP in terms of compression overhead (messages) and
rate w.r.t. the baseline SDC protocol and compare it to the PT protocol [2]. We also study
the impact of approximate compression using the SNP-ε and PT-ε variants of the orignal
protocols. In our experiments we use ε = 5%. We determine the number of messages
for SNP, SNP-ε, PT, PT-ε and SDC protocols using our testbed of 25 Mica2 motes.

The results of this evaluation are shown in Figure 3(a). The number of messages
are normalized to the number of messages required by SDC. As expected, in-network
compression offers significant savings in the number of messages. SNP outperforms
PT, reducing the message overhead by up to 30%. Furthermore, as expected, the ap-
proximate versions of the SNP and PT protocols perform better in terms of the message
overhead. The key points to note is that the overhead of data sharing (shaded boxes) is
significant. In fact, the superior performance of the PT protocol can be attributed mostly
to the lower data sharing overhead. In all cases the overhead of data sharing in SNP is at
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Fig. 3. (a) Number of messages (normalized w.r.t. SDC). (b) Messages in SNP and PT with in-
creasing density. (c) Effect of changing predecessor and successor set size.

least 45% lower than the PT protocol. Another key point to note is that the data sharing
overhead of SNP adjusts to correlations in the network, while that of the PT protocol
remains the same. This is because, for the PT protocol, irrespective of the correlations
in the network, each node must send its data to the cluster head for compression.

Impact of Node Density. We study the impact of node density on performance through
simulations. To increase density the spatial area of the network (in the simulator) is kept
constant while the number of nodes is increased. We observe that the ratio of messages
required for SNP w.r.t. SDC tends to zero, while the same ratio for the PT protocol
tends to a constant (Figure 3(b)).

Changing Correlation Radius. In the SNP protocol, each node maintains sets PREDi

and SUCCi, whose data is used to predict and, hence, compress data at the node. The
sizes of these sets are γp, and γs, respectively. These parameters capture the correlation
radius of a node and impact the memory-correlation tradeoff. We study the impact of
γp and γs on compression. The results are presented in Figure 3(c). The metric of eval-
uation is compression efficiency, which is the ratio of the compression achieved using
limited correlation radius with that of the compression achieved using an infinite radius.
The three curves in the plots correspond to: (i) increasing γs while setting γp to zero, (ii)
increasing γp with γs set to zero, and (iii) increasing γp + γs with γp = �(γp + γs)/2�
and γs = �(γp + γs)/2�. We observe from Figure 3(c) the best performance is archived
by using the γp + γs approach, since using this approach, nodes are able to use the
closest spatial neighbors. This is consistent with the intuition behind the construction
of the SN model. An important implication of this result is that small sets are sufficient
for achieving high (99%) efficiency.

5 Related Work

Application dependent in-network processing and aggregation based on data-centric
routing has been well studied [6,7]. We develop an application independent in-network
compression protocol to enable distributed joint coding, achieving high compression
rate, with low overheads.

Traditional data compression schemes can not directly be adapted to sensor
networks. There have been proposals to apply the much celebrated results of Selpian-
Wolf [11] to sensor networks. Selpian-Wolf joint coding can achieve distributed
compression without communication between the sources, which is attractive for
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sensor networks [9]. However, this approach requires precise a priori knowledge of
the probability density function of data sources.

In early work on exploiting spatio-temporal correlations in sensed data, researchers
have explored the PT model of correlation [2, 8]. We improve on these results, both
in terms of compression rates and overhead. Pattem et al. [8] provide an information
theoretic basis for the PT protocol. They also propose an implementation of the PT
model in which compression can occur on the path to the cluster representative, thus,
possibly reducing the O(n) overhead of the PT protocol. However, this has the effect
of increasing the route-length to the sink – thus adversely impacting network capacity.
If this is not a consideration, the performance of this model approaches (but does not
exceed) that of SNP.

6 Conclusions

In this paper, we present SNP, a novel application independent, lean, in-network com-
pression protocol that achieves high compression rates by exploiting spatio-temporal
correlations with low network overheads. We present formal quantification of compres-
sion rates, overheads, and scaling, and experimentally demonstrate its performance on
real testbeds, as well as through simulations.
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Abstract. Parallel Pervasive Systems (P 2S) comprise an ad hoc net-
work of pervasive devices such as cell phones, handheld computers, lap-
tops, sensors and other devices that essentially form a parallel system.
Most of the current work in pervasive computing and mobile adhoc net-
works exploit resources on remote devices to execute compute intensive
tasks. In this paper, we present a distributed task scheduling algorithm
called cluster based scheduling algorithm (CBS) for parallel processing
of task graphs in pervasive environments. We reduce the communication
overhead by considering the devices to be grouped into logical clusters.
CBS does not require the task scheduler device to have knowledge of all
characteristics of each device in the environment. The proposed scheme
allows usage of multiple task scheduling algorithms. Simulation results
demonstrate time and energy efficient scheduling of tasks in heteroge-
neous environments.

Keywords: Task scheduling, parallel processing, pervasive computing,
resource constrained devices.

1 Introduction

The concept of pervasive computing was prophesied by Mark Weiser in [1]. A per-
vasive environment provides services to its users in a transparent way such that
the users get services whenever, wherever, however they want [2]. Each device
in a pervasive environment possesses a set of hardware and software resources
and serves as host to application services. Recent work [3] on creation, compo-
sition and maintenance of services in ubiquitous environments assume that the
service provider device is capable of executing the service in its entirety. If the
service provider is incapable of executing the service within the required quality
of service (QoS), cyberforaging is used to transfer computations to a high-end
server. We consider an environment in which such high-end servers are generally
absent. Hence there is need for performing parallel processing using multiple
devices that are available in the environment, rather than a single server. Paral-
lel Pervasive Systems (P 2S) comprise sensors, monitors, cell phones, handheld
computers, embedded devices, laptop and desktop computers and more. P 2S are
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essentially parallel and distributed computing systems that are networked using
wired and/or various wireless technologies.

Parallel processing is a well-studied area for high-end machines. Parallel al-
gorithms and programming techniques for several fundamental problems like
matrix multiplication, sorting, searching, image analysis and several others have
been described in the literature. Even though device parallelism exists in abun-
dance in P 2S, exploiting parallelism using traditional algorithms is nontrivial
due to such unique challenges as heterogeneity, resource constraints, mobility,
and privacy and security. In particular, sensor and embedded systems are ex-
pected to be long running - meaning that once deployed they are expected to
operate for long periods without human intervention. In pervasive systems, ex-
ploiting parallelism may increase the energy consumption due to increased com-
munications. Therefore, it is necessary to develop novel techniques that can
simultaneously meet time and energy constraints. To motivate the reader, con-
sider the example of remote area surveillance using cameras and other sensors.
Some of the sensors, such as a camera mounted on a patrol vehicle, would be
mobile. Video and images streamed from the area need to be processed and only
events of interests are transmitted. In such scenario, since the applications do
not have access to high performance servers, it is necessary to exploit device
parallelism in order to perform high computation tasks.

The proposed scheme, Cluster Based Scheduling (CBS), supports the device
heterogeneity, mobility, and service fluctuations. Simulation results show that the
communication overhead required by this scheme is far less than other schemes
used in pervasive computing environments. CBS supports service fluctuations by
considering each service to have a window during which it is available. Mobility is
supported by considering each device to have a window during which the device
is available.

1.1 Challenges in Parallel Computing in Pervasive Environments

User Mobility. Traditional parallel algorithms do not consider the partici-
pating processors to be mobile. In the above example, devices on the mobile
patrol vehicle might be used for computation. These devices will move in/out
of range as the vehicle moves. There will be constant changes in the underlying
network of devices. In order to focus on task scheduling and resource utilization
we assume that the pervasive environment can provide information about the
expected arrival and departure times of a service and device.

Random Failures. Devices in pervasive environment can disconnect or fail at
any time. There is no guarantee on the availability of those devices. Such random
failures can be due to user turning off the device, device losing its network
connectivity or device being nonresponsive due to some software error.

Device Heterogeneity. In a pervasive computing environment, the devices
have varying CPU speeds and memory capacities. Dhodhi et al. [4] use a problem-
space genetic algorithm for task scheduling on a heterogeneous set of processors.
Only the CPU heterogeneity is considered. Other constraints like mobility and
random failures are not considered.
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Energy. Traditional parallel algorithms assume that there is sufficient energy
to complete the assigned tasks. Mobile devices in a pervasive environment have
limited energy remaining and might not be able to complete the tasks. Trans-
mission and reception of a message consumes considerable amount of energy.
Hence communication amongst processors should be reduced.

Interaction between User and Devices. Since personal devices are used for
the parallel computations, the job should not inhibit the user from performing
his tasks. For example, on a cellphone, an incoming phone call receives higher
priority than the current parallel task. Hence it might not be possible to reserve
the CPU for the entire amount of time of the parallel task.

Security. In a pervasive environment, when a client is using the neighboring
devices for his parallelized tasks, the client should be protected from a malicious
surrogate. Also, the surrogate needs to be protected from the job submitted by
a client. If needed, the data should be encrypted to ensure privacy of the data.

1.2 Middleware Support

A typical middleware contains modules such as network handler, resource mon-
itor, service discovery, service composition, application layer and security. The
network handler provides the actual connections via various types of connec-
tivity such as bluetooth, 802.11, LAN. A device can be connected to the rest
of the network in various topologies such as ad-hoc, heirarchical, star, clusters.
Algorithms such as [5] can be used for cluster formation and clusterhead elec-
tion. The resource monitoring module measures resources like residual battery
energy, residual storage space and others. The service discovery module locates
services hosted by devices in the network. Mechanisms like [6] can be used in this
module. The service composition module uses the services discovered to create
new composite services by connecting the existing services in a task graph like
fashion. Algorithms like [3] can be used in this module. The security module
provides encryption and decryption algorithms.

2 Proposed Scheme

The proposed scheme requires devices to be grouped into logical clusters. Cre-
ation and maintenance of a cluster is provided by the middleware. Each cluster
has a contact point or a cluster head that performs all housekeeping jobs for the
cluster [3]. For the sake of simplicity, we assume a single cluster head per cluster.
The cluster head can be distributed in space and/or time in order to address is-
sues of load balance and fault tolerance. The creation of clusters ensures smooth
execution of tasks in mobile and uncertain environments, where availability of a
single node cannot be guaranteed for long periods of time. Fault tolerance and
recovery will be investigated in the future.

Eachdevice di is representedby the tuple (µi, tdai, tdui, tdmi, li)where µi: CPU
speed of the device, tdai: Time at which the device is available, tdui: Time at
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Fig. 1. Example task graph, device connectivity, availability of services and devices

which the device becomes unavailable, tdmi: Time at which the device finished its
previous task. Hence the device is available in the time interval [tdai, tdui], and
tdai ≤ tdmi ≤ tdui. It is assumed that these values are known. li is the number
of different voltage levels supported by the device for dynamic voltage scaling.
Devices are grouped together into logical clusters based on some criteria. For
example, the grouping would be on connectivity or services offered by the device
or resource level of each device. Let Cx be a cluster of devices and represented
as {d1, d2, ...}. Let C = {C1, C2, ...} be the set of all clusters.

Let G = (P, E) be the directed task graph with P = {p1, p2, ...} as the set
of nodes or tasks and ei,jεE is an edge incident from pi onto pj . Each task pj

is represented by the tuple (cj , tpaj, tpuj , tpsj, tpfj), where cj : cpu requirement,
tpaj: time at which task pj becomes available, tpuj: time at which task pj be-
comes unavailable, tpsj: time at which task pj will start executing, tpfj: time at
which task pj will stop executing. Let ri,j be the time required to pass data be-
tween the two tasks. When the two tasks are scheduled on same device, ri,j = 0,
otherwise ri,j 	= 0. Let T be the deadline by which the entire task graph is to be
executed. tpaj and tpuj are used to handle the service availability challenge. The
pervasive environment might be able to provide these values. Figure 1 shows a
sample task graph, device graph and availability windows of each service and
device. The scheduling is performed in two levels: client - cluster communication
and intra-cluster scheduling.

2.1 Client - Cluster Communication

A device that initiates the task scheduling is called as the client. Algorithm 1
gives the communication protocol between the client and the cluster heads. The
client divides the deadline, T , into |C| equal intermediate deadlines. Let T be
the set of these deadlines. Hence, T = {T/|C|, 2T/|C|, 3T/|C|, ..., T}. The client
informs all the clusters of the task graph and the intermediate deadlines. Each
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Algorithm 1. Client-Cluster communication
1. T = {T/|C|, 2T/|C|, 3T/|C|, ..., T}
2. for all t in T do
3. send (winner of prev. slot, request for bids for current slot) to all cluster

heads.
4. receive (bids from cluster heads)
5. end for

cluster head performs task scheduling using devices in that cluster only. Depend-
ing on the resources available within the cluster, the clusterhead uses a suitable
task scheduling algorithm. Greedy and list based algorithms require less CPU
and energy to generate a schedule whereas genetic algorithms can generate better
quality schedules in more time.

Each cluster returns the number of tasks that can be completed by the inter-
mediate deadline and the start time and finish time of the tasks selected in a
particular time slot. This is called as a bid. The cluster that performs the maxi-
mum number of tasks by the intermediate deadline is declared as the winner of
that time slot. If two clusters select same number of tasks, then the cluster that
will execute the tasks in the least time is selected. If multiple clusters finish the
same number of task at the same time, the tie is broken randomly. The result
along with the start and finish time of the selected tasks is then sent to all clus-
ters and the bidding process for the next time slot begins. Hence the number
of messages received (rx) and transmitted (tx) by the client are: rx = |C|2,
tx = rx + 1 respectively.

2.2 Intra-cluster Scheduling

Due to the user mobility patterns and energy remaining on each device, each
device will have a time window during which it is available for parallel computing.
We divide the intermediate deadline provided by the client into more intervals
depending on the arrival and departure time of the devices. The tasks are sorted
on their bottom level (b-level) [7] to get the preferred sequence in which the
tasks should be scheduled. Algorithm 2 describes an intra-cluster scheduling
algorithm. Let τa be the set of device available times, and τu be the set of device
unavailable times. Hence t is the sorted sequence of events of device becoming
available or unavailable within a particular cluster, where tv is the vth element
of t and v < w ⇔ tv ≤ tw. Hence each device is either available during the entire
interval or is unavailable during the entire interval. D contains devices that can
be used till time tv. Step 6 calculates �, the total computing power available till
time tv. Since each iteration performs scheduling in only one interval, we can
reduce the task graph such that tasks that require more computing power than
� can be ignored. Let P be the set of unscheduled tasks such that sum of CPU
requirements of tasks in P is less than or equal to �.λ, where λ is the selection
factor. Thus P contains tasks that could be scheduled till time tv. Since the
tasks are sorted according to their distance from the exit node, λ controls the
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Algorithm 2. Intracluster scheduling
1. τa = {tda1, tda2, ...} and τu = {tdu1, tdu2, ...}
2. t = {τa ∪ τu}
3. for all tv ≤ Th do
4. D ⊆ Cx such that di ∈ D ⇔ tdmi < tv

5. sort D in descending order of µi

6. � = Σdi∈D[µi(tv − tdmi)]
7. P ⊆ P such that Σpj∈Pcj ≤ �.λ

8. ρj ⊂ P such that ρj
k ∈ ρj ⇒ ρj

k is an unscheduled parent of pj

9. for all di ∈ D do
10. ψ ⊆ P where ψj ∈ ψ ⇒ (Σpk∈ρj ck)+ cj ≤ [min(tpuj , tv)−max(tpaj, tdmi)].µi

11. Consider the device to be a knapsack of capacity �. Form a table of � = |ψ|
columns and � rows

12. Solve knapsack using recurrence relation: [�, �] = max{[�, �− 1], ([�− ψj , �−
1]+ψj if ρj ∈ [�−ψj, �− 1]

V
maxpk∈ρj (tpfk + rk,j)+ cj/µi ≤ min(tpuj , tv))}

13. φr,c = (Σek,j∈Esr,c(rk,j) + Σpj∈[�,�](cj))/Σek,j∈Ecr,c(rk,j)
14. Choose [�, �] with highest rank. Schedule corresponding tasks onto di

15. Remove those tasks from P, P
16. Update tpsj , tpfj of the tasks and tdmi of the device
17. Send the tpsj , tpfj values to the client
18. end for
19. end for

number of edges that have both ends in P. If the value of λ is small, we might
get only disconnected tasks in P. Scheduling both ends of the edges onto same
device reduces the communication cost. Figure 2 shows an example of the effect
of values of λ. Let ρj be the set of unscheduled parents of pj . Steps 10 to 18 are
repeated for each device available till time tv. A task might be scheduled onto di

if the sum of the CPU requirement of the task and its unscheduled parents is less
than or equal to the computation power available with the device in the interval
[tdmi, tv]. Let ψ be the set of such tasks and ψj be the jth element in ψ. Hence
ψj ∈ ψ ⇒ (Σpk∈ρj ck)+ cj ≤ [min(tpuj , tv)−max(tpaj, tdmi)].µi. To select tasks
for di, the computation power offered by the device till tv is considered as the

Fig. 2. Example: Selection of tasks into P based on value of λ
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capacity of the knapsack. Hence capacity of the knapsack is (tv − tdmi)µi. A
dynamic programming table for the knapsack problem gives better results when
the rows of the table are numbered consecutively, starting from 0. We create
a dynamic programming table of � = |ψ| columns and � rows. For simulation
purpose we considered � = 10. Since the capacity of knapsack is (tv − tdmi)µi,
each row in the table will correspond to a multiple of ((tv − tdmi)µi)/�. Since
the knapsack capacity has been converted into �, the CPU requirement of each
task in ψ should be converted in the corresponding ratio. Hence divide cj ∈ ψ
by ((tv − tdmi)µi)/�. Step 12 gives the recurrence relation for the dynamic
programming table. Let Ecr,c be the cutset of the combination [�, �]. Let Esr,c

be the edges that have both ends in [�, �]. The rank of combination of tasks in
[�, �] is given by

φr,c =
Σek,j∈Esr,c(rk,j) + Σpj∈[�,�](cj)

Σek,j∈Ecr,c(rk,j)
. (1)

The combination with highest rank is scheduled onto device di. The tpsj, tpfj

and the number of tasks in the selected combination are sent to the client.
Consider the example task graph of Figure 2. Let λ = 2, � = 8, cj = j and

ej = j, that is, c1 = 1, c2 = 2, c3 = 3, . . . , and e1 = 1, e2 = 2, e3 = 3, . . . . Hence
rank of combination (1, 2, 3) = 0.6 and rank of combination (1, 3, 4) = 0.785.
Thus varying the value of λ might give us better combinations. Consider that
a schedule is obtained using the above method. For each device, the sequence
of tasks assigned to the device is checked for any idle time between two tasks.
If an idle time is found and the corresponding device supports dynamic voltage
scaling (DVS), the previous task may be executed on a lower voltage such that
the idle time is minimised. A task is not considered for DVS if its output is sent
to another task on a different device. Consider an idle time between tasks pi

and pj . Let the device support k different voltage levels. The following steps are
repeated till the idle time is minimised:

1. Let τk be the total time required to execute pi at voltage level, k.
2. If τk ≤ (tpsj − tpsi), decrement k by 1. Else execute pi using voltage level

k + 1.

Let Ej be the energy savings obtained by executing task pj on a lower voltage
level. The total energy savings for a schedule is

∑
j Ej .

In Algorithm 1, consider that T is not divided into slots. Hence bidding will
be done only once and the obtained schedule consists of all tasks mapped onto
devices in a single cluster. Depending on the device characteristics, a better
solution might be obtained if the tasks are scheduled across multiple clusters.
Hence instead of having just one slot, we divide T into multiple slots. Since
bidding is performed for every slot, the communication overhead increases with
increasing number of slots. Hence we use |C| number of slots as a tradeoff.
Algorithm 2 is executed once for each slot of Algorithm 1. Hence Algorithm 2 is
executed |C| times. Let there be n devices and m tasks. Algorithm 2 sorts the
arrival and departure time of devices in ascending. Devices that are available
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in each interval are found and the innermost loop is repeated for each of that
device. We get maximum number of intervals when only 1 device arrives or
departs at an instance. Hence if there are x devices in a cluster, the innermost
loop is executed x2 times for the worst case. The inner loop creates a dynamic
programming table of size y rows ∗|ψ| columns. The worst case will be when
ψ = P, that is |ψ| = m. Hence it will take 2ym computations for each iteration
of the inner loop. After a schedule is obtained from algorithm 2, each task might
be executed on a lower voltage level. Hence it takes

∑
j lδ(j) computations, where

δ(j) is the device on which pj is scheduled. Let lmax = maxi(li). Hence worst
case complexity of the algorithm is O(y.m.|C|.x2 +m.lmax). The client transmits
and receives a total number of 2|C|2 + 1 messages. Thus we see that if keeping
n as a constant, if we increase |C|, the communication cost increases and the
computation cost decreases. The total number of messages sent by all devices
in a work stealing algorithm like [8] is given by (n2).f , where f is the frequency
of advertisement messages sent. Thus we see that even though the computation
complexity is higher in our algorithm, the energy savings obtained due to reduced
communication will be much higher and the higher computation complexity is
worth the energy savings.

3 Simulation Studies

We compare CBS with the HEFT algorithm [9] used over all devices. To evaluate
the communication overhead and energy consumption, we compare CBS with
algorithms given in [10] and [8]. The simulations were performed for random
task graphs and randomly generated device characteristics and connectivity.

3.1 Comparison Metrics

– Normalized Schedule Length (NSL): NSL is defined as the makespan divided
by the minimum time required to execute the critical path. NSL ≥ 1 since
the denominator is the lower bound of the makespan. We use average NSL
over 25 sets of task and device graphs.

NSL =
makespan

mini=1,...,n

(
tdai +

P
pjεcp cj

µi

) . (2)

where cp is the critical path of task graph.
– Efficiency: Speedup is defined as the ratio of sequential execution time of the

entire task graph on a single device to the parallel execution time. Efficiency
is defined as speedup divided by the number of devices used in the schedule.

speedup =
mini=1,...,n

(
tdai +

P
pjεP cj

µi

)
makespan

. (3)
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– Energy consumed in communication overhead: We find the ratio of energy
consumed by algorithm in [10] to that consumed by CBS and the ratio of
energy consumed by MPI-IOS [8] to that consumed by CBS.

3.2 Random Graph Generation

Random graphs are generated with the following parameters:

– Number of tasks (n): The number of tasks is selected from the set {20, 40, 60,
80, 100}.

– Computation cost (c): Each task in the task graph has CPU requirement in
the range of 1 to 200 units.

– Communication to computation ratio (CCR): The average value of CCR is
selected from the set {0.01, 0.1, 1, 10, 100}. Communication is lightweight if
the ratio is 0.01 and is most heavy when the ratio is 100.

– Number of devices (m): The number of devices considered are 4, 8, 16, 32
or 64.

– CPU speed of each device (µ): The CPU speed is chosen randomly from the
range 1 to 600 units.

Figure 3 shows the effect of CCR on average NSL for CCR = 0.1, 1, 10. We see
that irrespective of the CCR, our scheme performs better than HEFT and gives
a lower average NSL. For many samples, HEFT did not generate a schedule,
but our scheme did. Such cases were not considered for the average NSL in
figure 3. In these samples, there was a task with multiple parents scheduled onto
multiple devices. The communication cost between devices caused finish time
of the child task to become greater than availability of all devices. Our scheme
uses a knapsack dynamic programming table and is not based on the earliest
finish time. Hence less number of devices were used for the parents and hence
the finish time of the child task was within the device availibility window.

Figure 4 shows the efficiency comparison between HEFT and our scheme.
We see that our scheme consistently produces higher efficiency. The number of
devices used ranged from 4 to 64. We compared the communication overhead cost
in CBS with that in [10] and MPI-IOS. In [10], a device that executes a particular
task becomes responsible for scheduling the successors of that task. This requires
communication between a task and all other devices. Due to clustering, we were

Fig. 3. Effect of CCR on Average Normalized Schedule Length
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Fig. 4. Efficiency comparison (CCR = 0.01, n = 20)

Fig. 5. Ratios of energy spent in communication overhead of A: algorithm in [10], B:
MPI-IOS algorithm with respect to C: CBS

able to reduce the communication required. For figure 5, we find the ratio of
energy consumption in MPI-IOS and the algorithm in [10] to that of CBS. Figure
5 shows the ratios for CCR = 0.1 and CCR = 10 with n = 20 and m ranging
from 4 to 64. Number of messages exchanged in [10] and CBS are dependant
on device connectivity and number of clusters respectively. Number of messages
exchanged in MPI-IOS depends not only on device characteristics but also on
the time taken to finish the task graph. Hence we observe that energy consumed
by MPI-IOS is much larger than that in [10] and CBS.

4 Related Work

Phan et al. [11] consider mobile devices for grid computing. However, all of the
challenges presented by a pervasive computing environment are not handled.
Yu et al [12] propose an energy-balanced allocation algorithm for homogeneous
sensor nodes equipped with dynamic voltage scaling. All devices are assumed to
be connected with each other and available till the execution of all tasks is over.
Cyber foraging [13] is a method for migrating a task from a mobile device to a
resourceful server. To make an application usable for cyber foraging, the applica-
tion developer modifies the application such that it is divided into parts that can
be executed on a remote server. DynaMP [14] is a message passing architecture
used for parallel computation in mobile systems. DynaMP uses all its neighbors
in a Bluetooth piconet. Work is distributed evenly amongst all the neighbors.
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MagnetOS [15] partitions applications into components and dynamically allo-
cates them to nodes within the network. The granularity of partitioning is a
Java object. In [8], the authors demonstrate how to achieve process migration
in applications that use message passing interface (MPI). When a node becomes
underutilized, it generates work stealing requests. Each such request has the
performance-related information about that node. Upon receiving such request,
each node decides whether there are any processes that can be migrated. In [5],
cluster formation and clusterhead election and failure recovery for adhoc net-
works has been investigated. In [16], the authors perform task scheduling over a
heterogeneous collection of homogenous clusters. Devices in a cluster are similar
in their characteristics. Devices in different clusters might be different.

5 Conclusion and Future Work

In this paper we have proposed a novel cluster based algorithm for task schedul-
ing in parallel pervasive systems. We have shown that the algorithm has less
communication overhead for task scheduling. Using simulation results, we have
compared our algorithm with two other schemes. The proposed cluster based
scheme overcomes some of the challenges - device heterogeneity, service avail-
ability and device mobility common to mobile ad hoc networks and pervasive
environments. The algorithm allows the use of multiple scheduling heuristics
depending on the capabilities of the devices and cluster head.

In future, we envisage to add fault tolerance features to the algorithm. An
algorithm for handling the user-device interaction challenge will be investigated.
Above simulations used clustering based on device connectivity. We are analysing
algorithms that perform clustering based on device functionality and the offered
services.
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Abstract. We consider the lifetime optimization problem for multicasting in 
wireless ad hoc networks, in which each node is equipped with a directional an-
tenna and has limited energy supplies. In this paper, we propose a new distrib-
uted algorithm, whose performance in terms of providing long-lived multicast 
tree is guaranteed by our theoretical analysis. We prove that its approximation 
ratio is bounded by a finite number. In particular, the derived upper bound in a 
closed form shows that the algorithm can achieve global optimal in some cases. 
The real performance of this new proposed algorithm is also evaluated using 
simulation studies and the experimental results show that it outperforms other 
distributed algorithms. 

Keywords: Wireless Ad Hoc Network, Multicast, Directional Antenna, Energy 
Efficiency, Approximation Algorithm. 

1   Introduction 

Energy conservation is of paramount importance for the wide deployment of wireless 
ad hoc networks (WANETs) in the forms of mobile ad hoc networks (MANETs) and 
wireless sensor networks (WSNs) due to their potentially extensive civil and military 
applications. Multicasting plays an important role in typical WANETs where band-
width is scarce and hosts have limited battery power. In addition, many routing proto-
cols for MANETs need a broadcast / multicast as a communication primitive to  
update their states and maintain the routes between nodes. Multicast is also widely 
used in WSNs to disseminate information, e.g. environmental changes, to other nodes 
in the network. Therefore, it is essential to develop efficient multicast protocols that 
are optimized for energy consumption. There are two energy-aware metrics and their 
corresponding problem formulations that have been most widely studied: (1) to mini-
mize the energy consumption and (2) to maximize the network operating lifetime. 
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Both problems have received equal attentions, e.g. the work [1-6] for the first problem 
and [7-15] for the second. In this paper we have focused on the second problem. 

The network operating lifetime is typically defined as the duration of the network 
operation time until the battery depletion of the first node in the network. Some work 
has considered maximizing the network lifetime in a network for broadcast session, 
e.g. [7-10], or for multicast session, e.g. [10-14]. Some optimal solutions [12-14] with 
polynomial time complexity show that such optimization problem belongs to P. Over 
the last few years, energy efficient communication in wireless ad hoc networks with 
directional antennas has received more and more attention. This is because directional 
communications can save transmission power by concentrating RF energy where it is 
needed [17, 18]. The same optimization problem using directional antennas has been 
studied in [15-20] and has been proven to be a NP-hard problem [20]. The exact solu-
tion for such difficult problem is presented in [19] based a MILP (mixed integer linear 
programming) formulation. 

The most desirable work [16] proposed two distributed algorithms DMMT-
OA/DMMT-DA (Distributed Min-Max Tree algorithm for Omnidirectional / Direc-
tional Antennas) to provide long-lived multicasting in WANETs with directional 
antennas. Simulation results have also shown that these two distributed multicast 
algorithms for directional communications outperform other centralized multicast 
algorithms, e.g. in [15, 17, 18]. The advance of this work inspires us to further inves-
tigate the distributed solutions for this optimization problem. A careful observation on 
the DMMT-DA algorithm leads to a new distributed algorithm with improved per-
formance. The proposed algorithm uses a node-centric point of view, in stead of the 
traditional link-centric manner [15, 16], such that it can avoid some cases that are far 
from optimal. We then use a graph theoretic approach to analysis its theoretical per-
formance in terms of approximation ratio. The derived bound, in a closed analytical 
expression, of this approximation ratio shows that our proposed algorithm is a con-
stant-factor approximation algorithm. In order to evaluate the real performance of our 
proposed algorithm, we use simulation as well to compare against a set of distributed 
algorithms and find that it outperforms other proposals. 

2   System Model and Problem Formulation 

We model our wireless ad hoc network as a simple directed graph G with a finite 
node set N (|N| = n) and an arc set A corresponding to the unidirectional wireless 
communication links. Each node is equipped with a directional antenna, which con-
centrates RF transmission power to where it is needed. We assume a widely used 
propagation model [1] for adaptive antennas [15-18], in which the antenna at each 
node v can switch its orientation to any desired direction with transmission power 
uniformly distributed across its adjustable beamwidth θv between θmin and 2π. The 
transmission power pvu to support a link (v, u) separated by a distance rvu (rvu > 1) is 

therefore proportional to vurα  and θv with unit signal detection threshold, where the 

propagation loss exponent α typically takes on a value between 2 and 4. We further 
assume that any node v ∈ N can choose its transmission power, strictly within some 
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minimum and maximum levels pmin and pmax, respectively, which are positive constant 
numbers. The transmission power pvu thus can be expressed as follows. 

( , )vu vu vp p r θ=  (1) 

min max( , ) max( , / 2 )p r p r pαθ θ π≡ ⋅ ≤  (2) 

Let ε = {εv > 0 | v ∈ N} be the energy supply associated with each node in G. The 
residual lifetime τvu of an arc (v, u) ∈ A(Ts) is therefore εv / pvu.  

We consider a source-initiated multicast with multicast members M ={s}∪D (|M| = 
m), where s is the source node and D are destination nodes. All the nodes involved in 
the multicast form a multicast tree rooted at the node s, i.e. a rooted tree Ts, with a tree 
node set N(Ts) and a tree arc set A(Ts). We define a rooted tree as a directed acyclic 
graph with a source node with no incoming arcs, and each other node v has exactly 
one incoming arc. A node with no out-going arcs is called a leaf node, and all other 

nodes are internal nodes (also called relay nodes). We use ( )v sT+Λ  and ( )v sTλ+  to 

denote the child node set and the out-degree (i.e. the number of child nodes) of node v 
in the tree Ts, respectively. 

Let ΩM be the family of all rooted multicast trees spanning nodes in M. The maxi-
mum-lifetime multicast problem can thus be expressed as 

( , ) ( , )
max min ( ) 1/ min max (1/ )

s s Ms M s

vu vu
v u T TT v u T

τ τ
∈ ∈Ω∈Ω ∈

= . (3) 

Note that if we assign the tree arc weight function wvu as the reciprocal of the lifetime 
of the arc (v, u), i.e. 

1 / ( , ) /vu vu vu v vw p rτ θ ε= = , (4) 

our optimization problem is equivalent to the min-max tree problem, which is to de-
termine a directed tree Ts including all the multicast members (i.e., M∈ N(Ts)) such 
that the maximum arc weight is minimized. The corresponding optimal solution is just 
the reciprocal of the lifetime of the maximum-lifetime multicast tree. 

Given a multicast tree Ts, we use δo(Ts) and δd(Ts) to denote the maximum arc weight 
of the same tree in a network instance G(N, A) with omni-directional antennas and di-
rectional antennas, respectively, i.e.  

( , ) ( )
( ) max ( ( , 2 ) / )

s

o s vu v
v u A T

T p rδ π ε
∈

≡ , (5) 

( , ) ( )
( ) max ( ( , ) / )

s

d s vu v v
v u A T

T p rδ θ ε
∈

≡ . (6) 

The arc with the above weights (5) and (6) is called the omni-directional and direc-
tional bottleneck arc, respectively. Note that the beamwidth θv at node v in (6) should 
be set as the smallest possible angle in the range between θmin and 2π to provide the 

beam-coverage for all nodes in ( )v sT+Λ . It has been proven in the recent literature that 

the Problem (3) belongs to P [12-14] and NP-hard [20] for networks with omni-
directional antennas and directional antennas, respectively. 
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3   A New Distributed Algorithm 

As mentioned earlier, the DMMT-DA algorithm [16] is one of the best solutions and 
especially beneficial to WANETs because of its distributed scheme. It runs in rounds 
to create a tree and each round includes as many nodes as possible on a minimum arc-
weight (defined in Equation 4) basis until all nodes are in the tree. However, the fol-
lowing observation leads to the design of new heuristic algorithm that can improve 
the performance of DMMT-DA further. 

                     

(a) T1 = {(s, a), (s, b), (s, c), (c, d)}           (b) T2 = {(s, a), (s, b), (s, d), (d, c)} 

Fig. 1. An example to show how the performance of DMMT-DA can be improved 

A 5-node network instance is given in Fig. 1, in which source node s and all desti-
nation nodes a, b, c and d have the same energy level ε. Note that the Euclidean  
distance between each pair of nodes is exactly indicated in Fig. 1. We consider an 
intermediate solution obtained from the DMMT-DA algorithm with tree arcs (s, a) 
and (s, b). In the following iteration, we assume that arc (s, c) will be included into the 
tree by DMMT-DA because it has the minimum weight, i.e. wsc < wsd, or equivalently 
p(rsc, ∠asc) < p(rsd, ∠asd), in which the symbol ∠xyz denotes the angle between the 
two rays of yx and yz. Finally, the multicast tree T1 is achieved by DMMT-DA as 
shown in Fig. 1a with δd(T1) = p(rsb, ∠asc) / ε. Now we consider an alternative arc (s, 
d) to be included into the tree in the same iteration and the final tree should be T2 as 
shown in Fig. 1b with δd(T2) = p(rsb, ∠asd) / ε. It is obvious that T2 is a better solution, 
i.e. δd(T1) > δd(T2), because ∠asc > ∠asc. In other words, the solutions found by 
DMMT-DA based on the arc-weight may sometimes be far deviated from the optimum. 

The above example motivates us to apply a node-centric approach, i.e. to use a 
node-weight instead of an arc-weight defined in (4) as the criteria, to increment a 
multicast tree such that the performance of DMMT-DA would be improved. In this 
section, we propose a new algorithm, DMMT-NC (Distributed Min-Max Tree algo-
rithm with Node-Centric approach), for the min-max tree problem. The multicast tree 
is constructed in a distributed and incremental manner. Initially, the multicast tree Ts 
only contains the source node. It then iteratively performs a Search-and-Grow proce-
dure until the tree contains all the nodes in M. The final multicast tree Ts is therefore 
obtained by pruning all transmissions that are not needed to reach the nodes in M. 
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We use Ts
i to denote an intermediate tree constructed by the DMMT-NC algorithm 

after the i-th node is added into the tree. As implied by the name of the algorithm, 

each node v maintains a node weigh i
vw  (0 ≤ i ≤ n-1) at each step a tree is incre-

mented, which is defined as follows. 

( )
min ( )

i
s

i i
v vu

u N N T
w w

∈ −
≡  (7) 

( , ) /i i i
vu vu vu vw p r ϕ ε≡  ( )i

su N N T∈ −  (8) 

{ } ( )
max ( )

i
v s

i
vu vx

x u T
r r

+∈ ∪Λ
≡  (9) 

{ }min   covers each node in { } ( )i i
vu v v v su Tϕ θ θ +≡ ∪ Λ  (10) 

Note that the variable i
vur  denotes the longest Euclidean distance between node v and any 

node x already included in the tree Ts
i and a node u outside the tree. Similarly, variable 

i
vuϕ  denotes the minimum beamwidth required by node v to cover all its child nodes 

already in the tree Ts
i as well as an additional node u outside the tree. In this way, the tree 

incremental operation by including the candidate node u, satisfying the condition 
i i
vu vw w= , (11) 

would lead to the lifetime of the resulting intermediate tree to be maximized over all 
possible choices of any node could be included into the tree. This approach is based 
on a node’s point of view, which is different from other proposed algorithms. 

In the following, we give a formal description of the DMMT-NC algorithm. The 
formulations shall help us understand the subsequent theoretical analysis that the 
proposed heuristic algorithm has an approximation ratio bounded by a constant num-
ber. The description of the DMMT-NC algorithm in pseudo code is given in Fig. 2. 

The DMMT-NC Algorithm 

(1) Initialize i = 0, ( )i
sN T  = {s} and  ( )i

sA T =φ; 

(2) Repeat 
 // Search Phase 

(3) min{ | ( )}i i
v sw v N Tδ ≡ ∈ ; 

 // Grow Phase 
(4) while ( ( ), ( ), )i i i i i

s v s vu vv N T w u N N T w wδ∃ ∈ ≤ ∧ ∃ ∈ − =  

(5) 1i i= + ; 
(6) 1 1( ) ( ) { }, ( ) ( ) {( , )}i i i i

s s s sN T N T u A T A T v u− −= ∪ = ∪ ; 

(7) Update i
vw  for each ( )i

sv N T∈  using (7 – 10); 

(8) until (M ⊆ N(Ts)); 
(9) Obtain the final multicast tree Ts by pruning i

sT . 

Fig. 2. The DMMT-NC Algorithm 
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4   Theoretical Performance Analysis 

In this section, we study the theoretical performance of the proposed algorithm in 

terms of approximation ratio1. We use *
oδ  and *

dδ  to denote the optimal solutions for 

the min-max tree problem under omni-directional and directional scenarios, respec-
tively, i.e. 

* min ( )
s M

o o s
T

Tδ δ
∈Ω

= , (12) 

* min ( )
s M

d d s
T

Tδ δ
∈Ω

= . (13) 

Given a multicast tree Ts obtained by the DMMT-NC algorithm, its approximation 
ratio ρ can be expressed as 

*( ) /d s dTρ δ δ= . (14) 

In the following, we first provide several fundamental results that shall be used to 
derive the upper bound of the approximation ratio for the heuristic algorithm DMMT-
NC. Let CX denote the cut connecting a node partition X and N−X, in which the first 
node set X must include the source node s and the second node set N − X must include 
at least one destination node, i.e. 

CX ≡ {(v, u) | v∈X ∧ u ∈ N − X ∧ s ∈ X ∧ D ⊄ X}. (15) 

We use ψ(CX) to denote the minimum weight of the cut links under omni-directional 
scenarios, i.e.  

( , )
( ) min ( ( , 2 ) / )

X
X vu v

v u C
C p rψ π ε

∈
= . (16) 

 
Theorem 1. If G(N, A) is connected then for any cut CX, then 

*
0 min / 2δ δ θ π≥ ⋅ . (17) 

Proof: Note that there is at least one destination node z (z ∈ D) belonging to N − X, i.e., 
z ∈ N − X, because D ⊄ X. Let Ts

*
 be a min-max tree of network G with omni-

directional antenna. There must exist an arc (x, y) ∈ A(Ts
*) connecting X and N − X (i.e., 

(x, y) ∈ CX) in order to satisfy that there must exist a directed path from s to the destina-

tion node z along the links in the tree Ts
*. Therefore, we can obtain (17) as follows. *δo  = 

*
0 ( )sTδ =

*( , ) ( )
max ( , 2 ) /

s

vu v
v u A T

p r π ε
∈

≥ ( , 2 ) /xy xp r π ε ≥
( , )

min ( , 2 ) /
X

vu v
v u C

p r π ε
∈

= ψ(CX).        �  

It is a straightforward exercise to obtain the following conclusion if a function Kvu(θ1, 
θ2) is defined as 

1 2 1 2( , ) ( , ) / ( , )vu vu vuK p r p rθ θ θ θ≡ . (18) 

                                                           
1  An algorithm for a problem has an approximation ratio of ρ(n) if, for any input of size n, the 

expected cost c of the solution produced by the algorithm is within a factor of ρ(n) of the cost 

c* of an optimal solution: * *max{ / , / } ( )c c c c nρ≤ . 
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Lemma 1. For any (v, u) ∈ A, Kvu(θ1, θ2) satisfies 

1 2 min max 1 2 1 2

1 2 1 2 max min 1 2

max( / , / ) ( , ) 1

1 ( , ) min( / , / )
vu

vu

p p K

K p p

θ θ θ θ θ θ
θ θ θ θ θ θ

≤ ≤ ≤⎧
⎨ ≤ ≤ ≥⎩

. (19) 

Theorem 2.  The optimal solutions *
oδ  and *

dδ  satisfy 

* *
min min maxmax( / 2 , / )d op pδ θ π δ≥ ⋅ . (20) 

Proof: Considering θv  ≥ θmin for any given multicast tree Ts and using Lemma 1, we 
then have the following derivations. 

                         �  

We now turn our attention to the most interesting and difficult task on deriving the 
approximation ratio of the DMMT-NC algorithm.  Suppose that Ts is the final multi-
cast tree obtained from the algorithm described in Fig. 2 and the directional bottleneck 

arc (v, u) of Ts is the i-th arc added into the tree, i.e. the intermediate tree is 1i
sT +  after 

arc (v, u) is included. Let ϕv be the beamwidth applied by the node v in Ts. The solu-
tion δd(Ts) can thus be expressed as follows. 

