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Abstract. The direct searching for relevant reducts in the set of all
reducts of a given data table can be often computationally infeasible,
especially for large data tables. Hence, there is a need for developing
efficient methods for extracting relevant information about reducts from
data tables which could help us to perform efficiently the inducing pro-
cess of the high quality data models such as rule based classifiers. Such
relevant information could help, e.g., to reduce the dimensionality of the
attribute set. We discuss methods for generating relevant information
about reduct sets from information systems or decision tables. In partic-
ular, we consider a binary relation on attributes satisfied for two given
attributes if and only if there is no reduct consisting them both. More-
over, we prove that for any fixed natural k, there exists a polynomial in
time algorithm which for a given decision table T and given k conditional
attributes recognizes if there exists a decision reduct of T covering these
k attributes. We also present a list of problems related to the discussed
issues. The reported results create a step toward construction of a soft-
ware library reducing the searching costs for relevant reducts.

Keywords: Rough sets, decision tables, decision reducts, geometry of
reducts.

1 Introduction

In the rough set approach for decision making often are used different kinds of
reducts such as reducts of information systems, decision reducts or local reducts.
It is well known that the size of the set of all reducts of information (decision) sys-
tems can be huge relative to the number of attributes. Hence, the direct searching
in such sets for relevant reducts can be often computationally infeasible, espe-
cially for large data tables. Hence, there is a need for developing efficient methods
for extracting relevant information about reducts from data tables which could
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help us to induce the high quality data models such as rule based classifiers.
This relevant information could help, e.g., to reduce the dimensionality of the
attribute set. We present examples illustrating how such relevant information
about reduct sets can be generated from information systems or decision ta-
bles. In particular, we consider a binary relation on attributes satisfied by two
given attributes if and only if there does not exist reduct consisting them both.
We illustrate how such a relation can be used in the reduct generation. More-
over, we prove that for any fixed natural k, there exists a polynomial in time
algorithm which for a given decision table T and given k conditional attributes
recognizes if there exists a decision reduct of the decision system T containing
these k attributes. Using this algorithm one can, in particular, eliminate all sin-
gle attributes which are not covered by any reduct of T . We also shortly discuss
how the dependencies between attributes can be used in the reduct generation.
Finally, we also present a list of problems related to the discussed issue.

We plan to develop a software library which could be used in preprocessing
of the reduct generation.

The set of all decision reducts of a decision table T [5] contains rich infor-
mation about the table T . Unfortunately, there is no polynomial algorithms for
construction of the set of all reducts.

In this paper, we show that there are polynomial (in time) algorithms for
obtaining of indirect but useful information about this set.

We show that for any fixed natural k, there exists a polynomial (in time)
algorithm Ak checking, for a given decision table T and given k conditional
attributes, if there exist a reduct for T covering these k attributes.

The information obtained on the basis of algorithms A1 and A2 can be rep-
resented in a simple graphical form. One can construct a graph with the set of
vertices equal to the set of attributes covered by at least one reduct, and the set
of edges equal to the set of all pairs of attributes which do not belong to any
reduct. The degree of an attribute in this graph (the number of edges incident
to this attribute) characterizes the attribute importance. The changes of this
graph after adding of a new object to the decision table allow us to evaluate the
degree of influence of this new object on the reduct set structure. In the paper,
we consider such graphs for three real-life decision tables. Some properties of
such graphs are studied in [2].

Note that there exist close analogies between results of this paper and results
obtained in [1], where the following problem was considered: for a given positive
Boolean function f and given subset of its variables it is required to recognize
if there exists a prime implicant of dual Boolean function fd containing these
variables.

Another approach for efficient extracting from a given decision table T of
indirect information about the set of all reducts and a graphical representation of
the information was considered in [9]. It was shown that there exists a polynomial
algorithm for constructing the so-called pairwise core graph for a given decision
table T . The set of vertices of this graph is equal to the set of conditional
attributes of T , and the set of edges coincides with the two element sets of
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attributes disjoint with the core of T (i.e., the intersection of all reducts of T )
and having non-empty intersection with any reduct of T . This example is a step
toward a realization of a program suggested in early 90s by Andrzej Skowron
in his lectures at Warsaw University to study geometry of reducts aiming at
developing tools for investigating geometrical properties of reducts in the space
of all reducts of a given information system. For example, the core of a given
information system can be empty but in the reduct space can exist only a few
subfamilies of reducts such that the intersection of each subfamily is non-empty.

