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Abstract. The data structures dealt with in formal concept analysis
are referred to as contexts. In this paper we study contexts within the
framework of discrete duality. We show that contexts can be adequately
represented by a class of sufficiency algebras called context algebras. On
the logical side we define a class of context frames which are the semantic
structures for context logic, a lattice-based logic associated with the class
of context algebras. We prove a discrete duality between context alge-
bras and context frames, and we develop a Hilbert style axiomatization of
context logic and prove its completeness with respect to context frames.
Then we prove a duality via truth theorem showing that both context al-
gebras and context frames provide the adequate semantic structures for
context logic. We discuss applications of context algebras and context
logic to the specification and verification of various problems concerning
contexts such as implications (attribute dependencies) in contexts, and
derivation of implications from finite sets of implications.
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1 Introduction

A fundamental structure arising in formal concept analysis (FCA) [7,21] is that
of a ‘context’. In this paper we will consider this notion within the framework
of what we refer to as discrete duality. While a classical duality, such as that
of, for example, Stone [19] and Priestley [18], includes a representation of a
class of algebras in terms of a topological structure, a discrete duality includes
a representation for a class of algebras in terms of the relational structures
that provide the frame semantics (or equivalently, Kripke-style semantics) of the
lattice-based logic associated with the class of algebras. The frame semantics is
given in terms of a relational structure without a (non-discrete) topology which
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explains the name of this type of duality. General principles of establishing a
discrete duality are presented in [14]. In this paper we elaborate in detail a
discrete duality for the structures arising in connection with problems considered
in formal concept analysis.

First, we show that contexts can be adequately represented by an axiomatic
and signature extension of the class of sufficiency algebras [6], referred to as
context algebras. The lattice-based logic associated with the class of context al-
gebras we call context logic. Context algebras are Boolean algebras with a pair
of sufficiency operators forming a Galois connection. The sufficiency operators
of context algebras are the abstract counterparts of the maps of extent and in-
tent determined by a context. On the logical side we define a class of context
frames which are the semantic structures for context logic. We prove a discrete
duality between context algebras and context frames. This duality is established
in two steps: we show a representation theorem for context algebras such that
a representation algebra is constructed from a context frame and is shown to
contain (up to isomorphism) a given algebra as a subalgebra; next we show a
representation theorem for context frames such that a representation frame is
constructed from a context algebra and is shown to contain (up to isomorphism)
a given context frame as a substructure. A discrete duality for sufficiency alge-
bras is presented in [6], see also [12]. It extends Jónsson-Tarski duality [10] for
Boolean algebras with normal and additive operators to Boolean algebras with
a sufficiency operator. The discrete duality proved in the present paper extends
this result further to context algebras. Discrete dualities for distributive lattices
with operators forming a Galois connection and also some other similar connec-
tions are developed in [15]. Next, we develop a Hilbert-style axiomatization of
context logic and prove its completeness with respect to context frames.

Second, we discuss applications of context algebras and context logic to the
specification and verification of various problems concerning contexts and con-
cepts. We consider three groups of problems: first, problems related to the ver-
ification of whether a pair ‘set of objects, set of attributes’ is a formal concept
having some properties; second, attribute dependencies in information systems
which are closely related to contexts; third, implications in contexts and deriva-
tion of implications from finite sets of implications. We indicate that the tasks
from all these three groups can be specified within the framework of context
algebras and context logic presented in this paper. The deduction tools of con-
text logic and the theories of context algebras can then be used for solving these
problems.

2 Context Algebras and Frames

Central in formal concept analysis is the notion of a Galois connection between
two types of entities. Algebraically this may be captured by two maps e and i
over a Boolean algebra, and relationally by a relation between the two types of
entities. In this section we formalise this in the notions of context algebra and
context frame.
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Definition 1. A context algebra (W,∨,∧,¬, 0, 1, e, i) is a Boolean algebra
(W,∨,∧,¬, 0, 1) endowed with unary operators e, i satisfying, for any a, b ∈ W ,

(AC1) g(a ∨ b) = g(a) ∧ g(b) for g = e, i
(AC2) g(0) = 1 for g = e, i
(AC3) a ≤ e(i(a))
(AC4) a ≤ i(e(a)).

An operator g : W → W satisfying (AC1) and (AC2) is called a sufficiency
operator, see [6]. It follows that the sufficiency operators e and i are antitone
and form a Galois connection, that is,

a ≤ i(b) iff b ≤ e(a), for any a, b ∈ W.

From this Galois connection we can separate the two types of entities and the
relation between them thereby deriving a formal context arising in formal con-
cept analysis. From a context algebra A = (W,∨,∧,¬, 0, 1, e, i) we may de-
fine the formal context CA = (GA,MA, IA), where GA = {o | ∃a, o ≤ e(a)},
MA = {a | ∃o, a ≤ i(o)} and IA = {(o, a) | o ≤ e(a)} = {(o, a) | a ≤ i(o)}. Then
GA = dom(IA) and MA = ran(IA).

