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Preface

Volume IX of the Transactions on Rough Sets (TRS) provides evidence of the
continuing growth of a number of research streams that were either directly or
indirectly begun by the seminal work on rough sets by Zdzis�law Pawlak (1926-
2006)1. One of these research streams inspired by Prof. Pawlak is rough set-based
intelligent systems, a topic that was an important part of his early 1970s work
on knowledge description systems prior to his discovery of rough sets during the
early 1980s. Evidence of intelligent systems as a recurring motif over the past
two decades can be found in the rough-set literature that now includes over 4,000
publications by more than 1,600 authors in the rough set database2.

This volume of the TRS includes articles that are extensions of papers in-
cluded in the first conference on Rough Sets and Intelligent Systems Paradigms3.
In addition to research on intelligent systems, this volume also presents papers
that reflect the profound influence of a number of other research initiatives by
Zdzis�law Pawlak.

In particular, this volume introduces a number of new advances in the foun-
dations and applications of artificial intelligence, engineering, image processing,
logic, mathematics, medicine, music, and science. These advances have signif-
icant implications in a number of research areas such as attribute reduction,
approximation schemes, category-based inductive reasoning, classifiers, classify-
ing mappings, context algebras, data mining, decision attributes, decision rules,
decision support, diagnostic feature analysis, EEG classification, feature analy-
sis, granular computing, hierarchical classifiers, indiscernibility relations, infor-
mation granulation, information systems, musical rhythm retrieval, probabilistic
dependencies, reducts, rough-fuzzy C-means, rough inclusion functions, rough-
ness, singing voice recognition, and vagueness. A total of 47 researchers are
represented in this volume.

This volume has been made possible thanks to the laudable efforts of a great
many generous persons and organizations. The editors and authors of this volume
also extend an expression of gratitude to Alfred Hofmann, Ursula Barth, Christine
Günther, and the LNCS staff at Springer for their support in making this volume
of the TRS possible. In addition, the editors of this volume extend their thanks to
Marcin Szczuka for his consummate skill and care in the compilation of this volume.

1 See, e.g., Pawlak, Z., Skowron, A.: Rudiments of rough sets, Information Sciences
177 (2007) 3-27; Pawlak, Z., Skowron, A.: rough sets: Some extensions, Informa-
tion Sciences 177 (2007) 28-40; Pawlak, Z., Skowron, A.: Rough sets and Boolean
reasoning, Information Sciences 177 (2007) 41-73.

2 http://rsds.wsiz.rzeszow.pl/rsds.php
3 Int. Conf. on Rough Sets and Emerging Intelligent Systems Paradigms, Lecture Notes

in Artificial Intelligence 4585. Springer, Berlin, 2007.
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The editors of this volume were supported by the by the Ministry of Science
and Higher Education of the Republic of Poland, research grants No. NN516
368334 and 3T11C 002 29, by the by Ministry of Regional Development of the
Republic of Poland, grant “Decision Support - New Generation Systems” of In-
novative Economy Operational Programme 2007-2013 (Priority Axis 1. Research
and development of new technologies), and the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) research grant 185986.

October 2008 Henryk Rybiński
James F. Peters
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Hierarchical Classifiers for Complex Spatio-temporal Concepts . . . . . . . . . 474
Jan G. Bazan

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751



Vagueness and Roughness

Zbigniew Bonikowski1 and Urszula Wybraniec-Skardowska2
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Abstract. The paper proposes a new formal approach to vagueness and
vague sets taking inspirations from Pawlak’s rough set theory. Following
a brief introduction to the problem of vagueness, an approach to concep-
tualization and representation of vague knowledge is presented from a
number of different perspectives: those of logic, set theory, algebra, and
computer science. The central notion of the vague set, in relation to the
rough set, is defined as a family of sets approximated by the so called
lower and upper limits. The family is simultaneously considered as a fam-
ily of all denotations of sharp terms representing a suitable vague term,
from the agent’s point of view. Some algebraic operations on vague sets
and their properties are defined. Some important conditions concerning
the membership relation for vague sets, in connection to Blizard’s mul-
tisets and Zadeh’s fuzzy sets, are established as well. A classical outlook
on a logic of vague sentences (vague logic) based on vague sets is also
discussed.

Keywords: vagueness, roughness, vague sets, rough sets, knowledge,
vague knowledge, membership relation, vague logic.

1 Introduction

Logicians and philosophers have been interested in the problem area of vague
knowledge for a long time, looking for some logical foundations of a theory
of vague notions (terms) constituting such knowledge. Recently vagueness and,
more generally - imperfection, has become the subject of investigations of com-
puter scientists interested in the problems of AI, in particular, in the problems
of reasoning on the basis of imperfect information and in the application of com-
puters to support and represent such reasoning in the computer memory (see,
e.g., Parsons [15]).

Imperfection is considered in a general information-based framework, where
objects are described by an agent in terms of attributes and their values. Bonis-
sone and Tong [5] indicated three types of imperfections relating to information:
incompleteness, uncertainty and imprecision. Incompleteness arises from the ab-
sence of a value of an attribute for some objects. Uncertainty arises from a lack

J.F. Peters et al. (Eds.): Transactions on Rough Sets IX, LNCS 5390, pp. 1–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 Z. Bonikowski and U. Wybraniec-Skardowska

of information; as a result, an object’s attribute may have a finite set of values
rather than a single value. Imprecision occurs when an attribute’s value can-
not be measured with adequate precision. There are also other classifications of
imperfect information (see, e.g., S�lowiński, Stefanowski [26]).

Marcus [12] thought of imprecision more generally. He distinguished, e.g., such
types of imprecision as vagueness, fuzziness and roughness. Both fuzziness and
roughness are mathematical models of vagueness.

Fuzziness is closely related to Zadeh’s fuzzy sets [28]. In fuzzy set theory,
vagueness is described by means of a specific membership relation. Fuzziness
is often identified with vagueness, however, Zadeh [29] noted that vagueness
comprises fuzziness. Roughness is connected with Pawlak’s rough sets [19].

Classical, set-theoretical sets (orthodox sets) are not sufficient to deal with
vagueness. Non-orthodox sets - rough sets and fuzzy sets - are used in two dif-
ferent approaches to vagueness (Pawlak [22]): while Zadeh’s fuzzy set theory
represents a quantitative approach, Pawlak’s rough set theory represents a qual-
itative approach to vagueness.

Significant results obtained by computer scientists in the area of impreci-
sion and vagueness, such as Zadeh’s fuzzy set theory [28], Shafer’s theory of
evidence [24] and Pawlak’s rough set theory [19,21], greatly contributed to ad-
vancing and intensifying of research into vagueness.

This paper is an extended version of a previous article by the same authors [4].
It proposes a new approach to vagueness taking into account the main ideas of
roughness. Roughness considered as a mathematical model of vagueness is here
replaced by an approach to vagueness in which vague sets, defined in this paper,
play the role of rough sets. Vague sets are connected with vague knowledge and,
at the same time, are understood as denotations of vague notions. The paper
also attempts to lay logical foundations to the theory of vague notions (terms)
and thus bring an essential contribution to research in this area.

The structure of the paper is as follows. In Sect. 2, we introduce the notion
of unit information (unit knowledge) and vague information (vague knowledge).
The central notion of the vague set, inspired by Pawlak’s notion of a rough set,
is defined in Sect. 3. Section 4 is devoted to the problem of multiplicity of an
object’s membership to a vague set. In Sect. 5 some operations on vague sets
and their algebraic properties are given. A view on the logic of vague concepts
(terms) is discussed in Sect. 6. The paper ends with Sect. 7 which delivers some
final remarks.

2 Unit Knowledge and Vague Knowledge

In the process of cognition of a definite fragment of reality, the cognitive agent
(a man, an expert, a group of men or experts, a robot) attempts to discover
information contained in it or, more adequately, about its objects. Each fragment
of reality recognized by the agent can be interpreted as the following relational
structure:

� = 〈U ,R1,R2, . . . ,Rn〉, (1)
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where U , the universe of objects of reality �, is a non-empty set, and Ri, for
i = 1, 2, . . . , n, is the set of i-ary relations on U . One-ary relations are regarded
as subsets of U and understood as properties of objects of U , and multi-argument
relations as relationships among its objects. Formally, every k-ary relation of Rk

is a subset of Uk.
We assume that reality � is objective with respect to cognition. Objective

knowledge about it consists of pieces of unit information (knowledge) about
objects of U with respect to all particular relations of Rk (k = 1, 2, . . . , n).

We introduce the notion of knowledge and vague knowledge in accordance
with some conceptions of the second co-author of this paper ([27]).

Definition 1. Unit information (knowledge).
Unit information (knowledge) about the object o ∈ U with respect to the relation
R ∈ Rk (k = 1, 2, . . . , n) is the image

−→
R (o) of the object o with respect to the

relation R1.

Discovering unit knowledge about objects of reality � is realized through asking
questions which include certain aspects, called attributes, of the objects of
the universe U . Then, we usually choose a finite set U ⊆ U as the universe
and we put it forward as a generalized attribute-value system Σ, also called an
information system (cf. Codd [6]; Pawlak [16], [18], [19]; Marek and Pawlak [13]).
Its definition is as follows:

Definition 2. Information system.
Σ is an information system iff it is an ordered system

Σ = 〈U, A1, A2, . . . , An〉, (2)

where U ⊆ U , card(U) < ω and Ak (k = 1, 2, . . . , n) is the set of k-ary attributes
understood as k-ary functions, i.e.

∀a∈Ak
a : Uk → Va, (3)

where Va is the set of all values of the attribute a.

Example 1. Let us consider the following information system: S = 〈S, A1, A2〉,
where S = {p1, p2, . . . , p5} is a set of 5 papers and A1 = {IMPACT FACTOR
(IF ), QUOTATIONS (Q)}, A2 = {TOPIC CONNECTION (TC)}. The at-
tribute IF is a function which assigns to every paper p ∈ S an impact factor of
the journal in which p was published. We assume that VIF = [0, 100]. The value
of the attribute Q for any paper p ∈ S is the number of quotations of p. We
assume that VQ = {0, 1, 2, . . . , 2000}. We also assume that TC assigns to every
pair of papers a quotient of the number of common references by the number of
all references, and that VTC = [0, 1].

1 −→
R(o) =

j
R, if o ∈ R,
∅, otherwise.

for R ∈ R1.

−→
R (o) = {〈x1, . . . , xi−1, xi+1, . . . , xk〉 : 〈x1, . . . , xi−1, o, xi+1, . . . , xk〉 ∈ R}

for R ∈ Rk (k = 2, . . . , n).
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The information system S can be clearly presented in the following tables:

IF Q
p1 0.203 125
p2 0.745 245
p3 0.498 200
p4 0.105 150
p5 1.203 245

TC p1 p2 p3 p4 p5

p1 1 3/10 0 6/7 0
p2 3/10 1 0 0 4/17
p3 0 0 1 0 1/12
p4 6/7 0 0 1 0
p5 0 4/17 1/12 0 1

Every attribute of the information system Σ and every value of this attribute
explicitly indicates a relation belonging to the so-called relational system de-
termined by Σ. The unit information (knowledge) about an object o ∈ U
should be considered with respect to relations of the system.

Definition 3. System determined by the information system.
�(Σ) is a system determined by the information system Σ (see (2)) iff

�(Σ) = 〈U, {Ra,W : a ∈ A1, ∅ 	= W ⊆ Va}, . . . , {Ra,W : a ∈ An, ∅ 	= W ⊆ Va}〉,

where Ra,W = {(o1, o2, . . . , ok) ∈ Uk : a((o1, o2, . . . , ok)) ∈ W}
for any k ∈ {1, 2, . . . , n}, a ∈ Ak.

Let us see that
⋃
{Ra,{v} : a ∈ A1, v ∈ Va} = U , i.e. the family {Ra,{v} : a ∈

A1, v ∈ Va} is a covering of U .
It is easy to see that

Fact 1. The system Σ uniquely determines the system �(Σ).

Example 2. Let S be the above given information system. Then the system deter-
mined by the system S is �(S) = 〈U, RA1 , RA2〉, where RA1 = {RIF,S}∅�=S⊆VIF

∪
{RQ,S}∅�=S⊆VQ

and RA2 = {RTC,S}∅�=S⊆VT C
.

For any attribute a of the system S and any i, j ∈ R we adopt the following
notation:

Sj
i = {v ∈ Va : i ≤ v ≤ j}, Sj = {v ∈ Va : v ≤ j}, Si = {v ∈ Va : i ≤ v}.

Then, in particular, we can easily state that: RIF,S0.5
0.1

= {p1, p3, p4}, RIF,S0.7 =
{p2, p5}, RIF,S0.3 = {p1, p4}, RQ,S150

150
= RQ,{150} = {p4}, RQ,S200 = {p2, p3, p5}

and RTC,{1/12} = {(p3, p5), (p5, p3)}, RTC,{1} = {(pi, pi)}i=1,...,5.

The notion of knowledge about the attributes of the system Σ depends on the
cognitive agent discovering the fragment of reality Σ. According to Skowron’s
understanding of the notion of knowledge determined by any unary attribute (cf.
Pawlak [17], Skowron et al. [25], Demri, Orlowska [8] pp.16–17), we can adopt
the following generalized definition of the notion of knowledge Ka about any
k-ary attribute a :

Definition 4. Knowledge Ka about the attribute a.
Let Σ be the information system satisfying (2) and a ∈ Ak (k = 1, 2, . . . , n).

Then



Vagueness and Roughness 5

(a) Ka = {((o1, o2, . . . , ok), Va,u) : u = (o1, o2, . . . , ok) ∈ Uk},
where Va,u ⊆ P (Va), Va,u is the family of all sets of possible values of the
attribute a for the object u from the viewpoint of the agent and P (Va) is
the family of all subsets of Va.

(b) The knowledge Ka of the agent about the attribute a and its value for the
object u is

(0) empty if card(
⋃

W∈Va,u
W ) = 0,

(1) definite if card(
⋃

W∈Va,u
W ) = 1,

(> 1) imprecise, in particular vague, if card(
⋃

W∈Va,u
W ) > 1.

Let us observe that vague knowledge about some attribute of the information
system Σ is connected with the assignation of a vague value to the object u.

Example 3. Let us consider again the information system S = 〈S, A1, A2〉. The
agent’s knowledge KIF , KQ, KTC about the attributes of the information system
S can be characterized by means of the following tables:

VIF,p VQ,p

p1 {S0.2, S0.3, S0.25} {S100, S150, S90, S80}
p2 {S0.5, S0.7, S0.8} {S180, S200, S250, S240}
p3 {S0.5, S0.6, S0.4} {S170, S230, S180, S150}
p4 {S0.1, S0.2, S0.15} {S100, S90, S10, S140}
p5 {S0.7, S1.5, S1.0} {S270, S150, S240, S200}

VTC,(p,p′) p1 p2 p3 p4 p5

p1 {S1
1} {S0.3, S0.5} {S0.1, S0.2} {S0.5, S0.8} {S0.1, S0.2}

p2 {S0.3, S0.5} {S1
1} {S0.1, S0.2} {S0.1, S0.2} {S0.3, S0.4}

p3 {S0.1, S0.2} {S0.1, S0.2} {S1
1} {S0.1, S0.2} {S0.3, S0.1}

p4 {S0.5, S0.8} {S0.1, S0.2} {S0.1, S0.2} {S1
1} {S0.1, S0.2}

p5 {S0.1, S0.2} {S0.3, S0.4} {S0.3, S0.1} {S0.1, S0.2} {S1
1}

From Definitions 1 and 3 we arrive at:

Fact 2. Unit information (knowledge) about the object o ∈ U with respect to a
relation R of the system �(Σ) is the image

−→
R (o) of the object o with respect to

the relation R.

Contrary to the objective unit knowledge
−→
R (o) about the object o of U in the

reality � with regard to its relation R, the subjective unit knowledge (the unit
knowledge of an agent) about the object o of U in the reality �(Σ) depends on
an attribute of Σ determining the relation R and its possible values from the
viewpoint of the knowledge of the agent discovering �(Σ). The subjective unit
knowledge

−−→
Rag(o) depends on the agent’s ability to solve the following equation:

−−→
Rag(o) = x, (e)

where x is an unknown quantity.
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Solutions of (e) for a k-ary relation R should be images of the object o with
respect to k-ary relations Ra,W from �(Σ), where ∅ 	= W ⊆ Va. Let us note
that for each unary relation R solutions of (e) are unary relations Ra,W , where
∅ 	= W ∈ Va,o.

A solution of the equation (e) can be correct – then the agent’s knowledge
about the object o is exact . If the knowledge is inexact , then at least one
solution of (e) is not an image of the object o with respect to the relation R.

Definition 5. Empty, definite and imprecise unit knowledge.
Unit knowledge of the agent about the object o ∈ U in �(Σ) with respect to its
relation R is

(0) empty iff the equation (e) does not have a solution for the agent (the
agent knows nothing about the value of the function

−→
R for the object o),

(1) definite iff the equation (e) has exactly one solution for the agent (either
the agent’s knowledge is exact – the agent knows the value of the function−→
R for the object o – or he accepts only one, but not necessarily accurate,
value of the function),

(> 1) imprecise iff the equation (e) has at least two solutions for the agent (the
agent allows at least two possible values of the function

−→
R for the object

o).

From Definitions 4 and 5 we arrive at:

Fact 3. Unit knowledge of the agent about the object o ∈ U in �(Σ) with respect
to its relation R is

(0) empty if the agent’s knowledge Ka about the attribute a and its value
for the object o is empty,

(1) definite if the agent’s knowledge Ka about the attribute a and its value
for the object o is definite,

(> 1) imprecise if the agent’s knowledge Ka about the attribute a and its value
for the object o is imprecise.

When the unit knowledge of the agent about the object o is imprecise, then most
often we replace the unknown quantity x in (e) with a vague value.

Example 4. Consider the relation R = RQ,S200 within the previous system �(S),
i.e. the set of all papers of S that have been quoted in at least 200 other papers.
The unit knowledge about the paper p5 with respect to R can be the following
vague information: −−→

Rag(p5) = VALUABLE , (e1)

where VALUABLE is an unknown, indefinite, vague quantity.
Then the agent refers to the paper p5 non-uniquely, assigning to him dif-

ferent images of the paper p5 with respect to the relations that are possi-
ble from his point of view. Then the equation (e1) usually has, for him, at
least two solutions. From Example 3, it follows that each of these relations:
RQ,S270 , RQ,S150 , RQ,S240 , RQ,S200 can be a solution to (e1). Let us observe that
RQ,S270 = ∅, RQ,S150 = {p2, p3, p4, p5}, RQ,S240 = {p2, p5}, RQ,S200 = {p2, p3, p5}.
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3 Vague Sets and Rough Sets

Let �(Σ) be the system determined by the information system Σ. In order to
simplify our considerations in the subsequent sections of the paper, we will limit
ourselves to the unary relation R (property) – a subset of U of the system �(Σ).

Definition 6. Inexact unit knowledge of the agent.
Unit knowledge of the agent about the object o in �(Σ) with respect to R is
inexact iff the equation (e) has for him at least one solution and at least one of
the solutions is not an image

−→
R (o).

The equation (e) has then the form:
−−→
Rag(o) = X, (ine)

where X is an unknown quantity from the viewpoint of the agent, and (ine) has
for him at least one solution and at least one of the solutions is not an image−→
R (o).

The equation (ine) can be called the equation of inexact knowledge of the
agent. All solutions of (ine) are unary relations in the system �(Σ).

Definition 7. Vague unit knowledge of the agent.
Unit knowledge of the agent about the object o in �(Σ) with respect to R is
vague iff the equation (e) has at least two different solutions for the agent.

The equation (e) has then the form:
−−→
Rag(o) = VAGUE , (ve)

where VAGUE is an unknown quantity, and (ve) has at least two different solu-
tions for the agent.

The equation (ve) can be called the equation of vague knowledge of the agent.

Fact 4. Vague unit knowledge is a particular case of inexact unit knowledge.

Definition 8. Vague (proper vague) set.
The family of all solutions (sets) of (ine), respectively (ve), is called the vague
set for the object o determined by R, respectively the proper vague set for the
object o determined by R.

Example 5. The family of all solutions of (e1) from Example 4 is a vague set Vp5

for the paper p5 determined by RQ,S200 and Vp5 = {RQ,S270 , RQ,S150 , RQ,S240 ,
RQ,S200}.

Vague sets, thus also proper vague sets, determined by a set R are here some
generalizations of sets approximated by representations (see Bonikowski [3]).
They are non-empty families of unary relations from �(Σ) (such that at least
one of them includes R) and sub-families of the family P (U) of all subsets of
the set U , determined by the set R. They have the greatest lower bound (the
lower limit) and the least upper bound (the upper limit) in P (U) with respect
to inclusion. We will denote the greatest lower bound of any family X by X.
The least upper bound of X will be denoted by X. So, we can note
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Fact 5. For each vague set V determined by the set (property) R

V ⊆ {Y ∈ P (U) : V ⊆ Y ⊆ V}. (4)

The idea of vague sets was conceived upon Pawlak’s idea of rough sets [19], who
defined them by means of the operations of lower approximation: ∗ and upper
approximation: ∗, defined on subsets of U . The lower approximation of a set
is defined as a union of indiscernibility classes of a given relation in U2 which
are included in this set, whereas the upper approximation of a set is defined as
a union of the indiscernibility classes of the relation which have a non-empty
intersection with this set.

Definition 9. Rough set.
A rough set determined by a set R ⊆ U is a family P of all sets satisfying the
condition (5):

P = {Y ∈ P (U) : Y∗ = R∗ ∧ Y ∗ = R∗}.2 (5)

Let us observe that because R ⊆ R ∈ P, the family P is a non-empty family of
sets such that at least one of them includes R (cf. Definition 8). By analogy to
Fact 5, we have

Fact 6. For each rough set P determined by the set (property) R

P ⊆ {Y ∈ P (U) : R∗ ⊆ Y ⊆ R∗}. (6)

It is obvious that

Fact 7. If V is a vague set and X∗ = V and X∗ = V for any X ∈ V, then V
is a subset of a rough set determined by any set of V.

For every rough set P determined by R we have: P = R∗ and P = R∗. We can
therefore consider the following generalization of the notion of the rough set:

Definition 10. Generalized rough set.
A non-empty family G of subsets of U is called a generalized rough set determined
by a set R iff it satisfies the condition (7):

G = R∗ and G = R∗. (7)

It is easily seen that

Fact 8. Every rough set determined by a set R is a generalized rough set deter-
mined by R.

Fact 9. If V is a vague set and there exists a set X ⊆ U such that X∗ = V and
X∗ = V, then V is a generalized rough set determined by the set X.

2 Some authors define a rough set as a pair of sets (lower approximation, upper ap-
proximation)(cf., e.g., Iwiński [10], Pagliani [14]).
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4 Multiplicity of Membership to a Vague Set

For every object o ∈ U and every vague set Vo, we can count the multiplicity
of membership of o to this set .

Definition 11. Multiplicity of membership.
The number i is the multiplicity of membership of the object o to the vague set
Vo iff o belongs to i sets of Vo (i ∈ N).

The notion of multiplicity of an object’s membership to a vague set is closely
related to the so-called degree of an object’s membership to the set .

Definition 12. Degree of an object’s membership.
Let Vo be a vague set for the object o and card(Vo) = n. The function µ is
called a degree of membership of o to Vo iff

µ(o) =

⎧⎨⎩
0, if the multiplicity of membership of o to Vo equals 0,
k
n , if the multiplicity of membership of o to Vo equals k (0 < k < n),
1, if the multiplicity of membership of o to Vo equals n.

Example 6. The degree of the membership of the paper p5 to the vague set Vp5

(see Example 5 ) is equal to 3/4.

It is clear that

Fact 10.
1. Any vague set is a multiset in Blizard’s sense [1].
2. Any vague set is a fuzzy set in Zadeh’s sense [28] with µ as its membership

function.

5 Operations on Vague Sets

Let us denote by V the family of all vague sets determined by relations in the
system �(Σ). In the family V we can define a unary operation of the negation ¬
on vague sets, a union operation ⊕ and an intersection operation � on any two
vague sets.

Definition 13. Operations on vague sets.
Let V1 = {Ri}i∈I and V2 = {Si}i∈I be vague sets determined by the sets
R ⊆ U and S ⊆ U , respectively. Then

(a) V1 ⊕V2 = {Ri}i∈I ⊕ {Si}i∈I = {Ri ∪ Si}i∈I ,
(b) V1 �V2 = {Ri}i∈I � {Si}i∈I = {Ri ∩ Si}i∈I ,
(c) ¬V1 = ¬{Ri}i∈I = {U \Ri}i∈I .

The family V1⊕V2 is called the union of the vague sets V1 and V2 determined
by the relations R and S. The family V1 �V2 is called the intersection of the
vague sets V1 and V2 determined by the relations R and S. The family ¬V1 is
called the negation of the vague set V1 determined by the relation R.
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Theorem 1. Let V1 = {Ri}i∈I and V2 = {Si}i∈I be vague sets determined by
the sets R and S, respectively. Then

(a) V1 ⊕V2 = V1 ∪V2 and V1 ⊕V2 = V1 ∪V2,

(b) V1 �V2 = V1 ∩V2 and V1 �V2 = V1 ∩V2,

(c) ¬V1 = U \V1 and ¬V1 = U \V1.

Theorem 2. The structure B = (V ,⊕,�,¬,0,1) is a Boolean algebra, where
0 = {∅} and 1 = {U}.

We can easily observe that the above-defined operations on vague sets dif-
fer from Zadeh’s operations on fuzzy sets, from standard operations in any
field of sets and, in particular, from the operations on rough sets defined by
Pomyka�la & Pomyka�la [23] and Bonikowski [2]. The family of all rough sets with
operations defined in the latter two works is a Stone algebra.

6 On Logic of Vague Terms

How to solve the problem of logic of vague terms, logic of vague sentences (vague
logic) based on the vague sets characterized in the previous sections? Answering
this question requires a brief description of the problem of language representa-
tion of unit knowledge.

On the basis of our examples, let us consider two pieces of unit information
about the paper p5, with respect to the set R of all papers that have been
referenced in at least 200 other papers:

first, exact unit knowledge
−−→
Rag(p5) = {p2, p3, p5}, (ee)

next, vague unit knowledge:
−−→
Rag(p5) = VALUABLE . (e1)

Let p5 be the designator of the proper name a, R – the denotation (exten-
sion) of the name-predicate P (‘a paper that has been quoted in at least 200 other
papers ’), and the vague name-predicate V (‘a paper which is valuable’) – a lan-
guage representation of the vague quantity VALUABLE. Then a representation
of the first equation (ee) is the logical atomic sentence

a is P (re)
and a representation of the second equation (e1) is the vague sentence

a is V. (re1)
In a similar way, we can represent, respectively, (ee) and (e1) by means of a

logical atomic sentence:
aP or P (a), (re′)

where P is the predicate (‘has been quoted in at least 200 other papers’), and by
means of a vague sentence

aV or V (a), (re′1)
where V is the vague predicate (‘is valuable’).
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The sentence (re1) (res. the sentence (re′1)) is not a logical sentence, but it
can be treated as a sentential form, which represents all logical sentences, in
particular the sentence (re) (respectively sentence (re′)) that arises by replacing
the vague name-predicate (res. vague predicate) V by allowable sharp name-
predicates (res. sharp predicates), whose denotations (extensions) constitute the
vague set Vp5 being the denotation of V and, at the same time, the set of
solutions to the equation (e1) from the agent’s point of view.

By analogy, we can consider every atomic vague sentence in the form V (a),
where a is an individual term and V – its vague predicate, as a sentential form
with V as a vague variable running over all denotations of sharp predicates that
can be substituted for V in order to get precise, true or false, logical sentences
from the form V (a). Then, the scope of the variable V is the vague set Vo

determined by the designator o of the term a.
All the above remarks lead to a ‘conservative’, classical approach in searching

for a logic of vague terms, or vague sentences, here referred to as vague logic (cf.
Fine [9], Cresswell [7]). It is easy to see that all counterparts of laws of classical
logic are laws of vague logic because, to name just one reason, vague sentences
have an interpretation in Boolean algebra B of vague sets (see Theorem 2).

We can distinguish two directions in seeking such a logic:

1a) all counterparts of tautologies of classical sentential calculus that are
obtained by replacing sentence variables with atomic expressions of this logic
(in the form V(x)), representing vague atomic sentences (sentential functions in
the form V (a)), are tautologies of vague logic,

1b) all counterparts of tautologies of classical predicate calculus that can be
obtained by replacing predicate variables with vague predicate variables, repre-
senting vague predicates, are tautologies of vague logic;

2) vague logic should be a finite-valued logic, in which a value of any vague
sentence V (a) represented by its vague atomic expression (in the form V(x)) is
the multiplicity of membership of the designator o of a to the vague set Vo being
the denotation of V , and the multiplicities of membership of the designators
of the subjects of any composed vague sentence, represented by its composed
vague formula, to the denotation (a vague set) corresponding to this sentence are
functions of the multiplicities of membership of every designator of the subject
of its atomic component to the denotation of its vague predicate.

It should be noticed that sentential connectives for vague logic should not
satisfy standard conditions (see Malinowski [11]). For example, an alternative of
two vague sentences V (a) and V (b) can be a ‘true’ vague sentence (sentential
form) despite the fact that its arguments V (a) and V (b) are neither ‘true’ or
‘false’ sentential forms, i.e. in certain cases they represent true sentences, and in
some other cases they represent false sentences. It is not contrary to the state-
ment that all vague sentential forms which we obtain by a suitable substitution
of sentential variables (resp. predicate variables) by vague sentences (resp. vague
predicates) in laws of classical logic always represent true sentences. Thus they
are laws of vague logic.
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7 Final Remarks

1. The concept of vagueness was defined in the paper as an indefinite, vague
quantity or property corresponding to the knowledge of an agent discovering
a fragment of reality, and delivered in the form of the equation of inexact
knowledge of the agent. A vague set was defined as a set (family) of all
possible solutions (sets) of this equation and although our considerations
were limited to the case of unary relations, they can easily be generalized to
encompass any k-ary relations.

2. The idea of vague sets was derived from the idea of rough sets originating
in the work of Zdzis�law Pawlak, whose theory of rough sets takes a non-
numerical, qualitative approach to the issue of vagueness, as opposed to the
quantitative interpretation of vagueness provided by Lotfi Zadeh.

3. Vague sets, like rough sets, are based on the idea of a set approximation by
two sets called the lower and the upper limits of this set. These two kinds of
sets are families of sets approximated by suitable limits.

4. Pawlak’s approach and the approach discussed in this paper both make
a reference to the concept of a cognitive agent’s knowledge about the ob-
jects of the reality being investigated (see Pawlak [20]). This knowledge is
determined by the system of concepts that is determined by a system of
their extensions (denotations). When the concept is vague, its denotation,
in Pawlak’s sense, is a rough set, while in the authors’ sense – a vague set
which, under some conditions, is a subset of the rough set.

5. In language representation, the equation of inexact, vague knowledge of the
agent can be expressed by means of vague sentences containing a vague pred-
icate. Its denotation (extension) is a family of all scopes of sharp predicates
which, from the agent’s viewpoint, can be substituted for the vague predi-
cate. The denotation is, at the same time, the vague set of all solutions to
the equation of the agent’s vague knowledge.

6. Because vague sentences can be treated as sentential forms whose variables
are vague predicates, all counterparts of tautologies of classical logic are laws
of vague logic (logic of vague sentences).

7. Vague logic is based on classical logic but it is many-valued logic, because
its sentential connectives are not extensional.
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Abstract. The goal of the paper is to present the modification of clas-
sical indiscernibility relation, dedicated for rough set theory in a real-
valued attributes space. Contrary to some other known generalizations,
indiscernibility relation modified here, remains an equivalence relation
and it is obtained by introducing a structure into collection of attributes.
It defines real-valued subspaces, used in a multidimensional cluster anal-
ysis, partitioning the universe in a more natural way, as compared to one-
dimensional discretization, iterated in classical model. Since the classical
model is a special, extreme case of our modification, the modified version
can be considered as more general. But more importantly, it allows for
natural processing of real-valued attributes in a rough-set theory, broad-
ening the scope of applications of classical, as well as variable precision
rough set model, since the latter can utilize the proposed modification,
equally well. In a case study, we show a real application of modified re-
lation, a hybrid, opto-electronic recognizer of Fraunhofer diffraction pat-
terns. Modified rough sets are used in an evolutionary optimization of
the optical feature extractor implemented as a holographic ring-wedge
detector. The classification is performed by a probabilistic neural net-
work, whose error, assessed in an unbiased way is compared to earlier
works.

Keywords: rough sets, indiscernibility relation, holographic ring-wedge
detector, evolutionary optimization, probabilistic neural network, hybrid
pattern recognition.

1 Introduction

In classical theory of rough sets, originated by Pawlak [32], the indiscernibility
relation is generated by the information describing objects belonging to some
finite set called universe. If this information is of discrete nature, than the clas-
sical form of this relation is natural and elegant notion. For many applications
processing discrete attributes describing objects of the universe, such definition
of indiscernibility relation is adequate, what implies that area of successful use
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of classical rough set methodology covers problems having natural discrete rep-
resentation, consistent with granular nature of knowledge in this theory [32].
Such classical rough set model is particularly useful in automatic machine learn-
ing, knowledge acquisition and decision rules generation, applied to problems
with discrete data not having enough size for application of statistical methods,
demanding reliable estimation of distributions characterizing the underlying pro-
cess [29,30].

If however, the problem is defined in a continuous domain, the classical in-
discernibility relation almost surely builds one-element abstract classes, and
therefore is not suitable for any generalization. To overcome this disadvantage,
different approaches are proposed. The simplest is the discretization, but if this
processes is iterated separately for single attributes, it induces artificial and
highly nonlinear transformation of attribute space. Other approaches concen-
trate on generalization of the notion of indiscernibility relation into tolerance
relation [25,36] or similarity relation [15,37,38]. The comparative study focused
upon even more general approaches, assuming indiscernibility relation to be any
binary reflexive relation, is given by Gomolinska [20]. Another interesting gen-
eralization of indiscernibility relation into characteristic relation, applicable for
attributes with missing values (lost values or don’t care conditions) is proposed
by Grzymala-Busse [21,22].

In the paper we propose methodology, based on introduction of structure into
a collection of conditional attributes, and treating certain groups defining this
structure as multidimensional subspaces in a forthcoming cluster analysis. In this
way we do not have to resign from equivalence relation, and at the same time, we
obtain abstract classes uniting similar objects, belonging to the same clusters,
in a continuous multidimensional space, as required by majority of classification
problems.

Since the area of author’s interests is focused in hybrid opto-electronic pattern
recognition systems, the practical illustration of proposed modification concerns
such system. However, with some exceptions, indicated at the end of section 2,
the modification can find many more applications, especially, that it can be
equally well adopted in a generalized variable precision rough set model, intro-
duced by Ziarko [40], to meet requirements of analysis of huge data sets.

Automatic recognition of images constitutes an important area in the pattern
recognition problems. Mait et al. [28], in a review article, state that “an exam-
ination of recent trends in imaging reveals a movement towards systems that
balance processing between optics and electronics”. Such systems are designed
to perform heavy computations in optical mode, practically contributing no time
delays, while post- processing is made in computers, often with the use of ar-
tificial intelligence (AI) methods. The foundations of one of such systems have
been proposed by Casasent and Song [4], presenting the design of holographic
ring wedge detectors (HRWD), and by George and Wang, who combined com-
mercially available ring wedge-detector (RWD) and neural network (NN) in a one
complete image recognition system [19]. Despite the completeness of the solu-
tion their system was of little practical importance, since commercially available
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RWD was very expensive and moreover, could not be adapted to a particular
problem. Casasent’s HRWD, originally named by him as a computer generated
hologram (CGH) had a lot of advantages over commercial RWD, most impor-
tant being: much lower cost and adaptability. According to optical characteristics
the HRWD belongs to a wider class of grating based diffractive optical variable
devices (DOVDs) [11], which could be relatively easy obtained from computer
generated masks, and are used for sampling the Fraunhofer diffraction pattern.

The pioneering works proposing the method of optimization of HRWD masks
to a given application have been published by Cyran and Mrozek [10] and by
Jaroszewicz et al. [23]. Mentioned method was successfully applied to a multi
layer perceptron (MLP) based system, in a recognition of the type of subsurface
stress in materials with embedded optical fiber [9,12,14]. Examples of applica-
tion of the RWD-based feature extraction together with MLP-based classification
module include systems designed by Podeszwa et al. [34] devoted for the monitor-
ing of the engine condition, and by Jaroszewicz et al. [24] dedicated for airplane
engines. Some other notable examples of applications of ring-wedge detectors
and neural network systems, include works of Ganotra et al. [17] and Berfanger
and George [3], concerning fingerprint recognition, face recognition [18], or image
quality assessment [3]. The ring-wedge detector has been also used, as a light
scatter detector, in a classification of airbone particles performed by Kaye et al.
[26] and accurate characterization of particles or defects, present on or under the
surface, useful in fabrication of integrated circuits, as presented by Nebeker and
Hirleman [31]. The purely optical version of HRWD-MLP recognition system
was considered by Cyran and Jaroszewicz [7], however, such system is limited
by the development of optical neural networks. Simplified, to rings only, version
of the device is reported by Fares et al. [16] to be applied in a rotation invariant
recognition of letters. With all these applications, no wonder that Mait et al.
[28] concluded: ”few attempts have been made to design detectors with much
consideration for the optics. A notable exception is ring-wedge detector designed
for use in the Fourier plane of a coherent optical processor.”

Obviously, MLP (or more generally any type of NN) is not the only classi-
fier which could be applied for classification of patterns occurring in a feature
space generated by HRWD. Moreover, the first version of optimization procedure
favored the rough set based classifiers, due to identical (and therefore fully com-
patible) discrete nature of knowledge representation in the theory of rough sets
applied both to HRWD optimization and to subsequent rough set based classi-
fication. The application of general ideas of obtaining such rough classifier was
presented by Cyran and Jaroszewicz [8] and fast rough classifier implemented
as PAL 26V12 element was considered and designed by Cyran [6]. Despite of
inherent compatibility between optimization procedure and the classifier, the
system remained sub optimal, because features extracted from HRWD generate
continuous space, subject to unnatural discretization required by both: rough
set based optimization and classifier.

Mentioned problems led to the idea, that in order to obtain the enhanced opti-
mization method, the discretization required by classical indiscernibility relation
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in rough set theory, should be eliminated in such a way, which does not require
the resignation from equivalence relation in a favor of some weaker form (like
tolerance relation, for example). We achieved it by such modification of the indis-
cernibility relation which allows natural processing of real valued attributes. The
paper presents this problem in the section 2. After focusing on indiscernibility
relation related problems in section 2, section 3 starts with optical foundations of
the recognition system considered, and it is followed by experimental results ob-
tained from application of enhanced optimization methodology. The discussion
and conclusions are included in section 4. Remarkably, the experimental appli-
cation of modified indiscernibility relation into the system considered, improved
the results of evolutionary optimization of holographic RWD and equivalently,
enhanced the optimization of the HRWD generated feature space, dedicated
for real-valued classifiers. It also gave theoretical basis for the latest design of
two-way, neural network - rough set based classification system [5].

2 Modification of Indiscernibility Relation

Let us start with a brief analysis of the classical theory of rough sets, and the
generalization of it, named the theory of rough sets with variable precision, in
a context of data representation requirements. Next, the modification of indis-
cernibility relation is given. With modified indiscernibility relation, majority of
notions defined in rough set theory (both in classical and generalized, variable
precision form) can be naturally applied to the attributes having real-valued
domain.

2.1 Analysis of Theory of Rough Sets with Discrete Attributes

The notion of a rough set has been defined for a representation, processing and
understanding of imperfect knowledge. Such knowledge must be often sufficient
in controlling, machine learning or pattern recognition. The rough approach is
based on an assumption that each object is associated with some information,
describing it, not necessarily, in an accurate and certain way. Objects described
by the same information are not discernible. The indiscernibility relation, intro-
duced here in an informal way, expresses the fact that theory of rough sets does
not deal with individual objects, but with classes of objects which are indis-
cernible. Therefore the knowledge represented by classical rough sets is granular
[32]. The simple consequence is that objects with natural real-valued represen-
tation, hardly match that scheme, and some preprocessing has to be performed,
before such objects can be considered in a rough-set based frame. This prepro-
cessing has the goal in making ”indiscernible” objects which are close enough
(but certainly discernible) in real-valued space. In majority of applications of
rough set theory, this is obtained by subsequent discretization of all real-valued
attributes. This, highly nonlinear process, is not natural and disadvantageous
in many applications (such as an application presented in section 3). Before
we present an alternative way of addressing the problem (in subsection 2.2), a
formal definition of classical indiscernibility relation is given.
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Let S =< U, Q, v, f > be the information system composed of universe U , set
of attributes Q, information function f , and a mapping v. This latter mapping
associates each attribute q ∈ Q with its domain Vq. The information function
f : U×Q→ V is defined in such a way, that f(x, q) reads as the value of attribute
q for the element x ∈ U , and V denotes a domain of all attributes q ∈ Q and
is defined as a union of all domains of single attributes, i.e. V =

⋃
q∈Q Vq.

Then each nonempty set of attributes C ⊆ Q defines the indiscernibility relation
I0(C) ⊆ U × U for x, y ∈ U as

xI0(C)y ⇔ ∀q ∈ C, f(x, q) = f(y, q). (1)

Such definition, although theoretically applicable, both for discrete and contin-
ues domains V , is practically valuable only for discrete domains. For continuous
domains such relation is too strong, because in practice all elements would have
been discernible. Consequently, all abstract classes generated by I, would have
been composed of exactly one element, what would have made the application of
rough set theory notions possible, but senseless. The problem is that in the the-
ory of rough sets, with each information system, we can associate some knowledge
KQ generated by the indiscernibility relation I0(Q); for continuous attributes the
corresponding knowledge would have been too specific, to allow for any general-
izations, required for classification of similar objects into common categories.

2.2 Indiscernibility Relation in Rough Sets with Real Valued
Attributes

The consequence of the discussion ending the previous section is the need of
discretization. If a problem is originally defined for real valued attributes, then
before application of rough set theory, some clustering and discretization of con-
tinuous values of attributes should be performed. Let this process be denoted as a
transformation described by a vector function Λ : �card(C)→{1, 2, . . . , ξ}card(C),
where ξ is called the discretization factor. The discretization factor simply de-
notes the number of clusters covering the domain of each individual attribute
q ∈ C. Theoretically, this factor could be different for different attributes, but
without the loss of generality, we assume its constancy over the set of attributes.
Then, the discretization of any individual attribute q ∈ C, can be denoted as a
transformation defined by a scalar function Λ : � → {1, 2, . . . , ξ}. In this case,
we obtain the classical form of indiscernibility relation, defined as

xI0 (Λ[C]) y ⇔ ∀q ∈ C, f (x, Λ[q]) = f (y, Λ[q]) . (2)

Below, we will summarize, that majority (however, not all) of notions defined
in a theory of rough sets de facto do not demand the strong version of indis-
cernibility relation I0 defined by equation (1) (or by (2), if the discretization is
required). From a formal point of view, what is really important, is the fact,
that we assume the indiscernibility relation to be a relation of equivalence, i.e.
it must be reflexive, symmetric and transitive. From practical point of view, ob-
jects indiscernible in a sense of rough set theory, should be such objects, which
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are close in a real-valued space. Any relation, having these properties, we denote
by I, without any subscript, reserving subscripts for denoting particular forms
of I. The exact form of I, defined as I0 in (1) or (2), is not required, except for
some notions, which we discuss later, for processing of the rough information.
One can easily verify (by confrontation of the general form of indiscernibility
relation I with presented below notions) that the following constructs form a
logically consistent system, no matter what the specific form of the indiscerni-
bility relation is. In particular it is true for such forms of this relation, which vary
from classical form, both for discrete (1) and continuous (2) types of attributes,
as presented below.

C -elementary sets. Set Z is C-elementary, when all elements x ∈ Z are C-
indiscernible, i.e. they belong to the same class [x]I(C) of relation I(C). If C = Q
then Z is elementary set in S. C-elementary set is therefore the atomic unit of
knowledge about universe U with respect to C. Since C-elementary sets are
defined by abstract classes of relation I, it follows that any equivalence relation
can be used as I.

C -definable sets. If a set X is a union of C-elementary sets then X is C-
definable, i.e. it is definable with respect to knowledge KC . A complement, a
product, or an union of C-definable sets is also C-definable. Therefore the in-
discernibility relation I(C), by generating knowledge KC , defines all what can
be accurately expressed with the use of set of attributes C. Two information
systems S and S′ are equivalent if they have the same elementary sets. Then the
knowledge KQ is the same as knowledge KQ′ . Knowledge KQ is more general
than knowledge KQ′ iff I(Q′) ⊆ I(Q), i.e. when each abstract class of the rela-
tion I(Q′) is included in some abstract class of I(Q). C-definable sets, as unions
of C-elementary sets are also defined for any equivalence relation I.

C -rough set X. Any set being the union of C-elementary sets is a C-crisp set,
any other collection of objects in universe U is called a C-rough set. A rough
set contains a border, composed of elements such, that based on the knowledge
generated by indiscernibility relation I, it is impossible to distinguish whether
or not the element belongs to the set. Each rough set can be defined by two crisp
sets, called lower and upper approximation of the rough set. Since C-crisp sets
are unions of C-elementary sets, and C-rough set is defined by two C-crisp sets,
therefore the notion of C-rough set is defined for any equivalence relation I, not
necessarily for I0.

C -lower approximation of rough set X⊆U. The lower approximation of a
rough set X is composed of those elements of universe, which belong for sure to
X , based on indiscernibility relation I. Formally, C-lower approximation of a set
X ⊆ U , denoted as CX , is defined in the information system S, as CX = {x ∈
U : [x]I(C) ⊆ X} and since it is a C-crisp set, it can be defined for arbitrary
relation I.

C -upper approximation of rough set X⊆U. The upper approximation of
a rough set X is composed of those elements of universe, which perhaps belong
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to X , based on indiscernibility relation I. Formally, C-upper approximation
of a set X ⊆ U , denoted as CX is defined in the information system S, as
CX = {x ∈ U : [x]I(C) ∩X 	= ∅} and since it is a C-crisp set, it can be defined
for arbitrary relation I.

C -border of rough set X⊆U. The border of a rough set is the difference
between its upper and lower approximation. Formally, C-border of a set X ,
denoted as BnC(X) is defined as BnC(X) = CX − CX , and as a difference of
two C-crisp sets, its definition is based on arbitrary equivalence relation I.

Other notions, which are based on a notion of upper and/or lower approxi-
mation of a set X ⊆ U with respect to a set of attributes C, include: C-positive
region of the set X ⊆ U , C-negative region of the set X ⊆ U , sets roughly
C-definable, sets internally C-undefinable, sets externally C-undefinable, sets
totally C-undefinable, roughness of a set, C-accuracy of approximation of a set:
αC(X), C-quality of approximation of a set: γC(X). An interesting compari-
son of this latter coefficient and Dempster-Shafer theory of evidence is given by
Skowron and Grzymala-Busse [35].

Rough membership function of the element x:µC
X(x). The coefficient de-

scribing the level of uncertainty, whether the element x ∈ U belongs to a set
X ⊆ U when indiscernible relation I(C) generates the knowledge KC in in-
formation system S, is a function denoted by µC

X(x) and defined as µC
X(x) =

card{X ∩ [x]I(C)}/card{[x]I(C)}. This coefficient is also referred to as a rough
membership function of an element x, due to similarities with membership func-
tion known from theory of fuzzy sets. This function gave base for the general-
ization of rough set theory called rough set model with variable precision [40].
This model assumes that lower and upper approximations are dependent on ad-
ditional coefficient β, such that 0 ≤ β ≤ 0.5, and are defined as CβX = {x ∈ U :
µC

X(x) ≥ 1−β} and CβX = {x ∈ U : µC
X(x) > β} respectively. The boundary in

this model is defined as Bnβ
C(X) = {x ∈ U : β < µC

X(x) < 1 − β}. It is easy to
observe that the classical rough set theory is the special case of variable precision
model with β = 0. Since ∀X ⊆ U , CX ⊆ CβX ⊆ CβX ⊆ CX , variable precision
model is a weaker form of theory as compared to classical model, and therefore it
is often preferable in analysis of large information systems with some amount of
contradicting data. The membership function of an element x can be also defined
for a family of sets X as µC

X(x) = card{(
⋃

Xn∈X Xn) ∩ [x]I(C)}/card{[x]I(C)}.
If all subsets Xn of the family X are mutually disjoint, then ∀x ∈ U , µC

X(x) =
ΣXn∈X µC

Xn
(x). Since the definition of the rough membership function of the

element µC
X(x) assumes only the existence of classes of equivalence of the re-

lation I, and the variable precision model formally differs from classical model
only in the definition of lower and upper approximation with the use of this
coefficient, therefore all presented above notions are defined for arbitrary I also
in this generalized model.

Notions of a rough set theory, applicable for a separate set X , are generally
applicable also for families of sets X = {X1, X2, . . . , XN}, where Xn ⊆ U ,
and n = 1, . . . , N . The lower approximation of a family of sets is a family
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of lower approximations of sets belonging to family considered. Formally, CX =
{CX1, CX2, . . . , CXN}. As a family of C-crisp sets, the definition of C-lower
approximation of family of sets is based on arbitrary relation of equivalence I.
Similarly, C-upper approximation of family of sets is a family of upper approxi-
mations of sets belonging to family considered. Formally, CX = {CX1, CX2, . . . ,
CXN}. This notion is valid for any relation of equivalence I, for reasons identical
to those, presented for C-lower approximation of family of sets.

Other notions, which are based on a notion of upper and/or lower approx-
imation of a family of sets X , with respect to a set of attributes C, include:
C-border of family of sets, C-negative region of the family of sets, C-negative
region of the family of sets, C-accuracy of approximation of a family of sets,
C-quality of approximation of a family of sets. This latter coefficient is espe-
cially interesting for the application presented in the subsequent section, since
it is used as an objective function in a procedure of optimization of the feature
extractor. For this purpose, the considered family of sets is a family of abstract
classes generated by the decision attribute d being the class of the image to be
recognized (see section 3). Here, we define this coefficient for any family of sets
X, as γC(X) = card[PosC(X)]/card(U).

Conclusion. The analysis of above notions indicates, that they do not require
any particular form of the indiscernibility relation (like for example the classical
form referred to as I0). They are defined for any form of the indiscernibility re-
lation (satisfying reflexity, symmetry and transitiveness), denoted by I and are
strict analogs of classical notions defined with the assumption of original form of
indiscernibility relation I0 defined in (1) and (2). Therefore, the exact form of the
indiscernibility relation, as proposed by classical theory of rough sets, as well as
by its generalization named variable precision model, is not actually required for
presented notions to create a coherent logical system. Some papers, referred in
introduction, go further in this generalizing tendency, resigning from the require-
ment of equivalence relation; working with such generalizations, however, is often
not natural in problems, such as classification, when notion of abstract classes,
inherently involved in equivalence relation, is of great importance. Therefore, we
propose such modification of indiscernibility relation, which is particularly useful
in pattern recognition problems, dealing with a space of continuous attributes
and defined in terms of equivalence relation.

To introduce formally the modification, let us change the notation of indis-
cernibility relation as being now dependent on a family of sets of attributes,
instead of being dependent simply on a set of attributes. By the family of sets
of attributes, we understand a subset of a power set, based on the set of at-
tributes, such, that all elements of this subset (these elements are subsets of
the set of attributes) are mutually disjoint, and their union is equal to the con-
sidered set of attributes. This allows us to introduce some structure into, orig-
inally unstructured, set of attributes, which the relation depends on [13]. Let
C = {C1, C2, . . . , CN} be introduced above family of disjoint sets of attributes
Cn ⊆ Q such that unstructured set of attributes C ⊆ Q is equal to the union
of members of the family C, i.e. C =

⋃
Cn∈C Cn. Then, let the indiscernibility
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relation be dependent on C instead of being dependent on C. Observe that both
C and C contain the same collection of single attributes, however C includes
additional structure as compared to C. If this structure is irrelevant for the prob-
lem considered, it can be simply ignored and we can obtain, as a special case,
the classical version of indiscernibility relation I0. However we can also obtain
other versions of this modified relation for which the introduced structure is
meaningful. Let relation I1(C) ⊆ U × U be such form of a relation I which is
different from I0

xI1(C)y ⇔ ∀Cn ∈ C, Clus(x, Cn) = Clus(y, Cn). (3)

where x, y ∈ U , and Clus(x, Cn) denotes the number of the cluster, that the
element x belongs to. The cluster analysis is therefore required to be performed
in a continuous vector spaces defined by sets of real valued conditional attributes
Cn ∈ C. There are two extreme cases of this relation, obtained when family C
is composed of exactly one set of conditional attributes C, and when family C
is composed of card(C) sets, each containing exactly one conditional attribute
q ∈ C.

The classical form I0 of the indiscernibility relation is obtained as the latter
extreme special case of modified version I1, because then clustering and dis-
cretization is performed separately for each continuous attribute. Formally, it
can be written as

I0 (Λ[C])≡I1(C) ⇔ C=

⎧⎨⎩{qn} : C =
⋃

qn∈C

{qn}

⎫⎬⎭ ∧ Clus (x, {qn}) = f (x, Λ[qn]) .

(4)
In other words, the classical form I0 of the indiscernibility relation can be

obtained as a special case of modified version I1 if we assume that family C
is composed of such subsets Cn, that each contains just one attribute, and the
discretization of each continuous attribute is based on separate cluster analysis
as required by a scalar function Λ applied to each of attributes qn.

Here we discuss some of the notions of rough set theory that cannot be used
in a common sense with the modified indiscernibility relation. We start with so
called basic sets which are abstract classes of relation I({q}) defined for singe at-
tribute q. These are simply sets composed of elements indiscernible with respect
to single attribute q. Obviously, this notion loses its meaning when I1 is used
instead of I0, because abstract classes generated by I0({q}) are always unions
of some abstract classes generated by I0(C), however abstract classes generated
by I1({q}) not necessarily are unions of abstract classes generated by I1(C).
Therefore the conclusion that knowledge K{q} generated by I0({q}) is always
more general than knowledge KC generated by I0(C), no longer holds when I1
is used instead of I0. Similarly, notions of reducts, relative reducts, cores and
relative cores no longer are applicable in their classical sense, since their def-
initions are strongly associated with single attributes. Joining these attributes
into members of family C, destroys individual treatment of attributes, required
for these notions to have their well known meaning. However, as long as rough
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set theory usage in continuous attribute space, does not exceed the collection of
notions described ahead of the definition (3), the modified I1 version should be
considered more advantageous, as compared to the classical form I0. In partic-
ular, this is true in processing of knowledge obtained from the holographic ring
wedge detector, when the quality of approximation of family of sets plays the
major role. We present this application as an illustrative example.

3 Application to Fraunhofer Pattern Recognizer

Presented below system belongs to a class of fast hybrid opto-electronic pat-
tern recognizers. The feature extraction subsystem is processing the information
optically. Let us start a description of such feature extractor by giving a physi-
cal basis, required to understand the properties of feature vectors generated by
this subsystem, followed by the description of enhanced method of HRWD opti-
mization and experimental results of the usage of this method. This illustrative
section is completed with the description of probabilistic neural network (PNN)
based classifier and experimental results of the application of it into Fraunhofer
pattern recognition.

3.1 Optical Foundations

In homogeneous and isotropic medium which is free of charge (ρ = 0) and
currents (j = 0) Maxwell equations result in a wave equation

∆2G− ε′µ′ ∂
2G
∂t2

= 0. (5)

where G denotes electric (E) or magnetic (H) field, and a product ε′µ′ is the
reciprocal of squared velocity of a wave in a medium. Application of this equation
to a space with obstacles like apertures or diaphragms should result in equations
describing the diffraction of the light at these obstacles. However the solution is
very complicated for special cases and impossible for the general case. Therefore
the simplification should be used which assumes a scalar field u instead of vector
field G. In such a case the information about the light polarization is lost and
it holds that

∇2u− 1
ν2

∂2u

∂t2
= 0. (6)

Simplified in this way theory, called the scalar Kirchhoff’s theory, describes
the diffraction of the light at various obstacles. According to this theory, scalar
complex amplitude u0(P ) of a light oscillation, caused by the diffraction, is given
in a point of observation P by the Kirchhoff’s integral [33]

u0(P ) =
1
4π

∫
Σ

[
eikr

r

du0

dn
− u0

d

dn

(
eikr

r

)]
dΣ. (7)

where Σ denotes closed surface with point P and without the light source, n
is an external normal to the surface Σ, k = 2π/λ is a propagation constant,
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u0 denotes scalar amplitude on a surface σ, and r is the distance between any
point covered inside surface Σ to the observation point P . Formula (7) states
that amplitude u0 in point P does not depend on the state of oscillations in
the whole area surrounding this point (what would result from Huygens theory)
but, depends only on state of oscillations on a surface Σ. All other oscillations
inside this surface are canceling each other. Application of Kirchhoff’s theorem
to a diffraction on a flat diaphragm with aperture of any shape and size gives
the integral stretched only on a surface ΣA covering the aperture. Such integral
can be transformed to [33]

u0(P ) = − ik

4π

∫
ΣA

u0(1 + cos θ)
eikr

r
dΣA. (8)

where θ denotes an angle between radius r from any point of aperture to point
of observation, and the internal normal of the aperture.

Since any transparent image is, in fact, a collection of diaphragms and aper-
tures of various shapes and sizes, therefore such image, when illuminated by
coherent light, generates the diffraction pattern, described in scalar approxima-
tion by the Kirchhoff’s integral (7). Let coordinates of any point A, in an image
plane, are denoted by (x, y), and let an amplitude of light oscillation in this
point, be µ(x, y). Furthermore, let coordinates (ξ, η) of an observation point P
be chosen as

ξ =
2π

λ
sin θ, η =

2π

λ
sinϕ. (9)

where: λ denotes the length of the light wave, whereas θ and ϕ are angles between
the radius from the point of observation P to point A, and planes (x, z) and (y, z),
respectively. These planes are two planes of such coordinate system (x, y, z),
whose axes x and y are in the image plane, and axis z is perpendicular to the
image plane (it is called optical axis). Let coordinate system (x′, y′) be the system
with the beginning at point P and such that its plane (x′, y′) is parallel to the
plane of the coordinate system (x, y). It is worth to notice, that coordinates of
one particular point in the observation system (ξ, η) correspond to coordinates
of all points P of the system (x′, y′), such that the angles between axis z and a
line connecting these points with some points A of the plane (x, y), are θ and ϕ,
respectively. In other words, all radii AP , connecting points A of the plane (x, y)
and points P of the plane (x′, y′), which are parallel to each other, are represented
in a system (ξ, η) by one point. Such transformation of the coordinate systems
is physically obtained in the back focal plane of the lens, placed perpendicularly
to the optical axis z. In this case, all parallel radii represent parallel light beams,
diffracted on the image (see Fig. 1) and focused in the same point in a focal
plane. Moreover, the integral (7), when expressed in a coordinate system (ξ, η),
can be transformed to [33]

u0(ξ, η) =
1
2π

∞∫
−∞

∞∫
−∞

ν(x, y)e−i(ξx+ηy)dxdy. (10)
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Fig. 1. The operation of the spherical lens

Geometrical relationships (Fig. 1) reveal that

rf = R
l′ − f

l′
. (11)

On the other hand the operation of the lens is given by

1
f

=
1
l

+
1
l′

. (12)

Putting this equation to (11), after elementary algebra, we obtain

R

l
=

rf

f
. (13)

Since angles θ and ϕ (corresponding to angle α in Fig. 1, in a plane (x, z) and
(y, z), respectively) are small, therefore equations (9), having in mind (13), can
be rewritten as

ξ =
2π

λ

xf

f
, η =

2π

λ

yf

f
(14)

where xf and yf denote Cartesian coordinates in a focal plane of the lens. Equa-
tion (10) expressed in these coordinates can be written as

u0(xf , yf) =
1
2π

∞∫
−∞

∞∫
−∞

ν(x, y)e−i2π( xf
λf x+

yf
λf y)dxdy. (15)

Setting new coordinates (u, v) as

u =
xf

λf
, v =

yf

λf
(16)

we have finally the equation

u0(u, v) =
1
2π

∞∫
−∞

∞∫
−∞

ν(x, y)e−i2π(ux+vy)dxdy. (17)



26 K.A. Cyran

which is (up to the constant factor k) a Fourier integral. This is essentially the
Fraunhofer approximation of Kirchhoff’s integral, and is also referred to as a
Fraunhofer diffraction pattern [27]. The complex amplitude of the Fraunhofer
diffraction pattern obtained in a back focal plane of the lens is therefore a Fourier
transform of the complex amplitude from the image plane

u0(u, v) = kF{ν(x, y)}. (18)

This fact is very often used in a design of hybrid systems for recognition of
images in a spatial frequency domain. One prominent example is the system with
a feature extractor built as a HRWD placed in a back focal plane of the lens.
The HRWD itself consists of two parts: a part composed of rings Ri and a part
containing wedges Wj . Each of elements Ri or Wj is covered with a grating of
particular spatial frequency and orientation, so that the light, passing through
the given region, is diffracted and focused by some other lens, at certain cell of
array of photodetectors. The photodetector, in turn, integrates the intensity of
the light and generates one feature used in classification.

3.2 Enhanced Optimization Method

The system considered above can be used for the recognition of images invariant
with respect to translation, rotation and size, based on the properties of Fourier
transform and the way of sampling the Fraunhofer diffraction pattern by the
HRWD. Standard HRWD based feature extractor can be optimized to obtain
even better recognition properties of the system. To perform any optimization
one needs the objective function and the method of search in a space of solutions.
These two problems are discussed wider below.

Let ordered 5-tuple T =< U, C, {d}, v, f > be the decision table obtained
from the information system S =< U, Q, v, f > by a decomposition of the set
of attributes Q into two mutually disjoint sets: the set of conditional attributes
C and the set {d} composed of one decision attribute d. Let each conditional
attribute c ∈ C be one feature obtained from HRWD, and let decision attribute d
be the number of the class to be recognized. Obviously the domain of any of such
conditional attributes is � and the domain of decision attribute d is a subset of
first natural numbers, with cardinality equal to the number of recognized classes.
Furthermore, let D = {[xn]I0({d}) : xn ∈ U} be the family of such sets of images
where each set contains all images belonging to the same class. Observe that the
classical form of the indiscernibility relation I0 is used in this definition, due to
discrete nature of the domain of decision attribute d.

Based on the results of discussion given by Cyran and Mrozek [10], we argue
that the rough set based coefficient, called quality of approximation of family
D by conditional attributes belonging to C, and denoted by γC(D), is a good
objective function in the optimization of feature extractor in problems with
multimodal distribution of classes in a feature space. This is so, because this co-
efficient indicates the level of determinism of the decision table, what in turn, is
relevant for the classification. On the other hand, based on the conclusion given
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in 2.2, in the case of real valued attributes C, the preferred form of indiscerni-
bility relation, being so crucial for rough set theory in general (and therefore for
the computation of γC(D) objective in particular), is the form defined by (3).
Therefore the optimization with the objective function γC(D) computed with
respect to classical form of indiscernibility relation for real valued attributes C
given in (2) produces sub-optimal solutions. This drawback can be eliminated if
modified version proposed in (3) is used instead of classical form defined in (2).
However the generalized form (3) requires the definition of some structure in a
set of conditional attributes. This is task dependent, and in our case the archi-
tecture of the feature extractor having different properties of wedges and rings,
defines natural structure, as a family C = {CR, CW }, composed of two sets: a
set of attributes corresponding to rings CR, and a set of attributes corresponding
to wedges CW . With this structure introduced into set of conditional attributes,
the coefficient γC(D) computed with respect to modified indiscernibility relation
(3), is en enhanced objective function for optimization of the HRWD.

Since defined above enhanced objective function is not differentiable, gradient-
based search method should be excluded. However the HRWD can be optimized
in a framework of evolutionary algorithm. The maximum value of fitness 97%,
having the meaning of γC(D∗) = 0.97, was obtained in 976 generation for pop-
ulation composed of 50 individuals (Fig. 2). The computer generated mask of
optimal HRWD, named xopt is designed for a system with a coherent light wave
length λ=635nm, emitted by laser diode and for a lens L with a focal length
fL=1m. In order to keep the resolution capability of the system, the diameter
of the HRWD in a Fourier plane should be equal to the diameter of the Airy
disc given by: sHRWD = 4 × 1.22 × λ × fL1/smin = 2.07mm, if the assumed
minimum size of recognizable objects is given by smin = 1.5mm. Assuming also
the rectangular array of photodetectors of the size s=5mm, forming four rows
(i=1,. . . ,4) and four columns (j = 1, . . . , 4), and setting the distance in vertical
direction from the optical axis to the upper edge of the array H = 50mm we ob-
tain values of angles θij presented in a Table 1. Similar results for the distances
dij are in Table 2.

Since the software for generating HRWD masks has been designed in a such
way, that distances dij are given in units equal to a one-tenth of a percent of the
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Fig. 2. Process of evolutionary optimization of HRWD. The courses present the fitness
of xopt expressed in percents: a) linear scale, b) logarithmic horizontal scale.
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Table 1. The values of angles θij (expressed in degrees) defining the HRWD gratings

4 3 2 1 ← j, i ↓
20.22 14.74 8.97 3.01 1
22.38 16.39 10.01 3.37 2
25.02 18.43 11.31 3.81 3
28.30 21.04 12.99 4.40 4

Table 2. Distances dij between striae [µm]

4 3 2 1 ← j, i ↓
12.54 12.93 13.20 13.35 1
13.82 14.33 14.71 14.92 2
15.34 16.06 16.60 16.90 3
17.20 18.24 19.04 19.48 4

Table 3. Distances dij between striae, in units used by software generating HRWD
masks

4 3 2 1 ← j, i ↓
12.14 12.52 12.78 12.92 1
13.38 13.88 14.24 14.44 2
14.86 15.55 16.08 16.36 3
16.65 17.65 18.43 18.86 4

radius of HRWD, therefore for RHRWD = sHRWD/2 = 1.035mm, we give in a
Table 3 the proper values, expressed in these units.

3.3 PNN Based Classification

In our design the input layer of the probabilistic neural network (PNN) used as
a classifier is composed of N elements to process N -dimensional feature vectors
generated by HRWD (N = NR + NW ). The pattern layer consists of M pools
of pattern neurons, associated with M classes of intermodal interference to be
recognized. We used in that layer RBF neurons with Gaussian transfer function,
being the kernel function. Then, the width of the kernel function is simply a
standard deviation σ of the Gaussian bell. Each neuron of pattern layer is con-
nected with every neuron of input layer and the weight vectors of pattern layer
are equal to feature vectors present in a training set. Contrary to the pattern
layer, the summation layer consisting of M neurons, is organized in a such way,
that only one output neuron is connected with neurons from any summation
layer pool. When using such networks as classifiers, formally, there is a need to
multiply the output values by prior probabilities Pj . However in our cases, all
priors are equal and therefore, results can be obtained directly on outputs of the
network.
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We verified the recognition abilities by a classification of speckle structure
images, obtained from the output of the optical fiber. The experiments were
conducted for a set of 128 images of speckle patterns generated by intermodal
interference occurring in optical fiber and belonging to eight classes taken in
16 sessions Sl (l = 1, . . . , 16). The Fraunhofer diffraction patterns of input im-
ages were obtained by calculating the intensity patterns from discrete Fourier
transform equivalent to (17). The training set consisted of 120 images, taken
out in 15 sessions, and the testing set contained 8 images, belonging to differ-
ent classes, representing one session Sl. The process of training and testing was
performed 16 times, according to delete-8 jackknife method, i.e., for each itera-
tion, another session composed of 8 images was used for the testing set, and all
but one sessions were used for the training set. That gave the basis for reliable
cross-validation with still reasonable number of images used for training, and the
reasonable computational time. This time was eight times shorter, as compared
to classical leave-one-out method, which, for all discussions in a paper is equiv-
alent to delete1 jackknife method, since the only difference, the resubstitution
error of a prediction model, is not addressed in a paper. Jackknife method was
used for cross validation of PNN results, because of unbiased estimation of true
error in probabilistic classification (contrary to underestimated error - however
having smaller variance obtained by Bootstrap method) [1,39]. Therefore, choice
of delete-8 jackknife method, was a sort of tradeoff between accuracy (standard
deviation of estimated normalized decision error was 0.012), unbiased estimate
of the error, and computational effort. The results of such testing of the PNN
applied to classification of images in a feature space obtained from a standard,
optimized, and optimized with modified indiscernibility relation HRWDs, are
presented in Table 4. More detailed results of all jackknife tests are presented in
Table 5, Fig. 3 and Fig. 4.

The normalized decision errors, ranging from 1.5 to 2 percent, indicate good
overall recognition abilities of the system. The 20% reduction of this error is ob-
tained by optimization of HRWD with classical indiscernibility relation. Further
6% error reduction, is caused solely by a modification of indiscernibility relation,
according to (3).

Table 4. Results of testing the classification abilities of the system. The classifier is a
PNN having Gaussian radial function with standard deviation σ = 0.125. In the last
column the improvement is computed with respect to Standard HRWD (first value)
and with respect to HRWD optimized with standard indiscernibility relation (value in
a parentheses).

Correct Normalized Improvement
decisions [%] decision error [%] [%]

Standard HRWD 84.4 1.95 0.0 (-25.0)
HRWD optimized with

standard indiscernibility relation 87.5 1.56 20.0 (0.0)
HRWD optimized with

modified indiscernibility relation 88.3 1.46 25.1 (6.4)
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Fig. 3. Results of testing the HRWD-PNN system. The horizontal axis represents the
number of the test, the vertical axis is a cumulative number of bad decisions. Starting
from test 9 to the end, the cumulative number of bad decisions is better for optimization
of HRWD with modified indiscernibility relation, as compared to optimization with
classical version of this relation.
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Fig. 4. Results of testing the HRWD-PNN system. The horizontal axis represents the
number of the test, while the vertical axis is a normalized decision error averaged over
tests from the first to given, represented by the value of horizontal axis. Observe, that
for averaging over more than 8 tests, the results for recognition with HRWD optimized
with modified indiscernibility relation are outperforming both: results for HRWD opti-
mized with classical version of indiscernibility relation and results for standard HRWD.

In order to understand the scale of this improvement, not looking too im-
pressive at first glance, one should refer to a Fig. 2 and take into consideration,
that this additional 6% error reduction is obtained over an already optimized



Modified Indiscernibility Relation in the Theory of Rough Sets 31

Table 5. Results of PNN testing for tests number 1 to 16. Bold font is used for results
differing between optimization with standard and modified version of indiscernibility
relation. Bold underlined results indicate improvement when modified relation is used
instead of classical. Bold results without underlining indicate the opposite.

NUMBER OF TEST SESSION: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
NUMBER OF BAD DECISIONS

Standard HRWD 1 2 2 1 2 0 1 0 1 1 4 0 0 1 0 4
optimized with standard
indiscernibility relation 1 1 3 0 1 0 2 0 2 1 1 0 0 1 1 2
optimized with modified
indiscernibility relation 1 1 3 0 1 1 1 0 1 1 1 0 0 1 1 2

solution. The level of difficulty can be grasped observing that, on average, the
increase of the objective function is well mimicked by a straight line, if a gen-
eration number axis is drawn in a log scale. This means, that the growth of
objective is, on average, well approximated by a logarithmic function of the gen-
eration number. It experimentally reflects a well known fact, stating that, the
better current solution is, the harder is to optimize it further (harder, means: it
requires more generations in evolutionary process).

4 Discussion and Conclusions

The paper presents a modification of the indiscernibility relation, used in the
theory of rough sets. This theory has been successfully applied to many machine
learning and artificial intelligence oriented problems. However, it is well known
limitation of this theory, that it processes continuous attributes in an unnatu-
ral way. To support more natural processing, the modification of indiscernibility
relation has been proposed (3), such that the indiscernibility relation remains
the equivalence relation, but the processing of continuous attributes becomes
more natural. This modification introduces the information about structure into
unstructured in classical version collection of attributes that the relation is de-
pendent on. It has been shown that the classical relation is the special case
of the modified version, therefore proposed modification can be recognized as
being more general (yet, not as general, as indiscernibility relations, which are
no longer equivalence relations). Remarkably, proposed generalization is equiva-
lently valid for classical theory of rough sets, as well as for the variable precision
model, predominantly used in machine learning applied to huge data sets.

Proposed in a paper modification of indiscernibility relation, introduces the
flexibility in definition of particular special case, which is most natural to given
application. In the case of real-valued attributes, our modification allows for per-
forming multidimensional cluster analysis, contrary to multiple one-dimensional
analyses, required by the classical form. In majority of cases, the cluster analysis
should be performed in a space, generated by all attributes. This corresponds
to a family C composed of one set (card(C) = 1), containing all conditional
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attributes, and it is the opposite case, as compared to the classical relation, as-
suming that family C is composed of one-element disjoint sets, and therefore,
satisfying equation card(C) = card(C). However, other less extreme cases are
allowed as well and, in an experimental study, we use a family C = {CR, CW },
composed of two sets containing 8 elements, each. Such structure seems to be
natural for application having two-way architecture, like HRWD based feature
extractor.

Presented modification has been applied in optimization procedure of the hy-
brid opto-electronic pattern recognition system composed of HRWD and PNN.
It allowed to improve the recognition abilities by reducing the normalized de-
cision error by 6.5%, if a system, optimized with classical indiscernibility rela-
tion, is treated as the reference. One should notice, that this improvement is
achieved with respect to a reference, being already optimized solution, which
makes any further improvement difficult. Obtained results experimentally con-
firm our claims concerning sub optimality of earlier solutions. Presented ex-
periment is an illustration of application of proposed methodology into hybrid
pattern recognizer. However, we think, that presented modification of indiscerni-
bility relation will find many more applications in rough set based machine learn-
ing, since it gives natural way of processing real valued attributes, within a rough
set based formalism.

Certainly there are also limitations. Because some known in rough set theory
notions loose their meaning, when modified relation is to be applied, therefore, if
for any reason, they are supposed to play relevant role in a problem, the proposed
modification can be hardly applied in any other than classical special case form.
One prominent example concerns so called basic sets in a universe U , defined by
the indiscernibility relation, computed with respect to single attributes, as op-
posed to modified relation predominantly designed to deal with sets of attributes
defining a vector space, used for common cluster analysis. This modification is
especially useful in the case of information systems with real valued conditional
attributes representing vector space �N , such as systems of non syntactic pat-
tern recognition. The experimental example belongs to this class of problems
and illustrates the potential of modified indiscernibility relation for processing
real-valued data in a rough set based theory.
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Abstract. In this article we further explore the idea which led to the
standard rough inclusion function. As a result, two more rough inclusion
functions (RIFs in short) are obtained, different from the standard one
and from each other. With every RIF we associate a mapping which is in
some sense complementary to it. Next, these complementary mappings
(co-RIFs) are used to define certain metrics. As it turns out, one of these
distance functions is an instance of the Marczewski–Steinhaus metric.
While the distance functions may directly be used to measure the degree
of dissimilarity of sets of objects, their complementary mappings – also
discussed here – are useful in measuring of the degree of mutual similar-
ity of sets.

Keywords: rough inclusion function, rough mereology, distance and sim-
ilarity between sets.

1 Introduction

Broadly speaking, rough inclusion functions (RIFs) are mappings with which
one can measure the degree of inclusion of a set in a set. The formal notion of
rough inclusion was worked out within rough mereology, a theory proposed by
Polkowski and Skowron [2,3,4]. Rough mereology extends Leśniewski’s mereology
[5, 6], a formal theory of being-part to the case of being-part-to-degree.

The standard RIF is certainly the most famous RIF. Its definition, based on
the frequency count, is closely related to the definition of conditional proba-
bility. The idea underlying the standard RIF was explored by �Lukasiewicz in
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his research on probability of the truth of logical expressions (in particular, im-
plicative formulas) about one hundred years ago [7,8]. Apart from the standard
RIF, there are only several functions of such sort described in the literature (see,
e.g., [4, 9, 10]).

Although the notion of RIF is dispensable when approximating sets of objects
in line with the classical Pawlak approach [11, 12, 13, 14, 15], it is of particular
importance for more general rough-set models. Namely, the concept of RIF is a
basic component in Skowron and Stepaniuk’s approximation spaces [16, 17, 18,
19,20,21,22] where lower and upper rough approximations of sets of objects are
defined by means of RIFs. In the variable-precision rough-set model with exten-
sions [23,24,25,26] and the decision-theoretic rough set model and its extensions
[27,28,29], the standard RIF is taken as an estimator of certain conditional prob-
abilities which, in turn, are used to define variable-precision positive and negative
regions of sets of objects. Moreover, starting with a RIF, one can derive a family of
rough membership functions which was already observed by Pawlak and Skowron
in [30]. Also various functions measuring the degree of similarity between sets can
be defined by means of RIFs (see, e.g., [4, 10, 31, 32] for the rough-set approach).
Last but not the least, a method of knowledge reduction is proposed in [33] which
is based, among other things, on the degree of rough inclusion.

In this paper we explore further the idea which led to the standard RIF. The
aim is to discover other RIFs which have a similar origin as the standard one.
Our investigations are motivated, among other things, by the fact that in spite
of well-groundedness, usefulness, and popularity of the standard RIF, some of
its properties may seem to be too strong (e.g., Proposition 2a,b). In addition, it
would be good to have alternative RIFs at our disposal.

As a result, we have obtained two RIFs more. One of them is new, at least
up to the author’s knowledge, whereas the remaining one was mentioned in [9].
We investigate properties of the three RIFs with emphasis on the mutual re-
lationships among them. As regards the standard RIF, some of its properties
have already been known, but yet a few of them are new. Unlike the standard
RIF, the new RIFs do not, at first glance, seem to be very useful to estimate the
conditional probability. It turns out however that they are different from, yet
definable in terms of the standard RIF. On the other hand, the latter RIF can
be derived from the former two.

In the sequel, we introduce mappings complementary to our RIFs, called co-
RIFs, and we present their properties. The co-RIFs give rise to certain distance
functions which turn out to be metrics on the power set of the universe of
objects. The distance functions may directly be used to measure the degree
of dissimilarity between sets. It is interesting that one of these metrics is an
instance of the Marczewski–Steinhaus metric [34]. Finally, we arrive at mappings
complementary to the distance functions. They may, in turn, serve as indices of
similarity between sets. It is worthy to note that these similarity indices are
known from the literature [35, 36, 37, 38].

The rest of the paper is organized as follows. Section 2 is fully devoted to the
standard RIF. In Sect. 3 we recall axioms of rough mereology, a formal theory of
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being-part-to-degree introduced by Polkowski and Skowron in [2], which provides
us with fundamentals of a formal notion of rough inclusion. We also explain what
we actually mean by a RIF. In the same section we argue that RIFs indeed realize
the formal concept of rough inclusion proposed by Polkowski and Skowron. Some
authors [39,40] (see also [28]) claim rough inclusion measures to fulfil conditions
somewhat different from ours. Let us emphasize that our standpoint is that
of rough mereology, and its axioms just provide us with a list of postulates
to be satisfied by functions measuring the degree of inclusion. In Sect. 4, two
alternatives of the standard RIF are derived. In Sect. 5 we consider the co-RIFs
corresponding to our three RIFs and we investigate their properties. Certain
distance functions and their complementary mappings, induced by the co-RIFs,
are discussed in Sect. 6. The last section summarizes the results.

2 The Standard Rough Inclusion Function

The idea underlying the notion of the standard rough inclusion function was
explored by Jan �Lukasiewicz, a famous Polish logician who, among other things,
conducted research on probability of the truth of propositional formulas [7, 8].
The standard RIF is the most popular among functions measuring the degree of
inclusion of a set in a set. Let us recall that both the decision-theoretic rough
set model [27, 29] and the variable-precision rough set model [23, 24] make use
of the standard RIF. It is also commonly used to estimate the confidence (or
accuracy) of decision rules and association rules [10,41,42,43]. Last but not the
least, the standard RIF is counted as a function with which one can measure
similarity between clusterings [44,45].

Consider a structure M with a non-empty universe U and a propositional
language L interpretable over M . For any formula α and u ∈ U , u |= α reads
as ‘α is satisfied by u’ or ‘u satisfies α’. The extension of α is defined as the
set ||α|| = {u ∈ U | u |= α}. α will be satisfiable in M if its extension is
non-empty, and unsatisfiable otherwise. Morever, α is called true in M , |= α,
if ||α|| = U . Finally, α entails a formula β, written α |= β, if and only if every
object satisfying α satisfies β as well, i.e., ||α|| ⊆ ||β||. In classical logic, an
implicative formula α → β is true in M if and only if α entails β. Clearly, many
interesting formulas are not true in this sense. Since implicative formulas with
unsatisfiable predecessors are true, we limit our considerations to satisfiable α.
Then, one can assess the degree of truth of α → β by calculating the probability
that an object satisfying α satisfies β as well. Where U is finite, this probability
may be estimated by the fraction of objects of ||α|| which also satisfy β. That
is, the degree of truth of α → β may be defined as #(||α|| ∩ ||β||)/#||α|| where
#||α|| means the cardinality of ||α||.

By a straithforward generalization, we arrive at the well-known notion of the
standard RIF, commonly used in the rough set theory. It owes its popularity to
the clarity of the underlying idea and to the easiness of computation by means
of this notion. Since conditional probability may be estimated by the standard
RIF, the latter has also been used successfully in the decision-theoretic rough set
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model [27,29] (see also [28]) and the variable-precision rough set model and its
extensions [23, 24, 25]. Given a non-empty finite set of objects U and its power
set ℘U , the standard RIF upon U is a mapping κ£ : ℘U ×℘U �→ [0, 1] such that
for any X, Y ⊆ U ,

κ£(X, Y ) def=

{
#(X∩Y )

#X if X 	= ∅,
1 otherwise.

(1)

To assess the degree of inclusion of a set of objects X in a set of objects Y
by means of κ£, one needs to measure the relative overlap of X with Y . The
larger the overlap of two sets, the higher is the degree of inclusion, viz., for any
X, Y, Z ⊆ U ,

#(X ∩ Y ) ≤ #(X ∩ Z) ⇒ κ£(X, Y ) ≤ κ£(X, Z).

The success of the standard RIF also lies in its mathematical properties.
Where X is a family of sets, we write Pair(X ) to say that elements of X are
pairwise disjoint, i.e., ∀X, Y ∈ X .(X 	= Y ⇒ X ∩ Y = ∅). It is assumed that
conjunction and disjunction will take the precedence to implication and double
implication.

Proposition 1. For any sets X, Y, Z ⊆ U and any families of sets ∅ 	= X ,Y ⊆
℘U , it holds:

(a) κ£(X, Y ) = 1 ⇔ X ⊆ Y,

(b) Y ⊆ Z ⇒ κ£(X, Y ) ≤ κ£(X, Z),
(c) Z ⊆ Y ⊆ X ⇒ κ£(X, Z) ≤ κ£(Y, Z),

(d) κ£(X,
⋃
Y) ≤

∑
Y ∈Y

κ£(X, Y ),

(e) X 	= ∅ & Pair(Y) ⇒ κ£(X,
⋃
Y) =

∑
Y ∈Y

κ£(X, Y ),

(f) κ£(
⋃
X , Y ) ≤

∑
X∈X

κ£(X, Y ) · κ£(
⋃
X , X),

(g) Pair(X ) ⇒ κ£(
⋃
X , Y ) =

∑
X∈X

κ£(X, Y ) · κ£(
⋃
X , X).

Proof. We prove (f) only. Consider any Y ⊆ U and any non-empty family X ⊆
℘U . First suppose that

⋃
X = ∅, i.e., X = {∅}. The property obviously holds

since κ£(
⋃
X , Y ) = 1 and κ£(

⋃
X , ∅) ·κ£(∅, Y ) = 1 ·1 = 1. Now let

⋃
X be non-

empty. In such a case, κ£(
⋃
X , Y ) = #(

⋃
X ∩ Y )/#

⋃
X = #

⋃
{X ∩ Y | X ∈

X}/#
⋃
X ≤

∑
{#(X ∩Y ) | X ∈ X}/#

⋃
X =

∑
{#(X ∩Y )/#

⋃
X | X ∈ X}.

Observe that if some element X of X is empty, then #(X ∩ Y )/#
⋃
X = 0.

On the other hand, κ£(X, Y ) · κ£(
⋃
X , X) = 1 · (#X/#

⋃
X ) = 1 · 0 = 0

as well. For every non-empty element X of X , we have #(X ∩ Y )/#
⋃
X =

(#(X ∩Y )/#X) · (#X/#
⋃
X ) = κ£(X, Y ) ·κ£(

⋃
X , X) as required. Summing

up, κ£(
⋃
X , Y ) ≤

∑
X∈X κ£(X, Y ) · κ£(

⋃
X , X). ��
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Some comments can be useful here. (a) says that the standard RIF yields 1 if and
only if the first argument is included in the second one. Property (b) expresses
monotonicity of κ£ in the second variable, whereas (c) states some weak form of
co-monotonicity of the standard RIF in the first variable. It follows from (d) that
for any covering of a set of objects, say Z, the sum of the degrees of inclusion of
a set X in the sets constituting the covering is at least as high as the degree of
inclusion of X in Z. The non-strict inequality in (d) may be strenghtened to = for
non-empty X and coverings consisting of pairwise disjoint sets as stated by (e).
Due to (f), for any covering of a set of objects, say Z, the degree of inclusion
of Z in a set Y is not higher than a weighted sum of the degrees of inclusion of
sets constituting the covering in Y where the weights are the degrees of inclusion
of Z in the members of the covering of Z. In virtue of (g), the inequality may
be strenghtened to = if elements of the covering are pairwise disjoint. Let us
observe that (g) is in some sense a counterpart of the total probability theorem.

The following conclusions can be drawn from the facts above.

Proposition 2. For any X, Y, Z, W ⊆ U (X 	= ∅) and a family Y of pairwise
disjoint sets of objects such that

⋃
Y = U , we have:

(a)
∑
Y ∈Y

κ£(X, Y ) = 1,

(b) κ£(X, Y ) = 0 ⇔ X ∩ Y = ∅,
(c) κ£(X, ∅) = 0,

(d) X ∩ Y = ∅ ⇒ κ£(X, Z − Y ) = κ£(X, Z ∪ Y ) = κ£(X, Z),
(e) Z ∩W = ∅ ⇒ κ£(Y ∪ Z, W ) ≤ κ£(Y, W ) ≤ κ£(Y − Z, W ),
(f) Z ⊆W ⇒ κ£(Y − Z, W ) ≤ κ£(Y, W ) ≤ κ£(Y ∪ Z, W ).

Proof. We show (d) only. To this end, consider any sets of objects X, Y where
X 	= ∅ and X ∩ Y = ∅. Immediately (d1) κ£(X, Y ) = 0 by (b). Hence, for any
Z ⊆ U , κ£(X, Z) = κ£(X, (Z∩Y )∪(Z−Y )) = κ£(X, Z∩Y )+κ£(X, Z−Y ) ≤
κ£(X, Y ) + κ£(X, Z − Y ) = κ£(X, Z − Y ) in virtue of Proposition 1b,e. In
the sequel, κ£(X, Z ∪ Y ) ≤ κ£(X, Z) + κ£(X, Y ) = κ£(X, Z) due to (d1) and
Proposition 1d. The remaining inequalities are consequences of Proposition 1b.

��
Let us note a few remarks. (a) states that the degrees of inclusion of a non-
empty set of objects X in pairwise disjoint sets will sum up to 1 when these
sets, taken together, cover the universe. In virtue of (b), the degree of inclusion
of a non-empty set in an arbitrary set of objects equals to 0 just in the case the
both sets are disjoint. (b) obviously implies (c). The latter property says that the
degree of inclusion of a non-empty set in ∅ is equal to 0. Thanks to (d), removing
(resp., adding) objects, not being members of a non-empty set X , from (to) a
set Z does not influence the degree of inclusion of X in Z. As follows from (e),
adding (resp., removing) objects, not belonging to a set W , to (from) a set Y
does not increase (decrease) the degree of inclusion of Y in W . Finally, removing
(resp., adding) members of a set of objects W from (to) a set Y does not increase
(decrease) the degree of inclusion of Y in W due to (f).
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Example 1. Given U = {0, . . . , 9}, X = {0, . . . , 3}, Y = {0, . . . , 3, 8}, and Z =
{2, . . . , 6}. Note that X ∩ Z = Y ∩ Z = {2, 3}. Thus, κ£(X, Z) = 1/2 and
κ£(Z, X) = 2/5 which means that the standard RIF is not symmetric. Moreover,
κ£(Y, Z) = 2/5 < 1/2. Thus, X ⊆ Y may not imply κ£(X, Z) ≤ κ£(Y, Z), i.e.,
κ£ is not monotone in the first variable.

3 Rough Mereology: A Formal Framework for Rough
Inclusion

The notion of the standard RIF was generalized and formalized by Polkowski
and Skowron within rough mereology, a theory of the notion of being-part-to-
degree [2, 3, 4]. The starting point is a pair of formal theories introduced by
Leśniewski [5, 6], viz., mereology and ontology where the former theory extends
the latter one. Mereology is a theory of the notion of being-part, whereas ontology
is a theory of names and plays the role of set theory. Leśniewski’s mereology is
also known as a theory of collective sets as opposite to ontology being a theory
of distributive sets. In this section we only recall a very small part of rough
mereology, pivotal for the notion of rough inclusion. We somewhat change the
original notation (e.g., ‘el’ to ‘ing’, ‘µt’ to ‘ingt’), yet trying to keep with the
underlying ideas.

In ontology, built upon the classical predicate logic with identity, two basic
semantical categories are distinguished: the category of non-empty names1 and
the category of propositions. We use x, y, z, with subscripts if needed, as name
variables and we denote the set of all such variables by Var. The only primitive
notion of ontology is the copula ‘is’, denoted by ε and characterized by the axiom

(L0) xεy ↔ (∃z.zεx∧ ∀z, z′.(zεx ∧ z′εx→ zεz′) ∧ ∀z.(zεx→ zεy)) (2)

where ‘xεy’ is read as ‘x is y’. The first two conjuncts on the right-hand side
say that x ranges over non-empty, individual names only. The third conjunct
says that each of x’s is y as well. In particular, the intended meaning of ‘xεx’ is
simply that x ranges over individual names.

Mereology is built upon ontology and introduces a name-forming functor pt
where ‘xεpt(y)’ reads as ‘x is a part of y’. The functor pt is described by the
following axioms:

(L1) xεpt(y)→ xεx ∧ yεy,

(L2) xεpt(y) ∧ yεpt(z)→ xεpt(z),
(L3) ¬(xεpt(x)).

(L1) stipulates that both x and y range over individual names. According to (L2)
and (L3), being-part is transitive and irreflexive, respectively. The reflexive coun-
terpart of pt is the notion of being-ingredient, ing, given by

xεing(y) def↔ xεpt(y) ∨ x = y. (3)
1 Empty names are denied by Leśniewski on philosophical grounds.
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One can see that

(L1′) xεing(y)→ xεx ∧ yεy,

(L2′) xεing(y) ∧ yεing(z)→ xεing(z),
(L3′) xεing(x),
(L4′) xεing(y) ∧ yεing(x) → x = y.

Axioms (L1’), (L2’) are counterparts of (L1), (L2), respectively. (L3’), (L4’)
postulate reflexivity and antisymmetry of ing, respectively. It is worth noting
that one can start with ing characterized by (L1’)–(L4’) and define pt by

xεpt(y) def↔ xεing(y) ∧ x 	= y. (4)

Polkowski and Skowron’s rough mereology extends Leśniewski’s mereology by
a family of name-forming functors ingt. These functors, constituting a formal
counterpart of the notion of being-ingredient-to-degree, are described by the
following axioms, for any name variables x, y, z and s, t ∈ [0, 1]:

(PS1) ∃t.xεingt(y) → xεx ∧ yεy,

(PS2) xεing1(y)↔ xεing(y),
(PS3) xεing1(y)→ ∀z.(zεingt(x) → zεingt(y)),
(PS4) x = y ∧ xεingt(z)→ yεingt(z),
(PS5) xεingt(y) ∧ s ≤ t→ xεings(y).

The expression ‘xεingt(y)’ reads as ‘x is an ingredient of y to degree t’. The ax-
iom (PS1) claims x, y to range over individual names. According to (PS2), being
an ingredient to degree 1 is equivalent with being an ingredient. (PS3) states a
weak form of transitivity of the graded ingredienthood. (PS4) says that ‘=’ is
congruencial with respect to being-ingredient-to-degree. As postulated by (PS5),
ingt is, in fact, a formalization of the notion of being an ingredient to degree at
least t. Furthermore, being-part-to-degree may be defined as a special case of
the graded ingredienthood, viz.,

xεptt(y) def↔ xεingt(y) ∧ x 	= y. (5)

The axioms (PS1)–(PS5) are minimal conditions to be fulfilled by the formal
concept of graded ingredienthood2. According to the standard interpretation,
being an ingredient (part) is understood as being included (included in the proper
sense). In the same vein, the graded ingredienthood may be interpreted as a
graded inclusion, called rough inclusion in line with Polkowski and Skowron.

Now we describe a model for the part of rough mereology presented above,
simplifying the picture as much as possible. Consider a non-empty set of objects
U and a structure M = (℘U,⊆, κ) where the set of all subsets of U , ℘U , serves
2 For instance, nothing has been said about the property of being external yet. For

this and other concepts of rough mereology see, e.g., [4].
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as the universe of M , ⊆ is the usual inclusion relation on ℘U , and κ is a mapping
κ : ℘U × ℘U �→ [0, 1] satisfying the conditions rif1, rif2 below:

rif1(κ) def⇔ ∀X, Y ⊆ U.(κ(X, Y ) = 1 ⇔ X ⊆ Y ),

rif2(κ) def⇔ ∀X, Y, Z ⊆ U.(Y ⊆ Z ⇒ κ(X, Y ) ≤ κ(X, Z)).

According to rif1, κ is a generalization of ⊆. Moreover, κ achieves the greatest
value (equal to 1) only for such pairs of sets that the second element of a pair
contains the first element. The condition rif2 postulates κ to be monotone in
the second variable. We call any mapping κ as above a rough inclusion function
(RIF) over U . For simplicity, the reference to U will be dropped if no confusion
results. Observe that having assumed rif1, the second condition is equivalent to
rif∗2 given by

rif∗2(κ) def⇔ ∀X, Y, Z ⊆ U.(κ(Y, Z) = 1 ⇒ κ(X, Y ) ≤ κ(X, Z)).

Subsets of U are viewed as concepts, and RIFs are intended as functions
measuring the degrees of inclusion of concepts in concepts. It is worth noting
that any RIF over U is a fuzzy set on ℘U×℘U or, in other words, a fuzzy binary
relation on ℘U (see [46] and more recent, ample literature on fuzzy set theory).
Clearly, RIFs may satisfy various additional postulates as well. Examples of such
postulates are:

rif3(κ) def⇔ ∀∅ 	= X ⊆ U.κ(X, ∅) = 0,

rif4(κ) def⇔ ∀X, Y ⊆ U.(κ(X, Y ) = 0 ⇒ X ∩ Y = ∅),

rif−1
4 (κ) def⇔ ∀∅ 	= X ⊆ U.∀Y ⊆ U.(X ∩ Y = ∅ ⇒ κ(X, Y ) = 0),

rif5(κ) def⇔ ∀∅ 	= X ⊆ U.∀Y ⊆ U.(κ(X, Y ) = 0 ⇔ X ∩ Y = ∅),

rif6(κ) def⇔ ∀∅ 	= X ⊆ U.∀Y ⊆ U.κ(X, Y ) + κ(X, U − Y ) = 1,

rif7(κ) def⇔ ∀X, Y, Z ⊆ U.(Z ⊆ Y ⊆ X ⇒ κ(X, Z) ≤ κ(Y, Z)).

As follows from Propositions 1 and 2, the standard RIF satisfies all the condi-
tions above. Moreover, for any RIF κ, rif1(κ) and rif6(κ) imply rif5(κ); rif5(κ)
is equivalent to the conjunction of rif4(κ) and rif−1

4 (κ); and rif−1
4 (κ) implies

rif3(κ). It is worth mentioning that some authors stipulate functions measuring
the degree of inclusion to satisfy rif2, rif7, and the ‘if’ part of rif1 [39,40].

Names and name-forming functors are interpreted in M by means of a map-
ping I as follows. Every name is interpreted as a non-empty set of concepts,
i.e., subsets of U , and individual names are interpreted as singletons. For any
singleton Y = {X} where X ⊆ U , let

e(Y ) def= X. (6)

The identity symbol is interpreted as the identity relation on ℘U (the same
symbol ‘=’ is used in both cases for simplicity). The copula ε is interpreted as a
binary relation εI ⊆ ℘(℘U)× ℘(℘U) such that for any X, Y ⊆ ℘U ,
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XεIY
def⇔ #X = 1 & X ⊆ Y. (7)

Observe that X ⊆ Y above may equivalently be written as e(X) ∈ Y . In the
sequel, the name-forming functors ing, pt, ingt, and ptt (t ∈ [0, 1]) are interpreted
as mappings ingI , ptI , ingt,I , ptt,I : ℘U �→ ℘(℘U) such that for any X ⊆ U ,

ingI(X) def= ℘X,

ptI(X) def= ℘X − {X},

ingt,I(X) def= {Y ⊆ U | κ(Y, X) ≥ t},

ptt,I(X) def= {Y ⊆ U | κ(Y, X) ≥ t & Y 	= X}, (8)

thus, e.g., ing is interpreted as the power-set operator. The pair MI = (M, I)
is an interpretation of the language of the part of rough mereology considered
here.

In the next step, we assign non-empty sets of concepts to name variables.
Given an interpretation MI , any such variable assignment v : Var �→ ℘(℘U) may
be extended to a term assignment vI as follows. For any x ∈ Var, t ∈ [0, 1], and
f ∈ {ing, pt, ingt, ptt},

vI(x) def= v(x),

vI(f(x)) def=
{

fI(e(v(x))) if #v(x) = 1,
undefined otherwise. (9)

Finally, we can define satisfiability of formulas by variable assignments in MI .
For any formula α and any variable assignment v, ‘MI , v |= α’ reads as ‘α is
satisfied by v in MI ’. Along the standard lines, α will be true in MI , MI |= α,
if α is satisfied by every variable assignment in MI . The relation of satisfiability
of formulas is defined as follows, for any formulas α, β, any name variables x, y,
any degree variable t, and f ∈ {ing, pt, ingt, ptt}:

MI , v |= x = y
def⇔ vI(x) = vI(y),

MI , v |= xεy
def⇔ vI(x)εIvI(y),

MI , v |= xεf(y) def⇔ vI(x)εIvI(f(y)),

MI , v |= α ∧ β
def⇔ MI , v |= α & MI , v |= β,

MI , v |= ¬α
def⇔ MI , v 	|= α,

MI , v |= ∀x.α
def⇔ MI , w |= α for any w different from v at most for x,

MI , v |= ∀t.α def⇔ for every t ∈ [0, 1], MI , v |= α. (10)

The remaining cases can easily be obtained from those above. Let us observe
that the first three conditions may be simplified to the following ones:

MI , v |= x = y ⇔ v(x) = v(y),
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MI , v |= xεy ⇔ (#v(x) = 1 & v(x) ⊆ v(y))
⇔ ∃X ⊆ U.(v(x) = {X} & X ∈ v(y)),

MI , v |= xεing(y) ⇔ (#v(x) = #v(y) = 1 & e(v(x)) ⊆ e(v(y)))
⇔ ∃X, Y ⊆ U.(v(x) = {X} & v(y) = {Y } & X ⊆ Y ),

MI , v |= xεpt(y) ⇔ (#v(x) = #v(y) = 1 & e(v(x)) ⊂ e(v(y)))
⇔ ∃X, Y ⊆ U.(v(x) = {X} & v(y) = {Y } & X ⊂ Y ),

MI , v |= xεingt(y) ⇔ (#v(x) = #v(y) = 1 & κ(e(v(x)), e(v(y))) ≥ t)
⇔ ∃X, Y ⊆ U.(v(x) = {X} & v(y) = {Y } & κ(X, Y ) ≥ t),

MI , v |= xεptt(y) ⇔ (#v(x) = #v(y) = 1 & v(x) 	= v(y)
& κ(e(v(x)), e(v(y))) ≥ t)

⇔ ∃X, Y ⊆ U.(v(x) = {X} & v(y) = {Y } & X 	= Y

& κ(X, Y ) ≥ t). (11)

By a straightforward inspection one can check that MI is a model of the
considered part of rough mereology, i.e., all axioms are true in MI . By way of
example, we only show that (PS3) is true in MI , i.e., for any name variables x, y,
any t ∈ [0, 1], and any variable assignment v,

MI , v |= xεing1(y)→ ∀z.(zεingt(x) → zεingt(y)). (12)

To this end, assume MI , v |= xεing1(y) first. Hence, (a) #v(x) = #v(y) = 1
and κ(e(v(x)), e(v(y))) ≥ 1 by (11). The latter is equivalent with (b) e(v(x)) ⊆
e(v(y)) due to rif1(κ). Next consider any variable assignment w, different from v
at most for z. As a consequence, (c) w(x) = v(x) and w(y) = v(y). In the sequel
assume MI , w |= zεingt(x). Hence, (d) #w(z) = 1 and (e) κ(e(w(z)), e(w(x))) ≥
t by (11). It holds that (f) κ(e(w(z)), e(w(x))) ≤ κ(e(w(z)), e(w(y))) by (b),
(c), and rif2(κ). From the latter and (e) we obtain (g) κ(e(w(z)), e(w(y))) ≥ t.
Hence, MI , w |= zεingt(y) in virtue of (a), (c), (d), and (11).

4 In Search of New RIFs

According to rough mereology, rough inclusion is a generalization of the set-
theoretical inclusion of sets. While keeping with this idea, we try to obtain RIFs
different from the standard one. Let U be a non-empty finite set of objects.
Observe that for any X, Y ⊆ U , the following formulas are equivalent:

(i) X ⊆ Y,

(ii) X ∩ Y = X,

(iii) X ∪ Y = Y,

(iv) (U −X) ∪ Y = U,

(v) X − Y = ∅. (13)

The equivalence of the first two statements gave rise to the standard RIF. Now
we explore (i) ⇔ (iii) and (i) ⇔ (iv). In the case of (iii), ‘⊇’ always holds true.
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Conversely, ‘⊆’ always takes place in (iv). The remaining inclusions may or may
not hold, so we may introduce degrees of inclusion. Thus, let us define mappings
κ1, κ2 : ℘U × ℘U �→ [0, 1] such that for any X, Y ⊆ U ,

κ1(X, Y ) def=
{ #Y

#(X∪Y ) if X ∪ Y 	= ∅,
1 otherwise,

κ2(X, Y ) def=
#((U −X) ∪ Y )

#U
. (14)

It is worth noting that κ2 was mentioned in [9]. Now we show that both κ1, κ2
are RIFs different from the standard one and from each other.

Proposition 3. Each of κi (i = 1, 2) is a RIF upon U , i.e., rif1(κi) and rif2(κi)
hold.

Proof. We only prove the property for i = 1. Let X, Y, Z be any sets of objects.
To show rif1(κ1), we only examine the non-trivial case where X, Y 	= ∅. Then,
κ1(X, Y ) = 1 if and only if #Y = #(X ∪Y ) if and only if Y = X∪Y if and only
if X ⊆ Y . In the case of rif2 assume that (a1) Y ⊆ Z. First suppose that X = ∅.
If Z is empty as well, then Y = ∅. In result, κ1(X, Y ) = 1 ≤ 1 = κ1(X, Z).
Conversely, if Z is non-empty, then κ1(X, Z) = #Z/#Z = 1 ≥ κ1(X, Y ). Now
assume that X 	= ∅. Then X ∪ Y, X ∪ Z 	= ∅. Moreover, Z = Y ∪ (Z − Y )
and Y ∩ (Z − Y ) = ∅ by (a1). As a consequence, (a2) #Z = #Y + #(Z − Y ).
Additionally (a3) #(X ∪Z) ≤ #(X ∪Y )+#(Z−Y ) and (a4) #Y ≤ #(X ∪Y ).
Hence, κ1(X, Y ) = #Y/#(X∪Y ) ≤ (#Y +#(Z−Y ))/(#(X∪Y )+#(Z−Y )) ≤
(#Y + #(Z − Y ))/#(X ∪ Y ∪ (Z − Y )) = #Z/#(X ∪ Z) = κ1(X, Z) by (a2)–
(a4). ��

Example 2. Consider U = {0, . . . , 9} and its subsets X = {0, . . . , 4}, Y =
{2, . . . , 6}. Notice that X∩Y = {2, 3, 4}, X∪Y = {0, . . . , 6}, and (U−X)∪Y =
{2, . . . , 9}. Hence, κ£(X, Y ) = 3/5, κ1(X, Y ) = 5/7, and κ2(X, Y ) = 4/5, i.e.,
κ£, κ1, and κ2 are different RIFs.

Proposition 4. For any X, Y ⊆ U , we have:

(a) X 	= ∅ ⇒ (κ1(X, Y ) = 0 ⇔ Y = ∅),
(b) κ2(X, Y ) = 0 ⇔ X = U & Y = ∅,
(c) rif4(κ1) & rif4(κ2),
(d) κ£(X, Y ) ≤ κ1(X, Y ) ≤ κ2(X, Y ),
(e) κ1(X, Y ) = κ£(X ∪ Y, Y ),
(f) κ2(X, Y ) = κ£(U, (U −X) ∪ Y ) = κ£(U, U −X) + κ£(U, X ∩ Y ),
(g) κ£(X, Y ) = κ£(X, X ∩ Y ) = κ1(X, X ∩ Y ) = κ1(X − Y, X ∩ Y ),
(h) X ∪ Y = U ⇒ κ1(X, Y ) = κ2(X, Y ).

Proof. By way of illustration we show (d) and (h). To this end, consider any
sets of objects X, Y . In case (d), if X is empty, then (U −X) ∪ Y = U . Hence
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by the definitions, κ£(X, Y ) = κ1(X, Y ) = κ2(X, Y ) = 1. Now suppose that
X 	= ∅. Obviously (d1) #(X ∩ Y ) ≤ #X and (d2) #Y ≤ #(X ∪ Y ). Since
X ∪Y = X ∪ (Y −X) and X ∩ (Y −X) = ∅, (d3) #(X ∪Y ) = #X +#(Y −X).
Similarly, it follows from Y = (X ∩ Y ) ∪ (Y −X) and (X ∩ Y ) ∩ (Y −X) = ∅
that (d4) #Y = #(X ∩ Y ) + #(Y − X). Observe also that (U − X) ∪ Y =
((U −X) − Y ) ∪ Y = (U − (X ∪ Y )) ∪ Y and (U − (X ∪ Y )) ∩ Y = ∅. Hence,
(d5) #((U − X) ∪ Y ) = #(U − (X ∪ Y )) + #Y . In the sequel, κ£(X, Y ) =
#(X ∩ Y )/#X ≤ (#(X ∩ Y ) + #(Y −X))/(#X + #(Y −X)) = #Y/#(X ∪
Y ) = κ1(X, Y ) ≤ (#(U − (X ∪ Y )) + #Y )/(#(U − (X ∪ Y )) + #(X ∪ Y )) =
#((U −X) ∪ Y )/#U = κ2(X, Y ) by (d1)–(d5) and the definitions of the RIFs.

For (h) assume that X ∪ Y = U . Then Y − X = U − X , and κ1(X, Y ) =
#Y/#U = #((Y −X)∪Y )/#U = #((U−X)∪Y )/#U = κ2(X, Y ) as required.

��

Let us briefly comment upon the properties. According to (a), if X is non-
empty, then the emptiness of Y will be both sufficient3 and necessary to have
κ1(X, Y ) = 0. Property (b) states that κ2 yields 0 solely for (U, ∅). Due to (c),
κi(X, Y ) = 0 (i = 1, 2) implies the emptiness of the overlap of X, Y . Property (d)
says that the degrees of inclusion yielded by κ2 are at least as high as those
given by κ1, and the degrees of inclusion provided by κ1 are not lower than
those estimated by means of the standard RIF. (e) and (f) provide us with
characterizations of κ1 and κ2 in terms of κ£, respectively. On the other hand, the
standard RIF may be defined by means of κ1 in virtue of (g). Finally, (h) states
that κ1, κ2 are equal on the set of all pairs (X, Y ) such that X, Y cover the
universe.

5 Mappings Complementary to RIFs

Now we define mappings which are in some sense complementary to the RIFs
considered. We also investigate properties of these functions and give one more
characterization of the standard RIF. Namely, with every mapping f : ℘U ×
℘U �→ [0, 1] one can associate a complementary mapping f̄ : ℘U × ℘U �→ [0, 1]
defined by

f̄(X, Y ) def= 1− f(X, Y ) (15)

for any sets X, Y ⊆ U . Clearly, f is complementary to f̄ . In particular, we obtain

κ̄£(X, Y ) =

{
#(X−Y )

#X if X 	= ∅,
0 otherwise,

κ̄1(X, Y ) =

{
#(X−Y )
#(X∪Y ) if X ∪ Y 	= ∅,
0 otherwise,

κ̄2(X, Y ) =
#(X − Y )

#U
. (16)

3 Compare the optional postulate rif3(κ).
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For the sake of simplicity, κ̄ where κ is a RIF will be referred to as a co-RIF.
Observe that each of the co-RIFs measures the difference between its first and
second arguments, i.e., the equivalence (i)⇔ (v) (cf. (13)) is explored here.

It is worthy to note that for any X, Y ⊆ U ,

κ̄£(X, Y ) = κ£(X, U − Y ). (17)

However, the same is not true of κ̄i for i = 1, 2. Indeed, κ1(X, U − Y ) = #(U −
Y )/#(X∪(U−Y )) if X∪(U−Y ) 	= ∅, and κ2(X, U−Y ) = #(U−(X∩Y ))/#U ,
so the counterparts of (17) do not hold in general.

Example 3. Let U and X, Y be as in Example 2, i.e., U = {0, . . . , 9}, X =
{0, . . . , 4}, and Y = {2, . . . , 6}. It is easy to see that κ1(X, U − Y ) = 5/8 and
κ2(X, U − Y ) = 7/10, whereas κ̄1(X, Y ) = 2/7 and κ̄2(X, Y ) = 1/5.

We can characterize the standard RIF in terms of κi (i = 1, 2) and their co-RIFs
as follows:

Proposition 5. For any sets of objects X, Y where X 	= ∅,

κ£(X, Y ) =
κ̄1(X, U − Y )
κ1(U − Y, X)

=
κ̄2(X, U − Y )

κ2(U, X)
.

Proof. Consider any set of objects Y and any non-empty set of objects X . Hence,
X ∪ (U −Y ) 	= ∅ as well. Moreover, κ1(U−Y, X), κ2(U, X) > 0. Then κ̄1(X, U−
Y ) = #(X − (U − Y ))/#(X ∪ (U − Y )) = #(X ∩ Y )/#(X ∪ (U − Y )) =
(#(X ∩ Y )/#X) · (#X/#(X ∪ (U − Y ))) = κ£(X, Y ) · κ1(U − Y, X) by the
definitions of κ£, κ1, and κ̄1. Hence, κ£(X, Y ) = κ̄1(X, U −Y )/κ1(U −Y, X) as
required. Similarly, κ̄2(X, U − Y ) = #(X − (U − Y ))/#U = #(X ∩ Y )/#U =
(#(X ∩ Y )/#X) · (#X/#U) = κ£(X, Y ) · κ2(U, X) by the definitions of κ£,
κ2, and κ̄2. Immediately κ£(X, Y ) = κ̄2(X, U − Y )/κ2(U, X) which ends the
proof. ��

Henceforth the symmetric difference of sets X, Y will be denoted by X ÷ Y . We
can prove the following properties of co-RIFs:

Proposition 6. For any X, Y, Z ⊆ U , an arbitrary RIF κ, and i = 1, 2,

(a) κ̄(X, Y ) = 0 ⇔ X ⊆ Y,

(b) Y ⊆ Z ⇒ κ̄(X, Z) ⊆ κ̄(X, Y ),
(c) κ̄2(X, Y ) ≤ κ̄1(X, Y ) ≤ κ̄£(X, Y ),
(d) κ̄i(X, Y ) + κ̄i(Y, Z) ≥ κ̄i(X, Z),
(e) 0 ≤ κ̄i(X, Y ) + κ̄i(Y, X) ≤ 1,

(f) (X = ∅ & Y 	= ∅) or (X 	= ∅ & Y = ∅) ⇒
κ̄£(X, Y ) + κ̄£(Y, X) = κ̄1(X, Y ) + κ̄1(Y, X) = 1.

Proof. We only prove (d) for i = 1, and (e). To this end, consider any sets of
objects X, Y, Z. In case (d), if X = ∅, then κ̄1(X, Z) = 0 in virtue of (a). Hence,
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(d) obviously holds. Now suppose that X 	= ∅. If Y = ∅, then κ̄1(X, Y ) = 1.
On the other hand, if Y 	= ∅ and Z = ∅, then κ̄1(Y, Z) = 1. In both cases
κ̄1(X, Y ) + κ̄1(Y, Z) ≥ 1 ≥ κ̄1(X, Z).

Finally, assume that X, Y, Z 	= ∅. Let m = #(X∪Y ∪Z), m0 = #(X−(Y ∪Z)),
m1 = #(Y − (X ∪ Z)), m2 = #((X ∩ Y ) − Z), m3 = #((X ∩ Z) − Y ), and
m4 = #(Z − (X ∪ Y )). Observe that #(X − Y ) = m0 + m3, #(X − Z) =
m0 + m2, #(Y − Z) = m1 + m2, #(X ∪ Y ) = m −m4, #(X ∪ Z) = m −m1,
and #(Y ∪ Z) = m − m0. Hence, κ̄1(X, Y ) = #(X − Y )/#(X ∪ Y ) = (m0 +
m3)/(m − m4). On the same grounds, κ̄1(Y, Z) = (m1 + m2)/(m − m0) and
κ̄1(X, Z) = (m0 + m2)/(m−m1). It is easy to see that

m0 + m3

m−m4
+

m1 + m2

m−m0
≥ m0 + m3

m
+

m1 + m2

m
≥ m0 + m1 + m2

m
≥ m0 + m2

m−m1

which ends the proof of (d).
The first inequality of (e) is obvious, so we only show the second one. For

i = 1 assume that X ∪ Y 	= ∅ since the case X = Y = ∅ is trivial. Thus,
κ̄1(X, Y ) + κ̄1(Y, X) = (#(X − Y )/#(X ∪ Y )) + (#(Y − X)/#(X ∪ Y )) =
#(X ÷ Y )/#(X ∪ Y ) ≤ 1 because X ÷ Y ⊆ X ∪ Y . The property just proved
implies the second inequality for i = 2 due to (c). ��

According to (a), every co-RIF will yield 0 exactly in the case the first argument
is included in the second one. As a consequence, (*) κ̄(X, X) = 0 for every
set of objects X . That is, κ̄ may serve as a (non-symmetric) distance function.
(b) states that co-RIFs are co-monotone in the second variable. (c) provides
us with a comparison of our three co-RIFs. Properties (e), (f) will prove their
usefulness in the next section. (d) expresses the triangle inequality condition for
κ̄i (i = 1, 2).

Let us note that the triangle inequality does not hold for κ̄£ in general.

Example 4. Consider sets of objects X, Y, Z such that X − Z, Z − X 	= ∅ and
Y = X ∪ Z. We show that

κ̄£(X, Y ) + κ̄£(Y, Z) < κ̄£(X, Z).

By the assumptions each of X, Y, Z is non-empty and Y − Z = X − Z. Next,
#X < #Y since X ⊂ Y . Moreover, κ̄£(X, Y ) = 0 in virtue of (a). As a conse-
quence,

κ̄£(X, Y ) + κ̄£(Y, Z) =
#(Y − Z)

#Y
<

#(Y − Z)
#X

=
#(X − Z)

#X
= κ̄£(X, Z)

as expected.

Additionally, it can be that κ̄£(X, Y ) + κ̄£(Y, X) > 1. Indeed, if X, Y 	= ∅ and
X∩Y = ∅, then Σ = κ̄£(X, Y )+κ̄£(Y, X) = (#X/#X)+(#Y/#Y ) = 1+1 = 2.
Nevertheless, 2 is the greatest value taken by Σ.
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6 RIFs and Their Complementary Mappings vs.
Similarity and Distance between Sets

In this section we use the three co-RIFs to define certain normalized distance
functions with which one can measure (dis)similarity between sets. Namely, let
δ£, δi : ℘U × ℘U �→ [0, 1] (i = 1, 2) be mappings such that for any X, Y ⊆ U ,

δ£(X, Y ) def=
1
2
(
κ̄£(X, Y ) + κ̄£(Y, X)

)
,

δi(X, Y ) def= κ̄i(X, Y ) + κ̄i(Y, X). (18)

It is easy to see that

δ£(X, Y ) =

⎧⎪⎨⎪⎩
1
2

(
#(X−Y )

#X + #(Y −X)
#Y

)
if X, Y 	= ∅,

0 if X, Y = ∅,
1
2 in the remaining cases,

δ1(X, Y ) =

{
#(X÷Y )
#(X∪Y ) if X ∪ Y 	= ∅,
0 otherwise,

δ2(X, Y ) =
#(X ÷ Y )

#U
. (19)

It is worth mentioning that δ1 is an instance of the Marczewski–Steinhaus
metric [34]. As we shall see, the remaining two functions are metrics on ℘U as
well. Namely, we can prove the following:

Proposition 7. For any sets X, Y, Z ⊆ U and δ ∈ {δ£, δ1, δ2},

(a) δ(X, Y ) = 0 ⇔ X = Y,

(b) δ(X, Y ) = δ(Y, X),
(c) δ(X, Y ) + δ(Y, Z) ≥ δ(X, Z),
(d) max{δ£(X, Y ), δ2(X, Y )} ≤ δ1(X, Y ) ≤ 2δ£(X, Y ).

Proof. Property (a) is an easy consequence of Proposition 6a. (b) directly follows
from the definitions of δ£, δ1, and δ2. Property (c) for δ1, δ2 can easily be obtained
from Proposition 6d. Now we show (c) for δ£. To this end, consider any sets of
objects X, Y, Z.

If both X, Z are empty, then δ£(X, Z) = 0 in virtue of (a), and (c) follows
immediately. Next, if X, Y = ∅ and Z 	= ∅, or X, Y 	= ∅ and Z = ∅, then
δ£(X, Z) = δ£(Y, Z) = 1/2 by (19). In consequence, (c) is fulfilled regardless
of the value δ£(X, Y ). In the same vein, if X = ∅ and Y, Z 	= ∅, or X 	= ∅ and
Y, Z = ∅, then δ£(X, Y ) = δ£(X, Z) = 1/2. Here is (c) satisfied regardless of
δ£(Y, Z). In the sequel, if X, Z 	= ∅ and Y = ∅, then δ£(X, Y ) = δ£(Y, Z) = 1/2.
Hence, δ£(X, Y ) + δ£(Y, Z) = 1 ≥ δ£(X, Z) for any value of δ£ at (X, Z).
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Finally we prove (c) for X, Y, Z 	= ∅. Let m and mi (i = 0, . . . , 4) be as earlier.
Additionally, let m5 = #((Y ∩ Z)−X). Notice that

2δ£(X, Y ) =
#(X − Y )

#X
+

#(Y −X)
#Y

=
m0 + m3

m− (m1 + m4 + m5)
+

m1 + m5

m− (m0 + m3 + m4)
,

2δ£(Y, Z) =
#(Y − Z)

#Y
+

#(Z − Y )
#Z

=
m1 + m2

m− (m0 + m3 + m4)
+

m3 + m4

m− (m0 + m1 + m2)
,

2δ£(X, Z) =
#(X − Z)

#X
+

#(Z −X)
#Z

=
m0 + m2

m− (m1 + m4 + m5)
+

m4 + m5

m− (m0 + m1 + m2)
.

Hence we obtain

2(δ£(X, Y ) + δ£(Y, Z)− δ£(X, Z)) =
(m0 + m3)− (m0 + m2)
m− (m1 + m4 + m5)

+
(m1 + m5) + (m1 + m2)
m− (m0 + m3 + m4)

+
(m3 + m4)− (m4 + m5)
m− (m0 + m1 + m2)

≥ m3 −m2

m
+

2m1 + m2 + m5

m
+

m3 −m5

m
=

2(m1 + m3)
m

≥ 0.

In result, δ£(X, Y ) + δ£(Y, Z) ≥ δ£(X, Z) as needed.
As regards (d), we only prove that (*) δ£(X, Y ) ≤ δ1(X, Y ) for any X, Y ⊆ U .

The rest easily follows from Proposition 6c. Consider any sets of objects X, Y . If
at least one of X, Y is empty, (*) will directly hold by the definitions of δ£, δ1.
For the remaining case observe that

#(X ∩ Y )
#(X ∪ Y )

≤ min
{

#(X ∩ Y )
#X

,
#(X ∩ Y )

#Y

}
since max{#X, #Y } ≤ #(X ∪ Y ). Hence, we obtain in the sequel:

max
{

1− #(X ∩ Y )
#X

, 1− #(X ∩ Y )
#Y

}
≤ 1− #(X ∩ Y )

#(X ∪ Y )
,

max
{

#(X − Y )
#X

,
#(Y −X)

#Y

}
≤ #(X ÷ Y )

#(X ∪ Y )
,

#(X − Y )
#X

+
#(Y −X)

#Y
≤ 2

#(X ÷ Y )
#(X ∪ Y )

,

1
2

(
#(X − Y )

#X
+

#(Y −X)
#Y

)
≤ #(X ÷ Y )

#(X ∪ Y )
.

From the latter we derive (*) by the definitions of δ£, δ1. ��
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Summing up, δ£ and δi (i = 1, 2) are metrics on ℘U due to (a)–(c), and they
may be used to measure the distance between sets. According to (d), the double
distance between sets X, Y , estimated by means of δ£, will be not smaller than
the distance between X, Y yielded by δ1. In turn, the distance measured by
the latter metric will be greater than or equal to the distance given by each of
δ£, δ2. In view of the fact that κ̄i, underlying δi, satisfy the triangle inequality
(see Proposition 6d), it is not very surprizing that δi are metrics. The really
unexpected result is that δ£ fulfils the triangle inequality as well.

The distance between two sets may be interpreted as the degree of their dis-
similarity. Thus, δ£ and δi may serve as measures (indices) of dissimilarity of
sets. On the other hand, mappings which are complementary in the sense of (15)
to δ£ and δi, δ̄£ and δ̄i (i = 1, 2), respectively, may be used as similarity measures
(see, e.g., [44] for a discussion of various indices used to measure the degree of
similarity between clusterings). Let us note that for any X, Y ⊆ U , the following
dependencies hold:

δ̄£(X, Y ) =
1
2
(
κ£(X, Y ) + κ£(Y, X)

)
,

δ̄i(X, Y ) = κi(X, Y ) + κi(Y, X)− 1. (20)

More precisely,

δ̄£(X, Y ) =

⎧⎪⎨⎪⎩
#(X∩Y )

2

(
1

#X + 1
#Y

)
if X, Y 	= ∅,

1 if X, Y = ∅,
1
2 in the remaining cases,

δ̄1(X, Y ) =

{
#(X∩Y )
#(X∪Y ) if X ∪ Y 	= ∅,
1 otherwise,

δ̄2(X, Y ) =
#((U − (X ∪ Y )) ∪ (X ∩ Y ))

#U
. (21)

Thus, starting with the standard RIF and two other RIFs of a similar ori-
gin, we have finally arrived at similarity measures known from the literature
[35, 36, 37, 38]. More precisely, δ̄£ is the function proposed by Kulczyński to
estimate biotopical similarity [36]. The similarity index δ̄1, complementary to
the Marczewski–Steinhaus metric δ1, is attributed to Jaccard [35]. The func-
tion δ̄2 was introduced (at least) twice, viz., by Sokal and Michener [38] and by
Rand [37].

Let us note the following observations:

Proposition 8. For any sets of objects X, Y and δ ∈ {δ£, δ1, δ2}, we have that:

(a) δ̄(X, Y ) = 1 ⇔ X = Y,

(b) δ̄(X, Y ) = δ̄(Y, X),
(c) δ̄£(X, Y ) = 0 ⇔ X ∩ Y = ∅ & X, Y 	= ∅,
(d) δ̄1(X, Y ) = 0 ⇔ X ∩ Y = ∅ & X ∪ Y 	= ∅,
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(e) δ̄2(X, Y ) = 0 ⇔ X ∩ Y = ∅ & X ∪ Y = U,

(f) 2δ̄£(X, Y )− 1 ≤ δ̄1(X, Y ) ≤ min{δ̄£(X, Y ), δ̄2(X, Y )}.

The proof is easy and, hence, omitted. However, some remarks may be useful.
(a) states that every set is similar to itself to the highest degree 1. According
to (b), similarity is assumed to be symmetric here. Properties (c)–(e) describe
conditions characterizing the lowest degree of similarity between sets. A com-
parison of the three similarity indices is provided by (f).

An example, illustrating a possible application of the Marczewski–Steinhaus
metric to estimate differences between biotopes, can be found in [34]. In that exam-
ple, two real forests from Lower Silesia (Poland) are considered. We slightly modify
the example and we extend it to the other distance measures investigated.

Example 5. As the universe we take a collection of tree species U =
{a, b, h, l, o, p, r, s} where a stands for ‘alder’, b – ‘birch’, h – ‘hazel’, l – ‘larch’,
o – ‘oak’, p – ‘pine’, r – ‘rowan’, and s – ‘spruce’. Consider two forests repre-
sented by the collections A, B of the tree species which occur in those forests
where A = {a, b, h, p, r} and B = {b, o, p, s}. First we compute the degrees
of inclusion of A in B, and vice-versa. Next we measure the biotopical dif-
ferences between A and B using δ£ and δi for i = 1, 2. Finally we estimate
the degrees of biotopical similarity of the forests investigated. It is easy to
see that κ£(A, B) = 2/5, κ£(B, A) = 1/2, κ1(A, B) = 4/7, κ1(B, A) = 5/7,
κ2(A, B) = 5/8, and κ2(B, A) = 3/4. Hence,

δ£(A, B) =
1
2

(
3
5

+
1
2

)
=

11
20

,

δ1(A, B) = 5/7, and δ2(A, B) = 5/8. As expected, the distance functions δ£, δ1, δ2
(and so the corresponding similarity measures δ̄£, δ̄1, δ̄2) may give us different
values when measuring the distance (resp., similarity) between A and B. Due to
Proposition 7d, this distance is the greatest (equal to 5/7) when measured by δ1.
Conversely, δ̄1 yields the least degree of similarity, equal to 2/7. Therefore, these
measures seem to be particularly attractive to cautious reasoners. For those who
accept a higher risk, both δ£, δ2 (and similarly, δ̄£, δ̄2) are reasonable alternatives
too. Accidentially, δ£ gives the least distance, equal to 11/20, and its complemen-
tary mapping δ̄£ yields the greatest degree of similarity, equal to 9/20. In this
particular case, values provided by δ2 and δ̄2, 5/8 and 3/8, respectively, are in be-
tween. Clearly, the choice of the most appropriate distance function (or similarity
measure) may also depend on factors other than the level of risk.

7 Summary

In this article, an attempt was made to discover RIFs different from the standard
one, yet having a similar origin. First we overviewed the notion of the standard
RIF, κ£. In the next step, a general framework for discussion of RIFs and their
properties was recalled. As a result, a minimal set of postulates specifying a RIF
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was derived. Also several optional conditions were proposed. Then we defined
two RIFs, κ1 and κ2, which turned out to be different from the standard one.
The latter RIF was mentioned in [9], yet the former one seems to be new. We
examined properties of these RIFs with a special stress laid on the relationship
to the standard RIF.

In the sequel, we introduced functions complementary to RIFs (co-RIFs)
which resulted in a new characterization of the standard RIF in terms of the
remaining two RIFs and their complementary mappings. We examined proper-
ties of each of the three co-RIFs: κ̄£, κ̄1, and κ̄2. We easily found out that they
might serve as distance functions. However, only the latter two functions proved
to satisfy the triangle inequality.

In the next step, the co-RIFs were used to define certain distance functions,
δ£, δ1, and δ2, which turned out to be metrics on the power set of the set of
all objects considered. δ1 has already been known in the literature [34]. From
the distance functions mentioned above we finally derived their complementary
mappings, δ̄£, δ̄1, and δ̄2, serving as similarity measures. As turned out, they
were discovered many years ago [35,36,37,38]. In this way, starting with an idea
which led to the standard RIF and going through intermediate stages (co-RIFs
and certain metrics based on them), we finally arrived at similarity indices known
in machine learning, relational learning, and statistical learning, to name a few
areas of application.
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Intelligent Information Systems (IIS 1998), Malbork, Poland, June 1998, pp. 392–
395 (1998)



54 A. Gomolińska
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Abstract. This paper presents a comparison of the effectiveness of two
computational intelligence approaches applied to the task of retrieving
rhythmic structure from musical files. The method proposed by the au-
thors of this paper generates rhythmic levels first, and then uses these
levels to compose rhythmic hypotheses. Three phases: creating periods,
creating simplified hypotheses and creating full hypotheses are exam-
ined within this study. All experiments are conducted on a database of
national anthems. Decision systems such as Artificial Neural Networks
and Rough Sets are employed to search the metric structure of musical
files. This was based on examining physical attributes of sound that are
important in determining the placement of a particular sound in the ac-
cented location of a musical piece. The results of the experiments show
that both decision systems award note duration as the most significant
parameter in automatic searching for metric structure of rhythm from
musical files. Also, a brief description of the application realizing auto-
matic rhythm accompaniment is presented.

Keywords: Rhythm Retrieval, Metric Rhythm, Music Information Re-
trieval, Artificial Neural Networks, Rough Sets.

1 Introduction

The aim of this article is to present a comparative study of the effectiveness
of two computational intelligence approaches applied to the task of retrieving
rhythmic structure from musical files. Existing metric rhythm research usually
focuses on retrieving low rhythmic levels – they go down to the level of a mea-
sure. Typically those methods are sufficient to emulate human perception of a
local rhythm. According to McAuley & Semple [14] trained musicians perceive
more levels, though. High-level perception is required from drum players, thus
computational approach needs to retrieve a so-called hypermetric structure of a
piece. If it reaches high rhythmic levels such as phrases, sentences and periods,
then automatic drum accompaniment applications can be developed.

Rhythm retrieval research is a broad field and, among other issues, involves
the quantization process of the beginnings and lengths of notes, the extraction of
rhythm events from audio recordings, and the search for meter of compositions.
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Rhythm is an element of a piece determining musical style, which may be valu-
able in retrieval. The rhythmic structure together with patterns retrieved carry
information about the genre of a piece. Content-based methods of music retrieval
are nowadays developed by researchers from the multimedia retrieval and com-
putational intelligence domain. The most common classes of rhythm retrieval
models are: rule-based, multiple-agents, multiple-oscillators and probabilistic.
The rhythm retrieval methods can be classified within the context of what type
of actions they take, i.e. whether they quantize musical data, or find the tempo
of a piece (e.g. van Belle [2]), time signatures, positions of barlines, a metric
structure or an entire hypermetric hierarchy. Rhythm finding systems very often
rank the hypotheses of rhythm, basing on the sound salience function. Since
scientists differ in opinions on the aspect of salience, the Authors carried out
special experiments to solve the salience problem. A number of research studies
are based on the theory published by Lerdahl & Jackendoff [13], who claim that
such physical attributes of sounds as pitch (frequency), duration and velocity
(amplitude) influence the rhythmical salience of sounds. Another approach, pro-
posed by Rosenthal [19], ranks higher the hypotheses in which long sounds are
placed in accented positions. In Dixon’s [4] multiple-agent approach, two salience
functions are proposed, combining duration, pitch and velocity. The first, is a
linear combination of physical attributes, Dixon calls it an additive function.
The other one is a multiplicative function. Dahl [3] notices that drummers play
accented strokes with higher amplitude than unaccented ones. Parncutt, in his
book [15], claims that lower sounds fall on the beat. In the review of Parncutt’s
book, Huron [5] notices that the high salience of low sounds is “neither an exper-
imentally determined fact nor an established principle in musical practice”. A
duration-based hypothesis predominated in rhythm-related works, however this
approach seemed to be based on intuition only. The experimental confirmation
of this thesis – based on the Data Mining (DM) association rules and Artificial
Neural Networks (ANNs) – can be found in former works by the Authors of this
paper [6], [7], [8] and also in the doctoral thesis of Wojcik [27]. The experiments
employing rough sets, which are a subject of this paper, were performed in or-
der to confirm results obtained from the DM and ANN approaches. Another
reason was to verify if all three computational intelligence models applied to
the salience problem, return similar findings, which may prove the correctness
of these approaches. This article is an extended version of a paper which is in-
cluded in Proceedings of Rough Sets and Intelligent Systems Paradigms [12].
The remainder of the paper is organized as follows: in Section 2 a short review
of computational intelligence methods that are used in research related to em-
ulation of human perception is presented. Then, Section 3 shows some issues
describing hypermetric rhythm retrieval, which direct towards the experiments
on rhythm retrieval. A brief description of the application realizing automatic
rhythm accompaniment is shown in Section 4 along with an approach to the
computational complexity of the algorithm creating hypermetric rhythmic hy-
potheses (Section 5). Finally, Section 6 puts forward summary of results as well
as some concluding remarks.
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2 Emulation of Human Perception by Computational
Intelligence Techniques

The domain of computational intelligence grows into independent and very attrac-
tive research area in a few last years, with many applications dedicated to data
mining in musical domain [8], [9], [23], [24]. Computational Intelligence (CI) is a
branch of Artificial Intelligence, which deals with the AI soft facets, i.e. programs
behaving intelligently. The CI is understood in a number of ways, e.g. as a study of
the design of intelligent agents or as a subbranch of AI, which aims “to use learn-
ing, adaptive, or evolutionary computation to create programs that are, in some
sense, intelligent” [25]. Researchers are trying to classify the branches of CI to des-
ignate the ways in which CI methods help humans to discover how their perception
works. However, this is a multi-facet task with numerous overlapping definitions,
thus the map of this discipline is ambiguous. The domain of CI groups several ap-
proaches, the most common are: the Artificial Neural Networks (ANNs), Fuzzy
Systems, Evolutionary Computation, Machine Learning including Data Mining,
Soft Computing, Rough Sets, Bayesian Networks, Expert Systems and Intelligent
Agents [18]. Currently, in the age of CI people are trying to build machines emulat-
ing human behaviors, and one of such applications concerns rhythm perception.
This paper presents an example of how to design and build an algorithm which
is able to emulate human perception of rhythm. Two CI approaches, namely the
ANNs and Rough Sets (RS), are used in the experiments aiming at the estimation
of musical salience. The first of them, the ANN model, concerns processes, which
are not entirely known, e.g. human perception of rhythm. The latter is the RS ap-
proach, introduced by Pawlak [16] and used by many researches in data discovery
and intelligent management [17], [18].

Since the applicability of ANNs in recognition was experimentally confirmed
in a number of areas, neural networks are also used to estimate rhythmic salience
of sounds. There exists a vast literature on ANNs, and for this reason only a
brief introduction to this area is presented in this paper. A structure of an ANN
usually employs the McCulloch-Pitts model, involving the modification of the
neuron activation function, which is usually sigmoidal. All neurons are inter-
connected. Within the context of the neural network topology, ANNs can be
classified as feedforward or recurrent networks, which are also called feedback
networks. In the case of recurrent ANNs the connections between units form cy-
cles, while in feedforward ANNs the information moves in only one direction, i.e.
forward. The elements of a vector of object features constitute the values, which
are fed to the input of an ANN. The type of data accepted at the input and/or
returned at the output of an ANN is also a differentiating factor. The quan-
titative variable values are continuous by nature, and the categorical variables
belong to a finite set (small, medium, big, large). The ANNs with continuous
values at input are able to determine the degree of the membership to a certain
class. The output of networks based on categorical variables may be Boolean,
in which case the network decides whether an object belongs to a class or not.
In the case of the salience problem the number of categorical output variables
equals to two, and it is determined whether the sound is accented or not.
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In the experiments the Authors examined whether a supervised categorical
network such as Learning Vector Quantization (LVQ) is sufficient to resolve the
salience problem. The classification task of the network was to recognize the
sound as accented or not. LVQs are self-organizing networks with the ability
to learn and detect the regularities and correlations at their input, and then to
adapt their responses to that input. An LVQ network is trained in a supervised
manner, it consists of the competitive and a linear layers. The first one classifies
the input vectors into subclasses, and the latter transforms input vectors into
target classes. On the other hand, the aim of the RS-based experiments was
two-fold. First, it was to compare the results with the ones coming from the
ANN. In addition, two schemes of data discretization were applied. In the case
of k-means discretization accuracies of predictions are delivered.

3 Experiments

3.1 Database

Presented experiments were conducted on MIDI files of eighty national anthems,
retrieved from the Internet. Storing information about meter in the files is neces-
sary to indicate accented sounds in a musical piece. This information, however,
is optional in MIDI files, thus information whether the sound is accented or not
is not always available. In addition, in a number of musical files retrieved from
the Internet, the assigned meter is incorrect or there is no information about
meter at all. This is why the correctness of meter was checked by inserting an
additional simple drum track into the melody. The hits of the snare drum were
inserted in the locations of the piece calculated with Formula (1), where T is a
period computed with the autocorrelation function, and i indicates subsequent
hits of a snare drum.

i · T, i = 0, 1, 2, . . . (1)

The Authors listened to the musical files with snare drum hits inserted, and
rejected all the files in which accented locations were indicated incorrectly. Also
some anthems with changes in time signature could not be included in the train-
ing and testing sets, because this metric rhythm retrieval method deals with
hypotheses based on rhythmic levels of a constant period. Usually the change
in time signature results in changes in the period of a rhythmic level corre-
sponding to the meter, and an example of such change might be from 3/4 into
4/4. Conversely, an example of a change in time signature which does not in-
fluence the correct indication of accented sounds could be from 2/4 into 4/4.
Salience experiments presented in this paper are conducted on polyphonic MIDI
tracks containing melodies, overlapping sounds coming from the tracks other
than melodic ones, were not included in the experimental sets.

For the purpose of the experiments the values of physical sounds’ attributes
were normalized and discretized with equal subrange technique. Minimum and
maximum values within the domain of each attribute are found. The whole range
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is then divided into msubranges with thresholds between the subranges, placed
in the locations counted with aid of the Formula (2).

MinV alue + (MaxV alue−MinV alue) · j/m for j = 0, 1, 2, . . .m (2)

3.2 ANN-Based Experiment

For the training phase, accented locations in each melody were found with meth-
ods described in Section 3.1. One of the tested networks had three separate
inputs – one for each physical attribute of a sound (duration, frequency and am-
plitude - DPV ). Three remaining networks had one input each. Each input took
a different physical attribute of a given sound, namely D – duration, P – pitch
(frequency) or V – velocity (amplitude). All attributes were from the range of 0
to 127. The network output was binary: 1 if the sound was accented, or 0 if it
was not. Musical data were provided to the networks to train them to recognize
accented sounds on the basis of physical attributes.

In this study LVQ network recognized a sound as ‘accented’ or ‘not accented’.
Since physical attributes are not the only features determining whether a sound is
accented, some network answers may be incorrect. The network accuracy NA was
formulated as the ratio of the number of accented sounds, which were correctly
detected by the network, to the total number of accented sounds in a melody,
as stated in Formula (3).

NA = number of accented sounds correctly detected by the network / number
of all accented sounds

(3)

Hazard accuracy HA is the ratio of the number of accents given by the network
to the number of all sounds in a set, as stated in Formula (4).

HA = number of accented sounds detected by the network / number of all
sounds

(4)

The melodies of anthems were used to create 10 training/testing sets. Each set
included 8 entire pieces. Each sound with an index divisible by 3 was assumed
to be a training sound. The remaining sounds were treated as testing sounds. As
a consequence, the testing set was twice as large as the training set. Accuracies
in the datasets were averaged for each network separately. Evaluating a separate
accuracy for each ANN allowed for comparing their preciseness. Standard devi-
ations were also calculated. Fractions equal to standard deviations were divided
by average values. Such fractions help compare the stability of results. The lower
the value of the fraction is, the more stable the results are. All results are shown
on the right side of Table 1. A single accuracy value was assigned to each ANN.
Standard deviations were also calculated and the resultant stability fraction equal
to standard deviations divided by average values was presented.

The accuracy of finding accented sounds estimated for four networks can be
seen in Fig. 1, the plots are drawn on the basis of the data from Table 1. There
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Table 1. Parameters of training and testing data and performance of ANNs

Set No.
Number of sounds Acc./all NA/HA
All Accented Not

accented
[%] D P V DPV

1 937 387 550 41 1.90 1.01 0.95 1.96
2 1173 386 787 33 2.28 0.89 1.23 2.19
3 1054 385 669 37 2.14 0.96 0.11 2.13
4 937 315 622 34 2.25 1.13 0.79 2.49
5 801 293 508 37 1.98 1.02 1.04 1.95
6 603 245 358 41 1.67 1.02 0.93 1.24
7 781 332 449 43 1.93 0.98 1.16 1.89
8 880 344 536 39 2.06 0.97 1.13 2.14
9 867 335 532 39 1.91 0.87 0.83 1.73
10 1767 509 1258 29 2.14 0.72 1.62 2.66
Avg. 980 353 626 37 2.03 0.96 0.98 2.03

StdDev 317 71 251 4 0.19 0.11 0.39 0.39
StdDev/Avg 0.09 0.12 0.40 0.19

Fig. 1. Accuracy of four networks for melodies of anthems

are three plots presenting the results of networks fed with one attribute only, and
one plot for the network presented with all three physical attributes at its single
input (line DPV ). The consequent pairs of training and testing sets are on the
horizontal axis, the fraction NA/HA, signifying how many times an approach is
more accurate than a blind choice, is on the vertical axis.

3.3 Rough Set-Based Experiments

The aim of this experiment was to obtain the results analogical to the ones
coming from the ANN and to confront them with each other. In particular, it was
expected to confirm whether physical attributes influence a tendency of sounds
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to be located in accented positions. Further, it was to answer how complex is
the way the rhythmic salience of sound depends on its physical attributes, and
to observe the stability of the accuracies obtained in the RS-based experiments.

In the rough set-based experiments, the dataset named RSESdata1 was split
into training and testing sets in the 3:1 ratio. Then the rules were generated,
utilizing a genetic algorithm available in the Rough Set Exploration System [1],
[22]. For dataset RSESdata1, 7859 rules were obtained resulting in the classifi-
cation accuracy of 0.75 with the coverage equal to 1. It should be remembered
that accuracy is a measure of classification success, which is defined as a ratio of
the number of properly classified new cases (objects) to the total number of new
cases. Rules with support less than 10 were then removed. The set of rules was
thus reduced to 427 and the accuracy dropped to 0.736 with the coverage still
remaining 1. Then the next attempt to further decrease the number of rules was
made, and rules with support less than 30 were excluded. In this case, 156 rules
were still valid but the accuracy dropped significantly, i.e. to 0.707, and at the
same time the coverage fall to 0.99. It was decided that for a practical imple-
mentation of a rough set-based classifier, a set of 427 rules is suitable. Reducts
used in rule generation are presented in Table 2.

The same approach was used for dataset RSESdata2, and resulted in 11121
rules with the accuracy of 0.742 and the coverage of 1. After removing rules
with support less than 10, only 384 rules remained, and the accuracy dropped
to 0.735. Again, such number of rules is practically applicable. Reducts used in
rule generation are presented in Table 3.

The approach taken to LVQ network was also implemented for rough sets.
Ten different training\test sets were acquired by randomly splitting data into

Table 2. Reduct for RSESdata1 dataset

Reducts Positive Region Stability Coefficient
{ duration, pitch } 0.460 1
{ duration, velocity } 0.565 1
{ pitch, velocity } 0.369 1
{ duration } 0.039 1
{ pitch } 0.002 1
{ velocity } 0.001 1

Table 3. Reduct for RSESdata2 dataset

Reducts Positive Region Stability Coefficient
{ duration, velocity } 0.6956 1
{ duration, pitch } 0.6671 1
{ pitch, velocity } 0.4758 1
{ duration } 0.0878 1
{ pitch } 0.0034 1
{ velocity } 0.0028 1



Automatic Rhythm Retrieval from Musical Files 63

Table 4. Parameters of training and testing data and performance of RSES (RSA is
a Rough Set factor, analogical to NA in ANNs)

Set No.
Number of sounds

Acc/all
RSA/HA

All testing
sounds

Accented Not ac-
cented

D P V DPV

1 1679 610 1069 36.33 1.81 1.06 1.21 1.75
2 1679 608 1071 36.21 1.90 1.08 1.09 1.74
3 1679 594 1085 35.37 1.84 1.12 1.19 1.74
4 1679 638 1041 37.99 1.68 1.08 1.12 1.62
5 1679 632 1047 37.64 1.67 1.07 1.12 1.64
6 1679 605 1074 36.03 1.87 1.16 1.13 1.88
7 1679 573 1106 34.12 1.77 1.09 1.18 1.68
8 1679 618 1061 36.80 1.90 1.06 1.17 1.73
9 1679 603 1076 35.91 1.77 1.08 1.11 1.70
10 1679 627 1052 37.34 1.77 1.08 1.15 1.66
Avg. 1679 610 1068 36.37 1.80 1.09 1.15 1.72

StdDev 0 19.2 19.2 1.14 0.08 0.02 0.039 0.07
StdDev/Avg 0.04 0.02 0.033 0.04

five pairs, and than each set in a pair was further divided into two sets – a
training and a testing one – with the 2:1 ratio. Therefore testing sets contained
1679 objects each. The experiments, however, were based on RSESdata1 set
because of its higher generalization ability (see Table 4).

It should be remembered that reduct is a set of attributes that discerns ob-
jects with different decisions. Positive region shows what part of indiscernibility
classes for a reduct is inside the rough set. The larger boundary regions are,
the more rules are nondeterministic, and the smaller positive region is. Stabil-
ity coefficient reveals if the reduct appears also for subsets of original dataset,
which are calculated during the reduct search. For reduct {duration} positive
region is very small, but during classification a voting method is used to infer
correct outcome from many nondeterministic rules, and, finally, high accuracy is
obtained. Adding another dimension, e.g. {duration, velocity}, results in higher
number of deterministic rules, larger positive region, but it does not guarantee
the accuracy increase ( Table 4).