Yet another discussed in the paper method for extracting information about
the reduct set from a given data table can be based on the dependencies between
attributes in a given information system.

This paper is structured as follows. In Section 2, we discuss the problem of
existence of reducts including a given set of attributes. The graphical represen-
tation of some information about the set of reducts is considered in Section 3.
In Section 4, we discuss shortly a possible application of dependencies in the
reduct generation. In Section 5, we present conclusions and a list of problems
for further study. In the appendix, we present a polynomial algorithm for one of
problems listed in Section 5. This algorithm was found during the final editing
of the paper.

This paper is an extended version of [3].

2 On Covering of k Attribute Sets by Reducts

A decision table T is a finite table in which each column is labeled by a con-
ditional attribute. Rows of the table T are interpreted as tuples of values of
conditional attributes on some objects. Each row is labeled by a decision which
is interpreted as the value of the decision attribute1.

Let A be the set of conditional attributes (the set of names of conditional
attributes) of T . We will say that a conditional attribute a ∈ A separates two
rows if these rows have different values at the intersection with the column
labeled by a. We will say that two rows are different if at least one attribute
a ∈ A separates these rows. Denote by P (T ) the set of unordered pairs of different
rows from T which are labeled by different decisions.

A subset R of the set A is called a test (or superreduct) for T if for each pair
of rows from P (T ) there exists an attribute from R which separates rows in this
pair. A test R for T is called a reduct for T if each proper subset of R is not
a test for T . In the sequel, we deal with decision reducts but we will omit the
word “decision”.

Let us fix a natural number k. We consider the following covering problem
for k attributes by a reduct : for a given decision table T with the set of condi-
tional attributes A, a subset B of the set A, and k pairwise different attributes
a1, . . . , ak ∈ B it is required to recognize if there exist a reduct R for T such that
1 We consider uniformly both consistent and inconsistent decision tables. However,

in the case of inconsistent decision table, one can use also the so called generalized
decision instead of the original decision [5,6,7].
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R ⊆ B and a1, . . . , ak ∈ R, and if the answer is “yes” it is required to construct
such a reduct. We describe a polynomial in time algorithm Ak for the covering
problem (see Algorithm 1).

For a ∈ A, we denote by PT (a) the set of pairs of rows from P (T ) separated
by a. For a1, . . . , ak ∈ A and aj ∈ {a1, . . . , ak} let

PT (aj |a1, . . . , ak) = PT (aj) \
⋃

i∈{1,...,k}\{j}
PT (ai).

For a1, . . . , ak ∈ A, let

PT (a1, . . . , ak) = PT (a1|a1, . . . , ak) × . . . × PT (ak|a1, . . . , ak).

Assuming that (π1, . . . , πk) ∈ PT (a1, . . . , ak), we denote by

DT (B, a1, . . . , ak, π1, . . . , πk)

the set of attributes a from B \ {a1, . . . , ak} such that a separates rows in at
least one pair of rows from the set {π1, . . . , πk}. Note that

DT (B, a1, . . . , ak, π1, . . . , πk) =
k⋃

j=1

DT (B, aj , πj).

Algorithm 1. Algorithm Ak for solving of the covering problem for k at-
tributes by a reduct
Input : Decision table T with the set of conditional attributes A, B ⊆ A, and

a1, . . . , ak ∈ B.
Output: If there exists a reduct R for T such that R ⊆ B and a1, . . . , ak ∈ R,

then the output is one of such reducts; otherwise, the output is “no”.
construct the set PT (a1, . . . , ak);
for any tuple (π1, . . . , πk) ∈ PT (a1, . . . , ak) do

R←− B \DT (B,a1, . . . , ak, π1, . . . , πk)
if R is a test for T then

while R is not a reduct for T do
select a ∈ R such that R \ {a} is a test for T ;
R := R \ {a}

end
return R;
stop

end

end
return “no” (in particular, if PT (a1, . . . , ak) = ∅, then the output is “no”)

Using algorithm Ak (see Algorithm 1) first the set PT (a1, . . . , ak) is con-
structed. Next, for each tuple (π1, . . . , πk) ∈ PT (a1, . . . , ak) the set

DT (B, a1, . . . , ak, π1, . . . , πk)
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is constructed and it is verified if the set B \ DT (B, a1, . . . , ak, π1, . . . , πk) is a
test for T . It is clear that |PT (a1, . . . , ak)| ≤ n2k, where n is the number of rows
in T . Using this inequality and the fact that k is fixed natural number, one can
prove that the algorithm Ak has polynomial time complexity2. Unfortunately,
the algorithm Ak has a relatively high time complexity.