Lemma 1. Let A = (W,∨,∧,¬, 0, 1, e, i) be a context algebra. The sufficiency
operators e and i of A are the mappings of extent and intent determined by a
formal context CA = (GA,MA, IA), in the sense that, for any a, o ∈ W ,

o ≤ e(a) iff o ∈ eA({a}) = {o | oIAa}
and

a ≤ i(o) iff a ∈ iA({o}) = {a | oIAa}.
On the other hand, given a formal context C = (G,M, I), we may define a
context algebra (WC , eC , iC) where WC = 2G∪M , eC = [[I]] and iC = [[I−1]], where
for any A ∈WC and T = I, I−1,

[[T ]](A) = {x ∈ G ∪M | ∀y, y ∈ A ⇒ xTy}.
Lemma 2. Let C = (G,M, I) be a formal context. The mappings of extent and
intent determined by C are the sufficiency operators of the context algebra AC =
(WC , eC, iC), that is, e = eC and i = iC.

Theorem 1

(a) If a formal context C = (G,M, I) satisfies G = dom(I) and M = ran(I),
then C = CAC .

(b) If a context algebra A = (W,∨,∧,¬, 0, 1, e, i) is complete and atomic and
such that W = 2X where X = {o | o ∈ e({a})} ∪ {a | a ∈ i({o})}, then
A = ACA .

Definition 2. A context frame F = (X,R, S) is a non-empty set X endowed
with binary relations R and S such that S = R−1.
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Although relation S is definable from R, the setting with two relations enables us
to avoid any relational-algebraic structure (in this case the operation of converse
of a relation) in the language of context logic developed in Section 3. In this way
the intended object language is singular, the required constraint is formulated
only in the definition of its semantics, that is, in the metalanguage.

From a context frame F = (X,R, S) we may define the formal context CF =
(GF ,MF , IF ), where GF = dom(R), MF = ran(R), and IF = R.

Lemma 3. Let F = (X,R, S) be a context frame. The sufficiency operators
determined by F are the mappings of extent and intent determined by a formal
context CF = (GF ,MF , IF ), that is, [[R]] = eF and [[S]] = iF .

On the other hand, given a formal context C = (G,M, I), we may define a
context frame FC = (XC , RC , SC), where XC = G ∪M , RC = I and SC = I−1.

Lemma 4. Let C = (G,M, I) be a formal context. The mappings of extent and
intent determined by C are the sufficiency operators determined by the context
frame FC = (XC , RC , SC), that is, e = [[RC ]] and i = [[SC ]].

Theorem 2

(a) If a formal context C = (G,M, I) satisfies G = dom(I) and M = ran(I),
then C = CFC .

(b) If a context frame F = (X,R, S) satisfies X = dom(R) ∪ ran(R), then
F = FCF .

We now establish a discrete duality between context algebras and context frames.
First, we show that from any context frame we can define a context algebra. Let
(X,R, S) be a context frame. Then the binary relations R and S over X induce
sufficiency operators over 2X , namely, ec : 2X → 2X defined, for any A ∈ 2X , by

ec(A) = [[R]](A) = {x ∈ X | ∀y ∈ X, y ∈ A ⇒ xRy},
and ic : 2X → 2X defined for any A ∈ 2X , by

ic(A) = [[S]](A) = {x ∈ X | ∀y ∈ X, y ∈ A ⇒ xSy}.
Thus,

Definition 3. Let (X,R, S) be a context frame. Then its complex algebra is the
powerset Boolean algebra with sufficiency operators (2X ,∪,∩,−, ∅, X, ec, ic).

Theorem 3. The complex algebra of a context frame is a context algebra.

Proof: The operators ec and ic are sufficiency operators as shown in [12]. By
way of example we show that (AC3) is satisfied. Let A ⊆ X , we show that
A ⊆ ec(ic(A)). Let x ∈ X and suppose that x ∈ A but x /∈ ec(ic(A)). It follows
that there is y0 ∈ ic(A) such that (x, y0) �∈ R. By definition of ic, for every
z ∈ A, y0Sz. In particular, taking z to be x, we have y0Sx. Since S = R−1, we
have xRy0, a contradiction. The proof of (AC4) is similar. ��
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Next we show that any context algebra in turn gives rise to a context frame.
In the case of a sufficiency operator g over a powerset Boolean algebra 2X , a
relation rg over X may be defined, as in [6], by

xrgy iff x ∈ g({y}), for any x, y ∈ X.

In general, as in [12], we invoke Stone’s representation theorem and then define,
from each sufficiency operator g : W →W , a binary relation Rg over the family
X (W ) of prime filters of W by

FRgG iff g(G) ∩ F �= ∅, for any F,G ∈ X (W )

where for A ⊆ W , g(A) = {g(a) ∈ W | a ∈ A}. It is an easy exercise to show
that Rg is an extension of rg. Thus,

Definition 4. The canonical frame of a context algebra (W,∨,∧,¬, 0, 1, e, i) is
the relational structure (X (W ), Rc, Sc), where X (W ) is the family of prime filters
of W , Rc = Re and Sc = Ri.

Theorem 4. The canonical frame of a context algebra is a context frame.

Proof: We show that (Rc)−1 ⊆ Sc. Let (F,G) ∈ (Rc)−1. Then (G,F ) ∈ Rc,
that is e(F ) ∩ G �= ∅. Hence, there is some a0 such that a0 ∈ G and a0 ∈ e(F ).
Take b0 to be i(a0). Then b0 ∈ i(G) and b0 ∈ i(e(F )). Now i(e(F )) ⊆ F since
if a ∈ i(e(F )) then a = i(e(x)) for some x ∈ F , so, by (AC4) and since F is
up-closed, a = i(e(x)) ∈ F . Thus b0 ∈ i(G)∩F , that is, i(G)∩F �= ∅. The proof
of the other inclusion is similar. ��
Let (W,∨,∧,¬, 0, 1, e, i) be a context algebra. Then

(2X (W ),∪,∩,−, ∅,X (W ), ec, ic)

is the complex algebra of the canonical frame (X (W ), Rc, Sc) of the original
context algebra. The relationship between these algebras is captured by the
Stone mapping h : W → 2X (W ) defined, for any a ∈ W , by

h(a) = {F ∈ X (W ) | a ∈ F}.
This mapping is an embedding and preserves operators i and e over W . That is,

Theorem 5. For any context algebra (W,∨,∧,¬, 0, 1, e, i) and any a ∈ W ,

h(e(a)) = ec(h(a)) and h(i(a)) = ic(h(a)).