( ) ( , ) /

          ( , ) ( , ) /

          ( , ) ( , ) /

          ( , )

          ( , )

d s vu v v
i i

vu v vu vu vu v
i i i

vu v vu vu vu v
i i

vu v vu vu
i i

vu v vu v

T p r

K p r

K p r

K w

K w

δ ϕ ε
ϕ ϕ ϕ ε
ϕ ϕ ϕ ε
ϕ ϕ
ϕ ϕ

=
= ⋅
≤ ⋅
= ⋅
= ⋅

. 

 

(21) 

We further assume that arc (v', u') is the first one added into the tree in the same 
round of the Search-and-Grow iteration (described in Fig. 2) as arc (v, u) is included 

and the resulting intermediate tree is 1j
sT +  (j ≤ i). Based on the description in Fig. 2, 

we have i j
v vw w ′≤ . Now we define a cut CX, where ( )j

sX N T≡ , and let arc (x, y) be 

the one in CX such that 

( ) ( , 2 ) /X xy xC p rψ π ε= . (22) 

Recall that just before the intermediate tree 1j
sT +  is formed, arc (v', u'), instead of (x, 

y), is chosen to be included, which implies j j
xvw w′ ≤ . By summarizing the above 

analysis, we have the derivation as follows.  
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( , ) /i j j j j j
v x xy xy xy xvw w w w p r ϕ ε′≤ ≤ ≤ =  (23) 

We consider the following two cases. 

Case 1: j
xy xyr r=  

The above equation can be rewritten as 

( , ) / ( , 2 ) ( , 2 ) /i j j
v xy xy x xy xy xy xw p r K p rϕ ε ϕ π π ε≤ = ⋅ . (24) 

Case 2: 
1

j
xy xzr r= as shown in Fig. 3. 

x

s

y(z0)

X=N(Tsj)

N-X

u'

v'

v

u

z1

z2
zh

x(Tsj)

 

Fig. 3. Illustration used to derive the approximation ratio of DMMT-NC 

This means arc (x, z1) is already in the tree j
sT and we assume the resulting tree is 

1k
sT (k1 < j) just after it is included. Considering arc (x, z1), instead of (x, y), is chosen 

to be included at that moment, we have 1 1

1

k k
xyxzw w≤  or equivalently 

1 1 1 1

1 1
( , ) ( , )k k k k
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Furthermore, the condition 
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Now equation (23) under case 2 can be rewritten as follows by combining (25) and (26).  
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Comparing (27) and (23), we can conclude that the above equation can be further de-

rived similarly under two cases of 1) 1k
xy xyr r=  or 2) 1

2

k
xy xzr r= as shown in Fig. 3 until 

Case 1) is met.  
Generally, we assume that the Case 1) is met at the h-round of the above derivation 

iteration, i.e.  
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and the following equation will be eventually achieved.  
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Note that item H in (29) is defined as 
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and the boundary conditions of (29) are given below.  

0 0, ,0 ( )j
x sk j z y h Tλ+= = ≤ ≤  (31) 

Finally, combining (21), (29), (22), (17) and (20) sequentially, we obtain 
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(32) 

The above analysis now allows us to obtain the following conclusion. 

Theorem 3. The DMMT-NC algorithm is a constant-factor approximation algorithm 
with an approximation ratio ρ bounded by 

min max min( , ) min(2 / , / )i
vu v vuH K p pρρ µ ϕ ϕ π θ≤ ≡ ⋅ ⋅ . (33) 

It is a straightforward exercise based on (19) to verify that µρ is bounded by a con-
stant number. In particular, we can conclude H ≤ 1 since 

1

1
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l l
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≤ ≤ ≤ ≤ . (34) 

On the other hand, it is not sure ( , ) 1i
vu v vuK ϕ ϕ ≤  because the relation of vϕ  and i

vuϕ  

is not deterministic in general due to the post-pruning operation. 
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5   Experimental Performance Evaluation 

We have performed a simulation study for evaluating a set of distributed algorithms 
DMMT-OA [16], DMMT-DA [16] and the new proposed DMMT-NC. Their solutions 
 

Table 1. Parameter values for simulation 

Parameters Values 
n 100 
m 50 and 100 
θmin 15°, 30°,  60°, 90°, and 360° 
pmax 10 
pmin 0.1 
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        (b) m = 100 

Fig. 4. Normalized performance as a function of the minumum beamwidths 15°, 30°, 60°, 90°, 
and 360° (corsponding to the numbers 1 – 5 on the x-axle) under various multicast sizes 
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are denoted as δ1, δ2 and δ3, respectively. We use the metric δi/δ1 (i = 1, 2, 3) to evaluate 
their relative performance, which allows us to facilitate the comparison of different 
algorithms over a wide range of network examples. In each network example, a num-
ber of nodes are randomly generated within a square region 10 × 10. The values of 
parameters used in simulation are given in Table 1. We randomly generated 100 dif-
ferent network examples, and we present here the average over those examples for all 
cases. 

Fig. 4 depicts graphically the normalized performances over different connected 
network topologies. The x-axis represents the minimum beamwidths 15°, 30°, 60°, 
90° and 360° (corresponding to the numbers 1 - 5 on the x-axle) and the y-axis pre-
sents the mean of δi/δ1 for all three distributed algorithms. Referring to the multicast 
size m = 50 in Fig. 4a, we observe that the new proposed distributed algorithm 
DMMT-NC improves the other two algorithms significantly when the minimum 
beamwidth is small. In particular, such improvement is over 30% and 15% compared 
to DMMT-OA and DMMT-DA, respectively. On the other hand, once the minimum 
beamwidth increases (greater than 90°), all algorithms converge to the same perform-
ance (optimal solutions [16]). A similar observation can be made for the broadcasting 
scenarios m = 100 as shown in Fig. 4b. 

6   Conclusion 

We have presented a new distributed long-lived multicast algorithm for directional 
communications in wireless ad hoc networks. Our proofs show that it is a constant-
factor approximation algorithm. Our efforts are also validated via the simulation 
study, in which the experimental results show that our new algorithm has better per-
formance than other distributed algorithms. 

References 

1. Wieselthier, J.E., Nguyen, G.D., et al.: On the Construction of Energy-Efficient Broadcast 
and Multicast Trees in Wireless Networks. In: IEEE INFOCOM, pp. 585–594 (2000) 

2. Guo, S., Yang, O.: A Dynamic Multicast Tree Reconstruction Algorithm for Minimum-
Energy Multicasting in Wireless Ad Hoc Networks. In: IEEE IPCCC, pp. 637–642 (2004) 

3. Cartigny, J., Simplot, D., Stojmenovic, I.: Localized minimum-energy broadcasting in ad-
hoc networks. In: IEEE INFOCOM, pp. 2210–2217 (2003) 

4. Wan, P.J., Calinescu, G., et al.: Minimum-energy broadcast routing in static ad hoc wire-
less networks. In: IEEE INFOCOM, pp. 1162–1171 (2001) 

5. Wan, P.J., Yi, C.W.: Minimum-Power Multicast Routing in Static Ad Hoc Wireless Net-
works. IEEE/ACM Transactions on Networking 12(3), 507–514 

6. Cagalj, M., Hubaux, J.-P., Enz, C.: Minimum-energy broadcast in all-wireless networks: 
NP-completeness and distribution issues. In: ACM Mobicom, pp. 172–182 (2002) 

7. Kang, I., Poovendran, R.: On the Lifetime Extension of Energy-Efficient Multihop Broad-
cast Networks, the World Congress on Computational Intelligence (2002) 

8. Kang, I., Poovendran, R.: Maximizing Static Network Lifetime of Wireless Broadcast Ad-
hoc Networks. In: IEEE ICC, pp. 2256–2261 (2003) 



450 S. Guo, M. Guo, and V. Leung 

9. Das, A.K., Marks II, R.J., El-Sharkawi, M.A., Arabshahi, P., Gray, A.: MDLT: a polyno-
mial time optimal algorithm for maximization of time-to-first-failure in energy-constrained 
broadcast wireless networks. In: IEEE Globecom, pp. 362–366 (2003) 

10. Cheng, M.X., Sun, J., et al.: Energy-efficient Broadcast and Multicast Routing in Ad Hoc 
Wireless Networks. In: IEEE IPCCC, Phoenix, Arizona, April 2003, pp. 87–94 (2003) 

11. Wang, B., Gupta, S.K.S.: On Maximizing Lifetime of Multicast Trees in Wireless Ad hoc 
Networks. In: International Conference on Parallel Processing, pp. 333–340 (2003) 

12. Floréen, B., Kaski, P., et al.: Multicast time maximization in energy constrained wireless 
networks. In: Workshop on Foundations of Mobile Computing, pp. 50–58 (2003) 

13. Georgiadis, L.: Bottleneck multicast trees in linear time. IEEE Communications Let-
ters 7(11), 564–566 (2003) 

14. Guo, S., Leung, V., Yang, O.: A Scalable Distributed Multicast Algorithm for Lifetime 
Maximization in Large-scale Resource-limited Multihop Wireless Networks. In: ACM 
IWCMC, pp. 419–424 (2006) 

15. Guo, S., Yang, O.: Multicast Lifetime Maximization for Energy-Constrained Wireless Ad-
hoc Networks with Directional Antennas. In: IEEE Globecom, pp. 4120–4124 (2004) 

16. Guo, S., Leung, V., Yang, O.: Distributed Multicast Algorithms for Lifetime Maximization 
in Wireless Ad Hoc Networks with Omni-directional and Directional Antennas. In: IEEE 
Globecom (2006) 

17. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: Energy-Aware Wireless Networking 
with Directional Antennas: The Case of Session-Based Broadcasting and Multicasting. 
IEEE Transactions on Mobile Computing 1(3), 176–191 (2002) 

18. Wieselthier, J.E., Nguyen, G.D., et al.: Energy-Limited Wireless Networking with Direc-
tional Antennas: The Case of Session-Based Multicasting. In: IEEE INFOCOM, pp. 190–
199 (2002) 

19. Guo, S., Yang, O.: Optimal Tree Construction for Maximum Lifetime Multicasting in 
Wireless Ad-hoc Networks with Adaptive Antennas. In: IEEE ICC, pp. 3370–3374 (2005) 

20. Hou, Y., Shi, Y., Sherali, H.D., Wieselthier, J.E.: Online lifetime-centric multicast routing 
for ad hoc networks with directional antennas. In: IEEE INFOCOM, pp. 761–772 (2005) 



Maintaining Quality of Service with Dynamic
Fault Tolerance in Fat-Trees

Frank Olaf Sem-Jacobsen1,2 and Tor Skeie1,2

1 Department of Informatics
University of Oslo

Oslo, Norway
2 Networks and Distributed Systems

Simula Research Laboratory
Lysaker, Norway

Abstract. A very important ingredient in the computing landscape is
Utility Computing Data Centres (UCDCs), large-scale computing sys-
tems that offer computational services to concurrently running jobs
through virtual servers. As UCDC systems increase in size and the mean
time between failure decreases, it is becoming an increasingly important
challenge to expediently tolerate failures (dynamically), while distribut-
ing the effects of the failure amongst the virtual servers according to their
service level agreements. We propose and evaluate a strategy for offer-
ing predictable service in fat-trees experiencing faults, by reprioritising
packets. The strategy is able to distribute the effect of network faults in
order to satisfy a number of quality-of-service demands. Which demands
to favour depends on the computer system and the characteristics of the
jobs it is running, and in the presence of a moderate number of faults it
is to some degree possible to meet the demands.

1 Introduction

The application of supercomputer systems is increasing. Traditionally there are
the “single job” supercomputers, where single jobs run exclusively for a certain
amount of time. More recently, we see the emergence of Utility Computing Data
Centres (UCDC), where multiple jobs are run in parallel on the same supercom-
puter, separated into virtual servers. This brings forth the necessity of being able
to partition, or virtualise, the supercomputer in order to separate the different
jobs from each other. In this manner, each job may run on a dedicated set of
resources without interfering with other jobs, and receive predictable service.
Typically, many network resources must be shared between the jobs. To provide
quality of service some kind of differentiating between the jobs/virtual servers
must be undertaken relative to existing Service Level Agreements (SLA). This
places severe demands on job scheduling and resource allocation, but also on
the interconnection network and the routing algorithm used to direct packets
through the system. The network must be able to reliably forward packets such
that each job is guaranteed a portion of the capacity in the network (quality of
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service), even if parts of the network should cease to function for any period of
time (fault tolerance).

As opposed to quality of service which usually is built into the network tech-
nology using virtual channels (VC), fault tolerance is often considered an “add-
on” mechanism because it may be achieved by having an appropriate routing
algorithm to reconfigure the network to restore connectivity on fault events, in-
dependently of the interconnect technology. Alternatively, the switches adjacent
to the fault may dynamically reroute packets around the fault using precon-
figured paths. This requires that the fault tolerance mechanism is more closely
integrated to the network technology.

Reconfiguration and rerouting affects traffic in the network in different ways.
While reconfiguration affects the entire network and separates the configurations
either in time (halting and draining the network) or space (moving the traffic to
a different set of virtual channels) and thus affecting all traffic in the network,
dynamic rerouting affects only a subset of the traffic, perhaps only the path of
a single flow is changed because of a fault.

Although many interconnection networks employ both fault-tolerance and
quality-of-service mechanisms, no work has been done on combining the two
system demands. A reason for this might be that fault events are rare when
compared to the lifetime of network flows. Also, static reconfiguration need not
necessarily consider quality-of-service issues since the entire network, or most of
the network, is reconfigured, thus changing the conditions for all traffic in the
network. However, as interconnection networks are used in high-speed systems
that support a heterogeneous set of jobs, as is the case with UCDCs, there is a
need for local dynamic rerouting algorithms which are able to quickly tolerate
the fault while losing as few packets as possible. At the same time, it is important
that traffic in the network that is not affected by the fault maintains its perceived
quality of service, while the traffic affected by the fault receives as good service
as possible without degrading the service of other traffic. It is therefore necessary
to make the dynamic fault tolerance mechanism QoS-aware.

The purpose of this paper is to propose and evaluate a strategy for maintaining
quality of service for flows in the network, both for flows that are affected and
unaffected by the fault, while using a local dynamic rerouting algorithm which
routes packets around network faults locally. We discuss in what ways flows
are affected by faults, and how this effect can be most efficiently distributed in
the system. We then evaluate the ability of the strategy to satisfy the various
quality of service requirements put forth by UCDC systems, namely ensuring
high network utilisation, isolating the effect of faults to the directly affected flows,
and preserving quality of high-priority traffic, if necessary at the expense of low-
priority traffic. We also consider the requirements of single-job systems and how
these too may be satisfied. In this paper we focus on the fat-tree topology [8],
since this is a widely used topology for interconnection networks employed in
UCDCs. For instance, the fat-tree is an integral part of several interconnect
technologies such as Infiniband, Myrinet [5] and QsNet/QsNetII [3].
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The rest of this paper is organised as follows. We first give an overview of
previous work in the field of dynamic rerouting fault tolerance algorithms and
quality of service in Section 2. We then describe the local dynamic rerouting
algorithm we will make QoS-aware in Section 3, present our strategy for achieving
this in Section 4, and discuss the targets for our quality of service mechanism in
Section 5. The strategy is evaluated in Section 6 and the paper is concluded in
Section 7.

2 Previous Work

Both fault tolerance and quality of service have received much attention from
the academic world. With regards to fault tolerance, much work has been done
on improving the fault tolerance of existing network topologies. This is achieved
through adding extra hardware in terms of switches and links [19], routing the
packets through the network in multiple passes [4,7], or combining the two ap-
proaches [18].

The above approaches only provide reconfiguration or endpoint dynamic
rerouting. However, similar techniques may be used to create network topologies
supporting local dynamic rerouting. By adding additional links and switches,
several MIN topologies supporting local dynamic rerouting have been created,
e.g. the Quad Tree [16], a modified Omega network [17], and the Siamese-twin
fat-tree [15].

Recently, a local dynamic rerouting algorithm for fat-trees has been developed,
both for adaptive [13], deterministic [12], and source routed fat-trees [11]. This
is well suited for our purpose and is the local dynamic fault-tolerant routing
algorithm we employ in this paper. We describe this algorithm in greater detail
in the next section.

Concerning quality of service, much work has been done on exploring the
possibilities of the quality of service mechanisms provided by Infiniband. The
core of the quality-of-service mechanism in Infiniband is the arbitration tables
that dictate how much of the total link bandwidth each virtual channel may
receive. Alfaro et al. [1] propose mechanisms to compute these arbitration tables
based on bandwidth requirements, and show how the tables may be configured to
serve time sensitive traffic [2]. This has also been done for advanced switching [9].

Although much work has been done in the two fields of quality of service and
fault tolerance separately, to the best of the authors knowledge, no work has
been published considering the effect of fault tolerance mechanisms on quality
of service.

3 Dynamic Fault Tolerance

Before we go into the possible methods of maintaining quality of service with net-
work faults, we present the dynamic fault tolerant routing algorithm we will be
using and the topology of choice. We use a recently developed routing algorithm
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Fig. 1. A fat-tree (4-ary 3-tree) consisting of radix 8 switches with two link faults. The
faulty link are marked as bold, dashed lines, and the bold line describes the path of
a packet from its source to its destination. Note how the packet is misrouted via the
U-turn switch and that the two subsequent links are grey, indicating that the packet
is in the deadlock freedom channels.

that provides local dynamic rerouting (routing around faulty elements) for fat-
trees [12].

The fat-tree is a tree topology, often realised as a k-ary n-tree [10], where k is
the number of switch ports in the upward or downward direction, and n is the
number of switching stages (Figure 1).

The first version of the dynamic rerouting algorithm for fat-trees required k
virtual channels to tolerate k − 1 link or switch faults. The deadlock-freedom
proof of the algorithm has been further refined to show that only a single addi-
tional virtual channel is required for k − 1 fault tolerance [14]. We give a brief
outline of the most important properties of the algorithm, for further details we
refer to [14]. An example of the operation of the algorithm is provided in Figure 1.

Packet forwarding in fat-trees is divided into two phases, upwards and down-
wards. Packets forwarded in the k-ary n-tree may use any of the upward links
to advance towards their destination in the upward phase, but in the downward
phase there is only a single deterministic path, determined by the path chosen
in the upward phase. Thus, achieving local dynamic rerouting around link faults
in the upward phase is trivial: if the original upward link is faulty, simply choose
another upward link. In the downward phase we must resort to non-minimal
paths if the link towards the destination has failed. A packet encountering a
faulty link in the downward phase must choose an alternative downward link
that does not lead towards its destination, to what becomes a U-turn Switch.
Once this link is traversed, normal shortest path routing may commence, first
directing the packet upwards one stage from the u-turn switch over a different
link from where it arrived, and then downwards. If this downward path is also
faulty the packet is returned to the U-turn switch, which may select a different
upward link. The upward and downward path following the U-turn switch must
take place in a deadlock freedom layer, an additional virtual layer (a specific
virtual channel on each link) in the network, to ensure deadlock freedom.

The path of a packet that encounters a link fault, first in the upward phase,
and then in the downward phase with subsequent rerouting, is displayed in
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Figure 1. The bold, dashed links represents faulty links on the original path,
and the unbroken bold links are the actual path of the packet when avoiding the
faults. Note that over the two subsequent grey-coloured links from the U-turn
switch, the packet is forwarded in the deadlock freedom layer.

In the next section will explore how quality-of-service guarantees may be
maintained when using this algorithm to tolerate multiple link faults.

4 Maintaining Quality of Service with Dynamic Fault
Tolerance

Given the routing algorithm presented in the previous section, let us identify
at which point it is possible, or necessary, to consider quality-of-service require-
ments. Even though we focus on the routing algorithm we just presented, the
strategies we propose and the results we gather are applicable to other routing
algorithms. Specifically, routing algorithms that rely on extra virtual channels
to ensure deadlock freedom will have to take our results into consideration. We
assume that each link in the network is configured with two or more virtual chan-
nels of different priority, i.e. virtual channels with higher priority are guaranteed
a larger portion of the link bandwidth.

This is often achieved by assigning a weight to each virtual channel corre-
sponding to the fraction of the link bandwidth assigned to that channel. An
arbitrator can use the weight of each virtual channel to determine how many
packets it may transmit when selected.Virtual channels are usually served in a
round-robin fashion.

Each time a packet encounters a faulty link on its path through the network,
it will be misrouted and thus deviate from its original path. Packets that en-
counter faults in the upward phase will follow a different path through large
parts of the network, while packets that encounter a fault in the downward
phase will cross three links not part of their original path. In other words, pack-
ets that encounter faults will add load to other parts of the network, thereby
interfering with traffic not directly affected by the fault. This shifting of load may
degrade the QoS experienced by the traffic being misrouted. More importantly,
the rerouted traffic may also degrade the QoS provided to the traffic already
on the paths to which it is rerouted. The added load will decrease the achieved
throughput of the individual flows, and increase the latency because of increased
queue lengths.

There is one basic way of handling this misrouted traffic with respect to quality
of service, namely change its priority. Recall that when using virtual channels,
changing the priority of a packet corresponds to shifting the packet to a virtual
channel with a different weight in the arbitration tables. However, what priority
to change to, and when/if to change back to the original priority gives rise to a
large number of possible approaches.

There are three events for which it is natural to consider changing the priority
of a packet.
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1. The packet encounters a fault and has to be rerouted.
(a) In the upward phase.
(b) In the downward phase.

2. The rerouted path merges with the original fault-free path.
3. The packet is switched to the deadlock freedom channels after the U-turn.

Event 1 (a and b) is the obvious event for which it might beneficial to change
the priority of a packet to minimise the impact of the packet following a different
path. Similarly, event 2 is the case where the packet has finished the rerouting
operation and rerouted path merges with the path the packet would have fol-
lowed had there not been any fault. Whereas changing the priority of packets at
the two first events is optional, packets that encounter faults in the downward
phase must necessarily be switched to a deadlock-freedom channel in the U-turn
switch. As for the other VCs, these virtual channels also must have a weight in
the arbitration table, and thus a priority. Consequently, packets that encounter
faults in the downward phase will all be forwarded through at least two virtual
channels of the same priority x, regardless of whether they are high (> x) or
low-priority (< x) packets in the first place. The priority given to these dead-
lock freedom channels will therefore have a significant impact on traffic of all
priorities. This is further aggravated by the fact that interconnection networks
rely on link level flow control with a back-pressure mechanism to ensure that
no uncorrupted packets are lost. Any slowdown or speed-up of the misrouted
packets will consequently affect all packets upstream from the point where the
change occurs.

In the next section we discuss how the effects of link faults should be dis-
tributed in the system, and which combinations of the different alternatives may
yield the desired results.

5 Managing Quality of Service in Supercomputers and
UCDCs

The optimal way of distributing the effect of network faults differs depending on
the application of the supercomputer. For supercomputers which traditionally
run a single job at a time, the entire interconnection network is used by the
job, with some small amount of management traffic.Thus, it is clear that any
mechanism to reprioritise packets that are misrouted around a fault should be
designed to maximise network efficiency.

The situation is much more complex in UCDCs since there are several jobs
competing for the same network resources. We assume that jobs are allocated
using virtual channels to achieve separation between the various jobs/virtual
servers. Each VC may be assigned a priority to give certain jobs higher band-
width/lower latency access to key resources, for instance, based on how much
the customers have paid to run the job (manifested in a SLA). In this context,
the best way of distributing the effect of network faults is quite different from
the single-job case. Even though it is beneficial for the system as a whole to
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maximise in efficiency of the entire network, the consideration for the different
jobs and their SLAs plays an important role. High-priority jobs should receive
maximum priority around the faults at the expense of low-priority jobs. On the
other hand, it could be argued that faults occurring in a part of the network
primarily used by a single job should only affect that single job, without degrad-
ing the service of other jobs. However, this may not result in the best overall
performance.

The question of how quality of service should be handled when misrouting
around network faults becomes a question of how one wishes to distribute the
effects of the fault in the network, i.e. slow down a single job significantly versus
slowing down multiple jobs, but where each job is only marginally affected.

We now discuss the possible strategies given the available mechanism of chang-
ing the priority of misrouted traffic. For simplicity, we assume that we have three
priority levels, one high-priority level, one medium-priority level, and one low-
priority level. In a UCDC context we may assume that the high-priority level is
used by a high-priority job, and the medium and low-priority levels are used by a
medium and low-priority job respectively. Each of these three levels are mapped
to their own VC on every link. Additionally, there are the deadlock freedom chan-
nels which also have a specific priority/weight. The exact value of this weight
varies depending on the various approaches we evaluated in the next section.

This allows us to propose numerous approaches that can be broadly divided
into two main categories, namely one where misrouted traffic is given high pri-
ority and another where misrouted traffic is given low-priority. Within these two
categories there are multiple alternatives for what is done with the packet after
being misrouted and the priority of the deadlock-freedom channel.

Decreasing the priority of the misrouted traffic is intuitively a good approach.
By decreasing the priority of the traffic being misrouted, its impact on other
traffic in the network not affected by the fault is minimal. However, as we see
in the next section, the back-pressure nature of interconnection networks will
cause this reprioritised traffic to severely impact other traffic in the network. On
the other hand, increasing the priority of misrouted traffic will ensure that it is
expediently handled and possibly make up for the fact that it has a longer path
to travel in the presence of the fault, but it might cause a degradation of the
service to high-priority traffic.

If we generate all combinations of increasing and lowering packet priority when
misrouting upwards and downwards, as well as having high and low-priority
deadlock freedom channels and returning to the original priority after the mis-
routing is complete or continuing to the destination with the misroute priority,
we get 14 possible combinations. In the next section we present and evaluate
these 14 different combinations and discuss which one may be most suited to
fulfill quality of service demands on the basis of what we have discussed here.

6 Evaluation

To evaluate the behaviour of network traffic of different traffic classes in the
presence of link faults we have performed an extensive set of simulations.
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6.1 Simulation Parameters

The simulations are performed in a simulator based upon j-sim [6] and developed
in-house at Simula Research Laboratory. The network is configured with three
traffic classes (TC1, TC2, TC3), each assigned to a virtual channel in the network
corresponding to low (VC1), medium (VC2), and high (VC3) priority traffic. TC1
is assigned 40% of the total traffic, TC2 is assigned 35%, and TC3 is assigned 25%
of the total traffic offered to the network. Additionally, there is a fourth virtual
channel (VC4) for use for deadlock freedom when misrouting around link faults,
which will alternately have the same priority as VC3 or just above VC1 for the
different scenarios. The fat-tree topology of choice for the simulations is a 4-ary
3-tree, consisting of switches of radix eight, interconnected in three tiers. This is
sufficiently small to allow the simulations to be terminated within a reasonable
time. Furthermore, when scaling to large network sizes, although the relative
differences of the different approaches may decrease, the overall conclusions will
remain the same.

Traffic is generated following a Poisson distribution. The destination address
distribution is such that all paths are of equal length when there are no link
faults, i.e. all possible destinations for any given source lies in the other half
of the network, forcing all traffic through the top stage switches. The network
is allowed to stabilise before statistics are recorded and faults are introduced.
Thereafter the simulations are run for 10 000 simulation cycles.

The relevant setup for the 14 different alternatives is summarised in Table 1.
V C2−4 gives the percent of bandwidth reserved for traffic in the respective VCs
(VC1 allways has a weight of 1, and is therefore omitted), V Cm determines which
VC the packet is moved to when it is misrouted and “Far” describes whether
the packet is returned to its original VC after it joins its original path (local), or
if it retains the new VC until the endpoint (to end). U and D indicate whether

Table 1. A list of the different experiments run

S VC2 VC3 VC4 V Cm Far U D
1 35 54 10 VC1 local X X
2 35 54 10 local
3 35 54 10 VC3 local X X
4 20 40 39 local
5 20 40 39 VC1 local X X
6 20 40 39 VC3 local X X
7 35 54 10 VC1 to end X X
8 35 54 10 VC3 to end X X
9 20 40 39 VC1 to end X X
10 20 40 39 VC3 to end X X
11 35 54 10 VC1 local X
12 35 54 10 VC3 local X
13 20 40 39 VC1 local X
14 20 40 39 VC3 local X



Maintaining Quality of Service with Dynamic Fault Tolerance in Fat-Trees 459

(a) Throughput (b) Latency

Fig. 2. Throughput of the network without faults

the packet changes VC when it encounters a fault in the upward and downward
directions respectively.

6.2 Simulation Results

Following from Section 3, the 4-ary 3-tree is guaranteed to be connected with
up to and including three link faults (k = 4). In this evaluation we present the
difference in throughput and latency for the traffic classes when comparing a
fault free network to a network with three link faults. This comparison is done
for 4 different load scenarios corresponding to the vertical lines in Figure 2.
Figure 2a) shows the throughput (y-axis) of the three traffic classes in the fault
free network for an increasing traffic injection rate (x-axis). Similarly, Figure
2b) shows the latency (y-axis) for the same simulations. The 4 vertical lines
mark the load cases selected for detailed analysis. The figures clearly show how
the throughput of the lower priority traffic classes diminishes as the network
saturates in favour of the high-priority traffic class TC3.

Figures 3 a) and b) show the total throughput and latency respectively for
the 14 test cases presented above, and the four load cases marked in the pre-
vious figure. Every bar in the plot indicates the reduction in throughput when
comparing the network with three link faults against the fault free network. The
bars closest to us represents load case 1, while the bars furthest back represents
load case 4. Note that the base of the bars is at zero at the top, and they stretch
downwards indicating the throughput reduction in percent. For load case 1, the
throughput reduction is insignificant, but as the load increases, the impact of
link faults becomes more pronounced. When looking at either of the load cases
it is clear that the approaches 4, 5, 6, 9, 10, 13, and 14 give similar results
and the smallest throughput reduction. The common factor of these approaches
is that the deadlock-freedom channel, VC4, has the same priority as the high-
priority channel VC3. Within this set, approach 10 provides the smallest reduc-
tion for load case 2, while approach 5 gives the smallest reduction for load cases
3 and 4 (the two saturated cases). Approach 10 gives misrouted packets high
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Fig. 3. Change in throughput and latency from 0-3 faults for 4 loads
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Fig. 4. Change in latency for unaffected traffic in TC3

priority from the moment they encounter any fault, either upwards or down-
wards, until they reach their destination. As we see later, this affects the perfor-
mance of other high-priority traffic in the network. The other highest performing
approach, approach 5, switches misrouted packets to the low-priority VC1 both
when encountering fault upwards and downwards, but they are returned to their
original VC when they return to their original path. In this manner, traffic devi-
ating from its original path in any way is given the lowest priority (except when
in the deadlock freedom channels) allowing the highest utilisation of the network
overall.

The throughput results are mirrored in the latency plot where the approaches
utilising a high-priority deadlock-freedom channel provide the smallest increase
in latency. Note that the bars go from the bottom upwards indicating a latency
increase given in percent on the y-axis.

Figure 4 shows the change in latency for high-priority TC3 traffic which
does not encounter any faults and does not share links with any other traffic
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encountering faults. As before, and for all remaining plots, load case 1 is the
frontmost row of bars, while load case 4 is the row of bars furthest back. The y-
axis is the change in packet latency in percent. The latency for this traffic should
ideally not show any change when faults are introduced, as this traffic should
be unaffected. However, the figure clearly shows that, for all approaches, the
traffic experiences a latency increase. To explain this, recall that interconnection
networks employ link level flow control, so should any packet be slowed at any
point in the network (due to head of line blocking, etc.), all upstream traffic from
this packet using the same VC will to some degree be affected through having
to wait longer in some buffers, thus increasing the latency. Hence, even though
this traffic does not share any links with packets that are misrouted along their
path, they will share links with packets that share links with packets directly
affected by the fault, creating a complex indirect dependency chain. This effect is
clearly visible in the figure. It shows the same distinction between the approaches
using a high-priority deadlock freedom channel and those using a low-priority
deadlock freedom channel as we saw for the overall throughput. It is fairly ob-
vious that ensuring expedient handling of misrouted traffic by switching it to
high-priority channels is important to be able to maintain high-priority guar-
antees. Using a low-priority deadlock freedom layer causes throughput-reducing
feedback throughout the network.

There is, however, a trade-off. Transferring all misrouted traffic to the high-
priority VC3 has an adverse affect on native TC3 traffic, as is evident from
the load case 4, where latency increases for approaches 6, 10, and in part 14.
This last one, 14, does not show such large increase in latency as the other two,
since packets are only switched to the high-priority VC3 when encountering
faults in the downward phase, as opposed to both the upward and downward
phases in the other two approaches. The optimal solution to this trade-off is
apparently to give high priority only to the deadlock freedom channel VC4,
without further changing the priorities of packets, represented by approach 4 for
which the latency only increases by 50% at the high load case 4.

Let us then focus on the change in latency for traffic sharing links with other
traffic directly affected by the fault, but not encountering the faults itself, for
traffic classes TC3, TC2, and TC1 in figures 5(a), 5(b), and 5(c), respectively.
For TC3 we see that the latency increases in much the same manner as for traffic
not affected by the faults, except that the latency increases are generally a bit
larger, especially for load case 1. Comparing this to the latency change for the
other two traffic classes, we see that there is a marked difference for the highest
load, load case 4. For TC2 traffic the effect of the different approaches are much
the same as for TC3, while for TC1 traffic the different approaches have little
impact on the latency. The reason for the small change in load case 4 latency
for TC2 (the bars are not visible behind load case 3) is that its corresponding
virtual channels are heavily saturated and latency is thus given by the buffer
sizes and path length. Increasing the path length by misrouting around faults
will therefore not increase latency any more than the buffer time of the extra
path length. The same argument is valid for TC1 traffic which is even more
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Fig. 5. Change in latency from 0-3 faults for 4 loads, all traffic classes

saturated, but there is also an added effect. Even when the deadlock freedom
channels are configured with the lowest priority used for these in the simulations,
their weight in the arbitration table is still 10 times higher than for VC1, so any
misrouting may actually decrease latency by allowing the misrouted traffic of
TC1 the same priority as all other traffic misrouted around the fault. This effect
will to some degree be present for the other loads as well, but it is not as apparent
since VC1 is more saturated.

Finally, we analyse the performance of the TC3 traffic which is directly af-
fected by the fault through having to be misrouted around failures. This is de-
picted in figure 5(d). On a general note we see that the latency increase for this
traffic is significantly larger than for traffic not directly encountering the faults,
with the maximum latency increase close to 3000%. Again we see the same clas-
sification as previously, with the approaches with high-priority deadlock freedom
channels giving the by far best results. Similarely to the other figures, approach 4
yields the lowest increase in latency also for high-priority traffic directly affected
by the fault.

Let us now summarise the results. Because of the flow control, giving rerouted
traffic high priority has the most beneficial impact on performance. Furthermore,
because traffic from all classes will cross the same virtual channel when it is
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routed in the downward phase, the priority of this channel has the greatest
impact on performance. The results also show that maintaining high network
efficiency generally works well together with maintaining guarantees for high-
priority traffic not directly encountering the faults. Configuring the deadlock
freedom channel with a high priority is consequently sufficient to maintain high
network utilisation, while at the same time ensuring minimal impact on high-
priority traffic in the network.

Admittedly, it is not possible to maintain strict guarantees, but the best ap-
proach (4) suffers at most a 100% increase in latency for TC3-traffic that is
indirectly affected by the fault at very high loads with three faults. At low load
the latency is barely affected, even for the saturated load case 3.

7 Conclusion

Maintaining quality-of-service guarantees in the presence of network faults is
difficult when assuming dynamic fault tolerance, as any fault will move traffic
around in the network and disrupt the service provided to the jobs. This is es-
pecially difficult in Utility Computer Data Centre (UCDC) systems consisting
of several virtual servers, each with their own Service Level Agreements. We
have shown that it is important to consider traffic priorities when configuring
a dynamic rerouting fault tolerance mechanism. Lack of consideration for such
properties may in the worst-case lead to severely degraded network performance
for high-priority traffic with faults in the network. We have presented a strategy
for reprioritising traffic encountering network faults and evaluated a large num-
ber of combinations of the possibilities within this strategy. We found that by
correctly changing priorities of the packets that encounter network faults, it is
to large degree possible to satisfy the same Service Level Agreements as before
the fault occurred. However, finding the ultimate configuration is difficult since
requirements of the solutions vary greatly between jobs. We have demonstrated
that we are able to satisfy a large number of these requirements, and surpris-
ingly most of the requirements could be satisfied by giving misrouted traffic
higher priority, even for maintaining high-priority guarantees for high-priority
traffic.
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Abstract. Large scale scientific and commercial applications consume and pro-
duce petabytes of data. This data needs to be safely stored, cataloged and repro-
duced with high-performance. The current generation of single headed NAS
(Network Attached Storage) based systems such as NFS is not able to provide an
acceptable level of performance to these types of demanding applications. Clus-
tered NAS have evolved to meet the storage demands of these demanding appli-
cations. However, the performance of these Clustered NAS solutions is limited by
the communication protocol being used, usually TCP/IP. In this paper, we propose,
design and evaluate a clustered NAS; pNFS over RDMA on InfiniBand. Our re-
sults show that for a sequential workload on 8 data servers, the pNFS over RDMA
design can achieve a peak aggregate Read throughput of up to 5,029 MB/s, a max-
imum improvement of 188% over the TCP/IP transport and a Write throughput of
1,872 MB/s; a maximum improvement of 150% over the corresponding TCP/IP
transport throughput. Evaluations with other type of workloads and traces show
an improvement in performance of up to 27%. Finally, our design of pNFS over
RDMA improves the performance of BTIO relative to the Lustre file system.

1 Introduction

The explosive growth in multimedia, Internet and other content have caused a dramatic
increase in the volume of media that needs to stored, cataloged and accessed efficiently.
In addition, high-performance applications on large supercomputers process and create
petabytes of application and checkpoint data. Modern single-headed nodes with a large
number of disks (single headed Network Attached Storage (NAS)) may not have the
adequate capacity to store this data. Also, the single head or single server may poten-
tially become a bottleneck with accesses from a large number of clients. Also, a failure
of the node or the disk may lead to a loss of data.

To deal with several of these problems, clustered NAS solutions have evolved. Clus-
tered NAS solutions attempt to store the data across a number of storage servers. This
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has a number of benefits. First, we are no longer limited to the capacity of a single node.
Second, depending on the way data is stripped across the nodes, with accesses from
a large number of clients, the load will be more evenly distributed across the servers.
Third, for large files, this architecture has the advantages of multiple streams of data
from different nodes for better aggregate bandwidth for larger file sizes. Finally, clus-
tered NAS allows data to be stored redundantly across a number of different nodes [1],
reducing the likelyhood of data loss.

Even though clustered NASprovidesseveralbenefits in termofcapacity, enhanced load
capacity, better aggregate throughput and better fault-tolerance, they bring with them their
own set of unique problems. First, since the data-servers have now been de-coupled, any
given stream of data will require multiple network, usually TCP/IP, connections from the
clients to the data servers and metadata servers. TCP/IP connections have been shown to
haveconsiderableoverhead,mainly intermsofcopyingcosts, fragmentationandreassem-
bly, reliability and congestion control. In addition, with multiple streams of incoming data
from multiple data-servers, TCP/IP connections have been shown to suffer from the prob-
lem of incast [2], which severely reduces the throughput. Second, TCP/IP with multiple
copies and considerable overhead is unable to take advantage of the high-performance
networks like InfiniBand and 10GigE. Third, with a single headed NAS, there is only a
single point of failure, making it easier to protect the data on the NAS. However, with a
clustered NAS, we have multiple data servers, with multiple failure points.

Modern high-performance networks such as InfiniBand provide low-latency and
high-bandwidth communication. For example, the current generation ConnectX NIC
from Mellanox has a 4 byte message latency of around 1µs and a bi-directional band-
width of up to 4 GB/s for large messages. Applications can also deploy mechanisms
like Remote Direct Memory Access (RDMA) for zero-copy low-overhead communica-
tion. RDMA operations allow two appropriately authorized peers to read and write data
directly from each other’s address space. RDMA requires minimal CPU involvement
on the local end, and no CPU involvement on the remote end. Designing the stack with
RDMA may eliminate the copy overhead inherent in the TCP and UDP stacks and re-
duce CPU utilization. As a result, a high-performance RDMA enabled network like In-
finiBand might potentially reduce the overhead of TCP/IP connections in clustered NAS.

In our earlier work, we designed a Network File System (NFS) (which is a single
headed NAS) with RDMA operations in InfiniBand [3] for NFSv3 and NFSv4. In this
paper, we propose, design and evaluate a clustered Network Attached Storage (NAS).
This clustered NAS is based on parallel NFS (pNFS) with RDMA operations in In-
finiBand. While other parallel and clustered file systems such as Lustre [1] exist, we
choose pNFS since NFS is widely deployed and used. In this paper, we make the fol-
lowing contributions:

– An in-depth discussion of the tradeoffs in designing a high-performance pNFS with
an RPC/RDMA transport.

– An understanding of the issues with sessions that provides exactly once semantics
in the face of network faults and the trade-offs in designing pNFS with sessions
over RDMA.

– A comprehensive performance evaluation with micro-benchmarks and applications
of a RDMA enabled pNFS design.
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Our evaluations show that by enabling pNFS with an RDMA transport, we can de-
crease the latency for small operations by up to 65% in some cases. Also, pNFS enabled
with RDMA allows us to achieve a peak IOzone Write and Read aggregate through-
put of 1,872 MB/s and 5,029 MB/s, respectively using a sequential trace with 8 data
servers. The RDMA enabled Write and Read aggregate throughput is 150% and 188%
better than the corresponding throughput with a TCP/IP transport. Also, evaluation with
a Zipf trace distribution allows us to achieve a maximum improvement of up to 27%
when switching transports from RDMA to TCP/IP. Finally, application evaluation with
BTIO shows that the RDMA enabled transport with pNFS performs better than with a
TCP/IP transport by up to 8.8% and better than Lustre by up to 22%.

The rest of the paper is presented as follows. Then, Section 2 looks at the parallel
NFS and sessions extensions to NFSv4.1. Following that, Section 3 looks at the design
considerations for pNFS over RDMA. After that, Section 4 evaluates the performance
of the design. We present related work in Section 5. Finally, Section 6 discusses con-
clusions and future work.

2 NFSv4.1: Parallel NFS (pNFS) and Sessions

In this section, we discuss pNFS and sessions, which are defined by the NFSv4.1
semantics.