The considered algorithm is based on the following proposition:

Proposition 1. Let T be a decision table with the set of conditional attributes
A, B ⊆ A, and a1, . . . , ak ∈ B. Then the following statements hold:

1. A reduct R for T such that R ⊆ B and a1, . . . , ak ∈ R exists if and only if
there exists a tuple (π1, . . . , πk) ∈ PT (a1, . . . , ak) such that

B \ DT (B, a1, . . . , ak, π1, . . . , πk)

is a test for T .
2. If the set S = B \ DT (B, a1, . . . , ak, π1, . . . , πk) is a test for T then each

reduct Q for T , obtained from S by removing from S of some attributes, has
the following properties: a1, . . . , ak ∈ Q and Q ⊆ B.

Proof. Let R be a reduct for T such that a1, . . . , ak ∈ R and R ⊆ B. It is clear
that for each aj ∈ {a1, . . . , ak} there exists a pair of rows πj from P (T ) such
that aj is the only attribute from the set R separating this pair. It is clear that
(π1, . . . , πk) ∈ PT (a1, . . . , ak) and R ⊆ B \ DT (B, a1, . . . , ak, π1, . . . , πk). Since
R is a reduct for T , we conclude that B \ DT (B, a1, . . . , ak, π1, . . . , πk) is a test
for T .

Let us assume that there exists a tuple (π1, . . . , πk) ∈ PT (a1, . . . , ak) such that
the set S = B \ DT (B, a1, . . . , ak, π1, . . . , πk) is a test for T . Let Q be a reduct
for T obtained by removing some attributes from S. It is also clear that Q ⊆ B.
Let j ∈ {1, . . . , k}. Since aj is the only attribute from the test S separating rows
from πj , we have aj ∈ Q. Thus, a1, . . . , ak ∈ Q. ��

3 Graphical Representation of Information about the Set
of Reducts

Let T be a decision table with the set of conditional attributes A. Let B ⊆ A.
Using polynomial algorithms A1 and A2 one can construct a graph G(T, B).
The set of vertices of this graph coincides with the set of attributes a ∈ B for
each of which there exists a reduct R for T such that R ⊆ B and a ∈ R. Two
different vertices a1 and a2 of G(T, B) are linked by an edge if and only if there
is no a reduct R for T such that R ⊆ B and a1, a2 ∈ R. Let us denote by G(T )
the graph G(T, A).

Note that there exists close analogy between the graph G(T ) and the so-called
co-occurance graph [1] for positive Boolean function f . The set of vertices of this

2 Note that k is treated as a constant for the algorithm Ak.
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graph is equal to the set of variables of f . Two different variables are linked by
an edge if and only if f has a prime implicant containing these variables.

Now, we present the results of three experiments with real-life decision tables
from [4] (the first example was considered in [2]).

Example 1. [2] Let us denote by TZ the decision table “Zoo” [4] with 16 condi-
tional attributes a1, . . . , a16 (we ignore the first attribute “animal name”) and
101 rows. Only attributes a1, a3, a4, a6, . . . , a14, a16 are vertices of the graph
G(TZ). The set of reducts for TZ is represented in Table 1. The graph G(TZ)
is depicted in Fig. 1. For example, any reduct containing a7 is disjoint with
{a8, a9, a14}.
Example 2. Let us denote by TL the decision table “Lymphography” [4] with
18 conditional attributes a1, . . . , a18 and 148 rows. Each of the considered at-
tributes is a vertex of the graph G(TL). The graph G(TL) is depicted in Fig. 2.