Proof: We give the proof for e; that for i is similar. We need to show, for any
a ∈W and any F ∈ X (W ), that

e(a) ∈ F iff ∀G ∈ X (W ), a ∈ G ⇒ e(G) ∩ F �= ∅.
Assume a ∈ G and e(G) ∩ F = ∅. Then e(a) ∈ e(G) and hence e(a) �∈ F . On
the other hand, assume e(a) �∈ F . Let a dual of e, denoted ed, be defined, for
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any b ∈ W , by ed(b) = −e(−b). Consider the set Ze = {b ∈ W | ed(b) �∈ F}.
Let F ′ be the filter generated by Ze ∪ {a}, that is, F ′ = {b ∈W | ∃a1, . . . , an ∈
Ze, a1 ∧ . . . ∧ an ∧ a ≤ b}. Then F ′ is proper. Suppose otherwise. Then for
some a1, . . . , an ∈ Ze, a1 ∧ . . . ∧ an ∧ a = 0, that is, a ≤ −(a1 ∧ . . . ∧ an) =
−a1 ∨ . . . ∨ −an. Since e is antitone, e(−a1 ∨ . . . ∨ −an) ≤ e(a). Thus e(−a1) ∧
. . . ∧ e(−an) ≤ e(a), that is, −ed(a1) ∧ . . . ∧ −ed(an) ≤ e(a). By definition of
Ze we have ed(a1), . . . , ed(an) �∈ F so −ed(a1), . . . ,−ed(an) ∈ F . Since F is a
filter, −ed(a1) ∧ . . . ∧ −ed(an) ∈ F and hence e(a) ∈ F which contradicts the
original assumption. So, by ([4], p188), there is a prime filter G containing F ′.
Since a ∈ F ′, a ∈ G and hence G ∈ h(a). Also e(G) ∩ F = ∅ since if there is
some b ∈ W with b ∈ e(G) and b ∈ F , then b = e(c) for some c ∈ G and thus
e(c) ∈ F , so ed(−c) �∈ F hence −c ∈ Ze ⊆ F ′ ⊆ G and thus c �∈ G, which is a
contradiction. ��
On the other hand, let (X,R, S) be a context frame. The (X (2X), Rc, Sc) is the
canonical frame of the complex algebra (2X ,∪,∩,−, ∅, X, ec, ic) of the original
context frame. The relationship between these frames is captured by the mapping
k : X → X (2X) defined, for any x ∈ X , by k(x) = {A ∈ 2X | x ∈ A}. It is easy
to show that k is well-defined and an embedding. All that remains is to show
that k preserves structure, that is,

Theorem 6. For any context frame (X,R, S) and any x, y ∈ X,

xRy iff k(x)Rck(y) and xSy iff k(x)Sck(y).

Proof: We give the proof for R; that for S is similar. Note, for any x, y ∈ X ,

k(x)Rck(y) iff [[R]](k(y)) ∩ k(x) �= ∅
iff ∃A ∈ 2X , y ∈ A ∧ ∀z ∈ X, z ∈ A⇒ xRz.

Suppose k(x)Rck(y) does not hold. Let A = {y}. Then y ∈ A and hence, for
some z ∈ A, xRz does not hold. Therefore, z = y and xRy does not hold.
Suppose k(x)Rck(y). Let A = {y}. Then y ∈ A and hence xRy. ��
Therefore, we have a discrete duality between context algebras and context
frames.

Theorem 7

(a) Every context algebra can be embedded into the complex algebra of its canon-
ical frame.

(b) Every context frame can be embedded into the canonical frame of its complex
algebra.

3 Context Logic

In order to extend the duality established in Theorem 7 to a Duality via Truth
as considered in [13], we need a logical language presented in [8].
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Definition 5. Let LC be a modal language extending the language of classical
propositional calculus, that is, its formulas are built from propositional variables
taken from an infinite denumerable set V and the constants true (1) and false
(0), with the classical propositional operations of negation (¬), disjunction (∨),
conjunction (∧), and with two unary operators [[]]1 and [[]]2. As usual, → and ↔
are definable:

φ→ ψ := ¬φ ∨ ψ and φ↔ ψ := (φ→ ψ) ∧ (ψ → φ).

Also the constants are definable: 0 := φ∧¬φ and 1 := φ∨¬φ. We define 〈〈〉〉i,
by 〈〈〉〉iφ := ¬[[]]i¬φ (for i = 1, 2). Let For denote the set of all formulae of LC.

Within LC the conditions on a context algebra can be captured, using a Hilbert-
style axiomatisation, as follows:

Axioms:

(LC0) Axioms of the classical propositional calculus (see eg [16])
(LC1) [[]]i(φ ∨ ψ) ↔ [[]]iφ ∧ [[]]iψ (for i = 1, 2)
(LC2) [[]]i0 = 1 (for i = 1, 2)
(LC3) φ→ [[]]1[[]]2φ
(LC4) φ→ [[]]2[[]]1φ.