Rules were generated utilizing different reduct sets (compare with Table 1):

D - {duration} only; P - {pitch} only; V - {velocity} only; DPV - all 6 reducts
{duration, velocity}, {duration, pitch}, {pitch, velocity}, {duration}, {pitch},
{velocity} have been employed.

k-NN Discretization. The data were analyzed also employing k-NN method,
which is implemented as a part of the RSES system [22]. The experiment was
carried out differently in comparison to previously performed experiments using
ANN (LVQ) and RS. The reason for this was to observe accuracy of classification
while various number of k values has been set. It may easily be observed that
lower number of clusters implies better accuracy of the predictions and a smaller
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Table 5. Cut points in the case of k=3

Duration Pitch Velocity
45.33
133.88

44.175
78.285

44.909
75.756

Table 6. Classification results for k=3

1 0 No. of obj. Accuracy Coverage
1 665 206 899 0.763 0.969
0 375 1,190 1,570 0.76 0.997
True positive rate 0.64 0.85

Table 7. Cut points in the case of k=4

Duration Pitch Velocity
38.577
98.989
198.56

25.622
51.85
79.988

41.18
65.139
89.67

Table 8. Classification results for k=4

1 0 No. of obj. Accuracy Coverage
1 640 220 899 0.744 0.957
0 353 1,202 1,570 0.773 0.99
True positive rate 0.64 0.85

number of rules generated. In the following experiments full attributes vectors
[“duration”, “pitch”, ”velocity”] are used as reducts. The k-means discretization
is performed, where k values are set manually k={4, 5,10,15,20}. For a given
k exactly k clusters are calculated, represented by their center points. The cut
point is set as a middle point between two neighbor cluster centers. Cut points
are used for attribute discretization and then rough set rules are generated. The
training set comprises 7407 objects and the testing one 2469 objects (3:1 ratio).

Experiment I – k-means discretization (k=3) of each attribute (“duration”,
“pitch” ,”velocity”), 872 rules. Cut points are shown in Table 5 and classification
results in Table 6 (Total accuracy: 0.761, total coverage: 0.987).

Experiment II – k-means discretization (k=4) of each attribute (“duration”,
“pitch” ,”velocity”), 1282 rules. Cut points are shown in Table 7 and classifica-
tion results in Table 8 (Total accuracy: 0.763; total coverage: 0.978).

Experiment III – k-means discretization (k=5) of each attribute (“duration”,
“pitch” ,”velocity”), 1690 rules. Cut points are shown in Table 9 and classifica-
tion results in Table 10 (Total accuracy: 0.766: total coverage: 0.967).
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Table 9. Cut points in the case of k=5

Duration Pitch Velocity
31.733
72.814

133.91
259.15

24.224
47.536

68.629
94.84

27.826
48.708

66.759
89.853

Table 10. Classification results for k=5

1 0 No. of obj. Accuracy Coverage
1 619 232 899 0.727 0.947
0 326 1,211 1,570 0.788 0.979
True positive rate 0.66 0.84

Table 11. Cut points in the case of k=10

Duration Pitch Velocity
11.11
27.319
44.375
62.962
86.621

121.62
174.66
264.32
642.94

18.089
35.259
47.046
56.279
64.667

73.161
82.648
95.963
119.15

14.558
27.307
36.02
42.846
49.768

57.81
67.94
81.992
102.45

Table 12. Classification results for k=10

1 0 No. of obj. Accuracy Coverage
1 533 227 899 0.701 0.845
0 253 1,162 1,570 0.821 0.901
True positive rate 0.68 0.84

Table 13. Cut points in the case of k=15

Duration Pitch Velocity
3.2372
8.8071
13.854
20.693
29.284
37.857
46.806

58.942
76.842
101.33
132.65
183.95
283.39
656.29

9.4427
23.023
33.148
41.285
48.225
53.264
57.875

64.17
70.125
74.465
79.687
86.909
97.988
119.79

15.139
28.128
37.217
44.091
49.015
52.011
53.913

56.751
60.378
63.963
68.747
75.963
86.914
104.36

Experiment IV – k-means discretization (k=10) of each attribute (“duration”,
“pitch” ,”velocity”), 2987 rules. Cut points are shown in Table 11 and classifica-
tion results in Table 12 (Total accuracy: 0.779: total coverage:
0.881).
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Table 14. Classification results for k=15

1 0 No. of obj. Accuracy Coverage
1 492 217 899 0.694 0.789
0 229 1,121 1,570 0.83 0.86
True positive rate 0.68 0.84

Table 15. Cut points in the case of k=20

Duration Pitch Velocity
2.920
7.388
11.601
16.635
21.486
26.464
31.96

38.505
45.68
53.632
63.169
74.84
88.631

107.31
132.67
173.43
235.67
326.34
672.55

7.584
18.309
25.782
31.629
35.553
38.184
40.174

41.5
42.674
44.977
49.35
54.714
60.045

65.348
70.631
76.774
84.981
97.402
119.79

9.603
22.588
33.807
43.158
50.163
55.096
58.528

61.725
65.283
68.596
71.363
73.564
75.624

78.691
83.434
89.438
96.862
106.57
121.49

Table 16. Classification results for k=20

1 0 No. of obj. Accuracy Coverage
1 476 223 899 0.681 0.778
0 233 1,122 1,570 0.828 0.863
True positive rate 0.67 0.83

Experiment V – k-means discretization (k=15) of each attribute (“duration”,
“pitch” ,”velocity”), 3834 rules. Cut points are shown in Table 13 and classifi-
cation results in Table 14 (Total accuracy: 0.783: total coverage: 0.834).

Experiment VI – k-means discretization (k=20) of each attribute (“duration”,
“pitch” ,”velocity”), 4122 rules. Cut points are shown in Table 15 and classifi-
cation results in Table 16 (Total accuracy: 0.778: total coverage: 0.832).

Retrieving rhythmical patterns together with their hierarchical structure of
rhythm acquired with machine learning is a step towards an application capable
of creating automatic drum accompaniment to a given melody. Such a computer
system is to be presented in Section 4.

4 Automatic Drum Accompaniment Application

The hypermetric rhythm retrieval approach proposed in this article is illustrated
with a practical application of a system automatically generating a drum accom-
paniment to a given melody. A stream of sounds in MIDI format is introduced
at the system input, on the basis of a musical content the method retrieves a
hypermetric structure of rhythm of a musical piece consisting rhythmic motives,
phrases, and sentences. A method does not use any information about rhythm
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Fig. 2. The tree of periods

(time signature), which is present often in MIDI files. Neither rhythmic tracks
nor harmonic information are used to support the method. The only information
analyzed is a melody, which might be monophonic as well as polyphonic. Two
elements are combined, namely recurrence of melodic and rhythmic patterns
and the rhythmic salience of sounds to create a machine able to find the metric
structure of rhythm to a given melody.

The method proposed by the authors of this paper generates rhythmic levels
first, and then uses these levels to compose rhythmic hypotheses. The lowest
rhythmic level has a phase of the first sound from the piece and its period is
atomic. The following levels have periods of values achieved by recursive multi-
plication of periods that have already been calculated (starting from the atomic
value) by the most common prime numbers in Western music, i.e. 2 and 3. The
process of period generation may be illustrated as a process of a tree structure
formation (Figure 2) with a root representing the atomic period equal to 1. Each
node is represented by a number which is the node ancestor number multiplied
by either 2 or 3.

The tree holds some duplicates. The node holding a duplicated value would
generate a sub-tree whose all nodes would also be duplicates of already existing
values. Thus duplicate subtrees are eliminated and we obtain a graphical inter-
pretation in the form of the period triangle (see Figure 3), where the top row
refers to a quarter-note, and consecutively to a half-note, whole note (motive),
phrase, sentence and period.

When the phase of periods creation is completed, each period must have all
its phases (starting from phase 0) generated. The last phase of a given rhythmic
level has the value equal to the size of the period decreased by one atomic
period. In order to achieve hypotheses from the generated rhythmic levels, it
is necessary to find all families of related rhythmic levels. A level may belong
to many levels. The generated hypotheses are instantly ranked to extract the
one which designates the appropriate rhythm of the piece. The hypotheses that
cover notes of significant rhythmic weights are ranked higher. The weights are
calculated based on the knowledge gathered by learning systems that know how
to asses the importance of physical characteristics of sounds that comprise the
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Fig. 3. Triangle of periods

Table 17. Drum instruments added at a particular rhythmic level

Rhythmic level Name of the instrument
1 Closed hi-hat
2 Bass drum
3 Snare drum
4 Open triangle
5 Splash cymbal
6 Long whistle
7 Chinese cymbal

piece. The system proposed by the authors employs rules obtained in the process
of data mining [11], [26], as well as from the operation of neural networks [6], and
through employing rough sets [12]. Taking a set of representative musical objects
as grounds, these systems learn how to asses the influence of a sound relative
frequency, amplitude and length on its rhythmic weight. The second group of
methods used to rank hypotheses is based on one of the elementary rules known
in music composition, i.e. recurrence of melodic and rhythmic patterns – the
group is described in the authors’ works [10], [27].

The application realizing an automatic accompaniment, called DrumAdd, ac-
cepts a MIDI file at its input. The accompaniment is added to the melody by
inserting a drum channel, whose number is 10 in the MIDI file. Hi-hat hits are
inserted in the locations of rhythmic events associated with the first rhythmic
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Fig. 4. User interface of an automatic drum accompaniment application

level. The consecutive drum instruments associated with higher rhythmic levels
are: bass drum, snare drum, open triangle, splash cymbal, long whistle and a
Chinese cymbal, as it is shown in Table 17.

The DrumAdd system was developed in Java. The main window of the system
can be seen in Figure 4 – the user interface shown is entitled ‘Hypotheses’.
Default settings of quantization are as follows:

- onsets of sounds are shifted to time grid of one-eight note,
- durations of sounds are natural multiplies of one-eight note,
- notes shorter than one-sixteenth note are deleted.

A user may easily change quantization settings. A hypothesis ranking method
can be chosen in a drop-down list (‘Salience - Duration’ in the case presented). A
user may listen to the accompaniment made on the basis of the hypothesis (link
‘Listen’), change the drum sounds associated to the consecutive rhythmic levels
(link ‘Next. . . ’) or acknowledge the given hypothesis as correct (link ‘Correct’ is
assumed to be correct). A user also receives an access to report and ranking of
hypotheses, which presents a table with accuracies corresponding to hypotheses
ranking methods.

The drum Accompaniment is generated automatically to the sample melodies
contained in the system. As a result some sample pieces contain a drum track
created strictly with the approach presented earlier. In the second group of ex-
amples, the accompaniment is created on the basis of a metric structure retrieved
automatically.
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5 Algorithm Complexity

This section addresses the problem of computational algorithm complexity. Three
phases of the algorithm engineered by the authors, namely creating periods,
simplified hypotheses and full hypotheses are examined. The analyses of compu-
tational complexity of the method proposed assume that the engineered method
is expected to rank rhythmic hypotheses formed of three rhythmic levels above
meter. This proved to be sufficient for providing automatic drum accompaniment
for a given melody without delay. The method creates all possible rhythmic struc-
tures. However, their number is limited and depends on the following factors [28]:

– The level designated as the lowest among all the created hypotheses (this
defines the parameter of sound length quantization). The authors observed
that the quantization with the resolution of a quarter-note is sufficient.

– The intricacy of the hypotheses, i.e. how many levels they contain. The
method was examined for at most three rhythmic levels above meter, sim-
ilarly as in the research conducted by Rosenthal [20], and Temperley and
Sleator [21].

Taking the above assumptions into consideration, i.e. the quantization parameter
being a quarter-note and the analysis of a hypothesis concerning three levels
above meter, we obtain the number of periods from the first 6 layers of the
triangle shown in Figure 3. The atomic period is a quarter-note (layer 1), the
layer containing periods 4, 6, 9 is the level of meter, and the sixth layer holding
the values of 32, 48, 72 . . . is the last examined rhythmic level.

Calculating periods. The number of periods is n·(n+1)/2, where n is the
number of layers, so the algorithm is polynomial, the function of the computa-
tional complexity is of class O(n2). The basic operation that calculates periods
is multiplication. The number of periods calculated for 6 layers is 21, and these
are the elements of a period list.

Creating hypotheses. Hypotheses (with periods only) are lists of related
rhythmic levels that include pairs of <period, phase> values. If we take only
periods into consideration, the number of hypotheses is the number of paths
starting from the highest rhythmic level (layer 6) and ending in the level of
atomic period (layer 1). For assumed parameters, this gives 32 hypotheses if
only periods defined. The number is a result of the following computations:

– from period 32 there is one path (32, 16, 8, 4, 2, 1,),
– from period 48 there are 5 paths,
– from period 72 there are 10 paths,

For the left half of the triangle we may specify 16 paths. The computations for
the right half, i.e. the paths including periods 108, 162, and 243, are analogous.
This gives 32 paths altogether in a 6 layer triangle.

The function of computational complexity is of class O(n2), where n is the
number of layers. Thus, the complexity is exponential which with n limited to
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Table 18. Rhythmic hypotheses (without phases) for a 6-layer triangle of periods

Layer 1 2 3 4 5 6

1 2 4 8 16 32
1 2 4 8 16 48
1 2 4 8 24 48
1 2 4 8 24 72
1 2 4 12 24 48
1 2 4 12 24 72
1 2 4 12 36 72
1 2 4 12 36 108
1 2 6 12 24 48
1 2 6 12 24 72
1 2 6 12 36 72
1 2 6 12 36 108
1 2 6 18 36 72
1 2 6 18 36 108
1 2 6 18 54 108
1 2 6 18 54 162
1 3 6 12 24 48
1 3 6 12 24 72
1 3 6 12 36 72
1 3 6 12 36 108
1 3 6 18 36 72
1 3 6 18 36 108
1 3 6 18 54 108
1 3 6 18 54 162
1 3 9 18 36 72
1 3 9 18 36 108
1 3 9 18 54 108
1 3 9 18 54 162
1 3 9 27 54 108
1 3 9 27 54 162
1 3 9 27 81 162
1 3 9 27 81 243

6 layers confines the number of hypotheses to 32. The rows of Table 6 show
subsequent simplified hypotheses, i.e. the ones that contain only periods (phases
are ignored) for the example from Figures 2 and 3.

The algorithm that creates hypotheses with periods only ranks rhythmic hy-
potheses based on the recurrence of melorhythmic patterns (16 methods pro-
posed in the thesis of Wojcik [27]). The basic operation of patterns recurrence
evaluation is in this case addition. The only hypotheses ranking method exam-
ined by the authors that requires the phases to be defined is the method based
on rhythmic weights.
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Creating hypotheses with phases. Each hypotheses may have as many ver-
sions, with regard to phases, as its longest period is, e.g. the first hypothesis from
Table 17 (the first row: 1, 2, 4, 8, 16, 32) will have 32 different phases. On con-
dition that n = 6, the number of all hypotheses for the discussed example will
amount to 3125, which is the sum of all periods from layer 6. Thus, the number of
all hypotheses is the sum of the values from the last column of Table 18.

The algorithm that forms hypotheses with phases is used in a method ranking
rhythmic hypotheses based on rhythmic weight. The elementary operation of this
method is addition.

To analyze a piece of music with regard to its motives, phases, phrases and
periods when its atomic period is defined as a quarter-note, the number of 6
layers (n=6) is sufficient. Despite the exponential complexity of the method, the
number of elementary operations is not more than 104on a 1.6 GHz computer.
The total time of all operations for a single piece of music is imperceptible for
a system user, which was proved by the experimental system, engineered by
the authors. This means that the method provides high quality automatic drum
accompaniment without a delay.

6 Concluding Remarks

Employing computational approach is helpful in retrieving the time signature
and the locations of barlines from a piece on the basis of its content only. Rhyth-
mic salience approach worked out and described in this paper may also be valu-
able in ranking rhythmic hypotheses and music transcription. A system, creating
drum accompaniment to a given melody, automatically, on the basis of highly
ranked rhythmic hypothesis is a useful practical application of rhythmic salience
method. A prototype of such a system, using salience approach was developed
on the basis of findings of authors of this paper, and it works without delay, even
though its computational complexity is quite considerable.

On the basis of the results (see Tables 1, 4) obtained for both: RS and ANN
experiments, it may be observed that the average accuracy of all approaches tak-
ing duration D into account – solely or in the combination of all three attributes
DPV – is about twice as good as hazard accuracy (values of 1.72 for Rough
Set DPV, 1.80 for Rough Set D, and a value of 2.03 both for Network D and
for Network DPV were achieved). The performance of approaches considering
pitch P and velocity V separately are very close to random accuracy, the values
are equal to 1.09 and 1.15 for Rough Sets. For the ANN, the values are 0.96
and 0.98, respectively. Thus, it can be concluded that the location of a sound
depends only on its duration.

The algorithms with the combination of DPV attributes performed as well
as the one based only on duration, however this is especially valid for ANNs,
rough sets did a little bit worse. Additional attributes do not increase the per-
formance of the ANN approach. It can be thus concluded that the rhythmic
salience depends on physical attributes in a simple way, namely it depends on a
single physical attribute – duration.
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Network D is the ANN that returns the most stable results. The value of
fraction in the third row of Table 1 is low for this network and it is equal to
0.09. Network DPV, which takes all attributes into account, is much less reliable
because the stability fraction is about twice worse than the stability of Network
D and it is equal to 0.19. The stability of Network P , considering the pitch, is
quite high (it equals 0.12), but its performance is close to the random choice.
For learning and testing data used in this experiment, velocity appeared to be
the most data-sensitive attribute (see results of Network V ). Additionally, this
network appeared to be unable to find accented sounds.

In the case of Rough Sets, the duration-based approaches D and DPV re-
turned less stable results than P and V approaches. Values of 0.045, 0.043,
0.026, 033 were obtained for D, DPV, P, and V respectively.

The ANN salience-based experiments described in the earlier work by the Au-
thors [7], were conducted on a database of musical files containing various musical
genres. It consisted of monophonic (non-polyphonic), and the polyphonic files.
Also, a verification of the association rules model of the Data Mining domain
for musical salience estimation was presented in that paper. The conclusions
derived from the experiments conducted on national anthems for the purpose of
this paper, are consistent with the ones described in the work by Kostek et al.
[7]. Thus, the ANNs can be used in systems of musical rhythm retrieval in a wide
range of genres and regardless of the fact whether the music is monophonic of
polyphonic. The average relative accuracy for duration-based approaches where
Rough Sets are used is lower than this obtained by LVQ ANNs. However, the
same tendency is noticeable – utilization of the duration parameter leads to
successful classification. The P (pitch) and V (velocity) parameters appeared
not to be important in making decision about rhythmical structure of a melody.
Finally, using different discretization schemes instead of the equal subrange tech-
nique does not change the accuracy of rough sets-based rhythm classification,
significantly.
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24. Wieczorkowska, A., Raś, Z.W.: Editorial: Music Information Retrieval. J. Intell.

Inf. Syst. 21(1), 5–8 (2003)
25. Wikipedia homepage
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Abstract. In this paper, we present our Fun algorithm for discovering
minimal sets of conditional attributes functionally determining a given
dependent attribute. In particular, the algorithm is capable of discovering
Rough Sets certain, generalized decision, and membership distribution
reducts. Fun can operate either on partitions of objects or alternatively
on stripped partitions, which do not store singleton groups. It is capable
of using functional dependencies occurring among conditional attributes
for pruning candidate dependencies. In this paper, we offer further reduc-
tion of stripped partitions, which allows correct determination of minimal
functional dependencies provided optional candidate pruning is not car-
ried out. In the paper we consider six variants of Fun, including two
new variants using reduced stripped partitions. We have carried out a
number of experiments on benchmark data sets to test the efficiency of
all variants of Fun. We have also tested the efficiency of the Fun’s vari-
ants against the Rosetta and RSES toolkits’ algorithms computing all
reducts and against Tane, which is one of the most efficient algorithms
computing all minimal functional dependencies. The experiments prove
that Fun is up to 3 orders of magnitude faster than the the Rosetta and
RSES toolkits’ algorithms and faster than Tane up to 30 times.

Keywords: Rough Sets, information system, decision table, reduct,
functional dependency.

1 Introduction

The determination of minimal functional dependencies is a standard task in
the area of relational databases. Tane [6] or Dep-Miner [14] are example effi-
cient algorithms for discovering minimal functional dependencies from relational
databases. A variant of the task, which consists in discovering minimal sets
of conditional attributes that functionally or approximately determine a given
decision attribute, is one of the topics of Artificial Intelligence and Data Min-
ing. Such sets of conditional attributes can be used, for instance, for building
classifiers. In the terms of Rough Sets, such minimal conditional attributes are
called reducts [18]. One can distinguish a number of types of reducts. Gen-
eralized decision reducts (or equivalently, possible/approximate reducts [9]),
membership distribution reducts (or equivalently, membership reducts [9]), and
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certain decision reducts belong to most popular Rough Sets reducts. In gen-
eral, these types of reducts do not determine the decision attribute functionally.
However, it was shown in [10] that these types of reducts are minimal sets of
conditional attributes functionally determining appropriate modifications of the
decision attribute. Thus, the task of searching such reducts is equivalent to look-
ing for minimal sets of attributes functionally determining a given attribute. In
this paper, we focus on finding all such minimal sets of attributes. To this end,
one might consider applying either methods for discovering Rough Sets reducts,
or discovering all minimal functional dependencies and then selecting such that
determine a requested attribute.

Anumber ofmethods for discovering different types of reducts have alreadybeen
proposed in the literature. e.g. [3-5],[7-8],[11-12],[15-29]. The most popular meth-
ods are based on discernibility matrices [21]. Unfortunately, the existing methods
for discovering all reducts arenot scalable. The recently offered algorithms for find-
ing all minimal functional dependencies are definitely faster. In this paper, we focus
on direct discovery of all minimal functional dependencies with a given dependent
attribute, and expect this process to be faster than the discovery of all minimal
functional dependencies. First, we present efficient Fun algorithm, we offered re-
cently [12]. Fun discovers minimal functional dependencies with a given depen-
dent attribute, and, in particular, is capable of discovering three above mentioned
types of reducts. Fun can operate either on partitions of objects or alternatively
on stripped object partitions, which do not store singleton groups. It is capable of
using functional dependencies occurring among conditional attributes, which are
found as a side effect, for pruning candidate dependencies.

In this paper, we extend our proposal from [12]. We offer further full and
partial reduction of stripped partitions, which allows correct determination of
minimal functional dependencies provided optional candidate pruning is not car-
ried out. Then, we compare the efficiency of two new variants of Fun and four
other variants of this algorithm, we proposed in [12]. We also test the efficiency
of the Fun’s variants against the Rosetta and RSES toolkits’ algorithms com-
puting all reducts and against Tane, which is one of the most efficient algorithms
computing all minimal functional dependencies.

The layout of the paper is as follows: Basic notions of information systems,
functional dependencies, decision tables and reducts are recalled in Section 2. In
Section 3, we present the Fun algorithm. Entirely new contribution is presented
in subsection 3.5, where we describe how to reduce stripped partitions and pro-
vide two new variants of the Fun algorithm. The experimental evaluation of 6
variants of Fun, as well as the Rosetta and RSES toolkits’ algorithms and Tane,
are reported in Section 4. We conclude our results in Section 5.

2 Basic Notions

2.1 Information Systems

An information system is a pair S = (O, AT ), where O is a non-empty finite set
of objects and AT is a non-empty finite set of attributes of these objects. In the
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sequel, a(x), a ∈ AT and x ∈ O, denotes the value of attribute a for object x,
and Va denotes the domain of a. Each subset of attributes A ⊆ AT determines
a binary A-indiscernibility relation IND(A) consisting of pairs of objects indis-
cernible wrt. attributes A; that is, IND(A) = {(x, y) ∈ O×O|∀a∈A a(x) = a(y)}.
IND(A) is an equivalence relation and determines a partition of O, which is de-
noted by πA. The set of objects indiscernible with an object x with respect
to A in S is denoted by IA(x) and is called A-indiscernibility class; that is,
IA(x) = {y ∈ O|(x, y) ∈ IND(A)}. Clearly, πA = {IA(x)|x ∈ O}.

Table 1. Sample information system S = (O, AT ), where AT = {a, b, c, e, f}

oid a b c e f

1 1 0 0 1 1
2 1 1 1 1 2
3 0 1 1 0 3
4 0 1 1 0 3
5 0 1 1 2 2
6 1 1 0 2 2
7 1 1 0 2 2
8 1 1 0 2 2
9 1 1 0 3 2
10 1 0 0 3 2

Example 2.1.1. Table 1 presents a sample information system S = (O, AT ),
where O is the set of ten objects and AT = {a, b, c, e, f} is the set of attributes
of these objects. ��

2.2 Functional Dependencies

Functional dependencies are of high importance in designing relational
databases. We recall this notion after [2]. Let S = (O, AT ) and A, B ⊆ AT .
A → B is defined a functional dependency (or A is defined to determine B
functionally), if ∀x∈O IA(x) ⊆ IB(x). A functional dependency A→ B is called
minimal, if ∀C⊂A C → B is not functional.

Example 2.2.1. Let us consider the information system in Table 1. {ce} → {a}
is a functional dependency, nevertheless, {c} → {a}, {e} → {a}, and ∅ → {a}
are not. Hence, {ce} → {a} is a minimal functional dependency. ��

Property 2.2.1. Let A, B, C ⊆ AT .

a) If A→ B is a functional dependency, then ∀C⊃A C → B is functional.
b) If A→ B is not functional, then ∀C⊂A C → B is not functional.
c) If A → B is a functional dependency, then ∀C⊃A C → B is a non-minimal

functional dependency.
d) If A → B and B → C are functional dependencies, then A → C is a non-

minimal functional dependency.
e) If A ⊂ B and B∩C = ∅, then A→ B is a functional dependency and B → C

is not a minimal functional dependency.
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Functional dependencies can be calculated by means of partitions [6] as follows:

Property 2.2.2. Let A, B ⊆ AT . A → B is a functional dependency iff
πA = πAB iff |πA| = |πAB|.

Example 2.2.2. Let us consider the information system in Table 2. We observe
that π{ce} = π{cea} = {{1}, {2}, {3, 4}, {5}, {6, 7, 8}, {9, 10}}. The equality of
π{ce} and π{cea} (or their cardinalities) is sufficient to conclude that {ce} → {a}
is a functional dependency. ��

The next property recalls a method of calculating a partition with respect to
an attribute set C by intersecting partitions with respect to subsets of C. Let
A, B ⊆ AT . The product of partitions πA and πB , denoted by πA∩πB , is defined
as πA ∩ πB = {Y ∩ Z|Y ∈ πA and Z ∈ πB}.

Property 2.2.3. Let A, B, C ⊆ AT and C = A ∪B. Then, πC = πA ∩ πB .

2.3 Decision Tables, Reducts and Functional Dependencies

A decision table is an information system DT = (O, AT ∪{d}), where d /∈ AT is
a distinguished attribute called the decision, and the elements of AT are called
conditions. A decision class is defined as the set of all objects with the same
decision value. By Xdi we will denote the decision class consisting of objects the
decision value of which equals di, where di ∈ Vd. Clearly, for any object x in O,
Id(x) is a decision class. It is often of interest to find minimal subsets of AT (or
strict reducts) that functionally determine d. It may happen, nevertheless, that
such minimal sets of conditional attributes do not exist.

Table 2. Sample decision table DT = (O, AT ∪ {d}), where AT = {a, b, c, e, f} and d
is the decision attribute, extended with derived attributes dN

AT , ∂AT , µAT
d

oid a b c e f d dN
AT ∂AT µAT

d :< µAT
1 , µAT

2 , µAT
3 >

1 1 0 0 1 1 1 1 {1} < 1, 0, 0 >
2 1 1 1 1 2 1 1 {1} < 1, 0, 0 >
3 0 1 1 0 3 1 N {1, 2} < 1/2, 1/2, 0 >
4 0 1 1 0 3 2 N {1, 2} < 1/2, 1/2, 0 >
5 0 1 1 2 2 2 2 {2} < 0, 1, 0 >
6 1 1 0 2 2 2 N {2, 3} < 0, 1/3, 2/3 >
7 1 1 0 2 2 3 N {2, 3} < 0, 1/3, 2/3 >
8 1 1 0 2 2 3 N {2, 3} < 0, 1/3, 2/3 >
9 1 1 0 3 2 3 3 {3} < 0, 0, 1 >
10 1 0 0 3 2 3 3 {3} < 0, 0, 1 >

Example 2.3.1. Table 2 describes a sample decision table DT = (O, AT ∪
{d}), where AT = {a, b, c, e, f}. Partition πAT = {{1}, {2}, {3, 4}, {5}, {6, 7, 8},
{9}, {10}} contains all AT -indiscernibility classes, whereas π{d} = {{1, 2, 3},
{4, 5, 6}, {7, 8, 9, 10}} contains all decision classes. There is no functional de-
pendency between AT and d, since there is no decision class in π{d} containing
AT -indiscernibility class {3, 4} (or {6, 7, 8}). As AT → d is not functional, then
C → d, where C ⊆ AT , is not functional either. ��
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Rough Sets theory deals with the problem of non-existence of strict reducts by
means of other types of reducts, which always exist, irrespectively if AT → d is
a functional dependency, or not. We will now recall such three types of reducts,
namely certain decision reducts, generalized decision reducts, and membership
distribution reducts.

Certain decision reducts. Certain decision reducts are defined based on the
notion of a positive region of DT , thus we start with introducing this notion.
A positive region of DT , denoted as POS, is the set-theoretical union of all AT -
indiscernibility classes, each of which is contained in a decision class of DT ; that
is, POS =

⋃
{X ∈ πAT |X ⊆ Y, Y ∈ πd} = {x ∈ O|IAT (x) ⊆ Id(x)}. A set of

attributes A ⊆ AT is called a certain decision reduct of DT , if A is a minimal set,
such that ∀x∈POS IA(x) ⊆ Id(x) [18]. Now, we will introduce a derivable decision
attribute for an object x ∈ O as a modification of the decision attribute d, which
we will denote by dN

AT (x) and define as follows: dN
AT (x) = d(x) if x ∈ POS, and

dN
AT (x) = N, otherwise (see Table 2 for illustration). Clearly, all objects with

values of dN
AT that are different from N belong to POS.

Property 2.3.1 [10]. Let A ⊆ AT . A is a certain decision reduct iff A→ {dN
AT }

is a minimal functional dependency.

Generalized decision reducts. Generalized decision reducts are defined based
on a generalized decision. Let us thus start with introducing this notion. An
A-generalized decision for object x in DT (denoted by ∂A(x)), A ⊆ AT , is
defined as the set of all decision values of all objects indiscernible with x wrt.
A; i.e., ∂A(x) = {d(y)|y ∈ IA(x)} [21]. For A = AT , an A-generalized decision
is also called a generalized decision (see Table 2 for illustration). A ⊆ AT is
defined a generalized decision reduct of DT , if A is a minimal set such that ∀x∈O

∂A(x) = ∂AT (x).

Property 2.3.2 [10]. Let A ⊆ AT . Attribute set A is a generalized decision
reduct iff A→ {∂AT } is a minimal functional dependency.

µ-Decision Reducts. The generalized decision informs on decision classes to
which an object may belong, but does not inform on the degree of the member-
ship to these classes, which could be also of interest. A membership distribution
function) µA

d : O → [0, 1]n, A ⊆ AT, n = |Vd|, is defined as follows [9],[23-24]:

µA
d (x) = (µA

d1
(x), . . . , µA

dn
(x)), where

{d1, . . . , dn} = Vd and µA
di

(x) = |IA(x)∩Xdi |
|IA(x)| .

Please, see Table 2 for illustration of µAT
d . A ⊆ AT is a called a µ-decision

reduct (or membership distribution reduct) of DT , if A is a minimal set such
that ∀x∈O µA

d (x) = µAT
d (x).

Property 2.3.3 [10]. Let A ⊆ AT . A is a µ-decision reduct iff A → {µAT
d } is a

minimal functional dependency.
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3 Computing Minimal Sets of Attributes Functionally
Determining Given Dependent Attribute with Fun

In this section, we present the Fun algorithm for computing all minimal subsets
of conditional attributes AT that functionally determine a given dependent at-
tribute ∂. First, we recall the variants of Fun that apply partitions of objects or,
so called, stripped partitions of objects [12]. Then, in Section 3.5, we introduce
an idea of reduced stripped partitions and offer two new variants of Fun based
on them.

The Fun algorithm can be used for calculating Rough Sets reducts provided
the dependent attribute is determined properly, namely Fun will return certain
decision reducts for ∂ = ∂AT , generalized decision for ∂ = dN

AT , and µ-decision
reducts for ∂ = µAT

d . For brevity, a minimal subset of AT that functionally
determines a given dependent attribute ∂ will be called a ∂-reduct.

3.1 Main Algorithm

The Fun algorithm takes two arguments: a set of conditional attributes AT and
a functionally dependent attribute ∂. As a result, it returns all ∂-reducts. Fun
starts with creating singleton candidates C1 for ∂-reducts from each attribute in
AT . Then, the partitions (π) and their cardinalities (groupNo) wrt. ∂ and all
attributes in C1 are determined.

Notation for Fun
• Ck candidate k attribute sets (potential ∂-reducts);
• Rk k attribute ∂-reducts;
• C.π the representation of the partition πC of the candidate attribute set C; it is stored

as the list of groups of objects identifiers (oids);
• C.groupNo the number of groups in the partion of the candidate attribute set C; that is, |πC |;
• ∂.T an array representation of π∂ ;

Algorithm. Fun(attribute set AT , dependent attribute ∂);
C1 = {{a}|a ∈ AT}; // create singleton candidates from conditional attributes in AT
forall C in C1 ∪ {∂} do begin

C.π = πC ;
C.groupNo = |πC |

endfor;
/* calculate an array representation of π∂ for later multiple use in the Holds function */
∂.T = PartitionArrayRepresentation(∂);
for (k = 1; Ck �= ∅; k + +) do begin // Main loop

Rk = {};
forall candidates C ∈ Ck do begin

if Holds(C → {∂}) then // Is C → {∂} a functional dependency?
remove C from Ck to Rk; // store C as a k attribute ∂-reduct

endif
endfor;
/* create (k + 1) attribute candidates for ∂-reducts from k attribute non-∂-reducts */
Ck+1 = FunGen(Ck);

endfor;
return

S

k Rk;

Next, the PartitionArrayRepresentation function (see Section 3.3) is called to
create an array representation of π∂ . This representation shall be used multiple
times in the Holds function, called later in the algorithm, for efficient checking
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whether candidate attribute sets determine ∂ functionally. Now, the main loop
starts. In each k-th iteration, the following is performed:

– The Holds function (see Section 3.3) is called to check if k attribute candi-
dates Ck determine ∂ functionally. The candidates that do are removed from
the set of k attribute candidates to the set of ∂-reducts Rk.

– The FunGen function (see Section 3.2) is called to create (k + 1) attribute
candidates Ck+1 from the k attribute candidates that remained in Ck.

The algorithm stops when the set of candidates becomes empty.

3.2 Generating Candidates for ∂-reducts

The FunGen function creates (k + 1) attribute candidates Ck+1 by merging
k attribute candidates Ck, which are not ∂-reducts. The algorithm adopts the
manner of creating and pruning of candidates introduced in [1] (here: candidate
sets of attributes instead of candidates for frequent itemsets). There are merged
only those pairs of k attribute candidates Ck that differ merely on their last at-
tributes (see [1] for justification that this method is lossless and non-redundant).
For each new candidate C, πC is calculated as the product of the partitions wrt.
the merged k attribute sets (see Section 3.3 for the Product function). The cardi-
nality (groupNo) of πC is also calculated. Now, it is checked for each new (k+1)
attribute candidate C, if there exists its k attribute subset A not present in Ck.
If so, it means that either A or its subset was found earlier as a ∂-reduct. This
implies that the candidate C is a proper superset of a ∂-reduct, thus it is not a
∂-reduct, and hence C is deleted from the set Ck+1. Optionally, for each tested
k attribute subset A that is present in Ck, it is checked, if |πA| equals |πC |. If
so, then A → C holds (by Property 2.2.2). Hence, A → {∂} is not a minimal
functional dependency (by Property 2.2.1e), and thus C is deleted from Ck+1.

function FunGen(Ck);
/* Merging */
forall A, B ∈ Ck do

if A[1] = B[1] ∧ . . . ∧ A[k − 1] = A[k − 1] ∧ A[k] < B[k] then begin
C = A[1] · A[2] · . . . · A[k] · B[k];
/* compute partition C.π as a product of A.π and B.π, and the number of groups in C.π */
C.groupNo = Product(A.π,B.π, C.π);
add C to Ck+1

endif ;
endfor;
/* Pruning */
forall C ∈ Ck+1 do

forall k attribute set A, such that A ⊂ C do
if A /∈ Ck then

/* A ⊂ C and ∃B ⊆ A such that B → {∂} holds, so C → ∂ holds, but is not minimal */
begin delete C from Ck+1; break
end

elseif A.groupNo = C.groupNo then // optional candidate pruning step
/*A ⊂ C and A → C holds, so C → {∂} is not a minimal functional dependency */
begin delete C from Ck+1; break
end

endif
endfor

endfor;
return Ck+1;
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3.3 Using Partitions in Fun

Computing Array Representation of Partition. The PartitionArrayRep-
resentation function returns an array T of the length equal to the number of
objects O in DT . For a given attribute C, each element j in T is assigned the
index of the group in C.π to which object with oid = j belongs. As a result, j-th
element of T informs to which group in C.π j-th object in DT belongs, j = 1.. |O|.

function PartitionArrayRepresentation(attribute set C);
/* assert: T is an array[1 . . . |O|] */
i = 1;
for i-th group G in partition C.π do begin

for each oid G do T [oid] = i endfor;
i = i + 1

endfor
return T ;

Verifying Candidate Dependency. The Holds function checks, if there is a
functional dependency between the set of attributes C and an attribute ∂. It
is checked for successive groups G in C.π, if there is an oid in G that belongs
to a group in ∂.π different from the group in ∂.π to which the first oid in G
belongs (for the purpose of efficiency, the pre-calculated ∂.T representation of
the partition for ∂ is applied instead of ∂.π). If so, this means that G is not
contained in one group of ∂.π and thus C → {∂} is not a functional dependency.
In such a case, the function stops returning false as a result. Otherwise, if no
such group G is found, the function returns true, which means that C → {∂}
is a functional dependency.

function Holds(C → {∂});
/* assert: ∂.T is an array representation of ∂.π */
for each group G in partition C.π do begin

oid = first element in group G;
∂-firstGroup = ∂.T [oid]; // the identifier of the group in ∂.π to which oid belongs
for each next element oid ∈ G do begin

∂-nextGroup = ∂.T [oid];
if ∂-firstGroup �= ∂-nextGroup then

/* there are oids in G that identify objects indiscernible wrt. C, but discernible wrt. ∂ */
return false // hence, C → {∂} does not hold

endif
endfor;

endfor;
return true; // C → {∂} holds

Computing Product of Partitions. The Product function computes the par-
tition wrt. the attribute set C and its cardinality from the partitions wrt. the at-
tribute sets A and B. The function examines successive groups wrt. the partition
for B. The objects in a given group G in B.π are split into maximal subgroups in
such a way that the objects in each resultant subgroup are contained in a same
group in A.π. The obtained set of subgroups equals {G ∩ Y |Y ∈ A.π}. Product
C.π is calculated as the set of all subgroups obtained from all groups in B.π; i.e.,
C.π =

⋃
G∈B.π{G∩ Y |Y ∈ A.π} = {G∩ Y |Y ∈ A.π and G ∈ B.π} = B.π ∩A.π.

In order to calculate the product of the partitions efficiently (with time complex-
ity linear wrt. the number of objects in DT ), we follow the idea presented in [6],
and use two static arrays T and S: T is used to store an array representation of
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the partition wrt. A; S is used to store subgroups obtained from a given group
G in B.π.
function Product(A.π, B.π; var C.π);
/* assert: T [1..|O|] is a static array */
/* assert: S[1..|O|] is a static array with all elements initially equal to ∅ */
C.π = {}; groupNo = 0;
/* calculate an array representation of A.π for later multiple use in the Product function */
T = PartitionArrayRepresentation(A); i = 1;
for i-th group G in partition B.π do begin

A-GroupIds = ∅;
for each element oid ∈ G do begin

j = T [oid]; // the identifier of the group in A.π to which oid belongs
insert oid into S[j]; insert j into A-GroupIds

endfor;
for each j ∈ A-GroupIds do begin

insert S[j] into C.π;
groupNo = groupNo + 1; S[j] = ∅

endfor;
i = i + 1

endfor;
return groupNo;

3.4 Using Stripped Partitions in Fun

The representation of partitions that requires storing objects identifiers (oids)
of all objects in DT may be too memory consuming. In order to alleviate this
problem, it was proposed in [6] to store oids only for objects belonging to non-
singleton groups in a partition representation. Such a representation of a par-
tition is called a stripped one and will be denoted by πs. Clearly, the stripped
representation is lossless.

Example 3.4.1. In Table 2, the partition wrt. {ce}: π{ce}={{1}, {2}, {3, 4}, {5},
{6, 7, 8}, {9, 10}}, whereas the stripped partition wrt. {ce}: πs

{ce} = {{3, 4},
{6, 7, 8}, {9, 10}}. ��
function StrippedHolds(C → {∂});
i = 1;
for i-th group G in partition C.π do begin

oid = first element in group G;
∂-firstGroup = ∂.T [oid]; // the identifier of the group in ∂.π to which oid belongs
if ∂-firstGroup = null then return false endif ;

/* ∂.T [oid] = null indicates that oid constitutes a singleton group in the partition for ∂. */

/* Hence, no next object in G belongs to this group in ∂.π , so C → {∂} does not hold. */
for each next element oid ∈ G do begin

∂-nextGroup = ∂.T [oid];
if ∂-firstGroup �= ∂-nextGroup then

/* there are oids in G that identify objects indiscernible wrt. C, but discernible wrt. ∂ */
return false // hence, C → {∂} does not hold

endif
endfor;
i = i + 1

endfor;
return true; // C → {∂} holds

When applying stripped partitions in our Fun algorithm instead of usual
partitions, one should call the StrippedHolds function instead of Holds, and the
StrippedProduct function instead of Product. The modified parts of the functions
have been shadowed in the code below. We note, however, that the groupNo field
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still stores the number of groups in an unstripped partition (singleton groups
are not stored in a stripped partition, but are counted!).
function StrippedProduct(A.π, B.π; var C.π);
C.π = {}; groupNo = B.groupNo;
T = PartitionArrayRepresentation(A); i = 1;
for i-th group G in partition B.π do begin

A − GroupIds = ∅;
for each element oid ∈ G do begin

j = T [oid]; // the identifier of the group in A.π to which oid belongs

if j = null then groupNo = groupNo + 1; // respect singleton subgroups

else begin insert oid into S[j]; insert j into A-GroupIds endif
endfor;
for each j ∈ A − GroupIds do begin

if |S[j]| > 1 then

insert S[j] into C.π // store only non-singleton groups

endif ;

groupNo = groupNo + 1; S[j] = ∅ // but count all groups, including singleton ones
endfor;
groupNo = groupNo − 1;

i = i + 1
endfor;
/* Clearing of array T for later use */

for i-th group G in partition A.π do

for each element oid ∈ G do T [oid] = null endfor

endfor;
return groupNo;

3.5 Using Reduced Stripped Partitions in Fun

In this section, we offer further reduction of stripped partitions wrt. conditional
attributes. Our proposal is based on the following observations:

Let C be a conditional attribute set and d be the decision attribute. Let G be
any group in the stripped partition wrt. C that is contained in a group belonging
to the stripped partition wrt. d.

a) Group G operates in favour of functional dependency between C and d.
b) Any subgroup G′ ⊆ G that occurs in the stripped partition wrt. a superset

C′ ⊇ C also operates in favour of functional dependency between C′ and d.
Thus, the verification of the containment of G′ in a group of the stripped
partition wrt. d is dispensable in testing the existence of a functional depen-
dency between C′ and d.

We define a reduced stripped partition wrt. attribute set A (and denote by πrs
A )

as the set of those groups in the stripped partition wrt. A that are not contained
in any group in the stripped partition wrt. decision d; that is, πrs

A = {G ∈
πs

A|¬∃D∈πs
{d}G ⊆ D}.

Example 3.5.1. In Table 2, the stripped partition wrt. conditional attribute e:
πs
{e} = {{1, 2}, {3, 4}, {5, 6, 7, 8}, {9, 10}}, whereas the stripped partition wrt.

decision attribute d: πs
{d} = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9, 10}}. We note that group



86 M. Kryszkiewicz and P. Lasek

{1, 2} ∈ πs
{e} and its subsets are contained in group {1, 2, 3} ∈ πs

{d}. Similarly,
group {9, 10} ∈ πs

{e} and its subsets are contained in group {7, 8, 9, 10} ∈ πs
{d}.

There is no group in πs
{d} containing {3, 4} or {5, 6, 7, 8}. Thus, the groups {1, 2}

and {9, 10} in πs
{e}, unlike the remaining two groups: {3, 4} and {5, 6, 7, 8} in

πs
{e}, operate in favour of functional dependency between {e} and {d}. Hence, the

reduced stripped partition πs
{e} = {{3, 4}, {5, 6, 7, 8}} and the reduced stripped

partitions wrt. supersets of {e} will contain neither {1, 2}, nor {9, 10}, nor their
subsets. ��
It is easy to observe that the reduced stripped partition wrt. attribute set C can
be calculated based on the product of reduced stripped partitions wrt. subsets
of C as shown in Proposition 3.5.1.

Proposition 3.5.1. Let A, B, C⊆AT and C =A∪B. Then, the reduced stripped
partition wrt. C equals the set of the groups in the product of the reduced
stripped partitions wrt. A and B that are not contained in any group of the
stripped partition wrt. decision d; that is, πrs

C ={G ∈ πrs
A ∩πrs

B |¬∃D∈πs
{d}G ⊆ D}.

function ReducedStrippedHolds(C → {∂});
i = 1;
holds = true;
for i-th group G in partition C.π do begin

oid = first element in group G;
∂-firstGroup = ∂.T [oid]; // the identifier of the group in ∂.π to which oid belongs
if ∂-firstGroup = null then holds = false;

/* ∂.T [oid] = null indicates that oid constitutes a singleton group in the partition for ∂. */
/* Hence, no next object in G belongs to this group in ∂.π , so C → {∂} does not hold. */
else begin
for each next element oid ∈ G do begin

∂-nextGroup = ∂.T [oid];
if ∂-firstGroup �= ∂-nextGroup then

/* there are oids in G that identify objects indiscernible wrt. C, but discernible wrt. ∂ */
holds = false; break; // hence, C → {∂} does not hold

endif
endfor;
if ∂-firstGroup �= ∂-nextGroup then

delete c from C.π;

endif ;
i = i + 1;

endif ;
endfor;
return holds ;

In our proposal, the product πrs
A ∩πrs

B of the reduced stripped partitions wrt.
A and B is calculated by means of the StrippedProduct function. The reduced
stripped partition πrs

C is determined from a product πrs
A ∩ πrs

B by new Reduced-
StrippedHolds function. The function is a modification of StrippedProduct. The
ReducedStrippedHolds function like StrippedProduct verifies, if there is a func-
tional dependency between C and d. In addition, ReducedStrippedHolds removes
those groups in product πrs

A ∩πrs
B that are contained in πs

{d}. The modified parts
of the code in ReducedStrippedHolds have been shadowed.
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Please, note that the StrippedHolds function reads groups of πs
C = πs

A ∩ πs
B

until the first group that is not contained in a group of πs
{d} is found. To the

contrary, ReducedStrippedHolds reads all groups of the product πrs
A ∩ πrs

B . This
means that the execution of ReducedStrippedHolds may last longer than the
execution of StrippedHolds, when πrs

A ∩ πrs
B and πs

A ∩ πs
B are of similar length.

On the other hand, the execution of ReducedStrippedHolds may last shorter
than the execution of StrippedHolds, when πrs

A ∩ πrs
B is shorter than πs

A ∩ πs
B .

As an alternative to both solutions of shortening partitions, we propose the
PartReducedStrippedHolds function, which deletes the groups from the product
πs

A ∩ πs
B until the first group in this product that is not contained in a group

of πs
{d} is found. The result of PartReducedStrippedHolds is a group set being a

subset of πs
A ∩ πs

B and superset of πrs
A ∩ πrs

B .
function PartReducedStrippedHolds(C → {∂});
i = 1;
for i-th group G in partition C.π do begin

oid = first element in group G;
∂-firstGroup = ∂.T [oid]; // the identifier of the group in ∂.π to which oid belongs
if ∂-firstGroup = null then return false endif ;
/* ∂.T [oid] = null indicates that oid constitutes a singleton group in the partition for ∂. */
/* Hence, no next object in G belongs to this group in ∂.π , so C → {∂} does not hold. */
for each next element oid ∈ G do begin

∂-nextGroup = ∂.T [oid];
if ∂-firstGroup �= ∂-nextGroup then

/* there are oids in G that identify objects indiscernible wrt. C, but discernible wrt. ∂ */
return false // hence, C → {∂} does not hold

endif
endfor;
delete c from C.π;

i = i + 1;
endfor;
return true; // C → {∂} holds

We note that it is impossible to determine the number of groups in the prod-
uct πA ∩ πB as a side-effect of calculating the product of the reduced stripped
partitions πrs

A ∩πrs
B . The same observation holds when the product is calculated

from the partially reduced stripped partitions. Lack of this knowledge disallows
using the optional pruning step in the FunGen algorithm. The usefulness of using
fully or partially reduced stripped partitions will be examined experimentally in
Section 4.

4 Experimental Results

We have performed a number of experiments on a few data sets available in UCI
Repository (http://www.ics.uci.edu/∼mlearn/MLRepository.html) and

Table 3. Six variants of the Fun algorithm wrt. Holds algorithm, partitions’ type and
candidate pruning option

Fun’s variant H H/P SH SH/P PRSH RSH
Holds method Holds Holds Stripped Stripped Part Reduced Reduced

Holds Holds Stripped Holds Stripped Holds
Stripped partitions No No Yes Yes Yes Yes
Optional candidate pruning No Yes No Yes No No

http://www.ics.uci.edu/~mlearn/MLRepository.html
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Table 4. Reference external tools

Label Tane RSES RSGR RRER
Tool Tane RSES Rosetta Rosetta
Algorithm Tane Exhaustive SAV Genetic Reducer RSES Exhaustive Reducer
Comments Limitation to 500 records

Table 5. Execution times in seconds for the letter-recognition data set. ∗ - results are
not available, a data set was to large to be analyzed. ∗∗ - ∗∗ - RSES was written in
Java, which could cause an additional overhead, ∗∗∗ - the times provided by Rosetta
have 1 second granularity.

|O| H H/P SH SH/P PRSH RSH RSES∗∗ Tane RSGR∗∗∗ RRER∗∗∗

1 100 0.32 0.52 0.36 0.23 0.30 0.24 9.50 0.55 <500 (or 0 sec) 14.00
2 200 2.54 2.72 0.87 0.25 0.97 0.97 13.50 0.74 1.00 5.00
3 500 7.92 7.24 1.63 0.79 1.71 1.57 9.00 1.56 1.00 28.00
4 1000 26.70 19.41 3.72 2.03 3.28 2.94 14.00 3.16 1.00 N/A∗

5 2000 38.29 27.60 7.97 4.28 7.99 6.74 20.00 6.94 6.00 N/A∗

6 5000 126.19 76.48 28.52 19.54 28.66 28.91 130.00 24.23 35.00 N/A∗

7 10000 1687.15 976.04 51.51 52.97 59.97 131.79 960.00 73.07 180.00 N/A∗

8 15000 N/A∗ N/A∗ 154.79 137.21 144.86 368.67 1860.00 152.20 570.00 N/A∗

9 20000 N/A∗ N/A∗ 444.70 421.89 440.31 727.69 3060.00 822.81 1200.00 N/A∗

Fig. 1. Letter-recognition - logarithmic scale

other used by the Rough Sets community. In particular, we tested the following
data sets: letter-recognition (16 conditional attributes; 20000 objects), diabetic
(12 conditional attributes; 99 objects), krkopt (6 conditional attributes; 25000
objects), and nursary (9 conditional attributes; 11500 objects). The experiments
we performed cover six different variants of the Fun algorithm and report the
execution times for different size data samples for each tested data set. In this
section, we apply brief names for these variants, as presented in Table 3.
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Table 6. Execution times in miliseconds for the diabetic data set. ∗ - the times provided
by Rosetta have 1 second granularity.

|O| H H/P SH SH/P PRSH RSH RSES Tane RSGR∗ RRER∗

1 11 20 10 10 0 10 10 <500 (or 0 sec) 10 <500 (or 0 sec) <500 (or 0 sec)
2 22 30 10 10 0 10 10 <500 (or 0 sec) 10 <500 (or 0 sec) <500 (or 0 sec)
3 33 41 10 10 0 10 10 <500 (or 0 sec) 20 <500 (or 0 sec) <500 (or 0 sec)
4 44 20 20 20 0 20 20 <500 (or 0 sec) 20 <500 (or 0 sec) <500 (or 0 sec)
5 55 30 20 20 0 10 20 <500 (or 0 sec) 29 <500 (or 0 sec) <500 (or 0 sec)
6 66 30 30 20 10 20 20 <500 (or 0 sec) 20 <500 (or 0 sec) <500 (or 0 sec)
7 77 30 30 20 10 20 30 <500 (or 0 sec) 20 <500 (or 0 sec) <500 (or 0 sec)
8 88 40 40 30 10 20 30 <500 (or 0 sec) 20 <500 (or 0 sec) <500 (or 0 sec)
9 99 40 40 30 10 30 30 <500 (or 0 sec) 30 <500 (or 0 sec) <500 (or 0 sec)
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Table 7. Execution times in miliseconds for the krkopt data set. ∗ - results are not
available, a data set was to large to be analyzed ∗∗ - RSES was written in Java, which
could cause an additional overhead, ∗∗∗ - the times provided by Rosetta have 1 second
granularity.

|O| H H/P SH SH/P PRSH RSH RSES∗∗ Tane RSGR∗∗∗ RRER∗∗∗

1 2000 10 10 10 10 10 10 7800 40 2000 N/A∗

2 5000 40 40 40 40 50 130 45000 60 16000 N/A∗

3 10000 80 90 80 90 80 391 240000 130 75000 N/A∗

4 15000 140 140 130 141 131 671 600000 200 227000 N/A∗

5 20000 170 181 180 170 190 941 1290000 270 493000 N/A∗

6 25000 240 220 230 241 220 1232 2460000 350 305000 N/A∗

In addition to comparing the performance of the variants of Fun, we tested the
performance of Fun against the performance of three external tools: RSES and
Rosetta (both available in the software repository at http://rsds.univ.rzeszow.pl)
and Tane (available at http://www.cs.helsinki.fi/research/fdk/datamining/tane).
The list of these the tools is shown in Table 4.
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Table 8. Execution times in miliseconds for the nursery data set. ∗ - results are not
available, a data set was to large to be analyzed ∗∗ - RSES was written in Java, which
could cause an additional overhead, ∗∗∗ - the times provided by Rosetta have 1 second
granularity.

|O| H H/P SH SH/P PRSH RSH RSES∗∗ Tane RSGR∗∗∗ RRER∗∗∗

1 4500 141 141 150 151 150 150 46000 370 15000 N/A∗

2 6000 200 201 200 191 200 210 120000 321 27000 N/A∗

3 7500 240 240 250 240 260 290 240000 410 41000 N/A∗

4 9000 290 301 300 301 320 360 390000 460 74000 N/A∗

5 10500 351 340 351 360 360 470 540000 540 113000 N/A∗
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Fig. 5. Letter-recognition - logarithmic scale
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It follows from the obtained results, that there is no one winner among the
variants of Fun. In the case of the letter-recognition data set (see Table 5 and
Figure 1), there are three leading variants, namely SH/P, PRSH and SH. RSH
shows similar behaviour for up to 5000 objects and then becomes slower up to
two times in comparison with the leaders. In the case of large number of objects,
H is up to 33 times slower than the leading three variants and H/P is up to 19
times slower than the leading three variants. The observed behaviour suggests
that (reduced) stripped partitions are much concise than the original partitions.



92 M. Kryszkiewicz and P. Lasek

2000                5000                10000              15000              20000               25000

Fig. 7. Krkopt - logarithmic scale

Fig. 8. Nursery - linear scale

In addition, the optional pruning must decrease the number of candidate depen-
dencies considerably.

For the diabetic data set, the winner is SH/P (see Table 6 and Figure 2). The
other variants using stripped partitions, namely: PRSH, SH, and RSH lasted 2
to 3 times longer. The variants that do not use stripped partitions; that is, H and
H/P turned out slower than SH/P up to 4 times. The candidate pruning speeded
up the performance of Fun mainly in the case of applying stripped partitions.
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In the case of the krkopt data set, 5 variants of Fun show similar behaviour
(see Table 7 and Figure 3). The worst variant is RSH, which starts to be slower
than the other variants for the data sample containg 5000 objects or more. In the
worst reported case, RSH lasted around 5 times longer than the other variants.
This suggests that the full reduction of stripped partitions, which may be quite
time consuming, did not lead to the real removal of the partitions’ groups.

In the case of the nursery data set, two variants H and H/P using only the
unstripped partitions turned out slightly faster than the SH/P, PRSH and SH
variants, which in turn turned out slightly faster than RSH (see Table 8 and
Figure 4).

Although there is no one winner among the variants of Fun, we note that
for the datasets with larger number of conditional attributes: letter-recognition
and diabetic, SH/P is the fastest variant of Fun, while in the case of the other
two datasets, there is no significant difference in performance of variants using
unstripped partitions and the ones using reduced/stripped partitions.

Our experiments prove that Fun is faster than RSES, Tane and Rosetta for
all large data sets: letter-recognition, krkopt, and nursary (see Tables 5, 7–8 and
Figures 5, 7-8). The leading variants of Fun calculated functional dependencies
significantly faster. In comparison with RSES and Rosetta, Fun was faster even
by 3 orders of magnitude. We were not able to determine the relationship between
time performance of Fun and RSES as well as Rosetta for small diabetic data
set, since the calculations took miliseconds; that is, required measuring with the
granularity not available in the tools. However, also for this dataset, the fastest
Fun’s variant - SH/P was faster than Tane up to 30 times (see Table 6 and
Figure 6).

5 Conclusions and Future Work

We have described our Fun algorithm for discovering minimal sets of conditional
attributes functionally determining a decision attribute, and in particular for
computing certain, generalized decision, and µ-distribution reducts. We have
also offered how to reduce stripped partitions that are used to determine minimal
functional dependencies for a given dependent attribute or Rough Set reducts.
We have proposed two variants of Fun based on reduced stripped partitions. We
have carried out a number of experiments on benchmark data sets. Although
no variant of Fun turned out the only winner for all data sets, we noted that
for the datasets with large number of conditional attributes (letter-recognition
and diabetic), the variants of Fun using stripped and partially reduced stripped
partitions were considerably faster (up to 33 times) than the variants using
unstripped partitions. We need to verify this phenomenon for larger number of
data sets. The experiments also show that Fun is consistently faster than Tane,
which computes all minimal functional dependencies, and is up to 3 orders of
magnitude faster than SAVGeneticReducer and RSESExhaustiveReducer from
Rosetta as well as RSES.
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Abstract. Granular computing is a multidisciplinary theory rapidly de-
veloped in recent years. It provides a conceptual framework for many
research fields, among others data mining. Data mining techniques and
algorithms focus on knowledge discovery from data. When data labels
are unknown one can use methods of exploratory data analysis called
clustering algorithms. Clustering algorithms are also useful to find hid-
den dependencies and patterns in data. In this article granular comput-
ing and clustering were implemented in information granulation system
SOSIG and applied to exploration of real medical data set. Data gran-
ulation in the system can be performed on different levels of resolution.
Thereby the granules composed of clusters reflect relationship between
objects on distinct levels of details. The clustering in SOSIG is generated
automatically - there is no requirement to give a number of groups for
division. It eliminates problems present in popular clustering algorithms
like selection of correct number of clusters and evaluation of created par-
titioning. The difficulties are encountered in most partitioning as well as
hierarchical methods reducing their practical application.

Additionally, this article contains solution generated by SOSIG in
comparison with clustering results of algorithms: k-means, hierarchical,
EM and DBSCAN. There are used quality indices such as Dunn’s, DB,
CDbw and SI.

Keywords: knowledge discovery and data mining, information granula-
tion, clustering.

1 Introduction

Granular computing (GC) is based on processing of complex information enti-
ties called granules. Generally speaking, granules are collection of entities, that
are arranged together due to their similarity, functional adjacency or indistin-
guishability [23]. Granulation information is not a specific set of methods or
principles, it is an approach of analyzing data and its distinguishable aspect is
multi-perspective point of view. Multi-perspective stands for diverse levels of res-
olution depending on saliency of features or grade of details of studied problem.
At different data granularities, different properties and relationships appear. This
is used in designing more effective algorithms applied in many disciplines and
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methods e. g. diakoptics, divide and conquer, structured programming, inter-
val analysis, quantization, rough set theory, chunking, cluster analysis, machine
learning, data mining [1]. To give more universal definition, granular computing
may be considered as a label of a new field of multi-disciplinary study, dealing
with theories, methodologies, techniques and tools that make use of granules in
the process of problem solving [21].

Clustering can be viewed as a realization of GrC principles [12]. Grouping
techniques determine natural clusters, that is groups of feature vectors or ob-
jects more similar to one another than to the objects from other clusters [7].
Criterion of similarity is dependent on clustering algorithm and data type. The
most common similarity measure is distance between the points, for example,
Euclidean for continuous attributes. From the machine learning standpoint, clus-
tering is unsupervised learning - there are not available labels of data and often
distribution of data is also unknown. Partitioning algorithms have had wide ap-
plications in pattern recognition, image processing, statistical data analysis and
knowledge discovery.

According to a new framework of granular computing in data mining [17],
[22] each component of a cluster is treated as a knowledge granule, whereas the
cluster represents structural knowledge. Knowledge granule corresponds to a set
of objects, in particular to the object itself, from the training data. Additionally,
granules are expected to help interpret solved problem for humans. According
to this, a set of semantically-described granules is a desirable result generated
by any information granulation approach.

The paper presents granulation by clustering of the set concerning data of
children suffering from diabetes disease. The granules are formed as a result
of clustering performed on appropriate resolution level. To make them well-
interpretable there is a step of semantic granules creation as a combination of the
partitioning and discretization of the attributes according to medical norms for
data attributes. There are generated and compared clustering results obtained
from algorithms: k-means, hierarchical, EM [7], DBSCAN [4] and SOSIG. For
measure of granules quality were applied Dunn’s, DB [5], CDbw [6] and silhouette
indices (SI) [8].

The paper is organized as follows. In Section 2 we recall SOSIG system [10]
which is a successor of SArIS algorithm [20]. In Section 3 measures of granule
quality are discussed. In Section 4 granulation of real life data (diabetes dataset)
in form of semantically described granules is presented.

2 Self-Organizing System for Information Granulation

The SOSIG (Self-Organizing System for Information Granulation) algorithm is
a data granulation system designed for detecting relationships and dependen-
cies present in data. Granulation process can be performed on different levels of
resolution depending on required details of solution. The resolution in SOSIG
is regulated by rg parameter, however it strongly depends on the structure in
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Fig. 1. Idea of representative objects in algorithm SOSIG (input data are marked by
circles, network objects by rhombuses)

data. To be more precise, if the relationships between objects in data set form
hierarchical structure, its levels can be identified by regulation of rg value, if the
data are ”flat”, it is possible to create one-level granulation only.

Main part of SOSIG is based on SArIS algorithm [20], however there have
been made major changes and adaptations (like manipulating different types of
attributes, adjusting of solution, clustering new data) described in the following
text.

SOSIG creates a network structure of connected points forming clusters. Or-
ganization of the system, including the points as well as the connections, is
constructed on the basis of relationships between input data, without any exter-
nal supervision. The structure points are representatives of input data, that is
an individual object from the structure stands for one or more object from input
set. The idea of representative objects is illustrated in Figure 1. In effect of this
the number of representatives is much less than clustered data without lost of
information. Steps of the algorithm are described in Algorithm 1. Additionally,
initial part is separated into Algorithm 2, elimination not-useful objects into Al-
gorithm 3 and adjusting of the solution into Algorithm 5. Labeling newly-added
objects is presented in Algorithm 6.

Let us assume input data defined as an information system IS = (U, A) [11],
where U = {x1, . . . , xn} is a set of objects and A = {a1, . . . , ak} is a set of
attributes.
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Similarity between pair of objects is based on functions in different form for
different types of attributes. General form of the dissimilarity is expressed by
Equation 1, whereas practically it is calculated from Equation 2.

δ(x, y) = fusion(δa1(a1(x), a1(y)), . . . , δak
(ak(x), ak(y))). (1)

δ(x, y) =
δreal(x, y) · kreal + δnom(x, y) · knom

k
. (2)

According to the type of attribute, particular components of Equation 2 are
calculated from Equations 3 and 4 for real and nominal attributes respectively.

δreal(x, y) =

√√√√ k∑
i=1

(ai(x)− ai(y))2, (3)

δnom(x, y) =
card({a ∈ A : a(x) 	= a(y)})

knom
. (4)

Result generated by SOSIG is also described by an information system IS′ =
(Y, A ∪ {agr}), where the last attribute agr : Y → {1, . . . , nc} denotes label of
generated granule and card(Y ) ≤ card(U) and ∀x ∈ U∃y ∈ Y (δ(x, y) < NR).

The parameter NR existing in above definition defines neighborhood region
of objects from IS′. It directly influences level of granulation of the input set.
Initial value of NR is proportional to maximal of nearest neighbor distances in
the input set (see Equation 5).

NRinit = max({min({δ(xi, xj) : xj ∈ U & xj 	= xi}) : xi ∈ U}). (5)

The following values of NR are calculated from current state of the network (see
Equation 6).

NR = rg ·
∑

yi∈Y min({δ(yi, yj) : yj ∈ Y & yj 	= yi})
card(Y )

, (6)

where rg ∈ [0, 1] is a resolution of granulation parameter. The most often value
of granulation resolution parameter is 0.5 (estimated theoretically and confirmed
in experiments) assigned to the most separated clusters. Increasing the value of
rg it is possible to identify granules in higher resolution. The NR directly affects
cluster formation as connections in network are determined if the objects are in
their neighborhoods.

After initial phase, like normalization of data, calculation initial value of NR
(see Algorithm 2), iterated steps of the algorithm follow. First, the system
objects are assessed. The measure of their usefulness is a similarity level sl

expressed by Equation 7.

sl(y) = NR−min({δ(y, x) : x ∈ U}). (7)

The similarity level determines proximity degree of every representative to the
training data distinguishing network objects in close location to input points.
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Fig. 2. Removing from the network not useful objects in algorithm SOSIG (input data
are marked by circles, network objects by rhombuses)

Then not useful objects are removed (the procedure is presented in Algorithm
3). It affects extremely dissimilar objects as redundant ones. As redundant are de-
termined points having the same input object in their neighborhood. The best of
themstay in thenetwork andalsonot redundantones forother inputdata.This pro-
cess controls the size of the network prevents forming excessively dense clusters. It
results in compression phenomenon. The removing step is illustrated in Figure 2.

The remaining objects are re-connected and labeled. Components of the same
granule have equal label, whereas the granule is determined by edges between the
objects in the structure. Then there is calculated a new value of NR parameter
(see Equation 6). When stopping criterion is met, the algorithm is stopped
after connections reconstruction. Otherwise following steps are carried out. As
a stopping criterion there is considered a stable state of the network, that is the
state of small fluctuations of network size and value of NR.

The last step is a procedure of adjusting generated solution to the input data
(see Algorithm 5). It concerns all network objects by replicating and modifica-
tion of their attribute values. It allows searching better solution nearby examined
network object.

There is also a step introducing to the system object from input data not
recognized yet, described in Algorithm 4. This operation avoids leaving not
represented area in the training set.

Further classification of new as well as training points can be performed using
so-created structure (see Algorithm 6). To assign a label to considered object
it is necessary to determine neighborhood objects from network structure. The
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Fig. 3. Clustering newly-added objects in algorithm SOSIG (new input data are
marked by circles, network objects by rhombuses, clusters are distinguished by dif-
ferent filling patterns)

neighborhood of the point is defined by final value of the NR (the last calculated
value) of the SOSIG. The predominant value of the labels is given to the exam-
ined object. The procedure is presented in Figure 3.

The algorithm SOSIG is described in details in [10].

3 Quality of Information Granules

Together with specification of elementary granules it is necessary to define mea-
sures of granule quality [14]. In this article, there is considered clustering process
as a realization of granular computing. The aim of clustering techniques is detec-
tion of granules, that are possibly the most compact and separable. To evaluate
compactness and separation of discovered clusters there were proposed statistics
so-called validity indices. Validity indices are designed to estimation of quality
of obtained partitioning. Assessment the most optimal result needs calculation
of validity indices for different values of algorithm’s parameter, what usually is
a number of clusters. The most commonly used are Dunn and Dunn-like statis-
tics and Davies-Bouldin (DB) index [5]. Their advantage is exhibition no trends
with respect to the number of clusters, therefore the minimum (DB) or maximum
(Dunn) value indicate the most optimal partition.

Another index proposed by [8] to evaluate clustering result is Silhouette Index
(SI). The Silhouette Index for the data set is the mean of this measure for all
points in the data set and ranges from 1 to 1, where 1 indicates a good classi-
fication, -1 indicates a bad classification and 0 indicates that the classification
could go either way. Since the Silhouette Index compares classification between
clusters, it cannot be computed for single cluster data sets.

The mentioned above indices, although commonly used, suffer from a num-
ber of limitations. First of all, they are predisposed to cope with spherical
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Algorithm 1. Construction of information system with a set of representa-
tive objects
Data:
– IS = (U, A) - an information system, where U = {x1, . . . , xn} is a set of

objects and A = {a1, . . . , ak} is a set of attributes,
– {δa : a ∈ A} - a set of distance function of the form δa : Va × Va → [0,∞),

where Va is a set of values for attribute a ∈ A and a global distance function
δ : U × U → [0,∞) defined by
δ(x, y) = fusion(δa1(a1(x), a1(y)), . . . , δak (ak(x), ak(y)))

– sizenet ∈ {0, 1, . . . , card(U)} - initial size of network, rg ∈ [0, 1] - resolution
of granulation,

Result: IS′ = (Y, A ∪ {agr}) - an information system, where the last attribute
agr : Y → {1, . . . , nc} denotes label of generated granule and
card(Y ) ≤ card(U) and ∀x ∈ U∃y ∈ Y δ(x, y) < NR

begin
[NRinit, Y ] ←− initialize(U, A, sizenet);
for yi, yj ∈ Y, i = j do /*form clusters*/

if δ(yi, yj) < NRinit then connect(yi, yj);
NR ←− NRinit;
while ¬stopIterations(Y ) do

for y ∈ Y do
∆(y) = (δ(y, x))x∈U ; /*calculate distances from input data*/;
sl(y) = NR − min ∆(y);/*similarity level of the object*/;

delete(U, A,Y ); /*remove redundant network objects*/;
for yi, yj ∈ Y, i = j do /* reconnect objects*/

if δ(yi, yj) < NR then connect(yi, yj);
agr(yi) ←− 0; agr(yj) ←− 0;

grLabel ←− 1;
for yi ∈ Y do /*label objects*/

if agr = 0 then agr(yi) ←− grLabel;
for yj ∈ Y, j = i do

if connected(yi , yj) then agr(yj) ←− grLabel;
grLabel ←− grLabel + 1;

for yi ∈ Y do
/*calculate the nearest neighbor network objects*/;
δNN (yi) = min({δ(yi, yj) : yj ∈ Y & j = i});

NR ←− rg ·
P

y∈Y δNN (y)
card(Y ) ;/*new value of NR*/;

if ¬stopIterations(Y )/*test the stopping condition */ then
joinNotRepresented(U, Y, NR, ∆);
adjust(Y, U, A, NR);

end

distribution of clusters and are likely to be data dependent. There are also dif-
ficulties when clusters are of not equal size and densities [5].

Recently proposed index CDbw (composing density between and with clus-
ters) [6], on the contrary to others measures, uses multi-representatives points
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Algorithm 2. Initial steps of SOSIG algorithm
Data: Set of input objects: U = {x1, . . . , xn}, sizenet ∈ {0, 1, . . . , card(U)} -

initial size of network
Result: Set of initial network objects Y = {y1, . . . , ysizenet}, where Y ⊂ U ,

NRinit - initial value of neighborhood radius threshold
begin

δmaxNN = 0;
for xi ∈ U do

/*calculate the nearest neighbor distances of the data*/ ;
δNN (xi) = min({δ(xi, xj) : xj ∈ U & xj = xi}) ;
/*find the greatest value of the nearest neighbor distances*/ ;
if δNN (xi) > δmaxNN then δmaxNN = δNN (xi);

NRinit ←− δmaxNN ;
/*select the representatives objects*/ ;
for netObj ← 1 to sizenet do

i = rand(1, . . . , card(U));
ynetObj = xi;

end

Algorithm 3. Detailed steps of delete function from SOSIG
Data: Set of input objects U , network set Y , set of attributes A = {a1, . . . , ak},

NR - threshold of neighborhood radius
Result: Y \ C, where C is a set of redundant network objects
begin

C ←− ∅;/*initially the set is empty*/;
for x ∈ U do

for y ∈ Y do
if δ(y, x) < NR then /*add to the set objects representing the input
element x*/;
C ←− C ∪ {y};

δNN (x, yNN ) = min({δ(x, y) : y ∈ Y }) ;
C ←− C \ {yNN};/*remove from the set the best object representing x */;

Y ←− Y \ C;/*remove from the network objects from the set C*/;
end

to describe clusters, what enables evaluation groups of arbitrary shape. The
CDbw index is based on cluster compactness and separation. It is product of
two components Sep(nc) and Intra dens(nc) (see Equation 8).

CDbw(nc) = Sep(nc) · Intra dens(nc), nc > 1, (8)

where nc denotes a number of clusters in examined partitioning. Intra dens(nc)
depends on density of granules (described in the following text) and Sep(nc) is
a measure of separability of clusters defined as follows:

Sep(nc) =

∑nc
i=1

∑nc
j=1,i�=j min d(clos repi, clos repj)

1 + Inter dens(nc)
, nc > 1. (9)
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Algorithm 4. Detailed steps of joinNotRepresented function from SOSIG

Data: Set of input objects: U = {x1, . . . , xn}, Y = {y1, . . . , yn}, ∆ - matrix of
distances between input and network objects, NR - threshold of
neighborhood radius

Result: Y ∪ {x} (with condition ¬∃y ∈ Y δ(y, x) < NR)
begin

for x ∈ U do
/*find an arbitrary object from the training set not represented yet by
any network element*/ ;
add ←− 1 ;
for y ∈ Y do

if δ(y, x) < NR then add ←− 0 ;
break;

if add = 1 then Y ←− Y ∪ {x};
break;

end

Algorithm 5. Detailed steps of adjust function from SOSIG
Data: Set of input objects U , network set Y , set of attributes A = {a1, . . . , ak},

NR - threshold of neighborhood radius
Result: Y ∪ Z, where Z is a set of adjusted network objects
begin

Z ←− ∅;
for y ∈ Y do

for candidate ←− 1 to noCandidates do
zcandidate ←− y;
for a ∈ A do

sign ←− rand({−1, 1}); delta ←− sign;
if a(zcandidate) is binary then

/*value modification for binary attribute*/;
randV al ←− rand({0, 1}); delta ←− delta · randV al;
a(zcandidate) ←− delta;

else
/*value modification for continuous attribute*/;
randV al ←− rand([0, 1]);
/*scale of change depends on the value od sl */;
delta ←− delta · randV al · (1.5 − sl(y));
a(zcandidate) ←− a(zcandidate) + delta;

for x ∈ U do
if δ(zcandidate, x) < NR then

/*only useful clones are joined to the network */;
Z ←− Z ∪ {zcandidate};
break;

end
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Algorithm 6. Clustering of the input information system in SOSIG algo-
rithm
Data:
– IS = (U, A) - an information system, where U = {x1, . . . , xn} is a set of

objects and A = {a1, . . . , ak} is a set of attributes,
– IS′ = (Y, A ∪ {agr}) where last attribute agr : Y → {1, . . . , ng}

stands for label of generated granule and card(Y ) ≤ card(U)
– NR - threshold of neighborhood radius;

Result: Clustered information system ISgr = (U,A ∪ {agr}) into ng clusters
(granules), where last attribute agr : U → {1, . . . , nc} stands for label of
generated granule

begin
for x ∈ U do

for granule ← 1 to ng do
grLabels[granule] ← 0;

/*calculate distance between x and the network objects*/;
for y ∈ Y do

if δ(x, y) < NR then label ← agr(y);
grLabels[label] ← grLabels[label] + 1;

/*predominant label is selected */;
agr(x) ← max({grLabels}) ;

end

Separability is proportional to the sum of distances between the closest repre-
sentative points (close rep) from pair-wise clusters and inversely proportional to
measure of density between clusters (Inter dens(nc)). Representative points are
objects from a training set selected by Farthest First (FF) algorithm for every
cluster. The FF algorithm works as follows: initially the cluster centroid is de-
termined. Then there is selected the first representative point from the training
data located the farthest from the centroid. In the following steps are selected
the farthest objects from the previously determined representatives. The steps
are repeated until the required number r of representatives is reached. Den-
sity between clusters is expressed by Equation 10. It is desirable to generate
partitioning of the lowest inter-cluster density.

Inter dens(nc) =
nc∑
i=1

nc∑
j=1,j �=i

(
d(clos repi, clos repj)
stdev (Ci) + stdev (Cj)

· density(uij)
)

, nc > 1.

(10)
The component stdev (C) is the standard deviation of cluster C ⊆ U and

density(uij) density of input objects around the point uij defined by Equation
11. The point uij is the middle point of the line segment defined by the closest
clusters’ representatives close repi and close repj and ni, nj are the number of
objects in clusters Ci and Cj .

density(uij) =

∑
x∈Ci∪Cj

f(x, uij)

|Ci|+ |Cj |
. (11)
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The density(uij) represents the percentage of points in the cluster i and the
cluster j that belong to the neighborhood of uij . This neighborhood is defined
to be a hyper-sphere with center uij and radius the average standard deviation
of the clusters between which the density is estimated. The function f(x, uij) is
defined as:

f(x, uij) =
{

0 if d(x, uij) > stdev (Ci) + stdev (Cj))/2
1 otherwise. (12)

The second component of Equation 8 determines the average density within
clusters and is defined as the percentage of points that belong to the neighbor-
hood of representative points of the considered clusters. The goal is the density
within clusters to be significant high. Intra dens(nc) is given by the following
equation:

Intra dens(nc) =
1
nc

nc∑
i=1

1
r

∑
vij∈Ci

density(vij)
stdev (Ci)

, nc > 1, (13)

where
density(vij) =

∑
x∈Ci

g(x, vij). (14)

The function g(x, vij) is described by Equation 15.

g(x, vij) =
{

0 if d(x, vij) > stdev (Ci)
1 otherwise. (15)

To determine a good clustering scheme it is required to find a maximum value
of CDbw.

4 Information Granulation in Medical Data

The aim of the carried out experiments is to present exploration of real life data.
The information granules obtained in clustering process are subjected to the
analysis. To create the granules there were selected algorithms k-means, hierar-
chical minimum-variance (hmv), hierarchical complete-link (hcl), EM, DBSCAN
and SOSIG. Granulation schemes were assessed and compared by quality indices.
Then medical norms of numerical attributes are employed to construct final se-
mantic form of selected the best granules.

4.1 Description of the Dataset

The dataset used in experiments contains real life medical data described and
examined in [15] and [16] (see also [9]). The database is shown at the end of the
paper [16]. Results of granulation of not normalized the data has been presented
in the article [18].
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Table 1. Description of attributes of diabetes data. The last column contains real
nominal attribute values or discretized values according to medical norms for numerical
attributes.

Type of Values of
Attr Description of attribute attribute attributes
a1 Sex Nominal m, f
a2 Age of diagnosis (years) Numerical < 7, 7 − 12, 13 − 15,≥ 16
a3 Disease duration (years) Numerical < 6, 6 − 10,≥ 11
a4 Diabetes in family Nominal yes, no
a5 Insulin therapy type Nominal KIT, KIT IIT
a6 Resp. system infections Nominal yes, no
a7 Remission Nominal yes, no
a8 HbA1c Numerical < 8, [8, 10),≥ 10
a9 Hypertension Nominal yes, no
a10 Body mass (percentiles) Nominal < 3, 3 − 97, > 97
a11 Hypercholesterolemia Nominal yes, no
a12 Hypertriglycerodemia Nominal yes, no
a13 Microalbuminuria Nominal yes, no

There are 107 objects containing information about children suffering from
diabetes. Detailed description of attributes is placed in Table 1 (see also [17]).
One of the attributes is in fact a decision attribute, and in the experiments we
took into consideration two variants of the data: with and without the attribute.
The attributes include sex, the age at which the disease was diagnosed and other
diabetological findings. There are also criteria of the metabolic balance, hyperc-
holesterolemia and hypertriglyceridemia. Most of them have nominal values and
there are also continuous real attributes.

4.2 Results of the Experiments

To eliminate influence of attributes having the highest variance in their values
normalization process on all of them has been performed. The attributes have
been normalized to interval [0, 1]. The clustering was executed twice: with addi-
tional attribute - the class attribute (microalbuminuria) present and without it.
The algorithms k-means, hmv and EM have been run for nc = 2, 3, ..., 10, the
method SOSIG for various values of granulation resolution rg and DBSCAN for
various values of parameter epsilon with minPts = 3 (the epsilon parameter
stands for radius of density neighborhood and minPts denotes minimal number
of points in single cluster). Every partitioning is assessed by indices Dunn’s,
DB, SI and CDbw. The results containing less than 90% objects from input set
clustered were not taken into consideration.

Left side of Table 2 presents evaluation of granulation of the 13 dimensional
diabetes data, whereas right side evaluation of granulation of the same set exclud-
ing the class attribute microalbuminuria. There is high discrepancy in optimal
partitioning indicated by the values in Table 2. The most often distinguished
is clustering containing 8, 9 and 10 granules, however there are also indicated
results containing 2, 3 and 4 groups.

In DBSCAN result for epsilon < 1.1 regardless of minPts value only 20-30
objects were clustered, whereas for epsilon > 1.1 all input objects were assigned
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Table 2. Evaluation of clusterings of the diabetes data including (left side) and ex-
cluding (right side) the class column created by parametrical algorithms: k-means, hmv
and EM

Method Index Best nc
value

Dunn 0.43 6-9
k-means DB 1.51 10

SI 0.18 10
CDbw 1.82 3
Dunn 0.43 9,10

hmv DB 1.53 10
SI 0.17 10
CDbw 1.72 2
Dunn 0.37 3,4

EM DB 1.79 10
SI 0.15 2
CDbw 1.85 3

Method Index Best nc
value

Dunn 0.48 10
k-means DB 1.35 9

SI 0.19 9,10
CDbw 2.18 2
Dunn 0.48 9,10

hmv DB 1.35 10
SI 0.18 8,10
CDbw 2.18 2
Dunn 0.14 9

EM DB 1.38 4
SI 0.16 2
CDbw 1.16 2

to one cluster. The only partitioning is obtained for epsilon = 1.1 containing
2 groups of 99 and 8 elements. Calculated assessment indices were DB=2.24,
Dunn=0.36, CDbw=1.90, SI=0.12. Since high difference in sizes of clusters and
low quality indicated the result is not taken in further considerations.

Similar results were obtained in SOSIG granulation. There was also threshold
value of rg parameter (rg = 0.45 for 13 and rg = 0.50 for 12 dimensional
set), where over the value the partitioning was composed of all objects forming
one cluster, whereas below the threshold value there were predominant clusters
consisted of single objects in the result.

Considering the examples described before and ambiguous results of granu-
lation 13 and 12 attributes of diabetes data one can assume there is absence of
compact and separable clusters in the data. Presence of microalbuminuria at-
tribute exerts an influence on obtained clustering, however separability of groups
is low in both cases. This is concluded on the basis of highly diverse assessment
values for parametrical clustering methods k-means, hierarchical and EM. More
effortless and unambiguous interpretation is in case of SOSIG result. There is or
not enough number of input objects in large clusters (what suggests the value of
rg parameter is too high) or all the objects are forming one cluster. Formation
one group implies the objects are equally similar to one another.

In further exploration of the set selection of attributes step has been ex-
ecuted. Importance of attributes can be measured by different methodologies.
Three of them were presented in [15] and applied to the considered diabetes data
set. The paper describes reducts application, a method based on significance of
attributes and a method inspired by wrapper approach. To select attributes
for further granulation there were prepared 11 data sets (S1 . . . S11) contain-
ing the attributes from experiments from the paper [15]. There were taken into
consideration 6 reducts (S1 . . . S6) - the 2 best subsets indicated by the method
based on significance of attributes (S7, S8) and 2 subsets evaluated as the best
by the method inspired by wrapper approach (S9, S10). There was also examined
a subset containing 3 continuous variables (S11). Composition of the subsets is
shown in Table 3.
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Table 3. Composition of considered subsets S1 . . . S11

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
S1 + + + - + + - + + + + +
S2 + + + + + - + + - - + +
S3 + + + + + - + + - + - +
S4 + + + + + - + + + - - +
S5 + + + + + + - + - + + +
S6 + + + + + + - + + + - +
S7 + + + - + - - + - - - +
S8 + + + - + - - + - - - -
S9 + + + + + - + + - + + +
S10 + + + + + - + + - - - -
S11 - + + - - - - + - - - -

Table 4. Evaluation of subsets of the diabetes data granulation created by SOSIG
algorithm, number of granules (ng)

S2 S3 S4 S7 S8 S11
ng 6 8 7 5 4 4
DB 0.11 0.35 0.37 0.17 0.20 0.19
Dunn 1.13 0.71 0.70 1.00 0.95 0.17
SI 0.70 0.57 0.61 0.65 0.63 0.25
CDbw 7.48 0.60 2.32 15.18 18.36 2.29

So-prepared sets were clustered by SOSIG and DBSCAN algorithms. Then
values of the quality indices DB, Dunn’s, SI and CDbw were calculated. Tables
4 and 5 contain the number of groups and quality results of the partition-
ings of SOSIG and DBSCAN respectively. There were taken into consideration
groups of minimal size equal 3. It was not possible to generate results for subsets
S1, S5, S6, S9, S10 by SOSIG and for subsets S5, S6, S11 by DBSCAN method.
The reason is existence groups not distinct enough.

Analyzing the results one can notice the algorithms generate similar partition-
ing. Number of detected groups and quality of created clustering are comparable.
For further experiments there was selected the clustering of subset S7 performed
by SOSIG due to optimal values of the quality indices for both algorithms and
relatively small number of created groups. The following results concern compo-
sition of granules and rules generated by RSES system.

The partitioning of S7 subset generated by SOSIG is composed of 5 large
granules containing 87 input objects. The size of the two largest granule is 27 and
22. The remaining granules are composed of 16, 14 and 6 objects. Composition
of values in every granule is presented in Table 6.

To fulfil the postulate of GrC to design systems delivering easy interpretable
knowledge, the granules were used in RSES system to create granules in form of
semantic rules. There were additionally applied medical norms (from Table 1)
to discretize continuous and integer variables. The generated sets of rules present
Table 7.

The granules described by rule set from RSES system have compact and
transparent form, thereby the contained knowledge is more effective to learn.
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Table 5. Evaluation of subsets of the diabetes data granulation created by DBSCAN
algorithm, number of granules (ng)

S1 S2 S3 S4 S7 S8 S9 S10
ng 24 6 10 8 7 4 21 12
DB 1.18 1.06 0.42 1.18 0.20 0.25 1.10 0.29
Dunn 0.41 0.41 0.55 0.39 0.86 0.86 0.41 0.63
SI 0.46 0.47 0.51 0.49 0.60 0.59 0.43 0.58
CDbw 0.51 0.88 1.00 0.78 3.12 5.24 0.79 1.69

Table 6. Granules generated by SOSIG

Granule Value a1 a2 a3 a5 a8 a12
(size)

minimal f 9 3 KIT IIT 6.95 no
1(16) maximal f 17 7 KIT IIT 11.61 no

average - 12.44 5.25 - 8.69 -
minimal f 2 3 KIT 5.0 no

2(22) maximal f 16 8 KIT 9.6 no
average - 9.27 5.86 - 7.48 -
minimal m 8 4 KIT IIT 5.8 no

3(14) maximal m 18 7 KIT IIT 9.69 no
average - 11.71 4.93 - 8.11 -
minimal m 2 2 KIT 6.21 no

4(27) maximal m 16 7 KIT 10.08 no
average - 10.07 5.29 - 7.88 -
minimal m 2 6 KIT 8.83 yes

5(6) maximal m 12 8 KIT 10.8 yes
average - 7.5 6.83 - 10.06 -

Table 7. Decision rules generated by RSES system on the basis of granules created by
SOSIG and medical norms applied to diabetes data

No of if Condition then Granule number Size
the rule
1 if a1 = m and a5 = KIT and a12 = no then Granule = 4 27
2 if a1 = f and a5 = KIT then Granule = 2 22
3 if a1 = f and a5 = KIT IIT then Granule = 1 16
4 if a1 = m and a5 = KIT IIT then Granule = 3 14
5 if a1 = m and a3 =average and 6

a5 = KIT and a12 = yes then Granule = 5

The semantic form of granules is well-interpretable by the user without any
special training.

Granulation of the diabetes data can be also used to evaluate risk of compli-
cation occurrence in the particular groups. In the examined data set the compli-
cation is microalbuminuria, described in Table 1 as a13 attribute. This action
effects in indicating groups of patients particulary subjected to diabetes com-
plication. Distribution of the decision attribute among the groups in presented
in Figure 4. There are 3 the most homogeneous granules, that is granules with
number 1,4,5. The granule 1 contains 88% cases of positive microalbuminuria,
the granule with number 5 concerns 66% positive cases, whereas the granule 4
is predominated by 66% cases of microalbuminuria absence.
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Fig. 4. Distribution of microalbuminuria attribute in particular granules

Among the granules the group number 1 has particularly high risk of the
complication. It is composed of girls of age 9-17 undergone KIT IIT therapy.
Disease duration is between 3 and 7 years, whereas HbA1c level interval be-
tween [6.75,11.61]. The children belonging to this groups do not suffer from
hipertriglycerodemia. The group number 5 consists boys of age between 2 and
12 has high risk of microalbuminuria. The patients, suffering from diabetes 6-8
years, were given a treatment by KIT therapy. An interval of HbA1c level in this
group is relatively narrow - between 8.83 and 10.08. This is the only granule with
hipertriglycerodemia occurrence. Boys are also included in the group number 4.
This is the most numerous granule containing patients of age 2-16 suffering from
the disease 2-7 years. The level of HbA1c is between [6.21,10.08]. The group has
low risk of the complication. It is similar to granule 5, however there is hiper-
triglycerodemia absent. It may be concluded, that there is a connection between
hipertriglycerodemia and microalbuminuria when patient is a boy suffering from
diabetes (see the last rule from Table 7).

Analyzing the remaining granules one can notice a similarity between granules
2 and 1, however in the first of them the risk of complication is strongly reduced
(from 88% to about 55%). The difference is also another therapy type - KIT.
One can suggest, that the therapy KIT is more effective in group of girls suffering
from diabetes. Group number 3 is composed of male patients of age 2-16, with
disease duration between 4 and 7 years. The HbA1c level interval is between
[5.8,9.69]. The children underwent KIT IIT therapy, however there is quite high
risk of microalbuminuria on contrary to similar group number 4. It may result
from different type of treatment and there may also appear the suggestion of
more effective KIT therapy in case of male patients.
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5 Conclusions

The SOSIG algorithm is designed for knowledge discovery from data. The knowl-
edge is described as information granules composed of similar to each other ob-
jects of data. The algorithm has been tested on a real multidimensional database.
To balance an influence of all attributes on final granulation normalization pro-
cess has been performed. When data set contains all 13 attributes distinct gran-
ules are not possible for identification. It is easy to conclude from SOSIG result,
where all objects form one cluster - the contrary to result of parametrical algo-
rithms where its assessment is very complex and ambiguous.

Further preparation of the data allowed identify granules present in data.
Granules generated by SOSIG system are created unambiguous avoiding diffi-
cult phase of results selection. The granules are characterized by distinguishable
values of the attributes. The final form of the results contains knowledge easy
to interpret by medical doctors. The knowledge is presented in form of semanti-
cally described granules and set of rules extracted from RSES system applying
additionally medical norms for the continuous and integer attributes.

There are homogenous granules with respect to decision attribute - microalbu-
minuria in the generated solution. One of them is characterized extremely high
risk of the complication. It can be helpful in evaluation of possibility of further
complication in new patients as well as selecting appropriate therapy type.
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Abstract. Image segmentation is an indispensable process in the visual-
ization of human tissues, particularly during clinical analysis of magnetic
resonance (MR) images. In this paper, the rough-fuzzy c-means (RFCM)
algorithm is presented for segmentation of brain MR images. The RFCM
algorithm comprises a judicious integration of the rough sets, fuzzy sets,
and c-means algorithm. While the concept of lower and upper approxi-
mations of rough sets deals with vagueness and incompleteness in class
definition of brain MR images, the membership function of fuzzy sets
enables efficient handling of overlapping classes. The crisp lower bound
and fuzzy boundary of a class, introduced in the RFCM algorithm, en-
able efficient segmentation of brain MR images. One of the major is-
sues of the RFCM based brain MR image segmentation is how to select
initial prototypes of different classes or categories. The concept of dis-
criminant analysis, based on the maximization of class separability, is
used to circumvent the initialization and local minima problems of the
RFCM. Some quantitative indices are introduced to extract local fea-
tures of brain MR images for accurate segmentation. The effectiveness
of the RFCM algorithm, along with a comparison with other related al-
gorithms, is demonstrated on a set of brain MR images.

Keywords: Rough sets, fuzzy sets, medical imaging, segmentation, c-
means algorithm.

1 Introduction

Segmentation is a process of partitioning an image space into some non-
overlapping meaningful homogeneous regions. The success of an image analysis
system depends on the quality of segmentation [1]. If the domain of the image
is given by Ω, then the segmentation problem is to determine the sets Sk ⊂ Ω,
whose union is the entire domain Ω. The sets that make up a segmentation must
satisfy

Ω =
K⋃

k=1

Sk, where Sk ∩ Sj = ∅ for k 	= j,

and each Sk is connected. Thus, a segmentation method is supposed to find those
sets that correspond to distinct anatomical structures or regions of interest in
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the image. In the analysis of medical images for computer-aided diagnosis and
therapy, segmentation is often required as a preliminary stage. However, medical
image segmentation is a complex and challenging task due to intrinsic nature of
the images. The brain has a particularly complicated structure and its precise
segmentation is very important for detecting tumors, edema, and necrotic tissues,
in order to prescribe appropriate therapy [2].

In medical imaging technology, a number of complementary diagnostic tools
such as x-ray computer tomography (CT), magnetic resonance imaging (MRI),
and position emission tomography (PET) are available. Magnetic resonance
imaging (MRI) is an important diagnostic imaging technique for the early detec-
tion of abnormal changes in tissues and organs. Its unique advantage over other
modalities is that it can provide multispectral images of tissues with a variety of
contrasts based on the three MR parameters ρ, T1, and T2. Therefore, majority
of research in medical image segmentation concerns MR images [2].

Conventionally, the brain MR images are interpreted visually and qualitatively
by radiologists. Advanced research requires quantitative information, such as the
size of the brain ventricles after a traumatic brain injury or the relative volume of
ventricles to brain. Fully automatic methods sometimes fail, producing incorrect
results and requiring the intervention of a human operator. This is often true due
to restrictions imposed by image acquisition, pathology and biological variation.
So, it is important to have a faithful method to measure various structures in
the brain. One of such methods is the segmentation of images to isolate objects
and regions of interest.

Many image processing techniques have been proposed for MR image segmen-
tation, most notably thresholding [3, 4], region-growing [5], edge detection [6],
pixel classification [7, 8] and clustering [9, 10, 11]. Some algorithms using the neu-
ral network approach have also been investigated in the MR image segmentation
problems [12, 13]. One of the main problems in medical image segmentation is
uncertainty. Some of the sources of this uncertainty include imprecision in com-
putations and vagueness in class definitions. In this background, the possibility
concept introduced by the fuzzy set theory [14] and rough set theory [15] have
gained popularity in modeling and propagating uncertainty. Both fuzzy set and
rough set provide a mathematical framework to capture uncertainties associated
with human cognition process [16, 17, 18]. The segmentation of MR images us-
ing fuzzy c-means has been reported in [9, 13, 19, 20]. Image segmentation using
rough sets has also been done [21, 22, 23, 24, 25].

In this paper, a hybrid algorithm called rough-fuzzy c-means (RFCM) algo-
rithm is presented for segmentation of brain MR images. A preliminary version
of this algorithm has been reported in [26, 27]. The RFCM algorithm is based on
both rough sets and fuzzy sets. While the membership function of fuzzy sets en-
ables efficient handling of overlapping partitions, the concept of lower and upper
approximations of rough sets deals with uncertainty, vagueness, and incomplete-
ness in class definition. Each partition is represented by a cluster prototype
(centroid), a crisp lower approximation, and a fuzzy boundary. The lower ap-
proximation influences the fuzziness of the final partition. The cluster prototype
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(centroid) depends on the weighting average of the crisp lower approximation
and fuzzy boundary. However, an important issue of the RFCM based brain MR
image segmentation method is how to select initial prototypes of different classes
or categories. The concept of discriminant analysis, based on the maximization
of class separability, is used to circumvent the initialization and local minima
problems of the RFCM, and enables efficient segmentation of brain MR images.
The effectiveness of the RFCM algorithm, along with a comparison with other
c-means algorithms, is demonstrated on a set of brain MR images using some
standard validity indices.

The paper is organized as follows: Section 2 briefly introduces the necessary
notions of fuzzy c-means and rough sets. In Section 3, the RFCM algorithm is
described based on the theory of rough sets and fuzzy c-means. Section 4 gives an
overview of the feature extraction techniques employed in segmentation of brain
MR images along with the initialization method of c-means algorithm based
on the maximization of class separability. Implementation details, experimental
results, and a comparison among different c-means are presented in Section 5.
Concluding remarks are given in Section 6.

2 Fuzzy C-Means and Rough Sets

This section presents the basic notions of fuzzy c-means and rough sets. The
rough-fuzzy c-means (RFCM) algorithm is developed based on these algorithms.

2.1 Fuzzy C-Means

Let X = {x1, · · · , xj , · · · , xn} be the set of n objects and V = {v1, · · · , vi, · · · , vc}
be the set of c centroids, where xj ∈ �m, vi ∈ �m, and vi ∈ X . The fuzzy c-
means provides a fuzzification of the hard c-means [9, 28]. It partitions X into c
clusters by minimizing the objective function

J =
n∑

j=1

c∑
i=1

(µij)ḿ||xj − vi||2 (1)

where 1 ≤ ḿ <∞ is the fuzzifier, vi is the ith centroid corresponding to cluster
βi, µij ∈ [0, 1] is the fuzzy membership of the pattern xj to cluster βi, and ||.||
is the distance norm, such that

vi =
1
ni

n∑
j=1

(µij)ḿxj ; where ni =
n∑

j=1

(µij)ḿ (2)

and

µij = (
c∑

k=1

(
dij

dkj
)

2
ḿ−1 )−1; where d2

ij = ||xj − vi||2 (3)

subject to
c∑

i=1

µij = 1, ∀j, and 0 <
n∑

j=1

µij < n, ∀i.
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The process begins by randomly choosing c objects as the centroids (means)
of the c clusters. The memberships are calculated based on the relative distance
of the object xj to the centroids by Equation 3. After computing memberships of
all the objects, the new centroids of the clusters are calculated as per Equation
2. The process stops when the centroids stabilize. That is, the centroids from
the previous iteration are identical to those generated in the current iteration.
The basic steps are outlined as follows:

1. Assign initial means vi, i = 1, 2, · · · , c. Choose values for ḿ and threshold ε.
Set iteration counter t = 1.

2. Compute memberships µij by Equation 3 for c clusters and n objects.
3. Update mean (centroid) vi by Equation 2.
4. Repeat steps 2 to 4, by incrementing t, until |µij(t)− µij(t− 1)| > ε.

Although fuzzy c-means is a very useful clustering method, the resulting mem-
berships values do not always correspond well to the degrees of belonging of the
data, and it may be inaccurate in a noisy environment [29, 30]. In real data
analysis, noise and outliers are unavoidable. Hence, to reduce this weakness of
fuzzy c-means, and to produce memberships that have a good explanation of the
degrees of belonging for the data, Krishnapuram and Keller [29, 30] proposed
a possibilistic approach to clustering which used a possibilistic type of mem-
bership function to describe the degree of belonging. However, the possibilistic
c-means sometimes generates coincident clusters [31]. Recently, the use of both
fuzzy (probabilistic) and possibilistic memberships in a clustering algorithm has
been proposed in [32].

2.2 Rough Sets

The theory of rough sets begins with the notion of an approximation space, which
is a pair < U, R >, where U be a non-empty set (the universe of discourse) and
R an equivalence relation on U , i.e., R is reflexive, symmetric, and transitive.
The relation R decomposes the set U into disjoint classes in such a way that
two elements x, y are in the same class iff (x, y) ∈ R. Let denote by U/R the
quotient set of U by the relation R, and

U/R = {X1, X2, · · · , Xm}

where Xi is an equivalence class of R, i = 1, 2, · · · , m. If two elements x, y ∈
U belong to the same equivalence class Xi ∈ U/R, then x and y are called
indistinguishable. The equivalence classes of R and the empty set ∅ are the
elementary sets in the approximation space < U, R >. Given an arbitrary set
X ∈ 2U , in general it may not be possible to describe X precisely in < U, R >.
One may characterize X by a pair of lower and upper approximations defined
as follows [15]:

R(X) =
⋃

Xi⊆X

Xi; R(X) =
⋃

Xi∩X �=∅
Xi
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That is, the lower approximation R(X) is the union of all the elementary sets
which are subsets of X , and the upper approximation R(X) is the union of all
the elementary sets which have a non-empty intersection with X . The interval
[R(X), R(X)] is the representation of an ordinary set X in the approximation
space < U, R > or simply called the rough set of X . The lower (resp., upper) ap-
proximation R(X) (resp., R(X)) is interpreted as the collection of those elements
of U that definitely (resp., possibly) belong to X . Further,

– a set X ∈ 2U is said to be definable (or exact) in < U, R > iff R(X) = R(X).
– for any X, Y ∈ 2U , X is said to be roughly included in Y , denoted by X⊂̃Y ,

iff R(X) ⊆ R(Y ) and R(X) ⊆ R(Y ).
– X and Y is said to be roughly equal, denoted by X �R Y , in < U, R > iff

R(X) = R(Y ) and R(X) = R(Y ).

In [15], Pawlak discusses two numerical characterizations of imprecision of
a subset X in the approximation space < U, R >: accuracy and roughness.
Accuracy of X , denoted by αR(X), is simply the ratio of the number of objects
in its lower approximation to that in its upper approximation; namely

αR(X) =
|R(X)|
|R(X)|

The roughness of X , denoted by ρR(X), is defined by subtracting the accuracy
from 1:

ρR(X) = 1− αR(X) = 1− |R(X)|
|R(X)|

Note that the lower the roughness of a subset, the better is its approximation.
Further, the following observations are easily obtained:

1. As R(X) ⊆ X ⊆ R(X), 0 ≤ ρR(X) ≤ 1.
2. By convention, when X = ∅, R(X) = R(X) = ∅ and ρR(X) = 0.
3. ρR(X) = 0 if and only if X is definable in < U, R >.

3 Rough-Fuzzy C-Means Algorithm

Incorporating both fuzzy and rough sets, next a newly introduced c-means algo-
rithm, termed as rough-fuzzy c-means (RFCM) [26, 27], is described. The RFCM
algorithm adds the concept of fuzzy membership of fuzzy sets, and lower and
upper approximations of rough sets into c-means algorithm. While the member-
ship of fuzzy sets enables efficient handling of overlapping partitions, the rough
sets deal with uncertainty, vagueness, and incompleteness in class definition.

3.1 Objective Function

Let A(βi) and A(βi) be the lower and upper approximations of cluster βi, and
B(βi) = {A(βi)−A(βi)} denote the boundary region of cluster βi. The RFCM
partitions a set of n objects into c clusters by minimizing the objective function
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JRF =

⎧⎨⎩
w ×A1 + w̃ × B1 if A(βi) 	= ∅, B(βi) 	= ∅

A1 if A(βi) 	= ∅, B(βi) = ∅
B1 if A(βi) = ∅, B(βi) 	= ∅

(4)

A1 =
c∑

i=1

∑
xj∈A(βi)

||xj − vi||2 B1 =
c∑

i=1

∑
xj∈B(βi)

(µij)ḿ||xj − vi||2

vi represents the centroid of the ith cluster βi, the parameter w and w̃ correspond
to the relative importance of lower bound and boundary region, and w + w̃ = 1.
Note that, µij has the same meaning of membership as that in fuzzy c-means.

B(    )β

µ ijβiA(     )

[0, 1]µ ijwith
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Fig. 1. RFCM: cluster βi is represented by crisp lower bound and fuzzy boundary

In the RFCM, each cluster is represented by a centroid, a crisp lower approx-
imation, and a fuzzy boundary (Fig. 1). The lower approximation influences the
fuzziness of final partition. According to the definitions of lower approximations
and boundary of rough sets, if an object xj ∈ A(βi), then xj /∈ A(βk), ∀k 	= i,
and xj /∈ B(βi), ∀i. That is, the object xj is contained in βi definitely. Thus, the
weights of the objects in lower approximation of a cluster should be independent
of other centroids and clusters, and should not be coupled with their similarity
with respect to other centroids. Also, the objects in lower approximation of a
cluster should have similar influence on the corresponding centroid and cluster.
Whereas, if xj ∈ B(βi), then the object xj possibly belongs to βi and poten-
tially belongs to another cluster. Hence, the objects in boundary regions should
have different influence on the centroids and clusters. So, in the RFCM, the
membership values of objects in lower approximation are µij = 1, while those in
boundary region are the same as fuzzy c-means (Equation 3). In other word, the
RFCM algorithm first partitions the data into two classes - lower approximation
and boundary. Only the objects in boundary are fuzzified.

3.2 Cluster Prototypes

The new centroid is calculated based on the weighting average of the crisp lower
approximation and fuzzy boundary. Computation of the centroid is modified to
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include the effects of both fuzzy memberships and lower and upper bounds. The
modified centroid calculation for the RFCM is obtained by solving Equation 4
with respect to vi:

vRF
i =

⎧⎨⎩
w × C1 + w̃ ×D1 if A(βi) 	= ∅, B(βi) 	= ∅

C1 if A(βi) 	= ∅, B(βi) = ∅
D1 if A(βi) = ∅, B(βi) 	= ∅

(5)

C1 =
1

|A(βi)|
∑

xj∈A(βi)

xj ; where |A(βi)| represents the cardinality of A(βi)

and D1 =
1
ni

∑
xj∈B(βi)

(µij)ḿxj ; where ni =
∑

xj∈B(βi)

(µij)ḿ

Thus, the cluster prototypes (centroids) depend on the parameters w and w̃,
and fuzzifier ḿ rule their relative influence. The correlated influence of these
parameters and fuzzifier, makes it somewhat difficult to determine their optimal
values. Since the objects lying in lower approximation definitely belong to a
cluster, they are assigned a higher weight w compared to w̃ of the objects lying in
boundary region. Hence, for the RFCM, the values are given by 0 < w̃ < w < 1.

From the above discussions, the following properties of the RFCM algorithm
can be derived.

1.
⋃

A(βi) = U , U be the set of objects of concern.
2. A(βi) ∩A(βk) = ∅, ∀i 	= k.
3. A(βi) ∩B(βi) = ∅, ∀i.
4. ∃i, k, B(βi) ∩B(βk) 	= ∅.
5. µij = 1, ∀xj ∈ A(βi).
6. µij ∈ [0, 1], ∀xj ∈ B(βi).

Let us briefly comment on some properties of the RFCM. The property 2
says that if an object xj ∈ A(βi) ⇒ xj /∈ A(βk), ∀k 	= i. That is, the object
xj is contained in βi definitely. The property 3 establishes the fact that if xj ∈
A(βi)⇒ xj /∈ B(βi), - that is, an object may not be in both lower and boundary
region of a cluster βi. The property 4 says that if xj ∈ B(βi)⇒ ∃k, xj ∈ B(βk).
It means an object xj ∈ B(βi) possibly belongs to βi and potentially belongs
to other cluster. The properties 5 and 6 are of great importance in computing
the objective function JRF and the cluster prototype vRF. They say that the
membership values of the objects in lower approximation are µij = 1, while
those in boundary region are the same as fuzzy c-means. That is, each cluster
βi consists of a crisp lower approximation A(βi) and a fuzzy boundary B(βi).

3.3 Details of the Algorithm

Approximate optimization of JRF (Equation 4) by the RFCM is based on Picard
iteration through Equations 3 and 5. This type of iteration is called alternating
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optimization. The process starts by randomly choosing c objects as the centroids
of the c clusters. The fuzzy memberships of all objects are calculated using
Equation 3.

Let µi = (µi1, · · · , µij , · · · , µin) represent the fuzzy cluster βi associated with
the centroid vi. After computing µij for c clusters and n objects, the values of
µij for each object xj are sorted and the difference of two highest memberships
of xj is compared with a threshold value δ. Let µij and µkj be the highest and
second highest memberships of xj . If (µij − µkj) > δ, then xj ∈ A(βi) as well as
xj ∈ A(βi), otherwise xj ∈ A(βi) and xj ∈ A(βk). After assigning each object
in lower approximations or boundary regions of different clusters based on δ,
memberships µij of the objects are modified. The values of µij are set to 1 for
the objects in lower approximations, while those in boundary regions are remain
unchanged. The new centroids of the clusters are calculated as per Equation 5.
The main steps of the RFCM algorithm proceed as follows:

1. Assign initial centroids vi, i = 1, 2, · · · , c. Choose values for fuzzifier ḿ, and
thresholds ε and δ. Set iteration counter t = 1.

2. Compute µij by Equation 3 for c clusters and n objects.
3. If µij and µkj be the two highest memberships of xj and (µij − µkj) ≤ δ,

then xj ∈ A(βi) and xj ∈ A(βk). Furthermore, xj is not part of any lower
bound.

4. Otherwise, xj ∈ A(βi). In addition, by properties of rough sets, xj ∈ A(βi).
5. Modify µij considering lower and boundary regions for c clusters and n

objects.
6. Compute new centroid as per Equation 5.
7. Repeat steps 2 to 7, by incrementing t, until |µij(t)− µij(t− 1)| > ε.

The performance of the RFCM depends on the value of δ, which determines
the class labels of all the objects. In other word, the RFCM partitions the data
set into two classes - lower approximation and boundary, based on the value of
δ. In the present work, the following definition is used:

δ =
1
n

n∑
j=1

(µij − µkj) (6)

where n is the total number of objects, µij and µkj are the highest and second
highest memberships of xj . That is, the value of δ represents the average dif-
ference of two highest memberships of all the objects in the data set. A good
clustering procedure should make the value of δ as high as possible. The value
of δ is, therefore, data dependent.

4 Segmentation of Brain MR Images

In this section, the feature extraction methodology for segmentation of brain MR
images is first described. Next, the methodology to select initial centroids for
different c-means algorithms is provided based on the concept of maximization
of class separability.
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4.1 Feature Extraction

Statistical texture analysis derives a set of statistics from the distribution of pixel
values or blocks of pixel values. There are different types of statistical texture,
first-order, second-order, and higher order statistics, based on the number of
pixel combinations used to compute the textures. The first-order statistics, like
mean, standard deviation, range, entropy, and the qth moment about the mean,
are calculated using the histogram formed by the gray scale value of each pixel.
These statistics consider the properties of the gray scale values, but not their
spatial distribution. The second-order statistics are based on pairs of pixels. This
takes into account the spatial distribution of the gray scale distribution. In the
present work, only first- and second-order statistical textures are considered.

A set of 13 input features is used for clustering the brain MR images. These
include gray value of the pixel, two proposed features (first order statistics) -
homogeneity and edge value of the pixel, and 10 Haralick’s textural features
[33] (second order statistics) - angular second moment, contrast, correlation, in-
verse difference moment, sum average, sum variance, sum entropy, second order
entropy, difference variance, and difference entropy. They are useful in charac-
terizing images, and can be used as features of a pixel. Hence these features have
promising application in clustering based brain MRI segmentation.

Homogeneity. If H is the homogeneity of a pixel Im,n within 3×3 neighborhood,
then

H = 1− 1
6(Imax − Imin)

{|Im−1,n−1 + Im+1,n+1 − Im−1,n+1 − Im+1,n−1|+

|Im−1,n−1 + 2Im,n−1 + Im+1,n−1 − Im−1,n+1 − 2Im,n+1 − Im+1,n+1|}

where Imax and Imin represent the maximum and minimum gray values of the
image. The region that is entirely within an organ will have a high H value. On
the other hand, the regions that contain more than one organ will have lower H
values.

Edge Value. In MR imaging, the histogram of the given image is in general
unimodal. One side of the peak may display a shoulder or slope change, or one
side may be less steep than the other, reflecting the presence of two peaks that
are close together or that differ greatly in height. The histogram may also con-
tain a third, usually smaller, population corresponding to points on the object-
background border. These points have gray levels intermediate between those of
the object and background; their presence raises the level of the valley floor be-
tween the two peaks, or if the peaks are already close together, makes it harder
to detect the fact that they are not a single peak.

As the histogram peaks are close together and very unequal in size, it may
be difficult to detect the valley between them. In determining how each point of
the image should contribute to the segmentation method, the proposed method
takes into account the rate of change of gray level at the point, as well as the
point’s gray level (edge value); that is, the maximum of differences of average
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gray levels in pairs of horizontally and vertically adjacent 2 × 2 neighborhoods
[4, 34]. If ∆ is the edge value at a given point Im,n, then

∆ =
1
4
max{|Im−1,n + Im−1,n+1 + Im,n + Im,n+1 − Im+1,n − Im+1,n+1

−Im+2,n − Im+2,n+1|, |Im,n−1 + Im,n + Im+1,n−1

+Im+1,n − Im,n+1 − Im,n+2 − Im+1,n+1 − Im+1,n+2|}
According to the image model, points interior to the object and background

should generally have low edge values, since they are highly correlated with their
neighbors, while those on the object-background border should have high edge
values [4].

Haralick’s Textural Feature. Texture is one of the important features used
in identifying objects or regions of interest in an image. It is often described as a
set of statistical measures of the spatial distribution of gray levels in an image.
This scheme has been found to provide a powerful input feature representation
for various recognition problems. Haralick et al. [33] proposed different textural
properties for image classification. Haralick’s textural measures are based upon
the moments of a joint probability density function that is estimated as the joint
co-occurrence matrix or gray level co-occurrence matrix [33, 35]. It reflects the
distribution of the probability of occurrence of a pair of gray levels separated by
a given distance d at angle θ. Based upon normalized gray level co-occurrence
matrix, Haralick proposed several quantities as measure of texture like energy,
contrast, correlation, sum of squares, inverse difference moments, sum average,
sum variance, sum entropy, entropy, difference variance, difference entropy, infor-
mation measure of correlation 1, and correlation 2. In [33], these properties were
calculated for large blocks in aerial photographs. Every pixel within these each
large block was then assigned the same texture values. This leads to a significant
loss of resolution that is unacceptable in medical imaging.

In the present work, the texture values are assigned to a pixel by using a 3×3
sliding window centered about that pixel. The gray level co-occurrence matrix
is constructed by mapping the gray level co-occurrence probabilities based on
spatial relations of pixels in different angular directions (θ = 0◦, 45◦, 90◦, 135◦)
with unit pixel distance, while scanning the window (centered about a pixel)
from left-to-right and top-to-bottom [33, 35]. Ten texture measures - angular
second moment, contrast, correlation, inverse difference moment, sum average,
sum variance, sum entropy, second order entropy, difference variance, and differ-
ence entropy, are computed for each window. For four angular directions, a set
of four values is obtained for each of ten measures. The mean of each of the ten
measures, averaged over four values, along with gray value, homogeneity, and
edge value of the pixel, comprise the set of 13 features which is used as feature
vector of the corresponding pixel.

4.2 Selection of Initial Centroids

A limitation of the c-means algorithm is that it can only achieve a local opti-
mum solution that depends on the initial choice of the centroids. Consequently,
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computing resources may be wasted in that some initial centroids get stuck in
regions of the input space with a scarcity of data points and may therefore
never have the chance to move to new locations where they are needed. To over-
come this limitation of the c-means algorithm, next a method is described to
select initial centroids, which is based on discriminant analysis maximizing some
measures of class separability [36]. It enables the algorithm to converge to an
optimum or near optimum solutions.

Prior to describe the proposed method for selecting initial centroids, next a
quantitative measure of class separability [36] is provided that is given by

J(T) =
P1(T)P2(T)[m1(T)−m2(T)]2

P1(T)σ2
1(T) + P2(T)σ2

2(T)
(7)

where

P1(T) =
T∑

z=0

h(z); P2(T) =
L−1∑

z=T+1

h(z) = 1− P1(T)

m1(T) =
1

P1(T)

T∑
z=0

zh(z); m2(T) =
1

P2(T)

L−1∑
z=T+1

zh(z)

σ2
1(T) =

1
P1(T)

T∑
z=0

[z−m1(T)]2h(z); σ2
2(T) =

1
P2(T)

L−1∑
z=T+1

[z−m2(T)]2h(z)

Here, L is the total number of discrete values ranging between [0, L − 1], T is
the threshold value, which maximizes J(T), and h(z) represents the percentage
of data having feature value z over the total number of discrete values of the
corresponding feature. To maximize J(T), the means of the two classes should
be as well separated as possible and the variances in both classes should be as
small as possible.

Based on the concept of maximization of class separability, the method for
selecting initial centroids is described next. The main steps of this method pro-
ceeds as follows.

1. The data set X = {x1, · · · , xj , · · · , xn} with xj ∈ �m are first discretized
to facilitate class separation method. Suppose, the possible value range of a
feature fm in the data set is (fm,min, fm,max), and the real value that the data
element xj takes at fm is fmj, then the discretized value of fmj is

Discretized(fmj) = (L− 1)×
{

fmj − fm,min

fm,max − fm,min

}
(8)

where L is the total number of discrete values ranging between [0, L− 1].
2. For each feature fm, calculate h(z) for 0 ≤ z < L.
3. Calculate the threshold value Tm for the feature fm, which maximizes class

separability along that feature.
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4. Based on the threshold Tm, discretize the corresponding feature fm of the
data element xj as follows

fmj =
{

1, if Discretized(fmj) ≥ Tm
0, Otherwise

5. Repeat steps 2 to 4 for all the features and generate the set of discretized
objects X = {x1, · · · , xj , · · · , xn}.

6. Calculate total number of similar discretized objects N(xi) and mean of
similar objects v(xi) of xi as

N(xi) =
n∑

j=1

δj and v(xi) =
1

N(xi)

n∑
j=1

δj × xj

where δj =
{

1 if xj = xi

0 Otherwise

7. Sort n objects according to their values of N(xi) such that N(x1) > N(x2) >
· · · > N(xn).

8. If xi = xj , then N(xi) = N(xj) and v(xj) should not be considered as a
centroid (mean), resulting in a reduced set of objects to be considered for
initial centroids.

9. Let there be ń objects in the reduced set having N(xi) values such that
N(x1) > N(x2) > · · · > N(xń). A heuristic threshold function can be defined
as follows [37]:

Tr =
R
ε̃

; where R =
ń∑

i=1

1
N(xi)−N(xi+1)

where ε̃ is a constant (= 0.5, say), so that all the means v(xi) of the objects in
reduced set having N(xi) value higher than it are regarded as the candidates
for initial centroids (means).

The value of Tr is high if most of the N(xi)’s are large and close to each other.
The above condition occurs when a small number of large clusters are present. On
the other hand, if the N(xi)’s have wide variation among them, then the number
of clusters with smaller size increases. Accordingly, Tr attains a lower value
automatically. Note that the main motive of introducing this threshold function
lies in reducing the number of centroids. Actually, it attempts to eliminate noisy
centroids (data representatives having lower values of N(xi)) from the whole
data set. The whole approach is, therefore, data dependent.

5 Performance Analysis

In this section, the performance of different c-means algorithms on segmenta-
tion of brain MR images is presented. Above 100 MR images with different
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sizes and 16 bit gray levels are tested using different c-means. All the brain
MR images are collected from the Advanced Medicare and Research Institute,
Kolkata, India. The performance of the RFCM is compared extensively with
that of different c-means algorithms. These involve different combinations of
the individual components of the hybrid scheme. The algorithms compared are
hard c-means (HCM), fuzzy c-means (FCM) [9, 28], possibilistic c-means (PCM)
[29, 30], fuzzy-possibilistic c-means (FPCM) [32], and rough c-means (RCM) [38].
All algorithms are implemented in C language and run in LINUX platform hav-
ing machine configuration Pentium IV, 3.2 GHz, 1 MB cache, and 1 GB RAM.

5.1 Quantitative Indices

The comparative performance of different c-means is reported with respect to
DB and Dunn index [39], and β index [40], which are described next.

Davies-Bouldin (DB) Index: The Davies-Bouldin (DB) index [39] is a func-
tion of the ratio of sum of within-cluster distance to between-cluster separation
and is given by

DB =
1
c

c∑
i=1

maxi�=k

{
S(vi) + S(vk)

d(vi, vk)

}
for 1 ≤ i, k ≤ c. The DB index minimizes the within-cluster distance S(vi)
and maximizes the between-cluster separation d(vi, vk). Therefore, for a given
data set and c value, the higher the similarity values within the clusters and
the between-cluster separation, the lower would be the DB index value. A good
clustering procedure should make the value of DB index as low as possible.

Dunn Index: Dunn index [39] is also designed to identify sets of clusters that
are compact and well separated. Dunn index maximizes

Dunn = mini

{
mini�=k

{
d(vi, vk)

maxlS(vl)

}}
for 1 ≤ i, k, l ≤ c.

β Index: The β-index of Pal et al. [40] is defined as the ratio of the total
variation and within-cluster variation, and is given by

β =
N
M

; where N =
c∑

i=1

ni∑
j=1

||xij − v||2; M =
c∑

i=1

ni∑
j=1

||xij − vi||2;
c∑

i=1

ni = n;

ni is the number of objects in the ith cluster (i = 1, 2, · · · , c), n is the total
number of objects, xij is the jth object in cluster i, vi is the mean or centroid
of ith cluster, and v is the mean of n objects. For a given image and c value, the
higher the homogeneity within the segmented regions, the higher would be the
β value. The value of β also increases with c.
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5.2 Example

Consider Fig. 2 as an example that represents an MR image (I-20497774) along
with the segmented images obtained using different c-means algorithms. Each
image is of size 256 × 180 with 16 bit gray levels. So, the number of objects in
the data set of I-20497774 is 46080. The parameters generated in the proposed
initialization method are shown in Table 1 only for I-20497774 data set along
with the values of input parameters. The threshold values for 13 features of
the given data set are also reported in this table. Table 2 depicts the values
of DB index, Dunn index, and β index of FCM and RFCM for different values
of c on the data set of I-20497774, considering w = 0.95 and ḿ = 2.0. The
results reported here with respect to DB and Dunn index confirm that both
FCM and RFCM achieve their best results for c = 4. Also, the value of β index,
as expected, increases with increase in the value of c. For a particular value of
c, the performance of RFCM is better than that of FCM.

Finally, Table 3 provides the comparative results of different c-means algo-
rithms on I-20497774 with respect to the values of DB index, Dunn index, and
β index. The corresponding segmented images along with the original one are
presented in Fig. 2. The results reported in Fig. 2 and Table 3 confirm that
the RFCM algorithm produces segmented image more promising than do the

(a) Original (b) HCM (c) FCM (d) RCM (e) RFCM

Fig. 2. I-20497774: original and segmented images of different c-means

Table 1. Values of Different Parameters

Size of image = 256 × 180
Minimum gray value = 1606, Maximum gray value = 2246
Samples per pixel = 1, Bits allocated = 16, Bits stored = 12

Number of objects = 46080
Number of features = 13, Value of L = 101

Threshold Values:
Gray value = 1959, Homogeneity = 0.17, Edge value = 0.37
Angular second moment = 0.06, Contrast = 0.12
Correlation = 0.57, Inverse difference moment = 0.18
Sum average = 0.17, Sum variance = 0.14, Sum entropy = 0.87
Entropy = 0.88, Difference variance = 0.07, Difference entropy = 0.79
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Table 2. Performance of FCM and RFCM on I-20497774 data set

Value DB Index Dunn Index β Index
of c FCM RFCM FCM RFCM FCM RFCM
2 0.38 0.19 2.17 3.43 3.62 4.23
3 0.22 0.16 1.20 1.78 7.04 7.64
4 0.15 0.13 1.54 1.80 11.16 13.01
5 0.29 0.19 0.95 1.04 11.88 14.83
6 0.24 0.23 0.98 1.11 19.15 19.59
7 0.23 0.21 1.07 0.86 24.07 27.80
8 0.31 0.21 0.46 0.95 29.00 33.02
9 0.30 0.24 0.73 0.74 35.06 40.07
10 0.30 0.22 0.81 0.29 41.12 44.27

Table 3. Performance of Different C-Means on I-20497774 data set

Algorithms DB Index Dunn Index β Index
HCM 0.17 1.28 10.57
FCM 0.15 1.54 11.16
RCM 0.16 1.56 11.19
RFCM 0.13 1.80 13.01

conventional c-means algorithms. Some of the existing algorithms like PCM and
FPCM fail to produce multiple segments as they generate coincident clusters
even when they are initialized with final prototypes of the FCM.

5.3 Haralick’s Features Versus Proposed Features

Table 4 presents the comparative results of different c-means for proposed and
Haralick’s features on I-20497774 data set. While P-2 and H-13 stand for the set
of two proposed features and thirteen Haralick’s features, H-10 represents that
of ten Haralick’s features which are used in the current study. The proposed
features are found as important as Haralick’s ten features for clustering based
segmentation of brain MR images. The set of 13 features, comprising of gray
value, two proposed features, and ten Haralick’s features, improves the perfor-
mance of all c-means with respect to DB, Dunn, and β. It is also observed that
the Haralick’s three features - sum of squares, information measure of correlation
1, and correlation 2, do not contribute any extra information for segmentation
of brain MR images.

5.4 Random Versus Proposed Initialization Method

Table 5 provides comparative results of different c-means algorithms with ran-
dom initialization of centroids and the proposed discriminant analysis based
initialization method described in Section 4.2 for the data sets I-20497761, I-
20497763, and I-20497777 (Fig. 3). The proposed initialization method is found
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Table 4. Haralick’s and Proposed Features on I-20497774 data set

Algorithms Features DB Index Dunn Index β Index Time (ms)
HCM H-13 0.19 1.28 10.57 4308

H-10 0.19 1.28 10.57 3845
P-2 0.18 1.28 10.57 1867

H-10 ∪ P-2 0.17 1.28 10.57 3882
FCM H-13 0.15 1.51 10.84 36711

H-10 0.15 1.51 10.84 34251
P-2 0.15 1.51 11.03 14622

H-10 ∪ P-2 0.15 1.54 11.16 43109
RCM H-13 0.19 1.52 11.12 5204

H-10 0.19 1.52 11.12 5012
P-2 0.17 1.51 11.02 1497

H-10 ∪ P-2 0.16 1.56 11.19 7618
RFCM H-13 0.13 1.76 12.57 15705

H-10 0.13 1.76 12.57 15414
P-2 0.13 1.77 12.88 6866

H-10 ∪ P-2 0.13 1.80 13.01 17084

(a) I-20497761 (b) I-20497763 (c) I-20497777

Fig. 3. Examples of some brain MR images

to improve the performance in terms of DB index, Dunn index, and β index as
well as reduce the time requirement of all c-means algorithms. It is also observed
that HCM with proposed initialization method performs similar to RFCM with
random initialization, although it is expected that RFCM is superior to HCM in
partitioning the objects. While in random initialization, the c-means algorithms
get stuck in local optimums, the proposed initialization method enables the al-
gorithms to converge to an optimum or near optimum solutions. In effect, the
execution time required for different c-means algorithms is lesser in proposed
scheme compared to random initialization.

5.5 Comparative Performance Analysis

Table 6 compares the performance of different c-means algorithms on some brain
MR images with respect to DB, Dunn, and β index. The original images along
with the segmented versions of different c-means are shown in Figs. 4-6. All
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Table 5. Performance of Random and Proposed Initialization Method

Data Set Algorithms Initialization DB Index Dunn Index β Index Time (ms)
I-204 HCM Random 0.23 1.58 9.86 8297
97761 Proposed 0.15 2.64 12.44 4080

FCM Random 0.19 1.63 12.73 40943
Proposed 0.12 2.69 13.35 38625

RCM Random 0.19 1.66 10.90 9074
Proposed 0.14 2.79 12.13 6670

RFCM Random 0.15 2.07 11.89 19679
Proposed 0.11 2.98 13.57 16532

I-204 HCM Random 0.26 1.37 10.16 3287
97763 Proposed 0.16 2.03 13.18 3262

FCM Random 0.21 1.54 10.57 46157
Proposed 0.15 2.24 13.79 45966

RCM Random 0.21 1.60 10.84 10166
Proposed 0.14 2.39 13.80 6770

RFCM Random 0.17 1.89 11.49 19448
Proposed 0.10 2.38 14.27 15457

I-204 HCM Random 0.33 1.52 6.79 4322
97777 Proposed 0.16 2.38 8.94 3825

FCM Random 0.28 1.67 7.33 42284
Proposed 0.15 2.54 10.02 40827

RCM Random 0.27 1.71 7.47 8353
Proposed 0.13 2.79 9.89 7512

RFCM Random 0.19 1.98 8.13 18968
Proposed 0.11 2.83 11.04 16930

Table 6. Performance of Different C-Means Algorithms

Data Set Algorithms DB Index Dunn Index β Index Time (ms)
I-204 HCM 0.15 2.64 12.44 4080
97761 FCM 0.12 2.69 13.35 38625

RCM 0.14 2.79 12.13 6670
RFCM 0.11 2.98 13.57 16532

I-204 HCM 0.16 2.03 13.18 3262
97763 FCM 0.15 2.24 13.79 45966

RCM 0.14 2.39 13.80 6770
RFCM 0.10 2.38 14.27 15457

I-204 HCM 0.16 2.38 8.94 3825
97777 FCM 0.15 2.54 10.02 40827

RCM 0.13 2.79 9.89 7512
RFCM 0.11 2.83 11.04 16930

the results reported in Table 6 and Figs. 4-6 confirm that although each c-
means algorithm, except PCM and FPCM, generates good segmented images,
the values of DB, Dunn, and β index of the RFCM are better compared to other
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(a) HCM (b) FCM (c) RCM (d) RFCM

Fig. 4. I-20497761: segmented versions of different c-means algorithms

(a) HCM (b) FCM (c) RCM (d) RFCM

Fig. 5. I-20497763: segmented versions of different c-means algorithms

(a) HCM (b) FCM (c) RCM (d) RFCM

Fig. 6. I-20497777: segmented versions of different c-means algorithms

c-means algorithms. Both PCM and FPCM fail to produce multiple segments
of the brain MR images as they generate coincident clusters even when they are
initialized with the final prototypes of other c-means algorithms.

Table 6 also provides execution time (in milli sec.) of different c-means. The
execution time required for the RFCM is significantly lesser compared to FCM.
For the HCM and RCM, although the execution time is less, the performance is
considerably poorer than that of RFCM. Following conclusions can be drawn
from the results reported in this paper:

1. It is observed that RFCM is superior to other c-means algorithms. However,
RFCM requires higher time compared to HCM/RCM and lesser time com-
pared to FCM. But, the performance of RFCM with respect to DB, Dunn,
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and β is significantly better than all other c-means. The performance of FCM
and RCM is intermediate between RFCM and HCM.

2. The discriminant analysis based initialization is found to improve the values
of DB, Dunn, and β as well as reduce the time requirement substantially for
all c-means algorithms.

3. The proposed two features are as important as Haralick’s ten features for
clustering based segmentation of brain MR images.

4. Use of rough sets and fuzzy memberships adds a small computational load
to HCM algorithm; however the corresponding integrated method (RFCM)
shows a definite increase in Dunn index and decrease in DB index.

The best performance of the proposed method in terms of DB, Dunn, and β
is achieved due to the following reasons:

1. the discriminant analysis based initialization of centroids enables the algo-
rithm to converge to an optimum or near optimum solutions;

2. membership of the RFCM handles efficiently overlapping partitions; and
3. the concept of crisp lower bound and fuzzy boundary of the RFCM algorithm

deals with uncertainty, vagueness, and incompleteness in class definition.

In effect, promising segmented brain MR images are obtained using the RFCM
algorithm.

6 Conclusion and Future Works

A robust segmentation technique is presented in this paper, integrating the mer-
its of rough sets, fuzzy sets, and c-means algorithm, for brain MR images. Some
new measures are introduced, based on the local properties of MR images, for
accurate segmentation. The method, based on the concept of maximization of
class separability, is found to be successful in effectively circumventing the initial-
ization and local minima problems of iterative refinement clustering algorithms
like c-means. The effectiveness of the algorithm, along with a comparison with
other algorithms, is demonstrated on a set of brain MR images. The extensive
experimental results show that the rough-fuzzy c-means algorithm produces a
segmented image more promising than do the conventional algorithms.

Although the proposed methodology of integrating rough sets, fuzzy sets, and
c-means algorithm is efficiently demonstrated for segmentation of brain MR im-
ages, the concept can be applied to other unsupervised classification problems.
An MR image based epilepsy diagnosis system is being developed by the au-
thors, and this was the initial motivation to develop segmentation method, since
segmentation is a key stage in successful diagnosis.
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Abstract. Approximate reasoning is used in a variety of reasoning tasks
in logic-based artificial intelligence. In this paper we present several such
reasoning schemes and show how they relate and differ from the approach
of Pawlak’s Rough Sets.

1 Introduction

Humans reason more often than not with incomplete information. The effect is
that the conclusions must often be revised, and treated as approximate. Fre-
quently we face the following situation: some features of objects of interest are
positively established (based on observations and on domain properties), while
other are known to be false. But there remains a “grey area” of features of objects
of interest that are not determined by the current knowledge. In this paper we
discuss several schemes that have been proposed in the literature for handling ap-
proximate reasoning when available knowledge may be incomplete. They include
rough sets [21], approximation for propositional satisfiability [26], approximation
semantics for logic programs including brave and skeptical answer-set semantics,
Kripke-Kleene semantics and well-founded semantics [6,14,27], the semantics of
repairs in databases [1], knowledge compilation of propositional theories [26],
and least- and largest- pair of fixpoints for the operator associated with a Horn
program [15]. For some of these, we will be able to show that they fit into the
rough set paradigm.

2 Abstract Settings for Approximations

Let L be a lattice of elements (known or unknown to us) and let X ⊆ L.
The problem we are interested in is that of describing X . The difficulty is that
a language precise enough to represent every element in the lattice may not
be available to us. Even if we have such a language, the descriptions may be
inefficient (of large size or computationally unwieldy). Thus, we will represent
X in terms of its approximations.
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Let X ⊆ L. A pair 〈a, b〉 of elements of L is an approximation for X if for
every x ∈ X , a ≤ x ≤ b. Approximations can be ordered by the precision (or
Kleene) ordering [13] as follows:

〈a1, b1〉  pr 〈a2, b2〉 if a1 ≤ a2 and b2 ≤ b1.

If a ≤ b, then there are non-empty subsets of L approximated by 〈a, b〉. If it is
not the case that a ≤ b, the only set approximated by 〈a, b〉 is the empty set. We
call approximations of the first type consistent and all others — inconsistent. We
denote the set of all approximations by L2. We observe that approximations 〈a, a〉
are maximal consistent approximations (with respect to the ordering  pr). We
also note that 〈L2, pr〉 is a lattice. If L is a complete lattice, L2 is complete, too.

From now on we focus exclusively on complete lattices. Let L be a complete
lattice. By Sub(L) we denote the set of all sublattices K of L that have the same
greatest and smallest elements as L. This set is ordered by inclusion (and in fact,
it is a complete lattice, too).

By 〈K l(X), Ku(X)〉 we denote the greatest approximation to X with respect
to  pr in K2. It is clear that for every X ⊆ L, there is an approximation of X
in K2 and so the notion above is well defined. We have the following property.
For every K, M ∈ Sub(L), if K ⊆ M then

〈K l(X), Ku(X)〉  pr 〈M l(X), Mu(X)〉.
Descriptions of elements of K may be simpler than descriptions of elements
of M (or available to us, while the other may be unavailable). Thus, it may be
more practical to approximate X based on K rather than M . However, there is a
trade-off. The precision of the approximation may (and in general, will) go down.
We will show below that these concepts are abstract algebraic generalization of
the concept of a rough set by Pawlak. We note that a closely related approach
was studied in [9].

The setting we just described uses “coarsening” of a lattice to provide a prac-
tical way to approximate sets. There is also another general setting in which
approximations of sets of lattice elements arise naturally. Namely, often sets of
lattice elements are defined by means of lattice operators. In such case, the ap-
proximation theory [3] applies. Let us again consider a complete lattice L and
an operator O on L. The goal is to describe (or at least approximate) the set of
all fixpoints of O.

The key concept of the approach proposed in [3] is that of an approximation
operator. An operator A on L2 is an approximation operator for O if it is  pr -
monotone, symmetric and if A(x, x) = (O(x), O(x)), for every x ∈ L. The fact
that A is pr -monotone implies that its least fixpoint exists and can be computed
by iterating A starting with the  pr -least element of L2, 〈⊥,"〉. An important
property of this least fixpoint is that it approximates all fixpoints of O.

In this setting, the quality of the approximation depends on the accuracy of
the operator A. We say that an approximating operator A is at least as precise
as an approximating operator B (B  pr A, in symbols) if for every x, y ∈ L,
B(x, y)  pr A(x, y). It is known that every operator has approximating opera-
tors, and that the set of all approximating operators for O has a greatest element,
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called the ultimate approximation operator [3]. Thus, in this setting, to approxi-
mate fixpoints of O we need to select an approximating operator for O, which is
accurate enough and also for which it is easy to compute its least fixpoint. These
two requirements may be hard to reconcile, giving rise to interesting trade-offs.
Some of the specific examples discussed below are instantiations of this abstract
schema.

We conclude this section by noting that one might combine the two approx-
imation schemas. Namely, to approximate fixpoints of an operator O on L one
might construct a simpler lattice K and an operator O′ on K so that fixpoints
of O′ provide some information on fixpoints of O. For instance, K could be the
quotient lattice for L with respect to a congruence relation r and O′ could be
defined by O′([x]r) = [O(x)]r . Then, clearly, if x is a fixpoint of O then [x]r is a
fixpoint of O′. Consequently, approximating fixpoints of O′ provides insights into
fixpoints of O. To the best of our knowledge this schema has not been studied
so far.

2.1 Rough Sets

Rough sets are special approximations. Let D be a finite set of objects (universe)
and let L(D) be the lattice of all subsets of D. In this section, approximations
are pairs of elements from L(D).

Every equivalence relation r on D determines a sublattice of L(D) consisting
of unions of cosets of r. We denote this sublattice L(D, r). We note that L(D) =
L(D, =), where = is the identity relation on D. We also note that all lattices
L(D, r) have the same least and greatest element (∅ and D, respectively).

Now, for every X ⊆ D, Pawlak’s approximation (or the rough set associated
with X) is defined as an approximation 〈X l, Xu〉 where: X l is the union of
all cosets of r contained in X , and Xu is the union of all cosets of r that
have a nonempty intersection with X . It is characterized [19] as the  pr -largest
approximation in L(D, r) of X .

The collection of equivalence relations on D (not necessarily finite) determines
a complete (non-distributive) lattice, with the refinement ordering #. Specifi-
cally, r1 # r2 if every coset of r1 is the union of cosets of r2. Let r1 # r2 be
two equivalence relations on D. Then L(D, r2) is a sublattice of L(D, r1). Our
general results from the previous section imply that for every subset X of D, the
Pawlak rough sets determined by r1 and r2, respectively, 〈X l

1, X
u
1 〉 and 〈X l

2, X
u
2 〉

are related as follows:
〈X l

1, X
u
1 〉  pr 〈X l

2, X
u
2 〉.

In other words, the ordering# in the lattice of equivalence relations on D induces
the ordering  pr in the corresponding Pawlak approximations.

We note that an interesting possibility of establishing approximations of con-
cepts in terms of rough sets is to learn them from negative and positive examples
(cf. [23]). We also note that extensive discussion of lattice-theoretical notions as
they relate to approximations in the context of rough sets can be found in [10].
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2.2 Propositional Satisfiability

We consider a fixed set of propositional variables At . A valuation of At is any
mapping of At into {0, 1}. We can identify valuations with the subsets of At as
follows. We identify a valuation v with the set M ⊆ At so that v = χM , i.e.
M = {p : v(p) = 1}. We write vM for the valuation v that determines M .

Obviously, each theory T represents the set of its models, that is, its satisfying
valuations. However, the size of this set may be exponential in the size of T and
so, it may be infeasible to represent it explicitly. However, T also determines a
more concise and effective approximation to its set of models (by the “effective”
approximation we mean that membership tests for the lower and upper parts
are polynomial).

Namely, let T be a consistent set of formulas of the propositional languageLAt .
Then T determines an approximation 〈X1, X2〉 as follows: X1 = {p : T $ p}, and
X2 = {p : T 	$ ¬p}. This approximation has the property that X1 ⊆ M ⊆ X2 for
every model M of T . Let us denote this “canonical” approximation of models of
T by 〈T , T 〉.

To represent the above construction of approximations in terms of rough sets,
let us consider the following relation =̃ defined in the set of propositional vari-
ables At :

p=̃q if for all M |= T , M |= p ≡ q

Then, clearly, =̃ is an equivalence relation in At . There are exactly three equiv-
alence classes of =̃: {p : T |= p}, {p : T |= ¬p}, and the third class, that is the
complement of the above two. The set T is the first class, the set T is the union
of the first and the third class.

We have the following property of canonical approximations of theories T1, T2
that are consistent and such that T2 |= T1:

〈T 1, T 1〉  pr 〈T 2, T 2〉.
In other words, not only the set of models of T2 is a subset of the set of models
of T1. In addition, the canonical approximation of the theory T2 is  pr -bigger
than that of T1. The maximal approximations (i.e. Pawlak’s rough sets in this
case) are the complete consistent theories.

Clearly, a class of consistent theories, say T , determines the class of consistent
approximations, say A(T ). By our comment above, if T1 and T2 are two classes
of consistent theories and for every theory T ∈ T1 there is a theory T ′ ∈ T2 such
that T ′ |= T , then the class T2 generates approximations at least as precise as
the class T1.

As an illustration, we note that if T consists only of ∅, it generates only a
trivial approximation 〈∅,At〉. If T consists of definite Horn theories, then T
generates approximations of the form 〈M,At〉, where M ⊆ At .

2.3 Approximating Finite Herbrand Structures

Reduction of truth in finite relational structures to propositional satisfiability
yields a construction of approximating pairs of relational structures over a finite
domain. We outline this construction briefly.
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Let us fix a finite set of constants A and an algebra A with the universe
A. All the relational structures under consideration will have A as its under-
lying algebra. To simplify presentation we will not write function symbols in
our formulas at all. With this assumption, the atomic sentences of the predicate
calculus language L are of the form

P (a1, . . . , as)

where s is the arity of the predicate symbol P . These atomic sentences of L can
be treated as propositional variables. We will not distinguish between these two
different entities. Let At be the set of these propositional variables, and let L′

be the propositional language associated with At . We then define the following
translation t of formulas of predicate language L to L′:

1. t(P (a1, . . . , as)) = P (a1, . . . , as)
2. t(¬Φ) = ¬t(Φ)
3. t(Φ ∨ Ψ) = t(Φ) ∨ t(Ψ)
4. t(∀xΦ) =

∧
a∈A t(Φ

(
x
a

)
)

5. t(∃xΦ) =
∨

a∈A t(Φ
(

x
a

)
)

Here, Φ
(
x
a

)
is the result of substitution of constant a for every occurrence of

variable x in Φ. Given a theory T in L, t(T ) = {t(Φ) : Φ ∈ T }. It is easy to
see that the existence of a model (with A as underlying algebra) of a theory T
is equivalent to the satisfiability of the propositional theory t(T ) and in fact, a
structure M is a model of a theory T if and only if the set of variables MM
consisting of atomic sentences of L true in M satisfies t(T ). This fact allows to
pull-back from the valuations for the language L′ to relational structures with A
as an underlying algebra.

Now, let us look at the two sets of propositional variables: t(T ) and t(T ).
These two collection of atoms were introduced above in Section 2.2. These two
sets of propositional variables determine, via pull-back, two relational structures
M1 and M2. For every relational symbol P of L we have

PM1 ⊆ PM2 .

We write it as M1 ⊆M2. Let us observe that we do not claim that any of the
structures M1 or M2 is a model of T . The equivalence property stated above
implies the following approximation property: for every structure S with the
underlying algebra A, such that S |= T ,

M1 ⊆ S ⊆M2.

Our discussion of the rough set concept related to the approximation in propo-
sitional satisfiability allows us (via pull-back) to find an equivalence relation in
the set of all structures with the underlying algebra A.



140 V.W. Marek and M. Truszczyński

2.4 Knowledge Compilation

Many tasks in knowledge representation and reasoning reduce to the problem
of deciding, given a propositional CNF theory T and a propositional clause ϕ,
whether T |= ϕ. This task is coNP-complete. As a way to address this com-
putational hurdle Kautz and Selman [26] proposed an approach in which T is
compiled off-line, possibly in exponential time, into some other representation,
under which the query answering would be efficient. While there is an initial
expense of the compilation, if the query answering task is frequent that cost will
eventually be recuperated.