Table 1. The set of reducts for the decision table TZ (“Zoo”)

{a3, a4, a6, a8, a13} {a3, a6, a8, a9, a12, a13} {a3, a6, a8, a13, a16}
{a3, a4, a6, a9, a13} {a1, a3, a6, a7, a10, a12, a13} {a3, a6, a9, a13, a16}
{a3, a6, a8, a10, a13} {a3, a4, a6, a7, a10, a12, a13} {a4, a6, a8, a11, a13, a16}
{a1, a3, a6, a9, a10, a13} {a1, a6, a8, a10, a12, a13} {a4, a6, a9, a11, a13, a16}
{a1, a3, a6, a8, a11, a13} {a1, a6, a9, a10, a12, a13} {a3, a6, a7, a10, a11, a13, a16}
{a1, a3, a6, a9, a11, a13} {a1, a3, a6, a10, a13, a14} {a1, a6, a8, a10, a11, a13, a16}
{a3, a6, a8, a9, a11, a13} {a3, a4, a6, a10, a13, a14} {a1, a6, a9, a10, a11, a13, a16}
{a1, a3, a6, a8, a12, a13} {a3, a6, a8, a11, a13, a14} {a3, a6, a7, a10, a12, a13, a16}
{a4, a6, a8, a12, a13} {a3, a6, a8, a12, a13, a14} {a3, a6, a10, a13, a14, a16}
{a1, a3, a6, a9, a12, a13} {a1, a6, a10, a12, a13, a14} {a1, a6, a10, a11, a13, a14, a16}
{a4, a6, a9, a12, a13} {a4, a6, a10, a12, a13, a14} {a4, a6, a10, a11, a13, a14, a16}

a1

a4a3

a6

a7

a8

a9

a14

a11

a12

a10

a13

a16

Fig. 1. Graph G(TZ) for the decision table TZ (“Zoo”)
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Fig. 2. Graph G(TL) for the decision table TL (“Lymphography”)
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a22
a24
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a25 a35

Fig. 3. Graph G(TS) for the decision table TS (“Soybean-small”)

In particular, one can observe from G(TL) that any reduct of TL containing a4

is disjoint with {a2, a3, a5, a7, a8, a9, a10, a12}.

Example 3. Let us denote by TS the decision table “Soybean-small” [4] with 35
conditional attributes a1, . . . , a35 and 47 rows. Only attributes a1, . . . , a10, a12
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and a20, . . . , a28, a35 are vertices of the graph G(TS). The graph G(TS) is depicted
in Fig. 3.

Some properties of graphs G(T ) are studied in [2].
It is shown in [2] that any undirected graph G can be represented as the graph

G(T ) for an appropriate decision table T . However, the graph G(T ) can give us
rich information about the set of reducts for a decision table T .

Proposition 2. [2] Let A be a finite set of names of conditional attributes, and
G = (V, E) be an undirected graph, where V ⊆ A is the set of vertices of G
and E is the set of edges of G such that each edge of G is a two-element subset
of V . Then there exists a decision table T with the set of names of conditional
attributes A such that G(T ) = G.

Results of experiments considered in [2] show that there exists a correlation
between the degrees3 of attributes in G(T ) and the number of reducts of T
covering these attributes (the last parameter is considered often as an attribute
importance), and between changes of G(T ) and changes of the set of reducts for
T after extending T by a new object (the changes in the set of reducts can be
considered as a noticeable influence of updating of the decision table by the new
object).

4 Using Dependencies in Generation of Reducts

Another important issue in data analysis is discovering dependencies between
attributes in a given decision system T = (U, C, D). Intuitively, a set of attributes
D depends totally on a set of attributes C, denoted C ⇒ D, if the values of
attributes from C uniquely determine the values of attributes from D. In other
words, D depends totally on C, if there exists a functional dependency between
values of C and D.

We will say that D depends on C to a degree k (0 ≤ k ≤ 1) in T , denoted
C ⇒k D, if

k = γ(C, D) =
card(POSC(D))

card(U)
, (1)

where
POSC(D) =

⋃

X∈U/D

C∗(X),

called a positive region of the partition U/D with respect to C4, is the set of all
elements of U that can be uniquely classified to blocks of the partition U/D, by
means of C.