Parallel NFS (pNFS): The NFSv4.1 [4] standard defines two main components;
namely parallel NFS (pNFS) and sessions. The focus of pNFS is to make an NFSv4.1
client a front-end for clustered NAS or parallel file-system. The pNFS architecture is
shown in Figure 1. The NFSv4.1 client can communicate with any parallel file using
the Layout and I/O driver in concert with communications with the NFSv4.1 server.
The NFSv4.1 server has multiple roles. It acts as a metadata server (MDS) for the par-
allel/cluster file system. It sends information to the client on how to access the back-end
cluster file system. This information takes the form of GETDEVICEINFO, which returns
information about a specific data-server in the cluster file system, usually an IP address
and port number that is stored by the client layout driver. The NFSv4.1 server is also
responsible for communicating with the data servers for file creation and deletion. The
NFSv4.1 server may either directly communicate with the data servers, or it may com-
municate with a metadata server, that is responsible for talking to and controlling the
data servers in the parallel file system. The pNFS client uses the file layout and I/O
driver for communicating with the data servers. The layout driver is responsible for
translating READ and WRITE requests from the upper layer into the corresponding
protocol that the back-end parallel/cluster file system uses; namely object, block and
file. This is achieved through the additional NFS procedures GETFILELAYOUT (how the
file is distributed across the data servers), RETURNFILELAYOUT (after a file is closed),
LAYOUTCOMMIT (commit changes to file layout at the metadata server, after writes
have been committed to data servers). Examples of pNFS designs are discussed further
in the technical report [5].

NFSv4.1 and sessions: Sessions are aimed at making the NFSv4 non-idempotent re-
quests resilient to network level faults. Traditionally, non-idempotent requests are taken
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care of through the Duplicate Request Cache (DRC) at the server. The DRC has a lim-
ited number of entries, and these entries are shared among all the clients. So, eventually
some entries will be evicted from the cache. In the face of network-level partitions, du-
plicate requests that arrive that have been evicted from the DRC, will be re-executed.
Sessions solve this problem by requiring each connection to be alloted a fixed number
of RPC slots in the DRC. The client is only allowed to issue requests up to the number
of slots in the connection. Because of this reservation policy, duplicate requests from
the client to the server in the face of network-level partitions will not be re-executed.
We will consider design issues with sessions and RPC/RDMA in the following section.

RPC/RDMA for NFS: The existing RPC/RDMA design for Linux and OpenSolaris is
based on the Read-Write design [3]. It consists of two protocols; namely the inline
protocol for small requests and the bulk data transfer protocol for large operations.
The inline protocol on Linux is enabled through the use of a set of persistent buffers;
(32 buffers of 1K each for Send and 32 buffers of 1K each for receives on Linux).
RPC Requests are sent using the persistent inline buffers. RPC replies are also received
using the persistent inline buffers. The responses for some NFS procedures such as
READ and READDIR might be quite large. These responses may be sent to the user
via the bulk-data transfer protocol, which uses RDMA Write to send large responses
from the server to the clients without a copy and RDMA Reads to pull data in from the
client for procedures such as Write. The design trade-offs for RPC/RDMA are discussed
further in [3].

3 Design Considerations for pNFS over RDMA

In this section, we examine the considerations for a high-performance design of pNFS
over RDMA. First, we look at the detailed architecture of pNFS with a file layout driver.

3.1 Design of pNFS Using a File Layout

As discussed in Section 2, pNFS can potentially use an object, block or file based model.
In this paper, we use the file-based model for designing the pNFS architecture. We now
discuss the high-level design of the pNFS architecture.

pNFS Architecture: The detailed architecture is shown in Figure 2. The NFSv4.1
clients use a file layout driver which is responsible for communicating with the NFSv4
servers, that act as the data-servers. At the NFSv4.1 server, the sPNFS daemon runs in
user-space. The sPNFS daemon communicates with the NFSv4.1 server in the kernel
via the RPC PipeFS. The RPC PipeFS is essentially a wait queue in the kernel. The
NFSv4.1 server enqueues requests from the clients via the control path, and these re-
quests are then pushed to the sPNFS daemon via an upcall. The sPNFS daemon then
processes each of these requests and makes a downcall into the kernel with the ap-
propriate data/response for the requests. The NFSv4.1 requests which are sent up to
the sPNFS daemon for processing include the NFSv4.1 procedures GETFILELAYOUT,
RETURNFILELAYOUT, LAYOUTCOMMIT and GETDEVICEINFO. These procedures are
discussed in Section 2. In-order to work on the processing of the requests, the sPNFS
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daemon mounts an NFSv3 directory from each of the data-servers. For example, when
a file layout is requested (GETFILELAYOUT), the sPNFS daemon may need to create the
file on each of the data servers or open the file through the VFS DataServer Control
Path.

sPNFS file creation: To create a file, the sPNFS daemon will open the file on the mount
of each of the data servers in create mode. It will then do a stat to make sure that the
file actually got created or exists. It will then close the file (the file handle is static).
This traffic will propagate via RPC calls through the MDS-DS control path. Finally, it
will return the set of open file descriptor to the NFSv4.1 server as part of the response
to the upcall. The NFSv4.1 server will then reply to the NFSv4.1 client with the file
layout. The client will then use the layout received (through the file layout driver) to
communicate with the NFSv4 data servers using the Data Paths.

sPNFS file deletion: File deletes are initiated by the NFS REMOVE procedure. The
REMOVE procedure is sent up to the sPNFS daemon through RPC PipeFS. The process
of deleting a file is opposite to that of creation. The sPNFS daemon will try to delete
each of the file from the mount points. Once this is achieved, sPNFS will send a message
to the NFS kernel thread about this.

3.2 RPC Connections from Clients to MDS (Control Path)

The RPC connections from the clients to the MDS may be through either RDMA or
TCP/IP. A majority of the communication from the clients to the metadata server is
expected to be small operations or metadata intensive workloads. As a result, these
workloads may potentially benefit from the lower latency of RDMA. However, since
NFS and RPC are in the kernel, there is the cost of a context switch from user-space to
kernel-space, in addition to the copying costs with the NFS and RPC stacks. Depending
on factors such as the CPU speed and memory bus-bandwidth, these costs might domi-
nate. Correspondingly, the lower latency of RDMA might not provide much of a benefit
in these cases. Another important factor that needs to be considered is the memory uti-
lization and scalability of the MDS. The MDS is required to maintain RDMA enabled
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RPC connections with all the clients. Each of these connection holds 32 1K send buffers
and 32 2K receive buffers. These buffers are not shared across all the connections. With
a very large number of client connections using RPC over RDMA, the MDS server
might run out of buffers that might be appropriately utilized. In these cases, using RPC
over TCP might be more appropriate for the majority of clients, though the high copying
cost associated with TCP/IP connections needs to be considered. If an RDMA enabled
RPC transport can provide adequate benefit for small operations, it might be appropri-
ate to use a few connections with RDMA for some clients that communicate frequently
with the MDS and a TCP enabled RPC transport for the remaining connections. A final
factor that needs to be considered is the disconnect time for a RDMA enabled RPC
transport. RDMA enabled RPC connections are disconnected after 2 minutes idle time.
Reestablishing a RDMA enabled RPC connection is a very expensive operation because
of the high-overhead of registering memory and reestablishing the eager protocol [3].
In comparison, RPC over TCP does not have such high-latencies for reestablishing the
connections.

3.3 RPC Connections from MDS to DS (MDS-DS Control Path)

It might be potentially possible to use RPC over RDMA or RPC over TCP connections
between the MDS and DSes. The MDS-DS control path allows the MDS to control the
NFSv4 data-servers. This control is in the form of file creations and deletions. There
are a number of factors that affect the choice of a RPC enabled with RDMA or TCP
connection from the metadata server to the data servers. As discussed earlier, the sP-
NFS daemon is multi-threaded. As a result, there are expected to be a large number
of requests in flight, in parallel. So, the lower potential latency of RPC with RDMA
is likely to provide a benefit in completion of these requests. Also, the fixed number
of buffers per connection is expected to provide a better flow-control mechanism for
a large number of outstanding parallel requests. Finally, the number of data servers is
relatively small in comparison to the number of clients. As a result, the MDS-DS con-
trol path is not likely to be severely affected by the buffer scalability issue that may
potentially affect the Control Path.

3.4 RPC Connections from Clients to Data Servers (Data Paths)

The expected traffic patterns from the client to the data servers is expected to consist of
small, large and medium size traffic. Since 32K is the maximum payload for the cached
I/O case, this is likely to be the most common transfer over the network, depending on
the stripe size of the file at the data servers. We also need to consider the case of buffer
scalability. Since data-servers are expected to have connections from a large number
of clients, and since each connection will have persistent buffers, this might cause a
memory scalability issue. However, clients do not connect to a particular data server
unless the data server is in the list of DSes returned in the file layout. As a result, not
all clients will be connected to all data servers at any given time. Depending on the
load on the back-end file system, using an RPC over RDMA connection from the data-
servers to the client might not cause a large amount of overhead at the data-servers.
Also, quiescent clients will be disconnected from the data-servers, further reducing the
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overhead. Since an RPC transport enabled with RDMA has been shown to provide
considerable benefits via-viz large transfers, it might be beneficial to use RPC over
RDMA between the clients and data-servers.

3.5 Sessions Design with RDMA

As discussed earlier, sessions provides exactly once semantics for all NFS procedures in
the wake of network-level faults. To do this, sessions provide dedicated slots of buffers
to each connection between the client and the servers. The client may only send requests
up to a maximum number of slots per session. In order to design sessions with a RDMA
enabled RPC transport, we associate the inline buffers in each connection with the min-
imum number of slots required from the connection. If the number of slots requested
is lower than the number available, and the caller cannot accept a lower number, the
session create request will fail. The disadvantages of the sessions design with RDMA
is that advanced features of the InfiniBand network such as the Shared Receive Queue
(SRQ) cannot be used. SRQ enhances the buffer scalability by having the buffers shared
across all the InfiniBand connections. When the number of buffers falls below a certain
watermark, an interrupt may be generated to post more buffers. Since sessions require
that slots be guaranteed per connection, SRQ cannot be used.

4 Performance Evaluation

In this section, we evaluate the performance of pNFS designed with an RPC over
RDMA transport First, We discuss the experimental setup in Section 4.1. Following
that, in Sections 4.2, 4.3 and 4.4, we look at the relative performance advantages of
using an RDMA enabled RPC transport over a TCP/IP transport in different configura-
tions involving the metadata server (MDS), Data Server (DS) and Client. Since sessions
only requires reservation of RDMA inline buffers, we do not evaluate the sessions por-
tion of the design.

4.1 Experimental Setup

To evaluate the performance of the RPC over RDMA enabled pNFS design
(pNFS/RDMA), we used a 32-node cluster. Each node in the cluster is equipped with a
dual Intel Xeon 3.6 GHz CPU and 2GB main memory. For InfiniBand communication,
each node uses a Mellanox Double Data Rate (DDR) HCA. The nodes are equipped
with SATA drivers, which are used to mount the backend ext3 filesystem. A mem-
ory based filesystem ramfs is also used for some experiments. The pNFS with sockets
uses IP over InfiniBand (IPoIB) and we refer to this transport as pNFS/IPoIB. We use
pNFS/IPoIB and pNFS/TCP interchangeably. All experiments using IPoIB are based on
Reliable Connection mode (IPoIB-RC) and an MTU of 64KB, unless otherwise noted.
We explicitly use pNFS/IPoIB-UD to explicitly mean an unreliable datagram mode of
transport. IPoIB-UD uses a 2K MTU size.
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4.2 Impact of RPC/RDMA on Performance from the Client to the Metadata
Server

The clients communicate with the MDS using either NFSv4 or NFSv4.1 procedures. As
Section 2 mentions, the vast majority of NFSv4.1 requests from the clients to the MDS
are expected to be procedures such as GETDEVICEINFO, GETDEVICELIST, GETFILE-
LAYOUT and RETURNFILELAYOUT. These small procedures will potentially carry small
and medium size payloads. For example, GETFILELAYOUT returns a list of file handles,
which is only a small amount of payload. A file handle can be encoded with no more
than 16 bytes of information (although a native file handle size may vary depending on
platforms). One of the largest deployments of a parallel file system Lustre [1] in recent
times is the TACC [6] cluster with 8,000 nodes containing 64,000 cores, serviced by a
bank of 1,000 data server nodes. With 1,000 data server nodes and the assumption that
a file is stripped across all the data server nodes, the payload from GETFILELAYOUT
will only be 16K. Also, some of these operations such as GETDEVICEINFO are only ex-
ecuted at mount time and are not in the critical path. On the other hand, operations such
as CREATED, GETFILELAYOUT, RETURNFILELAYOUT are executed every time a file is
created, opened and closed. With a workload consisting of a large number of such op-
erations (metadata intensive workloads) RPC/RDMA is likely to provide some benefit.
Also, LAYOUTCOMMIT is executed once a WRITE operation completes and is likely to
be in the critical path for workloads dominated by write operations. To understand the
relative performance of small operations when switching transports from RPC/TCP to
RPC/RDMA, we measured the latency of issuing a GETFILELAYOUT (at the RPC layer)
from the client to the MDS and the time required for it to complete, averaged over 1024
times, while the payload from the MDS to the client was varied from 1 to 32K bytes. A
32K message can contain the information for more than 2,000 file handles and might be
considered large for contemporary, high-performance parallel file system deployments.
The measured latency is shown in Figure 3. As shown in Figure 3, the latency with a
1 byte payload is 68µs with RPC/RDMA and 71µs with RPC/TCP. The relatively low
improvement in performance is because the high access latency of the disk which is
a dominant portion of the latency. With larger access, the disk blocks are prefetched
because of sequential access and the performance improvement from using RPC/RDMA
is increased by up to 65%. The performance benefit of the RPC/RDMA connection from
the client to the MDS is taken in the context of the inline buffers, which need to be
statically allocated per-client at the MDS. With an increasing number of clients, the
RPC/RDMA connections may consume considerable memory resources. Since the MDS
is likely to be the target of a mainly metadata intensive workload, it becomes impera-
tive to maintain a large number of inline buffers in order to guarantee a high throughput
performance.

4.3 RPC/RDMA Versus RPC/TCP on Metadata Server to Data Server

The connection from the MDS to the DSes may also consist of RPC/RDMA. The sPNFS
daemon controls the DSes by mounting the exported directories from the data servers.
The sPNFS daemon creates, open and deletes files in the exported directories. These
calls are translated through the VFS layer to RPC/RDMA calls. Thus the scalability of
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these calls is directly impacted by the time required by the RPC operations to complete.
To gain insight into the relative scalability of the RPC/RDMA and RPC/TCP transports,
we measured the performance of create portion of the sPNFS daemons operation. In
this multi-process benchmark, each process is synchronized in the start phase by a bar-
rier. After being released from the barrier, each process performs a stat operation on
the target file to check its state, then opens this file in creation mode. These two op-
erations are followed by a chmod to set the mode of this file, and a close operation
to close this file. The close operation is a portion of the process to open a pNFS file,
and it is included to avoid running out of open file handles, a limited operating sys-
tem resource. Each process performs each of these operations on every one of the DS
mounts. The time required for 1024 of these operations is measured and averaged out.
This test is performed for a RPC/RDMA and RPC/TCP transport from the MDS to the
DSes. These numbers are shown in Figures 4 and 5. In Figures 4 and 5, we observe the
following trends. RPC/RDMA performs worse than RPC/TCP (indicated as IPoIB) for 1
process. Note that in this case, we are measuring the time at the VFS level, whereas
in Section 4.2, we are measuring the time at the RPC layer. In the current scenario,
the IPoIB-RC driver uses a ring of 128 receive buffer of size 64K and 64 send buffers.
On the other hand, RPC/RDMA uses 32-buffers of 1K. As a result, with an increasing
number of data servers, and 1 process, more create and stat operations can be issued
in parallel with IPoIB-RC than with RPC/RDMA (we issue 1,024 create operations and
1,024 stat operations for a total of 2,048 operations). However, with IPoIB-RC all 128
receive buffers are shared across all the connections using SRQ. With RPC/RDMA, each
connection from an MDS to a DS is allocated a set of 32-buffers. As a result, when the
number of connections increases, RPC/RDMA has a dedicated set of buffers in which
to receive messages, while IPoIB has a fixed number of buffers, and this might result
in dropped messages with IPoIB. Also in RPC/IPoIB, there are up to 5 copies from the
application to the IP-level. With RPC/RDMA, there are up to 3 copies from the applica-
tion down to the RPC/RDMA layer. With an increasing number of processes, the larger
number of copies in the case of IPoIB begins to dominate and IPoIB performs worse
than RDMA. The copying cost with IPoIB and 1 client does not totally consume the
CPU and so is not the dominant factor. As a result, with 1 process, RPC/TCP is able
to perform better than RPC/RDMA. At 2 processes per-node, RPC/RDMA and RPC/TCP
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perform comparably with an increasing number of data servers. At 4 processes/node and
above with RPC/RDMA, the time required to perform the create operations is lower than
RPC/TCP. At 16 processes at the MDS, the improvement with 16 DSes there is a maxi-
mum decrease in latency of 15%. The trends we have observed indicate that RPC/RDMA
will perform better than RPC/TCP with a larger volume of operations. We have con-
ducted a test with 32 client threads with both RPC/RDMA and RPC/TCP. RPC/RDMA
exhibits similar degree of improvement over RPC/TCP. Analysis shows that the SRQ
used in IPoIB plays a role in the performance reduction with RPC/TCP and is discussed
further in the technical report [5].

4.4 RPC/RDMA Versus RPC/TCP from Clients to DS

We measure the relative performance impact of changing the transport from RPC/RDMA
to RPC/TCP from the client to the data servers. To measure the performance impact, we
use three different benchmarks: sequential throughput with IOzone, throughput of a
Zipf trace and a parallel application BTIO.

Sequential Throughput. We use IOzone [7] in cluster mode to measure the perfor-
mance of a sequential workload modeling the throughput from the client to the DSes.
8 nodes act as data servers, 8 nodes act as clients, and 1 node is designated ad the
metadata server. Each client node hosts one IOzone process. The benchmark is run on
both the IPoIB Reliable Connection mode (IPoIB-RC) and IPoIB Unreliable Datagram
mode (IPoIB-UD) to compare against RPC/RDMA. The IOzone record size is kept at
32KB, the default cached I/O maximum size and the total file size per client used is
512MB. The Write and Read throughput while varying the number of data servers and
clients (aggregate throughput) is shown in Figures 6 and 7, respectively.

For Write, RPC/RDMA begins to outperform RPC/TCP as the number of data server
is increased beyond two. At 8 data servers and 8 clients, RPC/RDMA reaches its peak
write throughput of 1,872 MB/s, which is 22% higher than IPoIB-RC and 150% higher
than IPoIB-UD. For Read, there is an improvement in performance for all cases. Using
RPC/RDMA achieves a peak read throughput of 5,029 MB/s at 8 clients and 8 data
servers, which outperforms IPoIB-RC by 89% and IPoIB-UD by 188%.

1 2 4 8
0

1000

2000

3000

4000

5000

6000

M
eg

aB
yt

es
/s

ec
on

d

Number of clients nodes (1 process/node)

IPoIB−RC−1DS
IPoIB−UD−1DS
RDMA−1DS
IPoIB−RC−2DS
IPoIB−UD−2DS
RDMA−2DS
IPoIBRC−4DS
IPoIBUD−4DS
RDMA−4DS
IPoIBRC−8DS
IPoIBUD−8DS
RDMA−8DS

Fig. 6. IOzone Throughput (Write)

1 2 4 8
0

1000

2000

3000

4000

5000

6000

M
eg

aB
yt

es
/s

ec
on

d

Number of clients nodes (1 process/node)

IPoIB−RC−1DS
IPoIB−UD−1DS
RDMA−1DS
IPoIB−RC−2DS
IPoIB−UD−2DS
RDMA−2DS
IPoIBRC−4DS
IPoIBUD−4DS
RDMA−4DS
IPoIBRC−8DS
IPoIBUD−8DS
RDMA−8DS

Fig. 7. IOzone Throughput (Read)



Designing a High-Performance Clustered NAS 475

Throughput with a Zip Trace. Zipf’s law, named after the Harvard linguistic professor
George Kingsley Zipf (1902-1950), is the observation that frequency of occurrence of
some event (P), as a function of the rank (i) when the rank is determined by the above
frequency of occurrence, is a power-law function Pi ∼ 1/ia with the exponent α close to
unity. Zipf distributions have been shown to occur in a variety of different environments
such as word distributions in documents, web-page access patterns and file and block
distributions in storage sub-systems [8].

We modified IOzone to issue write and read requests, where the size and location of
the Read or Write request follows a Zipf distribution with an α=0.9. We used IOzone
to measure the throughput of the trace on a single node with one thread, issuing re-
quests where the location and I/O size of the issued request follows a Zipf distribution.
We used a 512MB file size on both an ext3 as well as a ramfs backend file system.
The ramfs file system streams data from memory and serves as an upper bound on the
performance improvement we can expect with pNFS/RDMA. We compare pNFS/RDMA
with pNFS/IPoIB-RC while varying the number of data servers. The results for Write are
shown in Figure 8, while the results for Read are shown in Figure 9. We observe that
the RPC transport used does not have a large impact on performance for Writes. Disk
Filesystem Write performance is generally sensitive to the performance of the backend
storage subsystem. The large majority of disks exhibit poor random Write performance.
Also, depending on the organization of the in-memory file system, ramfs based systems
have also been shown to exhibit poor performance for random Write operations. Cor-
respondingly, for the Zipf based Write distribution, we see a very poor throughput of
around 500 MB/s for both pNFS/RDMA and pNFS/IPoIB-RC. Since the CPU is not fully
utilized for TCP/IP when the throughput is lower, we expect little improvement from
pNFS/RDMA over pNFS/IPoIB-RC. On the other hand, the IOzone Read throughput is
impacted by the underlying RPC transport. With a ramfs based file system, we see an
improvement of 22% from pNFS/IPoIB-RC to pNFS/RDMA with 1 data server. The im-
provement in throughput from pNFS/IPoIB-RC to pNFS/RDMA increases to 27% at 8
data servers. We are also able to achieve a peak throughput of 2073 MB/s with the Zipf
trace at 8 data servers. Since, the Zipf trace has an element of randomness, a portion of
the Read data is cached at the client. As a result we see some amount of cache effect in
addition to network-level transfers, which reduces the potential performance improve-
ment with pNFS/RDMA. Techniques for improving the performance of pNFS/RDMA for
a Zipf workload are discussed further in the technical report [5].

Performance with a Scientific Kernel NAS BTIO. The NAS Parallel Benchmarks
(NPB) suite discussed further in the technical report [5], is used to measure the perfor-
mance of Computational Fluid Dynamic (CFD) codes on a parallel machine. One of the
benchmarks BT measures the performance of block-triangulation equations in parallel.
In addition to the computational phase of BT, BTIO adds additional code for check-
pointing and verifying the data from the computation. We use the Full MPI I/O mode
in which MPI collective calls are used to aggregate Read and Write operations. We run
BTIO with a class A size (that uses a 64x64x64 array) over pNFS/RDMA, pNFS/IPoIB
and Lustre. In this configuration, BTIO generates a file of size 400 MB. The results
with an ext3 back-end file system at eight data servers are shown in Figure 10.
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In this experiment, we measured the performance of BTIO with eight data servers.
We used one, 16, 64 and 256 processes (BTIO requires a square number of processes).
For the 16 process case, we use eight client nodes (two processes/node). For the 64
and 256 process case, we also use eight and sixteen client nodes respectively (eight
processes per node and 16 processes/node respectively). We observe the following
trends. First, pNFS/IPoIB-RC and pNFS/RDMA perform comparably at one process on
one node. As the number of processes increases, pNFS/RDMA begins to perform better
than pNFS/IPoIB-RC. At 16 processes (two processes/node), BTIO over a pNFS/RDMA
transport performs up to 4% better than over a pNFS/IPoIB-RC transport. At 64 processes
(eight processes/node) and 256 processes (16 processes/node), this increases to approx-
imately 7% and 8.8%, respectively. The better bandwidth of the underlying transport
helps improve MPI collective I/O performance and is discussed further in the techni-
cal report [5]. Finally, we also compared with Lustre using a native InfiniBand transport
and eight data servers. pNFS/RDMA outperforms Lustre by up to 22% at 256 processes.

5 Related Work

There are a large number of single headed NAS, clustered NAS storage system and
parallel file-systems. Network File System (NFS) is one of the most popular single
headed NAS systems. RPC over RDMA transport for NFS exists on both OpenSolaris
and Linux [3]. In our work, we design an RPC over RDMA transport for parallel NFS.
Lustre [1] is another popular parallel file system. It also allows access to native Infini-
Band through the IB Network Access Layer (NAL). The native InfiniBand NAL uses
RDMA operations. Our work differs from the IB NAL of Lustre in that we design RPC
directly over RDMA, whereas Lustre uses RPC over portals, which in turn calls the
NAL functionality.

6 Conclusions and Future Work

In this paper, we propose, design and evaluate a high-performance clustered NAS. The
clustered NAS uses parallel NFS (pNFS) with an RDMA enabled transport. We con-
sider a number of design considerations and trade-offs, in particular, buffer manage-
ment at the client, DS and MDS, scalability of the connections with increasing number
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of clients and data servers. We also look at how an RDMA transport may be designed
with sessions which gives us exactly once semantics. Our evaluations show that en-
abling pNFS with a RDMA transport, we can decrease the latency for small operations
by up to 65% in some cases. Also, pNFS enabled with RDMA allows us to achieve a
peak IOzone Write and Read aggregate throughput of 1,800+ MB/s (150% better than
TCP/IP) and 5,000+ MB/s (188% improvement over TCP/IP) respectively, using a se-
quential trace and 8 data servers. Also, evaluation with a Zipf trace distribution allows
us to achieve a maximum improvement of up to 27% when switching transports from
RDMA to TCP/IP. Finally, application evaluation with BTIO shows that the RDMA en-
abled transport with pNFS performs better than a transport with TCP/IP by up to 8.8%
and better than Lustre by up to 22%.

As part of future work, we would like to explore how to design a fault tolerant pNFS
enabled with RDMA. pNFS allows us to use multi-pathing to enable redundant data-
servers. We would also like to explore how the shared receive queue (SRQ) optimization
may be used with an RDMA enabled RPC transport that uses sessions. Sessions require
the reservation of slots or RDMA eager buffers per RPC connection. Dedicating a fixed
number of buffers might have an impact on the scalability of larger systems deployed
with pNFS. Finally, we would like to evaluate the scalability of our RDMA enabled
pNFS design.
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Abstract. As high-end computing systems continue to grow, the need
for advanced networking capabilities, such as hot-spot avoidance and
fault tolerance, is becoming important. While the traditional approach
of utilizing intelligent network hardware has worked well to achieve high
performance, adding more and more features makes the hardware com-
plex and expensive. Consequently, protocol stacks such as iWARP and
MX for 10-Gigabit Ethernet and QLogic InfiniBand, utilize hybrid
hardware-software designs that take advantage of the processing power
of multi-core processors together with network hardware accelerators.
However, upper-layer stacks on these networks, such as the Sockets Di-
rect Protocol (SDP), have not kept pace with such shift in paradigm,
and have continued to assume complete hardware offload, leading to re-
dundant features and performance loss. In this paper, we propose an
enhanced design for SDP that allows network stacks to specify compo-
nents implemented in hardware and software, and uses this information
to optimize its execution.

1 Introduction

As high-end computing (HEC) systems continue to increase rapidly in size, their
communication subsystems must scale as well. For large-scale systems, in addi-
tion to raw performance, advanced communication features such as capability
to avoid hot-spot congestion [29,33] and hardware faults [15] are also becom-
ing increasingly important. While the traditional approach of utilizing intelli-
gent hardware support on the network adapters (e.g., Mellanox InfiniBand [2],
Myrinet 2000 [14], Quadrics [28], hardware iWARP [19,23]) has worked well to
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achieve high performance, adding more and more features makes the hardware
complex, error prone, and expensive.

At the same time, there have been prominent advances in processor technol-
ogy, especially powered by the advent of multi-core architectures [5,25]. Thus,
to take advantage of these two trends, several network stacks (e.g., QLogic In-
finiBand [30], Myri-10G [27], software iWARP [8]) have started to utilize hybrid
hardware-software stack designs (known as hybrid network stacks). These hybrid
network stacks take advantage of the processing power of multi-core processors
together with network hardware accelerators to achieve high performance while
providing the flexibility to add most communication features relevant to modern
HEC systems.

However, several upper-layer stacks on top of these networks have not been able
to keep pace with such shift in paradigm of network communication stacks. For ex-
ample, existing implementations of high-performance sockets on high-speed net-
works, such as the Sockets Direct Protocol (SDP) [10] over InfiniBand (IB) [24]
and 10-Gigabit Ethernet (10GE) iWARP [31], continue to assume complete hard-
ware offload. Consequently, they perform various tasks, such as data buffering to
optimize small message communication and message-level flow-control that allow
them to achieve high performance on hardware-offloaded network stacks but are
redundant on hybrid network stacks and can add significant performance over-
heads.

In this paper, we perform a case study with SDP on top of a hybrid hardware-
software iWARP design over 10GE, and study the drawbacks of its existing
implementation. We also propose an enhanced design for SDP that allows net-
work stacks to specify what components are implemented in hardware and what
are implemented in software, and uses this information to avoid redundancy
in the overall stack. We experimentally compare our proposed approach with
the traditional design of SDP using both micro-benchmarks as well as two real
applications (virtual microscope [17] and iso-surface oil-reservoir data visualiza-
tion [13]) built on top of the DataCutter library [12]. Our results demonstrate
that the proposed approach can outperform the traditional approach by nearly
20% in micro-benchmarks and about 5% in real applications.

2 Background

In this section, we present a brief overview of SDP and iWARP implementations.

2.1 Overview of SDP

SDP is a byte-stream transport protocol that closely mimics TCP sockets’ stream
semantics. It is an industry-standard specification for IB and iWARP that uti-
lizes advanced capabilities provided by the network stacks to achieve high per-
formance without requiring modifications to existing sockets-based applications.
SDP is layered on top of IB or iWARP’s message-oriented transfer model. The
mapping of the byte-stream protocol to the underlying message-oriented seman-
tics was designed to transfer application data by one of two methods: through
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intermediate private buffers (using buffer copy) or directly between application
buffers (zero copy).

Zero-copy Approach: Hardware-offloaded protocol stacks allow zero-copy
communication of application data. However, such communication comes with
several restrictions. For instance, communication buffers have to be registered: (i)
they need to be pinned so that their physical memory pages cannot be swapped
out and (ii) the virtual-to-physical address translation must be provided to the
communication stack to potentially be cached on the network adapter. Also, to
perform zero-copy communication in SDP, the sender and the receiver have to
synchronize on the source and destination buffers, which adds overhead. Thus,
while zero-copy communication avoids memory copies, it adds other overheads.
Accordingly, SDP uses it only for transferring large messages.

Buffer-copy Approach: Due to the overheads of zero-copy communication,
SDP utilizes a buffer-copy approach for small messages. In this approach, it
pre-registers private buffers at connection-establishment time. On a send, the
data is copied into the registered private buffers, communication carried out
from and to these buffers, and finally the data copied out to the destination
application buffer on the receiver side. However, the buffer-copy approach also
comes with two disadvantages. First, data that needs to be communicated has to
be copied on the sender and receiver side. Second, since the number of the private
registered buffers is limited, the sender has to perform flow-control to make sure
the receiver buffers are not overrun. SDP uses the buffer-copy approach only
for transferring small messages to avoid being penalized by the message-copy
overheads.

2.2 Overview of iWARP

The Internet Wide Area RDMA Protocol (iWARP) is a new initiative by the
Internet Engineering Task Force (IETF) [1] and the Remote Direct Memory
Access Consortium (RDMAC) [3]. The iWARP standard, when offloaded on
to the network adapter, provides two primary extensions to regular Ethernet:
(i) it exposes a rich interface including zero-copy, asynchronous and one-sided
communication primitives and (ii) it internally relies on an implementation of
the TCP/IP stack to allow such communication while maintaining backward
compatibility with existing TCP/IP. iWARP comprises three protocol layers
atop TCP/IP: (i) RDMAP verbs, (ii) Remote Direct Data Placement (RDDP)
protocol and (iii) Marker PDU Aligned (MPA) protocol.

RDMAP verbs [6] is a thin interface that allows applications to interact with
RDDP. RDDP provides reliable, in-order delivery using a reliable IP based pro-
tocol such as TCP. It distinguishes iWARP from other high-speed network stacks
based on its capability to decouple data placement and message delivery; that
is, even if packets arrive out-of-order, RDDP directly places them in the appro-
priate location of the final destination buffer (data placement), and the upper
layer is informed about the placement of the data only after the entire mes-
sage is placed (data delivery). This, of course, assumes that RDDP can correctly
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identify and understand the contents of out-of-order TCP/IP packets. The
Marker PDU Aligned (MPA) protocol provides RDDP with the necessary sup-
port for achieving this.

Switches that support splicing [18] (e.g., firewalls and port-forwarding switches)
can cause middle box fragmentation, i.e., packets going into the switch can be seg-
mented into multiple packets or multiple packets can be coalesced into a single
packet. This makes it impossible for the end node to recognize the RDDP head-
ers without additional information if packets arrive out of order. To tackle this
problem, iWARP uses MPA [20]. The MPA frame format, referred to as a Fram-
ing Protocol Data Unit (FPDU), is represented in Figure 1. Apart from additional
headers and footers, the FPDU introduces strips of data, known as markers, that
are spaced uniformly based on the TCP sequence number. These markers always
point to the RDDP header and provide the receiver with a deterministic way to
find them. When a packet arrives out-of-order, it can use these markers to identify
the start of the iWARP frame and, using that, the rest of the fields.

3 Hybrid Hardware-Software iWARP Stack

Several different implementations of iWARP exist, including complete software
implementations [9,21], complete hardware implementations [19] and hybrid
hardware-software implementations [8]. In general, hardware implementations
are optimized for performance but do not offer many advanced features; soft-
ware implementations tend to be more feature complete with respect to their
capability to efficiently handle out-of-order communication, packet drops, etc.,
but do not provide the best performance. The hybrid hardware-software imple-
mentation takes the best of both worlds by achieving high performance using
network hardware accelerators, while still providing the advanced features us-
ing the capabilities of host processors. In this section, we present a high-level
description of our previous work on a hybrid hardware-software iWARP stack [8].

The iWARP protocol layers perform various tasks corresponding to data or-
dering, data integrity, connection management, and backward compatibility. Of
these, three tasks are of particular importance as they can heavily impact the
performance of the stack: (i) CRC-based data integrity, (ii) connection demulti-
plexing, and (iii) placement of markers.



482 P. Balaji et al.

CRC is easily the most compute intensive task in the iWARP stack. There
have been several attempts to improve its performance [32,16], often at the
cost of additional memory usage. However, its computational overhead is still
considered to be very high [26]. Thus, a complete software implementation can
be heavily impacted by this overhead.

Traditional TCP/IP performs demultiplexing (DEMUX) of packets in host-
space, i.e., the NIC hands over all packets to the host and the host identifies
the connection to which each packet belongs and places it in the appropriate
queue. While this is not a major concern for applications that only deal with a
single (active) connection, this introduces significant overheads for applications
dealing with several connections simultaneously (e.g., cache thrashing and CPU
interruption for non-critical data). Again, doing this in software is not the ideal
solution either.

Placement of markers is one of the trickiest components in the iWARP stack.
Since the markers have to be inserted within the data stream, data has to be
moved to achieve this. In a software implementation of iWARP, this is done by
performing an additional copy of the data. This task is difficult to implement
efficiently in hardware without using true scatter/gather DMA engines, which are
not commonly available (most DMA engines provide a scatter/gather DMA API,
but internally perform individual DMA operations). Thus, hardware iWARP
achieves sub-optimal performance for this component [8].

Hybrid iWARP, behaves like software iWARP for the placement of markers
(that is, it does this by performing an additional data copy), while using hard-
ware accelerators for the remaining tasks (such as CRC and DEMUX). Thus, in
summary, software iWARP performs everything in software, hardware iWARP
performs everything in hardware, and hybrid iWARP performs everything in
hardware except the placement of markers, which is done in software using an
extra buffer copy.

4 SDP for Hybrid Hardware-Software Network Stacks

As briefly described in Section 2.1, existing designs of SDP have been heavily
optimized for hardware offloaded protocol stacks. However, such designs are often
not the best when utilized on hybrid network stacks. In this Section, we present
a few sample existing designs that perform sub-optimally on hybrid iWARP
network stacks, and propose enhancements that can improve their performance.

4.1 Redundant Buffer Copy

SDP performs data buffering for small messages. Such buffering has several ad-
vantages on hardware-offloaded network stacks including avoiding registration
cost, and avoiding synchronization between the sender and receiver. However,
on hybrid network stacks, these designs are redundant. For example, the hybrid
iWARP stack internally performs data buffering before communication while
handling the placement of markers in software. Thus, buffering at both layers is
not required and causes performance overhead.
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However, avoiding such redundancy is not trivial. Buffering performed within
the iWARP stack allows the iWARP implementation to add markers within the
data stream; data is copied such that small gaps are left open where the markers
can be placed once the copy is complete. On the other hand, buffering within
the SDP implementation allows it to handle the socket stream semantics where
one large message sent by the sender can be read as multiple small messages by
the receiver. Since iWARP follows message-based semantics, it does not allow
for such capabilities. Thus, both stacks have specific purposes for buffering that
cannot be ignored.

In our approach, we allow the SDP and iWARP stacks to have integrated
data buffering. Specifically, the SDP stack performs buffering, but does so in a
manner that is compatible with iWARP’s buffering. That is, it copies data while
leaving small gaps based on the TCP sequence numbers of the data (retrieved
from the iWARP stack). The iWARP stack uses this buffering performed by
SDP and adds the markers in-place directly in the SDP buffers. While this
approach requires close interaction between the SDP and iWARP stacks, and
thus loses some amount of generality of the SDP stack, it can reduce the amount
of buffering required and thus improve performance.

4.2 Protocol Interface Extensions for Message Coalescing

Message coalescing has been shown to achieve high performance by reducing the
number of I/O bus and network transactions required for transferring data [7].
However, it is quite difficult to achieve in hardware-offloaded protocol stacks
owing to the hardware-design complexity and resource requirement associated
with such a design. For hybrid network stacks, on the other hand, this might not
be a concern when implemented in software using the host-memory resources.
The issue, however, is that most protocols (including iWARP) do not provide any
interface that allow upper layers (such as SDP) to coalesce multiple messages
before sending them out on the wire. Further, message coalescing inherently
suffers from issues of performance loss in cases where the sender process buffers
data hoping to coalesce it with more later arriving data, while the receiver process
waits for the message to be transmitted by the sender.

To solve this problem, we extended the interface provided by the hybrid
iWARP implementation to allow upper layers to “append” a new message to
a previously queued message whose communication has not yet been initiated.
Specifically, since hybrid iWARP implementations perform flow control, com-
munication requests that have been handed off to them might not be initiated
immediately. Therefore, a later initiated communication request can append it-
self to this message. This approach has multiple advantages. First, multiple small
messages that are being communicated in a short interval can be coalesced into
one large message, thus reducing the number of network transactions and improv-
ing performance. Second, this approach does not cause any loss of performance
as compared to a non-coalescing approach, since data is coalesced only when the
previous message was already waiting to be sent out due to flow control; that
is, a message is never artificially held back hoping to be coalesced with a later
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arriving message. Third, this approach reduces the number of iWARP headers
that are sent out on the network since coalesced messages are sent out with one
header as one single message. This is a big gain for small messages, where the
iWARP header forms a major fraction of the total frame size.

4.3 Asynchronous Flow Control

Traditional implementations of SDP over hardware-offloaded iWARP perform
explicit flow control. That is, if there are no credits to send data out, the sender
copies the data into the temporary private buffers and waits for more credits to
arrive (similar to advertised window in TCP). However, for hybrid iWARP im-
plementations, such flow control is redundant since the iWARP implementation
itself performs flow control as well. Furthermore, the iWARP flow control is more
sophisticated as it is implemented within the kernel and uses light-weight hard-
ware interrupts to perform asynchronous progress. Thus, in our approach, we
completely disable SDP-level flow control and only rely on iWARP flow control.

While this approach works well for synchronous sockets, for asynchronous
sockets, it has the drawback of its inability to call application-specific call-back
functions. That is, asynchronous sockets (such as those used in Windows) al-
low applications to specify call-back functions that are triggered when a mes-
sage send or receive is completed. To allow for such functionality, we extended
the iWARP interface to specify such details, including call-back functions and
message send/receive watermarks (that is, at what point the call-back should
be triggered). Again, while such functionality would be extremely cumbersome
and difficult to implement on hardware offloaded network stacks, it is relatively
straightforward on hybrid network stacks.

5 Experimental Results and Analysis

In this section, we first evaluate our proposed approach with the latency and
bandwidth micro-benchmarks in Section 5.2. We study the cache misses caused
by existing approaches and how our approach reduces them in Section 5.3. Fi-
nally, we evaluate two real applications comparing our proposed approach with
existing approaches in Section 5.4.

5.1 Experimental Testbed

For our experiments, we used a 4-node cluster built around SuperMicro SUPER
X5DL8-GG motherboards with ServerWorks GC LE chipsets, which include 133-
MHz PCI-X interfaces. Each node has two Intel Xeon 3.0 GHz processors with a
512-KB cache, a 533 MHz front-side bus and 2 GB of 266-MHz DDR SDRAM.
The nodes are connected with Chelsio T110 10GE TCP offload engines through
a 12-port Fujitsu XG800 switch. The software stack on the machines is based on
linux-2.4.22smp and RedHat linux distribution. The driver version on the NICs
is 1.2.0. For each experiment, ten or more runs/executions are conducted, the
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Fig. 2. SDP Performance: (a) Latency and (b) Bandwidth

highest and lowest values dropped (to discard anomalies) and the average of the
remaining values is reported. For micro-benchmark evaluations, the results of
each run are an average of 10,000 or more iterations.

5.2 Micro-benchmark Evaluation

Ping-pong Latency: Figure 2(a) compares the ping-pong latency of traditional
SDP with our new approach. In this experiment, the sender sends a message of
size S to the receiver. On receiving this message, the receiver sends back another
message of the same size to the sender. This is repeated several times and the
total time averaged over the number of iterations, which gives the average round-
trip time. The ping-pong latency reported here is one half of the round trip time,
i.e., the time taken for a message to be transferred from one node to another.

As shown in the figure, our proposed approach (SDP (enhanced)) outper-
forms traditional SDP (SDP (basic)) by about 10%. This is attributed to several
reasons including the reduced buffer copies, and lack of redundant flow-control.