Rules of inference: modus ponens and

φ→ ψ

[[]]iψ → [[]]iφ
(for i = 1, 2).

If φ is obtained from the axioms by repeated applications of the inference
rules, then φ is called a theorem of LC, written � φ. Axioms (LC3) and (LC4)
reflect the fact that the two sufficiency operators form a Galois connection. Some
logics arising from a Galois connection are also considered in [20].

The semantics of context logic LC is based on context frames (X,R, S) where
X is a non-empty set endowed with binary relations R and S such that S = R−1.
A LC-model based on a context frame (X,R, S) is a system M = (X,R, S,m),
where m : V ∪{0, 1} → 2X is a meaning function such that m(p) ⊆ X for p ∈ V ,
m(0) = ∅, m(1) = X . The satisfaction relation |= is defined as follows, where
M,x |= φ means that the state x satisfies formula φ in model M :

M,x |= p iff x ∈ m(p), for every p ∈ V

M, x |= φ ∨ ψ iff M,x |= φ or M,x |= ψ

M, x |= φ ∧ ψ iff M,x |= φ and M,x |= ψ

M, x |= ¬φ iff not M,x |= φ

M, x |= [[]]1φ iff ∀y ∈ X, M, y |= φ implies xRy
M, x |= [[]]2φ iff ∀y ∈ X, M, y |= φ implies xSy.

From now on we shall write [[R]] and [[S]] instead of [[]]1 and [[]]2, respectively.
A notion of truth of formulae based on the LC semantics is defined as usual. A
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formula φ ∈ LC is true in a context model M , written M |= φ, whenever for
every x ∈ X we have M,x |= φ. A formula φ ∈ LC is true in a context frame
(X,R, S) iff φ is true in every model based on this frame. And finally a formula
φ ∈ LC is valid in the logic LC, called LC-valid and written |= φ, iff it is true in
every context frame.

Theorem 8. (Soundness) For any LC-formula φ ∈ For, if φ is a theorem of
LC then φ is LC-valid.

Proof: Proving soundness is an easy task — it involves showing that the axioms
of LC are LC-valid and the rules preserve LC-validity. ��
Following a technique due to Rasiowa [16] to prove completeness, we need some
constructions and lemmas. The relation ≈ defined on the set For of formulae of
LC by:

φ ≈ ψ iff � (φ↔ ψ)

is an equivalence relation compatible with the operations ∨,∧,¬, [[R]], [[S]], 0, 1.
This induces a quotient algebra

A≈ = (For|≈,∪,∩,−, 0≈, 1≈, [[R]]≈, [[S]]≈)

where For|≈ is the family of equivalence classes of ≈ and, for any φ, ψ ∈ For,

|φ|∪|ψ| = |φ∨ψ| |φ|∩|ψ| = |φ∧ψ| −|φ| = |¬φ| 0≈ = |φ∧¬φ| 1≈ = |φ∨¬φ|
[[T ]]≈|φ| = |[[T ]]φ| (for T = R,S).

Then for the definable connectives, → and ↔, we postulate:

|φ| → |ψ| = |φ→ ψ| and |φ| ↔ |ψ| = |φ↔ ψ|.
Lemma 5

(a) A≈ is a non-degenerate (i.e. at least two-element) context algebra.
(b) For any φ, ψ ∈ For, |φ| ≤≈ |ψ| iff � φ→ ψ.
(c) For any φ ∈ For, � φ iff |φ| = 1≈.
(d) For any φ ∈ For, |¬φ| �= ∅ iff not � φ.
Proof: For (a), we show that the Lindenbaum algebra satisfies conditions (AC1)-
(AC4). For (AC1) and (AC2) we consider [[R]]≈; the proofs for [[S]]≈ are similar.

For (AC1), [[R]]≈(|φ| ∪ |ψ|) = [[R]]≈(|φ ∨ ψ|) = |[[R]](φ ∨ ψ)| = |[[R]]φ ∧ [[R]]ψ|
= |[[R]]φ| ∩ |[[R]]ψ| = [[R]]≈|φ| ∩ [[R]]≈|ψ|.

For (AC2), [[R]]≈0≈ = [[R]]≈|φ ∧ ¬φ| = |[[R]](φ ∧ ¬φ)| = |[[R]](0)| = |1| =
|φ ∨ ¬φ| = 1≈.

For (AC3), we have to show that for any formula φ, |φ| ⊆ [[R]]≈[[S]]≈|φ|. By
(LC3) and the definition of the operators in the Lindenbaum algebra A≈ we
have |φ| ⊆ |[[R]][[S]]φ| = [[R]]≈[[S]]≈|φ|. The proof of (AC4) is similar.

For (b), |φ| ≤≈ |ψ| iff |φ| ∪ |ψ| = |ψ| iff |φ ∨ ψ| = |ψ| iff � φ ∨ ψ ↔ ψ iff
� φ→ ψ.
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For (c), assume � φ. Since � φ→ ((φ→ φ) → φ), by applying modus ponens,
we get � (φ→ φ) → φ. By (b), |φ→ φ| ≤≈ |φ|, hence 1≈ = |φ|. Now assume that
|φ| = 1≈. Since 1≈ = |φ→ φ|, we have |φ→ φ| ≤≈ |φ|. By (b), � (φ → φ) → φ.
Since � φ→ φ, by applying modus ponens we get � φ.