In this scheme, an approximation to a theory T is a pair of theories (T ′, T ′′)
such that

T ′ |= T |= T ′′

If (T ′, T ′′) is an approximation to T , then T |= ϕ if T ′′ |= ϕ and T 	|= ϕ if
T ′ 	|= ϕ. In other words,

{ϕ : T ′′ |= ϕ} ⊆ {ϕ : T |= ϕ} ⊆ {ϕ : T ′ |= ϕ}.

Desirable approximations are, on the one hand, “tight”, that is, {ϕ : T ′ |=
ϕ} \ {ϕ : T ′′ |= ϕ} is small, and on the other hand, support efficient reasoning.
Concerning the latter point, if U is a Horn theory and ϕ is a clause, then U |= ϕ
can be decided in polynomial time. Therefore, we define approximations to be
pairs (T ′, T ′′), where T ′ and T ′′ are Horn theories such that T ′ |= T ′′.

A key problem is: given a CNF theory T , find the most precise Horn approx-
imation to T . This problem has been studied in [26]. It turns out that there is a
unique (up to logical equivalence) Horn least upper bound. However, there is no
greatest Horn lower bound. The set of Horn lower approximations has, however,
maximal elements.

2.5 Approximating Semantics for Logic Programs

Logic Programming studies semantics of logic programs, i.e. sets of program
clauses. In the simplest case those are expressions of the form p ← q1, . . . , qm,
¬r1, . . . ,¬rn. The meaning of such clause is, informally, this: “if q1, . . . , qm have
been derived, and none of r1, . . . , rn has, or ever will be, then derive p” (vari-
ous different meanings are also associated with program clauses). It is currently
commonly assumed that the correct semantics of a logic program (i.e. set of
program clauses as above) is provided by means of fixpoints of Gelfond-Lifschitz
operator, GLP . Those fixpoints are called stable models of P [7], and more re-
cently answer sets for P . The operator GLP is antimonotone, thus existence of
fixpoints of GLP is not guaranteed. However the operator GL2

P is monotone and
consequently, possesses a least and largest fixpoints.

A number of approximation schemes for stable semantics of logic programs
has been proposed. A historically earliest proposal is the so-called Kripke-Kleene
approximation ([14,6]). In this approach, one defines a three-valued van-Emden-
Kowalski operator TP . That operator is monotone in the ordering  pr, and
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consequently possesses a least  pr fixpoint. That fixpoint (which can be treated
as an approximation) approximates all stable models of the logic program P . A
stronger approximation scheme has been proposed in [27], and is called a (three-
valued) well-founded model of the program. Essentially, that model is defined by
means of the least and largest fixpoint of GL2

P . Like the Kripke-Kleene fixpoint,
the well-founded approximations provides an approximation to all stable models
of the program. More recently, [4] introduced the ultimate approximation schema
which, in general, is more precise that the well-founded one.

Of course, one can assign to a logic program P also the  pr-greatest (most
precise) approximation that approximates all stable models. The lower bound in
this approximation is the intersection of all stable models and the upper bound is
given by their union. Let us denote by KKP the Kripke-Kleene approximation,
by WFP the well founded approximation, by UP the ultimate approximation,
and by AP the most precise approximations of all stable models. Then,

KKP  pr WFP  pr UP  pr AP

and examples can be given where all the above relationships are strict (we note
in passing that AP is consistent if and only if P has stable models).

The complexity of computing each of these approximations is also different, in
general. The Kripke-Kleene approximation can be computed in linear time and
the well-founded approximation in polynomial time (but it is not known whether
linear-time algorithms exist). For a broad class of programs, the ultimate ap-
proximation can be computed in polynomial time. However, no polynomial time
algorithms are known in general and the problem is coNP-hard. Finally, even
for very simple classes of programs computing the most precise approximation
is coNP-hard. These properties give rise, as in several places before, to interest-
ing trade-offs between the precision of an approximation and the complexity of
computing it.

We note the the Kripke-Kleene approximation KKP approximates not only
all stable models of P but also all supported models of P . In the case when P
is a consistent Horn program (possibly with constraints), the fixpoint KKP is
given by the pair (Sl, Su), where Sl is the least and Su is the greatest supported
model of P (which are guaranteed to exist in case of Horn program).

2.6 Approximating Possible-World Structures

The language of modal logic with the semantics of autoepistemic expansions
and extensions [3] provides a way to describe approximations to possible-world
structures. Let us consider a theory T in a language of propositional modal logic
[8,24]. The theory T is meant to describe a possible-world structure providing
the account of what is known and what is not known given T .

Since T may be incomplete, there may be several possible-world structures one
could associate with T , that we will refer to as intended ones. Autoepistemic logic
provides a specific definition of such structures; other nonmonotonic modal logics
provide alternative notions [18]. To reason about the epistemic content of T by
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means of autoepistemic logic one has two possibilities: to compute all intended
possible-world structures for T according to the semantics of the autoepistemic
logic, or to compute an approximation to the epistemic content of T common to
all these structures. The former is computationally complex, being a ΣP

2 -task.
Hence, the latter is often the method of choice.

At least three different approximations can be associated with T , Kripke-
Kleene approximation, the well-founded approximation and the ultimate ap-
proximation, listed here according to the precision, with which they approximate
possible-world structures of T [3,4]. It is worth noting that the computational
complexity of the first two of these approximations is lower that the complexity
of computing even a (single) intended possible-world structure for T . To the best
of our knowledge, the complexity of reasoning with ultimate approximations for
autoepistemic logic has not been yet established.

2.7 Minimal Models Reasoning and Repairs in Databases

Approximations play an important role in the theory and practice of databases.
In this paper, we regard a database as a finite structure of some language
L of first-order logic that does not contain function symbols. Typically, legal
databases are subject to integrity constraints, properties that at any time the
database is supposed to have. In general, integrity constraints can be represented
as arbitrary formulas of L.

Databases are frequently modified over their lifetime. Updates create the pos-
sibility of entering erroneous data, especially that in most cases databases are
modified by different users at different locations. Consequently, it does happen
that databases do not satisfy the integrity constraints. Once such a situation
occurs, the database needs to be repaired [1].

Let D be a database and let IC be a set of integrity constraints. A pair
R = (R+, R−) is a repair of D with respect to IC if (D ∪ R+) \ R− |= IC
(the repair condition), and for every (Q+, Q−) such that Q+ ⊆ R+, Q− ⊆ R−,
and (D ∪ Q+) \ Q− |= IC, we have Q+ = R+ and Q− = R− (the minimality
condition). We write R(D) for the database resulting from D by applying a
repair R. We write Rep(D, IC) to denote all repairs of D with respect to IC.
The minimality condition implies that if (R+, R−) is a repair, then R+ ∩D = ∅
and R− ⊆ D.

Repairing a database D that violates its integrity constraints IC consists of
computing a repair R ∈ Rep(D, IC) and applying it to D, that is, computing
R(D). There are two problems, though. First, computing repairs is computa-
tionally complex (even in some simple settings deciding whether repairs exist
is Σ2

P -complete). Second, it often is the case that multiple repairs exist, which
results in the need for some principled selection strategy.

These problems can be circumvented to some degree by modifying the se-
mantics of the database. Namely, a database D with integrity constraints IC
could be viewed as an approximation to an actual database D′, not available
explicitly but obtainable from D by means of a repair with respect to IC. The
approximation to D′ represented by (D, IC) is the pair of sets (Dl, Du), where
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Dl =
⋂
{R(D) : R ∈ Rep(D, IC)} and Dl =

⋃
{R(D) : R ∈ Rep(D, IC)}

In other words, expressions (D, IC) define approximations and query answering
algorithms have to be adjusted to provide best possible answers to queries to D′

based on the knowledge of Dl and Du only.

3 Further Work, and Conclusions

We discussed a number of approximation schemes as they appear in logic, logic
programming, artificial intelligence, and databases. Doubtless there are other
approaches to approximate reasoning that can be cast as approximations, and
in particular rough sets. One wonders if there is a classification of approxima-
tions that allows to capture a common structure laying behind these, formally
different, approaches. In other words, are there general classification principles
for approximations? Are there categories of approximations that allow to classify
approximations qualitatively?

Another fundamental issue is the use of languages that describe approxima-
tions. Pawlak [22] noticed that, in its most abstract form rough sets are associ-
ated with equivalence relations; each equivalence relation induces its own rough
set notion. Such abstract approach leads to Universal Algebra considerations
that have roots in [12] and has been actively pursued by Or�lowska and collabo-
rators [5,20,25]. One can find even more abstract versions within the Category
Theory. But usually, the applications of rough sets and other approximation
schemes can not choose its own language. For instance, more often than not
(and this was the original motivation of Pawlak) the underlying equivalence re-
lation is given to the application (for instance as the equivalence induced by an
information system [16]). Then, and the literature of rough sets is full of such con-
siderations, one searches for the coarser equivalence relations that are generated
by various attribute reduction techniques. To make the point, these equivalence
relations are not arbitrary, but determined by the choice of the language used
for data description. This linguistic aspect of rough sets and approximations in
general, needs more attention of rough set community.
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9. Iwiński, T.: Rough analysis in lattices. Working papers of the University of Carlos

III, Madrid, Num., 91–23 (1991)
10. Järvinen, J.: Lattice Theory for Rough Sets. In: Peters, J.F., Skowron, A., Düntsch,

I., Grzyma�la-Busse, J.W., Or�lowska, E., Polkowski, L. (eds.) Transactions on
Rough Sets VI. LNCS, vol. 4374, pp. 400–498. Springer, Heidelberg (2007)

11. Jonsson, B.: A Survey of Boolean Algebras with Operators. In: Algebras and Order,
pp. 239–284. Kluwer, Dordrecht (1991)

12. Jonsson, B., Tarski, A.: Boolean Algebras with Operators. American Journal of
Mathematics 73, 891–939 (1951)

13. Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam
(1967) (fifth reprint)

14. Kunen, K.: Negation in logic programming. Journal of Logic Programming 4(4),
289–308 (1987)

15. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987)
16. Marek, W., Pawlak, Z.: Information storage and retrieval systems, mathematical

foundations. Theoretical Computer Science 1(4), 331–354 (1976)
17. Marek, W., Pawlak, Z.: Rough sets and information systems. Fundamenta Infor-

maticae 7(1), 105–115 (1984)
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Abstract. The NetTRS system is a web service that makes induction,
evaluation and postprocessing of decision rules possible. The TRS li-
brary is the kernel of the system. It allows to induce rules by means of
the tolerance rough sets model. The NetTRS makes user interface of the
TRS library available in the Internet. The main emphasis of the Net-
TRS system is placed on induction and postprocessing of decision rules.
This article shows the architecture and the functionality of the system.
This paper describes also the parameterization of algorithms that are
implemented in the TRS library.

1 Introduction

Algorithms of rules induction based on examples are the part of the wider group
of algorithms, that realize the learning by examples paradigm [8]. Recently, there
could have been observed, the growth of machine learning methods applications
in practice. Rules inductions algorithms are especially intensively used as a tool
for the knowledge discovery from databases [5,7].

In relation to the observed trend, there arose a great number of programs
that make it possible to perform rules induction or generate decision trees. The
algorithms of rules induction and postprocessing are only the part of a wide range
of analytical algorithms, implemented in the considered software. The solutions
mentioned above can be divided into commercial ones, offered among the others
by Salford-Systems, Statsoft, SAS Institute, SPSS, RuleQuest, and free available
ones, developed at different academic centres –– Weka [6] is the example of this
kind of expanded system.

There is also a number of programs that perform rules induction using the
rough set model (LERS [5], RSES [2], Rose [14], Rosetta [11], ARES [13] etc.).
Almost all mentioned solutions offer, except analytical functions, more or less
advanced tools for data managing (data import, data export, data cleaning, etc.)
and results visualisation. It is worth to notice that rules induction algorithms are
the standard part of the majority of database management systems (in particular
solutions offered by the Oracle and Microsoft).
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The NetTRS system differs from solutions mentioned previously due to the
fact, that it is a web application which makes it possible to perform algorithms
implemented in the TRS library [17]. The development of the library proceeded
in the clearly defined direction: the main stress is laid on rules evaluation and
postprocessing (generalization and filtration). The system presented in the paper
does not contain functions that allow data managing. All data must be prepared
in the specified format and divided into train, test and (in some cases) tune files.

The layout of the paper is following. Section 2 contains short description of
the system architecture. Section 3 presents structure and content of scripts that
control data analysis process. Section 4 shortly describes user interface. Finally,
in Section 5 conclusions are included.

2 NetTRS System Architecture

The NetTRS system is a web application, implemented with the usage of the
ASP.NET technology. The main purpose of this application is to make the com-
putational potential of the TRS library available.

The TRS library has the possibility to control scripts interpreting, written
as a sequence of commands. Each command, written in the script, is connected
either with input/output procedure (ex. sending data for the analysis, results
receiving) or with a special analytical algorithm realization.

The NetTRS system makes available graphical interface which creates control
scripts for the TRS library in user friendly way. After script configuration and
creation, the NetTRS system transmits it to executable form of the TRS library,
the TRSExecutor program. Results of analysis are saved by the TRSExecutor
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Fig. 1. The NetTRS system architecture
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program in text output files, which can be made available to the user by the
agency of the NetTRS system. Therefore, the TRS library is a computational
kernel of the NetTRS system, the system itself is responsible for scripts creation,
computations initializing and analysis results presentation. The NetTRS system
architecture is presented in Fig. 1. The database shown in Fig. 1, stores the
information about registered users, their experiments and calculation results.

When all analytical tasks are defined (with the usage of the web application)
the control script is generated. The script and all other necessary data files
are stored at the computational server. The separate program (TRSExecutor)
is responsible for the cyclical database querying and starting the TRS library
process for each new analysis task (experiment).

Single user can check status of experiments (queued/being executed/finished)
via the website and download results of completed ones.

3 User Interface

The access to the NetTRS system is available only for users that have the person-
alized account (login and initial password), created by the system administrator.
It is necessary to contact the service administrator to obtain the access to the
system. After successful login, the user has the access to the subset of web sites
(called “user panel”) that helps him to use the system.

All web sites that compose the user available web application, can be divided
into two parts: new analysis task defining and viewing and downloading results
of the analysis.

The user panel has the analogical architecture as the tabbed one. The first tab
Analysis allows to set the label of the new experiment, to upload all necessary
data files and to configure selected algorithms. Names of consecutive steps of
the analysis are placed on the left side of the web site presented in Fig. 2. Each
step should be parameterized by the user, otherwise the step will be run with
default values of parameters. Particular steps of the analysis contain following
algorithms and functions:

– Experiment preparing – labelling the new experiment;
– Files upload –– transferring data to the analysis;
– Tolerance thresholds searching –– the genetic algorithm for tolerance thresh-

olds searching, the heuristic algorithm for tolerance thresholds searching,
loading thresholds from the file, saving thresholds to the file;

– Reducts and rules –– determining all relative reducts, the heuristic algorithm
finding a given number of relative reducts (including quasi-shortest ones
[10]), calculating values of the attributes significance coefficient [12], finding
all minimal decision rules (from objects-related relative reducts [24]), the
heuristic algorithm that determines a given number of minimal decision rules
(including rules from the quasi-shortest object-related relative reducts), the
MODLEM algorithm [25], the modified version of the MODLEM algorithm
[20], the RMatrix algorithm [22], loading the rules from the file, saving the
rules to the file;
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Fig. 2. User interface – setting parameters of the Rules generalization analysis step

– Rules generalization –– algorithms of shortening and joining rules;
– Rules filtration –– filtration algorithms: from coverage, forward, backwards,

minimal quality;
– Classification –– the voting classification algorithm;
– Rules ranking –– creation of the file that contains the rules ranking, with

respect to the rules quality measure selected by the user.

To realize the analysis task, it is necessary to send all needed data files (train-
ing, testing, and — if it is needed –– tuning files) to the service. All files are text
files, and the training file must contain a special header section. The format of
all files is described in the tab Examples.

After all necessary files are successfully uploaded, the Script section becomes
available. It shows the user the generated control script and makes its modifi-
cation possible (for example, adding new command or changing one of the pa-
rameters). Selecting the button Upload makes the experiment realization start
–– putting in the experiment to the task queue. Since the user can define more
than one experiment, the Current state tab makes user available to check the
realization phase of each his initialised experiment.

After the single experiment and its all calculations are finished, all result files
and data files are compressed to the archive file that can by downloaded from
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the tab Results. This page makes it also possible to see the content of the main
result file by clicking the View button.

The primary result file, generated by the TRSExecutor, is the text file with the
default name out.txt. Depending on algorithms selected during the experiment
defining, the file contains: calculated tolerance thresholds, generated decision
rules, decision rules after shortening, decision rules after joining, decision rules
after filtration and the classification results.

The TRS library generates also some helpful partial result files, such as a
decision rules with their quality measure values and the rules ranking (form the
best to the worst) for all decision classes separately. As it was mentioned before,
all files that are partial or final results of the experiment (including all data files),
are packed to the archive file and made available to be downloaded by the user.

4 The Structure and Content of the Control Script

The control script, that is transmitted to the TRSExecutor program, is the most
important control element of the analysis. It contains the sequence of commands
which were selected and configured by agency of the NetTRS graphical interface.
Each command starts with the algorithm name or the function name, and ends
with the keyword EndCommand. The body of the command contains keywords
reflecting names of parameters of particular algorithms and values of those pa-
rameters, for example:

LoadSystem from credit.train

CalcContRules
Entropy Yes
Quality Gain
QualityParam 0
EndCommand

Classify
Quality Coverage
QualityParam 0
File credit.test
EndCommand

Execution of commands sequence shown above produces following results:

– loading the training file named credit.train;
– rules induction by means of the MODLEM algorithm [25] with the following

parameters: the conditional entropy as a conditional descriptors construction
criterion; the Gain quality measure [15] as a criterion that decides when the
process of adding new conditional descriptors to the conditional part of the
decision rule should be stopped;
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– making, by means of determined rules, classification of objects that are in-
cluded in the credit.test file; the Coverage measure is used for solving clas-
sification conflicts.

Figure 3 shows the scheme of all possible analysis paths, available with the
NetTRS system. The first step consists in uploading all data files to the system.

It is necessary to calculate or load the tolerance thresholds vector for relative
reducts generating or decision rules generating (from relative reducts or with the
usage of the RMatrix algorithm). The MODLEM algorithm does not need the
thresholds vector. It is also possible to load decision rules directly from the file.

After the decision rules set is available, it is possible to apply algorithms
of rules generalization and/or filtering. Each of these two algorithms can be
performed more than once, in any sequence. It is also possible to omit this
section and go to the classification step directly.

The current version of the NetTRS system GUI allows only the single usage
of the each mentioned algorithm. It is a certain limitation in relation to the form
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Fig. 3. Possible analysis paths (data flow chart) using the NetTRS system
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of scripts, that can be correctly interpreted by the TRS library. In generally, the
number of each algorithm sections in the control script is unlimited (results are
stored in the one output file out.txt). For example, if the control script contains
two sections of rules generating, that precede two sections of rules shortening,
than the set of rules generated by the second rules generating section is an
input argument for the first section of shortening algorithm. Then the set of
rules obtained as the result of first shortening rules section becomes an input
argument for the second shortening rules section. In other words, the set of rules
generated by the first generating rules section will be stored to the output files
and will not be processed in the further analysis. The similar relation concerns
other algorithms.

The exemplary control scripts, datasets, tolerance thresholds vectors, rules
and sets that are results of analysis are available on the tab Examples in the
NetTRS system.

4.1 The Parameterization of TRS Library Algorithms

All algorithms that are available via NetTRS system were described in the first
part of this composed of two parts paper. The other publications, that also
describe selected parts of TRS library algorithms, are [20,21,22,23]. This section
contains the short overview of the algorithms parameters and their meaning.

Tolerance thresholds searching. Searching of the tolerance thresholds vector
can be realized in two ways, using the genetic algorithm [9,27] or the heuristic
one [23,26,27]. For each of them it is necessary to choose the distance measure
(between values of attributes) and the function, that evaluates found vectors and
decides about their quality (a specimen adaptation function).

The usage of the genetic algorithm requires the number of specimens in the
population and probabilities of crossover and mutation. The minimal quality of
specimens, sampled to the first population, can be also defined by the user, but
this option significantly lengthens the duration of the first population sampling.

During the specimen adaptation function values computation in consecutive
populations, it is possible to turn on the so–called scaling, that prevents from
choosing specimens with the high value of adaptation function in the first phase
of the algorithm running. The Boltzmann scaling [9] (1) was used in the imple-
mented algorithm.

f ′(s) =
e

f(s)
T

1
p

p∑
i=1

e
f(i)

T

(1)

In equation (1), s is a specimen, f is an adaptation function, f ′ is a scaled
adaptation function, p is a number of specimens in the population, T is a temper-
ature value, that decreases in consecutive populations. The scaling needs from
the NetTRS user to set the initial and final value of the temperature and define
the decrease of the temperature in each step of the algorithm.
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The genetic algorithm ends when all calculations for all defined by the user
populations are finished or when the value of the adaptation function does not
increase, in the defined by the user number of populations. In the second case
there are two available parameters: the mean value of the specimens adapta-
tion in the population and the adaptation value of the best specimen in the
population.

If the heuristic algorithm that applies climbing strategy is selected, user should
decide whether the vector with identical or different thresholds values for all
attributes should be found and whether the number of steps is defined by the
algorithm (all possible values will be considered that, for the set conditional
attribute, change the size of the tolerance set of arbitrary training object) or by
the user.

Relative reducts and decision rules. Before calculating relative reducts or
minimal decision rules, it is necessary to define the number of awaited relative
reducts and rules (in the case of rules induction –– the number of minimal
decision rules generated for each object). Fundamental options are All, which
means calculating all relative reducts and minimal decision rules [12,24], and 1,
which means calculating one quasi-shortest relative reduct or one quasi-shortest
minimal decision rule for each object [10].

Considering the RMatrix algorithm [22], the rule quality measure [1,4] must
be selected. In the case of the MODLEM algorithm [25] it is needed to specify, if
the conditional entropy is a criterion that decides about the form of conditional
descriptors and which rules quality measure is used as a stop criterion [20].

Turning the From coverage option on, which is available for algorithms of
minimal decision rules generating and for the RMatrix algorithm, enables to
determine the set of the decision rules, that is able to cover the training objects
set. It is important to notice that this option functions in a way that the order of
the rules generating is determined by the order of the objects in the training set.
In other words, the rules induction does not start from the most representative
objects from each decision class.

Rules generalization. The process of rules generalization can be realized by
two different algorithms: the shortening and joining [21]. In each of them it is
necessary to choose quality measure that controls the process of shortening or
joining rules.

For the shortening algorithm user has to define, for each decision class sepa-
rately, the maximal acceptable decrease of rules quality measure after shortening,
in percentage (in particular, the value 0 means the lack of agreement for the qual-
ity decrease after shortening). In the case of the shortening algorithm it is also
possible to determine, for each decision class separately, the minimal number of
conditional descriptors in the decision rule. It causes that all rules, containing
less descriptors than a mentioned value, will not be shortened.

In case of joining algorithm the user has to define the acceptable (in percent-
age) decrease of rules quality measure after joining, whether the set of joined
rules should be joined later, and whether to create the special rules ranking
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before joining that determines the rules joining order. For the selected basis de-
cision rule, the ranking of other decision rules from the same decision class is
created. The top position in the mentioned ranking is for the rule (or rules) that
covers the similar to the basis rule negative objects set and the different from
the basis rule positive objects set.

Rules filtration. All available filtration algorithms use rules quality measures
for evaluation of the filtered rules set. Therefore, the name of the applied rules
quality measure must be defined for every filtration algorithm.

The From coverage filtration algorithm requires the information whether after
adding the next rule to the filtered rules set, and after removing from the training
set objects covered by the considered rule, the recalculation of the remaining
rules qualities should be done.

For the Minimal quality algorithm, for each decision class separately, the
minimal rules quality measure value should be defined. If the considered decision
rule has the quality greater than the quality minimal value it remains in the
filtered rules set.

The Forward filtration algorithm requires following parameters setting:

– The maximal decrease of the classification accuracy of the filtered rules set,
defined for each decision class separately (in percentage); the reference point
is the classification accuracy of the rules set before filtration;

– The maximal number of decision rules that create the description of each
decision class;

– Choosing the criterion that decides about adding the rule to the filtered rules
set; there are two possible criteria:
• Add the rule to the filtered rules set if it causes the growth of the clas-

sification accuracy of the decision class which the rule describes and the
growth of the general classification accuracy;

• Add the rule r to the filtered rules set if the value of the expression (2)
increases; in this expression RUL′ means the filtered rules set together
with the considered rule r, accuracy(RUL′, Tu) is the accuracy of the
rules set RUL′ obtained on the tuning objects set Tu, λ ∈ [0, 1] and
simplicity(RUL′) = (|RUL| − |RUL′|)/|RUL|, where RUL means the
unfiltered rules set.

– Parameters of the classification process of the tuning set that is used by the
filtration algorithm.

evaluate(RUL′) = λ accuracy(RUL′, Tu) + (1− λ) simplicity(RUL′) (2)

The NetTRS system offers also the extended version of the Forward algorithm.
The Forward algorithm makes it possible to store the information about the
growth of classification accuracy in its succeeding steps in the result file.

The Backwards filtration algorithm requires, except for the parameters of the
tuning set classification, the acceptable mean classification accuracy decrease
of the filtered rules set. A value about which the difference between the most
accurate and the least accurate decision class can increase is also the parameter
of the Backwards algorithm.
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Classification. The NetTRS system realizes the process of classification with
the usage of the voting strategy. The classification may take place by exact
matching rules or by nearest rules. User introduces the following classification
parameters:

– the name of the rule confidence measure, that represents the strength of the
rule vote during the classification,

– the type of the measure, used for calculating the distance between the rule
and the testing object (Hamming, Euclidean),

– the maximal distance between the object and the decision rule (if the distance
is less than the user defined than this rule participates in the voting),

– whether to divide “the number of votes” given for each decision class by the
number of rules that participated in the voting (normalization).

Rules evaluation. The majority of mentioned methods and algorithms use
rules quality measures. In the NetTRS system values of particular measures can
be calculated in the standard way, with taking into consideration the number of
objects covered uniquely by the rule and with taking into account the number
of conditional descriptors occurring in the rule.

5 Conclusions and Further Works

In the paper we have presented technical details of the NetTRS system. It al-
lows to induce and postprocess the decision rules obtained, among others, due to
tolerance rough sets model. The NetTRS system is an extension of functional-
ity of the TRS library that served, in its intension, an acceleration experiments
executing during research works on rules generalization and rules filtration algo-
rithms. The NetTRS system exploits a compiled version of the TRS library. Its
functioning consists in automatic scripts generating (by user interface) for this
library, and managing users of WWW service together with assigned calculation
processes. The method of usege of the NetTRS system is described in the user‘s
guide [18].

The present form the NetTRS system does not give access to all algorithms
included in the TRS library. There are, among others, two interesting solutions:
ruleM5 which is a rule version of proposed by Quinlan the M5 [16] algorithm
enabling to realize prediction tasks and successive modification of the MODLEM
algorithm that adaptively selects (depend on actual characteristic of a data set)
evaluation measures applied for rules creation [1,19]).

Further works on the system will focus on making it a more professional tool
and will cover four areas:

– rewriting the TRS library from the C++ language on C# one and changing
data structures connected with decision table storage (in order to accelerate
work of the program and to omit a control script), and application methods
of reducts calculation that does nor use discernability matrix [24];

– including the rule M5 and adaptative MODLEM algorithms in the service
functionality;
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– ability and access to experiments realization by means of train and test, and
cross validation methodologies (a user will send only one data set);

– extending a functions of calculation tasks distribution on major number of
computers.

In the context of the last task of the mentioned above, making parallel analytic
algorithms is not less interesting than dispersions of calculations executed within
a framework of one experiment. Here we can take pattern by an extension of the
RSES program which is the program/library DIXER [3]. First works on this field
have been already conducted by students of our faculty.

Both, the TRS library and the NetTRS system, still have experimental char-
acter only. At present the NetTRS system has a poor user interface –– there
is no possibility for data management (for example: data import from another
than NetTRS format, data partition) –– but it is one of the first systems, by
means of which user can perform experiments (analyse data) with no need of
analytical algorithms implementation.

To log into the server www.nettrs.polsl.pl/nettrs, it is necessary to have an ac-
count. It can be obtained after contact to service administrator Marcin Michalak1.
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Abstract. An inference engine for classification of Electrocardiogram
(ECG) signals is developed with the help of a rule based rough set deci-
sion system. For this purpose an automated data extraction system from
ECG strips is being developed by using a few image processing tech-
niques. A knowledge base is developed after consulting different medical
books as well as feedback of reputed cardiologists on interpretation and
selection of essential time-plane features of ECG signal. An algorithm
for extraction of different time domain features is also developed with
the help of differentiation techniques and syntactic approaches. Finally, a
rule-based rough set decision system is generated using these time-plane
features for the development of an inference engine for disease classifi-
cation. Two sets of rules are generated for this purpose. The first set is
for general separation between normal and diseased subjects. The second
set of rules is used for classifications between different diseases.

Keywords: Rough set, knowledgebase, decision system, Electrocardio-
gram (ECG).

1 Introduction

In 1889 Waller first developed a method of recording [21, 62] the ECG voltage
by capillary electrometer introduced by Lippman in 1875. The method was im-
proved by using the string galvanometer discovered by Einthoven in 1903. In
1906 Einthoven [16] added a new dimension by introducing the concept of vec-
tors to represent the ECG voltages. He also standardized the electrode locations
for collecting ECG signals as right arm (RA), left arm (LA) and left leg (LL),
and these locations are known after him as the standard leads of Einthoven or
limb leads(see fig. 1). String galvanometer was replaced by electronic amplifiers
around 1920s, which allowed the use of less sensitive and more rugged recording
devices. Next, direct writing recorders, which used ink or pigment from a ribbon
to record the ECG trace on a moving paper strip, were intrduced around 1946.
Later on, a special heat sensitive paper was developed, which is now used almost
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Fig. 1. The placement of the bipolar leads (Left image) and the exploratory electrode
for the unipolar chest leads (Right image) in an electrocardiogram (ECG); (RA = right
arm, LA = Left arm, LL = left leg)

exclusively as a recording medium for electrocardiograms. Modern direct writing
electrocardiographs have a frequency range extending to over 0 - 100 Hz, which
is quite adequate for clinical ECG recordings.

Wilson [70] in 1934, and, later, Frank [17] in 1955, have made considerable
progress in the dipole theory of the heart. This is the first significant step to
solve ECG inetrpretation problem analytically. The human body is assumed to
be a uniform, homogeneous, isotropic conducting medium having the shape of a
sphere containing a centric current dipole, which simulates the electrical activity
of the heart. In addition, Wilson suggested that the three Einthoven leads be
connected by means of three equal external resistors to an external node is now
called Wilson Central Terminal (WCT). Using centric dipole model [55] WCT
is shown to be at electrical zero of the system. He also introduced the unipolar
limb leads (AVR, AVL, AVF ) and chest leads (V1,V2,. . . V6). These unipolar
leads along with Einthoven’s bipolar limb leads are used in the modern 12 lead
electrocardiogram (see fig. 1).

In the late 1960s, low cost microprocessors became available due to advent of
integrated-circuit technology and work started to develop, which has immensely
advanced during the last 40 years. As a result, the computerized ECG analysis
began to emerge on experimental basis with the help of lower cost, on-line,
real time computer systems since such systems became both economically and
technically feasible for clinical use [13]. However, the research is still continue
to boost the sophistication of the methodology and to condense the dimension
of the hardware so that it becomes more mobile, accurate and helpful for both
doctors and patients.
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1.1 Raw ECG Data Extraction

The first step of computer analysis is to acquire digitized ECG data. For this
purpose, some small processing algorithms are developed which can transfer con-
tinuous data recorded on paper to a digital time data, corresponding to those
obtained by A/D converter [10, 68, 69]. An instrumentation scheme using Com-
puter Aided Design and Drafting (Auto CAD) application package is devel-
oped by our group to capture ECG database. Here, a single channel strip chart
recorder and a digitizer with tablet attached to the RS 422/432 port of the
computer is used as input device. A digital plotter/printer is used as the out-
put device [23]. Alternative system is reported in [5], and several others may be
found in the literature.

1.2 Work on ECG Wave Segment Detection and Feature Extraction

ECG conveys information regarding the electrical function of the heart, by al-
tering the shape of its constituent wave sesments, namely the P, QRS, and T
waves (see fig. 2). Pattern recognition approaches are widely used for the detec-
tion and analysis of these waves. Direct signal pattern analysis, non-linear signal
transformations, principal component analysis, and neural networks (NN) based
techniques are used for ECG pattern recognition and classification [8, 15, 39, 67].
The significant point extraction algorithm, based on the analysis of curvature,
is an example of direct signal analysis, that helps in both data reduction as
well as pattern matching [11, 36]. Syntactic approaches are also used for ECG
waveform analysis [19, 32]. In another study, a learning system is reported to
grammatically classify biomedical patterns [20]. Other approaches for P and St
segment detection are reported in [35, 61, 65].

In recent years, Wavelet transform has been used to decompose ECG signal for
detection of P wave by neural network [72]. In another case, wavelet is employed
to obtain a multiresolution representation of some example patterns for ECG sig-
nal structure extraction. Similarly, Neural Networks are trained with the wavelet-
transformed templates providing an efficient detector even for temporally varying
patterns within the complete time series [66]. Recently, multi-resolution wavelet
transform, wavelet decomposition and continuous wavelet transform have been
combined for ECG feature extraction [29, 33, 38, 41, 42].

QRS detection is an important task in time-plane ECG analysis, that helps in
detection of other time-plane features more accurately.Hidden MarkovModel [12],
Wavelet transform [30] and Artificial Neural Network (ANN) [74] were used for the
detection of QRS complexes from ECG signals. A slope vector waveform based
QRS detection algorithm which is ideal for embedded real-time ECG monitoring
is also reported [73]. Various QRS detectors are compared in [18].

Baseline (see fig. 2) detection is another essential task in ECG analysis, which
aids for extraction of different time domain features. Most methods for baseline
or isoelectric line detection are based on the assumption that the isoelectric level
of the signal lies on the area ∼80 ms left of the R-peak, where the first derivative
remains zero for at least 10 ms or minimum in the 20 ms segment [39, 40].
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Fig. 2. A typical cycle of ECG signal

1.3 Studies on ECG Classification and Abnormality Detection

Considerable research has been done to assist cardiologists with their task of
diagnosing the ECG recordings. The research field range from abnormality de-
tections to fully automated ECG diagnosing systems. A wide range of techniques
has been used, including statistical pattern recognition, Expert Systems, Artifi-
cial Neural Networks, Wavelet Transform, Fuzzy and Neuro-fuzzy Systems.

The computer task for ECG interpretation comprises of two distinct and se-
quential phases: feature extraction and classification. A set of signal measure-
ments containing information for the characterization of the waveform is obtained
by feature extraction methods. These waveform descriptors are then used to allo-
cate the ECG to one or more diagnostic classes in the classification phase. These
classifiers may be heuristic and use rules-of-thumb or employ fuzzy logic as a rea-
soning tool [14]. A classifier may also be statistical with the use of complex and
even abstract signal feature probability to define discriminant functions for class
allocation.

Many approaches have been proposed to generate Expert Systems for ECG
diagnosis [1, 71]. An approach to intelligent ischaemia event detection is pro-
posed based on ECG ST-T segment analysis. ST-T trends have been processed
by a Bayesian forecasting approach using multistate Kalman filter [7]. Several
Ischemia detection methods are proposed in [37, 40, 56]. Hermite functions and
Self Organizing Maps(SOM) are used for clustering ECG complexes [34]. An-
other system for automatic analyzing of ECG is proposed in [71]. Expert’s
knowledgebase dependent Ischemia detection and automatic ECG interpreta-
tion techniques are described in [46, 58, 63].

More recently, artificial neural network techniques have been employed for
signal classification [6]. Learning algorithms for two phase and three phase ra-
dial basis function (RBF) networks are proposed in [3]. Bi-group Neural Net-
work classifiers are also utilized to examine independent feature vectors of ECG
recordings for each diagnostic class and the outputs from the classifiers are fused
together to produce single result [44].
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A method is developed with wavelet transforms as features extractor and
Radial Basis Function Neural Network (RBFNN) as classifier for arrhythmia de-
tection [2]. Also, Fuzzy Adaptive Resonance Theory MAP (ARTMAP) is used
to classify cardiac arrhythmias [25]. A hybrid neuro-fuzzy system for ECG clas-
sification of myocardial infarction is reported in [9].

For the past few years, rough set theory and granular computation has proved
to be another soft computing tool which, in various synergetic combination with
fuzzy logic, artificial neural network and genetic algorithms provide a stronger
frame work to achieve tractability, low cost solution, robustness and close resem-
bles with human like decision making. For example, rough-fuzzy integration is
the basis of the Computational Theory of Perceptions (CPT), recently explained
by Zadeh, where perceptions are considered to have fuzzy boundaries and gran-
ular attribute values. Similarly to describe different concept or classes, crude
domain knowledge in the form of rules are extracted with the help of rough neu-
ral synergistic integration and encoded them as network parameters. Thus the
initial knowledge base network for efficient learning has been built. In the case
of granular computation every operation are done on granules (clump of similar
objects or points), rather than on the individual data points. As a result, the
computation time is greatly reduced. As the methodology is getting matured,
several interesting applications of the theory have surfaced, also in medicine. For
example, in a medical setting, sets of interest to approximate could be the set
of patients with a certain disease or outcome, or the set of patients responsive
to a certain treatment. Pawlak [48] used rough set theory in Bayes’ theorem
and showed that it can apply for generating rule base to identify the presence
or absence of disease. Discrete Wavelet Transform and rough set theory were
combined for classification of arrhythmia [31].

2 Basics of Electrocardiogram (ECG)

A pair of surface electrodes placed two different locations on the heart of the
body will record a repeating pattern of changes in electrical “action potential”
of the heart. The heart has four chambers namely left atrium, left ventricle and
right atrium, right ventricle. As action potentials spread from the atria to the
ventricles, the voltage measured between these two electrodes will vary in a way
that provides a “picture” of the electrical activity of the heart. The nature of
this picture can be varied by changing the position of the recording electrodes;
different positions provide different perspectives, enabling an observer to gain a
more complete picture of the electrical events. The body is a good conductor of
electricity because tissue fluids contain a high concentration of ions that move
(creating a current) in response to potential differences. Potential differences
generated by the heart are thus conducted to the body surface where they are
recorded by surface electrodes placed on the skin. The recording is called an
electrocardiogram (ECG or EKG).

There are two types of ECG recording leads. The bipolar limb leads record
the voltage between electrodes placed on the wrists and legs. These bipolar leads
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include lead I (right arm to left arm), lead II (right arm to left leg), and lead III
(left arm to left leg). In the unipolar leads, voltage is recorded between a single
exploratory electrode placed on the body and an electrode that is built into the
electrocardiograph and maintained at zero potential (ground).

The unipolar limb leads are placed on the right arm, left arm, and left leg;
these are abbreviated AVR, AVL, and AVF , respectively. The unipolar chest
leads are labeled one through six, starting from the midline position (fig. 1).
There are thus a total of twelve standard ECG leads that “view” the changing
pattern of the heart’s electrical activity from different perspectives. This is im-
portant because certain abnormalities are best seen with particular leads and
may not be visible with other leads.

As shown in fig. 2, each cardiac cycle produces three distinct ECG wave seg-
ments designated P, QRS, and T. When a heart muscle cell is stimulated, it
begins to depolarize and the spread of depolarization through the atria causes a
potential difference that is indicated by an upward deflection of the ECG line.
When nearly half the mass of the atria is depolarized, this upward deflection
reaches a maximum value, because the potential difference between the depolar-
ized and unstimulated portions of the atria is at a maximum. When the entire
mass of the atria is depolarized, the ECG returns to baseline, because all regions
of the atria have the same polarity. In this way, the spread of atrial depolarization
creates the P wave.

Similarly, conduction of the impulse into the ventricles creates a potential
difference that results in a sharp upward deflection of the ECG line, which then
returns to the baseline as the entire mass of the ventricles becomes depolarized.
The spread of the depolarization into the ventricles is represented by the QRS
wave. During this time the atria does repolarize i.e, it retuns to its resting state,
but this event is hidden by the greater depolarization occurring in the ventricles.
Finally, repolarization of the ventricles produces the T wave (fig. 2). The T wave
may be notched or inverted in shape also. Sometimes another rounded wave, the
U wave, follow the T wave. The exact significance of this wave is not clearly
known. Functionally it represents the last phase of ventricular repolarization.
Normally the prominent direction of U wave is the same as that of T wave. Neg-
ative U waves sometimes appear with positive T waves. This abnormal situation
has been noted in left ventricular hypertrophy and myocardial ischemia.

3 Ischemic Heart Disease (IHD)

Different heart diseases that can be interpreted by ECG may be broadly classified
into 4 major classes. They are: (a) Atrial and Ventricular Enlargement or Cham-
ber Enlargement, (b) Ventricular Conduction Disturbance, (c) Ischemic Heart
Disease (IHD) and (d) Cardiac Rhythm Disturbance. But statistical surveys in-
dicate that IHD is a major health burden in India and other developing countries.

In this paper we concentrate on analysis and classification of IHD. Fig. 3
shows a cross section through the heart muscle, called cardium, having several
layers. The innermost layer, called endocardium, is a layer of smooth lining cells.
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Fig. 3. Layers of the Heart Muscle

The myocardium is the mass of the heart muscle cells whose coordinated con-
traction causes the chambers of the heart to contract and pump blood. The next
layer myocardium is thin in the atria, thicker in the right ventricle and thickest
in the left ventricle. The epicardium is a fatty layer on the outer surface on the
myocardium. The major coronary blood vessels, the vessels that supply blood
to the heart itself, run through the epicardium. The outermost layer is the peri-
cardium, actually two layers with a small amount of lubricating fluid between
them, forming the pericardial sac which encloses the entire heart.

Myocardial cells require oxygen and other nutrients supplied by the coronary
arteries. Severe narrowing or complete blockage of a coronary artery cause, the
blood flow to be inadequate, then ischemia of the heart muscle develops. If the
ischemia is more severe, permanent damage or necrosis (cell death) of a portion of
heart muscle may occur. Myocardial Infarction (MI) refers to myocardial necrosis
(“heart attack”) which is usually caused by severe ischemia. Myocardial Ischemia
or Infraction may affect the entire thickness of the ventricular muscle (transmural
injury) or may be localized to the inner layer of the ventricle (subendocardial
ischemia or infarction).

Transmural MI often(but not always) produces a typical sequence of ST-T
changes and abnormal Q waves (duration is 0.04sec. or more in lead I, all three
inferior leads[II, III, aVF ], or leads V3 to V6). The ST-T changes can be divided
into two phases:

The acute phase of transmural MI is marked by ST segments elevations and
sometimes tall positive T waves (hyper-acute T waves).

The evolving phase is characterized by the appearance of deeply inverted T
waves in leads that show the hyperacute T waves and ST elevations.

3.1 Classification of MI

Infarction of the heart generally occur in left ventricle which is cone shaped and
divided into 4 regions (Basal, Mid, Apical and Apex) of 17 segments (6 basal,
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Fig. 4. 17 standard segments and 4 walls of left ventricular cone

6 medial, 4 apical and the apex) and 4 walls (Anterior, Inferior, Septal and
Lateral)[fig. 4]. MI can be classified according to the location of the damage in
the walls of the left ventricular cone. Hence, if the infarction or necrosis occur in
the inferior wall then it will be classified as inferior wall infarction and typical
infarction pattern is reflected in lead II, III and AVF . Similarly, damage in
anterior wall will be termed as anterior wall infarction and signal in standard
lead I, AVL and all the precordial leads (V1 to V6) show the infarction pattern.

Beside these, there are two other walls known as septal (lead V1, V2) and lat-
eral (lead I, AVL,V5, V6). Damage in septal and lareral surfaces along with an-
terior or inferior surfaces may be termed as antero-lateral, antero-septal, infero-
lateral, infero-septal MI and signal from all the leads oriented to these surfaces
will show the typical infarction pattern.

4 Rough Sets

The theory of rough sets, introduced by Pawlak [49, 50] in 1982, has lately emerged
as a key mathematical tool for managing ambiguity that arises from vague, noisy
or partial information. It is methodologically significant to the domains of artifi-
cial intelligence and cognitive sciences, especially in the representation of reason-
ing with vague or imprecise knowledge, data classification, rule creation, machine
learning, data mining, and knowledge discovery. The theory is also showing to be
of substantial consequence in many other areas of applications [52, 53, 54].

4.1 Mathematical Basics of Rough-Set Theory

Rough set theory proposed by Pawlak [51], deals with imprecise or vague con-
cepts. Central to the theory is an information system that can be viewed as a
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data table, whose columns are labeled by attributes, rows are labeled by objects
of interest and entries of the table are the attribute values.

If, U and A are finite, nonempty sets where, U is the universe of objects and
A is the set of attributes then, S = (U,A) is an information table where every
attribute a ∈ A is associated with a set Va, of its values, called the domain of a.

Any subset B of A will establish a binary relation I(B) on U , called an
indiscernibility relation, by satisfying the following conditions.

x I (B) y if and only if a (x) = a (y) for every a ∈ B, where a(x) denotes the
value of attribute a for object x. Obviously I(B) is an equivalence relation.

The family of all equivalence classes of I(B), i.e., a partition determined by
B, will be denoted by U/I(B), or simply by U/B; an equivalence class of I(B),
i.e., block of the partition U/B, containing x will be denoted by B(x). If (x, y)
∈ I (B) it is said that x and y are B-indiscernible (indiscernible with respect to
B). Equivalence classes of the relation I(B)(or blocks of the partition U/B) are
referred to as B-elementary sets or B-granules.

In rough set based methods, these granules are the basic building blocks about
our knowledge of realty. The union of B-granules are known as B-definable sets.

Now, consider Xa proper subset of universe U. Two sets B∗(X) and B ∗ (X),
called the B-lower and the B-upper approximation of X , respectively, can be
defined as

B∗(X) =
⋃

x∈U

{B(x) : B(x) ⊆ X}. (1)

B∗(X) =
⋃

x∈U

{B(x) : B(x) ∩X 	= φ}. (2)

It is clear that B-lower approximation of a set is the union of all B-granules that
are included in the set, whereas B-upper approximation of a set is the union of
all B-granules that have a nonempty intersection with the set. The set

BN B (X) = B* (X) – B∗(X)

Is defined as the B-boundary region of X . If the boundary region of X is the
empty set, i.e., BN B (X) = Ø, then X is crisp (exact) set with respect to B.
On the other hand, if BN B (X) 	= Ø, X is referred to as rough (inexact) set with
respect to B.

4.2 Rough-Set Description

In various rule based practical applications, rough set theory is used for getting
the optimal number of appropriate rules needed for developing a classifier. From
every information system, a subset of minimal attributes is generated which is
known as reduct. Determination of reduct is a computationally expensive task.
Different algorithms are available to generate rules from this reduct.

To describe such a system more precisely, consider a decision table expressed
as S = (U,C, D) , where A i.e, the set of attributes are partitioned into two
classes C, D ⊆ A, called condition and decision attributes respectively. Every x
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∈ U determines a sequence c1 (x) , . . . , cn (x), d1 (x) , . . . , dm (x) where {c1,
. . . , cn} = C (conditions) and {d1, . . . , dm} = D (decisions).

The sequence will be called a decision rule induced by x (in S) and denoted
by c1 (x) , . . . , cn (x) → d1 (x) , . . . , dm (x) . In short, C→x D.

Thus, the decision table determines decisions, which must be taken, when
some conditions are satisfied. In other words, each row of the decision table
specifies a decision rule which determines decisions in terms of conditions.

The term suppx (C,D) = |C (x) ∩ D(x) | is called a support of the decision
rule

C →x D and the number σx (C,D) = sup px(C,D)
|U| , will be referred to as the

strength of the decision rule C →x D.
Every decision rule C →x D is allied with the certainty factor of the decision

rule, denoted by cerx (C,D) and defined as

cerx(C, D) =
|C(x) ∩D(x)|

|C(x)| =
sup px(C, D)
|C(x)| =

σx(C, D)
π(C(x))

. (3)

where π(C(x)) = |C(x)|
|U| .

The certainty factor may be interpreted as a conditional probability that y be-
longs to D(x) given y belongs to C (x), symbolically πx (D|C) where y must be
an object of the universal set.

If cerx (C,D) = 1, then C →x D will be called a certain decision rule in S;
if 0 < cerx (C,D) < 1 the decision rule will be referred to as an uncertain

decision rule in S.
Besides, a coverage factor of the decision rule is also used and denoted as covx

(C,D), defined as

covx(C, D) =
|C(x) ∩D(x)|

|D(x)| =
sup px(C, D)
|D(x)| =

σx(C, D)
π(D(x))

. (4)

where π(D(x)) = |D(x)|
|U| .

Similarly covx (C,D) = πx (C|D) .
If C→x D is a decision rule then D→x C will be called an inverse decision rule.

The inverse decision rules can be employed to provide explanations (reasons) for
decisions. Decision rules are normally represented in a form of “if ... then ...”
implications. So decision table can be altered in a set of “if ... then ...” rules,
called a decision algorithm. Using this decision algorithm, the optimal rules are
generated which are used for development of the rule based classifier.

Another important factor in data analysis is to find out the degree of depen-
dency γ (C, D) between condition attributes C and decision attributes D. It can
be shown that D depends on C in a degree k (0 ≤ k ≤ 1) where C →k D, if

k = γ(C, D) =
|POSC(D)|

|U | . (5)
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where, POSC (D) =
⋃

X∈U/D

C∗(X) is known as a positive region of the partition

U/D with respect to C. Positive region is actually the set of all elements of U
that can be individually classified to blocks of the partition U/D by means of
C. If k=0, then D is independent on C. On the other hand, if k=1, D is fully
dependent on C. Values 0< k < 1 denote partial dependency.

5 Materials and Methods of Analysis

The block diagram of the developed system is given in fig. 5. The detail method-
ologies are described below in step by step.

5.1 Development of ECG Data Extraction System

A software is being developed for getting pixel to pixel co-ordinate information
of every ECG images with the help of few image processing techniques [43]. For
development of off-line data extraction system [GUI based], the paper records
are scanned by flat-bed scanner (HP Scanjet 2300C) to form image database in
TIFF format. These TIFF formatted gray tone images are converted into two
tone binary images with the help of a global thresholding technique on gray
value histogram [22]. This method almost removes the background including the
grid lines of paper strips from the actual ECG signal. The rest dotted portion of
the background noise are removed by component labeling [22]. Then a thinning
algorithm [22] is applied on the two tone image to avoid repetition of co-ordinate
information in the dataset (fig. 6). The pixel to pixel co-ordinate information is
extracted and calibrated according to the electrocardiographic paper to generate
an ASCII datafile. A time (in sec.) Vs. millivolt data-file is obtained for each
of 12 lead ECG signal after processing as above [43]. The present database con-
tains ECG from 85 normal and 85 diseased subjects, out of which 50 patients had
acute myocardial infarction (MI) and rest 35 patients had Myocardial Ischemia.

Fig. 5. Block Diagram of the Proposed System



168 S. Mitra, M. Mitra, and B.B. Chaudhuri

Table 1. Extracted database of an image

Paper speed = 25 mm/s, Calibration factor = 10 mv/mm,
Total no. of points = 615, Heart rate = 85 beats/min

X (sec.) Y (mv) X (sec.) Y (mv) X (sec.) Y (mv) X (sec.) Y (mv) X (sec.) Y (mv)
0.0032 0.36 0.3936 0.456 0.784 0.272 1.1744 0.32 1.5648 0.136
0.0064 0.36 0.3968 0.456 0.7872 0.272 1.1776 0.312 1.568 0.136
0.0096 0.36 0.4 0.456 0.7904 0.272 1.1808 0.312 1.5712 0.144
0.0128 0.36 0.4032 0.448 0.7936 0.272 1.184 0.312 1.5744 0.144
0.016 0.36 0.4064 0.448 0.7968 0.28 1.1872 0.304 1.5776 0.144
0.0192 0.352 0.4096 0.448 0.8 0.304 1.1904 0.304 1.5808 0.152
0.0224 0.352 0.4128 0.44 0.8032 0.368 1.1936 0.304 1.584 0.152
0.0256 0.352 0.416 0.432 0.8064 0.584 1.1968 0.304 1.5872 0.16
0.0288 0.352 0.4192 0.424 0.8096 0.624 1.2 0.304 1.5904 0.16
0.032 0.352 0.4224 0.416 0.8128 0.792 1.2032 0.296 1.5936 0.168
0.0352 0.344 0.4256 0.416 0.816 0.84 1.2064 0.296 1.5968 0.168
0.0384 0.344 0.4288 0.416 0.8192 0.928 1.2096 0.296 1.6 0.168
0.0416 0.344 0.432 0.408 0.8224 0.88 1.2128 0.296 1.6032 0.168
0.0448 0.344 0.4352 0.408 0.8256 0.848 1.216 0.296 1.6064 0.176
0.048 0.344 0.4384 0.4 0.8288 0.8 1.2192 0.288 1.6096 0.176
0.0512 0.336 0.4416 0.392 0.832 0.592 1.2224 0.288 1.6128 0.176
0.0544 0.336 0.4448 0.384 0.8352 0.456 1.2256 0.288 1.616 0.184
0.0576 0.328 0.448 0.384 0.8384 0.296 1.2288 0.288 1.6192 0.184
0.0608 0.328 0.4512 0.376 0.8416 0.176 1.232 0.28 1.6224 0.184
0.064 0.328 0.4544 0.376 0.8448 0.144 1.2352 0.28 1.6256 0.192
0.0672 0.32 0.4576 0.368 0.848 0.144 1.2384 0.28 1.6288 0.192
0.0704 0.32 0.4608 0.368 0.8512 0.144 1.2416 0.28 1.632 0.192
0.0736 0.32 0.464 0.36 0.8544 0.152 1.2448 0.28 1.6352 0.192
0.0768 0.32 0.4672 0.36 0.8576 0.152 1.248 0.28 1.6384 0.192
0.08 0.312 0.4704 0.36 0.8608 0.152 1.2512 0.28 1.6416 0.2
0.0832 0.312 0.4736 0.36 0.864 0.16 1.2544 0.28 1.6448 0.2
0.0864 0.304 0.4768 0.352 0.8672 0.168 1.2576 0.28 1.648 0.208
0.0896 0.304 0.48 0.352 0.8704 0.168 1.2608 0.28 1.6512 0.208
0.0928 0.304 0.4832 0.352 0.8736 0.168 1.264 0.28 1.6544 0.216
0.096 0.304 0.4864 0.344 0.8768 0.168 1.2672 0.28 1.6576 0.216
0.0992 0.296 0.4896 0.344 0.88 0.176 1.2704 0.28 1.6608 0.216
0.1024 0.296 0.4928 0.344 0.8832 0.184 1.2736 0.28 1.664 0.224
0.1056 0.296 0.496 0.336 0.8864 0.184 1.2768 0.28 1.6672 0.224
0.1088 0.288 0.4992 0.336 0.8896 0.184 1.28 0.28 1.6704 0.232
0.112 0.288 0.5024 0.328 0.8928 0.184 1.2832 0.28 1.6736 0.24
0.1152 0.288 0.5056 0.32 0.896 0.192 1.2864 0.28 1.6768 0.24
0.1184 0.28 0.5088 0.32 0.8992 0.192 1.2896 0.28 1.68 0.248
0.1216 0.296 0.512 0.32 0.9024 0.192 1.2928 0.272 1.6832 0.256
0.1248 0.344 0.5152 0.32 0.9056 0.2 1.296 0.272 1.6864 0.272
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Table 1. (continued)

X (sec.) Y (mv) X (sec.) Y (mv) X (sec.) Y (mv) X (sec.) Y (mv) X (sec.) Y (mv)
0.128 0.456 0.5184 0.32 0.9088 0.2 1.2992 0.272 1.6896 0.28
0.1312 0.616 0.5216 0.32 0.912 0.2 1.3024 0.272 1.6928 0.288
0.1344 0.68 0.5248 0.32 0.9152 0.208 1.3056 0.272 1.696 0.296
0.1376 0.784 0.528 0.32 0.9184 0.208 1.3088 0.272 1.6992 0.304
0.1408 0.824 0.5312 0.32 0.9216 0.208 1.312 0.272 1.7024 0.312
0.144 0.88 0.5344 0.32 0.9248 0.216 1.3152 0.264 1.7056 0.328
0.1472 0.944 0.5376 0.32 0.928 0.216 1.3184 0.264 1.7088 0.336
0.1504 0.776 0.5408 0.32 0.9312 0.216 1.3216 0.264 1.712 0.336
0.1536 0.68 0.544 0.32 0.9344 0.224 1.3248 0.264 1.7152 0.344
0.1568 0.568 0.5472 0.312 0.9376 0.224 1.328 0.264 1.7184 0.344
0.16 0.36 0.5504 0.312 0.9408 0.224 1.3312 0.264 1.7216 0.352
0.1632 0.216 0.5536 0.312 0.944 0.224 1.3344 0.264 1.7248 0.352
0.1664 0.168 0.5568 0.304 0.9472 0.232 1.3376 0.264 1.728 0.352
0.1696 0.168 0.56 0.304 0.9504 0.232 1.3408 0.264 1.7312 0.36
0.1728 0.168 0.5632 0.304 0.9536 0.232 1.344 0.264 1.7344 0.36
0.176 0.168 0.5664 0.304 0.9568 0.232 1.3472 0.264 1.7376 0.368
0.1792 0.168 0.5696 0.304 0.96 0.24 1.3504 0.264 1.7408 0.368
0.1824 0.176 0.5728 0.304 0.9632 0.248 1.3536 0.264 1.744 0.368
0.1856 0.176 0.576 0.304 0.9664 0.248 1.3568 0.264 1.7472 0.368
0.1888 0.176 0.5792 0.304 0.9696 0.256 1.36 0.264 1.7504 0.368
0.192 0.176 0.5824 0.304 0.9728 0.256 1.3632 0.264 1.7536 0.36
0.1952 0.176 0.5856 0.296 0.976 0.256 1.3664 0.264 1.7568 0.36
0.1984 0.184 0.5888 0.296 0.9792 0.256 1.3696 0.264 1.76 0.36
0.2016 0.184 0.592 0.296 0.9824 0.264 1.3728 0.272 1.7632 0.352
0.2048 0.192 0.5952 0.296 0.9856 0.264 1.376 0.272 1.7664 0.352
0.208 0.192 0.5984 0.296 0.9888 0.272 1.3792 0.28 1.7696 0.352
0.2112 0.2 0.6016 0.296 0.992 0.28 1.3824 0.28 1.7728 0.344
0.2144 0.208 0.6048 0.296 0.9952 0.288 1.3856 0.28 1.776 0.336
0.2176 0.208 0.608 0.296 0.9984 0.288 1.3888 0.28 1.7792 0.328
0.2208 0.208 0.6112 0.304 1.0016 0.296 1.392 0.28 1.7824 0.328
0.224 0.208 0.6144 0.304 1.0048 0.304 1.3952 0.28 1.7856 0.32
0.2272 0.216 0.6176 0.296 1.008 0.312 1.3984 0.28 1.7888 0.312
0.2304 0.216 0.6208 0.296 1.0112 0.312 1.4016 0.28 1.792 0.312
0.2336 0.224 0.624 0.296 1.0144 0.32 1.4048 0.28 1.7952 0.312
0.2368 0.224 0.6272 0.296 1.0176 0.328 1.408 0.272 1.7984 0.304
0.24 0.224 0.6304 0.296 1.0208 0.344 1.4112 0.272 1.8016 0.304
0.2432 0.224 0.6336 0.296 1.024 0.352 1.4144 0.272 1.8048 0.296
0.2464 0.232 0.6368 0.296 1.0272 0.36 1.4176 0.264 1.808 0.288
0.2496 0.232 0.64 0.296 1.0304 0.376 1.4208 0.264 1.8112 0.288
0.2528 0.232 0.6432 0.296 1.0336 0.384 1.424 0.264 1.8144 0.28
0.256 0.232 0.6464 0.296 1.0368 0.392 1.4272 0.264 1.8176 0.28
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Table 1. (continued)

X (sec.) Y (mv) X (sec.) Y (mv) X (sec.) Y (mv) X (sec.) Y (mv) X (sec.) Y (mv)
0.2592 0.24 0.6496 0.296 1.04 0.4 1.4304 0.264 1.8208 0.272
0.2624 0.24 0.6528 0.296 1.0432 0.408 1.4336 0.256 1.824 0.272
0.2656 0.24 0.656 0.296 1.0464 0.416 1.4368 0.256 1.8272 0.264
0.2688 0.248 0.6592 0.296 1.0496 0.416 1.44 0.256 1.8304 0.264
0.272 0.248 0.6624 0.296 1.0528 0.424 1.4432 0.256 1.8336 0.264
0.2752 0.248 0.6656 0.296 1.056 0.432 1.4464 0.248 1.8368 0.264
0.2784 0.248 0.6688 0.296 1.0592 0.432 1.4496 0.248 1.84 0.264
0.2816 0.248 0.672 0.296 1.0624 0.44 1.4528 0.24 1.8432 0.256
0.2848 0.248 0.6752 0.296 1.0656 0.44 1.456 0.24 1.8464 0.256
0.288 0.256 0.6784 0.296 1.0688 0.448 1.4592 0.24 1.8496 0.248
0.2912 0.256 0.6816 0.296 1.072 0.448 1.4624 0.232 1.8528 0.248
0.2944 0.256 0.6848 0.296 1.0752 0.448 1.4656 0.232 1.856 0.248
0.2976 0.264 0.688 0.296 1.0784 0.448 1.4688 0.232 1.8592 0.248
0.3008 0.264 0.6912 0.304 1.0816 0.44 1.472 0.232 1.8624 0.248
0.304 0.272 0.6944 0.304 1.0848 0.44 1.4752 0.24 1.8656 0.24
0.3072 0.28 0.6976 0.304 1.088 0.44 1.4784 0.288 1.8688 0.24
0.3104 0.28 0.7008 0.312 1.0912 0.432 1.4816 0.408 1.872 0.24
0.3136 0.296 0.704 0.32 1.0944 0.424 1.4848 0.488 1.8752 0.24
0.3168 0.304 0.7072 0.32 1.0976 0.424 1.488 0.64 1.8784 0.24
0.32 0.312 0.7104 0.312 1.1008 0.416 1.4912 0.688 1.8816 0.24
0.3232 0.32 0.7136 0.312 1.104 0.416 1.4944 0.816 1.8848 0.24
0.3264 0.32 0.7168 0.312 1.1072 0.408 1.4976 0.728 1.888 0.24
0.3296 0.328 0.72 0.312 1.1104 0.408 1.5008 0.688 1.8912 0.232
0.3328 0.336 0.7232 0.312 1.1136 0.4 1.504 0.616 1.8944 0.232
0.336 0.344 0.7264 0.304 1.1168 0.392 1.5072 0.464 1.8976 0.232
0.3392 0.36 0.7296 0.304 1.12 0.392 1.5104 0.248 1.9008 0.232
0.3424 0.368 0.7328 0.304 1.1232 0.384 1.5136 0.136 1.904 0.232
0.3456 0.376 0.736 0.304 1.1264 0.376 1.5168 0.104 1.9072 0.232
0.3488 0.376 0.7392 0.304 1.1296 0.368 1.52 0.088 1.9104 0.224
0.352 0.384 0.7424 0.296 1.1328 0.368 1.5232 0.08 1.9136 0.224
0.3552 0.4 0.7456 0.296 1.136 0.368 1.5264 0.088 1.9168 0.224
0.3584 0.408 0.7488 0.296 1.1392 0.36 1.5296 0.088 1.92 0.224
0.3616 0.416 0.752 0.296 1.1424 0.36 1.5328 0.096 1.9232 0.224
0.3648 0.416 0.7552 0.296 1.1456 0.352 1.536 0.096 1.9264 0.224
0.368 0.424 0.7584 0.296 1.1488 0.344 1.5392 0.104 1.9296 0.224
0.3712 0.432 0.7616 0.296 1.152 0.336 1.5424 0.112 1.9328 0.224
0.3744 0.44 0.7648 0.296 1.1552 0.336 1.5456 0.112 1.936 0.224
0.3776 0.44 0.768 0.288 1.1584 0.328 1.5488 0.12 1.9392 0.224
0.3808 0.448 0.7712 0.288 1.1616 0.328 1.552 0.12 1.9424 0.216
0.384 0.448 0.7744 0.28 1.1648 0.328 1.5552 0.128 1.9456 0.216
0.3872 0.456 0.7776 0.28 1.168 0.32 1.5584 0.128 1.9488 0.216
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Normal Myocardial Ischemia Myocardial Infarction

Fig. 6. Original ECG image[Upper], ECG signal after removal of noise[Middle], ECG
signal after thinning [Lower]

The ASCII datafile generated for the image of ischemic sample shown in fig. 6,
is given in table 1.

5.2 Removal of Noises from ECG Signals

Electrocardiographic signals may be corrupted by different types of noises [18].
Typical examples are: 1.power line Interference, 2.electrode contact noise, 3.mo-
tion artifacts, 4.muscle contraction(electrmyographic,EMG), 5.baseline drift and
ECG amplitude modulation with respiration, and 6.electrosurgical noise. All the
noises are simulated by a software package Cool Edit Pro offered by Syntrillium
Software Corporation. This is done to get a realistic situation for the algorithm.
The EMG is simulated by adding random noise(white noise) to the ECG. An
FIR filter depending upon Savitzky-Golay algorithm is developed to remove
EMG like white noises from the ECG signals. 50Hz sinusoid is modeled as power
line interference and added with ECG. The base line drift due to respiration
was modeled as a sinusoid of frequency 0.15 to 0.4 Hz. A 50 Hz Notch filter is
designed for rejection of frequency band due to power line oscillation. The selec-
tion of notch width is very important. It should not affect the notch depth and
hence, would not be too narrow as well as too wide. In our experiment, the notch
width is fixed around 4 to 6 Hz keeping 50 Hz at the center of the notch. So
the signal should not be distorted so much after using notch filter, especially,the
low frequency band should remain less affected because this band carries more
useful information.

Then a high pass filter of critical frequency 0.6 Hz is developed to block the low
frequency noise signal that causes the base line shift. The fundamental frequency
of ECG signals generally varies from 0.8 Hz to 1.8 Hz and the ECG bandwidth is
0.8Hz to 500Hz. But in conventional ECG machines this bandwidth is reduced
to 0.8Hz to 80Hz since the mechanical stylus of ECG machines cannot move
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faster. Hence, 0.6Hz high pass filter blocks only the noise and pass the original
signal.

Both these FIR filters are also designed by the Cool Edit Pro software. The
abrupt base line shift is simulated by adding a dc bias for a given segment of the
ECG. This noise can be blocked with the help of the high pass filter described
above.

Since motion artifact is similar to baseline drift in respiration, it was not
specifically modeled. All of these noises are added to the ECG signal to simulate
the composite noise. This corrupted ECG signal is passed through all the filters
described above to get almost noise free ECG signal. All types of noise levels are
varied from 10% to 30% and the generated filters have produced good response
in all the cases.

5.3 Time-Plane Features Extraction

Accurate detection of the R-R interval between two consecutive ECG waves is
very important to extract the time based features from ECG signals. For this
purpose, the 2nd order derivative of the captured signal is computed by 5-point
Lagrangian interpolation formula for differentiation [27] given below :

f ′
0 =

1
12h

(f−2 − 8f−1 + 8f1 − f2) +
h4

30
fv(ξ). (6)

ξ lies between the extreme values of the abscissas involved in the formula. After
squaring the values of 2nd order derivative, a square-derivative curve having only
high positive peaks of small width at the QRS complex region can be obtained
(fig. 7). A small window of length (say W) was taken to detect the area of this
curve and we obtained maximum area at those peak regions.

The local maxima of these peak regions are considered as R-peak. For this
experiment the value of W is set as ∼0.07 sec. The system is tested for both
noise free and noisy signals. The levels of all type of noises are increased from
0% to 30% and still we achieved 99.5% accuracy in detection of QRS complexes.

In order to accurately detect P wave and ST segments, the isoelectric line
must be correctly identified. Most methods employed for this purpose are based
on the assumption that the isoelectric level of the signal lies on the area ∼80 ms
left of the R-peak, where the first derivative becomes equal.

In particular, let y1,y2, ..., yn be the samples of a beat [R-R interval], y1′,
y2′, ..., yn′−1 be their first differences and yr the sample where the R-peak
occurs. The isoelectric level samples yb are then defined if either of the two
following criteria is satisfied:∣∣∣y′r−j−int(0.08f)

∣∣∣ = 0, j = 1, 2, . . .., 0.01f or (7)

| y′r−j−int(0.08f)| ≤ | y′r−i−int(0.08f) | , i, j = 1,2,. . . .,0.02f

where f is the sampling frequency. After detection of baseline, the location of P
wave is determined from the first derivative of the samples.
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Fig. 7. QRS complex or R-R interval Detection

The R wave can be detected very reliably and for this reason, it is used as
the starting point for ST segment [fig 8] processing, and for T wave detection.
In most algorithms dealing with ST segment processing it is assumed that the
ST segment begins at 60 ms after the R-peak in normal sinus rhythm. In the
case of tachycardia (RR-interval <600 ms), the beginning of the ST segment is
marked at 40 ms after the R peak. The ST-segment duration has beat-to-beat
variability, but since this is not easily determined, many algorithms assume that
ST has a predefined length of 160 ms (this means that the end point is 220 ms
after R-peak in the normal case and 200 ms otherwise).

Other algorithms follow the Bazzet formula [39], that links the ST segment
duration with the RR interval duration. The above mentioned ST segment limits
are in general agreement with the recommendation the European ST-T database
and with the observations in [28, 40, 64].

Our algorithm adopted the first assumption and once the beginning of ST
segment is detected, it computes the slope and also detects the zero crossings
(basically isoelectric level crossing). Depending on the zero crossings and shape
of each wave, a syntactic approach [47] is developed for the detection of P, Q,



174 S. Mitra, M. Mitra, and B.B. Chaudhuri

Table 2. A segment of extracted ECG features

Heart
Rate
bpm

PR
Interval
Sec.

P Wave
Height
mm

P wave
Width
Sec.

QRS
Width
Sec.

QT
Interval
Sec.

RR
Interval
Sec.

QTc QRS
Voltage
mm

79 0.16 0.2 0.08 0.08 0.4 0.76 0.09 3
52 0.14 1.07 0.08 0.12 0.48 1.12 0.09 15
98 0.24 1.43 0.08 0.12 0.32 0.6 0.08 8
60 0.1 0.8 0.04 0.08 0.48 1 0.09 4
93 0.16 1 0.04 0.08 0.4 0.6 0.10 5
68 0.2 2.34 0.08 0.04 0.36 0.88 0.07 13
94 0.2 1.12 0.08 0.06 0.32 0.56 0.08 8
114 0.12 2.15 0.04 0.04 0.32 0.52 0.08 14
122 0.16 2.12 0.08 0.04 0.32 0.48 0.09 14
72 0.16 2.36 0.08 0.04 0.32 0.84 0.07 21
100 0.24 1.5 0.04 0.04 0.36 0.6 0.09 10
83 0.12 1.05 0.08 0.04 0.4 0.72 0.09 13
88 0.16 1.62 0.08 0.04 0.4 0.68 0.09 11
100 0.16 -0.2 0.04 0.08 0.36 0.64 0.09 3
79 0.17 1.2 0.08 0.04 0.36 0.76 0.08 7
56 0.24 1 0.08 0.04 0.36 1.08 0.07 3
79 0.16 0.2 0.04 0.04 0.36 0.76 0.08 8
83 0.24 -0.1 0.02 0.08 0.4 0.72 0.09 7
57 0.24 1 0.08 0.04 0.36 1.04 0.07 7
94 0.2 1 0.04 0.08 0.32 0.64 0.08 5
58 0.16 1 0.08 0.04 0.44 1.04 0.08 4
68 0.16 1 0.08 0.04 0.32 0.92 0.06 26
77 0.16 1 0.08 0.04 0.36 0.76 0.08 4
86 0.16 1 0.08 0.04 0.36 0.68 0.08 11
112 0.16 2 0.08 0.04 0.32 0.52 0.09 11
104 0.16 1 0.08 0.04 0.32 0.6 0.08 12
102 0.16 1 0.04 0.04 0.32 0.6 0.08 19
134 0.2 2 0.08 0.04 0.28 0.6 0.07 7
90 0.16 2 0.08 0.04 0.36 0.72 0.08 15
79 0.16 1 0.08 0.04 0.36 0.72 0.08 8
90 0.16 2 0.08 0.04 0.32 0.72 0.07 23

R, S and T waves and for the computation of different attributes of those waves
(fig. 8). For getting QRS complex we achieved 99.5% accuracy, while for T waves
the accuracy was 96.7% and for P waves the accuracy obtained was 92.2%. A
part of the extracted features are given in table 2.

5.4 Development of Knowledge Base

A knowledge base regarding ECG interpretation is also developed using the
opinion of the reputed cardiologists of hospitals and clinical centers. For this
purpose we selected 20 doctors and gave them different sample questions about
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Fig. 8. Different time plane features of one cycle of ECG

ECG interpretation. From their feedback and after consultation of some medical
books [4, 24, 26] we have selected 12 time plane features for disease identification.
They are listed below:

1.Heart Rate (60-100 beats/min), 2. PR interval (0.12-0.2s), 3.P wave height
(2.5mm), 4. P wave width (<0.12s), 5. QRS width (0.1or < 0.1 s), 6. QRS voltage
(35mm), 7.QTc= (QT interval/ Sqrt RR interval) (<=0.44s), 8. Abnormal Q
wave, 9. R wave Progression, 10. ST segment, 11. Reciprocity in T wave, and
12. T wave.

Among these 12 features, the first 9 are numerical attributes whereas the
last three are categorical attributes. The normal ranges of all the numerical
attributes are given in brackets except for number 8 and 9. The Q wave is
generally abnormal if its duration is 0.04 second or more in lead I, all three
inferior leads (II, III, AVF ), or the leads V3 to V6. On the other hand, a normal
R wave progression can be achieved by observing a gradual increase of R/S ratio
in chest leads. So, small R or absence of it in chest leads cause an abnormal or
poor R wave progression.

Among the categorical attributes, the ST segment has three categories (i)
Isoelectric, (ii) Elevated and (iii) Depressed. The T wave has two categories (i)
Positive and (ii) Negative/ Inverted. The reciprocity in T wave can be examined
by checking the category of ST segment in specific leads. The anterior and infe-
rior leads tend to show inverse patterns. Thus, inferior leads show ST segment
elevation, with reciprocal ST depression, often seen in anterior leads.

These 12 features are adequate for separation of normal and abnormal ECG
patterns. We have computed one of the most important rough set quantitative
measure called degree of dependency (k) to find the most significant conditional
attributes with respect to the decision attributes. These attributes are arranged
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according to their significance. The detailed calculations and inferences are given
in result section.

For classification of different diseases, the findings of the signal abnormalities
at different lead positions take an important role.

5.5 Development of Inference Engine

A rule-based rough-set decision system is generated for the development of an
inference engine for disease identification from the time-plane feature analysis
of ECG signals. One of popular and widely used, although slightly outdated,
rough-set software tool box is ROSETTA [45, 57]1. This software supports dif-
ferent options of generating decision tables, reducts, discretization techniques,
decision algorithms and classifications. We have used this software for our exper-
iment. Learning samples are processed in the following way. First, a knowledge
base is acquired for the data set i.e, for normal and abnormal data regarding
both quantitative and qualitative natures of those extracted time-plane features.
Knowledge base consists of objects, which are represented using conditional at-
tributes and decision parameters. All the time plane features described above
get their specific attributes according to knowledgebase and used as the input
parameters of the decision tables, a portion of which is given in table 3 and 4.
Here, two consecutive decision tables are framed for the generation of two sets
of rules. The first set is for separation of normal and abnormal data and the
second one is for the classification of diseased data set (specially MI).

Consequently, the acquired data are quantized to convert real attribute values
into discretized form, allowing further rule processing. Based on the discrete
values, attributes are analyzed in terms of discernibility investigation. Sets of
attributes allowing partition of object classes are then revealed. These sets are
called reducts.

The ROSETTA system supports a variety of quantization as well as reduct
and rule generation procedures. However, the details of these lie beyond the
scope of this report. For our experiments the following processing parameters
were employed:

– Equal frequency binning using 3 intervals is used for discretization.
– Object related genetic algorithm producing a set of rules via minimal at-

tribute subsets that discern object classes; reducts and rules are generated
upon analysis of all learning patterns.

These processing parameters were chosen during a preliminary research aimed
at optimizing the system efficiency and generation ability.

6 Experimental Results

6.1 Rule Generation

In this experiment two consecutive rule sets are generated from two separate
decision tables, portions of which are given in table 3 and 4, respectively.
1 Downloadable at http://rosetta.lcb.uu.se/
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Table 3. A portion of decision table 1

Heart
Rate

PR
Inter-
val

P
Wave
height

P
wave
width

QRS
width

QTc QRS
voltage

R
Wave
Prog

Abn. Q
waves

ST
Seg-
ment

Recipro-
city

T
waves

Disease

Conditional attributes
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Decision

class
String String String String String String String String String String String String String
N N N N N N N A P E P + MI
B N N N A N N A P E P + MI
N A N N A N N A P E Ab - MI
N N N N N N N A P D Ab - MI
B A N N N N N A P E Ab + MI
N N N N N N N N Ab I Ab + N
N N N N N N N N Ab I Ab + N
T N N N N N N N Ab I Ab + N
T N N N N N N N Ab I Ab + N
N A N N N N N N Ab E Ab + ISC
N N N N N N N N Ab E Ab + ISC
N N N N N N N A Ab E Ab + ISC
N N N N N N N A Ab E Ab + ISC
N N N N N N N A Ab E Ab + ISC
B N N N N N N N Ab E Ab + N

Table 3 is generated by different time plane features after acquiring specific
string attribute, depending on the quantitative measures obtained from the gen-
erated knowledgebase. For example, if the heart rate of a patient is within normal
range then it will get a string attribute ‘N’. If it falls below the lower limit of the
normal range then it will obtain another attribute ‘B’ for Bradycardia, whereas
if it is higher than the upper limit of the normal range then the attribute will
be ‘T’ for Tachycardia. The meaning of the other attributes are given at lower
part of the table 3.

According to the opinion of cardiologists and different medical books, all the
leads cannot show abnormal patterns for a specific disease. Only a specific group
of leads may show a particular abnormality for a particular disease. Hence, we
have to find that exact lead combination for that meticulous disease. Table 4 is
generated mainly according to the lead positions where the specific abnormality
is present. The string attributes in this table 4 are basically the lead combina-
tion where the specific abnormal feature (conditional attribute) has been found.
For example, for the first case of table 4, the disease is Anterior type MI and
the first column of that row represents the lead combination L3, V1, V2, V3
where the elevated ST segment has been found and so on. The bipolar limb
leads are represented as L1, L2, L3, the monopolar limb leads (augmented) are
represented as VR, VL, VF and the chest leads are represented as V1 – V6.
Intuitively, a “strong” rule is both accurate and has a high coverage. The ac-
curacy of a rule reflects how trustworthy its consequent is. Snapshots of the
generated rule set from table 3 and the corresponding confusion matrix, gener-
ated using standard voting classifier are given in figures 9 and 10. We consider
both LHS and RHS coverage factor for the selection of the optimum rule set.
For example, rule 1 of fig. 9 gives the decision according to LHS coverage factor
that only 31.4% patients having ECG where Abnormal Q wave is present(P) do
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Table 4. A portion of decision table 2

ST Segment
Elevated

ST Segment
Depressed

T wave
inverted

T wave
Asymmetric

T wave
Symmetric

Hyper-acute
T Present

Pathologic
Q Present

Disease

String String String String String String String String
L3,V1,V2,V3 L1,L2,VR,VL,

VF,V4
L1,L2,VR,VL,
VF,V4,

V2,V3 L1,L2,L3,VR,
VL,VF

V1,V2,V3,V4 VR,VL,V5 AN

L1,L2,VL,V2,
V3,V4

L3,VR,V1 L3,VR,V1,V4,
V5,V6

L2,VF,V1,V2,
V3,V4

L1,L3,VR,VL,
V5,V6

VL,VF,V1 L2,VR,VF AN

L1,L2,VL,V1,
V2,V3

L3,VR,VL,VF L3,VR,VL,VF L1,L2,VR,VL,
VF,V1

L1,L3,V4 V3 L2,V2,V3 IN

L1,VL,V1,V2,
V3,V4

L2,L3,VR,VF L2,L3,VR,VF VR,V6 L1,L2,L3VL,
VF,V1

L1,L3,VL,V2,
V3,V4

L2,L3,VF,V5 IN

L1,VL,V2,V2,
V3,V4

L2,L3,VR,VF L2,L3,VR,VF L1,L3,VR,VF L2,VL,V1,V2,
V3,V4

N L1,L2,L3,VR,
VF,V1,V2,V3

IL

L1,L2,VL,V1,
V2,V3

L3,VR,VF L3,VR,VF,V4 L2,VR,V3,V4,
V5,V6

L1,L3,VL,VF,
V1,V2

V1,V2 L1,L3,VR,VL,
V4,V5,V6

IL

L1,L2,VL,V2,
V3,V4

L3,VR,VF,V5,
V6

L3,VR,VF,V5,
V6

L1,L2,VR L3,VL,VF,V1,
V2,V3

V2,V3 L1,L2,L3,VL,
VF,V1,V2,V3

AS

L1,L2,VL,V1,
V2,V3

L3,VR L3,VR,VF L3,VR,VL,
VF,V3,V5

L1,L2,V1,
V2,V5,V6

L3,VR,V3,
V4,V5

L1,L2,L3,VF,
V4,V5,V6

AS

Table 5. Result obtained from rule based rough set decision system

Type of
Samples

No. of
Trained
Samples

No. of
Untrained
Samples

Accuracy for
Trained Sam-
ples

Accuracy for
Untrained
Samples

Normal 38 47 100% (38/38) 100% (47/47)
Ischemia 21 14 100% (21/21) 93% (13/14)
MI 27 23 100% (27/27) 100% (23/23)

suffer from Myocardial Infarction(MI). Whereas from the inverse decision rule,
considering RHS coverage factor, it can be concluded that 100% patients suffer-
ing from MI have ECG where abnormal Q wave is present. So, inverse decision
rule provide more strong explanation of the generated decision. Obviously, rule
4 having highest LHS and RHS coverage factor will be the strongest. The first 7
rule sets with high accuracy and coverage factor (both LHS and RHS) are taken
for the separation of normal and diseasesd data set. Both trained and untrained
samples for all the three sets of dataset (e.g. Normal, Ischemia and Myocardial
Infarction) are fed to the Inference system and the result obtained is given in
table 5. The numbers given in brackets in table 5 represent the number of prop-
erly classified samples versus all tested samples. The confusion matrix (fig. 10)
shows cent percent accuracy for all the three set of trained data. Table 5 sup-
ports this prediction. Still, the present system is tested by three types of ECG
data samples and encouraging result is obtained.

The rule set from table 4 are generated in the same manner as described
above and is shown in figure 11. The optimum rule set is chosen analogously by
considering the LHS and RHS coverage and stabilty factors for classification of
MI according to the location of the left ventricular cone where infarction actually
occurs. MI can be classified as Anterior(AN), Inferior(IN), Antero-lateral(AL),
Infero-lateral(IL), Antero-septal(AS), Infero-septal(IS) etc. The number of data
for training and testing for all classes of MI is not adequate at present. Since,
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Table 6. Result obtained by comparison with 10 fold cross validation study

Number of
Folds

For see 5 algorithm For rough set

Number of
rules

Rate of
accuracy (%)

Number of
rules

Rate of
accuracy (%)

0 3 70 7(25) 100
1 5 90 8(25) 100
2 3 80 8(25) 100
3 4 90 8(25) 100
4 5 100 10(38) 93
5 5 90 7(25) 100
6 4 70 8(25) 100
7 5 100 7(24) 100
8 4 90 8(25) 100
9 5 80 7(30) 98

Fig. 9. A Portion of Generated Rule Set from table 1

the dataset contain good number of data of classes AN, IN, AS and IL our
classification scheme on these four classes only. In future, the system will be
tested by more number of samples and few other types of diseases.

The result is compared with a standard classification algorithm See5 (http://
www.rulequest.com) which is based on the ID3 algorithm [59] and is the succes-
sor of the C4.5 program [60]. A 10 fold cross validation study for computational
comparison, which include classification accuracy and number of rules, gener-
ated is given in table 6. The rough set tool box ROSETTA has generated 24 to
38 rules (shown in bracket in table 6) for each fold but we have taken the rules
only having RHS coverage greater than 0.4. Actual classification was done by
those reduced rule set of 6 to 10 elements. Hence, in rough set approach much
better result can be obtained in cost of more number of rules.
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6.2 Calculation of Degree of Dependency (k)

Let us consider the information system given in table 3 where U ={xi: i=
1,2,3,. . . .,15} and C = {cj : j= 1,2,3,. . . ..,11,12,13}.

The following partitions can be obtained form the information system table 3:

Pc1= {{x2, x5, x15}, {x8, x9}, {x1, x3, x4, x6, x7, x10, x11, x12, x13, x14}}
Pc2= {{x3, x5, x10}, {x1, x2, x4, x6, x7, x8, x9, x11, x12, x13, x14, x15}}
Pc5= {{x2,x3}, {x1,x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15}}
Pc8= {{x1, x2, x3, x4, x5, x12, x13, x14}, {x6, x7, x8, x9, x10, x11, x15}}
Pc9= {{x1, x2, x3, x4, x5}, {x6, x7, x8, x9, x10, x11, x12, x13, x14, x15}}
Pc10= {{x4}, {x1, x2, x3, x5, x10, x11, x12, x13, x14, x15}, {x6, x7, x8, x9}}
Pc11= {{x1, x2}, {x3,x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15}}
Pc12= {{x3,x4}, {x1, x2, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15}}
Pc13= {{x1, x2, x3, x4, x5}, {x6, x7, x8, x9, x15}, {x10, x11, x12, x13, x14}}

Here we excluded the conditional attributes C3, C4 and C6, C7, since all
the samples are indiscernible with respect to these conditions. Hence, out of 12
attributes 8 attributes are now considered.

According to equation 5,

k = γ (C, D) = |POSC(D)|
|U| , where, POSC (D) =

⋃
X∈U/D

C∗(X) is known as a

positive region of the partition U/D with respect to C.
If we consider C={C12} and D={C13} then,

k = |{x3,x4}|
|{x1,x2,x3,......,x15}| .= 2/15 = 0.13

Now, if C={C12, C11} and D={C13} then

U/I(C) = U/I(C12, C11) = Pc12⊗Pc11= {{x1, x2}, {x3,x4}, {x5, x6, x7, x8, x9,
x10, x11, x12, x13, x14, x15}}

k = |{x1,x2,x3,x4}|
|{x1,x2,x3,......,x15}| .= 4/15 = 0.26.

Hence, it is noted that the dependency of D on C has doubly incremented
by considering both C12 and C11 instead of considering only C12. In a similar
manner, if the number of conditional attributes are gradually increased by the
order given below, it can be noted that the value of k also increases and becomes
1 when all the 8 attributes are considered. Different values of k for different
conditions are given below:

if C={C12, C11,C9}, k = 5/15 = 0.33
if C={C12, C11,C9,C8}, k = 8/15 = 0.53
if C={C12, C11,C9,C8,C5}, k = 8/15 = 0.53
if C={C12, C11,C9,C8,C5, C10}, k = 12/15 = 0.80
if C={C12, C11,C9,C8,C5, C10, C2}, k = 13/15 = 0.87
if C={C12, C11,C9,C8,C5, C10, C2, C1}, k = 15/15 = 1.00
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Fig. 10. Confusion Matrix Output for Standard Voting

Fig. 11. A Portion of Generated rule set from table 2

Inclusion of C10 significantly changes the value of k. So, it should be the most
significant condition. Where as effect of C5 is null and so it is least significant.
According to the significance these attributes can be arranged serially as C10,C8,
C11, C12, C1, C9, C2, C5.

Where, N→ Normal, A→ Abnormal, P→ Present, AB→ Absent, B→ Brady-
cardia, T→ Tachycardia, E→ Elevated, D→ Depressed, I→ Isoelectric, MI→
Myocardial Infarction, ISC→ Ischemia.

7 Conclusion

In this paper the rough set decision system is used for two phase classification of
ECG signals. To do so, an automated off-line data acquisition package is devel-
oped to extract the ECG signals from paper records. Six different types of noises
may corrupt those extracted ECG signals. So, different smoothing and filtering
techniques are adopted for making those signals almost noise free. A knowledge
base about the time plane features and ECG interpretation is developed from
various medical books and from the feed back of different reputed cardiologists.
The time-plane features of ECG signals are extracted from each of the 12 lead
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ECG signals with the help of differentiation and syntactic approaches. A rule-
based rough set decision system is developed from these time-plane features to
make an inference engine for two phase ECG classification.

Computation of degree of dependency (k), a rough set quantitative measure,
has also been done to arrange the set of attributes according to their significance
in order to make the decision. Apart from that, a computational comparison
has been done by using C5 algorithm which is developed on the basis of ID3
algorithm and is a higher version of C 4.5 algorithm. A 10 fold cross validation
study has been prepared for this comparison. It has been noted that rough set
approach is quite encouraging in this field of study.

At present, the system is tested with three types of ECG data- Normal, My-
ocardial Ischemia and Myocardial Infarction. In the first phase the ischemia and
MI data are separated from normal data set and in the next phase it can classify
the MI data according to the location of the left ventricular cone where infarc-
tion actually occurs. In future, the system will be tested with large number and
different types of dataset.
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Abstract. In the paper, some generalizations of the notions of reduct,
test (superreduct), partial (approximate) reduct and partial test are con-
sidered. The accuracy of greedy algorithm for construction of partial
test is investigated. A lower bound on the minimal cardinality of partial
reducts based on an information about greedy algorithm work is studied.
A bound on the precision of greedy algorithm which does not depend on
the number of pairs of rows of a decision table which should be separated
is obtained. Results of experiments with greedy algorithm are discussed.

Keywords: Partial test, partial reduct, greedy algorithm.

1 Introduction

The attribute reduction problem (it is required to find a reduct with minimal
or close to minimal cardinality) is one of the main problems of rough set theory
[14,16,21]. There are different variants of the notion of reduct: reducts for infor-
mation systems [14], usual decision and local reducts for decision tables [14,20],
decision and local reducts which are based on the generalized decision [20], etc.
Interesting discussion of various kinds of reducts can be found in [16], page 12.

In this paper, we consider “universal” definition of reduct which covers at least
part of possible variants. We use an approach considered in test theory [30]. Let
T be a decision table and P be a subset of pairs of discernible rows (objects) of
T . Then a reduct for T relative to P is a minimal (relative to inclusion) subset
of conditional attributes which separate all pairs from P . All mentioned above
kinds of reducts can be represented in such a form.

In this paper, we consider not only exact but also approximate (partial)
reducts, which are useful in inducing data models. Rough set theory often deals
with information and decision systems containing noisy data. In this case, the
exact reducts can be “over-learned”, i.e., depend essentially on the noise. If
we view reducts as a way of knowledge representation [20], then instead of
large exact reducts it is more appropriate to work with relatively smaller, in-
exact ones. The approximate reducts have been studied very intensively since
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the 1990s [6,7,9,11,12,17,18,24,25,27,28,29,31,32]. They became especially pop-
ular area of research beginning from 1998, according to the following words of
Zdzis�law Pawlak: “the idea of an approximate reduct can be useful in cases when
a smaller number of condition attributes is preferred over accuracy of classifica-
tion” [15].

We begin our consideration from a data table, which columns are labeled by
discrete and continuous variables, and rows are tuples of values of variables on
some objects. It is possible that this data table contains missing values [2,4]. We
consider the following classification problem: for a discrete variable we should
find its value using values of all other variables. We do not use variables directly
but create some attributes with relatively small number of values based on the
considered variables. As a result, we obtain a decision table with missing values
in the general case. We define the universal attribute reduction problem for this
table and consider a number of examples of known attribute reduction problems
which can be represented as the universal one.

Based on results from [9], we obtain bounds on precision of greedy algorithm
for partial test (superreduct) construction. This algorithm is a simple general-
ization of greedy algorithm for set cover problem [3,5,13,22,23]. We prove that
under some natural assumptions on the class NP the greedy algorithm is close
to the best (from the point of view of precision) polynomial approximate algo-
rithms for minimization of cardinality of partial tests. We show that based on
an information received during greedy algorithm work it is possible to obtain
a nontrivial lower bound on minimal cardinality of partial reduct. We obtain
also a bound on precision of greedy algorithm which does not depend on the
cardinality of the set P .

In [6,7,9] we described results of experiments with randomly generated deci-
sion tables. In this paper we discuss results of experiments with real-life decision
tables from [10]. Part of these results illustrates the use of lower bound on mini-
mal cardinality of partial reducts based on an information received during greedy
algorithm work (see Theorem 7). This bound can be useful in experiments con-
nected with the construction of various kinds of reducts by greedy algorithm.

This paper is an extended version of [8].
The paper consists of five sections. In Sect. 2 a transformation of a data table

into a decision table is considered. In Sect. 3 the notion of the universal attribute
reduction problem is discussed. In Sect. 4 greedy algorithm for construction of
partial tests (partial superreducts) is studied. In Sect. 5 results of experiments
with some decision tables from [10] are discussed.

2 From Data Table to Decision Table

The data table D is a finite table with k columns labeled by variables x1, . . . , xk

and N rows which are interpreted as tuples of values of variables x1, . . . , xk on
N objects u1, . . . , uN . It is possible that D contains missing values which are
denoted by “− ”.
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As usual, we assume that each of variables xi is either discrete (with values
from some finite unordered set V (xi)) or continuous (with values from a set
V (xi) ⊂ IR). We will assume that “− ” does not belong to V (xi).

Let us choose a variable xr ∈ {x1, . . . , xk} and consider the problem of pre-
diction of the value of xr on a given object using only values of variables from
the set X = {x1, . . . , xk} \ {xr} on the considered object. If xr is a discrete
variable, then the problem of prediction is called the classification problem. If
xr is a continuous variable, then the considered problem is called the problem
of regression. We only consider the classification problem. So xr is a discrete
variable.

We only consider two kinds of missing values: (i) missing value of xi as an
additional value of variable xi, which does not belong to V (xi), and (ii) missing
value as an undefined value. In the last case, based on the value of xi it is
impossible to discern an object ul from another object ut if the value xi(ul) is
missing (undefined).

We now transform the data table D into a data table D∗. For each variable
xi ∈ {x1, . . . , xk}, according to the nature of xi we choose either the first or the
second way for the work with missing values. In the first case, we add to V (xi)
a new value which is not equal to “ − ”, and write this new value instead of
each missing value of xi. In the second case, we leave all missing values of xi

untouched.
To solve the considered classification problem, we do not use variables from

X directly. Instead of this we use attributes constructed on the basis of these
variables. Let us consider some examples.

Let xi ∈ X be a discrete variable. Let us divide the set V (xi) into relatively
small number of nonempty disjoint subsets V1, . . . , Vs. Then the value of the
considered attribute on an object u is equal to the value j ∈ {1, . . . , s} for which
xi(u) ∈ Vj . The value of this attribute on u is missing if and only if the value of
xi on u is missing.

Let xi ∈ X be a continuous variable and c ∈ IR. Then the value of the
considered attribute on an object u is equal to 0 if xi(u) < c, and is equal to 1
otherwise. The value of this attribute on u is missing if and only if the value of
xi on u is missing.

Let xi1 , . . . , xit ∈ X be continuous variables and f be a function from IRt to
IR. Then the value of the considered attribute on an object u is equal to 0 if
f(xi1(u), . . . , xit(u)) < 0, and is equal to 1 otherwise. The value of this attribute
on u is missing if and only if the value of at least one variable from {xi1 , . . . , xit}
on u is missing.

We now assume that the attributes a1, . . . , am are chosen. Let, for the defi-
niteness, u1, . . . , un be all objects from {u1, . . . , uN} such that the value of the
variable xr on the considered object is definite (is not missing).

We now describe a decision table T . This table contains m columns labeled
by attributes a1, . . . , am, and n rows corresponding to objects u1, . . . , un respec-
tively. For j = 1, . . . , n the j-th row is labeled by the value xr(uj), which will be
considered later as the value of the decision attribute d. For any i ∈ {1, . . . , m}
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and j ∈ {1, . . . , n} the value ai(uj) is at the intersection of the j-th row and
the i-th column. If the value ai(uj) is missing then the symbol “ − ” is at the
intersection of the j-th row and the i-th column.

3 Problem of Attribute Reduction

3.1 Definition of Problem

Let T be a decision table with m columns labeled by attributes a1, . . . , am and n
rows which are identified with objects u1, . . . , un. It is possible that T contains
missing values denoted by “ − ”. Each row is labeled by a decision which is
interpreted as the value of the decision attribute d. Let A = {a1, . . . , am} and
U = {u1, . . . , un}.

We now define the indiscernibility relation IND(T ) ⊆ U ×U . Let ul, ut ∈ U .
Then (ul, ut) ∈ IND(T ) if and only if ai(ul) = ai(ut) for any ai ∈ A such that
the values ai(ul) and ai(ut) are definite (are not missing). Since T can contain
missing values, the relation IND(T ) is not an equivalence relation in the general
case, but it is a tolerance relation.

By DIS(T ) we denote the set of unordered pairs of objects ul and ut from
U such that (ul, ut) /∈ IND(T ). Let (ul, ut) ∈ DIS(T ) and ai ∈ A. We will say
that the attribute ai separates the pair (ul, ut) if the values ai(ul) and ai(ut) are
definite and ai(ul) 	= ai(ut). For any ai ∈ A we denote by DIS(T, ai) the set of
pairs from DIS(T ) which the attribute ai separates.

Let P be a subset of DIS(T ). Let Q be a subset of A and α be a real number
such that 0 ≤ α < 1. We will say that Q is an α-test for T relative to P (an
(α,P)-test for T ) if attributes from Q separate at least (1−α)|P| pairs from P .
An (α,P)-test for T is called an α-reduct for T relative to P (an (α,P)-reduct
for T ) if each proper subset of this (α,P)-test is not an (α,P)-test for T . If
P = ∅, then any subset Q of A is an (α,P)-test for T , but only the empty set
of attributes is an (α,P)-reduct for T . Note that each (α,P)-test contains an
(α,P)-reduct as a subset. The parameter α can be interpreted as inaccuracy. If
α = 0, then we obtain the notion of exact test for T relative to P and the notion
of exact reduct for T relative to P .

The problem of attribute reduction is the following: for a given decision table
T , subset P of the set DIS(T ) and real α, 0 ≤ α < 1, it is required to find
an (α,P)-reduct for T (an (α,P)-test for T ) with minimal cardinality. Let us
denote by Rmin(α) = Rmin(α,P , T ) the minimal cardinality of an (α,P)-reduct
for T . Of course, it is possible to use another measures of reduct quality.

The considered problem can be easily reformulated as a set cover problem:
we should cover the set P using minimal number of subsets from the family
{P ∩DIS(T, a1), . . . ,P ∩DIS(T, am)}. Therefore, we can use results, obtained
for the set cover problem, for analysis of the attribute reduction problem.

3.2 Examples

Now we consider examples of sets P corresponding to different kinds of reducts.
It was impossible for us to find definitions of some kinds of reducts which are
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applicable to decision tables with missing values. In such cases we have extended
existing definitions (if it was possible) trying to preserve their spirit.

For an arbitrary ul ∈ U , let [ul]T = {ut : ut ∈ U, (ul, ut) ∈ IND(T )} and
∂T (ul) = {d(ut) : ut ∈ [ul]T }. The set ∂T (ul) is called the generalized decision
for ul. The positive region POS(T ) for T is the set of objects ul ∈ U such that
|∂T (ul)| = 1. The set BN(T ) = U \POS(T ) is called the boundary region for T .

1. Reducts for the information system, obtained from T by removing the de-
cision attribute d. The set P is equal to DIS(T ) (we must preserve the
indiscernibility relation).

2. Usual decision reducts for T . The set P is equal to the set of all pairs
(ul, ut) ∈ DIS(T ) such that d(ul) 	= d(ut) and at least one object from the
pair belongs to POS(T ) (we must preserve the positive region).

3. Decision reducts for T based on the generalized decision. Let us assume T is
without missing values. The set P is equal to the set of all pairs (ul, ut) ∈
DIS(T ) such that ∂T (ul) 	= ∂T (ut).

4. Maximally discerning decision reducts for T . The set P is equal to the set
of all pairs (ul, ut) ∈ DIS(T ) such that d(ul) 	= d(ut).

5. Usual local reducts for T and object ul ∈ POS(T ). The set P is equal to the
set of all pairs (ul, ut) ∈ DIS(T ) such that d(ul) 	= d(ut).

6. Local reducts for T and object ul ∈ U based on the generalized decision. Let
us assume T is without missing values. The set P is equal to the set of all
pairs (ul, ut) ∈ DIS(T ) such that ∂T (ul) 	= ∂T (ut).

7. Maximally discerning local reducts for T and object ul ∈ U . The set P is
equal to the set of all pairs (ul, ut) ∈ DIS(T ) such that d(ul) 	= d(ut).

3.3 Maximally Discerning Reducts

The notions of maximally discerning decision and local reducts (but without
the use of the term “maximally discerning”) were investigated by the authors
in [6,7,9,17,32]. Note also that similar notions were considered earlier in [26,27].
Maximally discerning decision reducts can give us additional information on the
value of the decision attribute (for example, by the separation of groups of equal
rows with the same generalized decision but with different probability distribu-
tions of decision values). The consideration of maximally discerning local reducts
for objects from the boundary region can lead to construction of a decision rule
system which is applicable to wider class of new objects. We now consider two
examples.

Example 1. Let us consider the decision table T1 (see Figure 1). For this table,
there is exactly one usual decision reduct (which is equal to the empty set),
exactly one decision reduct based on the generalized decision (which is equal to
the empty set too) and exactly one maximally discerning decision reduct (which
is equal to {a2}). Based on reducts of the first two kinds it is impossible to
separate the rows (0, 0) from the rows (0, 1). However, for the considered two
types of rows we have different probability distributions of decision values. The
third kind of reducts allows us to separate these two types of rows.
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T1

a1 a2

0 0 1
0 0 2
0 1 1
0 1 2
0 1 2

T2

a1 a2

0 0 1
0 0 2
0 1 2
1 0 1

S1

a2 = 1 → 2
a1 = 1 → 1

S2

a1 = 0 ∧ a2 = 0 → {1, 2}
a2 = 1 → {2}
a1 = 1 → {1}

S3

a2 = 0 → 1
a1 = 0 → 2
a2 = 1 → 2
a1 = 1 → 1

Fig. 1. Illustrations to Examples 1 and 2

Example 2. Let us consider the decision table T2 and three systems of decision
rules S1, S2 and S3 obtained on the basis of usual local reducts, local reducts
based on the generalized decision and maximally discerning local reducts (see
Figure 1). Let us consider two new objects (0, 2) and (2, 0). Systems S1 and S2
have no rules which are realizable on the new objects. However, the system S3
has rules which are realizable on these new objects and moreover, correspond to
these objects different decisions.

4 Greedy Algorithm

Now we describe the greedy algorithm which for given α, 0 ≤ α < 1, decision
table T and set of pairs P ⊆ DIS(T ), P 	= ∅, constructs an (α,P)-test for T .

Algorithm 1. Greedy algorithm for partial test construction.
Input : Decision table T with conditional attributes a1, . . . , am, set of pairs

P ⊆ DIS(T ), P = ∅, and real number α, 0 ≤ α < 1.
Output: (α,P)-test for T .
Q ←− ∅;
while Q is not an (α,P)-test for T do

select ai ∈ {a1, . . . , am} with minimal index i such that ai separates the
maximal number of pairs from P unseparated by attributes from Q;
Q ←− Q ∪ {ai};

end
return Q;

By Rgreedy(α) = Rgreedy(α,P , T ) we denote the cardinality of the constructed
(α,P)-test for T .

4.1 On Precision of Greedy Algorithm

The following three theorems are simple corollaries of results from [22,23,9].

Theorem 1. Let 0 ≤ α < 1 and ((1− α)|P|) ≥ 2. Then

Rgreedy(α) < Rmin(α) · (ln ((1 − α)|P|) − ln ln ((1 − α)|P|)+ 0.78) .
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Theorem 2. Let 0 ≤ α < 1. Then for any natural t ≥ 2 there exists a decision
table T and a subset P of the set DIS(T ) such that ((1− α)|P|) = t and

Rgreedy(α) > Rmin(α)(ln ((1− α)|P|) − ln ln ((1 − α)|P|) − 0.31) .

Theorem 3. Let 0 ≤ α < 1. Then

Rgreedy(α) ≤ Rmin(α)(1 + ln( max
j∈{1,...,m}

|P ∩DIS(T, aj)|)) .

4.2 On Polynomial Approximate Algorithms

Immediately from results obtained in [12,28] the next theorem follows.

Theorem 4. Let 0 ≤ α < 1. Then the problem of construction, for given T and
P ⊆ DIS(T ), an (α,P)-reduct for T with minimal cardinality is NP -hard.

From statements obtained in [9] (based on results from [1,19,25,28]) the next
two theorems follow.

Theorem 5. Let α ∈ IR and 0 ≤ α < 1. If NP 	⊆ DTIME(nO(log log n)), then
for any ε, 0 < ε < 1, there is no polynomial algorithm that, for given decision
table T with DIS(T ) 	= ∅ and nonempty subset P ⊆ DIS(T ), constructs an
(α,P)-test for T which cardinality is at most (1− ε)Rmin(α,P , T ) ln |P|.

From Theorem 3 it follows that Rgreedy(α) ≤ Rmin(α)(1 + ln |P|). From this
inequality and from Theorem 5 it follows that under the assumption NP 	⊆
DTIME(nO(log log n)) the greedy algorithm is close to the best polynomial ap-
proximate algorithms for partial test cardinality minimization.

Theorem 6. Let α be a real number such that 0 ≤ α < 1. If P 	= NP , then there
exists ρ > 0 such that there is no polynomial algorithm that, for given decision
table T with DIS(T ) 	= ∅ and nonempty subset P ⊆ DIS(T ), constructs an
(α,P)-test for T which cardinality is at most ρRmin(α,P , T ) ln |P|.

From Theorems 3 and 6 it follows that under the assumption P 	= NP the
greedy algorithm is not far from the best polynomial approximate algorithms
for partial test cardinality minimization.

4.3 Lower Bound on Rmin(α)

In this subsection, we fix some information about greedy algorithm work and
find a lower bound on Rmin(α) depending on this information.

Let us apply the greedy algorithm to α, T and P . Let during the construc-
tion of (α,P)-test for T the greedy algorithm choose consequently attributes
aj1 , . . . , ajt . Let us denote by δ1 the number of pairs from P separated by the
attribute aj1 . For i = 2, . . . , t we denote by δi the number of pairs from P which
are not separated by attributes aj1 , . . . , aji−1 but are separated by the attribute
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aji . Let ∆(α,P , T ) = (δ1, . . . , δt). As information on the greedy algorithm work
we will use the tuple ∆(α,P , T ) and numbers |P| and α.

We now define the parameter l(α) = l(α, |P|, ∆(α,P , T )). Let δ0 = 0. Then

l(α) = max
{⌈
((1− α)|P|) − (δ0 + . . . + δi)

δi+1

⌉
: i = 0, . . . , t− 1

}
.

Next two theorems follow immediately from results obtained in [9].

Theorem 7. Let T be a decision table, P ⊆ DIS(T ), P 	= ∅, and α be a real
number such that 0 ≤ α < 1. Then

Rmin(α,P , T ) ≥ l(α, |P|, ∆(α,P , T )) .

The value l(α) = l(α, |P|, ∆(α,P , T )) can be used for the obtaining upper
bounds on cardinality of partial tests constructed by the greedy algorithm.

Theorem 8. Let α and β be real numbers such that 0 < β ≤ α < 1. Then

Rgreedy(α) < l(α− β) ln
(

1− α + β

β

)
+ 1 .

From Theorem 8 it follows that the lower bound Rmin(α) ≥ l(α) is nontrivial.
In [9] it is shown that for maximally discerning decision reducts and maximally
discerning local reducts the bound Rmin(α) ≥ l(α) is the best lower bound for
Rmin(α) depending on ∆(α,P , T ), |P| and α.

4.4 Upper Bound on Rgreedy(α)

In this subsection, we obtain an upper bound on Rgreedy(α) = Rgreedy(α,P , T )
which does not depend on |P|. The next statement follows immediately from
Theorems 7 and 8.

Theorem 9. Let α and β be real numbers such that 0 < β ≤ α < 1. Then

Rgreedy(α) < Rmin(α− β) ln
(

1− α + β

β

)
+ 1 .

In [9] it is shown that for maximally discerning decision reducts and maximally
discerning local reducts this bound is, in some sense, unimprovable: it is impos-
sible to multiply the right hand side of the considered inequality by any real δ
such that δ < 1.

5 Results of Experiments

Results of experiments with randomly generated decision tables and some the-
oretical results from [9] give us arguments in behalf of the following hypothesis:
for almost all decision tables during each step the greedy algorithm (under the
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construction of maximally discerning decision test) chooses an attribute which
separates at least one half of unseparated pairs of rows. It is not difficult to
show that in such cases Rgreedy(α) ≤

⌈
log2

1
α

⌉
for α > 0, and l(α) ≤ 2 for any

α. In particular, Rgreedy(0.1) ≤ 4, Rgreedy(0.01) ≤ 7, and Rgreedy(0.001) ≤ 10.
So using greedy algorithm it is possible to construct for such tables short partial
tests with relatively high accuracy.

To understand the situation with real-life decision tables we made additional
experiments with about 20 tables from [10]. For each of the considered tables
T in the capacity of the set P we choose the set of all pairs (ul, ut) ∈ DIS(T )
such that d(ul) 	= d(ut) (so we study maximally discerning decision reducts). We
apply to the decision table T , the set P and α = 0 the greedy algorithm.

The main result of these experiments is the following: with the exception
of the tables “kr-vs-kp” and “spect” during each step the greedy algorithm
chooses an attribute which separates at least one half of unseparated pairs. It
means that not only for randomly generated tables but also for real-life tables
it is possible to construct short partial tests with relatively high accuracy using
greedy algorithm.

Details of experiments with decision tables “kr-vs-kp”, “poker-hand-training-
true”, “nursery”, “monks-2.train” and “soybean-small” can be found in
Tables 1 - 3.

The column “#” contains the number i of step of greedy algorithm, the column
“attr.” contains the name of attribute chosen during the i-th step, the column
“α” contains the inaccuracy of partial test constructed during the first i steps, the
column “%” contains the percentage of unseparated during first i−1 steps pairs
which are separated during the i-th step, and the column “l(α)” (for Table 1)

Table 1. Results of the experiment with the decision table “kr-vs-kp” (36 conditional
attributes and 3196 rows, |P| = 2, 548, 563)

# % α l(α) attr.
1 53.86 0.461391687916226 1.0 wknck
2 55.80 0.203919051411864 2.0 bxqsq
3 55.01 0.091742516013002 2.0 wkpos
4 59.55 0.037112982420434 2.0 rimmx
5 54.48 0.016895013806505 2.0 bkxbq
6 55.69 0.007487020319340 2.0 katri
7 49.28 0.003797718550816 2.0 simpl
8 45.27 0.002078314490862 2.0 r2ar8
9 45.12 0.001140528893855 2.0 blxwp
10 39.91 0.000685334966761 2.0 dwipd
11 37.98 0.000425056409995 2.0 bkspr
12 40.70 0.000252059233920 3.0 cntxt
13 31.37 0.000172997176076 3.0 skewr
14 21.72 0.000135423128783 3.0 rxmsq
15 23.70 0.000103328630054 3.0 wkovl

# % α l(α) attr.
16 22.73 0.000079844850496 3.0 bkblk
17 26.47 0.000058709448894 4.0 wtoeg
18 24.00 0.000044619181160 4.0 mulch
19 24.56 0.000033660084033 4.0 thrsk
20 29.07 0.000023875175884 4.0 reskr
21 29.51 0.000016830042016 5.0 qxmsq
22 37.21 0.000010567700801 5.0 bkxcr
23 29.63 0.000007436530193 5.0 skrxp
24 31.58 0.000005088152238 5.0 bkona
25 38.46 0.000003131170608 5.0 skach
26 37.50 0.000001956981630 5.0 wkcti
27 40.00 0.000001174188978 5.0 bkon8
28 66.67 0.000000391396326 5.0 dsopp
29 100.0 0.000000000000000 5.0 spcop
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Table 2. Results of experiments with the decision table “poker-hand-training-true”
(10 conditional attributes and 25010 rows, |P| = 77, 677, 849) and the decision table
“nursery” (8 conditional attributes and 12960 rows, |P| = 57, 319, 460)

“poker-hand-training-true”
# % α attr.
1 92.31 0.076908180039933 C2
2 92.57 0.005713362727618 C5
3 93.07 0.000396183319396 C4
4 94.29 0.000022608333130 C3
5 99.80 0.000000045025309 C1
6 87.50 0.000000005628164 S1
7 100.0 0.000000000000000 S2

“nursery”
# % α attr.
1 83.09 0.169147720512370 health
2 86.40 0.023000984307947 has nurs
3 77.33 0.005214703697488 parents
4 77.44 0.001176284633526 children
5 77.85 0.000260574680920 form
6 77.08 0.000059735384806 housing
7 87.03 0.000007746060413 social
8 100.0 0.000000000000000 finance

Table 3. Results of experiments with the decision table “monks-2.train” (6 conditional
attributes (we ignore the attribute “Id”) and 169 rows, |P| = 6720) and the decision
table “soybean-small” (35 conditional attributes and 47 rows, |P| = 810)

“monks-2.train”
# % α attr.
1 75.27 0.247321428571429 a5
2 67.99 0.079166666666667 a4
3 66.92 0.026190476190476 a1
4 67.05 0.008630952380952 a2
5 63.79 0.003125000000000 a3
6 100.0 0.000000005628164 a6

“soybean-small”
# % α attr.
1 92.59 0.074074074074074 canker-lesion
2 100.0 0.000000000000000 temp

contains the lower bound on minimal cardinality of (α,P)-test. We do not study
the lower bound l(α) for tables “poker-hand-training-true”, “nursery”, “monks-
2.train” and “soybean-small” since for these tables the considered lower bound
is at most 2.

For the table “kr-vs-kp” the maximal value of l(α) is equal to 5. For this table
Rgreedy(0.1) = 3, Rgreedy(0.01) = 6, Rgreedy(0.001) = 10, and Rgreedy(0) = 29.
So instead of long exact test (29 attributes) one can work with short partial
tests with relatively high accuracy, for example, with a partial test containing 6
attributes which separate more than 99% pairs of rows.

For tables “poker-hand-training-true”, “nursery”, “monks-2.train” and “soy-
bean-small” there exist short partial tests with relatively high accuracy: for the
table “poker-hand-training-true” 4 attributes separate more than 99.99% pairs
of rows, for the table “nursery” 5 attributes separate more than 99.9% pairs of
rows, for the table “monks-2.train” 4 attributes separate more than 99% pairs of
rows and for the table “soybean-small” 2 attributes separate 100% pairs of rows.
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6 Conclusions

The paper is devoted to discussion of universal attribute reduction problem and
to analysis of greedy algorithm for solving this problem. The obtained results
show that, under some natural assumptions on the class NP , greedy algorithm
is close to the best polynomial approximate algorithms for the minimization
of partial test cardinality. Based on an information received during the greedy
algorithm work it is possible to obtain lower bound on the minimal cardinality
of partial reducts. Experimental results show that using greedy algorithm we
often can construct short partial tests with relatively high accuracy.
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Abstract. The direct searching for relevant reducts in the set of all
reducts of a given data table can be often computationally infeasible,
especially for large data tables. Hence, there is a need for developing
efficient methods for extracting relevant information about reducts from
data tables which could help us to perform efficiently the inducing pro-
cess of the high quality data models such as rule based classifiers. Such
relevant information could help, e.g., to reduce the dimensionality of the
attribute set. We discuss methods for generating relevant information
about reduct sets from information systems or decision tables. In partic-
ular, we consider a binary relation on attributes satisfied for two given
attributes if and only if there is no reduct consisting them both. More-
over, we prove that for any fixed natural k, there exists a polynomial in
time algorithm which for a given decision table T and given k conditional
attributes recognizes if there exists a decision reduct of T covering these
k attributes. We also present a list of problems related to the discussed
issues. The reported results create a step toward construction of a soft-
ware library reducing the searching costs for relevant reducts.

Keywords: Rough sets, decision tables, decision reducts, geometry of
reducts.

1 Introduction

In the rough set approach for decision making often are used different kinds of
reducts such as reducts of information systems, decision reducts or local reducts.
It is well known that the size of the set of all reducts of information (decision) sys-
tems can be huge relative to the number of attributes. Hence, the direct searching
in such sets for relevant reducts can be often computationally infeasible, espe-
cially for large data tables. Hence, there is a need for developing efficient methods
for extracting relevant information about reducts from data tables which could
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help us to induce the high quality data models such as rule based classifiers.
This relevant information could help, e.g., to reduce the dimensionality of the
attribute set. We present examples illustrating how such relevant information
about reduct sets can be generated from information systems or decision ta-
bles. In particular, we consider a binary relation on attributes satisfied by two
given attributes if and only if there does not exist reduct consisting them both.
We illustrate how such a relation can be used in the reduct generation. More-
over, we prove that for any fixed natural k, there exists a polynomial in time
algorithm which for a given decision table T and given k conditional attributes
recognizes if there exists a decision reduct of the decision system T containing
these k attributes. Using this algorithm one can, in particular, eliminate all sin-
gle attributes which are not covered by any reduct of T . We also shortly discuss
how the dependencies between attributes can be used in the reduct generation.
Finally, we also present a list of problems related to the discussed issue.

We plan to develop a software library which could be used in preprocessing
of the reduct generation.

The set of all decision reducts of a decision table T [5] contains rich infor-
mation about the table T . Unfortunately, there is no polynomial algorithms for
construction of the set of all reducts.

In this paper, we show that there are polynomial (in time) algorithms for
obtaining of indirect but useful information about this set.

We show that for any fixed natural k, there exists a polynomial (in time)
algorithm Ak checking, for a given decision table T and given k conditional
attributes, if there exist a reduct for T covering these k attributes.

The information obtained on the basis of algorithms A1 and A2 can be rep-
resented in a simple graphical form. One can construct a graph with the set of
vertices equal to the set of attributes covered by at least one reduct, and the set
of edges equal to the set of all pairs of attributes which do not belong to any
reduct. The degree of an attribute in this graph (the number of edges incident
to this attribute) characterizes the attribute importance. The changes of this
graph after adding of a new object to the decision table allow us to evaluate the
degree of influence of this new object on the reduct set structure. In the paper,
we consider such graphs for three real-life decision tables. Some properties of
such graphs are studied in [2].

Note that there exist close analogies between results of this paper and results
obtained in [1], where the following problem was considered: for a given positive
Boolean function f and given subset of its variables it is required to recognize
if there exists a prime implicant of dual Boolean function fd containing these
variables.

Another approach for efficient extracting from a given decision table T of
indirect information about the set of all reducts and a graphical representation of
the information was considered in [9]. It was shown that there exists a polynomial
algorithm for constructing the so-called pairwise core graph for a given decision
table T . The set of vertices of this graph is equal to the set of conditional
attributes of T , and the set of edges coincides with the two element sets of
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attributes disjoint with the core of T (i.e., the intersection of all reducts of T )
and having non-empty intersection with any reduct of T . This example is a step
toward a realization of a program suggested in early 90s by Andrzej Skowron
in his lectures at Warsaw University to study geometry of reducts aiming at
developing tools for investigating geometrical properties of reducts in the space
of all reducts of a given information system. For example, the core of a given
information system can be empty but in the reduct space can exist only a few
subfamilies of reducts such that the intersection of each subfamily is non-empty.

Yet another discussed in the paper method for extracting information about
the reduct set from a given data table can be based on the dependencies between
attributes in a given information system.

This paper is structured as follows. In Section 2, we discuss the problem of
existence of reducts including a given set of attributes. The graphical represen-
tation of some information about the set of reducts is considered in Section 3.
In Section 4, we discuss shortly a possible application of dependencies in the
reduct generation. In Section 5, we present conclusions and a list of problems
for further study. In the appendix, we present a polynomial algorithm for one of
problems listed in Section 5. This algorithm was found during the final editing
of the paper.

This paper is an extended version of [3].

2 On Covering of k Attribute Sets by Reducts

A decision table T is a finite table in which each column is labeled by a con-
ditional attribute. Rows of the table T are interpreted as tuples of values of
conditional attributes on some objects. Each row is labeled by a decision which
is interpreted as the value of the decision attribute1.

Let A be the set of conditional attributes (the set of names of conditional
attributes) of T . We will say that a conditional attribute a ∈ A separates two
rows if these rows have different values at the intersection with the column
labeled by a. We will say that two rows are different if at least one attribute
a ∈ A separates these rows. Denote by P (T ) the set of unordered pairs of different
rows from T which are labeled by different decisions.

A subset R of the set A is called a test (or superreduct) for T if for each pair
of rows from P (T ) there exists an attribute from R which separates rows in this
pair. A test R for T is called a reduct for T if each proper subset of R is not
a test for T . In the sequel, we deal with decision reducts but we will omit the
word “decision”.

Let us fix a natural number k. We consider the following covering problem
for k attributes by a reduct : for a given decision table T with the set of condi-
tional attributes A, a subset B of the set A, and k pairwise different attributes
a1, . . . , ak ∈ B it is required to recognize if there exist a reduct R for T such that
1 We consider uniformly both consistent and inconsistent decision tables. However,

in the case of inconsistent decision table, one can use also the so called generalized
decision instead of the original decision [5,6,7].
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R ⊆ B and a1, . . . , ak ∈ R, and if the answer is “yes” it is required to construct
such a reduct. We describe a polynomial in time algorithm Ak for the covering
problem (see Algorithm 1).

For a ∈ A, we denote by PT (a) the set of pairs of rows from P (T ) separated
by a. For a1, . . . , ak ∈ A and aj ∈ {a1, . . . , ak} let

PT (aj |a1, . . . , ak) = PT (aj) \
⋃

i∈{1,...,k}\{j}
PT (ai).

For a1, . . . , ak ∈ A, let

PT (a1, . . . , ak) = PT (a1|a1, . . . , ak)× . . .× PT (ak|a1, . . . , ak).

Assuming that (π1, . . . , πk) ∈ PT (a1, . . . , ak), we denote by

DT (B, a1, . . . , ak, π1, . . . , πk)

the set of attributes a from B \ {a1, . . . , ak} such that a separates rows in at
least one pair of rows from the set {π1, . . . , πk}. Note that

DT (B, a1, . . . , ak, π1, . . . , πk) =
k⋃

j=1

DT (B, aj , πj).

Algorithm 1. Algorithm Ak for solving of the covering problem for k at-
tributes by a reduct
Input : Decision table T with the set of conditional attributes A, B ⊆ A, and

a1, . . . , ak ∈ B.
Output: If there exists a reduct R for T such that R ⊆ B and a1, . . . , ak ∈ R,

then the output is one of such reducts; otherwise, the output is “no”.
construct the set PT (a1, . . . , ak);
for any tuple (π1, . . . , πk) ∈ PT (a1, . . . , ak) do

R ←− B \ DT (B,a1, . . . , ak, π1, . . . , πk)
if R is a test for T then

while R is not a reduct for T do
select a ∈ R such that R \ {a} is a test for T ;
R := R \ {a}

end
return R;
stop

end

end
return “no” (in particular, if PT (a1, . . . , ak) = ∅, then the output is “no”)

Using algorithm Ak (see Algorithm 1) first the set PT (a1, . . . , ak) is con-
structed. Next, for each tuple (π1, . . . , πk) ∈ PT (a1, . . . , ak) the set

DT (B, a1, . . . , ak, π1, . . . , πk)
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is constructed and it is verified if the set B \ DT (B, a1, . . . , ak, π1, . . . , πk) is a
test for T . It is clear that |PT (a1, . . . , ak)| ≤ n2k, where n is the number of rows
in T . Using this inequality and the fact that k is fixed natural number, one can
prove that the algorithm Ak has polynomial time complexity2. Unfortunately,
the algorithm Ak has a relatively high time complexity.

The considered algorithm is based on the following proposition:

Proposition 1. Let T be a decision table with the set of conditional attributes
A, B ⊆ A, and a1, . . . , ak ∈ B. Then the following statements hold:

1. A reduct R for T such that R ⊆ B and a1, . . . , ak ∈ R exists if and only if
there exists a tuple (π1, . . . , πk) ∈ PT (a1, . . . , ak) such that

B \DT (B, a1, . . . , ak, π1, . . . , πk)

is a test for T .
2. If the set S = B \ DT (B, a1, . . . , ak, π1, . . . , πk) is a test for T then each

reduct Q for T , obtained from S by removing from S of some attributes, has
the following properties: a1, . . . , ak ∈ Q and Q ⊆ B.

Proof. Let R be a reduct for T such that a1, . . . , ak ∈ R and R ⊆ B. It is clear
that for each aj ∈ {a1, . . . , ak} there exists a pair of rows πj from P (T ) such
that aj is the only attribute from the set R separating this pair. It is clear that
(π1, . . . , πk) ∈ PT (a1, . . . , ak) and R ⊆ B \ DT (B, a1, . . . , ak, π1, . . . , πk). Since
R is a reduct for T , we conclude that B \DT (B, a1, . . . , ak, π1, . . . , πk) is a test
for T .

Let us assume that there exists a tuple (π1, . . . , πk) ∈ PT (a1, . . . , ak) such that
the set S = B \DT (B, a1, . . . , ak, π1, . . . , πk) is a test for T . Let Q be a reduct
for T obtained by removing some attributes from S. It is also clear that Q ⊆ B.
Let j ∈ {1, . . . , k}. Since aj is the only attribute from the test S separating rows
from πj , we have aj ∈ Q. Thus, a1, . . . , ak ∈ Q. ��

3 Graphical Representation of Information about the Set
of Reducts

Let T be a decision table with the set of conditional attributes A. Let B ⊆ A.
Using polynomial algorithms A1 and A2 one can construct a graph G(T, B).
The set of vertices of this graph coincides with the set of attributes a ∈ B for
each of which there exists a reduct R for T such that R ⊆ B and a ∈ R. Two
different vertices a1 and a2 of G(T, B) are linked by an edge if and only if there
is no a reduct R for T such that R ⊆ B and a1, a2 ∈ R. Let us denote by G(T )
the graph G(T, A).

Note that there exists close analogy between the graph G(T ) and the so-called
co-occurance graph [1] for positive Boolean function f . The set of vertices of this

2 Note that k is treated as a constant for the algorithm Ak.
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graph is equal to the set of variables of f . Two different variables are linked by
an edge if and only if f has a prime implicant containing these variables.

Now, we present the results of three experiments with real-life decision tables
from [4] (the first example was considered in [2]).

Example 1. [2] Let us denote by TZ the decision table “Zoo” [4] with 16 condi-
tional attributes a1, . . . , a16 (we ignore the first attribute “animal name”) and
101 rows. Only attributes a1, a3, a4, a6, . . . , a14, a16 are vertices of the graph
G(TZ). The set of reducts for TZ is represented in Table 1. The graph G(TZ)
is depicted in Fig. 1. For example, any reduct containing a7 is disjoint with
{a8, a9, a14}.

Example 2. Let us denote by TL the decision table “Lymphography” [4] with
18 conditional attributes a1, . . . , a18 and 148 rows. Each of the considered at-
tributes is a vertex of the graph G(TL). The graph G(TL) is depicted in Fig. 2.

Table 1. The set of reducts for the decision table TZ (“Zoo”)

{a3, a4, a6, a8, a13} {a3, a6, a8, a9, a12, a13} {a3, a6, a8, a13, a16}
{a3, a4, a6, a9, a13} {a1, a3, a6, a7, a10, a12, a13} {a3, a6, a9, a13, a16}
{a3, a6, a8, a10, a13} {a3, a4, a6, a7, a10, a12, a13} {a4, a6, a8, a11, a13, a16}
{a1, a3, a6, a9, a10, a13} {a1, a6, a8, a10, a12, a13} {a4, a6, a9, a11, a13, a16}
{a1, a3, a6, a8, a11, a13} {a1, a6, a9, a10, a12, a13} {a3, a6, a7, a10, a11, a13, a16}
{a1, a3, a6, a9, a11, a13} {a1, a3, a6, a10, a13, a14} {a1, a6, a8, a10, a11, a13, a16}
{a3, a6, a8, a9, a11, a13} {a3, a4, a6, a10, a13, a14} {a1, a6, a9, a10, a11, a13, a16}
{a1, a3, a6, a8, a12, a13} {a3, a6, a8, a11, a13, a14} {a3, a6, a7, a10, a12, a13, a16}
{a4, a6, a8, a12, a13} {a3, a6, a8, a12, a13, a14} {a3, a6, a10, a13, a14, a16}
{a1, a3, a6, a9, a12, a13} {a1, a6, a10, a12, a13, a14} {a1, a6, a10, a11, a13, a14, a16}
{a4, a6, a9, a12, a13} {a4, a6, a10, a12, a13, a14} {a4, a6, a10, a11, a13, a14, a16}

a1

a4a3

a6

a7

a8

a9

a14

a11

a12

a10

a13

a16

Fig. 1. Graph G(TZ) for the decision table TZ (“Zoo”)
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a15
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a17

a18

a4

a2

a3a5

a7

a8

a9 a10

a12

a1

a6

a11

a13

a14

Fig. 2. Graph G(TL) for the decision table TL (“Lymphography”)
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a22
a24
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a25 a35

Fig. 3. Graph G(TS) for the decision table TS (“Soybean-small”)

In particular, one can observe from G(TL) that any reduct of TL containing a4
is disjoint with {a2, a3, a5, a7, a8, a9, a10, a12}.

Example 3. Let us denote by TS the decision table “Soybean-small” [4] with 35
conditional attributes a1, . . . , a35 and 47 rows. Only attributes a1, . . . , a10, a12
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and a20, . . . , a28, a35 are vertices of the graph G(TS). The graph G(TS) is depicted
in Fig. 3.

Some properties of graphs G(T ) are studied in [2].
It is shown in [2] that any undirected graph G can be represented as the graph

G(T ) for an appropriate decision table T . However, the graph G(T ) can give us
rich information about the set of reducts for a decision table T .

Proposition 2. [2] Let A be a finite set of names of conditional attributes, and
G = (V, E) be an undirected graph, where V ⊆ A is the set of vertices of G
and E is the set of edges of G such that each edge of G is a two-element subset
of V . Then there exists a decision table T with the set of names of conditional
attributes A such that G(T ) = G.

Results of experiments considered in [2] show that there exists a correlation
between the degrees3 of attributes in G(T ) and the number of reducts of T
covering these attributes (the last parameter is considered often as an attribute
importance), and between changes of G(T ) and changes of the set of reducts for
T after extending T by a new object (the changes in the set of reducts can be
considered as a noticeable influence of updating of the decision table by the new
object).

4 Using Dependencies in Generation of Reducts

Another important issue in data analysis is discovering dependencies between
attributes in a given decision system T = (U, C, D). Intuitively, a set of attributes
D depends totally on a set of attributes C, denoted C ⇒ D, if the values of
attributes from C uniquely determine the values of attributes from D. In other
words, D depends totally on C, if there exists a functional dependency between
values of C and D.

We will say that D depends on C to a degree k (0 ≤ k ≤ 1) in T , denoted
C ⇒k D, if

k = γ(C, D) =
card(POSC(D))

card(U)
, (1)

where
POSC(D) =

⋃
X∈U/D

C∗(X),

called a positive region of the partition U/D with respect to C4, is the set of all
elements of U that can be uniquely classified to blocks of the partition U/D, by
means of C.

If k = 1 we say that D depends totally on C, and if k < 1, we say that D
depends partially (to degree k) on C. If k = 0 then the positive region of the
partition U/D with respect to C is empty. The coefficient k expresses the ratio
3 A degree of an attribute is the number of edges incident to this attribute.
4 C∗(X) denotes the C-lower approximation of X [6].
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of all elements of the universe, which can be properly classified to blocks of
the partition U/D, employing attributes C and will be called the degree of the
dependency. Summing up: D is totally (partially) dependent on C, if all (some)
elements of the universe U can be uniquely classified to blocks of the partition
U/D, employing C. Observe, that (1) defines only one of possible measures of
dependency between attributes (see, e.g., [8]).

Let us consider one very simple application of dependencies in reduct gen-
eration. One can also consider dependencies between conditional attributes in
decision tables. In particular, if B, B′ are subsets of conditional attributes in T
then the dependency B ⇒ B′ is true in T if and only if the dependency B ⇒1 B′

holds in the decision system (U, B, B′). Then, in searching for decision reducts
of T in which B should be included one can eliminate the attributes from B′.
Obviously, if there exist two disjoint subsets B1, B2 of B such that B1 ⇒ B2
holds in T then there does not exist reduct covering B.

5 Conclusions

We have discussed some methods for generation of information from data ta-
bles which can be used in the reduct computation. In particular, we have shown
that, for each natural k a polynomial algorithm Ak exists which for a given deci-
sion table and given k conditional attributes recognizes if there exist a decision
reduct covering these k attributes. Results of computer experiments with two
algorithms A1 and A2 are reported. Finally, we have shortly discussed applica-
tions of dependencies between conditional attributes in the reduct generation. In
our project we are building a software library which could be helpful in solving
different reduct generation problems. Methods from this library could be applied
as some additional tools simplifying searching for relevant reducts.

Below we present a list of exemplary problems we would like to investigate
in our further study. We are interested in computational complexity of these
problems and algorithms (heuristics) for solving them.

The input for each problem is a data table T representing an information or
decision system. By RED(T ) we denote the set of all reducts of T of a given
kind (e.g., decision reducts).

– Problem 1. Let us consider a graph GRED(T ) with nodes equal to elements
of RED(T ). Two reducts are linked by an edge if and only if they have
non-empty intersection. We would like to estimate the number of connected
components of the graph GRED(T ) 5.

– Problem 2. For given thresholds tr, k > 0 check if there exist at least k
reducts with non-empty intersection consisting at least tr attributes.

5 During the final editing of the paper we found a polynomial algorithm for this
problem solving in the case when RED(T ) is the set of all decision reducts (see
appendix). This algorithm has a relatively high time complexity. The problem of
existence of more efficient algorithms is open.
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– Problem 3. How many maximal (with respect to the number of elements)
families of reducts from RED(T ) exist which satisfy the condition formulated
in Problem 2?

– Problem 4. Find a maximal family of pairwise disjoint reducts in RED(T ).
– Problem 5. Let us consider a discernibility function for reducts defined by

disT (R) = |{R′ ∈ RED(T ) : R ∩ R′ = ∅}| for R ∈ RED(T ). Find bounds
for fT (n) = max{disT (R) : R ∈ RED(T ) & |R| = n}.

– Problem 6. Let us consider a binary discernibility relation on subsets of
attributes defined by B DIS(T ) C if and only if (B ⊆ R and R ∩C = ∅) or
(C ⊆ R and R ∩ B = ∅) for some R ∈ RED(T ), where B, C are subsets of
the set of (conditional) attributes of T . What are the properties of DIS(T )?

– Problem 7. Let us consider a distance between reducts defined by

distT (R, R′) = |R \R′|+ |R′ \R|,

for R, R′ ∈ RED(T ). Estimate the largest distance between reducts from
RED(T ).

– Problem 8. Let us consider an incremental sequence of decision tables Ti =
(Ui, C, D) for i = 1, 2, . . ., where Ui ⊆ Ui+1 for any i. We would like
to develop methods for reasoning about changes between RED(Ti) and
RED(Ti+1).

In our further study we also would like to check if there exist efficient ran-
domized algorithms for solution of the considered in the paper problem.
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9. Wróblewski, J.: Pairwise cores in information systems. In: Ślȩzak, D., Wang, G.,
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Appendix: Comparison of Graphs GRED(T ) and G′(T )

In this section, we consider a polynomial algorithm for solving of Problem 1 in
the case of decision reducts.

Let T be a decision table. We denote by RED(T ) the set of all decision reducts
for T . The set of nodes of the graph GRED(T ) coincides with RED(T ). Two
reducts are linked by an edge if and only if they have non-empty intersection.
Graph G′(T ) is the complement of the graph G(T ). The set of nodes of the
graph G′(T ) coincides with the set ARED(T ) =

⋃
R∈RED(T ) R of all conditional

attributes of T each of which belongs to at least one decision reduct for T . Two
attributes are linked by an edge if and only if there exists a decision reduct for
T containing both these attributes.

We show that graphs GRED(T ) and G′(T ) have the same number of connected
components.

Proposition 3. Let T be a decision table. Then the number of connected com-
ponents of the graph GRED(T ) is equal to the number of connected components
of the graph G′(T ).

Proof. Let B1, . . . , Bn be all connected components of the graph GRED(T ). For
i = 1, . . . , n, we denote by Ai the set of attributes contained in reducts belonging
to Bi. It is clear that A1 ∪ . . . ∪ An = ARED(T ) and Ai ∩ Aj = ∅ for any
i, j ∈ {1, . . . , n}, i 	= j. For i = 1, . . . , n, we denote by G′(T, Ai) the subgraph of
the graph G′(T ) generated by nodes from Ai.

Let us prove that G′(T, A1), . . . , G′(T, An) are all connected components of
the graph G′(T ). To this end we must show that, for any i, j ∈ {1, . . . , n}, i 	= j,
the following statements hold:

1. Any two nodes from Ai are connected by a path in the graph G′(T ).
2. Any node from Ai and any node from Aj are not linked by an edge.

http://www.ics.uci.edu/~mlearn/MLRepository.html
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Let |Ai| = 1. Then the first statement holds. The unique attribute from Ai

forms a reduct. This attribute can not belong to any other reduct. Therefore,
the second statement holds too.

Let |Ai| > 1. Let us consider arbitrary different nodes a and a′ from Ai. Then
there are reducts R and R′ from Bi such that a ∈ R and a′ ∈ R′. If R = R′

then a and a′ are linked by an edge. Let us assume that R 	= R′. We consider a
shortest path α = R, R1, . . . , Rm, R′ in GRED(T ) connecting the reducts R and
R′. We set R0 = R and Rm+1 = R′. For t = 0, . . . , m, we choose an attribute
at ∈ Rt ∩ Rt+1. It is clear that R1, . . . , Rm belong to Bi. Therefore, at ∈ Ai for
t = 0, . . . , m. Let us consider the sequence

β = a, a0, . . . , am, a′.

Notice that it is possible that a = a0 or am = a′. Since α is a shortest path
connecting R and R′, we have a0 	= a1 	= a2 	= . . . 	= am. It is clear that a, a0 ∈
R0 = R, a0, a1 ∈ R1, ..., am−1, am ∈ Rm, am, a′ ∈ Rm+1 = R′. Therefore, the
sequence β forms a path connecting a an a′ in G′(T ). Thus, the first statement
holds.

Let us assume that there exist a node a1 ∈ Ai and a node a2 ∈ Aj which are
linked by an edge. Then there exists a reduct R such that a1, a2 ∈ R, which is
impossible since R ∈ Bi and R ∈ Bj . Thus, the second statement holds. Hence,
we obtain that G′(T, A1), . . . , G′(T, An) are all connected components of the
graph G′(T ). ��

Proposition 3 allows us to solve Problem 1 (for the case of decision reducts for
a decision table T ) in the following way: using polynomial algorithms A1 and
A2 we construct the graph G′(T ) and find (in polynomial time) the number
of connected components in this graph. The obtained number is equal to the
number of connected components in the graph GRED(T ).

Unfortunately, algorithms A1 and A2 have a relatively high time complexity.
The problem of existence of more efficient algorithms for Problem 1 solving is
open.

Example 4. Let us consider decision tables TZ (“Zoo”), TL (“Lymphography”)
and TS (“Soybean-small”) discussed in Examples 1-3. Simple analysis of graphs
G(TZ), G(TL) and G(TS), which are the complements of the graphs G′(TZ),
G′(TL) and G′(TS), shows that each of graphs G′(TZ), G′(TL) and G′(TS)
has exactly one connected component. Therefore, each of graphs GRED(TZ),
GRED(TL) and GRED(TS) has exactly one connected component.
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1 Introduction

A fundamental structure arising in formal concept analysis (FCA) [7,21] is that
of a ‘context’. In this paper we will consider this notion within the framework
of what we refer to as discrete duality. While a classical duality, such as that
of, for example, Stone [19] and Priestley [18], includes a representation of a
class of algebras in terms of a topological structure, a discrete duality includes
a representation for a class of algebras in terms of the relational structures
that provide the frame semantics (or equivalently, Kripke-style semantics) of the
lattice-based logic associated with the class of algebras. The frame semantics is
given in terms of a relational structure without a (non-discrete) topology which
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explains the name of this type of duality. General principles of establishing a
discrete duality are presented in [14]. In this paper we elaborate in detail a
discrete duality for the structures arising in connection with problems considered
in formal concept analysis.

First, we show that contexts can be adequately represented by an axiomatic
and signature extension of the class of sufficiency algebras [6], referred to as
context algebras. The lattice-based logic associated with the class of context al-
gebras we call context logic. Context algebras are Boolean algebras with a pair
of sufficiency operators forming a Galois connection. The sufficiency operators
of context algebras are the abstract counterparts of the maps of extent and in-
tent determined by a context. On the logical side we define a class of context
frames which are the semantic structures for context logic. We prove a discrete
duality between context algebras and context frames. This duality is established
in two steps: we show a representation theorem for context algebras such that
a representation algebra is constructed from a context frame and is shown to
contain (up to isomorphism) a given algebra as a subalgebra; next we show a
representation theorem for context frames such that a representation frame is
constructed from a context algebra and is shown to contain (up to isomorphism)
a given context frame as a substructure. A discrete duality for sufficiency alge-
bras is presented in [6], see also [12]. It extends Jónsson-Tarski duality [10] for
Boolean algebras with normal and additive operators to Boolean algebras with
a sufficiency operator. The discrete duality proved in the present paper extends
this result further to context algebras. Discrete dualities for distributive lattices
with operators forming a Galois connection and also some other similar connec-
tions are developed in [15]. Next, we develop a Hilbert-style axiomatization of
context logic and prove its completeness with respect to context frames.

Second, we discuss applications of context algebras and context logic to the
specification and verification of various problems concerning contexts and con-
cepts. We consider three groups of problems: first, problems related to the ver-
ification of whether a pair ‘set of objects, set of attributes’ is a formal concept
having some properties; second, attribute dependencies in information systems
which are closely related to contexts; third, implications in contexts and deriva-
tion of implications from finite sets of implications. We indicate that the tasks
from all these three groups can be specified within the framework of context
algebras and context logic presented in this paper. The deduction tools of con-
text logic and the theories of context algebras can then be used for solving these
problems.

2 Context Algebras and Frames

Central in formal concept analysis is the notion of a Galois connection between
two types of entities. Algebraically this may be captured by two maps e and i
over a Boolean algebra, and relationally by a relation between the two types of
entities. In this section we formalise this in the notions of context algebra and
context frame.
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Definition 1. A context algebra (W,∨,∧,¬, 0, 1, e, i) is a Boolean algebra
(W,∨,∧,¬, 0, 1) endowed with unary operators e, i satisfying, for any a, b ∈ W ,

(AC1) g(a ∨ b) = g(a) ∧ g(b) for g = e, i
(AC2) g(0) = 1 for g = e, i
(AC3) a ≤ e(i(a))
(AC4) a ≤ i(e(a)).

An operator g : W → W satisfying (AC1) and (AC2) is called a sufficiency
operator, see [6]. It follows that the sufficiency operators e and i are antitone
and form a Galois connection, that is,

a ≤ i(b) iff b ≤ e(a), for any a, b ∈ W.

From this Galois connection we can separate the two types of entities and the
relation between them thereby deriving a formal context arising in formal con-
cept analysis. From a context algebra A = (W,∨,∧,¬, 0, 1, e, i) we may de-
fine the formal context CA = (GA, MA, IA), where GA = {o | ∃a, o ≤ e(a)},
MA = {a | ∃o, a ≤ i(o)} and IA = {(o, a) | o ≤ e(a)} = {(o, a) | a ≤ i(o)}. Then
GA = dom(IA) and MA = ran(IA).

Lemma 1. Let A = (W,∨,∧,¬, 0, 1, e, i) be a context algebra. The sufficiency
operators e and i of A are the mappings of extent and intent determined by a
formal context CA = (GA, MA, IA), in the sense that, for any a, o ∈ W ,

o ≤ e(a) iff o ∈ eA({a}) = {o | oIAa}

and
a ≤ i(o) iff a ∈ iA({o}) = {a | oIAa}.

On the other hand, given a formal context C = (G, M, I), we may define a
context algebra (WC , eC , iC) where WC = 2G∪M , eC = [[I]] and iC = [[I−1]], where
for any A ∈WC and T = I, I−1,

[[T ]](A) = {x ∈ G ∪M | ∀y, y ∈ A ⇒ xTy}.

Lemma 2. Let C = (G, M, I) be a formal context. The mappings of extent and
intent determined by C are the sufficiency operators of the context algebra AC =
(WC , eC, iC), that is, e = eC and i = iC.

Theorem 1

(a) If a formal context C = (G, M, I) satisfies G = dom(I) and M = ran(I),
then C = CAC .

(b) If a context algebra A = (W,∨,∧,¬, 0, 1, e, i) is complete and atomic and
such that W = 2X where X = {o | o ∈ e({a})} ∪ {a | a ∈ i({o})}, then
A = ACA .

Definition 2. A context frame F = (X, R, S) is a non-empty set X endowed
with binary relations R and S such that S = R−1.
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Although relation S is definable from R, the setting with two relations enables us
to avoid any relational-algebraic structure (in this case the operation of converse
of a relation) in the language of context logic developed in Section 3. In this way
the intended object language is singular, the required constraint is formulated
only in the definition of its semantics, that is, in the metalanguage.