Unidirectional Bandwidth: Figure 2(b) shows a comparison of the unidirec-
tional bandwidth. In this experiment, the sender sends a single message of size
S a number of times to the receiver. On receiving all the messages, the receiver
sends back one small message to the sender informing that it has received the
messages. The sender calculates the total time, subtracts the one-way latency of
the message sent by the receiver, and based on the remaining time, calculates
the amount of data it had transmitted per unit time.

As shown in the figure, our proposed approach outperforms traditional SDP
by about 20% in this case. This behavior is expected as, for large messages,
traditional SDP gets significantly hurt by the additional buffer copy and loses
performance. Furthermore, as we will see in Section 5.3, its performance is further
affected by secondary issues such as increased cache misses.

5.3 Cache-Miss Analysis

Figure 3 shows the analysis of cache-to-network traffic ratio, comparing tradi-
tional SDP to our proposed approach; that is, how many bytes of data have to
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Fig. 3. SDP Cache to Network Traffic Ratio: (a) Transmit and (b) Receive

be fetched to or flushed from cache, for every byte of data sent on the network.
We see that traditional SDP requires nearly four bytes of cache traffic for every
byte of network traffic, as compared to our approach that requires only two.

Specifically, in the bandwidth micro-benchmark that we used, all messages are
sent from the same application buffer, but the SDP and iWARP private buffers
are used from a circular queue. Thus, the application buffer is always in cache, but
the private buffers are never in cache. When the application data is copied to the
SDP buffer, the SDP buffer needs to be fetched into cache. Next, when the data
is copied from the SDP buffer to the iWARP buffer, the iWARP buffers needs to
be fetched into cache. Finally, when the next set of buffers are fetched, both the
SDP and iWARP buffers have to be flushed out of cache, since they are both dirty.
Thus, there are two bytes fetched to cache and two bytes flushed from cache (total
of four bytes of cache traffic), for every byte of data sent over the network. For our
proposed approach, on the other hand, since the SDP/iWARP buffer is combined,
only this combined buffer needs to be fetched into cache and flushed out from there,
for a total of two bytes of cache traffic per network byte.

On the receive side (Figure 3(b)), the analysis is similar. For traditional SDP,
when the data arrives, it is directly DMA’ed into the iWARP private buffer. When
the data is copied to the SDP private buffer, both the iWARP and SDP private
buffers need to be fetched to cache. Since the same application buffer is used
throughout the experiment, it can be expected to stay in cache. However, since the
SDP buffer is dirty it has to be flushed out of cache when the next set of buffers are
fetched in. Thus, there are two bytes of data fetched and one byte of data flushed
for every byte of data sent over the network. For our proposed approach, the com-
bined SDP/iWARP buffer has to be fetched to cache to copy into the application
buffer, i.e., one byte of cache traffic per network byte. Note that this buffer does
not need to be flushed since it was never dirtied after fetching to cache.

5.4 Application-Level Evaluation

In this section, we evaluate our proposed approach based on two different appli-
cations, virtual microscope [17] and iso-surface visual rendering [13], that have
been developed using the DataCutter library [11].



SDP for Hybrid Network Stacks 487

Overview of the DataCutter Library: DataCutter is a component-based
framework [12] developed at the University of Maryland. It provides a frame-
work, called filter-stream programming, for developing data-intensive applica-
tions. In this framework, the application-processing structure is implemented as
a set of components, called filters. Data exchange between filters is performed
through a stream abstraction that denotes a unidirectional data flow from one
filter to another. The overall processing structure of an application is realized
by a filter group, which is a set of filters connected through logical streams. An
application query is handled as a unit of work (UOW) by the filter group. The
size of the UOW also represents the granularity in which data segments are dis-
tributed in the system and the granularity in which data processing is pipelined.
Several data-intensive applications have been designed and developed by using
the DataCutter run-time framework, such as the virtual-microscope application
and the iso-surface visual-rendering application.

Virtual Microscope: Virtual microscope [17] is a digitized microscopy applica-
tion. The software support required to store, retrieve, and process digitized slides
to provide interactive response times for the standard behavior of a physical
microscope is a challenging issue [4,17]. The main difficulty stems from the han-
dling of large volumes of image data, which can range from a few hundreds of
megabytes to several gigabytes. At a basic level, the software system should
emulate the use of a physical microscope, including continuously moving the
stage and changing magnification. The processing of client queries requires pro-
jecting high-resolution data onto a grid of suitable resolution and appropriately
composing pixels mapping onto a single grid point.

Iso-surface Visual Rendering: Iso-surface rendering [22] is a widely used tech-
nique in many areas, including environmental simulations, biomedical images,
and oil reservoir simulators, for extracting and simplifying visualization of large
datasets within a 3D volume. In this paper, we utilize a component-based im-
plementation of such rendering [13].

Evaluating the Applications: Figure 4 shows the performance of the vir-
tual microscope and iso-surface visual-rendering applications for the different
SDP designs. The applications were executed with a UOW of 1KB and 8KB,
respectively. The complete dataset is about 1 GB in size and is hosted on a
RAM disk in order to avoid disk fetch overheads in the experiment. The virtual-
microscope application used five filters: read data, decompress, clip, zoom, and
view. The iso-surface visual-rendering application used four filters: read dataset,
iso-surface extraction, shade and rasterize, and merge/view. Each filter performs
some computation and communicates the processed data to the next filter. Once
the communication is initiated, the filter starts computation on the next UOW,
thus attempting to overlap communication with computation.

For the virtual-microscope application, as shown in Figure 4(a), our proposed
approach outperforms traditional SDP by nearly 5%. This benefit is mainly
attributed to the benefits of message coalescing. Since the UOW size used in
this application is quite small, the buffer-copy overhead would not be too high.
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Fig. 4. Application Performance: (a) Virtual Microscope and (b) Iso-surface Oil Reser-
voir Data Visualization

Similarly, since after coalescing, the number of messages is fewer, running out of
buffer credits happens rarely, and hence flow-control does not play a major role
either.

As shown in the Figure 4(b), for the iso-surface application, our proposed ap-
proach outperforms traditional SDP by more than 5%. This benefit is attributed
to mainly the reduction in buffer copies and the lack of redundant flow-control.
Message coalescing would likely have little effect since the virtual microscope
application uses about 8KB data chunks (UOW is 8KB), where the bandwidth
is already close to the peak and coalescing would not help it much. Also, Data-
Cutter relies only on synchronous sockets, so asynchronous sockets optimizations
would not help either.

6 Conclusions and Future Work

In this paper, we proposed an extended design for SDP that uses information on
which components of the network protocol stack are implemented in hardware
and which are implemented in software to optimize its execution. We compared
our proposed approach with existing implementations and showed that we can
achieve significant performance improvements. As a part of our future work, we
would like to study such enhancements in other protocol stacks, including MPI,
as well. Furthermore, we would like to generalize our model so that all upper-
layer protocols can query for which components are implemented in hardware
and software in a uniform manner.
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Abstract. Optical circuit-switched networks such as National Lamb-
daRail (NLR) offer dedicated bandwidth to support large-scale bulk
data transfer. Though a dedicated circuit-switched network eliminates
congestion from the network itself, it effectively “pushes” the congestion
to the end hosts, resulting in lower-than-expected throughput. Previous
approaches either use an ad-hoc proactive approach that does not gener-
alize well or a sluggish reactive approach where the sending rate is only
adapted based on synchronous feedback from the receiver.

We address the shortcomings of such approaches using a two-step
process. First, we improve the adaptivity of the reactive approach by
proposing an asynchronous, fine-grained, rate-based approach. While this
approach enhances performance, its limitation is that it is still reactive.
Consequently, we then analyze the predictive patterns of load on the re-
ceiver and provide strong evidence that a proactive approach is not only
possible, but also necessary, to achieve the best performance in dynami-
cally varying end-host conditions.

Keywords: rate-based protocol, circuit switched, optical networks,
LambdaGrid.

1 Introduction

Rapid advances in optical networking are producing increases in bandwidth that
have outpaced the geometric increase in semiconductor chip capacity, as pre-
dicted by the Moore’s law. This means that the burden is now on the end points
of communication networks to process the high bandwidth data being deliv-
ered by the network. This trend is more prominent in circuit-switched optical
networks, like those found in LambdaGrids [4,12].

A LambdaGrid is a distributed grid of resources that consists of dedicated
high-bandwidth optical networks, computing clusters, and data repositories.
Such a distributed supercomputer will enable scientists and engineers to analyze,
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correlate, and visualize extremely large and remote datasets on-demand and in
real time. The dedicated high-bandwidth optical networks found in LambdaGrids
translate into no internal network congestion and result in pushing congestion
to the end hosts. Thus, the efficiency of a network protocol at an end host is
greatly influenced by its ability to adapt its transmission rate to dynamic net-
work and endpoint conditions, thereby minimizing packet loss and maximizing
network throughput.

Currently, the computational power of an end host is not sufficient to han-
dle the high network bandwidth that is available in a dedicated circuit-switched
network. This puts a cap on the maximum throughput that can be achieved.
Additionally, the computational power per process is effectively reduced if there
are several processes running on the end host that are competing for CPU re-
sources. Hence, we need to understand end-host contention and come up with
effective rate-adaptation techniques, which are critical when networks are fast
enough to push congestion to the end hosts.

In this paper, we address the shortcomings of existing approaches in two steps.
First, we present an asynchronous, fine-grained, rate-control approach that solves
some performance issues but is still reactive in nature. Next, we present our
observations from a series of experiments and analyze the predictive patterns
of load on the receiver node. Based on our analysis, we provide evidence that a
proactive approach is possible and required in such environments to achieve the
best performance in dynamically varying end-host conditions.

2 Background

A rate-based approach is one where a constant sending rate is negotiated between
a sender and receiver. Rate-based protocols perform well for high bandwidth-
delay product networks. Reliable Blast UDP (RBUDP) [7] is an example of such
a protocol in which the sender transmits data using UDP packets at a rate
specified by the user. At the end of data transmission, the receiver sends an ac-
knowledgment via a bitmap of missing packets. The sender then re-transmits the
missing packets. The process continues until all packets are received. The mech-
anism is aggressive and provides reliability, but it is not adaptive to packet loss.

RAPID [1] is an end-host aware, rate-adaptive protocol, where rate adapta-
tion is based on proactive feedback from the receiver. The receiver is monitored
by a soft real-time process that attempts to guess the time and duration when
the receive process is context-switched and replaced by another process. It then
informs the sender, which suspends transmission to avoid packet loss when the
receiver process is context-switched and suspended. Although being a proactive
approach, a major drawback of this protocol is that it is difficult to predict the
exact time when the receive process will be suspended. It is even more difficult to
match the sender’s transmission suspension with the receive process’ suspend in-
terval, especially because the two nodes are physically separated by a reasonable
amount of network delay [2]. Moreover, stopping data transmission completely
is a drastic step to take when we aim at keeping the network utilization high.
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Another RBUDP variant, RBUDP+ [3], uses the same scheme but a different
estimate of the time and duration for which the receive process has been resched-
uled. Like RAPID, the prediction of time and duration is almost impossible.

An enhancement of RAPID and RBUDP+ is RAPID+ [2], which focuses on
dynamically monitoring the packet loss at the receiving end host, so that it can
be used to adapt the sending rate. Accurate prediction of when packet loss would
occur increases performance and circuit utilization. However, in this case, rate
adaptation is initiated only after most of the losses have already occurred.

The Simple Available Bandwidth Utilization Library (SABUL) [6] is a rate-
based as well as window-based protocol that has been designed for data-intensive
applications over a shared network. Its delay and window-based congestion con-
trol makes it TCP-friendly but brings along the same characteristics of TCP
that make it inefficient when congestion has been pushed to the endpoints.

The Group Transport Protocol (GTP) [15] is a receiver-driven protocol that
performs well in multipoint-to-point and multipoint-to-multipoint environments
and ensures fairness between different connections on the same end host. Like
other rate-based protocols, SABUL and GTP wait for packet loss to occur before
providing feedback to the sender to transmit with revised sending rates.

TCP does not perform well for large bandwidth-delay product networks, as
found in LambdaGrids, because of the overhead involved in congestion and flow
control. In order to improve TCP performance, significant research has been
done to improve TCP congestion control [9,10,13,16]. Other complementary re-
search has been done to improve flow control [5,11,14]. However, none of these
improvements or variants of TCP were designed for networks with nearly zero
congestion. In this paper, we use UDP because it is lighter and faster and can
be enhanced to provide reliability without worrying about network congestion.

3 Asynchronous Fine-Grained Rate Control

In this section, we introduce our fine-grained, rate-based control protocol called
ASYNCH and compare its performance with existing rate-based protocols.

3.1 Basic Idea

Many existing rate-based protocols such as RAPID+, SABUL and GTP use
reactive rate control to avoid end-host congestion, where the sending rate is
varied after an event, such as a packet drop, occurs. Further, these approaches
use a coarse-grained feedback mechanism. Specifically, they utilize multi-round
communication; in the first round, the sender attempts to send data at the
maximum rate. If there are dropped packets in the second round, these dropped
packets are sent at a slower pace. These rounds continue till all the data has
been successfully communicated.

While such an approach is simple, it has several performance implications.
First, a coarse-grained feedback approach, such as that described above, has a
high overhead of inaccuracy. For example, if a receiver is only capable of receiving
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data at 5 Gbps, a sender transmitting a 10-GB file at 10 Gbps would end up
dropping half the packets (5 GB). The sender, however, would receive feedback
about its high sending rate only at the end of the first communication round,
i.e., after the entire file has been sent out. In the second round, the remaining
5 GB has to be retransmitted. Thus, the inaccurate sending rate (in this case,
10 Gbps) can result in a major loss of performance, which is expected to further
worsen as the amount of data being communicated increases.

Second, a reactive approach is fundamentally limited in its ability to handle
dynamic environments where the receiving end-host is executing other processes.
By the time the sender receives feedback for rate adaptation, the receiver’s ca-
pability to receive data might have already changed.

In order to analyze the behavior of the receiver end-host and its dynam-
ics, we implemented an asynchronous, fine-grained, reactive rate-control proto-
col named ASYNCH. This protocol, while still reactive, addresses the issue of
coarse-grained feedback; it asynchronously sends feedback to the sender at regu-
lar intervals of time, instead of waiting for the entire file to be transferred before
sending the feedback. This mechanism allows feedback to be independent of the
file size. On the other hand in synchronous feedback, such as in RAPID+, the
receiver sends feedback only at the end of each communication round.

In ASYNCH, upon receiving feedback, the sender calculates the current loss
rate. If an increase in loss rate (compared to the last calculated value) is de-
tected, the sending rate is decreased. The sender considers at least two feedback
messages from the receiver for deciding what kind of rate adaptation is required.
If a high loss rate has been observed in only one round, it is treated as a tempo-
rary loss, and no action is taken. If the receiver does not experience any packet
loss for k successive rounds, then the sender will increase its sending rate. This
reactive rate adaptation is expected to reduce any further loss at the receiver.

3.2 Performance Evaluation

We evaluate the performance of ASYNCH and RAPID+ for various conditions
on the receiver end-host and analyze the results. We first show how through-
put degrades when the sending rate increases beyond the receiver’s capacity to
receive. We then explain the role played by the round-trip time (RTT) latency
and the receiver’s socket buffer size on packet loss rate and network throughput.

Methodology. The testbed is a three-node sender-receiver setup with the mid-
dle node acting as a wide-area network (WAN) emulator using Netem [8]. A file
size of 1GB, RTT of 56ms and MTU of 9000 bytes was used for all experiments,
unless otherwise specified. The choice for this setup and configuration is based
on our attempt to emulate a real dedicated circuit-switched, long-fat network.
In order to obtain consistent results, we bind the receive process to the same
core for our experiments. The system configuration is summarized in Table 1.

High Network Speed. One of the primary reasons for packet drops is the
discrepancy in the protocol processing requirements for data sending and re-
ceiving. Specifically, data transmission with TCP/IP or UDP/IP is typically a
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Table 1. System Configuration

Processor Dual-core AMD Opteron 2218
Cache Size 1024 KB
RAM 4 GB
Network Adaptor Myrinet 10Gb
Kernel 2.6.18
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Fig. 1. Network throughput degrades after the sending rate reaches an optimal point

lighter weight operation compared to data reception, owing to various optimiza-
tions such as integrated checksum and copy and the lack of data demultiplexing
requirements that are necessary on the receiver side. In our experiments with a
10 Gbps network, the sender, for example, is able to transmit packets at 7 Gbps.
However, the receiver is only able to receive data at 5.5 Gbps.

Figure 1 demonstrates this behavior. For sending rates less than 5.5 Gbps,
the achieved throughput is about the same as the sending rate, and there is no
packet loss. Beyond 5.5 Gbps, however, there is a sharp rise is the packet loss
rate, resulting in a decline in throughput. Unlike RAPID+, ASYNCH utilizes
a fine-grained feedback mechanism to adapt its rate quickly resulting in up to
58% better throughput as compared to RAPID+. For a sending rate of 7 Gbps,
the loss rate for ASYNCH is only 9.5% compared to the 21.49% for RAPID+.

For the rest of the experiments, we are interested in studying the capabilities
of the receiver end-host; therefore we use a peak sending rate of 5.5 Gbps.

Socket Buffer Size of the Receiver. UDP/IP communication takes place
through socket buffers. Data received is stored in the socket buffer until the ap-
plication reads it. Thus, while a large socket buffer can provide more tolerance
to a receiver’s slow receiving capability, it can result in memory wastage. Ac-
cordingly, an optimal buffer size needs to be chosen to balance memory wastage
and packet loss.
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Figure 2 shows the effect of the socket buffer size on loss rate. For very
small buffer sizes (10-100 KB), substantial packet loss occurs, resulting in poor
throughput. For buffer sizes larger than 100 KB, ASYNCH’s loss rate drops to
about 5-7% or less. While the loss rate for RAPID+ decreases with the socket
buffer size as well, we notice that ASYNCH’s loss rate is much smaller than that
of RAPID+ for all buffer sizes.

Round-Trip Time. Unlike TCP, in the case of UDP data transfers, RTT does
not play a significant role in UDP throughput due to the lack of congestion- and
flow- control mechanisms in UDP. However, to achieve reliability, both RAPID+
and ASYNCH use a TCP control channel; the sender waits for packet-loss feed-
back from the receiver. This feedback mechanism, however, directly depends
on the RTT and causes the throughput to drop with increasing RTT. Figure 3
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illustrates this relationship. That is, for both RAPID+ and ASYNCH, the
throughput drops by about 65 Mbps for every 20-ms increase in RTT.

4 A Case for Proactive Rate Control

Here we analyze the receiver end-host in environments where a number of com-
peting processes are scheduled on the receiver node.

4.1 Effect of Load on the Receiver End-Host

In environments where a number of competing processes are scheduled, the re-
ceiver’s network process must compete with the other processes on the end host
for CPU resources. The competing processes may be of various types and can
be I/O-bound or CPU-bound.

We use four types of loads for our experiments. The first is a purely compu-
tational workload that runs entirely in user space. The second is a system-call
load that reads and writes data to a flat file. The third is a memory-intensive
load that reads data from a 1GB buffer. Finally, we have a network load that
acts as a forwarder for packets received by the receiver process. We use a four-
node setup; two of the nodes perform the actual communication, one node acts
as a delay node emulating a high-latency network, and the fourth node acts as
a gateway, where the receive and forward processes are running. The gateway
node performs some computation on every received packet and then forwards it
to the final recipient of the data.

With the exception of network load, all loads are running on the same proces-
sor core as the receive process. For network load, we run the receiver on P1C2
(Processor 1, Core 2) and all forwarder threads on P1C1 since cores on the
same processor share cache and memory. This helps obtain maximum end-to-
end throughput.

Figures 4 and 5 compare the loss rate and throughput of RAPID+ and
ASYNCH with increasing load, respectively. For the purely computational load,
ASYNCH quickly adapts its sending rate, thus avoiding any severe packet loss.
However, neither the loss rate nor throughput has any fixed pattern with in-
creasing load.

For the system-call load, the average loss rate is much higher for both
ASYNCH and RAPID+. This is attributed to the higher priority assigned by the
operating system to system-call workloads. Consequently, fewer CPU resources
are allotted to the receiver process, resulting in an increased loss rate. On the
other hand, the memory-intensive load demonstrates behavior that is better than
the system-call workload, but worse than the compute workload.

For the network load, the throughput, as seen by receiver process, is not
affected significantly by the increase in number of forwarder threads, mainly
because the forwarder is running on a separate core. However, the end-to-end
throughput (not shown in figure) reduces, since the forwarder threads, all run-
ning on the same core, compete amongst themselves for CPU resources.
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4.2 Loss Patterns

Figure 6 shows the pattern of packet loss when data is transmitted with rate
adaptation disabled. We disable rate adaptation in this experiment in order to
observe the loss patterns that would help us understand if the current reactive
approaches are able to adapt precisely during intervals of packet losses.

The sharp spikes for pure computational load reveal that all packets in a small
interval of time are lost. Similar spikes were observed for system-call load and
memory-intensive loads, although not shown in the figure. When rate adaptation
is enabled, ASYNCH and RAPID+ interpret the spike as a heavy loss rate
and wrongly adapt the sending rate. In general, the presence of spikes in any
loss pattern is likely to convey a wrong signal to the reactive rate-adaptation
algorithm. The loss pattern for a network load does not have any spikes and
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flattens on the top. Thus, the reactive rate adaptation is expected to work for
this case as the future loss pattern is likely to remain the same as the current
loss pattern.

4.3 Reactive Versus Proactive Approach

Based on the loss patterns described above, it is clear that a reactive approach is
not suitable to adapt the rate, based on dynamic conditions at the receiver end
host. A reactive approach will work if the conditions at the receiver are static,
resulting in steady loss patterns, e.g., loss patterns due to another network load
on the receiver. On the other hand, a proactive approach can potentially predict

Fig. 7. Timeslice consumption of processes showing intervals when each of them is
currently scheduled for execution
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the time when a loss event will occur and take necessary action to prevent
packet drops. However, designing a proactive approach is a difficult problem
that requires understanding of the way an operating system scheduler handles
processes.

Figure 7 shows the timeslices awarded to the receive process and a memory-
intensive load process. The exact times when packet loss occurs have been
marked in the figure. These points are always located in the same time in-
terval when the load process is running, depriving the network process of CPU
resource and thus causing it to drop packets. In other words, packet losses occur
exclusively because the receive process gets rescheduled and is replaced by the
competing load process.

4.4 A Proactive Approach

In designing a proactive approach, we need to estimate in advance when the re-
ceive process will be rescheduled and replaced by another process for execution.
We will refer to this time as context-switch time, since this rescheduling essen-
tially involves a context-switch. There are two approaches for predicting when a
context-switch for the receive process will occur, as discussed below.

Polling Dynamic Priority. Polling the dynamic priority of the receive pro-
cess to estimate the context-switch time has been used by Banerjee et al. [1].
The idea is to note the dynamic priority of the receive process when a loss ac-
tually occurred. During polling, if the dynamic priority reaches one less than
the previously noted value, the sender is notified to suspend transmission for
an amount proportional to the average sleep time of the process. However, as
seen in Figure 8 for a memory-intensive load, the dynamic priority of the receive
process takes only three values and just prior to getting context switched, there
are no changes to the dynamic priority value. This behavior has been observed
for other kinds of loads as well and therefore this approach is not reliable.
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Polling Sleep Average. Figure 8 shows the average sleep time of the receive
process. We see that the average sleep time of a process follows a saw-tooth
pattern. A context-switch happens whenever the average sleep time has reached
a local minimum. Because of this uniform and periodic pattern, it is possible to
estimate the time of an upcoming context-switch.

If at any instanceof time,wehave themaximumandminimumaverage sleep time
(given by MAX SLEEP AV G and MIN SLEEP AV G), we know that the pro-
cess started its execution with its average sleep time = MAX SLEEP AV G and
will be rescheduled when its average sleep time has reached MIN SLEEP AV G.
We take an action when the average sleep time reaches (MAX SLEEP AV G +
MIN SLEEP AV G)/2.Wemust constantlyupdate themaximumandminimum
values, since they are likely to change.

5 Conclusion and Future Work

In this paper, we presented an asynchronous, feedback-based, reactive, rate-
control protocol called ASYNCH that features a fine-grained rate-control mech-
anism. Our protocol effectively solves some of the problems faced by current
rate-based protocols that adapt sending rate, leading to accurate rate adapta-
tion and therefore higher throughput. We also analyzed the end-host behavior in
dynamic environments and made a case for a proactive protocol, which is more
suitable for handling such environments.
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Abstract. As the number of components in cluster-based systems increases, cost
and power consumption also increase. One way to reduce both problems is us-
ing smaller networks with adequate congestion management mechanisms. Re-
cent successful proposals (RECN) eliminate the negative effects of congestion,
the Head-of-Line (HOL) blocking, leaving congestion harmless. RECN relies on
source-based networks architectures, where the entire route is placed at packet
headers before injection. Unfortunately, distributed table-based routing is also
common in cluster-based networks, being InfiniBand the most prominent exam-
ple. We propose a novel congestion management technique for distributed table-
based routing. The mechanism relies on additional congestion information lo-
cated at routing tables. With this information HOL blocking is minimized by
smartly using switch queues. Detailed memory organization and the way conges-
tion information is updated/propagated is described. Preliminary results indicate
that with modest resource requirements maximum network performance is kept
regardless of congestion.

Keywords: High-Performance Interconnects, Congestion Control, Distributed
Routing.

1 Introduction

During the last decades, the evolution of interconnection network technology has been
really significant. Of course, this evolution has taken place in parallel with the prolifer-
ation of computing and communication systems based on these networks: Massive Par-
allel Processors, Local and System Area Networks, Clusters of PCs and Workstations,
IP routers, and Networks-on-Chip. In order to work at maximum capacity, such systems
demand low packets latencies and high network bandwidth. On the other hand, the pop-
ularity and utilization of these systems is constantly growing. As a clear example, more
than half of the most powerful systems (top500 list)[1] are clusters. Consequently, there
exists a great interest on achieving the best possible performance of the interconnection
network and, in fact, researchers and designers have proposed many architectures and
techniques with the aim of improving any key aspect of network functionality.

One of such aspects is the network behavior during congestion situations. These sit-
uations appear when several packet flows persistently request the same output inside a
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switch. In such situations, and assuming a lossless network (so, discarding packets is
not allowed), packets from the involved flows arrive at the corresponding input buffers
faster than they can cross to the requested output, thus these buffers finally collapse.
Moreover, flow control propagates congestion throughout the network, following the re-
versal path of the flows contributing to congestion (thereby forming “congestion trees”
across the network [2]). When congestion reaches many network points, the immediate
consequence is a severe network performance degradation (throughput drops, latency
increases exponentially).

The specific cause of this degradation is that congested flows may share some net-
work resources (queues, links) with non-congested flows, thereby the former slowing
the advance of the latter. In detail, in a queue storing packets belonging to congested
and non-congested flows, a “congested packet” reaching the head of the queue will
usually have to wait for a long period before being forwarded, and consequently all the
other packets in the queue (both congested and non-congested) will suffer this delay.
In general, this effect is known as Head-Of-Line (HOL) blocking, and it may limit the
throughput of the switch up to about 58% of its peak value [3].

In modern high-speed interconnection networks, the use of some technique for solv-
ing the problems related to congestion has become actually mandatory, since current
networks are usually designed using a low number of network components (due to the
high cost and power consumption of such components), thereby decreasing the offered
bandwidth and increasing congestion probability. In that sense, many proposed tech-
niques can help to reduce the negative effects of congestion (see section 2), but none
as satisfactorily as the technique known as Regional Explicit Congestion Notification
(RECN) [4,5,6]. Contrary to common techniques that try to avoid or prevent congestion,
RECN completely eliminates the HOL blocking produced by congested flows leaving
congestion harmless. RECN requires a reduced set of additional resources per switch
port, which are dynamically allocated for storing congested packets separately from
non-congested ones. In this way, RECN keeps network performance at maximum dur-
ing congestion situations at a moderate cost.

However, an essential requirement for any RECN implementation is the use of
source-based routing where the entire path of a packet is encoded in its header. RECN
identifies congested packets by comparing the explicit route stored in the header of each
packet to explicit routes leading to congested points. Of course, this limitation prevents
RECN from being applied in any network technology that uses table-based, distributed
routing, like Infiniband [7]. Therefore, efficient congestion management on these tech-
nologies is still an open issue, while the use of such technologies is far from being
unpopular.

In order to fill this significant technical gap, we present in this paper a new tech-
nique able to eliminate the HOL blocking produced by congested flows in networks
implementing table-based, distributed deterministic routing. We have called this new
technique Flow-Based Implicit Congestion Management (FBICM). FBICM eliminates
HOL blocking following the same basic approach as RECN, so by detecting congested
packets and separating them from non-congested ones. However, FBICM differs from
RECN in many aspects, especially the following ones:
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1. Congested points are not addressed by means of explicit routes. Instead, FBICM
identifies congested points implicitly, by keeping track of the different flows pass-
ing through these points.

2. Congested packets are not identified as packets following an explicit route to a
congested point, but as packets belonging to flows involved in a congested situation.

3. Congestion information is associated to destinations whereas in RECN is associated
to internal network points. Thus, totally new implementations are required.

As a consequence of these three basic differences, FBICM requires new formats
for congestion notifications, and new policies for congestion detection, congestion in-
formation propagation and resource management. As we will show in this paper, we
have carefully considered all these aspects in the design of FBICM, in such a way that
FBICM finally offers the same performance as RECN, but in a different technological
context. Summing up, FBICM offers the benefits of an efficient, cost-effective conges-
tion management to interconnection networks that implement table-based, distributed
deterministic routing.

The rest of the paper is organized as follows. Section 2 shows an overview of the
existing related work. Next, in Section 3, the basics of the new FBICM mechanism
are presented. In Section 4, FBICM is compared in terms of performance and resource
needs to previously proposed techniques which also reduce or eliminate HOL blocking.
Finally, in Section 5, some conclusions are drawn.

2 Related Work

The risk of congestion in interconnection networks is a well-known problem, and many
strategies have been proposed. The simplest ones are, however, overdimensioning the
network and/or dropping packets in congestion situations. However, none of them are
suitable for modern interconnection networks due, respectively, to the high cost and con-
sumption of current network components and to the lossless character of these networks.

Other more elaborated techniques have been specifically proposed for avoiding or
eliminating congestion. For instance, proactive strategies are based on reserving net-
work resources for each data transmission, requiring a traffic planification based on
network status [8]. However, this status information is not always available, and the re-
source reservation procedure introduces significant overhead. On the other hand,
reactive congestion management is based on notifying congestion to the sources con-
tributing to its formation, in order to cease or reduce the traffic injection from those
sources [9]. Unfortunately, these solutions may not be efficient due to the delay be-
tween congestion detection and notification.

Other strategies deal with the HOL blocking problem, thus, indirectly dealing with
congestion. Several HOL blocking elimination strategies have been proposed: Virtual
Output Queues (VOQs) [10], Dynamically Allocated Multiqueues (DAMQs) [11], con-
gestion buffers [12], etc. Most of these techniques rely on allocating different buffers
for storing separately packets belonging to different flows.

In general, traditional HOL blocking elimination techniques are feasible or effective,
but not feasible and effective at the same time. For instance, the use of VOQs at network
level requires as many queues at each port as end-points in the network, being so an
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effective but not scalable technique. A variation of VOQ uses as many queues at each
port as output ports in a switch [13](eliminating switch-wide HOL blocking). So, this
technique is feasible, but it does not eliminate completely network-wide HOL blocking.

In contrast to these techniques, RECN eliminates HOL blocking in an efficient and
scalable manner. Like VOQs, RECN tries to separate congested and non-congested
flows by storing them in different queues. Specifically, RECN adds a set of additional
queues (set aside queues, SAQs) to the standard queues at every input and output port of
a switch. While standard queues will store non-congested packets (RECN assumes that
packets from non-congested flows can be mixed in the same buffer without producing
significant HOL blocking), SAQs are dynamically allocated for storing packets passing
through a specific congested point. SAQs are allocated only when congestion arises, and
can be deallocated when congestion vanishes, so RECN uses these resources efficiently.

Every set of SAQs is controlled by means of a CAM (content addressable mem-
ory), in such a way that each CAM line contains information for managing an asso-
ciated SAQ, including the information required for addressing a congested point. In
that sense, RECN assumes the use of source deterministic routing, thereby addressing
congested network points by means of explicit routes toward these points. These routes
can be indicated by sets of “hops” stored in the CAM lines. Once a packet arrives at
a port, the routes stored in the port CAM lines can be compared to the explicit route
stored in the packet header, in order to know if the packet will cross any of the detected
congested points. In this way, congested packets can be easily detected and stored in
the corresponding SAQ, thereby preventing them from sharing standard queues with
non-congested packets, and consequently avoiding HOL blocking.

Although the RECN basic mechanism described above has proved to be very ef-
ficient, it presents the obvious limitation of requiring the use of source deterministic
routing. As we have already mentioned, the main aim of the new HOL blocking elim-
ination technique presented in this paper (FBICM) is to solve this flaw by offering the
same benefits as RECN, but in a table-based, distributed deterministic routing context.
The following section describes how this goal can be achieved.

3 FBICM Description

In this section we describe FBICM and its operation. Firstly we focus on the assumed
switch architecture: memory organization, routing and arbitration mechanisms, etc.
Next, we explain in detail the main features of FBICM: congestion detection, queue
allocation, etc., illustrating the descriptions by means of operation diagrams.

3.1 Switch Architecture

In Fig. 1, a scheme of the assumed switch architecture is shown. It is important to
note that FBICM, just like RECN, does not limit the number of ports of a switch. We
assume that both at input and output ports, Link Controllers (LC) coordinate the transfer
of flow control units at each side of the physical channel. In that sense, a credit-based
flow control mechanism at packet level has been assumed.

As can be seen in the scheme, there exist RAM memories only at input ports. This is
because FBICM has been developed for Input Queued (IQ) switches, thus we assume
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Fig. 1. Switch Architecture Assumed by FBICM (4x4 Switch)

that only switch input ports have queues. This kind of switches are very popular, and
they are cheaper than Combined Input and Output Queued (CIOQ) switches, the for-
mer requiring less memory and resources for operating than the latter1. Input RAMs
are organized in queues, dynamically managed. We assume two types of queues: non-
congested flow queues (NFQs), where non-congested packets are stored, and congested
flow queues (CFQs), where packets belonging to congested flows are placed. Moreover,
associated with each set of CFQs, there is a content addressable memory (CAM), which
contains information about the congested ports and the status of each CFQ. This port
memory organization can be seen in the “zoom” include in Fig. 1.

Although output ports have neither NFQs nor CFQs, FBICM requires a CAM per
output port, in order to propagate congestion information from downstream input port
CAMs to upstream input port CAMs, as we will explain later.

Regarding the routing mechanism, FBICM has been designed for networks using
table-based, distributed deterministic routing, thus the Routing Logic is based on a rout-
ing table that indicates the output port for each incoming packet. We assume routing
tables are filled during network setup according to some routing algorithm. In our ex-
periments, we have used a self-routing algorithm for multistage networks, calculating
the output port as a function of the destination of the packet. Therefore, the only routing
information that packets need to include in their header is their destination (instead of
a explicit, complete route).

On its side, the switch arbiter selects (following an “oldest-first” policy) routed pack-
ets for switching them through the crossbar, as long as the required input-output con-
nection is possible (so, only if the corresponding crossbar internal path is free). The
crossbar assumed for this model is a NxN multiplexed crossbar, where N is the number
of input/output channels. Finally, the switching technique used for this model is Virtual
Cut-Through (VCT).

3.2 Congestion Detection

A congestion situation happens when some packets request the same output port within
the switch and this situation persists in time. In normal conditions the rate at which

1 Note that the latest RECN version [6] was also designed for IQ switches.



508 J. Escudero-Sahuquillo et al.

ROUTING

LOGIC

P0

P1

P2

P3

P4

P5

P6

P7ROUTING

LOGIC

P0

P1

P2

P3

P4

P5

P6

P7

CFQ
N F Q

C A M

2

C o n g e s t e d
P o i n t  P 6

1

Switch 2Switch 1

A congestion situation is detected at the Non-Congested Queue
of P1 in Switch 2, because of congestion detection threshold
has been exceeded

Due to congestion detection, a new CFQ is allocated at P1 
of Switch 2, together with a CAM line structure which contains
information about the new congested point detected (P6)

3

CAM l ine

i n f o r m a t i o n

Output port P6 of Switch 2 is identif ied as congested point 
since it is requested by the packet at the head of NFQ in P1
of Switch 2

1

2

3
Congestion detection
threshold

Congested packet

Non-Congested packet

Forward path

Notif ication path

Congested Point

CP:  P6 H o p s :  1 Dest . l i s t :  X Nex tS top :  - ...Act ive:  1

Fig. 2. Operation Example of Congestion Detection and Primary Queue Allocation in FBICM

packets arrive to a given input port will be approximately the same as packets leaving
the output port, thus the occupation of non-congested flow queues should be low. In
congestion situations, the NFQs at the switch input ports will fill, and it is necessary
to detect these congestion situations as a first step for avoiding the HOL blocking that
would appear.

FBICM detects congestion situations at input ports by enabling a detection threshold
at non-congested flow queues. When the number of packets in a NFQ exceeds this
threshold, a new congested point is identified. Specifically, we assume that is very likely
that the packet which is allocated at the head of the NFQ belongs to a flow contributing
to create congestion in the switch. Therefore, this detection method infers this packet is
delaying the normal packet flow towards its requested output port and thus, this output
port is probably a congested point2, (so being the “root” of a growing congestion tree).

Actually, it is possible that the packet at the head of the NFQ is not a congested one.
This would be, in fact a failure in the detection mechanism, but it will be corrected
(as we will explain alter) by means of the packet post-processing and the deallocation
policy of CFQs.

In Fig. 2 (pass 1), we can see a simple operation example about the situation de-
scribed above. There are two types of packets: congested which are routed to P6 at
switch 2, and non-congested which are routed to other destinations. The congested ones
come from P0 in Switch 1 and P3 in Switch 2 and the non-congested ones come from
P2 in Switch 1. Since packets from different input ports request the same output port, a
contention situation appears and the normal flow of packets is delayed, causing a con-
gestion situation. When the occupancy of the NFQ at input port P1 of switch 2 exceeds
the detection threshold value (in this case the threshold value is five packets), the con-
gestion detection takes place at this input port. Since the output port requested by the

2 This detection method has been also used and tested in previous congestion management tech-
niques [6], exhibiting a great accuracy.
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Fig. 3. CAM organization

packet at the head of the NFQ detecting congestion is P6, this output port is identified
as a congested point (see Fig. 2 pass 2).

3.3 Primary CFQ Allocation

Once a switch output port is detected as a congested point, FBICM must separate in-
coming packets addressed to that congested point from incoming packets which do not
request that port. In order to do that, a CFQ will be dynamically allocated at any input
port that detects congestion, as well as an associated CAM line. The CAM line will con-
tain the CFQ status information and also information for identifying the congested port.

Figure 3 shows in detail the organization of CAM. As can be seen, congestion infor-
mation consists of four fields: Congested-Port, hops-to-reach, list-of-destinations, and
NextCFQ. The Congested-Port field indicates an output port detected as congested from
the input port, while the list-of-destinations field is intended to contain all the destina-
tions that would lead incoming packets to request that congested port. In this way, given
the destination of an incoming packet, it is possible to know immediately if it would re-
quest the congested port, thereby allowing to decide if it belongs to a congested flow3

and it must be stored in the associated CFQ. Many destinations can be progressively
added to the list-of-destinations, as congested packets with different destinations pass
through the input port. The “hops-to-reach” field is used to measure (in hops) the dis-
tance from the CAM line input port to the congested point, thus it is only useful when
congestion information is propagated upstream from the input port (see subsection 3.5).
The “NextCFQ” field is used also during congestion information propagation.

On the other hand, the CFQ status information stored in each CAM line consists
of four bits, indicating respectively if the CAM is active (Active bit), if the CAM is
blocked by the CFQ-specific flow control (Stop bit), if it is receiving control information
(“Receiving Control” bit), and if the congestion information has been propagated to the
output ports of the upstream switch (“Sent Stop” bit).

In Fig. 2 (pass 3), we show a “primary” CFQ allocation example. As can be seen, a
new CFQ is dynamically allocated after the congestion detection at port P1 of switch
2. The associated CAM line is filled in with information about congestion: congested
port identifier (P6 in this case), number of hops to reach that port (1 in this case), and
the destinations of packets that request the congested port from P1 (at this first moment,
only one destination: X).

3 Note this is possible because we assume distributed deterministic routing; adaptive routing
would not allow us to identify congested packets in that way.
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From this moment, once a new CFQ is allocated in the input port, FBICM will
separate the congested flows by storing in that CFQ those incoming packets whose
destination is in the list-of-destinations field of the corresponding CAM line, while
incoming packets belonging to non-congested flows will be mapped to the NFQ. Note
that congested packets are identified taking into account only its destination, thus source
(explicit) routing is not required. Congested packet identification is performed by the
Packet Processing mechanism.

List-of-Destinations Implementation. Take into account that the list-of-destinations
field described above is just a simplification (necessary for an straightforward under-
standing of FBICM basics), but it should be implemented efficiently in real systems, as
it could become the bottleneck of the new logic or even consume many resources. One
effective way to implement such list per CAM line is to add new fields to the routing
table. Assuming a routing table with N entries (one per destination), a switch with p
ports, and a FBICM mechanism with c CFQs per port, each entry for a destination node
d would contain the following fields:

1. Output port (OP). This is the output port provided to the arbitration logic for the
packet being routed, computed from packet destination.

2. CAMline at the output port (CLOP). A c-bit register indicating the CAM lines at the
output port (OP) where the destination d is mapped into. Notice that the destination
may be mapped on more than one CAM line, thus we need one bit per CAM line
(c).

3. CAM line at the input port (CLIP). A vector with p elements, each with c bits. Each
vector element represents the mappings of the destination d into the CAM lines on
a particular port. Thus, each element contains c bits, one per CAM line.

4. Notification Sent bit (NSB). One bit per input port (p). Each bit will be set on each
time a notification is sent upstream for the d destination through a given port.

As can be seen, several new fields are required at the routing table. Assuming a
1024-node system implemented with 8-port switches, a routing table with no congestion
management would require 3 KB memory space (1024 destinations, each one coding a
3-bit output port). With the addition of the congestion management mechanism with 8
CFQs per port, the memory requirements for the routing table increase to 83 KB (1024
destinations, 3-bit for OP field, 4 bits for CLOP field, 32 bits for CLIP field, 8 bits for
NSB field)4.