For (d), we use (b) and the fact that |φ| = 1≈ iff |¬φ| = 0≈ = ∅. ��
Consider the canonical frame (X (A≈), R≈, S≈) of the algebra A≈ where, for any
F,G ∈ X (A≈),

FT≈G iff [[T ]]≈(G) ∩ F �= ∅, for T = R,S.

Definition 6. The canonical LC-model based on the canonical context frame
(X (A≈), R≈, S≈) of A≈ is a system M≈ = (X (A≈), R≈, S≈,m≈), where the
meaning function m≈ : V ∪ {0, 1} → 2X(A≈) is defined, for any p ∈ V ∪ {0, 1}
and any F ∈ X (A≈), by

F ∈ m≈(p) iff |p| ∈ F.

The mapping m≈ extends homomorphically to all LC-formulae, that is, for any
φ, ψ ∈ For and T = R,S,

m≈(¬φ) = −m≈(φ), m≈(φ∨ψ) = m≈(φ)∪m≈(ψ), m≈([[T ]]φ) = [[T ]]≈(m≈(φ)).

Consider the mapping h≈ : A≈ → 2X (A≈) defined as on page 216, that is, for
any |φ| ∈ A≈,

h≈(|φ|) = {F ∈ X (A≈) | |φ| ∈ F}.
We know from Theorem 5 that h≈ preserves the operations (all operations, not
only the sufficiency operator).

Lemma 6. Let M≈ be the canonical LC-model based on the canonical context
frame (X (A≈), R≈, S≈). Then, for any F ∈ X (A≈) and any LC formula φ,

M≈, F |= φ iff F ∈ h≈(|φ|).
Proof: For this we use structural induction on LC-formulae φ. By definition, for
any basic formula p ∈ V ,

M≈, F |= p iff F ∈ m≈(p) iff |p| ∈ F iff F ∈ h≈(|p|).
Assume as induction hypothesis that the claim holds for φ, ψ ∈ For. We consider
the cases where θ is φ ∨ ψ and [[R]]φ; the other cases are similar.

M≈, F |= φ ∨ ψ iff M≈, F |= φ or M≈, F |= ψ

iff F ∈ h≈(|φ|) or F ∈ h≈(|ψ|)
iff |φ| ∈ F or |ψ| ∈ F

iff |φ| ∪ |ψ| ∈ F F is a prime filter
iff |φ ∨ ψ| ∈ F

iff F ∈ h≈(|φ ∨ ψ|).
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M≈, F |= [[R]]φ iff ∀G ∈ X (A≈), M≈, G |= φ implies FR≈G
iff ∀G ∈ X (A≈), G ∈ h≈(|φ|) implies FR≈G
iff F ∈ [[R≈]](h≈(|φ|))
iff F ∈ h≈([[R]]≈|φ|) by Theorem 5
iff F ∈ h≈(|[[R]]φ|).

This completes the proof. ��
Thus, since h≈ is an embedding that preserves operations [[T ]] (for T = R,S),
we have the following truth lemma.

Lemma 7. For any F ∈ X (A≈) and any LC formula φ,

M≈, F |= φ iff |φ| ∈ F.

Theorem 9. (Completeness) For any LC-formula φ ∈ For, if φ is LC-valid
then φ is a theorem of LC.

Proof: Take any LC formula φ such that |= φ. Suppose that � φ does not hold.
Then, by Lemma 5(d), |¬φ| �= ∅. So there exists F ∈ X (A≈) such that |¬φ| ∈ F .
Thus, by Lemma 7, for some F ∈ X (A≈), M≈, F |= ¬φ, Hence, by definition of
|=, φ is not true in M≈, which contradicts the assumption that φ is LC-valid. ��
With this logical language we can extend Theorem 7 to a Duality via Truth,
in the sense of [13]. Let AlgLC denote the class of context algebras, and FrmLC

denote the class of context frames. As described above the class FrmLC of context
frames provides a frame semantics for LC. The class AlgLC of context algebras
provides an algebraic semantics for LC. Let (W,∨,∧,¬, 0, 1, e, i) be a context
algebra. A valuation on W is a function v : V → W which assigns elements of
W to propositional variables and extends homomorphically to all the formulas
of LC, that is

v(¬φ) = ¬v(φ), v(φ∨ψ) = v(φ)∨v(ψ), v([[R]]φ) = e(v(φ)), v([[S]]φ) = i(v(φ)).

The notion of truth determined by this semantics is as follows. A formula φ in
LC is true in an algebra (W,∨,∧,¬, 0, 1, e, i) whenever v(φ) = 1 for every v in
W . A formula φ ∈ LC is true in the class AlgLC of context algebras iff it is true
in every context algebra in AlgLC.

Theorem 10. A formula φ ∈ LC is true in every model based on a context
frame (X,R, S) iff φ is true in the complex algebra (2X , ec, ic) defined from that
frame.

Proof: Let (X,R, S) be any context frame. The result is established by taking the
meaning function m on any model (X,R, S,m) based on (X,R, S) to coincide
with the valuation function on the complex algebra (2X , ec, ic) of (X,R, S). ��
Finally, we prove the Duality via Truth theorem between context algebras and
context frames.
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Theorem 11. A formula φ ∈ LC is true in every context algebra in AlgLC iff φ
is true in every context frame in FrmLC .