If k = 1 we say that D depends totally on C, and if k < 1, we say that D
depends partially (to degree k) on C. If k = 0 then the positive region of the
partition U/D with respect to C is empty. The coefficient k expresses the ratio
3 A degree of an attribute is the number of edges incident to this attribute.
4 C∗(X) denotes the C-lower approximation of X [6].
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of all elements of the universe, which can be properly classified to blocks of
the partition U/D, employing attributes C and will be called the degree of the
dependency. Summing up: D is totally (partially) dependent on C, if all (some)
elements of the universe U can be uniquely classified to blocks of the partition
U/D, employing C. Observe, that (1) defines only one of possible measures of
dependency between attributes (see, e.g., [8]).

Let us consider one very simple application of dependencies in reduct gen-
eration. One can also consider dependencies between conditional attributes in
decision tables. In particular, if B, B′ are subsets of conditional attributes in T
then the dependency B ⇒ B′ is true in T if and only if the dependency B ⇒1 B′

holds in the decision system (U, B, B′). Then, in searching for decision reducts
of T in which B should be included one can eliminate the attributes from B′.
Obviously, if there exist two disjoint subsets B1, B2 of B such that B1 ⇒ B2

holds in T then there does not exist reduct covering B.

5 Conclusions

We have discussed some methods for generation of information from data ta-
bles which can be used in the reduct computation. In particular, we have shown
that, for each natural k a polynomial algorithm Ak exists which for a given deci-
sion table and given k conditional attributes recognizes if there exist a decision
reduct covering these k attributes. Results of computer experiments with two
algorithms A1 and A2 are reported. Finally, we have shortly discussed applica-
tions of dependencies between conditional attributes in the reduct generation. In
our project we are building a software library which could be helpful in solving
different reduct generation problems. Methods from this library could be applied
as some additional tools simplifying searching for relevant reducts.

Below we present a list of exemplary problems we would like to investigate
in our further study. We are interested in computational complexity of these
problems and algorithms (heuristics) for solving them.

The input for each problem is a data table T representing an information or
decision system. By RED(T ) we denote the set of all reducts of T of a given
kind (e.g., decision reducts).

– Problem 1. Let us consider a graph GRED(T ) with nodes equal to elements
of RED(T ). Two reducts are linked by an edge if and only if they have
non-empty intersection. We would like to estimate the number of connected
components of the graph GRED(T ) 5.

– Problem 2. For given thresholds tr, k > 0 check if there exist at least k
reducts with non-empty intersection consisting at least tr attributes.

5 During the final editing of the paper we found a polynomial algorithm for this
problem solving in the case when RED(T ) is the set of all decision reducts (see
appendix). This algorithm has a relatively high time complexity. The problem of
existence of more efficient algorithms is open.
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– Problem 3. How many maximal (with respect to the number of elements)
families of reducts from RED(T ) exist which satisfy the condition formulated
in Problem 2?

– Problem 4. Find a maximal family of pairwise disjoint reducts in RED(T ).
– Problem 5. Let us consider a discernibility function for reducts defined by

disT (R) = |{R′ ∈ RED(T ) : R ∩ R′ = ∅}| for R ∈ RED(T ). Find bounds
for fT (n) = max{disT (R) : R ∈ RED(T ) & |R| = n}.

– Problem 6. Let us consider a binary discernibility relation on subsets of
attributes defined by B DIS(T ) C if and only if (B ⊆ R and R ∩C = ∅) or
(C ⊆ R and R ∩ B = ∅) for some R ∈ RED(T ), where B, C are subsets of
the set of (conditional) attributes of T . What are the properties of DIS(T )?

– Problem 7. Let us consider a distance between reducts defined by

distT (R, R′) = |R \ R′| + |R′ \ R|,
for R, R′ ∈ RED(T ). Estimate the largest distance between reducts from
RED(T ).

– Problem 8. Let us consider an incremental sequence of decision tables Ti =
(Ui, C, D) for i = 1, 2, . . ., where Ui ⊆ Ui+1 for any i. We would like
to develop methods for reasoning about changes between RED(Ti) and
RED(Ti+1).

In our further study we also would like to check if there exist efficient ran-
domized algorithms for solution of the considered in the paper problem.
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Appendix: Comparison of Graphs GRED(T ) and G′(T )

In this section, we consider a polynomial algorithm for solving of Problem 1 in
the case of decision reducts.