From a context frame F = (X, R, S) we may define the formal context CF =
(GF , MF , IF ), where GF = dom(R), MF = ran(R), and IF = R.

Lemma 3. Let F = (X, R, S) be a context frame. The sufficiency operators
determined by F are the mappings of extent and intent determined by a formal
context CF = (GF , MF , IF ), that is, [[R]] = eF and [[S]] = iF .

On the other hand, given a formal context C = (G, M, I), we may define a
context frame FC = (XC , RC , SC), where XC = G ∪M , RC = I and SC = I−1.

Lemma 4. Let C = (G, M, I) be a formal context. The mappings of extent and
intent determined by C are the sufficiency operators determined by the context
frame FC = (XC , RC , SC), that is, e = [[RC ]] and i = [[SC ]].

Theorem 2

(a) If a formal context C = (G, M, I) satisfies G = dom(I) and M = ran(I),
then C = CFC .

(b) If a context frame F = (X, R, S) satisfies X = dom(R) ∪ ran(R), then
F = FCF .

We now establish a discrete duality between context algebras and context frames.
First, we show that from any context frame we can define a context algebra. Let
(X, R, S) be a context frame. Then the binary relations R and S over X induce
sufficiency operators over 2X , namely, ec : 2X → 2X defined, for any A ∈ 2X , by

ec(A) = [[R]](A) = {x ∈ X | ∀y ∈ X, y ∈ A ⇒ xRy},

and ic : 2X → 2X defined for any A ∈ 2X , by

ic(A) = [[S]](A) = {x ∈ X | ∀y ∈ X, y ∈ A ⇒ xSy}.

Thus,

Definition 3. Let (X, R, S) be a context frame. Then its complex algebra is the
powerset Boolean algebra with sufficiency operators (2X ,∪,∩,−, ∅, X, ec, ic).

Theorem 3. The complex algebra of a context frame is a context algebra.

Proof: The operators ec and ic are sufficiency operators as shown in [12]. By
way of example we show that (AC3) is satisfied. Let A ⊆ X , we show that
A ⊆ ec(ic(A)). Let x ∈ X and suppose that x ∈ A but x /∈ ec(ic(A)). It follows
that there is y0 ∈ ic(A) such that (x, y0) 	∈ R. By definition of ic, for every
z ∈ A, y0Sz. In particular, taking z to be x, we have y0Sx. Since S = R−1, we
have xRy0, a contradiction. The proof of (AC4) is similar. ��
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Next we show that any context algebra in turn gives rise to a context frame.
In the case of a sufficiency operator g over a powerset Boolean algebra 2X , a
relation rg over X may be defined, as in [6], by

xrgy iff x ∈ g({y}), for any x, y ∈ X.

In general, as in [12], we invoke Stone’s representation theorem and then define,
from each sufficiency operator g : W →W , a binary relation Rg over the family
X (W ) of prime filters of W by

FRgG iff g(G) ∩ F 	= ∅, for any F, G ∈ X (W )

where for A ⊆ W , g(A) = {g(a) ∈ W | a ∈ A}. It is an easy exercise to show
that Rg is an extension of rg. Thus,

Definition 4. The canonical frame of a context algebra (W,∨,∧,¬, 0, 1, e, i) is
the relational structure (X (W ), Rc, Sc), where X (W ) is the family of prime filters
of W , Rc = Re and Sc = Ri.

Theorem 4. The canonical frame of a context algebra is a context frame.

Proof: We show that (Rc)−1 ⊆ Sc. Let (F, G) ∈ (Rc)−1. Then (G, F ) ∈ Rc,
that is e(F ) ∩ G 	= ∅. Hence, there is some a0 such that a0 ∈ G and a0 ∈ e(F ).
Take b0 to be i(a0). Then b0 ∈ i(G) and b0 ∈ i(e(F )). Now i(e(F )) ⊆ F since
if a ∈ i(e(F )) then a = i(e(x)) for some x ∈ F , so, by (AC4) and since F is
up-closed, a = i(e(x)) ∈ F . Thus b0 ∈ i(G)∩F , that is, i(G)∩F 	= ∅. The proof
of the other inclusion is similar. ��

Let (W,∨,∧,¬, 0, 1, e, i) be a context algebra. Then

(2X (W ),∪,∩,−, ∅,X (W ), ec, ic)

is the complex algebra of the canonical frame (X (W ), Rc, Sc) of the original
context algebra. The relationship between these algebras is captured by the
Stone mapping h : W → 2X (W ) defined, for any a ∈ W , by

h(a) = {F ∈ X (W ) | a ∈ F}.

This mapping is an embedding and preserves operators i and e over W . That is,

Theorem 5. For any context algebra (W,∨,∧,¬, 0, 1, e, i) and any a ∈ W ,

h(e(a)) = ec(h(a)) and h(i(a)) = ic(h(a)).

Proof: We give the proof for e; that for i is similar. We need to show, for any
a ∈W and any F ∈ X (W ), that

e(a) ∈ F iff ∀G ∈ X (W ), a ∈ G ⇒ e(G) ∩ F 	= ∅.

Assume a ∈ G and e(G) ∩ F = ∅. Then e(a) ∈ e(G) and hence e(a) 	∈ F . On
the other hand, assume e(a) 	∈ F . Let a dual of e, denoted ed, be defined, for
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any b ∈ W , by ed(b) = −e(−b). Consider the set Ze = {b ∈ W | ed(b) 	∈ F}.
Let F ′ be the filter generated by Ze ∪ {a}, that is, F ′ = {b ∈W | ∃a1, . . . , an ∈
Ze, a1 ∧ . . . ∧ an ∧ a ≤ b}. Then F ′ is proper. Suppose otherwise. Then for
some a1, . . . , an ∈ Ze, a1 ∧ . . . ∧ an ∧ a = 0, that is, a ≤ −(a1 ∧ . . . ∧ an) =
−a1 ∨ . . . ∨ −an. Since e is antitone, e(−a1 ∨ . . . ∨ −an) ≤ e(a). Thus e(−a1) ∧
. . . ∧ e(−an) ≤ e(a), that is, −ed(a1) ∧ . . . ∧ −ed(an) ≤ e(a). By definition of
Ze we have ed(a1), . . . , ed(an) 	∈ F so −ed(a1), . . . ,−ed(an) ∈ F . Since F is a
filter, −ed(a1) ∧ . . . ∧ −ed(an) ∈ F and hence e(a) ∈ F which contradicts the
original assumption. So, by ([4], p188), there is a prime filter G containing F ′.
Since a ∈ F ′, a ∈ G and hence G ∈ h(a). Also e(G) ∩ F = ∅ since if there is
some b ∈ W with b ∈ e(G) and b ∈ F , then b = e(c) for some c ∈ G and thus
e(c) ∈ F , so ed(−c) 	∈ F hence −c ∈ Ze ⊆ F ′ ⊆ G and thus c 	∈ G, which is a
contradiction. ��

On the other hand, let (X, R, S) be a context frame. The (X (2X), Rc, Sc) is the
canonical frame of the complex algebra (2X ,∪,∩,−, ∅, X, ec, ic) of the original
context frame. The relationship between these frames is captured by the mapping
k : X → X (2X) defined, for any x ∈ X , by k(x) = {A ∈ 2X | x ∈ A}. It is easy
to show that k is well-defined and an embedding. All that remains is to show
that k preserves structure, that is,

Theorem 6. For any context frame (X, R, S) and any x, y ∈ X,

xRy iff k(x)Rck(y) and xSy iff k(x)Sck(y).

Proof: We give the proof for R; that for S is similar. Note, for any x, y ∈ X ,

k(x)Rck(y) iff [[R]](k(y)) ∩ k(x) 	= ∅
iff ∃A ∈ 2X , y ∈ A ∧ ∀z ∈ X, z ∈ A ⇒ xRz.

Suppose k(x)Rck(y) does not hold. Let A = {y}. Then y ∈ A and hence, for
some z ∈ A, xRz does not hold. Therefore, z = y and xRy does not hold.
Suppose k(x)Rck(y). Let A = {y}. Then y ∈ A and hence xRy. ��

Therefore, we have a discrete duality between context algebras and context
frames.

Theorem 7

(a) Every context algebra can be embedded into the complex algebra of its canon-
ical frame.

(b) Every context frame can be embedded into the canonical frame of its complex
algebra.

3 Context Logic

In order to extend the duality established in Theorem 7 to a Duality via Truth
as considered in [13], we need a logical language presented in [8].



218 E. Or�lowska and I. Rewitzky

Definition 5. Let LC be a modal language extending the language of classical
propositional calculus, that is, its formulas are built from propositional variables
taken from an infinite denumerable set V and the constants true (1) and false
(0), with the classical propositional operations of negation (¬), disjunction (∨),
conjunction (∧), and with two unary operators [[]]1 and [[]]2. As usual, → and ↔
are definable:

φ→ ψ := ¬φ ∨ ψ and φ↔ ψ := (φ → ψ) ∧ (ψ → φ).

Also the constants are definable: 0 := φ∧¬φ and 1 := φ∨¬φ. We define 〈〈〉〉i,
by 〈〈〉〉iφ := ¬[[]]i¬φ (for i = 1, 2). Let For denote the set of all formulae of LC.

Within LC the conditions on a context algebra can be captured, using a Hilbert-
style axiomatisation, as follows:

Axioms:

(LC0) Axioms of the classical propositional calculus (see eg [16])
(LC1) [[]]i(φ ∨ ψ)↔ [[]]iφ ∧ [[]]iψ (for i = 1, 2)
(LC2) [[]]i0 = 1 (for i = 1, 2)
(LC3) φ→ [[]]1[[]]2φ
(LC4) φ→ [[]]2[[]]1φ.

Rules of inference: modus ponens and

φ → ψ

[[]]iψ → [[]]iφ
(for i = 1, 2).

If φ is obtained from the axioms by repeated applications of the inference
rules, then φ is called a theorem of LC, written $ φ. Axioms (LC3) and (LC4)
reflect the fact that the two sufficiency operators form a Galois connection. Some
logics arising from a Galois connection are also considered in [20].

The semantics of context logic LC is based on context frames (X, R, S) where
X is a non-empty set endowed with binary relations R and S such that S = R−1.
A LC-model based on a context frame (X, R, S) is a system M = (X, R, S, m),
where m : V ∪{0, 1} → 2X is a meaning function such that m(p) ⊆ X for p ∈ V ,
m(0) = ∅, m(1) = X . The satisfaction relation |= is defined as follows, where
M, x |= φ means that the state x satisfies formula φ in model M :

M, x |= p iff x ∈ m(p), for every p ∈ V

M, x |= φ ∨ ψ iff M, x |= φ or M, x |= ψ

M, x |= φ ∧ ψ iff M, x |= φ and M, x |= ψ

M, x |= ¬φ iff not M, x |= φ

M, x |= [[]]1φ iff ∀y ∈ X, M, y |= φ implies xRy

M, x |= [[]]2φ iff ∀y ∈ X, M, y |= φ implies xSy.

From now on we shall write [[R]] and [[S]] instead of [[]]1 and [[]]2, respectively.
A notion of truth of formulae based on the LC semantics is defined as usual. A
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formula φ ∈ LC is true in a context model M , written M |= φ, whenever for
every x ∈ X we have M, x |= φ. A formula φ ∈ LC is true in a context frame
(X, R, S) iff φ is true in every model based on this frame. And finally a formula
φ ∈ LC is valid in the logic LC, called LC-valid and written |= φ, iff it is true in
every context frame.

Theorem 8. (Soundness) For any LC-formula φ ∈ For, if φ is a theorem of
LC then φ is LC-valid.

Proof: Proving soundness is an easy task — it involves showing that the axioms
of LC are LC-valid and the rules preserve LC-validity. ��

Following a technique due to Rasiowa [16] to prove completeness, we need some
constructions and lemmas. The relation ≈ defined on the set For of formulae of
LC by:

φ ≈ ψ iff $ (φ ↔ ψ)

is an equivalence relation compatible with the operations ∨,∧,¬, [[R]], [[S]], 0, 1.
This induces a quotient algebra

A≈ = (For|≈,∪,∩,−, 0≈, 1≈, [[R]]≈, [[S]]≈)

where For|≈ is the family of equivalence classes of ≈ and, for any φ, ψ ∈ For,

|φ|∪|ψ| = |φ∨ψ| |φ|∩|ψ| = |φ∧ψ| −|φ| = |¬φ| 0≈ = |φ∧¬φ| 1≈ = |φ∨¬φ|

[[T ]]≈|φ| = |[[T ]]φ| (for T = R, S).

Then for the definable connectives, → and ↔, we postulate:

|φ| → |ψ| = |φ→ ψ| and |φ| ↔ |ψ| = |φ↔ ψ|.

Lemma 5

(a) A≈ is a non-degenerate (i.e. at least two-element) context algebra.
(b) For any φ, ψ ∈ For, |φ| ≤≈ |ψ| iff $ φ → ψ.
(c) For any φ ∈ For, $ φ iff |φ| = 1≈.
(d) For any φ ∈ For, |¬φ| 	= ∅ iff not $ φ.

Proof: For (a), we show that the Lindenbaum algebra satisfies conditions (AC1)-
(AC4). For (AC1) and (AC2) we consider [[R]]≈; the proofs for [[S]]≈ are similar.

For (AC1), [[R]]≈(|φ| ∪ |ψ|) = [[R]]≈(|φ ∨ ψ|) = |[[R]](φ ∨ ψ)| = |[[R]]φ ∧ [[R]]ψ|
= |[[R]]φ| ∩ |[[R]]ψ| = [[R]]≈|φ| ∩ [[R]]≈|ψ|.

For (AC2), [[R]]≈0≈ = [[R]]≈|φ ∧ ¬φ| = |[[R]](φ ∧ ¬φ)| = |[[R]](0)| = |1| =
|φ ∨ ¬φ| = 1≈.

For (AC3), we have to show that for any formula φ, |φ| ⊆ [[R]]≈[[S]]≈|φ|. By
(LC3) and the definition of the operators in the Lindenbaum algebra A≈ we
have |φ| ⊆ |[[R]][[S]]φ| = [[R]]≈[[S]]≈|φ|. The proof of (AC4) is similar.

For (b), |φ| ≤≈ |ψ| iff |φ| ∪ |ψ| = |ψ| iff |φ ∨ ψ| = |ψ| iff $ φ ∨ ψ ↔ ψ iff
$ φ→ ψ.
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For (c), assume $ φ. Since $ φ→ ((φ → φ) → φ), by applying modus ponens,
we get $ (φ → φ) → φ. By (b), |φ→ φ| ≤≈ |φ|, hence 1≈ = |φ|. Now assume that
|φ| = 1≈. Since 1≈ = |φ → φ|, we have |φ → φ| ≤≈ |φ|. By (b), $ (φ → φ) → φ.
Since $ φ → φ, by applying modus ponens we get $ φ.

For (d), we use (b) and the fact that |φ| = 1≈ iff |¬φ| = 0≈ = ∅. ��

Consider the canonical frame (X (A≈), R≈, S≈) of the algebra A≈ where, for any
F, G ∈ X (A≈),

FT≈G iff [[T ]]≈(G) ∩ F 	= ∅, for T = R, S.

Definition 6. The canonical LC-model based on the canonical context frame
(X (A≈), R≈, S≈) of A≈ is a system M≈ = (X (A≈), R≈, S≈, m≈), where the
meaning function m≈ : V ∪ {0, 1} → 2X(A≈) is defined, for any p ∈ V ∪ {0, 1}
and any F ∈ X (A≈), by

F ∈ m≈(p) iff |p| ∈ F.

The mapping m≈ extends homomorphically to all LC-formulae, that is, for any
φ, ψ ∈ For and T = R, S,

m≈(¬φ) = −m≈(φ), m≈(φ∨ψ) = m≈(φ)∪m≈(ψ), m≈([[T ]]φ) = [[T ]]≈(m≈(φ)).

Consider the mapping h≈ : A≈ → 2X (A≈) defined as on page 216, that is, for
any |φ| ∈ A≈,

h≈(|φ|) = {F ∈ X (A≈) | |φ| ∈ F}.
We know from Theorem 5 that h≈ preserves the operations (all operations, not
only the sufficiency operator).

Lemma 6. Let M≈ be the canonical LC-model based on the canonical context
frame (X (A≈), R≈, S≈). Then, for any F ∈ X (A≈) and any LC formula φ,

M≈, F |= φ iff F ∈ h≈(|φ|).

Proof: For this we use structural induction on LC-formulae φ. By definition, for
any basic formula p ∈ V ,

M≈, F |= p iff F ∈ m≈(p) iff |p| ∈ F iff F ∈ h≈(|p|).

Assume as induction hypothesis that the claim holds for φ, ψ ∈ For. We consider
the cases where θ is φ ∨ ψ and [[R]]φ; the other cases are similar.

M≈, F |= φ ∨ ψ iff M≈, F |= φ or M≈, F |= ψ

iff F ∈ h≈(|φ|) or F ∈ h≈(|ψ|)
iff |φ| ∈ F or |ψ| ∈ F

iff |φ| ∪ |ψ| ∈ F F is a prime filter
iff |φ ∨ ψ| ∈ F

iff F ∈ h≈(|φ ∨ ψ|).
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M≈, F |= [[R]]φ iff ∀G ∈ X (A≈), M≈, G |= φ implies FR≈G

iff ∀G ∈ X (A≈), G ∈ h≈(|φ|) implies FR≈G

iff F ∈ [[R≈]](h≈(|φ|))
iff F ∈ h≈([[R]]≈|φ|) by Theorem 5
iff F ∈ h≈(|[[R]]φ|).

This completes the proof. ��

Thus, since h≈ is an embedding that preserves operations [[T ]] (for T = R, S),
we have the following truth lemma.

Lemma 7. For any F ∈ X (A≈) and any LC formula φ,

M≈, F |= φ iff |φ| ∈ F.

Theorem 9. (Completeness) For any LC-formula φ ∈ For, if φ is LC-valid
then φ is a theorem of LC.

Proof: Take any LC formula φ such that |= φ. Suppose that $ φ does not hold.
Then, by Lemma 5(d), |¬φ| 	= ∅. So there exists F ∈ X (A≈) such that |¬φ| ∈ F .
Thus, by Lemma 7, for some F ∈ X (A≈), M≈, F |= ¬φ, Hence, by definition of
|=, φ is not true in M≈, which contradicts the assumption that φ is LC-valid. ��

With this logical language we can extend Theorem 7 to a Duality via Truth,
in the sense of [13]. Let AlgLC denote the class of context algebras, and FrmLC

denote the class of context frames. As described above the class FrmLC of context
frames provides a frame semantics for LC. The class AlgLC of context algebras
provides an algebraic semantics for LC. Let (W,∨,∧,¬, 0, 1, e, i) be a context
algebra. A valuation on W is a function v : V → W which assigns elements of
W to propositional variables and extends homomorphically to all the formulas
of LC, that is

v(¬φ) = ¬v(φ), v(φ∨ψ) = v(φ)∨v(ψ), v([[R]]φ) = e(v(φ)), v([[S]]φ) = i(v(φ)).

The notion of truth determined by this semantics is as follows. A formula φ in
LC is true in an algebra (W,∨,∧,¬, 0, 1, e, i) whenever v(φ) = 1 for every v in
W . A formula φ ∈ LC is true in the class AlgLC of context algebras iff it is true
in every context algebra in AlgLC.

Theorem 10. A formula φ ∈ LC is true in every model based on a context
frame (X, R, S) iff φ is true in the complex algebra (2X , ec, ic) defined from that
frame.

Proof: Let (X, R, S) be any context frame. The result is established by taking the
meaning function m on any model (X, R, S, m) based on (X, R, S) to coincide
with the valuation function on the complex algebra (2X , ec, ic) of (X, R, S). ��

Finally, we prove the Duality via Truth theorem between context algebras and
context frames.
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Theorem 11. A formula φ ∈ LC is true in every context algebra in AlgLC iff φ
is true in every context frame in FrmLC .

Proof: Assume that φ is true in all context algebras. In particular, φ is true
in all the complex algebras of the context frames. Since every context frame
has its corresponding complex algebra, by Theorem 10 the required condition
follows. For reverse implication, we prove the contrapositive. Assume that for
some context algebra W and a valuation v in W v(φ) 	= 1. Consider the canonical
frame X (W ) of W . By the representation theorem there is an embedding h :
W → 2X (W ). It follows that h(v(φ)) 	= 1. Consider a model M based on X (W )
such that m(p) = h(v(p)). By induction on the complexity of formulas we can
show that for every formula φ, m(φ) = m(h(φ)). Hence, φ is not true in M . ��

4 Applications for Formal Concept Analysis

In this section we show that context algebras and context logic can be used for
the specification and verification of various problems concerning contexts and
concepts from formal concept analysis.

4.1 Intents, Extents and Operations of Concepts

Let (G, M, I), where I ⊆ G×M , be a context. The Galois connection underly-
ing the notion of context algebra and context frame allows the identification of
certain pairs (O, A) where O ∈ 2G, A ∈ 2M . Namely, those that are closed in the
sense that i(O) = A and e(A) = O. That is, given a set O of objects the map i
of the Galois connection identifies all the features which they have in common,
and given a set A of features the map e of the Galois connection identifies all the
objects which they have in common. Such object-feature pairs are called formal
concepts. The sets i(O) and e(A) are called the intent and extent of the concept
(O, A), respectively.

As explained in [22] care needs to be taken when defining operations of join,
meet and complement for concepts in order to ensure the result is again a formal
concept. Accordingly, given two formal concepts (O, A) and (O′, A′), their join
∨ and meet ∧ are defined respectively by:

(O, A) ∨ (O′, A′) = (e(i(O ∪O′)), A ∩A′)
(O, A) ∧ (O′, A′) = (O ∩O′, i(e(A ∪A′))).

The corresponding order ≤ on the set of formal concepts is defined, for formal
concepts (O, A) and (O′, A′), by

(O, A) ≤ (O′, A′) iff O ⊆ O′ (or equivalently, iff A′ ⊆ A).

With respect to this order, the smallest formal concept is (e(M), M) and the
largest is (G, i(G)).

For the complement of a formal concept (O, A), two complements are consid-
ered. The one is generated by the set complement O of the extent O and the
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other generated by the set complement A of the intent A. Namely, for a formal
concept (O, A), its weak negation is defined

¬(O, A) = (e(i(O)), i(O))

and its weak opposition is defined by

∼ (O, A) = (e(A), i(e(A))).

Note that ¬ captures contradictory opposite, in the sense that, for example,
positive and negative, and cold and hot are contradictory opposites. On the
other hand ∼ captures contrary opposite, in the sense that, for example, moist
and dry, and cold and warm are contrary opposites.

We now characterize the notions of intent and extent, and the operations of
join, meet, weak negation, weak opposition for concepts in terms of LC-formulae.
For this, take any Oi ∈ 2G (for i = 1, 2, 3) and any Ai ∈ 2M (for i = 1, 2, 3).
Suppose that pi is the propositional variable representing Oi (for i = 1, 2, 3),
and that qi is the propositional variable representing Ai (for i = 1, 2, 3).

Problems concerning extents:

– O1 ⊆ G is an extent of some concept
iff O1 = e(i(O1))
iff p1 ↔ [[R]][[S]]p1 is true in the models such that the meaning of p1 is O1.

– (O1, A1) is the unique concept of which O1 is an extent
iff A1 = i(O1) and O1 = e(i(O1))
iff q1 ↔ [[S]]p1 ∧ p1 ↔ [[R]][[S]]p1 is true in the models such that the meanings
of p1 and q1 are O1 and A1, respectively.

Problems concerning intents:

– A1 ⊆M is an intent of some concept
iff A1 = i(e(A1))
iff q1 ↔ [[S]][[R]]q1 is true in the models such that the meaning of q1 is A1.

– (O1, A1) is the unique concept of which A1 is an intent
iff O1 = e(A1) and A1 = i(e(A1))
iff p1 ↔ [[R]]q1 ∧ q1 ↔ [[S]][[R]]q1 is true in the models such that the meanings
of p1 and q1 are O1 and A1, respectively.

Problems concerning operations on concepts:

– A formal concept (O1, A1) is the join of two concepts (O2, A2) and (O3, A3)
iff O1 = e(i(O2 ∪O3)) and A1 = A2 ∩A3
iff (p1 ↔ [[R]][[S]](p2 ∨ p3)) ∧ (q1 ↔ q2 ∧ q3) is true in the models such that,
for i = 1, 2, 3, the meanings of pi and qi are Oi and Ai, respectively.

– A formal concept (O1, A1) is the meet of two concepts (O2, A2) and (O3, A3)
iff O1 = O2 ∩O3 and A1 = i(e(A2 ∪A3))
iff (p1 ↔ p2 ∧ p3) ∧ (q1 ↔ [[S]][[R]](q2 ∨ q3)) is true in the models such that,
for i = 1, 2, 3, the meanings of pi and qi are Oi and Ai, respectively.
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– A formal concept (O1, A1) is a weak negation of some concept (O2, A2)
iff O1 = e(i(O2)) and A1 = i(O2)
iff (p1 ↔ [[R]][[S]]¬p2) ∧ (q1 ↔ [[S]]¬p2) is true in the models such that, for
i = 1, 2, the meanings of pi and qi are Oi and Ai, respectively.

– A formal concept (O1, A1) is a weak opposition of some concept (O2, A2)
iff O1 = e(A2) and A1 = i(e(A2))
iff (p1 ↔ [[R]]¬q2) ∧ (q1 ↔ [[S]][[R]]¬q2) is true in the models such that, for
i = 1, 2, the meanings of pi and qi are Oi and Ai, respectively.

It follows that the reasoning tools of the context logic LC can be used for
verification of the properties of concepts listed above, among others. A dual
tableau deduction system for the logic LC is presented in [8].

4.2 Dependencies of Attributes

Discovering dependencies in sets of data is an important issue addressed in vari-
ous theories, in particular in rough set theory [17] and in formal concept analysis
[7]. Typically, in an information system objects are described in terms of some
attributes and their values. The queries to an information system often have the
form of a request for finding a set of objects whose sets of attribute values satisfy
some conditions. This leads to the notion of information relation determined by
a set of attributes. Let a(x) and a(y) be sets of values of an attribute a of the
objects x and y, respectively. We may want to know a set of those objects from
an information system whose sets of values of all (or some) of the attributes from
a subset A of attributes are equal (or disjoint, or overlap etc.). To represent such
queries we define, first, information relations on the set of objects. Some exam-
ples, defined in [5], include similarity relation, indiscernibility relations, forward
inclusion, backward inclusion, negative similarity, incomplementarity relation.
In the rough set-based approach the most fundamental information relation is
indiscernibility and its weaker version, namely, similarity.

Let M be a set of attributes and G a set of objects. Given an attribute a ∈M ,
the similarity relation sim(a) ⊆ G×G is defined, for any x, y ∈ G, by

(x, y) ∈ sim(a) iff a(x) ∩ a(y) 	= ∅

and the indiscernibility relation ind(a) ⊆ G×G is defined, for any x, y ∈ G, by

(x, y) ∈ ind(a) iff a(x) = a(y).

These relations can be extended to any subset A of attributes by quantifying
over A:

(x, y) ∈ sim(A) iff a(x) ∩ a(y) 	= ∅ for all (some) a ∈ A.

(x, y) ∈ ind(A) iff a(x) = a(y) for all (some) a ∈ A.

Relations defined with the universal (existential) quantifier are referred to as
strong (weak) relations.
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Attribute dependencies, introduced in [2], express a constraint between two
sets of attributes. Such constraints have been used to exclude from an infor-
mation system data inappropriate for a particular application. An example of
an attribute dependency involving single sets A and B of attributes is a func-
tional dependency A → B. Typically, a functional dependency is based on an
information relation, for example,

A →sim B iff sim(A) ⊆ sim(B)
A →ind B iff ind(A) ⊆ ind(B).

Some attribute dependencies involve combinations of attributes. For example, a
multi-valued dependency A →→ B between sets A and B of attributes is defined
by

A→→ B iff ind(A) ⊆ ind(A ∪B); ind(M/(A ∪B))),

where for relations R and S over a universe U their composition R; S is defined,
for any x, y ∈ U , by xR; Sy iff for some z ∈ U xRz and zSy.

A representation of attribute dependencies in terms of relations generated by
equivalence relations ind(A) is presented in [3].

In the next two theorems we will characterise these notions within the frame-
work of context algebras. For this we need the following observations. For each
A ⊆ M , ind(A) ⊆ G × G and ind may be viewed as a binary relation of type
M × (G×G). Then [[ind(A)]] : 2G → 2G is given, for any Q ⊆ G, by

[[ind(A)]](Q) = {x ∈ G | ∀y ∈ G, y ∈ Q ⇒ (x, y) ∈ ind(A)},

and [[ind]] : 2G×G → 2M is given, for any R ⊆ G×G, by

[[ind]](R) = {a ∈ M | ∀(x, y) ∈ G×G, (x, y) ∈ R ⇒ (x, y) ∈ ind(a)}.

Also, ind−1 ⊆ (G ×G) ×M , so [[ind−1]] : 2M → 2G×G is given, for any A ⊆ M ,
by

[[ind−1]](A) = {(x, y) | ∀a ∈M, a ∈ A ⇒ (x, y) ∈ ind(a)}.
Similarly, for sim.

Theorem 12. For any A, B ∈ 2M ,

A→ind B iff B ⊆ [[ind]][[ind−1]](A)
A→sim B iff B ⊆ [[sim]][[sim−1]](A)

Proof: For any A ∈ 2M and any b ∈M ,

A→ind b iff ind(A) ⊆ ind(b)
iff ∀x, y, A ⊆ ind−1((x, y)) ⇒ (x, y) ∈ ind(b)
iff ∀x, y, (x, y) ∈ [[ind−1]](A) ⇒ (x, y) ∈ ind(b)
iff [[ind−1]](A) ⊆ ind(b)
iff b ∈ [[ind]][[ind−1]](A)
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Now A →ind B holds if, for all b ∈ B, A →ind b holds, hence the result follows.
Similarly, for sim. ��

For any binary relation R ⊆ X×Y , operators [R] : 2Y → 2X and 〈R〉 : 2Y → 2X

may be defined in terms of the sufficiency operator as follows:

[R]Q = [[−R]](−Q) 〈R〉Q = −[[−R]]Q, for any Q ∈ 2Y .

Theorem 13. For any A, B ∈ 2M ,

A→→ B iff ∀y ∈ G, y ∈ [(ind(A))−1] 〈ind(A ∪B)〉 [[ind]](M/ (A ∪B))({y}).

Proof: For this it suffices to show that for any A, B, C ∈ 2M ,

ind(A) ⊆ ind(B); ind(C) iff ∀y ∈ G, y ∈ [(ind(A))−1] 〈ind(B)〉 [[ind(C)]]({y}).

ind(A) ⊆ ind(B); ind(C)
iff ∀x, ∀y, (x, y) ∈ ind(A) ⇒ ∃z, (x, z) ∈ ind(B) ∧ (z, y) ∈ ind(C)
iff ∀x, ∀y, (x, y) ∈ ind(A) ⇒ ∃z, (x, z) ∈ ind(B) ∧ z ∈ [[ind(C)]]({y})
iff ∀y, ∀x, (x, y) ∈ ind(A) ⇒ x ∈ 〈ind(B)〉[[ind(C)]]({y})
iff ∀y, y ∈ [(ind(A))−1]〈ind(B)〉[[ind(C)]]({y}). ��

Relationships between Galois connections and dependencies of attributes are
also studied in [9]. It is shown there that every Galois connection between two
complete lattices determines an Armstrong system of functional dependencies.

4.3 Implications

In the representation of data of an information system as a formal context,
(many-valued) attributes are refined into several (single-valued) features which
are essentially attribute-value pairs. For example, the attribute colour may be
refined to the attribute-value pair (colour, green) which corresponds to the feature
being of colour green. Each object determines an object-concept (O, A) where A
is the set of features of the given object, and O is the set of all objects having
features in A. On the other hand, each feature determines a feature-concept
(O, A) where O is the set of objects having the given feature, and A is the set
of all features of objects in O.

Constraints between two sets of features are usually called implications. An
implication A → B between sets A and B of features holds in a context (G, M, I)
iff e(A) ⊆ e(B), meaning that each object in G having all the features from A
has all the features from B. An implication A → B between sets A and B of
attributes is trivial, if B ⊆ A. As a consequence of the connections established
in Section 2 between context algebras and formal contexts, we have

Theorem 14. Let (G, M, I) be a context. For any A, B ∈ 2M ,

A → B iff [[I]](A) ⊆ [[I]](B).
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Hence an implication A → B holds in a context (G, M, I) iff

∀g ∈ G, (∀a ∈ A, gIa)⇒ (∀b ∈ B, gIb).

This is the definition of an association rule [1] used in data mining and therefore
within our framework we have established a connection between implications in
formal concept analysis and association rules. Moreover, the above provides an
alternative to the relational characterisation, considered in [11], in terms of a
so-called association relation.

Taking into account support and confidence, an association rule is defined, in
[1], to be a constraint, denoted by r : A→ B, between sets A and B of attributes
where A, B 	= ∅, A ∩ B = ∅, and the support and the confidence of r : A → B
are defined respectively to be

supp(r) =
|e(A ∪B)|

|G| and conf(r) =
|e(A ∪B)|
|e(A)| ,

where |X | denotes the cardinality of a set X .
The set of association rules holding in a formal context (G, M, R) given min-

supp and minconf is

AR = {r : A→ B/A | A ⊂ B ⊆ M ∧ supp(r) ≥ minsupp ∧ conf(r) ≥ minconf}.

If conf(r) = 1 then r is called an exact. If supp(r) = supp(A ∪ B) = supp(A)
and conf(r) = 1 then r is called a deterministic association rule. Otherwise it is
an approximate association rule.

Since the notions of support and confidence are defined in terms of the ex-
tent operator e which can be characterised in terms of a sufficiency operator,
we have the following characterisation within our framework of this notion of
deterministic rule.

Theorem 15. Let (G, M, I) be a context. If r : A → B/A is a deterministic
association rule then [[I]](A ∪B) = G = [[I]](A) = [[I]](B).

Proof: Assume A, B ∈ 2M are non-empty. If r : A → B/A is a deterministic
association rule then A ⊂ B and |[[I]](B)| = |[[I]](A)| and |[[I]](A ∪ B)| = |G|.
Hence A ⊂ B and |[[I]](A)| = |[[I]](B)| = |[[I]](A ∪ B)| = |G|. Thus [[I]](A) =
[[I]](B) = [[I]](A ∪B) = G. ��

Therefore, this notion of deterministic association rule is a special type of impli-
cation arising in formal concept analysis.

5 Conclusion

The aim of this paper has been to present a framework, based on discrete du-
ality, for representing contexts from formal concept analysis. For contexts we
established a discrete duality between context algebras and context frames, the
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latter being the frame semantics for context logic. In addition, we motivate the
usefulness of the associated context logic for reasoning about properties of formal
concepts, of attribute dependencies, and of implications.

This paper builds on earlier work in a number of ways. First, the discrete
duality between context algebras and context frames extends an observation
that intent and extent operators of a context are sufficiency operators on Boolean
algebras, and provides another application of the duality via truth framework
of [13]. Second, the uniform characterizations of often independently studied
attribute dependencies and implications are new and allow for their comparison
with the notion of association rule [1] used in data mining. As a consequence, the
associated context logical techniques may be used for verifying typical problems,
such as satisfaction and logical implication, of attribute dependencies and/or
association rules.

A number of challenges remain. For example: to extend the connections es-
tablished in Subsection 4.3 and develop an approach based on the presented
framework for mining association rules. Perhaps further questions will occur to
the reader.

Acknowledgement. The authors would like to thank the anonymous referees
for helpful comments and suggestions.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets
of items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of
the 1993 ACM SIGMOD International Conference on Managements of Data, pp.
207–216 (1993)

2. Armstrong, W.W.: Dependency structures of database relationships. Information
Processing Letters 7, 580–583 (1974)

3. Buszkowski, W., Or�lowska, E.: Indiscernibility based formalization of dependencies
in information systems. In: Or�lowska, E. (ed.) Incomplete Information: Rough Set
Analysis, pp. 293–315. Physica-Verlag, Heidelberg (1997)

4. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, Cambridge (1990)

5. Demri, S.P., Or�lowska, E.S.: Incomplete Information: Structure, Inference, Com-
plexity. EATCS Monographs in Theoretical Computer Science. Springer, Heidel-
berg (2002)

6. Düntsch, I., Or�lowska, E.: Beyond modalities: Sufficiency and mixed algebras. In:
Or�lowska, E., Sza�las, A. (eds.) Relational Methods in Algebra, Logic, and Com-
puter Science, pp. 277–299. Physica-Verlag, Heidelberg (2001)

7. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)
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Abstract. Granular Computing as a paradigm in the area of Approxi-
mate Reasoning/Soft Computing, goes back to the idea of L. A. Zadeh
(1979) of computing with collections of similar entities. Both fuzzy and
rough set theories are immanently occupied with granules as atomic units
of knowledge are inverse images of fuzzy membership functions in the first
and indiscernibility classes in the other set theory.

Research on granulation in the framework of rough set theory has
started soon after Zadeh’s program manifest (T.Y. Lin, L.Polkowski,
Qing Liu, A.Skowron, J.Stepaniuk, Y.Y.Yao) with various tools from
general theory of binary relations (T.Y.Lin, Y.Y.Yao), rough mereol-
ogy (L.Polkowski, A.Skowron), approximation spaces (A. Skowron and J.
Stepaniuk), logics for approximate reasoning (L.Polkowski, M. Semeniuk-
Polkowska, Qing Liu).

The program of granular computing requires that granules formed
from entities described by data should enter computing process as ele-
mentary units of computation; this program has been pursued in some
aspects of reasoning under uncertainty like fusion of knowledge, rough–
neural computing, many agent systems.

In this work, granules of knowledge are exploited in tasks of classifica-
tion of data. This research is a follow–up on the program initiated by the
first author in plenary talks at IEEE International Conferences on Gran-
ular Computing in Beijing, 2005, and Atlanta, 2006. The idea of this
program consists in granulating data and creating a granular data set
(called the granular reflection of the original data set); due to expected
in the process of granulation smoothing of data, eliminating of outliers,
and averaging of attribute values, classification on the basis of granular
data is expected to be of satisfactory quality, i.e., granulation should pre-
serve information encoded in data to a satisfactory degre. It should be
stressed, however, that the proposed process of building a granular struc-
ture involves a few random procedures (factoring attributes through a

� This work is an extended and augmented with new results version of the plenary
talk by the first author at RSEISP07 International Conference [32].
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granule, selection of a granular covering of the universe of objects) which
makes it difficult for a rigorous analysis.

It is the aim of this work to verify the program of granular classifica-
tion on the basis of experiments with real data.

Granules of knowledge are in this work defined and computed on lines
proposed by Polkowski in teh framework of rough mereology: it does
involve usage of similarity measures called rough inclusions along with
techniques of mereological theory of concepts. In consequence, definitions
of granules are invariant with respect to the choice of the underlying
similarity measure.

Granules of knowledge enter the realm of classification problems in
this work from a three–fold perspective: first, granulated data sets give
rise to new data sets on which classifiers are tested and the results are
compared to results obtained with the same classifiers on the original
data sets; next, granules of training objects as well as granules of rules
obtained from the training set vote for value of decision at a test object;
this is repeated with granules of granular reflections of granules and with
granules of rules obtained from granulated data sets. Finally, the voting
is augmented with weights resulting from the distribution of attribute
values between the test object and training objects.

In the first case, the rough inclusion based on Hamming’s metric is
applied (or, equivalently, it is the rough inclusion produced from the
archimedean t–norm of �Lukasiewicz); in the last two cases, rough inclu-
sions are produced on the basis of residual implications induced from
continuous t–norms of �Lukasiewicz, the product t–norm, and the mini-
mum t–norm, respectively.

In all cases results of experiments on chosen real data sets, most often
used as a test data for rough set methods, are very satisfactory, and, in
some cases, offer results better than many other rough set based classi-
fication methods.

Keywords: rough inclusion, mereology, granulation of knowledge, gran-
ular decision systems, data classification.

1 Introduction: Rough Computing, Rough Inclusions

Rough set theory, proposed by Zdzis�law Pawlak [20],[19], deals with analysis
of uncertainty in terms of indiscernibility of objects (the Leibnizian Identity of
Indiscernibles Principle, see [50]), resulting from description of objects in terms
of a finite number of attributes which usually are not adequate to the task of
discriminating among objects, otherwise discernible by, e.g., numbering, time of
arrival, etc.etc..

1.1 Indiscernibility, Granulation by Indiscernibles

Concepts formed within a given knowledge are defined in terms of indiscernibility
classes; knowledge is represented as a pair (U, R) called an approximation space,
where U is a set of objects, and R is a collection of elementary classifications,
being in the simplest case equivalence relations on the set U .
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Objects are represented in this setting by means of their information sets of
the form {(r, [u]r) : r ∈ R} for each u ∈ U , where [u]r denotes the equivalence
class of u relative to r.

A concept is any subset of the set U . By a R0–proper entity, we mean any entity
e constructed from objects in U and relations in R0 ⊆ R such that its action e ·u
on each object u ∈ U satisfies the condition: if (u, v) ∈ r for each r ∈ R0 then e ·
u = e · v; proper concepts are also called exact, concepts not proper are called
rough.

Most often, and practically always in real applications, approximation spaces
are expressed in the form of information systems, i.e., pairs of the form I =
(U, A), where U is a set of objects and A is a finite set of attributes, where
each a ∈ A is a mapping a : U → Va from U into the a–value set Va. The
collection R of equivalence relations is now induced as the collection IND(A) =
{Ind(a) : a ∈ A} of indiscernibility relations, each relation Ind(a) = {(u, v) :
u, v ∈ U, a(u) = a(v)}.

For any subset B ⊆ A, the relation Ind(B) =
⋂

a∈B Ind(a) is the relation
of B–indiscernibility. A concept X ⊆ U is B–exact if and only if it is a proper
concept with respect to the pair (U, {Ind(a) : a ∈ B}).

A particular case of an information system is a decision system, i.e., a pair
D = (I = (U, A), d) in which d /∈ A is an attribute called the decision. In this
case indiscernibility relations are divided into the set {Ind(B) : B ⊆ A} and
the set Ind(d). Relations between pairs of the form: a class of Ind(B), a class of
Ind(d), are called decision rules; they are called classification rules in case d is
an assignments of objects in U into distinct categories.

Formally, decision rules are expressed in the language of descriptor logic, see,
e.g., [2], [20]; a descriptor is a word of the form (a = v), with semantics of the
form [(a = v)] = {u ∈ U : a(u) = v}. From words, sentences (formulas) are
built by means of sentential connectives, with semantics defined inductively on
complexity of formulas,

1. [α ∨ β] = [α] ∪ [β].
2. [α ∧ β] = [α] ∩ [β].

3. [¬α] = U \ [α].
4. [α⇒ β] = [¬α ∨ β].

(1)

In this language, a decision rule is a formula,∧
a∈B

(a = va)⇒ (d = w), (2)

where B ⊆ A and va is a value of a.
Language of descriptors allows also for representing entities in information

system universes by means of their information sets, cf., [20]: InfA(u) = {(a =
a(u)) : a ∈ A} is the information set of u ∈ U .

1.2 Mereology vs. Rough Sets

There are reasons for turning to mereological theory of concepts [11] when foun-
dations of rough sets are considered. Rough set theory solves the problem of how
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to specify a rough concept with the idea of approximation: given a concept Y ,
there exist by completeness of the containment relation ⊆, two definable con-
cepts Y and Y such that Y ⊆ Y ⊆ Y , Y is the largest definable subset of Y and
Y is the smallest definable superset of Y .

The following points deserve attention in the above presented scheme:
APR 1. Definable concepts are unions of atomic concepts: indiscernibility classes.
APR 2. Non–definable concepts are approached with definable ones by means of
containment.

APR 1–2 are particular cases of general constructs of mereology: the union of
sets is a particular example of the class operator and containment is a particular
ingredient relation. It follows that viewing rough sets from the viewpoint of
mereology, one obtains a general theory of which rough set theory formed in the
naive set theory language is a particular case. The class operator is the main
tool in the scheme of granulation presented here, see [23], [24], [29], [30], [32],
[33], [34].

Basic notion of mereology is the notion of a part, see [11].
The relation π of being a part is a non–reflexive and transitive relation on

entities, i.e.,

PT 1. π(u, u) for no entity u.

PT 2. π(u, v) and π(v, w) imply π(u, w).

An example of part relation is the proper containment relation ⊂ on sets.
The part relation π induces a partial order relation ing of an ingredient [11],

v ing u iff π(v, u) or v = u. (3)

Clearly, ing is reflexive, weakly–antisymmetric and transitive, i.e., it is a partial
order. An example is the containment relation ⊆ on sets induced by the part
relation ⊂.

The union of sets operator used in constructions of approximations, has its
counterpart in the class operator Cls [11]; it is applied to any non–empty col-
lection F of entities to produce the entity ClsF ; the formal definition is given
in terms of the ingredient relation: an entity X is the class ClsF if and only if
the two conditions are satisfied,
CL 1. u ing X for each u ∈ F .
CL 2. u ing X implies the existence of entities v, w with the properties:

i. v ing u;
ii. v ing w;
iii. w ∈ F .

Informally, ClsF collects entities whose each part has a part in common with
an entity in F .

An example of ClsF in case π is ⊂ and ing is ⊆ for F a non–empty collection
of sets, is

⋃
F , the union of F .
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1.3 Rough Mereology and Rough Inclusions

Rough mereology is a theory which combines ideas of mereology and rough set
theory [36], [35], [23], [33], [34]. Its particular upshot is a variety of similarity
measures called rough inclusions whose aim is to replace indiscernibility relations
in analysis of uncertainty.

Similarity relations in information systems should be proper entities, i.e., they
should be invariant under indiscernibility. This implies that they should be de-
fined in terms of descriptors. Basic notions of rough merology, relations called
rough inclusions, fulfill this demand.

To introduce rough inclusions, and to give some motivation for their prop-
erties, we recall the idea of Henri Poincaré (1905) [21]. Poincaré considered a
relation τρ(x, y) which holds for a given metric ρ if and only if ρ(x, y) < δ for
some small positive δ . The relation τρ is a tolerance relation, i.e., it is reflexive
and symmetric. Tolerance relations, cf., [64], are basic similarity relations.

We generalize the idea of Poincaré. We let

µρ(x, y, r) iff ρ(x, y) ≤ 1− r; (4)

the predicate µρ does satisfy a number of conditions which follow from properties
of the metric ρ.

1. Rh 1. µρ(x, y, 1) if and only if x = y.
2. Rh 2. If µρ(x, y, 1) and µρ(z, x, r) then µρ(z, y, r).
3. Rh 3. If µρ(x, y, r) and s < r then µρ(x, y, s).
4. Rh 4. If µρ(x, y, r) and µρ(y, z, s) then µρ(x, z, L(r, s)),

where L(r, s) = max{0, r + s − 1} is the well–known �Lukasiewicz functor of
many–valued logics, see, e.g., [9] or [22].

Properties Rh 1 – Rh3 are singled out by us as characteristic for rough inclu-
sions; property Rh 4. which does reflect the triangle inequality for the metric ρ,
is the transitivity property of rough inclusions of the form µρ.

An abstract definition of a rough inclusion will refer to properties Rh 1 – Rh3
with an additional important factor, viz., property Rh 1 will in general refer to
an ingredient relation of mereology; it is evident that for rough inclusions of the
form µρ, the associated ingredient relation is the identity = and the part relation
is empty.

A rough inclusion µπ(x, y, r), where x, y ∈ U are individual objects in the
universe U , r ∈ [0, 1], and π is a part relation of a chosen mereological description
of concepts, does satisfy the following requirements,

RI1. µπ(x, y, 1)⇔ x ingπ y.
RI2. µπ(x, y, 1)and µπ(z, x, r) imply µπ(z, y, r).
RI3. µπ(x, y, r) and ∧ s < rimply µπ(x, y, s).

(5)

These requirements seem to be intuitively clear. RI 1 demands that the pred-
icate µπ is an extension to the relation ingπ of the underlying system of mere-
ology; RI 2 does express monotonicity of µπ and RI 3 assures the reading: “to
degree at least r”.
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Condition RI 1 states that on U an exact decomposition into parts π is given
and that µπ extends this exact scheme into an approximate one. The exact
scheme is a skeleton along which approximate reasoning is carried out. This
interpretation opens up a venue for various applications to problems in which
establishing the rules for propagation of uncertainty is indispensable.

2 Granulation of Knowledge: The Abstract Definition of
a Granule of Knowledge

The issue of granulation of knowledge as a problem on its own, has been posed
by L.A.Zadeh [63], [62]. Granularity is imbued into fuzzy set theory as com-
putations in that theory go along lines of membership functions whose inverse
values form elementary granules. The issue of granulation has been a subject
of intensive studies within rough set community, as witnessed by a number of
papers, e.g.,[12], [13], [14], [15], [41], [48], [60], [61].

Rough set context offers a natural venue for granulation, and indiscernibility
classes were recognized as elementary granules whereas their unions serve as
granules of knowledge; these granules and their direct generalizations to various
similarity classes were subject to a research, see, e.g.,[12]– [15] for the idea of a
granule as a neighborhood, [60], [61].

Granulation of knowledge and applications to knowledge discovery in the
realm of approximation spaces were studied, among others, in [48].

A study of granule systems was also initiated within rough mereology in [36],
[37], [38] and further pursued in [23],[24], [29], [30], [31], [32], [33], [34], in order to
find general properties of granules and develop schemes for applications in logics
for approximate reasoning [26], [27] and in rough neural computing [25], [28].

2.1 Granules of Knowledge

An abstract definition of a granule of knowledge requires fixing a rough inclusion
µ on a universal class U of entities endowed with a compatible part relation π so
that conditions RI 1–RI 3 of (5) are fulfilled. The definition of a granule gµ(v, r)
of radius r about the entity v ∈ U , where r is a real number between 0 and 1,
given in [24], [29], [30] is as follows,

u ∈ Ψµ(v, r) iff µ(u, v, r), (6)

and
gµ(v, r) is ClsΨµ(v, r). (7)

2.2 Granular Reflections of Decision Systems

The idea of a granular reflection of a decision system was posed in [29]: for a
given decision system D = (I = (U, A)), d), a rough inclusion µ, and r ∈ [0, 1],
the new universe UG

r,µ is given consisting of all granules gµ(v, r) of the given
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radius r. A strategy G is applied in order to choose a covering CovG
r,µ of the

universe U by granules from UG
r,µ,

CovG
r,µ = G(UG

r,µ). (8)

A strategy S is applied in order to assign the value a∗(g) for each attribute
a ∈ A to each granule g ∈ CovG

r,µ,

a∗(g) = S({a(u) : u ∈ g}). (9)

The object o(g) defined by the condition,

InfA∗(o(g)) = {(a∗, a∗(g)) : a ∈ A}, (10)

where A∗ = {a∗ : a ∈ A}, is said to be the granular reflection of the granule g.
The G,S–granular reflection of the decision system D = (I = (U, A)), d) is a

pair
D∗ = (I∗ = (CovG

r,µ, A∗)), d∗).

The heuristic principle that

objects, similar with respect to conditional attributes in the set A, should also
reveal similar (i.e., close) decision values, and therefore, in particular, granular
counterparts to decision systems should lead to classifiers satisfactorily close in

quality to those induced from original decision systems,

was stated in [29], and borne out by simple hand examples. In this work we
verify this hypothesis with real data sets.

3 Classifiers: Rough Set Methods

For a decision system D = (I = (U, A)), d), classifiers are sets of rules (2). In-
duction of rules was a subject of research in rough set theory since its beginning.
In most general terms, building a classifier consists in searching in the pool of
descriptors for their conjuncts that describe sufficiently well decision classes. As
distinguished in [51], there are three main kinds of classifiers searched for: min-
imal, i.e., consisting of minimum possible number of rules describing decision
classes in the universe, exhaustive, i.e., consisting of all possible rules, satis-
factory, i.e., containing rules tailored to a specific use. Classifiers are evaluated
globally with respect to their ability to properly classify objects, usually by error
which is the ratio of the number of correctly classified objects to the number of
test objects, total accuracy being the ratio of the number of correctly classified
cases to the number of recognized cases, and total coverage, i.e, the ratio of the
number of recognized test cases to the number of test cases.

Minimum size algorithms include LEM2 algorithm by Grzymala–Busse, see,
e.g., [7], [8] and covering algorithm in RSES package [42]; exhaustive algorithms
include, e.g., LERS system due to Grzymala–Busse [6] and the standard ex-
haustive algorithm, see [42] for its publicly available version. Minimal in a sense
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are classifying systems based on discernibility matrices and Boolean reasoning
according to Skowron, see, e.g., [45],[46], [3], [44]. Minimal consistent sets of
rules were introduced in Skowron–Rauszer [43]; in [58] they were shown to co-
incide with rules induced on the basis of local reducts, see, e.g., [20] for the
reduct notion. Further developments include dynamic rules, approximate rules,
and relevant rules as described in Bazan [3] as well as local rules [3] effective in
implementations of algorithms based on minimal consistent sets of rules. Rough
set based classification algorithms, especially those implemented in the RSES
system [42], were discussed extensively in [4]; [52] contains a discussion of rough
set classifiers along with some attempt at analysis of granulation in the process
of knowledge discovery.

An important class of methods for classifier induction are those based on
similarity or analogy reasoning; most generally, this method of reasoning assigns
to an object u the value of an attribute a from the knowledge of values of a on
a set N(u) of objects whose elements are selected on the basis of a similarity
relation, usually but not always based on an appropriate metric.

An extensive study of algorithms based on similarity relations is [44]; as the
main tool in inducing similarity relations, templates, i.e., propositional formulas
built from generalized descriptors of the form (a ∈ Wa) where Wa is a subset
of the value set Va as well as metrics extracted from data like the Manhattan,
Hamming, Euclidean, are used. A number of similarity measures built from these
basic forms were tested in [44].

A realization of analogy–based reasoning idea is the k–nearest neighbors (k-
nn) method in which for a fixed number k, and a given test object u, the value
a(u) is assigned from values of a at k nearest to u objects in the training set.
Finding nearest objects is based on some similarity measure among objects that
in practice is a metric. Metrics to this end are built on the two basic metrics:
the Manhattan metric for numerical values and the Hamming metric for nomi-
nal values; basic metrics are enhanced in many ways to produce a finer, better
adapted metrics, e.g., VDM [49], and its modifications, IVDM, WVDM [56],
DBDVM [57], and further these metrics are endowed with weighting attributes
subject to optimization of weights, local metrics etc.; an experimental study of
this topic is given by Wojna [57].

Our approach is also based on similarity yet it is a distinct one. Our sets N(u)
for u ∈ U , are formed as granules of the form gµ(u, r) with µ, r fixed; for each
such granule g, and each attribute a ∈ A∪{d}, the factored value a∗(g) is defined
by (9). Contrary to the practice of using a metric that combines values of all
attributes, in our approach, attributes are involved independently; similarity is
driven by the rough inclusion µ.

As a result, each granule g does produce a new object o(g), see (10), possibly
not among real objects. We should observe, nevertheless, that one can neither
prove nor disprove the existence of those objects in the real world. Due to this in
a sense virtuality feature, those objects are well suited to the role of intermediary
between the training and test worlds, as they disappear from the final result.
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4 The �Lukasiewicz Rough Inclusion and Granules

A basic rough inclusion applied in this work is induced by the Hamming distance
in information/decision systems; as shown, e.g., in [31], it is also induced from the
t–norm of �Lukasiewicz and thus it is called here the �Lukasiewicz rough inclusion,
denoted µL.

The Hamming distance ρH on the universe U of an information/decision sys-
tem I/D, reduced modulo cardinality |A| of the set A is given by,

ρH(u, v) =
|{a ∈ A : a(u) 	= a(v)}|

|A| , (11)

and in consequence, by (4),

µL(u, v, r) iff
|InfA(u)∆InfA(v)|

|A| ≤ 1− r, (12)

where ∆(X, Y ) = (X \ Y ) ∪ (Y \X).
Equivalently,

µL(u, v, r) iff
|InfA(u) ∩ InfA(v)|

|A| ≥ r. (13)

The rough inclusion µL can be obtained in the general scheme of producing
rough inclusions from Archimedean t–norms due to Polkowski, see [24],[29], [30],
[31]. We recall it here for completeness’ sake.

It is well–known, see [16], that Archimedean t–norms, i.e., t–norms T [9],
[22] which satisfy the condition T (x, x) < x for x ∈ (0, 1), admit a functional
characterization, a very special case of the Kolmogorov theorem,

T (x, y) = gT (fT (x) + fT (y)), (14)

where the function fT : [0, 1]→ R is continuous decreasing with fT (1) = 0, and
gT : R → [0, 1] is the pseudo–inverse to fT , see [16] (a discussion may be also
found in [22]).

In order to define the rough inclusion µT induced by an archimedean rough
inclusion T , we let,

µT (u, v, r) ⇔ g(
|disA(u, v)|

|A| ) ≥ r. (15)

where disA(u, v) = {a ∈ A : a(u) 	= a(v)} and its complement indA(u, v) =
U × U \ disI(u, v).

The �Lukasiewicz t–norm L(x, y) = max{0, x + y − 1} is Archimedean with
fL(x) = 1 − x = gL(x), see [16], [22], and thus the induced according to (15)
rough inclusion µL is defined as,

µL(u, v, r) iff
|indA(u, v)|

|A| ≥ r, (16)

which is (13).
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As a granule gµL(v, r) collects all “nearest” to v objects within the radius
r, this approach is a far–reaching extension of methods based on selections of
a bound number of closest objects like the k-nn method; interdependence of
attributes, is taken care of by the rough inclusion µL. As it is based on disA –
function, r–closed objects have an r–fraction of attribute values identical, hence,
remaining values may be assumed to be also close, so the new granular object is
representative for all objects in the granule.

The transitivity property Rh 4, sect. 1.3, implies the property of granules
based on µL, see [24], [33], [34],

u ing gµL(v, r) iff µL(u, v, r), (17)

for u, v ∈ U . On the basis of (17), the granule gµL(v, r) can be represented as
the set {v ∈ U : µL(v, u, r).

5 The Setting of Experiments

In experiments with real data sets, we accept total accuracy and total coverage
coefficients as quality measures in comparison of classifiers given in this work.

As stated above, our hypothesis is that the granular reflection D∗ of a data set
D at sufficiently large granulation radii r preserves knowledge encoded in D to a
satisfactory degree so given an algorithmA for rule induction, classifiers obtained
from the training set D(trn) and its granular counterpart D∗(trn) should agree
with a small error on the test set D(tst).

To put our results into a formal perspective, let us consider an operator O
acting on a family D of decision systems and having values in the interval [0, 1]
(e.g., accuracy, coverage or some other measure of the quality of a classifier)
along with an operator F acting on decision systems in D with new decision
systems as values; for ε ∈ (0, 1), we will say that F is an (O, ε)–operator relative
to a family D of decision systems whenever O(F(D)) ≥ (1− ε) · O(D) for each
D ∈ D.

The following data sets have been used in this part of experiments.

– Fisher’s Iris data, see [53], [42];
– Lymphography database, see [53];
– Hearth disease data set (Cleveland data), see [53], [42];
– Breast cancer data set, see [53], [42];
– Primary tumor data set, see [53];
– Credit card application approval data set (Australian credit), see [54], [42];
– Diabetes data set, see [42];
– Pima Indians diabetes data set, see [53].

As representative and well–established algorithms for rule induction in public
domain, we have selected

– the exhaustive algorithm ;
– the covering algorithm of RSES with p=.1 [42];
– LEM2 algorithm, with p=.5, see [7], [42].
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Table 1. Comparison of algorithms on Australian credit data. 345 training objects,
345 test objects.

algorithm accuracy coverage rule number

covering(p = .1) 0.670 0.783 589
covering(p = .5) 0.670 0.783 589
covering(p = 1.0) 0.670 0.783 589

exhaustive 0.835 1.0 5149
LEM2(p = .1) 0.810 0.061 6
LEM2(p = .5) 0.906 0.368 39
LEM2(p = 1.0) 0.869 0.643 126

Table 1 shows a comparison of these algorithms on the data set Australian
credit split into the training and test sets with the ratio 1:1.

For any granule g and any attribute b in the set A∪d of attributes, the reduced
attribute’s b value at the granule g has been estimated by means of the majority
voting strategy and ties have been resolved at random; majority voting is one
of most popular strategies and was frequently applied within rough set theory,
see, e.g., [44], [57].

We also use the simplest strategy for covering finding, i.e., we select coverings
by ordering objects in the set U and choosing sequentially granules about them
in order to obtain an irreducible covering; a random choice of granules is applied
in sections in which this is specifically mentioned and the result is an essential
covering, i.e., in the process of granule random selection, each subsequent granule
contains objects not covered by already selected granules.

The only enhancement of the simple granulation is discussed in sect. 6 where
the concept–dependent granules are considered; this approach yields even better
classification results.

5.1 Results of Experiments: Training Table=Test Table

Here, we report results for the data sets chosen in case when the training sample
is also the test sample. Quality of classification is measured by means of two
parameters: the total accuracy and the total coverage.

Experiments have been carried out in accordance with the following proce-
dure,

1. the data table (U, A) has been input;
2. classification rules have been found by means of each of the three algorithms;
3. classification of dataset objects in U has been found for each of the three

classifications found at point 2;
4. given the granule radius, granules of that radius have been found;
5. a granular covering of the universe U has been chosen;
6. the corresponding granular decision system has been determined;
7. granular classifiers have been induced from the granular system in point 6

by means of each of algorithms in point 2;
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8. classifications of objects in U have been found by means of each of classifiers
in point 7;

9. classifications from points 3,8 have been compared with respect to adopted
global measures of quality: total accuracy and total covering.

Results of each test are given in tables below. For this section, four data sets
have been selected:

– Fisher’s Iris data set;
– Lymphography data set;
– Hearth disease data set (Cleveland data);
– Breast cancer data set.

Results for these data sets are reported in following subsections. The radius
value of nil indicates the non–granular case; the + sign means that the result in
granular case is better than in non–granular case.

Iris data set. In Tables 2, 3, results of experiments with Iris data set are
collected. Table 2 shows data about the size of samples, training and test, and

Table 2. Iris dataset:r=granule radius,tst=test sample size,trn=training sample
size,rulcov=number of rules with covering algorithm,rulex=number of rules with ex-
haustive algorithm, rullem=number of rules with LEM2,acov=total accuracy with cov-
ering algorithm,ccov=total coverage with covering algorithm,aex=total accuracy with
exhaustive algorithm,cex=total coverage with exhaustive algorithm,alem=total accu-
racy with LEM2, clem=total coverage with LEM2

r tst trn rulcov rulex rullem acov ccov aex cex alem clem

nil 150 150 104 246 12 1.0 0.987 1.0 1.0 1.0 0.540
0.0 150 1 4 0 0 1.0 0.080 0.0 0.0 0.0 0.0
0.25 150 24 33 37 3 0.669 0.947 0.669 0.947 0.955 0.293
0.5 150 66 80 161 11 0.930 0.947 0.940 0.993 0.960 0.5
0.75 150 131 103 238 12 0.993 0.987 1.0 1.0 1.0 0.540
1.0 150 147 104 246 12 1.0 0.987 1.0 1.0 1.0 0.540

Table 3. Iris dataset:comparison; r=granule radius,acerr= abs.total accuracy er-
ror with covering algorithm,ccerr= abs.total coverage error with covering algo-
rithm,aexerr=abs.total accuracy error with exhaustive algorithm,cexerr=abs.total cov-
erage error with exhaustive algorithm,alemerr=abs.total accuracy error with LEM2,
clemerr=abs.total coverage error with LEM2, sper=training sample size as fraction of
the original size,rper= max granular rule set size as fraction of the original rule set size

r acerr ccerr aexerr cexerr alemerr clemerr sper rper

nil 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
0.0 0.0 0.907 1.0 1.0 1.0 0.540 0.006 0.038
0.25 0.331 0.04 0.331 0.053 0.045 0.247 0.16 0.317
0.5 0.07 0.04 0.06 0.007 0.04 0.04 0.44 0.916
0.75 0.007 0.0 0.0 0.0 0.0 0.0 0.873 1.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.980 1.0
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number of rules as well as the results of classification, and Table 3 reports radii of
granulation versus absolute errors in accuracy and coverage along with relative
sizes of the training as well as the rule sets.

The comparison of classifiers for the Iris data induced by means of exhaustive,
covering and LEM2 algorithms from the original data set with classifiers induced
by means of these algorithms from granular counterparts for all possible radii,
shows that, indeed, although a substantial reduction in size of both data set and
decision rule set is witnessed, yet still a satisfactory quality of the classifier is
maintained. Table 3 shows this synthetically.

Conclusions in case of Iris data set. Tables 2, 3 show that by r = 0.5, the re-
duction in size of the set of objects is 56 percent whereas the reduction in number
of rules is from 23 percent for covering algorithm through 35 percent for exhaus-
tive algorithm to 9 percent in case of LEM2, yet the classification error both for
accuracy and coverage is not greater than 0.07 for all algorithms; for exhaustive
algorithm, at r = 0.5, error in accuracy is 6 percent and in coverage .7 percent; at
r = 0.75, the size reduction is 13 percent with almost the same number of rules
and classification error is less than 0.007. Strikingly, at r = 0.25 in which case
the reduction in size is 78 percent and reduction in rule number is between 85
percent for the exhaustive algorithm and 70 percent for the covering algorithm,
the classification error drops below 0.31, i.e., by 31 percent for all algorithms
in accuracy, and 0.05, i.e., by 5 percent in coverage for exhaustive as well as
covering algorithms, maintaining about 50 percent drop in coverage with LEM2.

5.2 Lymphography Data Set

We record here results of experiments with Lymphography data set, under the
same conditions. Tables 4, 5 show respective results.

Conclusions in case of Lymphography data set. From the radius of 0.8(3)
on, the exhaustive algorithm trained on the granular system yields accuracy
within 92 percent of the value in non–granular case with reduction in the training
set size of 39.5 percent and reduction in the rule set size of 26 percent. Coverage
in granular case lies within 98.6 percent of the value for the original data set
with reduction in the training set of 94 percent and reduction in the rule set size
of more than 98 percent (71 to 6794).

With the covering algorithm, coverage in the granular case exceeds or equals
that of the original system at the radius of 0.38 in which case reduction in size
is 96 percent and reduction in rule number is 91 percent whereas accuracy falls
within 0.3 of the value 1.0 for the original system with the radius of 0.61 and
reduction in size of 90.5 percent, and reduction in rule number of 90.5 percent.
Error in accuracy of 0.1 is obtained at the radius of 0.8(3) in which case reduction
in size is 39.5 percent and reduction in rule number is 40.9 percent.

In case of LEM2, from the radius of .722 on, accuracy error is less than .13
(13 percent) and error in coverage is less than .04 (.7 percent), with reduction
in number of objects of 76 percent and reduction in size of the rule set of 69
percent.
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Table 4. Lymphography dataset:r=granule radius,tst=test sample size,trn=training
sample size,rulcov=number of rules with covering algorithm,rulex=number of rules
with exhaustive algorithm, rullem=number of rules with LEM2,acov=total accu-
racy with covering algorithm,ccov=total coverage with covering algorithm,aex=total
accuracy with exhaustive algorithm,cex=total coverage with exhaustive algo-
rithm,alem=total accuracy with LEM2, clem=total coverage with LEM2

r tst trn rulcov rulex rullem acov ccov aex clex alem clem

nil 148 148 115 6794 13 1.0 0.932 1.0 1.0 1.0 0.527
0.0 148 1 18 0 0 1.0 0.547 0.0 0.0 0.0 0.0

0.0555556 148 1 18 0 0 1.0 0.547 0.0 0.0 0.0 0.0
0.111111 148 1 18 0 0 1.0 0.547 0.0 0.0 0.0 0.0
0.166667 148 2 19 0 1 1.0 0.547 0.0 0.0 1.0 0.311
0.222222 148 2 19 0 1 1.0 0.547 0.0 0.0 1.0 0.311
0.277778 148 2 19 0 1 1.0 0.547 0.0 0.0 1.0 0.311
0.333333 148 3 21 0 1 1.0 0.547 0.0 0.0 1.0 0.311
0.388889 148 5 11 11 1 0.486 0.959 0.486 0.959 0.821 0.378
0.444444 148 5 9 18 2 0.442 0.932 0.553 0.953 0.0 0.0

0.5 148 8 23 71 2 0.603 0.986 0.534 0.986 0.913 0.155
0.555556 148 9 15 158 2 0.562 0.986 0.521 0.986 0.689 0.5
0.611111 148 14 12 265 2 0.720 0.892 0.671 0.986 0.781 0.216
0.666667 148 19 23 493 3 0.752 0.926 0.767 0.986 0.788 0.351
0.722222 148 35 26 1353 4 0.727 0.939 0.824 1.0 0.867 0.507
0.777778 148 56 45 2338 4 0.775 0.932 0.845 1.0 0.875 0.541
0.833333 148 91 68 5025 12 0.896 0.905 0.926 1.0 0.944 0.486
0.888889 148 130 117 6545 12 0.957 0.953 0.993 1.0 1.0 0.534
0.944444 148 145 115 6826 13 1.0 0.932 1.0 1.0 1.0 0.547

5.3 Heart Disease Data Set

The following Tables 6, 7 give results of experiments with Heart disease data set
(Cleveland).

Conclusions for Heart disease data set. In case of these data, accuracy by
the covering algorithm falls within 0.07 of the original value, and coverage is
the same as with original data, from the radius of 0.692308 on, at which radius,
object size reduction is 20.4 percent and rule set size reduction is 12 percent.
Error in coverage is within 10.4 percent from the radius of 0.307692 on, at which
radius object size reduction is 97.7 percent and rule set size reduction is 95.8
percent. Error in accuracy is within 27.5 percent from this radius on.

In case of exhaustive algorithm, accuracy falls within 0.27 (27 percent of the
value with original data set), and coverage within 0.037 of values for original
data set at the radius of 0.307692, where object size reduction is 97.8 percent
and rule set size reduction is 99.5 percent. Accuracy falls within error of 11.5
percent of the original value from the radius of 0.538462 on, where reduction
in object set size is 51.2 percent and reduction in rule set size is 58.3 percent;
accuracy error is less than 3 percent from r = 0.692 on, with maximal coverage of
1.0, when reduction in object number is 20.4 percent and in rule size 18 percent.
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Table 5. Lymphography dataset:comparison; r=granule radius,acerr= abs.total ac-
curacy error with covering algorithm,ccerr= abs.total coverage error with covering
algorithm,aexerr=abs.total accuracy error with exhaustive algorithm,cexerr=abs.total
coverage error with exhaustive algorithm,alemerr=abs.total accuracy error with LEM2,
clemerr=abs.total coverage error with LEM2, sper=training sample size as fraction of
the original size,rper= max rule set size as fraction of the original size

r acerr ccerr aexerr cexerr alemerr clemerr sper rper

nil 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
0.0 0.0 0.385 1.0 1.0 1.0 0.527 0.006 0.156

0.055555 0.0 0.385 1.0 1.0 1.0 0.527 0.006 0.156
0.111111 0.0 0.385 1.0 1.0 1.0 0.527 0.006 0.156
0.166667 0.0 0.385 1.0 1.0 0.0 0.216 0.013 0.165
0.222222 0.0 0.385 1.0 1.0 0.0 0.216 0.013 0.165
0.277778 0.0 0.385 1.0 1.0 0.0 0.216 0.013 0.165
0.333333 0.0 0.385 1.0 1.0 0.0 0.216 0.020 0.182
0.388889 0.514 0.027+ 0.514 0.041 0.179 0.149 0.033 0.095
0.444444 0.558 0.0 0.447 0.047 1.0 0.527 0.033 0.154

0.5 0.397 0.054+ 0.466 0.014 0.087 0.372 0.054 0.2
0.555556 0.438 0.054+ 0.479 0.014 0.311 0.027 0.06 0.154
0.611111 0.28 0.04 0.329 0.014 0.219 0.311 0.094 0.154
0.666667 0.248 0.006 0.233 0.014 0.212 0.176 0.128 0.23
0.722222 0.273 0.007+ 0.176 0.0 0.133 0.02 0.236 0.308
0.777778 0.225 0.0 0.155 0.0 0.125 0.014+ 0.378 0.391
0.833333 0.104 0.027 0.074 0.0 0.056 0.041 0.614 0.923
0.888889 0.043 0.021+ 0.007 0.0 0.0 0.007+ 0.878 1.017
0.944444 0.0 0.0 0 0 0.0 0.02+ 0.979 1.005

LEM2 algorithm achieves with granular systems error in accuracy less than
0.115 (11.5 percent) and error in coverage less than 0.02 (0.4 percent) from the
radius of 0.538462 on, with reduction in object size of 51 percent and reduction
of rule set size of 78 percent.

Breast cancer data set. Tables 8, 9 give results of tests with Breast cancer
data set.

Conclusions for Breast cancer data set. In case of covering algorithm,
coverage is within error of 23 percent for all radii, and it does exceed coverage in
case of the original data set from the radius of 0.(6) on, in which case reduction
in object size is 84 percent, and reduction in rule set size is 94 percent. Accuracy
is within 25 percent error for all radii, and it falls to this error bound for radii
of 0.(6), 0.(7); for all other radii error is less than 11 percent.

For exhaustive algorithm, coverage is 1.0 for all radii recorded whereas ac-
curacy keeps within 15 percent error bound for all radii recorded, reaching the
best result of 10.5 percent at the radius of 0.(8) at reduction in object size of 38
percent and reduction in rule set size of 17 percent.
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Table 6. Heart dataset:r=granule radius,tst=test sample size,trn=training sample
size,rulcov=number of rules with covering algorithm,rulex=number of rules with ex-
haustive algorithm, rullem=number of rules with LEM2,acov=total accuracy with cov-
ering algorithm,ccov=total coverage with covering algorithm,aex=total accuracy with
exhaustive algorithm,cex=total coverage with exhaustive algorithm,alem=total accu-
racy with LEM2, clem=total coverage with LEM2

r tst trn rulcov rulex rullem acov ccov aex cex alem clem

nil 270 270 275 5352 42 1.0 0.993 1.0 1.0 1.0 0.504
0.0 270 1 13 0 0 1.0 0.556 0.0 0.0 0.0 0.0

0.0769231 270 1 13 0 0 1.0 0.556 0.0 0.0 0.0 0.0
0.153846 270 1 13 0 0 1.0 0.556 0.0 0.0 0.0 0.0
0.230769 270 4 18 0 1 1.0 0.556 0.0 0.0 1.0 0.307
0.307692 270 6 17 28 2 0.754 0.919 0.727 0.963 0.4 0.019
0.384615 270 14 29 75 2 0.770 0.948 0.770 0.996 0.855 0.204
0.461538 270 23 53 131 3 0.732 0.941 0.778 1.0 0.848 0.341
0.538462 270 132 163 2231 9 0.750 0.889 0.896 1.0 0.896 0.496
0.615385 270 132 171 2114 12 0.725 0.904 0.885 1.0 0.885 0.485
0.692308 270 215 242 4389 29 0.925 0.933 0.970 1.0 0.945 0.541
0.769231 270 262 265 5220 41 0.985 0.985 1.0 1.0 1.0 0.500
0.846154 270 270 275 5352 42 1.0 0.993 1.0 1.0 1.0 0.504
0.923077 270 270 275 5352 42 1.0 0.993 1.0 1.0 1.0 0.504

Table 7. Heart dataset:comparison; r=granule radius,acerr= abs.total accuracy er-
ror with covering algorithm,ccerr= abs.total coverage error with covering algo-
rithm,aexerr=abs.total accuracy error with exhaustive algorithm,cexerr=abs.total cov-
erage error with exhaustive algorithm,alemerr=abs.total accuracy error with LEM2,
clemerr=abs.total coverage error with LEM2, sper=training sample size as fraction of
the original size,rper= max rule set size as fraction of the original size

r acerr ccerr aexerr cexerr alemerr clemerr sper rper

nil 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
0.0 0.0 0.437 1.0 1.0 1.0 0.504 0.0037 0.047

0.0769231 0.0 0.437 1.0 1.0 1.0 0.504 0.0037 0.047
0.153846 0.0 0.437 1.0 1.0 1.0 0.504 0.0037 0.047
0.230769 0.0 0.437 1.0 1.0 0.0 0.197 0.0148 0.065
0.307692 0.246 0.074 0.273 0.037 0.6 0.485 0.022 0.062
0.384615 0.23 0.045 0.23 0.004 0.145 0.3 0.052 0.105
0.461538 0.268 0.052 0.222 0.0 0.152 0.163 0.085 0.193
0.538462 0.25 0.104 0.104 0.0 0.104 0.008 0.489 0.593
0.615385 0.275 0.089 0.115 0.0 0.115 0.019 0.489 0.622
0.692308 0.075 0.06 0.03 0.0 0.055 0.037+ 0.796 0.88
0.769231 0.015 0.008 0.0 0.0 0.0 0.004 0.97 0.976
0.8461540 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
0.923077 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
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Table 8. Breast dataset:r=granule radius,tst=test sample size,trn=training sample
size,rulcov=number of rules with covering algorithm,rulex=number of rules with ex-
haustive algorithm, rullem=number of rules with LEM2,acov=total accuracy with cov-
ering algorithm,ccov=total coverage with covering algorithm,aex=total accuracy with
exhaustive algorithm,cex=total coverage with exhaustive algorithm,alem=total accu-
racy with LEM2, clem=total coverage with LEM2

r tst trn rulcov rulex rullem acov ccov aex cex alem clem

nil 286 286 223 1665 58 0.977 0.906 0.979 1.0 0.986 0.500
0.0 286 1 9 0 0 1.0 0.699 0.0 0.0 0.0 0.0

0.111111 286 2 9 0 1 1.0 0.699 0.0 0.0 1.0 0.573
0.222222 286 3 10 0 1 1.0 0.699 0.0 0.0 1.0 0.573
0.333333 286 6 13 0 1 1.0 0.703 0.0 0.0 1.0 0.573
0.444444 286 10 15 0 1 1.0 0.703 0.0 0.0 1.0 0.573
0.555556 286 30 22 0 1 1.0 0.703 0.0 0.0 1.0 0.598
0.666667 286 46 14 104 2 0.733 0.983 0.752 1.0 0.791 0.654
0.777778 286 94 41 570 3 0.749 0.962 0.797 1.0 0.827 0.689
0.888889 286 176 146 1387 15 0.869 0.937 0.878 1.0 0.872 0.545

1.0 286 266 216 1627 60 0.977 0.927 0.979 1.0 0.973 0.524

Table 9. Breast dataset:comparison; r=granule radius,acerr= abs.total accuracy
error with covering algorithm,ccerr= abs.total coverage error with covering algo-
rithm,aexerr=abs.total accuracy error with exhaustive algorithm,cexerr=abs.total cov-
erage error with exhaustive algorithm,alemerr=abs.total accuracy error with LEM2,
clemerr=abs.total coverage error with LEM2, sper=training sample size as fraction of
the original size,rper= max rule set size as fraction of the original size

r acerr ccerr aexerr cexerr alemerr clemerr sper rper

nil 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
0.0 0.023+ 0.207 0.979 1.0 0.986 0.500 0.003 0.04

0.111111 0.023+ 0.207 0.979 1.0 0.014+ 0.073+ 0.006 0.04
0.222222 0.023+ 0.207 0.979 1.0 0.014+ 0.073+ 0.01 0.045
0.333333 0.023+ 0.203 0.979 1.0 0.014+ 0.073+ 0.02 0.058
0.444444 0.023+ 0.203 0.979 1.0 0.014+ 0.073+ 0.035 0.067
0.555556 0.023+ 0.203 0.979 1.0 0.014+ 0.098+ 0.105 0.099
0.666667 0.244 0.077+ 0.227 0.0 0.195 0.154+ 0.16 0.062
0.777778 0.228 0.056+ 0.182 0.0 0.159 0.189+ 0.329 0.342
0.888889 0.108 0.031+ 0.101 0.0 0.114 0.045+ 0.615 0.833

1.0 0.0 0.021+ 0.0 0.0 0.013 0.024+ 0.93 1.034

LEM2 coverage is better for granular systems than for original one from the
radius of 0.(1) on, where reduction in object size is 99.4 percent and reduction
in rule set size is 98 percent. Accuracy with LEM2, keeps within error bound of
20 percent for all radii, and it obtains the best result of 10 percent error at the
radius of 0.(8) with reduction in object size of 38 percent and reduction in rule
size of 74 percent.
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5.4 Results of Experiments with Train-and-Test in 1:1 Ratio

Train-and-test, is a method in which data set is split into the training and testing
parts; we use the ratio of 1:1, i.e., rules are induced on 50 percent of objects and
tested on the remaining 50 percent.

The procedure in this case have been as follows.
1. the data table (U, A) has been input;
2. classification rules have been found on the training subtable of 50 percent of

objects by means of each of the three algorithms;
3. classification of dataset objects in the test subtable of remaining 50 percent

of objects has been found for each of the three classifications found at point 2;
4. given the granule radius, granules of that radius have been found on the

training subtable;
5. a granular covering of the training subtable has been chosen;
6. the corresponding granular decision system has been determined;
7. granular classifiers have been induced from the granular system in point 6

by means of each of algorithms in point 2;
8. classifications of objects in the test subtable have been found by means of

each of classifiers in point 7;
9. classifications from points 3,8 have been compared with respect to adopted

global measures of quality: total accuracy and total covering.

We report here results of experiments with Primary tumor data set, Australian
credit data set, Diabetes data set.

5.5 Primary Tumor Data Set

Results are shown in Tables 10, 11.

Conclusions for Primary tumor data set. With covering algorithm, ac-
curacy in granular case is always higher than with original training data set,
coverage begins to be within error of 25 percent with the radius of 0.823529
where reduction in training object set size is 68.05 percent and reduction in rule
set size is 83 percent; at r = .941, where reductions in object and rule sizes
are , resp., 36.7 and 42.4 percent, coverage in granular case exceeds coverage in
non–granular case.

For exhaustive algorithm,accuracy is better with granular than original train-
ing set from the radius of 0.647059 on where reduction in size of training set
is 92.9 percent and reduction in size of rule set is almost 100 percent (11 ver-
sus 4186). Coverage falls within error bound of 22.3 percent from the radius of
0.823529 on, where reduction in training st size is 68.2 percent and reduction in
size of rule set is 75.5 percent; it becomes the same as in non–granular case at
r = .941 with reduction in object size of 36.7 percent.

LEM2 exceeds accuracy of classifier trained on original training table with
accuracy of granular classifier from the radius of 0.705882 on where reduction
in training set size is 89.95 percent and reduction in rule set size is 93 percent.
Coverage for granular classifier is better or within error of 13.5 percent from the
radius of 0.882353 where reduction in size of the training set is 55.6 percent and
reduction in size of rule set is 60.5 percent.
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Table 10. Primary tumor dataset:r=granule radius,tst=test sample size,trn=training
sample size,rulcov=number of rules with covering algorithm,rulex=number of rules
with exhaustive algorithm, rullem=number of rules with LEM2,acov=total accu-
racy with covering algorithm,ccov=total coverage with covering algorithm,aex=total
accuracy with exhaustive algorithm,cex=total coverage with exhaustive algo-
rithm,alem=total accuracy with LEM2, clem=total coverage with LEM2

r tst trn rulcov rulex rullem acov ccov aex cex alem clem

nil 170 169 170 4186 43 0.268 0.900 0.253 0.976 0.5 0.259
0.0 170 1 17 0 0 1.0 0.247 0.0 0.0 0.0 0.0

0.0588235 170 1 17 0 0 1.0 0.247 0.0 0.0 0.0 0.0
0.117647 170 1 17 0 0 1.0 0.247 0.0 0.0 0.0 0.0
0.176471 170 1 17 0 0 1.0 0.247 0.0 0.0 0.0 0.0
0.235294 170 1 17 0 0 1.0 0.247 0.0 0.0 0.0 0.0
0.294118 170 1 17 0 0 1.0 0.247 0.0 0.0 0.0 0.0
0.352941 170 1 17 0 0 1.0 0.247 0.0 0.0 0.0 0.0
0.411765 170 2 17 0 1 1.0 0.247 0.0 0.0 1.0 0.188
0.470588 170 3 18 0 1 1.0 0.247 0.0 0.0 1.0 0.188
0.529412 170 5 18 0 1 1.0 0.247 0.0 0.0 1.0 0.188
0.588235 170 8 19 0 1 1.0 0.247 0.0 0.0 1.0 0.188
0.647059 170 12 7 11 1 0.611 0.318 0.547 0.376 0.0 0.0
0.705882 170 17 12 40 3 0.543 0.476 0.457 0.476 0.667 0.035
0.764706 170 33 12 108 4 0.437 0.512 0.468 0.553 0.769 0.076
0.823529 170 54 28 1026 11 0.422 0.682 0.434 0.759 0.586 0.171
0.882353 170 75 47 3640 17 0.417 0.776 0.308 0.859 0.579 0.224
0.941176 170 107 98 4428 24 0.329 0.929 0.295 0.976 0.466 0.341

1.0 170 151 140 4249 36 0.303 0.912 0.283 0.976 0.500 0.341

Australian credit data set. Tables 12, 13 present results obtained in case of
Australian credit data set.

Conclusions for Australian credit data set. With covering algorithm, ac-
curacy is better or within error of 1 percent for all radii, coverage is better or
within error of 4.5 percent from the radius of 0.214860 on where training set size
reduction is 99 percent and reduction in rule set size is 98 percent.

With exhaustive algorithm, accuracy is within error of 10 percent from the
radius of 0.285714 on, and it is better or within error of 4 percent from the
radius of 0.5 where reduction in training set size is 85 percent and reduction in
rule set size is 95 percent. The result of .875 at r = .714 is among the best at all
(see Table 1). Coverage is better from r = .214 in the granular case, reduction
in objects is 99 percent, reduction in rule size is almost 100 percent.

LEM2 gives accuracy better or within 2.6 percent error from the radius of
0.5 where training set size reduction is 85 percent and rule set size reduction is
96 percent. Coverage is better or within error of 7.3 percent from the radius of
.571429 on where reduction in training set size is 69.6 percent and rule set size
is reduced by 96 percent.
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Table 11. Primary tumor dataset:comparison; r=granule radius,acerr= abs.total ac-
curacy error with covering algorithm,ccerr= abs.total coverage error with covering
algorithm,aexerr=abs.total accuracy error with exhaustive algorithm,cexerr=abs.total
coverage error with exhaustive algorithm,alemerr=abs.total accuracy error with LEM2,
clemerr=abs.total coverage error with LEM2, sper=training sample size as fraction of
the original size,rper= max rule set size as fraction of the original size

r acerr ccerr aexerr cexerr alemerr clemerr sper rper

nil 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
0.0 0.732+ 0.653 0.253 0.976 0.500 0.259 0.0059 0.1

0.0588235 0.732+ 0.653 0.253 0.976 0.500 0.259 0.0059 0.1
0.117647 0.732+ 0.653 0.253 0.976 0.500 0.259 0.0059 0.1
0.176471 0.732+ 0.653 0.253 0.976 0.500 0.259 0.0059 0.1
0.235294 0.732+ 0.653 0.253 0.976 0.500 0.259 0.0059 0.1
0.294118 0.732+ 0.653 0.253 0.976 0.500 0.259 0.0059 0.1
0.352941 0.732+ 0.653 0.253 0.976 0.500 0.259 0.0059 0.1
0.411765 0.732+ 0.653 0.253 0.976 0.500+ 0.071 0.012 0.1
0.470588 0.732+ 0.653 0.253 0.976 0.500+ 0.071 0.018 0.106
0.529412 0.732+ 0.653 0.253 0.976 0.500+ 0.071 0.029 0.106
0.588235 0.732+ 0.653 0.253 0.976 0.500+ 0.071 0.047 0.112
0.647059 0.343+ 0.582 0.294+ 0.600 0.500 0.259 0.071 0.041
0.705882 0.275+ 0.424 0.204+ 0.500 0.167+ 0.224 0.1 0.07
0.764706 0.169+ 0.388 0.215+ 0.423 0.269+ 0.183 0.195 0.093
0.823529 0.154+ 0.218 0.181+ 0.217 0.086+ 0.088 0.319 0.256
0.882353 0.149+ 0.124 0.055+ 0.117 0.079+ 0.035 0.444 0.869
0.941176 0.061+ 0.029+ 0.042+ 0.00 0.034 0.082+ 0.633 1.058

1.0 0.035+ 0.012+ 0.030+ 0.00 0.00 0.082+ 0.893 1.015

5.6 Diabetes Data Set

Finally, we test granular approach with Diabetes data. Results are shown in
Tables 14, 15.

Conclusions for Diabetes data set. With covering algorithm, coverage for
granular systems induced classifiers is better or within error of 5.7 percent for all
radii; accuracy is better for radii from .250 on where reduction in size of object
set is 78 percent and reduction in size of rule set is 62 percent, with exception
of the radius of .5 where error is less than 2 percent.

Exhaustive algorithm performs well for granular classifiers for all radii: both
coverage and accuracy are better or within error of 3 percent (for coverage).

LEM2 yields results for both coverage and accuracy better with granular
classifiers than with original system induced, for all radii.

Summing up, on diabetes data, granular classifiers perform better than the
original one.

5.7 Effect of Granule Selection on Classification

In order to test the impact a choice of granular covering has had on classification,
we have carried out experiments with the exhaustive algorithm, by selecting
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Table 12. Australian credit dataset:r=granule radius, tst=test sample size,
trn=training sample size, rulcov=number of rules with covering algorithm,
rulex=number of rules with exhaustive algorithm, rullem=number of rules with LEM2,
acov=total accuracy with covering algorithm, ccov=total coverage with covering algo-
rithm, aex=total accuracy with exhaustive algorithm, cex=total coverage with exhaus-
tive algorithm, alem=total accuracy with LEM2, clem=total coverage with LEM2

r tst trn rulcov rulex rullem acov ccov aex clex alem clem

nil 345 345 571 5597 49 0.634 0.791 0.872 0.994 0.943 0.354
0.0 345 1 14 0 0 1.0 0.557 0.0 0.0 0.0 0.0

0.0714286 345 1 14 0 0 1.0 0.557 0.0 0.0 0.0 0.0
0.142857 345 2 16 0 1 1.0 0.557 0.0 0.0 1.0 0.383
0.214286 345 3 7 7 1 0.641 1.0 0.641 1.0 0.600 0.014
0.285714 345 4 10 10 1 0.812 1.0 0.812 1.0 0.0 0.0
0.357143 345 8 18 23 2 0.820 1.0 0.786 1.0 0.805 0.252
0.428571 345 20 29 96 2 0.779 0.826 0.791 1.0 0.913 0.301

0.5 345 51 88 293 2 0.825 0.843 0.838 1.0 0.719 0.093
0.571429 345 105 230 933 2 0.835 0.930 0.855 1.0 0.918 0.777
0.642857 345 205 427 3157 20 0.686 0.757 0.867 1.0 0.929 0.449
0.714286 345 309 536 5271 45 0.629 0.774 0.875 1.0 0.938 0.328
0.785714 345 340 569 5563 48 0.629 0.797 0.870 1.0 0.951 0.357
0.857143 345 340 570 5574 48 0.626 0.791 0.864 1.0 0.951 0.357
0.928571 345 342 570 5595 48 0.628 0.794 0.867 1.0 0.951 0.357

1.0 345 345 571 5597 49 0.634 0.791 0.872 0.994 0.943 0.354

Table 13. Australian credit dataset:comparison; r=granule radius,acerr= abs.total
accuracy error with covering algorithm,ccerr= abs.total coverage error with covering
algorithm,aexerr=abs.total accuracy error with exhaustive algorithm,cexerr=abs.total
coverage error with exhaustive algorithm,alemerr=abs.total accuracy error with LEM2,
clemerr=abs.total coverage error with LEM2, sper=training sample size as fraction of
the original size,rper= max rule set size as fraction of the original size

r acerr ccerr aexerr cexerr alemerr clemerr sper rper

nil 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
0.0 0.366+ 0.234 0.872 0.994 0.943 0.354 0.003 0.024

0.0714286 0.366+ 0.234 0.872 0.994 0.943 0.354 0.003 0.024
0.142857 0.366+ 0.234 0.872 0.994 0.057+ 0.029+ 0.0058 0.028
0.214286 0.007+ 0.209+ 0.231 0.006+ 0.343 0.340 0.009 0.02
0.285714 0.178+ 0.209+ 0.06 0.006+ 0.943 0.354 0.012 0.02
0.357143 0.186+ 0.209+ 0.086 0.006+ 0.138 0.102 0.023 0.04
0.428571 0.145+ 0.035+ 0.081 0.006+ 0.03 0.053 0.058 0.05

0.5 0.191+ 0.052+ 0.034 0.006+ 0.224 0.261 0.148 0.154
0.571429 0.201+ 0.139+ 0.017 0.006+ 0.025 0.423+ 0.304 0.403
0.642857 0.052+ 0.034 0.005 0.006+ 0.014 0.095+ 0.594 0.748
0.714286 0.005 0.017 0.003+ 0.006+ 0.005 0.026 0.896 0.942
0.785714 0.005 0.006+ 0.002 0.006+ 0.008+ 0.003+ 0.985 0.994
0.857143 0.008 0.0 0.008 0.006+ 0.008+ 0.003+ 0.985 0.998
0.928571 0.006 0.003+ 0.005 0.006+ 0.008+ 0.003+ 0.991 0.999

1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
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Table 14. Diabetes dataset:r=granule radius,tst=test sample size,trn=training sam-
ple size,rulcov=number of rules with covering algorithm,rulex=number of rules with
exhaustive algorithm, rullem=number of rules with LEM2,acov=total accuracy with
covering algorithm,ccov=total coverage with covering algorithm,aex=total accuracy
with exhaustive algorithm,cex=total coverage with exhaustive algorithm,alem=total
accuracy with LEM2, clem=total coverage with LEM2

r tst trn rulcov rulex rullem acov ccov aex clex alem clem

nil 384 384 627 3664 109 0.664 0.859 0.605 0.995 0.625 0.188
0.0 384 1 8 0 0 1.0 0.443 0.0 0.0 0.0 0.0

0.125 384 19 64 0 1 1.0 0.617 0.0 0.0 1.0 0.305
0.250 384 86 239 366 11 0.626 0.969 0.632 0.990 0.692 0.203
0.375 384 220 508 1897 44 0.655 0.935 0.593 0.997 0.700 0.312
0.5 384 332 585 3189 82 0.667 0.844 0.585 0.997 0.659 0.221

0.625 384 381 626 3654 111 0.661 0.859 0.597 0.995 0.625 0.188
0.750 384 384 627 3664 109 0.664 0.859 0.605 0.995 0.625 0.188
0.875 384 384 627 3664 109 0.664 0.859 0.605 0.995 0.625 0.188
1.0 384 384 627 3664 109 0.664 0.859 0.605 0.995 0.625 0.188

Table 15. Diabetes dataset:comparison; r=granule radius,acerr= abs.total accuracy
error with covering algorithm,ccerr= abs.total coverage error with covering algo-
rithm,aexerr=abs.total accuracy error with exhaustive algorithm,cexerr=abs.total cov-
erage error with exhaustive algorithm,alemerr=abs.total accuracy error with LEM2,
clemerr=abs.total coverage error with LEM2, sper=training sample size as fraction of
the original size,rper= max rule set size as fraction of the original size

r acerr ccerr aexerr cexerr alemerr clemerr sper rper

nil 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
0.0 0.336+ 0.416 0.605 0.995 0.625 0.188 0.0026 0.012

0.125 0.336+ 0.242 0.605 0.995 0.375+ 0.117+ 0.0495 0.102
0.250 0.038 0.11+ 0.027+ 0.005 0.067+ 0.015+ 0.224 0.381
0.375 0.009 0.076+ 0.012 0.002+ 0.075+ 0.124+ 0.573 0.81
0.5 0.003+ 0.015 0.02 0.002+ 0.034+ 0.033+ 0.864 0.933

0.625 0.003 0.0 0.008 0.0 0.0 0.0 0.992 1.01
0.750 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
0.875 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0

randomly granular coverings from all groups of granular coverings with same
cardinalities on the Heart data set. Here are the results, shown in Table 16.
There are shown intervals in which obtained values belong.

Conclusions for granule selection. For Heart disease data set, total accuracy
was found to be 0.807, and total coverage 1.0 with exhaustive algorithm on the
full table. This values are achieved here with radius of at least 0.538462, and
beginning with the radius of 0.384615, the error in total accuracy is at most
0.07, and the error in total coverage is at most 0.007. This shows robustness of
granular approach with respect to random coverings with granules.
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Table 16. Effect of covering choice on classification

radius accuracy coverage number.coverings

0.0 0.0 0.0 1
0.0769231 0.0 0.0 3
0.153846 0.0 0.0 4
0.230769 0.0 − 0.789 0.0 − 1.0 6
0.307692 0.0 − 0.793 0.0 − 1.0 10
0.384615 0.737 − 0.799 0.967 − 1.00 13
0.461538 0.778 − 0.822 0.996 − 1.0 15
0.538462 0.881 − 0.911 1.0 22
0.615385 0.874 − 0.907 1.0 23
0.692308 0.963 − 0.974 1.0 13
0.769231 1.0 1.0 3
0.846154 1.0 1.0 1
0.923077 1.0 1.0 1

1.0 1.0 1.0 1

5.8 Experiments: Cross-Validation CV-10

We have carried also tests with 10-fold cross-validation [10], [5] for Pima Indi-
ans diabetes data with exhaustive and LEM2 algorithms, and random choice of
coverings; results are reported in Tables 17, 18.

Conclusions for CV-10. For exhaustive algorithm, accuracy in granular case
exceeds or equals that in non–granular case from the radius of .625 with slightly
smaller sizes of training as well as rule sets and it reaches 95.2 percent of accuracy
in non–granular case, from the radius of .25 with reductions in size of the training
set of 82.6 percent and in the rule set size of 94 percent. The difference in coverage
is less than .4 percent from r = .25 on, where reduction in training set size is
82.6 percent, and coverage in both cases is the same from the radius of .375 on
with reductions in size of both training and rule set of 48, resp., 53 percent.

For LEM2, accuracy in both cases differs by less than 1 percent from r = .25
on, and it is better in granular case from r = .125 on; coverage is better in
granular case from r = .375 on.

Table 17. 10-fold CV; Pima; exhaustive algorithm. r=radius, macc=mean accuracy,
mcov=mean coverage, mrules=mean rule number, mtrn=mean size of training set.

r macc mcov mrules mtrn

nil 0.6864 0.9987 7629 692
0.125 0.0618 0.0895 5.9 22.5
0.250 0.6627 0.9948 450.1 120.6
0.375 0.6536 0.9987 3593.6 358.7
0.500 0.6645 1.0 6517.6 579.4
0.625 0.6877 0.9987 7583.6 683.1
0.750 0.6864 0.9987 7629.2 692
0.875 0.6864 0.9987 7629.2 692
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Table 18. 10-fold CV; Pima; LEM2 algorithm. r=radius,macc=mean accu-
racy,mcov=mean coverage,mrules=mean rule number, mtrn=mean size of training set.

r macc mcov mrules mtrn
nil 0.7054 0.1644 227.0 692

0.125 0.900 0.2172 1.0 22.5
0.250 0.7001 0.1250 12.0 120.6
0.375 0.6884 0.2935 74.7 358.7
0.500 0.7334 0.1856 176.1 579.4
0.625 0.7093 0.1711 223.1 683.1
0.750 0.7071 0.1671 225.9 692
0.875 0.7213 0.1712 227.8 692

6 Concept–Dependent Granulation

A modification of the approach presented in results shown above is the concept
dependent granulation; a concept in the narrow sense is a decision/classification
class, cf., e.g., [7]. Granulation in this sense consists in computing granules for
objects in the universe U and for all distinct granulation radii as previously, with
the only restriction that given any object u ∈ U and r ∈ [0, 1], the new concept
dependent granule gcd(u, r) is computed with taking into account only objects
v ∈ U with d(v) = d(u), i.e., gcd(u, r) =g(u, r) ∩ {v ∈ U : d(v) = d(u)}. This
method increases the number of granules in coverings but it is also expected to
increase quality of classification, as expressed by accuracy and coverage.

We show that this is the case indeed, by including results of the test in which
exhaustive algorithm and random choice of coverings were applied tenfold to
Australian credit data set, once with the “standard” by now granular approach
and then with the concept dependent approach. The averaged results are shown
in Table 19.

For comparison, we include the best results on Australian credit data set
obtained by rough set based methods in Table 20.

Let us observe that in case of Australian credit data set (Table 20), best
results are obtained with simple, descriptor–based approaches, not augmented
by specific metrics (viz., general templates:accuracy of .886; simple templates:
accuracy of .929; concept dependent granular system: accuracy of .9970).

Conclusions for concept dependent granulation. Concept dependent gran-
ulation, as expected, involves a greater number of granules in a covering, hence, a
greater number of rules, which is perceptible clearly up to the radius of .714286
and for greater radii the difference is negligible. Accuracy in case of concept
dependent granulation is always better than in the standard case, the differ-
ence becomes negligible at the radius of .857143 when granules become almost
single indiscernibility classes. Coverage in concept dependent case is almost the
same as in the standard case, the difference between the two not greater than .15
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Table 19. Standard and concept dependent granular systems for Australian credit data
set; exhaustive RSES algorithm:r=granule radius, macc=mean accuracy, mcov=mean
coverage, mrules=mean number of rules, mtrn=mean training sample size; in each
column first value is for standard, second for concept dependent

r macc mcov mrules mtrn

nil 1.0; 1.0 1.0; 1.0 12025; 12025 690; 690
0.0 0.0; 0.8068 0.0; 1.0 0; 8 1; 2

0.0714286 0.0; 0.7959 0.0; 1.0 0; 8.2 1.2; 2.4
0.142857 0.0; 0.8067 0.0; 1.0 0; 8.9 2.4; 3.6
0.214286 0.1409; 0.8151 0.2; 1.0 1.3; 11.4 2.6; 5.8
0.285714 0.7049; 0.8353 0.9; 1.0 8.1; 14.8 5.2; 9.6
0.357143 0.7872; 0.8297 1.0; 0.9848 22.6; 32.9 10.1; 17
0.428571 0.8099; 0.8512 1.0; 0.9986 79.6; 134 22.9; 35.4

0.5 0.8319; 0.8466 1.0; 0.9984 407.6; 598.7 59.7; 77.1
0.571429 0.8607; 0.8865 0.9999; 0.9997 1541.6; 2024.4 149.8; 175.5
0.642857 0.8988; 0.9466 1.0; 0.9998 5462.5; 6255.2 345.7; 374.9
0.714286 0.9641; 0.9880 1.0; 0.9988 9956.4; 10344.0 554.1; 572.5
0.785714 0.9900; 0.9970 1.0; 0.9995 11755.5; 11802.7 662.7; 665.7
0.857143 0.9940; 0.9970 1.0; 0.9985 11992.7; 11990.2 682; 683
0.928571 0.9970; 1.0 1.0; 0.9993 12023.5; 12002.4 684; 685

1.0 1.0; 1.0 1.0; 1.0 12025.0; 12025.0 690; 690

Table 20. Best results for Australian credit by some rough set based algorithms; in
case ∗, reduction in object size is 49.9 percent, reduction in rule number is 54.6 percent;
in case ∗∗, resp., 19.7, 18.2; in case ∗ ∗ ∗, resp., 3.6, 1.9

source method accuracy coverage

[3] SNAPM(0.9) error=0.130 -
[44] simple.templates 0.929 0.623
[44] general.templates 0.886 0.905
[44] closest.simple.templates 0.821 1.0
[44] closest.gen.templates 0.855 1.0
[44] tolerance.simple.templ. 0.842 1.0
[44] tolerance.gen.templ. 0.875 1.0
[59] adaptive.classifier 0.863 -

this.work granular*.r=0.642857 0.8990 1.0
this.work granular**.r=0.714826 0.964 1.0
this.work granular***.concept.dependent.r=0.785714 0.9970 0.9995

percent from the radius of .428571, where the average number of granules in
coverings is 5 percent of the number of objects. Accuracy at that radius is better
by .04 i.e. by about 5 percent in the concept dependent case.

It follows that concept dependent granulation yields better accuracy whereas
coverage is the same as in the standard case.
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7 Experiments with Rough Inclusions from Residua of
t–Norms and Extensions of µL

In this part, we report results of experiments with real data in which granulation
has been performed according to rough inclusions induced from residual impli-
cations of t–norms. In these experiments, a subset of Australian credit data set
has been used, with random choice of granular coverings and majority voting as
the attribute factoring strategy.

First, an extension of the �Lukasiewicz rough inclusion µL is proposed which
depends on a chosen metric ρ bounded by 1 in the attribute value space V of
(we assume for simplicity that ρ is suitable for all attributes). In experiments, ρ
has been chosen as the Euclidean 1–metric ρ(x, y) = min{1, |x− y|}.

Then, given an ε ∈ [0, 1], we let

µε
ρ(v, u, r)

if and only if
|{a ∈ A : ρ(a(v), a(u)) < ε}| ≥ r · |A|.

It is manifest that µε is a rough inclusion if ρ is a non–archimedean metric,
i.e., ρ(u, w) ≤ max{ρ(u, v), ρ(v, w)}; otherwise the monotonicity condition RI2
of (5) need not be satisfied and this takes place with most popular metrics like
Euclidean, Manhattan etc.

In this case, a rough inclusion µ∗
ρ defined as follows: µ∗

ρ(v, u, r) if and only if
there exists an ε such that µε

ρ(v, u, r). Then it is easy to check that µ∗ is a rough
inclusion. The parameter r is called the catch radius.

Granules induced by the rough inclusion µ∗
ρ with r = 1 have a simple structure:

a granule gε
ρ(u, 1) consists of all v ∈ U such that ρ(a(u), a(v)) ≤ ε.

The idea poses itself to use granules defined in this way to assign a decision
class to an object u in the test set.

First, given an object u in the test set, a granule gε
ρ(u, 1) is formed in the

training set.
Thus, gε

ρ(u, 1) = {v ∈ training set : ρ(a(u), a(v)) ≤ ε for each attribute a ∈
A}.

Next, for each value c of a decision class, the following factor is computed,

param(c) =
|gε

ρ(u, 1) ∩ c

cardinality of c in the training set
, (18)

cf., [3], [4], for a discussion of various strategies of voting for decision values.
The class cu assigned to u is decided by

param(cu) = maxcparam(c), (19)

with random resolution of ties.
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In computing granules, the parameter ε is normalized to the interval [0, 1] as
follows: first, for each attribute a ∈ A, the value train(a) = maxtraining seta −
mintraining seta is computed and the real line (−∞, +∞) is contracted to the
interval [mintraining seta, maxtraining seta] by the mapping fa,

fa(x) =

⎧⎨⎩
mintraining seta in case x ≤ mintraining seta
x in case x ∈ [mintraining seta, maxtraining seta]
maxtraining seta in case x ≥ maxtraining seta.

(20)

When the value a(u) for a test object u is off the range [mintraining seta,
maxtraining seta], it is replaced with the value fa(a(u)) in the range. For an
object v, or a rule r with the value a(v), resp., a(r) of a denoted a(v, r), the
parameter ε is computed as |a(v,r)−fa(a(u))|

train(a) .
We show results of experiments with these rough inclusions. Our data set was

a subset of Australian credit data in which training set had 100 objects from
class 1 and 150 objects from class 0 (which approximately yields the distribution
of classes in the whole data set). The test set had 100 objects, 50 from each
class. The exhaustive classifier applied to this data set gave accuracy of 0.79 and
coverage of 1.0.

7.1 Results of Tests with Granules of Training Objects According
to µε

ρ(v, u, 1) Voting for Decision

In Fig. 1 results of classification are given in function of ε for accuracy as well
as for coverage.

Fig. 1. Results for algorithm 1 v1, Best result for ε = 0.62: accuracy = 0.828283,
coverage = 0.99
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7.2 Results of Tests with Granules of Training Objects According
to µε

ρ(v, u, r)

We return to the rough inclusion µ∗
ρ(v, u, r) with general radius r. The procedure

applied in case of µε
ρ(v, u, 1) can be repeated in the general setting. The resulting

classifier is a function of two parameters ε, r. In Table 21 results are included
where against values of the catch radius r the best value for ε’s marked by the
optimal value optimal eps is given for accuracy and coverage.

Table 21. (40%-60%)(1-0); Australian credit; Algorithm 1 v2. r catch=catch radius,
optimal eps=Best ε, acc= accuracy, cov=coverage

r catch optimal eps acc cov

nil nil 0.79 1.0
0.071428 0 0.06 1.0
0.142857 0 0.66 1.0
0.214286 0.01 0.74 1.0
0.285714 0.02 0.83 1.0
0.357143 0.07 0.82 1.0
0.428571 0.05 0.82 1.0
0.500000 0 0.82 1.0
0.571429 0.08 0.84 1.0
0.642857 0.09 0.84 1.0
0.714286 0.16 0.85 1.0
0.785714 0.22 0.86 1.0
0.857143 0.39 0.84 1.0
0.928571 0.41 0.828283 0.99
1.000000 0.62 0.828283 0.99

7.3 Rough Inclusions and Their Weaker Variants Obtained from
Residual Implications in Classification of Data

The residual implication of a continuous t–norm T is defined, see [9], or [22] as,

x⇒T y ≥ z if and only if T (x, z) ≤ y. (21)

As shown in, e.g., [32], residual implications of continuous t–norms can supply
rough inclusions according to a general formula,

µφ(v, u, r) iff φ(u)⇒t φ(v) ≥ r, (22)

where φ maps the set U of objects into [0, 1] and φ(u) ≤ φ(v) if and only if
u ing v (ing is an ingredient relation of the underlying mereology).

Candidates for φ are proposed in [32], and a weak interesting variant of
this class of rough inclusions is indicated. This variant uses sets disε(u, v) =
|{a∈A:ρ(a(u),a(v))≥ε}|

|A| , and indε(u, v) = |{a∈A:ρ(a(u),a(v))<ε}|
|A| , for u, v ∈ U , ε ∈

[0, 1], where ρ is a metric |x− y| on attribute value sets.
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Fig. 2. Results for algorithm 5 v1, Best result for ε=0.04, accuracy=0.82, coverage=1

Fig. 3. Results for algorithm 5 v2, Best result for ε=0.01, accuracy=0.84, coverage=1

The resulting weak variant of the rough inclusion µT is,

µT (u, v, r) if and only if disε(u, v) →T indε(u, v) ≥ r. (23)

Basic variants for three principal t–norms: the �Lukasiewicz t–norm L =
max{0, x + y − 1}, the product t–norm P (x, y) = x · y, and min{x, y} are,
(the value in all variants is 1 if and only if x ≤ y so we give values only in the
contrary case)

µT (u, v, r) if and only if

⎧⎨⎩
1− disε(u, v) + indε(u, v) ≥ r for L
indε(u,v)
disε(u,v) ≥ r for P
indε(u, v) ≥ r for min

(24)
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Fig. 4. Results for algorithm 6 v1, Best result for ε=0.01, accuracy=0.81, coverage=1

Fig. 5. Results for algorithm 6 v2, Best result for varepsilon = 0.01, accuracy = 0.84,
coverage = 1

Objects in the class c in the training set vote for decision at the test object
u according to the formula: p(c)=

P

v∈c w(v,t)

|c| in the training set where weight w(v, t) is

disε(u, v) →T indε(u, v); rules induced from the training set pointing to the
class c vote according to the formula p(c)=

P

r w(r,t)·support(r)
|c| in the training set . In either case,

the class c∗ with p(c∗) = maxcp(c) is chosen. We include here results of tests
with training objects and T=min (Fig.2)and rules and T=min (Fig.3).

Similarly, we include in Figs. 4, 5 results of tests with granules of training
objects and rules for T=P, the product t–norm.

The results of tests in best cases for optimal values of ε exceed results obtained
with the standard exhaustive algorithm.
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8 Conclusions

It follows from experiments that granular decision systems offer substantial com-
pression of data and classifier size, maintaining at the same time quality of
classification on par with classifiers induced from original data.This confirms a
hypothesis put forth in [29], [30] that granular decision systems preserve to a
very high degree the information contained in the original decision system that
is vital for classification tasks.

To validate the hypothesis statistically, we have collected results obtained in
all tables for the first radius equal or greater than .5 along with the results for
radius = nil, i.e., without granulation, matching them in pairs; the sample of
n = 21 matched pairs has been subjected to the Wilcoxon signed rank test for
matched pairs [55]. The hypothesis tested has been H0:“the mean value in case
of granular systems for accuracy/coverage is the same (or better) as 95 percent
of the value of the mean in non–granular case”, against the alternative Ha:“the
mean value in case of granular systems for accuracy/coverage is less than 95
percent of the value of the mean in non–granular case” (i.e., one–tailed case).
The p–value has been found of .4442 in case of accuracy and .2514 in case of
coverage. Thus, there is no evidence on the basis of the sample to reject H0.

Our results presented above justify the claim that operators of random gran-
ular coverings for radii ≥ .5 are .05 A–operators for A – accuracy or coverage
coefficients as yielded by exhaustive, covering or LEM2 algorithms.

Voting by granules of various entities like training objects or rules obtained
either from the training set or from the granulated reflection of the data set,
proves a very effective classifier, better than the standard exhaustive classifying
algorithm.

The results show the potential of granular classifying scheme, also in many
possible applications. The more detailed study of voting strategies on basis of
granular structures is given by the authors in [1].

Acknowledgment. Authors dedicate this work as homage to the late Profes-
sor Zdzis�law Pawlak. The first author remembers with gratitude the support
to his work offered kindly by Professor Zdzis�law Pawlak and he recollects the
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rough sets. In: S�lowiński, R. (ed.) Intelligent Decision Support: Handbook of Ad-
vances and Applications of the Rough Sets Theory, pp. 3–18. Kluwer, Dordrecht
(1992)

7. Grzymala–Busse, J.W.: Data with missing attribute values: Generalization of rule
indiscernibility relation and rule induction. In: Peters, J.F., Skowron, A., Grzyma�la-
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Abstract. In this work the subject of granular computing is pursued
beyond the content of the previous paper [21]. We study here voting
on a decision by granules of training objects, granules of decision rules,
granules of granular reflections of training data, and granules of decision
rules induced from granular reflections of training data. This approach
can be perceived as a direct mapping of the training data on test ones
which is induced by granulation of knowledge on the training data. Some
encouraging results were already presented in [21], and here the subject
is pursued systematically.

Granules of knowledge are defined and computed according to a previ-
ously used scheme due to Polkowski in the framework of theory of rough
inclusions.

On the basis of presented results, one is justified in concluding that
the presented methods offer a very good quality of classification, compa-
rable fully with best results obtained by other rough set based methods,
like templates, adaptive methods, hybrid methods etc.

Keywords: rough inclusions, classification of data, granulation of knowl-
edge, rough mereology.

1 Introduction: Rough Sets, Rough Inclusions,
Granulation of Knowledge

Knowledge can be represented in the framework of rough set theory by means
of information/decision systems, see [6], [7]. An information system is a pair
I = (U, A) where U is a set of objects, and A is a set of attributes; each attribute
a ∈ A a mapping on the set U into the value set Va with V =

⋃
a∈A Va as the

global value set. A decision system is a pair D = (I = (U, A)), d) where d /∈ A
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is a decision with the value set Vd. Objects in U are represented by means of
information sets: InfA(u) = {(a = a(u)) : a ∈ A} is the information set of
the object u; the formula (a = a(u)) is a particular case of a descriptor of the
form (a = v) where v is a value of the attribute a ∈ A ∪ {d}. Decision rules are
expressions of the form

∧
a∈B(a = a(u)) ⇒ (d = d(u)) where B ⊆ A.

1.1 Indiscernibility, Granulation of Knowledge

Indiscernibility relations of the form Ind(B) = {(u, v) : a(u) = a(v) for each a ∈
B} where B ⊆ A, provide means for granulation of knowledge. The classical
form of granulation of knowledge in information/decision systems is partitioning
of U into classes of the indiscernibility relation Ind(B). Each class [u]B = {v ∈
U : (u, v) ∈ Ind(B)} is interpreted as an elementary B–granule and unions of
elementary B–granules are B–granules of knowledge. Thus, granulation means
forming aggregates of objects indiscernible over chosen sets of attributes.

The approach to granulation presented in this work consists in using rough
inclusions, see [12]–[19].

1.2 Rough Inclusions

The generic term of a rough inclusion was introduced in [22], see also [23]. A
rough inclusion is a relation µ ⊆ U×U× [0, 1] which can be regarded as a graded
similarity relation extending the indiscernibility relation by relaxing restrictions
on attribute values, cf., [15].

In this work we are using prevalently rough inclusions obtained either from
metrics or from continuous t–norms by means of their residual implications, see
[17], [15], [14], [13], as well as their weak variants which in spite of violating some
requirements for being a rough inclusion, have a clear intuitive appeal.

A rough inclusion µ, see, e.g., [23] or [12] and bibliography quoted there, can
be defined as a relation on U × U × [0, 1]; the formula µ(u, v, r) reads ”u is a
part to degree ≥ r to v”. A theoretical analysis and motivations for introducing
a part relation into the realm of rough sets can be found, e.g., in [12], [15].

Granules of knowledge are defined, see [13], [14], [15], [16], from rough inclu-
sions µ as follows (we depart here from mereological content, cf., e.g., [12], [14],
[17], [19], giving a working definition of a granule),

gµ(v, r) is {u ∈ U : µ(u, v, r)}, (1)

where gµ(v, r) is the granule of radius r about v induced by the rough inclusion µ.

1.3 Rough Inclusions and Granules from Metrics

Given a bounded by 1 metric ρ on the set V of attribute values (we assume for
convenience that one metric suits all attribute value sets), one lets, cf., [9] where
the initial idea of a similarity was proposed,

µρ(u, v, r) iff ρ(u, v) ≤ 1− r. (2)
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The relation µρ has the properties that

Rh1. µρ(u, v, 1) if and only if u = v.
Rh2. If µρ(u, v, 1) then µρ(w, u, r) implies µρ(w, v, r) for each w.
Rh3. If µρ(u, v, r) and s < r then µρ(u, v, s).

Properties Rh1–Rh3 are essentially requirements for a relation µ to be a rough
inclusion.

In particular, see, e.g., [16], the Hamming metric H on information sets of
objects in an information system, relative to size |A| of the attribute set,

H(u, v) =
|InfA(u)+InfA(v)|

|A| , (3)

where X+Y = (X \ Y ) ∪ (Y \X) is the symmetric difference of sets X, Y , does
induce the rough inclusion µH , according to (6), as,

µH(u, v, r) iff
|InfA(u) ∩ InfA(v)|

|A| ≥ r, (4)

meaning that u is a part to v (or, is similar to v) to degree not less than r if and
only if at least r ·100 percent of attributes in A, take the same value on u and v.

Granules induced by µH are of the form, according to (1),

gH(v, r) is {u ∈ U :
|InfA(u) ∩ InfA(v)|

|A| ≥ r}, (5)

i.e., an object u is in the granule gH(v, r) if and only if at least the fraction r of
attributes agree on u and v.

1.4 A Graded Variant of µρ

As defined in, e.g., [17], [18], the graded variant of µρ assumes that in deciding
the decision value at a test object u, collections of either rules or objects take
part; these collections are built as granules with respect to a modified rough
inclusion µε

ρ, see [18].
Given ε ∈ [0, 1], we let µε

ρ(u, v, r) if and only if

|{a ∈ A : ρ(a(v), a(u)) ≤ ε}| ≥ r · |A|. (6)

With ρ(x, y) =min{1, |x− y|}, the granules induced by µε
ρ are defined as,

gµε
ρ(v, r) = {u ∈ U : |{a ∈ A : |a(v)− a(u)| ≤ ε}| ≥ r · |A|}. (7)

In particular, in case r = 1, the granule is defined as,

gµε
ρ(v, 1) is {u ∈ U : |a(v)− a(u)| ≤ ε for eacha ∈ A}. (8)

In computing granules, the parameter ε is normalized to the interval [0, 1] as
follows: first, for each attribute a ∈ A, the value train(a) = maxtraining seta −
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mintraining seta is computed and the real line (−∞, +∞) is contracted to the
interval [mintraining seta, maxtraining seta] by the mapping fa,

fa(x) =

⎧⎨⎩
mintraining seta in case x ≤ mintraining seta
x in case x ∈ [mintraining seta, maxtraining seta]
maxtraining seta in case x ≥ maxtraining seta.

(9)

When the value a(u) for a test object u is off the range

[mintraining seta, maxtraining seta],

it is replaced with the value fa(a(u)) in the range. The value of ε in this case is
defined as |fa(a(u))−a(v)|

train(a) .

Remark on duality between objects and decision rules. Objects in the
universe of the information system I = (U, A) are encoded by means of their
information sets: an object u is represented by its information set InfA(u) =
{(a = a(u)) : a ∈ A}. Decision rules in a decision system D = (I = (U, A)), d)
with the decision d, are written down as implications in the descriptor logic:

r :
∧

a∈A

(a = a(u))⇒ (d = d(u)).

Clearly, the mapping K : InfA(u) →
∧

a∈A(a = a(u)) ⇒ (d = d(u)) sends
objects onto decision rules up to the indiscernibility and choice of decision values
d(u) in case of non–deterministic systems. Similarly, the mapping L :

∧
a∈A(a =

a(u))⇒ (d = d(u)) → InfA(u) sends decision rules onto objects uniquely up to
indiscernibility.

Thus, formulas for granules of objects can be applied as well to decision rules:
in effect, granules of decision rules can be formed whose centers are either de-
cision rules or objects and vice versa, granules of objects can be formed about
decision rules.

1.5 Granular Reflections of Granules and Granulated Data Sets

The idea of a granular reflection of a data set was proposed in [13]: for a chosen
rough inclusion µ, given a granulation radius r, the set G(r, µ) of all granules
of the radius r is formed. From this set, a covering Cov(r, µ,G) of the set of
objects U is chosen by means of a strategy G, which is usually a random choice
of granules with irreducibility checking.

Given the covering Cov(r, µ,G), attributes in the set A ∪ {d} are factored
through granules to make a new attribute set. For an attribute a ∈ A∪{d}, and
a granule g, the new attribute a∗ is defined according to a chosen strategy S as

a∗(g) = S({a(v) : v ∈ g}). (10)

A (possibly, but not necessarily) virtual object o(g) is defined, called the granular
reflection of g,

InfA∗o(g) = {(a∗ = a∗(g)) : a∗ ∈ A∗, (11)

where A∗ = {a∗ : a ∈ A}, which does represent the granule g.
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A new information/decision system is formed:

(D∗ = (I∗ = (Cov(r, µ,G, A∗)), d∗))

called also a granular reflection of the given information system [13],[18].
In all tests reported here, the strategy G has been chosen as the random

selection of a covering with checking for irreducibility and the strategy S has
been the majority voting with random tie resolution.

2 Mapping Granules of Objects or Rules on Decision
Values by Variants of µH

Given a granule g of either decision rules or objects in a decision system D =
(I = (U, A)), d), for each test object u, the value of decision assigned to u by the
granule g is defined as,

d(u)=c* iff sum of supports of rules pointing to c*
cardinality of c* in the training set =

maxc
sum of supports of rules pointing to c

cardinality of c in the training set .
(12)

where c denotes a decision value and c∗ is the decision value assigned to u. The
last three rows of Table 1 show results obtained by our approach with granular
systems, described in [16], [20], [21].

Table 1. Best results for Australian credit by some rough set based algorithms; in
case ∗, reduction in object size is 49.9 percent, reduction in rule number is 54.6 percent;
in case ∗∗, resp., 19.7, 18.2; in case ∗ ∗ ∗, resp., 3.6, 1.9

source method accuracy coverage

[3] SNAPM(0.9) error=0.130 -
[5] simple.templates 0.929 0.623
[5] general.templates 0.886 0.905
[5] closest.simple.templates 0.821 1.0
[5] closest.gen.templates 0.855 1.0
[5] tolerance.simple.templ. 0.842 1.0
[5] tolerance.gen.templ. 0.875 1.0
[28] adaptive.classifier 0.863 -

this.work granular*.r=0.642857 0.8990 1.0
this.work granular**.r=0.714826 0.964 1.0
this.work granular***.concept.dependent.r=0.785714 0.9970 0.9995

2.1 Classifying Mappings Induced by µε
ρ(u, v, 1)

We present here results of tests in which the granulation with µε
ρ with the radius

r = 1 has been applied in four cases:
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Case 1. Granules of training objects have been used.
Case 2. Granules of granular objects have been used.
Case 3. Granules of rules from the training set have been used.
Case 4. Granules of rules from the granulated training set have been used.

All tests have been done with Australian credit data [27], split into the training
and test sets. The 5–fold cross validation has been applied. Results are expressed
in terms of accuracy and coverage, cf., [26].

Table 1 shows the best results obtained with rough set based classification
algorithms as well as augmenting them heuristics.

Case 1: Tests with granules of training objects. In Fig. 1 below the re-
sults of the test (test 1-v.1) are shown for accuracy and coverage respectively in
function of ε applied. For comparison, the result obtained with the standard ex-
haustive classifier (marked with the horizontal line in Fig.1) is 0.845 for accuracy
and 1.0 for coverage.

Fig. 1. Results for test with granules of training objects;Best result for ε = 0.83:
accuracy = 0.859219; coverage = 0.998551

2.2 Case 2: Results of Tests with Granules of Granular Objects

In this case the parameters are ε and the granulation radius r. Results are shown
in Table 2 where for each value of r, the optimal (best) result for ε’s is given as
optimal eps.

2.3 Case 3: Results of Tests with Granules of Rules from the
Training Set

Fig. 2 shows the results.
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Table 2. CV-5; Australian credit; Algorithm 2 v1. r gran=granulation radius, opti-
mal eps=Best optimal epsilon, acc=Total accuracy, cov=Total coverage, m trn=mean
training sample. Best result for r = 0.785714 and ε = 0.54: accuracy=0.861673; cover-
age=0.9956.

r gran optimal eps acc cov m trn

nil nil 0.845 1.0 552
0.000000 1.0 0.555073 1 1
0.071428 1.0 0.555073 1 1.2
0.142857 1.0 0.555073 1 2.2
0.214286 1.0 0.555073 1 3.4
0.285714 1.0 0.546377 1 5
0.357143 1.0 0.523189 1 9.6
0.428571 0.96 0.858144 0.742029 21.6
0.500000 0.95 0.838491 0.95942 52.8
0.571429 0.93 0.82871 0.998551 134.8
0.642857 0.95 0.831884 1.0 295.8
0.714286 0.71 0.858987 0.997102 456.4
0.785714 0.54 0.861673 0.995652 533.2
0.857143 0.83 0.859219 0.998551 546.2
0.928571 0.83 0.859219 0.998551 548
1.000000 0.83 0.859219 0.998551 552

Fig. 2. Results for granules of rules from the training set. Best result for ε = 0.46:
accuracy = 0.871015; coverage = 1.0.

2.4 Case 4: Results of Tests with Granules of Rules from the
Granulated Training Set

Table 3 shows these results.

Conclusions. Results of presented tests show that classifying maps obtained
from training objects give very satisfactory classification accuracy: the best result
of accuracy of 0.871015, has been obtained in Case 2 with mapping granules of
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Table 3. CV-5; Australian credit; Algorithm 4 v1. r gran=granulation radius, op-
timal eps=Best optimal epsilon, acc= accuracy, cov= coverage. Best result for r =
0.785714, ε = 0.01: accuracy=0.8507; coverage=1.0.

r gran optimal eps acc cov m trn

nil nil 0.845 1.0 552
0 0 0.555073 1.0 1

0.071428 0 0.555073 1.0 1.6
0.142857 0 0.555073 1.0 2.2
0.214286 0.08 0.642029 1.0 2.8
0.285714 0 0.755073 1.0 4.4
0.357143 0 0.771014 1.0 9.8
0.428571 0.01 0.765217 1.0 23.8
0.500000 0 0.771014 1.0 53.2
0.571429 0 0.824638 1.0 130.6
0.642857 0 0.834783 1.0 294.8
0.714286 0.02 0.83913 1.0 454.8
0.785714 0.01 0.850724 1.0 533
0.857143 0.01 0.850724 1.0 546.2
0.928571 0.01 0.849275 1.0 548
1.000000 0.1 0.850725 1.0 552

rules from the training set; it is higher than almost all rough set method obtained
results save for general and simple templates, granular test=train method and
concept dependent granulation, see Table 1. In all cases, the best accuracy has
been higher than that obtained with the standard exhaustive classifier.

These results support the intuitions [13] about effectiveness of granular struc-
tures in building classifiers.

2.5 Classifying Mappings Based on Granulation by Means of
µε

ρ(v, u, r)

In this section, we present results of tests with granules based on µε
ρ(v, u, r) for

all values of r.We recall that in this case, a granule gµε
ρ
(v, r) consists of ob-

jects uv such that at least r · 100 percent of attributes a satisfy the condition
|a(u)− a(v)| ≤ ε. The parameter r is called the catch radius. We present results
of experiments in three cases.

Case 1. Granules of training objects have been used.

Case 2. Granules of granular objects have been used.

Case 3. Granules of rules from the training set have been used.

Case 1: Results of tests with granules of training objects. Results are
shown in Table 4.
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Table 4. CV-5; Australian credit; Algorithm 1 v2. r catch=catch radius, opti-
mal eps=Best optimal epsilon, acc=accuracy, cov= coverage. Best result for r =
0.785714, ε = 0.18: accuracy=0.872136; coverage=0.9971.

r catch optimal eps acc cov

nil nil 0.845 1.0
0.071428 0 0.155073 1.0
0.142857 0 0.750725 1.0
0.214286 0.01 0.823188 1.0
0.285714 0.01 0.853623 1.0
0.357143 0.02 0.844927 1.0
0.428571 0.04 0.842029 1.0
0.500000 0.05 0.852174 1.0
0.571429 0.03 0.860869 1.0
0.642857 0.05 0.870866 0.998551
0.714286 0.24 0.868116 1.0
0.785714 0.18 0.872136 0.997102
0.857143 0.5 0.869565 1.0
0.928571 0.57 0.868116 1.0
1.000000 0.84 0.859219 0.998551

2.6 Case 2: Results of Tests with Granules of Granular Objects

These results are shown in Table 5.

Table 5. CV-5; Australian credit; Algorithm 2 v2. r gran=granulation radius, opti-
mal r catch=optimal catch radius, optimal eps=Best optimal epsilon, acc=accuracy,
cov=coverage. Best result for r = 0.714826, the optimal catch radius=0.714286, opti-
mal ε=0.08: accuracy=0.874757; coverage=0.942.

r gran optimal r catch optimal eps acc cov

0 0.357143 0.11 0.556755 0.997102
0.0714286 0.357143 0.11 0.556755 0.997102
0.142857 0.428571 0.15 0.556755 0.997102
0.214286 0.428571 0.11 0.570352 0.988406
0.285714 0.928571 0.91 0.739727 0.857971
0.357143 0.928571 0.92 0.790782 0.975362
0.428571 0.928571 0.87 0.797704 0.995652

0.5 0.785714 0.29 0.840527 0.989855
0.571429 0.642857 0.07 0.844695 0.998551
0.642857 0.642857 0.05 0.866476 0.998551
0.714286 0.714286 0.08 0.874757 0.994203
0.785714 0.785714 0.19 0.869417 0.998551
0.857143 0.785714 0.58 0.872464 1
0.928571 0.642857 0.05 0.872316 0.998551

1 0.785714 0.18 0.872136 0.997102
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2.7 Case 3: Results of Tests with Granules of Rules from the
Training Set

Table 6 shows results.

Table 6. CV-5; Australian credit; Algorithm 3 v2. r catch=catch radius, opti-
mal eps=Best optimal epsilon, acc=accuracy, cov= coverage. Best result for r =
0.142857, ε=0.35: accuracy=0.868116; coverage=1.0.

r catch optimal eps acc cov

nil nil 0.845 1.0
0 0 0.555073 1.0

0.071428 0 0.83913 1.0
0.142857 0.35 0.868116 1.0
0.214286 0.5 0.863768 1.0
0.285714 0.52 0.831884 1.0
0.357143 0.93 0.801449 1.0
0.428571 1.0 0.514493 1.0
0.500000 1.0 0.465217 1.0
0.571429 1.0 0.115942 1.0

Conclusions. In the cases with the catch radius r, accuracy is again higher than
that of the standard exhaustive classifier. Best result is obtained in Case 2 with
mappings of granules of granular objects: accuracy=0.87475 is higher than that
obtained with closest templates, SNAPM, and adaptive classifier as recalled in
Table 1.

3 Granulation by Means of Variants of Rough Inclusions
Induced by Residual Implications of t–Norms

In this part of our work, we are using rough inclusions proposed in [13], see
[14], [15], [18] as obtained from continuous t–norms by means of their residual
implications.

For a continuous t–norm T , see, e.g., [4], [10], the residual implication x ⇒T y
is a mapping from the square [0, 1]2 into [0, 1] defined as follows,

x ⇒T y ≥ z if and only if T (x, z) ≤ y; (13)

thus, x⇒T y = max{z : T (x, z) ≤ y}.
As shown in, e.g., [13], [14], [15], [18], ⇒T does induce a rough inclusion on

the interval [0, 1]:

µ→T (u, v, r) if and only if x ⇒T y ≥ r. (14)

This rough inclusion can be transferred to the universe U of an information
system as shown in [18]: for given objects u, v, and ε ∈ [0, 1], factors: disε(u, v) =
|{a∈A:|a(u)−a(v)|≥ε}|

|A| , and indε(u, v) = |{a∈A:|a(u)−a(v)|<ε}|
|A| are introduced.
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The weak variant of rough inclusion µ→T is defined, see [18], as,

µ∗
T (u, v, r) if and only if disε(u, v) →T indε(u, v) ≥ r. (15)

Particular cases of this similarity measure induced by, respectively, t–norm
min(x, y), t–norm P (x, y) = x · y, and t–norm L(x, y) = max{0, x + y − 1} are,
see [18], [4],

For T = min(x, y), x ⇒min y is y in case x > y and 1 otherwise hence
µ∗

min(u, v, r) if and only if disε(u, v) > indε(u, v) ≥ r with r < 1 and 1 oth-
erwise.

For t = P where P (x, y) = x · y, x ⇒P y = y
x when x 	= 0 and 1 when x = 0

hence µ∗
P (u, v, r) if and only if indε(u,v)

disε(u,v) ≥ r with r < 1 and 1 otherwise.

For t = L, x ⇒L y = min{1, 1 − x + y}, hence µ∗
L(u, v, r) if and only if 1 −

disε(u, v) + indε(u, v) ≥ r with r < 1 and 1 otherwise.

These similarity measures will be applied in building granules and then in data
classification.

Tests have been carried out with Australian credit data set [27] and the
method was CV-5 (the 5–fold cross validation).

3.1 Classifying Mappings Based on Granulation by Means of
µ∗

T (u, v, r)

In this Section results of tests are presented with granulation based on the weak
rough inclusion µ∗

T (u, v, r). For each of t–norms: min, P , L, we have three cases:

Case 1. Granules of training objects have been used.

Case 2. Granules of rules induced from the training set have been used.

Case 3. Granules of granular objects induced from the training set have been
used.

3.2 Case 1: Results of Tests with Granules of Training Objects

In this approach, training objects are made into granules for a given ε. Objects in
each granule g about a test object u, vote for decision value at u as follows: for

each decision class c, the value p(c)=
P

training object v in g falling in c w(v,t)

size of c in training set
is computed where the weight w(v, t) is computed for a given t–norm T as
w(v, t) = disε(u, v) →T indε(u, v). The class c* assigned to u is the one with
the largest value of p. Results for the three chosen t–norms are given in Fig.1
(t=min), Fig.2 (t=P), Fig.3 (t=L). For comparison, the accuracy computed with
the standard exhaustive classifier is 0.845, and coverage is 1.0.
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Fig. 3. Results for granules of training objects,T=min.Best result for ε = 0.04: accu-
racy = 0.847826, coverage = 1.0

Conclusions. For all three t–norms, accuracy in the best case is better than that
obtained with the standard exhaustive classifier, though is is lower than accu-
racy obtained with the rough inclusion µH . One may conclude that the impact of
weighting by means of µ∗

T is slightly less decisive than the impact of direct com-
paring of values of attributes on objects by means of the threshold parameter ε.

3.3 Case 2: Results of Tests with Granules of Rules from the
Training Set

Weighted voting of rules in a given granule g for decision at test object u goes
according to the formula d(u)= arg max p(c) where

p(c)=
P

rule in g pointing to c w(r,t)·support(r)

size of c in training set ,

where weight w(r, t) is computed as disε(u, r) →T indε(u, r).
Results are shown in Fig. 4 (T=min), Fig. 5 (T=P), Fig.6 (T=L).

Fig. 4. Results for granules of training objects,T=P.Best result for ε = 0.06: accuracy
= 0.847826, coverage = 1.0
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Fig. 5. Results for granules of training objects, T=L. Best result for ε = 0.05: accuracy
= 0.846377, coverage = 1.0.

Fig. 6. Results for granules of rules, T=min. Best result for ε = 0.02: accuracy =
0.86087, coverage = 1.0.

Fig. 7. Results for granules of rules,T=P. Best result for ε = 0.01: accuracy = 0.850725,
coverage = 1.0.
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Fig. 8. Results for granules of rules, T=L. Best result for ε = 0, accuracy = 0.555073,
coverage = 1.0.

Conclusions. For t–norms min and P classification accuracy is higher than that
of the standard exhaustive classifier and case of min is better than all cases with
granules of training objects. The case of L is worse which can be attributed to
the computational features of ⇒L: weights in this case are little discriminating.

3.4 Results of Tests with Granular Objects from the Training Set

Analogously, as with granules of training objects, granular objects from granular
reflections of granules vote for decision. The difference is in the fact that now we

Table 7. CV-5; Australian credit; Algorithm 5 v3. Granular objects, T=min; r gran=
granulation radius, optimal eps= optimal epsilon, acc= accuracy, cov=coverage,
m trn=mean training set. Best result for r = 0.785714, varepsilon=0.05: accu-
racy=0.855072; coverage=1.0.

r gran optimal eps acc cov m trn

nil nil 0.845 1.0 552
0 0.01 0.555073 1.0 1

0.071428 0.01 0.555073 1.0 1.4
0.142857 0.01 0.555073 1.0 2
0.214286 0.01 0.555073 1.0 2.4
0.285714 0.01 0.531884 1.0 4.8
0.357143 0.01 0.743478 1.0 9.2
0.428571 0.01 0.733333 1.0 20.4
0.500000 0.03 0.834783 1.0 53.8
0.571429 0.02 0.791304 1.0 134.4
0.642857 0.01 0.798551 1.0 295.8
0.714286 0.02 0.83913 1.0 454.8
0.785714 0.05 0.855072 1.0 533.8
0.857143 0.05 0.847826 1.0 546.2
0.928571 0.04 0.847826 1.0 548
1.000000 0.04 0.847826 1.0 552



278 L. Polkowski and P. Artiemjew

Table 8. CV-5; Australian credit; Algorithm 6 v3. Granular objects, T=P;
r gran=granulation radius, optimal eps= optimal epsilon, acc= accuracy, cov= cov-
erage, m trn=mean training set. Best results for r = 0.785714, ε=0.01: accu-
racy=0.852174; coverage=1.0.

r gran optimal eps acc cov m trn

nil nil 0.845 1.0 552
0 0.01 0.555073 1.0 1

0.071428 0.01 0.555073 1.0 1.2
0.142857 0.01 0.555073 1.0 2.2
0.214286 0.01 0.562319 1.0 2.8
0.285714 0.01 0.585507 1.0 4.8
0.357143 0.01 0.594203 1.0 10.2
0.428571 0.01 0.728986 1.0 22.4
0.500000 0.01 0.808696 1.0 54.8
0.571429 0.01 0.746377 1.0 131.8
0.642857 0.01 0.763768 1.0 295.2
0.714286 0.01 0.818841 1.0 454.4
0.785714 0.01 0.852174 1.0 533.2
0.857143 0.01 0.847826 1.0 546.2
0.928571 0.01 0.846377 1.0 548
1.000000 0.06 0.847826 1.0 552

Table 9. CV-5; Australian credit; Algorithm 7 v3. Granular objects, T=L;
r gran=granulation radius, optimal eps= optimal epsilon, acc=accuracy,
cov=coverage, m trn=mean training set. Best result for r = 0.785714, ε=0.01:
accuracy=0.85942; coverage=1.0.

r gran optimal eps acc cov m trn

nil nil 0.845 1.0 552
0 0.01 0.555073 1.0 1

0.071428 0.01 0.555073 1.0 1.2
0.142857 0.01 0.555073 1.0 1.4
0.214286 0.01 0.555073 1.0 3.4
0.285714 0.01 0.513043 1.0 4.6
0.357143 0.01 0.511594 1.0 8.8
0.428571 0.01 0.666667 1.0 22.8
0.500000 0.01 0.707247 1.0 53.2
0.571429 0.01 0.595652 1.0 132
0.642857 0.01 0.563768 1.0 292.2
0.714286 0.02 0.786956 1.0 457.6
0.785714 0.01 0.85942 1.0 533
0.857143 0.05 0.847826 1.0 546.2
0.928571 0.05 0.849275 1.0 548
1.000000 0.05 0.846377 1.0 552
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have two–parameter case with ε, r hence results are given in Table 7 (T=min),
Table 8 (T=P), Table 9 (T=L) in which for each row corresponding to the radius
of granulation, the best result for ε is given along with accuracy and coverage in
that case as well as the value optimal eps.

4 Weighted Voting by Granules of Training Objects
According to µε

ρ(u, v, 1)

The rough inclusion µε
ρ(u, v, r) has been introduced in (6); in particular, in (8),

the variant µε
ρ(u, v, 1) has been specialized.

In this part, we proceed with weighted voting; the difference in compari-
son with the approach in sect. 3.1 consists in modifying the weight computing
scheme, in order to increase weights in case the difference in attribute values
does exceed the threshold of ε and to decrease weights in the contrary case. This
idea is here implemented in five variants (as Algorithms 8 v1.1, v1.2, v1.3, v1.4,
v1.5). As with the former experiments, maxtraining seta and mintraining seta
have been found from original training data set for each attribute a and outliers
in the test set have been projected onto maxtraining seta and mintraining seta
for each attribute a (see sect. 1.4).

Classification of testing objects by means of weighted granules of training
objects has been done as follows:

1. A chosen value of ε (determining attribute similarity) has been input.

For all attributes ak, where k = 1..number of conditional attributes; we com-
pute:

For m=1..number of training objects, n=1..number of testing objects;
Case 1. (Algorithm 8 v1.1)

w(un, vm) = w(un, vm) + |ak(un)−ak(vm)|
|max attrk−min attrk| .

Case 2. (Algorithm 8 v1.2)

1) If |ak(un)−ak(vm)|
|max attrk−min attrk| ≥ ε �→

w(un, vm) = w(un, vm) + |ak(un)−ak(vm)|
|max attrk−min attrk| ∗

(1+ε)
ε ;

2) If |ak(un)−ak(vm)|
|max attrk−min attrk| < ε �→

w(un, vm) = w(un, vm) + |ak(un)−ak(vm)|
|max attrk−min attrk| ∗

1
ε .

Case 3. (Algorithm 8 v1.3)

1) If |ak(un)−ak(vm)|
|max attrk−min attrk| ≥ ε �→

w(un, vm) = w(un, vm) + |ak(un)−ak(vm)|
|max attrk−min attrk| ∗ (1 + ε);
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2) If |ak(un)−ak(vm)|
|max attrk−min attrk| < ε �→

w(un, vm) = w(un, vm) + |ak(un)−ak(vm)|
|max attrk−min attrk| ∗

1
1+ε .

Case 4. (Algorithm 8 v1.4)

1) If |ak(un)−ak(vm)|
|max attrk−min attrk| ≥ ε �→

w(un, vm) = w(un, vm) + |ak(un)−ak(vm)|
|max attrk−min attrk|∗(ε+ |ak(un)−ak(vm)|

|max attrk−min attrk| )
, ie.

w(un, vm) = w(un, vm) + |ak(un)−ak(vm)|
|max attrk−min attrk|∗ε+|ak(un)−ak(vm)| ;

2) If |ak(un)−ak(vm)|
|max attrk−min attrk| <ε �→ w(un, vm) = w(un, vm)+ |ak(un)−ak(vm)|

|max attrk−min attrk|∗ε .

Case 5. (Algorithm 8 v1.5.)

1) If |ak(un)−ak(vm)|
|max attrk−min attrk| ≥ ε �→ w(un, vm) = w(un, vm)+ |ak(un)−ak(vm)|

|max attrk−min attrk| ;

2) If |ak(un)−ak(vm)|
|max attrk−min attrk| < ε �→ w(un, vm)=w(un, vm)+ |ak(un)−ak(vm)|

|max attrk−min attrk|∗ε .

After computing weights in either case is completed for a given test object un

and each training object vm, the voting procedure consists in computing values
of parameters,

Param1=
P

vm in positive class w(un,vm)

cardinality of positive class .

Param2=
P

vm in negative class w(un,vm)

cardinality of negative class .

If Param1 < Param2 then the test object un is classified to the positive class,
otherwise it is classified into the negative class. After all test objects un are
classified, quality parameters accuracy and coverage are computed,

acc = number of correctly classified objects
number of classified objects ,

cov = number of classified objects
number of test objects .

Results of experiments with these variants of classifiers are given in Tables 10,
11,12,13,14 for Australian credit data set already tested with former experiments.
The method applied was CV-5 (5–fold cross validation).