Proof: Assume that φ is true in all context algebras. In particular, φ is true
in all the complex algebras of the context frames. Since every context frame
has its corresponding complex algebra, by Theorem 10 the required condition
follows. For reverse implication, we prove the contrapositive. Assume that for
some context algebraW and a valuation v in W v(φ) �= 1. Consider the canonical
frame X (W ) of W . By the representation theorem there is an embedding h :
W → 2X (W ). It follows that h(v(φ)) �= 1. Consider a model M based on X (W )
such that m(p) = h(v(p)). By induction on the complexity of formulas we can
show that for every formula φ, m(φ) = m(h(φ)). Hence, φ is not true in M . ��

4 Applications for Formal Concept Analysis

In this section we show that context algebras and context logic can be used for
the specification and verification of various problems concerning contexts and
concepts from formal concept analysis.

4.1 Intents, Extents and Operations of Concepts

Let (G,M, I), where I ⊆ G×M , be a context. The Galois connection underly-
ing the notion of context algebra and context frame allows the identification of
certain pairs (O,A) where O ∈ 2G, A ∈ 2M . Namely, those that are closed in the
sense that i(O) = A and e(A) = O. That is, given a set O of objects the map i
of the Galois connection identifies all the features which they have in common,
and given a set A of features the map e of the Galois connection identifies all the
objects which they have in common. Such object-feature pairs are called formal
concepts. The sets i(O) and e(A) are called the intent and extent of the concept
(O,A), respectively.

As explained in [22] care needs to be taken when defining operations of join,
meet and complement for concepts in order to ensure the result is again a formal
concept. Accordingly, given two formal concepts (O,A) and (O′, A′), their join
∨ and meet ∧ are defined respectively by:

(O,A) ∨ (O′, A′) = (e(i(O ∪O′)), A ∩A′)
(O,A) ∧ (O′, A′) = (O ∩O′, i(e(A ∪A′))).

The corresponding order ≤ on the set of formal concepts is defined, for formal
concepts (O,A) and (O′, A′), by

(O,A) ≤ (O′, A′) iff O ⊆ O′ (or equivalently, iff A′ ⊆ A).

With respect to this order, the smallest formal concept is (e(M),M) and the
largest is (G, i(G)).

For the complement of a formal concept (O,A), two complements are consid-
ered. The one is generated by the set complement O of the extent O and the
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other generated by the set complement A of the intent A. Namely, for a formal
concept (O,A), its weak negation is defined

¬(O,A) = (e(i(O)), i(O))

and its weak opposition is defined by

∼ (O,A) = (e(A), i(e(A))).

Note that ¬ captures contradictory opposite, in the sense that, for example,
positive and negative, and cold and hot are contradictory opposites. On the
other hand ∼ captures contrary opposite, in the sense that, for example, moist
and dry, and cold and warm are contrary opposites.

We now characterize the notions of intent and extent, and the operations of
join, meet, weak negation, weak opposition for concepts in terms of LC-formulae.
For this, take any Oi ∈ 2G (for i = 1, 2, 3) and any Ai ∈ 2M (for i = 1, 2, 3).
Suppose that pi is the propositional variable representing Oi (for i = 1, 2, 3),
and that qi is the propositional variable representing Ai (for i = 1, 2, 3).

Problems concerning extents:

– O1 ⊆ G is an extent of some concept
iff O1 = e(i(O1))
iff p1 ↔ [[R]][[S]]p1 is true in the models such that the meaning of p1 is O1.

– (O1, A1) is the unique concept of which O1 is an extent
iff A1 = i(O1) and O1 = e(i(O1))
iff q1 ↔ [[S]]p1 ∧ p1 ↔ [[R]][[S]]p1 is true in the models such that the meanings
of p1 and q1 are O1 and A1, respectively.

Problems concerning intents:

– A1 ⊆M is an intent of some concept
iff A1 = i(e(A1))
iff q1 ↔ [[S]][[R]]q1 is true in the models such that the meaning of q1 is A1.

– (O1, A1) is the unique concept of which A1 is an intent
iff O1 = e(A1) and A1 = i(e(A1))
iff p1 ↔ [[R]]q1 ∧ q1 ↔ [[S]][[R]]q1 is true in the models such that the meanings
of p1 and q1 are O1 and A1, respectively.

Problems concerning operations on concepts:

– A formal concept (O1, A1) is the join of two concepts (O2, A2) and (O3, A3)
iff O1 = e(i(O2 ∪O3)) and A1 = A2 ∩A3

iff (p1 ↔ [[R]][[S]](p2 ∨ p3)) ∧ (q1 ↔ q2 ∧ q3) is true in the models such that,
for i = 1, 2, 3, the meanings of pi and qi are Oi and Ai, respectively.

– A formal concept (O1, A1) is the meet of two concepts (O2, A2) and (O3, A3)
iff O1 = O2 ∩O3 and A1 = i(e(A2 ∪A3))
iff (p1 ↔ p2 ∧ p3) ∧ (q1 ↔ [[S]][[R]](q2 ∨ q3)) is true in the models such that,
for i = 1, 2, 3, the meanings of pi and qi are Oi and Ai, respectively.
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– A formal concept (O1, A1) is a weak negation of some concept (O2, A2)
iff O1 = e(i(O2)) and A1 = i(O2)
iff (p1 ↔ [[R]][[S]]¬p2) ∧ (q1 ↔ [[S]]¬p2) is true in the models such that, for
i = 1, 2, the meanings of pi and qi are Oi and Ai, respectively.