3.4 Packet Processing

The post-processing mechanism decides if a packet belongs to a congested flow, thereby
also deciding if it must be stored in a CFQ or in the NFQ. This mechanism looks
around the packets arriving at the head of all the input port queues (NFQ and CFQs),
and compares the packet destination to the CAM lines information (specifically, to the

4 Although such memory increase may be acceptable, as future work we plan to reduce the
memory requirements for FBICM. We plan to address caching mechanisms as destinations
potentially will reach a switch through a small subset of ports.
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destinations included in the list-of-destinations field). If the packet is at the head of the
NFQ and the comparison result is a match, the packet will be considered as congested
and will be moved to the corresponding CFQ in the same input port. Otherwise, the
packet will remain in the NFQ and the post-processing mechanism will set it as ready
for the switch arbiter. Note that this mechanism leaves at the head of the NFQ only
non-congested packets, thus HOL blocking is avoided at the NFQ. On the other hand,
once a packet stored in a CFQ reaches the head of a that queue, it will be set as ready
for the arbiter. Note that this post-processing mechanism assures the in-order delivery
of packets because, although congested and non-congested flows are separated, it keeps
the order of packets belonging to the same flow (either congested or non-congested).

Additionally, the post-processing mechanism selects which NFQ or CFQ can for-
ward a packet at each moment, by means of a round robin policy among all the queues
(NFQ and active CFQs) at each input port.

3.5 Congestion Information Propagation

In the same way that FBICM sets a congestion detection threshold in the NFQ, a thresh-
old (Stop threshold) is used, when congestion persists for long, both for avoiding CFQ
overflow and for propagating congestion information. An example of this is shown in
Fig. 4.

Basically, when the occupancy of a CFQ in an input port exceeds the Stop threshold,
an Stop notification including the information of the associated CAM line is sent to
the upstream output port. When an output port receives an external Stop notification,
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it checks if there is already an active CAM line containing the same received informa-
tion. If not, it will allocate a new CAM line, filling it with that information (so, active
output CAM lines will be exact copies of downstream CAM lines). Otherwise, if there
were already an allocated CAM for the received information, the Stop notification is
considered just as a flow control message. In both cases (new CAM line allocation or
not), the involved CAM line will be set to Stop state, and as a consequence this output
port will not accept packets belonging to packets flows whose destinations are included
in the list-of-destinations field of that CAM line. Note that this means that the output
port may control the flow of congested packets without requiring explicit routes for
identifying them.

On the other hand, when the occupancy of an input port CFQ that sent an Stop noti-
fication decreases enough (until a given threshold), a Go notification is sent upstream,
with the opposite effect than Stop ones. Thus, upon reception of a Go notification, an
output port CAM line will turn off the Stop bit, entering the Go state and so unblocking
the flow of packets.

Inside of the switch, “internal” Stop notifications may be sent when some input port
request to forward a packet to an output port with active CAM lines. If one of these
CAM lines is in Stop state and the packet destination is in its list-of-destinations field,
an internal Stop notification, containing all the CAM line information, will effectively
be sent to the input port. In this way, congestion information from downstream input
port CAM lines are transmitted through output port CAM lines to all the input ports
crossed by the flows contributing to congestion. Note again that specific routes are not
necessary for identifying congested packets.

On its side, an input port receiving an internal Stop notification may allocate or not
a new CFQ + CAM line, depending on the existence at that port of an active CAM line
containing the same congestion information received. In the case of a new allocation,
the CAM line will be filled with the received information, but increasing the “hops-to-
reach” value by one (this reflects the growing distance to the “root of the congestion
tree”). Otherwise, the internal Stop notification will be considered just as a flow con-
trol message. Again, in both cases (new allocation or just flow control), the involved
CAM line will be set to Stop state. Of course, internal Go notifications are also sent for
unblocking packet flow.

The newly allocated input port CFQ will store congested packets (again, identified
only from their destinations), and may repeat the propagation process, spreading up-
stream the congestion information. In this way, when a congestion situation persists
FBICM will identify the congested flows at any network point, and packets belong-
ing to them will be stored in the corresponding CFQs. Thus, congested flows will not
interact with the non-congested ones, thereby avoiding HOL blocking.

4 FBICM Evaluation

In this Section we will evaluate FBICM by comparing it to other HOL blocking elim-
ination techniques, specifically to the RECN version for IQ switches (RECN-IQ)[6],
Virtual Output Queues at network level (VOQNet) and Virtual Output Queues at switch
level (VOQSw).
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We will use different scenarios of traffic load and network size. For this purpose we
have used an ad-hoc event-driven simulator developed in C language that models the
network at the register transfer level. Firstly, we will describe the modeling assumptions
and the main parameters used in the simulations. Secondly, we will analyze the obtained
results.

4.1 Simulated Scenarios

The simulator models Bidirectional Multistage Interconnection Networks (BMINs)
with switches, endnodes, and links, allowing different connectivity patterns (e.g. perfect
shuffle, butterfly, . . . ) and network sizes. For this evaluation, we have used two netwok
configurations:

1. Configuration 1: 64 hosts connected with a 64×64 perfect shuffle BMIN. This net-
work includes 48 switches in three stages, each switch having 8 bidirectional ports.

2. Configuration 2: 256 hosts connected with a perfect shuffle 256×256 BMIN. This
network includes 256 switches in four stages, each switch having 8 bidirectional
ports.

In all the experiments, a BMIN self-routing deterministic algorithm has been used.
For the RECN-IQ experiments, source routing has been modeled, thus this algorithm
has been used to generate explicit routes included in packet headers. For FBICM, VO-
QNet and VOQSw, table-based, distributed routing has been modeled, thus in these
cases the routing algorithm has been used for filling the routing tables.

At switches, packets are forwarded from input queues to output queues through a
multiplexed crossbar, modeled with a speedup of 1 (link bandwidth is equal to crossbar
bandwidth). RAM memories have been modeled at each input port of the switch, with
different sizes depending on the simulated HOL blocking elimination technique. For
FBICM, RECN-IQ and VOQSw, we have used 8 KB RAMs, but VOQNet requires
larger memories since the number of queues per port is higher in this case. In particular,
VOQNet requires 16 KB memories for 64×64 MINs and 64 KB memories for 256×256
MINs. In the case of FBICM, a maximum of 8 active CFQs per port have been allowed,
and also 8 active SAQs the case of RECN-IQ.

In all the experiments, endnodes (hosts) are modeled as connected to switches us-
ing Input Adapters (IAs). Every IA is modeled with a fixed number of N admittance
queues (where N is the total number of endnodes), and a variable number of injection
queues, which follow a scheme similar to that of the output ports of a switch. When a
message is generated, it is stored in the admittance queue assigned to its destination,
and is packetized before being transferred to an injection queue. We have used 64-byte
packets.

Of course, in order to compare the results of the considered HOL blocking elimi-
nation techniques, the simulator also allows experiments to be performed using either
FBICM, RECN-IQ, VOQNet or VOQSw.

Regarding traffic load, the simulator allows to use either synthetic traffic or traces,
and we have used both in our experiments. The considered synthetic traffic patterns are
shown in table 1. Note that in some patterns (#1, #2 and #5) traffic follows a completely
uniform (random) destination distribution, while in others (#3, #4 and #6), a percentage
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Table 1. Synthetic traffic patterns used in the evaluation

Random Traffic Hot-Spot Traffic
Traffic Network # Srcs Dest Generation # Srcs Dest Generation Start End
case (BMIN) rate rate time time
# 1 64 × 64 100% random 100% 0% - - - -
# 2 64 × 64 100% random incremental 0% - - - -
# 3 64 × 64 75% random 100% 25% 32 100% 1000 µs 1300 µs
# 4 64 × 64 75% random incremental 25% 32 incremental 0 µs 3000 µs
# 5 256 × 256 100% random 100% 0% - - - -
# 6 256 × 256 75% random 100% 25% 123 100% 1000 µs 1300 µs

of sources generate traffic addressed to a unique, hot-spot destination, thereby creat-
ing congestion. In all these patterns, packet generation rate is indicated as a relative
percentage of link bandwidth.

Regarding traces, the ones used in our experiments were provided by Hewlett-
Packard Labs, and they include all the I/O activity generated from 1/14/1999 to
2/28/1999 at the disk interface of the cello system. As these traces are almost nine
years old, we have applied a time compression factor to the traces.

In all the experiments, the simulator offers different metrics. For our evaluation, we
have considered network throughput (as a function of time or traffic load) as the main
metric for measuring the performance of the networks when the different HOL block-
ing elimination techniques are used. Additionally, we have also considered FBICM
consumption of CFQs (the total amount of active CFQs in the network at each moment)
and RECN-IQ consumption of SAQs, in order to compare resource requirements of
both techniques.

4.2 Evaluation Results

Figures 5(a) and 5(b) show network throughput results for completely uniform synthetic
traffic patterns in a 64×64 BMIN. As we can see, FBICM obtains the same throughput
as VOQNet and RECN-IQ, and it improves slightly the results of VOQSw. Due to the
uniform traffic properties, the congestion situations are very short and occur in many
different points in the network, thus none of the techniques faces great difficulties for
keeping network performance at a good level.

However, for hot-spot scenarios leading to congestion situations in the same network,
results are significantly different, as can be seen in Fig. 6(a) and 6(b). In these cases, net-
work throughput significantly decreases when VOQSw are used, while FBICM, RECN-
IQ and VOQNet achieve better performance, keeping network throughput at maximum
even during congestion. Note, however, that VOQNet achieves these results by using
far more queues per input port (specifically, 64 queues) than FBICM (1 queue + a max-
imum of 8 queues) or RECN-IQ (also 1 queue + a maximum of 8 queues). Since results
obtained by these three techniques are quite similar, we can conclude that both FBICM
and RECN-IQ eliminate HOL blocking more efficiently than VOQNet. But note also
that FBICM achieves these results for distributed deterministic routing interconnects,
while RECN-IQ cannot be implemented in such technologies.

On the other hand, Figs. 5(c) and 6(c) compare the total consumption of CFQs
(FBICM) and SAQs (RECN-IQ) along simulation time when traffic cases #1 and #3
are used. As can be seen, results are very similar, thus we can conclude that FBICM
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1 (Traffic Cases #3 and #4)

require approximately the same amount of resources for allocating congested flows
than RECN-IQ, thereby the former being approximately as efficient as the latter.

Figure 7 shows throughput results for a larger network (specifically, a 256 × 256
BMIN) when either completely uniform traffic (Fig. 7(a)) or hot-spot traffic (Fig. 7(b))
are present. In the uniform traffic case, FBICM achieves the same results as RECN-
IQ with the same (and moderate) resources, while VOQNet achieves slightly better
results. Note, however, that in this case VOQNet uses 64 KB memories per port for
implementing 256 queues per port, while 8 KB per port are used by FBICM. As the
congestion situations are very short in this traffic pattern, VOQSw obtains almost the
same results as the other techniques. However, in the hot-spot case, the behavior of
VOQSw is very poor, while we can see that FBICM achieved throughput is the same
than VOQNet (but again the former using fewer queues than the latter). From this results
we can conclude that also for large networks, FBICM keeps network performance at
maximum even during congestion situations, thereby being a scalable technique.

In the last figure of the evaluation (Fig. 8) it can be seen the similar throughput
achieved by VOQNet, RECN-IQ and FBICM, when traces are used as traffic load in
a 64 × 64 BMIN. It can be observed that, regardless of the traces compression factor,
FBICM achieves the maximum throughput also for real traffic.

Summing up, all the evaluation results show that maximum performance is achieved
by FBICM regardless of network size or traffic pattern, even in congestion situations.
VOQNet obtains similar results than FBICM, but requires far more resources, especially
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Fig. 8. Network Throughput for Traces in a 64x64 BMIN

in large networks. VOQSw consumes similar resources than FBICM, but its perfor-
mance is poor in hot-spot traffic situations, regardless of network size. On the other
hand, results for RECN-IQ are similar to the FBICM ones, but in a different intercon-
nect context.

5 Conclusions

Congestion situations are a serious menace for the performance of current intercon-
nection networks. In these situations, packet flows contributing to congestion slow the
advance of other flows due to the HOL blocking effect, thereby degrading overall net-
work performance. Many techniques have been proposed for solving this problem, the
one known as RECN achieving the best performance by eliminating HOL blocking in
a truly efficient and scalable way. Since RECN requires the use of deterministic source
routing, networks using table-based, distributed routing cannot benefit from a RECN
implementation.

In this paper we have proposed FBICM, a new HOL blocking elimination technique
for network technologies that implement table-based, distributed deterministic routing.
Especially, we have described how implicit information about congested points can be
stored and propagated (once congestion is detected) without requiring explicit routes,
and how packets belonging to congested flows can be identified taking into account just
their destination.

We have also shown evaluation results that demonstrate that FBICM achieves for
distributed routing networks the same performance reached by the latest RECN version
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(RECN-IQ) for source routing networks, since both techniques keep network perfor-
mance at maximum even in serious congestion situations, regardless network size. Re-
sults also show that FBICM is more efficient than VOQnet (because the latter requires
far more resources) and VOQSw (that exhibits a poor performance in congestion situ-
ations). Taking all this into account, we can conclude that FBICM offers efficient and
scalable HOL blocking elimination to networks based on distributed deterministic rout-
ing networks.
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Abstract. Scaling TCP/IP receive side processing to 10Gbps speeds on commer-
cial server platforms has been a major challenge. This led to the development of 
two key techniques: Large Receive Offload (LRO) and Direct Cache Access 
(DCA). Only recently, systems supporting these two techniques have become 
available. So, we want to evaluate these two techniques using 10Gigabit NICs to 
find out if we can finally get 10Gbps rates. We evaluate these two techniques in 
detail to understand performance benefit offered by these two techniques and the 
remaining major overheads. Our measurements showed that LRO and DCA to-
gether improve TCP/IP receive performance by more than 50% over the base case 
(no LRO and DCA). These two techniques combined with the improvements in 
the CPU architecture and the rest of the platform over the last 3-4 years have more 
than doubled the TCP/IP receive processing throughput to 7Gbps. Our detailed 
architectural characterization of TCP/IP processing, with these two features en-
abled, has revealed that buffer management and copy operations still take up sig-
nificant amount of processing time. We also analyze the scaling behavior of 
TCP/IP to figure out how multi-core architectures improve network processing. 
This part of our analysis has highlighted some limiting factors that need to be ad-
dressed to achieve scaling beyond 10Gbps.  

Keywords: Large Receive Offload, LRO, Direct Cache Access, DCA, TOE, 
TCP/IP acceleration, de-fragmentation, receive offload, receive side coalescing, 
RSC. 

1   Introduction 

Scaling TCP/IP [17, 18] receive side processing to 10Gbps speeds is known to be a 
major challenge [11, 12, 13, 14, 15, 16]. There has been a significant effort in the 
industry and in academia to figure out ways of speeding up this processing. This has 
led to the development of a set of ideas and solutions ranging from integrating NIC 
devices tightly with the CPUs [23], to offloading the entire TCP/IP processing to  NIC 
devices, usually referred as TCP/IP Offload Devices (TOE) [1,2,3,4], to some simple 
platform and stack optimizations that target specific overheads involved in the receive 
side processing. While integrating NIC devices with the CPU complex still remains 
largely a research activity, 10Gbps TOE devices are just starting to appear in the 
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market. But these TOE devices are currently expensive and require special Linux OS 
as the mainstream Linux kernel does not support offloading the TCP/IP processing. 
So, our focus in this paper is on platform and stack optimizations that have been pro-
posed to speed up the receive processing. The two main innovations in this category 
are Large Receive Offload (LRO) [6, 24] and Direct Cache Access (DCA) [8, 9]. 
These two techniques try to address two major sources of overheads in the TCP/IP 
receive processing. These are: 1) compulsory cache misses that happen while process-
ing incoming packets and this includes the copy of data from kernel buffer to user 
buffer, and 2) per packet overheads such as protocol processing, buffer management, 
etc. Systems and NICs supporting these techniques have only recently started to ap-
pear in the market. This makes it possible for the first time to evaluate these tech-
niques on real systems at 10Gbps speeds and to understand the benefit offered.  

Our contributions in this paper are: a) detailed performance benefit analysis of LRO 
and DCA techniques, b) characterization of TCP/IP receive processing to understand 
remaining major overheads and impact of this processing on the processor architecture, 
so the industry can focus on eliminating these overheads to further improve the receive 
processing, and c) virtualization technology leads to system consolidation which in 
turn increases the demand on servers to support network bandwidths beyond 10Gbps. 
So, we wanted to understand how the TCP/IP processing scales with multi-core archi-
tectures. We have conducted various scaling experiments and highlight some key limit-
ing factors to TCP/IP receive processing scalability. Our emphasis in this paper is on 
bulk data processing hence we focus only on large transfer sizes (>2KB). Our meas-
urements showed that these two techniques together improve TCP/IP receive perform-
ance by more than 50%.  

The rest of the paper is organized as follows. We start out with a brief overview of 
TCP/IP receive side processing in section 2. We then describe the two key optimiza-
tions to TCP/IP receive side processing, LRO and DCA, in section 3. In section 4, we 
explain the measurements methodology, tools used, system setup and tested configu-
rations. In section 5, we present measurements data, analysis of benefits offered by 
LRO and DCA and scaling characteristics. We conclude the paper with Summary and 
Conclusions in section 6.  

2   TCP/IP Receive Processing 

In this section we provide a high level overview of the processing that takes place 
from the time a NIC receives an Ethernet frame till the incoming data is handed over 
to the intended application. It is not our intention to provide a detailed description of 
this processing, but to provide sufficient context for readers while highlighting some 
major overheads involved in this processing. 

Receive-side processing begins when NIC hardware receives an Ethernet frame 
from network. NIC extracts Ethernet frame delineation bits and CRC value and vali-
dates the frame. Today’s NICs also perform checksum computations for the TCP and 
IP portions of the packet and compare those with checksum values TCP and IP head-
ers. In order to notify the software stack about incoming packets and their placement 
in the memory, NIC uses descriptors that are arranged in a circular ring fashion. De-
scriptor data structure is typically 16bytes and contains among other things, address of 
a memory buffer (NIC buffer) to store the incoming packet data. NIC copies the 
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incoming data at the memory location specified in the descriptor using onboard DMA 
engine. Once the packet is placed in memory, NIC updates a status field inside the 
descriptor to indicate to the driver that this descriptor holds a valid packet and gener-
ates an interrupt. This kicks off the SW processing of the received packet.  

Figure 1 shows TCP/IP receive processing flow. The Ethernet device driver reads 
the descriptor and makes sure that NIC has indicated that this is a valid packet. Driver 
then classifies the packet as either IP packet or some other. If it is an IP packet then it 
forwards it to the TCP/IP stack for further processing. Since this descriptor was up-
dated by NIC earlier, it results in invalidating processor’s copy (if found in cache). So 
the processor would have to fetch the descriptor from the main memory. If the de-
scriptor size is 16 bytes then each cache line (64 bytes) can accommodate up to 4 
descriptors. Similarly, accessing packet headers by TCP/IP stack also results in cache 
misses as this data was just placed in the memory by the NIC. TCP/IP headers com-
bined, without any option fields, is 40 bytes long. So each packet header will result in 
one compulsory cache miss. The next step in processing is to identify the connection 
to which this packet belongs. TCP/IP software stores state information of each open 
connection in a data structure, called the TCP/IP Control Block (TCB). Since there 
can potentially be several thousand open connections, hence many TCBs, TCP/IP 
software uses a well known search mechanism called hashing for fast lookup of the 
right TCB. The hash value is calculated by using the IP address and port number of 
both the source and destination machines. Several fields (sequence numbers for re-
ceived/acknowledged bytes, application’s pre-posted buffers, etc.) inside the TCB are 
updated whenever a new packet is received. TCP/IP stack then needs to figure out 
where to copy the packet payload (data portion). It checks to see if the target applica-
tion has already posted a buffer to receive incoming data. If a buffer is available, stack 
copies the data from the NIC buffer into that buffer. Otherwise, it will wait for the 
application to provide a buffer. TCP/IP stack may be forced to copy the data into a 
temporary buffer if application didn’t provide one.  When the incoming data is first 
copied, source buffer results in compulsory cache misses as the data has to be read 
from main memory.  
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Fig. 1. Data Flow in Receive-Side processing 
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3   New Techniques to Accelerate TCP/IP Receive Processing 

In this section we cover LRO [6,24] and DCA [8,9] techniques and explain how these 
techniques work and address major overheads involved in TCP/IP receive side proc-
essing. Our intention is not to cover every detail about these two techniques as these 
have been already covered elsewhere. 

3.1   Large Receive Offload (LRO)  

The main goal of LRO is to reduce per packet TCP/IP processing costs which are sig-
nificant. These per packet processing costs include not only protocol processing cost, 
but all the other associated costs around buffer management, interfacing with the appli-
cation, etc. LRO accomplishes this by passing fewer but larger packets to the TCP/IP 
stack for processing. LRO is a software mechanism that is typically implemented in the 
NIC driver. LRO identifies incoming packets that belong to same TCP/IP connection 
and coalesces these packets into a single larger packet. LRO can simultaneously coa-
lesce packets for several connections. The coalesced packet has a single TCP/IP header 
that represents the entire coalesced packet. Coalescing TCP/IP packets is possible be-
cause TCP is a byte stream protocol and applications can’t make any assumptions about 
boundaries of a message. For example, an application can receive tail end of a message 
and the beginning of the next message in the same ‘receive’ call.  

LRO works in conjunction with another receive side optimization, called interrupt 
moderation. Interrupt moderation forces the NIC device to interrupt the CPU once 
after it receives some pre configured number of packets or certain time has elapsed 
since the last interrupt. This mechanism reduces the number of times the NIC inter-
rupts the CPU. So, during each interrupt NIC may have received some number of 
packets (~ 50-100 packets per interrupt) that need to be processed. This allows the 
LRO code to sort through these packets and coalesce packets that belong to same 
connections. At the end of each interrupt processing, LRO stops coalescing and the 
NIC driver sends these coalesced packets to the TCP/IP stack for further processing. 
LRO code applies certain criteria to decide whether to coalesce a packet or not. It 
makes sure that the incoming packet is a valid TCP/IP packet, has correct sequence 
number, etc. If the incoming packet has TCP PUSH bit set, then LRO might decide to 
stop coalescing and send the coalesced packet up the stack for further processing. 
Before sending the coalesced packet up, the LRO code attaches a new TCP/IP header 
to the coalesced packet indicating the correct sequence number and size among other 
things. During packet coalescing, payload data in the incoming packets is not copied 
into a larger buffer, but the payload buffers are chained together in a queue. LRO 
code maintains separate queues, one for each TCP/IP connection. At the end of each 
interrupt processing, all the queues are flushed meaning that all the coalesced packets 
are sent up and coalescing starts fresh when the next interrupt comes.  

This LRO functionality can be offloaded to the NIC device as was proposed by 
Makineni, et al. in [6]. This further maximizes the gains as the CPU does not have to 
run the coalescing code. Coalescing in software is about 100 instructions/pkt and on 
average takes 400 to 500 cycles. They have also shown that TCP/IP traffic is bursty 
[5,7] in nature and packets that belong to the same connection come in quick succes-
sion if not back to back even when there are 100s of active connections. 



522 P. Govindarajan et al. 

3.2   Direct Cache Access (DCA) 

In section 2, we have pointed out how receive processing suffers from compulsory 
cache misses when fetching new descriptors, TCP/IP headers and payload data. DCA 
[8,9] aims to eliminate these compulsory cache misses by prefetching this data into 
the processors cache in advance. When the NIC updates the descriptors or writes 
header and payload data to system memory using DMA operation, snoops are sent to 
the processor to invalidate the processor copy of these lines. DCA listens to these 
snoops and starts prefetching these lines. As a result, descriptors that are pointing to 
the new packets and incoming packet headers and payload data are brought into proc-
essor’s cache ahead of time. When the processor is ready to process the new packets, 
it will find the data in the cache hence does not have to go to memory. Memory ac-
cesses are expensive and can take up about 20-25% of total CPU time per packet. 
Eliminating at least some of these cache misses should greatly improve the receive 
processing. Hardware prefetchers try to do the same by prefetching the data into the 
cache, but they only get triggered when the processor starts accessing the adjacent 
lines. Hence they will not be able to hide the entire memory access latency. In addi-
tion, these prefetchers typically result in wasting precious memory bandwidth by 
bringing in more data than what is needed. Our measurements show that even though 
the prefetchers in Intel® Core 2TM Duo line of processors are very efficient, DCA still 
has significant advantage, especially when combined with the LRO. DCA has two 
benefits: 1) timely availability of data in cache leading directly to a lower average 
memory latency and 2) reduction in memory bandwidth requirement. An ideal im-
plementation of DCA would eliminate the need to write data to memory, continuously 
updating cache lines in the cache with new data. 

4   Measurements Methodology and Setup 

In this section, we describe our test setup, different configurations for which meas-
urements data has been collected and various tools used to measure TCP/IP perform-
ance and to profile the processing. 

4.1   System Setup 

Our System Under Test (SUT), receiver machine, is an MP system equipped with 
X7350 Quad-Core Intel® Xeon® Processors running at 2.93GHz frequency.  It has 
Intel 7300 server chipset with data traffic optimization and supports 1066MTS Front 
Side Bus (FSB). Each processor has 2 last level caches of 4MB each that are shared 
by 2 cores. We have removed three processors from the system for our measurements 
and analysis purposes. Our client system is a Dell PowerEdge server with an Intel 
Xeon Quad Core 2.99Ghz processor and 24G of memory. Our client system is power-
ful enough that it never became a bottleneck during our testing. We have used a PCI 
Express based single port 10Gbps NIC from Intel (EXPX9501 series) in both the 
receiver and sender machines. The 7300 chipset supports DCA. The SUT was running 
Linux kernel 2.6.22.9 and ixgbe NIC driver version 1.1.21 and ioatdma module ver-
sion 1.23. We have connected the SUT and the client back to back without going 
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through any switch or router. We have used TCP bandwidth measurement application 
called IPerf to generate traffic between the sender and the receiver. 

4.2   Configurations Tested 

A number of features (DCA, LRO and prefetchers) were evaluated to understand their 
individual impact on performance as well as their combined impact. Four cases – 
Base, DCA, LRO, DCA+LRO are evaluated both with and without prefetchers. For 
each of the above 8 cases, we evaluated the performance for different packet sizes 
ranging from 64B to 64KB but only behavior of packet sizes greater than 2K is dis-
cussed here. A primary goal of the analysis was to understand how the performance of 
TCP/IP receive processing scales with more cores and we therefore looked at the 
performance with 1 core and then 2 cores. 

4.3   Tools 

IPerf 
IPerf [20] is a network bandwidth measurement tool that is publicly available. IPerf 
runs in client and server modes and transfers data between them. We have modified 
the public version, because we have observed, during our 10GbE experiments, that 
the worker threads (that transmit or receive) were gated by a reporting thread (that 
keeps track of traffic statistics). We modified Iperf’s reporting structure and ensured 
that worker threads are always free running to achieve maximum performance. 
 
NTttcp 
NTttcp [20] is the Microsoft Windows version of the popular network testing tool, 
ttcp [19]. This is a multithreaded, asynchronous application that sends and receives 
data between two or more end points. This tool measures network performance in 
terms of network bytes transferred per second and the CPU cycles per byte. This has 
two executables one for the client and the second for the server. 

5   Results and Analysis 

In this section, we show our measurements data and discuss the benefits of LRO and 
DCA. We show performance monitoring data collected from the platform to explain 
where the benefits are coming from and what the remaining overheads are. We start 
out with measurements data collected using one core and then move to multi core 
scenarios.  

5.1   TCP/IP Performance on Single Core 

Figure 2 shows a comparison of TCP/IP receive side performance for four different 
combinations. These are denoted as Base, LRO, DCA and DCA+LRO in the graph. 
For these measurements, we have turned off hardware prefetchers on the platform. 
The x-axis in the graph shows application payload sizes transferred in KB and the y-
axis shows total throughput achieved in Gbps. CPU utilization is 100% for all the 
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2K 4K 8K 16K 32K 64K
Base 3.51 3.79 3.90 3.94 3.95 3.84
LRO 4.16 4.73 4.96 5.09 5.12 5.11
DCA 4.40 4.56 4.85 4.95 4.93 4.69
DCA+LRO 5.34 6.07 6.58 6.82 7.10 6.84
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Fig. 2. TCP/IP Performance on 1 Core without hardware prefetchers 
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Fig. 3. Functional level breakdown of per packet processing cost 

tests. For 8KB transfers, the Base case achieves about 3.9Gbps throughput. Roughly 
comparing with published numbers from 3-4 years ago, this is about 1Gbps higher. 
So, this improved performance can be attributed to improvements in the processor 
architecture, increased frequency (only slightly) and increased memory and system 
interconnect speeds. 

LRO and DCA at 8KB payload size offer about 1Gbps higher throughput, which is 
about 27% over the Base case. However, the combined benefit of LRO and DCA is 
about 68% which is significantly higher than the sum of individual benefits. LRO 
reduces overall instructions executed per packet from ~2200 in Base case to 1350 – a 
saving of 850 instructions. 

In Figure 3, we show break down of total time spent per packet on average for all 
four different configurations. We have collected this data using SEP tool. SEP is an 
internal tool that is somewhat similar to Linux tool, called OProfile [27]. SEP tool gave 
time spent by the core in each function during TCP/IP processing. We have categorized 
these functions into higher level components for ease of analysis and understanding. 

This data shows that LRO compared to the Base case reduces time spent in stack 
processing (578 to 41ns) and kernel (463 to 216ns), but increases time spent in the 
Ethernet driver (304 to 453ns) and buffer management (454 to 537ns). Since the LRO 
code runs in the driver, it explains why the driver code is taking more time over the Base 
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case. Interesting point here is that LRO not only reduces per packet processing costs but 
also significantly reduces time spent in the kernel component. Overall, LRO saves about 
600ns per packet. DCA saves on average about 500ns per packet compared to the base 
and most of the savings is in the copy function (972 to 431ns). However, LRO+DCA 
together save on average about 1100ns per packet over the base case. Looking at the time 
breakdown for this case reveals that copy and buffering functions still take significant 
amount of time hence should be ideal candidates for further optimizations. 

Next, we wanted to figure out how hardware prefetchers on this platform would 
perform relative, and whether they would offer same level of benefit as DCA. We 
found out that the prefetchers offer roughly the same level of benefit as DCA. How-
ever, if we look at LRO with prefetchers the throughput is in general lower than 
LRO+DCA without prefetchers. The main reason for this is that the prefetchers bring 
in lot of unnecessary data wasting bus and memory bandwidth thus increasing the 
memory access latency.  

5.2   TCP/IP Performance on Two Cores Sharing the Last Level Cache 

In this section, we discuss the impact of LRO and DCA on TCP/IP performance when 
two cores sharing the same last level cache are used. The two cores chosen share the 
same last level cache and we have directed all the network traffic to these two cores 
by affinitizing the IPerf program and the interrupts from the NIC. NIC interrupts are 
affinitized using smp_affinity of MSI queues. We made sure that the other two cores 
were completely idle during the measurements. The graph in figure 4 shows this data 
for the same 4 configurations described above. The graph also shows CPU utilizations 
for LRO and DCA+LRO configurations on the secondary y-axis. CPU utilization was 
100% for the other configurations. Throughput numbers have gone up in general 
compared to 1 core case. We discuss more about scaling behavior later in this paper. 

DCA benefit over the Base is only about 300 Mbps vs. 1Gbps in the 1 core case. 
We have noticed that DCA reduced 1 less cache miss than in the 1 core case. Also, we 
have noticed that DCA has increased memory access latency by about 12% over the 
Base case. We suspect that some of the lines that the DCA has brought into the cache 
were getting kicked out before they get used due to higher lag time and due to 2 cores 
sharing the same 4MB cache. We are still trying to root cause this. 

LRO has offered either CPU savings or higher throughput compared to the base 
case. Reason for lower throughput and lower CPU utilization as in 2KB payload size 
is because we were trying to coalesce up to 44 packets at once and this was resulting 
in packets not getting processed by the upper layers in a timely manner. When we 
changed the degree of coalescing to 20 packet max, then we were able to achieve 
higher throughput numbers and higher CPU utilizations. More experiments are 
needed to determine the correct number that works across all payload sizes. For 8KB 
payload size, both LRO and LRO+DCA offer significant advantage over the base 
case. LRO+DCA achieves line rate (9.3gbps) at 85% cpu utilization (170% if we add 
up utilization of 2 cores). Base case achieved only 7Gbps. If we were to extrapolate 
the LRO+DCA throughput for 100% utilization then we get about 60% higher 
throughput than the Base case.    

We ran the same experiments with prefetchers turned on and we have observed simi-
lar behavior as in 1 core case, so we are not showing this data here due to limited space. 
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Fig. 4. TCP/IP Performance on 2 Cores sharing cache 

5.3   Two Core TCP/IP Performance with Two Different Last Level Caches 

To understand the effects of multiple last level caches on TCP/IP processing we have 
measured performance numbers using 2 cores that are mapped to 2 different last level 
caches. Both the cores are still in the same CPU. This scenario is similar to what hap-
pens when multiple sockets are employed to do network processing. Generally speak-
ing, even though the performance is higher than that of 1 core case, it is lower than 
the 2 core shared cache case. If we extrapolate LRO+DCA numbers to 100% CPU 
utilization, then we see about 20% benefit over the Base. DCA performance was 
down compared to the base case as a result of higher cache misses. This is because 
there is no synchronization between where the application (IPerf) would run and con-
sume the data and which last level cache that DCA is prefetching data into. We will 
discuss this issue more in the later section. DCA case has 2 times more cache misses 
compared to shared cache scenario. 

5.4   Analysis of Scaling Behavior 

In this section, we analyze the scaling behavior of TCP/IP processing when multiple 
cores and caches are employed. We focus on LRO and DCA scalability only as the 
other aspects of scalability have been already investigated [25, 26]. Table 1 below 
shows how DCA benefit scales going from 1 core to 2 cores with shared cache. DCA 
benefit in 2 cores shared cache case has reduced significantly. We believe that this is 
because of cache pollution caused by prefetching data well in advance in time. Cache 
pollution was not a problem in 1 core case because it has all 4MB cache to itself, but 
each core logically has only 2MB cache when both the cores are enabled. 

Table 1. Percentage increase due to DCA over base (DCA- Base)/ Base 

Payload Size in Bytes 1 Core 2 Core Shared $ 
4K 21% 11% 
8K 24% 5% 
16K 26% 3% 
32K 25% 0% 
64K 22% -4% 



 Achieving 10Gbps Network Processing: Are We There Yet? 527 

In case of separate caches, we ran into a different issue that affected DCA benefit 
scaling negatively. It has to do with which cache DCA is prefetching data into. We 
found out that about 50% of time the data is being prefetched into the wrong cache 
limiting DCA benefit scalability. Aligning interrupts, interrupt processing and packet 
processing and where the copy operation happens all affect scaling. Currently, there is 
no easy way to align all these things so they all happen on the same core in Linux. To 
achieve perfect scalability in this situation, one has to use multiple NICs (or, multi 
ported NIC) and run multiple instances of IPerf where each IPerf is affinitized to the 
same core/cores as the interrupts are. 

On the other hand, we saw LRO scaling reasonably well from 1 core to 2 cores 
shared cache. LRO scaling from 1 core to 2 cores with split cache has been affected 
the same way as the Base case. Buffer management costs have almost doubled going 
from 1 core to 2 core split cache scenario impacting overall scalability. 

6   Summary and Conclusions 

In this paper, we have evaluated two recently proposed techniques, namely LRO and 
DCA to accelerate receive side TCP/IP processing using latest server systems. Our 
measurements showed that while these two techniques have improved TCP/IP proc-
essing efficiency significantly a single CPU core still can’t achieve 10Gbps rates 
when receiving and processing bulk data (>2KB). For 8KB size transfers, LRO and 
DCA together offer bout 70% higher throughput over the base case. 

We have collected performance monitoring information and functional level 
breakdown of processing time to understand how LRO and DCA change the process-
ing times and to highlight what the remaining major overheads are. Data copy and 
buffering costs are still higher, and lowering these overheads is critical to achieving 
10Gbps rates. Our analysis of TCP/IP receive side processing scaling showed that the 
processing with LRO+DCA scales well (67% for 8KB) when multiple cores sharing 
the last level cache, but it drops to 15% when cores don’t share the same last level 
cache. The main reason for poor scaling in case of multiple caches is due to DCA 
prefetch hints going to just one core. We are currently investigating this issue. 

As for our future work, we would like to evaluate offloading LRO code on to the 
NIC [5] and the use of data copy engines [23] to reduce copy overhead. We want to 
investigate scaling issues and investigate potential solutions. 

References 

1. Alacritech SLIC: A Data Path TCP Offload methodology,  
  http://www.alacritech.com/html/techreview.html 

2. Mogul, J.: TCP offload is a dumb idea whose time has come. In: A Symposium on Hot 
Operating Systems (HOT OS) (2003) 

3. Rangarajan, M., et al.: TCP Servers: Offloading TCP/IP Processing in Internet Servers. 
Design, Implementation, and Performance, Rutgers University, Technical Report, DCS-
TR-481 (March 2002) 

4. Regnier, G., Makineni, S., Illikkal, R., Iyer, R., et al.: TCP onloading for data center serv-
ers. IEEE Computer 37(11), 48–58 (2004) 

5. Blanton, E., Allman, M.: On the Impact of Bursting on TCP Performance. In: Proceedings 
of the Workshop for Passive and Active Measurement (March 2005) 



528 P. Govindarajan et al. 

6. Makineni, S., Iyer, R., Sarangam, P., Newell, D., Zhao, L., Illikkal, R., Moses, J.: Receive 
Side Coalescing for Accelerating TCP/IP Processing. In: Robert, Y., Parashar, M., Badri-
nath, R., Prasanna, V.K. (eds.) HiPC 2006. LNCS, vol. 4297, pp. 289–300. Springer, Hei-
delberg (2006) 

7. Kurmann, C., Müller, M., Rauch, F., Stricker, T.M.: Speculative defragmentation— A 
technique to improve the communication software efficiency for gigabit Ethernet. In: Proc. 
9th IEEE Symp. High Performance Distr. Comp., Pittsburgh (August 2000) 

8. Huggahalli, R., Iyer, R., Tetrick, S.: Direct Cache Access for High Bandwidth Network 
I/O. In: 32nd Annual International Symposium on Computer Architecture (ISCA 2005) 
(June 2005) 

9. Kumar, A., et al.: Impact of Cache Coherence Protocols on the Processing of Network 
Traffic. In: 40th Annual IEEE/ACM International Symposium on Microarchitecture 
(MICRO-40) (2007) 

10. Chase, J., et al.: End System Optimizations for High-Speed TCP. In: IEEE Communica-
tions, Special Issue on High-Speed TCP (2000) 

11. Clark, D.D., Romkey, J., Salwen, H.: An analysis of TCP processing overhead. IEEE 
Communications 27(6), 23–29 (1989) 

12. Foong, A.P., Huff, T.R., Hum, H.H., Patwardhan, J.P., Regnier, G.J.: TCP Performance re-
visited. In: Proc. IEEE Int. Symp. on Performance of Systems and Software, Austin, pp. 
70–79 (March 2003) 

13. Makineni, S., Iyer, R.: Architectural Characterization of TCP/IP Packet Processing on the 
Pentium M microprocessor. In: Int’l. Conf. on High Performance Computer Architecture 
(HPCA-10) (February 2004) 

14. Makineni, S., et al.: Measurement-based Analysis of TCP/IP Processing Requirements. 
HiPC Poster Presentation (2003) 

15. Kay, J., Pasquale, J.: The importance of non-data touching processing overheads in 
TCP/IP. In: Proc. ACM SIGCOMM, San Francisco, pp. 259–268 (October 1993) 

16. Mogul, J.C.: Observing TCP Dynamics in Real Networks. In: ACM SIGCOMM, pp. 305–
317 (1992) 

17. Postel, J. (ed.): Internet Protocol - DARPA Internet program protocol specification, RFC 
791 (September 1981) 

18. Postel, J.B.: Transmission Control Protocol, RFC 793, Information Sciences Institute (Sep-
tember 1981) 

19. The TTTCP Benchmark, http://ftp.arl.mil/~mike/ttcp.html  
20. NTttcp, http://www.microsoft.com/whdc/device/network/TCP_tool.mspx  
21. http://dast.nlanr.net/Projects/Iperf 
22. Zhao, L., et al.: Hardware Support for Bulk Data Movement in Server Platforms. In: Pro-

ceedings of ICCD 2005 (2005) 
23. Binkert, N., et al.: Integrated network interfaces for high-bandwidth TCP/IP. In: Proceed-

ings of the 2006 ASPLOS Conference (December 2006) 
24. Grossman, L.: Large Receive Offload Implementation in Neterion 10GbE Ethernet Driver. 

In: Ottawa Linux Symposium, Ottawa (2005) 
25. Foong, A., Fung, J., Newell, D.: Improved Linux* SMP Scaling: User-directed Processor 

Affinity,  
http://softwarecommunity.intel.com/articles/eng/1781.htm 

26. Scalable Networking: Eliminating the Receive Processing Bottleneck – Introducing SS. 
Microsoft WinHEC (April 2004) 

27. About OProfile, http://oprofile.sourceforge.net/about/ 



P. Sadayappan et al. (Eds.):  HiPC 2008, LNCS 5374, pp. 529–540, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

SAIL: Self-Adaptive File Reallocation 
on Hybrid Disk Arrays 

Tao Xie and Deepthi Madathil 

Department of Computer Science, San Diego State University, 
San Diego, CA 92182, USA 

xie@cs.sdsu.edu, madathil@rohan.sdsu.edu  

Abstract. Flash-memory based solid state disks, though currently more expensive 
and inadequate in write cycles, offer much faster read accesses while consume 
much less energy compared with hard disk drives. In order to gain complementary 
merits of hard disks and flash disks, we propose a hybrid disk array based storage 
architecture for data-intensive server-class applications. Further, on top of the pro-
posed storage architecture, a self-adaptive file reallocation strategy, called SAIL, 
which is able to adapt to dynamically changed file access patterns, is developed. 
Comprehensive trace-driven experiments demonstrate that compared with a very 
recent file placement technique PB-PDC, which also employs the combined advan-
tages of a hard disk and a flash memory device, SAIL exhibits its strength in both 
performance and energy consumption while maintains the reliability of flash disks 
by confining their write cycles.  

Keywords: File reallocation, flash disk, hybrid disk array, energy conservation. 