Let T be a decision table. We denote by RED(T ) the set of all decision reducts
for T . The set of nodes of the graph GRED(T ) coincides with RED(T ). Two
reducts are linked by an edge if and only if they have non-empty intersection.
Graph G′(T ) is the complement of the graph G(T ). The set of nodes of the
graph G′(T ) coincides with the set ARED(T ) =

⋃
R∈RED(T ) R of all conditional

attributes of T each of which belongs to at least one decision reduct for T . Two
attributes are linked by an edge if and only if there exists a decision reduct for
T containing both these attributes.

We show that graphs GRED(T ) and G′(T ) have the same number of connected
components.

Proposition 3. Let T be a decision table. Then the number of connected com-
ponents of the graph GRED(T ) is equal to the number of connected components
of the graph G′(T ).

Proof. Let B1, . . . , Bn be all connected components of the graph GRED(T ). For
i = 1, . . . , n, we denote by Ai the set of attributes contained in reducts belonging
to Bi. It is clear that A1 ∪ . . . ∪ An = ARED(T ) and Ai ∩ Aj = ∅ for any
i, j ∈ {1, . . . , n}, i �= j. For i = 1, . . . , n, we denote by G′(T, Ai) the subgraph of
the graph G′(T ) generated by nodes from Ai.

Let us prove that G′(T, A1), . . . , G′(T, An) are all connected components of
the graph G′(T ). To this end we must show that, for any i, j ∈ {1, . . . , n}, i �= j,
the following statements hold:

1. Any two nodes from Ai are connected by a path in the graph G′(T ).
2. Any node from Ai and any node from Aj are not linked by an edge.

http://www.ics.uci.edu/~mlearn/MLRepository.html
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Let |Ai| = 1. Then the first statement holds. The unique attribute from Ai

forms a reduct. This attribute can not belong to any other reduct. Therefore,
the second statement holds too.

Let |Ai| > 1. Let us consider arbitrary different nodes a and a′ from Ai. Then
there are reducts R and R′ from Bi such that a ∈ R and a′ ∈ R′. If R = R′

then a and a′ are linked by an edge. Let us assume that R �= R′. We consider a
shortest path α = R, R1, . . . , Rm, R′ in GRED(T ) connecting the reducts R and
R′. We set R0 = R and Rm+1 = R′. For t = 0, . . . , m, we choose an attribute
at ∈ Rt ∩ Rt+1. It is clear that R1, . . . , Rm belong to Bi. Therefore, at ∈ Ai for
t = 0, . . . , m. Let us consider the sequence

β = a, a0, . . . , am, a′.

Notice that it is possible that a = a0 or am = a′. Since α is a shortest path
connecting R and R′, we have a0 �= a1 �= a2 �= . . . �= am. It is clear that a, a0 ∈
R0 = R, a0, a1 ∈ R1, ..., am−1, am ∈ Rm, am, a′ ∈ Rm+1 = R′. Therefore, the
sequence β forms a path connecting a an a′ in G′(T ). Thus, the first statement
holds.

Let us assume that there exist a node a1 ∈ Ai and a node a2 ∈ Aj which are
linked by an edge. Then there exists a reduct R such that a1, a2 ∈ R, which is
impossible since R ∈ Bi and R ∈ Bj . Thus, the second statement holds. Hence,
we obtain that G′(T, A1), . . . , G′(T, An) are all connected components of the
graph G′(T ). ��
Proposition 3 allows us to solve Problem 1 (for the case of decision reducts for
a decision table T ) in the following way: using polynomial algorithms A1 and
A2 we construct the graph G′(T ) and find (in polynomial time) the number
of connected components in this graph. The obtained number is equal to the
number of connected components in the graph GRED(T ).

Unfortunately, algorithms A1 and A2 have a relatively high time complexity.
The problem of existence of more efficient algorithms for Problem 1 solving is
open.

Example 4. Let us consider decision tables TZ (“Zoo”), TL (“Lymphography”)
and TS (“Soybean-small”) discussed in Examples 1-3. Simple analysis of graphs
G(TZ), G(TL) and G(TS), which are the complements of the graphs G′(TZ),
G′(TL) and G′(TS), shows that each of graphs G′(TZ), G′(TL) and G′(TS)
has exactly one connected component. Therefore, each of graphs GRED(TZ),
GRED(TL) and GRED(TS) has exactly one connected component.
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