– A formal concept (O1, A1) is a weak opposition of some concept (O2, A2)
iff O1 = e(A2) and A1 = i(e(A2))
iff (p1 ↔ [[R]]¬q2) ∧ (q1 ↔ [[S]][[R]]¬q2) is true in the models such that, for
i = 1, 2, the meanings of pi and qi are Oi and Ai, respectively.

It follows that the reasoning tools of the context logic LC can be used for
verification of the properties of concepts listed above, among others. A dual
tableau deduction system for the logic LC is presented in [8].

4.2 Dependencies of Attributes

Discovering dependencies in sets of data is an important issue addressed in vari-
ous theories, in particular in rough set theory [17] and in formal concept analysis
[7]. Typically, in an information system objects are described in terms of some
attributes and their values. The queries to an information system often have the
form of a request for finding a set of objects whose sets of attribute values satisfy
some conditions. This leads to the notion of information relation determined by
a set of attributes. Let a(x) and a(y) be sets of values of an attribute a of the
objects x and y, respectively. We may want to know a set of those objects from
an information system whose sets of values of all (or some) of the attributes from
a subset A of attributes are equal (or disjoint, or overlap etc.). To represent such
queries we define, first, information relations on the set of objects. Some exam-
ples, defined in [5], include similarity relation, indiscernibility relations, forward
inclusion, backward inclusion, negative similarity, incomplementarity relation.
In the rough set-based approach the most fundamental information relation is
indiscernibility and its weaker version, namely, similarity.

Let M be a set of attributes and G a set of objects. Given an attribute a ∈M ,
the similarity relation sim(a) ⊆ G×G is defined, for any x, y ∈ G, by

(x, y) ∈ sim(a) iff a(x) ∩ a(y) �= ∅

and the indiscernibility relation ind(a) ⊆ G×G is defined, for any x, y ∈ G, by

(x, y) ∈ ind(a) iff a(x) = a(y).

These relations can be extended to any subset A of attributes by quantifying
over A:

(x, y) ∈ sim(A) iff a(x) ∩ a(y) �= ∅ for all (some) a ∈ A.

(x, y) ∈ ind(A) iff a(x) = a(y) for all (some) a ∈ A.

Relations defined with the universal (existential) quantifier are referred to as
strong (weak) relations.
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Attribute dependencies, introduced in [2], express a constraint between two
sets of attributes. Such constraints have been used to exclude from an infor-
mation system data inappropriate for a particular application. An example of
an attribute dependency involving single sets A and B of attributes is a func-
tional dependency A → B. Typically, a functional dependency is based on an
information relation, for example,

A→sim B iff sim(A) ⊆ sim(B)
A→ind B iff ind(A) ⊆ ind(B).

Some attribute dependencies involve combinations of attributes. For example, a
multi-valued dependency A→→ B between sets A and B of attributes is defined
by

A→→ B iff ind(A) ⊆ ind(A ∪B); ind(M/(A ∪B))),

where for relations R and S over a universe U their composition R;S is defined,
for any x, y ∈ U , by xR;Sy iff for some z ∈ U xRz and zSy.

A representation of attribute dependencies in terms of relations generated by
equivalence relations ind(A) is presented in [3].

In the next two theorems we will characterise these notions within the frame-
work of context algebras. For this we need the following observations. For each
A ⊆ M , ind(A) ⊆ G × G and ind may be viewed as a binary relation of type
M × (G×G). Then [[ind(A)]] : 2G → 2G is given, for any Q ⊆ G, by

[[ind(A)]](Q) = {x ∈ G | ∀y ∈ G, y ∈ Q ⇒ (x, y) ∈ ind(A)},
and [[ind]] : 2G×G → 2M is given, for any R ⊆ G×G, by

[[ind]](R) = {a ∈M | ∀(x, y) ∈ G×G, (x, y) ∈ R ⇒ (x, y) ∈ ind(a)}.
Also, ind−1 ⊆ (G ×G) ×M , so [[ind−1]] : 2M → 2G×G is given, for any A ⊆ M ,
by

[[ind−1]](A) = {(x, y) | ∀a ∈M, a ∈ A ⇒ (x, y) ∈ ind(a)}.
Similarly, for sim.

Theorem 12. For any A,B ∈ 2M ,

A→ind B iff B ⊆ [[ind]][[ind−1]](A)
A→sim B iff B ⊆ [[sim]][[sim−1]](A)

Proof: For any A ∈ 2M and any b ∈M ,

A→ind b iff ind(A) ⊆ ind(b)
iff ∀x, y, A ⊆ ind−1((x, y)) ⇒ (x, y) ∈ ind(b)
iff ∀x, y, (x, y) ∈ [[ind−1]](A) ⇒ (x, y) ∈ ind(b)
iff [[ind−1]](A) ⊆ ind(b)
iff b ∈ [[ind]][[ind−1]](A)
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Now A →ind B holds if, for all b ∈ B, A →ind b holds, hence the result follows.
Similarly, for sim. ��
For any binary relation R ⊆ X×Y , operators [R] : 2Y → 2X and 〈R〉 : 2Y → 2X

may be defined in terms of the sufficiency operator as follows:

[R]Q = [[−R]](−Q) 〈R〉Q = −[[−R]]Q, for any Q ∈ 2Y .

Theorem 13. For any A,B ∈ 2M ,

A→→ B iff ∀y ∈ G, y ∈ [(ind(A))−1] 〈ind(A ∪B)〉 [[ind]](M/ (A ∪B))({y}).