1   Introduction 

File assignment problem (FAP), the problem of allocating a set of files onto a disk 
array before they are accessed so that some cost functions or performance metrics can 
be optimized, have been extensively studied [9][16][20][22][23][24]. Typically, file 
assignment algorithms reported in the literature can be categorized into two camps: 
static [16][23][24] and dynamic [2][20][22]. While static file assignment algorithms 
require a prior knowledge about the workload statistics, dynamic file assignment 
strategies can adapt to varying access patterns without the prior information of the 
characteristics of files. In this paper, we address the problem of dynamically assigning 
and reallocating files in a hybrid disk array storage system where hard disks and flash 
disks are structured in a RAID-0 fashion, respectively. 

1.1   File Allocation and Reallocation 

There have been many studies [16][23][24] over static file assignment problem where 
the following two assumptions are held: (1) all files are to be allocated at the same 
time; (2) the access frequency of each file is known as a priori and it does not change 
over time. In reality, however, these two assumptions are largely unrealistic. This is 
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because file systems are highly dynamic, which implies that many files are created or 
deleted on the fly [22]. Moreover, the access pattern of a file system might change 
over a long-term period [19]. Therefore, dynamic file allocation and reallocation algo-
rithms, which are able to intelligently allocate files dynamically created and to reor-
ganize files to adapt to varying access pattern become indispensable. 

Unfortunately, compared with numerous static file assignment algorithms 
[16][23][24], only very few investigations on dynamic file allocation [22] and reallo-
cation problem [20] have been accomplished. Weikum et al. first proposed an array of 
heuristic algorithms for the placement of dynamically created files on a hard disk 
array [22]. Later on they extended their algorithms to accommodate dynamic redistri-
butions of the data when access patterns change [20]. However, all of their algorithms 
bear the following three major limitations [20]. First, they assume that all of the 
subrequests are uniformly distributed among the disks, which obviously contradicts 
the fact that real workloads generally exhibit skewed access frequencies [16][19]. 
Second, their approaches just assume that the relevant workload parameters can be 
estimated with sufficient accuracy without actually implementing any dynamic file 
access monitoring mechanisms. Finally, all their algorithms employ a file-specific 
striping policy, which means the size of a stripe unit is file-dependent. The non-
uniform file striping method is not practical because it will impose a prohibitive over-
head on disk array controller. Therefore, a new dynamic file allocation and realloca-
tion strategy without the limitations mentioned above is needed to fully address the 
challenging dynamic file assignment and reorganization problem. Besides, the new 
strategy should be energy-aware as disk arrays contribute a significant percentage of 
total energy consumption in a computing infrastructure.  

1.2   Why Flash Disks? 

Flash memory is useful for more than just consumer devices. Current flash memory 
assisted hard disk storage systems are mainly proposed to be applied in mobile plat-
forms like personal laptops [6][15] or embedded systems [4]. Essentially, these flash 
memory and hard disk mixed storage systems only take flash memory as an extra 
layer of cache buffer [1] [15]. Very recently, Kim et al. extended the usage of flash 
memory device by developing an energy-efficient file placement technique named 
PB-PDC (pattern-based PDC), which adapts the existing PDC (Popular Data Concen-
tration) algorithm [17] by separating read and write I/O requests. More precisely, PB-
PDC locates all read-only data on a flash drive while puts all the rest of data on a hard 
disk. Still, the PB-PDC technique only concentrated on one flash drive with a single 
hard disk in a mobile laptop computing environment. 

We believe that the application of flash memory can go far beyond personal mobile 
computing and embedded system domains because it is also well-suited for enterprise 
level applications, where performance, energy conservation, and disk reliability need 
to be taken into account simultaneously [4]. Compared with hard disk drives, flash 
disks possess the following salient advantages [10][18]. First, they inherently con-
sume much less energy than mechanical mechanism based hard disks [4]. Second, 
because of their solid state design they are free of mechanical movements, and thus, 
their reliability are enhanced.  Third, they offer much faster random access without 
seek time delays and rotation latencies [13][14]. The main concern on current flash 
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disks is their considerably higher prices. Therefore, it is wise to integrate small capac-
ity flash disks with high capacity hard disk drives to form a hybrid disk array so that 
their complementary merits can be benefited by enterprise applications. 

1.3   Self-Adaptive File Reallocation 

In this section we re-examine the dynamic file allocation and reallocation problem in 
the context of a hybrid disk array. Flash disks, though energy-saving in nature, have 
inferior performance in write speed compared to hard disks. Besides, they have lim-
ited number of erasure cycles. To fully exploit the advantages of flash disks and hard 
disks, we develop a self-adaptive file reallocation strategy named SAIL. SAIL dy-
namically monitors the access patterns of each file. Files can be dynamically created 
or deleted. In addition, the access pattern of each file could vary over time. Initially, 
all files including newly created files are distributed across the hard disk array in 
RAID-0 manner. At the end of each epoch, after obtaining statistics of each file’s 
access pattern, SAIL first separates all files into three broad categories: write-
excessive, read-exclusive, and read-write. If the frequency of a file’s write accesses 
exceeds the suggested flash disk write frequency threshold value (e.g., 1 million times 
within 5 years), it will be defined as a write-excessive file and will stay on the hard 
disk array. All rest files will be further divided into two groups: read-exclusive and 
read-write. Files with both read and write accesses are in the read-write group, 
whereas files with only read accesses go into the read-exclusive group. Next, SAIL 
selects a set of files that are appropriate for being allocated on the flash disk array 
from the read-exclusive and the read-write groups based on each file’s popularity, 
performance gain pgi (Eq. 4), and energy gain egi (Eq. 5). And then SAIL reallocates 
these files onto the flash disk array. When file access pattern changes, SAIL redistrib-
utes files between the flash disk array and the hard disk array accordingly. 

Based on the observations from some real-life traces [8][19], the popularity of a 
piece of data normally does not change dramatically in a short period of time. Thus, 
we argue that although the access pattern of a particular file may noticeably vary over 
a long run it only smoothly changes within each epoch. Therefore, it is feasible for 
SAIL to use the most recent access statistics of a file to predict its next epoch file 
access pattern in a dynamic I/O workload scenario.  

2   The Hybrid Storage Architecture 

There are two main types of flash memory in the market: NAND flash memory and 
NOR flash memory [4]. Since NAND flash memory is more appropriate for data 
storage [4], we only consider NAND flash memory in this paper. Also, there are two 
options when one implements a flash memory based storage system: emulating a flash 
disk as a block-device like a hard disk or designing a brand new native file system 
directly over flash disks. We adopt the first approach as it introduces little change of 
an operating system running on a host machine. In order to integrate a flash disk into 
an existing storage system, two important layers of software modules that sit between 
the file system and the flash disk are indispensable [12]. They are MTD (memory 
technology device) driver and FTL (flash translation layer) driver. Lower-level  
functions of a storage medium such as read, write, and erase are provided by the MTD 
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driver. Supported by the underlying lower-level functions offered by the MTD driver, 
the FTL driver implements higher-level algorithms like wear-leveling, garbage collec-
tion, and physical/logical address translation [12]. With the assistance of the FTL 
driver, the file system can access the flash disk as a hard disk without being aware of 
the existence of the flash disk. How to design and implement these two software lay-
ers of modules is out of the scope of this paper. We assume that MTD and FTL driv-
ers exist between file system and the flash disk.  

Hybrid Disk Array Controller  

  SAIL File Placement 
Initializer

Redistribution   
Table Generator

File
Re-Organizer

File Access 
Monitor

Disk Space 
Manager

 

Fig. 1. Overview of the hybrid disk array architecture 

The hybrid disk array storage architecture is depicted in Fig. 1, where both hard 
disks and flash disks are directly attached to the system bus. All hard disks are organ-
ized in a RAID structure like RAID-0. Similarly, all flash disks are managed in the 
same RAID organization as the hard disk array. Besides, the number of hard disks is 
equal to the number of flash disks and each flash disk cooperates with a hard disk 
through a dedicated high-bandwidth connection to compose a disk pair. The rationale 
behind the disk pair configuration is three-fold. First, the equal number of the two 
types of disks makes balancing load between the hard disk array and the flash disk 
array easier. Second, it simplifies file reallocation between the two disk arrays. Last 
but not least, the disk pair configuration obviously enhances storage system’s fault-
tolerance and reliability by reducing disk reconstruction time when a hard disk or a 
flash disk fails. For example, when a hard disk fails, its partner flash disk can largely 
help the recovery of the failed hard disk in two ways. First of all, since part of data 
was on the flash disk, the replacement hard disk only needs to recover the data that 
was originally on the failed hard disk. Second, during the hard disk reconstruction 
process, the flash disk can still serve part of normal requests from outside clients, 
which greatly alleviates the workload of the replacement hard disk, which in turn 
speeds up the disk recovery process. Thus, the hard disk reconstruction time in the 
proposed hybrid disk storage architecture is shorter than that of in a pure hard disk 
array architecture. The SAIL strategy is implemented as a software component within 
the hybrid disk array controller. It consists of the following five modules: file place-
ment initializer, file access monitor, redistribution table generator, file re-organizer, 
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and disk space manager. The five modules coordinate together to dynamically allo-
cate and reallocate files between the hard disk array and the flash disk array (Fig. 2). 

3   The SAIL Strategy 

The methodology behind the SAIL strategy is to judiciously yet adaptively divide the 
entire file set into a flash-preferred subset and a hard-preferred subset based on dy-
namic I/O workload characteristics. Each subset of files is then allocated onto its 
favorite disk array so that the complementary merits of flash disks and hard disks can 
be mostly utilized while their respective disadvantages can be largely avoided. Sup-
ported by the proposed hybrid disk storage architecture, the goal of SAIL is to achieve 
a high performance, energy conservation, and desirable system reliability at the same 
time. 

3.1   Design Methodology 

SAIL realizes its goal by exploiting two critical I/O workload characteristics: file 
access locality and file access type. The presence of access locality in I/O workload 
has long been recognized in the literature. For example, it is well-known that 10% of 
files accessed on a web server account for 90% of the server requests and 90% of the 
bytes transferred [1]. Similar workload locality has also been observed in OLTP ap-
plications running in large financial institutions [11]. The implication of workload 
locality is that the overall system performance can be noticeably improved if the I/O 
requests on the small percentage popular files can be served more efficiently. File 
access locality suggests us concentrate on the allocation and reallocation of the minor-
ity popular files. The second important I/O workload characteristic is file access type, 
namely, write-excessive, read-exclusive, and read-write. In an investigation of file 
system workloads, Roselli et al. found that file access has a bimodal distribution pat-
tern within which some files are written excessively without being read while others 
are almost exclusively read [19]. This observation confirms that it is feasible for SAIL 
to separate files into the aforementioned three categories based on the type of accesses 
that they received. It is easily understood that read-exclusive files are suitable for 
flash disks as they don’t contribute any erasure cycles to flash disks. Further, access-
ing these read-exclusive files on flash disk can significantly save energy and gain 
potential performance enhancement due to no seek time and rotation latency any 
more.  Similarly, write-excessive files are more appropriate for hard disks where 
erasure cycle limitation doesn’t apply. The most difficult task for a file allocation and 
reallocation strategy is to decide where some read-write popular files should go. 
Unlike existing conservative algorithms such as PB-PDC [15][17], which immedi-
ately puts all read-write files onto hard disks to avoid any write cycles on flash disk, 
SAIL adopts a more open attitude and makes a smart decision based on a good trade-
off between performance and energy saving.    

3.2   System Models  

The set of files is represented as F = {f1, ..., fi, …, fm}. Also, the flash disk array is 
modeled as FD ={fd1, ..., fdj, …, fdn}, whereas the hard disk array is denoted by HD 



534 T. Xie and D. Madathil 

={hd1, ..., hdj, …, hdn}. Since each file will be allocated onto either a set of hard disks 
or a set of flash disks in a striping manner, let sp denote the size of a stripe in Kbyte 
and it is assumed to be a constant in the system. A file fi (fi ∈F) is modeled as a set of 
rational parameters, e.g., fi = (si, ri, wi, bi), where si is the file’s size in Mbyte, ri is the 
file’s read access rate (1/second), wi is the file’s write access rate (1/second), and bi is 

the number of batches of the file, which is defined in Eq. 1. Assume that start
id is the 

starting disk of file fi’s striping distribution.  
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Each hard disk’s transfer rate (for both read and write) is th (Mbyte/second). For 
both hard disks and flash disks, we only consider a two- level power model: active 
mode and idle mode. In other words, a flash disk or a hard disk can only work in 
either active mode when it reads/writes data or idle mode when no such read/write 
activities occur. This assumption is valid for server-class applications because inten-
sive server-level workload does not allow hard disks to spin up/down to save energy 
due to very slim time slots between requests. A hard disk’s active energy consump-
tion rate and idle energy consumption rate are ph (Watts) and ih (Watts), respectively. 
Similarly, a flash disk is modeled as fdj = (rf, wf, pf, if), where rf is its read rate 
(Mbyte/second), wf is its write rate (Mbyte/second), pf is its active energy consump-
tion rate (Watts), and if is its idle energy consumption rate (Watts). In addition, SK 
denotes average seeking time of a hard disk and RT represents average rotation la-
tency of a hard disk. The time span of one epoch is denoted by Te (second). Therefore, 
the mean service time of file fi served by a hard disk is 
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However, if the file is served by a flash disk, its mean service time becomes  
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Hence, the performance gain pgi in terms of mean service time reduction ratio of 
file fi is defined in Eq. 4. 
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For each read-write file, we need to decide where to store it. Thus, we need to cal-
culate its energy gain egi in one epoch in Eq. 5, where h

iec is the energy consumption 

of file fi in one epoch if it is stored in the hard disk array, and f
iec is the energy con-

sumption of fi in one epoch if it is in the flash disk array. 
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Since in some situations it is desirable to trade performance for energy-saving, 
SAIL employs a parameter named PDA (performance degradation allowed) to make 
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a good trade-off between performance and energy when it makes reallocation deci-
sions for read-write files. Essentially, PDA is a constant value set by system adminis-
trator and it is in the range [0, 1).  If the system administrator believes that 
performance is the most important goal, he can set PDA as zero, which implies that 
performance degradation caused by allocating a read-write file onto the flash disk 
array is not permitted. If sacrificing some performance for energy-saving is desirable, 
he can set PDA to a value larger than zero (e.g., 20%). In this case, if a read-write 
file’s performance gain pgi (Eq. 4) is within the range [1-PDA, 1] and its energy gain 
egi (Eq. 5) is larger than 1, the file will be reallocated onto the flash disk so that en-
ergy-saving can be realized at the price of performance. 

The total number of write cycles of a flash disk is a constant WC, which is assumed 
to be 1 million in our simulation experiments. Besides, DY represents the duration 
years of a flash disk and we set DY as 5 years. As a result, WCPS (write cycles per 
second) that is allowed by a flash disk is defined in Eq. 6 as below. 

)606024365/()/( ∗∗∗= DYWCWCPS . (6) 

For instance, the value of WCPS in our simulations is around 0.0063 (1/second). 
Therefore, the reliability loss rli of file fi if it is stored on the flash disk array can be 
computed by 
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The request set is designated as R = {r1, ..., rk, …, rx}. Each request is modeled as rk 

= (fidk, ak, tk), where fidk is the file ID that is accessed by the request rk, ak is the arri-
val time of request rk, tk is the type of the request rk and it can be “r”, “w”, “c”, and 
“d” representing “read”, “write”, “create”, and “delete”, respectively. 

3.3   Implementations  

The SAIL strategy consists of five modules (Fig. 2) that coordinate with each other 
via five data structures (Fig. 3): file position and popularity table, file re-distribution 
table, free flash space queue, free hard space queue, and deleted file queue. 

At the beginning, all files are striped across the hard disk array in a RAID-0 fash-
ion. Dynamically created files are also distributed initially across the hard disk array. 
SAIL first starts the file placement initializer, which creates some important data 
structures such as file position and popularity table for later use (Fig. 3). After the 
hybrid disk array begins to serve I/O requests, SAIL launches the file access monitor 
to record each file’s popularity in terms of number of accesses within one epoch in the 
file position and popularity table. The file position and popularity table, which con-
tains the latest popularity information of each file, will be used later by the redistribu-
tion table generator to generate the file re-distribution table. After labeling all popular 
files, the redistribution table generator generates the file re-distribution table, which 
lists all files that need to be reallocated between the hard disk array and the flash disk 
array. Guided by the file re-distribution table, the file re-organizer  reallocates all files 
in the file re-distribution table to their preferred destinations. During the file realloca-
tion process, the file re-organizer consults to the disk space manager, which is respon-
sible for managing disk space for both hard disk array and flash disk array. 
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Fig. 2. The SAIL strategy; modules in the dotted rectangle execute once per epoch 

(b) A sample FRD table.             (d) A sample free hard space queue (FHS queue). 

 (c) A sample free flash space queue (FFS queue). 

(a) A sample file position and popularity table (FPP table). 

10_210_1 10_3 10_4 11_1 11_2 

4_44_3 6_2

60_357_4 60_4 61_1 61_2 61_461_3

7_47_3 8_1 8_48_3

… … ……

 

Fig. 3. Major data structures for the SAIL strategy 

Obviously, file reorganization is achieved at the cost of both performance degrada-
tion and extra energy consumption. Fortunately, SAIL only needs to re-organize a small 
portion of popular files at the end of each epoch due to the smooth changes in file access 
pattern. Also, to reduce the overhead associated with file re-organization, SAIL confines 
the time span of each epoch so that frequent file reallocation can be avoided. 
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4   Performance Evaluation 

This section presents results of a comprehensive experimental study comparing the 
proposed SAIL strategy with the PB-PDC algorithm. To the best of our knowledge, 
PB-PDC is the only existing data placement algorithm that partitions data between a 
hard disk and a flash memory device. This is largely because how to combine newly 
manufactured flash disks with traditional hard disk drives to form efficient storage 
systems for data-intensive applications is a brand new research topic. Note that one of 
the most significant differences between SAIL and PB-PDC is that SAIL is integrated 
with RAID structures on top of a hybrid disk array for enterprise applications, 
whereas PB-PDC in its current status merely employs one hard disk with one flash 
memory device in a personal laptop computing environment. In this section, we first 
introduce experimental setup including performance metrics, the real trace, hard disk 
and flash disk characteristics, and simulation parameters that we used.   Next, in Sec-
tions 4.2 we analyze experimental results. 

4.1   Experimental Setup   

We developed an execution-driven simulator that models a hybrid disk array, which 
has one hard disk array and one flash disk array (see Fig. 1). The main characteristics 
of the hard disk and the flash disk used in simulations are shown in Table 1. The per-
formance metrics by which we evaluate system performance include: 

 Mean response time: average response time of all access requests submitted to the 
simulated hybrid disk array storage system. 
 Energy consumption: energy consumed by the hybrid disk array during the process 
of serving the entire request set. 
 Write cycles: the maximal number of write on one flash disk during one epoch. 

We evaluate the SAIL and the PB-PDC algorithms by running trace-driven simula-
tions over the Auspex trace originated from Berkeley [8], which has been widely used 
in the literature. Since the simulation times in our experiments are much shorter com-
pared with the time span of the trace, we only choose the first 1100,000 I/O requests 
from the trace in our experiments. We examined the impacts of flash disk capacity on 
system performance by controlling the parameter. 

Table 1. Hard disk and flash disk parameters 

Hard disk  
Seagate Chee-
tah 15K.4 Flash disk  Adtron Flashpak  

Model number ST373454FC Model number A25FB-20 
Capacity (GB) 73.4 Capacity (GB) 4, 8, 16, 24, 32 
Spindle speed (RPM) 15 K Access time (ms)  0.272 
Ave. seek time (ms) 3.5  Seek time  0 
Ave. latency (ms) 2.0 Read (Mbytes/sec) 78 
Transfer rate (Mbytes/sec) 77 Write (Mbytes/sec) 47 

Active power (watts) 17 
Read/write power 
(watts) 

3.43 

Idle power (watts) 11.4 Idle power (watts) 1.91 
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4.2   Impact of Flash Disk Capacity   

The first group of experiments was conducted to study the impact of flash disk capac-
ity on the performance of the two algorithms (Fig. 4). An average improvement of 
24.2% in mean response time and 28.2% in energy consumption were observed by 
SAIL over PB-PDC (Fig. 4).  

With an increased capacity of each flash disk, it is easy to understand that both 
SAIL and PB-PDC can improve their performance in terms of mean response time 
(Fig. 4). Meanwhile, energy consumption of both algorithms is reduced (Fig. 4). This 
is because more popular files can be placed on flash disks when more flash disk space 
is available. In terms of the maximal write cycles on one flash disk during an epoch, 
SAIL results in only 35 write cycles within one epoch (1000 seconds) when the ca-
pacity of a flash disk is 16 GB. Considering the huge capacity of a flash disk and the 
relatively very small number of total write cycles on it, the write cycles per block 
within one epoch caused by SAIL is far from a flash disk’s write cycle threshold 
value WCPS (see Eq. 6). Besides, modern flash disks normally have built-in wear-
leveling techniques [21]. Thus, we believe that the impact of SAIL on flash disk reli-
ability can be safely omitted. 

 

Fig. 4. An overall comparison of the two algorithms with respect to flash disk capacity 

5   Conclusions 

In this paper, we address dynamic file allocation and reallocation problem in the context 
of a hybrid disk array. A new disk array architecture was proposed to replace traditional 
pure hard disk based disk arrays in server-class data-intensive applications. Powered by 
the proposed storage architecture, we further designed and implemented a novel self-
adaptive dynamic file allocation and reallocation strategy SAIL, which judiciously sepa-
rate files between one hard disk array and one flash disk array based their access patterns. 
Thus, the complementary merits of hard disk and flash disk can be mostly utilized while 
their respective shortcomings can be avoided. Comprehensive simulation experiments 
demonstrate that SAIL consistently outperforms an existing dynamic file assignment 
algorithm PB-PDC, which also employs both hard disk and flash device. Specifically, 
our trace-driven experimental results show that the SAIL strategy results in an average 
24.2% and 28.2% performance and energy consumption improvement compared with 
PB-PDC. Meanwhile, in terms of write cycles, SAIL guarantees that its impact on flash 
disk reliability is trivial and can be safely ignored. 
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Abstract. One of the key design points of any hardware transactional
memory (HTM) system is the conflict detection mechanism, and its effi-
cient implementation becomes critical when conflicts are not a rare event.
While many contemporary proposals rely on the coherence protocol to
carry out conflict detection at the private cache levels, this approach
is not optimal for systems that use a directory to maintain coherence
over an unordered, scalable network, such as tiled CMPs. In this paper,
we present a new scheme of conflict detection for HTM systems, which
moves this key mechanism from the private caches to the directory level.
We propose a novel transactional book-keeping method and describe how
this detection can be carried out more efficiently at the directory. Simula-
tion results show that our approach obtains reductions in execution time
between 25 and 55% for transactional benchmarks with a high number
of conflicts, with an average improvement over LogTM-SE of 15%.

1 Introduction

Transactional Memory (TM) has arisen as a promising programming model tar-
geted to ease parallel programming while still producing efficient multithreaded
programs that exploit the computational resources available in present and fu-
ture multicore chips. Using the TM model, the programmer declares what regions
of the code must appear to execute in mutual exclusion, leaving the burden of
how to provide atomicity and isolation to the underlying levels. The system then
optimistically executes transactions, stalling or aborting them whenever real run-
time data conflicts appear. Although a TM system can be entirely implemented
in software, moving some basic transactional functionality to the hardware level
is essential to minimize its performance overhead. This paper focuses on hard-
ware TM systems (HTMs) whose aim is to bring the TM model to the high-
performance computing arena.

One of the key mechanisms of any transactional system is conflict detection.
A conflict occurs when two or more concurrent transactions access the same data
block and at least one of the accesses is a write. In order to detect such violations
of isolation, a TM system must keep track of its transactions’ read and write
sets. Some proposed HTMs perform this book-keeping by extending each cache
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c© Springer-Verlag Berlin Heidelberg 2008



542 R. Titos, M.E. Acacio, and J.M. Garćıa

entry with R/W bits [4][8]. Other designs opt for per-thread hash signatures to
encode address sets using Bloom filters [12].

Regardless of how the TM system records R&W sets, another major design
dimension of conflict detection is when to use this information to check for
violations of isolation. This can be done either immediately after every memory
request – eager policy – or it can be delayed until the end of the transaction –
lazy detection –. Most HTM systems proposed to date implement eager conflict
detection by modifying standard ownership-based cache-coherence protocols [5]
[1][9][8][12]. These systems monitor the coherence traffic for transactional blocks
to determine if another processor is performing a conflicting access.

Semantically, a transaction must retain exclusive ownership over its written
blocks, and non-exclusive ownership over its read blocks, until it reaches commit.
Because ownership is usually associated with cache residence, any coherence
protocol capable of detecting ownership conflicts can also detect transaction
conflicts at no extra cost. However, limited cache capacity and associativity lead
to replacements of active transactional blocks, thus breaking the ownership-cache
residence connection that basic conflict detection relies upon. In order to support
transactions of an arbitrary size, HTMs should ensure isolation in the presence
of overflowed transactional blocks (evicted from the private cache level). Thus, a
transactional node needs to see the coherence traffic for blocks that are no longer
locally cached. While this happens naturally in systems with snoopy-based cache
coherence, like the original TM proposal by Herlihy and Moss [5], it constitutes
an abnormal behaviour for a directory-based protocol that maintains coherency
over an unordered, point-to-point network, as that of a tiled CMP.

The introduction of the so-called sticky states in directory-based protocols
[8][12] basically consists of using the directory entry to track the current trans-
actional owner of an evicted block, and forward requests for that block to the
transactional owner so that it can detect conflicting accesses that try to revoke
its transactional ownership. Somehow, this can be regarded as a timid first step
towards the fusion of cache coherence and conflict detection. Such combination
of two seemingly independent mechanisms is not new, but it was already a fun-
damental part of TCC [4], an HTM in which lazy conflict detection and snoopy
coherence were merged to provide a consistency model based on transactions.

In this paper, we propose a novel approach to eager conflict detection that
further extends a directory protocol in order to provide a fast detection scheme
in tiled CMP architectures. By comparing our proposal with an HTM system
such as LogTM-SE [12], we observe several advantages of implementing conflict
detection at the directory level instead of at the cache level. First and foremost,
detection itself is accelerated, as conflicts are always detected in one hop in-
stead of two. Considering that one of TM’s fundamental principles is to achieve
programming ease by allowing coarse-grained transactions, it is of great impor-
tance that conflicts are handled as efficiently as possible, as they are likely to
occur often when the programmer relies on large transactions. Indeed, most of
the transactional workloads from the Stanford Transactional suite (STAMP) [3]
already pose this high-conflict behaviour, as shown in [10]. Second, by detecting
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conflicts faster, the proposed TM system reacts more rapidly to high-contention
scenarios and has the potential to avoid many aborted transactions, improving
performance. Simulation results using GEMS (General Execution-driven Multi-
processor Simulator) show that our conflict detection approach obtains reduc-
tions in execution time of 15% on average for the selected benchmarks, with
better performace gains – up to 55% – for those workloads that suffer frequent
transaction conflicts.

The rest of the paper is organized as follows: Section 2 briefly describes the
different approaches to conflict detection adopted by some of the most relevant
contributions to hardware transactional memory, and motivates our work. In
Section 3 we describe our directory-based conflict detection scheme. Section 4
evaluates the performance of our proposal, comparing it to an ideal LogTM-SE
system. We end with Section 5, which summarizes the main conclusions of this
study and presents our future work.

2 Motivation and Related Work

In the early nineties, Herlihy and Moss introduce Transactional Memory (TM)
[5] as a hardware alternative to lock-based synchronization. Their proposal relies
on a snoopy coherence protocol to detect conflicting accesses, providing atomic
accesses to several independent memory locations. More than a decade later,
Hammond et al. present TCC, Transactional Coherence and Consistency [4], a
novel coherence and consistency model based on transactions. The TCC sys-
tem is also built upon a broadcast network that allows transactions to snoop
commit traffic to maintain coherence and detect possible dependence violations
(conflicts). Later on, several proposals such as UTM [1] or VTM [9] focus on
hardware schemes that provide virtualization of transactions, i.e., support for
transactions of unlimited duration, size and nesting depth. Both UTM and VTM
monitor the coherence traffic for the transaction’s cache lines to determine if an-
other processor is performing a conflicting operation. In LogTM [8], Moore et al.
combine transactional support with a conventional shared memory model, also
taking the coherence protocol as a means to perform conflict detection. LogTM-
SE [12] is a subsequent refinement that decouples transactional support from
caches using hash signatures to detect conflicting threads.

Some of these HTM proposals perform transactional book-keeping by extend-
ing each cache entry with R/W bits [4][8]. Despite losing the information needed
to perform conflict detection when when transactional blocks are evicted from
the cache, these systems manage to guarantee isolation in this circumstances at
a performance cost. On one hand, TCC [4] enforces transaction serialization by
letting a transaction write its results directly to shared memory. On the other
hand, LogTM [8] lets blocks leave the cache, and modifies a directory coherence
protocol with sticky states so that the overflowed cache keeps receiving forwarded
requests and performing conflict detection on the evicted blocks. LogTM’s ap-
proach of lazily cleaning up sticky states suffers from frequent false positives
when overflows become more frequent, due to stale directory information. Other
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HTM designs opt for per-thread hash signatures to encode address sets using
Bloom filters [12][3]. Under this alternative, transactional blocks that overflow
cache are no longer a problem, as the information needed to detect conflicts is
decoupled from the data block and stored at the core level. However, due to
their conservative encoding, hash-signatures may signal a conflict when none ex-
ists (a false positive), causing unnecessary rollbacks that degrade performance.
The ratio of false positives becomes significant when the transaction footprint
grows, disencouraging the programmer from using coarse grain synchronization
and somehow jeopardizing one of the main goals of TM.

2.1 Why Detect at the Directory Level

Up until now, conflict detection has always been performed at the private cache
levels of the memory hierarchy. This makes the most sense when private caches
are able to snoop on every memory transaction that takes place across the sys-
tem, by being connected to a shared, ordered network like a bus [5][4]. However,
in more scalable networks where directory-based protocols are more appropriate
to maintain coherence, a cache only observes the requests for those blocks that
are locally cached. Despite this substantially different scenario, eager conflict de-
tection schemes that rely on directory protocols have so far implicitly inherited
the same style of private-level conflict detection [8][12].

In this context, a reason why the directory is best suited for conflict detection
is its location. From the perspective of a memory transaction, L1 caches are
end-points – a request’s origin or destination – whereas the L2 directory acts
as a middle-point that orchestrates the traffic – routing requests so that they
arrive at their destination –. As end-points entities, L1 caches are not a straight-
forward location to perform conflict detection: For them to detect conflicts on
their evicted transactional blocks, the directory needs to behave abnormally and
forward requests for blocks that are no longer cached at the private level. The
directory, however, is not only a middle point that naturally observes all the
traffic for its mapped blocks, but also the first stop of any request message, thus
becoming the perfect location to provide a fast (one-hop) detection scheme.

Besides its privileged location, the directory’s role makes conflict detection
a simple addition to its responsibilities. Considering that i) the directory is in
charge of tracking each cached block’s ownership1, and that ii) transactional own-
ership is connected to cache residence in the common case (except for evicted
transactional blocks), the directory has most of the information required to de-
tect memory accesses that attempt to revoke a node’s transactional ownership
over its read and written blocks. Therefore, such an extension in its functionality
becomes a natural evolution of its role within a TM system.

Furthermore, an HTM with directory-based conflict detection also mitigates
the performance implications of signature false positives. In systems where not
every memory block has its corresponding directory entry, the directory con-
troller still needs to keep detecting conflicts for those transactional blocks that
1 We use the term ownership throughout this paper to stand for cache residence,

independent of the state of the block in the cache(s).
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are spilled from the coherence level. Per-bank signatures in the directory are a
good solution to this problem because the number of transactional active blocks
that overflow this level (i.e. the L2 cache in a CMP) is insignificant in comparison
to total number of blocks accessed by a transaction, and so is the probability of
false positives, compared to using signatures to encode the entire access set.

3 Directory-Based Conflict Detection

Using the directory to check for conflicts over blocks that remain cached by
transactional owners does not need any more information about a block than
what is already stored in its directory entry. For example, let W be a transac-
tional writer that locally caches a block B with exclusive ownership, and let R
be a reader that tries to acquire non-exclusive ownership of B. When R’s read
request arrives to the directory, the standard protocol dictates that the request
must be forwarded to W, which would then detect the conflict. However, if the
directory only knew that W is executing a transaction, forwarding the request to
W would be unnecessary; the directory itself could immediately detect a conflict
on B and take the appropriate actions to resolve it. To do this, the directory
only needs to keep a record of which cores are executing a transaction at any
moment. To this end, our base conflict detection scheme explicitly notifies the
directory about transaction begin and transaction commit. A simplistic solu-
tion could consist of sending dedicated begin/commit messages and waiting for
acknowledgment before resuming the execution.

Once the directory knows that a core P is executing a transaction, it could
immediately start to detect conflicts for all accesses to blocks locally cached
by P. However, doing so would lead to many unnecessary conflicts since not
all cached blocks may have been accessed by the transaction – in other words,
cache residence does not necessarily imply transactional ownership –. In order
to avoid them, the naive approach of our base scheme is flush-clearing the lo-
cal data cache at transaction begin, writing back all modified/exclusive blocks.
Following this simple approach, the first reference to each data block from in-
side a transaction misses in the local cache, so that the directory observes all
transactional addresses and perform the book-keeping required for conflict detec-
tion. While flush-clearing the data cache is clearly not desirable, those workloads
composed of large transactions should not be too affected, as flushes happen in-
frequently. The main drawback of flushing appears in applications with short,
frequent transactions, in which not only the transaction but also the follow-
ing code, find an almost empty data cache. Most misses suffered by the post-
transactional code (which presumably operates on local data) are directly caused
by the recent cache-flush. For this reason, more sophisticated schemes are nec-
essary, which would allow for conflict detection at the directory level without
requiring a cache-flush on every transaction begin.

So far, we have assumed in our elaboration that transactional ownership im-
plies cache residence, but that is not always the case because transactional blocks
can exceed the capacity or associativity of the local cache. Since no explicit
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information about a transaction’s R&W sets is stored at the core level (no sig-
natures), the directory needs to track transactional blocks that are evicted from
the private level while the transaction runs, in order to keep detecting conflicting
accesses on those blocks. To this end, we introduce the concept of Transaction
Serial Number (XSN), a small, reusable, per-core identifier that is used by the
directory to tag transactional blocks and maintain a correspondence between
a block and its owner transaction(s). While we have not determined the ideal
size of the transaction serial number, performing lazy clean-up of non-matching
XSNs greatly reduces the overhead of these identifiers. A few bits per XSN
should suffice to avoid virtually all false conflicts due to XSN reuse. Nonethe-
less, these false positives caused by stale XSNs that become fresh only affect the
performance but not the correctness of the transactional execution.

Hardware Requirements. On the core side, each core has a counter (XSN
register) that contains the XSN assigned to its last/current transaction. The
XSN register is incremented every time the instruction begin transaction is ex-
ecuted – hence also after an abort –. Its content is copied to all the outgoing
transactional messages (set to zero for all non-transactional requests), allow-
ing the directory to differentiate between transactional and non-transactional
requests. On the directory side, each directory bank keeps a vector of XSN’s
(global XSNs), one XSN per core. The corresponding XSN of the vector is up-
dated on every begin transaction with the XSN indicated in the message, while
it is set to zero (“not in transaction”) upon arrival of a commit transaction mes-
sage. As for the directory entry, each one is augmented with a new field, xact
owners XSN, whose function is to keep a correspondence between the block and
its current transactional owner(s). For simplicity, we can think of this field as
a vector with as many XSN as cores. In practice, each entry does not need to
store one XSN per core; instead, the hardware overhead of this mechanism can
be minimized by having a separated XSN buffer that the directory controller
uses “on demand”. Finally, the directory uses a set of per-core signatures to
track those transactional active blocks that are evicted from the directory level.
Before the replacement, the address is added to the signature of its transactional
readers/writer. These signatures are only checked in case a request misses at the
coherence level, and cleared on transaction commit/abort.

Operation. By jointly considering both a block’s XSNs and the global XSN
vector, the directory can unequivocally determine if a certain block is owned by
some currently running transaction(s) or if, on the contrary, some transaction
that made use of it has committed/aborted. The basic idea behind this mecha-
nism is that a block is considered part of a transaction’s R/W set running in P
when the P-th XSN of its xact owners matches the P-th XSN of the global XSN
vector. Comparing a block’s XSN against the global XSN vector, the directory
tracks transactional ownership even when the block is not privately cached, en-
abling conflict detection regardless of the actual location of the block. Figure 1
illustrates the proposed conflict detection mechanism, showing how the foremen-
tioned hardware elements work together to provide fast conflict detection at the
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Fig. 1. Examples of Directory-Based Conflict Detection

directory level. The figure also shows the coherence state for one block at the
directory and in two core’s private caches, as well as the block’s XSNs. The
directory’s global XSN vector and each core’s XSN register are also shown.

Core 0 (C0) begins its transaction by incrementing its XSN register and send-
ing it to the directory through an explicit begin transaction message (Figure 1 a).
The directory uses this message to update its global XSN register and responds
with an acknowledgment, allowing the core to begin its transaction. In Figure
1 b, C0 attempts to write a block, but misses in its private cache and sends an
exclusive request to the directory. The directory checks the block’s xact owners
XSN, observes that the reader transaction in C1 is no longer running and sends
exclusive data to C0, setting both the state and xact owners accordingly – lazily
clearing C1’s stale XSN –. In Figure 1 c, the transaction in C1 tries to read the
same block, missing in its L1. Comparing xact owners and the global XSN, the
directory finds out that C0 is a transactional owner, and then it uses the coher-
ence state to find out whether C0 is a reader or a writer. In this case, the block is
not in shared state, which means C0 is a writer and hence the directory detects
the conflict. Figure 1 d is an example of the out-of-cache conflict detection: C0
writebacks the block and when C1 retries its read request, the directory detects
the conflict once again, since the writeback did not change the xact owners. At
last, C0 commits its transaction, notifies the directory (Figure 1 e), allowing C1
to finally obtain a shared copy of the block (Figure 1 f).

3.1 Enhancements to the Base Detection Scheme

Augmenting the Private Cache to Avoid Flushing. Instead of flush-clearing the
L1 cache on every transaction begin, a more elaborated solution could serve
those accesses that hit on privately cached data immediately, and allow the core
to continue its execution without any extra delay, while sending a notification
down to the directory (off the critical path). This report messages contain the
new transaction serial number of the just-started transaction and are used to
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update the block’s xact owners XSN vector at directory. A Transactional bit
must be added to each L1 cache line, to deal with forwarded conflicting request
as well as to reduce the number of reports sent down to the directory. This bit
is set each time a block is accessed and flush-cleared on transaction commit.
Report messages are only sent out if the bit is not set. If a race occurs between
a remote request and a report message, so that the remote message arrives
before at the directory, the core receives the forwarded request and it signals a
conflict if it finds the Transactional bit set for the block. Eventually, the directory
information for that block will be updated with the new XSN and subsequent
conflicting requests will be handled entirely at the directory level.

Reporting Begin/Commit to the Directory without Extra Delay. Instead of send-
ing one begin and one commit message to each directory bank for each trans-
action, a more scalable solution could use on-demand piggybacking for these
reports. This can be done by recording which L2 banks the core has accessed
during the transaction, using a simple bit-vector that is updated by the address-
to-bank mapping logic on each L1 miss and cleared after commit. In this way, the
begin transaction report is inserted as a field (XSN) in the first request message
sent to a directory bank, without delaying the execution of the transaction. At
transaction commit, only the appropriate directory banks need to be notified,
according to the forementioned bit-vector.

4 Evaluation

In this section, we evaluate the performance of the proposed conflict detection
scheme (DirCD). We use the LogTM-SE hardware transactional memory system
as the basis of our simulations, and we modify it to introduce two versions
of our proposal: a naive implementation that empties the L1 cache on every
begin transaction (DirCD+L1Flush), and an enhanced version that avoids cache
flushing (DirCD+NoL1Flush). To provide a better perspective over the results,
we also consider an identical configuration to the baseline LogTM-SE system
that flush-clears the L1 cache on transaction begin (CacheFlush). We compare
these two DirCD flavours against an ideal configuration of LogTM-SE in which
perfect signatures are used to track R/W sets and detect conflicts (Base).

For simplicity, our version of DirCD+NoL1Flush does not use hit-report mes-
sages nor L2-overflow signatures; instead, we approximate a flush-free config-
uration by relying on the original address signatures of LogTM-SE, which we
have made directly accessible to the directory conflict detection logic. The result-
ing implementation emulates a more sophisticated DirCD-based system, which
incorporates the enhancements described in 3.1. Regarding conflict resolution
(CR), it is now performed at the directory level, although the CR policy re-
mains fixed – requester stalls, with conservative deadlock avoidance –. Our
DirCD implementation also reuses the functionality that the simulator provides
for LogTM-SE, so that the directory does not track timestamps, possible cycles
nor does it issue abort messages when a possible deadlock is detected. Lastly, our
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conflict detection scheme is evaluated without restricting the size of transaction
serial numbers, and using a full XSN-vector in each directory entry.

4.1 Summary of LogTM-SE

LogTM is a hardware transactional memory system proposed by the Multi-
facet group at the University of Wisconsin-Madison. LogTM implements eager
version management and eager conflict detection. It uses a per-thread log in
cacheable virtual memory that contains address and old values of memory loca-
tions modified by the current transaction. It extends a directory protocol in order
to perform conflict detection of evicted blocks by using sticky states. LogTM-SE
(Signature Edition) is a refined version of LogTM in which R/W sets are tracked
using hash signatures. We use LogTM’s basic algorithm to detect potential dead-
locks using timestamps: A processor sets a bit if it nacks an older transaction; if
in turn it receives a nack from an older transaction, this represents a potential
cycle and the transaction aborts. The abort traps to a software handler, which
walks the transaction log and restores the old values into memory. The system
uses randomized linear backoff to reduce contention after an abort.

4.2 Simulation Methodology and Environment

We use a full-system execution-driven simulation based on the Wisconsin GEMS
toolset [7], in conjunction with Virtutech Simics [6]. We use an implementation
of the LogTM-SE protocol and the detailed timing model for the memory sub-
system of GEMS v2.1, with the Simics in-order processor model. Simics provides
functional correctness for the SPARC ISA and boots an unmodified Solaris 10.