For comparison, we performed CV–5 tests with this data set and the standard
exhaustive classifier as well as with k–nn method as implemented in the RSES
system [26], shown in Table 10. The results for k–nn method shown in Table 10
are best over all possible parameter values. The best result for RSES imple-
mented k − nn method was accuracy = 0.859 and for the exhaustive classifier,
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Table 10. CV–5 for Australian credit data set (15attr, 690obj) for Algorithm 8 v1.1

result for FOLD1
T acc

FOLD2
T acc

FOLD3
T acc

FOLD4
T acc

FOLD5
T acc

CV − 5
T acc

RSES exh 0.848 0.848 0.848 0.862 0.819 0.845
RSES k-nn 0.862 0.855 0.884 0.841 0.855 0.859
Alg 8 v 1.1 0.884058 0.876812 0.862319 0.862319 0.862319 0.869565

Table 11. CV–5 for Australian credit data set (15attr, 690obj) for Algorithm 8 v1.2

epsilon FOLD1
T acc

FOLD2
T acc

FOLD3
T acc

FOLD4
T acc

FOLD5
T acc

CV − 5
T acc

RSES exh 0, 848 0, 848 0, 848 0, 862 0, 819 0, 845
RSES k − nn 0, 862 0, 855 0, 884 0, 841 0, 855 0, 859

0, 01..0, 1 0, 884058 0, 876812 0, 862319 0, 862319 0, 862319 0, 869565
0, 11..0, 15 0, 884058 0, 876812 0, 862319 0, 869565 0, 862319 0, 871015
0, 16..0, 25 0, 876812 0, 884058 0, 862319 0, 862319 0, 862319 0, 869565

0, 26 0, 876812 0, 876812 0, 862319 0, 862319 0, 862319 0, 868116
0, 27 0, 876812 0, 869565 0, 862319 0, 862319 0, 862319 0, 866667

0, 28..0, 29 0, 876812 0, 876812 0, 862319 0, 862319 0, 862319 0, 868116
0, 3 0, 876812 0, 884058 0, 862319 0, 862319 0, 862319 0, 869565
0, 31 0, 869565 0, 876812 0, 862319 0, 862319 0, 862319 0, 866667
0, 32 0, 869565 0, 869565 0, 855072 0, 862319 0, 862319 0, 863768

0, 33..0, 37 0, 869565 0, 876812 0, 855072 0, 862319 0, 862319 0, 865217
0, 38..0.39 0, 869565 0, 876812 0, 855072 0, 862319 0, 869565 0, 866667
0, 4..0, 46 0, 869565 0, 884058 0, 855072 0, 862319 0, 869565 0, 868116
0, 47..0, 49 0, 876812 0, 884058 0, 855072 0, 862319 0, 869565 0, 869565
0, 5..0, 59 0, 869565 0, 869565 0, 855072 0, 862319 0, 862319 0, 863768

0, 6 0, 869565 0, 869565 0, 855072 0, 869565 0, 862319 0, 865217
0, 61 0, 876812 0, 869565 0, 855072 0, 869565 0, 862319 0, 866667
0, 62 0, 876812 0, 869565 0, 862319 0, 869565 0, 869565 0, 869565
0, 63 0, 876812 0, 869565 0, 869565 0, 869565 0, 869565 0, 871014

0, 64..0, 67 0, 869565 0, 869565 0, 869565 0, 869565 0, 869565 0, 869565
0, 68..0, 69 0, 862319 0, 862319 0, 869565 0, 869565 0, 869565 0, 866667

0, 7 0, 876812 0, 862319 0, 869565 0, 869565 0, 869565 0, 869565
0, 71..0, 72 0, 884058 0, 862319 0, 869565 0, 869565 0, 869565 0, 871014
0, 73..0, 76 0, 884058 0, 855072 0, 869565 0, 869565 0, 869565 0, 869565
0, 77..0, 84 0, 884058 0, 855072 0, 869565 0, 862319 0, 869565 0, 868116
0, 85..0, 89 0, 876812 0, 855072 0, 869565 0, 862319 0, 869565 0, 866667
0, 9..0, 91 0, 869565 0, 847826 0, 876812 0, 862319 0, 869565 0, 865217
0, 92..0, 99 0, 876812 0, 847826 0, 876812 0, 862319 0, 869565 0, 866667

1 0, 884058 0, 876812 0, 862319 0, 862319 0, 862319 0, 869565

accuracy = 0.845 (coverage in either case was found to be 1.0). Optimal results
given below for variants 1 to 5 of our approach are always better.

Table 10 shows results of CV–5 test in Case 1 (Algorithm 8 v1.1): we obtain
accuracy = 0.869565, coverage = 1.0.

For variants 2–5, we introduce ε for 100 values from 0 to 1. For each of these
values, weights have been computed as described above and voting has taken
place.

Table 11 shows results in Case 2: (Algorithm 8 v1.2; best result is obtained
for ε in the range 0.11 – 0.15: accuracy = 0, 871015, coverage = 1.0.

Table 12 shows results in Case 3 (Algorithm 8 v1.3); best result is obtained
for ε in the range 0.1 – 0.13: accuracy = 0, 872464, coverage = 1.0.
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Table 12. CV–5 for Australian credit data set (15attr, 690obj) for Algorithm 8 v1.3

epsilon FOLD1
T acc

FOLD2
T acc

FOLD3
T acc

FOLD4
T acc

FOLD5
T acc

CV − 5
T acc

RSES exh 0, 848 0, 848 0, 848 0, 862 0, 819 0, 845
RSES k − nn 0, 862 0, 855 0, 884 0, 841 0, 855 0, 859
0, 01 − 0, 08 0, 884058 0, 876812 0, 862319 0, 862319 0, 862319 0, 869565

0, 09 0, 884058 0, 884058 0, 862319 0, 862319 0, 862319 0, 871015
0, 1 − 0, 13 0, 884058 0, 884058 0, 862319 0, 869565 0, 862319 0, 872464
0, 14 − 0, 15 0, 884058 0, 884058 0, 862319 0, 862319 0, 862319 0, 871015
0, 16 − 0, 21 0, 876812 0, 884058 0, 862319 0, 862319 0, 862319 0, 869565

0, 22 0, 876812 0, 876812 0, 862319 0, 862319 0, 862319 0, 868116
0, 23 − 0, 24 0, 876812 0, 869565 0, 862319 0, 862319 0, 862319 0, 866667

0, 25 0, 876812 0, 862319 0, 862319 0, 862319 0, 862319 0, 865218
0, 26 0, 876812 0, 869565 0, 862319 0, 862319 0, 862319 0, 866667
0, 27 0, 876812 0, 869565 0, 855072 0, 862319 0, 862319 0, 865217
0, 28 0, 869565 0, 869565 0, 855072 0, 862319 0, 862319 0, 863768

0, 29 − 0, 35 0, 869565 0, 876812 0, 855072 0, 862319 0, 862319 0, 865217
0, 35 − 0, 37 0, 869565 0, 876812 0, 855072 0, 862319 0, 869565 0, 866667

0, 38 0, 869565 0, 876812 0, 855072 0, 855072 0, 869565 0, 865217
0, 39 − 0, 46 0, 876812 0, 876812 0, 855072 0, 855072 0, 869565 0, 866667
0, 47 − 0, 49 0, 869565 0, 876812 0, 855072 0, 855072 0, 869565 0, 865217
0, 5 − 0, 52 0, 884058 0, 869565 0, 862319 0, 862319 0, 862319 0, 868116

0, 53 0, 884058 0, 869565 0, 862319 0, 862319 0, 869565 0, 869565
0, 54 0, 891304 0, 862319 0, 869565 0, 869565 0, 869565 0, 872464

0, 55 − 0, 61 0, 891304 0, 855072 0, 869565 0, 869565 0, 869565 0, 871014
0, 62 − 0, 63 0, 884058 0, 855072 0, 869565 0, 855072 0, 869565 0, 866666
0, 64 − 0, 65 0, 876812 0, 855072 0, 869565 0, 855072 0, 869565 0, 865217
0, 66 − 0, 68 0, 869565 0, 855072 0, 869565 0, 855072 0, 869565 0, 863768

0, 69 0, 869565 0, 847826 0, 869565 0, 855072 0, 869565 0, 862319
0, 7 − 0, 71 0, 862319 0, 847826 0, 869565 0, 855072 0, 869565 0, 860869
0, 72 − 0, 74 0, 862319 0, 855072 0, 869565 0, 855072 0, 869565 0, 862319

0, 75 0, 862319 0, 847826 0, 869565 0, 855072 0, 869565 0, 860869
0, 76 0, 862319 0, 855072 0, 869565 0, 855072 0, 869565 0, 862319

0, 77 − 0, 78 0, 847826 0, 855072 0, 876812 0, 855072 0, 869565 0, 860869
0, 79 0, 847826 0, 855072 0, 884058 0, 855072 0, 869565 0, 862319

0, 8 − 0, 84 0, 847826 0, 847826 0, 884058 0, 855072 0, 869565 0, 860869
0, 85 − 0, 87 0, 847826 0, 840580 0, 884058 0, 855072 0, 869565 0, 859420
0, 88 − 0, 92 0, 840580 0, 840580 0, 884058 0, 855072 0, 869565 0, 857971
0, 93 − 0, 99 0, 840580 0, 840580 0, 884058 0, 847826 0, 869565 0, 856522

1 0, 884058 0, 876812 0, 862319 0, 862319 0, 862319 0, 869565

Table 13 shows results in Case 4 (Algorithm 8 v1.4); best result is obtained
for ε = 1.0: accuracy = 0.869565, coverage = 1.0.

Table 14 shows results in Case 5 (Algorithm 8 v1.5); best result is obtained
for ε = 0.13: in the range 0.1 – 0.13: accuracy = 0.87971, coverage = 1.0.
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Table 13. CV–5 for Australian credit data set (15attr, 690obj) for Algorithm 8 v1.4

epsilon FOLD1
T acc

FOLD2
T acc

FOLD3
T acc

FOLD4
T acc

FOLD5
T acc

CV − 5
T acc

RSES exh 0, 848 0, 848 0, 848 0, 862 0, 819 0, 845
RSES k − nn 0, 862 0, 855 0, 884 0, 841 0, 855 0, 859

0, 01 0, 862319 0, 826087 0, 862319 0, 847826 0, 855072 0, 850725
0, 02 0, 855072 0, 833333 0, 862319 0, 847826 0, 847826 0, 849275
0, 03 0, 862319 0, 833333 0, 862319 0, 855072 0, 855072 0, 853623
0, 04 0, 855072 0, 840580 0, 869565 0, 847826 0, 847826 0, 852174
0, 05 0, 862319 0, 826087 0, 869565 0, 847826 0, 855072 0, 852174
0, 06 0, 862319 0, 833333 0, 869565 0, 855072 0, 855072 0, 855072
0, 07 0, 862319 0, 826087 0, 869565 0, 869565 0, 862319 0, 857971
0, 08 0, 862319 0, 826087 0, 862319 0, 876812 0, 855072 0, 856522
0, 09 0, 862319 0, 833333 0, 862319 0, 876812 0, 855072 0, 857971
0, 1 0, 862319 0, 833333 0, 862319 0, 876812 0, 855072 0, 857971

0, 11 − 0, 13 0, 869565 0, 833333 0, 869565 0, 884058 0, 855072 0, 862319
0, 14 0, 869565 0, 840580 0, 869565 0, 876812 0, 855072 0, 862319
0, 15 0, 869565 0, 833333 0, 876812 0, 869565 0, 855072 0, 860869
0, 16 0, 876812 0, 833333 0, 876812 0, 884058 0, 847826 0, 863768
0, 17 0, 869565 0, 833333 0, 876812 0, 869565 0, 855072 0, 860869
0, 18 0, 869565 0, 833333 0, 862319 0, 869565 0, 855072 0, 857971
0, 19 0, 869565 0, 826087 0, 869565 0, 869565 0, 855072 0, 857971
0, 2 0, 869565 0, 818841 0, 869565 0, 869565 0, 855072 0, 856522

0, 21 − 0, 22 0, 869565 0, 818841 0, 869565 0, 862319 0, 855072 0, 855072
0, 23 0, 869565 0, 811594 0, 869565 0, 862319 0, 855072 0, 853623
0, 24 0, 869565 0, 818841 0, 862319 0, 862319 0, 855072 0, 853623
0, 25 0, 855072 0, 818841 0, 862319 0, 862319 0, 855072 0, 850725
0, 26 0, 862319 0, 811594 0, 855072 0, 862319 0, 855072 0, 849275
0, 27 0, 847826 0, 811594 0, 855072 0, 855072 0, 855072 0, 844927

0, 28 − 0, 29 0, 862319 0, 811594 0, 855072 0, 862319 0, 855072 0, 849275
0, 3 0, 855072 0, 804348 0, 862319 0, 862319 0, 855072 0, 847826
0, 31 0, 847826 0, 797101 0, 855072 0, 862319 0, 847826 0, 842029
0, 32 0, 847826 0, 797101 0, 862319 0, 862319 0, 847826 0, 843478
0, 33 0, 847826 0, 804348 0, 869565 0, 862319 0, 840580 0, 844928
0, 34 0, 847826 0, 818841 0, 862319 0, 862319 0, 833333 0, 844928
0, 35 0, 862319 0, 818841 0, 862319 0, 862319 0, 833333 0, 847826
0, 36 0, 862319 0, 826087 0, 862319 0, 869565 0, 833333 0, 850725
0, 37 0, 855072 0, 833333 0, 855072 0, 869565 0, 840580 0, 850724
0, 38 0, 862319 0, 804348 0, 869565 0, 884058 0, 840580 0, 852174
0, 39 0, 855072 0, 804348 0, 862319 0, 884058 0, 840580 0, 849275
0, 4 0, 855072 0, 804348 0, 876812 0, 884058 0, 840580 0, 852174
0, 41 0, 855072 0, 811594 0, 869565 0, 884058 0, 840580 0, 852174

0, 42 − 0, 43 0, 855072 0, 818841 0, 869565 0, 884058 0, 840580 0, 853623
0, 44 0, 855072 0, 811594 0, 869565 0, 884058 0, 833333 0, 850724
0, 45 0, 855072 0, 811594 0, 876812 0, 891304 0, 833333 0, 853623
0, 46 0, 855072 0, 818841 0, 876812 0, 891304 0, 833333 0, 855072
0, 47 0, 855072 0, 818841 0, 869565 0, 898551 0, 833333 0, 855072
0, 48 0, 862319 0, 818841 0, 869565 0, 898551 0, 833333 0, 856522

0, 49 − 0, 52 0, 862319 0, 826087 0, 869565 0, 898551 0, 833333 0, 857971
0, 53 0, 855072 0, 833333 0, 869565 0, 891304 0, 833333 0, 856521

0, 54 − 0, 6 0, 862319 0, 826087 0, 869565 0, 898551 0, 826087 0, 856522
0, 61 0, 862319 0, 833333 0, 869565 0, 898551 0, 826087 0, 857971
0, 62 0, 855072 0, 840580 0, 876812 0, 905797 0, 840580 0, 863768
0, 63 0, 855072 0, 840580 0, 876812 0, 905797 0, 833333 0, 862319

0, 64 − 0, 65 0, 855072 0, 840580 0, 876812 0, 898551 0, 833333 0, 860870
0, 66 − 0, 67 0, 855072 0, 840580 0, 876812 0, 898551 0, 840580 0, 862319
0, 68 − 0, 76 0, 855072 0, 840580 0, 876812 0, 898551 0, 847826 0, 863768
0, 77 − 0, 8 0, 862319 0, 833333 0, 876812 0, 905797 0, 847826 0, 865217
0, 81 − 0, 82 0, 862319 0, 833333 0, 876812 0, 905797 0, 855072 0, 866667
0, 83 − 0, 84 0, 862319 0, 833333 0, 876812 0, 898551 0, 855072 0, 865217

0, 85 0, 862319 0, 833333 0, 884058 0, 898551 0, 855072 0, 866667
0, 86 − 0, 87 0, 862319 0, 833333 0, 876812 0, 898551 0, 855072 0, 865217
0, 88 − 0, 91 0, 862319 0, 840580 0, 869565 0, 891304 0, 855072 0, 863768
0, 92 − 0, 93 0, 855072 0, 840580 0, 869565 0, 891304 0, 855072 0, 862319
0, 94 − 0, 96 0, 855072 0, 847826 0, 869565 0, 891304 0, 855072 0, 863768
0, 97 − 0, 99 0, 855072 0, 847826 0, 876812 0, 891304 0, 855072 0, 865217

1 0, 884058 0, 876812 0, 862319 0, 862319 0, 862319 0, 869565
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Table 14. CV–5 for Australian credit data set (15attr, 690obj) for Algorithm 8 v1.5

epsilon FOLD1
T acc

FOLD2
T acc

FOLD3
T acc

FOLD4
T acc

FOLD5
T acc

CV − 5
T acc

RSES exh 0, 848 0, 848 0, 848 0, 862 0, 819 0, 845
RSES k − nn 0, 862 0, 855 0, 884 0, 841 0, 855 0, 859

0, 01 0, 884058 0, 876812 0, 847826 0, 855072 0, 855072 0, 863768
0, 02 0, 876812 0, 847826 0, 840580 0, 862319 0, 855072 0, 856522
0, 03 0, 869565 0, 826087 0, 811594 0, 847826 0, 869565 0, 844927
0, 04 0, 855072 0, 840580 0, 818841 0, 855072 0, 869565 0, 847826
0, 05 0, 826087 0, 847826 0, 840580 0, 869565 0, 869565 0, 850725
0, 06 0, 855072 0, 869565 0, 855072 0, 876812 0, 862319 0, 863768
0, 07 0, 862319 0, 869565 0, 855072 0, 876812 0, 869565 0, 866667
0, 08 0, 862319 0, 869565 0, 876812 0, 862319 0, 876812 0, 869565
0, 09 0, 855072 0, 869565 0, 876812 0, 855072 0, 862319 0, 863768
0, 1 0, 862319 0, 884058 0, 891304 0, 869565 0, 869565 0, 875362
0, 11 0, 862319 0, 884058 0, 891304 0, 862319 0, 884058 0, 876812
0, 12 0, 869565 0, 876812 0, 884058 0, 862319 0, 876812 0, 873913
0, 13 0, 869565 0, 876812 0, 884058 0, 876812 0, 891304 0, 879710
0, 14 0, 869565 0, 862319 0, 876812 0, 869565 0, 898551 0, 875362
0, 15 0, 869565 0, 855072 0, 884058 0, 869565 0, 898551 0, 875362
0, 16 0, 884058 0, 855072 0, 869565 0, 869565 0, 876812 0, 871014
0, 17 0, 884058 0, 855072 0, 876812 0, 876812 0, 876812 0, 873913
0, 18 0, 884058 0, 847826 0, 847826 0, 884058 0, 876812 0, 868116
0, 19 0, 876812 0, 847826 0, 869565 0, 876812 0, 869565 0, 868116
0, 2 0, 869565 0, 847826 0, 869565 0, 891304 0, 869565 0, 869565
0, 21 0, 876812 0, 855072 0, 862319 0, 891304 0, 862319 0, 869565
0, 22 0, 876812 0, 855072 0, 869565 0, 884058 0, 862319 0, 869565
0, 23 0, 876812 0, 847826 0, 869565 0, 876812 0, 869565 0, 868116
0, 24 0, 869565 0, 840580 0, 884058 0, 869565 0, 862319 0, 865217
0, 25 0, 869565 0, 847826 0, 869565 0, 862319 0, 869565 0, 863768
0, 26 0, 869565 0, 847826 0, 869565 0, 869565 0, 869565 0, 865217
0, 27 0, 869565 0, 840580 0, 869565 0, 869565 0, 869565 0, 863768
0, 28 0, 869565 0, 840580 0, 884058 0, 869565 0, 855072 0, 863768
0, 29 0, 869565 0, 840580 0, 891304 0, 869565 0, 855072 0, 865217
0, 3 0, 869565 0, 818841 0, 869565 0, 876812 0, 855072 0, 857971
0, 31 0, 862319 0, 833333 0, 876812 0, 869565 0, 847826 0, 857971
0, 32 0, 869565 0, 833333 0, 869565 0, 884058 0, 847826 0, 860869
0, 33 0, 862319 0, 833333 0, 876812 0, 876812 0, 840580 0, 857971
0, 34 0, 862319 0, 840580 0, 876812 0, 884058 0, 840580 0, 860870

0, 35 − 0, 37 0, 862319 0, 826087 0, 876812 0, 905797 0, 840580 0, 862319
0, 38 0, 869565 0, 811594 0, 876812 0, 884058 0, 847826 0, 857971
0, 39 0, 862319 0, 826087 0, 876812 0, 891304 0, 855072 0, 862319

0, 4 − 0, 42 0, 862319 0, 826087 0, 876812 0, 891304 0, 847826 0, 860870
0, 43 0, 862319 0, 826087 0, 884058 0, 891304 0, 847826 0, 862319
0, 44 0, 862319 0, 818841 0, 884058 0, 891304 0, 847826 0, 860870

0, 45 − 0, 46 0, 862319 0, 818841 0, 876812 0, 891304 0, 847826 0, 859420
0, 47 0, 862319 0, 840580 0, 876812 0, 884058 0, 847826 0, 862319

0, 48 − 0, 54 0, 869565 0, 840580 0, 876812 0, 891304 0, 847826 0, 865217
0, 55 0, 869565 0, 847826 0, 862319 0, 876812 0, 862319 0, 863768

0, 56 − 0, 57 0, 869565 0, 855072 0, 862319 0, 876812 0, 862319 0, 865217
0, 58 0, 869565 0, 855072 0, 862319 0, 876812 0, 855072 0, 863768
0, 59 0, 869565 0, 855072 0, 862319 0, 869565 0, 855072 0, 862319

0, 6 − 0, 61 0, 869565 0, 862319 0, 862319 0, 869565 0, 855072 0, 863768
0, 62 0, 862319 0, 862319 0, 869565 0, 876812 0, 869565 0, 868116
0, 63 0, 862319 0, 862319 0, 869565 0, 876812 0, 862319 0, 866667

0, 64 − 0, 68 0, 862319 0, 862319 0, 869565 0, 876812 0, 869565 0, 868116
0, 69 − 0, 74 0, 862319 0, 869565 0, 869565 0, 869565 0, 862319 0, 866667
0, 75 − 0, 76 0, 862319 0, 869565 0, 869565 0, 876812 0, 862319 0, 868116

0, 77 0, 862319 0, 862319 0, 869565 0, 876812 0, 862319 0, 866667
0, 78 0, 869565 0, 862319 0, 869565 0, 876812 0, 862319 0, 868116

0, 79 − 0, 81 0, 869565 0, 869565 0, 869565 0, 876812 0, 862319 0, 869565
0, 82 − 0, 83 0, 869565 0, 869565 0, 869565 0, 884058 0, 862319 0, 871014

0, 84 0, 876812 0, 876812 0, 869565 0, 884058 0, 862319 0, 873913
0, 85 − 0, 93 0, 876812 0, 869565 0, 869565 0, 884058 0, 862319 0, 872464
0, 94 − 0, 99 0, 884058 0, 876812 0, 862319 0, 869565 0, 862319 0, 871015

1 0, 884058 0, 876812 0, 862319 0, 862319 0, 862319 0, 869565
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5 Conclusions

Results of tests show that the approach presented here yields results which in
their optimal values are fully comparable with the best results obtained by other
rough set based methods. The best results are obtained in last part (sect. 4) with
weighted voting modified by using an additional parameter ε. This indicates that
the possibility of improving the results further may lie in modifying granules by
additional parameters at the cost of greater computational complexity. One has
to underline the reduction in size of training sets as well as rule sets which
are brought for by granulating data. Applications to this fact will be studied
elsewhere.
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Abstract. A popular view is that the brain works in a similar way to
a digital computer or a Universal Turing Machine by processing sym-
bols. Psychophysical experiments and our amazing capability to recog-
nize complex objects (like faces) in different light and context conditions
argue against symbolic representation and suggest that concept represen-
tation related to similarities may be a more appropriate model of brain
function. In present work, by looking into anatomical and neurophysio-
logical basis of how we classify objects shapes, we propose to describe
computational properties of the brain by rough set theory (Pawlak, 1992
[1]). Concepts representing objects physical properties in variable envi-
ronment are weak (not precise), but psychophysical space shows precise
object categorizations. We estimate brain expertise in classifications of
the object’s components by analyzing single cell responses in the area
responsible for simple shape recognition ([2]). Our model is based on the
receptive field properties of neurons in different visual areas: thalamus,
V1 and V4 and on feedforward (FF) and feedback (FB) interactions
between them. The FF pathways combine properties extracted in each
area into a vast number of hypothetical objects by using “driver logi-
cal rules”, in contrast to “modulator logical rules” of the FB pathways.
The FB pathways function may help to change weak concepts of objects
physical properties into their crisp classification in psychophysical space.

Keywords: imprecise computation, bottom-up, top-down processes,
neuronal activity.

1 Introduction

Humans can effortlessly recognize objects as complex as faces even if they have
never seen them in a particular context before. We are perceptually insensitive
to the exact properties of an objects part, but the same parts in different con-
figurations or contexts may result in opposite effects, much like the Thatcher
effect. Psychophysical experiments related to complex object and faces catego-
rization show that object recognition is based on incomplete information about
an objects parts.

J.F. Peters et al. (Eds.): Transactions on Rough Sets IX, LNCS 5390, pp. 287–317, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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One of the most popular models based on psychophysical experiments is the
geon model related to the Recognition-by-components (RBC) theory [3]. A geon
can be structurally described (GSD) as a two-dimensional representation of an
arrangement of parts, each specified in terms of its non-accidental characteriza-
tion and the relations amongst these parts [3]. Across objects, the parts (geons,
or geometric icons) can differ in their nonaccidental properties (NAP). NAP are
properties that do not change with small depth rotations of an object. The pres-
ence or absence of NAP of some geons or the different relations between them
is the basis for discrimination of viewpoint invariant objects [3]. Consequently,
complex objects can be described by a simple “alphabet” by utilizing a small
set of structural primitive geons. However, RBC theory not only does not at-
tempt to describe a complex, real scene by an alphabet of geons, but it is also
incomplete, failing to distinguish many real objects.

Such experiments suggest that in every day life we not only perform object
classifications based solely on partial information about an object, but that we
also make accessible information about variations in that object’s parts, such
as its rotation or our viewpoint, indiscernible. An exact, crisp description (a
set of values) of all the attributes of an object is therefore not only impossible
because of the limitations of our visual system (such as a small area of sharp
image, short perception time associated with the eye fixation period (see below),
etc.), but also because we would like to identify the same object under different
light conditions, contexts, localizations, rotations, etc. These difficulties in the
context of our amazing capabilities in face and facial expression recognition led
us (Prof. Zdzislaw Pawlak, Prof. Lech Polkowski, Prof. Andrzej Skowron, and
myself) to discuss the application of rough set theory in order to find logical
rules for complex object categorizations (the face project). Below I will present
my summary regarding several points of our discussion.

As mentioned above, psychophysical and neurophysiological limitations led
us to conclude that the brain-as-an-expert in complex object recognition may
use vague concepts to process approximate information about a perceived ob-
ject. Pawlak [1] proposed characterizing these concepts by their upper and lower
approximations. The difference between the upper and lower approximations of
a set of objects with related attributes is called its boundary region. Using the
above characterizations, the concept of vagueness can be precisely expressed by
the boundary region of a set. If a boundary region of a set is empty, the upper
and lower approximations of the set are equal and the set is crisp (classical set
theory). In this case, we can clearly classify the object on the basis of its prop-
erties as recognizable (a member of the set; logical value=1) or not recognizable
(not a member of the set; logical value=0).

Crisp set also represents the classical approach to psychophysical experiments
where near the limit of our vision, a subject can sometimes see the object and
sometimes cannot. On the basis of averaging experimental results, we say that if
the chance of seeing the object is over 50 % then the object is visible, and if it is
below 50 %, then the object is not visible. The spectrum of an objects visibility
is reduced to two values of a logical state: visible or not visible.
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If the boundary region of a set is not empty, however, the set is rough and
one can estimate the degree to which an object belongs to a set, or in other
words, the precision with which the object is recognized. I claim that there
are neurophysiological mechanisms in the brain responsible for shrinking the
boundary regions along different dimensions in various visual areas of the brain.
I describe these mechanisms with an example of the hierarchical structure: from
the thalamus to area V4, the part of visual system responsible for simple shape
discrimination. The thalamus classification characterizes an object by parts and
questions how accurate divisions are using the rough inclusion relation or the
rule that determines whether points are part of an object (Lesniewski mereol-
ogy). For example, in order to find an object’s contours, the surround portion of
the LGNs receptive field should be outside of the object (see below for a more
detailed analysis). In other visual areas such as V1, objects are partly described
by oriented lines. More detailed measurements (see below) of area V1 receptive
fields show many deviations from their sensitivity to only a single oriented edge.
Their size for example, increases when light intensity decreases and it also de-
pends on the mapping stimulus (i.e. dots vs. grating). Area V4 classifies objects
to an extent as simple shapes coded in its neurons. For example, the mean size
of the receptive field in area V4 is about 6 deg that means that there is partial
overlap between an objects size and a single cell receptive field (RF) in area V4.
Therefore, the relationship between object and receptive field in most situations
is not crisp.

The famous mathematician Lukasiewicz’s once asked whether or not it was
true that “Jan will be in Warsaw next year?” This question initiated a course
of research related to uncertainty using multi-valued logic. The activities of our
sensory and motor systems are also related to uncertainty. In sensory-related
motion, our eyes are constantly moving, with brief periods of fixation during
which reliable information about interesting objects must be obtained and de-
pending on the information received, a decision about the next eye movement
must be made. The brain is continually verifying sensory information with pre-
dictions that are related to assumptions about the environment and possible
object properties. Similarly, in a constantly changing environment, the brain
has to make calculations and predictions with regards to behavior about how
to meet or catch an object with uncertain properties and movement trajecto-
ries. These predictions are verified and corrected during each movement. We can
therefore paraphrase Lukasiewicz’s sentence in relation to subconsciously-made
brain decisions as: “If I move my eyes to the right in the next 100 ms, will I
know that it is Jan’s face?” or “If I correct my hand trajectory in the next 50
ms will I catch the ball?”

The main purpose of this paper is to relate anatomical and neurophysio-
logical brain properties to object categorization. In order to quantify the neu-
rophysiological data and model perception, we will use rough set theory [1].
The complexity of the brain and many different methods of measurement gen-
erated huge amounts of data that led to unclear and contradictory theories.
This work therefore compares data from the literature with data from our
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electrophysiological experiments using rough set theory and multi-valued logic.
Using these precise descriptions, we would like to find closer connections between
the electrophysiological and AI (expert) systems, as well as describe our results
using psychological language.

Like Pawlak [1], we define an information system as S = (U, A), where U is
a set of objects and A is set of attributes. If a ∈ A, u ∈ U the value a(u) is
a unique element of Va (a value set of the attribute a). In agreement with the
Leibniz principle we assume that objects are completely determined by their set
of properties, meaning that attributes map objects to a set of attributes values.
The indiscernibility relation of any subset B of A, or IND(B), is defined [1] as
the equivalence relation whose elements are the sets u : b(u) = v as v varies in
Vb, and [u]B - the equivalence class of u form B-elementary granule. The concept
X ⊆ U is B-definable if for each u ∈ U either [u]B ⊆ X or [u]B ⊆ U −X . B

¯
X =

{u ∈ U : [u]B ⊆ X} is a lower approximation of X . The concept X ⊆ U is B-
indefinable if exists such u ∈ U that [u]B ∩X 	= ∅. B̄X = {u ∈ U : [u]B ∩X 	= ∅}
is an upper approximation of X . The set BNB(X) = B̄X− B

¯
X will be referred

to as the B-boundary region of X . If the boundary region of X is the empty set
then X is exact (crisp) with respect to B; otherwise if BNB(X) 	= ∅ X is not
exact (rough) with respect to B.

In this paper, the universe U is a set of simple visual patterns that we used in
our experiments [2, 4, 5], and which can be divided into equivalent indiscernibility
classes related to their physically measured, computer generated attributes or
B-elementary granules, where B ⊆ A.

The purpose of our research is to find how these objects are classified in the
brain. We will therefore modify, after [1], the definition of the information system
as S = (U, C, D) where C and D are condition and decision attributes respec-
tively. Decision attributes will classify elementary granules in accordance with
neurological responses from a specific area of the visual brain. From a cogni-
tive perspective, the percept of the object is classified into different categories
in different visual areas, leading to different decisions (actions). The informa-
tion system is equivalent to the decision table in which each object u ∈ U is
characterized by a series of the condition attributes and one decision attribute.
The information system can be also seen as agents’ intelligence where condition
attributes described agents’ percepts and decision attributes are related to the
agents’ action [6].

This work investigates the responses of cells in the thalamus that will di-
vide all equivalent pattern classes into LGN-elementary granules [u]LGN , as
well as the responses of cells in area V1 that will divide all patterns into V1-
elementary granules [u]V 1, and the responses of cells in area V4 that will di-
vide all patterns into V4-elementary granules [u]V 4. All neurons in these areas
are sensitive to certain attributes of the stimulus, such as space localization,
but each area also performs distinct pattern classification. In consequence, one
B-elementary granule will be classified in many different ways by neurons in
different areas. All these granules: [u]LGN , [u]V 1, [u]V 4 are exact. They cover
the visual field in a unique way for a fixed eye position, even if the receptive
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fields of different cells overlap. Relationships between granules from different ar-
eas are rough, however, meaning that granules containing information related
to feedforward connections [u]LGN ⊆ [u]V 1 ⊆ [u]V 4 and to feedback pathways:
[u]V 4 ⊆ Us∈S [u]sV 1 ⊆ Us∈S [u]sLGN are rough inclusions, where Us∈S is mereo-
logical sum of all granules covering area of the the V4 neuron. As we will show
below, each pathway obeys different logical rules. Our hypothesis is that the
brain uses a hierarchical multi-level classification in order to find different im-
portant invariances at each level. These invariances may help to classify different
presentations of the same object that, in different conditions, may lack or show
changes in some of its parts.

Our model describes neurophysiological data in rough set theory [1] language
and suggests that in order to classify complex objects the brain uses multi-valued
logic, granular knowledge and rough mereology.

2 Basic Concepts

2.1 Objects’ (stimuli) Attributes and Classification of the Brain
Responses

We will represent our experimental data [2] in the following tables (Tabs. 1-5).
In the first column are neural measurements. Neurons are identified using num-
bers related to a collection of figures in [2] concatenated with the cell number.
Additional letters (a, b, ...) denotes different measurements of the same cell. For
example, 11a denotes the first measurement of a neuron numbered 1 Fig. 1, 11b
the second measurement, etc. Simple stimuli properties are as characterized as
follows: Most of our analysis will be related to data from Pollen et al. [2].

1. Orientation in degrees appears in the column labeled o, and orientation
bandwidth is ob.

2. spatial frequency is denoted as sf , spatial frequency bandwidth is sfb
3. x-axis position is denoted by xp and the range of x-positions is xpr
4. y-axis position is denoted by yp and the range of y-positions is ypr
5. x-axis stimulus size is denoted by xs
6. y-axis stimulus size is denoted by ys
7. stimulus shape is denoted by s, values of s are following: for grating s = 1,

for vertical bar s = 2, for horizontal bar s = 3, for disc s = 4, for annulus
s = 5, for two stimuli s = 22 - two vertical bars, etc.

Stimulus attributes can be express as:

B = {o, ob, sf, sfb, xp, xpr, yp, ypr, xs, ys, s}.

Generally, we divide all cell responses into n ranges, but in this paper, for sim-
plicity, we use three ranges of the neural responses. Activity below the threshold
in between 10 and 20 spikes/s is defined as a category 0 cell response. Activity
above the threshold is defined as category 1, and activity above 30 - 40 spikes/s
as category 2. We analyze only the dominant component of the cell response,
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which in LGN and simple V1 cells is linear (the first harmonic F1) and in the
complex V1 cell and in V4 cell is nonlinear (related to F0 or the mean changes
in the neuronal discharges). The reason for choosing the minimum significant
cell activity of 10 - 20 spikes/s is as follows: during normal activity our eyes
are constantly moving. The fixation periods are between 100 and 300ms, similar
to those of monkeys. Assuming that a single neuron, in order to give reliable
information about an object, must fire a minimum of 2-3 spikes during the eye
fixation period, we obtain a minimum frequency of 10 to 20 spikes/s. We assume
that these discharges are determined by the bottom-up information (hypothesis
testing) and that they are related to the sensory information about an object’s
form. The brain is constantly making predictions, which are verified by com-
paring them with sensory information. These tests are performed in a positive
feedback loop [4, 7]. If prediction is in agreement with the hypothesis, we as-
sume that activity of the cell increases approximately twofold similarly to the
strength of the feedback from V1 to LGN [4]. This increased activity is related
to category 2. Cell responses (r) are divided into 3 ranges:

category 0: activity below the threshold 10 - 20 sp/s labeled by r0;
category 1: activity above the threshold labeled by r1;
category 2: activity above 30 - 40sp/s labeled by r2.

2.2 Logic of the Anatomical Connections

As it was mentioned above, our model consists of three interconnected visual
areas. Their connections can be divided into feedforward (FF) and feedback (FB)
pathways. We have proposed [7] that the role of the FF pathways is to test the
hypothesis about stimulus attributes and the function of the FB pathways is to
make predictions. Below, we suggest that the different anatomical properties of
the FB and FF pathways may determine their different logical rules. We define
LGNi, as LGN i-cell attributes for cells i = 1, . . . , n, V 1j as primary visual
cortex j-cell attributes for cells j = 1, . . . , m, and V 4k as area V4 attributes for
cells k = 1, . . . , l. The specific stimulus attributes for a single cell can be found
in the neurophysiological experiment by recording cell responses to the set of
various test stimuli. As we have mentioned above, cell responses are divided
into several (here 3) ranges, which will define several granules for each cell.
It is different from the classical receptive field definition, which assumes that
the cell responds (logical value 1) or does not respond (logical value 0) to the
stimulus with certain attributes. In the classical electrophysiological approach
all receptive field granules are crisp. In our approach, cell responses below the
threshold (r0), have logical value 0, whereas the maximum cell responses (r2),
have a logical value 1. We will introduce cell responses between r0 and r2, in
this paper there is only one value, r1. The physiological interpretation of cell
responses between the threshold and the maximum response may be related to
the influence of the feedback or horizontal pathways. We assume that the tuning
of each structure is different and we will look for decision rules in each level that
give responses r1 and r2. For example, we assume that r1 means that the local
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structure is tuned to the attributes of the stimulus and such granule for j cell in
area V1 will be define as [u]1V 1j .

Decision Rules for a single neuron. Each neuron in the central nervous sys-
tem sums up its synaptic inputs as a postsynaptic excitatory (EPSPs) and/or
inhibitory (IPSPs) potentials that may cause its membrane potential to exceed
the threshold and to generate an action potential. A single neuron approximates
collective (thousands of interacting synapses with different weights) input infor-
mation to the distributive one (unique decision in a single output). In principle,
a single spike (action potential) can be seen as a decision of the neuron, but
in this work we will not take into account internal dynamics of the system and
therefore we will estimate neuronal activity as spikes mean frequency (as de-
scribed above). This complex synaptic potential summation process is related
in sensory (here only visual) systems with the receptive field properties of each
neuron. Below we will show how neurons in different parts of the brain change
visual information in their receptive fields into decisions.

Decision Rules for LGN. Each LGN cell is sensitive to luminance changes in
a small part of the visual field called the receptive field (RF). The cells in the
LGN have the concentric center-surround shapes of their RFs, which are similar
to that in the retinal ganglion cells [8]. We will consider only on- and off type
RFs. The on - (off) type cells increase (decrease) their activity by an increase
of the light luminance in their receptive field center and/or decrease of the light
luminance in the RF surround (Fig. 1). Below are examples of the decision rules
for on-, and off-type LGN cells with their RF positions: xp0, yp0. We assume
that there is no positive feedback from higher areas therefore their maximum
responses are r1.

DR LGN 1:
xp0 ∧ yp0 ∧ xs0.1 ∧ ys0.1 ∧ s4 → r1 (1)

DR LGN 2:
xp0 ∧ yp0 ∧ xs0.3 ∧ ys0.3 ∧ s5 → r1 (2)

which we interpret that the changes in the luminance of the light spot s4 that
covers the RF center (the first rule) or annulus s5 that covers the RF surround
(the second rule) gives neuronal response r1. We assume that other stimulus
parameters like contrast, speed and frequency of luminance changes, etc. are
constant and optimal, and that the cell is linear and therefore we measure re-
sponse of the cell activity synchronized with the stimulus changes (the first
harmonic). Depending on the cell type the phase shift between stimulus and
the response is near 0 or 180deg if we do not take into account the phase shift
related to the response delay. Instead, using light spots or annuli one can use a
single, modulated with the drifting grating, circular patch covering the classical
RF. By changing the spatial frequency of the drifting grating one can stimulate
only the RF center for high spatial frequencies or center and surround for lower
spatial frequencies, which gives the following decision rule:
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DR LGN 3:
xp0 ∧ yp0 ∧ xs0.3 ∧ ys0.3 ∧ sf0.4 → r1 (3)

where for example: sf = 0.4c/d stimulates RF center and surround, sf ≥ 1c/d
stimulates RF center only. Notice that in agreement with the above rules eqs.
(1-3) LGN cells do not differentiate between light spot, light annulus, and patch
modulated with grating. All these different objects represent the same LGN-
elementary granule.

Decision Rules for area V1. In the primary visual cortex (area V1) neurons
obtain a new property: sensitivity to the stimulus orientation, which is not ob-
served in lower areas: retina or LGN [9]. The area V1 has at least two different
cell types: simple and complex. They can be characterized by spatial relation-
ships between their incremental (on) and decremental (off) subfields. In a simple
cell on and off subfields are seperated, whereas a complex cell is characterized
by the overlap of its subfields. In consequence simple cells are linear (the first
harmonic dominates in their responses: F1/F0 > 1), whereas complex cells are
nonlinear (F1/F0 < 1). The classical V1 RF properties can be found using small
flashing light spots, moving white or dark bars or gratings. We will give an ex-
ample of the decision rules for the RF mapped with the moving white and dark
bars [5]. A moving white bar gives the following decision rule:

DR V1 1:
xpi ∧ yp0 ∧ xsk ∧ ys1 ∧ s2 → r1 (4)

The decision rule for a moving dark bar is given as:

DR V1 2:
xpj ∧ yp0 ∧ xsl ∧ ys1 ∧ s2 → r1 (5)

where xpi is the x-position of the incremental subfield, where xpj is the x-position
of the decremental subfield, yp0 is the y-position of the both subfields, xsk, xsl,
ys1 are horizontal and vertical sizes of the RF subfields, and s2 is a vertical bar
which means that this cell is tuned to the vertical orientation. We have skipped
other stimulus attributes like movement velocity, direction, amplitude, etc. For
simplicity we assume that the cell is not direction sensitive, it gives the same
responses to both direction of bar movement and to the dark and light bars and
that cell responses are symmetric around the x middle position (xp). An overlap
index [10] is defined as:

OI =
0.5(xsk + xsl)− |xpi − xpj |
0.5(xsk + xsl) + |xpi − xpj |

OI compares sizes of increment (xsk) and decrement (xsl) subfields to their
separation (|xpi − xpj |). After [11], if OI ≤ 0.3 (“non-overlapping” subfields)
it is the simple cell with dominating first harmonic response (linear) and r1 is
the amplitude of the first harmonic. If OI ≥ 0.5 (overlapping subfields), it is
the complex cell with dominating F0 response (nonlinear) and r1 are changes
in the mean cell activity. Hubel and Wiesel [9] have proposed that the complex
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cell RF is created by convergence of several simple cells in a similar way like
V1 RF properties are related to RF of LGN cells (Fig. 1). However, there is
recent experimental evidence that the nonlinearity of the complex cell RF may
be related to the feedback or horizontal connections [12].

Decision Rules for area V4. The properties of the RFs in area V4 are more
complex than that in area V1 or in the LGN and in most cases they are nonlinear.
It is not clear what exactly optimal stimuli for cells in V4 are, but a popular
hypothesis states that the V4 cells code the simple, robust shapes. Below there
is an example from [13] of the decision rules for a narrow (0.4 deg) and long (4
deg) horizontal or vertical bars placed in different positions of area V4 RF:

DR V4 1:
o0 ∧ yprm ∧ (yp−2.2 ∨ yp0.15) ∧ xs4 ∧ ys0.4 → r2 (6)

DR V4 2:

o90 ∧ xprm ∧ (xp−0.6 ∨ xp1.3) ∧ xs0.4 ∧ ys4 → r1 (7)

The first rule relates area V4 cell responses to a moving horizontal bar (o0) and
the stimulus in the second rule is a moving vertical bar (o90), yprm, xprm have
meaning of the tolerance for the y or x bar positions (more details in the Re-
sult section). The horizontal bar placed narrowly in two different y-positions
(yp−2.2, yp0.15) gives strong cell responses (DR V4 1), and the vertical bar
placed with wide range in two different x-positions (xp−0.6, xp1.3) gives medium
cell responses.

Decision Rules for feedforward connections from LGN → V1. Tha-
lamic axons target specific cells in layers 4 and 6 of the primary visual cortex
(V1). Generally we assume that there is a linear summation of LGN cells (ap-
proximately 10 − 100 of them [14]) to one V1 cell. It was proposed [9] that the
LGN cells determine the orientation of the V1 cell in the following way: LGN
cells which have a direct synaptic connection to V1 neurons have their receptive
fields arranged along a straight line on the retina (Fig. 1). In this Hubel and
Wiesel [9] classical model the major assumption is that activity of all (four in
Fig. 1) LGN cells is necessary for a V1 cell to be sensitive to the specific stimulus
(oriented light bar). This principle determines syntax of the LGN to V1 decision
rule, by using logical and meaning that if one LGN cell does not respond then
there is no V1 cell response. After Sherman and Guillery [15] we will call such
inputs drivers. Alonso et al. [14] showed that there is a high specificity between
RF properties of the LGN cells which have monosynaptic connections to a V1
simple cell. This precision goes beyond simple retinotopy and includes such RF
properties as RF sign, timing, subregion strength and sign [14]. The decision
rule for the feedforward LGN to V1 connections are following:

DR LGN V1 1:

rLGN
1 (xi, yi) ∧ rLGN

1 (xi+1, yi) ∧ . . . ∧ rLGN
1 (xi+n, yi)→ rV 1

1 (8)
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Fig. 1. On the left: modified schematic of the model proposed by [9]. Four LGN cells
with circular receptive fields arranged along a straight line on the retina have direct
synaptic connection to V1 neuron. This V1 neuron is orientation sensitive as marked
by the thick, interrupted lines. On the right: receptive fields of two types of LGN cells,
and two types of area V1 cells.

DR LGN V1 2:

rLGN
1 (xi, yi) ∧ rLGN

1 (xi+1, yi+1) ∧ . . . ∧ rLGN
1 (xi+n, yi+1)→ rV 1

1 (9)

where the first rule determines response of cells in V1 with optimal horizontal
orientation, and the second rule says that the optimal orientation is 45 degrees;
(xi, yi) is the localization of the RF in x-y Euclidian coordinates of the visual
field. Notice that these rules assume that V1 RF is completely determined by
the FF pathway from the LGN.

Decision Rules for feedback connections from V1→LGN. There are
several papers showing the existence of the feedback connections from V1 to
LGN [16-20]. In [20], authors have quantitatively compared the visuotopic extent
of geniculate feedforward afferents to V1 with the size of the RF center and
surround of neurons in V1 input layers and the visuotopic extent of V1 feedback
connections to the LGN with the RF size of cells in V1. Area V1 feedback
connections restrict their influence to LGN regions visuotopically coextensive
with the size of the classical RF of V1 layer 6 cells and commensurate with the
LGN region from which they receive feedforward connections. In agreement with
[15] we will denote feedback inputs modulators with following decision rules:
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DR V1 LGN 1:

(rV 1
1 ∨ rLGN

1 (xi, yi)), (rV 1
1 ∨ rLGN

1 (xi, yi+1), (rV 1
1 ∨ rLGN

1 (xi+1, yi+1)), . . .

. . . , rLGN
1 (xi+2n, yi+2n)) → rLGN

2 (10)

This rule says that when the activity of a particular V1 cell is in agreement
with activity in some LGN cells their responses increase from r1 to r2, and
rLGN
1 (xi, yi) means r1 response of LGN cell with coordination (xi, yi) in the

visual field, and rLGN
2 means r2 response of all LGN cells in the decision rules

which activity was coincidental with the feedback excitation, it is a pattern of
LGN cells activity.

Decision Rules for feedforward connections V1 → V4. There are rel-
atively small direct connections from V1 to V4 bypassing area V2 [20], but we
also must take into account V1 to V2 [21] and V2 to V4 connections, which are
highly organized but variable, especially in V4 [22] feedforward connections. We
simplify that V2 has similar properties to V1 but have a larger size of the RF.
We assume that, like from the retina to LGN and from LGN to V1 direct or
indirect connections from V1 to V4 provide driver input and fulfill the following
decision rules:

DR V1 V4 1:

rV 1
1 (xi, yi) ∧ rV 1

1 (xi+1, yi) ∧ . . . ∧ rV 1
1 (xi+n, yi)→ rV 4

1 (11)

DR V1 V4 2:

rV 1
1 (xi, yi) ∧ rV 1

1 (xi+1, yi+j) ∧ . . . ∧ rV 1
1 (xi+n, yi+m) → rV 4

1 (12)

We assume that, the RF in area V4 sums up driver inputs from regions in
the areas V1and V2 of cells with highly specific RF properties, not only retino-
topically correlated.

Decision Rules for feedback connections from V4→V1. Anterograde
anatomical tracing [23] has shown axons backprojecting from area V4 directly
to area V1 or sometimes with branches in area V2. Axons of V4 cells span in
area V1 in large territories with most terminations in layer 1, which can be ei-
ther distinct clusters or in linear arrays. These specific for each axon branches
determine decision rules that will have similar syntax (see below) but anatom-
ical structure of the particular axon may introduce different semantics. Their
anatomical structures maybe related to the specific receptive field properties of
different V4 cells. Distinct clusters may have terminals on V1 cells near pin-
wheel centers (cells with different orientations arranged radially), whereas a lin-
ear array of terminals may be connected to V1 neurons with similar orientation
preference. In consequence, some parts of the V4 RF would have preference for
certain orientations and others may have preference for the certain locations but
be more flexible to different orientations. This hypothesis is supported by re-
cent intracellular recordings from neurons located near pinwheels centers which,
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in contrast to other narrowly tuned neurons, showed subthreshold responses to
all orientations [24]. However, neurons which have fixed orientation can change
other properties of their receptive field like for example spatial frequency, there-
fore the feedback from area V4 can tune them to expected spatial details in the
RF (M. Sur, Brenda Milner Symposium, 22 Sept. 2008, MNI McGill University,
Montreal).

The V4 input modulates V1 cell in the following way:

DR V4 V1 1:

(rV 4
1 ∨ rV 1

1 (xi, yi)), (rV 4
1 ∨ rV 1

1 (xi, yi+1), (rV 4
1 ∨ rV 1

1 (xi+1, yi+1)), . . .

. . . , (rV 4
1 ∨ rV 1

1 (xi+n, yi+m)) → rV 1
2 (13)

Meaning of rV 1
1 (xi, yi) and rV 1

2 are same as explained above for the V1 to
LGN decision rule.

Decision Rules for feedback connections V4→LGN. Anterograde trac-
ing from area V4 showed axons projecting to different layers of LGN and some
of them also to the pulvinar [25] These axons have widespread terminal fields
with branches non-uniformly spread about several millimeters (Fig. 2). Like de-
scending axons in V1, axons from area V4 have within their LGN terminations,
distinct clusters or linear branches (Fig. 2). These clusters and branches are
characteristic for different axons and as it was mentioned above their differences
may be related to different semantics in the decision rule below:

DR V4 LGN 1:

(rV 4
1 ∨ rLGN

1 (xi, yi)), (rV 4
1 ∨ rLGN

1 (xi, yi+1), (rV 4
1 ∨ rLGN

1 (xi+1, yi+1)), . . .

. . . , (rV 4
1 ∨ rLGN

1 (xi+n, yi+m)) → rLGN
2 (14)

Meaning of rLGN
1 (xi, yi) and rLGN

2 are same as explained above for the V1 to
LGN decision rule.

Notice that interaction between FF and FB pathways extends a classical view
that the brain as computer uses two-valued logic. This effect in psychophysics
can be paraphrased as: “I see it but it does not fit my predictions”. In neu-
rophysiology, we assume that a substructure could be optimally tuned to the
stimulus but its activity does not fit to the FB predictions. Such interaction can
be interpreted as the third logical value. If there is no stimulus, the response in
the local structure should have a logical value 0, if stimulus is optimal for the
local structure, it should have logical value 1

2 , and if it also is tuned to expecta-
tions of higher areas (positive feedback) then response should have logical value
1. Generally it becomes more complicated if we consider many interacting areas,
but in this work we use only three-valued logic.
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Fig. 2. Boutons of the descending axon from area V4 with terminals in different parvo-
cellular layers of LGN: layer 6 in black, layer 5 in red, layer 4 in yellow. Total number
of boutons for this and other axons was between 1150 and 2075. We estimated that it
means that each descending V4 axon connects to approximately 500 to over 1000 LGN
(mostly parvocellular) cells [25]. Thick lines outline LGN; thin lines shows layers 5 and
6, dotted line azimuth, and dashed lines show elevation of the visual field covered by
the descending axon. This axon arborization extension has approximately V4 RF size.

3 Results

We have used our model as a basis for an analysis of the experimental data from
the neurons recorded in the monkey’s area V4 [2]. In [2], it was shown that the
RF in V4 can be divided into several subfield that, stimulated separately, can
give us the first approximation of the concept of the shape to which the cell is
tuned [13]. We have also shown that subfields are tuned to stimuli with similar
orientation [2]. In Fig. 3, we demonstrate that the receptive field subfields have
not only similar preferred orientations but also spatial frequencies [2]. We have
divided cell responses into three categories (see Methods) by horizontal lines in
plots A-D of Fig. 3.

We have draw a line near spike frequency 17 spikes/s, which separates re-
sponses of category r1 (above) from r0 (below the threshold line). Horizontal
lines plotted near spike frequency 34 spikes/s separate responses of category r2
(above) from r1 (below). The stimulus attributes related to these three response
categories were extracted in the decision table (Table 1). We summarize results
of our analysis in Figs. 3H and G from Table 1. Fig. 3H presents a schematic of
a possible stimulus that would give medium cell responses (r1). One can imagine
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Fig. 3. Modified plots from [2]. Curves represent responses of V4 neurons to their
RF subfields grating stimulations with different spatial frequencies (SF). (A-D) SF
selectivity curves across RF with positions indicated in insets. The centers of tested
subfields were 2 deg apart. (E-H) Schematic representation summarizing orientation
and SF selectivity of subfields presented in A-D and in [2]. These figures are based
on the decision table 1, for stimuli in E, F cell responses were r1, for stimuli in G, H
cell responses were r2, (F) and (G) represent a possible stimulus configuration from
schematics (E) and (F).

several classes of possible stimuli assuming that subfield responses will sum up
linearly (for example see Fig. 3F). Fig. 3G shows a schematic of a possible stim-
ulus set-up, which would give r2 response that as we have assumed, is related
not only to the local but also the global visual cortex tuning. One can notice
that in the last case only subfields in the vertical row give strong independent
responses (Fig. 3H).

We assign the narrow (obn), medium (obm), and wide (obw) orientation band-
width as follows: obn if (ob : 0 < ob < 50deg), medium obm if (ob : 50deg <
ob < 100deg), wide obw if (ob : ob > 100deg). We assign the narrow (sfbn),
medium (sfbm), and wide (sfbw) spatial frequency bandwidth: sfbn if (sfb :
0 < sfb < 2c/deg), medium sfbm if (sfb : 2c/deg < sfb < 2.5c/deg), wide
sfbw if (sfb : sfb > 2.5c/deg). For simplicity in the following decision rules,
we assume that the subfields are not direction sensitive; therefore responses to
stimulus orientation 0 and 180 deg should be same.
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Table 1. Decision table for one cell responses to subfields stimulation Fig. 3C-F and
Fig.5 in [2]. Attributes xpr, ypr, sf = 2c/deg, s are constant and they are not presented
in the table. Cells 3* are from Fig. 3 in [2] and cells 5* are from Fig. 5 in [2] processed
in Fig. 3.

cell o ob sfb xp yp r

3c 172 105 0 0 0 1
3c1 10 140 0 0 0 1
3c2 180 20 0 0 0 2
3d 172 105 0 0 -2 1
3d1 5 100 0 0 -2 1
3d2 180 50 0 0 -2 2
3e 180 0 0 -2 0 0
3f 170 100 0 0 2 1
3f1 10 140 0 0 2 1
3f2 333 16 0 0 2 2
5a 180 0 3 0 -2 1
5a1 180 0 0.9 0 -2 2
5b 180 0 3.2 0 2 1
5b1 180 0 1 0 2 2
5c 180 0 3 0 0 1
5c1 180 0 1.9 0 0 2
5d 180 0 0.8 0 0 1

Our results from the separate subfields stimulation study can be presented as
the following decision rules:

DR V4 3:

o180 ∧ sf2 ∧ ((obw ∧ sfbw ∧ xp0 ∧ (yp−2 ∨ yp0 ∨ yp2)))∨

∨ (obn ∧ sfbn ∧ yp0 ∧ (xp−2 ∨ xp2)) → r1 (15)

DR V4 4:

o180 ∧ sf2 ∧ obn ∧ sfbn ∧ xp0 ∧ (yp−2 ∨ yp0 ∨ yp2) → r2 (16)

These decision rules can be interpreted as follows: disc shaped grating stimuli
with wide bandwidths of orientations or spatial frequencies when placed along
vertical axis of the receptive field evoke medium cell responses. However, similar
discs when placed horizontally to the left or to the right from the middle of
the RF, must have narrow orientation and spatial frequency to evoke medium
cell responses. Only a narrowly tuned disc in spatial frequency and orientation
placed vertically from the middle of the receptive field can evoke strong cell re-
sponses. Notice that Figs 3F and 3H show possible configurations of the optimal
stimulus. This approach is similar to the assumption that an image of the object
is initially represented in terms of the activation of a spatially arrayed set of mul-
tiscale, multioriented detectors like arrangements of simple cells in V1 (metric
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templates in subordinate-level object classification of Lades et al. [26]). However,
this approach does not take into account interactions between several stimuli,
when more than one subfield is stimulated, and we will show below there is a
strong nonlinear interaction between subfields. We analyzed experiments where
the RF is stimulated at first with a single small vertical bar and later with two
bars changing their horizontal positions. One example of V4 cell responses to thin
(0.25 deg) vertical bars in different horizontal positions is shown in the upper left
part of Fig. 4 (Fig. 4E). Cell response has maximum amplitude for the middle
(XPos = 0) bar position along the x− axis. Cell responses are not symmetrical
around 0. In Fig. 2F, the same cell (cell 61 in table 2) is tested with two bars.
The first bar stays at the 0 position, while the second bar changes its position
along x− axis. Cell responses show several maxima dividing the receptive field
into four areas. However, this is not always the case as responses to two bars
in another cell (cell 62 in table 2) show only two minima (Fig. 2G). Horizontal
lines in plots of both figures divide cell responses into the three categories r0,
r1, r2, which are related to the mean response frequency (see Methods). Stimuli
attributes and cell responses classified into categories are shown in table 2 for
cells in Fig. 4 and in table 3 for cells in Fig. 5.

We assign the narrow (xprn), medium (xprm), and wide (xprw) x position
ranges as follows: xprn if (xpr : 0 < xpr ≤ 0.6), medium xprm if (xpr : 0.6 <
xpr ≤ 1.2), wide xprw if (xpr : xpr > 1.2). We assign the narrow (yprn), medium
(yprm), and wide (yprw) y position range: yprn if (ypr : 0 < ypr ≤ 1.2), medium
yprm if (ypr : 1.2 < xpr ≤ 1.6), wide yprw if (ypr : ypr > 1.6).

On the basis of Fig. 3 and the decision table 2 (also compare with [18]) the
one-bar study can be presented as the following decision rules:

DR V4 5:
o90 ∧ xprn ∧ xp0.1 ∧ xs0.25 ∧ ys0.4 → r2 (17)

DR V4 6:
o90 ∧ xprw ∧ xp−0.2 ∧ xs0.25 ∧ ys0.4 → r1 (18)

We interpret these rules that r1 response in eq. (18) does not effectively involve
the feedback to the lower areas: V1 and LGN. The descending V4 axons have
excitatory synapses not only on relay cells in LGN and pyramidal cells in V1,
but also on inhibitory interneurons in LGN and inhibitory double banquet cells
in layer 2/3 of V1. As an effect of the feedback, only a narrow range of area
V4 RF responded with a high r2 activity to a single bar stimulus, whereas in
the outside area excitatory and inhibitory feedback influences compensated each
other.

On the basis of Fig. 4 the decision table, the two-bar horizontal interaction
study can be presented as the following Two-bar Decision Rules (DRT):

DRT V4 1:

o90∧xprn∧((xp−1.9∨xp0.1∨xp1.5)∧xs0.25∧ys0.4)1∧(o90∧xp0∧xs0.25∧ys0.4)0→r2
(19)
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DRT V4 2:

o90 ∧ xprm ∧ ((xp−1.8 ∨ xp−0.4 ∨ xp0.4 ∨ xp1.2) ∧ xs0.25 ∧ ys0.4)1∧

∧ (o90 ∧ xp0 ∧ xs0.25 ∧ ys0.4)0 → r1 (20)

One-bar decision rules can be interpreted as follows: the narrow vertical bar
evokes a strong response in the central positions, and medium responses in a
larger area near the central position. Two-bar decision rules claim that: the cell
responses to two bars are strong if one bar is in the middle of the RF (bar
with index 0 in decision rules) and the second narrow bar (bar with index 1 in
decision rules) is in the certain, specific positions in the RF eq. (19). But when
the second bar is in less precise positions, cell responses became weaker eq. (20).
Responses of other cells are sensitive to other bar positions (Fig. 4G). These
differences could be correlated with anatomical variability of the descending

Fig. 4. Modified plots from [2]. Curves represent responses of several cells from area
V4 to small single (E) and double (F, G) vertical bars. Bars change their position along
x-axis (Xpos). Responses are measured in spikes/sec. Mean cell responses ± SE are
marked in E, F, and G. Cell responses are divided into three ranges by thin horizontal
lines. Below each plot are schematics showing bar positions giving r1 (gray) and r2

(black) responses; below (E) for a single bar, below (F and G) for double bars (one
bar was always in position 0). (H) This schematic extends responses for horizontally
placed bars (E) to the whole RF: white color shows excitatory, black color inhibitory
interactions between bars. Bars’ interactions are asymmetric in the RF.
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Table 2. Decision table for cells shown in Fig. 4. Attributes o, ob, sf, sfb were constant
and are not presented in the table.

cell xp xpr xs ys s r

61e -0.7 1.4 0.25 4 2 1
61f1 -1.9 0.2 0.25 4 22 2
61f2 0.1 0.2 0.25 4 22 2
61f3 1.5 0.1 0.25 4 22 2
61f4 -1.8 0.6 0.25 4 12 1
61f5 -0.4 0.8 0.25 4 22 1
61f6 0.4 0.8 0.2 5 4 22 1
61f7 1.2 0.8 0.25 4 22 1
62g1 -1.5 0.1 0.25 4 22 2
62g2 -0.15 0.5 0.25 4 22 2
62g3 -1.5 0.6 0.25 4 22 1
62g4 -0.25 1.3 0.25 4 22 1
62g5 1 0.6 0.25 4 22 1
63h1 -0.5 0 0.5 1 44 2
63h2 1 1 1 1 44 1
63h3 0.2 0.1 0.25 4 22 2

Table 3. Decision table for one cell shown in Fig. 5. Attributes yp, ypr are constant
and are not presented in the table. We introduce another parameter of the stimulus,
difference in the direction of drifting grating of two patches: ddg = 0 when drifting are
in the same directions, and ddg = 1 if drifting in two patches are in opposite directions.

cell xp xpr xs ys ddg r

64c -4.5 3 1 1 1 2
64c1 -1.75 1.5 1 1 1 1
64c2 -0.5 1 1 1 1 2
64d -6 0 1 8 0 2
64d1 -3.5 4.8 1 8 0 1

axons connections. As mentioned above, V4 axons in V1 have distinct clusters
or linear branches. Descending pathways are modulators, which means that they
follow the logical “or” rule. This rule states that cells in area V1 become more
active as a result of the feedback only if their patterns “fit” to the area V4 cell
“expectation”.

The decision table (Table 3) based on Fig. 5 describes cell responses to two
patches placed in different positions along x-axis of the receptive field (RF).
Figure 5 shows that adding the second patch reduced single patch cell responses.
We have assumed that cell response to a single patch placed in the middle of the
RF is r2. The second patch suppresses cell responses to a greater extent when it
is more similar to the first patch (Fig. 5D).
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Fig. 5. Modified plots from [2]. Curves represent V4 cell responses to two patches with
gratings moving in opposite direction - patch 1 deg diameter (C) and in the same (D)
directions for patch 1 deg wide and 8 deg long. One patch is always at x-axis position
0 and the second patch changes its position as it is marked in XPos coordinates. The
horizontal lines represent 95% confidence intervals for the response to a single patch
in position 0. Below C and D, schematics show the positions of the patches and their
influences on cell responses. Arrows are showing the direction of moving gratings. The
lower part of the figure shows two schematics of the excitatory (white) and inhibitory
(black) interactions between patches in the RF. Patches with gratings moving in the
same directions (right schematic) show larger inhibitory areas (more dark color) than
patches moving in opposite directions (left schematic).

Two-patch horizontal interaction decision rules are as follows:

DRT V4 3:

ddg1 ∧ (o0 ∧ xpr3 ∧ xp4.5 ∧ xs1 ∧ ys1)1 ∧ (o0 ∧ xp0 ∧ xs1 ∧ ys1)0 → r2 (21)

DRT V4 4:

ddg1 ∧ (o0 ∧ xpr1 ∧ xp0.5 ∧ xs1 ∧ ys1)1 ∧ (o0 ∧ xp0 ∧ xs1 ∧ ys1)0 → r2 (22)

DRT V4 5:

ddg0 ∧ (o0 ∧ xpr4.8 ∧ xp3.5 ∧ xs1 ∧ ys8)1 ∧ (o0 ∧ xp0 ∧ xs1 ∧ ys1)0 → r1 (23)
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Table 4. Decision table for cells in Fig. 6. Attributes yp, ypr,xs = ys = 0.5deg, s = 33
(two discs) are constant and are not presented in the table. We introduce another
parameter of the stimulus, difference in polarities of two patches: dp = 0 if polarities
are same, and dp = 1 if polarities are opposite.

cell xp xpr dp r

81a -0.1 0.5 0 1
81a1 -1.75 0.3 0 1
81a2 -1.2 1 1 1
81a3 1.25 1.5 1 1
81a4 -1.3 0.3 1 2
81a5 -1.3 0.3 1 2
81a6 1.5 0.4 1 2
81b -1.4 0.6 1 1
81b1 0.9 0.8 1 1
81b2 0.9 0.2 1 2

These decision rules can be interpreted as follows: patches with drifting in
opposite directions gratings give strong responses when positioned very near
(overlapping) or 150% of their width apart one from the other eqs. (21, 22).
Interaction of patches with a similar grating evoked small responses in large
extend of the RF eq. (23).

Generally, interactions between similar stimuli evoke stronger and more ex-
tended inhibition than between different stimuli. These and other examples can
be generalized to other classes of objects.

Two-spot horizontal interaction decision rules are as follows:

DRT V4 6:

dp0∧s33 ∧ (((xp−0.1 ∧xpr0.5)∨ (xp−1.75 ∧xpr0.3))∧xs0.5)1 ∧ (xp0 ∧xs0.5)0 → r1
(24)

DRT V4 7:

dp1∧s33∧(((xp−1.2∧xpr1)∨(xp1.25∧xpr1.5))∧xs0.5)1∧(xp0∧xs0.5)0 → r1 (25)

DRT V4 8:

dp1∧s33∧(((xp−1.3∧xpr0.2)∨(xp1.5∧xpr0.4))∧xs0.5)1∧(xp0∧xs0.5)0 → r2 (26)

DRT V4 9:

dp1∧s33∧(((xp−1.4∧xpr0.6)∨(xp0.9∧xpr0.8))∧xs0.5)1∧(xp0∧xs0.5)0 → r1 (27)

DRT V4 10:

dp1 ∧ s33 ∧ ((xp0.9 ∧ xpr0.2) ∧ xs0.5)1 ∧ (xp0 ∧ xs0.5)0 → r2 (28)

where dp is the difference in light polarities between two light spots (s33), and
subscript 1 is related to spot changing its x-axis position, whereas subscript 0 is
related to the spot in 0 position on x-axis.
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Fig. 6. Modified plots from [2]. Curves represent V4 cell responses to pair of 0.5 deg
diameter bright and dark discs tested along width axis. Continuous lines mark the
curves for responses to different polarity stimuli, and the same polarity stimuli are
marked by dashed line. Schematics for cell responses showed in (A) are in (C-F) and
(I, J). Schematics for cell responses in (B) are in (G) and (H). Interactions between
same polarity light spots (C) are different than interactions between different polarities
patches (D-H). Small responses (class 1) are in (C), (D), (G), and larger responses
(class 2) are in (E), (F), (H). (E) shows that there is no r2 responses in same polarity
two spots interactions. (I) shows small excitatory (gray) in a short range and strong
inhibitory (black) interactions between same polarity spots and (J) shows short range
inhibitory (dark) and longer range excitatory interactions between different polarities
spots.

We propose the following classes of the object’s Parts Interaction Rules:

PIR1: Facilitation when stimulus consists of multiple similar thin bars with
small distances (about 0.5 deg) between them, and suppression when the
distance between bars is larger than 0.5 deg. Suppression/facilitation is very
often a nonlinear function of the distance. In our experiments (Fig. 3), cell
responses to two bars were periodic along the receptive field with dominating
periods of about 30, 50, or 70% of the RF width. These nonlinear interactions
were also observed along vertical and diagonals of the RF and often show
strong asymmetries in relationship to the RF middle.

PIR2: Strong inhibition when stimulus consists of multiple similar patches
filled with gratings with the distance between patch edges ranging from 0
deg (touching) to 2 deg, weak inhibition when distance is between 3 to 5 deg
through the RF width.
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PIR3: If bars or patches have different attributes like polarity or drifting direc-
tions, their suppression is smaller and localized facilitationat the smalldistance
between stimuli is present. As in bar interaction, suppression/facilitations be-
tween patches or bright/dark discs can be periodic along different RF axis and
often asymmetric in the RF.

We have tested the above rules in nine cells from area V4 by using discs or annuli
filled stimuli with optimally oriented and variable in spatial frequencies drifting
gratings (Pollen et al. [2] Figs. 9, 10). Our assumptions were that if it is a strong
inhibitory mechanism as described in the rule PRI2 then responses to annulus
with at least 2 deg inner diameters will be stronger than responses to the disc. In
addition by changing spatial frequencies of gratings inside the annulus, we have
expected eventually to find other periodicities along the RF width as described
by PIR3.

In summary, we wanted to find out what relations there are between stim-
ulus properties and area V4 cell responses or whether B-elementary granules
have equivalence classes of the relation IND{r} or V4-elementary granules, or
whether [u]B ⇒ [u]B4. It was evident from the beginning that because different
area V4 cells have different properties, their responses to the same stimuli will
be different, therefore we wanted to know if the rough set theory will help us in
our data modeling.

We assign the spatial frequency: low (sfl), medium (sfm), and high (sfh) as
follows: sfl if (sf : 0 < sf ≤ 1c/deg), medium sfm if (sf : 1c/deg < sf ≤
4c/deg), high sfh if (sf : sf > 4c/deg). On the basis of this definition we
calculate for each row in Table 5 the spatial frequency range by taking into
account the spatial frequency bandwidth (sfb). Therefore 107a is divided to
107al and 107am, 108a to 108al and 108am, and 108b to 108bl, 108bm, and
108bh.

Stimuli used in these experiments can be placed in the following ten categories:

Y0 = |sfl xo7 xi0 s4| = {101, 105}

Y1 = |sfl xo7 xi2 s5| = {101a, 105a}

Y2 = |sfl xo8 xi0 s4| = {102, 104}

Y3 = |sfl xo8 xi3 s5| = {102a, 104a}

Y4 = |sfl xo6 xi0 s4| = {103, 106, 107, 108, 20a, 20b}

Y5 = |sfl xo6 xi2 s5| = {103a, 106a, 107al, 108bl}

Y6 = |sfl xo4 xi0 s4| = {108al}

Y7 = |sfm xo6 xi2 s5| = {107am, 108bm}

Y8 = |sfm xo4 xi0 s4| = {107a, 108am}

Y9 = |sfh xo6 xi2 s5| = {108bh}
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Table 5. Decision table for eight cells comparing the center-surround interaction. All
stimuli were concentric, and therefore attributes were not xs, ys, but xo outer diameter,
xi inner diameter. All stimuli were localized around the middle of the receptive field
so that xp = yp = xpr = ypr = 0 were constant and we did not put them in the table.
The optimal orientation were normalized, denoted as 1, and removed from the table.

cell sf sfb xo xi s r

101 0.5 0 7 0 4 0
101a 0.5 0 7 2 5 1
102 0.5 0 8 0 4 0
102a 0.5 0 8 3 5 0
103 0.5 0 6 0 4 0
103a 0.5 0 6 2 5 1
104 0.5 0 8 0 4 0
104a 0.5 0 8 3 5 2
105 0.5 0 7 0 4 0
105a 0.5 0 7 2 5 1
106 0.5 0 6 0 4 1
106a 0.5 0 6 3 5 2
107 0.5 0.25 6 0 4 2
107a 2.1 3.8 6 2 5 2
107b 2 0 4 0 4 1
108 0.5 0 6 0 4 1
108a 2 0 4 0 4 2
108b 5 9 6 2 5 2
20a 0.5 0 6 0 4 1
20b 0.5 0 6 0 4 2

These are equivalence classes for stimulus attributes, which means that in each
class they are indiscernible IND(B). We have normalized orientation bandwidth
to 0 in {20a, 20b} and spatial frequency bandwidth to 0, in cases {107, 107a,
108a, 108b}, and put values covered by the bandwidth to the spatial frequency
parameters. There are three ranges of responses denoted as ro, r1, r2. Therefore
on the basis of the neurological data there are the following three categories of
cell responses:

|ro| = {101, 102, 102a, 103, 104, 105}
|r1| = {101a, 103a, 105a, 107b, 108, 20a}

|r2| = {104a, 106a, 107, 107al, 107am, 108al, 108am, 108bl, 108bm, 108bh, 20b}

which are denoted as Xo, X1, X2.
We will calculate the lower and upper approximation [1] of the brains basic

concepts in term of stimulus basic categories:

B
¯

X0 = Y0 ∪ Y2 = {101, 105, 102, 104}
B̄X0=Y0∪Y2∪Y3∪Y4={101, 105, 102, 104, 102a, 104a, 103, 106, 107, 108, 20a, 20b}
B
¯

X1 = Y1 = {101a, 105a}
B̄X1 = Y1 ∪ Y5 ∪ Y6 ∪ Y4 =
{101a, 105a, 103a, 107al, 108b, 106a, 20b, 107b, 108a, 103, 107, 106, 108, 20a}
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B
¯

X2 = Y7 ∪ Y9 = {107am, 108bm, 108bh}
B̄X2 = Y7 ∪ Y9 ∪ Y8 ∪ Y6 ∪ Y3 ∪ Y4 ∪ Y5 = {107am, 108bm, 108bh, 107b, 108am,
102a, 104a, 103a, 107a, 108bl, 106a, 20b, 103, 107, 106, 108, 20a, 108al}

Concept 0 and concept 1 are roughly B−defined, which means that only with
some approximation we have found that the stimuli do not evoke a response, or
evoke weak or strong response in the area V4 cells. Certainly a stimulus such as
Y0 or Y2 does not evoke a response in all our examples, in cells 101, 105, 102,
104. Also stimulus Y1 evokes a weak response in all our examples: 101a, 105a.
We are interested in stimuli that evoke strong responses because they are specific
for area V4 cells. We find two such stimuli, Y7 and Y9. In the meantime other
stimuli such as Y3, Y4 evoke no response, weak or strong responses in our data.

We can find the quality [1] of our experiments by comparing properly classified
stimuli POSB(r) = {101, 101a, 105, 105a, 102, 104, 107am, 108bm, 108bh} to all
stimuli and to all responses: γ{r} = card{101,101a,105,105a,102,104,107am,108bm,108bh}

card{101,101a,,20a,20b}
= 0.38. We can also ask what percentage of cells we fully classified. We obtain
consistent responses from 2 of 9 cells, which means that γ = 0.22. This is related
to the fact that for some cells we have tested more than two stimuli. What is
also important from an electrophysiological point of view is there are negative
cases. There are many negative instances for the concept 0, which means that
in many cases this brain area responds to our stimuli; however it seems that our
concepts are still only roughly defined.

We have following decision rules:

DR V4 7:
sfl ∧ xo7 ∧ xi2 ∧ s5 → r1 (29)

DR V4 8:
sfl ∧ xo7 ∧ xi0 ∧ s4 → r0 (30)

DR V4 9:
sfl ∧ xo8 ∧ xi0 ∧ s4 → r0 (31)

DR V4 10:
(sfm ∨ sfh) ∧ xo6 ∧ xi2 ∧ s5 → r2 (32)

These can be interpreted as the statement that a large annulus (s5) evokes
a weak response, but a large disc (s4) evokes no response when there is modu-
lation with low spatial frequency gratings. However, somewhat smaller annulus
containing medium or high spatial frequency objects evokes strong responses. It
is unexpected that certain stimuli evoke inconsistent responses in different cells
(Table 5):

103: sfl ∧ xo6 ∧ xi0 ∧ s4 → r0
106: sfl ∧ xo6 ∧ xi0 ∧ s4 → r1
107: sfl ∧ xo6 ∧ xi0 ∧ s4 → r2

A disc with not very large dimension containing a low spatial frequency grating
can evoke no response (103), a small response (106), or a strong response (107).
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4 Discussion

Physical properties of objects are different from their psychological represen-
tation. Grdenfors [27] proposed to describe the principle of human perceptual
system as grouping objects by similarities in the conceptual space. Human per-
ceptual systems group together similar objects with unsharp boundaries [27],
which means that objects are related to their parts by rough inclusion or that
different parts belong to objects with some approximation (degree) [28]. We sug-
gest that similarity relations between objects and their parts are related to the
hierarchical relationships between different visual areas. These similarities may
be related to synchronizations of multi-resolution, parallel computations and are
difficult to simulate using a digital computer [29].

Treisman [30] proposed that our brains extract features related to different
objects using two different procedures: parallel and serial processing. The “basic
features” were identified in psychophysical experiments as elementary features
that can be extracted in parallel. Evidence of parallel features extraction comes
from experiments showing that the extraction time becomes independent of the
number of objects. Other features need serial searches, so that the extraction
time is proportional to the number of objects. High-level serial processing is
associated with integration and consolidation of items combined with conscious
awareness. Other low-level parallel processes are rapid, global, related to high-
efficiency categorization of items and largely unconscious [30]. Treisman [30]
showed that instances of a disjunctive set of at least four basic features could be
detected through parallel processing. Other researchers have provided evidence
for parallel detection of more complex features, such as shape from shading [31]
or experience-based learning of features of intermediate complexity [32].

Thorpe et al. [33] in recent experiments, however, found that human and non-
human primates can rapidly and accurately categorize briefly flashed natural
images. Human and monkey observers are very good at deciding whether or not
a novel image contains an animal even when more than one image is presented
simultaneously [34]. The underlying visual processing reflecting the decision that
a target was present is under 150ms [33]. These findings are in contradiction
to the classical view that only simple, “basic features”, likely related to early
visual areas like V1 and V2, are processed in parallel [30] Certainly, natural
scenes contain more complex stimuli than “simple” geometric shapes. It seems
that the conventional, two-stage perception-processing model needs correction,
because to the “basic features” we must add a set of unknown intermediate
features. We propose that at least some intermediate features are related to
receptive field properties in area V4. Area V4 has been associated with shape
processing because its neurons respond to shapes [35] and because lesions in
this area disrupt shape discrimination, complex-grouping discriminations [36],
multiple viewpoint shape discriminations [37], and rotated shape discriminations
[38]. Area V4 responses are also driven by curvature or circularity, which was
recently observed by mean of the human fMRI [39].

By applying rough sets to V4 neuron responses, we have differentiated be-
tween bottom-up information (hypothesis testing) related to the sensory input,
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and predictions, some of which can be learned but are generally related to posi-
tive feedback from higher areas. If a prediction is in agreement with a hypothesis,
object classification will change from category 1 to category 2. Our research sug-
gests that such decisions can be made very effectively during pre-attentive, par-
allel processing in multiple visual areas. In addition, we found that the decision
rules of different neurons can be inconsistent.

One should take into account that modeling complex phenomena demands the
use of local models (captured by local agents), if one would like to use the mul-
tiagent terminology [6]) that should be fused afterwards. This process involves
negotiations between agents [6] to resolve contradictions and conflicts in local
modeling. One of the possible approaches in developing methods for complex
concept approximations can be based on the layered learning [41]. Inducing con-
cept approximation should be developed hierarchically starting from concepts
that can be directly approximated using sensor measurements toward complex
target concepts related to perception. This general idea can be realized using
additional domain knowledge represented in natural language.

We have proposed decision rules for different visual areas and for FF and FB
connections between them. However in processing our V4 experimental data,
we also have found inconsistent decision rules. These inconsistencies could help
process different aspects of the properties of complex objects. The principle is
similar to that observed in the orientation tuning cells of the primary visual
cortex. Neurons in V1 with overlapping receptive fields show different preferred
orientations. It is assumed that this overlap helps extract local orientations in
different parts of an object. However, it is still not clear which cell will dominate
if several cells with overlapping receptive fields are tuned to different attributes
of a stimulus. Most models assume a “winner takes all” strategy; meaning that
using a convergence (synaptic weighted averaging) mechanism, the most domi-
nant cells will take control over other cells, and less represented features will be
lost. This approach is equivalent to the two-valued logic implementation. Our
finding from area V4 seems to support a different strategy than the “winner
takes all” approach. It seems that different features are processed in parallel
and then compared with the initial hypothesis in higher visual areas. We think
that descending pathways play a major role in this verification process. At first,
the activity of a single cell is compared with the feedback modulator by log-
ical conjunction to avoid hallucinations. Next, the global, logical disjunction
(“modulators”) operation allows the brain to choose a preferred pattern from
the activities of different cells. This process of choosing the right pattern may
have strong anatomical basis because individual axons have variable and complex
terminal shapes, facilitating some regions and features against other so called
salient features (for example Fig. 2). Learning can probably modify the synaptic
weights of the feedback boutons, fine-tuning the modulatory effects of feedback.

Neurons in area V4 integrate an object’s attributes from the properties of
its parts in two ways: (1) within the area via horizontal or intra-laminar lo-
cal excitatory-inhibitory interactions, (2) between areas via feedback connec-
tions tuned to lower visual areas. Our research put more emphasis on feedback
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connections because they are probably faster than horizontal interactions [42].
Different neurons have different Part Interactions Rules (PIR as described in
the Results section) and perceive objects by way of multiple “unsharp windows”
(Figs. 4, 6). If an object’s attributes fit the unsharp window, a neuron sends
positive feedback [3] to lower areas, which as described above, use “modulator
logical rules” to sharpen the attribute-extracting window and therefore change
the neurons response from class 1 to class 2 (Fig. 4 J and K; Fig. 6 C to D, E to
F, and G to H ). The above analysis of our experimental data leads us to suggest
that the central nervous system chiefly uses at least two different logical rules:
“driver logical rule” and “modulator logical rule.” The first, “driver logical rule,”
processes data using a large number of possible algorithms (over-representation).
The second, “modulator logical rule,” supervises decisions and chooses the right
algorithm.

Below we will look at possible cognitive interpretations of our model using
the shape categorization task as an example. The classification of different ob-
jects by their different attributes has been regarded as a single process termed
“subordinate classification” [40]. Relevant perceptual information is related to
subordinate-level shape classification by distinctive information of the object
like its size, surface, curvature of contours, etc. There are two theoretical ap-
proaches regarding shape representation: metric templates and invariant parts
models. As mentioned above, both theories assume that an image of the object
is represented in terms of cell activation in areas like V1: a spatially arrayed
set of multi-scale, multi-oriented detectors (“Gabor jets”). Metric templates [26]
map object values directly onto units in an object layer, or onto hidden units,
which can be trained to differentially activate or inhibit object units in the next
layer [41]. Metric templates preserve the metrics of the input without the ex-
traction of edges, viewpoint invariant properties, parts or the relations among
parts. This model discriminates shape similarities and human psychophysical
similarities of complex shapes or faces [25]. Matching a new image against those
in the database is done by allowing the Gabor jets to independently change
their own best fit (change their position). The similarities of two objects will be
the sum of the correlations in corresponding jets. When this methods is used,
changes in object or face position or changes in facial expressions can achieve
95% accuracy between several hundreds faces [43]. The main problems with the
Lades model [26] described above are that it does not distinguish among the
largest effects in object recognition it is insensitive to contour variations, which
are very important psychophysically speaking, and it is insensitive to salient
features (non-accidental properties [NAP]) [3].

The model we propose here suggests that these features are probably related
to effects of feedback pathways, which may strengthen differences, signal salient
features and also assemble other features, making it possible to extract con-
tours. A geon structural description (GSD) is a two-dimensional representation
of an arrangement of parts, each specified in terms of its non-accidental charac-
terization and the relations amongst these parts [38]. Across objects, the parts
(geons) can differ in their NAP. NAP are properties that do not change with
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Fig. 7. Comparison of differences in nonaccidental properties between a brick and a
cylinder using geon [3] and our model. The geon shows attributes from psychological
space like curves, parallels or vertices, which may be different in different subjects. The
neurological model compares properties of both objects on the basis of a single cell
recordings from the visual system. Both objects can stimulate similar receptive fields
in area V4. These receptive fields are sensitive in annuli - they extract orientation
change in different parts of the RF [2]. Area V1 RFs are sensitive to edge orientations,
whereas LGN RFs extract spots related to corners. All these different attributes are
put together by FF and FB pathways.

small depth rotations of an object. The presence or absence of the NAP of some
geons or the different relations between them may be the basis for subordinate
level discrimination [38]. The advantage of the GSD is that the representation
of objects in terms of their parts and the relations between them is accessible to
cognition and fundamental for viewpoint invariant perception. Our neurological
model introduces interactions between RF parts as in the geon model; however,
our parts are defined differently than the somewhat subjective parts of the GSD
model. Fig. 7 shows differences in a simple objects understanding between geon
and our neurological approach. The top part of this figure shows differences in
nonaccidental properties between a brick and a cylinder [3]. We propose hierar-
chical definition of parts based on neurophysiological recordings from the visual
system. Both objects may be classified in V4 by the receptive field discriminating
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between different stimulus orientations in its central and peripheral parts as it
is schematically presented in Fig. 7 [2]. Another, different classification is per-
formed by area V1, where oriented edges are extracted from both objects (Fig.
7). However, even more precise classification is performed in LGN where objects
are seen as sets of small circular shapes similar to receptive fields in the retina
(bottom part of Fig. 7).

In our model, interactions between parts and NAPs are associated with the
role of area V4 in visual discrimination, as described in the above lesion experi-
ments [34-36]. However, feedback from area V4 to the LGN and area V1 could
be responsible for the possible mechanism associated with the properties of the
GSD model. The different interactions between parts may be related to the com-
plexity and the individual shapes of different axons descending from V4. Their
separated cluster terminals may be responsible for invariance related to small
rotations (NAP). These are the anatomical bases of the GSD model, although we
hypothesize that the electrophysiological properties of the descending pathways
(FB), defined above as the modulator, are even more important. The modu-
lating role of the FB is related to the anatomical properties of the descending
pathways’ logic. Through this logic, multiple patterns of the coincidental activity
between the LGN or V1 and FB can be extracted. One may imagine that these
differently extracted patterns of activity correlate with the multiple viewpoints
or shape rotations defined as NAP in the GSD model.

In summary, by applying rough set theory to model neurophysiological data
we have shown a new approach for objects categorization in psychophysical
space. Two different logical rules are applied to indiscernibility classes of LGN,
V1, and V4 receptive fields: “driver logical rules” put many possible objects’
properties together and “modulator logical rules” choose these attributes which
are in agreement with our previous experiences.
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Abstract. Stress echocardiography is an important functional diagnos-
tic and prognostic tool that is now routinely applied to evaluate the risk
of cardiovascular artery disease (CAD). In patients who are unable to
safely undergo a stress based test, dobutamine is administered which
provides a similar effect to stress on the cardiovascular system. In this
work, a complete dataset containing data on 558 subjects undergoing a
prospective longitudinal study is employed to investigate what diagnos-
tic features correlate with the final outcome. The dataset was examined
using rough sets, which produced a series of decision rules that predicts
which features influence the outcomes measured clinically and recorded
in the dataset. The results indicate that the ECG attribute was the most
informative diagnostic feature. In addition, prehistory information has a
significant impact on the classification accuracy.

Keywords: dobutamine, ECG, LTF-C, Reducts, rough sets, Stress
echocardiography.

1 Introduction

Heart disease remains the number one cause of mortality in the western world.
Coronary arterial disease (CAD) is a primary cause of morbidity and mortality
in patients with heart disease. The early detection of CAD was in part made
possible in the late 1970’s by the introduction of echocardiography - a technique
for measuring the physical properties of the heart using a variety of imaging
techniques such as ultrasound, and doppler flow measurements [1], [2], [3]. The
purpose of these imaging studies is to identify structural malformations such
as aneurysms and valvular deformities. Although useful, structural information
may not provide the full clinical picture in the way that functional imaging tech-
niques such as stress echocardiography (SE) may. This imaging technique is a
versatile tool that allows clinicians to diagnose patients with CAD efficiently and
accurately. In addition, it provides information concerning the prognosis of the
patient - which can be used to provide on-going clinical support to help reduce
morbidity. The underlying basis for SE is the induction of cardiovascular stress,
which generates cardiac ischemia, resulting in cardiac wall motion (a distension
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type of motion). The motion should reflect the ability of the vasculature to adapt
to stressful situations such as enhanced physical activity. The extent to which
the vessels (and the heart itself expands) under strenuous activity reflects the
viability of the vasculature system. In coronary artery disease, the ability of the
vasculature to adapt is limited as a result of episodes of ischemia - reduction in
local blood supply - which causes tissue damage. Normally, the walls of the heart
(in particular the left ventrical) change (move) in a typical fashion in response to
stress (i.e. heavy exercise). A quantitative measure called the wall motion score is
computed and its magnitude is directly related to the extent of the WMA score.
The WMA provides a quantitative measure of how the heart responds to stress.
Stress echocardiography (SE) was originally induced under conditions of strenu-
ous exercise such as bike and treadmills. In many cases though, patients are not
able to exercise to the level required and pharmacological agents such as dobu-
tamine or dipyridamole have been used to induce approximately the same level
of stress on the heart as physical exercise. Dobutamine in particular emulates
physical exercise effects on the cardiovascular system by increasing the heart
rate and blood pressure and impacts cardiac contractility - which drives cardiac
oxygen demand [4]. A number of reports have indicated that though there are
subtle differences between exercise and pharmacologically induced stress, they
essentially provide the same stimulus to the heart and can therefore, in gen-
eral, be used interchangeably [5],[6]. The focus of this paper was to investigate
the effectiveness of dobutamine stress echocardiography (DSE) by analysing the
results of a large study of 558 patients undergoing DSE. The purpose is to de-
termine which attributes collected in this study correlate most closely with the
decision outcome. After a careful investigation of this dataset, a set of rules
is presented that relates conditional features (attributes) to decision outcomes.
This rule set is generated through the application of rough sets, a data mining
technique developed by the late Professor Pawlak [7]. The antecedents of the
rule set contains information about which features are involved in the decision
outcome. In addition, values of the relevant features provides quantitative infor-
mation regarding the values that are relevant for each feature for the respective
decision class. This provides very useful information regarding the features that
are directly relevant in predicting the outcome: in this case whether the principle
outcome is whether SE provides prognostic value in lieu of other relevant and
routinely collected medical information with respect to the likelihood of cardiac
events. In the next section, a literature review of previous work involving the
clinical application of stress echocardiography is presented.

1.1 Previous Work

In 1998, Chuah and colleagues published a report on the investigation of a follow-
up study of 860 patients who underwent dobutamine stress echocardiography
over a 2-year period [8]. The prinicpal features examined in this study were wall
motion abnormalities (WMA), cardiovascular risk factors, and clinical status
(collected at the time the dobutamine stress test was administered). Any prior
myocardial infarctions were determined by patient history or the presence of
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significant Q waves. The patient group (consisting of 479 men and 381 women,
mean age 70 +/- 10, was monitored for a period of 52 months subsequent to
the SE test. The follow up resutls indicates that 86 patients had cardiac events,
including 36 myocardial infarctions and cardiac death in 50 patients. Those
patients with events tended to have a lower rest ejection fraction and more ex-
tensive WMAs at rest and with stress. The authors also examined how outcomes
(as measured by the likelihood of an event) correlated with respect to the SE
results. Of the patients with normal SE results, 4% (12 of 302) had an event.
Patients with new or worsening WMAs (321 patients), 44 (14%) had subse-
quent cardiac events during the follow up period. Lastly, those patients (237)
with fixed WMAs (during rest and at stress), 30 (13%) had cardiac events dur-
ing the follow-up period. The authors then examined the relationship between
the feature space and the likelihood of a follow-up event (identifying univari-
ate predictors of cardiac events). The independent predictors were: a history of
congestive heart failure, percentage of abnormal segments at peak-stress (mea-
sured via SE), and an abnormal left ventricular end-systolic volume response
to stress. In the study by Krivokapich and colleagues [3], the pronostic value of
dobutamine SE was directly assessed with respect to predicting cardiac events
in patients with or suspected of having coronary arterial disease. The study was
a retrospective examination of 1,183 patients that underwent DSE (dobutamine
stress echocardiography). The patients were monitored for 12 months after a
DSE examination in order to determine whether the results of the DSE were
predictive (or at least correlated with)of subsequent cardiac events. The authors
examined several features using bivariate logistic regression and forward and
backward stepwise multiple logistic regression. The independent variables ex-
amined were: history of hypertension, diabetes mellitus, myocardial infarction,
coronary artery bypass grafting surgery, age, gender, peak dose of dobutamine,
rest and peak dobutamine heart rate, blood pressure, rate pressure product,
presence of chest pain, abnormal electrocardiogram (ECG), WMA abnormality,
and a positive SE. The results from this study indicate that a postive SE and an
abnormal ECG were most indicative of a subsequent cardiac event (defined as
a myocardial infarction, death or CABG).Patients that had a positive SE and
an abnormal ECG had a 42% cardiac incidence rate, versus a 7% cardiac inci-
dence rate for negative SE and ECG. A positive Se alone yielded a 34% cardiac
incidence rate during the 12 month follow up period. These results indicate the
predictive power of a positive SE in terms of predicting cardiac events within a
relatively short time window. In a study by Marwick and colleagues [6] sought to
determine whether dobutamine echocardiography could be used as an indepen-
dent predictor of cardiac mortaility in a group of 3,156 patients (1,801 men and
1,355 women, mean age 63 +/- 12 years) in a nine-year longitudinal follow-up
study (1988-1994). At the time of the SE examination, several clinical variables
and patient history were recorded for subsequent uni and multi-variate analysis
of predictors of cardiac death. During the follow-up period, 259 (8%) deaths
attributed to cardiac failure occurred. The authors analysed the patient data
with respect to clinical features in order to examine their predictive capacity
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generally - and to determine if SE was correlated in anyway with the outcome.
Age, gender, heart failure therapy were predictive of cardiac failure during the
follow-up period. the addition of resting left ventricular fucntion, and SE testing
data further improved the predictive capacity of a sequential model (Kaplan-
Meier survival curves and Cox proportional hazards models). In those patients
with a negative dobutamine echocardiogram (1,581 pateints), the average rate
of cardiac mortality was 1% per year, compared to 8% in those patients with
SE abnormalities. The final result from this study indicates that the inclusion of
SE, in addition to standard clinical data increaes signficiantly the predictive out-
come of cardiac events. Though not an exhaustive list of published examinations
of the predictive capacity of dobutamine echocardiography, the cases presented
here are indicative of the approach used to examine whether this technique pro-
vides positve predictive information that can assist clinicians in patient care (see
[8], [9] for additional studies]). The approach is typically a longitudinal study,
utilising a substantial patient cohort. As most subjects are in clinical care for
suspected heart disease, there is a substantial amount of clinical information
that is acquired as part of the routine care these patients. Typically, clinical
data provides a predictive capacity on the order of 60%. The deployment of
stress echocardiography enhances the predictive capacity over typical clinical
data - even that acquired within the context of the disease based on previous
medical exposure. Univariate and multivariate models provide quantitative infor-
mation with respect to which variables appear to be correlated with the decision
outcome. The reality for busy clinicians is that they may not be prepared to
perform the complex analyses required to extract useful information from their
data. This study attempts to provide a rational basis for the examination of the
feature space of a typical SE dataset. The goal is to determine if the features are
indeed correlated with the decision outcomes - and if so - what subset of features
are relevant and what range of values are expected for predictive features. The
next section presents a description of the dataset and some of the pre-processing
stages employed for subsequent data analysis.

1.2 The Dataset

The data employed in this study was obtained from a prospective dobutamine
stress echocardiography (DSE) study at the UCLA Adult Cardiac Imaging and
Hemodynamics Laboratory held between 1991 and 1996. The patients were mon-
itored during a five year period and then observed for a further twelve months
to determine if the DSE results could predict patient outcome. The outcomes
were categorised into the following cardiac events: cardiac death, myocardial
infarction (MI), and revascularisation by percutaneous transluminal coronary
angioplasty (PTCA) or coronary artery bypass graft surgery (CABG) [5]. After
normal exclusionary processes, the patient cohort consisted of 558 subjects (220
women and 338 men) with a median age of 67 (range 26-93). Dobutamine was
administered intraveneously using a standard delivery system yielding a maxi-
mum dose of 40 g/kg/min. There were a total of 30 attributes collected in this
study which are listed in Table 1.
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Table 1. The decision table attributes and their data types (continuous, ordinal, or dis-
crete) employed in this study (see for details). Note the range of correlation coefficients
was -0.013 to 0.2476 (specific data not shown).

Attribute name Attribute type
bhr basal heart rate Integer

basebp basal blood pressure Integer
basedp basal double product (= bhr x basebp) Integer

pkhr peak heart rate Integer
sbp systolic blood pressure Integer

dp double product (= pkhr x sbp) Integer
dose dose of dobutamine given Integer
maxhr maximum heart rate Integer

mphr(b) % of maximum predicted heart rate Integer
mbp maximum blood pressure Integer

dpmaxdo double product on maximum dobutamine dose Integer
dobdose dobutamine dose at which maximum double product Integer

age Integer
gender (male = 0) Level (2)

baseef baseline cardiac ejection fraction Integer
dobef ejection fraction on dobutamine Integer
chestpain (0 experienced chest pain) Integer

posecg signs of heart attack on ecg (0 = yes) Integer
equivecg ecg is equivocal (0 = yes) Integer

restwma wall motion anamoly on echocardiogram (0 = yes) Integer
posse stress echocardiogram was positive (0 = yes) Integer

newMI new myocardial infarction, or heart attack (0 = yes) Integer
newPTCA recent angioplasty (0 = yes) Level (2)

newCABG recent bypass surgery (0 = yes) Level (2)
death died (0 = yes) Level (2)

hxofht history of hypertension (0 = yes) Level (2)
hxofptca history of angioplasty (0 = yes) Level (2)

hxofcabg history of bypass surgery (0 = yes) Level (2)
hxofdm history of diabetes (0 = yes) Level (2)

hxofMI history of heart attack (0 = yes) Level (2)

The attributes were a mixture of categorical and continuous values. The de-
cision class used to evaluate this dataset was the outcomes as listed as listed
above and in Table 1. As a preliminary evaluation of the dataset, the data was
evaluated with respect to each of the four possible measured outcomes included
in the decision table individually, excluding each of the other three possible out-
comes. This process was repeated for each of the outcomes in the decision table.
Next, the effect of the echocardiogram (ECG) was investigated. Reports indicate
that this is a very informative attribute with respect to predicting the clinical
outcome of a patient [3]. To evaluate the effect of ECG on the outcomes, the
base case investigation (all four possible outcomes) was investigated with (base
case) and without the ECG attribute. Lastly, the information content of any
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prehistory information was investigated to examined if there was a correlation
between the DSE and the outcome. There were a total of six different history
attributes (see Table 1) that were tested to determine if each in isolation had
a positive correlation with the outcomes. In the next section, we describe the
experiments that were performed using rough sets (RSES 2.2.1).

2 Results

In the first experiment, each outcome was used as the sole decision attribute. The
four outcomes were: new Myocardial Infarction (MI) (28 cases), death (24 cases),
newPTCA (27 cases), and newCABG (33 cases). All continuous attributes were
discretised using the MDL algorithm within RSES [9], [10]. Note there were no
missing values in the dataset. A 10-fold cross validation was performed - using
decision rules and dynamic reducts. Without any filtering of the reducts or rules,
Table 2 presents randomly selected confusion matrices that were generated for
each of the decision outcomes for the base case.

The number of rules was quite large - and initially no filtering was performed
to reduce either the number of reducts nor the number of rules. The number
of reducts for panels ’A’ - ’D’ in Table 2 were: 104, 159, 245, and 122 respec-
tively. On average, the length of the reducts ranged from 5-9, out of a total of
27 attributes (minus the 3 other outcome decision classes). The number of rules
(all of which were deterministic) was quite large, with a range of 23,356-45,330
for the cases listed in table 2. Filtering was performed on both reducts (based
on support) and rule coverage in order to reduce the cardinality of the decision
rules. The resulting decision rule set were reduced to a range of 314-1,197. The
corresponding accuracy was reduced by approximately 4% (range 3- 6%). Filter-
ing can be performed on a variety of conditions, such as LHS support, coverage,
RHS support. For a discussion of rule filtering, please consult [10], [11] for an
excellent discussion of this topic.

The number of rules was quite large - and initially no filtering was performed
to reduce either the number of reducts nor the number of rules. The number of

Table 2. Confusion matrices for the ’base’ cases of the four different outcomes. The
label ’A’ corresponds to death, ’B’ to MI, ’C’ to new PTCA, and ’D’ to newCABG.
Note the overall accuracy is placed at the lower right hand corner of each subtable
(italicized).

A 0 1 B 0 1
0 204 7 0.97 0 205 4 0.98
1 2 10 0.80 1 0 14 1.0

0.95 0.22 0.92 0.94 0 0.92
C 0 1 D 0 1
0 207 9 0.96 0 191 25 0.88
1 6 1 0.14 1 7 0 0

0.97 0.10 0.93 0.96 0.0 0.86
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Table 3. The classification accuracy obtained from the classification using the exact
same protocol for the table reported in Table 2 (note the ECG attribute was included
in the decision table). The results are the average over the four different outcomes.

A 0 1 B 0 1
0 206 5 0.98 0 205 4 0.98
1 3 9 0.75 1 0 14 1.0

0.95 0.22 0.92 0.94 0 0.96
C 0 1 D 0 1
0 209 7 0.98 0 191 25 0.88
1 1 6 0.86 1 0 7 1.00

0.97 0.10 0.93 0.96 0.0 0.94

Table 4. The classification accuracy obtained from the classification using the same
protocol for the data reported in table 2 (note the ECG attribute was included in the
decision table). The results are the average over the four different outcomes.

Attribute name Classification accuracy
History of hypertension 91.1%
History of diabetes 85.3%
History of smoking 86.3%
History of angioplasty 90.3%
History of coronary artery bypass surgery 82.7%

reducts for panels ’A’ - ’D’ in Table 2 were: 104, 159, 245, and 122 respectively.
On average, the length of the reducts ranged from 5-9, out of a total of 27 at-
tributes (minus the 3 other outcome decision classes). The number of rules (all of
which were deterministic) was quite large, with a range of 23,356-45,330 for the
cases listed in table 2. Filtering was performed on both reducts (based on sup-
port) and rule coverage in order to reduce the cardinality of the decision rules.
The resulting decision rule set were reduced to a range of 314-1,197. The corre-
sponding accuracy was reduced by approximately 4% (range 3-6%). In the next
experiment, the correlation between the outcome and the ECG result was exam-
ined. It has been reported that the ECG, which is a standard cardiological test to
measure functional activity of the heart, should be correlated with the outcome
[2]. We therefore repeated the experiment in Table 2, with the ECG attribute
excluded (masked) from the decision table. The results are reported in Table 3.
Lastly, we examined the effect of historical information that was collected and
incorporated into the dataset (see Table 1). These historical attributes include:
history of hypertension, diabetes, smoking, myocardial infarction, angioplasty,
and coronary artery bypass surgery. We repeated the base set of experiments
(including ECG) and withheld each of the historical attributes one at a time
and report the results as a set of classification accuracies, listed in Table 4.

In addition to classification accuracy, rough sets provide a collection of de-
cision rules in conjunctive normal form. These rules contain the attributes and
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Table 5. Sample set of rules from the base case (+ECG) with death as the decision
outcome. The right hand column indicates the support (LHS) for the corresponding
rule. Note that these rules were selected randomly from the full set.

Rule Support
dp([20716, *]) AND dobdoes(40) AND hxofDM(0)
AND anyevent(0) ⇒ death(0)

19

dp([*,13105]) AND dobdoes(40) AND hxofDM(0)
AND anyevent(0)⇒ death(0)

18

basebp([*,159]) AND sbp([115,161]) AND hxofDM(0)
AND anyevent(0) ⇒ death(0)

24

dp([*,131105) AND dobdose(35) AND dobEF([53,61])
AND hxofDM(1)⇒ death(10)

10

dp([20633,20716]) AND dobdoes(4) AND
baseEF([56,76]) AND hxofDM(0) AND anyevent(1)
⇒ death (1)

1

dp([*,13]) AND dobdoes(30) AND hxofCABG(0)
AND anyevent(1) AND ecg([*,2]) ⇒ death(1)

12

their values that are antecedents in a rule base. Therefore, the decision rules
provide a codification of the knowledge contained within the decision table. Ex-
amples of the resulting rule set for the base case, using MI as the decision
attribute is presented in table 5.

3 Conclusion

This dataset contained a complete set of attributes (30) that was a mixture
of continuous and categorical data. The data was obtained from a prospec-
tive study of cardiovascular health obtained by professional medical personal
(cardiographers). The attributes were obtained from patients undergoing stress
echocardiography, a routine medical technique employed to diagnose cardiovas-
cular artery disease. From the initial classification results, the specificity of the
classification using rough sets was quite high (90+%) - consistent with some
literature reports [2],[6]. As can be seen in Table 2, the sensitivity of the test
was reasonably high, and consistent with several literature reports. The effect
of ECG, the attribute most correlated with the clinical outcome of CAD, was
measured by masking this attribute. The results indicate that this attribute did
not have a significant impact on the overall classification accuracy, but did man-
age to increase the sensitivity was reduced slightly when it was excluded in the
decision table. This result requires further examination to quantify the role of an
abnormal ECG - and the interaction/information content of an abnormal ECG
and other medical indicators.The effect of patient history was examined, and
the results (see Table 4) indicate that in general, relevant medical history did
have a positive impact on the classification accuracy. This result was quantified
by examining the classification accuracy when these 5 history factors were re-
moved from the decision table (one at a time). The effect of their combination
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was not examined in this paper, which is left for future work. The data clearly
indicate that a positive SE result was highly correlated with a subsequent car-
diac event. This result when demonstrated by examining the rule set, looking
at the occurrences of this attribute in the consequent. Lastly, the rule set that
was produced yielded a consistently reduced set of attributes - ranging from 4-9
attributes, greatly reducing the size of the dataset. As displayed in Table 5 - and
generally across the rule set, the dp and dobdose attributes appear consistently
(has a large support) within all decision outcomes (data not displayed). This
type of analysis is a major product of the rough sets approach to data analysis
- extraction of knowledge from data. This is a preliminary study that will be
pursued in conjunction with a qualified cardiologist. The results generated so
far are interesting - and certainly consistent and in many cases superior to other
studies [1],[3]. To this author’s knowledge, this is the first report which exam-
ined the dobutamine SE literature using rough sets. Komorowski & Ohn have
examined a similar dataset - but the imaging technique and attributes selected
were different from those used in the study investigated in this work [12]. In a
preliminary examination of this dataset, Revett [13] published similar results to
this study. A principal addition in this study is confirmation of the 2007 study
through the application of a novel neural network (LTF-C) to corroborate the
reduced attribute set extracted from the rough sets examination. The applica-
tion of LTF-C did indeed confirm that the classification accuracy was maximal
with the selected set of attributes, compared to an exhaustive investigation of
the other attributes with respect to training speed and classification accuracy.
The results from this study indicate that a rough sets approach to rule extrac-
tion from this dataset provided evidence that corroborate much of the results
reported in the literature. The basis for applying rough sets is that it provides
evidence with regards to the features and their values that are predictive with
respect to the decision class. Further analysis of this dataset is possible, and this
analysis would benefit from a close collaboration between medical experts and
data mining engineers.
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Abstract. This paper presents a framework of rule generation in Non-
deterministic Information Systems (NISs), which follows rough sets
based rule generation in Deterministic Information Systems (DISs).
Our previous work about NISs coped with certain rules, minimal
certain rules and possible rules. These rules are characterized by the
concept of consistency. This paper relates possible rules to rules by
the criteria support and accuracy in NISs. On the basis of the infor-
mation incompleteness in NISs, it is possible to define new criteria,
i.e., minimum support, maximum support, minimum accuracy and
maximum accuracy. Then, two strategies of rule generation are pro-
posed based on these criteria. The first strategy is Lower Approximation
strategy, which defines rule generation under the worst condition. The
second strategy is Upper Approximation strategy, which defines rule
generation under the best condition. To implement these strategies, we
extend Apriori algorithm in DISs to Apriori algorithm in NISs. A pro-
totype system is implemented, and this system is applied to some data
sets with incomplete information.

Keywords: Rough sets, Non-deterministic information, Incomplete in-
formation, Rule generation, Lower and upper approximations, Apriori
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1 Introduction

Rough set theory has been used as a mathematical tool of soft computing for
approximate two decades. This theory usually handles tables with deterministic
information. Many applications of this theory, such as rule generation, machine
learning and knowledge discovery, have been presented [5, 9, 15, 21, 22, 23, 24,
25, 36, 38].

We follow rule generation in Deterministic Information Systems (DISs) [21,
22, 23, 24, 33], andwe describe rule generation inNon-deterministic Information
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Systems (NISs). NISs were proposed by Pawlak [21], Or�lowska [19, 20] and
Lipski [13, 14] to handle information incompleteness in DISs, like null values,
unknown values, missing values. Since the emergence of incomplete information
research, NISs have been playing an important role. Therefore, rule generation
in NISs will also be an important framework for rule generation from incomplete
information.

The following shows some important researches on rule generation from in-
complete information. In [13, 14], Lipski showed a question-answering system
besides an axiomatization of logic, and Or�lowska established rough set analysis
for non-deterministic information [3, 19, 20]. Grzymala-Busse developed a sys-
tem named LERS which depends upon LEM1 and LEM2 algorithms [5, 6, 7],
and recently proposed four interpretations of missing attribute values [8]. Ste-
fanowski and Tsoukias defined non symmetric similarity relations and valued
tolerance relations for analyzing incomplete information [34, 35]. Kryszkiewicz
proposed a framework of rules in incomplete information systems [10, 11, 12].
According to authors’ knowledge, these are the most important researches on
incomplete information. We have also discussed several issues related to non-
deterministic information and incomplete information [16, 17, 18], and proposed
a framework named Rough Non-deterministic Information Analysis (RNIA)
[26, 27, 28, 29, 30, 31, 32].

In this paper, we briefly review RNIA including certain and possible rules,
then develop rule generation by the criteria support and accuracy in NISs. In
this rule generation, we extend Apriori algorithm in DISs to a new algorithm in
NISs. The computational complexity of this new algorithm is almost the same
as Apriori algorithm. Finally, we investigate a prototype system, and apply it
to some data sets with incomplete information.

2 Basic Definitions and Background of the Research

This section summarizes basic definitions, and reviews the background of this
research in [28, 31, 32].

2.1 Basic Definitions

A Deterministic Information System (DIS) is a quadruplet (OB, AT, {V ALA|
A ∈ AT }, f), where OB is a finite set whose elements are called objects, AT
is a finite set whose elements are called attributes, V ALA is a finite set whose
elements are called attribute values and f is such a mapping that f : OB×AT →
∪A∈AT V ALA which is called a classification function. If f(x, A)=f(y, A) for
every A ∈ ATR ⊂ AT , we see there is a relation between x and y for ATR. This
relation is an equivalence relation over OB, and this is called an indiscernibility
relation.

We usually define two sets CON ⊆ AT which we call condition attributes and
DEC ⊆ AT which we call decision attributes. An object x ∈ OB is consistent
(with any distinct object y ∈ OB), if f(x, A)=f(y, A) for every A ∈ CON
implies f(x, A)=f(y, A) for every A ∈ DEC.
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A Non-deterministic Information System (NIS) is also a quadruplet (OB,
AT, {V ALA|A ∈ AT }, g), where g : OB ×AT → P (∪A∈AT V ALA) (a power set
of ∪A∈AT V ALA). Every set g(x, A) is interpreted as that there is an actual
value in this set, but this value is not known. For a NIS=(OB, AT, {V ALA|
A ∈ AT }, g) and a set ATR ⊆ AT , we name a DIS=(OB, ATR, {V ALA|A ∈
ATR}, h) satisfying h(x, A) ∈ g(x, A) a derived DIS (for ATR) from NIS. For
a set ATR={A1, · · · , An} ⊆ AT and any x ∈ OB, let PT (x, ATR) denote the
Cartesian product g(x, A1)× · · · × g(x, An). We name every element a possible
tuple (for ATR) of x. For a possible tuple ζ=(ζ1, · · ·, ζn) ∈ PT (x, ATR), let
[ATR, ζ] denote a formula

∧
1≤i≤n[Ai, ζi]. Every [Ai, ζi] is called a descriptor.

Let PI(x, CON, DEC) (x ∈ OB) denote a set {[CON, ζ] ⇒ [DEC, η]|ζ ∈
PT (x, CON), η ∈ PT (x, DEC)}. We name an element of PI(x, CON, DEC)
a possible implication (from CON to DEC) of x. In the following, τ denotes
a possible implication, and τx denotes a possible implication obtained from an
object x.

Now, we define six classes of possible implications, certain rules and possible
rules. For any τx ∈ PI(x, CON, DEC), let DD(τx, x, CON, DEC) denote a set
{ϕ| ϕ is such a derived DIS for CON ∪DEC that an implication from x in ϕ is
equal to τx}. If PI(x, CON, DEC) is a singleton set {τx}, we say τx is definite.
Otherwise we say τx is indefinite. If a set {ϕ ∈ DD(τx, x, CON, DEC)| x is con-
sistent in ϕ} is equal to DD(τx, x, CON, DEC), we say τx is globally consistent
(GC). If this set is equal to {}, we say τx is globally inconsistent (GI). Other-
wise, we say τx is marginal (MA). By combining two cases, i.e., ‘D(efinite) or
I(ndefinite)’ and ‘GC, MA or GI’, we define six classes, DGC, DMA, DGI,
IGC, IMA, IGI in Table 1. A possible implication τx belonging to DGC class
is consistent in all derived DISs, and this τx is not influenced by the informa-
tion incompleteness, therefore we name τx a certain rule or more correctly a
candidate of a certain rule. A possible implication τx belonging to either DGC,
IGC, DMA or IMA class is consistent in some ϕ ∈ DD(τx, x, CON, DEC).
Therefore, we name τx a possible rule or more correctly a candidate of a possible
rule.

Table 1. Six classes of possible implications in NISs

GC MA GI

Definite DGC DMA DGI

Indefinite IGC IMA IGI

Now, we give necessary and sufficient conditions for characterizing GC, MA
and GI classes. For any ζ ∈ PT (x, ATR), we define two sets

inf(x, ATR, ζ)={y ∈ OB|PT (y, ATR)={ζ}} ∪ {x},
sup(x, ATR, ζ)={y ∈ OB|ζ ∈ PT (y, ATR)}.

Intuitively, inf(x, ATR, ζ) implies a set of objects whose tuples are ζ and def-
inite. If a tuple ζ ∈ PT (x, ATR) is not definite, this object x does not satisfy
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PT (x, ATR)={ζ}. Therefore, we added a set {x} in the definition of inf . A set
sup(x, ATR, ζ) implies a set of objects whose tuples may be ζ. Even though x
does not appear in the right hand side of sup, we employ the sup(x, ATR, ζ)
notation due to the inf(x, ATR, ζ) notation. Generally, {x} ⊆ inf(x, ATR, ζ)=
sup(x, ATR, ζ) holds in DISs, and {x} ⊆ inf(x, ATR, ζ) ⊆ sup(x, ATR, ζ)
holds in NISs.

Theorem 1 [28, 29]. For a NIS, let us consider a possible implication τx:[CON ,
ζ]⇒ [DEC, η] ∈ PI(x, CON, DEC). Then, the following holds.

(1) τx belongs to GC class, if and only if sup(x, CON, ζ) ⊆ inf(x, DEC, η).
(2) τx belongs to MA class, if and only if inf(x, CON, ζ) ⊆ sup(x, DEC, η).
(3) τx belongs to GI class, if and only if inf(x, CON, ζ) 	⊆ sup(x, DEC, η).

Proposition 2 [28, 29]. For any NIS, let ATR ⊆ AT be {A1, · · · , An}, and
let a possible tuple ζ ∈ PT (x, ATR) be (ζ1, · · · , ζn). Then, the following holds.

(1) inf(x, ATR, ζ)=∩iinf(x, {Ai}, (ζi)).
(2) sup(x, ATR, ζ)=∩isup(x, {Ai}, (ζi)).

2.2 An Illustrative Example

Let us consider NIS1 in Table 2. There are four derived DISs in Table 3.

Table 2. A table of NIS1

OB Color Size

1 {red, green} {small}
2 {red, blue} {big}
3 {blue} {big}

Table 3. Four derived DISs from NIS1. Tables are ϕ1, ϕ2, ϕ3, ϕ4 to the right.

OB Color Size

1 red small

2 red big

3 blue big

OB Color Size

1 red small

2 blue big

3 blue big

OB Color Size

1 green small

2 red big

3 blue big

OB Color Size

1 green small

2 blue big

3 blue big

Let us focus on a possible implication

τ3
1 : [Color, blue]⇒ [Size, big] ∈ PI(3, {Color}, {Size}).

This τ3
1 means the first implication from object 3, and τ3

1 appears in four derived
DISs. Since the following holds,

{2, 3} = sup(3, {Color}, (blue)) ⊆ inf(3, {Size}, (big)) = {2, 3},

τ3
1 belongs to DGC class according to Theorem 1. Namely, τ3

1 is consistent in
each derived DIS. As for the second possible implication,
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τ1
2 : [Color, red] ⇒ [Size, small] ∈ PI(1, {Color}, {Size}),

the following holds:

{1, 2} = sup(1, {Color}, (red)) 	⊆ inf(1, {Size}, (small)) = {1},
{1} = inf(1, {Color}, (red)) ⊆ sup(1, {Size}, (small)) = {1}.

According to Theorem 1, τ1
2 belongs to IMA class, namely τ1

2 appears in ϕ1 and
ϕ2, and τ1

2 is consistent just in ϕ2.

2.3 Certain Rule Generation in Non-deterministic Information
Systems

This subsection briefly reviews the previous research on certain rule generation
in NISs [28, 29]. We have named possible implications in DGC class certain
rules. For certain rule generation, we dealt with the following problem.

Problem 1 [29]. For a NIS, let DEC be decision attributes and let η be a
tuple of decision attributes values for DEC. Then, find minimal certain rules in
the form of [CON, ζ] ⇒ [DEC, η].

According to Theorem 1, Problem 1 is reduced to find some minimal sets of
descriptors [CON, ζ] satisfying sup(x, CON, ζ) ⊆ inf(x, DEC, η). For solving
this problem, we employed a discernibility function in DISs [33]. We adjusted
the discernibility function to NISs, and implemented utility programs [29].

Example 1. Let us focus on a possible implication τ3
1 : [Color, blue]⇒ [Size, big]

in Table 2, again. Since inf(3, {Size}, (big))={2, 3}, it is necessary to discrim-
inate object 1 	∈ {2, 3} from object 3. The descriptor [Color, blue] discrimi-
nates object 1 from object 3, because sup(3, {Color}, (blue))={2, 3} and 1 	∈
sup(3, {Color}, (blue)) hold. In this way, the discernibility function DF (3) be-
comes [Color, blue], and we obtain minimal certain rule τ3

1 . The following is a
real execution.

% ./plc

?-consult(dgc rule.pl).

yes

?-trans.

File Name for Read Open:’data.pl’.

Decision Definition File:’attrib.pl’.

File Name for Write Open:’data.rs’.

EXEC TIME=0.01796603203(sec)

yes

?-minimal. /* [1,blue](=[Color,blue]),[2,big](=[Size,big]) */

<<Minimal Certain Rules from object 3>>

Descriptor [1,blue] is a core for object 1

[1,blue]=>[2,big] [4/4(=4/4,1/1),Definite,GC: Only Core Descriptors]

EXEC TIME=0.01397013664(sec)

yes
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This program is implemented in prolog [28, 29, 30]. Each attribute is identified
with its ordinal number, namely Color and Size are identified with 1 and 2,
respectively. The underlined parts are specified by a user.

2.4 Non-deterministic Information and Incomplete Information

This subsection clarifies the semantic difference of non-deterministic information
and incomplete information.

Table 4. A table of DIS with incomplete information

OB Color Size

1 ∗ small

2 ∗ big

3 blue big

Let us consider Table 4. The symbol ”∗” is often employed for indicating
incomplete information. Table 4 is generated by replacing non-deterministic in-
formation in Table 2 with ∗. There are some interpretations of this ∗ symbol
[4, 7, 8, 10, 17, 34]. In the most simple interpretation of incomplete information,
the symbol ∗ may be each attribute value. Namely, ∗ may be either red, blue or
green, and there are 9 (=3×3) possible tables in Table 4. In such a possible ta-
ble, the implication from object 1 may be [Color, blue]⇒ [Size, small], and this
contradicts τ3

1 : [Color, blue] ⇒ [Size, big]. On the other hand in Table 2, the
function is g(1, {Color})={red, green} � {red, blue, green}, and we dealt with
four derived DISs. In Table 2, we did not handle [Color, blue] ⇒ [Size, small]
from object 1. Like this, τ3

1 is globally consistent in Table 2, but τ3
1 is inconsistent

in Table 4.
The function g(x, A) and a set sup(x, ATR, ζ) are employed for handling in-

formation incompleteness, and cause the semantic difference of non-deterministic
information and incomplete information. In RNIA, the interpretation of the in-
formation incompleteness comes from the meaning of the function g(x, A). There
is no other assumption on this interpretation.

2.5 A Problem of Possible Rule Generation in Non-deterministic
Information Systems

We have defined possible rules by possible implications which belong to either
DGC, DMA, IGC or IMA classes. In this case, there may be a large number
of possible implications satisfying condition (2) in Theorem 1. For example in
Table 2, there are four possible implications including τ3

1 and τ1
2 , and every

possible implication is consistent in at least a derived DIS. Thus, every possible
implication is a possible rule. This implies the definition of possible rules may be
too weak. Therefore, we need to employ other criteria for defining rules except
certain rules.
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In the subsequent sections, we follow the framework of rule generation [1, 2,
22, 36, 38], and employ criteria, support and accuracy for defining rules including
possible rules.

3 New Criteria: Minimum Support, Minimum Accuracy,
Maximum Support and Maximum Accuracy

This section proposes new criteria in NISs, and investigates the calculation of cri-
teria. These new criteria depend upon each element in DD(τx, x, CON, DEC),
but the complexity of the calculation does not depend upon the number of ele-
ments in DD(τx, x, CON, DEC).

3.1 Definition of New Criteria

In a DIS, criteria support and accuracy are usually applied to defining rules
[1, 2, 36]. In a NIS, we define the following four criteria, i.e., minimum support:
minsupp(τx), maximum support: maxsupp(τx), minimum accuracy: minacc(τx)
and maximum accuracy: maxacc(τx) in the following:

(1) minsupp(τx) = Minimumϕ∈DD(τx,x,CON,DEC){support(τx) in ϕ},
(2) maxsupp(τx) = Maximumϕ∈DD(τx,x,CON,DEC){support(τx) in ϕ},
(3) minacc(τx) = Minimumϕ∈DD(τx,x,CON,DEC){accuracy(τx) in ϕ},
(4) maxacc(τx) = Maximumϕ∈DD(τx,x,CON,DEC){accuracy(τx) in ϕ}.

If τx is definite, DD(τx, x, CON, DEC) is equal to all derived DISs. If τx is
indefinite, DD(τx, x, CON, DEC) is a subset of all derived DISs. If we em-
ploy all derived DISs instead of DD(τx, x, CON, DEC) in the above definition,
minsupp(τx) and minacc(τx) are 0, respectively. Because, there exist some de-
rived DISs where τx does not appear. This property for each indefinite τx is
trivial, so we define minsupp(τx) and minacc(τx) over DD(τx, x, CON, DEC).

Example 2. In Table 2, let us focus on a possible implication

τ3
1 : [Color, blue]⇒ [Size, big] ∈ PI(3, {Color}, {Size}).

In DD(τ3
1 , 3, {Color}, {Size})={ϕ1, ϕ2, ϕ3, ϕ4}, the following holds:

1/3 = minsupp(τ3
1 ) ≤ maxsupp(τ3

1 ) = 2/3,

1 = minacc(τ3
1 ) ≤ maxacc(τ3

1 ) = 1.

As for the second possible implication,

τ1
2 : [Color, red] ⇒ [Size, small] ∈ PI(1, {Color}, {Size}),

in DD(τ1
2 , 1, {Color}, {Size})={ϕ1, ϕ2}, the following holds:

1/3 = minsupp(τ1
2 ) ≤ maxsupp(τ1

2 ) = 1/3,

1/2= minacc(τ1
2 ) ≤ maxacc(τ1

2 ) = 1.
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3.2 A Simple Method for Calculating Criteria

In order to obtain minsupp(τx), minacc(τx), maxsupp(τx) and maxacc(τx),
the most simple method is to examine each support(τx) and accuracy(τx) in
every ϕ ∈ DD(τx, x, CON, DEC). This method is simple, however the number
of elements in DD(τx, x, CON, DEC) is

∏
A∈CON,B∈DEC,x �=y |g(y, A)||g(y, B)|,

and the number of elements increases in exponential order. Therefore, this simple
method will not be applicable to NISs with a large number of derived DISs.

3.3 Effective Calculation of Minimum Support and Minimum
Accuracy

Let us consider how to calculate minsupp(τx) and minacc(τx) for τx : [CON, ζ]
⇒ [DEC, η] from object x. Each object y with descriptors [CON, ζ] or [DEC, η]
influences minsupp(τx) and minacc(τx). Table 5 shows all possible implications
with descriptors [CON, ζ] or [DEC, η]. For example in CASE 1, we can obtain
just an implication. However in CASE 2, we can obtain either (C2.1) or (C2.2).
Every possible implication depends upon the selection of a value in g(y, DEC).
This selection of attribute values specifies some derived DISs from a NIS.

Table 5. Seven cases of possible implications (related to [CON, ζ] ⇒ [DEC, η] from
object x, η = η′, ζ = ζ′) in NISs

Condition : CON Decision : DEC Possible Implications

CASE1 g(y,CON) = {ζ} g(y,DEC) = {η} [CON, ζ] ⇒ [DEC, η](C1.1)
CASE2 g(y,CON) = {ζ} η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η](C2.1)

[CON, ζ] ⇒ [DEC, η′](C2.2)
CASE3 g(y,CON) = {ζ} η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η′](C3.1)
CASE4 ζ ∈ g(y,CON) g(y,DEC) = {η} [CON, ζ] ⇒ [DEC, η](C4.1)

[CON, ζ′] ⇒ [DEC, η](C4.2)
CASE5 ζ ∈ g(y,CON) η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η](C5.1)

[CON, ζ] ⇒ [DEC, η′](C5.2)
[CON, ζ′] ⇒ [DEC, η](C5.3)
[CON, ζ′] ⇒ [DEC, η′](C5.4)

CASE6 ζ ∈ g(y,CON) η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η′](C6.1)
[CON, ζ′] ⇒ [DEC, η′](C6.2)

CASE7 ζ ∈ g(y,CON) Any [CON, ζ′] ⇒ Decision(C7.1)

Now, we revise the definition of inf and sup information in the previous
section. We handled both inf and sup information for every object x. However,
in the subsequent sections it is enough to handle minimum and maximum sets
of an equivalence class defined by a descriptor [ATR, val]. This revision is very
simple, and this revision reduces the manipulation of each calculation.

Definition 1. For each descriptor [ATR, val](=[{A1, · · · , Ak}, (ζ1, · · · , ζk)], (k ≥
1) ) in a NIS, Descinf and Descsup are defined as follows:
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(1) Descinf([Ai, ζi])={x ∈ OB|PT (x, {Ai})={ζi}}={x∈OB|g(x, {Ai})={ζi}}.
(2) Descinf([ATR, val])=Descinf(∧i[Ai, ζi])=∩iDescinf([Ai, ζi]).
(3) Descsup([Ai, ζi])={x ∈ OB|ζi ∈ PT (x, {Ai})}={x ∈ OB|ζi ∈ g(x, {Ai})}.
(4) Descsup([ATR, val])=Descsup(∧i[Ai, ζi])=∩iDescsup([Ai, ζi]).

The definition of Descinf requires that every element in this set is defi-
nite. Even though the definition of Descsup is the same as sup, we employ the
Descsup([ATR, ζ]) notation due to the Descinf([ATR, ζ]) notation. Clearly,
Descinf([CON, ζ]) is a set of objects belonging to either CASE 1, 2 or 3 in Ta-
ble 5, and Descsup([CON , ζ]) is a set of objects belonging to either CASE 1 to
CASE 6. Descsup([CON, ζ])−Descinf([CON, ζ]) is a set of objects belonging
to either CASE 4, 5 or 6.

Proposition 3. Let |X | denote the cardinality of a set X . In Table 6, the support
value of τx : [CON, ζ] ⇒ [DEC, η] from x is minimum.

If τx is definite, namely τx belongs to CASE 1,

minsupp(τx)=|Descinf([CON, ζ]) ∩Descinf([DEC, η])|/|OB|.
If τx is indefinite, namely τx does not belong to CASE 1,

minsupp(τx)=(|Descinf([CON, ζ]) ∩Descinf([DEC, η])|+ 1)/|OB|.
Proof. This selection of attribute values in a NIS excludes every [CON, ζ] ⇒
[DEC, η] from object y 	= x. In reality, we remove (C2.1), (C4.1) and (C5.1)
from Table 5. Therefore, the support value of τx is minimum in a derived DIS
with such selections of attribute values. If τx is definite, object x is in a set
Descinf([CON, ζ])∩Descinf([DEC, η]). Otherwise, τx belongs to either (C2.1),
(C4.1) or (C5.1). Thus, it is necessary to add 1 to the numerator.

Proposition 4. Table 7 is a part of Table 5. In Table 7, the accuracy value of
τx : [CON, ζ] ⇒ [DEC, η] from x is minimum. Let OUTACC denote

[Descsup([CON, ζ])−Descinf([CON, ζ])]−Descinf([DEC, η]).

Table 6. Selections from Table 5. These selections make the support value of
[CON, ζ] ⇒ [DEC, η] minimum.

Condition : CON Decision : DEC Selection

CASE1 g(y,CON) = {ζ} g(y,DEC) = {η} [CON, ζ] ⇒ [DEC, η](C1.1)
CASE2 g(y,CON) = {ζ} η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η′](C2.2)
CASE3 g(y,CON) = {ζ} η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η′](C3.1)
CASE4 ζ ∈ g(y,CON) g(y,DEC) = {η} [CON, ζ′] ⇒ [DEC, η](C4.2)
CASE5 ζ ∈ g(y,CON) η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η′](C5.2)

[CON, ζ′] ⇒ [DEC, η](C5.3)
[CON, ζ′] ⇒ [DEC, η′](C5.4)

CASE6 ζ ∈ g(y,CON) η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η′](C6.1)
[CON, ζ′] ⇒ [DEC, η′](C6.2)

CASE7 ζ ∈ g(y,CON) Any [CON, ζ′] ⇒ Decision(C7.1)
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Table 7. Selections from Table 5. These selections make the accuracy value of
[CON, ζ] ⇒ [DEC, η] minimum.

Condition : CON Decision : DEC Selection

CASE1 g(y,CON) = {ζ} g(y,DEC) = {η} [CON, ζ] ⇒ [DEC, η](C1.1)
CASE2 g(y,CON) = {ζ} η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η′](C2.2)
CASE3 g(y,CON) = {ζ} η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η′](C3.1)
CASE4 ζ ∈ g(y,CON) g(y,DEC) = {η} [CON, ζ′] ⇒ [DEC, η](C4.2)
CASE5 ζ ∈ g(y,CON) η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η′](C5.2)
CASE6 ζ ∈ g(y,CON) η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η′](C6.1)
CASE7 ζ ∈ g(y,CON) Any [CON, ζ′] ⇒ Decision(C7.1)

If τx is definite,

minacc(τx)= |Descinf([CON,ζ])∩Descinf([DEC,η])|
|Descinf([CON,ζ])|+|OUTACC| .

If τx is indefinite,

minacc(τx)= |Descinf([CON,ζ])∩Descinf([DEC,η])|+1
|Descinf([CON,ζ])∪{x}|+|OUTACC−{x}| .

Proof. Since m/n ≤ (m + k)/(n + k) (0 ≤ m ≤ n, n 	= 0, k > 0) holds,
we excludes every [CON, ζ] ⇒ [DEC, η] from object y 	= x. We select possi-
ble implications [CON, ζ] ⇒ [DEC, η′], which increase the denominator. The
accuracy value of τx is minimum in a derived DIS with such selection of at-
tribute values. The set OUTACC defines objects in either CASE 5 or CASE
6. As for CASE 4 and CASE 7, the condition part is not [CON, ζ]. There-
fore, we can omit such implications for calculating minacc(τx). If τx is definite,
the numerator is |Descinf([CON, ζ]) ∩Descinf([DEC, η])| and the denomina-
tor is |Descinf([CON, ζ])|+|OUTACC|. If τx is indefinite, τx belongs to ei-
ther (C2.1), (C4.1) or (C5.1). The denominator is |Descinf([CON, ζ]) ∪ {x}|+
|OUTACC − {x}| in every case, and the numerator is |Descinf([CON, ζ]) ∩
Descinf ([DEC, η])|+1.

Theorem 5. For a NIS, let us consider a possible implication τx:[CON, ζ] ⇒
[DEC, η] ∈ PI(x, CON, DEC). Let SUPPmin={ϕ|ϕ is a derived DIS from
NIS, and support(τx) is minimum in ϕ}. Then, accuracy(τx) is minimum in
some ϕ ∈ SUPPmin.

Proof. Table 7 is a special case of Table 6. Namely, in CASE 5 of Table 6, either
(C5.2), (C5.3) or (C5.4) may hold. In CASE 6 of Table 6, either (C6.1) or (C6.2)
may hold. In every selection, the minimum support value is the same. In Table 7,
(C5.2) in CASE 5 and (C6.1) in CASE 6 are selected.

Theorem 5 assures that there exists a derived DIS, where both support(τx) and
accuracy(τx) are minimum. DISworst denotes such a derived DIS, and we name
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Table 8. Selections from Table 5. These selections make the support and accuracy
values of [CON, ζ] ⇒ [DEC, η] maximum.

Condition(CON) Decision(DEC) Selection

CASE1 g(y,CON) = {ζ} g(y,DEC) = {η} [CON, ζ] ⇒ [DEC, η](C1.1)
CASE2 g(y,CON) = {ζ} η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η](C2.1)
CASE3 g(y,CON) = {ζ} η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η′](C3.1)
CASE4 ζ ∈ g(y,CON) g(y,DEC) = {η} [CON, ζ] ⇒ [DEC, η](C4.1)
CASE5 ζ ∈ g(y,CON) η ∈ g(y,DEC) [CON, ζ] ⇒ [DEC, η](C5.1)
CASE6 ζ ∈ g(y,CON) η ∈ g(y,DEC) [CON, ζ′] ⇒ [DEC, η′](C6.2)
CASE7 ζ ∈ g(y,CON) Any [CON, ζ′] ⇒ Decision(C7.1)

DISworst a derived DIS with the worst condition for τx. This is an important
property for Problem 3 in the subsequent section.

3.4 Effective Calculation of Maximum Support and Maximum
Accuracy

In this subsection, we show an effective method to calculate maxsupp(τx) and
maxacc(τx) based on Descinf and Descsup. The following can be proved ac-
cording the same manner as Proposition 3, 4 and Theorem 5. A derived DIS
defined in Table 8 makes both support and accuracy maximum.

Proposition 6. For τx : [CON, ζ] ⇒ [DEC, η] from x, the following holds.

maxsupp(τx)=|Descsup([CON, ζ]) ∩Descsup([DEC, η])|/|OB|.

Proposition 7. For τx : [CON, ζ] ⇒ [DEC, η] from x, let INACC denote

[Descsup([CON, ζ])−Descinf([CON, ζ])] ∩Descsup ([DEC, η]).

If τx is definite,

maxacc(τx)= |Descinf([CON,ζ])∩Descsup([DEC,η])|+|INACC|
|Descinf([CON,ζ])|+|INACC| .

If τx is indefinite,

maxacc(τx)= |Descinf([CON,ζ])∩Descsup([DEC,η])−{x}|+|INACC−{x}|+1
|Descinf([CON,ζ])∪{x}|+|INACC−{x}| .

Theorem 8. For a NIS, let us consider a possible implication τx:[CON, ζ] ⇒
[DEC, η] ∈ PI(x, CON, DEC). Let SUPPmax={ϕ|ϕ is a derived DIS from
NIS, and support(τx) is maximum in ϕ}. Then, accuracy(τx) is maximum in
some ϕ ∈ SUPPmax.

Theorem 8 assures that there exists a derived DIS, where both support(τx) and
accuracy(τx) are maximum. DISbest denotes such a derived DIS, and we name
DISbest a derived DIS with the best condition for τx. This is also an important
property for Problem 4 in the subsequent section.
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4 Rule Generation by New Criteria in Non-deterministic
Information Systems

This section applies Proposition 3, 4, 6, 7 and Theorem 5, 8 to rule generation
in NISs.

4.1 Rules by the Criteria in Deterministic Information Systems

In DISs, rule generation by the criteria is often defined as the following.

Problem 2. In a table or a DIS, find every implication τ that support(τ) ≥ α
and accuracy(τ) ≥ β for given α and β (0 < α, β ≤ 1).

For solving this problem, Apriori algorithm was proposed by Agrawal [1, 2].
In this framework, association rules in transaction data are obtained. The
application of the large item set is the key point in Apriori algorithm. This
Problem 2 has also been considered in [22, 36, 38].

4.2 Rules by New Criteria and Two Strategies in Non-deterministic
Information Systems

Now, we extend Problem 2 to Problem 3 and Problem 4 in the following.

Problem 3 (Rule Generation by Lower Approximation Strategy). For
a NIS, let CON ⊆ AT and DEC ⊆ AT be condition attributes and the de-
cision attribute, respectively. Find every possible implication τx : [CON, ζ] ⇒
[DEC, η] satisfying minsupp(τx) ≥ α and minacc(τx) ≥ β for given α and β
(0 < α, β ≤ 1).

Problem 4 (Rule Generation by Upper Approximation Strategy). For
a NIS, let CON ⊆ AT and DEC ⊆ AT be condition attributes and the de-
cision attribute, respectively. Find every possible implication τx : [CON, ζ] ⇒
[DEC, η] satisfying maxsupp(τx) ≥ α and maxacc(τx) ≥ β for given α and β
(0 < α, β ≤ 1).

It is necessary to remark that both minsupp(τx) and minacc(τx) are defined
over DD(τx, x, CON, DEC). For definite τx, DD(τx, x, CON, DEC) is equal
to all derived DISs. However for indefinite τx, DD(τx, x, CON, DEC) is not
equal to all derived DISs, and minsupp(τx)=0 and minacc(τx)=0 may hold.
This may be an important issue in lower approximation strategy. However
in this paper, we employ a set DD(τx, x, CON, DEC) instead of all derived
DISs. As for upper approximation strategy, maxsupp(τx) and maxacc(τx)
over DD(τx, x, CON , DEC) are the same as maxsupp(τx) and maxacc(τx)
over all derived DISs. We employed terms Min-Max and Max-Max strategies
in [31, 32]. According to rough sets based concept, we rename these terms lower
approximation strategy and upper approximation strategy, respectively.

Next Proposition 9 clarifies the relation between certain rules, possible rules
and rules by new criteria.
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Proposition 9. For a possible implication τx, the following holds.

(1) τx is a certain rule in Section 2.1, if and only if τx is definite and minacc(τx)=1.
(2) τx is a possible rule in Section 2.1, if and only if maxacc(τx)=1.

The concept of consistency defines certain and possible rules, therefore there is
no definition about support. In certain rule generation, we often have a possible
implication whose minacc(τx)=1 and minsupp(τx) is quite small. Proposition
10, 11 and 12 clarify the properties of rule generation.

Proposition 10. For a given α and β (0 < α, β ≤ 1), let Rule(α, β, LA) denote
a set of rules defined by lower approximation strategy with α and β, and let
Rule(α, β, UA) denote a set of rules defined by upper approximation strategy
with α and β. Then, Rule(α, β, LA) ⊆ Rule(α, β, UA) holds.

Proposition 11. The following, which are related to a possible implication
τx : [CON, ζ] ⇒ [DEC, η], are equivalent.

(1) τx is obtained according to lower approximation strategy, namely
minsupp(τx) ≥ α and minacc(τx) ≥ β.

(2) support(τx) ≥ α and accuracy(τx) ≥ β in each ϕ ∈ DD(τx, x, CON, DEC).
(3) In a derived DISworst defined in Table 7,

support(τx) ≥ α and accuracy(τx) ≥ β hold.

Proof. For each ϕ ∈ DD(τx, x, CON, DEC), support(τx) ≥ minsupp(τx) and
accuracy(τx) ≥ minacc(τx) hold, therefore (1) and (2) are equivalent. According
to Theorem 5, a derived DISworst (depending upon τx) defined in Table 7 assigns
minimum values to both support(τx) and accuracy(τx). Thus, (1) and (3) are
equivalent.

Proposition 12. The following, which are related to a possible implication
τx : [CON, ζ] ⇒ [DEC, η], are equivalent.

(1) τx is obtained according to upper approximation strategy, namely
maxsupp(τx) ≥ α and maxacc(τx) ≥ β.

(2) support(τx) ≥ α and accuracy(τx) ≥ β in a ϕ ∈ DD(τx, x, CON, DEC).
(3) In a derived DISbest defined in Table 8,

support(τx) ≥ α and accuracy(τx) ≥ β hold.

Proof: For each ϕ ∈ DD(τx, x, CON, DEC), support(τx) ≤ maxsupp(τx)
and accuracy(τx) ≤ maxacc(τx) hold. According to Theorem 8, a derived
DISbest (depending upon τx) defined in Table 8 assigns maximum values to both
support(τx) and accuracy(τx). In this DISbest, maxsupp(τx)=support(τx) and
maxacc(τx)=accuracy(τx) hold. Thus, (1), (2) and (3) are equivalent.

Due to Proposition 10, 11 and 12, Rule(α, β, LA) defines a set of possible impli-
cations in a DISworst, and Rule(α, β, UA) defines a set of possible implications
in a DISbest. This implies that we do not have to examine each derived DIS in
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DD(τx, x, CON, DEC), but we have only to examine a DISworst for the lower
approximation strategy and a DISbest for the upper approximation strategy.

4.3 Extended Apriori Algorithms for Two Strategies and A
Simulation

This subsection proposes two extended Apriori algorithms in Algorithm 1 and
2. In DISs, Descinf([A, ζ])=Descsup([A, ζ]) holds, however Descinf([A, ζ]) ⊆
Descsup([A, ζ]) holds in NISs. Apriori algorithm handles transaction data, and
employs the sequential search for obtaining large item sets [1, 2]. In DISs, we em-
ploy the manipulation of Descinf and Descsup instead of the sequential search.
According to this manipulation, we obtain the minimum set and maximum set of
an equivalence class. Then, we calculate minsupp(τx) and minacc(τx) by using
Descinf and Descsup. The rest is almost the same as Apriori algorithm.

Now, we show an example, which simulates Algorithm 1.

Algorithm 1. Extended Apriori Algorithm for Lower Approximation
Strategy
Input : A NIS, a decision attribute DEC, threshold value α and β.
Output: Every rule defined by lower approximation strategy.
for (every A ∈ AT ) do

Generate Descinf([A, ζ]) and Descsup([A, ζ]);
end
For the condition minsupp(τx)=|SET |/|OB| ≥ α, obtain the number NUM of

elements in SET ;
Generate a set CANDIDATE(1), which consists of descriptors [A, ζA]

satisfying either (CASE A) or (CASE B) in the following;
(CASE A) |Descinf([A, ζA])| ≥ NUM ,
(CASE B) |Descinf([A, ζA])|=(NUM − 1) and

(Descsup([A, ζA]) − Descinf([A, ζA])) = {}.
Generate a set CANDIDATE(2) according to the following procedures;

(Proc 2-1) For every [A, ζA] and [DEC, ζDEC] (A = DEC) in
CANDIDATE(1), generate a new descriptor [{A, DEC}, (ζA, ζDEC)];

(Proc 2-2) Examine condition (CASE A) and (CASE B) for each
[{A, DEC}, (ζA, ζDEC)];
If either (CASE A) or (CASE B) holds and minacc(τ ) ≥ β

display τ : [A, ζA] ⇒ [DEC, ζDEC] as a rule;
If either (CASE A) or (CASE B) holds and minacc(τ ) < β,

add this descriptor to CANDIDATE(2);
Assign 2 to n;
while CANDIDATE(n) = {} do

Generate CANDIDATE(n + 1) according to the following procedures;
(Proc 3-1) For DESC1 and DESC2 ([DEC, ζDEC] ∈ DESC1 ∩ DESC2 )

in CANDIDATE(n), generate a new descriptor by using a
conjunction of DESC1 ∧ DESC2;

(Proc 3-2) Examine the same procedure as (Proc 2-2).
Assign n + 1 to n;

end
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Algorithm 2. Extended Apriori Algorithm for Upper Approximation
Strategy
Input : A NIS, a decision attribute DEC, threshold value α and β.
Output: Every rule defined by upper approximation strategy.
Algorithm 2 is proposed as Algorithm 1 with the following two revisions :

1. (CASE A) and (CASE B) in Algorithm 1 are replaced with (CASE C).
(CASE C) |Descsup([A, ζA])| ≥ NUM .