Proof: For this it suffices to show that for any A,B,C ∈ 2M ,

ind(A) ⊆ ind(B); ind(C) iff ∀y ∈ G, y ∈ [(ind(A))−1] 〈ind(B)〉 [[ind(C)]]({y}).

ind(A) ⊆ ind(B); ind(C)
iff ∀x, ∀y, (x, y) ∈ ind(A) ⇒ ∃z, (x, z) ∈ ind(B) ∧ (z, y) ∈ ind(C)
iff ∀x, ∀y, (x, y) ∈ ind(A) ⇒ ∃z, (x, z) ∈ ind(B) ∧ z ∈ [[ind(C)]]({y})
iff ∀y, ∀x, (x, y) ∈ ind(A) ⇒ x ∈ 〈ind(B)〉[[ind(C)]]({y})
iff ∀y, y ∈ [(ind(A))−1]〈ind(B)〉[[ind(C)]]({y}). ��

Relationships between Galois connections and dependencies of attributes are
also studied in [9]. It is shown there that every Galois connection between two
complete lattices determines an Armstrong system of functional dependencies.

4.3 Implications

In the representation of data of an information system as a formal context,
(many-valued) attributes are refined into several (single-valued) features which
are essentially attribute-value pairs. For example, the attribute colour may be
refined to the attribute-value pair (colour, green) which corresponds to the feature
being of colour green. Each object determines an object-concept (O,A) where A
is the set of features of the given object, and O is the set of all objects having
features in A. On the other hand, each feature determines a feature-concept
(O,A) where O is the set of objects having the given feature, and A is the set
of all features of objects in O.

Constraints between two sets of features are usually called implications. An
implication A→ B between sets A and B of features holds in a context (G,M, I)
iff e(A) ⊆ e(B), meaning that each object in G having all the features from A
has all the features from B. An implication A → B between sets A and B of
attributes is trivial, if B ⊆ A. As a consequence of the connections established
in Section 2 between context algebras and formal contexts, we have

Theorem 14. Let (G,M, I) be a context. For any A,B ∈ 2M ,

A→ B iff [[I]](A) ⊆ [[I]](B).
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Hence an implication A→ B holds in a context (G,M, I) iff

∀g ∈ G, (∀a ∈ A, gIa) ⇒ (∀b ∈ B, gIb).

This is the definition of an association rule [1] used in data mining and therefore
within our framework we have established a connection between implications in
formal concept analysis and association rules. Moreover, the above provides an
alternative to the relational characterisation, considered in [11], in terms of a
so-called association relation.

Taking into account support and confidence, an association rule is defined, in
[1], to be a constraint, denoted by r : A→ B, between sets A and B of attributes
where A,B �= ∅, A ∩ B = ∅, and the support and the confidence of r : A → B
are defined respectively to be

supp(r) =
|e(A ∪B)|

|G| and conf(r) =
|e(A ∪B)|
|e(A)| ,

where |X | denotes the cardinality of a set X .
The set of association rules holding in a formal context (G,M,R) given min-

supp and minconf is

AR = {r : A→ B/A | A ⊂ B ⊆M ∧ supp(r) ≥ minsupp ∧ conf(r) ≥ minconf}.

If conf(r) = 1 then r is called an exact. If supp(r) = supp(A ∪ B) = supp(A)
and conf(r) = 1 then r is called a deterministic association rule. Otherwise it is
an approximate association rule.

Since the notions of support and confidence are defined in terms of the ex-
tent operator e which can be characterised in terms of a sufficiency operator,
we have the following characterisation within our framework of this notion of
deterministic rule.

Theorem 15. Let (G,M, I) be a context. If r : A → B/A is a deterministic
association rule then [[I]](A ∪B) = G = [[I]](A) = [[I]](B).

Proof: Assume A,B ∈ 2M are non-empty. If r : A → B/A is a deterministic
association rule then A ⊂ B and |[[I]](B)| = |[[I]](A)| and |[[I]](A ∪ B)| = |G|.
Hence A ⊂ B and |[[I]](A)| = |[[I]](B)| = |[[I]](A ∪ B)| = |G|. Thus [[I]](A) =
[[I]](B) = [[I]](A ∪B) = G. ��
Therefore, this notion of deterministic association rule is a special type of impli-
cation arising in formal concept analysis.

5 Conclusion

The aim of this paper has been to present a framework, based on discrete du-
ality, for representing contexts from formal concept analysis. For contexts we
established a discrete duality between context algebras and context frames, the
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latter being the frame semantics for context logic. In addition, we motivate the
usefulness of the associated context logic for reasoning about properties of formal
concepts, of attribute dependencies, and of implications.

This paper builds on earlier work in a number of ways. First, the discrete
duality between context algebras and context frames extends an observation
that intent and extent operators of a context are sufficiency operators on Boolean
algebras, and provides another application of the duality via truth framework
of [13]. Second, the uniform characterizations of often independently studied
attribute dependencies and implications are new and allow for their comparison
with the notion of association rule [1] used in data mining. As a consequence, the
associated context logical techniques may be used for verifying typical problems,
such as satisfaction and logical implication, of attribute dependencies and/or
association rules.

A number of challenges remain. For example: to extend the connections es-
tablished in Subsection 4.3 and develop an approach based on the presented
framework for mining association rules. Perhaps further questions will occur to
the reader.
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