We perform our characterization on a tiled CMP system, as described in
Table 1. We use a 16-core configuration with private L1 I&D caches and a shared,
multibanked L2 cache consisting of 16 banks of 512KB each. The L1 caches main-
tain inclusion with the L2. The cores and L2 cache banks are connected through
a 2D mesh network. The private L1 data caches are kept coherent through an
on-chip directory (at L2 cache banks), which maintains a bit vector of sharers
and implements the MESI protocol. We compare our proposal against an ideal

Table 1. System parameters

MESI Directory-based CMP
Core Settings

Cores 16, single issue, in-order, non-memory IPC=1
Memory and Directory Settings

L1 I&D caches Private, 32KB, split, 2-way, 1-cycle latency
L2 cache Shared, 8MB, unified, 4-way, 12 cycle-latency
L2 Directory Full bit vector, 6-cycle latency
Memory 4GB, 300-cycle latency

Network Settings
Topology 2D Mesh (4x4)
Link latency 1 cycle
Link bandwidth 40 bytes/cycle
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Table 2. Benchmarks and inputs

Benchmark Input Benchmark Input
DELAUNAY Mesh gen3.2, min. angle 30 BARNES 4096 bodies
GENOME 8K segments, gene length 256, segment length 16 CHOLESKY tk14
BAYES 32 variables, 1K records, 2 parents, 20%chance RAYTRACE teapot
KMEANS 16/16 clusters, thres. 0.05, 2048 16-dim points
VACATION 64K entries, 4K tasks, 8 queries, 10 rel, 80 users

implementation of LogTM-SE in which conflict detection uses perfect signatures
– mere lists of addresses read/written by the transaction – instead of actual hash
signatures that lead to unnecessary conflicts as a result of false positives.

For the evaluation, we use five transactional benchmarks extracted from the
STAMP suite [3]. These benchmarks use coarse-grain transactions to execute
concurrent tasks on irregular data structures such as graphs or trees. We have
also selected a few non-transactional workloads from the SPLASH-2 suite [11],
in order to evaluate our proposal with substantially different applications. Note
that the latter may not be representative of future transactional applications,
and are just included for comparison purposes.

4.3 Results

Figures 2 and 3 summarize the performance evaluation of the proposed directory-
based conflict detection (DirCD) mechanism. We can observe how the optimized
version of our proposal (DirCD+NoL1Flush) outperforms LogTM-SE in every
STAMP transactional benchmark as well as in raytrace, and obtains similar re-
sults in non-transactional applications from SPLASH such as barnes or cholesky.
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Table 3. L1 Miss Rate. Committed vs. Aborted Transactions

L1MissRate Commits Aborts
Base Flush DirCD DirCD Base Flush DirCD DirCD

Flush NoFlush Flush NoFlush
barnes 1,44% 1,71% 1,74% 1,46% 17399 316 333 306 296
bayes 1,93% 2,40% 3,67% 3,73% 526 1315 1368 1363 1285

cholesky 0,87% 1,25% 1,31% 0,87% 6567 73 41 39 75
delaunay 4,26% 6,13% 9,32% 7,66% 6312 16462 15491 15137 15408
genome 3,15% 4,49% 7,75% 2,88% 5234 3178 3908 2941 1120
kmeans 0,54% 1,08% 1,14% 0,53% 8238 6883 8172 6059 2693
raytrace 1,88% 5,14% 6,13% 2,70% 47766 203968 174393 154819 171681
vacation 4,14% 7,42% 9,32% 6,61% 4096 10573 10596 3233 2953

The performance gain of DirCD+NoL1Flush is considerable for genome (25%),
raytrace (27%) and vacation (55%), three benchmarks that suffer many conflicts,
as shown in the last four columns of Table 3. Other transactional workloads such
as bayes, delaunay or kmeans present more modest improvements in their exe-
cution time of 3 to 7%.

First, we start by analyzing the performance degradation caused by flushing
the L1 cache on every transaction, shown by the CacheFlush bar in Figure 2.
This will help us understand the obtained results for our flush-based detection
scheme (DirCD+Flush). As expected, flushing causes an increase in the L1 miss
rate (shown in Table 3) that has a direct effect over the execution time of all
benchmarks, particularly for raytrace, vacation and genome (up to 15-33%).
The case of raytrace is clear: it executes a very high number of transactions (see
“Commit” column of Table 3), most of which have a very small size (basically
read&increment a ray id), and thus flushing the L1 on each transaction continu-
ously leaves the post-transactional code with an almost empty data cache. The
increase in on-chip network traffic (see Figure 3, is more dramatic for raytrace
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than for any other benchmark, as a result of its fine-grain, abundant synchro-
nization. However, the effects on execution time and network traffic are different
for genome, a benchmark that spends the majority of its runtime in transac-
tional code (see Figure 4). In this case, the degradation does not come from
non-transactional cache misses, but from an increased number of aborted trans-
actions – see Table 3 – that arises as a result of having transactions that span
a longer period of time (probability of conflict is directly proportional to the
duration).

By avoiding the flush, the DirCD+NoL1Flush configuration offers a clearer
look upon the benefits of fast conflict detection than the flush-based DirCD
version, as the latter introduces overheads that shadow the potential gains of our
proposal over the base LogTM-SE system. The remarkable speedup achieved by
genome, raytrace and vacation is not directly caused by faster conflict detection,
but it happens as a result of it. As shown in Table 3 (columns “Abort”), our faster
detection scheme manages to reduce the total number of aborted transactions
for many benchmarks, and the gains are higher for those applications in which
conflicts are not a rare event. In vacation and genome, respectively, 75% and
65% of the aborted transactions are avoided by our DirCD+NoL1Flush scheme,
in comparison to the base LogTM-SE configuration. This is due to the early
detection and resolution of contended situations achieved by our approach.

In the LogTM system, when a conflict is detected, the requesting processor
stalls. If the conflict is detected sooner, as in the proposed scheme, the stall will
likely last longer. Since execution time is determined by how quickly the system
serializes conflicting transactions, detecting conflicts quicker does not speed up
the execution when stalling the conflicting transaction(s) is enough to solve the
conflict. However, our DirCD configuration does achieve a faster serialization
of multiple conflicting transactions, when multiple conflicts cannot be resolved
by stalling, but they require some transaction(s) to be aborted. In this case, the
sooner the system detects the conflict, the faster it can take action and abort the
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appropriate transactions. The directory not only is able to detect the conflict in
one hop, but it can also take action without having to wait until the conflicting
block is in a base state (unlike the base approach that relies on forwarded coher-
ence traffic), contributing to even faster detection/action. Aborting conflicting
transactions earlier reduces the effect of pathological execution patterns such
as futile stall and other conflicting interactions that affect eager CD systems
like LogTM-SE [2]. The remarkable reductions in the execution time of vacation
and genome are due to this quicker and more effective response. Compared to
the base case, our DirCD scheme causes more aborts at first, but later on this
allows more transactions to execute concurrently without interference and com-
mit, reducing the overall number of aborts as well as the total stalled time and
wasted work (see Figure 4). Quantitatively speaking, we observed this behaviour
by taking a look at the first two million cycles of execution of vacation, given the
two configurations (Base and DirCD+NoL1Flush) and the same random seed:
we found that the former manages to commit 108 transactions by aborting 748
in that period of time, while the latter commits more than twice as many (236)
at the cost of aborting around 50% more (1135). The same kind of pattern is
found in other simulations with different seeds for the same benchmark.

5 Conclusions and Future Work

In this paper, we present a new approach to conflict detection targeted to TM
systems built over a tiled CMP architecture. For these systems, we believe the
directory constitutes a natural location for this basic transactional mechanism,
and claim that extending its role to include such functionality is a natural evo-
lution of its responsibilities within a cache coherent TM system. We propose a
novel book-keeping scheme that augments each directory entry with transaction
serial numbers, and describe how the detection is carried out with little assis-
tance from the cores. The results show how the fast conflict detection achieved
by our design reduces the number of aborted transactions in workloads that suf-
fer frequent conflicts, resulting in average reductions of 15% in execution time
for the selected benchmarks.

Bringing together two independent mechanisms like cache coherence and con-
flict detection creates a synergistic relationship that opens up a wide spectrum
of new opportunities within the TM system. When combined onto the same
hardware logic, both entities can cooperate symbiotically and accomplish new
functionalities that cannot be achieved otherwise. For example, by giving the
directory control over the outcome of a transaction, speculation can be applied
in a variety of ways, for example, to continue the transactional execution past
the occurrence of conflicting accesses. Our conflict detection mechanism already
provides a commit request/commit ack message exchange, and could naturally
support a commit deny message that forces a transaction to abort if the specu-
lation failed.
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and José Duato2
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Abstract. One way of dealing with transient faults that will affect the
interconnection network of future large-scale Chip Multiprocessor (CMP)
systems is by extending the cache coherence protocol. Fault tolerance at
the level of the cache coherence protocol has been proven to achieve very
low performance overhead in absence of faults while being able to support
very high fault rates. In this work, we compare two already proposed fault-
tolerant cache coherence protocols in a common framework and present a
new one based in the cache coherence protocol used in AMD Opteron pro-
cessors. Also, we thoroughly evaluate the performance of the three proto-
cols, show how to adjust the fault tolerance parameters of the protocols to
achieve a desired level of fault tolerance andmeasure the overhead achieved
to be able to support very high transient fault rates.

1 Introduction

The number of transistors available due to current technology trends have en-
abled the design of progressively more powerful chips. However, these trends
have several drawbacks which need to be overcome. Notably, the complexity of
designing a system which takes advantage of so many components has forced
architects to think of ways to simplify the design. This way, Chip Multiproces-
sors [2,7] have proved to be a viable way for building newer systems by exploiting
thread-level parallelism. Further, tiled CMPs [14] which are built by replicating
several tiles comprised by a core, private cache, part of a shared cache and an in-
terconnection network interface further help in keeping complexity manageable,
scale in a power-efficient way to larger number of cores and support a family of
products with a varying number of tiles.

A main drawback of these trends is that, due to the miniaturization and
the lower voltages, the susceptibility of future chips to transient failures will
increase. Transient failures [11], also known as soft errors, occur when a com-
ponent produces an erroneous output but continues working correctly after the
event. Any event which upsets the stored or communicated charge can cause soft
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errors. Typical causes include alpha-particles strikes, cosmic rays, radiation from
radioactive atoms which exist in trace amounts in all materials, and electrical
sources like power supply noise or radiation from lightning.

The increased importance of transient failures means that fault-tolerance mea-
sures have to be considered across all levels of chip design. Even for commodity
systems, reliability needs to be above a certain level for the system to be useful
for anything. In fact, since the number of components in a chip increases and
the reliability of each component decreases, it is no longer economical to design
and test assuming a worst case scenario for new chips. Instead, new designs will
target the common case and assume a certain rate of transient failures.

One of the components which will be affected by transient failures in a CMP
is the interconnection network (IN). The IN occupies a significant part of the
chip real estate and is critical to the performance of the system. It handles the
communication between the cores and caches, which is done by means of a cache
coherence protocol. This requires very small and frequent messages. Hence, to
achieve good performance the IN must provide very low latency and should avoid
acknowledgment messages and other flow-control messages as much as possible.

Fault tolerance in the IN can be provided at the network level. There are
several recent proposals [3,12,13] exploring this approach. Ensuring the reliable
transmission of all messages imposes significant overheads in latency, power con-
sumption and area. In contrast, we propose to deal with transient errors in the
IN at the level of the cache coherence protocol. This allows for more flexibility to
design a high-performance on-chip network which can be unreliable. At the same
time, the higher level information available to the coherence protocol enables it
to achieve fault tolerance but avoids using acknowledgment messages in most
cases, protecting only those messages which are critical for correctness. These
few acknowledgments are sent out of the critical path of coherence transactions
to minimize the effect of fault tolerance on performance.

We have already proposed two fault-tolerant cache coherence protocols which
are described in detail in previous works [5, 6]. The contributions of this paper
are: an explanation of these protocols under a common framework, a description
of another fault tolerant protocol which is based on a modern coherence protocol
widely used in commercial systems [1] and an evaluation and comparison of
this and our two previous fault tolerant protocols to show how the overhead
introduced by fault-tolerance varies depending on the base protocol.

The rest of this paper is organized as follows. Section 2.1 describes the base
architecture which is being extended. Section 2.2 summarizes our previously
proposed fault tolerant protocols while section 3 describes a new fault tolerant
protocol. The evaluation is presented in section 4 and section 5 concludes.

2 Background

2.1 Base Architecture

We assume single CMP systems built using a number of tiles [14]. Each tile
contains a processor core, private L1 data and instruction caches, a bank of
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the logically shared L2 cache and a network interface. The L2 cache is logically
shared by all cores but it is physically distributed among the tiles. Each tile has
its network interface which connects it to the on-chip IN. We assume in-order
processors since that seems the most reasonable approach to build power-efficient
CMPs with many cores. While we have assumed a tiled architecture and in-order
processors, these choices are not constraints of the evaluated coherence protocols,
whose functionality and correctness is not affected if out-of-order cores are used
or a different arrangement is used instead of tiles.

We consider two base architectures: one using a token-based cache coherence
protocol (TokenCMP) [10] and another one using a more traditional directory-
based protocol (DirCMP). A third base architecture is described in section 3.

TokenCMP is a protocol based on token coherence which targets multiple
CMPs and is well suited for single CMPs. Token coherence provides a framework
for defining coherence protocols by separating the definition in a correctness
substrate and a performance policy which define how the nodes exchange a
fixed number of tokens among them. Most requests are transient requests which,
in the case of TokenCMP, are broadcasted to all other nodes without ordering
guarantees and without even a guarantee of being satisfied. Token counting rules
ensure that coherency is maintained while persistent requests ensure forward
progress by providing serialization when races between transient requests are
detected. TokenCMP uses a performance policy similar to TokenB (Token-
using-broadcast) with distributed arbitration for persistent requests.

DirCMP is a traditional MOESI-based directory cache coherence protocol [4]
which uses an on-chip directory to maintain coherence between several private
L1 caches and a shared non-inclusive L2 cache. It uses a directory cache in L2
and the L2 effectively acts as the directory for the L1 caches.

2.2 Our Previous Work

We have designed two fault-tolerant cache coherence protocols for CMPs based
on two different approaches to cache coherence: token coherence and directory
coherence. Both protocols have been shown to provide fault-tolerance with re-
spect to transient faults in the IN with very little overhead. FtTokenCMP [5]
is a token based coherence protocol which extends TokenCMP with fault tol-
erance, while FtDirCMP [6] is another fault-tolerant coherence protocol which
is based in a more traditional directory protocol which we call DirCMP.

The fault tolerance measures of both protocols are similar in their intent and
functionality and differ mostly in the implementation. In our experience, a fault
tolerant cache coherence protocol needs to provide the following things: a fault
detection mechanism, a fault recovery mechanism, and a mechanism to ensure
that data is never lost or corrupted. Both protocols rely on error detection codes
in messages to discard corrupted messages. It is assumed that the error detection
code checks the whole message. Thus, from the point of view of the coherence
protocols, a message can either arrive correctly or not arrive at all.

In both protocols, fault detection is achieved by means of a number of time-
outs which detect deadlocks caused by discarded messages. This fault detection
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Table 1. Timeouts summary for FtDirCMP and FtTokenCMP

Timeout When is it activated? When is it deactivated? Action when it triggers?
FtDirCMP

Lost Request When a request is is-
sued.

When the request is satis-
fied.

The request is reissued
with a new serial number.

Lost Unblock When a request is an-
swered.

When the unblock message
is received.

An UnblockPing is sent.

FtTokenCMP
Lost Token When a persistent re-

quest becomes active.
When the persistent re-
quest is deactivated.

Request a token recreation.

Lost Persistent
Deactivation

When an persistent re-
quest is activated.

When the persistent re-
quest is deactivated.

Send a persistent request
ping.

Both protocols
Lost Data When a backup state is

entered.
When the Ownership Ac-
knowledgement arrives.

Issue an OwnershipPing /
Request a token recreation.

Lost Backup Dele-
tion Ack.

When a line enters the
blocked state.

When the Backup Deletion
Acknowledgement arrives.

Reissue the AckO / Re-
quest a token recreation.

mechanism is reliable and valid for every coherence protocol where a discarded
message can be either harmless or lead to a deadlock in the same or a subsequent
memory transaction. This is the case of TokenCMP, where discarded transient
requests are harmless and the rest of message types lead to deadlock; and in the
case of DirCMP where every discarded message leads to a deadlock. However,
not all cache coherence protocols have this property: for example, some protocols
do not require acknowledgments for invalidation messages, hence discarding an
invalidation message would lead to an incoherence instead of a deadlock. Table 1
shows a summary of the timeouts used by each protocol.

Also, both protocols use essentially the same mechanism to avoid data loss,
ensuring reliable transmission of owned data by means of exchanging a pair of
acknowledgments. The mechanism works as follows: when a cache sends owned
data to another cache, it keeps a backup copy of it. This backup copy may be
used by the respective recovery mechanism if necessary, but it cannot be used
by the cache for any other purpose. The backup will be kept until an ownership
acknowledgment sent by the receiver arrives. On the other hand, the cache which
receives the data can use it as soon as it arrives, but it cannot send it to another
cache until it receives a backup deletion acknowledgment sent by the previous
owner once its backup has been discarded. The last restriction is necessary to
ensure that there is no more than one backup copy of each cache line, because
otherwise fault recovery would be significantly more complex.

These acknowledgments are sent out of the critical path of cache misses so
they do not directly affect the execution time of programs. Also, in many cases
the acknowledgments are piggybacked in other messages of the same coherence
transaction. However, the increased network traffic caused by this mechanism is
the main overhead incurred by the fault tolerant measures of both protocols.

The fault recoverymechanism is different for each protocol. In FtTokenCMP,
fault recovery is achieved by means of a centralized mechanism called the token
recreation process arbitrated by the memory controller. This process works as
long as there is a valid copy of data in some cache or one and only one backup
copy (which is guaranteed by the owned data transmission mechanism described
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above). The memory controller attends token recreation requests in FIFO order
to avoid livelock and it works sending messages to every cache asking it to
invalidate all tokens and send back to memory any data that it may have. Once
the memory receives the data or invalidation acknowledgments from every cache,
it sends it to the cache which requested the recovery with a new set of tokens.

To avoid creating an incoherence due to stale response messages still traveling
through the IN after a token recreation, all coherence responses are tagged with
a token serial number (TSN) which is increased during the token recreation
process. Messages with a wrong TSN are discarded when received by any node.
Token serial numbers are stored in every node in a dedicated structure (the TSN
table), but only for those cache lines which have a serial number different than
0. We have found that having a very small number of entries of only a few bits
each is enough for good results. When all entries are used, one of them is evicted
setting its serial number to 0 by means of the token recreation process.

In contrast, FtDirCMP achieves fault recovery reissuing requests with a dif-
ferent request serial number. FtDirCMP does not need an specific serialization
point for fault recovery since the directory (or the on-chip L2 directory cache)
acts already as the serialization point for all requests. These reissued requests
need to be identified as such by the node that answers to them and not be treated
like an ordinary request. In particular, a reissued request should not wait in the
incoming request buffer to be attended by the L2 or the memory controller until
a previous request is satisfied, because that previous request may be precisely
the older instance of the request that is being reissued in case of a false positive.

Since stale responses to a few reissued request messages may lead to an in-
coherence in FtDirCMP, we use request serial numbers to discard responses
which arrive too late (when the request has already been reissued). Every mes-
sage carries a serial number. Request serial numbers are chosen by the cache
that issues the request while responses or forwarded requests will carry that of
the request that they are answering to. When a request is reissued, it will be
assigned a new serial number which will allow to distinguish between responses
to the old request and to the new one. Nodes must remember the serial number
of the requests that they are currently handling and discard any message which
arrives with an unexpected serial number or from an unexpected sender. This
information needs to be updated when a reissued request arrives.

In some cases, both protocols achieve deadlock recovery issuing ping messages
when a timeout triggers to force the reissue of a message which is expected to
finish a coherence transaction, like an Unblock message in case of FtDirCMP
or a Persistent Request Deactivation message in case of FtTokenCMP.

The token serial numbers used in FtTokenCMP serve a similar purpose to
request serial numbers used in FtDirCMP (e.g.: being able to discard stale mes-
sages after fault recovery which could cause an incoherence), but the latter are
easier to implement and more scalable. Token serial numbers are associated with
each cache line and need to be updated in a coordinated fashion during the token
recreation process. Hence, they required an additional structure in each cache to
store them (only for those hopefully few lines that had a token serial number
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different than 0, but even for lines which were not currently in any cache). On
the other hand, request serial numbers are associated with individual requests
and so they are short-lived information which can be stored in the MSHR. How-
ever, token serial numbers do not need to be carried in request messages (only in
responses) while request serial numbers are sent with every request and need to
be propagated with every message which is sent as consequence of the request.

Notice that discarding any message in FtDirCMP or FtTokenCMP is
always safe (even if it could be not strictly necessary in some cases) since the
protocol already has provisions for lost messages of any type.

3 A New Broadcast-Based Cache Coherence Protocol

No real system has been implemented yet using a coherence protocol based on the
token framework. Also, many cache coherence protocols which are used in widely
used systems cannot be precisely categorized as snoopy-based nor directory-
based. AMD Hammer [1] is one of these protocols. It targets systems with a
small number of processors using a tightly-coupled point-to-point unordered IN.

In this work, we have implemented HammerCMP which is an adaptation of
AMD Hammer protocol to the tiled CMP environment and we have used it as a
base for FtHammerCMP, a new fault tolerant protocol for small scale CMPs.

Like DirCMP, HammerCMP sends requests to a home L2 bank which acts
as the serialization point for requests to its cache lines. There is no directory
information, and all requests are forwarded using broadcast to all other caches.
All of them answer to the forwarded requests sending either an acknowledgment
or a data message to the requestor. When the requestor receives all the acknowl-
edgments informs to the home L2 controller that the miss has been satisfied.

HammerCMP avoids the overhead of directory information and the latency
of accessing the directory structure at the cost of much more IN traffic. Also, all
processors need to intervene in all misses, like in a snoopy protocol.

Using the principles described in section 2.2, FtHammerCMP adds fault
tolerance measures to HammerCMP as the ones described for FtDirCMP. It
uses the same set of timeouts for detecting faults and reissues requests using
different request serial numbers in a way very similar to FtDirCMP for recov-
ering from faults. Reliable owned data transference is done using the same pair
of acknowledgments as the other two protocols.

4 Evaluation

4.1 Methodology

We have performed full system simulations of a mix of scientific applications with
fault injection with the aims of determining adequate values for some protocol
parameters, assess the fault tolerance capability of each protocol and measure
the overhead introduced by the fault tolerance measures. For this, we have used
a custom version of Multifacet GEMS [9] detailed memory model and Virtutech
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Table 2. Characteristics of simulated architectures and input sizes used for benchmarks
in the simulations

(a) System characteristics
16-Way Tiled CMP System

Processor speed 2 GHz
Cache parameters

Cache line size 64 bytes
L1 cache:

Size, associativity 32 KB, 4 ways
Hit time 2 cycles

Shared L2 cache:
Size, associativity 1024 KB, 4 ways
Hit time 15 cycles

Memory parameters
Memory access time 300 cycles
Memory interleaving 4-way

Network parameters
Topology 2D Mesh
Non-data message size 8 bytes
Data message size 72 bytes
Channel bandwidth 64 GB/s

(b) Input sizes

Benchmark Input Size

Barnes 8192 bodies, 4 time steps
Cholesky tk16.O
FFT 256K complex doubles
Ocean 258 × 258 ocean
Radix 1M keys, 1024 radix
Raytrace 10Mb, teapot.env scene
Tomcatv 256 points, 5 iterations
Unstructured Mesh.2K, 5 time steps
Water-NSQ 512 molecules, 4 time steps
Water-SP 512 molecules, 4 time steps

Simics [8]. Every simulation has been performed several times using different
random seeds to account for the variability of multithreaded execution, this is
represented by the error bars in the figures which enclose the resulting 95% confi-
dence interval of the results. We have simulated tiled CMP systems as described
in section 2.1. Table 2(a) shows the most relevant parameters of the systems.

Finally, we have used a selection of scientific applications for the evaluation:
Barnes, Cholesky, FFT, Ocean, Radix, Raytrace, Water-NSQ, and Water-SP are
from the SPLASH-2 benchmark suite. Tomcatv is a parallel version of a SPEC
benchmark and Unstructured is a computational fluid dynamics application.
The experimental results reported here correspond to the parallel phase of each
program only. Problem sizes are shown in table 2(b).

4.2 Adjusting the Fault Detection Timeouts

All fault tolerant protocols achieve fault detection by means of a number of
timeouts. Each protocol requires up to four timeouts which are active at different
places and times during a memory transaction or cache replacement. The value
of these timeouts determine the latency of fault detection, hence shorter values
help to achieve lesser performance degradation in presence of faults since fault
recovery will start earlier. For example, for the three fault tolerant protocols
considered in this work figure 1(a) shows how the execution time increases with
the value of these timeouts under a fixed fault rate.

Since false positives occur when a timeout triggers before a miss has had
enough time to be satisfied, to avoid false positives the timeout values should
be large enough to allow every memory transaction to finish, assuming that no
fault occurs. Figure 1(b) shows the measured maximum latency in CPU cycles
of each protocol when no faults occur and disabling all the timeouts.
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Fig. 1. Relative execution time with respect to DirCMP without faults for each fault
tolerant protocol with 250 corrupted messages per million using different values for
the fault detection timeouts and maximum miss latency (in cycles) of each coherence
protocol without faults

Looking at figure 1(b), we can see that the maximum latency of the fault-
tolerant protocols is almost exactly the same than that of their corresponding
non fault-tolerant counterpart. This is expected, since the behavior of the fault-
tolerant protocols when no timeout triggers is almost the same than that of the
non fault-tolerant ones, except for the ownership acknowledgments which are
sent out of the critical path of cache misses.

This latency is around 1250 cycles for the FtDirCMP protocol, 1350 for the
FtHammerCMP protocol and 2000 for the FtTokenCMP protocol. Hence,
we can choose any value greater than those for the timeouts to avoid having
any false positive for these workloads. Using shorter values is still possible but
would increase the number of false positives and could degrade performance and
increase network traffic due to the retried requests or token recreation requests.
However, if the chosen values are too low (lower than the time required to finish a
transaction), the recovery mechanism would be invoked too frequently preventing
forward progress.

Finally, we have considered using different values for each of the four timeouts
of each protocol, but our experiments do not show any significant advantage in
doing so.

We have chosen a value of 2000 cycles for all timeouts in the FtTokenCMP
protocol and 1500 cycles in the FtDirCMP and FtHammerCMP protocols.
These values are large enough to avoid false positives in every case and, as
shown below, achieve very low performance degradation when faults actually
occur. Making this value smaller achieves very little benefit while significantly
increasing the risk of false positives.

4.3 Effect of the Request Serial Number Size in Fault-Tolerance

In the case of FtDirCMP and FtHammerCMP, the ability to correctly re-
cover from faults depends on the number of bits used for encoding the request



Fault-Tolerant Cache Coherence Protocols for CMPs 563

barnes

cholesky fft
ocean

radix

raytra
ce

tomcatv

unstru
ctured

waternsq

watersp

Maximum

Applications

0
1
2
3
4
5
6
7
8
9

1
2

8
32

64
125

250
500

1000

(a) FtDirCMP

barnes

cholesky fft
ocean

radix

raytra
ce

tomcatv

unstru
ctured

waternsq

watersp

Maximum

Applications

0
1
2
3
4
5
6
7
8
9

10
11

1
2

8
32

64
125

250
500

1000

(b) FtHammerCMP

Fig. 2. Required RSN bits to discard every old response to a reissued message

serial number which is used to discard stale responses to reissued requests (for ex-
ample, to discard old acknowledgments to reissued invalidation messages which
could lead to incoherence). This number should be as low as possible to reduce
overhead in terms of increased message size and hardware resources to store it
while being sufficient to ensure that when a request is reissued (even several
times in a row) every response to the old request is discarded. Since the number
of reissued messages increases as the fault rate increases, the number of bits used
to encode request serial numbers determines the maximum fault rate supported.

To measure this, we have performed simulations of FtDirCMP using a wide
variety of fault rates. We have used 32-bit request serial numbers for those simu-
lations but we have recorded how many lower order bits were required to distin-
guish all the request serial numbers that needed to be compared. For doing this,
every time that two request serial numbers are compared, we record the position
of the least significant bit which is different in both numbers. Then, we assume
that the maximum of all these measures is an upper bound of the number of
bits required to ensure correctness for each fault rate. These results are shown
in figure 2.

As it can be seen, when using the FtDirCMP protocol 9 bits are enough for
all the tested fault rates and 8 bits suffice for fault rates up to 250 corrupted
messages per million. In case of using the FtHammerCMP protocol, 8 bits
provide fault tolerance up to 500 corrupted messages per million, while 10 bits
are required for the maximum tested fault rate, 1000 corrupted messages per
million. Hence, we have chosen to use 8 bits to encode the request serial numbers
in the rest of our experiments for both protocols which is enough to achieve
fault tolerance up to 250 corrupted messages per million, which is already an
unrealistic and unreasonably high failure rate.

4.4 Execution Time Overhead

We have measured the execution time of each one of the fault-tolerant protocols
using the fault tolerance parameters determined above with several message loss
rates and compared it to the execution time of the non fault tolerant protocols
in a fault-free scenario. The results are shown in figure 3(a). Fault rates are
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Fig. 3. Execution time and network overhead of each protocol for several fault rates

expressed in number of messages discarded per million of messages that travel
trough the network and all results are normalized with respect to the execution
time of the DirCMP protocol.

We can see that the run-time overhead of each fault-tolerant protocol when
compared to its non fault-tolerant counterpart in a fault-free scenario is not
measurable. This is consistent with the fact that, when no faults occur, the only
difference in the behavior of the fault-tolerant protocols with respect to the non
fault-tolerant ones is just the extra acknowledgments used to ensure reliable
owned data transmission, which are sent out of the critical path of misses.

For these workloads, both FtTokenCMP and FtDirCMP achieve very sim-
ilar execution times when no faults occur (less than 3% difference on average).
FtHammerCMP execution time difference is less than 4% higher than Ft-
DirCMP also, and 6% higher than FtTokenCMP.

As the fault rate increases, so does the execution time of each protocol. In the
case of FtDirCMP and FtTokenCMP, the average performance degradation
is almost unmeasurable until the message loss rate reaches 32 corrupted messages
per million. However, even when the fault rate reaches 64 corrupted messages
per million, the execution time of FtTokenCMP is lower than the execution
time of the directory protocol in a fault free scenario.

On the other hand, HammerCMP and FtHammerCMP without faults have
the same performance than FtDirCMP under a fault rate of 125 messages
lost per million. Also FtHammerCMP performance degradation starts being
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significant under a fault rate of 8 messages corrupted per million and the rate
at which it increases is noticeably worse than in the case of the other protocols.
This is due to the much higher network traffic of HammerCMP and FtHam-
merCMP in comparison to all the other protocols even in absence of faults as
can be seen in figure 3(b).

4.5 Network Overhead

In absence of faults, the most important difference in the behavior of our pro-
tocols with respect to their non fault-tolerant counterparts is the exchange of
acknowledgments to ensure that owned data is transferred safely and avoid data
loss. Although they are sent out of the critical path of cache misses so that
they do not have effect in the miss latency, these acknowledgments introduce
additional network traffic which is the main cost of the fault tolerance measures.

We have measured the network overhead of our proposal in terms of the
relative increase in the number of messages and the number of bytes transmitted
through the network. We have increased one byte the message sizes of the fault
tolerant protocols with respect to the non fault-tolerant ones to accommodate
the request serial numbers and token serial numbers. This means 1.14% increase
in size for data messages and 12.5% increase for control messages. The results
of these measurements are shown in figure 4.

We can see that, in terms of message traffic, the overhead of the fault-tolerant
protocols comes entirely from the acknowledgments used to ensure reliable data
transmission (“Ownership” part of each bar). This overhead is less than 30% for
all our fault-tolerant protocols. Moreover, the overhead drops considerably when
it is measured in terms of bytes, even considering that every message is one byte
longer in the fault-tolerant protocols.

Figure 3(b) shows the network overhead under several fault rates. The net-
work traffic increases slowly with the fault rate due to the reissued messages
or the token recreation messages. In the case of FtDirCMP, the increase is
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almost unmeasurable for the fault rates shown. However, as can be seen for
FtHammerCMP, once the network traffic reaches certain point (around 1.9 in
our plot), the slope becomes steeper. This is due to the fact that the capacity
of the network is exceeded and this increases the average latency which in turn
causes a number of false positives which lead to more reissues which further in-
crease the network traffic and consequently the execution time. Hence, network
capacity can become a limiting factor for the fault tolerance of our protocols.

4.6 Hardware Requirements

The token serial number table is implemented with a small associative table at
each cache and at the memory controller to store those serial numbers whose
value is not zero. Using two bits to encode the serial number and 16 entries at
each node is enough for supporting the fault rates used in this paper. If the
tokens of any line need to be recreated more than 4 times the counter wraps
to zero (effectively freeing an entry in the table) and if more than 16 different
lines need to be stored in the table, the least recently modified line is evicted by
means of using the token recreation process to set its serial number to zero.

On the other hand, request serial numbers do not need to be kept once the
memory transaction has been completed. They can be stored in the MSHR or
(optionally) in a small associative structure in cases where a full MSHR is not
needed. As shown in section 4.3, using 8 bits to encode request serial numbers
is enough to achieve tolerance to very high fault rates, and even less bits are
required to support more realistic but still very high fault rates.

Also, to be able to detect reissued requests in FtDirCMP and FtHammer-
CMP, the identity of the requester currently being serviced by the L2 or the
memory controller needs to be recorded, as well as the identity of the receiver
of owned data when transferring ownership from one L1 cache to another to be
able to detect reissued forwarded requests.

The timeouts used for fault detection require the addition of counters to the
MSHRs or a separate pool of timeout counters. Although there are up to four dif-
ferent timeouts involved in any coherence transaction, no more than one counter
is required at any time in the same node for a single coherence transaction.
In the case of FtTokenCMP, all but one timeout can be implemented using
the same hardware already used to implement the starvation timeout required
by token protocols. Also, our fault-tolerant protocols require one extra virtual
channel than their non fault-tolerant counterparts.

Finally, a less important source of overhead is the increased pressure in caches
and writeback buffers because of the blocked ownership and backup states and
the effect of the reliable ownership transference mechanism in replacements.
When a backup buffer or a writeback buffer is used, we have not been able to
detect any effect in the execution time due to these reasons. The size of the
writeback buffer may need to be increased, but our previous work [5] shows that
one extra entry would be enough to avoid any slowdown.
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5 Conclusions

We propose implementing fault tolerance measures at the cache coherence pro-
tocol level to deal with transient faults in the interconnection network of CMPs
and provide several cache coherence protocols which can ensure the correct ex-
ecution of parallel programs using a non reliable on-chip IN.

In this work, we have presented a new fault tolerant protocol based on AMD
Hammer protocol which could be useful for small scale CMPs. We have thor-
oughly compared and evaluated the performance of two previously presented
fault tolerant cache coherence protocols and the new one. We have shown that
the overhead imposed in the execution time due to the fault tolerant measures
is negligible. Further, we have shown that the performance impact of moderate
fault rates in the IN is insignificant when using our protocols.

We have explained how to tune the fault tolerance parameters of the pro-
tocols to achieve the desired level of fault tolerance, performance degradation
in presence of faults and overhead in absence of faults. We have shown that,
even for fault rates which are unrealistically high, the hardware overhead of our
proposals is low. The main cost of our fault tolerance measures is a moderate
increase in network traffic, but this increase is much lower that the difference in
network usage between protocols, specially considering currently used protocols
like AMD Hammer.

Our evaluation shows that a token coherence based protocol can provide
sightly better performance than a directory based one even when the token
based protocol is subjected to higher fault rates, but at the cost of much higher
network usage. We have found that the network usage of our protocols increases
with the fault rate and hence network capacity can be a limiting factor for fault
tolerance. Due to the efficient network usage of directory-based protocols and
the small difference in performance with respect to the other two fault tolerant
protocols shown in our evaluation, we think that FtDirCMP is a good cache
coherence protocol for large scale tiled CMPs.
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Abstract. Many programmable embedded systems feature low power processors
coupled with fast compiler controlled on-chip scratchpad memories (SPMs) to
reduce their energy consumption. SPMs are more efficient than caches in terms
of energy consumption, performance, area and timing predictability. However,
unlike caches SPMs need explicit management by software, the quality of
which can impact the performance of SPM based systems. In this paper, we
present a fully-automated, dynamic code overlaying technique for SPMs based
on pure static analysis. Static analysis is less restrictive than profiling and can
be easily extended to general compiler framework where the time consuming
and expensive task of profiling may not be feasible. The SPM code mapping
problem is harder than bin packing problem, which is NP-complete. Therefore we
formulate the SPM code mapping as a binary integer linear programming problem
and also propose a heuristic, determining simultaneously the region (bin) sizes
as well as the function-to-region mapping. To the best of our knowledge, this
is the first heuristic which simultaneously solves the interdependent problems
of region size determination and the function-to-region mapping. We evaluate
our approach for a set of MiBench applications on a horizontally split I-cache
and SPM architecture (HSA). Compared to a cache-only architecture (COA),
the HSA gives an average energy reduction of 35%, with minimal performance
degradation. For the HSA, we also compare the energy results from our proposed
SDRM heuristic against a previous static analysis based mapping heuristic and
observe an average 27% energy reduction.

Keywords: Compilers, Code overlay, Static code analysis, Scratchpad memory.

1 Introduction

The first generation embedded systems were limited to fixed, single functionality
devices like digital watches, calculators, coffee makers etc. Modern embedded systems
have evolved into programmable, highly complex, multi-functionality devices including
portable music players, gaming consoles, PDAs, GPSs and cellular phones. These
systems must exhibit high performance while at the same time consume less power,
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as they operate on battery. Design of such systems thus becomes extremely challenging
due to multi-dimensional and stringent design constraints.

Modern embedded processors increase performance by employing memory hierar-
chies consisting of caches or scratchpads or both. Caches improve performance by
exploiting the spatial and temporal locality in the application, without any changes
to the application itself. However, these improvements are achieved through use
of tag arrays, comparators and management logic which in certain processors like
StrongARM, can consume more than 40% of the total power budget [5].

Scratchpad Memories (SPM) on the other hand are devoid of power hungry tag arrays
and comparators. Compared to caches they consume less energy per access and occupy
smaller on-chip area. While previous works have demonstrated that a SPM may require
on an average 40% less energy and 34% less die area compared to a cache of same size
[3], the compiler is now responsible for managing the SPM contents. This involves
inserting explicit instructions in the program to move code or data between SPM and
the main memory. A good technique for mapping the program contents onto SPM thus
becomes very critical for efficiently utilizing the SPM with minimal runtime transfer
overhead. Since code exhibits more locality than data, mapping code should provide us
with more power reduction. Therefore, in this work we focus on mapping application
code onto the SPM.

Most code mapping techniques for SPMs require profiling to find the optimal
mapping of applications. Profiling however, limits their applicability, not only because
of the difficulty in obtaining reasonable profiles, but also due to high space and time
requirements to generate a profile. Instead, in this work, we use compile time static
analysis to eliminate profiling and the overhead associated with it. Our static analysis
is based on a new data structure, Global Call Control Flow Graph (GCCFG), which
captures the function call sequence as well as the control flow information like loops
and conditionals. Our GCCFG can give not only the execution counts (estimated from
the control flow) but also the execution sequences of functions (from control flow, call
graph, and call sequence). This makes GCCFG more precise than just a call or a control
flow graph in modeling the runtime behavior of an application.

Traditional approaches for SPM utilization breaks down the SPM mapping problem
into two smaller problems. The first problem, termed as memory assignment or ‘what
to map’ involves partitioning the application code into SPM mapped and main memory
spilled. This division eliminates code segments whose cost of transfer from memory to
SPM is greater than the profit of execution from SPM. However since our architecture
has a direct memory access controller, the transfer cost is negligible and it is always
profitable to execute the entire code from the SPM. We therefore do not consider the
‘what to map’ problem in this work. The focus of this work is the second problem,
termed as address assignment or ’where to map’ which involves determining the
addresses on the SPM where the code will be mapped.

Code mapping techniques for SPM can be classified into static and dynamic
techniques. In static techniques, SPM is loaded once during program initialization
occupying the entire SPM and the contents do not change during the execution of
the program. This implies that the static techniques need not address the ‘where to
map’ issue; they only solve the ‘what to map’ issue. The reduced utilization of SPM
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at runtime means less scope for energy reduction. Dynamic techniques on the other
hand, replenishes the contents of the SPM with different code segments during program
execution by overlaying multiple code segments. For most efficient management,
the SPM can be partitioned into bins or regions and multiple code segments with
non-overlapping live ranges should be mapped to different regions. Thus a dynamic
technique for code mapping can be broken down into
1. Partition of the SPM into optimal number of regions
2. Overlaying the code objects onto the regions

Although previous dynamic approaches viz. first-fit [11] and best-fit [10] have proposed
solutions for the second subproblem, none of the above approaches determine the
optimal size and number of regions. These heuristics assume a pre-determined number
of regions and may cause spilling of critical functions to the main memory. In fact, the
above two sub-problems have a cyclic dependency and if solved independently one after
another, the combined solution is sub-optimal. In this paper we propose a Simultaneous
Determination of Region and Function-to-Region Mapping (SDRM) technique which
solves the two subproblems at the same time. Regions are created as each function gets
mapped to the SPM and are resized if the mapped function is greater than the existing
region size, without violating the total size constraints. To compare the optimality of
our technique, we also formulate a binary ILP to solve the code mapping problem.
Our experiments using MiBench benchmark suite indicate that our technique can find
near-optimal solutions compared to the ILP solutions and they are 27% better than the
solution obtained by first-fit heuristic.

2 Related Work

As discussed in the previous section, SPM mapping techniques can be classified into
static and dynamic techniques for both code and data. Papers [1, 2, 8] present static
techniques for SPM allocation. While authors in [8] use a knapsack algorithm for static
assignment of code and data objects, authors in [1] propose a dynamic programming
approach to select and statically assign code objects to maximize energy saving. The
static approach in [2] concentrates only on data objects.

While static approaches are easy to formulate, they significantly limit the scope of
energy reduction. Therefore a majority of research [4,9,10,11] have focussed on solving
both code and data mapping problem using dynamic techniques. In this research work,
we also propose a dynamic technique, but overlay only code objects due to greater
energy reduction potential.