2. minacc(τ ) in Algorithm 1 is replaced with maxacc(τ ).

Example 3. Let us consider Descinf and Descsup, which are obtained from
NIS2 in Table 9, and let us consider Problem 3. We set α=0.3, β=0.8, condition
attribute CON ⊆ {P, Q, R, S} and decision attribute DEC={T }. Since |OB|=5
and minsupp(τ)=|SET |/5 ≥ 0.3, |SET | ≥ 2 must hold. According to Table 10,
we generate Table 11 satisfying either (CASE A) or (CASE B) in the following:

(CASE A) |Descinf([A, ζA] ∧ [T, η])| ≥ 2 (A ∈ {P, Q, R, S}).
(CASE B) |Descinf([A, ζA] ∧ [T, η])|=1 and Descsup([A, ζA] ∧ [T, η])−

Descinf([A, ζA] ∧ [T, η]) 	= {} (A ∈ {P, Q, R, S}).

Table 9. A Table of NIS2

OB P Q R S T

1 {3} {1, 3} {3} {2} {3}
2 {2} {2, 3} {1, 3} {1, 3} {2}
3 {1, 2} {2} {1, 2} {3} {1}
4 {1} {3} {3} {2, 3} {1, 2, 3}
5 {3} {1} {1, 2} {3} {3}

Table 10. Descinf and Descsup information in Table 9

[P, 1] [P, 2] [P, 3] [Q, 1] [Q, 2] [Q, 3] [R, 1] [R, 2] [R, 3]
Descinf {4} {2} {1, 5} {5} {3} {4} {} {} {1, 4}
Descsup {3, 4} {2, 3} {1, 5} {1, 5} {2, 3} {1, 2, 4} {2, 3, 5} {3, 5} {1, 2, 4}

[S, 1] [S, 2] [S, 3] [T, 1] [T, 2] [T, 3]
Descinf {} {1} {3, 5} {3} {2} {1, 5}
Descsup {2} {1, 4} {2, 3, 4, 5} {3, 4} {2, 4} {1, 4, 5}

Table 11. Conjunctions of descriptors satisfying either (CASE A) or (CASE B) in
Table 10

[P, 3] ∧ [T, 3] [Q, 1] ∧ [T, 3] [R, 3] ∧ [T, 3] [S, 2] ∧ [T, 3] [S, 3] ∧ [T, 1] [S, 3] ∧ [T, 3]
Descinf {1, 5} {5} {1} {1} {3} {5}
Descsup {1, 5} {1, 5} {1, 4} {1, 4} {3, 4} {4, 5}
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The conjunction [P, 3]∧ [T, 3] in Table 11 means an implication τ1
3 , τ5

3 : [P, 3]⇒
[T, 3]. Because Descsup([P, 3]∧ [T, 3])={1, 5} holds, τ1

3 and τ5
3 come from object

1 and 5, respectively. Since 1, 5 ∈ Descinf([P, 3] ∧ [T, 3]) holds, minsupp(τ1
3 )=

minsupp(τ5
3 )=|{1, 5}|/5=0.4 holds. Then, the conjunction [Q, 1]∧ [T, 3] in Table

11 means an implication τ1
4 , τ5

4 : [Q, 1]⇒ [T, 3]. Since 5 ∈ Descinf([Q, 1]∧ [T, 3])
holds, minsupp(τ5

4 )=|{5}|/5=0.2 holds. On the other hand, 1 ∈ Descsup([Q, 1]∧
[T, 3])−Descinf([Q, 1]∧ [T, 3]) holds, so minsupp(τ1

4 )=(|{5}|+ 1)/5=0.4 holds
in object 1. According to this consideration, we obtain the candidates of rules,
which satisfy minsupp(τx) ≥ 0.3, as follows:

τ1
3 , τ5

3 : [P, 3] ⇒ [T, 3], τ1
4 : [Q, 1]⇒ [T, 3], τ4

5 : [R, 3]⇒ [T, 3],
τ4
6 : [S, 2]⇒ [T, 3], τ4

7 : [S, 3]⇒ [T, 1], τ4
8 : [S, 3]⇒ [T, 3].

For these candidates, we examine each minacc(τx) according to Proposition 4.
For τ1

3 and τ5
3 , Descsup([P, 3])={1, 5}, Descinf([P, 3])={1, 5}, Descinf([P, 3]∧

[T, 3])={1, 5} and OUTACC=[{1, 5}−{1, 5}]−{1, 5}={}. Since 1, 5 ∈ Descinf(
[P, 3]∧ [T, 3]) holds, minacc(τ1

3 )= minacc(τ5
3 )=|{1, 5}|/(|{1, 5}|+ |{}|)=1 is de-

rived. For τ4
7 : [S, 3]⇒ [T, 1], Descsup([S, 3])={2, 3, 4, 5}, Descinf([S, 3])={3, 5},

Descinf([S, 3]∧[T, 1])={3}, Descsup([S, 3]∧[T, 1])= {3, 4} and OUTACC=[{2,
3, 4, 5}− {3, 5}]− {3}={2, 4} holds, so minacc(τ4

7 )=(|{3}|+ 1)/(|{3, 5}∪ {4}|+
|{2, 4} − {4}|)=0.5 is derived. In this way, we obtain three rules satisfying
minsupp(τx) ≥ 0.3 and minacc(τx) ≥ 0.8 in the following:

τ1
3 , τ5

3 : [P, 3] ⇒ [T, 3] (minsupp=0.4, minacc=1),
τ1
4 : [Q, 1]⇒ [T, 3] (minsupp=0.4, minacc=1),

τ4
6 : [S, 2]⇒ [T, 3] (minsupp=0.4, minacc=1).

Any possible implication including [R, 3]∧ [T, 3] does not satisfy minsupp(τx) ≥
0.3. As for [S, 3] ∧ [T, 1] and [S, 3] ∧ [T, 3], the same results hold.

The following shows a real execution on Example 3.

% ./nis apriori
version 1.2.8
File Name:’nis2.dat’
========================================
Lower Approximation Strategy
========================================
CAN(1)=[P,1],[P,2],[P,3],[Q,1],[Q,2],[Q,3],[R,3],[S,2],[S,3],[T,1],
[T,2],[T,3](12)
CAN(2)=[S,3][T,1](<DEF>0.250,<INDEF>0.500),[P,3][T,3](<DEF>1.000,
<INDEF>1.000),[Q,1][T,3](<DEF>1.000,<INDEF>1.000),[R,3][T,3](<DEF>0.333,
<INDEF>0.667),[S,2][T,3](<DEF>0.500,<INDEF>1.000),[S,3][T,3](<DEF>0.250,
<INDEF>0.500)(6)
========== OBTAINED RULE ==========
[P,3]=>[T,3](minsupp<DEF>=0.400,minsupp<INDEF>=0.400,minacc<DEF>=1.000,
minacc<INDEF>=1.000) (<DEF>from 1,5) (<INDEF>from )
[Q,1]=>[T,3](minsupp<DEF>=0.200,minsupp<INDEF>=0.400,minacc<DEF>=1.000,
minacc<INDEF>=1.000) (<DEF>from ) (<INDEF>from 1)
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[S,2]=>[T,3](minsupp<DEF>=0.200,minsupp<INDEF>=0.400,minacc<DEF>=0.500,
minacc<INDEF>=1.000) (<DEF>from ) (<INDEF>from 4)
EXEC TIME=0.0000000000(sec)

========================================

Upper Approximation Strategy

========================================

CAN(1)=[P,1],[P,2],[P,3],[Q,1],[Q,2],[Q,3],[R,3],[S,2],[S,3],[T,1],

[T,2],[T,3](12)

CAN(2)=[S,3][T,1](<DEF>0.667,<INDEF>0.667),[P,3][T,3](<DEF>1.000,

<INDEF>1.000),[Q,1][T,3](<DEF>1.000,<INDEF>1.000),[R,3][T,3](<DEF>1.000,

<INDEF>1.000),[S,2][T,3](<DEF>1.000,<INDEF>1.000),[S,3][T,3](<DEF>0.667,

<INDEF>0.667)(6)

========== OBTAINED RULE ==========

[P,3]=>[T,3](maxsupp<DEF>=0.400,maxsupp<INDEF>=0.400,maxacc<DEF>=1.000,

maxacc<INDEF>=1.000) (<DEF>from 1,5) (<INDEF>from )

[Q,1]=>[T,3](maxsupp<DEF>=0.400,maxsupp<INDEF>=0.400,maxacc<DEF>=1.000,

maxacc<INDEF>=1.000) (<DEF>from 5) (<INDEF>from 1)

[R,3]=>[T,3](maxsupp<DEF>=0.400,maxsupp<INDEF>=0.400,maxacc<DEF>=1.000,

maxacc<INDEF>=1.000) (<DEF>from 1) (<INDEF>from 4)

[S,2]=>[T,3](maxsupp<DEF>=0.400,maxsupp<INDEF>=0.400,maxacc<DEF>=1.000,

maxacc<INDEF>=1.000) (<DEF>from 1) (<INDEF>from 4)

EXEC TIME=0.0000000000(sec)

According to this execution, we know

Rule(0.3, 0.8, LA)={[P, 3] ⇒ [T, 3], [Q, 1] ⇒ [T, 3], [S, 2] ⇒ [T, 3]},
Rule(0.3, 0.8, UA)={[P, 3] ⇒ [T, 3], [Q, 1] ⇒ [T, 3], [S, 2] ⇒ [T, 3], [R, 3] ⇒ [T, 3]}.

The possible implication [R, 3]⇒ [T, 3] ∈ Rule(0.3, 0.8, UA)−Rule(0.3, 0.8, LA)
depends upon the information incompleteness. This can not be obtained by
the lower approximation strategy, but this can be obtained by the upper
approximation strategy.

4.4 Main Program for Lower Approximation Strategy

A program nis apriori is implemented on a Windows PC with Pentium 4 (3.40
GHz), and it consists of about 1700 lines in C. This nis apriori mainly consists
of two parts, i.e., a part for lower approximation strategy and a part for upper
approximation strategy.

As for lower approximation strategy, a function GenRuleByLA() (Generate
Rules By LA strategy) is coded.

GenRuleByLA(table.obj,table.att,table.kosuval,table.con num,

table.dec num,table.con,table.dec,thresh,minacc thresh);

In GenRuleByLA(), a function GenCandByLA() is called, and generates a can-
didate CANDIDATE(n).
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GenCandByLA(desc,cand,conj num max,ob,at,desc num,c num,

d num,co,de,thr,minacc thr);

At the same time, minsupp(τ) and minacc(τ) are calculated according to Propo-
sition 3 and 4. As for upper approximation strategy, the similar functions are
implemented.

5 Computational Issues in Algorithm 1

This section focuses on the computational complexity of Algorithm 1. As for
Algorithm 2, the result is almost the same as Algorithm 1.

5.1 A Simple Method for Lower Approximation Strategy

Generally, a possible implication τx depends upon the number of derived DISs,
i.e.,

∏
x∈OB,A∈AT |g(x, A)|, and condition attributes CON (CON ⊆ 2AT−DEC).

Furthermore, minsupp(τx) and minacc(τx) depend on DD(τx, x, CON, DEC),
whose number of elements is

∏
A∈CON,B∈DEC,x �=y |g(y, A)||g(y, B)|. Therefore, it

will be impossible to employ a simple method that we sequentially pick up every
possible implication τx and sequentially examine minsupp(τx) and minacc(τx).

5.2 Complexity on Extended Apriori Algorithm for Lower
Approximation Strategy

In order to solve this computational issue, we focus on descriptors [A, ζ] (A ∈ AT ,
ζ ∈ V ALA). The number of all descriptors is usually very small. Further-
more, Proposition 3 and 4 show us the methods to calculate minsupp(τx) and
minacc(τx). These methods do not depend upon the number of element in
DD(τx, x, CON, DEC).

Now, we analyze each step in Algorithm 1.

(STEP 1) (Generation of Descinf , Descsup and CANDIDATE(1) )
We first prepare two arrays DescinfA,val[] and DescsupA,val[] for each val ∈
V ALA (A ∈ AT ). For each object x ∈ OB, we apply (1) and (2) in the follow-
ing:

(1) If g(x, A)={val}, add x to DescinfA,val[] and DescsupA,val[].
(2) If g(x, A) 	= {val} and val ∈ g(x, A), add x to DescsupA,val[].

Then, all descriptors satisfying either (CASE A) or (CASE B) in Algorithm 1
are added to CANDIDATE(1). For each A ∈ AT , this procedure is applied,
and the complexity depends upon |OB| × |AT |.
(STEP 2) (Generation of CANDIDATE(2) )
For each [A, valA], [DEC, valDEC ] ∈ CANDIDATE(1), we produce [A, valA]∧
[DEC, valDEC ], and generate

Descinf([A, valA] ∧ [DEC, valDEC ])
=Descinf([A, valA]) ∩Descinf([DEC, valDEC ]),
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Descsup([A, valA] ∧ [DEC, valDEC ])
=Descsup([A, valA]) ∩Descsup([DEC, valDEC ]).

If [A, valA] ∧ [DEC, valDEC ] satisfies either (CASE A) or (CASE B) in Algo-
rithm 1, this descriptor is added to CANDIDATE(2). Furthermore, we exam-
ine minacc([A, valA]∧ [DEC, valDEC ]) in (Proc 2-2) according to Proposition 4.
The complexity of (STEP 2) depends upon the number of combined descriptors
[A, valA] ∧ [DEC, valDEC ].

(STEP 3) (Repetition of STEP 2 on CANDIDATE(n) )
For each DESC1 and DESC2 in CANDIDATE(n), we generate a conjunc-
tion DESC1 ∧DESC2. For such conjunctions, we apply the same procedure as
(STEP 2).

In the execution, two sets Descinf([CON, ζ]) and Descsup([CON, ζ]) are
stored in arrays, and we can obtain Descinf([CON, ζ] ∧ [DEC, η]) by using
the intersection operation Descinf([CON, ζ]) ∩ Descinf([DEC, η]). The same
property holds for Descsup([CON, ζ]∧ [DEC, η]). Therefore, it is easy to obtain
CANDIDATE(n + 1) from CANDIDATE(n). This is a merit of employing
equivalence classes, and this is the characteristics of rough set theory. In Apriori
algorithm, such Descinf and Descsup([CON, ζ]) are not employed, and the total
search of a database is executed for generating every combination of descriptors.
It will be necessary to consider the merit and demerit of handling two sets
Descinf([CON, ζ]) and Descsup([CON, ζ]) in the next research.

Apriori algorithm employs an equivalence class for each descriptors, and han-
dles only deterministic information. On the other hand, Algorithm 1 employs
the minimum and the maximum sets of an equivalence class, i.e., Descinf and
Descsup, and handles non-deterministic information as well as deterministic in-
formation. In Algorithm 1, it takes twice steps of Apriori algorithm for manip-
ulating equivalence classes. The rest is almost the same as Apriori algorithm,
therefore the complexity of Algorithm 1 will be almost the same as Apriori
algorithm.

6 Concluding Remarks and Future Work

We proposed rule generation based on lower approximation strategy and upper
approximation strategy in NISs. We employed Descinf , Descsup and the con-
cept of large item set in Apriori algorithm, and proposed two extended Apriori
algorithms in NISs. These extended algorithms do not depend upon the num-
ber of derived DISs, and the complexity of these extended algorithms is almost
the same as Apriori algorithm. We implemented the extended algorithms, and
applied them to some data sets. According to these utility programs, we can
explicitly handle not only deterministic information but also non-deterministic
information.

Now, we briefly show the application to Hepatitis data in UCI Machine Learn-
ing Repository [37]. In reality, we applied our programs to Hepatitis data. This
data consists of 155 objects, 20 attributes. There are 167 missing values, which
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are about 5.4% of total data. The number of objects without missing values is
80, namely the number is about the half of total data. In usual analyzing tools,
it may be difficult to handle total 155 objects.

We employ a list for expressing non-deterministic information, for example,
[red,green], [red,blue] for {red, green} and {red, blue} in Table 2. This syntax
is so simple that we can easily generate data of NISs by using Excel. As for
Hepatitis data, we loaded this data into Excel, and replaced each missing value
(? symbol) with a list of all possible attribute values. For some numerical values,
the discretized attribute values are also given in the data set. For example, in the
15th attribute BILIRUBIN, attribute values are discretized to the six attribute
values, i.e., 0.39, 0.80, 1.20, 2.00, 3.00, 4.00. We employed these discretized val-
ues in some attributes. The following is a part of the real revised Hepatitis data
in Excel. There are 78732 (=2×6×94) derived DISs for these six objects. Prob-
ably, it seems hard to handle all derived DISs for total 155 objects sequentially.

155 //Number of objects
20 //Number of Attributes
2 30 2 1 2 2 2 2 1 2 2 2 2 2 0.8 80 13 3.8 [10,20,30,40,50,60,70,80,90] 1
2 50 1 1 2 1 2 2 1 2 2 2 2 2 0.8 120 13 3.8 [10,20,30,40,50,60,70,80,90] 1
2 70 1 2 2 1 2 2 2 2 2 2 2 2 0.8 80 13 3.8 [10,20,30,40,50,60,70,80,90] 1
2 30 1 [1,2] 1 2 2 2 2 2 2 2 2 2 0.8 33 13 3.8 80 1
2 30 1 2 2 2 2 2 2 2 2 2 2 2 0.8 [33,80,120,160,200,250] 200 3.8 -

[10,20,30,40,50,60,70,80,90] 1
2 30 1 2 2 2 2 2 2 2 2 2 2 2 0.8 80 13 3.8 70 1

: : :

The decision attribute is the first attribute CLASS (1:die, 2:live), and we fixed
α=0.25 and β=0.85. Let us show the results of two cases.

(CASE 1) Obtained Rules from 80 Objects without Missing Values
It is possible to apply our programs to the standard DISs. For 80 objects, it
took 0.015(sec), and 14 rules including the following are generated.

[AGE,30]=>[Class,live] (support=0.287,accuracy=0.958),

[ASCITES,yes]=>[CLASS,live] (support=0.775,accuracy=0.912),

[ALBUMIN,4.5]=>[CLASS,live] (support=0.287,accuracy=0.958).

(CASE 2) Obtained Rules from 155 Objects with 167 Missing Values
Due to two strategies, 22 rules and 25 rules are generated, respectively. It took
0.064(sec). Let us show every rule, which is obtained by upper approximation
strategy but is not obtained by lower approximation strategy. Namely, every
rule is in boundary set Rule(0.25, 0.85, UA)− Rule(0.25, 0.85, LA). There are
three such rules.

[Alk PHOSPHATE,80]=>[CLASS,live]

(minsupp=0.25,minacc=0.841,maxsupp=0.348,maxacc=0.857)

[ANOREXIA,yes]&[SGOT,13]=>[CLASS,live]

(minsupp=0.25,minacc=0.829,maxsupp=0.381,maxacc=0.855)
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[SPLEEN PALPABLE,yes]&[SGOT,13]=>[CLASS,live]

(minsupp=0.25,minacc=0.848,maxsupp=0.368,maxacc=0.877)

In the 17th attribute SGOT, there are four missing values. The above two
rules with descriptor [SGOT,13] depend upon these four missing values. These
rules show us the difference between lower approximation strategy and upper
approximation strategy.

We are also focusing on the difference between rule generation in DISs and
NISs. Let us suppose a NIS. We remove every object with non-deterministic
information from the NIS, and we obtain a DIS. We are interested in rules,
which are not obtained from the DIS but obtained from the NIS.

According to some experiments including Hepatitis data and Mammographic
data in UCI repository, we verified our utility programs work well, even if there
are huge number of derived DISs. However, we have not analyzed the meaning
of the obtained rules. Because, the main issue of this paper is to establish the
framework and to implement algorithms. From now on, we will apply our utility
programs to real data with missing values, and we want to obtain meaningful
rules from NISs. Our research is not toward rule generation from data with a
large number of objects, but it is toward rule generation from incomplete data
with a large number of derived DISs.

This paper is a revised and extended version of papers [31, 32].
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Abstract. Knowledge of an agent depends on the granulation proce-
dure adopted by the agent. The knowledge granules may form a partition
of the universe or a covering. In this paper dependency degrees of two
knowledges have been considered in both the cases. A measure of con-
sistency and inconsistency of knowledges are also discussed. This paper
is a continuation of our earlier work [3].

Keywords: Rough sets, elementary category(partition, coveringofknowl-
edge), dependency degree, consistency degree.

1 Introduction

Novotný and Pawlak defined a dependency degree between two knowledges given
by two partitions on a set [6,7,8,9]. Knowledge is given by indiscernibility rela-
tions on the universe and indiscernibility relation is taken to be an equivalence
relation. But in many situations the indiscernibility relation fails to be transi-
tive. Hence the clusters or granules of knowledge overlap. This observation gives
rise to the study of Rough Set Theory based on coverings instead of partitions
[2,10,11,13,14,15,16].

In [3] the present authors introduced the notions of consistency degree and
inconsistency degree of two knowledges given by partitions of the universe using
the dependency degree defined by Novotný and Pawlak. In this paper some more
investigations in that direction have been carried out but the main emphasis is
laid on defining the dependency degree of two knowledges when they are given
by coverings in general, not by partitions only. Now, in the covering based ap-
proximation systems lower and upper approximations of a set are defined in at
least five different ways [10]. All of these approximations reduce to the standard
Pawlakian approximations when the underlying indiscernibility relation turns
out to be equivalence. We have in this paper used four of them of which one
is the classical one. As a consequence, four different dependency degrees arise.
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It is interestingly observed that the properties of partial dependency that were
developed in [3,6,9] hold good in the general case of covering based approxima-
tion system. The main results on covering are placed in section 3. Depending
upon this generalized notion of dependency, consistency degree and inconsistency
degree between two such knowledges have been defined.

2 Dependency of Knowledge Based on Partition

We would accept the basic philosophy that a knowledge of an agent about an
universe is her ability to categorize objects inhabiting it through information
received from various sources or perception in the form of attribute-value data.
For this section we start with the indiscernibility relation caused by the attribute-
value system. So, knowledge is defined as follows.

Definition 1. Knowledge : A knowledge is a pair, < U, P > where U is a non-
empty finite set and P is an equivalence relation on U . P will also denote the
partition generated by the equivalence relation.

Definition 2. Finer and Coarser Knowledge : A knowledge P is said to be finer
than the knowledge Q if every block of the partition P is included in some block
of the partition Q. In such a case Q is said to coarser than P . We shall write it
as P  Q.

We recall a few notions due to Pawlak (and others) e.g P -positive region of Q
and based upon it dependency-degree of knowledges.

Definition 3. Let P and Q be two equivalence relations over U . The P -positive
region of Q, denoted by PosP (Q) is defined by PosP (Q) =

⋃
X∈U/Q

P
¯

X , where

P
¯

X = {
⋃

Y ∈ U/P : Y ⊆ X} called P -lower approximation of X.

Definition 4. Dependency degree : Knowledge Q depends in a degree k (0 ≤
k ≤ 1) on knowledge P , written as P ⇒k Q, iff k = CardPosP (Q)

CardU where card
denotes cardinality of the set.

If k = 1 , we say that Q totally depends on P and we write P ⇒ Q; and if
k = 0 we say that Q is totally independent of P .

Viewing from the angle of multi-valuedness one can say that the sentence ‘The
knowledge Q depends on the knowledge P ’ instead of being only ‘true’(1) or
‘false’(0) may receive other intermediate truth-values, the value k being deter-
mined as above. This approach justifies the term ‘partial dependency’ as well.

In propositions 1,2 and 3, we enlist some elementary, often trivial, properties
of dependency degree some of them being newly exercised but most of which are
present in [6,9]. Some of these properties e.g. proposition 3(v) will constitute the
basis of definitions and results of the next section.
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Proposition 1
(i) [x]P1∩P2 = [x]P1 ∩ [x]P2 ,
(ii) If P ⇒ Q and R  P then R⇒ Q,
(iii)If P ⇒ Q and Q  R then P ⇒ R,
(iv)If P ⇒ Q and Q ⇒ R then P ⇒ R,
(v)If P ⇒ R and Q⇒ R then P ∩Q⇒ R,
(vi) If P ⇒ R ∩Q then P ⇒ R and P ⇒ Q,
(vii) If P ⇒ Q and Q ∩R ⇒ T then P ∩R ⇒ T ,
(viii) If P ⇒ Q and R ⇒ T then P ∩R ⇒ Q ∩ T .

Proposition 2
(i) If P ′  P then P ′X ⊇ PX,
(ii) If P ⇒a Q and P ′  P then P ′ ⇒b Q where b ≥ a,
(iii) If P ⇒a Q and P  P ′ then P ′ ⇒b Q where b ≤ a,
(iv) If P ⇒a Q and Q′  Q then P ⇒b Q′ where b ≤ a,
(v) If P ⇒a Q and Q  Q′ then P ⇒b Q′ where a ≤ b.

Proposition 3
(i) If R ⇒a P and Q ⇒b P then R ∩Q ⇒c P
for some c ≥ Max(a, b),
(ii) If R ∩ P ⇒a Q then R⇒b Q and P ⇒c Q for some b, c ≤ a,
(iii) If R ⇒a Q and R⇒b P then R ⇒c Q ∩ P for some c ≤ Min(a, b),
(iv) If R ⇒a Q ∩ P then R ⇒b Q and R ⇒c P for some b, c ≥ a,
(v) If R ⇒a P and P ⇒b Q then R ⇒c Q for some c ≥ a + b− 1.

3 Dependency of Knowledge Based on Covering

A covering C of a set U is a collection of subsets {Ci} of U such that ∪Ci = U .
It is often important to define a knowledge in terms of covering and not by
partition which is a special case of covering. Given a covering C one can define a
binary relation RC on U which is a tolerance relation (reflexive, symmetric) by
xRCy holds iff x, y ∈ Ci for some i, where the set {Ci} constitute the covering.

Definition 5. A tolerance space is a structure S = < U, R >, where U is a
nonempty set of objects and R is a reflexive and symmetric binary relation de-
fined on U .

A tolerance class of a tolerance space < U, R > is a maximal subset of U such
that any two elements of it are mutually related.

In the context of knowledge when the indiscernibility relation R is only re-
flexive and symmetric (and not necessarily transitive) the approximation system
< U, R > is a tolerance space. In such a case the granules of the Knowledge
may be formed in many different ways. Since the granules are not necessarily
disjoint it is worthwhile to talk about granulation around an object x ∈ U . Now
the most natural granule at x is the set {y : xRy}. This set is generally denoted
by Rx. But any element Ci of the covering C can also be taken as a granule
around x where x ∈ Ci. There may be others. So, depending upon various ways
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of perceiving a granule, various definitions of lower approximations (and hence
the upper approximations as their duals) of a set may be given. We shall consider
them below. Now any covering gives rise to a unique partition. By P we denote
the partition corresponding to the covering C.

Definition 6. [1,2] A covering is said to be genuine covering if Ci ⊆ Cj implies
Ci = Cj.

For any genuine covering C it is immediate that the elements of C are all tolerance
classes of the relation RC .

Definition 7. Let two finite coverings C1 and C2 be given by C1 = {C1, C2, ...Cn}
and C2 = {C′

1, C
′
2, ...C

′
m}. Then C1 ∩ C2 is the collection {Ci ∩ C′

j where i =
1, 2, ...n; j = 1, 2, ...m}.

Example 1. Let C1 = {{1, 2, 3}, {2, 3, 4}, {5, 6, 7}, {6, 7, 8}} and C2 = {{1, 2, 3, 4},
{3, 4, 5, 6}, {5, 6, 7, 8}}.

Then C1 ∩ C2 = {{1, 2, 3}, {3}, {2, 3, 4}, {3, 4}, {5, 6}, {5, 6, 7}, {6}, {6, 7, 8}}.

Definition 8. We shall say that a covering C1 is finer than a covering C2 written
as C1  C2 iff ∀C′

j ∈ C2 ∃ Cj1, Cj2, ..., Cjn such that C′
j = Cj1 ∪ Cj2 ∪ ... ∪ Cjn

where, Cj1, Cj2, ..., Cjn ∈ C1 i.e. every element of C2 may be expressed as the
union of some elements of C1.

Let R be a tolerance relation in U . Then the family C(R) of all tolerances classes
of R is a covering of U . The pair (U, C) will be called generalized approximation
space, where U is a set and C is a covering of U . We shall however assume U to
be finite in the sequel.

Let (U, C) be a generalized approximation space and C = {C1, C2, ...Cn}. The
indiscernibility neighborhood of an element x ∈ U is the set NC

x =
⋃
{Ci : x ∈

Ci}. In fact NC
x is the same as RC

x.
For any x ∈ U the set P C

x = {y ∈ U : ∀Ci(x ∈ Ci ⇔ y ∈ Ci)} will be called
kernel of x. Let P be the family of all kernels (U, C) i.e. P = {P C

x : x ∈ U}.
Clearly P is a partition of U .

Definition 9. [10] Let X be a subset of U . Then the lower and upper approxi-
mations are defined as follows :

C
1
(X) = {x : NC

x ⊆ X}
C1

(X) =
⋃
{Ci : Ci ∩X 	= φ}

C
2
(X) =

⋃
{NC

x : NC
x ⊆ X}

C2
(X) = {z : ∀y(z ∈ NC

x ⇒ NC
x ∩X 	= φ)}

C
3
(X) =

⋃
{Ci, Ci ⊆ X for some Ci ∈ C1}

C3
(X) = {y : ∀Ci(y ∈ Ci ⇒ Ci ∩X 	= φ)}
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C
4
(X) =

⋃
{P C

x : P C
x ⊆ X}

C4
(X) =

⋃
{{P C

x : {P C
x ∩X 	= φ}

Proposition 4. If C1  C2 then P1  P2 where P1, P2 are the partitions corre-
sponding to C1, and C2 respectively.

Proposition 5. If C1  C2 then for any X ⊆ U , C1
i
(X) ⊇ C2

i
(X) and C1

i
(X) ⊆

C2
i
(X) for i = 1, 2, 3, 4 .

Example 2. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and C = {{1, 2}, {1, 2, 3}, {4, 6},
{6, 7, 9}, {8, 9}, {5, 10}}. Let A = {1, 2, 4, 6, 9, 10}. Then C

1
(A) = {4}, C

2
(A) =

{4, 6}, C
3
(A) = {1, 2, 4, 6}, C

4
(A) = {1, 2, 4, 6, 9}.

Let B = {3, 9, 10}. Then C
1
(B) = {1, 2, 3, 5, 6, 7, 8, 9, 10}, C

2
(B) = {1, 2, 3, 5,

7, 8, 9, 10}, C
3
(B) = {3, 5, 7, 8, 9, 10}, C

4
(B) = {3, 9}

Proposition 6. Propositions 1, 2, 3 except 3(v) of section 2 also hold in this
generalized case.

Definition 10. We define C1-Positive region of C2 as PosC1
C2 =

⋃
X∈C2

C1(X).

Definition 11. Dependency degree with respect to covering : C1 depends in a

degree k (0 ≤ k ≤ 1) on C2 , written as C1 ⇒k C2 , iff k =
|PosC1

C2|
|U| where |X |

denotes cardinality of the set X. We shall also write k = Dep(C1, C2). If k = 1 ,
C1 is said to be totally dependent on C2 and we write C1 ⇒ C2 ; and if k = 0 we
say that C2 is totally independent of C1 .

Since we have four kinds of lower approximations, we have, four different C1-
Positive region of C2 viz. Posi

C1
C2 with respect to C

i
(X) for i = 1, 2, 3, 4 and also

four different kinds of Dependencies viz. Depi(C1, C2) for i = 1, 2, 3, 4.
Clearly,

⋃
X∈C2

{x : NC1
x ⊆X} ⊆

⋃
X∈C2

{NC1
x : x ∈ C1, NC1

x ⊆ X} ⊆
⋃

X∈C2
{Ci,

Ci ⊆ X for some Ci ∈ C1} ⊆
⋃

X∈C2
{P C

x : P C
x ⊆ X}.

This implies, Pos1
C1
C2 ⊆ Pos2

C1
C2 ⊆ Pos3

C1
C2 ⊆ Pos4

C1
C2. So, we have,

|Pos1
C1

C2|
|U| ≤

|Pos2
C1

C2|
|U| ≤

|Pos3
C1

C2|
|U| ≤

|Pos4
C1

C2|
|U| .

So, the following proposition is obtained.

Proposition 7. Dep1(C1, C2) ≤ Dep2(C1, C2) ≤ Dep3(C1, C2) ≤ Dep4(C1, C2).

Example 3. Consider C1 = {{1, 2, 3}, {2, 3, 4}, {5, 6, 7}, {6, 7, 8}} and C2 = {{1, 2,
3, 4}, {3, 4, 5, 6}, {5, 6, 7, 8}}.

Then Dep1(C1, C2) = 1, Dep2(C1, C2) = 1, Dep3(C1, C2) = 1, Dep4(C1, C2) = 1.
Also, Dep1(C2, C1) = 0, Dep2(C2, C1) = 0, Dep3(C2, C1) = 0, Dep4(C2, C1) = 1.

Example 4. Let us Consider C1 = {{1, 2, 3}, {3, 4, 8}, {6, 7, 8}, {8, 9}} and C2 =
{{1, 2, 3, 4}, {5, 8}, {6, 7}, {8, 9}}.

Then Dep1(C1, C2)= 1
3 , Dep2(C1, C2) = 1

3 , Dep3(C1, C2) = 5
9 , Dep4(C1, C2) = 1.

Also, Dep1(C2, C1)= 1
3 , Dep2(C2, C1) = 1

3 , Dep3(C2, C1) = 4
9 , Dep4(C2, C1) = 5

9 .
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Observation

(i) C1 ⇒ C2

iff PosC1
C2 = U

iff
⋃

X∈C2
C1

1
(X) = U

iff
⋃

X∈C2
{x : NC

x ⊆ X} = U

iff ∀x ∈ U, NC1
x ⊆ X for some X ∈ C2.

Also C1 ⇒0 C2

iff PosC1
C2 = φ

iff
⋃

X∈C2
C1

1
(X) = φ

iff
⋃

X∈C2
{x : NC1

x ⊆ X} = φ

iff ∀x ∈ U , there does not exists any X ∈ C2 such that NC1
x ⊆ X .

(ii) C1 ⇒ C2

iff PosC1
C2 = U

iff
⋃

X∈C2
C1

2
(X) = U

iff
⋃

X∈C2

⋃
x
{NC1

x : NC1
x ⊆ X} = U

iff ∀x ∈ U, NC1
x ⊆ X for some X ∈ C2.

Also C1 ⇒0 C2

iff PosC1
C2 = φ

iff
⋃

X∈C2
C1

2
(X) = φ

iff
⋃

X∈C2

⋃
x
{NC1

x : NC1
x ⊆ X} = φ

iff ∀x ∈ U , there does not exists any X ∈ C2 such that NC1
x ⊆ X .

(iii) C1 ⇒ C2

iff PosC1
C2 = U

iff
⋃

X∈C2
C1

3
(X) = U

iff
⋃

X∈C2

⋃
i
{Ci ∈ C1 : Ci ⊆ X} = U

iff each Ci(∈ C1) ⊆ X , for some X ∈ C2.

Also C1 ⇒0 C2

iff PosC1
C2 = φ

iff
⋃

X∈C2
C1

3
(X) = φ

iff
⋃

X∈C2

⋃
i
{Ci ∈ C1 : Ci ⊆ X} = φ

iff for any Ci ∈ C1 there does not exists any X ∈ C2 such that Ci ⊆ X .

(iv) C1 ⇒ C2

iff PosC1
C2 = U

iff
⋃

X∈C2
C1

4
(X) = U
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iff
⋃

X∈C2

⋃
x
{P C1

x : P C1
x ⊆ X} = U

iff for all x, P C1
x ⊆ X for some X ∈ C2.

Also C1 ⇒0 C2

iff PosC1
C2 = φ

iff
⋃

X∈C2
C1

4
(X) = φ

iff
⋃

X∈C2
{P C1

x : P C1
x ⊆ X} = φ

iff for all x, there does not exists any X ∈ C2 such that P C1
x ⊆ X .

The sets C1 and C2 may be considered as two groups of classifying properties
of the objects of the universe U . Properties belonging to any group may have
overlapping extensions. Now if C1 ⇒ C2 holds i.e. the dependency degree of C2 on
C1 is 1 then the following is its characterization in the first two cases (i) and (ii):
given any element x of the universe, the set of all objects satisfying at least one
of the properties of x is included in the extension of at least one of the classifying
properties belonging to the second group.

If, on the other hand C1 ⇒0 C2 holds, it follows that, ∀x ∈ U, NC1
x is not a

subset of X for any X ∈ C2; that means for any element x there is at least one
element y which shares at least one of the classificatory properties of the first
group and does not have any of the classificatory properties belonging to the
second group.

In the third case (iii) C1 ⇒ C2 iff ∀Ci ∈ C1 , ∃Cj ∈ C2 such that Ci ⊆ Cj and
C1 ⇒0 C2 iff ∀Ci ∈ C1 there does not exist any Cj ∈ C2 such that Ci ⊆ Cj .

The first condition means that the extension of any of the classificatory prop-
erties of the first group is a subset of the extension of at least one of the clas-
sificatory properties of the second. On the other hand the second one means :
no classificatory property belonging to the first group implies any one of the
classificatory property of the second group.

In the fourth case (iv) if x and y are equivalent with respect to the classi-
ficatory properties in the group C1 then x and y will share at least one of the
classificatory properties with respect to C2 and vice versa.

4 Consistency of Knowledge Based on Partition

Two knowledges P and Q on U where P and Q are partitions may be considered
as fully consistent if and only if U/P = U/Q, that is P ,Q generate exactly the
same granules. This is equivalent to P ⇒ Q and Q ⇒ P . So, a natural measure
of consistency degree of P and Q might be the truth-value of the non-classical
sentence “Q depends on P ∧ P depends on Q” computed by a suitable conjunc-
tion operator applied on the truth-values of the two component sentences Thus
a binary predicate Cons may be created such that Cons(P, Q) will stand for
the above conjunctive sentence. A triangular norm (or t-norm) used in fuzzy-
literature and many-valued logic scenario is a potential candidate for computing
∧. A t-norm is a mapping t : [0, 1] → [0, 1] satisfying (i) t(a, 1) = a, (ii) b ≤ d
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implies t(a, b) ≤ t(a, d), (iii) t(a, b) = t(b, a), (iv) t(a, t(b, d)) = t(t(a, b), d). It
follows that t(a, 0) = 0. Typical examples of t-norm are :

min(a, b) (Gödel),
max(0, a + b− 1) (Lukasicwicz),
a× b (Godo,Hajek).

These are conjunction operators used extensively and are in some sense the basic
t-norms [4]. With 1 − x as negation operator the De-Morgan dual of t-norms
called s-norms are obtained as s(a, b) = 1− t(1− a, 1− b). Values of disjunctive
sentences are computed by s-norms.

There is however a difficulty in using a t-norm in the present context. We
would like to have the following assumptions to hold.

Assumption 1. Knowledges P ,Q shall be fully consistent iff they generate the
same partition.

Assumption 2. Knowledges P ,Q shall be fully inconsistent iff no granule gen-
erated by one is contained in any granule generated by the other.

The translation of the above demands in mathematical terms is that the
conjunction operator � should fulfill the conditions:

�(a, b) = 1 iff a = 1, b = 1
and �(a, b) = 0 iff a = 0, b = 0.

No t-norm satisfies the second. So we define consistency degree as follows:

Definition 12. Let P and Q be two knowledges such that P ⇒a Q and Q ⇒b P .
The consistency degree between the two knowledges denoted by Cons(P, Q) is
given by Cons(P, Q) = a+b+nab

n+2 , where n is a non negative integer.

Definition 13. Two knowledges P and Q are said to be fully consistent if
Cons(P, Q) = 1.

Two knowledge P and Q are said to be fully inconsistent if Cons(P, Q) = 0.

Example 5. (i) Let U = {1, 2, 3, 4, 5, 6, 7, 8} and the partitions be taken as P =
{{1, 3, 5}, {2, 4, 6}, {7, 8}} and Q = {{1, 2, 7}, {3, 4, 8}, {5, 6}}. Then P ⇒0 Q
and Q ⇒0 P . So, Cons(P, Q) = 0.
(ii) Let U = {1, 2, 3, 4, 5, 6, 7, 8} and partitions P = {{1, 3, 5}, {2, 4, 6}, {7, 8}}
and Q = {{1, 3, 5}, {2, 4, 6}, {7, 8}}. Then P ⇒1 Q and Q⇒1 P .
So, Cons(P, Q) = 1.
(iii) Let U = {1, 2, 3, 4, 5, 6, 7, 8} and partitions P = {{1, 4, 5}, {2, 8}, {6, 7}, {3}}
and Q = {{1, 3, 5}, {2, 4, 7, 8}, {6}}. Then P ⇒ 3

8
Q and Q⇒ 1

8
P .

So, Cons(P, Q) =
3
8+ 1

8+n 3
8

1
8

n+2 , where n is a non-negative integer.

Although any choice of n satisfies the initial requirements, some special values
for it may be of special significance e.g n = 0, n = Card(U) and n as defined in
proposition 5. We shall make discussions on two of such values latter. ‘n’ shall
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be referred to as the ‘consistency constant’ or simply ‘constant’ in the sequel.
The constant is a kind of constraint on consistency measure as shown in the next
proposition.

Proposition 8. For two knowledges P and Q if n1 ≤ n2 then Cons1(P, Q) ≥
Cons2(P, Q) where Consi(P, Q) is the consistency degree when ni is the constant
taken.

Proof. Let P ⇒a Q and Q ⇒b P . Since n1 ≤ n2, so, n2 − n1 ≥ 0. So
Cons1(P, Q)= a+b+n1ab

n1+2 and Cons2(P, Q)= a+b+n2ab
n2+2 . Now, a+b+n1ab

n1+2 - a+b+n2ab
n2+2

= (n2−n1)(a+b−2ab)
(n1+2)(n2+2) ≥ 0 iff (n2 − n1)(a + b − 2ab) ≥ 0 iff (a + b − 2ab) ≥ 0 iff

a + b ≥ 2ab. Now, a+b
2 ≥

√
ab ≥ ab. So a + b ≥ 2ab holds. This shows that

Cons1(P, Q) ≥ Cons2(P, Q). ��

Proposition 9. If n = the number of elements a ∈ U such that [a]P 	⊆ [a]Q
and [a]Q 	⊆ [a]P , then n = CardU - [Card

⋃
X∈U/Q

P
¯

X + Card
⋃

X∈U/P
Q
¯

X -

Card(
⋃

X∈U/Q
P
¯

X
⋂ ⋃

X∈U/P
Q
¯

X)].

Proof. Here the number of elements a ∈ U such that [a]P ⊆ [a]Q = Card
⋃

X∈U/Q

P
¯
X ...(i). Now the number of elements a∈ U such that [a]Q ⊆ [a]P =Card

⋃
X∈U/P

Q
¯
X ...(ii). So the number of elements common to (i) and (ii) = Card(

⋃
X∈U/Q

P
¯
X⋂ ⋃

X∈U/P
Q
¯
X)] ...(iii) . From (i), (ii) and (iii) the proposition follows. ��

One can observe that the definition of a consistent object in [5,7] may be gener-
alized relative to any pair (P, Q) of partitions of the Universe, not only restricted
to the partitions caused due to the pair (CON, DEC) where CON is the set
of condition attributes and DEC is the decision attributes. With this extension
of the notion, n is the count of all those objects a such that a is not consistent
relative to both the pairs (P, Q) and (Q, P ). In the following examples n is taken
to be this number.

Example 6. (i) Let U ={1, 2, 3, 4, 5, 6, 7, 8} and partitions P ={{1, 3, 5}, {2, 4, 6},
{7, 8}} and Q = {{1, 2, 7}, {3, 4, 8}, {5, 6}}. Then P ⇒0 Q and Q ⇒0 P . Here
n = 8. So, Cons(P, Q) = 0+0+8.0.0

8+2 = 0.
(ii) Let U = {1, 2, 3, 4, 5, 6, 7, 8} and partitions P = {{1, 3, 5}, {2, 4, 6}, {7, 8}}
and Q = {{1, 3, 5}, {2, 4, 6}, {7, 8}}. Then P ⇒1 Q and Q ⇒1 P . Here n = 0.
So, Cons(P, Q) = 1+1+0.1.1

0+2 = 1.
(iii) Let U = {1, 2, 3, 4, 5, 6, 7, 8} and partitions P = {{1, 4, 5}, {2, 8}, {6, 7}, {3}}
and Q = {{1, 3, 5}, {2, 4, 7, 8}, {6}}. Then P ⇒ 3

8
Q and Q ⇒ 1

8
P . Here n = 4.

So, Cons(P, Q) =
3
8+ 1

8+4. 3
8 . 1

8
4+2 = 11

96 .

If the t-norm is taken to be max(0, a + b − 1), then the corresponding s-norm
is min(1, a + b). For the t-norm min(a, b), the s-norm is max(a, b). There is an
order relation in the t-norms/ s-norms, viz.

any t-norm ≤ min ≤ max ≤ any s-norm.
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In particular

max(0, a + b− 1) ≤ min(a, b) ≤ max(a, b) ≤ min(1, a + b).

Where does the Cons function situate itself in this chain - might be an inter-
esting and useful query. The following proposition answers this question.

Proposition 10. max(0, a + b − 1) ≤ Cons(P, Q) ≤ max(a, b) if P ⇒a Q and
Q ⇒b P .

To compare Cons(P, Q) and min(a, b), we have,

Proposition 11. Let P and Q be two knowledges and P ⇒a Q and Q ⇒b P.
Then (i) a = b = 1 iff min(a, b) = Cons(P, Q) = 1,
(ii) If either a = 1 or b = 1 then min(a, b) ≤ Cons(P, Q),
(iii) min(a, b) = a ≤ Cons(P, Q) iff n ≤ a−b

a(b−1) , a 	= 0, b 	= 1,
(iv) min(a, b) = a ≥ Cons(P, Q) iff n ≥ a−b

a(b−1) , a 	= 0, b 	= 1,
(v) max(0, a + b− 1) ≤ Cons(P, Q) ≤ max(a, b) ≤ s(a, b) = min(1, a + b).

The Cons function seems to be quite similar to a t-norm but not the same. So a
closer look into the function is worthwhile.

We define a function � : [0, 1] × [0, 1] → [0, 1] as follows �(a, b) = a+b+nab
n+2

where n is a non-negative integer.

Proposition 12. (i) 0 ≤ �(a, b) ≤ 1,
(ii) If a ≤ b then �(a, b) ≤ �(a, c),
(iii) �(a, b) = �(b, a),
(iv) �(a, �(b, c)) = �(�(a, b), c) iff a = c ;
�(a, �(b, c)) ≤ �(�(a, b), c) iff a ≤ c;
�(a, �(b, c)) ≥ �(�(a, b), c) iff a ≥ c,
(v) �(a, 1) ≥ a, equality occurring iff a = 1,
(vi) �(a, 0) ≤ a, equality occurring iff a = 0,
(vii) �(a, b) = 1 iff a = b = 1 and �(a, b) = 0 iff a = b = 0,
(viii) �(a, a) = a iff either a = 0 or a = 1,

The consistency function Cons gives a measure of similarity between two knowl-
edges. It would be natural to define a measure of inconsistency or dissimilarity
now. In [6] a notion of distance is available.

Definition 14. If P ⇒a Q and Q ⇒b P then the distance function is denoted
by ρ(P, Q) and defined as ρ(P, Q) = 2−(a+b)

2 .

Proposition 13. The distance function ρ satisfies the conditions :
(i) o ≤ ρ(P, Q) ≤ 1
(ii) ρ(P, P ) = 0
(iii) ρ(P, Q) = ρ(Q, P )
(iv) ρ(P, R) ≤ ρ(P, Q) + ρ(Q, R).

For proof the reader is referred to [6].
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Definition 15. We now define a measure of inconsistency by:

InCons(P, Q) = 1 - Cons(P, Q)

Proposition 14. (i) o ≤ InCons(P, Q) ≤ 1,
(ii) InCons(P, P ) = 0,
(iii) InCons(P, Q) = InCons(Q, P ),
(iv) InCons(P, R) ≤ InCons(P, Q) + InCons(Q, R) for a fixed constant n.

Proof. of (iv) : Let P ⇒x R, R ⇒y P , P ⇒a Q, Q ⇒b P , Q ⇒l R, R ⇒m Q
...(i). Now InCons(P, R) = n+2−x−y−nxy

n+2 ≤ InCons(P, Q) + InCons(Q, R) =
n+2−a−b−nab

n+2 + n+2−l−m−nlm
n+2 = 2(n+2)−n(ab+lm)−(a+b+l+m)

n+2
iff n + 2− x− y − nxy ≤ 2(n + 2)− n(ab + lm)− (a + b + l + m)
iff n(ab + lm− xy − 1) ≤ 2 + x + y − (a + b + l + m)...(ii).

From (i) by Proposition 3(v) we have x ≥ (a + m− 1) and y ≥ (b + l − 1).
Hence (ab + lm− xy − 1) ≤ (ab + lm− (a + m− 1)(b + l − 1)− 1) = (a(1 −

l) + b(1 −m) + (m − 1) + (l − 1)) ≤ (1 − l + 1 −m + m − 1 + l − 1) (because
0 ≤ a, b ≤ 1) = 0. ...(iii) Now, 2+x+y−(a+b+l+m) = 2(2−a−b

2 + 2−l−m
2 − 2−x−y

2 )
= 2(ρ(P, Q) + ρ(Q, R)− ρ(P, R)) ≥ 0. ...(iv)[by Proposition 13(iv)].

Thus the left hand side of inequality (ii) is negative and the right hand side
of (ii) is positive. So (iv) i.e triangle inequality is established. ��

Proposition 11 shows that for any fixed n the inconsistency measure of knowledge
is a metric. It is also a generalization of the distance function ρ in [6]; InCons
reduces to ρ when n = 0. n is again a kind of constraint on the inconsistency
measure - as n increases, the inconsistency increases too.

4.1 Consistency Degree w.r.t Covering

Definition 16. We define consistency degree in the same way : Consi(C1, C2)
= a+b+nab

n+2 where Depi(C1, C2) = a i.e., C1 ⇒a C2 and Depi(C2, C1) = b i.e.,
C2 ⇒b C1 where i = 1, 2, 3, 4.

Example 7. Let C1 = {{1, 2, 3}, {3, 4, 8}, {6, 7, 8}, {8, 9}} and C2 = {{1, 2, 3, 4},
{5, 8}, {6, 7}, {8, 9}}.

Then Dep1(C1, C2)= 1
3 , Dep2(C1, C2) = 1

3 , Dep3(C1, C2) = 5
9 , Dep4(C1, C2) = 1.

Also, Dep1(C2, C1)= 1
3 , Dep2(C2, C1) = 1

3 , Dep3(C2, C1) = 4
9 , Dep4(C2, C1) = 5

9 .
So, Consi(C1, C2) for i = 1, 2, 3, 4 are as follows :

Cons1(C1, C2) =
1
3 + 1

3+n. 13 . 13
n+2 = n+6

9(n+2) ,

Cons2(C1, C2) =
1
3 + 1

3+n. 13 . 13
n+2 = n+6

9(n+2) ,

Cons1(C1, C2) =
5
9 + 4

9+n. 59 . 49
n+2 = 20n+81

81(n+2) ,

Cons1(C1, C2) = 1+ 5
9 +n.1. 59
n+2 = 5n+14

9(n+2) .

Observation

(a) Consi(C1, C2) = 1 iff Depi(C1, C2) = 1 and Depi(C2, C1) = 1.
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Its interpretations for i = 1, 2, 3, 4 are given by:

Cons1(C1, C2) = 1 iff ∀x ∈ U, NC1
x ⊆ X for some X ∈ C2 and ∀x ∈ U, NC2

x ⊆
X for some X ∈ C1.

Cons2(C1, C2) = 1 iff ∀x ∈ U, NC1
x ⊆ X for some X ∈ C2 and ∀x ∈ U, NC2

x ⊆
X for some X ∈ C1.

Cons3(C1, C2) = 1 iff each Ci(∈ C1) ⊆ X , for some X ∈ C2 and each
Ci(∈ C2) ⊆ X , for some X ∈ C1

Cons4(C1, C2) = 1 iff for all x, P C1
x ⊆ X for some X ∈ C2 and for all x,

P C2
x ⊆ X for some X ∈ C1

(b) Consi(C1, C2) = 0 iff Depi(C1, C2) = 0 and Depi(C2, C1) = 0.

So, the interpretations are:

Cons1(C1, C2) = 0 iff ∀x ∈ U , there does not exists any X ∈ C2 such that
NC1

x ⊆ X and ∀x ∈ U , there does not exists any X ∈ C1 such that NC2
x ⊆ X .

Cons2(C1, C2) = 0 iff ∀x ∈ U , there does not exists any X ∈ C2 such that
NC1

x ⊆ X and ∀x ∈ U , there does not exists any X ∈ C1 such that NC2
x ⊆ X .

Cons3(C1, C2) = 0 iff for any Ci ∈ C1 there does not exists any X ∈ C2 such
that Ci ⊆ X and for any Ci ∈ C2 there does not exists any X ∈ C1 such that
Ci ⊆ X

Cons4(C1, C2) = 0 iff for all x, there does not exists any X ∈ C2 such that
P C1

x ⊆ X and for all x, there does not exists any X ∈ C1 such that P C2
x ⊆ X

Definition 17. A measure of inconsistency for the case of covering in the same
way is defined as follows :

InCons(P, Q) = 1 - Cons(P, Q).

5 Towards a Logic of Consistency of Knowledge

We are now at the threshold of a logic of consistency (of knowledge). Along with
the usual propositional connectives the language shall contain two binary pred-
icates, ‘Cons’ and ‘Dep’ for consistency and dependency respectively. At least
the following features of this logic are present.

(i) 0 ≤ Cons(P, Q) ≤ 1,
(ii) Cons(P, P ) = 1,
(iii) Cons(P, Q) = Cons(Q, P ),
(iv) Cons(P, Q) = 0 iff Dep(P, Q) = 0 and Dep(Q, P ) = 0
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and Cons(P, Q) = 1 iff Dep(P, Q) = 1 and Dep(Q, P ) = 1
In case P ,Q,R partitions we also get
(v) Cons(P, Q) and Cons(Q, R) implies Cons(P, R).

(i) shows that the logic is many-valued; (ii) and (iii) are natural expectations; (iv)
conforms to assumptions 1 and 2 (section2); (v) shows transitivity the predicate
Cons in the special case of partitions.

That the transitivity holds is shown below. We want to show that Cons(P, Q)
and Cons(Q, R) implies Cons(P, R) i.e, Cons(P, Q) and Cons(Q, R)≤Cons(P, R).
We use Lukasiewicz t-norm to compute ‘and’. Let n be the fixed constant.
So,what is needed is Max(0, Cons(P, Q) + Cons(Q, R)− 1) ≤ Cons(P, R).

Clearly, Cons(P, R) ≥ 0 ...(i).
We shall now show Cons(P, R) ≥ Cons(P, Q)+Cons(Q, R)−1. Let P ⇒x R,

R ⇒y P , P ⇒a Q, Q ⇒b P , Q ⇒l R, R ⇒m Q So x ≥ (a + m − 1) and
y ≥ (b + l− 1) [cf. Proposition 3(v)]...(ii).

So, Cons(P, Q) + Cons(Q, R)− 1 = a+b+nab
n+2 + l+m+nlm

n+2 − 1

= (a+l−1)+(b+m−1)+n(ab+lm−1)
n+2 ≤ x+y+n(ab+lm−1)

n+2 [using (ii)]...(iii).
Here, xy ≥ (a+ l−1)(b+m−1) = ab+ lm+(m−1)(a−1)+(b−1)(l−1)−1≥

ab+lm−1. [as, m−1 ≤ 0 , a−1 ≤ 0 , so (m−1)(a−1)≥ 0 , and b−1 ≤ 0 , l−1 ≤
0 , (b−1)(l−1) ≥ 0 ] ...(iv) . So (iii) and (iv) imply Cons(P, Q)+Cons(Q, R)−1
≤ x+y+nxy

n+2 = Cons(P, R) ... (v).
(i)-(v) pave the way of formulating axioms of a possible logic of knowledge.

6 Concluding Remarks

This paper is only the beginning of a research on a many valued logic of de-
pendency and consistency of knowledges where knowledge is in the context of
incomplete information understood basically as proposed by Pawlak. Various
ways of defining lower and upper approximations indicate that the modalities
are also different and hence corresponding logics would also be different. We fore-
see interesting logics being developed and significant applications of the concepts
Dep, Cons and the the operator �.
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Abstract. Calculating reducts is a very important process. Unfortu-
nately, the process of computing all reducts in NP-hard. There are a lot
of heuristic solutions for computing reducts, but they do not guarantee
achieving complete set of reducts. We propose here three versions of an
exact algorithm, designed for parallel processing. We present here how
to decompose the problem of calculating reducts, so that parallel calcu-
lations are efficient.

Keywords: Rough set theory, reducts calculations, distributed
computing.

1 Introduction

Nowadays, the ability of collecting data is much higher than the ability of pro-
cessing them. Rough Set Theory (RST) provides means for discovering knowl-
edge from data. One of the main concepts in RST is the notion of reduct, which
can be seen as a minimal set of conditional attributes preserving the required
classification features [1]. In other words, having a reduct of a decision table we
are able to classify objects (i.e. take decisions) with the same quality as with all
attributes. However, the main restriction in practical use of RST is that comput-
ing all reducts is NP-hard. It is therefore of high importance to find out efficient
algorithms that compute reducts efficiently.

There are many ideas how to speedup computing of reducts [2], [3], [4], [5].
Many of the presented algorithms are based on some heuristics. The disadvantage
of the heuristic solution is that it does not necessary give us a complete set of
reducts, in addition, some results can be over-reducts. Another way to speed up
the calculation processes, not yet explored sufficiently, could be distributing the
computations over a set of processors, and perform the calculations in parallel.
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In this paper we analyze how to speed up the calculations of the complete sets
of reducts by distributing the processing over a number of available processors.

A parallel version of a genetic algorithm for computing reducts has been pre-
sented in [3]. The main disadvantage of this approach is that the algorithm does
not necessary find all the reducts. In this paper we present various types of the
problem decomposition for calculating reducts. We present here three versions
of distributing the processing, each of them generating all the reducts of a given
information system. We will also discuss the conditions for decomposing the
problem, and present criteria that enable one to find out the best decomposition.

The paper is composed as follows. In Section 2 we recall basic notions related
to the rough set theory, and present the analogies between finding reducts in RST
and the transformations of logical clauses. We also present a naïve algorithm for
finding a complete set of reducts and discuss the complexity of the algorithm.
In Section 3 we present 3 various ways of decomposing the process of reduct
calculations. Section 4 is devoted to experimental results, performed with all
three proposed approaches. We conclude the paper with a discussion about the
effectiveness of the approaches and their areas of applications.

2 Computing Reducts and Logic Operations

Let us start with recalling basic notions of the rough set theory. In practical
terms, knowledge is coded in an information system (IS). IS is a pair (U,A)
where U is finite set of elements, and A is a finite set of attributes which describe
each element. For every a ∈ A there is a function U → Va, assigning a value
v ∈ Va of the attribute a to the objects u ∈ U , where Va is domain of a. The
indiscernibility relation is defined as follows:

IND(A) = {(u, v) : u, v ∈ U, a(u) = a(v), a ∈ A}

Informally speaking, two objects u and v are indiscernible for the attribute a if
they have the same value of that attribute. The indiscernibility relation could
be defined for the set of attributes IND(B) =

⋂
a∈B IND(a), B ⊆ A. One of

the most important ideas in RST is the notion of reduct.
Reduct is a minimal set of attributes B, B ⊆ A, for which the indiscernibility

relation in U is exactly the same, as for the set A, i.e. IND(B) =IND(A). Super-
reduct is a super set of a reduct.

Given a set of attributes B, B ⊆ A, we define a B-related reduct as a set C of
attributes, B ∩ C = ∅ , which preserves the partition of IND(B) over U.

Given u ∈ U , we define local reduct as a minimal set of attributes capable of
distinguishing this particular object from the other objects, as well, as the total
set of attributes. Let us introduce a discernibility function (denoted by disc(B,
u)) as a set of all object v discernible with u for the set of attributes B:

disc(B, u) = {v ∈ U |∀a ∈ B(a(u) 	= a(v))}
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Table 1. Decision Table

a b c d
u1 1 2 3 1
u2 1 2 1 2
u3 2 2 3 2
u4 2 2 3 2
u5 3 5 1 3

Table 2. Indiscernibility matrix

u1 u2 u3 u4 u5

u1 c a a abc
u2 c ac ac ab
u3 a ac abc
u4 a ac abc
u5 abc ab abc abc

Table 3. Interpretation of the indiscernibility matrix

Discernibility CNF form DNF Formula Local reducts
Function (after reduction) (Prime Implicants)

u1 c ∧ a ∧ (a ∨ b ∨ c) c ∧ a a ∨ a {a,c}
u2 c ∧ (a ∨ c) ∧ (a ∨ b) c ∧ (a ∨ b) (a ∧ c) ∨ (b ∧ c) {a,c};{b,c}
u3 a ∧ (a ∨ c) ∧ (a ∨ b) a a {a}
u4 a ∧ (a ∨ c) ∧ (a ∨ b) a a {a}
u5 (a ∧ b ∧ c) ∨ (a ∧ b) (a ∧ b) a ∧ b {a };{b }

Local reduct for the element u ∈ U is a minimal set of attributes B, B ⊆ A,
such that disc(B,u) = disc(A,u). Now, let us show some similarities between
reducts and some logic operation. The relationships between reducts and logical
expressions were first presented in [6]. Let us consider a decision table, as in
Table 1. We have here five elements (u1 − u5), three conditional attributes,
namely a, b, c, and one decision attribute d. The indiscernibility matrix for this
table is shown in Table 2: The interpretation of the above indiscernibility matrix
can be presented in the form of Table 3: The i-th row shows here the following:
in column 1 there is a rule saying which attributes have to be used to discern
the i-th object (ui) with any other objects of IS from Table 1 (discernibility).
The second column shows the same rule in the form of CNF (after reduction),
the 3rd one presents the rule in disjunctive normal form (DNF), whereas the last
column provides the local reducts for ui.
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Algorithm 2.1. Reduct Set Computation(DT )

Compute Indiscernibility Matrix M(A) = (Cij)
Transform M to one dimensional table T
Reduce T using absorption laws
comment: from CNF to prime implicant

Sort T
comment: Sorting is our modification, d - number of elements in T

build the families of R1, R2, , Rn in the following way :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0 = ∅
for i ← 0 to d

do

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
if Stop condition is true comment: It is our modification

then Break algorithmRd = Ri

else Ri = Si ∪Ki where Si = {r ∈ Ri−1 : r ∩ Ti 	= ∅}
Ki = (r ∪ {a})∀a ∈ Ti, r ∈ Ri−1 : r ∩ Ti = ∅

Remove redundant elements from Rd

Remove Super− Reducts
RED(a) = Rd

return (RED(A))

Now let us recall a naïve method for calculating reducts. It is a slight modification
of the algorithm presented in [2], and is given abowe in the form of a pseudo
code. This code differs from the original one in two places. Fist, we sort the
clauses in discernibility function by length (the shortest clauses are first). Then,
we change here the stop condition: Ti is the i-th clause of prime implicant. Ri is
the set of candidate reducts. In the i-th step we check r ∈ Ri , and if r∩ T i 	= ∅,
then Ri+1 := Ri+1∪r, otherwise the clause is split onto separate attributes, and
each attribute is added to r, making a new reduct candidate to be included to
Ri+1. As the clauses Ti are sorted, we can stop the algorithm when k + li > |A|,
where k is the length of the shortest candidate reduct, li is the length of Ti.

Let us reconsider the time and space complexities of the naïve algorithm.
There are four sequential parts in the algorithm: (1) generating the indiscerni-
bility matrix (IND matrix); (2) converting the matrix to discernibility function
(using absorption laws); and (3) converting to the DNF form (prime implicants),
i.e. reducts.

The IND matrix is square and symmetric (with null values on the diagonal).
The size of the matrix is |U | × |U |, |U | denotes the number of the elements in
DT. So, the time and space complexities are:

O(
|U |2 − |U |

2
) (1)

The complexity of the process of converting from IND to the discernibility func-
tion formulae is linear, so can be ignored. The complexity of the conversion from



A New Approach to Distributed Algorithms for Reduct Calculation 369

discernibility function to CNF is O(n2) (in the worst case), where n is the num-
ber of clauses in the discernibility function. No additional data structures are
needed, so the space complexity can be ignored.

The hardest to estimate is the complexity of converting from CNF to DNF.
The space complexity is estimated as:

O

(|A|
|A|
2

)
(2)

It is the maximal number of the candidate reducts in the conversion process. The
proof on the maximal numbers of reducts was presented in [4]. More complicated
is to estimate the time complexity. Given n as the number of clauses in the
discernibility function, we can estimate it as:

O(
(|A|

|A|
2

)
× n) (3)

During the conversion process from discernibility function to prime implicants in
one step we compare every candidate reduct with the i-th clause of discernibility
function. The number of steps is equal to the number of clauses. The maximum
number of clauses in the discernibility function is: n = |U |2−|U |

2 (in the worst
case, where the absorption laws cannot be used). Hence, the time complexity is:

O(
(|A|

|A|
2

)
× |U |

2 − |U |
2

) (4)

Let us summarize now our considerations:

1. The maximal space requirement depends only on the number of the at-
tributes in DT.

2. The time of computing IND depends polynomialy on the number of objects
in DT.

3. The time of computing all the reducts depends exponentially on the number
of attributes (for a constant number of objects).

The exponential explosion of the complexity appears in the last part of the
algorithm, during the conversion from CNF to prime implicants. The best prac-
tice is to decompose the more complex part, though it is not the only possible
place. Sometimes computing IND is more time consuming than evaluating the
conversions. We will discuss the options in the next section.

3 Decomposition of the Problem

There are several ways of decomposing the algorithm. One possibility is to split
DT, compute reducts for each part independently and merge the results. Another
idea is to compute IND matrix sequentially, convert it to discernibility function
and CNF, and then split discernibility function into several parts to be calculated
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separately, so that the conversions to DNF are made in the separate nodes of the
algorithm, and then the final result is obtained by merging the partial results.

The two proposals above consist in a horizontal decomposition, in this sense
that we split the table DT into some sub-tables, and then use the partial results
to compute the final reduct. Certainly, the partial results are not necessarily
reducts. They can be though related reducts, and additional (post)-processing
is needed to calculate reducts. Both proposals will be described in more detail
in this Section, in 3.1 and 3.2 respectively.

In the paper we propose yet another solution, based on a vertical decompo-
sition. In particular, during the process of converting CNF to DNF we split the
set of candidate reducts among a number of processors, which then serve in par-
allel for processing the consecutive clauses. We call this decomposition vertical
because it splits the set of candidate reducts (subsets of the attributes) into
separate subsets, instead of splitting the set of objects. For each subset of the
candidate reducts, the conversion is completed in a separate node of algorithm
(processor).

Let us note that every candidate reduct passes comparisons with every clause.
This will give us a guarantee that the partial results in each node are reducts
or super reducts. Having computed the partial results, in the last phase of the
algorithm we join them to the final reducts set.

Let us also note that there is a difference between using partial results obtained
from horizontal and vertical decompositions. In the first case we have to merge
partial reducts, which is a complex, and time consuming process, whereas in the
second case we have to join the partial results, and remove duplicates, and super
reducts. This process is fairly simple. The third proposal is presented in p. 3.4.
Below we describe the three proposals in more detail.

3.1 Splitting Decision Table

Let us present the process of decomposing DT. We split DT into two separate,
randomly selected subsets: X1 and X2, and for each of them we compute the
reducts. If now we would like to "merge" the results, the final result does not
take into account indiscernibilities between objects from X1 and X2. It is there-
fore necessary to compute another part of the IND matrix to calculate the
discernibility for the pairs (xixj), xi ∈ X1, and xj ∈ X2. In Fig. 1 it is shown
how the decomposition of DT influences splitting the IND matrix (denoted by
M). M(Xk), k = 1, 2, are the parts related to discernibility of the object both
from Xk. M(X1 ∪X2) is a part of M with information about discernibility be-
tween xi, xj , such that xi ∈ X1, and xj ∈ X2. In this sense the decomposition
of DT is not disjoint. However, in the sense of splitting M into disjoint parts,
the decomposition is disjoint. We can thus conclude that for splitting DT into
two sets we need three processing nodes. Similarly, if we split DT into three sets,
we need six processing nodes. In general, if we split DT into n subsets we need
n2+n

2 processing nodes.
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Indiscernibility Matrix

Set X1 Set X2

Set X1

Set X2

M(X ,X ) not used1    2

M(X ) used on half1

M(X ) used on half2

M(X ,X ) used on all2   1

Fig. 1. Spliting DT

3.2 Spliting Discernibility Function

Another idea for decomposing the problem of computing all reducts is to split
discernibility function into separate sections, and then to treat each section as
a separate discernibility function. The conversion to DNF is made for every
discernibility function, and then the partial results are merged as a multiplication
of clauses. Let us illustrate it by the following example.

Example 1. Provided after applying the absorption laws we receive the dis-
cernibility function as below:

(a ∨ b) ∧ (a ∨ c) ∧ (b ∨ d) ∧ (d ∨ e)(∗)
we can now convert it to the DNF form in the following sequential steps:

1. (a ∨ ac ∨ ab ∨ bc) ∧ (b ∨ d) ∧ (d ∨ e) = (a ∨ bc) ∧ (b ∨ d) ∧ (d ∨ e)
2. (ab ∨ ad ∨ bcd ∨ bc) ∧ (d ∨ e) = (ab ∨ ad ∨ bc) ∧ (d ∨ e)
3. (abd ∨ abe ∨ ad ∨ ade ∨ bcd ∨ bce) = (ad ∨ abe ∨ bcd ∨ bce)

Instead of processing (*) sequentially let us split it into 2 parts:

1. (a ∨ b) ∧ (a ∨ c)
2. (b ∨ d) ∧ (d ∨ e)

The tasks (1) and (2) can be continued in 2 separate processing nodes, which
leads to the forms:

1. (a ∨ ac ∨ ab ∨ bc) = (a ∨ bc)
2. (bd ∨ be ∨ d ∨ de) = (be ∨ d)
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computing
IND
matrix

computing
reducts

merging reducts

time

Fig. 2. The parallel processing with 3 nodes

Having the partial results from the nodes (1) and (2) we merge them: (a∨bc)∧
(be∨d) So we receive the final result: (abe∧ad∧ bce∧ bcd) On Fig. 2 we present
a general idea of processing algorithm in the parallel way, as sketched above. As
one can see, in this approach we can split the calculations among as many nodes
as many pairs of clauses we have in the discernibility function (obviously we can
split the task to a smaller number of nodes, as well). There is though a final part
of the algorithm, which is devoted to merging the partial results coming from
the nodes.

This process is performed sequentially and its efficiency depends on the num-
ber of processing nodes. Obviously, we should avoid the cases when the cost of
merging is higher than the savings from parallel processing. We discuss the issue
in the next paragraph.

Merging of partial results
The process of merging the partial results is time consuming. It is equivalent to
the process of finding Cartesian product of n sets, so the time requirement for this
process depends on the number of the partial results, i.e. O(Π |mi|)i = 1, 2, 3, ..n,
where |mi| is the number of elements in the ith partial result. There is though
a way to perform also this process in a parallel way. Let us consider the case
we have two partial results to merge - p1 and p2. We split p1 into few separate
subsets, so p1 =

∨
i p1i. Thus p1∧p2 =

∨
i p1i∧p2 , and each component p1i∧p2

can be processed in a separate processing node. The process of summing the
partial conjunction results consists in removing duplicates and super reducts
from the final result set. The more components of p1i we have in p1, the more
processors we can use.

Optimal use of the processors
On Fig. 3 we present an example of using 5 processors for computing reducts by
splitting prime implicant. We distinguish here four phases. The first one is for com-
puting the IND matrix and prime implicant (marked by very light grey), then the
conversion from prime implicant to DNF starts (light grey) on five nodes.
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node 1

node 2

node 3

node 4

node 5

central
node

computing IND Matrix inactive time

computing reducts

merging reducts
removing duplicates and superreducts

Fig. 3. Sample usage of processors for 5 nodes

node 1

node 2

node 3

node 4

node 5

central
node

computing IND Matrix inactive time

computing reducts

merging reducts

removing duplicates and superreducts

Fig. 4. Merging by bundles

When we have 2 conversions completed, the merging can start on the free
nodes (dark grey). When any partial reduct results are provided, the final process
of removing duplicates is performed sequentially (black). This solution is not
optimal for the use of processors. There are a lot of periods where some nodes
of the algorithm have to wait, even if some nodes have the same speed. The
problem gets worse if some nodes differ in speed.

To solve this problem we propose in every merging of partial results P1 and
P2 to split P1 into more parts then we have free available processors. Thus,
we decompose merging into many independent bundles. Each bundle can be
processed asynchronously. Each processor processes as many bundles as it can.
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In this case, the maximal time of waiting in every partial merging is the time of
processing one bundle in the slowest node. Let us consider this proposal in more
detail Fig. 4.

In this case the node N3 does not have to wait for N2, but it helps nodes N4
and N5 by merging bundles from P4 and P5. This task can be finished faster
than in the previous example. After computing DNF from ∧(P2, N2) takes P2
and P3 from the queue, and starts computing set ∧(P2, P3). After computing
∧(P4, P5), the nodes N3, N4, N5 join to N2. Having finished P1, the node N1
takes the next task from the queue (∧(P1, P4, P5)). Having finished processing
∧(P2, P3) the remaining free nodes join to the computations ∧(P1, P4, P5). The
last task is to compute ∧(P1, P2, P3, P4, P5) by all the nodes.

3.3 Splitting Set of Candidate Reducts - Vertical Decomposition

Now we present the third way of decomposing calculations of reducts, which is
the vertical one. The main idea is that during the conversion of CNF to DNF we
split the formula into 2 parts across a (disjunctive) component. The idea of this
decomposition was originally presented in [7]. Here we make a slight modification
of this method. Let us go back again to the conversion process from CNF to DNF.
Sequentially, the process can be performed as below:

1. (a ∨ b) ∧ (a ∨ c) ∧ (b ∨ d) ∧ (d ∨ e)
2. (a ∨ ac ∨ ab ∨ bc) ∧ (b ∨ d) ∧ (d ∨ e) = (a ∨ bc) ∧ (b ∨ d) ∧ (d ∨ e)
3. (ab ∨ ad ∨ bcd ∨ bc) ∧ (d ∨ e) = (ab ∨ ad ∨ bc) ∧ (d ∨ e)
4. (abd ∨ abe ∨ ad ∨ ade ∨ bcd ∨ bce) = (ad ∨ abe ∨ bcd ∨ bce)

The bold clauses a and bc relate to "candidate reducts". Let us make the de-
composition after the second step1, and perform the process in two nodes:

Table 4. Decomposition of computation after second step

Node 1 Node 2
(a) ∧ (b ∨ d) ∧ (d ∨ e) (bc) ∧ (b ∨ d) ∧ (d ∨ e)

(ab ∨ ad) ∧ (d ∨ e) (bc ∨ bcd) ∧ (d ∨ e) = (bc) ∧ (d ∨ e)
(abd ∨ abe ∨ ad ∨ ade) = (ad ∨ abe) (bcd ∨ bce)

(ad ∨ abe ∨ bcd ∨ bce)

The advantage of this decomposition is easiness of joining partial results -
one should only add sets of reducts and remove super-reducts. This method
reduces time of processing and space needed for storing candidate reducts. If we
have one processor without enough memory for the candidate reducts we can
decompose the process into two parts. The first part can be continued, whereas
the second one can wait frozen, and restart after having finished the first one.
This is more effective than using virtual memory, because the algorithm can
1 It could have been done also after the 1st step, as well as after the 3rd step.
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decide what should be frozen, and what is executed. The disadvantage is that
decomposition is done in the late phase of algorithm. It causes that the time
saved by the decomposition can be inessential. Another disadvantage is that the
algorithm depends on too many parameters. In particular, one has to choose a
right moment to split the formula. In our experiment we have used the following
rules:

1. do not split before doing 10% of the conversion steps;
2. the last split must be done before 60% of the conversion;
3. make splitting if the number of candidates is greater then u (u is a parame-

ter).

The main difference between our proposal and the one presented in [7] is in
spliting candidate of sets. In [7] it is proposed to split the set of candidates
into n procesors after having the number of "candidates reducts" higher than
branching factor [7]. The disadvantage of this approach is that we do not know
the number of candidate reducts before completing computations, so it is hard
to estimate the optimal value of the branching factor.

4 Experiments and Results

There are a some measures in the literature for the distributed algorithms. In
our experiments we used two indicators:

1. Speedup
2. Efficiency

Following [8] we define speedup as Sp = T1
Tp , and efficiency as Ep = Sp

p , where
T1 is the time of execution of the algorithm on one processor, Tp is the time
needed by p processors, p is the number of processors.

We have tested all the presented algorithms. For the experiments we used
three base data sets: (a) 4000 records, and 23 condition attributes; (b) 5000
records, and 20 condition attributes; and (c) 20000 records, and 19 condition
attributes. The sets (a) and (b) were randomly generated. The set (c) is based
on the set "Letter recognition" from [9]. To the original set we have added three
additional columns, each being a combinations of selected columns from the
original set (so that more reducts should appear in the results). For each of the
databases we have prepared a number of sets of data - 5 sets for (a), 6 sets for
(b) and 11 sets for (c). Every set of data was prepared by a random selection of
objects from the base sets. For each series of data sets we have performed one
experiment for the sequential algorithm, and additionally, 3 experiments - one
for each way of decomposition. Below we present the results of the experiment.
Tables 5-7 contain the execution times for the sequential version of the algorithm
for each of the 3 testing data respectively. In these tables the column 2 shows the
total execution time, the columns 3 shows the execution time of computing IND
matrix and reduced discernibility function. It is not possible to split times for
processing IND matrix and discernibility function without the loss of efficiency.
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Let us note that computing of the IND matrix and discernibility function for
the first case (Table 5) takes less than 1% of the total processing time. In the
2nd (Table 6) case the computing of IND is about 50% of the total time of
processing. The number of clauses in prime implicant is smaller for this data set.
In the 3rd case (table 7), the computing of IND takes more than 99% of the
total computing time. Let us note that only for this case the decomposition of
DT can be justified.

Now we present Tables 8-10. In each table the results of 3 distributed algo-
rithms are presented for each data set respectively.

From Table 8 we can see that for the datasets where discernibility function is
long and we expect many results, it is better to use vertical decomposition. The
vertical decomposition has two advantages: (a) we decompose the phase that

Table 5. Time of computing for sequential method, data set 1

Size (records) Total time (ms) IND matrix time (ms) IND matrix size Reducts number
2000 2483422 29344 513 5131
2500 2144390 41766 475 4445
3000 2587125 60766 555 5142
3500 3137750 80532 532 4810
4000 191390 100266 116 1083

Table 6. Time of computing for sequential method, data set 2

Size (records) Total time (ms) IND matrix time (ms) IND matrix size Reducts number
2500 70735 31457 77 202
3000 68140 46016 41 107
3500 79234 61078 33 72
4000 99500 77407 37 109
4500 127015 100235 42 127
5000 151235 120094 46 131

Table 7. Time of computing for sequential method, data set 3

Size (records) Total time (ms) IND matrix time (ms) IND matrix size Reducts number
11000 668063 650641 16 5
12000 798906 780391 16 5
13000 936375 916641 16 5
14000 1086360 1065375 16 5
15000 1245188 1223016 16 5
16000 1413032 1389782 16 5
17000 1597250 1572843 16 5
18000 1787578 1762015 16 5
19000 1993640 1966718 16 5
20000 2266016 2238078 16 5
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Table 8. Parallel methods for date set 1

A kind of decomposition
Size (records) DT DISC FUNCTION CANDIDATE REDUCTS

S3 E3 S2 E2 S3 E3 S2 E2 S3 E3

2000 0,41 0,14 3.01 1.5 2.53 0.84 4.33 2.16 7.66 2.55
2500 0,75 0,25 3.03 1.51 2.46 0.82 3.91 1.95 6.64 2.21
3000 0,53 0,18 2.11 1.05 2.11 0.70 3.34 1.67 6.08 2.02
3500 0,70 0,24 3.6 1.8 2.8 0.93 3.55 1.77 6.90 2.30
4000 0,46 0,15 1.57 0.78 1.57 0.52 0.64 0.32 1.0 0.33

Table 9. Parallel methods for date set 2

A kind of decomposition
Size (records) DT DISC FUNCTION CANDIDATE REDUCTS

S3 E3 S2 E2 S3 E3 S2 E2 S3 E3

2500 0,72 0,24 1.86 0.93 1.91 0.64 0.79 0.39 0.88 0.29
3000 0,69 0,23 1.36 0.68 1.37 0.46 0.84 0.42 0.84 0.28
3500 0,54 0,18 1.18 0.59 1.22 0.40 0.93 0.47 0.71 0.23
4000 0,73 0,24 1.19 0.60 1.16 0.39 0.96 0.48 0.97 0.32
4500 1,02 0,34 1.20 0.60 1.08 0.36 0.84 0.42 0.90 0.30
5000 0,99 0,33 1.18 0.59 1.10 0.37 0.98 0.49 1.06 0.35

Table 10. Parallel methods for date set 3

A kind of decomposition
Size (records) DT DISC FUNCTION CANDIDATE REDUCTS

S3 E3 S2 E2 S3 E3 S2 E2 S3 E3

11000 1.57 0.52 0.99 0.49 1.00 0.33 0.99 0.49 1.00 0.33
12000 1.55 0.52 1.00 0.50 1.00 0.33 1.00 0.50 1.00 0.33
13000 1.58 0.53 1.00 0.50 1.00 0.33 1.00 0.5 1.00 0.33
14000 1.59 0.53 1.00 0.50 0.99 0.33 1.00 0.5 0.99 0.33
15000 1.59 0.53 0.99 0.49 0.99 0.33 0.99 0.49 0.99 0.33
16000 1.60 0.53 1.00 0.50 1.00 0.33 1.00 0.5 1.00 0.33
17000 1.61 0.54 1.00 0.50 1.00 0.33 1.00 0.5 1.00 0.33
18000 1.63 0.54 1.00 0.50 0.99 0.33 1.00 0.5 0.99 0.33
19000 1.64 0.54 1.00 0.50 1.00 0.33 1.00 0.5 1.00 0.33
20000 1.73 0.58 1.00 0.50 0.50 0.33 1.00 0.5 1.00 0.33

takes majority of the time; and (b) joining partial results is less time consum-
ing than merging. For the methods with horizontal decomposition the time of
computing depends on the time of merging partial results. By adding another
processor not necessarily we get better results - although the conversion to DNF
is faster, the merging of three sets is more complicated.

In the second case (Table 9) only the method with discernibility function de-
composition gives good results. Splitting candidate reducts was not effective, be-
cause conversion from CNF to DNF takes less than 50% of the total processing
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time, so the decomposition was made too late. Also splitting DT was not ef-
fective, as this method may cause a redundancy in partial results. The best
method here is splitting discernibility function. It also may cause redundancy in
the partial results, but much less then the DT decomposition.

In Table 10 we have an unusual case, because of big number of objects and
small number of attributes. The processing of IND takes more than 99% of total
time, so we can expect that only the decomposition of DT can give us satisfactory
results.

5 Conclusions and Future Work

We have investigated possibilities of decomposing the process of computing the
reducts. Three points where the decomposition is feasible have been identified.
Based on this, three algorithms of parallel computing of the reducts have been
presented and tested. The performed experiments have shown that each of the
algorithms has its own specific kind of data sets, for which it is the best. It is
therefore an important task to identify at the beginning of the computations
which way of paralleling the reduct computations is the most appropriate.

We also expect that for some kind of data combining the three methods can
also bring positive results. Special heuristics have to be prepared in order to
decide (perhaps dynamically, during the computations) on when and how split
the computations. This is the subject of our future research.
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Bȩdzińska 39, 41–200 Sosnowiec, Poland

{wakulicz,nowak}@us.edu.pl

Abstract. In the paper we present the definition of Pawlak’s model
of an information system. The model covers information systems with
history, systems with the decomposition of objects or attributes and dy-
namical information systems. Information systems are closely related to
rough set theory and decision support systems. The aim of the paper is
to characterize the stimulated by Professor Pawlak research of the group
in Silesian University in information retrieval based on different informa-
tion systems and in decision support based on rough sets, and to outline
the current research projects of this group on modern decision systems.

Keywords: information system, decision support system, rough set the-
ory, clustering methods.

1 Introduction

Information systems and decision support systems are strongly related. The pa-
per shows that we can treat a decision system as an information system of some
objects, for which we have the information about their classification. Recently,
not so many attention is paid for a classification of information systems in the lit-
erature. We deal with a problem of classification based on changes of information
systems in the time, what leads in natural way to a concept of dynamic systems.
Data analysis in a given information system is possible thanks to defining: the
decomposition of system (done on the set of attributes or objects), dependent
and independent attributes in data (to remove the attributes that are depen-
dent), whether the attributes or even objects are equivalent, comparison of the
objects, attributes and even the whole systems. The paper also presents that
the model of information system created by Professor Pawlak is very useful for
retrieving information. One of the different methods of retrieving information,
so called atomic components method, was proposed by Professor Pawlak, and
it is presented in the paper with all basic assumptions. The relation between
information systems and rough set theory with decision support systems, where
researches are concerned with the classificatory analysis of imprecise, uncertain
or incomplete information or knowledge expressed in terms of data acquired
from experience, is also presented in the paper. It also consider the methods
of reduction the set of attributes and rule induction method’s that have been
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applied to knowledge discovery in databases, whose empirical results obtained
show that they are very powerful and that some important knowledge has been
extracted from databases. Because of that, in the paper, the results of the stages
of different researches that were done (i.e. diagnosis support system used in child
neurology and it is a notable example of a complex multistage diagnosis process)
and all of the researches that are planed to do at the Silesian University, are pre-
sented. It is supposed to explain Professor Pawlak’s invaluable contribution to
the domain of information and decision support systems.

The notion of an information system formulated by Professor Pawlak and
developed with his co-workers, is now a well developed branch of data analysis
formalisms. It is strongly related to (but different from) the relational database
theory on the one hand and to fuzzy set theory on the other. In this paper we
consider the connection between the theory of information and information re-
trieval systems with rough set theory and decision support systems. It is obvious
that model of a system created by Professor Pawlak makes data description and
analysis simple and very reliable.

2 Information System

An information system consists of a set of objects and attributes defined on
this set. In information systems with a finite number of attributes, there are
classes created by these attributes (for each class, the values of the attributes
are constant on elements from the class).

Any collection of data, specified as a structure:

S = 〈X, A, V, q〉

such that X is a non-empty set of objects, A is a non-empty set of attributes, V
is a non-empty set of attributes’ values: V =

⋃
a∈A Va and q is an information

function of X×A→ V , is referred to as an information system. The set {q(x, a) :
a ∈ A} is called information about the object x or, in short, a record of x or a
row determined by x.

Each attribute a is viewed as a mapping a : X → Va which assigns a value
a(x) ∈ Va to every object x. A pair (a, v), where a ∈ A, and v ∈ Va, is called a
descriptor.

In information systems, the descriptor language is a formal language com-
monly used to express and describe properties of objects and concepts.

More formally, an information system is a pair A = (U, A) where U is a non-
empty finite set of objects called the universe and A is a non-empty finite set of
attributes such that a : U → Va for every a ∈ A. The set Va is called the value
set of a. Now we will discuss which sets of objects can be expressed (defined) by
formulas constructed by using attributes and their values. The simplest formulas
d, called descriptors, have the form (a, v) where a ∈ A and v ∈ Va.

In each information system S the information language LS = 〈AL, G〉 is de-
fined, where AL is the alphabet and G is the grammar part of that language.
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AL is simply a set of all symbols which can be used to describe the information
in such a system, e.g.:

1. {0, 1} (constant symbols),
2. A - the set of all attributes,
3. V - a set of all the values of the attributes,
4. symbols of logical operations like ˜, + and ∗,
5. and naturally brackets, which are required to represent more complex infor-

mation.

G - the grammar part of the language LS defines syntax with TS as the set of all
possible forms of terms (a term is a unit of information in S) and its meaning
(semantics). A simple descriptor (a, v) ∈ TS(a ∈ A where v ∈ Va). If we denote
such a descriptor (a, v) as the term t, then following term formations will be also
possible: ¬t, t+ t

′
, t ∗ t

′
, where t, t

′ ∈ TS. The meaning is defined as a function σ
which maps the set of terms in a system S in a set of objects X , σ : TS → P (x),
where P (x) is the set of the subsets of X . The value of σ for a given descriptor
(a, v) is defined as following [49]:

1. σ(a, v) = {x ∈ X, qx(a) = v},
2. σ(¬t) = X \ σ(t),
3. σ(t + t

′
) = σ(t) ∪ σ(t

′
) and

4. σ(t ∗ t
′
) = σ(t) ∩ σ(t

′
).

2.1 Information Table

Information systems are often represented in a form of tables with the first
column containing objects and the remaining columns, separated by vertical
lines, containing values of attributes. Such tables are called information tables
(an example is presented in Table 1).

The definition of this system is as follows:

S = 〈X, A, V, q〉,

where X = {x1, . . . , x8}, A = {a, b, c}, V = Va ∪ Vb ∪ Vc, Va = {a1, a2}, Vb =
{b1, b2}, Vc = {c1, c2, c3, c4} and q : X ×A→ V .

For instance, q(x1, a) = a1 and q(x3, b) = b1.

Table 1. An information system - an information table

student a b c
x1 a1 b1 c1

x2 a1 b1 c2

x3 a2 b1 c3

x4 a2 b1 c4

x5 a1 b2 c1

x6 a1 b2 c2

x7 a2 b2 c3

x8 a2 b2 c4
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Before we start considering the properties of an information system, it is nec-
essary to explain what the information in such a system means. The information
in the system S is a function ρ with the arguments on the attributes set A and
its values, which belong to the set V (ρ(a) ∈ Va). As long as the sets of the
objects, attributes and their values are finite, we know exactly how many (dif-
ferent) pieces of information in a given system S comprises, and the number
is equal to

⋂
a∈A card(Va). The information ρ assigns a set of the objects Xρ

that Xρ = {x ∈ X : qx = ρ}. We call them indiscernible, because they have
the same description. If we assume that B ⊆ A then each subset B of A de-
termines a binary relation INDA(B), called an indiscernibility relation. By the
indiscernibility relation determined by B, denoted by INDA(B), we understand
the equivalence relation:

INDA(B) = {〈x, x
′〉 ∈ X ×X : ∀a∈B [a(x) = a(x

′
)]}.

For a given information system it is possible to define the comparison of the
objects, attributes and even the whole systems. We can find some dependent
and independent attributes in data, we can check whether the attributes or
even objects are equivalent. An important issue in data analysis is to discover
dependencies between attributes. Intuitively, a set of attributes D depends to-
tally on a set of attributes C if the values of attributes from C uniquely de-
termine the values of the attributes from D. If D depends totally on C then
INDA(C) ⊆ INDA(D). This means that the partition generated by C is finer
than the partition generated by D.

Assume that a and b are attributes from the set A in a system S. We say that
b depends on a (a → b), if the indiscernibility relation on a contains in the indis-
cernibility relation on b: ã ⊆ b̃. If ã = b̃ then the attributes are equivalent. The
attributes are dependent if any of the conditions: ã ⊆ b̃ or b̃ ⊆ ã is satisfied. Two
objects x, y ∈ X are indiscernible in a system S relatively to the attribute a ∈ A
(x

eay) if and only if qx(a) = qy(a). In the presented example, the objects x1 and
x2 are indiscernible relatively to the attributes a and b. The objects x, y ∈ X are
indiscernible in a system S relatively to all of the attributes a ∈ A (x

eSy) if and
only if qx = qy. In the example there are no indiscernible objects in the system
S. Each information system determines unequivocally a partition of the set of
objects, which is some kind of classification. Finding the dependence between
attributes let us to reduce the amount of the information which is crucial in sys-
tems with a huge numbers of attributes. Defining a system as a set of objects,
attributes and their values is necessary to define the algorithm for searching the
system and updating the data consisted in it. Moreover, all information retrieval
systems are also required to be implemented in this way. The ability to discern
between perceived objects is also important for constructing various entities not
only to form reducts, but also decision rules and decision algorithms.

2.2 An Application in Information Retrieval Area

The information retrieval issue is the main area of the employment of information
systems. An information retrieval system, in which the objects are described by
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their features (properties), we can define as follows: Let us have a set of objects
X and a set of attributes A. These objects can be books, magazines, people, etc.
The attributes are used to define the properties of the objects. For the system
of books, the attributes can be author, year, number of sheets. An information
system which is used for information retrieval should allow to find the answer for
a query. There are different methods of retrieving information. Professor Pawlak
proposed the atomic components method [2,49]. Its mathematical foundation was
defined in [5] and [6]. This method bases on the assumption that each question
can be presented in the normal form, which is the sum of the products with
one descriptor of each attribute only. To make the system capable of retrieving
information it is required to create the information language (query language).
This language should permit describing objects and forming user’s queries. Nat-
urally enough, such a language has to be universal for both the natural and
system language. Owing to this, all steps are done on the language level rather
than on the database level. The advantages of information languages are not
limited to the aforementioned features. There are a lot of systems that need to
divide the information, which is called the decomposition of the system. It al-
lows improving the time efficiency and make the updating process easy, but also
enables the organization of the information in the systems. Information systems
allow collecting data in a long term. It means that some information changes in
time, and because of that, the system has a special property, which is called the
dynamics of the system. Matching unstructured, natural-language queries and
documents is difficult because both queries and documents (objects) must be
represented in a suitable way. Most often, it is a set of terms, where aterm is a
unit of a semantic expression, e.g. a word or a phrase. Before a retrieval process
can start, sentences are preprocessed with stemming and removing too frequent
words (stopwords). The computational complexity when we move from simpler
systems to more compound increases. For example, for atomic component re-
trieval method, the problem of rapidly growing number of atomic component
elements is very important. Assuming that A is a set of attributes, and Va is
a set of values of attribute a, where a ∈ A, in a given system we achieve a⋂

a∈A Va objects to remember. For example, if we have a 10 attributes in a given
system S, and each of such attributes has 10 values, we have to remember 1010

of elements.

2.3 System with Decomposition

When the system consists of huge set of data it is very difficult in given time
to analyse those data. Instead of that, it is better to analyze the smaller pieces
(subsets) of data, and at the end of the analysing, connect them to one major
system. There are two main method of decomposition: with attributes or objects.
A lot of systems are implemented with such type of decomposition.

System with object’s decomposition. If it is possible to decompose the
system S = 〈X, A, V, q〉 in a way that we gain subsystems with smaller number
of objects, it means that:
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S =
n⋃

i=1

Si,

where Si = 〈Xi, A, V, qi〉, Xi ⊆ X and
⋃

i Xi = X , qi : Xi×A→ V , qi = q|Xi×A.

System with attributes’s decomposition. When in system S there are often
the same types of queries, about the same group of attributes, it means that such
system should be divided to subsystems Si in a way that:

S =
⋃
i

Si,

where Si = 〈X, Ai, Vi, qi〉, Ai ⊆ A and
⋃

i Ai = A, Vi ⊆ V , qi : X × Ai → Vi,
qi = q|X×Ai .

Decomposition lets for optimization of the retrieval information process in the
system S. The choice between those two kind of decomposition depends only on
the type and main goal of such system.

2.4 Dynamic Information System and System with the History

In the literature information systems are classified according to their purposes:
documentational, medical or management information systems. We propose dif-
ferent classification: those with respect to dynamics of systems. Such a classifi-
cation gives possibility to:

1. Perform a joint analysis of systems belonging to the same class,
2. Distinguish basic mechanisms occuring in each class of systems,
3. Unify design techniques for all systems of a given class,
4. Simplify the teaching of system operation and system design principles.

Analysing the performance of information systems, it is easy to see that the data
stored in those systems are subject to changes. Those changes occur in definite
moments of time. For example: in a system which contains personal data: age,
address, education, the values of these attributes may be changed. Thus time is
a parameter determining the state of the system, although it does not appear in
the system in an explicit way. There are systems in which data do not change in
time, at least during a given period of time. But there are also systems in which
changes occur permanently in a determined or quite accidental way.

In order to describe the classification, which we are going to propose, we
introduce the notion of a dynamic information system, being an extension of the
notion of an information system presented by Professor Pawlak.

Definition 1. A dynamic information system is a family of ordered quadruples:

S = {〈Xt, At, Vt, qt〉}t∈T (1)

where:

– T - is the discrete set of time moments, denoted by numbers 0, 1, . . . , N ,
– Xt - is the set of objects at the moment t ∈ T ,
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– At - is the set of attributes at the moment t ∈ T ,
– Vt(a) - is the set of values of the attribute a ∈ At,
– Vt :=

S

a∈At
Vt(a) - is the set of attribute values at the moment t ∈ T ,

– qt - is a function which assigns to each pair 〈x, a〉, x ∈ Xt, a ∈ At, an
element of the set Vt, i.e. qt : Xt ×At → Vt.

An ordered pair 〈a, v〉, a ∈ At, v ∈ Vt(a) is denoted as a descriptor of the
attribute a. We will denote by qt,x a map defined as follows:

qx,t : At → Vt, (2)∧
a ∈ At

∧
x ∈ Xt

∧
t ∈ T

qt,x(a) := qt(a, x) (3)

Let Inf(S) = {V At
t }t∈T be a set of all functions from At to Vt for all t ∈ T .

Functions belonging to Inf(S) will be called informations at instant t, similarly,
the functions qt,x will be called the information about object x at instant t in
information system S. Therefore, an information about an object x at instant
t is nothing else, but a description of object x, in instant t, obtained by means
of descriptors. We will examine closer the changes, which particular elements
(X ,A,V ,q) of a dynamic system may undergo in certain time moments (see also
[46,47]). Systems, whose all parameters do not depend on time are discussed
in [7]. Here we deal with the dynamic systems in which the descriptions of
objects depend essentialy on time. It is useful to observe at the begining that
any dynamic system belongs to one of two classes of systems: time-invariant and
time-varying system.

Definition 2. Time-invariant system is the dynamic system such that:

1. Zt :=
T

t∈T
Dqt 	= ∅ and

2.
V

t,t′∈T

V

(x,a)∈ZT
qt(x, a) = qt′ (x, a)

where Dqt - domain of function qt.

Definition 3. Time-varying system is the dynamic system such that:

1. ZT :=
T

t∈T
Dqt = ∅ or

2. ZT 	= ∅ and
W

t,t′∈T

W

(x,a)∈ZT
qt(x, a) 	= qt′ (x, a).

2.5 Time-Invariant Systems

Let XT , AT be sets of objects and attributes of the dynamic system defined as
follows:

– XT :=
T

t∈T
Xt,

– AT :=
T

t∈T
At.
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It is evident by the definition of the time-invariant system that a dynamic system
is time-invariant if and only if

q := qt|ZT (4)

does not depend on t and ZT = XT ×AT .
It means that any time-invariant system S = {< Xt, At, Vt, qt >}t∈T , has a

subsystem S
′
in Pawlak ’s notion which is time independant

S
′
=< XT , AT , q(ZT ), q > .

Let us consider a system of library information in which books are objects, the
set of attributes is given by author’s name, title, publisher’s name, year of issue,
subject, etc. and attributes values are given in natural language [48,49].

Let us consider time evolution of this system on the example given by its
subsystem connected with four books:

– b1 = C.J.Date, An Introduction to database systems.
– b2 = G.T.Lancaster, Programming in COBOL.
– b3 = Ch.T.Meadow, The analysis of Information Systems.
– b4 = G.Salton, The SMART retrieval system.

and four attributes: publisher, year of issue, number of pages, subject. The history
of our library in years 1980, 1981, 1982 described by our subsystem depends
on two events. Begining from 1981 out library information was enritched with
the information about subject of book and the book b4 was bought, and in
1982 the book b3 was lost. This situation is given by dynamic system S =
{< Xt, At, Vt, qt >}t=1980,1981,1982, described in the tables 2, 3, and 4. Table 5
presents a time-invariant subsystem S

′
= {< Xt, At, Vt, q >} .

It is easy to see that in the dynamic system described above XT = {b1, b2},
AT={Publisher, Y ear, Pages}, and VT is given below what propes that q|XT ×AT

is time independent i.e. the system described in the example is time-invariant.

Table 2. S = {< Xt, At, Vt, qt >}t=1980

X1980\A1980 Publisher Year Pages
b1 Addison-Wesley Publish. Comp.Inc.,USA 1977 493
b2 Pergamon Press, Oxford, New York 1972 180
b3 John Wiley & Sons Inc., New York 1967 339

Table 3. S = {< Xt, At, Vt, qt >}t=1981

X1981\A1981 Publisher Year Pages Subject
b1 Addison-Wesley Publish. Comp.Inc.,USA 1977 493 Databases
b2 Pergamon Press, Oxford, New York 1972 180 Programming
b3 John Wiley & Sons Inc., New York 1967 339 Information Sys.
b4 Prentice-Hall Inc., Englewood-Cliffs, USA 1971 585 Retrieval Sys.
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Table 4. S = {< Xt, At, Vt, qt >}t=1982

X1982\A1982 Publisher Year Pages Subject
b1 Addison-Wesley Publish. Comp.Inc.,USA 1977 493 Databases
b2 Pergamon Press, Oxford, New York 1972 180 Programming
b4 Prentice-Hall Inc., Englewood-Cliffs, USA 1971 585 Retrieval Systems

Table 5. Time-invariant subsystem S
′
= {< Xt, At, Vt, q >}

XT \AT Publisher Year Pages
b1 Addison-Wesley Publish. Comp.Inc.,USA 1977 493
b2 Pergamon Press, Oxford, New York 1972 180

2.6 Time-Varying Systems

If
T

t∈T
Xt = ∅ or

T

t∈T
At = ∅ i.e. ZT = ∅ then the system is obviously time

dependent on T since there does not exist an element x beloniging to all Xt or
a belonging to all At.

IfZT 	= ∅ then the dynamic systemS = {< Xt, At, Vt, qt >}t∈T has a subsystem

S
′
= {< XT , AT , qt(ZT ), qt|ZT >},

t ∈ T and we can observe that this system is not time-invariant, since by the
definition of the time-varying system there exist t, t

′ ∈ T and (x, a) ∈ ZT that

qt(x, a) 	= qt′ (x, a).

A system which contains information about students [27] is good example of
a system with time-varying information. The set of objects is the set of all
students of a fixed University [Faculty,Course]. As a set of attributes we may
choose, for example: STUDY-YEAR, GROUP, MARK-OF-MATH, MARK-OF-
PHYSICS,AV-MARK and so on. Descriptors are as before, pairs of the form
<attribute, attribute value>, where the sets of attribute values are as follows:

||STUDY − Y EAR|| = {I, II, III, . . .},
||GROUP || = {1, 2, 3, . . .},
||MARK −OF −MATH || = {2, 3, 4, 5},
||MARK −OF − PHY SICS|| = {2, 3, 4, 5},
||AV ERAGE MARK|| = {2, 2.1, 2.2, . . . , 5}.

Let us assume that student changes the study year if his average mark lays be-
tween 3 and 5. If not the student ramains on the same year of studies. If there
is not a change in the study year the student can change the students group.
Let us consider the history of three students s1, s2, s3 begining with the first
year of their studies during the following three years. The situation in the system
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Table 6. First year of observation

X1\A1 Year Group Av.mark
s1 I 1 −
s2 I 1 −
s3 I 2 −

Table 7. Second year of observation

X2\A2 Year Group Av.mark
s1 I 3 3.1
s2 II 1 4.1
s3 II 2 3.3

Table 8. Third year of observation

X3\A3 Year Group Av.mark
s1 II 3 3.1
s2 III 1 4.8
s3 II 1 3.7

is described in tables 6, 7, and 8. One can observe that XT = {s1, s2, s3},
AT = {STUDY − Y EAR, GROUP, AV −MARK}, and

qt(s1, STUDY Y EAR) =

⎧⎨⎩
I t = 1 year of observation
I t = 2 year of observation
II t = 3 year of observation

(5)

what means that the system is the time-varying system.

2.7 Variability of Information in Dynamic Systems

In time-varying systems we can observe various types of information changes.
If the set ZT = {

T

t∈T
XT } ∩ {

T

t∈T
AT } 	= ∅ then the important features of

the character of changes of the information in time is described by the dynamic
subsystem S

′
.

S
′
= {< XT , AT , qt(ZT ), qt|ZT >}t∈T .

In the subclass of dynamic systems, represented by system S
′
, the state of the

system depends on time t by the family {qt}t∈T only.
Due to a way of realization of this subclass of systems in the practise it is

sensible to consider such a realization of systems, which allows to determine
values of the function:

f(x, a, qt−1(x, a), . . . , qt−i(x, a))

for all x ∈ XT , a ∈ AT and t ∈ T .
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By f we denote any function which is feasible in the considered realization, and
by i we denote so called depth of information and can assume values 0, 1, . . . , I.
When i = 0 the function f depends on x and a only. One can observe that
such realizations of systems are not giving possibility of determining values of a
function which explicitly depends on t. This is one of features which distinguish
dynamic information systems from data processing systems. From the point of
view of the realizations described above, any dynamic system belongs to the one
of the subsequent classes:

1. Systems with determined variability SDV .

A dynamic system belongs to SDV if and only if:
–

V

(x,a)∈ZT
there exist initial values q−1(x, a), . . . , q−i(x, a) ∈

S

t∈T
Vt

such that:
V

t∈T

V

(x,a)∈ZT
qt(x, a) = f(x, a, qt−1(x, a), . . . , qt−i(x, a))

for properly choosen (feasible) function f .

2. Systems with predictable variability SPV .

A dynamic system belongs to SPV if and only if:
– it does not belong to SDV ,
– there exist T1,. . . , TM ⊂ T (

⋃M
j=1 Tj = T , Tj ∩ Tk = ∅, for j 	= k,

j, k = 1, . . . , M , card Tj > 1 for j = 1, . . . , M),
and feasible functions f1, . . . , fM such that:

V

t∈Tj

V

(x,a)∈ZT
qt(x, a) = fj(x, a, qt−1(x, a), . . . , qt−j(x, a))

for properly choosen initial values q−1(x, a), . . . , q−ij(x, a).

3. Systems with unpredictable variability SUV .

A dynamic system belongs to SUV if and only if:
– it does not belong to SDV or SPV .

It is worthy to underline that to SUV can belong systems whose structure
is formally simple. For example, the system whose information function is
determined as follows:

qt(x, a) =
{

f1(x, a, qt−1(x, a), . . . , qt−i1(x, a)) or
f2(x, a, qt−1(x, a), . . . , qt−i2(x, a)) (6)

belongs to SUV as long as there is not determined for which t: f1 and for
which f2 is applied.

2.8 Examples of Time-Varying Systems

Examples of systems belonging to SDV , SPV and SUV classes are given here.
An example of a system with determined variability SDV can be a system
of patient supervision (medical information). The objects of this system are
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Table 9. The prescribitions of medicaments and tests for patients

X\A Test blood X-ray lungs Peniciline injections Vitamins
p1 1 - - 0.2 C
p2 - - 1 -
p3 - + - 0.03 B1

p4 1 - - -

Table 10. The physician prescription for a given patient

A\t 0 1 2 3 4 5 6 7 8 9 10
P 1 1 1 1 1 1 0 0 0 0 0
T 0 0 1 0 0 1 0 0 1 0 0

patients. The attributes are, for example, test of blood morphology, lungs X-ray,
prescribed penicillin, prescribed doses of vitamins (in mg), etc. The following
table (Table 9) presents prescribitions of medicaments and tests for patients
p1, p2, p3, p4 at the begining of the considered system performance (t = 0). Let us
describe the system performance on the example of the patient p2 who after small
surgery get an bacterial infection. Physician prescription is as follows: Penicillin
injections P for six forthcoming days, blood morphology test T every thrid day.
This prescription gives the following table (Table 10) of function qt(p2, P ) and
qt(p2, T ). One can observe that using the Boolean algebra notion these functions
can be written in the following form

∗
{

qt(p2, P ) = qt−1(p2, P )[qt−2(p2, P ) + qt−7(p2, P )]
qt(p2, T ) = qt−1(p2, T ).qt−2(p2, T ) (7)

if only initial values are given as follows

∗ ∗

⎧⎨⎩
q−1(p2, P ) = 1
q−j(p2, P ) = 0 for j = 2, 3, . . . , 7 information depth = 7,
q−k(p2, T ) = 1 for k = 1, 2 information depth = 2.

(8)

The formulas / ∗ /, / ∗ ∗/ convince us that described system (at least reduced to
object p2 and attributes P and T ) is SDV . Other systems of the class SDV can
be found in [29,28,30]. As a example of SPV we use the system with students,
and we assume that T1, T2, T3 are time intervals determined as follows:

T1: from Oct.1st 1980 to Sept.30th 1981,
T2: from Oct.1st 1981 to Sept.30th 1982,
T3: from Oct.1st 1982 to Sept.30th 1983.

It is easy to see that the function qt(si, Y ), qt(si, G), qt(si, A.m), i = 1, 2, 3. are
constants in each time interval T1, T2, T3. Therefore on each interval T1, T2, T3
this function are realizable (information depth = 0) and the system belongs to
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Table 11. The example of the system belonging to the SUV

X\A Storage Prod.division (I) Prod.division(II)
M1 200 50 30
M2 100 10 20
M3 0 5 4

SPV . Finally, let us consider a system which describes materials managment in
a factory. Objects in this system are different types od materials. The attributes
can be here production divisions and /or workstands and the main storage. The
attribute values are given in units (of weight, measure, etc.) which are natural
for the described object. Let us consider the system of this kind reduced to three
objects a storage and two production divisions as attributes. Let the attribut
values be given in the Table 11. It is obvious that a state of resources of the
objects Mi on the production division K (K = I,II) depends not only of infor-
mation function qt−1(Mi, K) but also on information function defined on other
attributes i.e. depends on qt−1(M1, II), qt−1(M1, St.), qt−1(M1, I) therefore it is
not a function which can be used as information function due to the definition
of dynamic system. Moreover the values of functions qt(Mi, St.) are not deter-
mined a priori and generally we can not determine the moments in which these
values will be changed. This system of course does not belong to SDV or SPV .
Therefore it belongs to SUV . Examples of systems belonging to the SUV class
can be found in [27,31] also.

2.9 Influence of Foundations of a System on Its Classification

Analysing foundations of a real system we can determine to which of described
above classes the system belongs. Thus e.g., if we assume, that objects of the sys-
tem are documents with static or rarely changing descrptions, then this system
will belong to the class of invariant systems. The characteristics of most library
systems imply directly their belonging to the class of time-invariant systems.
In the same way, the assumption about variability in documents descriptions
will suggest, that a system containing such documents belongs to the class of
systems with time-varying information. Of course, if we are able to determine
moments in which descrptions changes will occur, then it will be the system with
predictable variability (SPV ). If we are not able to determine these moments
- we will obtain a system with unpredictable variability (SUV ). Some systems
are a priori classified as systems with determined variability (SDV ), because
the knowledge of “histories” of objects is one of the requirements, as in medical
systems for example. So, foundations of the realized information system decide
a priori about its classification - which, in consequence, suggests a priori certain
performance mechanisms of this system. Many of existing systems are actually
packages of systems belonging to different classes (e.g. medical system may con-
sist with a module of registration which is an time-invariant system and with
a module of patients supervison which belongs to the class of time-varying sys-
tems). In this case every of modules is designed as a system of an appropriate
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class. The classification resulted from the analysis of performance of informa-
tion systems, can be a convenient tool for designing purposes. When somebody
starts system designing, he has a good knowledge of systems foundation and
parameters but generally he can not predict proper mechanisms of system per-
formance. In this situation, as was stated above, he can determine a class to
which the system belongs. This allows him to choose adequate mechanisms of
system performance.

2.10 Performance Mechanisms in Dynamic Systems

In a realization of information systems we should made decisions about a struc-
ture of database and the way of its updating, on the retrieval method and a
retrieval language we are going to use and on the mode of operation which will
be used in the system. In the forthcoming we give some remarks how these
decision depend on the fact that the considered system belongs to one of the
determined classes i.e. class of Invariant Systems, class of Systems with Deter-
mined Variability (SDV ), class of Systems with Predictable Variability (SPV ),
class of Systems with Unpredictable Variability (SUV ).

Database and its updating
At first let us consider invariant systems. The database of the invariant system is
static throughout the period of performance. A reorganization of the database,
if desired, is realized after the period of performance and consists in creating a
new database. In systems with time-varying information the database changes
during the action of the system. In systems with determined variability (SDV )
we have to store information about an object in the past because this information
is necessary for determining the actual information about this object. Thus the
“history”, with prescribed depth of information about objects, should be stored
in the database. In systems with predictable variability (SPV ) actualization
and reorganization of the database ought to be executed at certain moments,
in which changes are predicted. These are mainly changes in descriptions of
objects. The database reorganization (actualization) does not necessarily involve
changes in programs operating on the database. In systems with unpredictable
variability (SUV ) any execution of the retrieval process ought to be preceded
by the actualization of descriptions of objects. In all systems with time-varying
information we can have at the same period an actualization of the set od objects,
set of attributes and set of descriptors, as in invariant systems.

Retrieval method and information retrieval language
Because of the specyfic character of the database and actualization process, one
prefers the exhaustice search as a retrieval method for invariant systems.In such
a case an extension of database does not results in the retireval method. At most,
in order to speed up the system performance, one may apply the methods of in-
verted files or linked lists. These methods are more useful for some systems with
predictable variability (information depth =0). There, when the system action
is stoped, the database can be actualized along with inverted files or linked lists
updating. In these systems there is no need for developing special information
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retrieval languagees, because languages based on thesauruses, indexing or deci-
mal classification seem to be sufficiently efficient. However in the invariant sys-
tems and systems with predictable variability one can prefer a specific method
of retrieval. For a realization of the systems with time-varying information a
grouping of informations and random access to descriptions of these groups or
an individual description of object is essential. Mathematical methods of retrieval
seem to be the most convenient in this case (for example: Lum’s methods [23] or
the atomic component method with decomposition of system). These retireval al-
gorithms allow us to find quickly a particular information, they also simplify the
updating process. In the case of systems with determined variability (SDV ), this
problem looks a bit different, because a new information is constantly created
and has to be stored. In this case the method of linked lists seem to be as good as
mathematical methods (e.g. the method of atomic components). In the method
of linked lists an actual information about the object is obtained by considera-
tion of a chain of a determined length given by the depth of information. In the
systems with time-varying information a language based on descriptors is the
most convenient, for information retrieval, since it allows us easy to write/read
informations described by means of codes which are equivalents of descriptors.
Moreover in this case the descriptions of objects are determined by the values of
attributes. Informations in time-varynig systems are always described by means
of codes, therefore all output informations are translated onto the natural lan-
guage. Consequently, from the user’s point of view, there is no difference if the
system uses the descriptor or another language. In some cases, when this transla-
tion can be omitted (e.g. in medical systems, which are used by medical servise)
the descriptors ought to be introduced in accordance with codes accepted by a
user. Here we ought to mention interactive languages, which seem to be neces-
sary for most systems with time-varying information (the necessity of a dialogue
with the system) but they will be discussed latter on, along with the operation
mode of dynamic systems.

Operation mode
Let us consider now the continuous operation mode and the batch operation
mode in an information system. The continuous operation mode consists in cur-
rent (i.e. ∀t∈T ) information feeding, therefore we hace current data base updat-
ing. This operation mode will occur in systems with unpredictable variability,
an actualization processes will be executed in turns with retrieval processes. In
most cases, however, information systems work in batch operation mode, which
means that in certain moments actualization and reorganization processes take
place. This operation mode can be used in invariant and time-varying systems
with predictable variability (SPV ). A case with the interactive operation mode
is a bit different, since a user is able to communicate with a system. If this mode
is used only for rerieval purposes (to find more complete or relevant information),
then it can be applied to a system of arbitrary class. But if goal of this dialogue is
to create a new data base structure (internal changes), then interactive systems
are limited down to the class of systems with unpredictable variability (SUV ).
At the end let us mention that due to the structure of dynamic model discussed
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here (definition of the dynamic information system) performance mechanisms
are applied to any pair (x, a), x ∈ XT , a ∈ AT separately. This all reorganiza-
tions of the model which are based on concurrent processing and multi-access
give high efficiency of the information system in the practise.

Conclusion
In this paper a possibility of introducing dynamics in Pawlak ’s model of systems
is presented. In the most situations of practise this model is more convenient then
the classical (relational) model. It is due to the fact that in Pawlak’s model, in-
formation about an object are given by functions, while in the classical model
informations are determined by relations. This simplifies a description of systems
and their analysis, which is important not only for system designing but also for
teaching of system operation. Authors think, that the only way of teaching how
to use the system and how to design it, goes by understanding of system opera-
tion mechanisms. For the model presented here the proposed classification allows
to fullfil this goal easier. The model of information system created by Pawlak is
very useful to built and analysis in different types of retrieval information sys-
tems. The document information systems are very specific type of information
systems and Pawlak ’s model is very good to define the informations in it.

3 Decision Support Systems

When data mining first appeared, several disciplines related to data analysis, like
statistics or artificial intelligence were combined towards a new topic: extracting
significant patterns from data. The original data sources were small datasets
and, therefore, traditional machine learning techniques were the most common
tools for this tasks. As the volume of data grows these traditional methods were
reviewed and extended with the knowledge from experts working on the field
of data management and databases. Because of that, information systems with
some data-mining methods start to be the decision support systems. Decision
support system is a kind of information system, which classifies each object to
some class denoted by one of the attributes, called decision attribute.

While the information system is simply a pair of the form U and A, the deci-
sion support system is also a pair S = (U, C ∪ {d}) with distinguished attribute
d. In case of decision table the attributes belonging to C are called conditional
attributes or simply conditions while d is called decision.

We will further assume that the set of decision values is finite.
The i-th decision class is a set of objects:

Ci = {x ∈ U : d(x) = di},

where di is the i-th decision value taken from decision value set Vd={d1, . . . , d|Vd|}.
Let us consider the decision table presented as Table 12. In presented system (with
informations about students):

C = {a, b, c},
D = {d}.
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Table 12. Decision table

student a b c d
x1 a1 b1 c1 T
x2 a1 b1 c2 T
x3 a2 b1 c3 T
x4 a2 b1 c4 N
x5 a1 b2 c1 N
x6 a1 b2 c2 T
x7 a2 b2 c3 T
x8 a2 b2 c4 N

Having indiscernibility relation we may define the notion of reduct. In case of
decision tables decision reduct is a set B ⊂ C of attributes, which cannot be
further reduced and IND(B) ⊆ IND(d).

Decision rule is a formula of the form:

(ai1 = v1) ∧ . . . ∧ (aik
= vk)⇒ (d = vd),

where 1 ≤ i1 < . . . < ik ≤ m, vj ∈ Vaij .
We can simply interpret such formula similar to natural language with if and

then elements.
In given decision table the decision rule for object x1 is given as:

if (a = a1) and (b = b1) and (c = c1) then (d = T ),

the same as
(a = a1) ∧ (b = b1) ∧ (c = c1)→ (d = T ).

Atomic subformulas (ai1 = v1) are called conditions, premises. We say that rule
r is applicable to object, or alternatively, the object matches rule, if its attribute
values satisfy the premise of the rule.

Each object x in a decision table determines a decision rule:

∀a∈C(a = a(x)) ⇒ (d = d(x))),

where C is set of conditional attributes and d is decision attribute. Decision rules
corresponding to some objects can have the same condition parts but different
decision parts. We use decision rules to classify given information. When the
information is uncertain or just incomplete there is need to use some additional
techniques for information systems. Numerous methods based on the rough set
approach combined with Boolean reasoning techniques have been developed for
decision rule generation.

4 Rough Sets

Rough Set theory has been applied in such fields as machine learning, data
mining, etc., successfully since Professor Pawlak developed it in 1982. Reduction
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of decision table is one of the key problem of rough set theory. The methodology
is concerned with the classificatory analysis of imprecise, uncertain or incomplete
information or knowledge expressed in terms of data acquired from experience.
The primary notions of the theory of rough sets are the approximation space
and lower and upper approximations of a set. The approximation space is a
classification of the domain of interest into disjoint categories. The membership
status with respect to an arbitrary subset of the domain may not always be
clearly definable. This fact leads to the definition of a set in terms of lower and
upper approximations [9,10,11].

4.1 The Basic Notions

One of the basic fundaments of rough set theory is the indiscernibility relation
which is generated using information about particular objects of interest. In-
formation about objects is represented in the form of a set of attributes and
their associated values for each object. The indiscernibility relation is intended
to express the fact that, due to lack of knowledge, we are unable to discern some
objects from others simply by employing the available information about thos
objects. Any set of all indiscernible (similar) objects is called an elementary set,
and forms a basic granule (atom) of knowledge about the universe. Any union
of some elementary sets in a universe is referred to as a crisp set. Otherwise the
set is referred to as being a rough set. Then, two separate unions of elementary
sets can be used to approximate the imprecise set. Vague or imprecise concepts
in contrast to precise concepts, cannot be characterized solely in terms of infor-
mation about their elements since elements are not always discernable from each
other. There is an assumption that any vague or imprecise concept is replaced
by a pair of precise concepts called the lower and the upper approximation of
the vague or imprecise concept.

4.2 Lower/Upper Approximation

The lower approximation is a description of the domain objects which are known
with certainty to belong to the subset of interest, whereas the upper approxima-
tion is a description of the objects which possibly belong to the subset. Any
subset defined through its lower and upper approximations is called a rough
set. It must be emphasized that the concept of rough set should not be con-
fused with the idea of fuzzy set as they are fundamentally different, although
in some sense complementary, notions. Rough set approach allows to precisely
define the notion of concept approximation. It is based on the indiscernibility
relation between objects defining a partition of the universe U of objects. The
indiscernibility of objects follows from the fact that they are perceived by means
of values of available attributes. Hence some objects having the same (or similar)
values of attributes are indiscernible.

Let S = (U, C ∪D) be an information system, then with any B ⊆ C there is
associated an equivalence relation INDS(B), called the B-indiscernibility rela-
tion, its classes are denoted by [x]B .
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For B ⊆ C and X ⊆ U , we can approximate X using only the information
contained in B by constructing the B-lower(BX) and B-upper approximations
of X (BX), where:

BX = {x : [x]B ⊆ X}
and

BX = {x : [x]B ∩X 	= ∅}.
The B-lower approximation of X is the set of all objects which can be certainly
classified to X using attributes from B. The difference between the upper and
the lower approximation constitutes the boundary region of a vague or imprecise
concept. Upper and lower approximations are two of the basic operations in
rough set theory.

4.3 Reduct and core of Attributes

In the rough set area there is also a very important problem with finding (select)
relevant features (attributes), which source is denoted as so called core of the
information system S.

Reduct is a minimal set of attributes B ⊆ C such that INDS(B) = INDS(C),
which means that it is a minimal set of attributes from C that preserves the
original classification defined by the set C of attributes.

The intersection of all reducts is the so-called core. In the example both the
core and the reduct consist of attributes b and c (CORE(C) = {b, c}, RED(C) =
{b, c}).

4.4 Rule Induction

Rough set based rule induction methods have been applied to knowledge dis-
covery in databases, whose empirical results obtained show that they are very
powerful and that some important knowledge has been extracted from databases.
For rule induction, lower/upper approximations and reducts play important roles
and the approximations can be extended to variable precision model, using accu-
racy and coverage for rule induction have never been discussed. We can use the
indiscernibility function fS , that form a minimal decision rule for given decision
table [1].

For an information system S = (U, C ∪ {d}) with n objects, the discernibility
matrix of S is a symmetric n× n matrix with entries cij defined as:

cij = {a ∈ C|a(xi) 	= a(xj)} for i, j = 1, 2, . . . , n

where d(xi) 	= d(xj)). Each entry consists of the set of attributes upon which
objects xi and xj differ.

A discernibility function fS for an information system S is a boolean function
of m boolean variables a∗

1, . . . , a
∗
m (corresponding to the attributes a1, . . . , am)

defined by:
fS =

∧{∨
c∗ij |1 ≤ j ≤ i ≤ n, cij 	= ∅

}
(9)

where c∗ij = {a∗|a ∈ cij}.
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For given decision table we formed following set of rules:

– rule nr 1: if a = a1 and b = b1then d = T
– rule nr 2: if b = b1 and c = c1then d = T
– rule nr 3: if b = b1 and c = c2then d = T
– rule nr 4: if c = c3 then d = T
– rule nr 5: if c = c4 then d = N
– rule nr 6: if b = b2 and c = c1then d = N
– rule nr 7: if c = c2 then d = T .

4.5 Rough Set Theory and Decision Systems in Practise

The main specific problems addressed by the theory of rough sets are not only
representation of uncertain or imprecise knowledge, or knowledge acquisition
from experience, but also the analysis of conflicts, the identification and evalu-
ation of data dependencies and the reduction of the amount of information. A
number of practical applications employing this approach have been developed
in recent years in areas such as medicine, drug research, process control and
other. The recent publication of a monograph on the theory and a handbook on
applications facilitate the development of new applications. One of the primary
applications of rough sets in artificial intelligence is knowledge analysis and data
mining [12,13,16,17].

From two expert systems implemented at the Silesian University, MEM is the
one with the decision table in the form of the knowledge base. It is a diagnosis
support system used in child neurology and it is a notable example of a complex
multistage diagnosis process. It permits the reduction of attributes, which allows
improving the rules acquired by the system. MEM was developed on the basis
of real data provided by the Second Clinic of the Department of Paediatrics of
the Silesian Academy of Medicine. The system is employed there to support the
classification of children having mitochondrial encephalopathies and consider-
ably reduces the number of children directed for further invasive testing in the
consecutive stages of the diagnosis process [18,19]. The work contains an example
of applying the rough sets theory to application of support decision making. The
created system limits maximally the indications for invasive diagnostic methods
that finally decide about diagnosis. System has arisen using induction (machine
learning from examples) - one of the methods artificial intelligence. Three stages
classification has been created. The most important problem was to create an
appropriate choice of attributes for the classification process and the generation
of a set of rules, a base to make decisions in new cases. Rough set theory provides
the appropriate methods which form to solve this problem. A detailed analysis
of the medical problem results in creating a three -staged diagnostic process,
which allows to classify children into suffering from mitochondrial encephalomy-
opathy and ones suffering from other diseases. Data on which the decisions were
based, like any real data, contained errors. Incomplete information was one of
them. It resulted from the fact that some observation or examinations were not
possible to be made for all patients. Inconsistency of information was another
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problem. Inconsistency occured because there were patients who were differently
diagnosed at the same values of the parameters analyzed. Additionally develop-
ing a supporting decision system in diagnosing was connected with reducing of
knowledge, generating decision rules and with a suitable classification of new
information.

The first stages of research on decision support systems concentrated on:
methods to represent the knowledge in a given system and the methods of the
verification and validation of a knowledge base [14].

Recent works, however, deal with the following problems: a huge number of
rules in a knowledge base with numerous premises in each rule, a large set of
attributes, many of which are dependent, complex inference processes and the
problem of the proper interpretation of the decision rules by users. Fortunately,
the cluster analysis brings very useful techniques for the smart organisation of the
rules, one of which is a hierarchical structure. It is based on the assumption that
rules that are similar can be placed in one group. Consequently, in each inference
process we can find the most similar group and obtain the forward chaining
procedure on this, significantly smaller, group only. The method reduces the time
consumption of all processes and explores only the new facts that are actually
necessary rather then all facts that can be retrieved from a given knowledge base.

In our opinion, clustering rules for inference processes in decision support
systems could prove useful to improve the efficiency of those systems [3,4]. The
very important issue for knowledge base modularization is the concept proposed
in [26], where the decision units conception was presented. Both methods: cluster
analysis and decision unit are subject of our recent researches. We propose such
methods to represent knowledge in composited (large, complex) knowledge bases.
Using modular representation we can limit the number of rules to process during
the inference. Thanks to properties of the cluster and the decision units we can
perform different large knowledge bases are an important problem in decision
systems. It is well known that the main problem of forward chaining is that it
fires a lot of rules, that are unnecessary to fire, because they aren’t the inference
goal. A lot of fired rules forming a lot of new facts that are difficult to interpret
them properly. That is why the optimization of the inference processes in rule
based systems is very important in artificial intelligence area. Fortunately there
are some methods to solve such problem. For example, we may reorganize the
knowledge base from list of not related rules, to groups of similar rules (thanks to
cluster analysis method) or decision units. Thanks to this it is possible to make
the inference process (even for really large and composited knowledge bases)
very efficient. Simplifying, when we clustering rules, then in inference processes
we search only small subset of rules (cluster), that the most similar to given facts
or hipothesis [25]. In case of using decision units concept, thanks to constructed
such units, in backward chaining technique we make inference process only on
proper decision unit (that with the given conclusion attribute). That is why we
propose to change the structure of knowledge base to cluster or decision unit
structure inference algorithm optimizations, depending on user requirements. On
this stage of our work we can only present the general conception of modular
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rule base organization. We can’t formally proof that our conception really will
cause growth of efficiency. But in our opinion hierarchical organization of rule
knowledge base allow us to decrease the number of rules necessary to process
during inference, thus we hope that global inference efficiency will grow. On
this stage of our reaserch, decision units (with Petri nets extensions) and rules
clusters are parallel tools for rule base decomposition rather than a one coherent
approach. Therefore we have two methods of rule base decomposition — into
the rules clusters if we want to perform forward chaning inference and into
the decision units, if we want to do backward chanining inference. The main
goal of our future work is to create coherent conception of modularization of
large rule bases. This conception shall join two main subgoals: optimalization
of forward and backward chaining inference process and practical approach for
rule base modelling and verification. In our opinion, two methods of rule base
decomposition described in this work, allow as to obtain our goals. It is very
important, that exists software tools, dedicated for rules clustering and decision
units approach. Practical tests allow us to say, that we need specialized software
tools when we work with large, composited rule bases. We expect, that our mixed
approach is base for creating such software tools.

Rough sets theory enables solving the problem of a huge number of attributes
and dependent attributes removal. The accuracy of classification can be increased
by selecting subsets of strong attributes, which is performed by using several clas-
sification learners. The processed data are classified by diverse learning schemes
and the generation of rules is supervised by domain experts. The implementation
of this method in automated decision support software can improve the accuracy
and reduce the time consumption as compared to full syntax analysis [20,21,22].
Pawlak’s theory is also widely used by Zielosko and Piliszczuk to build clasi-
fiers based on partial reducts and partial decision rules [43,44]. Recently, partial
reducts and partial decision rules were studied intesively by Moshkov and also
Zielosko and Piliszczuk. Partial reducts and partial decision rules depend on the
noise in less degree than exact reducts and rules [42]. Moreover, it is possible to
construct more compact classifiers based on partial reducts and rules. The exper-
iments with classifiers presented in [45] show that accuracy of classifiers based on
such reducts and rules is often better than the accuracy based on extact reducts
and rules.

The very important facts are that in a 1976 Dempster and Shafer have cre-
ated a mathematical theory of evidence called Dempster-Shafer theory, which is
based on belief functions and plausible reasoning [32]. It lets to combine separate
pieces of information (evidence) to calculate the probability of an event. Pawlak’s
rough set theory as an innovative mathematical tool created in 1982 let us to
describe the knowledge, including also the uncertain and inexact knowledge [8].
Finally, In 1994 the basic functions of the evidence theory have been defined,
based on the notion from the rough set theory [33]. All the dependences between
these theories has allowed further research on their practical usage. There are
some papers that tried to show the relationships between the rough set theory
and the evidence theory which could be used to find the minimal templates
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for a given decision table were also published [34,35]. Extracting the templates
from data is a problem that consists in the finding some set of attributes with
a minimal number of attributes, that warrants, among others, the sufficiently
small difference between the belief function and the plausibility function. This
small difference between these functions allows reducing the number of the at-
tributes (together with the decrease in the vales of the attributes) and made the
templates. Moreover MTP (minimal templates problem) gives the recipe witch
decision value may be grouped. At the end we get decision rules with the suitable
large support.

Of course, in recent years it is possible to witness a rapid growth of interest of
application of rought set theory in many other domains such as, for instance, vi-
bration analysis, conflict resolution, intelligent agents, pattern recognition, con-
trol theory, signal analysis,process industry, marketing, etc. Swiniarski in [36]
presented an application of rough sets method to feature selection and reduction
as a front end of neural network based texture images recognition. The role of
the rough sets is to show its ability to select reduced set of pattern’s features.

In other paper, presented by Nguyen we can observe the multi-agent system
based on rough set theory [37]. The task of creating effective methods of web
search result connected with the clustering method, based on rough sets was
presented in [41] by Nguyen. Pawlak’s theory was also used to perform new
methodology for data mining in distributed and multiagent systems [38].

Recently, rough set based methods have been proposed for data mining in
very large relational data bases [39,40].

4.6 Conclusions

Classification is an important problem in the field of Data Mining. Data ac-
quisition and warehousing capabilities of computer systems are sufficient for
wide application of computer aided Knowledge Discovery. Inductive learning is
employed in various domains such as medical data analysis or customer activ-
ity monitoring. Due to various factors that data suffer from impreciseness and
incompleteness. There are many classification approaches like “nearest neigh-
bours”, “naive Bayes”, “decision tree”, “decision rule set”, “neural networks”
and many others. Unfortunately, there are opinions that rough set based meth-
ods can be used for small data set only. The main approach is related to their
lack of scalability (more precisely: there is a lack of proof showing that they can
be scalable). The biggest troubles stick in the rule induction step. As we know,
the potential number of all rules is exponential. All heuristics for rule induction
algorithms have at least O(n2) time complexity, where n is the number of objects
in the data set and require multiple data scanning. Rough Sets Theory has been
applied to build classifiers by exploring symbolic relations in data. Indiscerni-
bility relations combined with the cloncept notion, and the application of set
operations, lead to knowledge discovery in an elegant and intuitive way. Knowl-
edge discovered from data talbes is often presented in terms of “if...then...”
decision rules. With each rule a confidence measure is associated. Rough sets
provide symbolic representation of data and the representation of knowledge in
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terms of aatributes, information tables, semantic decision rules, rough measures
of inclusion and closeness of information granules, and so on. Rough set methods
make possible to reduce the size of a dataset by removing some of the attributes
while preserwing the partitioning of the universe of an information system into
equivalence classes.

5 Summary

Information systems and decision support systems are strongly related. The
paper shows that we can treat a decision system as an information system of
some objects, for which we have the information about their classification. When
the information is not complete, or the system has some uncertain data - we can
use rough set theory to separate the uncertain part from that, what we are sure
about. By defining the reduct for a decision table, we can optimize the system
and then, using the methods for minimal rules generation, we can easily classify
new objects. We see, therefore, that Prof. Pawlak’s contribution to the domain
of information and decision support systems is invaluable [24].
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Abstract. This paper introduces Debellor (www.debellor.org) – an open
source extensible data mining platform with stream-based architecture,
where all data transfers between elementary algorithms take the form of
a stream of samples. Data streaming enables implementation of scalable
algorithms, which can efficiently process large volumes of data, exceed-
ing available memory. This is very important for data mining research
and applications, since the most challenging data mining tasks involve
voluminous data, either produced by a data source or generated at some
intermediate stage of a complex data processing network.

Advantages of data streaming are illustrated by experiments with clus-
tering time series. The experimental results show that even for moderate-
size data sets streaming is indispensable for successful execution of
algorithms, otherwise the algorithms run hundreds times slower or just
crash due to memory shortage.

Stream architecture is particularly useful in such application domains
as time series analysis, image recognition or mining data streams. It is
also the only efficient architecture for implementation of online algo-
rithms.

The algorithms currently available on Debellor platform include all
classifiers from Rseslib and Weka libraries and all filters from Weka.

Keywords: Pipeline, Online Algorithms, Software Environment, Li-
brary.

1 Introduction

In the fields of data mining and machine learning, there is frequently a need to
process large volumes of data, too big to fit in memory. This is particularly the
case in some application domains, like computer vision or mining data streams
[1,2], where input data are usually voluminous. But even in other domains, where
input data are small, they can abruptly expand at an intermediate stage of
processing, e.g. due to extraction of windows from a time series or an image
[3,4]. Most of ordinary algorithms are not suitable for such tasks, because they
try to keep all data in memory. Instead, special algorithms are necessary, which
make efficient use of memory. Such algorithms will be called scalable.
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Another feature of data mining algorithms – besides scalability – which is very
desired nowadays is interoperability, i.e. a capability of the algorithm to be easily
connected with other algorithms. This property is more and more important, as
basically all newly created data mining systems – whether experimental or end-
user solutions – incorporate much more than just one algorithm.

It would be very worthful if algorithms were both scalable and interoperable.
Unfortunately, combining these two features is very difficult. Interoperability
requires that every algorithm is implemented as a separate module, with clearly
defined input and output. Obviously, data mining algorithm must take data as
its input, so the data must be fully materialized – generated and stored in a
data structure – just to invoke the algorithm, no matter what it actually does.
And materialization automatically precludes scalability of the algorithm.

In order to provide scalability and interoperability at the same time, algo-
rithms must be implemented in a special software architecture, which do not
enforce data materialization. Debellor1 – the data mining platform introduced
in this paper – defines such an architecture, based on the concept of data stream-
ing. In Debellor, data are passed between interconnected algorithms sample-by-
sample, as a stream of samples, so they can be processed on the fly, without
full materialization. The idea of data streaming is inspired by architectures of
database management systems, which enable fast query execution on very large
data tables.

It should be noted that Debellor is not a library, like e.g., Rseslib2 [5,6,7]
or Weka3 [8], but a data mining platform. Although its distribution contains
implementations of a number of algorithms, the primary goal of Debellor is to
provide not algorithms themselves, but a common architecture, in which var-
ious types of data processing algorithms may be implemented and combined,
even if they are created by independent researchers. Debellor can handle a
wide range of algorithm types: classifiers, clusterers, data filters, generators etc.
Moreover, extendability of data types is provided, so it will be possible to pro-
cess not only ordinary feature vectors, but also images, text, DNA microarray
data etc.

It is worth mentioning that Debellor’s modular and stream-oriented architec-
ture will enable easy parallelization of composite data mining algorithms. This
aspect will be investigated elsewhere.

Debellor is written in Java and distributed under GNU General Public Li-
cense. Its current version, Debellor 0.5, is available at www.debellor.org. The
algorithms currently available include all classifiers from Rseslib and Weka li-
braries, all filters from Weka and a reader of ARFF files. There are also several
algorithms implemented by Debellor itself, like Train&Test evaluation proce-
dure. The algorithms from Rseslib and Weka, except the ARFF reader, are not
scalable – this is enforced by architectures of both libraries.

1 The name originates from Latin debello (to conquer) and debellator (conqueror).
2 http://rsproject.mimuw.edu.pl/
3 http://www.cs.waikato.ac.nz/ml/weka/
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2 Related Work

There is large amount of software that can be used to facilitate implementation
of new data mining algorithms. A common choice is to use an environment for
numerical calculations: R4 [9], Matlab5, Octave6 [10,11] or Scilab7 and imple-
ment the algorithm in a scripting language defined by the environment. Many
data mining and machine learning algorithms are available for each of these en-
vironments, usually in a form of external packages, so the environments can be
seen as common platforms for different data mining algorithms. However, they
do not define common architecture for algorithms, so they do not automatically
provide interoperability. Moreover, the scripting languages of these environments
have low efficiency, no static typing and only weak support for object-oriented
programming, so they are suitable for fast prototyping and running small exper-
iments, but not for implementation of scalable and interoperable algorithms.

Another possible choice is to take a data mining library written in a general-
purpose programming language (usually Java) – examples of such libraries are
Weka8 [8], Rseslib9 [5,6,7], RapidMiner10 [12] – and try to fit the new algorithm
into the architecture of the library. However, these libraries preclude scalability
of algorithms, because the whole training data must be materialized in memory
before they can be passed to an algorithm.

The concept of data streaming, called also pipelining, has been used in database
management systems [13,14,15,16] for efficient query execution. The elementary
units capable of processing streams are called iterators in [13,14].

The issue of scalability is related to the concept of online algorithms. In ma-
chine learning literature [17,18], the term online has been used to denote training
algorithms which perform updates of the underlying decision model after every
single presentation of a sample. The algorithms which update the model only
when the whole training set has been presented are called batch.

Usually online algorithms can be more memory-efficient than their batch coun-
terparts, because they do not have to store samples for later use. They are also
more flexible, e.g., they can be used in incremental learning or allow for the
training process to be stopped anytime during scan of the data. This is why
extensive research has been done to devise online variants of existing batch al-
gorithms [19,20,21,22,23]. Certainly, online algorithms are the best candidates
for implementation in stream architecture. Note, however, that many batch al-
gorithms also do not have to keep all samples in memory and thus can benefit
from data streaming. In many cases it is enough to keep only some statistics cal-
culated during scan of the data set, used afterwards to make the final update of
the model. For example, standard k-means [17,24,25] algorithm performs batch
4 http://www.r-project.org
5 http://www.mathworks.com
6 http://www.octave.org
7 http://www.scilab.org
8 http://www.cs.waikato.ac.nz/ml/weka
9 http://rsproject.mimuw.edu.pl

10 http://rapid-i.com
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updates of the model, but despite this it can be scalable if implemented in stream
architecture, as will be shown in Sect. 5.8.

3 Motivation

3.1 Scalability

Scalable algorithms are indispensable in most of data mining tasks – every time
when data become larger than available memory. Even if initially memory seems
capacious enough to hold the data, it may appear during experiments that data
are larger and memory smaller than expected. There are many reasons for this:

1. Not the whole physical memory is available to the data mining algorithm at
a given time. Some part is used by operating system and other applications.

2. The experiment may incorporate many algorithms run in parallel. In such
case, available memory must be partitioned between all of them. In the
future, parallelization will become more and more common due to paral-
lelization of hardware architectures, e.g., expressed by increasing number of
cores in processors.

3. In a complex experiment, composed of many elementary algorithms, every
intermediate algorithm will generate another set of data. Total amount of
data will be much larger than the amount of source data alone.

4. For architectural reasons data must be stored in memory in some general
data structures, which take more memory than would be necessary in a given
experiment. For example, data may be composed of binary attributes and
each value could be stored on a single bit, but in fact each value takes 8 bytes
or more, because every attribute – whether it is numeric or binary – is stored
in the same way. Internal data representation used by a given platform is
always a compromise between generality and efficient memory usage.

5. Data generated at intermediate processing stages may be many times larger
than source data. For example:
– Input data may require decompression, e.g. JPEG images must be con-

verted to raw bitmaps to undergo processing. This may increase data
size even by a factor of 100.

– In image recognition, a single input image may be used to generate thou-
sands of subwindows that would undergo further processing [4,26]. An
input image of 1MB size may easily generate windows of 1GB size or
more. Similar situation occurs in speech recognition or time series anal-
ysis, where the sliding-window technique is used.

– Synthetic attributes may be generated, e.g. by taking all multiplications
of pairs of original attributes, which leads to quadratic increase in the
number of attributes.

– Synthetic samples may be generated, in order to increase the size of
training set and improve learning of a decision system. For example, this
method is used in [27], which studies the problem of Optical Character
Recognition. Training images of hand-written characters are randomly
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distorted by planar affine transformations and added to the training
set. Every image undergoes 9 random distortions, which leads to 10-fold
increase in the training set size (from 60 to 600 thousand images).

6. In some applications, like mining data streams [1], input data are potentially
infinite, so scalability obviously becomes an issue.

7. Even if the volume of data is small at the stage of experiments, it may
become much bigger when the algorithm is deployed in a final product and
must process real-world instead of experimental data.

The above arguments show clearly that memory is indeed a critical issue for
data mining algorithms. Every moderately complex experiment will show one or
more of the characteristics listed above. This is why we need scalable algorithms
and – for this purpose – an architecture that will enable algorithms to process
data on the fly, without full materialization of a data set.

3.2 Interoperability

Nowadays, it is impossible to solve a data mining task or conduct an experi-
ment using only one algorithm. For example, even if you want to experiment
with a single algorithm, like a new classification method, you at least have to
access data on disk, so you need an algorithm that reads a given file format
(e.g. ARFF11). Also, you would like to evaluate your classifier, so you need
an algorithm which implements an evaluation scheme, like cross-validation or
bootstrap. And in most cases you will also need several algorithms for data pre-
processing like normalization, feature selection, imputation of missing values etc.
– note that preprocessing is an essential step in knowledge discovery [28,29] and
usually several different preprocessing methods must be applied before data can
be passed to a decision system.

To build a data mining system, there must be a way to connect all these
different algorithms together. Thus, they must possess the property of interop-
erability. Without this property, even the most efficient algorithm is practically
useless.

Further on, the graph of data flow between elementary algorithms in a data
mining system will be called a Data Processing Network (DPN). In general, we
will assume that DPN is a directed acyclic graph, so there are no loops of data
flow. Moreover, in the current version of Debellor, DPN can only have a form of
a single chain, without branches. An example of DPN is shown in Figure 1.

Fig. 1. Example of a Data Processing Network (DPN), composed of five elementary
algorithms (boxes). Arrows depict data flow between the algorithms.

11 http://www.cs.waikato.ac.nz/ml/weka/arff.html
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4 Data Streaming

To provide interoperability, data mining algorithms must be implemented in a
common software architecture, which specifies:

– a method for connecting algorithms,
– a model of data transfer,
– common data representation.

Architectures of existing data mining systems utilize the batch model of data
transfer. In this model, algorithms must take the whole data set as an argument
for execution. To run composite experiment, represented by a DPN with a num-
ber of algorithms, an additional supervisor module is needed, responsible for
invoking consecutive algorithms and passing data sets between them. Figure 3
presents a UML sequence diagram [30] with an example of batch processing in
a DPN composed of three algorithms. DPN itself is presented in Fig. 2.

Batch data transfer enforces data materialization, which precludes scalability
of algorithms and DPN as a whole. For example, in Weka, every classifier must be
implemented as a subclass of Classifier class (in weka.classifiers package).
Its training algorithm must be implemented in the method:

buildClassifier(Instances) : void

The argument of type Instances is an array of training samples. This argument
must be created before calling buildClassifier, so the data must be fully
materialized in memory just to invoke training algorithm, no matter what the
algorithm actually does.

Similar situation takes place for clustering methods, which must inherit from
weka.clusterers.Clusterer class and overload the method:

buildClusterer(Instances) : void

Rseslib and RapidMiner also enforce data materialization before a training
algorithm can be invoked. In Rseslib, classifiers must be trained in the class
constructor, which takes an argument of type DoubleDataTable. In RapidMiner,
training of any decision system takes place in the method apply(IOContainer)
of the class com.rapidminer.operator.Operator. Both Rseslib’s DoubleData-
Table and RapidMiner’s IOContainer represent materialized input data.

If a large data set must be materialized, execution of the experiment is practi-
cally impossible. If data fit in virtual memory [31], but exceed available physical
memory, operating system temporarily swaps [31] part of the data (stores it in

Fig. 2. DPN used as an example for analysis of data transfer models
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Fig. 3. UML diagram of batch data transfer in a DPN composed of three algorithms:
LoadData, Preprocess and TrainClassifier, controlled by the Supervisor module. Super-
visor invokes the algorithms (methods run) and pass data between them. All samples of
a given data set are generated and transferred together, so available memory must be
large enough to hold all data. Vertical lines denote life of modules, with time passing
down the lines. Horizontal lines represent messages (method calls and/or data trans-
fers) between the modules. Vertical boxes depict execution of the module’s code.

the swap file on disk), which makes the execution tens or hundreds times slower,
as access to disk is orders of magnitude slower than to memory.

If the data set is so large that it even exceeds available virtual memory, execu-
tion of the experiment is terminated with an out-of-memory error. This problem
could be avoided if the class that represents a data set (e.g., Instances in Weka)
implemented internally the buffering of data on disk. Then, however, the same
performance degradation would occur as in the case of system swapping, because
swapping and buffering on disk are actually the same things, only implemented
at different levels: of operating system or data mining environment.

The only way to avoid severe performance degradation when processing large
data is to generate data iteratively, sample-by-sample, and instantly process
created samples, as presented in Fig. 4. In this way, data may be generated and
consumed on the fly, without materialization of the whole set. This model of
data transfer will be called iterative.
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Fig. 4. UML diagram of iterative data transfer. The supervisor invokes the algorithms
separately for each sample of the data set (sample x y denotes sample no. x generated by
algorithm no. y). In this way, memory requirements are very low (memory complexity
is constant), but supervisor’s control over data flow becomes very difficult.

Iterative data transfer solves the problem of high memory consumption, be-
cause memory requirements imposed by the architecture are constant – only a
fixed number of samples must be kept in memory in a given moment, no matter
how large the full data set is. However, another problem arises: the supervisor
becomes responsible for controlling the flow of samples and the order of execution
of algorithms. This control may be very complex, because each elementary algo-
rithm may have different input-output characteristics. The number of possible
variants is practically infinite, for example:

1. Preprocessing algorithm may filter out some samples, in which case more
than one input sample may be needed to produce one output sample.

2. Preprocessing algorithm may produce a number of output samples from a
single input sample, e.g. when extracting windows from an image or time
series.

3. Training algorithm of a decision system usually have to scan data many
times, not only once.
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4. Generation of output samples may be delayed relatively to the flow of input
samples, e.g. an algorithm may require that 10 input samples are given before
it starts producing output samples.

5. Input data to an algorithm may be infinite, e.g. when they are generated
synthetically. In such case, the control mechanism must stop data generation
in appropriate moment.

6. Some algorithms may have more than one input or output, e.g. an algorithm
for merging data from several different sources (many inputs) or an algo-
rithm for splitting data into training and test parts (many outputs). In such
case, the control of data flow through all the inputs and outputs becomes
even more complex, because there are additional dependencies between many
inputs/outputs of the same algorithm.

Note that the diagram in Fig. 4 depicts a simplified case when DPN is a single
chain of three algorithms, without branches; preprocessing generates exactly one
output sample for every input sample; and training algorithm scans data only
once.

Fig. 5. UML diagram of control and data flow in the stream model of data transfer.
The supervisor invokes only method build() of the last component (TrainClassifier).
This triggers a cascade of messages (calls to methods next()) and transfers of samples,
as needed to fulfill the initial build() request.
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The way how data flow should be controlled depends on what algorithms are
used in a given DPN. For this reason, the algorithms themselves – not the su-
pervisor – should be responsible for controlling data flow. To this end, each algo-
rithm must be implemented as a component which can communicate with other
components without external control of the supervisor. Supervisor’s responsibil-
ity must be limited only to linking components together (building DPN) and
invoking the last algorithm in DPN, which is the final receiver of all samples.
Communication should take the form of a stream of samples: (i) sample is the
unit of data transfer; (ii) samples are transferred sequentially, in a fixed order
decided by the sender. This model of data transfer will be called a stream model.
An example of control and data flow in this model is presented in Fig. 5.

Component architecture and data streaming are the features of Debellor which
enable scalability of algorithms implemented on this platform.

5 Debellor Data Mining Platform

5.1 Data Streams

Debellor’s components are called cells. Every cell is a Java class inheriting from
the base class Cell (package org.debellor.core). Cells may implement all
kinds of data processing algorithms, for example:

1. Decision algorithms: classification, regression, clustering, density estimation
etc.

2. Transformations of samples and attributes.
3. Removal or insertion of samples and attributes.
4. Loading data from file, database etc.
5. Generation of synthetic data.
6. Buffering and reordering of samples.
7. Evaluation schemes: train&test, cross-validation, leave-one-out etc.
8. Collecting statistics.
9. Data visualization.

Cells may be connected into DPN by calling the setSource(Cell) method
on the receiving cell, for example:

Cell cell1 = ..., cell2 = ..., cell3 = ...;
cell2.setSource(cell1);
cell3.setSource(cell2);

The first cell will usually represent a file reader or a generator of synthetic data.
Intermediate cells may apply different kinds of data transformations, while the
last cell will usually implement a decision system or an evaluation procedure.

DPN can be used to process data by calling methods open(), next() and
close() on the last cell of DPN, for example:
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cell3.open();
sample1 = cell3.next();
sample2 = cell3.next();
sample3 = cell3.next();
...
cell3.close();

The above calls open communication session with cell3, retrieve some number of
processed samples and close the session. In order to realize each request, cell3
may communicate with its source cell, cell2, by invoking the same methods
(open, next, close) on cell2. And cell2 may in turn communicate with cell1.
In this way it is possible to generate output samples on the fly. The stream of
samples may flow through consecutive cells of DPN without buffering, so input
data may have unlimited volume.

Note that the user of DPN does not have to control sample flow by himself.
To obtain the next sample of processed data it is enough to call cell3.next(),
which will invoke – if needed – a cascade of calls to preceding cells.

Moreover, different cells may control the flow of samples differently. For ex-
ample, cells that implement classification algorithms will take one input sample
in order to generate one output sample. Filtering cells will take a couple of input
samples in order to generate one output sample that matches the filtering rule.
The image subwindow generator will produce many output samples out of a sin-
gle input sample. We can see that the cell’s interface is very flexible. It enables
implementation of various types of algorithms in the same framework and allows
to easily combine the algorithms into a complex DPN.

5.2 Buildable Cells

Some cells may be buildable, in which case their content must be built before
the cell can be used. Building procedure is invoked by calling method

build() : void

on the cell object. This method is declared in the base class Cell.
Building a cell may mean different things for different types of cells. For

example:

– training a decision system of some kind (classifier, clusterer, . . . ),
– running an evaluation scheme (train&test, cross-validation, . . . ),
– reading all data from input stream and buffering in memory.

Note that all these different types of algorithms are encapsulated under the
same interface (method build()). This increases simplicity and modularity of
the platform.

Usually, the cell reads input data during building, so it must be properly
connected to a source cell before build() is invoked. Afterwards, the cell may
be reconnected and used to process another stream of data.

Some buildable cells may also implement erase() method, which clears the
content of the cell. After erasure, the cell may be built once again.
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5.3 State of the Cell

Every cell object has a state variable attached, which indicates what cell opera-
tions are allowed in a given moment. There are three possible states: EMPTY,
CLOSED and OPEN. Transitions between them are presented in Fig. 6. Each
transition is invoked by call to an appropriate method: build(), erase(), open()
or close().

Fig. 6. Diagram of cell states and allowed transitions

Only a part of cell methods may be called in a given state. For example,
next() can be called only in OPEN state, while setSource() is allowed only in
EMPTY or CLOSED state. It is guaranteed by the base class implementation
that disallowed calls immediately end with an exception thrown. Thanks to this
automatic state control, connecting different cells together and building compos-
ite algorithms becomes easier and safer, because many possible mistakes or bugs
related to inter-cell communication are detected early. Otherwise, they could
exist unnoticed, generating incorrect results during data processing. Moreover,
it is easier to implement new cells, because the authors do not have to check
correctness of method calls by themselves.

5.4 Parametrization

Most of cells require a number of parameters to be set before the cell can start
working. Certainly, every type of a cell requires different parameters, but for the
sake of interoperability and simplicity of usage, there should be a common in-
terface for passing parameters, no matter what number and types of parameters
are expected by a given cell. Debellor defines such an interface.

Parameters for a given cell are stored in an object of class Parameters (pack-
age org.debellor.core), which keeps a dictionary of parameter names and as-
sociated String values (in the future we plan to extend permitted value types,
note however that all simple types can be easily converted to String). Thanks
to the use of a dictionary, the names do not have to be hard-coded as fields of cell
objects, hence parameters can be added dynamically, according to requirements
of a given cell.

The object of class Parameters can be passed to the cell by calling Cell’s
method:

setParameters(Parameters) : void
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It is also possible (and usually more convenient) to pass single parameter values
directly to the cell, without an intermediate Parameters object, by calling:

set(String name, String value) : void

This method call delegates to analogous method of Cell’s internal Parameters
object.

5.5 Data Representation

The basic unit of data transfer between cells is sample. Samples are represented
by objects of class Sample. Every sample contains two fields, data and label,
which hold input data and associated decision label, respectively. Any of the
fields can be null, if corresponding information is missing or simply not neces-
sary at the given point of data processing.

Cells are free to use whichever part of input data they want. For example,
build() method of a classifier (i.e. training algorithm) would use both data
and label, interpreting label as a target classification of data, given by a
supervisor. During operation phase, the classifier would ignore input label, if
present. Instead, it would classify data and assign the generated label to the
label field of the output sample.

Data and labels are represented in an abstract way. Both data and label
fields reference objects of type Data (package org.debellor.core). Data is a
base class for classes that represent data items, like single features or vectors
of features. When the cell wants to use information stored in data or label, it
must downcast the object to a specific subclass, as expected by the cell. Thanks
to this abstract method of data representation, new data types can be added
easily, by creating a new subclass of Data. Authors of new cells are not limited
to a single data type, hard-coded into the platform, as for example in Weka.

Data objects may be nested. For example, objects of class DataVector (in
org.debellor.core.data)hold arrays of other data objects, like simple features
(classes NumericFeature and SymbolicFeature) or other DataVectors.

5.6 Immutability of Data

A very important concept related to data representation is immutability. Objects
which store data – instances of Sample class or Data subclasses – are immutable,
i.e. they cannot be modified after creation. Thanks to this property, data objects
can be safely shared by cells, without risk of accidental modification in one cell
that would affect operations of another cell.

Immutability of data objects yields many benefits:

1. Safety – cells written by different people may work together in a complex
DPN without interference.

2. Simplicity – the author of a new cell does not have to care about correctness
of access to data objects.
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3. Efficiency – data objects do not have to be copied when transferred to an-
other cell. Without immutability, copying would be necessary to provide a
basic level of safety. Also, a number of samples may keep references to the
same data object.

4. Parallelization – if DPN is executed concurrently, no synchronization is
needed when accessing shared data objects. This simplifies parallelization
and makes it more efficient.

5.7 Metadata

Many cells have to know some basic characteristics (“type”) of input samples
before processing of the data starts. For example, training algorithm of a neural
network has to know the number of input features, to be able to allocate arrays of
weights of appropriate size. To provide such information, method open() returns
an object of class MetaSample (static inner class of Sample), which describes
common properties of all samples generated by the stream being open. Similarly
to Sample, MetaSample has separate fields describing input data and labels, both
of type MetaData (static inner class of Data).

Metadata have analogous structure and properties as the data being described.
The hierarchy of metadata classes, rooted at MetaData, mirrors the hierarchy of
data classes, rooted at Data. The nesting of MetaData and Data objects is also
similar, e.g. if the stream generates DataVectors of 10 SymbolicFeatures, cor-
responding MetaData object will be an instance of MetaDataVector, containing
an array of 10 MetaSymbolicFeatures describing every feature.

Similarly to Data, MetaData objects are immutable, so they can be safely
shared by cells.

5.8 Example

To illustrate the usage of Debellor, we will show how to implement standard
k-means algorithm in stream architecture and how to employ it to data process-
ing in a several-cell DPN.

K-means [17,24,25] is a popular clustering algorithm. Given n input samples
– numeric vectors of fixed length, x1,x2, . . . ,xn – it tries to find cluster centers
c1, . . . , ck which minimize the sum of squared distances of samples to their closest
center:

E(c1, . . . , ck) =
n∑

i=1

min
j=1,...,k

‖xi − cj‖2 . (1)

This is done through iterative process with two steps repeated alternately in a
loop: (i) assignment of each sample to the nearest cluster and (ii) repositioning
of each center to the centroid of all samples in a given cluster. The algorithm is
presented in Fig. 7. As we can see, the common implementation of k-means as
a function is non-scalable, because it employs batch model of data transfer:
training data are passed as an array of samples, so they must be generated and
accumulated in memory before the function is called.
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function kmeans(data) returns an array of centers

Initialize array centers
repeat

Set sum[1], . . . , sum[k], count[1], . . . , count[k] to zero
for i = 1..n do /* assign samples to clusters */

x = data[i]
j = clusterOf(x)
sum[j] = sum[j] + x
count[j] = count[j] + 1

end
for j = 1..k do /* reposition centers */

centers[j] = sum[j]/count[j]
end

until no center has been changed
return centers

Fig. 7. Pseudocode illustrating k-means clustering algorithm implemented as a regular
stand-alone function. The function takes an array of n samples (data) as argument
and returns k cluster centers. Both samples and centers are real-valued vectors. The
function clusterOf(x) returns index of the center that is closest to x.

class KMeans extends Cell
method build()

Initialize array centers
repeat

Set sum[1], . . . , sum[k], count[1], . . . , count[k] to zero
(*) source.open()

for i = 1..n do
(*) x = source.next()

j = clusterOf(x)
sum[j] = sum[j] + x
count[j] = count[j] + 1

end
(*) source.close()

for j = 1..k do
centers[j] = sum[j]/count[j]

end
until no center has been changed

Fig. 8. Pseudocode illustrating implementation of k-means as Debellor’s cell. Since
k-means is a training algorithm (generates a decision model), it must be implemented
in method build() of a Cell’s subclass. Input data are provided by the source cell, the
reference source being a field of Cell. The generated model is stored in the field centers
of class KMeans, method build() does not return anything. The lines of code inserted
or modified relatively to the standard implementation are marked with asterisk (*).
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class KMeans extends Cell
method next()

x = source.next()
if x == null then

return null
return x.setLabel(clusterOf(x))

Fig. 9. Pseudocode illustrating implementation of method next() of KMeans cell. This
method employs the clustering model generated by build() and stored inside the KMeans
object to label new samples with identifiers of their clusters.

/* 3 cells are created and linked into DPN */
Cell arff = new ArffReader();
arff.set("filename", "iris.arff"); /* parameter filename is set */

Cell remove = new WekaFilter("attribute.Remove");
remove.set("attributeIndices", "last");
remove.setSource(arff); /* cells arff and remove are linked */

Cell kmeans = new KMeans();
kmeans.set("numClusters", "10");
kmeans.setSource(remove);

/* k-means algorithm is executed */
kmeans.build();

/* the clusterer is used to label 3 training samples with cluster identifiers */
kmeans.open();
Sample s1 = kmeans.next(),

s2 = kmeans.next(),
s3 = kmeans.next();

kmeans.close();

/* labelled samples are printed on screen */
System.out.println(s1 + "\n" + s2 + "\n" + s3);

Fig. 10. Java code showing sample usage of Debellor cells: reading data from an ARFF
file, removal of an attribute, training and application of a k-means clusterer

Stream implementation of k-means – as Debellor’s cell – is presented in Fig. 8.
In contrast to the standard implementation, training data are not passed explic-
itly, as an array of samples. Instead, the algorithm retrieves samples one-by-one
from the source cell, so it can process arbitrarily large data sets. In addition,
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Fig. 9 shows how to implement method next(), responsible for application of
the generated clustering model to new samples.

Note that despite the algorithm presented in Fig. 8 employs stream method
of data transfer, it employs batch method of updating the decision model (the
updates are performed after all samples have been scanned). These two things –
the method of data transfer and the way how model is updated – are separate and
independent issues. It is possible for batch (in terms of model update) algorithms
to utilize and benefit from stream architecture.

Listing in Fig. 10 shows how to run a simple experiment: train a k-means
clusterer and apply it to several training samples, to label them with identifiers
of their clusters. Data are read from an ARFF file and simple preprocessing
– removal of the last attribute – is applied to all samples. Note that loading
data from file and preprocessing is executed only when the next input sample is
requested by the kmeans cell – in methods build() and next().

6 Experimental Evaluation

6.1 Setup

In existing data mining systems, when data to be processed are too large to
fit in memory, they must be put in virtual memory. During execution of the
algorithm, parts of data are being swapped to disk by operating system, to
make space for other parts, currently requested. In this way, portions of data
are constantly moving between memory and disk, generating huge overhead on
execution time of the algorithm. In the presented experiments we wanted to
estimate this overhead and the performance gain that can be obtained through
the use of Debellor’s data streaming instead of swapping.

For this purpose, we trained k-means [17,24,25] clustering algorithm on time
windows extracted from the time series that was used in EUNITE12 2003 data
mining competition. We compared execution times of two variants of the exper-
iment:

1. batch, with time windows created in advance and buffered in memory,
2. stream, with time windows generated on the fly.

Data Processing Networks of both variants are presented in Fig. 11 and 12.
In both variants, we employed our stream implementation of k-means, sketched

in Sect. 5.8 (KMeans cell in Fig. 11 and 12). In the first variant, we inserted a
buffer into DPN just before the KMeans cell – in this way we effectively obtained
a batch algorithm. In the second variant, the buffer was placed earlier in the chain
of algorithms, before window extraction. We could have dropped buffering at all,
but then the data would be loaded from disk again in every training cycle, which
was not necessary, as the source data were small enough to fit in memory.

12 EUropean Network on Intelligent TEchnologies for Smart Adaptive Systems,
http://www.eunite.org
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Fig. 11. DPN of the first (batch) variant of experiment

Fig. 12. DPN of the second (stream) variant of experiment

Source data were composed of a series of real-valued measurements from
glass production process, recorded in 9408 different time points separated by
15-minute intervals. There were two kinds of measurements: 29 “input” and 5
“output” values. In the experiment we used only “input” values, “output” ones
were filtered out by Weka filter for attribute removal (WekaFilter cell).

After loading from disk and dropping unnecessary attributes, the data occu-
pied 5.7MB of memory. They were subsequently passed to TimeWindows cell,
which generated time windows of length W , on every possible offset from the
beginning of the input time series. Each window was created as a concatenation
of W consecutive samples of the series. Therefore, for input series of length T ,
composed of A attributes, the resulting stream contained T −W + 1 samples,
each composed of W ∗ A attributes. In this way, relatively small source data
(5.7MB) generated large volume of data at further stages of DPN, e.g. 259MB
for W = 50.

In the experiments, we compared training times of both variants of k-means.
Since the time effectiveness of swapping and memory management depends
highly on the hardware setup, the experiments were repeated in two different
hardware environments: (A) a laptop PC with Intel Mobile Celeron 1.7 GHz
CPU, 256MB RAM; (B) a desktop PC with AMD Athlon XP 2100+ (1.74 GHz),
1GB RAM. Both systems run under Microsoft Windows XP. Sun’s Java Virtual
Machine (JVM) 1.6.0 03 was used. The number of clusters for k-means was set
to 5.

6.2 Results

Results of experiments are presented in Table 1 and 2. They are also depicted
graphically in Fig. 13 and 14.

Different lengths of time windows were checked, for every length the size of
generated training data was different (given in the second column of the tables).
In each trial, training time of k-means was measured. These times are reported
in normalized form, i.e. the total training time in seconds is divided by the
number of training cycles and data size in MB. Normalized times can be directly
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Table 1. Normalized training times of k-means for batch and stream variant of exper-
iment and different lengths of time windows. Corresponding sizes of training data are
given in the second column. Hardware environment A.

Window length
Data size

[MB]
Normalized

execution time
(batch variant)

Normalized
execution time

(stream variant)
10 53 3.1 5.6
20 104 3.2 5.3
30 156 3.1 5.0
40 208 5.1 4.9
50 259 244.4 5.0
60 311 326.9 8.3
70 362 370.6 10.7
80 413 386.0 10.9
90 464 475.3 11.1

Table 2. Normalized training times of k-means for batch and stream variant of exper-
iment and different lengths of time windows. Corresponding sizes of training data are
given in the second column. Hardware environment B.

Window length
Data size

[MB]
Normalized

execution time
(batch variant)

Normalized
execution time

(stream variant)
50 259 4.0 5.3
100 515 4.0 5.4
120 617 4.0 6.5
150 769 5.3 8.7
170 869 6.3 8.8
180 919 23.8 8.8
190 969 36.4 8.8
200 1019 50.7 8.8
210 1069 71.3 8.8
220 1119 85.1 8.8
230 1168 100.4 9.1
240 1218 111.1 9.1
250 1267 140.2 9.4
260 1317 crash 9.3

compared across different trials. Every table and figure presents results of both
variants of the algorithm.

Time complexity of a single training cycle of k-means is linear in the data
size, so normalized execution times should be similar across different values of
window length. However, for the batch variant, the times are constant only for
small sizes of data. At the point when data size gets close to the amount of
physical memory installed on the system, execution time suddenly jumps to a
very high value, many times larger than for smaller data sizes. It may even
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Fig. 13. Normalized training times of k-means for batch and stream variant of exper-
iment and different lengths of time windows. Hardware environment A.
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Fig. 14. Normalized training times of k-means for batch and stream variant of ex-
periment and different lengths of time windows. Hardware environment B. Note that
the measurement which caused the batch variant to crash (last row in Table 2) is not
presented here.
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happen that from some point the execution crashes due to memory shortage (see
Tab. 2), despite JVM heap size being set to the highest possible value (1300 MB
on a 32-bit system). This is because swapping must be activated to handle this
large volume of data. And because access to disk is orders of magnitude slower
than to memory, algorithm execution becomes also very slow.

This dramatic slowdown is not present in the case of the stream algorithm,
which requires always the same amount of memory, at the level of 6MB. For
small data sizes this algorithm runs a bit slower, because training data must be
generated in each training cycle from the beginning. But for large data sizes it
can be 40 times better, or even more (the curves in Figures 13 and 14 rise very
quickly, so we may suspect that for larger data sizes the disparity between both
variants is even bigger). The batch variant is actually not usable.

What is also important, every stream implementation of a data mining algo-
rithm can be used in batch manner by simply preceding it with a buffer in DPN.
Thus, the user can choose the faster variant, depending on the data size. On
the other hand, batch implementation cannot be used in stream-based manner,
rather the algorithm must be redesigned and implemented again.

7 Conclusions

In this paper we introduced Debellor – a data mining platform with stream
architecture. We presented the concept of data streaming and proved through
experimental evaluation that it enables much more efficient processing of large
data than the currently used method of batch data transfer. Stream architec-
ture is also more general. Every stream-based implementation can be used in
batch manner. Opposite is not true. Thanks to data streaming, algorithms im-
plemented on Debellor platform can be scalable and interoperable at the same
time. We also analysed the significance of scalability issue for the design of com-
posite data mining systems and showed that even when source data are relatively
small, lack of memory may still pose a problem, since large volumes of data may
be generated at intermediate stages of data processing network.

Stream architecture has also weaknesses. Because of sequential access to data,
implementation of algorithms may be conceptually more difficult. Batch data
transfer is more intuitive for the programmer. Moreover, some algorithms may
inherently require random access to data. Although they can be implemented
in stream architecture, they have to buffer all data internally, so they will not
benefit from streaming. However, these algorithms can still benefit from inter-
operability provided by Debellor – they can be connected with other algorithms
to form a complex data mining system.

Development of Debellor will be continued. We plan to extend the architecture
to handle multi-input and multi-output cells as well as nesting of cells (e.g., to
implement meta-learning algorithms). We also want to implement parallel exe-
cution of DPN and serialization of cells (i.e., saving to a file).

Acknowledgement. The research has been partially supported by the grant
N N516 368334 from Ministry of Science and Higher Education of the Republic



426 M. Wojnarski

of Poland and by the grant “Decision support – new generation systems” of
Innovative Economy Operational Programme 2008-2012 (Priority Axis 1. Re-
search and development of new technologies) managed by Ministry of Regional
Development of the Republic of Poland.

References

1. Aggarwal, C.C. (ed.): Data Streams: Models and Algorithms. Springer, Heidelberg
(2007)

2. Gama, J., Gaber, M.M. (eds.): Learning from Data Streams: Processing Techniques
in Sensor Networks. Springer, Heidelberg (2007)

3. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Englewood
Cliffs (2002)

4. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. IEEE Computer Vision and Pattern Recognition 1, 511–518 (2001)

5. Bazan, J.G., Szczuka, M.: RSES and RSESlib – A collection of tools for rough set
computations. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS, vol. 2005, pp.
106–113. Springer, Heidelberg (2001)

6. Bazan, J.G., Szczuka, M.S., Wojna, A., Wojnarski, M.: On the evolution of rough
set exploration system. In: Tsumoto, S., S�lowiński, R., Komorowski, J., Grzyma�la-
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Abstract. The present paper is concerned with rough set theory (RST) and a
particular approach to human-like induction, namely similarity coverage model
(SCM). It redefines basic concepts of RST – such like e.g. a decision rule, accu-
racy and coverage of decision rules – in the light of SCM and explains how RST
may be viewed as a similarity-based model of human-like inductive reasoning.
Furthermore, following the knowledge-based theory of induction, we enrich RST
by the concept of an ontology and, in consequence, we present an RST-driven
conceptualisation of SCM. The paper also discusses a topological representa-
tion of information systems in terms of non-Archimedean structures. It allows
us to present an ontology-driven interpretation of finite non-Archimedean near-
ness spaces and, to some extent, to complete recent papers about RST and the
topological concepts of nearness.

1 Introduction

Category-based induction is an approach to human-like inductive reasoning in which
both conceptual knowledge and similarity of objects play the key role. So far this type of
reasoning has been a subject of study mainly in ethnobiology, or better still, in cognitive
science. In this paper we shall apply the main ideas underlying category-based induction
to computer science, especially to rough set theory (RST) [10,12]. It will allow us to
introduce some new interesting interpretations of basic concepts and structures from
RST and topology.

There are, in general, two basic theories explaining the mechanism of (human-like)
induction: the knowledge-based theory and the similarity-based theory. According to
the former one, induction is driven by a prior categorisation of given objects, often
called conceptual knowledge or ontology. On this view, people firstly identify some
category of which a given object is an element and then generalise properties to the
members of this category and vice versa. For example, knowing that bluejays require
vitamin K for their liver to function, one can generalise that all birds require this vitamin
too. On the other hand, the similarity-based theory argues that induction is based on the
overall similarity of compared objects rather than on the conceptual knowledge. For ex-
ample, students from Michigan are reported to conclude – on the basis that skunks have
some biological property – that it is more likely that rather opossums have this property
than bears. Skunks, however, are taxonomically closer to bears than to opossums [2].
Summing up, according to the knowledge-based approach the generalisation from one

J.F. Peters et al. (Eds.): Transactions on Rough Sets IX, LNCS 5390, pp. 428–443, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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object to another is supported by categories (agents ignore appearances of objects and
rely on the category membership), whereas according to the similarity-based approach
such generalisations are based on perceptual similarity (agents ignore their knowledge
about the category membership and rely on appearances) [7].

Inductive reasoning which takes into account both conceptual knowledge and sim-
ilarity of objects is generally called category-based induction. There are a number of
formal models of such reasoning, e.g. [2,6,9,15]. In this paper we shall study similar-
ity coverage model (SCM) [2,9], mainly for its simplicity and strong influence on the
development of other models. According to SCM, the strength of inductive argument
increases with (a) the degree to which the premies categories are similar to the con-
clusion category, and (b) the degree to which premise categories cover the lowest level
knowledge-category (e.g. from a taxonomy) that includes both the premies and conclu-
sion categories. Thus, the step (a) represents the similarity-based approach, whereas
the step (b) represents the knowledge-based approach.

The main aim of this paper is to give an account of SCM within the conceptual frame-
work of RST. First, we re-interpret some notions from RST – such as a decision rule,
accuracy and coverage of decision rules, rough inclusion functions – according to the
standpoint of SCM. On this view, RST may be regarded as a similarity-based approach
to induction. Then we enrich RST with a proper ontology and show how the knowledge-
based approach can correct the assessment of decision rules. In consequence, the paper
proposes an RST-driven model of category-based induction. Furthermore, we discuss
topological aspects of RST and the category-based theory of induction. More specifi-
cally, we examine a topological counterpart of an information system. Usually, infor-
mation systems have been represented as approximation spaces or approximation topo-
logical spaces. In consequence, only the indiscernability (or similarity) relation induced
by the set of all attributes has been considered. In contrast to this approach, we consider
all indiscernability relations, or better still, all partitions, induced by an information
system. Mathematically, these partitions induce a non-Archimedean structure which, in
turn, gives rise to a topological nearness space. Recently a number of attempts have
been made to connect RST with nearness type structures, e.g. [11,19]. To some ex-
tent we complete the previous results and show some intuitive reasons to consider such
structures. Specifically, every ontology induced over a non-Archimedean structure is
taxonomic.

The paper is organised as follows. Section 2 contains a brief and informal intro-
duction to SCM. Section 3 describes basic concepts from RST which are relevant to
inductive reasoning. Section 4 discusses concepts introduced in Section 3 against the
background of inductive reasoning and SCM. Finally, Section 5 presents topological
aspects of RST and the category-based approach to induction.

2 Similarity Coverage Model

In this section we informally introduce category-based induction which has been of a
special importance mainly for ethnobiology. There are different accounts of such induc-
tion – in the paper we focus on the very influential similarity coverage model (SCM)
introduced by Osherson et al. [9].



430 M. Wolski

Ethnobiology or folk biology is a branch of cognitive science which studies the ways
in which people categorise the local fauna and flora and project their knowledge about
a certain category to other ones [2,6,9,15]. For example, given that bobcats secrete uric
acid crystals and cows secrete uric acid crystals, subjects, on the basis that all mammals
may have this property, infer that foxes secrete uric acid crystals.

According to SCM, the subject performing an induction task firstly calculates the
similarity of the premise categories (i.e. bobcats, cows) to the conclusion category (i.e.
foxes). Then the subject calculates the average similarity (coverage) of the premise
categories to the superordinate category including both the premise and conclusion cat-
egories (i.e. mammals). Let us consider the following example:

Horses have an ileal vein,
Donkeys have an ileal vein.
Gophers have an ileal vein.

This argument is weaker than:

Horses have an ileal vein,
Gophers have an ileal vein.

Cows have an ileal vein.

Of course, the similarity of horses to cows is much higher than the similarity of horses
or donkeys to gophers. Thus the strength of inductive inference depends on the maximal
similarity of the conclusion category to some of the premise categories. Now let us shed
some light on the coverage principle:

Horses have an ileal vein,
Cows have an ileal vein.

All mammals have an ileal vein.

According to SCM this argument is weaker than the following one:

Horses have an ileal vein,
Gophers have an ileal vein.

All mammals have an ileal vein.

The reason is that the average similarity of horses to other mammals is almost the
same as that of cows. In other words, the set H of all animals considered to be similar
to horses is almost equal to the set C of all animals similar to cows. Thus the second
premise does not bring us nothing in terms of coverage. By contrast, gophers are similar
to other mammals than horses and thus this premise makes the coverage higher. That is,
the set H ∪ G, where G is the set of all animals similar to gophers, has more elements
than the set H ∪ C. Thus, the following inductive inference

Horses have an ileal vein,
All mammals have an ileal vein.

is stronger, than

Bats have an ileal vein,
All mammals have an ileal vein.
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The range of mammals similar to cows is much wider than the range of mammals
similar to bats. One can say that cows are more typical examples of mammals than bats
or gophers.

Now, let us summarise the above examples in a more formal way. Firstly, there is
given a set of categories C we reason about. This set is provided with a binary “kind of”
relation K , which is acyclic and thus irreflexive and asymmetric. We call K taxonomic
if and only if it is transitive and no item is of two distinct kinds.

Definition 1. A transitive relation K is taxonomic over C iff for any a, b, c ∈ C such
that aKb and aKc, it holds that b = c or bKc or cKb.

For example, collie is a kind of dog and dog is a kind of mammal. Items x ∈ C, such that
there is no t satisfying tKx constitute basic categories. An example of non-taxonomic
relation is as follows: wheelchair is a kind of furniture and a kind of vehicle. Now,
neither furniture = vehicle nor furnitureKvehicle nor vehicleKfurniture.

Subjects reasoning about C are additionally provided with a default notion of simi-
larity R defined on basic categories CBasic, i.e. minimal elements of C with respect to
K . People usually assume that R is at least reflexive and symmetric. Very often R is
represented as an equivalence relation, that is, R is additionally transitive. Given that
c1 ∈ CBasic has a property p, a subject may infer that c2 ∈ CBasic also satisfies p, if
there exists c3 ∈ C such that c1Kc3, c2Kc3 and {c ∈ CBasic : c1Rc} is a “substantial”
subset of {c ∈ CBasic : cKc3}. Informally speaking, one can transfer knowledge from
a category c1 to c2 if the set of all elements considered to be similar to c1 is a substantial
subset of the set of all Cbasic-instantiations of the minimal taxonomic category c whose
examples are c1 and c2. Summing up, one can say that (C, K) represents gathered in-
formation, while R is an inductive “engine” making inferences about unknown features
of objects belonging to C.

3 Rough Set Theory

In this section we briefly recall basic notions from RST which are relevant to inductive
reasoning. We start with introducing the concept of an information system, then we
discuss decision rules and different measures of their strength. We conclude by recalling
some notions from the rough–mereological approach.

Definition 2. An information system is a quadruple 〈U, A, V, f〉 where:

– U is a non–empty finite set of objects;
– A is a non–empty finite set of attributes;
– V =

⋃
a∈A Va where Va is the value–domain of the attribute a;

– f : U × A �→ V is an information function, such that for all a ∈ A and u ∈ U ,
f(u, a) ∈ Va.

It is often useful to view an information system 〈U, A, V, f〉 as a decision table, assum-
ing that A = C ∪D and C ∩D = ∅ where C is a set of conditional attributes and D is
a set of decision attributes. For example, Figure 1 presents a decision table where:

– U = {Beaver, Squirrel, Mouse, Muskrat, Otter, Skunk},
– C = {Environment, Diet, T ail, Size},
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Animals Environment Diet Tail Size Poland
Beaver semi-aquatic herbivorous flattened medium yes
Squirrel terrestial omnivorous round small yes
Mouse terrestial omnivorous round very small yes

Muskrat semi-aquatic omnivorous round medium yes
Otter semi-aquatic carnivorous round medium yes

Skunk terrestial omnivorous round medium no

Fig. 1. An example of a dataset

– D = {Poland},
– e.g. VDiet = {herbivorous, carnivorous, omnivorous} for Diet ∈ C.

Each subset of attributes S ⊆ A determines an equivalence relation IND(S) ⊆ U ×U
defined as follows:

IND(S) = {(u, v) : (∀a ∈ S) f(u, a) = f(v, a)}.

As usual, IND(S) is called an indiscernability relation induced by S, the partition in-
duced by the relation IND(S) is denoted by U/IND(S), and [u]S denotes the equiva-
lence class of IND(S) defined by u ∈ U . For instance, if S = {Environment, Diet},
then IND(S) = {{Beaver}, {Squirrel, Mouse, Skunk}, {Muskrat}, {Otter}}.

Obviously, U/IND(A) refines every other partition U/IND(S) where S ⊆ A.
Furthemore

[u]A =
⋂

S⊆A

[u]S .

Intuitively, any subset X ⊆ U which can be defined by a formula of some knowl-
edge representation language L is a concept in L. For example, one can use the fol-
lowing simple descriptor language, say LDesc, based on a given information system
〈U, A, V, f〉:

fml ::= [a = val] | ¬fml | fml ∧ fml | fml ∨ fml

where a ∈ A and val ∈ Va. We say that α ∈ LDesc is a formula over C if all attributes
a in α belong to C.

For any formula α ∈ LDesc, |α| denotes the meaning of α in U , i.e. the concept in
LDesc which is defined as follows:

– If α is of the form [a = val], then |α| = {u ∈ U : f(u, a) = val};
– |¬α| = U \ |α|, |α ∧ β| = |α| ∩ |β|, |α ∨ β| = |α| ∪ |β|.

For example, α = [Poland = no] and |α| = {Skunk}.
Let α be a formula of LDesc over C and β a formula over D. Then the expression

α⇒ β is called a decision rule if |α|A ∩ |β|A 	= ∅.
Definition 3. Let α⇒ β be a decision rule and Card(B) denote the cardinality of the
set B. Then, the accuracy Accα(β) and the coverage Covα(β) for α ⇒ β are defined
as follows:
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Accα(β) =
Card(|α| ∩ |β|)

Card(α)
,

and

Covα(β) =
Card(|α| ∩ |β|)

Card(β)
.

Example 1. Let us assume that |α| = [Environment = semi − aquatic] and |β| =
[Poland = yes]. Then α ⇒ β is a decision rule over the information system depicted
by Fig. 1, Accα(β) = 3/3 = 1, and Covα(β) = 3/5.

It is worth emphasising that if Accα(β) = 1, then it holds that u ∈ |β| provided
that u ∈ |α|. On the other hand, if Covα(β) = 1 then we have u ∈ |α| provided
that u ∈ |β|. Thus, Accα(β) measures the sufficiency of α ⇒ β, whereas Covα(β)
measures the necessity of α ⇒ β; for details see e.g. [16]. Hereafter several attempts
were made to introduce other measures of how good a given decision rule is. However,
the meaning of these measures remains fixed. For a given decision rule α ⇒ β they
answer the following question:

Given that u ∈ |α|, what is the chance that u ∈ |β|? (1)

In the evolution of RST it is the rough–mereological approach of a special importance
[13]. This approach is based on the inclusion function, called rough inclusion (RIF),
which generalises fuzzy set and rough set approaches. Generally speaking, RIFs mea-
sure the degree of inclusion of a set of objects X in a set of objects Y . In this paper we
follow the definition of RIF proposed in [5]:

Definition 4. A RIF upon U is any function κ : 2U × 2U �→ [0, 1] such that:

– (∀X, Y )(κ(X, Y ) = 1⇔ X ⊆ Y ),
– (∀X, Y, Z)(Y ⊆ Z ⇒ κ(X, Y ) ≤ κ(X, Z)).

The most famous RIF is the so-called standard RIF, denoted by κ£, which is based on
J. Łukasiewicz’s ideas concerning the probability of truth of propositional formulas:

κ£(X, Y ) =

{
Card(X∩Y )

Card(X) if X 	= ∅
1 otherwise

Another RIF κ1, which is really interesting in the context of induction, was proposed
by A. Gomolińska in [5]:

κ1(X, Y ) =

{
Card(Y )

Card(X∪Y ) if X ∪ Y 	= ∅
1 otherwise

As one can easy observe, for any X, Y ⊆ U and any decision rule α⇒ β,

κ1(X, Y ) = κ£(X ∪ Y, Y ),

Accα(β) = κ£(|α|, |β|),
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and
Covα(β) = κ£(|β|, |α|).

Summing up, many ideas from RST are based upon the notion of RIF. In what follows,
we shall be interested in question how RIFs can be used to assess the strength of de-
cision rules and their generalisations. It is worth noting that we view these rules from
the perspective of inductive reasoning and, in consequence, we change their standard
interpretations.

4 Inductive Reasoning: RST Approach

Now, let us examine the above ideas from RST against the background of SCM. As said
earlier, each formula α ∈ LDesc represents a concept in LDesc. It is easy to observe
that

|[a = val]| ∈ U/IND({a}),
and

|α| =
⋃
A, for some A ⊆ U/IND(A).

Thus, elements of U/IND(A) can be regarded as atomic concepts and any other con-
cept in LDesc can be built by means of atomic concepts and ∪. Furthermore, any for-
mula α will be regarded as a concept name, or better still, a category. Generally speak-
ing, SCM tries to answer the question how safe is to transfer knowledge about a value
val of some attribute a from one category α to another category β. In other words,

given that |α| ⊆ |[a = val]|, what is the chance that |β| ⊆ |[a = val]|? (2)

Observe that this question, in contrast to (1), makes sense even for a rule α ⇒ β such
that |α| ∩ |β| = ∅. We shall call such a rule an inductive rule. Furthermore, exam-
ples from Section 2 require multi-premises inductive rules represented by expressions
α, β, γ ⇒ δ rather than simple rules of the form α ⇒ δ. Let us recall that in multicon-
clusion Gentzen’s sequent calculus

α, β, γ ⇒ δ means that δ follows from α ∧ β ∧ γ.

However, in SCM-like inductive reasoning we have

α, β, γ ⇒ δ means that δ follows from α ∨ β ∨ γ. (3)

Indeed, for example the following decision rule

[Size = verysmall], [Size = small]⇒ [Poland = yes]

based on the dataset from Fig. 1 where

|[Size = verysmall]| = {Mouse},

|[Size = small]| = {Squirrel},
|[Poland = yes]| = {Beaver, Squirrel, Mouse, Muskrat, Otter}
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might represent the following inductive inference:

Mice have an ileal vein,
Squirrels have an ileal vein,

All animals living in Poland have an ileal vein.

As one can easy observe |[Size = verysmall] ∧ [Size = small]| = ∅ and the con-
junctive interpretation of premises leads us to wrong conclusions. Thus, given the rule
α, β, γ ⇒ δ we shall regard the premises as the category α ∨ β ∨ γ representing the
concept |α ∨ β ∨ γ| in LDesc.

Now, we answer the question (2). According to SCM we should (a) compute the sim-
ilarity of the premise category to the conclusion category, and (b) compute the degree
to which the premise category cover the lowest level knowledge–category that includes
both the premies and conclusion categories.

Intuitively, the identity is the highest level of similarity. It is easy to observe that

|α| = |β| iff Accα(β) = 1 and Covα(β) = 1.

Thus, the measures Accα(β) and Covα(β) taken together tell us to which extent the
categories |α| and |β| are similar. In this paper we use the following measure, denoted
by Sim, which was firstly introduced by S. Kulczyński in the context of clustering
methods [8]; see also [1]:

Sim(α, β) =
Accα(β) + Covα(β)

2
.

It is easy to compute that for α ⇒ β from Example 1 Sim(α, β) = 4/5. Now, let us
consider the step (b) of SCM. It can be formalised as follows:

Cov(α, β) =
Card(|α|)
Card(C)

where α ⇒ β is an inductive rule, and C represents the smallest category from the
underlying ontologyO containing both the premise and conclusion categories, i.e. |α|∪
|β| ⊆ |C|. Since RST assumes that any formula α ∈ LDesc representing a concept |α|
in LDesc is a category, the smallest category containing both α and β is α ∨ β. In other
words, RST assumes the richest possible ontology representing all concepts definable
in LDesc. Thus, we have

CovRST (α, β) =
Card(|α|)

Card(|α| ∪ |β|) .

Observe that for α⇒ β from Example 1,

CovRST (α, β) = κ1(β, α).

Thus, assessing the strength of a rule α ⇒ β consists in computing values of a couple
of RIFs. In our example, for the decision rule α⇒ β defined as above, we have

CovRST (α, β) = 3/5
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Some comments may be useful here. The standard RIF κ£ is the most popular RIF
among rough-set community. The main reason seems to be the clarity of the interpreta-
tion of κ£. On the other hand, such RIFs like κ1 or κ2 lack an obvious interpretation.
Our present inquiry into RST against the background of SCM provide us with the in-
tuitive meaning at least for κ1: it computes the coverage of the premise category to
the smallest category containing both the premise and the conclusion categories (with
respect to the ontology representing all concepts in LDesc). It is quite likely that other
models of inductive reasoning may bring us some new interpretations of other RIFs as
well.

Let us now return to issues concerning the underlying ontology O. First, RST as-
sumes that the ontology O represents all concepts in LDesc which, in turn, belong to
some U/IND(S) for S ⊆ A. That is, atomic concepts are indiscernability classes
and all other concepts are built up from them. Second, O is in fact the Boolean alge-
bra 〈U ,∪,∩, \〉 generated by U/IND(A). Thus, what actually contributes to induction
is the indiscernability relation IND(A): when you know IND(A), you also know
the corresponding RST ontology O. On this view, RST may be regarded as a kind of
the similarity–based approach to inductive reasoning. Only similarity (indiscernability)
classes affect induction and, in consequence, only (a) step (i.e. the similarity–based
step) of SCM is performed. Since (b) step of SCM assumes additional conceptual
knowledge, applying it to RST ontology, which actually brings us nothing more than
IND(A), may lead to wrong results.

Example 2. Consider the information system given by Fig. 1. Let

α = [Environment = terrestial] ∧ [Diet = omnivorous] ∧ [Tail = round]

and
β = [Poland = no],¬β = [Poland = yes]

Then α ⇒ β is a decision rule and

Accα(β) = 1/3, Covα(β) = 1/1 = 1,

Sim(α, β) = 2/3, and CovRST (α, β) = 3/3 = 1.

Also α ⇒ ¬β is a decision rule, for which we have

Accα(¬β) = 2/3, Covα(γ) = 2/5,

Sim(α, γ) = 8/15, and CovRST (α, β) = 3/6

Observe, that according to the above measures, the arguments represented by α ⇒ β
is stronger than α ⇒ ¬β (50/30 and 31/30 respectively). However, our intuition
suggests us the opposite ranking, e.g.:

Skunks have a property P
Mice have a property P

Squirrels have a property P
All animals not living in Poland have a property P.
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Skunks have a property P
Mice have a property P

Squirrels have a property P
All animals in Poland have a property P.

Given that mice and squirrels live in Poland, but skunks do not, it is obvious that the
second argument should be recognised as stronger than the first one. In order to correct
our result we have to consider a proper ontology O, which brings us new information
about U .

Let us look at the scientific ontology given by Fig. 2, which is built for the dataset
Fig. 1 – in fact, it is a fragment of the well-known biological taxonomy. In this case, the
smallest concept containing both |α| and |β| is the set of all objects from the dataset.
Thus, Cov(α, β) = 1/2 and the overall result for α⇒ β is 7/6. The same computation
for α ⇒ ¬β brings us Cov(α,¬β) = 1/2 and the overall result is 31/30. This time
the strength of both arguments is quite similar: the difference is equal 4/30 in favour
of the first argument. Thus, this time we have obtained a better result. Our example
shows also that all categories used in induction should have proper extensions in the
given dataset. For instance, the categories not living in Poland and skunk represent the
same concept {Skunk}, what actually makes the first argument stronger than the sec-
ond one even when applying scientific ontology. Observe also that in the case of the
scientific ontology beavers and squirrels belong to the same family, yet they differ on
all conditional attributes. Thus, this ontology really brings us the new knowledge about
the dataset. However, sometimes it is better to have an ontology which reflects our
knowledge which is encoded by means of attributes from A. For example, the taxon-
omy Fig. 3 represents the way people could categorise the animals from Fig. 1. Which
ontology is more useful depends on features we want to reason about. For instance,
in enthnobiology it is widely agreed that scientific ontology is better to reason about
hidden properties of animals, whereas the common sense ontology is better to reason

ORDER Beaver, Squirrel, Mouse, Muskrat, Otter, Skunk

SUBORDER Beaver, Squirrel, Mouse, Muskrat

FAMILY Beaver, Squirrel Mouse, Muskrat Otter, Skunk

Fig. 2. The scientific taxonomy for the dataset

Folk ORDER Beaver, Squirrel, Mouse, Muskrat, Otter, Skunk

Folk SUBORDER Beaver, Otter, Squirrel, Mouse, Muskrat

Folk FAMILY Beaver, Muskrat, Otter Mouse, Squirrel Skunk

Fig. 3. A common-sense taxonomy for the dataset
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about their behaviour. Thus, the ontology must be carefully chosen with respect to the
goal properties.

As said above, the common-sense ontology is mainly based on attributes of objects.
On the basis of this fact, one can regard concept lattices from formal concept analysis
(FCA) [17,18] as such ontologies. Let us recall that any binary relation R ⊆ U × V
induces two operators:

R+(A) = {b ∈ V : (∀a ∈ A)〈a, b〉 ∈ R}

R+(B) = {a ∈ U : (∀b ∈ B)〈a, b〉 ∈ R}

Definition 5. A concept induced by R ⊆ U × V is a pair (A, B), where A ⊆ U and
B ⊆ V such that A = R+(B) and B = R+(A). A set A is called an extent concept
if A = R+R+(A). Similarly if B ⊆ M is such that B = R+R+(B) then B is called
an intent concept.

The set of all concepts of any information system is a complete lattice [17,18]. Since
the lattice induced by our dataset from Fig. 1 is quite complicated, we present here only
a list of concepts (see Fig. 4) instead of the Hasse diagram. As one can see, it is quite
large ontology when compared with the common sense ontology. As a consequence, for
a small dataset as this in the paper the results are very similar to these obtained for RST
ontology. However, for large datasets the results may substantially differ. But checking
how FCA-ontologies are useful for inductive reasoning is a task for future works.

1. < {Beaver}, {semiaquatic, herbivorous, flattened,medium, yes} >
2. < {Squirrel}, {terrestial, omnivorous, round, small, yes} >
3. < {Mouse}, {terrestial, omnivorous, round, very small, yes} >
4. < {Muskrat}, {semiaquatic, omnivorous, round, medium, yes} >
5. < {Otter}, {semiaquatic, carnivorous, round, medium, yes} >
6. < {Skunk}, {terrestial, omnivorous, round, medium,no} >
7. < {Beaver, Squirrel, Mouse, Muskrat, Otter}, {yes} >
8. < {Beaver,Muskrat, Otter}, {semiaquatic, medium, yes} >
9. < {Beaver,Muskrat, Otter, Skunk}, {medium} >

10. < {Squirrel, Mouse}, terrestial, omnivorous, round, yes >
11. < {Squirrel, Mouse, Muskrat}, {omnivorous, round, yes} >
12. < {Squirrel, Mouse, Muskrat, Otter}, {round, yes} >
13. < {Squirrel, Mouse, Skunk}, {terrestial, omnivorous, round} >
14. < {Muskrat, Otter}, {semiaquatic, round, medium, yes} >
15. < {Muskrat, Skunk}, {omnivorous, round, medium} >
16. < {Squirrel, Mouse, Muskrat, Skunk}, {omnivorous, round} >
17. < {Muskrat, Otter, Skunk}, {round, medium} >
18. < {Squirrel, Mouse, Muskrat, Otter, Skunk}, {round} >
19. < {Beaver, Squirrel, Mouse, Muskrat, Otter, Skunk}, {} >
20. < {}, {semiaquatic, terrestial, herbivorous, omnivorous,

carnivorous, flattened, round, verysmall, small,medium, yes, no} >

Fig. 4. Concepts induced by the dataset from Fig. 1
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Summing up this section let us say a few words about inductive rules. As said above,
under the interpretation expressed by Equation (2), apart from decision rules also induc-
tive rules make sense. Let α ∈ LDesc be a description of beavers, i.e. |α| = {Beaver},
β ∈ LDesc be a description of squirrels, |β| = {Squirrel}, and γ be a description of
skunks, |γ| = {Skunk}. Then, |α| ∩ |β| = ∅, |α| ∩ |γ| = ∅, and both α ⇒ β and
α ⇒ γ are inductive rules. In consequence, Sim(α, β) = Sim(α, γ) = 0. Observe
also that CovRST cannot distinguish these rules either, for we have CovRST (α, β) =
CovRST (α, γ) = 1/2. However, under the scientific ontology (Fig. 4.) Cov(α, β) =
1/2, whereas Cov(α, γ) = 1/6.

5 Induction over Nearness Spaces

In this section we consider a topological counterpart of RST enriched by the concept of
ontology. Recently a number of attempts have been made to connect RST with nearness
type structures, e.g. [11,19]. These structures (such like nearness spaces or merotopic
spaces) are actually quite abstract and this section aims to provide the reader with their
intuitive interpretation. We start with some ideas concerning RST and inductive reason-
ing, and then we develop them into a nearness space.

An information system 〈U, A, V, f〉 is often represented as an approximation space
(U, IND(A)), that is, a non-empty set U equipped with an equivalence relation. This
representation allows one to connect RST with relational structures which underlie
many branches of mathematics, e.g. topology, logic, or universal algebra. Here we
would like to change this approach and consider IND(S) for all S ⊆ A.

Definition 6. Let A,B ⊆ 2X; then a refinement relation  is defined by:

A  B def⇔ (∀A ∈ A) (∃B ∈ B)A ⊆ B.

Obviously, for any information system 〈U, A, V, f〉, U/IND(A) refines every other
partition U/IND(S), for all S ⊆ A. A simple mathematical structure which gener-
alises this observation is called a non-Archimedean structure.

Definition 7. A non-Archimedean structure µ on a non-empty set U is a set of partitions
of U satisfying:

A  B & A ∈ µ⇒ B ∈ µ,

and the couple (U, µ) is called a non-Archimedean space.

Let INDS = {U/IND(S) : S ⊆ A}. Observe that (U, INDS) may fail to be
a non-Archimedean space. Take as an example the dataset from Fig. 1 and consider
the partition P = {{Beaver}, {Squirrel, Mouse, Muskrat, Otter, Skunk}}. Then
U/IND(A)  P , yet there is no S ⊆ A such that U/IND(S) = P . Furthermore, any
concept α ∈ LDesc induces a partition Pα = {|α|, |¬α|} of U and U/IND(A)  Pα.
For example, when α = [Diet = herbivorous], then Pα = P . Thus, what we actually
need is a non-Archimedean structure INDA induced by U/IND(A):

INDA = {P : P is a partition of U & U/IND(A)  P}.
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Proposition 1. Let 〈U, A, V, f〉 be an information system, and C = {|α| : α ∈ LDesc}
be a set of all non-empty concepts in LDesc. Then

C =
⋃
INDA.

Proof. We have to prove that C ⊆
⋃
INDA and

⋃
INDA ⊆ C. First, for every non-

empty |α| in LDesc it holds that U/IND(A)  Pα and thus C ⊆
⋃
INDA. Second,

assume that C ∈
⋃
INDA. It means that C ∈ P for some partition P ∈ INDA. Since

U/IND(A)  P , it follows that C =
⋃
A for someA ⊆ U/IND(A). Every element

Ci of A is a concept in LDesc for some αi ∈ LDesc and thus C is a concept in LDesc

for α1 ∨ α2 ∨ . . . ∨ αi. Hence
⋃
INDA ⊆ C.

In other words, all non-empty concepts in LDesc belong to some partition of the non-
Archimedean structure INDA and every element of such partition is a concept in
LDesc. Since an ontology is a subset of the family of all concepts in LDesc, the space
(U, INDA) sets the stage for conceptual knowledge about U .

Definition 8. Let 〈U, A, V, f〉 be an information system. Then by an ontologyOA over
(U, INDA) we mean an ordered set of partitions (P , ) such that P ⊆ INDA and
for all Pi, Pj ∈ P it holds that Pi 	= Pj for i 	= j,

We say that C is a concept from an ontologyOA = (P , ) if C ∈
⋃
P . In other words,

C is a concept from OA if there is a partition P ∈ P such that C ∈ P . The set of all
concepts fromOA will be denoted by COA .

Example 3. The scientific taxonomy from Fig. 2 can be represented as follows:

OA = {P1, P2, P3, P4}

where

P1 = {{Beaver}, {Squirrel}, {Mouse}, {Muskrat}, {Otter}, {Skunk}},

P2 = {{Beaver, Squirrel}, {Mouse, Muskrat}, {Otter, Skunk}},
P3 = {{Beaver, Squirrel, Mouse, Muskrat}, {Otter, Skunk}},
P4 = {{Beaver, Squirrel, Mouse, Muskrat, Otter, Skunk}}.

Definition 9. We say that C1 K C2 iff C1 ⊆ C2 and there exists Pi, Pj ∈ OA such that
C1 ∈ Pi, C2 ∈ Pj and Pi  Pj , for all C1, C2 ∈ COA .

Proposition 2. The relation K is taxonomic over COA for every ontologyOA induced
the non-Archimedean space (U, INDA).

Proof. It follows from the definition of K and the definition of ontology.

For an information system 〈U, A, V, f〉 the associated taxonomy over OA will be de-
noted by (COA , K).

In order to generalise this description for non-taxonomic ontologies it suffices to
define the ontology over the family of covers.
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Definition 10. stack�µ = {B ⊆ 2X : (∃A ∈ µA)  B}.

First, stack�INDA is a family of covers of U . Second, for an information system
〈U, A, V, f〉, as a generalised ontology we take an ordered set of covers (P , ).

Definition 11. Let 〈U, A, V, f〉 be an information system. Then by an generalised on-
tology GOA over (U, INDA) we mean an ordered set of partitions (P , ) such that
P ⊆ stack�INDA and for all Pi, Pj ∈ P it holds that Pi 	= Pj for i 	= j,

Since stack�INDA provides the most general stage for inductive reasoning, we ex-
amine it in some detail now. First, observe that for an information system 〈U, A, V, f〉,
it holds that:

stack�INDA = stack�{IND(A)}.
Thus, {IND(A)} suffices to generate the whole stack�INDA. Furthermore, the stack
operation allows us to connect INDA with nearness type structures.

Definition 12. Let X be a set and ν be a non-empty set of coverings of X such that:

A  B & A ∈ ν ⇒ B ∈ ν.

Then (X, ν) is called a pre-nearness space.

When stack�Eν = ν, for

Eν = {P ∈ ν : P is a partition of X},

then (X, ν) is called a non-Archimedean pre-nearness space and Eν is its base. Thus,
the non-Archimedean structure INDA on U is a base of the non-Archimedean pre-
nearness space (X, stack�INDA).

Definition 13. Let (X, ν) be a pre-nearness space such that:

A ∈ ν & B ∈ ν ⇒ {A ∩B : A ∈ A and B ∈ B} ∈ ν.

Then (X, ν) is called a merotopic space.

Definition 14. A merotopic space (X, ν) which satisfies:

A ∈ ν ⇒ {Intν(A) : A ∈ A} ∈ ν,

where Intν(A) = {x ∈ X : {A, X \ {x}} ∈ ν}, is called a nearness space.

Proposition 3. Let 〈U, A, V, f〉 be an information system. Then (U, stack�INDA) is
a non-Archimedean nearness space.

Proof. In order not to overload the paper with definitions, we shall give just a hint
how to prove this theorem. First, as is well-known, every partition star-refines itself.
Therefore (U, stack�INDA) is a uniform pre-nearness space. Second, every uniform
pre-nearness space satisfies Definition 14, see, e.g. [4] for the proof. Finally, since
U/IND(A) = Estack�INDA , the uniform pre-nearness space (U, stack�INDA) is
closed under intersections as required by Definition 13. Thus, (U, stack�INDA) is a
non-Archimedean nearness space.
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Please, observe that the very simple description of SCM in terms of subsets of U have
led us to (U, stack�INDA) as a proper stage for human-like inductive reasoning. Sur-
prisingly, this stage is nothing more than a representation of a basic concept of RST.
Let us recall that any information system 〈U, A, V, f〉 may be regarded as a finite ap-
proximation space (U, IND/A), and in many cases this representation is more handy,
e.g. in algebraic investigations into RST. Actually, the same remark may be applied to
(U, stack�INDA).

Proposition 4. Let U be a non-empty finite set. Then there is one-to-one correspon-
dence between finite approximation spaces (U, E) and non-Archimedean nearness spa-
ces (U, ν) over U .

Proof. For the same reason as above, we also give a sketch of the proof. Every finite
non-Archimedean nearness space (U, ν) is induced by a partition P . Since P is the
minimal open basis for the topology induced by Intν , it follows that (U, ν) is a topo-
logical nearness space. On the other hand, every finite topological space (U, ν) has the
minimal open basis P for its topology Intν . Since is Intν symmetric, P is a partition
and thus (U, ν) is a non-Archimedean nearness space. Finally, there is one-to-one corre-
spondence between finite topological nearness spaces and finite approximation spaces.
See also [19].

Thus, non-Archimedean nearness spaces over finite sets may be considered as another
special representation of information systems. Approximation spaces are useful when
one consider, e.g. relational structures and modal logics, whereas nearness spaces are
suitable for ontologies and inductive reasoning.

6 Final Remarks

The article presents an account of preliminary results concerning Rough Set Theory
(RST) and Similarity Coverage Model of category-based induction (SCM). In the first
part of this paper we have shown how decision rules may be regarded as induction
tasks and how rough inclusion functions may be used to compute the strength of in-
ductive reasoning. In the second part we have presented a model of SCM based on
non-Archimedean structures and non-Archimedean nearness spaces. Recently a num-
ber of attempts have been made to connect RST with nearness type structures, e.g.
[11,19]. Thus, the paper has presented some intuitive reasons to consider these abstract
topological spaces. The model based on a non-Archimedean space has a nice property
that every ontology over it is taxonomic.
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Probabilistic Dependencies in Linear Hierarchies
of Decision Tables
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Abstract. The article is a study of probabilistic dependencies between
attribute-defined partitions of a universe in hierarchies of probabilistic
decision tables. The dependencies are expressed through two measures:
the probabilistic generalization of the Pawlak’s measure of the depen-
dency between attributes and the expected certainty gain measure intro-
duced by the author. The expected certainty gain measure reflects the
subtle grades of probabilistic dependence of events. Both dependency
measures are developed and it is shown how they can be extended from
flat decision tables to dependencies existing in hierarchical structures of
decision tables.

1 Introduction

The notion of decision table has been around for long time and was widely used
in circuit design, software engineering, business, and other application areas. In
the original formulation, decision tables are static due to the lack of the ability
to automatically learn and adapt their structures based on new information.

Decision tables representing data-acquired classification knowledge have been
introduced by Pawlak [1]. In Pawlak’s approach, the decision tables are dynamic
structures derived from data, with the ability to adjust with new information.
This fundamental difference makes it possible for novel uses of decision tables
in applications related to reasoning from data, such as data mining, machine
learning or complex pattern recognition.

The decision tables are typically used for making predictions about the value of
the target decision attribute, such as medical diagnosis, based on combinations
of values of condition attributes, for example symptoms and test results, as
measured on new, previously unseen objects (for example, patients). However,
the decision tables often suffer from the following problems related to the fact
that they are typically computed based on a subset, a sample of the universe of
all possible objects.

Firstly, the decision table may have excessive decision boundary, often due
to poor quality of the descriptive condition attributes, which may be weakly
correlated with the decision attribute. The excessive decision boundary leads to
the excessive number of incorrect predictions.

Secondly, the decision table may be highly incomplete, i.e. excessively many
new measurement vectors of condition attributes of new objects are not matched
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by any combination of condition attribute values present in the decision table.
Such a highly incomplete decision table leads to an excessive number of new,
unrepresented observations, for which the prediction of the decision attribute
value is not possible.

With condition attributes weakly correlated with the decision attribute, in-
creasing their number does not rectify the first problem. Attempting to increase
the number of condition attributes, or the number of possible values of the at-
tributes, results in the exponential explosion of the complexity of decision table
learning and is leading to the rapid increase of its degree of incompleteness [8]. In
general, the decision boundary reduction problem is conflicting with the decision
table incompleteness minimization problem.

To deal with these fundamental difficulties, an approach involving building hi-
erarchies of decision tables was proposed [6]. The approach is focused on learning
hierarchical structures of decision tables rather than learning individual tables,
subject to learning complexity constraints. In this approach, a linear hierarchy
of decision tables is formed, in which the parent layer decision boundary defines
a universe of discourse for the child layer table. The decision tables on each layer
are size-limited by reducing the number of condition attributes and their values,
thus bounding their learning complexity [8]. Each layer contributes a degree of
decision boundary reduction, while providing a shrinking decision boundary to
the next layer. In this way, even in the presence of relatively weak condition at-
tributes, a significant total boundary reduction can be achieved, while preserving
the learning complexity constraints on each level.

Similar to single layer decision table, the hierarchy of decision tables needs to
be evaluated from the point of view of its quality as a potential classifier of new
observations. The primary evaluative measure for decision tables, as introduced
by Pawlak, is the measure of partial functional dependency between attributes
[1] and its probabilistic extension [7]. Another measure is the recently introduced
expected gain measure which captures more subtle probabilistic associations be-
tween attributes [7]. In this paper, these measures are reviewed and generalized
to the hierarchical structures of decision tables. A simple recursive method of
their computation is also discussed. The measures, referred to as γ and λ mea-
sures respectively, provide a tool for assessment of decision table-based classifiers
derived from data.

The basics of the rough set theory and the techniques for analysis of decision
tables are presented in this article in the probabilistic context, with the under-
lying assumption that the universe of discourse U is potentially infinite and is
known only partially through a finite collection of observation vectors (the sam-
ple data). This assumption is consistent with great majority of applications in
the areas of statistical analysis, data mining and machine learning.

2 Attribute-Based Probabilistic Approximation Spaces

In this section, we briefly review the essential assumptions, definitions and no-
tations of the rough set theory in the context of probability theory.



446 W. Ziarko

2.1 Attributes and Classifications

We assume that observations about objects are expressed through values of at-
tributes, which are assumed to be functions a : U → Va, where Va is a finite set
of values called the domain. The attributes represent some properties of the ob-
jects in U . It should be however mentioned here that, in practice, the attributes
may not be functions but general relations due to influence of measurement ran-
dom noise. The presence of noise may cause the appearance of multiple attribute
values associated with an object.

Traditionally, the attributes are divided into two disjoint categories: condition
attributes denoted as C, and decision attributes D = {d}. In many rough set-
oriented applications, attributes are finite-valued functions obtained by discretiz-
ing values of real-valued variables representing measurements taken on objects
e ∈ U .

As individual attributes, any non-empty subset of attributes B ⊆ C ∪ D
defines a mapping from the set of objects U into the set of vectors of values of
attributes in B. This leads to the idea of the equivalence relation on U , called
indiscernibility relation INDB = {(e1, e2) ∈ U : B(e1) = B(e2)}. According to
this relation, objects having identical values of attributes in B are equivalent,
that is, indistinguishable in terms of values of attributes in B . The collection
of classes of identical objects will be denoted as U/B and the pair (U, U/B) will
be called an approximation space.

The object sets G ∈ U/C∪D, will be referred to as atoms. The sets E ∈ U/C
will be referred to as elementary sets. The sets X ∈ U/D will be called decision
categories. Each elementary set E ∈ U/C and each decision category X ∈ U/D
is a union of some atoms. That is, E = ∪{G ∈ U/C ∪ D : G ⊆ E} and X =
∪{G ∈ U/C ∪D : G ⊆ F}.

2.2 Probabilities

We assume that all subsets X ⊆ U under consideration are measurable by a
probability measure function P , normally estimated from collected data in a
standard way, with 0 < P (X) < 1, which means that they are likely to occur
but their occurrence is not certain. In particular, each atom G ∈ U/C ∪ D is
assigned a joint probability P (G).

From our initial assumption and from the basic properties of the probability
measure P , follows that for all atoms G ∈ U/C ∪D, we have 0 < P (G) < 1 and∑

G∈U/C∪D P (G) = 1. Based on the joint probabilities of atoms, probabilities of
elementary sets E and of a decision category X can be calculated by P (E) =∑

G⊆E P (G).
The probability P (X) of the decision category X in the universe U is the

prior probability of the category X . It represents the degree of confidence in
the occurrence of the decision category X , in the absence of any information
expressed by attribute values.

The conditional probability of a decision category X , P (X |E) = P (X∩E)
P (E) ,

conditioned on the occurrence of the elementary set E, represents the degree
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of confidence in the occurrence of the decision category X, given information
indicating that E occurred. The conditional probability can be expressed in terms
of joint probabilities of atoms by P (X |E) =

P

G⊆X∩E P (G)
P

G⊆E P (G) . This property allows
for simple computation of the conditional probabilities of decision categories.

2.3 Variable Precision Rough Sets

The theory of rough set underlies the methods for derivation, optimization and
analysis of decision tables acquired from data. In this part, we review the basic
definitions and assumptions of the variable precision rough set model (VPRSM)
[5][7]. The VPRSM is a direct generalization of Pawlak rough sets [1]. One of the
main objectives of rough set theory is the formation and analysis of approximate
definitions of otherwise undefinable sets [1]. The approximate definitions, in the
form of lower approximation and boundary area of a set, allow for determination
of an object’s membership in a set with varying degrees of certainty. The lower
approximation permits for uncertainty-free membership determination, whereas
the boundary defines an area of objects which are not certain, but possible,
members of the set [1]. The VPRSM extends upon these ideas by parametrically
defining the positive region as an area where the certainty degree of an object’s
membership in a set is relatively high, the negative region as an area where the
certainty degree of an object’s membership in a set is relatively low, and by
defining the boundary as an area where the certainty of an object’s membership
in a set is deemed neither high nor low.

The defining criteria in the VPRSM are expressed in terms of conditional
probabilities and of the prior probability P (X) of the set X in the universe
U . The prior probability P (X) is used as reference value here as it represents
the likelihood of X occurrence in the extreme case characterized by the absence
of any attribute-based information. In the context the attribute-value represen-
tation of sets of the universe U , as described in the previous section, we will
assume that the sets of interest are decision categories X ∈ U/D. Two precision
control parameters are used: the lower limit l, 0 ≤ l < P (X) < 1, representing
the highest acceptable degree of the conditional probability P (X |E) to include
the elementary set E in the negative region of the set X ; and the upper limit
u, 0 < P (X) < u ≤ 1, reflecting the least acceptable degree of the conditional
probability P (X |E) to include the elementary set E in the positive region, or
u-lower approximation of the set X . The l-negative region of the set X, denoted
as NEGl(X) is defined by:

NEGl(X) = ∪{E : P (X |E) ≤ l} (1)

The l-negative region of the set X is a collection of objects for which the proba-
bility of membership in the set X is significantly lower than the prior probability
P (X). The u-positive region of the set X , POSu(X) is defined as

POSu(X) = ∪{E : P (X |E) ≥ u}. (2)

The u-positive region of the set X is a collection of objects for which the probabil-
ity of membership in the set X is significantly higher than the prior probability
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P (X). The objects which are not classified as being in the u-positive region
nor in the l-negative region belong to the (l, u)-boundary region of the decision
category X , denoted as

BNRl,u(X) = ∪{E : l < P (X |E) < u}. (3)

The boundary is a specification of objects about which it is known that their
associated probability of belonging, or not belonging to the decision category X ,
is not much different from the prior probability of the decision category P (X).
The VPRSM reduces to standard rough sets when l = 0 and u = 1.

3 Structures of Decision Tables Acquired from Data

To describe functional or partial functional connections between attributes of
objects of the universe U , Pawlak introduced the idea of decision table acquired
from data [1]. The probabilistic decision tables and their hierarchies extend this
idea into probabilistic domain by forming representations of probabilistic rela-
tions between attributes.

3.1 Probabilistic Decision Tables

For the given decision category X ∈ U/D and the set values of the VPRSM
lower and upper limit parameters l and u, we define the probabilistic decision
table DT C,D

l,u as a mapping C(U) → {POS, NEG, BND} derived from the
classification table as follows:

The mapping is assigning each tuple of values of condition attribute values
t ∈ C(U) to its unique designation of one of VPRSM approximation regions
POSu(X), NEGl(X) or BNDl,u(X), the corresponding elementary set Et is
included in, along with associated elementary set probabilities P (Et) and con-
ditional probabilities P (X |Et):

DT C,D
l,u (t) =

⎧⎨⎩
(P (Et), P (X |Et), POS) ⇔ Et ⊆ POSu(X)
(P (Et), P (X |Et), NEG) ⇔ Et ⊆ NEGl(X)
(P (Et), P (X |Et), BND)⇔ Et ⊆ BNDl,u(X)

(4)

The probabilistic decision table is an approximate representation of the prob-
abilistic relation between condition and decision attributes via a collection of
uniform size probabilistic rules corresponding to rows of the table. An exam-
ple probabilistic decision table is shown in Table 1. In this table, the condition
attributes are a, b, c, attribute-value combinations correspond to elementary
sets E and Region is a designation of one of the approximation regions the
corresponding elementary sets belong to: positive (POS), negative (NEG) or
boundary (BND).

The probabilistic decision tables are most useful for decision making or pre-
diction when the relation between condition and decision attributes is largely
non-deterministic. However, they suffer from the inherent contradiction between
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Table 1. An example of probabilistic decision table

a b c P (E) P (X|E) Region

1 1 2 0.23 1.00 POS
1 0 1 0.33 0.61 BND
2 2 1 0.11 0.27 BND
2 0 2 0.01 1.00 POS
0 2 1 0.32 0.06 NEG

the accuracy and completeness. In the presence of boundary region, higher ac-
curacy, i.e. reduction of boundary region, can be achieved either by adding new
condition attributes or by increasing the precision of existing ones (for instance,
by making the discretization procedure finer). Both solutions lead to the expo-
nential growth in the maximum number of attribute-value combinations to be
stored in the decision table [8]. In practice, it results in such negative effects as
excessive size of the decision table, likely high degree of table incompleteness
(in the sense of missing many feasible attribute-value combinations), weak data
support for elementary sets represented in the table and, consequently, unreli-
able estimates of probabilities. The use of hierarchies of decision tables rather
than individual tables in the process of classifier learning from data provides a
partial solution to these problems [6].

3.2 Probabilistic Decision Table Hierarchies

Since the VPRSM boundary region BNDl,u(X) is a definable subset of the uni-
verse U , it allows to structure the decision tables into hierarchies by treating the
boundary region BNDl,u(X) as sub-universe of U , denoted as U ′ = BNDl,u(X).
The ”child”sub-universe U ′ so defined can be made completely independent from
its ”parent”universe U , by having its own collection of condition attributes C′ to
form a ”child” approximation sub-space (U, U/C′). As on the parent level, in the
approximation space (U, U/C′), the decision table for the subset X ′ ⊆ X of the
target decision category X , X ′ = X ∩ BNDl,u(X) can be derived by adapting
the formula (4). By repeating this step recursively, a linear hierarchy of proba-
bilistic decision tables can be grown until either boundary area disappears in one
of the child tables, or no attributes can be identified to produce non-boundary
decision table at the final level. Other termination conditions are possible, but
this issue is out of scope in this article.

The nesting of approximation spaces obtained as a result of recursive compu-
tation of decision tables, as described above, creates a new approximation space
on U . The resulting hierarchical approximation space (U, R) cannot be expressed
by the indiscernibility relation, as defined in Section 2, in terms of the attributes
used to form the local sub-spaces on individual levels of the hierarchy. This leads
to the basic question: how to measure the degree of the mostly probabilistic de-
pendency between the hierarchical partition R of U and the partition (X,¬X)
corresponding to the decision category X ⊆ U . Some probabilistic inter-partition
dependency measures are explored in the next section.
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4 Dependencies in Decision Table Hierarchies

The dependencies between partitions are fundamental to rough set-based non-
probabilistic and probabilistic reasoning and prediction. They allow to predict
the occurrence of a class of one partition based on the information that a class
of another partition occurred. There are several ways dependencies between par-
titions can be defined in decision tables. In Pawlak’s early works functional and
partial functional dependencies were explored [1]. The probabilistic generaliza-
tion of the dependencies was also defined and investigated in the framework of
the variable precision rough set model. All these dependencies represent the rel-
ative size of the positive and negative regions of the target set X . They reflect
the quality of approximation of the target category in terms of the elementary
sets of the approximation space. Following the original Pawlak’s terminology, we
will refer to these dependencies as γ-dependencies.

Other kind of dependencies, based on the notion of the certainty gain mea-
sure, reflect the average degree of improvement of the certainty of occurrence of
the decision category X , or ¬X , relative to its prior probability P (X) [7] (see
also [2] and [4]). We will refer to these dependencies as λ-dependencies. Both,
the γ-dependencies and λ-dependencies can be extended to hierarchies of prob-
abilistic decision tables, as described below. Because there is no single collection
of attributes defining the partition of U , the dependencies of interest in this case
are dependencies between the hierarchical partition R generated by the deci-
sion table hierarchy, forming the approximation space (U, R), and the partition
(X,¬X), defined by the target set.

4.1 Γ -Dependencies for Decision Tables

The partial functional dependency among attributes, referred to as γ-dependency
γ(D|C) measure, was introduced by Pawlak [1]. It can be expressed in terms of
the probability of positive region of the partition U/D defining decision cate-
gories:

γ(D|C) = P (POSC,D(U)) (5)

where POSC,D(U) is a positive region of the partition U/D in the approximation
space induced by the partition U/C. In the binary case of two decision categories,
X and ¬X , the γ(D|C)-dependency can be extended to the VPRSM by defining
it as the combined probability of the u-positive and l -negative regions:

γl,u(X |C) = P (POSu(X) ∪NEGl(X)). (6)

The γ-dependency measure reflects the proportion of objects in U , which can
be classified with sufficiently high certainty as being members, or non-members
of the set X .

4.2 Computation of Γ -Dependencies in Decision Table Hierarchies

In the case of the approximation space obtained by forming it via hierarchical
classification process, the γ-dependency between the hierarchical partition R and
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the partition (X,¬X) can be computed directly by analyzing all classes of the
hierarchical partition. However, an easier to implement recursive computation
is also possible. This is done by recursively applying, starting from the leaf
table of the hierarchy and going up to the root table, the following formula (7)
for computing the dependency of the parent table γU

l,u(X |R) in the hierarchical
approximation space (U, R), if the dependency of a child level table γU ′

l,u(X |R′)
in the sub-approximation space (U ′, R′) is given:

γU
l,u(X |R) = γU

l,u(X |C) + P (U ′)γU ′
l,u(X |R′), (7)

where C is a collection of attributes inducing the approximation space U and
U ′ = BNDl,u(X). As in the flat table case, this dependency measure represents
the fraction of objects that can be classified with acceptable certainty into de-
cision categories X or ¬X by applying the decision tables in the hierarchy. The
dependency of the whole structure of decision tables, that is the last dependency
computed by the recursive application of formula (7), will be called a global γ-
dependency. Alternatively, the global γ-dependency can be computed straight
from from the definition (5). This computation requires checking all elementary
sets of the hierarchical partition for the inclusion in POSu(X)∪NEGl(X), which
seems to be less elegant and more time consuming that the recursive method.

4.3 Certainty Gain Functions

Based on the probabilistic information contained in data, as given by the joint
probabilities of atoms, it is also possible to evaluate the degree of probabilistic de-
pendency between any elementary set and a decision category. The dependency
measure is called absolute certainty gain [7] (gabs). It represents the degree of in-
fluence the occurrence of an elementary set E has on the likelihood of occurrence
of the decision category X . The occurrence of E can increase, decrease, or have
no effect on the probability of occurrence of X . The probability of occurrence
of X , in the absence of any other information, is given by its prior probability
P (X). The degree of variation of the probability of X , due to occurrence of E,
is reflected by the absolute certainty gain function:

gabs(X |E) = |P (X |E)− P (X)|, (8)

where | ∗ | denotes absolute value function. The values of the absolute gain
function fall in the range 0 ≤ gabs(X |E) ≤ max(P (¬X), P (X)) < 1. In addition,
if sets X and E are independent in the probabilistic sense, that is, if P (X∩E) =
P (X)P (E), then gabs(X |E) = 0. The definition of the absolute certainty gain
provides a basis for the definition of a new probabilistic dependency measure
between attributes. This dependency can be expressed as the average degree of
change of occurrence certainty of the decision category X , or of its complement
¬X , due to occurrence of any elementary set [7], as defined by the expected
certainty gain function:

egabs(X |C) =
∑

E∈U/C

P (E)gabs(X |E), (9)
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where X ∈ U/D. The expected certainty gain is a more subtle inter-partition de-
pendency than γ-dependency since it takes into account the probabilistic distri-
bution information in the boundary region of X . The egabs(X |C) measure can be
computed directly from joint probabilities of atoms. It can be proven [7] that the
expected gain function falls in the range 0 ≤ egabs(X |C) ≤ 2P (X)(1 − P (X)),
where X ∈ U/D.

4.4 Attribute Λ-Dependencies in Decision Tables

The strongest dependency between attributes of a decision table occurs when
the decision category X is definable, i.e. when the dependency is functional.
Consequently, the dependency in this deterministic case can be used as a ref-
erence value to normalize the certainty gain function. The following normalized
expected gain function λ(X |C) measures the expected degree of the probabilis-
tic dependency between elementary sets and the decision categories belonging
to U/D [7]:

λ(X |C) =
egabs(X |C)

2P (X)(1− P (X))
, (10)

where X ∈ U/D. The λ-dependency quantifies in relative terms the average de-
gree of deviation of elementary sets from statistical independence with the deci-
sion class X ∈ U/D. The dependency function reaches its maximum λ(X |C) = 1
only if the dependency is deterministic (functional) and is at minimum when all
events represented by elementary sets E ∈ U/C are unrelated to the occurrence
of the decision class X ∈ U/D. In the latter case, the conditional distribution of
the decision class P (X |E) equals to its prior distribution P (X).

The value of the λ(X |C) dependency function can be easily computed from the
joint probabilities of atoms. As opposed to the generalized γ(X |C) dependency,
the λ(X |C) dependency has the monotonicity property [3], that is, λ(X |C) ≤
λ(X |C ∪ {a}), where a is an extra condition attribute outside the set C. This
monotonicity property allows for dependency-preserving reduction of attributes
and is leading to the notion of probabilistic λ-reduct of attributes, as defined
in [3].

4.5 Computation of Λ-Dependencies in Decision Table Hierarchies

The λ-dependencies can be computed directly based on any known partitioning
of the universe U . In cases when the approximation space is formed through
hierarchical classification, the λ-dependency between the partition R so created
and the target category X can be computed via a recursive formula derived
below. Let

egabsl,u(X |C) =
∑

E∈POSu∪NEGl

P (E)gabs(X |E) (11)

denote the conditional expected gain function, i.e. restricted to the union of
positive and negative regions of the target set X in the approximations space
generated by attributes C. The maximum value of egabsl,u(X |C), achievable
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in deterministic case, is 2P (X)(1 − P (X)). Thus, the normalized conditional
λ-dependency function, can be defined as:

λl,u(X |C) =
egabsl,u(X |C)

2P (X)(1− P (X))
. (12)

As γ-dependencies, λ-dependencies between the target partition (X,¬X) and
the hierarchical partition R can be computed recursively. The following formula
(13) describes the relationship between λ-dependency computed in the approx-
imation space (U, R), versus the dependency computed over the approximation
sub-space (U, R′), where R and R′ are hierarchical partitions of universes U
and U ′ = BNDl,u(X), respectively. Let λl,u(X |R) and λl,u(X |R′) denote λ-
dependency measures in the approximation spaces (U, R) and (U ′, R′), respec-
tively. The λ-dependencies in those approximation spaces are related by the
following:

λl,u(X |R) = λl,u(X |C) + P (BNDl,u(X))λl,u(X |R′). (13)

The proof of the above formula follows directly from the Bayes’s equation. In
practical terms, the formula (13) provides a method for efficient computation of
conditional λ-dependency in a hierarchical arrangement of probabilistic decision
tables. According to this method, to compute conditional λ-dependency for each
level of the hierarchy, it suffices to compute the conditional λ-dependency and
to know ”child” BNDl,u(X)-level conditional λ-dependency. That is, the condi-
tional λ-dependency should be computed first for the bottom level table using
formula (12), and then it would be computed for each subsequent level in the
bottom-up fashion by successively applying (13).

In similar way, the ”unconditional” λ-dependency λ(X |R) can be computed
over all elementary sets of the hierarchical approximation space. This is made
possible by the following variant of the formula (13):

λ(X |R) = λl,u(X |C) + P (BNDl,u(X))λ(X |R′). (14)

The recursive process based on the formula (14) is essentially the same as in
the case (13), with except that the bottom-up procedure starts with computation
of the ”unconditional” λ-dependency by formula (10) for the the bottom-level
table.

5 Concluding Remarks

Learning and evaluation of hierarchical structures of probabilistic decision tables
is the main focus of this article. The earlier introduced measures of gamma and
lambda dependencies between attributes [7] for decision tables acquired from
data are not directly applicable to approximation spaces corresponding to hier-
archical structures of decision tables. The main contribution of this work is the
extension of the measures to the decision table hierarchies case and the deriva-
tion of recursive formulas for their easy computation. The gamma dependency
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measure allows for the assessment of the prospective ability of the classifier based
on the hierarchy of decision tables to predict the values of decision attribute on
required level of certainty. The lambda dependency measure captures the relative
degree of probabilistic correlation between classes of the partitions corresponding
to condition and decision attributes, respectively. The degree of the correlation
in this case is a representation of the average improvement of the ability to pre-
dict the occurrence of the target set X , or its complement ¬X . Jointly, both
measures enable the user to evaluate the progress of learning with the addition
of new training data and to assess the quality of the empirical classifier. Three
experimental applications of the presented approach are currently under devel-
opment. The first one is concerned with face recognition using photos to develop
the classifier in the form of a hierarchies of decision tables, the second one is
aiming at adaptive learning of spam recognition among e-mails, and the third
one is focused on stock price movement prediction using historical data.
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morowski, J., Grzyma�la-Busse, J.W. (eds.) RSCTC 2004. LNCS, vol. 3066, pp. 394–
401. Springer, Heidelberg (2004)



Automatic Singing Voice Recognition Employing
Neural Networks and Rough Sets
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Abstract. The aim of the research study presented in this paper is the
automatic recognition of a singing voice. For this purpose, a database
containing sample recordings of trained and untrained singers was con-
structed. Based on these recordings, certain voice parameters were ex-
tracted. Two recognition categories were defined – one reflecting the skills
of a singer (quality), and the other reflecting the type of the singing voice
(type). The paper also presents the parameters designed especially for the
analysis of a singing voice and gives their physical interpretation. Decision
systems based on artificial neutral networks and rough sets are used for
automatic voice quality/ type classification. Results obtained from both
decision systems are then compared and conclusions are derived.

Keywords: Singing Voice, Feature extraction, Automatic Classification,
Artificial Neural Networks, Rough Sets, Music Information Retrieval.

1 Introduction

The area of automatic content indexing and classification is related to the Music
Information Retrieval (MIR) domain, which is now growing very rapidly and
induces many discussions on automatic speech recognition and the development
of appropriate systems. The speech is not the only outcome of the human voice
organ. Singing is another one, and is considered a musical instrument by musi-
cologists. However, its artistic and musical aspects are the reason why singing
must be analyzed by specially designed additional parameters. These parame-
ters obviously should be based on speech parameters, but additionally they must
focus on the articulation and the timbre.

A parametric description is necessary in many applications of automatic sound
recognition. A very complicated biomechanics of the singing voice [10], [27] and
a different character of the intonation and the timbre of the voice require numer-
ous features to describe its operation. Such a parametric representation needs
intelligent decision systems in the classification process. In the presented study,
artificial neural network (ANN) and rough set-based (RS) decision systems were
employed for the purpose of the singing voice quality/type recognition. The sys-
tems were trained with sound samples, of which a large part (1700 samples) was
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recorded in the studio and 1200 samples were extracted from professional CD
recordings. For every sound sample, a feature vector (FV) containing 331 param-
eters was formed. The parameters were divided into two groups: the so-called
dedicated ones (designed allowing for a singing voice specifics) and more general
ones known from the literature on MIR and speech recognition. The decision sys-
tem ability to automatically classify a singing voice is discussed in the context of
comparing the efficiency of ANN and RS systems in two recognition categories:
‘voice type’ (classes: bas, baritone, tenor, alto, mezzo-soprano, soprano) and
‘voice quality’ (classes: amateur, semi-professional, professional). Additionally,
the parameters were judged using statistical and rough set methods. For dif-
ferent methods of reducing the feature vector redundancy, new classifiers were
trained. The results were compared by analyzing the accuracy of the trained
recognition systems. This article is an extended version of the paper presented
at the RSEISP’07 conference held in Warsaw [34].

The paper is organized as follows. In Section 2 the organization of the database
of samples of singing is described. The automatic process of classification requires
an efficient block of feature extraction, thus Section 3 presents parameters that
were used in experiments and discusses them in the context of their relationship
with voice production mechanisms. The analysis shown in Section 4 concentrates
around the redundancy elimination in the feature vector. For this purpose three
methods, i.e. Fisher and Sebestyen statistics, and the rough set-based method
are employed. The main core of experiments is presented in Section 5, and finally
Section 6 summarizes the results obtained in this study.

2 The Database of Singing Voices

The prepared singing voice database contains over 2900 sound samples. Some
1700 of them were recorded from 42 singers in a studio. The vocalists consisted
of three groups: amateurs (Gdańsk University of Technology Choir vocalists),
semi-professionals (Gdańsk Academy of Music, Vocal Faculty students), and pro-
fessionals (qualified vocalists, graduated from the Vocal Faculty of the Gdańsk
Academy of Music). Each of them recorded 5 vowels: ‘a’, ‘e’, ‘i’, ‘o’, ‘u’ at sev-
eral sound pitches belonging to a natural voice scale. These recordings formed
the first singing category – singing quality. The singing voice type category was
formed by assigning the voices to one of the following classes: bas, baritone,
tenor, alto, mezzo-soprano and soprano.

The second group of samples was prepared on the basis of CD audio recordings
of famous singers. The database of professionals needed to be extended due to
the fact that voice type recognition is possible only among professional voices.
Amateur voices do not show many differences within groups of male and female
voices as it has already been researched in literature [2], [27].

3 Parametrization of the Singing Voice

In order to parameterize the singing voice properly, the understanding of the
voice production mechanism is required. The biomechanism of the singing voice
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creation is rather complicated, but in the domain of its spectral energy (while
not taking phase changes into account) it can be simplified by assuming the FIR
model of the singing voice production. As in each classical FIR model a vocal
tract is a filter which changes the spectrum of a source (the glottal) by a sum
of resonances with given frequencies, amplitudes and qualities (the vocal tract).
Therefore the singing is produced by the vibration of human vocal cords and
resonances in the throat and head cavities. The resonances produce formants
in the spectrum of sounds. Formants are not only related to articulation, and
enable to produce different vowels, but also characterize timbre and voice type
qualities. For example the formant of the middle frequency band (3.5 kHz) is
described in literature as “singer’s formant”, and its relation to voice quality is
proved [2], [20], [27]. This concept is well recognized in a reach literature related
to singing.

However, the interaction between two factors, namely glottal source and res-
onance characteristics, shapes the timbre and power of an outgoing vocal sound,
and both factors are equally important. Thus, singing voice parameters can be
divided into two groups related to those two factors. Since this is a classical
FIR model in order to deconvolve from the output signal the source from the
filter inverse filtration methods are required. In literature, some inverse filtration
methods for deriving glottis parameters are presented, however they are proved
to be inefficient due to phase problems [10]. In this aspect only parameters of
vocal tract formants can be calculated directly from the inverse filtering analysis
since they are defined in frequency. The assumption of linearity is the reason
why time parameters of the source signal must be extracted by other methods
which will be presented later on.

Vocal tract parameters are in a speech analysis most often derived from the
LPC method, but an adequate separation of frequency resonances demands high
resolution for lower frequencies, where the resonances are located. Moreover, the
methods of analysis with a spectrum resolution controlled by a function of sound
pitch are required. The warped LPC method [8], [18] (further called the WLPC
analysis) fulfills those conditions and enables to analyze frequencies and levels
of formants with a controlled higher low frequency resolution (below 5 kHz).
It is based on nonlinear sampling of the unit circle in a z transform, thus the
resolution in lower frequencies is better comparing to a classical LPC analysis
with the same length of the analyzed frame. The phase response frequency is
transformed non-linearly to a warped frequency ωW according to Equation (1).

ωW = ω + 2 · arctan
(

λ · sin ω

1− λ · cosω

)
(1)

where λ is a parameter, which determines non-linearity of the transformation and
low frequency resolution of the WLPC analysis. The larger λ is, the more densely
are the lower frequencies sampled. Mathematical aspects of this transformation
are presented in detail in some literature sources [8], [9], [18] and in the previous
works of the authors of this paper [34].

Since the analysis is applied to small signal frames it can be performed for
several parts of the analyzed sounds. Therefore, any parameter F (which can be
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for example the level of one of the formants) forms a vector which describes its
values in consecutive frames. In order to focus on a whole signal, and not only
on a single frame, the median value of this vector is represented by a so-called
static parameter Fmed. In this case, a median value is better then a medium
value, because it is more resistant to short non typical values of a parameter,
which do not drastically change the median value. On the other hand, in order
to investigate the stability, the variances of the vector values (denoted as Fvar)
are also taken into account.

Some of the singing voice parameters must be calculated for a whole sound
rather than for single frames. Those parameters are defined on the basis of the
fundamental frequency contour analysis, and they are related to vibrato and in-
tonation. Vibrato is described as the modulation of the fundamental frequency
of sounds performed by singers in order to change timbre of sounds, while into-
nation is their ability to produce sounds perceived as stable and precise in tune.

The parameters based on the singing voice analysis (’dedicated’ parameters)
form an important group, but they should be supplemented with general de-
scriptors normally used for the classification of sound instruments. This group
of parameters was investigated in detail in the domain of automatic sound recog-
nition at Multimedia Systems Department at Gdańsk University of Technology.
The usefulness of those parameters in automatic musical sound recognition was
proved, and implied their application to the field of the singing voice recognition.

In this study, 331 parameters were derived from the analyses, of which 124
are defined by the authors and are so-called ’dedicated parameters’ especially
designed to address signing voice specifics.

3.1 Estimation of the Vocal Tract Parameters

As already described, the estimation of formants requires methods of analysis
with good frequency resolution which are dependent on pitch of sounds. If the
resolution is not properly set, single harmonics can be erroneously recognized as
formants. For those purposes the WLPC analysis seems to be the most appro-
priate because the λ parameter is the function of the pitch of analyzed sounds
[9], and thus can be changed in this analysis. The function λ=f(f) is presented
in Eq. (2). The problem of how to determine the appropriate λ is presented in
detail in the work of one of the authors [32], [34].

λ = 10−6 · f [Hz]2 − 0.0022 · f [Hz] + 0.9713 (2)

However, parameters related to the ‘singing formant’ can also be extracted on
the basis of the FFT power spectrum parametrization. Correlation between the
WLPC and FFT parameters is not a problematic issue. Various methods, among
them statistical analysis and rough set method, enable to reduce redundancy in
feature vectors (FVs) and to compare the significance of the features. The WLPC
and FFT analyses results are presented in Fig. 1. Maxima and minima of the
WLPC curves are determined automatically by an algorithm elaborated by one
of the authors [32]. WLPC smoothes the power spectrum with a good resolution
for frequencies below 5kHz.
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Fig. 1. WLPC analysis shown along with the FFT power spectrum analysis of sound

Extracted WLPC maxima are related to one of the three formants: articu-
lation (frequencies 1-2.5kHz), singer’s (singing) (frequencies 3-4 kHz), and high
singing formants (frequencies over 5kHz). Since in literature a formal prescription
of how to define mathematically these formants does not exist, three definitions
for each of them can be proposed basing on three WLPC minima.

Fnm = WLPCmxn −WLPCmnm (3)

where WLPCmxn is the value of the nth WLPC maximum and WLPCmnm is
a value of the mth WLPC minimum.

Since the WLPC analysis is applied to short signal frames, it can be performed
for several fragments of the analyzed sounds. Therefore, any formant parameter
Fnm forms a vector which describes its values in consecutive frames. Median
values of this vector represent a so-called static parameter Fnmmed, while the
values of variances are a dynamic representation and are denoted as Fnmvar .
The maximum and minimum values from expression (5) are also calculated re-
spectively in all consecutive frames. They are denoted as Fnmmax and Fnmmin

respectively.
A singing formant is presented by many authors as significant for the esti-

mation of singing quality. Parameters related to the “singer’s formant” were
extracted on the basis of the linear combination of parameters Fnm and addi-
tionally by using the FFT power spectrum parametrization. The combinations
of the parameters defined basing on the WLPC analysis are presented in Eq.
(4) and (5). Those equations show direct relationship between formants. The
parameter related to the formant energy defined on the basis of the FFT power
spectrum is presented in (6).

F2

F1
= F21 − F11 (4)

F2

F3
= F21 − F31 (5)

SFL =
ESF

Etotal
(6)
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where ratios F2/F1 and F2/F3 represent a difference in formant levels F11, F21
and F31 expressed in [dB], SFL denotes the singer’s formant energy, ESF is the
power spectrum energy for the band (2.5kHz-4kHz) in which a ‘singing formant’
is present, and Etotal is the total energy of the analyzed signal.

3.2 Estimation of the Glottal Source Parameters

Interaction between the vocal tract filter and the glottal shape along with phase
problems are obstacles for an accurate automatic glottal source shape extraction
[10], [12], [27], [32]. Glottal source parameters, which are defined in the time
domain, are not easy to compute from the inverse filtration. However, within
the context of the singing voice quality their stability rather that their objective
values seems to be important. The analysis must be done for single periods of
sound, and the sonogram analysis with small analyzing frames and big overlap
should be employed.

For each of the frequency bands, the sonogram consists of a set of n sequences
Sn(k), where n is the number of a frequency band and k is the number of a
sample. Since the aim of the parametrization is to describe the stability of energy
changes in sub-bands, the autocorrelation in time is a function of sequences
Sn(k). The more frequent and stable energy changes in a sub-band were, the
higher were the values of the autocorrelation function maximum (for index not
equal to 0). The analysis was performed for 16 and 32 sample frames. In the
first case the energy band of 0-10 kHz was related to the first four indexes n and
the maximum of the autocorrelation function of sub-band n is denoted as KX n

(7), in the second case n=1...8 and the resulting parameter is defined as LX n

(8). Two different analyzing frames were used for comparison purposes only.
The redundancy in the feature vector (FV) was further eliminated by statistical
methods.

KXn = max(Corr
k

(S16
n (k))), n = 1...4 (7)

LXn = max(Corr
k

(S32
n (k))), n = 1...8 (8)

where Corr
k

(.) is the autocorrelation function in time domain, k – sample num-

ber, n - number of the frequency sub-band, S16
n – sonogram samples sequence

for the analyzed frame of 16 samples and frequency sub-band n, and S32
n de-

notes a sonogram sample sequence for the analyzed frame of 32 samples and the
frequency sub-band n.

Conversely, the minimum of the correlation Corr(Sn(k)) function is connected
with the symmetry or anti-symmetry of energy changes in sub-bands, which re-
lates to the open quotient of glottis source [32]. Therefore in each of the analyzed
sub-bands the KY n and LY n parameters are defined as (9) and (10), respec-
tively:

KYn = min(Corr
k

(S16
n (k))), n = 1...4 (9)

LYn = min(Corr
k

(S32
n (k))), n = 1...8 (10)

where Corr
k

(.), k, n, S16
n , S32

n are defined as in formulas (7) and (8).
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Another parameter defined for each analyzed sub-band is a threshold param-
eter KPn defined as the number of samples exceeding the average energy level
of the sub-band n divided by the total number of samples in the sub-band. For
the frame of 32 samples a similar parameter is defined and denoted as LPn.
Parameters KPn and LPn are also related to the open quotient of the glottal
signal [32], [33].

3.3 Estimation of Intonation and Vibrato Parameters

Proper vibrato and intonation play a very important role in the perception of
voice quality [4], [5], [7], [25], [31]. It is clear that a person who does not hold
the pitch steadily and does not have a consistent vibrato cannot be judged as
a good singer. Intonation and vibrato of the singing is defined in the frequency
domain, thus a pitch contour needs to be extracted.

There are several methods of automatic sound pitch extraction, of which au-
tocorrelation method seems to be the most appropriate [6], [14]. Autocorrelation
pitch extraction method is based on the determination of the maximum of an
autocorrelation function defined for the overlapped segments of the audio signal.
Since this method is well presented in a reach literature [6], [23] on this subject,
it will not be recalled here. The fundamental frequency (f0) within each analyzed
frame was determined, and at the same time the improvement of the frequency
resolution of the analysis was achieved by interpolating three samples around
the maximum of the autocorrelation function. The length of the frame was set
to 512 samples. The value was determined experimentally in order to give a sat-
isfactory time resolution. It is presented in detail in other papers of the authors
[6], [32]. The interpolation improves the frequency resolution significantly.

The pitch of the analyzed sounds is not always stable in time, especially when
sounds of untrained singers are concerned. In order to accurately parametrize
vibrato and intonation of the analyzed sound, an equivalent pitch contour of the
sound but without vibrato should be determined. The result of such analysis is
a so-called ‘base contour’ which is calculated by smoothing the pitch contour
(using the moving average method) with the frame length equal to the recipro-
cal of the half vibrato frequency. When bc(n) are samples of the base contour
(defined in frequency) and v(n) are samples of the vibrato contour, the vibrato
modified contour is calculated as vm(n) = v(n)-bc(n) and it is used for the vi-
brato parametrization. On the other hand, bc(n) are used for the intonation
parametrization to define how quickly the singer is able to obtain a given pitch
of the sound and how stable its frequency is.

The parametrization of vibrato depth and frequency (fV IB) may be not suffi-
cient in the category of singing quality. Since the stability of vibrato reflects the
quality of sound parameters in time [5], [27], additional three vibrato parameters
were defined [5], [34]:

– “perdiodicity” of vibrato VIBP (Eq. 11) pitch contour, defined as the max-
imum value of the autocorrelation of the pitch contour function (for index
not equal to 0);
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– “harmonicity” of vibrato VIBH (Eq. 12) obtained by calculating Spectrum
Flatness Measure for the spectrum of the pitch contour;

– “sinusoidality” of vibrato VIBS (Eq. 13) defined as the similarity of the
parameterized pitch contour to the sine waveform.

V IBP = max(Corr
n

(f0(n)) (11)

V IBH =

(
N∏

n=1
F0 (n)

) 1
N

1
N

N∑
n=1

F0 (n)
(12)

V IBS =
max

n
(F0 (n))

N∑
n=1

F0(n)
(13)

Bad singers often try to use vibration of the sounds not for artistic purposes
but to hide “false” intonation of a sound. In addition, false sounds are obviously
directly showing lack of proficiency in vocal skills. Since intonation seems impor-
tant in a voice quality determination, the base contour must be parametrized. In
order to calculate intonation parameters, two methods were proposed. The first
method calculates the medium value of a differential sequence of a base contour
(IR). The second method does not analyze all base contour samples but the first
and the last one, and returns the IT parameter. Parameters IR and IT are also
defined for the first and last N/2 samples of pitch contour separately (N is the
number of samples of the pitch contour) and are denoted as IRatt, ITatt, IRrel,
IT rel, whereatt means the attack and rel the release of the sound.

3.4 Other Parameters

Another way of determining singing voice parameters is to use a more general
signal description such as descriptors of audio content contained in the MPEG-7
standard. Although those parameters are not related to the singing voice biome-
chanics, they may be useful in the recognition process. The MPEG-7 parameters
[11], [19] will not be presented in detail here, since they were reviewed in previ-
ous works by the authors [15], [17], [16]. The MPEG-7 audio parameters can be
divided into the following groups:

– ASE (Audio Spectrum Envelope) describes the short-term power spectrum
of the waveform. The mean values and variances of each coefficient over time
are denoted as ASE1. . .ASE34 and ASE1var. . .ASE34var respectively.

– ASC (Audio Spectrum Centroid) describes the center of gravity of the log-
frequency power spectrum. The mean value and the variance are denoted as
ASC and ASC var respectively.

– ASS (Audio Spectrum Spread). The mean value and the variance over time
are denoted as ASS and ASS var respectively.
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– SFM (Spectral Flatness Measure) calculated for each frequency band. The
mean values and the variances are denoted as SFM 1 . . . SFM 24 and SFM 1var

. . . SFM 24var.
– Parameters related to discrete harmonic values: HSD (Harmonic Spectral

Deviation), HSS (Harmonic Spectral Spread), HSV (Harmonic Spectral
Variation).

The level of the first harmonic changes for different voice type qualities [27],
thus in automatic voice recognition some parameters related to the behavior
of harmonics can be useful. Parameters employed in the analysis were defined
for harmonic decomposition of sounds. They are the mean value of differences
between the amplitudes of a harmonic in adjacent time frames (sn, where n is
the number of a harmonic), the mean value of the amplitudes Ah of a harmonic
over time (mn, where n is the number of a harmonic), the standard deviation
of amplitudes Ah of a harmonic over time (mdn, where n is the number of a
harmonic).

Other parameters used in the experiments were: brightness (br) (center of
spectrum gravity) [13], [14] and mel-cepstrum coefficients mccn [3], where n is
the number of a coefficient.

4 Analysis of Parameters

All 2900 sound samples from the database described in Section 3 were described
by the presented parameters. Since the total number of the parameters is big
(331), they all will not all be listed here. We can, however, divide them into the
following groups:

– parameters of formants – 46 parameters,
– parameters of the glottal - 59 parameters,
– parameters of the pitch contour (intonation and vibrato) – 18 parameters,
– other parameters (general) – 208 parameters.

4.1 Statistical Analysis

Some chosen pairs of the parameters can be represented graphically in a 2D
space. In Fig. 2, an example of a distribution of two parameters for sound samples
of professional and amateur singers is presented. It can be noticed, that for a
majority of these samples sounds are separated by using only two features.

A large number of the features in the FV and a large number of voice samples
are the reason to use statistical methods for the feature evaluation. Therefore
every feature can be analyzed and a feature vector can be reduced to the param-
eters with the biggest values of statistics. Another way is to use the rough sets.
Three methods of data reduction are to be described, namely Fisher statistic
(F ) and Sebestyen statistics (S), and rough sets in the following sections of this
paper. Fisher statistic has the ability to test the separation between the pairs of
classes being recognized, while Sebestyen criterion tests the database globally for
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Fig. 2. An example of a 2D space of the values of selected parameters

Table 1. Sebestyen criterion for 20 parameters in the categories of voice quality (a),
and voice type (b)

a.

parameter Svalue parameter Svalue parameter Svalue
F1/F2 1.282 SFLmin 0.545 ASE15 0.406
VIBH 1.047 LAT 0.545 F2/F3 0.297
ASE16 0.844 SFLmed 0.529 br 0.281
F31min 0.672 ASE21 0.519 F31med 0.278
ASE23 0.654 ASE22 0.489 F22min 0.252
ASE24 0.637 SFLmin 0.468 F22max 0.248
F22med 0.556 ASE14 0.407

b.

parameter Svalue parameter Svalue parameter Svalue
ASE10 1.006 SFM 17 0.37 MCC 10 0.307
ASE9 0.680 ASE25 0.36 MCC 10var 0.307
LP5 0.518 KP4 0.358 F22min 0.290
F22med 0.509 mfcc9var 0.358 ASE19 0.258
ASE23 0.501 ASE12 0.355 MCC 8 0.258
ASE16 0.419 LX 1 0.351 LP6 0.241
MCC 6 0.384 ASE13 0.320
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all pairs of classes in one calculation. Those statistical methods are presented
in [13], [15], [26]. Sebestyen criterion has an advantage while compared to F
statistic. Its global character enables to sort the parameters from the most to
the less appropriate for all pairs of classes. In Table 1 the results of S criterion
for 20 best parameters are presented in two categories of classification.

Fisher statistic allows for comparing parameters only in selected pairs of
classes. Therefore the parameters cannot be globally compared. Below, are pre-
sented the most interesting conclusions coming from the statistical analysis of
singing voice parameters that fall within the categories of the singing voice qual-
ity and type. The detailed studies of the parameter redundancy using the Fisher’s
criterion are presented in P. Zwan’s PhD thesis [33].

In the category of voice quality, “dedicated” parameters obtained higher
Fisher values than “general” parameters, while “general” descriptors were more
appropriate for class separation in the voice type category. In the category of
voice quality, the best BF results were obtained by glottal source parameters:
LX 2, LX 3, SFL, VD, F 22max, F1/F2, F2/F3. Among “general” descriptors the
best BF results were obtained by some chosen MPEG7 parameters: ASE and
HSV (of various indexes) and the parameters describing value changes of har-
monics in neighboring frames. For the pair of “amateur” – “professional” classes
the best parameters (with regard to Fisher statistics) were the parameters re-
lated to the energy of the singer’s formant: SFL, F22med, F1/F3, F2/F3, F22min.
It is evident that the energy of the band of the singer’s formant is crucial for
distinguishing professional singers from amateurs. For the pair of: “semiprofes-
sional” – “professional” classes the parameters related to the singer’s formant
energy do not have such a great significance. In this case, glottal source time pa-
rameters are essential. They relate to the invariability and periodicity of energy
changes in singing to the level of single signal periods in voice samples. High val-
ues of the Fisher statistics were obtained by parameters related to vibrato: VD,
VIBP , VIBH , VIBS . Such a good result for vibrato parameters is very valuable,
because these descriptors are not correlated with the parameters of the singer’s
formant (they describe different elements of singing technique).

In the category of voice type, the highest F values have threshold parameters
KP2, LP4, LP5, LP8, parameters LX 1, KX 1, the SFLmax parameter related
to the singer’s formant level and the parameters related to a higher formant
FW, namely: F1/F3. Among the parameters defined on the basis of the WLPC
analysis, the highest F values were obtained by the parameters: F22med and
F22max, what indicates the significance of defining the singer’s formant values in
relation to the second minima of the WLPC function.

The results of Sebestyen criterion and Fisher statistic cannot be compared
directly, but generally the results are consistent. The majority of parameters
with high S value also obtained high F value for a certain pair of classes, and
similarly, the majority of parameters with a big Fisher criterion value had a
high position in the list of parameters sorted by the S value. The consistence
of the results proves the statistical methods to be good tools for a comparison
of parameters in the context of their usability in the automatic recognition of
singing voices.
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4.2 Rough Set-Based Analysis

Rough sets introduced by Pawlak [21] are often employed in the analysis of data
which aims to discover significant data and eliminate redundant ones. A reach
literature on rough sets covers many applications [22], it is also used in music
information retrieval [15], [28], [29], [29]. Within the context of this paper, the
rough set method was used for the analysis of descriptors defined for the purpose
of this study. In experiments, the rough set decision system RSES was employed
[24]. Since this system is widely used by many researches, the details concerning
its algorithmic implementation and performance will not be provided here. FVs
were divided into training and testing sets. Parameters were quantized according
to the RSES system principles. The local and global discretization were used
to obtain reducts calculated from genetic and exhaustive algorithms [1]. Since
two discretization methods and two algorithms for reduct calculation were used
two sets of reduced parameters and four sets of reducts containing the selected
parameters were extracted.

In the category of voice quality the vector of parameters was reduced to the
parameters listed below:

a) the global discretization:

FV 1= [F11, F2/F1, KX 2, KY 7, fV IB , VIBp, ASE21, ASC, ASC v, SFM 10,
s2] (15)

b) the local discretization:

FV 2= [F11, F21, F31, F33, F12var , F13min, F13var , KX 1, KX 2, KP1, LP3,
fV IB, VIBp, LAT, TC, ASE6, ASE7, ASE8, ASE21, s2] (16)

The sets of parameters selected by global and local discretization methods
differ. The global discretization is a simpler method thus the number of parame-
ters is lower. The global discretization tries to separate group of classes globally
by selecting the lesser number of discretization cut points. However, the param-
eters chosen by the rough set method for both discretization methods in general
match the parameters chosen by statistical methods of data reduction.

Among the reduced set of parameters, descriptors related to the WLPC anal-
ysis of formants can be found, and thus can be qualified as significant for the
classification purposes. They are related to all three formants, which proves that
in the category of voice quality all formants are required to be parameterized and
the extracted descriptors should be contained in the FV. It is interesting that
among those parameters F31 and F33which are related to ‘high formant’ (middle
frequency higher than 5kHz) appeared. The significance of this formant is not de-
scribed in literature concerning automatic singing voice parametrization. Among
glottal source parameters descriptors such as: KX 1, KX 2, KP1, LP3 were se-
lected. On the other hand, frequency (fV IB) and periodicity (VIBp) related to
vibrato modulation found their place among other important descriptors. From
the remaining parameters, a few MPEG-7 parameters namely LAT, TC, ASE6,
ASE7, ASE8, ASE21 were qualified. In addition, one parameter related to the
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analysis of spectrum which is represented by s2 related to the variation of the
second harmonic was chosen.

In order to define the reducts, two algorithms were used: genetic and ex-
haustive algorithms. In the case of global discretization, those two algorithms
calculated one and the same reduct containing all the parameters of (15). For
both algorithms, all the parameters had equal influence on the decision. In the
case of local discretization, reducts obtained by the two algorithms differed sig-
nificantly. The resulting reducts are presented in (17) and (18). For selection of
the number of the ’best’ reducts the stability coefficient values was taken into
account.

– reducts for the genetic algorithm, limited to a few best reducts:
{F11, F31, F12var , KX 2, fV IB, VIBp, LAT, TC, ASE6, ASE7, ASE8}
{F11, F31, F12var , F13min,KX 2, fV IB,VIBp, LA,ASE6,ASE7,ASE8,ASE21}
{F11, F31, F13var , KX 2, fV IB, VIBp, TC, ASE6, ASE7, ASE8, ASE21}
{F11, F31, KX 2, fV IB, VIBp, LAT, TC, ASE6, ASE7, ASE8, s2}
{F11, F31, KX 2, fV IB, VIBp, LAT, TC, ASE6, ASE7, ASE8, ASE21}
{F11, F13min, KX 2, KP1, fV IB, VIBp,TC, ASE6, ASE7, ASE8, ASE18, s2}
{F31, F12var , KX 2, KP1, fV IB, VIBp, LAT, TC, ASE6, ASE7, ASE8}
{F31, F13var , KX 2, fV IB, VIBp, TC, ASE6, ASE7, ASE8, ASE21, s2}
{F13var, KX 2, KP1, fV IB, VIBp, TC, ASE6, ASE7, ASE8, ASE21, s2}
{F12var, KX 2, KP1, fV IB, VIBp, LAT, TC, ASE6, ASE7, ASE8, ASE21}
{F13min, KX 2, KP1, fV IB, VIBp, LAT, TC, ASE6, ASE7, ASE8, s2}

(17)

– reducts for the exhaustive algorithm, limited to best 6 reducts:
{KX 2, VIBp, LAT, ASE6, ASE8}
{VIBp, LAT, TC, ASE6, ASE8}
{F11, VIBp, TC, ASE6, ASE8}
{F11, fV IB, VIBp, ASE6, ASE8}
{KX 2, LAT, TC, ASE6, ASE8}
{KX 2, fV IB, VIBp,ASE6, ASE8}

(18)

In the category of voice type over 200 from the total number of 331 parameters
remained independently of the discretization methods or the type of algorithm
used for the calculation. It was not possible to reduce parameter representation as
much as in the case of the voice quality category. Within this context, automatic
voice type recognition seems to be more complex. One of the reasons can be the
diversity of registers among different voice types and individual voice qualities
which change for singers for the same voice type. Additionally, some singers’
voices were not easy to qualify to a voice type category, e.g. low registers of
soprano voices were similar in timbre to mezzo-soprano and even alto voices.
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5 Automatic Singing Voice Recognition

The next step of the experiment was to train an automatic recognition system
based on both reduced and full feature vectors. Since three reduction methods
were performed for each of the categories several decision systems (DS) were
trained for the purposes of their comparison:

– DS 1 – for the full vector (331 parameters),
– DS 2 – for the vector with 100 parameters with biggest S values,
– DS 3 – for the vector with 100 parameters with biggest F values (all pairs

of the classes were concerned),
– DS 4 – for the vector with 50 parameters with the biggest S values,
– DS 5 – for the vector witch 50 parameters with the biggest F values,
– DS 6 – for the vector with 20 parameters with the biggest S values,
– DS 7 – for the vector witch 20 parameters with the biggest F values,
– DS 8 – for the vector reduced by rough-sets with global discretization method
– DS 9 – for the vector reduced by rough-sets with local discretization method

Since Artificial Neural Networks are widely used in automatic sound recog-
nition [13], [14], [15], [32], [35], the ANN classifier was used. The ANN was a
simple feed-forward, three layer network with 100 neurons in the hidden layer
and 3 or 6 neurons in the output layer respectively (dependent on the number of
classes being recognized). Since there were 331 parameters in the FV, the input
layer consisted of 331 neurons. Sounds from the database were divided into three
groups. First part of samples (70%) was used for training, second part (10%) for
validation and the third part (20%) for testing. Samples in training, validation
and testing sets consisted of sounds of different vowels and pitches. The network
was trained smoothly with the validation error increasing after approx. 3000
cycles. To train the network optimally, the minimum of the global validation
error function must have been found. If the validation error was increasing for
50 successive cycles, the last validation error function minimum was assumed to
be global, and the learning was halted. In Figure 3, the automatic recognition
results are presented for nine decision systems DS1 – DS9 and two recognition
categories. V331 is the vector of all 331 parameters, Sn are the vectors reduced
by the Sebestyen criterion to n parameters, Fm are the vectors reduced by the
Fisher statistic to m parameters, RSL is the vector of parameters selected by
the rough set local discretization method and RSG is the vector of parameters
selected by the rough set global discretization method.

The results from Table 2 show that whatever the data reduction method
is, artificial neural networks generate similar results of automatic recognition.
The efficiency for a full vector of 331 parameters is 93.4% for the voice quality
category and 90% for the voice type category and decreases to approx. 75%
when the size of the vector is reduced to 20 parameters. A better recognition
accuracy for the voice type category when the rough set data reduction method
is used comes from the fact that for this category the vector was not significantly
reduced. In the case of the voice quality the results of automatic recognition for
F20, S20 and RSL can directly be compared because in those two cases the
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Table 2. Results of automatic recognition accuracy [%] for various FV size reduction
methods

Category V331 S100 F100 S50 F50 S20 F20 RSL RSG

Quality 93.4 90.5 92.1 85.3 87.2 73.2 75.5 75.2 62
Type 90.0 82.3 81.5 79.0 76.0 58.3 60.1 83.1 82.5

Table 3. The comparison of the accuracy of RS and ANN based classifiers for various
RS-based data reduction methods

Data reduction method RS [%] ANN [%]
global discretization, both algorithms 96.8 62
local discretization, genetic algorithm 97.6 72.5
local discretization, exhaustive algorithm 89 72.5

vectors have the same number of parameters. The recognition accuracy is very
similar for all three methods.

Rough set-based algorithms can serve not only for data reduction purposes
but also as classifiers. A comparison between RS and ANN classifiers acting on
vectors reduced by rough set-based methods seems very interesting. Since the
reducts were extracted only for the vocal quality category, the experiment was
carried on for that category and the results are presented in Table 3.

The automatic recognition results are much better for an RS classifier used.
The RS method is specialized for the classification task of a reduced set of
parameters. A discretization algorithm used in RS selects the most important
cut points in terms of the discernibility between classes. Thus, rules generated
from the parameters by RS are strictly dedicated for the analyzed case. Following
the RS methodology, the proper rules are easy to obtain. For ANNs, since they
are trained and tested using single objects, the generalization is harder to obtain
and every single training object can have an influence on the results. In the case
of a smaller number of parameters it has a particular meaning which can be
clearly observed in Table 3. Contrarily, when the number of parameters (the
number of reducts) is bigger, the ANN decision system starts to perform better
than RS. This may be observed in the results of the automatic recognition in
the voice type category (parts of Tables 4 and 5).

In order to make a detailed comparison, between the best trained ANN recog-
nition system and the best trained RSES system, the detailed recognition results
for both recognition categories are presented in Tables 4 and 5. Rows in these
tables describe recognized quality classes, and columns correspond to the classi-
fication.

In the case of the quality category, the automatic recognition results are better
comparing to the ANN. The rough set system achieved very good results with a
reduced FV of 20 parameters in the classification of the voice quality category.
In the category of voice type, the results are worse. Moreover, in the case of the
voice type category erroneous classification is not always related to neighboring
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Table 4. ANN singing voice recognition results for (a) Voice Quality (VQ) and (b)
Voice Type (VT) categories

a.

VQ recognition [%] amateur semi-professional professional
amateur 96.3 2.8 0.9
semi-professional 4.5 94.3 1.1
professional 3.5 7 89.5

b.

VT category recognition [%] bass baritone tenor alto mezzo soprano
bass 90.6 6.3 3.1 0 0 0
baritone 3.3 90 6.7 0 0 0
tenor 0 3.6 89.3 7.1 0 0
alto 0 0 4 80 12 4
mezzo 0 0 0 0 93.8 6.3
soprano 0 0 2.9 0 2.9 94.1

Table 5. RSES-based singing voice classification results for (a) Voice Quality (VQ)
and (b) Voice Type (VT) categories

a.

VQ recognition [%] amateur semi-professional professional
amateur 94.7 4.2 1.1
semi-professional 1.3 95.4 3.3
professional 0 1.6 96.7

b.

VT category recognition [%] bass baritone tenor alto mezzo soprano
bass 84.0 10.0 4.0 2.0 0 0
baritone 13.0 64.8 13.0 0 1.9 7.3
tenor 6.0 18.0 54.0 10.0 6.0 6.0
alto 0 4.7 16.3 51.2 16.3 11.6
mezzo 3.8 0 2.6 1.3 73.1 19.2
soprano 2.9 2.9 2.9 1.4 11.4 78.6

classes. Thus, the RSES system was not able to perform the classification as
well as ANN while trained and tested on vectors of more than 200 parameters in
the category of voice type where further vector size reduction was not possible
(total accuracy obtained equals 0.664). It is interesting to notice that types of
voices being ‘the extreme’ of the voice type category were recognized with better
efficiency than those contained between other classes. Also, there is not much
difference whether this concerns male or female voice.
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6 Conclusions

By comparing automatic recognition results of neural networks and rough set
systems, several conclusions may be reached. The recognition performed by the
rough set system was better for the quality category and worse for the voice type
category in comparison to the ANN. In the case of the voice quality category,
it was possible for the RS system to reduce a large number of parameters to
20 descriptors and the extraction of rules went very smoothly. Descriptors of
the level of formants, stability of glottal parameters along with those related to
vibrato, and MPEG-7 descriptors in addition, enabled to derive linear IF-THEN
rules. It proves that automatic recognition of the quality category is possible for
a significantly reduced number of descriptors.

In the case of voice quality it was not possible to achieve very good recognition
results for the RS classifier as the extraction of a small number of rules was not
possible. Neural networks enabled to classify particular types of singing voices
effectively while the rough-set system achieved worse efficiency. The diversity
of voice registers and individual timbre characteristics of singers are the reason
that non-linear classification systems such as ANNs should perhaps be used for
automatic recognition in the category of voice type. Another reason for lower
recognition results may be that the database of singing voices was represented
by too few different singers.

Moreover, it has been proven that all the presented data reduction algorithms
enabled a significant decrease in the feature vector size. The results obtained
by the trained ANN for vectors of the same length but produced by different
data reduction methods gave very similar recognition results. The parameters
selected by those algorithms as the most appropriate for automatic singing voice
recognition were very similar.
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16. Kostek, B., Szczuko, P., Żwan, P., Dalka, P.: Processing of Musical Data Employing
Rough Sets and Artificial Neural Networks. In: Peters, J.F., Skowron, A. (eds.)
Transactions on Rough Sets III. LNCS, vol. 3400, pp. 112–133. Springer, Heidelberg
(2005)

17. Kostek, B.: Applying computational intelligence to musical acoustics. Archives of
Acoustics 32(3), 617–629 (2007)

18. Kruger, E., Strube, H.W.: Linear prediction on a warped frequency scale. IEEE
Trans. on Acoustics, Speech, and Signal Processing 36(9), 1529–1531 (1988)

19. Lindsay, A., Herre, J.: MPEG-7 and MPEG-7 Audio - An Overview. J. Audio Eng.
Society 49(7/8), 589–594 (2001)

20. Mendes, A.: Acoustic effect of vocal training. In: Proc. 17th International Congress
on Acoustics, Rome, VIII, pp. 106–107 (2001)

21. Pawlak, Z.: Rough Sets. International J. Computer and Information Sciences 11,
341–356 (1982)

22. Peters, J.F., Skowron, A. (eds.): Transactions on Rough Sets V. LNCS, vol. 4100.
Springer, Heidelberg (2006)

23. Rabiner, L.: On the use of autocorrelation analysis for pitch detection. IEEE Trans.,
ASSP 25, 24–33 (1977)

24. Rough-set Exploration System, logic.mimuw.edu.pl/∼rses/RSES doc eng.pdf
25. Schutte, H.K., Miller, D.G.: Acoustic Details of Vibrato Cycle in Tenor High Notes.

J. of Voice 5, 217–231 (1990)
26. Sebestyen, G.S.: Decision-making processes in pattern recognition. Macmillan Pub-

lishing Co., Indianapolis (1965)
27. Sundberg, J.: The science of the singing voice. Northern Illinois University Press

(1987)
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Abstract. The aim of the paper is to present rough set methods of
constructing hierarchical classifiers for approximation of complex con-
cepts. Classifiers are constructed on the basis of experimental data sets
and domain knowledge that are mainly represented by concept ontology.
Information systems, decision tables and decision rules are basic tools
for modeling and constructing such classifiers. The general methodol-
ogy presented here is applied to approximate spatial complex concepts
and spatio-temporal complex concepts defined for (un)structured com-
plex objects, to identify the behavioral patterns of complex objects, and
to the automated behavior planning for such objects when the states of
objects are represented by spatio-temporal concepts requiring approxi-
mation. We describe the results of computer experiments performed on
real-life data sets from a vehicular traffic simulator and on medical data
concerning the infant respiratory failure.

Keywords: rough set, concept approximation, complex dynamical sys-
tem, ontology of concepts, behavioral pattern identification, automated
planning.

1 Introduction

Reasoning based on concepts constitutes one of the main elements of a thinking
process because it is closely related to the skill of categorization and classification
of objects. The term concept means mental picture of a group of objects (see
[1]). While the term conceptualize is commonly understood to mean form a
concept or idea about something (see [1]). In the context of this work, there is
interest in classifying conceptualized sets of objects. Concepts themselves provide
a means of describing (forming a mental picture of) sets of objects (for a similar
understanding the term concept, see, e.g., [2, 3, 4]).

Definability of concepts is a term well-known in classical logic (see, e.g., [5]).
Yet in numerous applications, the concepts of interest may only be defined ap-
proximately on the basis of available, incomplete information about them (rep-
resented, e.g., by positive and negative examples) and selected primary concepts
and methods for creating new concepts out of them. It brings about the necessity
to work out approximate reasoning methods based on inductive reasoning (see,
e.g., [6, 7, 8, 9, 10, 11, 12, 13]).
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In machine learning, this issue is known under the term learning concepts by
examples (see, e.g., [10]). The main problem of learning concepts by examples
is that the description of a concept under examination needs to be created on
the basis of known examples of that concept. By creating a concept description
we understand detection of such properties of exemplary objects belonging to
this concept that enable further examination of examples in terms of their mem-
bership in the concept under examination. A natural way to solve the problem
of learning concepts by examples is inductive reasoning which means that while
obtaining further examples of objects belonging to the concept (the so-called
positive examples) and examples of objects not belonging to the concept (the
so-called negative examples), an attempt is made to find such a description that
correctly matches all or almost all examples of the concept under examination.
Moreover, instead of speaking of learning concepts by examples, one may con-
sider a more general learning of the so-called classifications which are partitions
of all examples into a family of concepts (called decision classes) creating a
partition of the object universe. A description of such a classification makes it
possible to recognize the decision that should be made about examples unknown
so far; that is, it gives us the answer as to what decision should be made that
also includes examples not occurring in the process of classification learning.

Classifiers also known in literature as decision algorithms, classifying algo-
rithms or learning algorithms may be treated as constructive, approximate de-
scriptions of concepts (decision classes). These algorithms constitute the kernel
of decision systems that are widely applied in solving many problems occurring
in such domains as pattern recognition, machine learning, expert systems, data
mining and knowledge discovery (see, e.g., [6, 8, 9, 10, 11, 12, 13]).

In literature there can be found descriptions of numerous approaches to con-
structing classifiers, which are based on such paradigms of machine learning
theory as classical and modern statistical methods (see, e.g., [11, 13]), neural
networks (see, e.g., [11, 13]), decision trees (see, e.g., [11]), decision rules (see,
e.g., [10, 11]), and inductive logic programming (see, e.g., [11]). Many of the ap-
proaches mentioned above resulted in decision systems intended for computer
support of decision making (see, e.g., [11]). An example of such a system is RSES
(Rough Set Exploration System [14, 15]) which has been developed for over ten
years and utilizes rough set theory, originated by Professor Zdzis�law Pawlak
(see [16, 17, 18]), in combination with Boolean reasoning (see [19, 20, 21]).

With the development ofmodern civilization, not only the scale of the data gath-
ered but also the complexity of concepts and phenomena which they concern are
increasing rapidly. This crucial data change has brought new challenges to work
out new data mining methods. Particularly, data more and more often concerns
complex processes which do not give in to classical modeling methods. Of such a
form may be medical and financial data, data coming from vehicles monitoring,
or data about the users gathered on the Internet. Exploration methods of such
data are in the center of attention in many powerful research centers in the world,
and at the same time detection of models of complex processes and their proper-
ties (patterns) from data is becoming more and more attractive for applications
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(see, e.g., [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]).
Making a progress in this field is extremely crucial, among other things, for the
development of intelligent systems which support decision making on the basis of
results of analysis of the available data sets. Therefore, working out methods of
detection of process models and their properties from data and proving their ef-
fectiveness in different applications are of particular importance for the further
development of decision supporting systems in many domains such as medicine,
finance, industry, transport, telecommunication, and others.

However, in the last few years essential limitations have been discovered con-
cerning the existing data mining methods for very large data sets regarding
complex concepts, phenomena, or processes (see, e.g., [41, 42, 43, 44, 45, 46]).
A crucial limitation of the existing methods is, among other things, the fact
that they do not support an effective approximation of complex concepts, that
is, concepts whose approximation requires discovery of extremely complex pat-
terns. Intuitively, such concepts are too far in the semantical sense from the
available concepts, e.g., sensory ones. As a consequence, the size of spaces which
should be searched in order to find patterns crucial for approximation are so
large that an effective search of these spaces very often becomes unfeasible using
the existing methods and technology. Thus, as it turned out, the ambition to
approximate complex concepts with high quality from available concepts (most
often defined by sensor data) in a fully automatic way, realized by the existing
systems and by most systems under construction, is a serious obstacle since the
classifiers obtained are often of unsatisfactory quality.

Recently, it has been noticed in the literature (see, e.g., [42, 47, 48, 49, 50,
51, 52]) that one of the challenges for data mining is discovery of methods link-
ing detection of patterns and concepts with domain knowledge. The latter term
denotes knowledge about concepts occurring in a given domain and various re-
lations among them. This knowledge greatly exceeds the knowledge gathered in
data sets; it is often represented in a natural language and usually acquired dur-
ing a dialogue with an expert in a given domain. One of the ways to represent
domain knowledge is to record it in the form of the so-called concept ontol-
ogy where ontology is usually understood as a finite hierarchy of concepts and
relations among them, linking concepts from different levels (see, e.g., [53, 54]).

In the paper, we discuss methods for approximation of complex concepts in
real-life projects. The reported research is closely related to such areas as ma-
chine learning and data mining (feature selection and extraction [55, 56, 57], clas-
sifier construction [9, 10, 11, 12], analytical learning and explanation based learn-
ing [12, 58, 59, 60, 61]), temporal and spatio-temporal reasoning [62, 63, 64], hi-
erarchical learning and modeling [42, 52, 65, 66, 67, 68], adaptive control [67, 69],
automated planning (hierarchical planning, reconstruction of plans, adaptive
learning plans) [70, 71, 72, 73, 74, 75, 76], rough sets and fuzzy sets (approxima-
tion of complex vague concepts) [77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87], granular
computing (searching for compound patterns) [88, 89, 90, 91], complex adaptive
systems [92, 93, 94, 95, 96, 97], autonomous multiagent systems [98, 99, 100, 101]),
swarm systems [102, 103, 104], ontologies development [53, 54, 105, 106, 107].
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It is also worthwhile mentioning that the reported research is also closely re-
lated to the domain of clinical decision-support for medical diagnosis and therapy
(see, e.g., [108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121]).
Many reported results in this domain can be characterized as methods for solving
specific problems such as temporal abstraction problem [117, 120, 121] or medical
planning problem [108, 111, 112, 119]). Many methods and algorithms proposed
in this paper can be also used for solving such problems.

The main aim of the paper is to present the developed methods for approxi-
mation of complex vague concepts involved in specification of real-life problems
and approximate reasoning used in solving these problems. However, methods
presented in the paper are assuming that additional domain knowledge in the
form of the concept ontology is given. Concepts from ontology are often vague
and expressed in natural language. Approximation of ontology is used to cre-
ate hints in searching for approximation of complex concepts from sensory (low
level) data.

The need of use of a domain knowledge expressed in the form of a con-
cept ontology can be noticed in intensively developing domains connected with
analysis and data processing as in the case of reinforcement learning (see, e.g.,
[12, 122, 123, 124]). In the latter field, methods of learning new strategies with
reinforcement take into account concept ontologies obtained from an expert,
with the help of which it is possible to construct an approximation of a func-
tion estimating the quality of actions performed. Similarly, in a Service Oriented
Architecture (SOA) [47, 49], the distribution of varied Web Services can be per-
formed with the use of a domain knowledge, expressed using a concept ontology.

There also appeared propositions (see, e.g., [42, 51, 52]) that use domain
knowledge to search for the approximation of complex concepts in a hierarchical
way which would lead to hierarchical classifiers able to approximate complex
concepts with the high quality, e.g., by analogy to biological systems [42]. This
idea can be also related to learning of complex (e.g., nonlinear) functions for
fusion of information from different sources [125]. Therefore, currently, the prob-
lem of construction of such hierarchical classifiers is fundamental for complex
concepts approximation and its solution will be crucial for construction of many
methods of intelligent data analysis. These are, for example,

– methods of classification of objects into complex spatial concepts which are
semantically distant from sensor data, e.g., these are concepts as safe vehicle
driving on a highway, hazardous arrangement of two cooperating robots which
puts them both at risk of being damaged,

– methods of classification of object to complex spatio-temporal concepts se-
mantically distant from sensor data which require observation of single ob-
jects or many objects over a certain period of time (e.g., acceleration of a
vehicle on the road, gradual decrease of a patient’s body temperature, robot’s
backward movement while turning right),

– methods of behavioral pattern or high risk pattern identification where these
types of patterns may be treated as complex concepts representing dynamic
properties of objects; such concepts are expressed in a natural language on a
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high level of abstraction and describing specific behaviors of a single object
(or many complex objects) over a certain period of time (e.g., overtaking one
vehicle by another, a traffic jam, chasing one vehicle after another, behavior
of a patient under a high life threat, ineffective cooperation of a robot team)

– methods of automatic learning of plans of complex object behavior, where
a plan may be treated as a complex value of the decision which needs to be
made for complex objects such as vehicles, robots, groups of vehicles, teams
of robots, or patients undergoing treatment.

In the paper, we propose to link automatic methods of complex concept learn-
ing, and models of detection of processes and their properties with domain
knowledge obtained in a dialogue with an expert. Interaction with a domain
expert facilitates guiding the process of discovery of patterns and models of
processes and makes the process computationally feasible. Thus presentation of
new approximation methods of complex concepts based on experimental data
and domain knowledge, represented using ontology concepts, is the main aim of
this paper. In our opinion, the presented methods are useful for solving typical
problems appearing when modeling complex dynamical systems.

1.1 Complex Dynamical Systems

When modeling complex real-world phenomena and processes mentioned above
and solving problems under conditions that require an access to various dis-
tributed data and knowledge sources, the so-called complex dynamical systems
(CDS) are often applied (see, e.g., [92, 93, 94, 95, 96, 97]), or putting it in other
way autonomous multiagent systems (see, e.g., [98, 99, 100, 101]) or swarm sys-
tems (see, e.g., [104]). These are collections of complex interacting objects charac-
terized by constant change of parameters of their components over time, numer-
ous relationships between the objects, the possibility of cooperation/competition
among the objects and the ability of objects to perform more or less compound
actions. Examples of such systems are traffic, a patient observed during treat-
ment, a team of robots during performing some task, etc.

It is also worthwhile mentioning that the description of a CDS dynamics is
often not possible with purely analytical methods as it includes many complex
vague concepts (see, e.g., [126, 127, 128]). Such concepts concern properties of
chosen fragments of the CDS and may be treated as more or less complex objects
occurring in the CDS. Hence, are needed appropriate methods of extracting such
fragments that are sufficient to conclude about the global state of the CDS in
the context of the analyzed types of changes and behaviors. In this approach,
the CDS state is described by providing information about the membership of
the complex objects isolated from the CDS in the complex concepts already
established, describing properties of complex objects and relations among these
objects. Apart from that, the description of the CDS dynamics requires following
changes of the CDS state in time which leads to the so-called trajectory (history),
that is, sequences of the CDS states observed over a certain period of time.
Therefore, there are also needed methods for following changes of the selected
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fragments of the CDS and changes of relations between the extracted fragments.
In this paper, we use complex spatio-temporal concepts concerning properties,
describing the dynamics of complex objects occurring in CDSs, to represent
and monitor such changes. They are expressed in natural language on a much
higher level of abstraction than so-called sensor data, so far mostly applied to the
approximation of concepts. Examples of such concepts are safe car driving, safe
overtaking, patient’s behavior when faced with a life threat, ineffective behavior
of robot team.

However, the identification of complex spatio-temporal concepts and using
them to monitor a CDS requires approximation of these concepts. In this paper,
we propose to approximate complex spatio-temporal concepts by hierarchical
classifiers mentioned above and based on data sets and domain knowledge.

1.2 Problems in Modeling Complex Dynamical Systems

In modeling complex dynamical systems there appear many problems related
to approximation of complex concepts used to describe the dynamics of the
systems. One of these problems is obviously the problem of the gap between
complex concepts and sensor data mentioned above. Apart from that, a series of
other problems may be formulated whose solution is very important for complex
concepts approximation and for complex dynamical systems monitoring. Below,
we present a list of such problems including particularly those whose solution is
the aim of this paper.

1. Problem of the gap between complex concepts and sensor data preventing
an effective direct usage of sensor data to induce approximation of complex
concepts by fully automatic methods.

2. Problem of complex concept stratification in classifier construction.
3. Problem of identification of behavioral patterns of complex objects in com-

plex dynamical systems monitoring.
4. Problem of context of complex object parts while complex dynamical systems

monitoring.
5. Problem of time speed-up in identification of behavioral patterns.
6. Problem of automated planning of complex object behavior when the object

states are represented by complex concepts requiring approximation.
7. Problem of solving conflicts between actions in automated planning of com-

plex object behavior.
8. Problem of synchronization of plans constructed for parts of a structured

complex object.
9. Problem of plan adaptation.

10. Problem of similarity relation approximation between complex objects, com-
plex object states, and complex object behavioral plans using data sets and
domain knowledge.

In further subsections, a brief overview of the problems mentioned above is
presented.
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Problem of the Gap between Complex Concepts and Sensor Data. As
we mentioned before, in spatio-temporal complex concepts approximation using
sensor data, there occur major difficulties resulting from the fact that between
spatio-temporal complex concepts and sensor data, there exists a gap which pre-
vents an effective direct usage of sensor data for approximation of complex con-
cepts. Therefore, in the paper we propose to fill the gap using domain knowledge
represented mainly by a concept ontology and data sets chosen appropriately for
this ontology (see Section 1.3).

Problem of Complex Concept Stratification. When we create classifiers
for concepts on the basis of uncertain and imprecise data and knowledge se-
mantically distant from the concepts under approximation, it is frequently not
possible to construct a classifier which decisively classifies objects, unknown dur-
ing classifier learning, to the concept or its complement. There appears a need to
construct such classifiers that, instead of stating clearly about the object under
testing whether it belongs to the concept or not, allow us to obtain only a certain
type of membership degree of the object under testing to the concept. In other
words, we would like to determine, with regards to the object under testing,
how certain the fact that this object belongs to the concept is. Let us notice
that this type of mechanism stratifies concepts under approximation, that is,
divides objects under testing into layers labeled with individual values of mem-
bership degree to the concept. Such a mechanism can be obtained using different
kinds of probability distributions (see [6, 43]). However, in this paper, instead
of learning of a probability distribution we learn layers of concepts relevant for
construction of classifiers. We call such classifiers as stratifying classifiers and we
present two methods of a stratifying classifier construction (see Section 1.3). Our
approach is inspired by papers about linguistic variables written by Professor
Lotfi Zadeh (see [129, 130, 131]).

Problem of Identifying Behavioral Patterns. The study of collective
behavior in complex dynamical systems is now one of the more challenging re-
search problems (see, e.g., [93, 99, 100, 102, 104, 132, 133, 134]), especially if one
considers the introduction of some form of learning by cooperating agents (see,
e.g., [103, 122, 123, 124, 135, 136, 137]). For example, an efficient complex dy-
namical systems monitoring very often requires the identification of the so-called
behavioral patterns or a specific type of such patterns called high-risk patterns or
emergent patterns (see, e.g., [93, 99, 100, 132, 138, 139, 140, 141, 142, 143, 144]).
They are complex concepts concerning dynamic properties of complex objects ex-
pressed in a natural language on a high level of abstraction and describing specific
behaviors of these objects. Examples of behavioral patterns may be: overtaking
one vehicle by another vehicle, driving a group of vehicles in a traffic jam, behav-
ior of a patient under a high life threat, etc. These types of concepts are difficult
to identify automatically because they require watching complex object behavior
over longer period of time and this watching usually is based on the identification
of a sequence of less complex spatio-temporal concepts. Moreover, a crucial role
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for identification of a given behavioral pattern is played by the sequence of less
complex concepts which identify it. For example, in order to identify the behav-
ioral pattern of overtaking one vehicle by another, it should first be determined
whether the overtaking vehicle approaches the overtaken vehicle; next, whether
the overtaking vehicle changes lanes appropriately and overtakes the vehicle;
and finally, to determine that the overtaking vehicle returns to the previous lane
driving in front of the overtaken vehicle. The methodology of a dynamical system
modeling proposed in the paper enables approximation of behavioral patterns on
the basis of data sets and domain knowledge expressed using a concept ontology
(see Section 1.3).

Problem of Context for Complex Object Parts. In this paper, any com-
plex dynamical system (CDS) is represented using descriptions of its global states
or trajectories (histories), that is, sequences of CDS states observed over a certain
period of time (see, e.g., [145, 146, 147, 148, 149, 150, 151, 152] and Section 1.1).
Properties of such states or trajectories are often dependent on specific parts of
these states or trajectories. This requires to consider the relevant structure of
states or trajectories making it possible to extract parts and the relevant con-
text of parts. Moreover, each structured object occurring in a complex dynamical
system is understood as a set of parts extracted from states or trajectories of
a given complex dynamical system. Such parts are often related by relations
representing links or interactions between parts. That is why both learning of
the behavioral patterns concerning structured objects and the identification of
such patterns, in relation to specific structured objects, requires the isolation
of structured objects as sets of potential parts of such objects, that is, object
sets of lesser complexity. The elementary approach to isolate structured objects
consisting in examination of all possible subsets (of an established size) of the set
of potential parts of structured objects cannot be applied because of potentially
high number of such subsets. For example, during an observation of a highway
from a helicopter (see, e.g., [89, 153]), in order to identify a group of vehicles
which are involved in the maneuver of dangerous overtaking, it would be neces-
sary to follow (in the real time) the behavior of all possible groups of vehicles of
an established size (e.g., six vehicles, see Appendix A) that may be involved in
this maneuver, which already with a relatively small number of visible vehicles
becomes computationally too difficult.

Another possibility is the application of methods which use the context in
which the objects being parts of structured objects occur. This type of methods
isolate structured objects not by a direct indication of the set of parts of the
searched structured object but by establishing one part of the searched struc-
tured object and attaching to it other parts, being in the same context as the
established part. Unfortunately, also here, the elementary approach to deter-
mination of the context of the part of the structured object, consisting in ex-
amination of all possible subsets (of an established size) of the set of potential
structured objects to which the established part of the structured object belongs,
cannot be applied because of a large number of such subsets. For example, in
order to identify a group of vehicles which are involved in a dangerous maneuver
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and to which the vehicle under observation belongs, it would be necessary to
follow (in the real time) the behavior of the possible groups of vehicles of an
established size (e.g., six vehicles, see Appendix A) to which the vehicle consid-
ered belongs, which is, with a relatively small number of visible vehicles, still
computationally too difficult. Therefore, there are needed special methods of de-
termining the context of the established part of the structured object based on
a domain knowledge which enable to limit the number of analyzed sets of parts
of structured objects. In the paper, we propose the so-called sweeping method
which enables fast determination of the context of the established object treated
as one of the parts of the structured object (see Section 1.3).