The approach in [9] formulates a binary ILP to select an optimal set of code blocks
and corresponding copy points which minimize energy consumption. However their
approach does not solve the ‘where to map’ problem. The authors in [4] propose another
dynamic technique for systems with virtual memory, where the page fault exception
mechanism of MMU is used to copy code blocks to SPM on demand. However this
technique dictates some hardware enhancement. On the contrary our technique is a pure
software method and does not impose any architectural changes. The research in [10]
proposes yet another dynamic profile SPM allocation technique where the authors give
a heuristic for classification of code, stack and global data into SPM and cache, and
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a best-fit heuristic to solve the ‘where to map’ problem. However their technique use
compaction to minimize fragmentation which can incur a significant overhead and can
be prohibitive in embedded systems.

Except [11], which use static analysis for code objects, all the above techniques use
profiling to find the execution count of objects. A relative advantage of static analysis
over profiling has already been discussed in the previous section. The technique that
we propose is closest to the approach presented by authors in [11]. They formulate an
Integer Linear Programming (ILP) problem to partition the memory objects into SPM
and main memory and then use another ILP to determine the address assignment. Since
an ILP is intractable for large size programs they propose a first-fit heuristic to solve
the ‘where to map’ problem. However, the heuristic in their work use a predetermined
number and size of regions. In contrast, the technique in our work computes the number
and size of regions while solving the mapping problem itself. We also formulate a binary
ILP and show that our heuristic is near-optimal to the ILP solution. In the next section
we formulate a generic problem definition for the mapping of code to SPM.

3 Problem Definition

INPUT:
– Global Call Control Flow Graph (GCCFG). GCCFG is an ordered directed graph

D=(Vf , Vl, Vi, E), where each node vf ∈ Vf represents function or F-node, vl ∈ Vl

represents a loop or L-node, vi ∈ Vi represents a conditional or I-node and edge
ei,j ∈ E ! vi, vj ∈ Vf

⋃
Vl

⋃
Vi is a directed edge between F-nodes, L-nodes and

I-nodes. If vi and vj are both F-nodes, the edge represents a function call. If either
one is a L-node, the edge represents a control flow. If either one is a I-node, the edge
represents a conditional flow. If both are L-nodes the edge represents nested control
flow. Recursive functions are represented by edges whose source and destination are
the same. The edges of a node are ordered, i.e. if a node has two children, the left node
is called before the right node in the control flow path of the program. Each F-node
is assigned a statically determined weight wi representing its execution count.

– Set S = {s1, s2...sf}, representing the functions sizes (F-nodes Vf in the GCCFG).
– Espm/access and Ei−cache/access, representing the energy per access for SPM and

Instruction Cache, respectively.
– Embst, energy per burst for the main memory.
– Eovm, energy consumed by instructions in overlay manager code.

OUTPUT:
– Set {S1, S2...Sr}, representing sizes of regions R = {R1, R2....Rr}, s.t.

∑
Sr ≤

SPMSize.
– Function-to-Region mapping, X [f, r] = 1, if f is mapped to region r, s.t.

∑
sf ×

X [f, r] ≤ Sr.

OBJECTIVE:

Minimize Energy Consumption for the given application. Given the GCCFG of an
application, the objective is to create regions and function-to-region mapping such that
when the application instrumented with this binary is executed on the given SPM, the
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total energy consumed is minimized. The total energy consumption is a summation of
Evi

hit, (energy on SPM hit) and Evi

miss (energy on SPM miss) where vi ∈ Vf . While
Evi

hit consists of energy consumed by the overlay manager to check if the function vi

is present in SPM and energy consumed by the execution of the function from SPM,
Evi

miss has an additional energy component for moving the called function vi from
main memory to SPM and then moving the caller function back vj on return. Code is
transferred in burstsize of Nmbst. nhitvi and nmissvi represents the number of hits and
misses for the function vi. The following equations characterizes the objective function

Evi
hit = nhitvi × (Eovm + Espm/access × si) (1)

Evi

miss = nmissvi × (Eovm + Espm/access × si +
Embst × (si + sj)

Nmbst
) (2)

Etotal =
∑

vi∈Vf

(Evi

hit + Evi

miss) (3)

4 Our Approach

The goal of our approach is to use static analysis to dynamically map application code
to regions on the SPM. Since the two sub-problems viz. region size determination and
function-to-region mapping have a cyclic dependency, solving them independently will
lead to sub-optimal results. Therefore, we require a technique to simultaneously solve
the two sub-problems.

4.1 Overview

We first apply static code analysis to create a Global Call Control Flow Graph
(GCCFG). Weights are assigned to nodes of the GCCFG , which is then transformed
into an Interference Graph (I-Graph). The I-Graph and SPM size are then used as input
to an ILP or SDRM heuristic to determine the number of regions and function-to-region
mapping. The construction of GCCFG, weight assignment and I-Graph are explained
in the following subsections with the help of an example shown in Figure 1(a).

(a) Example Code (b) Global Call Control Flow Graph

Fig. 1. Construction of GCCFG
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4.2 Construction of GCCFG

The GCCFG is an extension of the traditional Control Flow Graph (CFG) which is
a representation of all paths that might be traversed through a function during its
execution. A CFG is constructed for each function in the program and then all the
CFGs are combined into a GCCFG in two passes. In the first pass the basic blocks are
scanned for presence of loops (back edges in a dominator tree), conditional statements
(fork and join points) and function calls (branch and link instructions). The basic blocks
containing a loop header are labeled as L-node, those containing a fork point are labeled
as I-node and the ones containing a function call are labeled as F-node.

If a function is called inside a loop, the corresponding F-node is joined to the loop
header L-node with an edge. L-nodes representing nested loops, if any, are also joined.
F-nodes not inside any loop are joined to the first node of the CFG. The first node, F-
nodes , L-nodes and corresponding edges are retained, while all other nodes and edges
are removed. Essentially this step trims the CFG, while retaining the control flow and
call flow information. In this paper we assume that both paths, i.e. T and F edges, of
a I-node will be executed, which is very similar to branch predication [7]. Therefore,
although the GCCFG contain the I-nodes, the interference graph construction algorithm
in Section 4.4 does not consider the presence of I-Nodes to determine the interference
relationships between the F-nodes.

In the second pass, all CFGs are merged by combining each F-node with the first
node of the corresponding CFG. Recursive functions are joined by a dashed edge. The
merge ensures that strict ordering is maintained between the CFGs, i.e. if two functions
are called one after another, the first function is a left child and the other function is a
right child of the caller function. Thus the GCCFG is an approximate representation of
the runtime execution flow of the program.

4.3 GCCFG Weight Assignment

For all F-nodes vf ∈ Vf of GCCFG, weights wf , defaulting to unity, are assigned.
The GCCFG in traversed in a top-down fashion. When an L-node is encountered, the
weights of all descendent F-nodes are multiplied by a fixed quantum, Loop Factor Q.
This ensures that a function which is called inside a deeply nested loop will receive a
greater weight than other functions. For an F-node representing recursive function, the
weight of the node is multiplied by a different fixed quantum, Recursive Factor R. This
ensures that a recursive function will receive a greater weight than non-recursive ones.
For the example shown in Figure 1(b), we choose Q = 10 and R = 2.

4.4 Interference Graph Construction

The weighted GCCFG has to be augmented considering the fact that if one function
calls another function mapped to same region, then they will swap each other out during
the function call and return back. Also if two functions mapped to same region are
called one after another in the same nested level, then they will thrash excessively.
Such functions are said to be interfering with one another and the GCCFG is not
adequate to capture these interfering relationships. We transform the GCCFG into an
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Algorithm 1. CONSTRUCT-IGRAPH (GCCFG = (Vf ,Vl,E))

1. for vi = v1 to (vf

S
vl) do

2. for vj = vi to (vf

S
vl) do

3. node = least-common-ancestor(vi ,vj )
4. if (node == main) then
5. relation(vi, vj ) = NULL ; cost [vi,vj ] = 0;
6. else if (node == L-Node) then
7. relation(vi,vj) = callee-callee-in-loop ; cost [vi,vj] = (si + sj) × MIN (wi, wj)
8. else if (node == (vk �= {vi, vj})) then
9. relation(vi,vj) = callee-callee-no-loop ; cost [vi,vj ] = (si + sj) × MIN (wi, wj )

10. else if (node == vi ‖ node == vj ) then
11. if (L-node in path from vi to vj ) then
12. relation(vi, vj) = caller-callee-in-loop ; cost [vi,vj] = (si + sj ) × wj

13. else
14. relation(vi, vj) = caller-callee-no-loop ; cost [vi,vj ] = (si + sj) × wj

15. end if
16. end if
17. end for
18. end for

I-Graph as outlined in Algorithm 1. Figure 2(a) shows the interference relationships and
Figure 2(b) depicts the corresponding I-Graph between different nodes for the example
GCCFG in Figure 1(b). In the next section we discuss an ILP and a heuristic which
takes the nodes and the cost from the I-Graph as input and determines the region as
well as the node (function)-to-region mapping.

NODE NODE INTERFERENCE RELATION

F2 F3 caller-callee-in-loop

F2 F4 caller-callee-in-loop

F2 F5 caller-callee-no-loop

F2 F6 caller-callee-in-loop

F3 F4 callee-callee-in-loop

F3 F6 callee-callee-in-loop

F4 F6 callee-callee-in-loop

F1 F2 caller-callee-in-loop

(a) Interference Relationships for the
example GCCFG

F1(4)

F2(2)

F4(1)

F5(4)

F6(4)

F3(3)

3000

120

400

700

600

500

500

60

(b) Interference Graph derived from the
GCCFG

Fig. 2. Construction of I-Graph

5 Address Assignment: Where to Map

The problem of mapping functions-to-regions is a harder problem than the bin packing
problem as the size of regions or bins is not fixed and each function (item to be placed
in a bin) has an associated cost. Therefore, we propose a binary ILP and a heuristic to
solve the ‘where to map’ problem.
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5.1 Optimal Solution: Binary ILP

The input to the ILP is the I-Graph I = (Vf , E′) constructed in previous section with
si representing the size of node vi ∈ Vf and a cost[vi, vj ] associated with each edge
(vi, vj ). The output of the ILP is the function-to-region mapping MAP : Vf → R,
where R is the set of regions created. We define a binary integer variable X [vi, r] which
is set to 1 if vi is mapped to region r in SPM and set to 0 otherwise.

The cost of a region is the cost of placing two or more interfering nodes in the
same region. The total cost is the summation of the cost of each region. The objective
function to be minimized is the total cost of the interference graph which is given by
(4) and subject to the constraints (5) and (6).

Minimize
X

(vi,vj)∈E′
X[vi, r] × X[vj , r] × cost[vi, vj ], ∀r ∈ R (4)

X
r∈R

max
vi∈Vf

(X[vi, r] × si) ≤ SPMSize (5)

∑
r∈R

X [vi, r] = 1, ∀vi ∈ Vf (6)

The first constraint (5) ensures that the sum of the sizes of all regions doesn’t
exceed the SPM size. The size of a region is the size of the largest function mapped
to the region. Although the max function used above makes the constraint non-linear,
it is linearized during implementation by making sure that all possible combinations
of regions and functions mapped to the SPM does not exceed its size. The second
constraint (6) ensures that a function is not mapped to more than one region. Because
of the presence of two variables X [vi, r] and X [vj , r] in (4), the objective function
is non-linear and cannot be modeled using LP. To make the above function linear, we
introduce a new binary variable U[vi,vj ,r] which is set to 1 if both vi and vj are mapped
to same region r and set to 0 otherwise. The linearized objective function is given by
equation (7).

U [vi, vj , r] ≥ X [vi, r] + X [vj , r]− 1

U [vi, vj , r] ≤ X [vi, r] + X [vj , r]
2

Minimize
∑

(vi,vj)∈E′
U [vi, vj , r]× cost[vi, vj ], ∀r ∈ R (7)

Since solving ILP may require prohibitively large computation resources, in the next
section we propose a heuristic to solve the ‘where to map’ problem.

5.2 SDRM Heuristic

Our heuristic is based on the following observation. If two functions are joined by an
edge in the I-Graph, then mapping them to the same region will incur a cost equal
to the edge weight. The total cost of a region is the summation of edge weights
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Algorithm 2. SDRM Heuristic

Overlay-I-Graph(I-Graph,SPM-Size) Determine-Region(Function vk)
global int num regions = 0 global int size remaining = SPM-Size
global array address[]

1. R[]: array of integer (size)
2. node-address[]: array of integers
3. sort-decreasing(E′)
4. for all e=(vi,vj ) in E′ do
5. for vk = vi, vj ; vk ≤ SPM-Size do
6. if (node-address[vk ]==NULL) then
7. r = Determine-Region(vk)
8. node-address[vk] = address[r]
9. R[r] = max(R[r], size(vk))

10. end if
11. end for
12. end for
13. return R and node-address

1. for all r in R, starting with least cost do
2. find r, s.t. e = (vk ,vj) /∈ E′, vj = MAP(r)
3. if ( found r) then
4. return r
5. end if
6. end for
7. if (size(vk) ≤ size remaining) then
8. r = ++num regions
9. address[r] = SPM-Size - size remaining

10. size remaining - = size(vk)
11. else
12. find r, s.t. cost of placing vk to r is min
13. end if
14. return r

of all such interfering functions. Algorithm 2 outlines the mapping procedure. The
routine Overlay-I-Graph maps nodes of the I-Graph for the given size of the SPM. The
output is the array R representing region sizes and array node-address representing the
function-to-region mapping.. Line (3) sorts the edges of I-Graph in decreasing order
of their weights. This ensures that the most interfering nodes are placed in separate
non-overlapping regions of SPM if not constrained by the SPM size. It then calls the
routine Determine-Region to find the region mapping for all unmapped nodes (4–7) and
updates the corresponding region size after the node is mapped (8–9).

The routine Determine-Region determines the region for each unmapped node. It first
checks if the node can be mapped to an existing region such that there is no interference
with already mapped nodes in that region (1–6). If not, it checks if the node can be
assigned to the remaining space, thereby creating a new region (7–10). Otherwise it
finds an existing region such that the cost of the region after overlaying the node is
minimum (12). In the worst case, all nodes will interfere with one another, complexity
O(E′). Moreover the computation of the cost function will involve checking every
node, complexity O(Vf ). Hence the runtime complexity of the algorithm is O(Vf ×E′).

6 Scratchpad Overlay Manager

The final step in the mapping process involves instrumenting the code with the mapping
information obtained from SDRM or ILP and linking it with the SPM overlay manager
(SOVM). The SOVM is responsible for keeping a track of function call and return
during program execution. It has two data structures, the overlay table and region table.
The overlay is filled with the mapping information during linking phase. The region
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Table 1. Energy Model

Size(KB) SPM(nJ) 4-way Cache(nJ) Size(KB) SPM(nJ) 4-way Cache(nJ)

0.5 0.107 0.534 4 0.145 0.551
1 0.128 0.538 8 0.173 0.564
2 0.134 0.542 16 0.206 0.587

table is used to keep a track of all functions currently residing in each region of SPM.
Each function call and return statement in the application code is replaced by a stub
function call to the SOVM. If the called function is not currently residing in SPM, the
SOVM issues a direct memory access (DMA) command to transfer the function from
main memory. The SOVM manager code then transfers the program control to the first
instruction in the overlayed function. The SOVM and its data are mapped to the main
memory to reduce the mapping pressure on the heuristic. Since the SOVM instructions
and its associated data structures are fetched from the cache, we might see some runtime
performance degradation. Our experiments show that the degradation is minimal.

7 Experimental Setup

The instrumented binary is executed on a cycle accurate simulator that models an Intel
XScale processor. The simulator has been augmented to model an on-chip SPM at the
same level as instruction cache. The system modeled has a 32 KB instruction cache, 32
KB data cache, and a SPM, the size of which can be selected by the system designer.
The simulator models a low power 32MB SDRAM from Micron as the main memory.
The SPM is physically addressed and incoherent with the main memory subsystem. We
perform our experiments on a set of embedded applications from [6]. The applications
used and their respective code sizes are dijkstra(1588), patricia(2904), rijndael(21050),
sha(2376), susan(46808), fft(4688), adpcm(1436), blowfish(9308). The per access
energy numbers for SPM and I-Cache are given in table 1.

8 Results

8.1 First-Fit vs SDRM

In this section we present a comparison of total energy consumption between the ILP,
SDRM and the first-fit heuristic for various benchmarks. For first-fit we assume that
the SPM is divided into variable sized regions (Experimentally we found that variable-
sized region gives better results than equal-sized region). The previous approach does
not precisely state a way of finding these region sizes. To be unbiased, we performed an
exploration for various sizes and number of regions. For example, for x bytes of SPM,
we divided it into x/2, x/4, x/8,... x/r, where the value of r was found by exploration.
The regions were considered in the same order for allocation. Figure 3(a) show the first-
fit energy consumption trend for sha as we explore the number of regions for a 2KB
SPM. As shown in the graph, there is an optimal number of regions (r = 3) in first-fit, at
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(a) SHA Benchmark: first-fit heuristic with
varying number of variable sized regions

(b) Energy Comparisons between ILP,
SDRM and first-fit for various benchmarks

Fig. 3. First-Fit vs SDRM

which the energy consumption is minimum. For smaller number of regions (r < 3), not
all interfering functions can be mapped, since the number of such functions is higher
than the number of regions. Some functions are spilled to main memory, resulting in
a higher energy consumption. As we increase the number of regions, more functions
will be overlayed and the energy consumption decreases, reaching a local minimum
at (r = 3). However, if we compare this value with the first bar which indicates the
energy consumption from SDRM mapping, it is significantly higher. The reason is that
the critical function for sha does not fit into any region of the SPM, corroborating
our argument that pre-determining the number of regions does not lead to optimal
solution. Further increase in number of regions (r > 3) fragments the SPM into smaller
sized regions. As large sized functions cannot fit, this again results in spilling of such
functions to the main memory which causes a rise in energy consumption. On further
increase (r > 4), the SPM gets more fragmented, but the mapping does not change and
there is no change in energy consumption.

To the best of our knowledge, none of the previous approaches have demonstrated
any technique for finding the optimal number of regions at which the energy con-
sumption would be minimal. The only way to find this number is by exploration of
the entire solution space by varying the number and size of regions. The search space
can be reduced by smart exploration techniques, but only up to a limited extent as the
exploration process is a time consuming task involving recompilation and execution
of program every time. The SDRM technique proposed does not incur this expense
as it simultaneously finds the optimal number of regions and their sizes while solving
the mapping problem. The first bar in the graph shows the energy results obtained by
SDRM for a 2KB SPM. SDRM divides the SPM into three variable sized regions and
exhibit a 69% energy reduction compared to first-fit which divides the SPM into three
variable sized but pre-determined regions.

Figure 3(b) shows the comparison of energy consumption between SDRM and first-
fit heuristic for various benchmarks, normalized to the ILP energy values. The optimal
number and size of the regions for first-fit are found by exploration as discussed
previously. From the figure, we observe that the energy for SDRM is always close
to 100%, indicating that the solution obtained from the SDRM heuristic is close to the
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optimal ILP solution. Moreover, the maximum energy reduction is observed for sha,
where the first-fit performs poorly, as the most critical region does not even fit into any
region. On the other hand, since the SDRM does not predetermine the region sizes, the
critical functions are always mapped to some region of the SPM. On an average we
observe a 27% energy reduction for SDRM compared to the first-fit technique.

8.2 Cache-Only vs. Horizontally Split Architecture

In this experiment, we compare our mapping technique for a HSA against a COA. The
COA architecture consists of 2x bytes of I-cache while the HSA consists of x bytes of
SPM and x bytes of I-cache. Figure 4 shows how the HSA architecture with SDRM
technique performs in comparison with a COA for sha benchmark.

For small sizes of SPM, the critical functions do not fit into the SPM at all and
are spilled to cache. Hence there is no significant difference between a COA and a
HSA. As we increase the size to 2048 bytes, all functions can fit into the SPM, and
the functions would need to be overlayed as the aggregate size of 2376 bytes for sha is
greater than 2048 bytes. At this size of SPM, we see a significant reduction in energy
as all the code is fetched and executed from the SPM instead of the I-cache. At a larger
size of 4096 bytes, all the functions can be mapped onto the SPM without any overlay,
which means no calls to the SPM overlay manager and no runtime overhead due to
DMA transfer instructions. We should therefore have observed a further decrease in
energy consumption. However, since we assume a model in table 1 where the energy
per access for SPM increases with size, we observe an increase in energy consumption
with increasing size of SPM. For sha benchmark the HSA shows a reduction of 77%
compared to the COA. The average reduction is 35% across all benchmarks.

This experiment demonstrates the effectiveness of a split memory subsystem
architecture when supported by an intelligent mapping technique like SDRM. In other
words, given an architecture with only an instruction cache, we can always reduce the
energy consumption by splitting the power hungry instruction cache equally into a SPM
and a smaller instruction cache. A pure compiler technique like SDRM can then be used,
requiring just a simple recompilation of the application, with no profiling overhead.

Scratchpad Size (bytes)

Fig. 4. SHA: Energy comparisons between COA and HSA SDRM
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8.3 Performance Overhead

Since the SOVM code is fetched and executed from the I-cache, there is a performance
penalty in terms of runtime cycles due to the extra instructions. One way to reduce this
overhead would be to map the SOVM code to the SPM instead of cache. However,
this would mean less space available to map the functions themselves resulting in a
potential spill of some critical functions to the cache, which means a greater energy
consumption. An additional penalty is incurred due to clearing of the branch target
buffer table, each time an overlayed function is transferred from main memory to SPM.
This is essential, otherwise branch instructions would jump to invalid addresses from
the previous overlayed function, thereby crashing the application. There is also an
additional penalty due to stalls during code transfer from main memory to SPM. We
observe an average performance degradation of 1.9% across all benchmarks.

9 Conclusion

In this paper, we presented a fully-automated, dynamic, code overlaying technique
based on pure compiler analysis for energy reduction for on-chip scratchpad memories
in embedded processors. We formulated an ILP which gives an optimal solution and
a heuristic which gives a near-optimal solution and simultaneously addresses both
the important issues of region size determination and function-to-region mapping.
The proposed technique and HSA architecture succeeds in achieving a greater energy
reduction against a previous approach and a unified instruction COA architecture,
respectively. Compared to the best performing previously known heuristic our approach
achieves an average energy reduction of 27% with an average performance degradation
of just 1.9%. We also demonstrated that by splitting the I-cache into equal sized smaller
I-cache and SPM and using a pure compiler technique like SDRM, we can always
reduce the total energy consumption. This paves the path of reducing the memory
subsystem energy even in general purpose processors employing the split architecture.
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Abstract. With the shift from scaling frequency to scaling the number of cores,
efficiency becomes a primary design consideration. The ability to scale the num-
ber of cores while pushing back the memory and power walls with small in-
creases in die size will require significant improvements in cache efficiencies.
This paper provides strategies to improve L2/L3 data cache efficiencies by cou-
pling voltage scaling with flexible cache management policies. Specifically, we
propose a framework that encompasses i) off-line creation of a voltage-area pro-
file, ii) on-line measurement of cache line utilization to drive voltage scaling,
and, iii) changing the placement function to match the voltage-scaled area and the
program-phase cache footprint. The proposed techniques were applied to several
benchmarks resulting in performance efficiencies doubling, energy efficiencies
improving by 10% (relatively) with a 10% improvement in Energy Delay Product.

1 Introduction

The shift from scaling frequency to scaling the number of cores continues stressing
the off-chip memory bandwidth and demands larger on-chip caches. Although large
caches push back the memory wall, they are inefficient consumers of energy. For a
range of application domains, data cache utilizations have been found to be below 20%,
performance efficiencies below 10% and energy efficiencies in the range 1-5%! [1].
These low efficiencies are not sustainable for a critical architectural resource that is a
dominant on-chip resource consumer, consuming over 70% of the transistor budget [2]
and 15-30% of the energy budget [3,4]. Future growth in execution performance will
need more cores while the increased memory bandwidth required to sustain these cores
necessitates larger caches; both requirements must be met with small increases in die
sizes. Consequently, the ability to scale the number of cores while pushing back the
memory and power walls requires significantly improved cache efficiencies.

At deep sub-micron geometries, the energy consumption in L2/L3 caches is domi-
nated by leakage [4,5,6]. Our approach to improving energy efficiency primarily relies
on dynamically sizing the cache to match the application memory footprint or working
set during a program phase; all remaining cache lines are powered down. Our approach
to sizing differs from past approaches in that, our techniques produce fully functional
smaller caches by concurrently changing the placement function - the manner in which
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main memory lines share cache resources. We refer to this as shaping the cache. There-
fore, there are no references to inactive cache lines in a resized cache.

Sizing and shaping are used together to improve L2/L3 cache efficiency. The key in-
sight is to combine sizing and shaping with voltage scaling in the cache. As voltages are
scaled down, the defect-free failure rate for cache memory cells increases, (e.g., due to
timing failures [7]). Additionally, program phases have varying cache footprints. These
insights are combined into an off-line generated voltage-sizing profile of the cache and
this profile is traversed dynamically using on-line utilization measurements. The uti-
lization measurements are used to up-size/down-size the cache, i.e., pick a new point on
the voltage-size profile. Each change in the cache size is accompanied by a refinement
of the placement function to map memory to the active cache lines. Companion mea-
surements of miss rates are used to modulate sizing decisions to prevent energy savings
that carry performance penalties, i.e., significantly higher miss rates.

The next section reviews an efficiency model proposed earlier and used to evaluate
the implementation proposed here, as well as some insights into behaviors that affect
efficiency (as opposed to raw performance). Section 3 describes the operational model
while Section 4 details the techniques for i) on-line utilization measurement, ii) siz-
ing, and iii) cache shaping. The paper concludes by evaluating the implementation and
providing directions for future work.

2 Modeling and Measuring Efficiency Metrics

To keep the paper self contained, the efficiency model and metrics originally provided
in [1], are reproduced here.

2.1 Definitions and Relationships

At a clock cycle, a cache line may be active (powered) or inactive (powered down). A
cache line is live at a clock cycle if it contains data that will be used prior to eviction,
and it is dead otherwise [8,9]. Thus, on any clock cycle, a cache line is live, dead, or
inactive. For a cache with L lines over T cycles, the total cache cycles expended is the
sum of the live cycles, the dead cycles, and the inactive cycles.

Cache utilization, ηu, is the average percentage of cache lines containing live data at
a clock cycle [8,9]. Utilization is computed as shown in Equation 1.

ηu =
∑i=L−1

i=0 live cycleslinei∑i=L−1
i=0 active cycleslinei

(1)

The effectiveness of the cache, E, is the percentage of cache cycles devoted to live
lines and is shown in Equation 2. Equation 2 can also be written as Equation 3. Effec-
tiveness serves as a metric for comparing programmed cache line shutdown strategies;
the higher the effectiveness, the higher the percentage of the active cache that retains
live data.

E =
∑i=L−1

i=0 (live cycleslinei + inactive cycleslinei)∑i=L−1
i=0 (active cycleslinei + inactive cycleslinei)

(2)
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E = 1.0−
∑i=L−1

i=0 dead cycleslinei

total cycles ∗ L
(3)

The most effective scheme is one where all cache cycles are either live or inactive.
Effectiveness is equivalent to utilization without any energy management. An efficient
cache must be effective with high performance. Cache performance efficiency, ηp, is
defined in Equation 4 as the product of effectiveness and a scaling factor, where tc is
the cache access time, tp is the miss penalty, and m is the miss rate. A cache has ηp = 1
if it does not contribute any dead cycles and has a 100% hit rate.

ηp = E ∗ tc
tc + m ∗ tp

(4)

Energy efficiency, ηe, is the ratio of useful work to total work. Useful work is the
switching energy expended in a cache hit. The total work is the sum of the switching
energy consumed during all cache accesses (hits and misses) and the leakage energy.
A cache has ηe = 1 if all the energy consumed by the cache is equal to the switching
energy consumed during cache hits. Energy efficiency is defined in Equation 5, where
swenergy represents the switching energy and leakenergy represents the leakage energy.
The switching energy for cache hits and misses are assumed to be equal; this assumption
affects the results negligibly.

ηe =
swenergy ∗ numhits

swenergy ∗ (numhits + nummisses) + leakenergy
(5)

Although cache sets or lines may be powered down to reduce leakage energy, addi-
tional misses that may result from the powering down of parts of the cache can increase
program execution times and thus higher overall energy consumption.

2.2 Improving Efficiency

Results that motivate the proposed techniques are low utilizations (< 20%), perfor-
mance ( < 10%) and energy efficiencies (1-5%). This indicates that the majority of the
cache energy and area costs are spent in maintaining dead lines, and that the re-use of
live lines was low, and the ratio of leakage energy to switching energy was very high.

To increase efficiency we have to i) reduce the number of dead lines in the cache, and,
ii) make better use of active lines. The first step improves energy efficiency and the sec-
ond improves performance efficiency. The approach reported here differs from our prior
efforts in i) coupling voltage scaling with resizing and remapping, and ii) creation of a
static voltage-sizing profile that is dynamically traversed, with iii) cache shaping per-
formed dynamically using a model employing utilization and miss-rate. Thus, caches
are one-time reconfigured to produce this profile (post manufacturing) and this profile
is traversed in an application-specific manner. Specifically we identify triggers to move
to a new voltage-sizing point concurrently with the computation of a new placement
function.

3 Operational Model

A conflict set is the set of main memory lines that is mapped to a cache set. They are
constructed using modulo placement for modern caches as illustrated in Figure 1(b),
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Fig. 1. Conflict set construction

Fig. 2. Architecture Model

where a memory line at address L is placed in the cache set L mod S, with S sets
in the cache. Modulo placement exploits spatial locality and maps contiguous memory
locations (lines) to distinct cache sets. Shaping customizes this placement function as
shown in Figure 1(c).

Customized placement is implemented for the L2 cache as shown in Figure 2. The
L2 access is remapped through a lookup table to implement customized placement.
Operationally, when a down-sizing or up-sizing operation is performed, the remapping
table is reloaded with address translations, which is performed in software. We also
assume the existence of the ability to turn off cache lines using the Gated-Vdd approach
proposed by Powell et al.[10] which enables turning off the supply voltages to caches
lines, and has an additional area cost of 3%. The area and energy costs of the lookup
table is addressed in Section 5 and is negligible.

4 On-Line Cache Management

Improving performance and energy efficiencies relies on the following: off-line charac-
terization, on-line computation of cache utilization, cache sizing, and, cache shaping.

4.1 Off-Line Characterization

Several studies have documented the challenges of the manufacturing process to fab-
ricate devices with design tolerances because of the significant variations in transis-
tor device characteristics within a die (WID), across dies (D2D), and between wafers
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(W2W) [11,12]. We assume i) the existence of built-in-self-test (BIST) capability for
the cache as described in Agarwal et al.[13], ii) operation of the L2 cache as a separate
voltage island (for example, the Barcelona die has separate voltage island for the L3
cache), and iii) the availability of four voltage levels. The BIST is operated off-line at
each voltage level to identify fault free sets. A cache set is marked as failed if one cache
line within it is marked failed - this is a line with at least one failed bit cell. Failures
are assumed to be monotonic, i.e., a line marked faulty at a voltage level cannot be
operational at a lower voltage level. This information is captured in a voltage-sizing
map that reflects available fault free cache sets at each voltage level. This map can be
made more aggressive by further down-sizing the cache at each voltage. The following
sections deal with when to resize (equivalently change voltage levels and power down
unused lines) and how to remap memory to the active cache sets.

Due to the lack of real failure rate data, we use two synthetic voltage-area maps. The
first provides caches sized at 25%, 50%, 75%, and 100% of the original cache at re-
spective voltage levels (i.e., the highest level is associated with a fully sized cache). The
second map utilizes cache sizes of 60%, 70%, 80%, and 100%. This map is informed
in part by our prior work [14] that noted significant performance penalties when the
unusable cache size exceeded 40%. Utilization values uniformly index both maps, i.e.,
a measured average line utilization of 50% would index into the either a cache size of
50% or 70% respectively.

4.2 Online Computation of Cache Line Utilization

We found that effective sampling of the activity in the data cache provides a reasonable
estimate of utilization. Within each set, the last hit is recorded via a hit status bit asso-
ciated with each line. The status bit will be equal to 1 for the last line hit in the set, and
0 for all other lines in the set. The hit status bits of all lines are sampled every S cycles.
The utilization is computed every W > k×S cycles for some integer k. The utilization
of a line is determined by the number of times its hit status bit is set in this interval W .
If it is k, the utilization for that line is 100%. This cache line utilization averaged across
all cache lines is the measured global cache utilization. Our simulations used a value
of one million cycles for one sampling period, and used 5 million L2 cache references
as the value for W . The sampled values are within 10% of the actual utilization values
in absolute terms for all benchmarks (for the majority of the benchmarks the measured
utilization is within 5% of actual). Future work will focus on automatic phase detection
schemes such as those described in [15]. Since we sample the cache infrequently, our
sampling and the computation of utilization is done through software. The software cost
of the sampling and computation (< 1%) is negligible compared to the execution time
and energy savings.

4.3 Cache Sizing

The measured utilization at the end of each phase (5M references) is used to select a
cache size/voltage by indexing the voltage-sizing map. Due to the lack of real failure
rate data, we use two synthetic voltage-area maps as explained in Section 4.1. Thus, at
the end of a phase, the average measured cache utilization is used to index a map to
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obtain a new cache size, and a new placement function is computed and loaded into the
address remapping table in the L2.

4.4 Shaping the Cache

Shaping the cache is comprised of two steps - i) computing the placement function for
a specific cache size, and ii) configuring the cache to implement this new mapping.

Computing the Placement Function. At the end of a phase, the global cache utiliza-
tion across all sets is computed. This utilization is used to index the voltage-sizing map
which identifies the number of sets that will be active in the next phase. The conflict
sets of the cache sets to be powered down must be merged with conflict sets that map to
cache sets that are active in the next phase. Merging takes place between active cache
sets that had the lowest utilization in the last phase. In our current implementation only
one cache up-sizing operation is performed - to full cache operation. The reason for
this constraint was driven primarily by empirical evidence that up-sizing tended to oc-
cur on phase boundaries and fine grained up-sizing was not of much benefit for these
benchmarks.

For comparison, we also evaluate nearest neighbor merging described in Agarwal
et al. [13] where only the pairs of conflict sets that map to adjacent sets in the cache are
merged. This approach simpler in that no status information is maintained nor is any
online decision made and is Option 2 in Figure 3. However, both techniques are invoked
using the same criteria.

Configuring the Cache. The remapping is implemented by updating the address remap-
ping table which is illustrated in Figure 4. The configuration update is performed in soft-
ware. The hardware logic requires BIST data that contains information on which sets fail
at what voltage level. A set of four mask registers contain the status of each cache set at
each of the four voltage levels. For a given cache set, the voltage level indicator indexes
the mask bits for the set. The selected mask bit is used to power down the corresponding
set or leave it powered on. For a 256KB cache with 256 sets, these mask registers will
use, in total, 256 ∗ 4 bits. Additionally, hit status bits have to be maintained per cache
line (2048 bits for a 256KB 8-way 128 byte L2 cache).

The major investment in area comes from the lookup table used for remapping. For
the 256 KB L2 used in our experiments, 256, byte-wide entries are required for this
look up table. The new tag is the old tag augmented with the original cache set index
because the cache tag array may contain tags from customized as well as modulo place-
ment. This adds another 256*8 bits, resulting in a total additional storage of 896 bytes
for customized placement, which is insignificant compared to the L2 cache size. The
energy consumption of this additional logic is less than 1% of the total cache energy
consumption. When the placement is changed, cache lines that had multiple conflict
sets mapping to it are written back if dirty and invalidated to avoid any synonym or
aliasing problems. The address remapping is assumed to be accessible to the compiler
via special custom instructions.

In terms of latency, an additional cycle is required for the address translation logic.
While this can be easily masked by performing the lookup in parallel with an access to
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Input: util[ ], utilization, missrate
Output: remap[ ]

1: initialize(trigger old, trigger new, new voltageindex, old voltageindex)
2: trigger new = utilization ∗ tc/(tc + tp ∗missrate) { This is the metric used to

detect phases in memory behavior;this combines utilization and miss rate}
3: if trigger new > trigger old then
4: new voltageindex = int(utilization)/25 {Defining four voltage indices

based on utilization, with index 3 corresponding to the highest voltage level}
5: else
6: turn on all sets(); new voltageindex = 3 {if performance is suffering more

than the savings in utilization, turn all sets back on}
7: end if
8: if new voltageindex > old voltageindex then
9: new voltageindex = old voltageindex {We do not up-size the cache in steps

but turn all sets back on, whereas down-sizing can occur in steps}
10: end if
11: turn off(new voltageindex) {schedule cache sets to turn off based on corre-

sponding voltage level which were identified during BIST}
12: for all faulty cache sets , fc , at new voltageindex do
13: OPTION 1: remap(fc) = faultfree nextneighbor set
14: OPTION 2: remap(fc) = faultfree lowestutil set
15: OPTION 2: update(util[ ]) { the utilization array is updated with the utilization

of the set being remapped being added to the set to which it is remapped}
16: end for{ Option 1 signifies the next neighbor strategy, whereas Option 2 is the

utilization driven remapping strategy}
17: trigger old = trigger new
18: old voltageindex = new voltageindex

Fig. 3. Shaping Algorithm using Utilization

Fig. 4. Hardware Implementation
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the L1 cache, even if the lookup was not performed in parallel with the L1 cache access,
the additional cycle does not alter execution time by more than 2% in our simulations.

5 Performance Evaluation

5.1 Simulation Methodology and Assumption

We simulated the execution of a subset of applications from the SPEC2000 suite [16],
DIS suite [17] and Olden [18] using the Simplescalar 3.0 [19] simulator.

We obtained energy estimates using Cacti 5.1 [20] for 70 nm technology (with the
latest version using the ITRS-HP technology models). We assume the L2 cache access
latency to be fixed at 15 cycles. Our definition assumes that the read and write energies
are the same—which increases energy efficiency compared to a more precise definition.
Leakage energy is predominant and cache writes constitute a small fraction of the total
number of accesses, (for example, Tarjan et al.[21] estimates that at 70 nm, greater than
95% of the total cache power is leakage) therefore this assumption affected efficiency
by less than 1%, as given by Cacti estimates. The energy was calculated with the cache
operating at the highest expected frequency as given by Cacti estimates. The L1 cache
configuration was 16KB 2-way with 64-byte lines. The results are for the cache only,
and do not include impact of voltage scaling on the processor datapath.

5.2 Results and Discussion

The five schemes represented in the figure are as follows:

1. No energy management representing traditional caches
2. Next neighbor scheme (1) representing the next neighbor scheme with cache sizing

maps of 60, 80, 90 and 100%
3. Customized Shaping scheme (1) representing the utilization based remapping

scheme with cache sizing maps of 60, 80, 90 and 100%
4. Next neighbor scheme (2) representing the next neighbor scheme with cache sizing

maps of 25, 50, 75 and 100%
5. Customized Shaping scheme (2) representing the utilization based remapping

scheme with cache sizing maps of 25, 50, 75 and 100%

From Figure 5, it can be observed that effectiveness has increased significantly across
all applications with all management schemes. The next neighbor scheme perform as
well as the customized shaping schemes in terms of effectiveness – this can be explained
by the utilization tracking mechanism which predicts shut down phases well.

However, the performance of the schemes diverge when performance efficiencies
are compared, as shown in Figure 6. When performance efficiencies are compared,
the customized shaping schemes relatively outperforms the next neighbor scheme on
average by 10% (Note that a 1% difference in performance efficiency represents a 10%
improvement). Compared to the traditional caches, performance efficiencies are more
than doubled in many benchmarks.
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Fig. 6. Performance Efficiency comparison

The comparison of energy efficiencies are shown in Figure 7. Again, it is seen that
energy efficiency increases are broad based over the traditional cache for many bench-
marks. Though the energy efficiency improvements as an absolute percentage seem
modest, it has to be factored in that there are some fundamental constraints while at-
tempting to improve energy efficiency. Given, that an L2 cache line is accessed only
once every few million cycles, leakage energy dominates. A 1% absolute improvement
in energy efficiency is a 25% increase — this has to be factored in the evaluation.
The customized shaping scheme consistently outperforms the next neighbor schemes
by 0.05–1.0%, representing an average absolute improvement of 0.5% (again, this is a
10-15% improvement relative to the values of energy efficiency).

The increase in energy efficiency is captured by looking at the Energy Delay Prod-
uct as shown in Figure 8. EDP is calculated for the cache alone, since it is assumed to
be in a separate voltage domain. EDP for most benchmarks are reduced by more than
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Fig. 8. Energy Delay Product comparison

15% using the customized shaping scheme with no EDP regressions for any bench-
mark. The next neighbor approach, however suffers significant regression for many
benchmarks;for example, the EDP for benchmark health doubled using next neighbor
(this is not represented in the figure). In summary, both energy management schemes
perform well using the online utilization tracking mechanism, whereas the customized
shaping scheme is able to provide an additional 10-15% relative improvements in en-
ergy efficiencies and EDP.

6 Related Work

The various techniques for reducing leakage in instruction and data caches include turn-
ing off cache lines, sets or ways (examples include Abella et al.[22], Kaxiras et al.[9],
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Powell et al.[10], Zhang. C et al.[23], Zhang M. and Asanovic [4] and Zhou et al.[24])
or putting cache lines in a drowsy state as proposed by Flautner et al. [5], etc. Zhang W.
et al.[3,25] use special instructions to schedule instruction cache turn offs using loop
and branch information or maintain the cache in a drowsy state activating cache lines
prior to access. Whenever cache sets are turned off, generally an access to the cache set
results in an expensive memory access in addition to the power-up latency.

In contrast, our approach first sizes fully functional caches that avoids costly ac-
cesses to inactive cache lines, although we have to manage the miss rate effectively to
avoid substantial performance impact. This is achieved via shaping customized to the
application reference behavior. Our heuristics are based on merging conflict sets which
permits our techniques to be more aggressive in scheduling power-down events.

Relative to our prior work [1,14], the approach here is distinct in that it i) integrates
voltage scaling, ii) computes a static profile of voltage-sizing behavior, and iii) proposes
to dynamically traverse this profile using run-time measured utilization. In addition
we propose a low cost, and effective approach for the run-time computation of cache
set/line utilization that could readily be used to drive other cache management policies.

7 Conclusion

Scaling the number of cores for performance places a premium on cache sizes. Large
L2/L3 caches are inefficient consumers of energy and area therefore buying perfor-
mance with larger caches is no longer feasible. We believe that efficiency will be a major
driver for future processor design. This paper presents a framework and implementation
of an approach to make substantive improvements in the efficiency of on-chip caches.
Specifically, we couple voltage scaling with more flexible cache management policy
(placement) to realize gains in cache efficiency. We achieve about a 10% improvement
in cache energy efficiency resulting in an EDP improvement of 10%.
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