Problem of Time Speed-Up in Identification of Behavioral Patterns.
Identification of a behavioral pattern in relation to a specific complex object may
be performed by observing the behavior of these objects over a certain period
of time. Attempts to shorten this time are usually inadvisable, because they
may cause false identification of behavioral pattern in relation to some complex
objects. However, in many applications there exists a need for a fast decision
making (often in the real time) about whether or not a given object matches the
established behavioral pattern. It is extremely crucial in terms of computational
complexity because it enables a rapid elimination of these complex objects which
certainly do not match the pattern. Therefore, in the paper, there is presented
a method of elimination of complex objects in identification of a behavioral pat-
tern, which is based on the rules of fast elimination of behavioral patterns which
are determined on the basis of data sets and domain knowledge (see Section 1.3).

Problem of Automated Planning. In monitoring the behavior of complex
dynamical systems (e.g., by means of behavioral patterns identification) there
may appear a need to apply methods of automated planning of complex object
behavior. For example, if during observation of a complex dynamical system,
a behavioral pattern describing inconvenient or unsafe behavior of a complex
object (i.e., a part of system state or trajectory) is identified, then the system
control module may try, using appropriate actions, to change the behavior of this
object in such a way as to lead the object out of the inconvenient or unsafe situa-
tion. However, this type of short-term interventions may not be sufficient to lead
the object out of the undesired situation permanently. Therefore, a possibility of
automated planning is often considered which means construction of sequences
of actions alternately with states (of plans) to be performed by the complex ob-
ject or on the complex object in order to bring it to a specific state. In literature,
there may be found descriptions of many automated planning methods (see, e.g.,
[70, 71, 72, 73, 74, 75, 76]). However, applying the latter approaches, it has to
be assumed that the current complex object state is known which results from
a simple analysis of current values of available parameters of this object. Mean-
while, in complex dynamical systems, a complex object state is often described
in a natural language using vague spatio-temporal conditions whose satisfiability
cannot be tested on the basis of a simple analysis of available information about
the object. For example, when planning the treatment of an infant suffering from



Hierarchical Classifiers for Complex Spatio-temporal Concepts 483

the respiratory failure, the infant’s condition may be described by the following
condition:

– Patient with RDS type IV, persistent PDA and sepsis with mild internal
organs involvement (see Appendix B for mor medical details).

Stating the fact that a given patient is in the above condition requires an anal-
ysis of examination results of this patient registered over a certain period of time
with a large support of a domain knowledge provided by experts (medical doc-
tors). This type of conditions may be represented using complex spatio-temporal
concepts. Identification of these conditions requires, however, an approximation
of the concepts representing them with the help of classifiers. Therefore, in the
paper, we describe automated planning methods of behavior of complex objects
whose states are described using complex concepts requiring approximation (see
Section 1.3).

Problem of Solving Conflicts between Actions. In automated planning
methods, during a plan construction there usually appears a problem of non-
deterministic choice of one action possible to apply in a given state. Therefore,
usually there may be many solutions to a given planning problem consisting in
bringing a complex object from the initial state to the final one using different
plans. Meanwhile, in practical applications there often appears a situation that
the automatically generated plan must be compatible with the plan proposed by
the expert (e.g., the treatment plan should be compatible with the plan proposed
by human experts from a medical clinic). Hence, we inevitably need tools which
may be used during a plan generation to solve the conflicts appearing between
actions which may be performed at a given planning state. It also concerns
making the decision about what state results from the action performed. That
is why, in the paper, we propose a method which indicates the action to be
performed in a given state or shows the state which is the result of the indicated
action. This method uses a special classifier constructed on the basis of data sets
and domain knowledge (see Section 1.3).

Problem of Synchronizing Plans. In planning the behavior of structurally
complex objects consisting of parts being objects of lesser complexity, it is of-
ten not possible to plan effectively the behavior of a whole such object. That is
why, in such cases the behavior of all parts is usually planned separately. How-
ever, such an approach to behavior planning for a complex object requires plan
synchronization constructed for individual parts in such a way as not to make
these plans contradicting one to another but be complement in order to plan the
best behavior for the whole complex object. For example, treatment of a certain
illness A, which is the result of illnesses B and C requires such a treatment plan-
ning of illnesses B and C so as not to make their treatments contradictory, but
to make them to support and to complement one another during treatment of
illness A. In the paper, a planning synchronization method for parts of a complex
object is presented. It uses two classifiers constructed on the basis of data sets
and domain knowledge (see Section 1.3). If we treat plans constructed for parts
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of a structured object as processes of some kind, then the method of synchroniz-
ing those plans is a method of synchronization of processes corresponding to the
parts of a structured object. It should be emphasized, however, that the signif-
icant novelty of the method of synchronization of processes presented herein in
relation to the ones known from literature (see, e.g., [154, 155, 156, 157, 158, 159])
is the fact that the synchronization is carried out by using classifiers determined
on the basis of data sets and domain knowledge.

Plan Adaptation Problem. After constructing a plan for a complex object,
the execution of this plan may take place. However, the execution of the whole
plan is not always possible in practice. It may happen that, during the plan
execution such a state of complex object occurred that is not compatible with
the state predicted by the plan. Then, the question arises whether the plan
should still be executed or whether it should be reconstructed (updated).

If the current complex object state differs slightly from the state expected by
the plan, then the execution of the current plan may perhaps be continued. If,
however, the current state differs significantly from the state from the plan, then
the current plan has to be reconstructed. It would seem that the easiest way
to reconstruct the plan is construction of a new plan which commences at the
current state of the complex object and ends at the final state of the old plan
(a total reconstruction of the plan). However, in practical applications, a total
reconstruction can be too costly in terms of computation or resources. Therefore,
we need other methods which can effectively reconstruct the original plan in such
a way as to realize it at least partially. Hence, in the paper, we propose a method
of plan reconstruction called a partial reconstruction. It consists of constructing
a short so-called repair plan which quickly brings the complex object to the
so-called return state from the current plan. Next, on the basis of the repair
plan, a reconstruction of the current plan is performed by replacing its fragment
beginning with the current state and ending with the return state of the repair
plan (see Section 1.3).

It is worth noticing that this issue is related to the domain of artificial intel-
ligence called the reasoning about changes (see, e.g., [160, 161]). Research works
in this domain very often concern construction of a method of concluding about
changes in satisfiability of concepts on a higher level of a certain concept hier-
archy as a basis for discovery of plans aimed at restoration of the satisfiability
of the desired concepts on a lower level of this hierarchy.

Problem of Similarity Relation Approximation. In building classifiers
approximating complex spatio-temporal concepts, there may appear a need to
estimate the similarity or the difference of two elements of a similar type such as
complex objects, complex object states or plans generated for complex objects.
This is an example of a classical case of the problem of defining similarity re-
lation (or perhaps defining dissimilarity relation complementary to it) which is
still one of the greatest challenges of data mining and knowledge discovery. The
existing methods of defining similarity relations are based on building similarity
functions on the basis of simple strategies of fusion of local similarities of com-
pared elements. Optimization of the similarity formula established is performed
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by tuning both parameters of local similarities and their linking parameters (see,
e.g., [162, 163, 164, 165, 166, 167, 168, 169, 170, 171]). Frequently, however, ex-
perts from a given domain are not able to provide such a formula that would
not raise their doubts and they limit themselves to the presentation of a set of
examples of similarity function values, that is, a set of pairs of the compared el-
ements labeled with degrees representing similarity function value. In this case,
defining the similarity function requires its approximation with the help of a
classifier, and at the same time such properties of compared elements should be
defined that enable to approximate the similarity function. The main difficulty
of the similarity function approximation is an appropriate choice of these prop-
erties. Meanwhile, according to the domain knowledge there are usually many
various aspects of similarity between compared elements. For example, when
comparing medical plans constructed for treatment of infants with a respiratory
failure (see Appendix B), similarity of antibiotic therapies, similarity of applied
mechanical ventilation methods, similarity of PDA closing and others should be
taken into account. Each of these aspects should be considered in a specific way
and presentation of formulas describing them can be extremely difficult for an
expert. Frequently, an expert may only give examples of pairs of comparable ele-
ments together with their similarity in each of these aspects. Moreover, a fusion
of different similarity aspects into a global similarity should also be performed
in a way resulting from the domain knowledge. This way may be expressed,
for example, using a concept ontology. In the paper, we propose a method of
similarity relation approximation based on the usage of data sets and domain
knowledge expressed, among other things, on the basis of a concept ontology
(see Section 1.3).

1.3 Overview of the Results Achieved

As we mentioned before, the aim of this paper is to present a set of approximation
methods of complex spatio-temporal concepts and approximate reasoning con-
cerning these concepts, assuming that the information about concepts is given
mainly in the form of a concept ontology.

The results described in the paper may be divided into the following groups:

1. methods for construction of classifiers stratifying a given concept,
2. general methodology of concept approximation with the usage of data sets

and domain knowledge represented mainly in the form of a concept ontology,
3. methods for approximation of spatial concepts from an ontology,
4. methods for approximation of spatio-temporal concepts from an ontology

defined for unstructured objects,
5. methods for approximation spatio-temporal concepts from an ontology de-

fined for structured objects,
6. methods for behavioral pattern identification of complex objects in states of

complex dynamical systems,
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7. methods for automated planning of behavior of complex objects when the
object states are represented by vague complex concepts requiring approxi-
mation,

8. implementation of all more crucial methods described in the paper as the
RSES system extension.

In further subsections we briefly characterize the above groups of results.
At this point we present the publications on which the main results of our

research have been partially based. The initial version of method for approx-
imation of spatial concepts from an ontology was described in [172]. Methods
for approximation of spatio-temporal concepts and methods for behavioral pat-
tern identification were presented in [88, 173, 174, 175, 176, 177, 178]. Papers
[173, 176, 177, 178] concern behaviors related to recognition of vehicle behavioral
patterns or a group of vehicles on the road. The traffic simulator used to generate
data for the needs of computer experiments was described in [179]. The paper
[174] concerns medical applications related to recognition of high death risk pat-
tern of infants suffering from respiratory failure, whereas papers [88, 175] concern
both applications which were mentioned above. Finally, methods for automated
planning of behavior of complex objects were described in [88, 180, 181].

Methods for Construction of Classifiers Stratifying Concepts. In prac-
tice, construction of classifiers often takes place on the basis of data sets con-
taining uncertain and imprecise information (knowledge). That is why it is not
often possible to construct a classifier which decisively classifies objects to the
concept or its complement. This phenomenon occurs particularly when there is
a need to classify objects not occurring in a learning set of objects, that is, those
which are not used to construct the classifier.

One possible approach is to search for classifiers approximating probability
distribution (see, e.g., [6, 43]). However, in application, one may often require
a less exact method based on classifying objects to different linguistic layers
of the concept. This idea is inspired by papers of Professor Lotfi Zadeh (see,
e.g., [129, 130, 131]). In our approach, the discovered concept layers are used
as patterns in searching for approximation of a more compound concept. In the
paper, we present methods for construction of classifiers which, instead of stating
clearly whether a tested object belongs to the concept or not, enable to obtain
some membership degree of the tested object to the concept. In the paper, we
define the concept of a stratifying classifier as a classifying algorithm stratifying
concepts, that is, classifying objects to different concept layers (see Section 3).
We propose two approaches to construction of these classifiers. One of them is
the expert approach which is based on the defining, by an expert, an additional
attribute in data which describes membership of the object to individual concept
layers. Next, a classifier differentiating layers as decision classes is constructed.
The second approach called the automated approach is based on the designing
algorithms being the classifier extensions which enable to classify objects to
concept layers on the basis of certain premises and experimental observations.
In the paper, a new method of this type is proposed which is based on shortening
of decision rules relatively to various coefficients of consistency.
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General Methodology of Concept Approximation from Ontology. One
of the main results presented in this paper is a methodology of approximating
concepts from ontology. Generally, in order to approximate concepts a classical
in machine learning [10] method of concept approximation is applied on the
basis of positive and negative examples. It is based on the construction of a
data table for each concept, known in rough set theory as a decision table (a
special information system with a distinguished attribute called decision [16])
with rows (called objects) corresponding to positive and negative examples of the
concept approximated and columns describing properties (features, attributes)
of examples expressed by formulas in a considered language. The last column,
called the decision column, is treated as a description of membership of individual
examples to the concept approximated. For a table constructed in such a way,
classifiers approximating a concept are built.

In such an approach, the main problem is the choice of examples of a given
concept and properties of these examples.

The specificity of methodology of concept approximation proposed here in
comparison with other methods (see, e.g., [11, 52, 182]) is the usage of a domain
knowledge expressed in the form of a concept ontology together with the rough
set methods.

For concepts from the lowest level of an ontology hierarchy (the sensor level),
not depending on the remaining concepts, we assume that so-called sensor at-
tributes are also available which on the basis of given positive and negative
examples, enable approximating these concepts by using classical methods of
classifier construction.

However, the concept approximation methods, applied on a higher level of
ontology consist in approximation of concepts using concepts from the lower
ontology level. In this way, there are created hierarchical classifiers which use
domain knowledge recorded in the form of ontology levels. In other words, pat-
terns discovered for approximation of concepts on a given hierarchy level are
used in construction of more compound patterns relevant for approximation of
concepts on the next hierarchy level.

To approximate concepts from the higher ontology level, sensor attributes
cannot be applied directly because the “semantical distance” of the higher level
concepts from sensor attributes is too long and they are defined on different
abstraction levels, i.e., searching for relevant features to approximate such con-
cepts directly from sensory features becomes unfeasible (see the first problem
from Section 1.2). For example, it is hardly believable that given only sensor at-
tributes describing simple parameters of driving a vehicle (e.g., location, speed,
acceleration), one can approximate such a complex concept as safe driving a
vehicle. Therefore, we propose a method, by means of which concepts from the
higher ontology level exclusively be approximated by concepts from one level be-
low. The proposed approach to concept approximation of a higher level is based
on the assumption that the concept from the higher ontology level is semanti-
cally not too far from concepts lying on the lower level in the ontology. “Not too
far” means that it may be expected that it is possible to approximate a concept
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from the higher ontology level with the help of lower ontology level concepts and
patterns used for or derived from their construction, for which classifiers have
already been built.

If we assume that approximation of concepts on the higher ontology level
takes place using lower level concepts, then according to an established con-
cept approximation methodology, positive and negative examples of the concept
approximated are needed as well as their properties which serve the purpose of
approximation. However, because of the semantical differences between concepts
on different ontology levels, mentioned above, examples of lower ontology level
concepts cannot be directly used to approximate a higher ontology level concept.
For example, if the concept of a higher level concerns a group of vehicles (e.g.,
driving in a traffic jam, chase of one vehicle after another, overtaking), whereas
the lower level concepts concern single vehicles (e.g., accelerating, decelerating,
changing lanes), then the properties of a single vehicle (defined in order to ap-
proximate lower ontology level concepts) are usually insufficient to describe the
properties of the whole group of vehicles. Difficulties with concept approxima-
tion on the higher ontology level using examples of the lower ontology level also
appear when on the higher ontology level there are concepts concerning a time
period different than that one related to the concepts on the lower ontology
level. For example, a higher level concept may concern a time window, that is,
a certain period of time (e.g., vehicle acceleration, vehicle deceleration), whereas
the lower level concepts may concern a certain instant, that is, a time point (e.g.,
a small vehicle speed, location of vehicle in the right lane).

Hence, we present a method for construction of positive and negative examples
of a concept of a higher ontology level consisting, in a general case, in arrange-
ment (putting together) sets of examples of concepts of the lower ontology level.
At the same time we define and represent such sets using patterns expressed
in languages describing properties of examples of concepts of lower level in the
ontology. These sets (represented by patterns) are arranged according to the so-
called constraints resulting from the domain knowledge and determining which
sets (patterns) may be arranged and which cannot be arranged for the construc-
tion of examples of higher level concepts. Thus, object structures on higher hier-
archical levels come into being through linking (with the consideration of certain
constraints) of objects from lower levels (and more precisely sets of these objects
described by patterns). Such an approach enables a gradual modeling properties
of more and more complex objects. Starting with elementary objects, objects be-
ing their sets or sequences of such objects, sets of sequences, etc. are gradually
modeled. Different languages expressing properties of, e.g., elementary objects,
object sequences, or sets of sequences correspond to different model levels.

A crucial innovation feature of methods presented here is the fact that to de-
fine patterns describing examples of a lower ontology level, classifiers constructed
for these concepts are used.

The example construction process for higher ontology level concepts on the
basis of lower level concepts proceeds in the following way. Objects which are
positive and negative examples of lower ontology level concepts are elements of a



Hierarchical Classifiers for Complex Spatio-temporal Concepts 489

certain relational structure domain. Relations occurring in such a structure ex-
press relations between these objects and may be used to extract sets of objects
of the lower ontology level. Each extracted set of objects is also a domain of a
certain relational structure, in which relations are defined using information from
a lower level. The process of extraction of relational structures is performed in
order to approximate a higher ontology level concept with the help of lower on-
tology level concepts. Hence, to extract relational structures we necessarily need
the information about membership of lower level objects to the concepts from
this level. Such information may be available for any tested object based on the
application of previously created classifiers for the lower ontology level concepts.
Let us note that classifiers stratifying concepts are of a special importance here.
The language in which we define formulas (patterns) to extract new relational
structures using relational structures and lower ontology level concepts, is called
the language for extracting relational structures (ERS-language).

For relational structures extracted in such a way, properties (attributes) may
be defined which lead to an information system whose objects are extracted
relational structures and the attributes are the properties of these structures
(RS-information system). Relational structure properties may be defined using
patterns which are formulas in a language specially constructed for this purpose,
i.e., in a language for definnig features of relational structures (FRS-language).
For example, some of the languages used to define the properties of extracted
relational structures, presented in this paper, use elements of temporal logics
with linear time, e.g., Linear Temporal Logic (see, e.g., [183, 184, 185]).

Objects of RS-information system are often inappropriate to make their prop-
erties relevant for the approximation of the higher ontology level concepts. It is
due to the fact that there are too many such objects and their descriptions are
too detailed. Hence, when applied to the higher ontology level concept approx-
imation, the extension of the created classifier would be too low, that is, the
classifier would classify too small number of tested objects. Apart from that, the
problem of computational complexity would appear which means that because
of a large number of objects in such information systems, the number of objects
in a linking table, constructed in order to approximate concepts determined in a
set of objects of a complex structure, would be too large to construct a classifier
effectively (see below).

That is why a grouping (clustering) of such objects is applied which leads to
obtaining more general objects, i.e., clusters of relational structures. This group-
ing may take place using a language chosen by an expert and called the language
for extracting clusters of relational structures (ECRS-language). Within this
language, a family of patterns may be selected to extract relevant clusters of
relational structures from the initial information system.

For the clusters of relational structures obtained, an information system may
be constructed whose objects are clusters defined by patterns from this family,
and the attributes are the properties of these clusters. The properties of these
clusters may be defined by patterns which are formulas of a language specially
constructed for this purpose, i.e., a language for defining features of clusters
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of relational structures (FCRS-language). For example, some of the languages
assigned to define the properties of relational structure clusters presented in
this paper use elements of temporal logics with branching time, e.g., Branching
Temporal Logic (see, e.g., [183, 184, 185]).

The information system with objects which are clusters of relational structures
(CRS-information system) may already be used to approximate the concept of
the higher ontology level. In order to do this, a new attribute is added to the
system by the expert informs about membership of individual clusters to the
concept approximated, and owing to that we obtain an approximation table of
a higher ontology concept.

The method of construction of the approximation table of a higher ontology
level concept may be generalized for concepts determined on a set of structured
objects, that is, ones consisting of a set of parts (e.g., a group of vehicles on the
road, a group of interacting illnesses, a robot team performing a task together).
This generalization means that CRS-information systems constructed for indi-
vidual parts may be linked in order to obtain an approximation table of a higher
ontology level concept determined for structured objects. Objects of this table
are obtained through an arrangement (linking) of all possible objects of linked
information systems. From the mathematical point of view this assumption is a
Cartesian product of sets of objects of linked information systems. However, in
terms of domain knowledge not all object links belonging to such a Cartesian
product are possible (see [78, 84, 186, 187]). For example, if we approximate the
concept of safe overtaking, it makes sense to arrange objects concerning only
such vehicle pairs which are in the process of the overtaking maneuver.

For the reason mentioned above, that is, elimination of unrealistic complexes
of objects, the so-called constraints are defined that are formulas built on the
basis of arranged object features. The constraints determine which objects may
be arranged in order to obtain an example of an object from a higher level
and which may not. Additionally, we assume that to each arrangement allowed
by the constraints, the expert adds a decision value informing whether a given
arrangement belongs ore does not belong to the approximated concept of a higher
level.

The table constructed in such a way serves the purpose of the approximation
of a concept describing structured objects. However, in order to approximate
a concept concerning structured objects, it is often necessary to construct not
only all parts of the structured object but also features describing relations be-
tween parts. For example, driving one vehicle after another, apart from features
describing the behavior of those two vehicles separately, features describing the
location of these vehicles in relation to one another as well ought to be con-
structed. That is why in construction of a table of concept approximation for
structured objects, there is constructed an additional CRS-information system
whose attributes entirely describe the whole structured object in terms of rela-
tions between the parts of this object. In approximation of the object concerning
structured objects, this system is arranged together with other CRS-information
systems constructed for individual parts of the structured objects.
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Fig. 1. Three cases of complex concepts approximation in ontology

A fundamental problem in construction of an approximation table of a higher
ontology level concept is, therefore, the choice of four appropriate languages
used during its construction. The first language serves the purpose of defining
patterns in a set of examples of a concept of lower ontology level which enable the
relational structure extraction. The second one enables to define the properties
of these structures. The third one makes possible to define relational structure
clusters and, finally, the fourth one, the properties of these clusters. All these
languages must be defined in such a way as to make the properties of the created
relational structure clusters useful on a higher ontology level for approximation of
the concept occurring there. Moreover, when the approximated concept concerns
structured objects, each of the parts of this type of objects may require another
four the languages similar to those already mentioned above.

Definitions of the above four languages depends on the semantical difference
between concepts from both ontology levels. In the paper, the above methodology
is applied in the three following cases in which the above four languages are
defined in a completely different way:

1. The concept of the higher ontology level is a spatial concept (it does not
require observing changes of objects over time) and it is defined on the set
of the same objects (examples) as concepts of the lower ontology level, and
at the same time the lower ontology level concepts are also spatial concepts
(see Case 1 from Fig. 1).
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2. The concept of the higher ontology level is a spatio-temporal concept (it
requires observing object changes over time) and it is defined on a set of
the same objects (examples) as the lower ontology level concepts. Moreover,
the lower ontology level concepts are spatial concepts exclusively (see Case
2 from Fig. 1).

3. The concept of the higher ontology level is a spatio-temporal concept defined
on a set of objects which are structured objects in relation to objects (exam-
ples) of the lower ontology level concepts, that is, the lower ontology level
objects are parts of objects from the higher ontology level. Additionally, and
at the same time the lower ontology level concepts are also spatio-temporal
concepts (see Case 3 from Fig. 1).

Methods described in the next three subsections concern the above three cases.
These methods also found application in construction of methods of behavioral
pattern identification and in automated planning.

Methods of Approximation of Spatial Concepts. In the paper, the method
of approximating concepts from ontology is proposed when a higher ontology
level concept is a spatial concept (not requiring an observation of changes over
time) and it is defined on a set of the same objects (examples) as the lower
ontology level concepts; at the same time, the lower level concepts are also spatial
concepts. An exemplary situation of this type is an approximation of the concept
of Safe overtaking (concerning single vehicles on the road) using concepts such
as Safe distance from the opposite vehicle during overtaking, Possibility of going
back to the right lane and Possibility of safe stopping before the crossroads.

The concept approximation method described in this subsection is an example
of the general methodology of approximating concepts from ontology described
previously. That is why its specificity is the domain knowledge usage expressed
in the form of a concept ontology and application of rough set methods, mainly
in terms of application of classifier construction methods.

The basic terms used in the presented method is pattern and production rule.
Patterns are descriptions of examples of concepts from an ontology and they
are constructed by classifiers stratifying these concepts. A production rule is
a decision rule which is constructed on two adjacent levels of ontology. In the
predecessor of this rule there are patterns for the concepts from the lower level of
the ontology whereas in the successor, there is a pattern for one concept from the
higher level of the ontology (connected with concepts from the rule predecessor)
where both patterns from the predecessor and the successor of the rule are chosen
from patterns constructed earlier for concepts from both adjacent levels of the
ontology. A rule constructed in such a way may serve as a simple classifier or an
argument “for”/“against” the given concept, enabling classification of objects
which match the patterns from the rule predecessor with the pattern from the
rule successor. In the paper, there is proposed an algorithmic method of induction
of production rules, consisting in an appropriate search for data tables with
attributes describing the membership of training objects to particular layers
of concepts (see Section 5.4). These tables are constructed using the so-called
constraints between concepts thanks to which the information put in the tables
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only concerns those objects/examples which might be found there according to
the production rule under construction.

Although a single production rule may be used as a classifier for the concept
appearing in a rule successor, it is not a complete classifier yet, i.e., classifying all
objects belonging to an approximated concept and not only those matching pat-
terns of a rule predecessor. Therefore, in practice, production rules are grouped
into the so-called productions (see Section 5.3), i.e., production rule collections, in
a way that each production contains rules having patterns for the same concepts
in a predecessor and the successor, but responding to their different layers. Such
production is able to classify much more objects than a single production rule
where these objects are classified into different layers of the concept occurring
in a rule successor. Both productions and production rules themselves are only
constructed for the two adjacent levels of ontology. Therefore, in order to use the
whole ontology fully, there are constructed the so-called AR-schemes, i.e., approx-
imate reasoning schemes (see, e.g., [77, 89, 172, 188, 189, 190, 191, 192, 193, 194])
which are hierarchical compositions of production rules (see Section 5.7). The
synthesis of an AR-scheme is carried out in a way that to a particular production
from a lower hierarchical level of the AR-scheme under construction another pro-
duction rule on a higher level may be attached, but only that one where one of
the concepts for which the pattern occurring in the predecessor was constructed
is the concept connected with the rule successor from the previous level. Addi-
tionally, it is required that the pattern occurring in a rule predecessor from the
higher level is a subset of the pattern occurring in a rule successor from the lower
level (in the sense of inclusion of object sets matching both patterns). To the two
combined production rules other production rules can be attached (from above,
from below or from the side) and in this way a multilevel structure is made which
is a composition of many production rules. The AR-scheme constructed in such
a way can be used as a hierarchical classifier whose entrance are predecessors of
production rules from the lowest part of the AR-scheme hierarchy and the exit
is the successor of a rule from the highest part of the AR-scheme hierarchy. That
way, each AR-scheme is a classifier for a concept occurring in the rule successor
from the highest part in the hierarchy of the scheme and, to be precise, for a
concept for which a pattern occurring in the rule successor from the highest part
in the hierarchy of the AR-scheme is determined.

However, similarly to the case of a single production rule, an AR-scheme is
not a full classifier yet. That is why, in practice, for a particular concept there
are many AR-schemes constructed which approximate different layers or concept
regions.

In this paper, there are proposed two approaches for constructing AR-schemes
(see Section 5.7). The first approach is based on memory with AR-schemes and
consists in building many AR-schemes after determining production, which later
on are stored and used for the classification of tested objects.

The second approach is based on a dynamic construction of AR-schemes.
It is realized in a way that during classification of a given tested object, an
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appropriate AR-schemes for classifying this particular object is built on the
basis of a given collection of productions (“lazy” classification).

In order to test the quality and effectiveness of classifier construction methods
based on AR-schemes, experiments on data generated from the traffic simulator
were performed (see Section 5.8). The experiments showed that classification
quality obtained through classifiers based on AR-schemes is higher than classi-
fication quality obtained through traditional classifiers based on decision rules.
Apart from that, the time spent on classifier construction based on AR-schemes
is shorter than when constructing classical rule classifiers, their structure is less
complicated than that of classical rule classifiers (a considerably smaller average
number of decision rules), and their performance is much more stable because
of the differences in data in samples supplied for learning (e.g., to change the
simulation scenario).

Methods of Approximation of Spatio-temporal Concepts. We also pro-
pose a method of approximating concepts from ontology when a higher ontology
level concept is a spatio-temporal concept (it requires observing changes of com-
plex objects over time) defined on a set of the same objects as the lower ontology
level concepts; at the same time, the lower ontology level concepts are spatial
concepts only. This case concerns a situation when during an observation of a
single object in order to capture its behavior described by a higher ontology
level concept, we have to observe it longer than it requires to capture behaviors
described by lower ontology level concepts. For example, lower ontology level
concepts may concern simple vehicle behaviors such as small increase in speed,
small decrease in speed or small move towards the left lane. However, the higher
ontology level concept may be a more complex concept as, e.g., acceleration in
the right lane. Let us notice that determining whether a vehicle accelerates in
the right lane requires its observation for some time called a time window. On
the other hand, determining whether a vehicle speed increases in the right lane
requires only a registration of the speed of a vehicle in two neighboring instants
(time points) only. That is why spatio-temporal concepts are more difficult to
approximate than spatial concepts whose approximation does not require ob-
serving changes of objects over time.

Similarly to spatial concept approximation (see above), the method of concept
approximation described in this subsection is an example of the general method-
ology of approximating concepts from ontology described earlier. Its specificity
is, therefore, the domain knowledge usage expressed in the form of a concept
ontology and rough set method application, mainly in terms of application of
classifier construction methods. However, in this case more complex ontologies
are used, and they contain both spatial and spatio-temporal concepts.

The starting point for the method proposed is a remark that spatio-temporal
concept identification requires an observation of a complex object over a longer
period of time called a time window (see Section 6.4). To describe complex object
changes in the time window, the so-called temporal patterns (see Section 6.6)
are used, which are defined as functions determined on a given time window.
These patterns, being in fact formulas from a certain language, also characterize
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certain spatial properties of the complex object examined, observed in a given
time window. They are constructed using lower ontology level concepts and that
is why identification whether the object belongs to these patterns requires the
application of classifiers constructed for concepts of the lower ontology level.

On a slightly higher abstraction level, the spatio-temporal concepts (also
called temporal concepts) are directly used to describe complex object behav-
iors (see Section 6.5). Those concepts are defined by an expert in a natural
language and they are usually formulated using questions about the current sta-
tus of spatio-temporal objects, e.g., Does the vehicle examined accelerate in the
right lane?, Does the vehicle maintain a constant speed during lane changing?
The method proposed here is based on approximating temporal concepts us-
ing temporal patterns with the help of classifiers. In order to do this a special
decision table is constructed called a temporal concept table (see Section 6.9).
The rows of this table represent the parameter vectors of lower level ontology
concepts observed in a time window (and, more precisely, clusters of such pa-
rameter vectors). Columns of this table (apart from the last one) are determined
using temporal patterns. However, the last column represents membership of an
object, described by parameters (features, attributes) from a given row, to the
approximated temporal concept.

Temporal concepts may be treated as nodes of a certain directed graph which
is called a behavioral graph. Links (directed edges) in this graph are the temporal
relations between temporal concepts meaning a temporal sequence of satisfying
two temporal concepts one after another. These graphs are of a great significance
in complex objects approximation for structured objects (see below).

Methods of Approximation of Spatio-temporal Concepts for Struc-
tured Objects. The method of spatio-temporal concept approximation pre-
sented in the previous subsection is extended to the case when higher ontology
level concepts are defined on a set of objects which are structured objects in
relation to objects (examples) of the lower ontology level concepts, that is, the
lower ontology level objects are parts of objects from the higher ontology level.
Moreover, lower ontology level concepts are also spatio-temporal concepts. This
case concerns a situation when during a structured object observation, which
serves the purpose of capturing its behavior described by a higher ontology level
concept, we must observe this object longer than it is required to capture the
behavior of a single part of the structured object described by lower ontology
level concepts. For example, lower ontology level concepts may concern complex
behaviors of a single vehicle such as acceleration in the right lane, acceleration
and changing lanes from right to left, decelerating in the left lane. However, a
higher ontology level concept may be an even more complex concept describing
behavior of a structured object consisting of two vehicles (the overtaking and
the overtaken one) over a certain period of time, for example, the overtaking
vehicle changes lanes from right to left, whereas the overtaken vehicle drives in
the right lane. Let us notice that the behavior described by this concept is a cru-
cial fragment of the overtaking maneuver and determining whether the observed
group of two vehicles behaved exactly that way, requires observing a sequence of
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behaviors of vehicles taking part in this maneuver for a certain period of time.
They may be: acceleration in the right lane, acceleration and changing lanes from
right to left, maintaining a stable speed in the right lane.

Analogously to the case of spatial and spatio-temporal concept approxima-
tion for unstructured objects, the method of concept approximation described
in this subsection is an example of the general methodology of approximating
concepts from ontology described previously. Hence, its specificity is also the do-
main knowledge usage expressed in the form of a concept ontology and rough set
methods. However, in this case, ontologies may be extremely complex, contain-
ing concepts concerning unstructured objects, concepts concerning structured
objects as well as concepts concerning relations between parts of structured
objects.

The starting point for the proposed method is the remark that spatio-temporal
concept identification concerning structured objects requires observing changes
of these objects over a longer period of time (the so-called longer time win-
dows) than in the case of complex objects which are parts of structured objects.
Moreover, spatio-temporal concept identification concerning structured objects
requires not only an observation of changes of all constituent parts of a given
structured object individually, but also an observation of relations between these
constituent parts and changes concerning these relations. Therefore, in order to
identify spatio-temporal concepts concerning structured objects in behavioral
graphs, we may observe paths of their constituent objects corresponding to con-
stituent part behaviors in a given period. Apart from that paths in behavioral
graphs describing relation changes between parts of structured objects should be
observed. The properties of these paths may be defined using functions which we
call temporal patterns for temporal paths (see Section 6.17). These patterns, be-
ing in fact formulas from a certain language, characterize spatio-temporal prop-
erties of the examined structured object in terms of its parts and constraints
between these parts. On a slightly higher abstraction level, to describe behav-
iors of structured objects, the so-called temporal concepts for structured objects
(see Section 6.20) are used, which are defined by an expert in a natural language
and formulated usually with the help of questions about the current status of
structured objects, e.g., Does one of the two observed vehicles approach the other
driving behind it in the right lane?, Does one of the two observed vehicles change
lanes from the right to the left one driving behind the second vehicle?

The method of temporal concept approximation concerning structured objects,
proposed here, is based on approximation of temporal concepts using temporal
patterns for paths in behavioral graphs of parts of structured objects with the us-
age of temporal patterns for paths in behavioral graphs reflecting relation changes
between the constituent parts. In order to do this a special decision table is con-
structed called a temporal concept table of structured objects (see Section 6.20).
The rows of this table are obtained by arranging feature (attribute) value vec-
tors of paths from behavioral graphs corresponding to parts of the structured
objects observed in the data set (and, more precisely, value vectors of cluster fea-
tures of such paths) and value vectors of path features from the behavioral graph
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reflecting relation changes between parts of the structured object (and, more pre-
cisely, value vectors of cluster features of such paths). From the mathematical
point of view such an arrangement is a Cartesian product of linked feature vectors.
However, in terms of domain knowledge not all links belonging to such a Cartesian
product are possible and making sense (see [78, 84, 186, 187]).

According to the general methodology presented above, to eliminate such
arrangements of feature vectors that are unreal or do not make sense, we define
the so-called constraints which are formulas obtained on the basis of values
occurring in the vectors arranged. The constraints determine which vectors may
be arranged in order to obtain an example of a concept from a higher level and
which may not. Additionally, we assume that to each feature vector arrangement,
acceptable by constraints, the expert adds the decision value informing about
the fact whether a given arrangement belongs to the approximated concept from
the higher level.

Methods of Behavioral Pattern Identification. Similarly to the case of
spatio-temporal concepts for unstructured complex objects, the spatio-temporal
concepts defined for structured objects may also be treated as nodes of a certain
directed graph which is called a behavioral graph for a structured object (see
Section 6.22).

These graphs may be used to represent and identify the so-called behavioral
patterns which are complex concepts concerning dynamic properties of complex
structured objects expressed in a natural language depending on time and space.
Examples of behavioral patterns may be: overtaking on the road, driving in a traffic
jam, behavior of a patient connected with a high life threat. These types of concepts
are much more difficult to approximate even than many temporal concepts.

In the paper, a new method of behavioral pattern identification is presented
which is based on interpreting the behavioral graph of a structured object as
a complex classifier enabling identification of a behavioral pattern described by
this graph. This is possible based on the observation of the structured object
behavior for a longer time and checking whether the behavior matches the chosen
behavioral graph path. If this is so, then it is determined if the behavior matches
the behavioral pattern represented by this graph, which enables a detection of
specific behaviors of structured objects (see Section 6.23).

The effective application of the above behavioral pattern identification me-
thod encounters, however, two problems in practice. The first of them concerns
extracting relevant context for the parts of structured objects (see the fourth
problem from Section 1.2). To solve this problem a sweeping method, enabling
a rapid structured object extraction, is proposed in this paper. This method
works on the basis of simple heuristics called sweeping algorithms around complex
objects which are constructed with the use of a domain knowledge supported by
data sets (see Section 6.13).

The second problem appearing with behavioral pattern identification is the
problem of fast elimination of such objects that certainly do not match a given
behavioral pattern (see the fifth problem from Section 1.2). As one of the
methods of solving this problem, we proposed the so-called method of fast
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elimination of specific behavioral patterns in relation to the analyzed struc-
tured objects. This method is based on the so-called rules of fast elimination of
behavioral patterns which are determined from the data and on the basis of a do-
main knowledge (see Section 6.24). It leads to a great acceleration of behavioral
pattern identification because such structured objects, whose behavior certainly
does not match a given behavioral pattern, may be very quickly eliminated. For
these objects it is not necessary to apply the method based on behavioral graphs
which greatly accelerates the global perception.

In order to test the quality and effectiveness of classifier construction methods
based on behavioral patterns, there have been performed experiments on data
generated from the road simulator and medical data connected to detection of
higher-death risk in infants suffering from the respiratory failure (see Section 6.25
and Section 6.26). The experiments showed that the algorithmic methods pre-
sented in this paper provide very good results in detecting behavioral patterns
and may be useful with complex dynamical systems monitoring.

Methods of Automated Planning. Automated planning methods for un-
structured complex objects were also worked out. These methods work on the
basis of data sets and a domain knowledge represented by a concept ontology.
A crucial novelty in the method proposed here, in comparison with the already
existing ones, is the fact that performing actions according to plan depends
on satisfying complex vague spatio-temporal conditions expressed in a natural
language, which leads to the necessity of approximation of these conditions as
complex concepts. Moreover, these conditions describe complex concept changes
which should be reflected in the concept ontology.

Behavior of unstructured complex objects is modeled using the so-called plan-
ning rulesbeing formulas of the type: the state before performing an action→ action
→ state 1 after performing an action | ... | state k after performing an action, which
are defined on the basis of data sets and a domain knowledge (see Section 7.4). Each
rule includes the description of the complex object state before applying the rule
(that is, before performing an action), expressed in a language of features proposed
by an expert, the name of the action (one of the actions specified by the expert
which may be performed at a particular state), and the description of sequences of
states which a complex object may turn into after applying the action mentioned
above. It means that the application of such a rule gives indeterministic effects,
i.e., after performing the same action the system may turn into different states. All
planning rules may be represented in a form of the so-called planning graphs whose
nodes are state descriptions (occurring in predecessors and successors of planning
rules) and action names occurring in planning rules (see Section 7.4). In the graph-
ical interpretation, solving the problem of automated planning is based on finding
a path in the planning graph from the initial state to an expected final state. It
is worth noticing that the conditions for performing an action (object states) are
described by vague spatio-temporal complex concepts which are expressed in the
natural language and require an approximation.

For specific applications connected with the situation when it is expected that
the proposed plan of a complex object behavior is to be strictly compatible with
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the determined experts’ instructions (e.g., the way of treatment in a specialist
clinic is to be compatible with the treatment schemes used there), there has also
been proposed an additional mechanism enabling to resolve the nondeterminism
occurring in the application of planning rules. This mechanism is an additional
classifier based on data sets and domain knowledge. Such classifiers suggest the
action to be performed in a given state and show the state which is the result of
the indicated action (see Section 7.7).

The automated planning method for unstructured objects has been gener-
alized in the paper also in the case of planning of the behavior of structured
objects (consisting of parts connected with one another by dependencies). The
generalization is based on the fact that on the level of a structured object there
is an additional planning graph defined where there are double-type nodes and
directed edges between the nodes (see Section 7.11). The nodes of the first type
describe vague features of states (meta-states) of the whole structured object,
whereas the nodes of the second type concern complex actions (meta-actions)
performed by the whole structured object (all its constituent parts) over a longer
period of time (a time window). The edges between the nodes represent tempo-
ral dependencies between meta-states and meta-actions as well as meta-actions
and meta-states. Similarly to the previous case of unstructured objects, planning
of a structured object behavior is based on finding a path in a planning graph
from the initial meta-state to the expected final meta-state; and, at the same
time, each meta-action occurring in such a path must be planned separately on
the level of each constituent part of the structured object. In other words, it
should be planned what actions each part of a structured object must perform
in order for the whole structured object to be able to perform the meta-action
which has been planned. During the planning of a meta-action a synchroniza-
tion mechanism (determining compatibility) of plans proposed for the part of
a structured object is used, which works on the basis of a family of classifiers
determined on the basis of data sets with a great support of domain knowledge.
Apart from that, an additional classifier is applied (also based on a data set and
the domain knowledge) which enables to determine whether the juxtaposition
and execution of plans determined for the constituent parts, in fact, lead to the
execution of the meta-action planned on the level of the whole structured object
(see Section 7.13).

During the attempt to execute the plan constructed there often appears a
need to reconstruct the plan which means that during the plan execution there
may appear such a state of a complex object that is not compatible with the
state suggested by the plan. A total reconstruction of the plan (building the
whole plan from the beginning) may computationally be too costly. Therefore,
we propose another plan reconstruction method called a partial reconstruction.
It is based on constructing a short so-called repair plan, which rapidly brings the
complex object to the so-called return state which appears in the current plan.
Next, on the basis of the repair plan, a current plan reconstruction is performed
through replacing its fragment beginning with the current state and ending with
the return plan with the repair plan (see Section 7.9 and Section 7.17).



500 J.G. Bazan

In construction and application of classifiers approximating complex spatio-
temporal concepts, there may appear a need to construct, with a great support
of the domain knowledge, a similarity relation of two elements of similar type,
such as complex objects, complex object states, or plans generated for complex
objects. Hence, in this paper we propose a new method of similarity relation
approximation based on the use of data sets and a domain knowledge expressed
mainly in the form of a concept ontology. We apply this method, among other
things, to verify automated planning methods, that is, to compare the plan
generated automatically with the plan suggested by experts from a given domain
(see Section 7.18, Section 7.19 and Section 7.20).

In order to check the effectiveness of the automated planning methods pro-
posed here, there were performed experiments concerning planning of treatment
of infants suffering from the respiratory failure (see Section 7.21). Experimental
results showed that the proposed method gives good results, also in the opinion
of medical experts (compatible enough with the plans suggested by the experts),
and may be applied in medical practice as a supporting tool for planning of the
treatment of infants suffering from the respiratory failure.

Implementation and Data Sets. The result of the works conducted is also a
programming system supporting the approximation of spatio-temporal complex
concepts in the given concept ontology in the dialogue with the user. The system
also includes an implementation of the algorithmic methods presented in this
paper and is available on the web side of RSES system (see [15]).

Sections 5, 6 and 7, apart from the method description, contain the results of
computing experiments conducted on real-life data sets, supported by domain
knowledge. It is worth mentioning that the requirements regarding data sets
which can be used for computing experiments with modeling spatio-temporal
phenomena are much greater than the requirements of the data which are used
for testing process of classical classifiers. Not only have the data to be represen-
tative of the decision making problem under consideration but also they have to
be related to the domain knowledge available (usually cooperation with experts
in a particular domain is essential). It is important that such data should fully
and appropriately reflect complex spatio-temporal phenomena connected to the
environment of the data collected.

The author of the paper acquired such data sets from two sources. The first
source of data is the traffic simulator made by the author (see Appendix A). The
simulator is a computing tool for generating data sets connected to the traffic
on the street and at crossroads. During simulation each vehicle appearing on
the simulation board behaves as an independently acting agent. On the basis
of observation of the surroundings (other vehicles, its own location, weather
conditions, etc.) this agent makes an independent decision what maneuvers it
should make to achieve its aim which is to go safely across the simulation board
and to leave the board using the outbound way given in advance. At any given
moment of the simulation, all crucial vehicle parameters may be recorded, and
thanks to this data sets for experiments can be obtained.
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The second collection of data sets used in computer experiments was pro-
vided by Neonatal Intensive Care Unit, First Department of Pediatrics, Polish-
American Institute of Pediatrics, Collegium Medicum, Jagiellonian University,
Krakow, Poland. This data constitutes a detailed description of treatment of 300
infants, i.e., treatment results, diagnosis, operations, medication (see Section 6.26
and Appendix B).

1.4 Organization of the Paper

This paper is organized as follows. In Section 2 we briefly describe selected
classical methods of classifier construction and concept approximation which
are used in next subsections of the paper. These methods are based on rough
set theory achievements and were described in the author’s previous papers (see,
e.g., [14, 195, 196, 197, 198, 199, 200, 201, 202, 203]).

In Section 3 we describe methods of construction of a concept stratifying
classifier.

The general methodology of approximating concepts with the use of data sets
and a domain knowledge represented mainly in the form of a concept ontology
is described in Section 4.

Methods of approximating spatial concepts from ontology are described in Sec-
tion 5, whereas methods of approximating spatio-temporal concepts from ontol-
ogy and methods of behavioral patterns identification are described in Section 6.

Methods of automated planning of complex object behavior when object
states are represented with the help of complex objects requiring an approx-
imation with the use of data sets and a domain knowledge are presented in
Section 7.

Finally, in Section 8 we summarize the results and give directions for the
future research.

The paper also contains two appendixes. The first appendix contains the
description of the traffic simulator used to generate experimental data (see
Appendix A). The second one describes medical issues connected with the in-
fant respiratory failure (see Appendix B) concerning one of the data sets used
for experiments.

2 Classical Classifiers

In general, the term classify means arrange objects in a group or class based
on shared characteristics (see [1]). In this work, the term classification has a
special meaning, i.e., classification connotes any context in which some decision
or forecast about object grouping is made on the basis of currently available
knowledge or information (see, e.g., [11, 204]).

A classification algorithm (classifier) is an algorithm which enables us to make
a forecast repeatedly on the basis of accumulated knowledge in new situations
(see, e.g., [11]). Here we consider the classification provided by a classifying
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algorithm which is applied to a number of cases to classify objects unseen pre-
viously. Each new object is assigned to a class belonging to a predefined set of
classes on the basis of observed values of suitably chosen attributes (features).

Many approaches have been proposed to construct classification
algorithms. Among them we would like to mention classical and modern sta-
tistical techniques (see, e.g., [11, 13]), neural networks (see, e.g., [11, 13, 205]),
decision trees (see, e.g., [11, 206, 207, 208, 209, 210, 211, 212]), decision rules
(see, e.g., [10, 11, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223]) and
inductive logic programming (see, e.g., [11, 224]).

In this section, we consider methods implemented in our system RSES (Rough
Set Exploration System) (see [14, 225, 226, 227, 228, 229, 230, 231]). RSES is a
computer software system developed for the purpose of data analysis (the data
is assumed to be in the form of an information system or a decision table, see
Section 2.1). In construction of classifiers, which is the main step in the process
od data analysis with RSES, elements of rough set theory are used. In this paper,
we call these algorithms the standard RSES methods of classifier construction.

The majority of the standard RSES methods of classifier construction have
been applied in more advanced methods of classifier construction, which will be
presented in Sections 3, 5, 6, and 7. Therefore, in this section we only give a brief
overview of that methods of classifier construction. These methods are based on
rough set theory (see [16, 17, 232]). In the Section 2.1 we start with introduction
of basic rough set terminology and notation, necessary for the rest of this paper
(see Section 2.1).

The analysis of data in the RSES system proceeds according to the scheme
presented in Fig. 2. First, the data for analysis has to be loaded/imported into
the system. Next, in order to have a better chance for constructing (learning)
a proper classifier, it is frequently advisable to transform the initial data set.
Such transformation, usually referred to as preprocessing, may consist of several
steps. RSES supports preprocessing methods which make it possible to manage

Load/Import
data table

Classification 
of new cases

Classifier 
construction

Knowledge 
reduction

Classifier 
evaluation

Data
preprocessing

 

Fig. 2. The RSES data analysis process
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missing parts in data, discretize numeric attributes, and create new attributes
(see [14] and Section 2.2 for more details).

When the data is preprocessed, we can be interested in learning about its
internal structure. By using classical rough set concepts such as reducts (see
Section 2.1), dynamic reducts (see [14, 195, 196, 198, 201, 202, 203]), and positive
region (see Section 2.1) one can discover dependencies that occur in our data
set. Knowledge of reducts can lead to reduction of data by removing some of the
redundant attributes.

Next, the classifier construction may be started. In the RSES system, these
classifiers may be constructed using various methods (see [14] and sections 2.3,
2.4, 2.5, 2.6, 2.7 for more details).

A classifier is constructed on the basis of a training set consisting of labeled
examples (objects with decisions). Such a classifier may further be used for
evaluation on a test set or applied to new, unseen and unlabeled cases in order
to determine the value of decision (classification) for them (see Section 2.9).

If the quality of the constructed classifier is insufficient, one may return to
data preprocessing and/or knowledge reduction; another method of classifier
construction may be applied as well.

2.1 Rough Set Basic Notions

In order to provide a clear description further in the paper and to avoid any
misunderstandings, we bring here some essential definitions from rough set the-
ory. We will frequently refer to the notions introduced in this section. Quite a
comprehensive description of notions and concepts related to the classical rough
set theory may be found in [189].

An information system (see [16, 17]) is a pair A = (U, A) where U is a non-
empty, finite set called the universe of A and A is a non-empty, finite set of
attributes, i.e., mappings a : U → Va, where Va is called the value set of a ∈ A.

Elements of U are called objects and interpreted as, e.g., cases, states, pro-
cesses, patients, observations. Attributes are interpreted as features, variables,
characteristic conditions.

We also consider a special case of information systems called decision tables.
A decision table is an information system of the form A = (U, A, d) where d 	∈ A
is a distinguished attribute called the decision. The elements of A are called
condition attributes or conditions.

One can interpret the decision attribute as a kind of partition of the universe
of objects given by an expert, a decision-maker, an operator, a physician, etc. In
machine learning decision tables are called training sets of examples (see [10]).

The cardinality of the image d(U) = {k : d(s) = k for some s ∈ U} is called
the rank of d and is denoted by r(d).

We assume that the set Vd of values of the decision d is equal to {v1
d, ..., v

r(d)
d }.

Let us observe that the decision d determines a partition CLASSA(d) =
{X1

A, . . . , X
r(d)
A } of the universe U where Xk

A = {x ∈ U : d(x) = vk
d} for

1 ≤ k ≤ r(d). CLASSA(d) is called the classification of objects of A determined



504 J.G. Bazan

by the decision d. The set X i
A is called the i-th decision class of A. By XA(u)

we denote the decision class {x ∈ U : d(x) = d(u)}, for any u ∈ U .
Let A = (U, A) be an information system. For every set of attributes B ⊆ A,

an equivalence relation, denoted by INDA(B) and called the B-indiscernibility
relation, is defined by

INDA(B) = {(u, u′) ∈ U × U : ∀a∈B a(u) = a(u′)}. (1)

Objects u, u′ being in the relation INDA(B) are indiscernible by attributes
from B.

By [u]INDA(B) we denote the equivalence class of the relation INDA(B), such
that u belongs to this class.

An attribute a ∈ B ⊆ A is dispensable in B if INDA(B) = INDA(B \ {a}),
otherwise a is indispensable in B. A set B ⊆ A is independent in A if every
attribute from B is indispensable in B, otherwise the set B is dependent in A.
A set B ⊆ A is called a reduct in A if B is independent in A and INDA(B) =
INDA(A). The set of all reducts in A is denoted by REDA(A). This is the
classical notion of a reduct and it is sometimes referred to as global reduct.

Let A = (U, A) be an information system with n objects. By M(A) (see [21])
we denote an n× n matrix (cij), called the discernibility matrix of A, such that

cij = {a ∈ A : a(xi)	=a(xj)} for i, j = 1, . . . , n . (2)

A discernibility function f A for an information system A is a Boolean function
of m Boolean variables a1, . . . , am corresponding to the attributes a1, . . . , am,
respectively, and defined by

fA(a1, . . . , am) =
∧
{
∨

cij : 1 ≤ j < i ≤ n ∧ cij 	=∅}, (3)

where cij = {a : a ∈ cij}.
It can be shown (see [21]) that the set of all prime implicants of fA determines

the set of all reducts of A.
We present an exemplary deterministic algorithms for computation of the

whole reduct set REDA(A) (see, e.g., [199]). This algorithm computes the dis-
cernibility matrix of A (see Algorithm 2.1).

The time cost of the reduct set computation using the algorithm presented
above can be too high in the case the decision table consists of too many objects,
attributes, or different values of attributes. The reason is that, in general, the
size of the reduct set can be exponential with respect to the size of the deci-
sion table and the problem of the minimal reduct computation is NP-hard (see
[21]). Therefore, we are often forced to apply approximation algorithms to obtain
some knowledge about the reduct set. One way is to use approximation algo-
rithms that need not give optimal solutions but require a short computing time.
Among these algorithms are the following ones: Johnson’s algorithm, covering
algorithms, algorithms based on simulated annealing and Boltzmann machines,
algorithms using neural networks and algorithms based on genetic algorithms
(see, e.g., [196, 198, 199] for more details).
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Algorithm 2.1. Reduct set computation
Input: Information system A = (U, A)
Output: Set REDA(A) of all reducts of A
begin1

Compute indiscernibility matrix M(A)2

Reduce M(A) using absorbtion laws3

// Let C1, ..., Cd are non-empty fields of reduced M(A)
Build a familie of sets R0, R1, ..., Rd in the following way:4

begin5

R0 = ∅6

for i = 1 to d do7

Ri = Si ∪ Ti where Si = {R ∈ Ri−1 : R ∩ Ci 	= ∅}8

and Ti = (R ∪ {a})a∈Ci,R∈Ri−1:R∩Ci=∅9

end10

end11

Remove dispensable attributes from each element of family Rd12

Remove redundant elements from Rd13

REDA(A) = Rd14

end15

If A = (U, A) is an information system, B ⊆ A is a set of attributes and
X ⊆ U is a set of objects (usually called a concept), then the sets {u ∈ U :
[u]INDA(B) ⊆ X} and {u ∈ U : [u]INDA(B) ∩ X 	=∅} are called the B-lower and
the B-upper approximations of X in A, and they are denoted by BX and BX ,
respectively.

The set BNB(X) = BX − BX is called the B-boundary of X (boundary
region, for short). When B = A, we also write BNA(X) instead of BNA(X).

Sets which are unions of some classes of the indiscernibility relation INDA(B)
are called definable by B (or B-definable in short). A set X is, thus, B-definable
iff BX = BX . Some subsets (categories) of objects in an information system
cannot be exactly expressed in terms of the available attributes but they can be
defined roughly.

The set BX is the set of all elements of U which can be classified with certainty
as elements of X , given a knowledge about these elements in the form of values
of attributes from B; the set BNB(X) is the set of elements of U which one can
classify neither to X nor to −X having a knowledge about objects represented
by B.

If the boundary region of X ⊆ U is the empty set, i.e., BNB(X) = ∅, then
the set X is called crisp (exact) with respect to B; in the opposite case, i.e., if
BNB(X) 	= ∅, the set X is referred to as rough (inexact) with respect to B (see,
e.g., [17]).

If X1, . . . , Xr(d) are decision classes of A, then the set BX1 ∪ · · · ∪BXr(d) is
called the B-positive region of A and denoted by POSB(d).
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If A = (U, A, d) is a decision table and B ⊆ A, then we define a function
∂B : U → P(Vd), called the B-generalized decision of A, by

∂B(x) = {v ∈ Vd : ∃x′ ∈ U (x′INDA(B)x and d(x) = v)} . (4)

The A-generalized decision ∂A of A is called the generalized decision of A.
A decision table A is called consistent (deterministic) if card(∂A(x)) = 1 for

any x ∈ U , otherwise A is inconsistent (non-deterministic). Non-deterministic
information systems were introduced by Witold Lipski (see [233]), while de-
terministic information systems independently by Zdzis�law Pawlak [234] (see,
also, [235, 236]). It is easy to see that a decision table A is consistent iff POSA(d)
= U . Moreover, if ∂B = ∂B′ , then POSB(d) = POSB′(d) for any pair of non-
empty sets B, B′ ⊆ A.

A subset B of the set A of attributes of a decision table A = (U, A, d) is a
relative reduct of A iff B is a minimal set with respect to the following property:
∂B = ∂A. The set of all relative reducts of A is denoted by RED(A, d).

Let A = (U, A, d) be a consistent decision table and let M(A) = (cij) be
its discernibility matrix. We construct a new matrix M ′(A) = (c′ij) assuming
c′ij = ∅ if d(xi) = d(xj), and c′ij = cij − {d} otherwise. The matrix M ′(A) is
called the relative discernibility matrix of A. Now, one can construct the relative
discernibility function fM ′(A) of M ′(A) in the same way as the discernibility
function.

It can be shown (see [21]) that the set of all prime implicants of fM ′(A) de-
termines the set of all relative reducts of A.

Another important type of reducts are local reducts. A local reduct r(xi) ⊆ A
(or a reduct relative to decision and object xi ∈ U where xi is called a base
object) is a subset of A such that:

1. ∀xj∈U d(xi) 	= d(xj) =⇒ ∃ak∈r(xi) ak(xi) 	= ak(xj),
2. r(xi) is minimal with respect to inclusion.

If A = (U, A, d) is a decision table, then any system B = (U ′, A, d) such that
U ′ ⊆ U is called a subtable of A.

A template of A is a formula
∧

(ai = vi) where ai ∈ A and vi ∈ Vai . A
generalized template is a formula of the form

∧
(ai ∈ Ti) where Ti ⊂ Vai . An

object satisfies (matches) a template if for every attribute ai occurring in the
template, the value of this attribute at a considered object is equal to vi (belongs
to Ti in the case of the generalized template). The template splits the original
information system in the two distinct subtables containing objects that satisfy
and do not satisfy the template, respectively.

It is worth mentioning that the notion of a template can be treated as a
particular case of a more general notion, viz., that of a pattern (see Section 4.9).

2.2 Discretization

Suppose we have a decision table A = (U, A, d) where card(Va) is high for some
a ∈ A. Then, there is a very low chance that a new object is recognized by rules
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generated directly from this table because the attribute value vector of a new
object will not match any of these rules. Therefore, for decision tables with real
(numerical) value attributes, some discretization strategies are built in order to
obtain a higher quality of classification. This problem was intensively studied
(see, e.g., [199, 237, 238] for more details).

The process of discretization is usually realized in two following steps (see,
e.g., [14, 199, 237, 238]). First, the algorithm generates a set of cuts. By a cut
for an attribute ai ∈ A such that Vai is an ordered set we denote a value c ∈ Vai .
The cuts can be then used to transform the decision table. As a result we obtain
a decision table with the same set of attributes but the attributes have different
values. Instead of a(x) = v for an attribute a ∈ A and an object x ∈ U , we
rather get a(x) ∈ [c1, c2] where c1 and c2 are cuts generated for attribute a by
a discretization algorithm. The cuts are generated in a way that the resulting
intervals contain possibly most uniform sets of objects w.r.t decision.

The discretization method available in RSES has two versions (see, e.g.,
[14, 199, 238]) that are usually called global and local. Both methods belong
to a bottom-up approaches which add cuts for a given attribute one-by-one in
subsequent iterations of algorithm. The difference between these two methods
lies in the way in which the candidate for a new cut is evaluated. In the global
method, we evaluate all objects in the data table at every step. In the local
method, we only consider a part of objects that are related to the candidate
cut, i.e., which have the value of the attribute considered currently in the same
range as the cut candidate. Naturally, the second (local) method is faster as
less objects have to be examined at every step. In general, the local method
produces more cuts. The local method is also capable of dealing with nominal
(symbolic) attributes. Grouping (quantization) of a nominal attribute domain
with use of the local method always results in two subsets of attribute values
(see, e.g., [14, 199, 238] for more details).

2.3 Decision Rules

Let A = (U, A, d) be a decision table and let V =
⋃
{Va : a ∈ A} ∪ Vd. Atomic

formulas over B ⊆ A ∪ {d} and V are expressions of the form a = v, called
descriptors over B and V , where a ∈ B and v ∈ Va. The set F(B, V ) of formulas
over B and V is the least set containing all atomic formulas over B, V and
closed with respect to the classical propositional connectives ∨ (disjunction), ∧
(conjunction), and ¬ (negation).

Let ϕ ∈ F(B ,V ). Then, by |ϕ|A we denote the meaning of ϕ in the de-
cision table A, i.e., the set of all objects of U with the property ϕ, defined
inductively by

1. if ϕ is of the form a = v, then |ϕ|A = {x ∈ U : a(x) = v},
2. |ϕ ∧ ϕ′|A = |ϕ|A ∩ |ϕ′|A,
3. |ϕ ∨ ϕ′|A = |ϕ|A ∪ |ϕ′|A,
4. |¬ϕ|A = U − |ϕ}A.
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The set F(A,V ) is called the set of conditional formulas of A and is denoted
by C(A,V ).

Any formula of the form (a1 = v1) ∧ ... ∧ (al = vl) where vi ∈ Vai (for
i = 1, ..., l) and P = {a1, ..., al} ⊆ A is called a P-basic formula of A.

If ϕ is a P-basic formula of A and Q ⊆ P , then by ϕ/Q we mean the Q-basic
formula obtained from the formula ϕ by removing from ϕ all its elementary
subformulas (a = va) such that a ∈ P \Q.

A decision rule for A is any expression of the form ϕ ⇒ d = v where ϕ ∈
C(A,V ), v ∈ V d , and |ϕ|A 	= ∅. Formulas ϕ and d = v are referred to as the
predecessor (premise of the rule) and the successor of the decision rule ϕ ⇒ d = v
respectively.

If r is a decision rule in A, then by Pred(r) we denote the predecessor of r
and by Succ(r) we denote the successor of r .

An object u ∈ U is matched by a decision rule ϕ ⇒ d = vk
d (where 1 ≤ k ≤

r(d)) iff u ∈ |ϕ|A. If u is matched by ϕ ⇒ d = vk
d , then we say that the rule is

classifying u to the decision class Xk.
The number of objects matched by a decision rule ϕ ⇒ d = v, denoted by

MatchA(ϕ ⇒ d = v), is equal to card(|ϕ|A).
The number SuppA(ϕ⇒ d = v) = card(|ϕ|A ∩ |d = v|A) is called the number

of objects supporting the decision rule ϕ⇒ d = v.
A decision rule ϕ ⇒ d = v for A is true in A, symbolically ϕ ⇒A d = v,

iff |ϕ|A ⊆ |d = v|A. If the decision rule ϕ ⇒ d = v is true in A, we say that
the decision rule is consistent in A, otherwise ϕ ⇒ d = v is inconsistent or
approximate in A.

If r is a decision rule in A, then the number µA(r) = SuppA(r)
MatchA(r) is called the

coefficient of consistency of the rule r. The coefficient µA(r) may be understood
as the degree of consistency of the decision rule r. It is easy to see that a decision
rule r for A is consistent iff µA(r) = 1.

The coefficient of consistency of r can be also treated as the degree of inclusion
of |Pred(r)|A in |Succ(r)|A (see, e.g., [239]).

If ϕ ⇒ d = v is a decision rule for A and ϕ is P-basic formula of A (where
P ⊆ A), then the decision rule ϕ⇒ d = v is called a P-basic decision rule for A,
or a basic decision rule in short.

Let ϕ ⇒ d = v be a P-basic decision rule of A (where P ⊆ A) and let
a ∈ P . We will say that the attribute a is dispensable in the rule ϕ ⇒ d = v iff
|ϕ ⇒ d = v|A = U implies |ϕ/(P \ {a}) ⇒ d = v|A = U , otherwise attribute a
is indispensable in the rule ϕ ⇒ d = v. If all attributes a ∈ P are indispensable
in the rule ϕ⇒ d = v, then ϕ ⇒ d = v will be called independent in A.

The subset of attributes R ⊆ P will be called a reduct of P-basic decision rule
ϕ⇒ d = v, if ϕ/R ⇒ d = v is independent in A and |ϕ ⇒ d = v|A = U implies
|ϕ/R ⇒ d = v|A = U . If R is a reduct of the P-basic decision rule ϕ ⇒ d = v,
then ϕ/R ⇒ d = v is said to be reduced. If R is a reduct of the A-basic decision
rule ϕ ⇒ d = v, then ϕ/R ⇒ d = v is said to be an optimal basic decision rule
of A (a basic decision rule with minimal number of descriptors). The set of all
optimal basic decision rules of A is denoted by RUL(A).
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2.4 Two Methods for Decision Rule Synthesis

Classifiers based on a set of decision rules are the most elaborated methods in
RSES. Several methods for calculation of the decision rule sets are implemented.
Also, various methods for transforming and utilizing rule sets are available. How-
ever, in our computer experiments we usually use two methods for decision rules
synthesis. We would like to mention those methods here.

The first method returns all basic decision rules with minimal number of
descriptors (see, e.g., [196, 198, 199, 240]). Therefore, this method is often called
an exhaustive method. From the practical point of view, the method consists in
applying an algorithm computing all reducts (see Algorithm 2.1) for each object
individually, which results in obtaining decision rules with a minimal number of
descriptors in relation to individual objects (see, e.g., [196, 198, 199]).

The second method for basic decision rule synthesis, is the covering algorithm
called LEM2 (see, e.g., [216, 222, 223]). In LEM2, a separate-and-conquer tech-
nique is paired with rough set notions such as upper and lower approximations.
This method tends to produce less rules than algorithms based on the exhaus-
tive local reduct calculation (as in the previous method) and seems to be faster.
On the downside, the LEM2 method sometimes returns too few valuable and
meaningful rules (see also Section 2.10).

2.5 Operations on Rule Sets

In general, the methods used by RSES to generate rules may produce quite
a bunch of them. Naturally, some of the rules may be marginal, erroneous or
redundant. In order to provide a better control over the rule-based classifiers
some simple techniques for transforming rule sets should be used. The simplest
way to alter a set of decision rules is by filtering them. It is possible to eliminate
from the rule set these rules that have insufficient support on training sample, or
those that point at a decision class other than the desired one. More advanced
operations on rule sets are shortening and generalization.

Rule shortening is a method that attempts to eliminate descriptors from the
premise of the rule. The resulting rule is shorter, more general (applicable to
more training objects) but it may lose some of its precision. The shortened rule
may be less precise, i.e., it may give wrong answers (decisions) for some of the
matching training objects.

We present an exemplary method of approximate rules computation (see, e.g.,
[196, 198, 199]) that we use in our experiments. We begin with an algorithm for
synthesis of optimal decision rules from a given decision table (see Section 2.4).
Next, we compute approximate rules from the optimal decision rules already
calculated. Our method is based on the notion of consistency of a decision rule
(see Section 2.1). The original optimal rule is reduced to an approximate rule
with the coefficient of consistency exceeding a fixed threshold.

Let A = (U, A, d) be a decision table and r0 ∈ RUL(A). The approximate
rule (based on rule r0) is computed using the Algorithm 2.2.
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Algorithm 2.2. Approximate rule synthesis (by descriptor dropping)
Input:
1. decision table A = (U, A, d)
2. decision rule r0 ∈ RUL(A)
3. threshold of consistency µ0 (e.g., µ0 = 0.9)

Output: the approximate rule rapp (based on rule r0)
begin1

Calculate the coefficient of consistency µA(r0)2

if µA(r0) < µ0 then3

STOP // In this case no approximate rule4

end5

µmax = µA(r0) and rapp = r06

while µmax > µ0 do7

µmax = 08

for i = 1 to the number of descriptors from Pred(rapp) do9

r = rapp10

Remove i-th descriptor from Pred(r)11

Calculate the coefficient of consistency µA(r) and µ = µA(r)12

if µ > µmax then13

µmax = µ and imax = i14

end15

end16

if µmax > µ0 then17

Remove imax -th conditional descriptor from rapp18

end19

end20

return rapp21

end22

It is easy to see that the time and space complexity of Algorithm 2.2 are of
order O(l2 ·m ·n) and O(C), respectively (where l is the number of conditional
descriptors in the original optimal decision rule r0 and C is a constant).

The approximate rules, generated by the above method, can help to extract
interesting laws from the decision table. By applying approximate rules instead
of optimal rules one can slightly decrease the quality of classification of objects
from the training set but we expect, in return, to receive more general rules with
a higher quality of classification of new objects (see [196]).

On the other hand, generalization of rules is a process which consists in re-
placement of the descriptors having a single attribute value in rule predecessors
with more general descriptors. In the RSES system there is an algorithm avail-
able which instead of simple descriptors of type a(x) = v, where a ∈ A, v ∈ Va

and x ∈ U tries to use the so-called generalized descriptors of the form a(x) ∈ V
where V ⊂ Va (see, e.g., [14]). In addition, such a replacement is performed
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only when the coefficient of consistency of the new rule is not smaller than the
established threshold. Let us notice that such an operation is crucial in terms of
enlargement of the extension of decision rules for the generalized decision rules
are able to classify a greater number of tested objects.

It is worth mentioning that the application of the method of generalizing rules
described above only makes sense for tables with attributes having a small num-
ber values. Such attributes are usually attributes with symbolic values. On the
other hand a usage of this method for tables with numerical attributes requires
a previous discretization of values of these attributes.

2.6 Negotiations Among Rules

Suppose we have a set of decision rules. When we attempt to classify an object
from test sample with use of a rule set generated, it may happen that various
rules suggest different decision values. In such conflict situations, we need a strat-
egy to resolve controversy and reach a final result (decision). This problem was
intensively studied (see, e.g., [198, 199]). In its current version, RSES provides
a conflict resolution strategy based on voting among rules. In this method, each
rule that matches the object under consideration casts a vote in favor of the
decision value it points at. Votes are summed up and the decision is chosen that
has got majority of votes. This simple method may be extended by assigning
weights to rules. Each rule, then votes with its weight and the decision that has
the highest total of weighted votes is the final one. In RSES, this method is known
as a standard voting and is based on a basic strength (weight) of decision rules
(see Section 2.8). Of course, there are many other methods that can be used to
resolve conflicts between decision rules (see, e.g., [196, 198, 199, 216, 217, 241]).

2.7 Decomposition Trees

In the case of the decision tables larger, the computation of decision rules for
these tables can be extremely difficult or even impossible.

This problem arises from a relatively high computational complexity of rule
computing algorithms. Unfortunately, it frequently concerns covering algorithms
such as, e.g., LEM2 as well (see Section 2.4). One of the solutions to this prob-
lem is the so-called decomposition. Decomposition consists in partitioning the
entrance data table into parts (subtables) in such a way as to be able to calcu-
late decision rules for these parts using standard methods. Naturally, a method
is also necessary which would aggregate the obtained rule sets in order to build
a general classifier.

In this paper, we present a decomposition method based on a decomposition
tree (see [165, 226, 242]) which may be constructed according to Algorithm 2.3.

This algorithm creates the decomposition tree in steps where each step leads
to construction of the next level of the tree. At a given step of the algorithm
execution, a binary partition of the decision table takes place using the best
template (see Section 2.1) found for the table being partitioned. In this way,
with each tree node (leaf), there is connected a template partitioning the sub-
table in this node into objects matching and not matching the template. This
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Algorithm 2.3. Decomposition tree synthesis
Input: decision table A = (U, A, d)
Output: the decomposition tree for the decision table A
begin1

Find the best template T in A (see Section 2.1)2

Divide A in two subtables: A1 containing all objects satisfying T and3

A2 = A−A1
if obtained subtables are of acceptable size in the sense of rough set4

methods then
STOP // The decomposition is finished5

end6

repeat lines 2-7 for all “too large” subtables7

end8

template and its contradiction are transferred as templates describing subtables
to the next step of decomposition. Decomposition finishes when the subtables
obtained are so small that the decision rules can be calculated for them using
standard methods. After determining the decomposition tree, decision rule sets
are calculated for all the leaves of this tree and, more precisely, for the subtables
occurring in single leaves.

The tree and the rules calculated for training sample can be used in classifi-
cation of unseen cases. Suppose we have a binary decomposition tree. Let u be
a new object, A(T) be a subtable containing all objects matching a template T,
and A(¬T ) be a subtable containing all objects not matching a template T. We
classify object u starting from the root of the tree using Algorithm 2.4.

This algorithm works in such a way that such a leaf of a decomposition tree is
sought first that the tested object matches the template describing the objects of

Algorithm 2.4. Classification by decomposition tree
begin1

if u matches template T found for A then2

go to subtree related to A(T )3

else4

go to subtree related to A(¬T )5

end6

if u is at the leaf of the tree then7

go to line 128

else9

repeat lines 2-11 substituting A(T ) (or A(¬T )) for A10

end11

Classify u using decision rules for subtable attached to the leaf12

end13
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that leaf. Next, the object is classified with the help of decision rules calculated
for the leaf that was found.

The type of the decomposition method depends on the method of determin-
ing the best template. For instance, if decomposition is needed only because it
is impossible to compute rules for a given decision table, then the best template
for this table is the template which divides a given table into two equal parts. If,
however, we are concerned with the table partition that is most compatible with
the partition introduced by decision classes, then the measure of the template
quality may be, for example, the number of pairs of objects from different deci-
sion classes, differentiated with the help of the partition introduced by a given
template. Surely, the best template in this case is a template with the largest
number of differentiated pairs.

The patterns determined may have different forms (see, e.g., [165] for more
details). In the simplest case, for a symbolic attribute, the best template might
be of the forms a(x) = v or a(x) 	= v where a ∈ A, v ∈ Va, and x ∈ U , whereas
for a numerical attribute, the templates might be a(x) > v, a(x) < v, a(x) ≤ v,
or a(x) ≥ v where a ∈ A, v ∈ Va, and x ∈ U .

The classifier presented in this section uses a binary decision tree, however, it
should not be mistaken for C4.5 or ID3 (see, e.g., [210, 243]) because, as we said
before, rough set methods have been used in leaves of the decomposition tree in
construction of the classifying algorithm.

2.8 Concept Approximation and Classifiers

Definability of concepts is a term well-known in classical logic (see, e.g.,
[5, 244, 245]). In this classical approach a definable concept (set) is a rela-
tion on the domain of a given structure whose elements are precisely those
elements satisfying some formula in the structure. Semantics of such formula
enables to determine precisely for a given element (object) whether it belongs
to the concept or not. However, the issue of definability of concepts is somewhat
complicated by the pervasive presence of vagueness and ambiguity in natural
language (see [126, 127, 244]). Therefore, in numerous applications, the concepts
of interest may only be defined approximately on the basis of available, incom-
plete, imprecise or noisy information about them, represented, e.g., by positive
and negative examples (see [6, 7, 8, 9, 10, 11, 12, 13]). Such concepts are often
called vague (imprecise) concepts. We say that a concept is vague when there
may be cases (elements, objects) in which there is no clear fact of the matter
whether the concept applies or not. Hence, the classical approach to concept
definability known from classical logic cannot be applied for vague concepts. At
the same time an approximation of a vague concept consists in construction of
an algorithm (called a classifier) for this concept, which may be treated as a
constructive, approximate description of the concept. This description enables
to classify testing objects, that is, to determine for a given object whether it
belongs to the concept approximated or not to which degree.

There is a long debate in philosophy on vague concepts (see, e.g., [126, 127, 128])
and recently computer scientists (see, e.g., [79, 82, 83, 246, 247, 248, 249]) as well
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as other researchers have become interested in vague concepts. Since the classical
approach to concept definability known from classical logic cannot be applied for
vague concepts new methods of definability have been proposed. Professor Lotfi
Zadeh (see [250]) introduced a very successful approach to definability of vague
concepts. In this approach, sets are defined by partial membership in contrast
to crisp membership used in the classical definition of a set. Rough set theory
proposed a method of concept definability by employing the lower and upper
approximation, and the boundary region of this concept (see Section 2.1). If the
boundary region of a set is empty it means that a particular set is crisp, otherwise
the set is rough (inexact). The non-empty boundary region of the set means
that our knowledge about the set is not sufficient to define the set precisely.
Using the lower and upper approximation, and the boundary region of a given
concept a classifier can be constructed. Assume there is given a decision table
A = (U, A, d), whose binary decision attribute with values 1 and 0 partitions the
set of objects in two disjoint ones: C and C′. The set C contains objects with
the decision attribute value equal to 1, and the set C′ contains objects with the
decision attribute value equal to 0. The sets C and C′ may also be interpreted
in such a way that the set C is a certain concept to be approximated and the
set C′ is the complement of this concept (C′ = U \ C). If we define for concept
C and its complement C′, their A-lower approximations AC and AC′, the A-
upper approximation AC, and the A-boundary BNA(C) (BNA(C) = AC \AC),
we obtain a simple classifier which operates in such a way that a given testing
object u is classified to concept C if it belongs to the lower approximation AC.
Otherwise, if object u belongs to the lower approximation AC′, it is classified to
the complement of concept C. However, if the object belongs neither to AC nor
AC′, but it belongs to BNA(C), then the classifier cannot make an unambiguous
decision about membership of the object, and it has to respond that the object
under testing simultaneously belongs to the concept C and its complement C′,
which means it is a border object. In this case the membership degree of a tested
object u ∈ U to concept C ⊆ U is expressed numerically with the help of a
rough membership function (see, e.g., [16, 17]). The rough membership function
µC quantifies the degree of relative overlap between the concept C and the
equivalence class to which u belongs. It is defined as follows:

µC(u) : U → [0, 1] and µC(u) =
card([u]INDA(A) ∩ C)

card([u]INDA(A))
.

As we can see, in order to work the classifier described above, it is necessary for
the tested object to belong to one of the equivalence classes of relation INDA(A).
However, there is one more instance remaining when the tested object does not
belong to any equivalence class of relation INDA(A). In such case, the classifier
under consideration cannot make any decision about membership of the tested
object and has to say: “I do not know”.

Unfortunately, the case when the tested object does not belong to any equiv-
alence class of relation INDA(A) frequently occurs in practical applications. It
is due to the fact that if the objects under testing do not belong to the decision
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table that was known at the beginning, but to its extension, the chances are
small that in a given decision table, there exists an object (called a training
object) whose conditional attribute values are identical to those in the testing
object. However, it follows from the definitions of the relation INDA(A) that
the testing object for which there is no training object cannot be classified by the
classifier described above. In such a case, one can say that the extension of this
classifier is very small. For the above reason, the classic approach to classifying
objects in the rough set theory (described above) requires generalization.

It is worth noticing that in machine learning and pattern recognition (see, e.g.,
[6, 8, 9, 10, 11, 12, 13]), this issue is known under the term learning concepts by
examples (see, e.g., [10]). The main problem of learning concepts by examples
is that the description of a concept under examination needs to be created on
the basis of known examples of that concept. By creating a concept description
we understand detecting such properties of exemplary objects belonging to this
concept that enable further examination of examples in terms of their member-
ship in the concept under examination. A natural way to solve the problem of
learning concepts by examples is inductive reasoning (see, e.g., [251, 252]). In
inductive reasoning we assume as true the sentence stating a general regularity,
at the same time we do that on the basis of acknowledging sentences stating
individual instances of this regularity (see, e.g., [251, 252]). This is the reasoning
according to which decisions in the real world are often made relying on incom-
plete or even flawed information. This takes place in the cases of answers to
questions connected with forecasting, checking hypotheses or making decisions.

In the case of the problem of learning concepts by examples, the usage of
inductive reasoning means that while obtaining further examples of objects be-
longing to the concept (the so-called positive examples) and examples of objects
not belonging to the concept (the so-called negative examples), an attempt is
made to find such description that correctly matches all or almost all examples
of the concept under examination.

From the theoretical point of view, in the rough set theory the classic approach
to concept approximation was generalized by Professor Skowron and Professor
Stepaniuk (see [253]). This approach is consistent with the philosophical view
(see, e.g., [126, 127]) and the logical view (see, e.g., [128]). The main element
of this generalization is an approximation space. The approximation space (see,
e.g., [246, 253, 254, 255]) is a tuple AS = (U, I, ν), where

– U is a non-empty set of objects,
– I : U → P (U) is an uncertainty function and P (U) denotes the powerset

of U ,
– ν : P (U)× P (U)→ [0, 1] is a rough inclusion function.

The uncertainty function I defines for every object u ∈ U a set of objects
indistinguishable with u or similar to u. The set I(u) is called the neighborhood
of u. If U is a set of objects of a certain decision table A = (U, A, d), then in the
simplest case the set I(u) may be the equivalence class [u]INDA(A). However, in
a general case the set I(u) is usually defined with the help of a special language
such as GDL or NL (see Section 4.7).
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The rough inclusion function ν defines the degree of inclusion of X in Y ,
where X, Y ⊆ U . In the simplest case, rough inclusion can be defined by:

ν(X, Y ) =

{
card(X∩Y )

card(X) if X 	= ∅
1 if X = ∅.

This measure is widely used by the data mining and rough set communities
(see, e.g., [16, 17, 246, 253]). However, rough inclusion can have a much more
general form than inclusion of sets to a degree (see [192, 247, 249]).

It is worth noticing that in literature (see, e.g., [247]) a parameterized approx-
imation space is considered instead of the approximation space. Any parameter-
ized approximation space consists of a family of approximation spaces creating
the search space for data models. Any approximation space in this family is dis-
tinguished by some parameters. Searching strategies for optimal (sub-optimal)
parameters are basic rough set tools in searching for data models and knowl-
edge. There are two main types of parameters. The first ones are used to define
object sets (neighborhoods), the second are measuring the inclusion or closeness
of neighborhoods.

For an approximation space AS = (U, I, ν) and any subset X ⊆ U the lower
and the upper approximations are defined by:

– LOW (AS, X) = {u ∈ U : ν (I (u) , X) = 1} ,
– UPP (AS, X) = {u ∈ U : ν (I (u) , X) > 0}, respectively.

The lower approximation of a set X with respect to the approximation space
AS is the set of all objects which can be classified with certainty as object of
X with respect to AS. The upper approximation of a set X with respect to the
approximation space AS is the set of all objects which can be possibly classified
as objects of X with respect to AS.

Several known approaches to concept approximations can be covered using
the approximation spaces discussed here, e.g., the approach given in [16, 17],
approximations based on the variable precision rough set model (see, e.g., [256])
or tolerance (similarity) rough set approximations (see, e.g., [253]).

Similarly to the classic approach, the lower and upper approximation in the
approximation space AS for a given concept C may be used to classify objects to
this concept. In order to do this one may examine the membership of the tested
objects to LOW (AS, C), LOW (AS, C′) and UPP (AS, C) \ LOW (AS, C).

However, in machine learning and pattern recognition (see, e.g.,
[6, 8, 9, 10, 11, 12, 13]), we often search for approximation of a concept C ⊆ U∗

in an approximation space AS∗ = (U∗, I∗, ν∗) having only a partial informa-
tion about AS∗ and C, i.e., information restricted to a sample U ⊆ U∗. Let us
denote the restriction of AS∗ to U by AS = (U, I, ν), i.e., I(x) = I∗(x) ∩ U ,
ν(X, Y ) = ν∗(X, Y ) for x ∈ U , and X, Y ⊆ U (see Fig. 3).

To decide if a given object u ∈ U∗ belongs to the lower approximation or to the
upper approximation of C ⊆ U∗, it is necessary to know the value ν∗(I∗(u), C).
However, in the case there is only partial information about the approximation
space AS∗ available, one must make an estimation of such a value ν∗(I∗(u), C)
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U* - the set of objects from 
the approximation space  

AS* = (U*, I*,ν*) 

U - the set of objects from 
the approximation space  

AS = (U, I, ν) 

Tested object  u∈U*
 

I*(u)
I(u) 

Fig. 3. An approximation space AS and its extension AS∗

rather than its exact value. In machine learning, pattern recognition or data
mining, different heuristics are used for estimation of the values of ν∗. Using
different heuristic strategies, values of another function ν′ are computed and
they are used for estimation of values of ν∗. Then, the function ν′ is used for
deciding if objects belong to C or not. Hence, we define an approximation of C
in the approximation space AS′ = (U∗, I∗, ν′) rather than in AS∗ = (U∗, I∗, ν∗).
Usually, it is required that the approximations of C ∩U in AS and AS′ are close
(or the same).

The approach presented above (see, e.g., [83, 246, 248, 249]) became an in-
spiration for finding out of a number of methods which would enable to enlarge
the extension of constructed classifiers, that is, to make the classifiers under
construction to be able to classify any objects, and not only those belonging to
a given decision table.

Some other issues concerning the rough set approach to vague concept ap-
proximation are discussed, e.g., in [83, 128, 248, 249]. Among these issues are
the higher order vagueness (i.e., nondefinability of boundary regions), adaptive
learning of concept approximation, concept drift, and sorites paradoxes.

One of the basic ways of increasing the extension of classifiers is to approx-
imate the concepts not with the help of the equivalence class of relation IND
(see above) but with the help of the patterns of the established language which
different objects may match, both from the training table and its extension. A
given object matches the pattern if it is compatible with the description of this
pattern. Usually, the pattern is constructed in such a way that all or almost
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all its matching objects belong to the concept under study (the decision class).
Moreover, it is required that the objects from many equivalence classes of re-
lation IND could match the patterns. Thus, the extension of classifiers based
on patterns is dramatically greater than the extension of classifiers working on
the basis of equivalence classes of relation IND. These types of patterns are
often called decision rules (see Section 2.3). In literature one may encounter
many methods of computing decision rules from data and methods enabling
preprocessing the data in order to construct effective classifiers. Into this type
of methods one may include, for example, discretization of attribute values (see
Section 2.2), methods computing decision rules (see Section 2.3), shortening and
generalization of decision rules (see Section 2.5).

The determined decision rules may be applied to classifiers construction. For
instance, let us examine the situation, when a classifier is created on the basis
of decision rules from the set RUL(A) computed for a given decision table A =
(U, A, d), and at the same time decision attribute d describes the membership
to a certain concept C and its complement C′. 1

The set of rules RUL(A) is the sum of two subsets RUL(A, C) and
RUL(A, C′), where RUL(A, C) is the set of rules classifying objects to C and
RUL(A, C′) is a set of rules classifying objects to C′. For any tested object u,
by MRul(A, C, u) ⊆ RUL(A, C) and MRul(A, C′, u) ⊆ RUL(A, C′) we denote
sets of such rules whose predecessors match object u and classify objects to C
and C′, respectively.

Let AS = (U, I, ν) be an approximation space, where:

1. ∀u ∈ U : I(u) =
⋃

r∈MRul(A,C,u)
SuppA(r) ∪

⋃
r∈MRul(A,C′,u)

SuppA(r)

2. ∀X, Y ⊆ U : ν(X, Y ) =

{
card(X∩Y )

card(X) if X 	= ∅
1 if X = ∅.

The above approximation space AS may be extended in a natural way to
approximation space AS′ = (U∗, I∗, ν′), where:

1. I∗ : U∗ −→ P (U∗) such that ∀u ∈ U : I∗(u) = I(u),

2. ∀X, Y ⊆ U∗ : ν′(X, Y ) =

{
card(X∩Y )

card(X) if X 	= ∅
1 if X = ∅.

Let us notice that such a simple generalization of functions I to I∗ and ν to
ν′ is possible because function I may determine the neighborhood for a given
object belonging to U∗. It results from the fact that decision rules from set
RUL(A) may recognize objects not only from set U but also from set U∗ \ U .
Approximation space AS′ may now also be used to construct a classifier which
classifies objects from set U∗ to concept C or its complement C′. In creating
such a classifier the key problem is to resolve the conflict between the rules

1 For simplicity of reasoning we consider only binary classifiers, i.e. classifiers with two
decision classes. One can easily extend the approach to the case of classifiers with
more decision classes.
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classifying the tested object to the concept or to its complement. Let us notice
that this conflict occurs because in practice we do not know function ν∗ but
only its approximation ν′. That is why, there may exist such a tested object ut

that the values ν′({ut}, C) and ν′({ut}, C′) are high (that is close to 1), while
values ν∗({ut}, C) and ν∗({ut}, C′) are very different (e.g., ν∗({ut}, C) is close
to 1 and ν∗({ut}, C′) is close to 0).

Below, we present the definition of such a classifier in the form of a function
that returns the value Y ES when the tested object belongs to C or the value
NO when the tested object belongs to C′:

∀u ∈ U : Classifier(u) =
{

Y ES if ν′({u}, C) > 0.5
NO otherwise. (5)

Obviously, other rough inclusion functions may be defined (see, e.g.,
[192, 247, 249]). Thus, we obtain different classifiers. Unfortunately, a classi-
fier defined with the help of Equation (5) is impractical because the function ν′

used in it does not introduce additional parameters which enable to recognize of
objects to the concept and its complement whereas in practical applications in
constructing classifiers based on decision rules, functions are applied which give
the strength (weight) of the classification of a given tested object to concept C
or its complement C′ (see, e.g., [196, 199, 216, 217, 241]). Below, we present a
few instances of such weights (see [199]).

1. A simple strength of decision rule set is defined by

SimpleStrength(C, ut) =
card(MRul(A, C, ut))

card(RUL(A, C))
.

2. A maximal strength of decision rule set is defined by

MaximalStrength(C, ut) = maxr∈MRul(A,C,ut)

{
SuppA(r)
card(C)

}
.

3. A basic strength or a standard strength of decision rule set is defined by

BasicStrength(C, ut) =

∑
r∈MRul(A,C,ut)

SuppA(r)∑
r∈RUL(A,C)

SuppA(r)
.

4. A global strength of decision rule set is defined by

GlobalStrength(C, ut) =

card

( ⋃
r∈MRul(A,C,ut)

SuppA(r)

)
card(C)

.

Using each of the above rules weight, a rough inclusion function correspond-
ing to it may be defined. Let us mark any established weight of rule sets as S.
For weight S we define an exemplary rough inclusion function νS in the fol-
lowing way:
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∀X, Y ⊆ U : νS(X, Y ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Y = ∅ ∧X 	= ∅
1 if X = ∅

S(Y,u)
S(Y,u)+S(U\Y,u) if X = {u} and

S(Y, u) + S(U \ Y, u) 	= 0

1
2 if X = {u} and

S(Y, u) + S(U \ Y, u) = 0

P

u∈X

νS({u},Y )

card(X) if card(X) > 1

,

where for an established set Y and object u the weights S(Y, u) and S(U \ Y, u)
are computed using the decision rule set generated for table A = (U, A, dY ),
where attribute dY describes the membership of objects from U to the set Y .

The rough inclusion function defined above may be used to construct the clas-
sifier as it is done in Equation (5). Such a classifier executes a simple negotiation
method between the rules classifying the tested object to the concept and rules
classifying the tested object to the complement of the concept (see Section 2.6).
It simply is based on classifying tested object u to concept C only when with the
established weight of rule sets S the value νS({u}, C) is bigger than νS({u}, C′).
Otherwise, object u is classified to the complement of concept C.

In this paper, the weight BasicStrength is used in experiments related to
construction of classifiers based on decision rules to resolve conflicts between
rule sets.

2.9 Evaluation of Classifiers

In order to evaluate the classifier quality in relation to the data analyzed, a
given decision table is partitioned into the two tables in a general case (see, e.g.,
[11, 257, 258]):

1. the training table containing objects on the basis of which the algorithm
learns to classify objects to decision classes,

2. the test table, by means of which the classifier learned on the training table
may be evaluated when classifying all objects belonging to this table.

The numerical measure of the classifier evaluation is often the number of
mistakes made by the classifier during classification of objects from the test
table in comparison to all objects under classification (the error rate, see, e.g., [11,
196, 198]). However, the method of the numerical classifier evaluation, used most
often, is the method based on a confusion matrix. The confusion matrix (see, e.g.,
[15, 257, 259]) contains information about actual and predicted classifications
done by a classifier. Performance of such systems is commonly evaluated using
the data in the matrix. The Table 1 shows the confusion matrix for a two class
classifier, i.e., for a classifier constructed for a concept.
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Table 1. The confusion matrix

Predicted
Negative Positive

Actual Negative TN FP
Positive FN TP

The entries in the confusion matrix have the following meaning in the context
of our study (see, e.g., [260]):

– TN (True Negatives) is the number of correct predictions that an object is
a negative example of a concept of the test table,

– FP (False Positives) is the number of incorrect predictions that an object
is a positive example of a concept of the test table,

– FN (False Negatives) is the number of incorrect predictions that an object
is a negative example of a concept of the test table,

– TP (True Positives) is the number of correct predictions that an object is a
positive example of a concept of the test table.

Several standard terms (parameters) have been defined for the two class con-
fusion matrix:

– the accuracy (ACC) defined for a given classifier by the following equality:

ACC =
TN + TP

TN + FN + FP + TP
,

– the accuracy for positive examples or the sensitivity (see, e.g., [260]) or the
true positive rate (TPR) (see, e.g., [257]) defined for a given classifier by the
following equality:

TPR =
TP

TP + FN
,

– the accuracy for negative examples or the specificity (see, e.g., [260]) or the
true negative rate (TNR) (see, e.g., [257]) defined for a given classifier by
the following equality:

TNR =
TN

TN + FP
.

An essential parameter is also the number of classified objects from the test
table in comparison to the number of all objects from this table since classifiers
may not always be able to classify the objects. This parameter, called the cover-
age (see, e.g., [11, 15]), may be treated as an extension measure of the classifier.
Thus, in order to evaluate classifiers, also the following numerical parameters
are applied in this paper:

1. the coverage (COV ) defined for a given classifier by the following equality:

COV =
TN + FP + FN + TP

the number of all objects of the test table
,
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2. the coverage for positive examples (PCOV ) defined for a given classifier by
the following equality:

PCOV =
FN + TP

the number of all positive examples of a concept of the table
,

3. the coverage for negative examples (NCOV ) defined for a given classifier by
the following equality:

NCOV =
TN + FP

the number of all negative examples of a concept of the table
,

4. the real accuracy defined for a given classifier by: ACC · COV ,
5. the real accuracy for positive examples or the real true positive rate defined

for a given classifier by: TPR · PCOV ,
6. the real accuracy for negative examples or the real true negative rate defined

for a given classifier by: TNR ·NCOV .

Besides that, in order to evaluate classifiers still different parameters are ap-
plied. These are, for instance, time of construction of a classifier on the basis
of a training table or the complexity degree of the classifier under construction
(e.g., the number of generated decision rules).

In summary, in this paper the main parameters applied to the evaluation
of classifiers are: the accuracy, the coverage, the real accuracy, the accuracy
for positive examples, the coverage for positive examples, the real accuracy for
positive examples, the accuracy for negative examples, the coverage for negative
examples and the real accuracy for negative examples.

They are used in experiments with AR schemes (see Section 5.8) and experi-
ments related to detecting behavioral patterns (see Section 6.25 and Section 6.26).
However, in experiments with automated planning another method of classifier
quality evaluation was applied (see Section 7.21). It results from the fact that
this case is about automated generating the value of complex decision that is a
plan which is a sequence of actions alternated with states. Hence, to compare
this type of complex decision values the above mentioned parameters may not
be used. Therefore, to compare the plans generated automatically with the plans
available in the data set we use a special classifier based on concept ontology
which shows the similarity between any pair of plans (see Section 7.18).

It is worth noticing that in literature there may be found another, frequently
applied method of measuring the quality of created classifiers. It is a method
based on ROC curve (Receiver Operating Characteristic curve) (see, e.g.,
[260, 261, 262]). This method is available, for instance, in system ROSETTA (see,
e.g., [259, 263, 264]). It is also worthwhile mentioning that the author of this
paper participated in construction of programming library RSES-lib, creating
the computational kernel of system ROSETTA (see [230, 259] for more details).

In order not to make the value of the determined parameter of the classifier
evaluation depending on a specific partitioning the whole decision table into a
training and test parts, a number of methods are applied which perform tests to
determine which parameter values of the classifier evaluation are creditable.
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The methods of this type applied most often are train-and-test and cross-
validation (see, e.g., [11, 258, 265]). The train-and-test method is usually applied
to decision tables having at least 1000 objects (see, e.g., [11]). It consists in a
random isolation of two test subtables from the whole data available, treating
one of them as a training subtable and the other as a test subtable. The training
and test subtables are usually separated (although not always) and altogether
make the available decision table. It is crucial, however, that at least some part
of the objects from the test subtable does not occur in the training subtable.
The proportion between the number of objects in the test and training subtables
depends on a given experiment but it is usually such that the number of objects
in the test part constitutes from 20 to 50 percent of the number of objects in the
whole data available (see, e.g., [11]). The cross-validation method is applied to
evaluate a classifier when the number of objects in the decision table is less than
1000 (see, e.g., [11]). This method consists in partitioning data in a random way
into m equal parts and, then performing m experiments with them. In each of
these experiments, a local coefficient of the classifier evaluation is calculated for a
situation when one of the parts into which the data was divided is a set of tested
objects, and the remaining m − 1 parts (temporarily combined) are treated as
a set of training objects. Finally, a coefficient of the classifier evaluation as an
average arithmetical coefficient of all experiments is calculated. The number m
is determined depending on the specific data and should be selected in such a
way that the test parts not to have too few objects. In practice, m is an integer
ranging from 5 to 15 (see, e.g., [11]).

All decision tables used in experiments have more than 1000 objects, in this
paper. That is why in order to determine the parameter of the classifier quality
the train-and-test method is always applied. Moreover, each experiment is re-
peated 10 times for ten random partitions into two separate tables (training and
test). Hence, the result of each experiment is the arithmetical mean obtained
from the results of its repetitions. Additionally, the standard deviation of the
received result is given.

2.10 Problem of Low Coverage

If a given tested object matches the predecessor of a certain basic decision rule
(that is the values of condition attributes of this object are the same as the
values of the descriptors from the rule predecessor corresponding to them), then
this rule may be used to classify this object, that is, the object is classified to
the decision class occurring in the rule successor. In this case we also say that a
given tested object is recognized by a certain decision rule. However, if a given
tested object is recognized by different decision rules which classify it to more
than one decision classes, then negotiation methods between rules are applied
(see Section 2.6 and Section 2.8).

In practice, it may happen that a given tested object does not match the
predecessor of any of the available decision rules. We say that this object is not
recognized by a given classifier based on decision rules and what follows it cannot
be classified by this classifier. It is an unfavorable situation, for we often expect



524 J.G. Bazan

from the classifiers to classify all or almost all tested objects. If there are many
of the unclassified objects, then we say that a given classifier has too low an
extension. It is expressed numerically by a low value of the coverage parameter
(see Section 2.9).

A number of approaches which enable to avoid a low coverage of classifiers
based on decision rules were described in literature. They are for example:

1. The application of classifiers based on the set of all rules with a minimum
number of descriptors (see Section 2.4) which usually have a high extension
(see, e.g., [196, 198]).

2. The application of rule classifiers constructed on the basis of covering algo-
rithms and partial matching mechanism of the objects to the rules (see, e.g.,
[10, 213, 214, 216, 217, 222, 223, 266]).

3. The application of classifiers based on decision rules which underwent the
process of generalization of rules owing to which the classifier extension usu-
ally increases (see Section 2.5).

4. The application of classifiers based on a lazy learning which does not require
preliminary computation of decision rules, for decision rules needed for object
classification are discovered directly in a given decision table during the
classification of the tested object (see, e.g., [197, 198, 267]).

All the methods mentioned above have their advantages and disadvantages.
The first method has an exponential time complexity which results from the
complexity of the algorithm computing all reducts (see Section 2.4). The second
method is very quick, for it is based on rules computed with the help of the
covering method. However, in this method there are often applied approximation
rules to classify objects (determined as a result of a partial matching objects to
the rules). Therefore, the quality of classification on the basis of such rules may
be unsatisfactory. The third method uses the operation of rule generalization.
Owing to this operation the extension of the obtained rules increases. However,
it does not lead to such a high extension as in the case of the first, second and
fourth method. Apart from that the operation of rule generalization is quite time
consuming. Whereas, the fourth method, although does not require preliminary
computation of decision rules, its pessimistic computational time complexity of
each tested object classification is of order O(n2 ·m), where n is the number of
objects in the training table and m is the number of condition attributes. Hence,
for bigger decision tables this method cannot be applied effectively.

There is one more possibility remaining to build classifiers on the basis of
rules computed with the covering method without using partial matching tested
objects to the rules. Obviously, classifiers based on such rules may have a low
coverage. However, they usually have a high quality of the classification. It is
extremely crucial in many applications (for example in medical and financial
ones) where it is required that the decisions generated by classifiers be always
or almost always correct. In such applications it is sometimes better for the
classifier to say I do not know rather than make a wrong decision. That is why
in this paper we use classifiers based on rules computed with covering method
(without partial matching objects to the rules) agreeing on a low coverage of such
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classifiers in cases when classifiers based on the set of all rules with minimum
number of descriptors cannot be applied (too large analyzed decision tables).

3 Methods of Constructing Stratifying Classifiers

The algorithm of concept approximation, presented in Subsection 2.8, consists
in classifying the tested objects to the lower approximation of this concept,
the lower approximation of complement of this concept or its border. Many
methods enabling increase of the extension of classifiers under construction, in
rough set theory are proposed (see Section 2.8). Discretization of attribute val-
ues (see Section 2.2), methods of calculating and modifying decision rules (see
Sections 2.3, 2.4, 2.5), and partial matching method (see Section 2.10) are ex-
amples of such methods. As a result of applying these methods, there are con-
structed classifiers able to classify almost every tested object to the concept or
its complement.

At first glance this state of affairs should dispose optimistically for approxima-
tion methods can be expanded for tested objects from beyond a given decision
table, which is necessary in inductive learning (see Section 2.8). Unfortunately,
such a process of generalizing concept approximation encounters difficulties in
classifying new (unknown during the classifier learning) tested objects. Namely,
after expanding the set of objects U of a given information system with new ob-
jects, equivalence classes of these objects are often disjoint with U . This means
that if such objects match the description of a given concept C constructed on
the basis of set U , this match is often incidental. Indeed due to the unfamiliarity
the process generalization of decision rules may go too far (e.g., decision rules are
too short) because of absence of these new objects when the concept description
was created. It may happen that the properties (attributes) used to describe a
concept are chosen in wrong way. So, if a certain tested object from outside the
decision table is classified, then it may turn out that, in the light of the knowl-
edge gathered in a given decision table, this object should be classified neither
to the concept nor to its complement but to the concept border, which expresses
our uncertainty about the classification of this object. Meanwhile, most of the
classifiers currently constructed classify the object to the concept or its comple-
ment. A need of use the knowledge from a given table arises in order to determine
the coefficient of certainty that the object under testing belongs to the approx-
imated concept. In other words, we would like to determine, with reference to
the tested object, how certain the fact is that this object belongs to the concept.
And at the same time it would be the best to express if the certainty coefficient
by a number, e.g., from [0, 1]. In literature such a numerical coefficient is ex-
pressed using different kinds of rough membership functions (see Section 2.8). If
a method of determining such a coefficient is given, it may be assumed that the
coefficient values are discretized which leads to a sequence of concept layers ar-
ranged linearly. The first layer in this sequence represents objects which, without
any doubt do not belong to the concept (the lower approximation of the concept
complement). The next layers in the sequence represent objects belonging to the
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Fig. 4. Layers of a given concept C

concept more and more certainly (border layers of the concept). The last layer
in this sequence represents objects certainly belonging to the concept, that is,
the ones belonging to the lower concept approximation (see Fig. 4).

Let us add that this type of concept layers may be defined both on the basis
of the knowledge gathered in data tables and using additional domain knowledge
provided by experts.

3.1 Stratifying Classifier

In order to examine the membership of tested objects to individual concept layers,
such classifiers are needed that can approximate all layers of a given concept at the
same time. Such classifiers are called in this paper stratifying classifiers.

Definition 1 (A stratifying classifier). Let A = (U, A, d) be a decision table
whose objects are positive and negative examples of a concept C (described by a
binary attribute d).

1. A partition of the set U is a family {U1, ..., Uk} of non-empty subsets of the
set U (where k > 1) such that the following two conditions are satisfied:
(a) U = U1 ∪ ... ∪ Uk,
(b) ∀i�=j Ui ∩ Uj = ∅.

2. A partition of the set U into a family U1
C , ..., Uk

C we call the partition of U
into layers in relation to concept C when the following three conditions are
satisfied:
(a) set U1

C includes objects which, according to an expert, certainly do not
belong to concept C (so they belong to a lower approximation of its com-
plement),

(b) for every two sets U i
C , U j

C (where i < j), set U i
C includes objects which,

according to an expert, belong to concept C with a degree of certainty
lower than the degree of certainly of membership of objects of U j

C in U ,
(c) set Uk

C includes objects which, according to an expert, certainly belong to
concept C, viz., to its lower approximation.

3. Each algorithm which assigns (classifies) tested objects into one of the layers
belonging to a partition of the set U in relation to the concept C, is called a
stratifying classifier of the concept C.
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4. In practice, instead of using layer markings U1
C , ..., Uk

C , elements of the set
E = {e1, ..., ek} are used to label layers, whereas the stratifying classifier
constructed for the concept C which classifies each tested object into one of
the layers labeled with labels from the set E, is denoted by µE

C .
5. If the stratifying classifier µE

C classifies a tested object u into the layer labeled
by e ∈ E, then this fact is denoted by the equality µE

C(u) = e.

An expert may divide the set of objects U into layers in two following ways:

1. by an assignment of weight labels to all training objects arbitrary (see
Section 3.2),

2. by providing heuristics which may be applied in construction of a stratifying
classifier (see Section 3.3).

Stratifying classifiers can be very useful when we need to estimate realistically
what the certainty of membership of a tested object to a concept is, without
determining whether the object belongs to the concept or not. Apart from that,
stratifying classifiers may be used to construct the so-called production rules
(see Section 5.3).

In the paper, two general ways of construction of stratifying classifiers are
presented. The first one is the expert approach consisting in defining by an expert
an additional attribute in data which describes the membership of objects to
particular layers of the concept. Next, a classifier differentiating layers as decision
classes is built (see Section 3.2).

The second approach is called the automatic approach and is based on design-
ing algorithms which are extensions of classifiers enabling the classification of
objects into layers of a concept on the basis of certain premises and experimental
observations (see Section 3.3).

3.2 Stratifying Classifiers Based on the Expert Approach

In construction of stratifying classifiers using expert knowledge, it is assumed
that for all training objects not only the binary classification of training objects
to a concept or outside the concept is known but we also know the assignment
of all training objects into the specific concept layers. Using this approach an
additional knowledge needs to be gained from a domain knowledge. Owing to
that a classical classifier may be built (e.g., the one based on a set of rules with a
minimal number of descriptors) which directly classifies the objects to different
concept layers. This classifier is built on the basis of a decision attribute which
has as many values as many concept layers are there, and each of these values
is a label of one of the layers.

3.3 Stratifying Classifiers Based on the Automatic Approach

In construction of stratifying classifiers using the automatic approach, the as-
signment of all training objects to specific concept layers is unknown but we
only know the binary classification of training objects to a concept or its com-
plement. However, the performance of a stratifying classifier is, in this case,
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connected with a certain heuristics which supports discernibility of objects be-
longing to a lesser or greater degree to the concept, that is, objects belonging to
different layers of this concept. Such a heuristic determines the way an object is
classified to different layers and, thus, it is called a stratifying heuristic.

Many different types of heuristics stratifying concepts may be proposed. These
may be, e.g., heuristics based on the difference of weights of decision rules clas-
sifying tested objects to concept and its complement or heuristics using a k-NN
algorithm of k nearest neighbors (compare with [78, 200, 268]). In this paper,
however, we are concerned with a new type of stratifying heuristics using the
operation of decision rule shortening (see Section 2.5).

The starting point of the presented heuristics is the following observation.
Let us assume that for a certain consistent decision table A whose decision is
a binary attribute with values 1 (objects belonging to the concept C) and 2
(objects belonging to the complement of concept C which is denoted by C′), a
set of decision rules, RUL(A) was calculated. The set RUL(A) is the sum of
two separate subsets of rules RUL1(A) (classifying objects to C) and RUL2(A)
(classifying objects to C′). Now, let us shorten the decision rules from RUL1(A)
to obtain the coefficient of consistency equal to 0.9 by placing the shortened
decision rules in the set RUL1(A, 0.9). Next, let RUL′(A) = RUL1(A, 0.9) ∪
RUL2(A). In this way, we have increased the extension of the input decision set
of rules RUL(A) in relation to the concept C, viz., as a result of shortening of
the rules, the chance is increased that a given tested object is recognized by the
rules classifying to the concept C. In other words, the classifier based on the set
of rules RUL′(A) classifies objects to the concept C more often.

Now, if a certain tested object u, not belonging to table A, is classified to
C′ by the classifier based on the rule set RUL′(A), then the chance that object
u actually belongs to C′ is much bigger than in the case of using the set of
rules RUL(A). The reason for this assumption is the fact that it is harder for a
classifier based on the set of rules RUL′(A) to classify objects to C′ for the rules
classifying objects to C are shortened in it and owing to that they recognize the
objects more often. If, however, an object u is classified to C′, then some of its
crucial properties identified by the rules classifying it to C′ must determine this
decision. If shortening of the decision rules is greater (to the lower consistency
coefficient), then the change in the rule set extension will be even bigger.

Summing up the above discussion, we conclude that rule shortening makes
it possible to change the extensions of decision rule sets in relation to chosen
concepts (decision classes), and owing to that one can obtain a certain type
of approximation based on the certainty degree, concerning the membership of
tested objects to the concept under consideration where different layers of the
concept are modeled by applying different coefficients of rule shortening.

In construction of algorithms producing stratifying classifiers based on short-
ening of decision rules, there occurs a problem with the selection of accuracy
coefficient threshold to which decision rules are shortened. In other words, what
we mean here is the range and the step with which the accuracy coefficient
threshold must be selected in order to obtain sets of rules enabling an effective
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description of the actual layers of the concept approximated. On the basis of pre-
vious experimental experience (see, e.g., [196, 198]), in this paper, we establish
that the shortening thresholds of decision rule consistency coefficient are selected
from the range 0.5 to 1.0. The lower threshold limit (that is, 0.5) results from
the experimental observation that if we shorten rules classifying objects to a
certain concept C below the limit 0.5 (without simultaneous shortening of rules
classifying objects to C′), then although their extension increases dramatically
(they classify objects to the concept C very often), their certainty falls to an
absolutely unsatisfactory level. However, the upper limit of the threshold (that
is 1.0) simply means leaving only accurate rules in the set of rules, and rejecting
other approximation rules which could have occurred for a given decision table.

If it comes, however, to the change step of the chosen threshold of the rule
coefficient of consistency, we set it at 0.1. This change step is dictated by the
fact that it enables a general search of thresholds from 0.5 to 1.0 and, at the
same time, the number of rule shortening operations is not too high which is
essential for keeping the time needed to conduct computer experiments within
acceptable bounds.

Now we present an algorithm of a stratifying classifier construction based on
rule shortening (see Algorithm 3.1).

Let us notice that after the above algorithm completes its performance on the
list L, there are eleven decision rule sets. The first classifier on this list contains the

Algorithm 3.1. Stratifying classifier construction
Input: decision table A = (U, A, d) and concept C ⊆ U
Output: classifier list L representing a stratifying classifier
begin1

Calculate decision rules for table A, denoted by RUL(A) =2

RUL1(A) ∪ RUL2(A)
Create empty classifier list L3

for a := 0.5 to 0.9 with step 0.1 do4

Shorten rules RUL1(A) to the consistency coefficient a and place5

the shortened decision rules in RUL1(A, a)
RUL := RUL1(A, a) ∪RUL2(A)6

Add RUL to the end of the list L7

end8

Add RUL(A) to the end of the list L9

for a := 0.9 to 0.5 with step 0.1 do10

Shorten rules RUL2(A) to the consistency coefficient a and place11

the shortened decision rules the RUL2(A, a)
RUL := RUL1(A) ∪RUL2(A, a)12

Add RUL to the end of the list L13

end14

return L15

end16
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Algorithm 3.2. Classification using the stratifying classifier
Input:
1. classifier list L representing a stratifying classifier,
2. set of labels of layers E = {e1, ..., esize(L)+1},
3. tested object u

Output: The label of the layer to which the object u is classified
begin1

for i := size(L) down to 1 do2

Classify u using the classifier L[i]3

if u is classified by L[i] to the concept C then4

return ei+15

end6

end7

return e18

end9

most shortened rules classifying to C. That is why, if it classifies an object to C′, the
degree of certainty is the highest that this object belongs to concept C′, whereas
the last classifier on the list L, contains the most shortened rules classifying to C′.
That is why the classificationof an object to the conceptC using this classifier gives
us the highest degree of certainty of that the object really belongs to C.

The time complexity of Algorithm 3.1 depends on the time complexity of the
chosen algorithm of decision rules computing and on the algorithm of approxi-
mate rules synthesis (see Section 2.5).

On the basis of the classifier constructed according to Algorithm 3.1, the
tested object is classified to a specific layer with the help of successive classifiers
starting from the last to the first one, and if the object is classified by the i-th
classifier to C, then we learn about membership of the object under testing to the
(i+1)-th layer of C. However, if the object is not classified to C by any classifier,
we learn about membership of the tested object to the first layer (layer number
1), that is, to the complement of concept C. We present a detailed algorithm for
classification of the object using the stratifying classifier (see Algorithm 3.2).

Let us notice that if the size of the list L is equal to 11 (generated by Algo-
rithm 3.1), the above classifier classifies objects to 12 concept layers where the
number 12 layer is the layer of objects with the highest degree of certainty of
membership to the concept and the layer number 1 is the layer with the lowest
degree of certainty of membership to this concept.

4 General Methodology of Complex Concept
Approximation

Many real-life problems may be modeled with the help of the so-called complex
dynamical systems (see, e.g., [92, 93, 94, 95, 96, 97]) or, putting it in an other
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way, autonomous multiagent systems (see, e.g., [98, 101]) or swarm systems (see,
e.g., [104]). These are sets consisting of complex objects which are characterized
by the constant change of parameters of their components over time, numer-
ous relationships among the objects, the possibility of cooperation/competition
among the objects and the ability of objects to perform more or less compli-
cated actions. Examples of systems of these kind are: traffic, a patient observed
during treatment, a team of robots during performing some task. The description
of the dynamics of such a system is often impossible using purely classical an-
alytical methods, and the description itself contains many vague concepts. For
instance, in order to monitor complex dynamical systems effectively, complex
spatio-temporal concepts are used very often, concerning dynamic properties of
complex objects occurring in these systems. These concepts are expressed in
natural language on a much higher level of abstraction than the so-called sensor
data, which have mostly been applied to approximation of concepts so far. Ex-
amples of such concepts are safe car driving, safe overtaking, patient’s behavior
when faced with a life threat, ineffective behavior of robot team.

Much attention has been devoted to spatio-temporal exploration methods in
literature (see, e.g., [63, 64]). The current experience indicates more and more
that approximation of such concepts requires a support of knowledge of the
domain to which the approximated terms are applied, i.e., the domain knowledge.
It usually means the knowledge about concepts occurring in a given domain and
various relations among these concepts. This knowledge exceeds significantly the
knowledge gathered in data sets; it is often represented in a natural language,
and it is usually obtained in a dialogue with an expert from a given domain
(see, e.g., [41, 42, 43, 44, 45, 46, 52, 269]). One of the methods of representing
this knowledge is recording it in the form of the so-called concept ontology. The
concept ontology is usually understood as a finite set of concepts creating a
hierarchy and relationships among these concepts which connect concepts from
different hierarchical levels (see next section). In this subsection, we present
a general methodology of approximating complex spatio-temporal concepts on
the basis of experimental data and a domain knowledge represented mainly by
a concept ontology.

4.1 Ontology as a Representation of Domain Knowledge

The word ontology was originally used by philosophers to describe a branch of
metaphysics concerned with the nature and relations of being (see, e.g., [270]).
However, the definition of ontology itself has been a matter of dispute for a
long time, and controversies concern mainly the thematic scope to be embraced
by this branch. Discussions on the subject of ontology definition appear in the
works of Gottfried Leibniz, Immanuel Kant, Bernard Bolzano, Franz Brentano,
or Kazimierz Twardowski (see, e.g., [271]). Most of them treat ontology as a
field of science concerning types and structures of objects, properties, events,
processes, relations, and reality domains (see, e.g., [106]). Therefore, ontology
is neither a science concerning functioning of the world nor the ways a human
being perceives it. It poses questions: How do we classify everything?, What
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classes of beings are inevitable for describing and concluding on the subject of
ongoing processes?, What classes of being enable to conclude about the truth?,
What classes of being enable to conclude about the future? (see, e.g., [106, 270]).

Ontology in Informatics. The term ontology appeared in the information
technology context at the end of the sixties of the last century as a specific way
of knowledge formalization, mainly in the context of database development and
artificial intelligence (see, e.g., [53, 272]). The growth in popularity of database
systems caused avalanche increase of their capacity. The data size, multitude
of tools used both for storing and introducing, or transferring data caused that
databases became difficult in managing and communication with the outside
world. Database schemes are determined to high extent not only by the require-
ments on an application or database theory but also by cultural conditions,
knowledge, and the vocabulary used by designers. As the result, the same class
of objects may possess different sets of attributes in various schemes termed dif-
ferently. These attribute sets are identical terms but often describe completely
different things. A solution to this problem are supposed to be ontologies which
can be treated as tools for establishing standards of database scheme creation.

The second pillar of ontology development is artificial intelligence (AI), mainly
because of the view according to which making conclusions requires knowledge
resources concerning the outside world, and ontology is a way of formalizing and
representing such knowledge (see, e.g., [7, 273]).

It is worth noticing that, in the recent years, one of the main applications
of ontologies has been their use for an intelligent search of information on the
Internet (see, e.g., [53] and [54] for more details).

Definition of Ontology. Philosophically as well as in information technology,
there is a lack of agreement if it comes to the definition of ontology. Let us now
consider three definitions of ontology, well-known from literature. Guarino states
(see [53]) that in the most prevalent use of this term, an ontology refers to an
engineering artifact, constituted by a specific vocabulary used to describe a certain
reality (or some part of reality), plus a set of explicit assumptions regarding the
intended meaning of vocabulary words. In this approach, an ontology describes
a hierarchy of concepts related by relationships, whereas in more sophisticated
cases, suitable axioms are added to express other relationships among concepts
and to constrain the interpretation of those concepts.

Another well-known definition of ontology has been proposed by Gruber
(see [105]). He defines an ontology as an explicit specification of a conceptu-
alization. He explains that for AI systems, what exists is that which can be
represented. When the knowledge of a domain is represented in a declarative
formalism, the set of objects that can be represented is called the universe of
discourse. This set of objects and the describable relationships among them are
reflected in the representational vocabulary with which a knowledge-based pro-
gram represents knowledge. Thus, according to Gruber, in the the context of AI,
we can describe the ontology of a knowledge-based program by defining a set of
representational terms. In such an ontology, definitions associate the names of
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entities in the universe of discourse (e.g., classes, relations, functions, or other
objects) with human-readable text describing what the names mean, and formal
axioms that constrain the interpretation and the well-formed use of these terms.

Finally, we present a view of ontology recommended by the World Wide Web
Consortium (W3C) (see [107]). W3C explains that an ontology defines the terms
used to describe and represent an area of knowledge. Ontologies are used by
people, databases, and applications that need to share domain information (a
domain is just a specific subject area or area of knowledge such as medicine,
tool manufacturing, real estate, automobile repair, financial management, etc.).
Ontologies include computer-usable definitions of basic concepts in the domain
and the relationships among them. They encode knowledge in a domain and also
knowledge that spans domains. In this way, they make that knowledge reusable.

Structure of Ontology. Concept ontologies share many structured similari-
ties, regardless of the language in which they are expressed. However, most on-
tologies describe individuals (objects, instances), concepts (classes), attributes
(properties), and relations (see, e.g., [53, 54, 105, 107]).

Individuals (objects, instances) are the basic, “ground level” components of
an ontology. They may include concrete objects such as people, animals, tables,
automobiles, and planets, as well as abstract individuals such as numbers and
words.

Concepts (classes) are abstract groups, sets, or collections of objects. They
may contain individuals or other concepts. Some examples of concepts are vehicle
(the class of all vehicles), patient (the class of all patients), influenza (the class
of all patients suffering from influenza), player (the class of players), team (the
class of all players from some team).

Objects belonging to concepts in an ontology can be described by assigning
attributes to them. Each attribute has at least a name and a value, and is used
to store information that is specific to the object the attribute is attached to.
For example, an object from the concept participant (see ontology from Fig. 52)
has attributes such as first name, last name, address, affiliation. If you did not
define attributes for concepts, you would have either a taxonomy (if concept
relationships are described) or a controlled vocabulary. These are useful, but are
not considered true otologies.

There are three following types of relations between concepts from ontology:
a subsumption relation (written as is-a relation), a meronymy relation (written
as part-of relation), and a domain-specific relation.

The first type of relations is the subsumption relation (written as is-a). If a
class A subsumes a class B, then any member of the class A is-a member of the
class B. For example, the class author subsumes the class participant. It means
that anything that is a member of the class author is a member of the class
Participant (see ontology from Fig. 5). Where A subsumes B, A is called the
superclass, whereas B is the subclass. The subsumption relation is very similar
to the notion of inheritance, well-known from the object-oriented programming

2 This example has been inspired by Jarrar (see [54]).
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Fig. 5. The graph of a simple ontology

(see, e.g., [274, 275]). Such relation can be used to create a hierarchy of concepts,
typically with a maximally general concept like person at the top, and more
specific concepts like author or reviewer at the bottom. The hierarchy of concepts
is usually visualized by a graph of ontology (see Fig. 5) where any subsumption
relation is represented by a thin solid line with an arrow in the direction from
the superclass to the subclass.

Another common type of relations is the meronymy relation (written as part-
of) that represents how objects combine together to form composite objects. For
example, in the ontology from Fig. 5, we would say that any reviewer is-part-of
the program committee. Any meronymy relation is represented graphically by a
broken line with an arrow in the direction from the part to the composite object
(see Fig. 5). From the technical point of view this type of relation between
ontology terms is represented with the help of object attributes belonging to
concepts. It is done in such a way that the value of an attribute of an object u,
which is to be a part of some object u′ belonging to different concept, informs
about u′.

Apart from the standard is-a and part-of relations, ontologies often include
additional types of relations that further refine the semantics modeled by the
ontologies. These relations are often domain-specific and are used to answer
particular types of questions. For example, in the domain of conferences, we
might define a written-by relation between concepts paper and author which tells
us who is the author of a paper. In the domain of conferences, we define also
a writes relation between concepts author and paper which tells us which paper
has been written by each author. Any domain-specific relation is represented by
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a thick solid line with an arrow. From the technical point of view this type of
relations between ontology concepts is also represented with the help of object
attributes belonging to the concepts.

In this paper, we use many ontologies, constructed on the basis of domain
knowledge concerning the analyzed data sets, to approximate complex concepts.
In these ontologies there occur all types of relations mentioned above. However,
the relations of individual types do not occur in these ontologies simultaneously
but in each of them there occurs only one type of relation. The reason for this is
the fact that individual relation types serve us to approximate different types of
complex concepts. For example, relations of the type is-a occur in ontology from
Fig. 6 which is an example of an ontology used to approximate spatial concepts
(see Section 5). Ontologies showing dependencies between temporal concepts for
structured objects and temporal concepts for constituent parts of these objects
(used to approximate temporal concepts for structured objects) are examples of
ontologies in which there occur relations of type part-of (see Section 6). On the
other hand, domain-specific relations occur in numerous examples of behavior
graphs presented in Section 6 and are used to approximate behavioral patterns.
The planning graphs presented in Section 7 are also examples of ontologies in
which there occur domain-specific relations. Incidentally, planning graphs are,
in a way, ontologies even more complex than the mentioned above, because two
types of concepts occur in them simultaneously. Namely, there occur concepts
representing states of complex objects and concepts representing actions per-
formed on complex objects.

Obviously, there are many ways of linking the ontologies mentioned above
provided they concern the same domain. For example, an ontology describing the
behavior graph of a group of vehicles may be linked with ontologies describing
dependencies of temporal concepts for such groups of vehicles and temporal
concepts describing behavior of individual vehicles or changes of relationships
among these vehicles. Then, in such an ontology, there would occur relations of
two types simultaneously, that is, domain-specific and part-of relations. Although
these types of linking different ontologies are not essential for complex concept
approximation methods presented in this paper, they cause a significant increase
of complexity of the ontologies examined.

General Recommendations Concerning Building of an Ontology. Cur-
rently there are many papers which describe various designer groups’ experience
obtained in the process of ontology construction (see, e.g., [276]). Although they
do not constitute formal frames enabling to create an integral methodology yet,
general recommendations how to create an ontology may be formed on their ba-
sis. Each project connected with an ontology creation has the following phases:

– Motivation for creating an ontology.
– Definition of the ontology range.
– Ontology building.

• Building of a lexicon.
• Identification of concepts.
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• Building of the concept structure.
• Modeling relations in ontology.

– The evaluation of the ontology obtained.
– Ontology implementation.

Motivation for creating an ontology is an initial process resulting from arising
inside a certain organization, a need to change the existing ontology or to create a
new one. Extremely crucial for the whole further process is, at this stage, clarity
of the aim for which the ontology is built. It is the moment when potential sources
of knowledge needed for the ontology construction should be defined. They are
usually sources which may be divided into two groups those requiring human
engagement (e.g., interviews, discussions) and those in which a human does not
appear as a knowledge source (e.g., documents, dictionaries and publications
from the modeled domain, intranet and Internet, and other ontologies).

By the ontology range we understand this part of the real world which should
be included into the model under creation in the form of concepts and rela-
tions among them. One of the easier, and at the same time very effective, ways
to determine the ontology range accurately is using the so-called “competency
questions” (see, e.g., [277]). The starting point for this method is defining a
list of questions to which the database built on the basis of the ontology under
construction should give an answer.

Having the range defined, the process of ontology building should be started.
The first step in ontology building is defining a list of expressions, phrases, and
terms crucial for a given domain and a specific context of application. A lexicon
should be composed that is a dictionary containing terms used by the ontology
as well as their definitions, from the list.

The lexicon is a starting point for the most difficult stage in the ontology
building, that is, construction of concepts (classes) of the ontology and relations
among these concepts. It should be remembered that it is not possible to perform
these two activities one after the other. They have to be performed in parallel.
We should bear in mind that each relation is also a concept. Thus, finding
the answer to the question What should constitute a concept and what should
constitute a relation? is not easy and depends on the target application and,
often, the designer’s experience.

If it comes to building hierarchical classes, three approaches to building such
a hierarchy are given in the paper [278]:

1. Top-down. We start with a concept superior to all concepts included in the
knowledge base and we come to the next levels of inferior concepts by ap-
plying atomization.

2. Bottom-up. We start with the most inferior concept contained in the knowl-
edge base and we come to the concepts on higher levels of hierarchy by
applying generalization.

3. Middle-out. We start with concepts which are the most crucial in terms of
the project and we perform atomization or generalization when needed.

In order to evaluate the obtained ontology it should be checked if the ontology
possesses the following qualities ([277]):
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– Consistency. The ontology is consistently integral, that is, contradictory con-
clusions cannot be drawn from it.

– Completeness. The ontology is complete if all expected elements are included
in the model (concepts, relations, etc.).

– Conciseness. All information gathered in the ontology is concise and
accurate.

– The possibility of answering the “competency questions” posed previously.

Summing up, an ontology building is a laborious process requiring a huge
amount of knowledge concerning the modeling process itself, the tools used, and
the domain being modeled.

Ontology Applications. Practical ontology applications relate to the so-called
general ontologies which have a rather general character and may be applied in a
knowledge base building from different domains and domain ontologies meaning
ontologies describing knowledge about a specific domain or a specific fragment
of the real world. Many such ontologies have been worked out and they are often
available on the Internet. They are, e.g., Dublin Core (see [279]), GFO (General
Formal Ontology [280]), OpenCyc/ResearchCyc (see [281]), SUMO (Suggested
Upper Merged Ontology [282]), WordNet (see [283]), DOLCE (Descriptive On-
tology for Linguistic and Cognitive Engineering [284]) and others.

Generally, ontologies are applied when the semantics of the data gathered is
crucial. It turns out that such a situation takes place quite often, particularly
when intelligent methods of data analysis are supposed to act effectively. That
is why ontologies more and more are useful in information technology projects.
Some examples of applications of ontologies are e-commerce, bioinformatics, geo-
graphical, information systems, regulatory and legal information systems, digital
libraries, e-learning, agent technology, database design and integration, software
engineering natural language processing, information access and retrieval, the
Semantic Web, Web services, medicine (see, e.g., [53] and [54] for more details).

Computer Systems for Creating and Using Ontologies. There is a series
of formal languages to represent ontologies. These are such languages as Web
Ontology Language (OWL [107]), Resource Description Framework (RDF [285]),
Ontology Inference Layer (OIL [286]), DARPA Agent Markup Language (DAML
[287]), CycL (see [288]), etc. However, the most dynamically developed one is
OWL which came to the existence as an improvement of the DAML, OIL and
RDF languages.

There are also many computer systems for creating and using ontologies. They
are, e.g., Cyc (see [288]), OpenCyc (see [289]), Protege (see [290]), OntoStudio
(previously OntoEdit [291]), Ontolingua (see [292]), Chimaer (see [293]), OilEd
(see [294]), and others. Within these systems, the ontology is usually created
using convenient graphical tools which make it possible to enter all the elements
of ontology as well as their further edition and visualization.

Ontological systems very often possess mechanisms of concluding on the basis
of ontology constructed. These mechanisms work in such a way that after creat-
ing an ontology the system may be asked quite complex questions. They concern
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the existence of an instance of a concept which satisfies certain logical conditions,
defined using concepts, attributes, and relations occurring in the ontology. For
instance, in the ontology in Fig. 5, we could pose the following questions:

– Who is the author of a given paper?
– Which papers have been reviewed by a given reviewer?
– Which persons belong to the programming committee?

From the technical point of view, information searching based on ontology
is performed with the help of questions formed in a formal language used to
represent ontology or its special extension. For instance, the language RDQL
(RDF Data Query Language [295]) is a question language similar to the language
SQL extending the RDF language. Usually, the ontological systems also enable
to form questions using graphical interface (see, e.g, [290, 291]).

4.2 Motivations for Approximation of Concepts and Relations from
Ontology

In current systems operating on the basis of ontology it is assumed that we pos-
sess complete information about concepts, that is, for each concept all objects
belonging to this concept are known by us. This assumption causes that, in order
to examine the membership of an object to the concept, it is enough to check if
this object occurs as an instance of this concept or not. Meantime, in practical
applications we often possess only incomplete information about concepts, that
is, for each concept, certain sets of objects constituting examples and counterex-
amples, respectively are given. It causes the necessity of approximating concepts
with the help of classifiers. For instance, using the ontology in Fig. 6 which
concerns safe vehicle driving on a road, it cannot be assumed that all concept
instances of this ontology are available. For example, for the concept safe driv-
ing, it cannot be assumed that the information about all possible cars driving
safely is available. That is why for such a concept, a classifier is constructed
which is expected to be able to classify examples of vehicles into those belonging
and those which do not belong to the concept.

Apart from that, the relations between concepts, defined in current systems
based on ontology, are usually precise (exact, crisp). For example, for the rela-
tion is-a in ontology from Fig. 5, if the relation between concepts author and
participant is to be precise (exact, crisp), then each author of a paper at a confer-
ence is a participant of this conference. In practice, however, it does not always
have to be that way. It is possible that some authors of papers are not con-
ference participants, particularly in the case of articles having many coauthors.
So, a relation between concepts can be imprecise (inexact, vague). Besides, on
the grounds of classical systems based on ontology, when we possess complete
information about concepts, the problem of vagueness of the above relation may
be solved by adding to the ontology an additional concept representing these
authors who are not conference participants and binding this new concept with
the concept person by the is-a relation. However, in practical applications, when
the available information about concepts is not complete, we are even not able to
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Fig. 6. An ontology for safe driving

check whether the relations under consideration are precise (exact, crisp). That
is why relations among concepts also require approximation.

In approximation of concepts occurring in ontology, there often appears the
following problem. In practical applications, usually is the so-called sensor data
available only (that is, data obtained by measurement using sensors, thus ob-
tained on a low level of abstraction). For example, by observing a situation on
a road, i.e., such data as speed, acceleration, location, the current driving lane,
may be obtained. Meanwhile, some concepts occurring in ontology are so com-
plex that they are separated by a considerable semantical distance from the
sensor data, i.e., they are defined and interpreted on very different levels of ab-
straction. Hence, approximation of such concepts using sensor data does not lead
to classifiers of satisfying quality (see, e.g., [42, 44, 45, 46, 48]). For instance, in
ontology from Fig. 6, such a complex concept is without a doubt the concept safe
driving because it is not possible to directly determine whether a given vehicle
goes safely on the basis of simple sensor data only.

If, however, apart from complex concepts there are simple concepts in ontol-
ogy, that is, those which may be approximated using sensor data, and they are
directly or indirectly linked by relations to complex concepts, then appears a
need to use the knowledge about the concepts and relations among them to ap-
proximate complex concepts more effectively. For example, in order to determine
if a given vehicle drives safely, other concepts from ontology from Fig. 6, linked
by relations to the concept safe driving, may be used. For example, one of such
concepts is the possibility of safe stopping before the crossroad.

The aim of this paper is to present set of methods for approximating com-
plex spatio-temporal concepts and relations among them assuming that the
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Fig. 7. The ontology for safe driving revisited

information about concepts and relations is given in the form of ontology. To
meet these needs, by ontology we understand a finite set of concepts creating
a hierarchy and relations among these concepts which link concepts from dif-
ferent levels of the hierarchy. At the same time, on top of this hierarchy there
is always the most complex concept whose approximation we are interested in
aiming at practical applications. For example, ontology from Fig. 6 may be pre-
sented hierarchically as in Fig. 7. At the same time, we assume that the ontology
specification contains incomplete information about concepts and relations oc-
curring in ontology, particularly for each concept, sets of objects constituting
examples and counterexamples for these concepts are given. Additionally, for
concepts from the lowest hierarchical level (sensor level) it is assumed that there
are also sensor attributes available which enable to approximate these concepts
on the basis of the examples and counterexamples given. This fact is marked in
Fig. 7 by block arrows.

4.3 Unstructured, Structured, and Complex Objects

Every concept mentioned in this paper is understood as a subset of a certain
set called the universe. Elements of the universe are called objects and they are
interpreted as states, incidents, vehicles, processes, patients, illnesses and sets or
sequences of entities mentioned previously. If such objects come from the real-life
world, then their perception takes place by detecting their structure. Discovery
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of relevant object structure for particular tasks is a complex problem strongly
related to perception, that is usually understood as the process of acquiring,
interpreting, selecting, and organizing sensory information (see, e.g., [45, 86, 145,
146, 147, 148, 149, 150, 151, 152, 296, 297, 298, 299]). Many interdisciplinary
research has been conducted in this scope in the overlapping areas of such fields
as cognitive science, psychology and neuroscience, pattern recognition (see, e.g.,
[26, 27, 35, 300, 301, 302, 303]).

Structure of objects is used to define compound patterns over objects with
the simple or structured structures. The construction of such compound patterns
may be hierarchical. We search for patterns relevant for approximation of some
complex concepts. Notice, that together with the granularity of patterns one
should consider the computational complexity of satisfiability testing for such
patterns.

The structure of the perceived objects may be more or less complex, because
the objects may differ in complexity. It means both the degree of spatial as well
as the spatio-temporal complexity. When speaking about spatial complexity we
mean not only the fact that the objects differ in the features such as location,
size, shape, color, weight, but also that objects may consist of parts related with
each other in terms of dependencies (e.g., one may examine objects which are
object groups in the traffic). However, the spatio-temporal complexity results
from the fact that the perception of objects may be extended over time (e.g.,
one may examine objects which are single vehicles observed at a single time point
and objects which are also single vehicles, but they are observed over a certain
period of time). Both of these aspects of object complexity may cumulate which
additionally increases the diversity of appearing objects (e.g., objects which are
vehicle groups observed over a certain period of time are more complex than
both the objects which are vehicle groups observed at a single time point and
the objects which are single vehicles observed over a certain period of time).

However, in practice the perception of objects always takes place on an estab-
lished level of perceiving detail. This means that depending on the needs, during
perceiving objects only such details concerning their structure are taken into ac-
count that are necessary to conduct effective reasoning about the objects being
perceived. For example, if we want to identify vehicles driven dangerously on the
road, then we are not interested in the internal construction of each vehicle but
rather the behavior of each vehicle as a certain whole. Hence, in the paper, we
examine objects of two types. The first type of objects are unstructured objects,
meaning those which may be treated as indivisible wholes. We deal with this
type of objects when we analyze patients, bank clients or vehicles, using their
parameters observed at the single time point.

The second type of objects which occurs in practical applications are struc-
tured objects which cannot be treated as indivisible wholes and are often regis-
tered during some period. Examples of this type of objects may be a group of
vehicles driving on a highway, a set of illnesses occurring in a patient, a robot
team performing a task.
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In terms of spatiality, structured objects often consist of disjunctive parts
which are objects of uniform structure connected with dependencies. However,
generally, the construction of structured objects is hierarchical, that is, their
parts may also be structured objects. Additionally, a great spatial complexity
of structured objects causes that conducting effective reasoning about these ob-
jects usually requires their observation over a certain period of time. Thus, the
hierarchy of such objects’ structure may concern not only their spatial, but also
spatio-temporal structure. For example, to observe simple behaviors of a single
vehicle (e.g., speed increase, a slight turn towards the left lane) it is sufficient to
observe the vehicle over a short period of time, whereas to recognize more com-
plex behaviors of a single vehicle (e.g., acceleration, changing lanes from right
to the left one), the vehicle should be observed for a longer period of time, at
the same time a repeated observation of the above mentioned simple behaviors
may be extremely helpful here (e.g., if over a certain period the vehicle increased
speed repeatedly, it means that this vehicle probably accelerates). Finally, be-
havior observation of a vehicle group requires its observation for an even longer
period of time. It happens that way because the behavior of a vehicle group is
usually the aggregation or consequence of vehicle behaviors which belong to the
group (e.g., observation of an overtaking maneuver of one vehicle by another re-
quires following specific behaviors of both the overtaking and overtaken vehicle
for a certain period of time).

Obviously, each of structured objects usually may be treated as an unstruc-
tured object. If we treat any object as an unstructured object at a given moment,
it means that its internal structure does not interest us from the point of view
of the decision problems considered. On the other hand, it is extremely diffi-
cult to find real-life unstructured objects, that is, objects without parts. In the
real-life world, almost every object has some kind of internal structure and con-
sists of certain spatial, temporal or spatio-temporal parts. Particularly, objects
which are examples and counterexamples of complex concepts (both spatial and
spatio-temporal), being more or less semantically distant from sensor data, have
a complex structure. Therefore, one can say that they are complex objects. That
is why the division of complex objects into unstructured and structured ones is
of a symbolic character only and depends on the interpretation of these objects.
If we are interested in their internal structure, then we treat them as structured
objects; otherwise we treat them as unstructured ones.

4.4 Representation of Complex Object Collections

If complex objects are gathered into a collection, then in order to represent the
available information about these objects, one may use information systems.
Below, we present an example of such an information system whose objects are
vehicles and attributes describe the parameters of the vehicle recorded at a given
time point.

Example 1. Let us consider an information system A = (U, A) such that A =
{x, y, l, v, t, id}. Each object of this system represents a condition of a considered
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vehicle at one time moment. The attributes x and y provide the current location
of a vehicle, the l and v attributes provide us with current traffic lane on which
the vehicle is and the current vehicle speed respectively. The attribute t repre-
sents time in a number of seconds which has passed since the first observation of
the vehicle (Vt is a subset of the set of positive integer numbers). The attribute
id provides identifiers of vehicles. �

The second, extremely crucial, example of the information system used in this
paper is an information system whose objects represent patient conditions at
different time points.

Example 2. Let us consider an information system A = (U, A) such that U =
{u1, ..., un} and A = {a1, ..., am, at, aid}. Each object of this system represents
medical parameters of a certain patient during one day of his/her hospitaliza-
tion. Attributes a1, ..., am describe medical parameters of the patient (examina-
tion results, diagnoses, treatments, medications, etc.), whereas the attribute at

represents time in a number of days which has passed since the first observation
of the patient (Vat is a subset of the set of positive integer numbers). Finally,
the attribute aid provides identifiers of patients. �

Similarly to the two examples above, the attributes of complex objects may
be based on sensor data. However, in a general case the properties of complex
objects may be defined in languages which are defined specifically for a given
purpose (see Section 4.7).

4.5 Relational Structures

As we have written before, structured objects consist of parts which are struc-
tured objects of lesser complexity (hierarchical structure) or unstructured objects
connected by dependencies. Additionally, a great spatial complexity of structured
objects causes that conducting effective conclusions about these objects usually
requires their observation for a certain period of time. Hence, there is a need
to follow the spatio-temporal dependencies between parts of complex objects.
Therefore, the effective description of the structure of objects requires not only
providing spatial properties of individual parts of these objects, but also describ-
ing the spatio-temporal relations between the parts of these objects. Therefore,
in order to describe the structure of complex objects and relations between com-
plex objects in this paper we will use relational structures (see, e.g., [5, 89]).

In order to define the relational structure using language and semantics of
first-order logic we assume that a set of relation symbols REL = {Ri : i ∈ I}
and function symbols FUN = {fj : j ∈ J} are given, where I, J are some finite
sets (see, e.g., [89]). For any functional or relational symbol there is assigned a
natural number called the arity of the symbol. Functional symbols and relations
of arity 0 are called constants. The set of constants is denoted by CONST.
Symbols of arity 1 are called unary and of arity 2 are called binary. In the
case of binary relational or functional symbols we usually use traditional infix
notation. For instance we write x ≤ y rather than ≤ (x, y). The set of functional
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and relational symbols together with their arities is called the signature. The
interpretation of a functional symbol fi (a relational symbol Ri) over the set A
is a function (a relation) defined over the set A and denoted by fA

i (RA
i ). The

number of arguments of a function fA
i (a relation RA

i ) is equal the arity of fi (Ri).
Now, we can define the relational structure of a given signature (see, e.g., [5, 89]).

Definition 2 (A relational structure of a given signature). Let Σ = REL ∪
FUN be a signature, where REL = {Ri : i ∈ I} is a set of relation symbols and
FUN = {fj : j ∈ J} is a set of function symbols, where I, J are some finite
sets.

1. A relational structure of signature Σ is a triple (D,R,F) where
– D is a non-empty finite set called the domain of the relational structure,
– R = {RD

1 , ..., RD
k } is a finite (possibly empty) family of relations defined

over D such that RD
i corresponds to symbol Ri ∈ REL and RD

i ⊆ Dni

where 0 < ni ≤ card(D) and ni is the arity of Ri, for i = 1, ..., k,
– F = {fD

1 , ..., fD
l } is finite (possibly empty) family of functions such that

fD
j corresponds to symbol fj ∈ FUN and fD

j : Dmj −→ D where 0 ≤
mj ≤ card(D) and mj is the arity of fj, for j = 1, ..., l.

2. If for any f ∈ F, f : D0 −→ D, then we call such a function constant and
we identify it with one element of the set D, corresponding to f .

3. If (D,R,F) is a relational structure and F is empty, then such relational
structure is called pure relational structure and is denoted by (D,R).

A classical example of a relational structure is a set of real numbers with oper-
ations of addition and multiplications and ordering relation.

A typical example of a pure relational structure is a directed graph whose
domain is set of graph nodes and the family of relations consists of one relation
described by a set of graph edges.

The example below illustrates how relational structures may be used to de-
scribe the spatial structure of a complex object.

Example 3. Let us examine the complex object which is perceived as an image
in Fig. 8. In this image one may notice a group of six cars: A, B, C, D, E, F . In
order to define the spatial structure of this car group, the most crucial thing is
defining the location of cars towards each other and defining the diversity of the
driving directions of individual cars. That is why the spatial structure of such a
group may be described with the help of relational structure (S,R), where:

– S = {A, B, C, D, E, F},
– R = {R1, R2, R3, R4}, where:

• ∀(X, Y ) ∈ S × S : (X, Y ) ∈ R1 iff X is driving directly before Y ,
• ∀(X, Y ) ∈ S × S : (X, Y ) ∈ R2 iff X is driving directly behind Y ,
• ∀(X, Y ) ∈ S × S : (X, Y ) ∈ R3 iff X is coming from the opposite

direction in comparison with Y ,
• ∀(X, Y ) ∈ S×S : (X, Y ) ∈ R4 iff X is driving in the same direction as Y .
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Fig. 8. An example of spatial complex object
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Fig. 9. An example of spatio-temporal complex object

For instance, it is easy to see that (B, A), (C, B), (D, C), (F, E) ∈ R1, (A, B),
(B, C), (C, D), (E, F ) ∈ R2, (E, C), (E, B), (F, A) ∈ R3 and (A, C), (B, D),
(E, F ) ∈ R4. �

Complex objects may also have spatio-temporal structure. The example below
shows this type of a structured object.

Example 4. Let us examine the complex object which is represented with the
help of three images F1, F2 and F3 recorded at three consecutive time points
(see Fig. 9). In image F1 one may notice cars A, B, C and D, whereas in image
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F2 we see cars E, F , G and H . Finally, in image F3 we see cars I, J , K and L
(see Fig. 9). It is easy to notice that pictures F1, F2 and F3 may be treated as
three frames chosen from a certain film made e.g., from an unmanned helicopter
conducting a road observation, and at the same time each consecutive frame is
distant in time from the previous one by about one second. Therefore, in all these
pictures we see the same four cars, at the same time the first car is perceived
as car A, E or J , the second car is perceived as car B, F or I, the third car is
perceived as car C, G or L and the fourth car is perceived as car D, H or K. The
spatial structure of complex object ST = {A, B, C, D, E, F, G, H, I, J} may be
described with the help of relational structure similar to the one in Example 3.
However, object ST has spatio-temporal structure which should be reflected in
relational structure describing complex object ST . That is why, to the relation
family R from Example 3 we add relation Rt determined in the following way:

∀(X, Y ) ∈ ST × ST : (X, Y ) ∈ Rt iff X represents the same vehicle as Y and
X was recorded earlier than Y .

For instance, it is easy to see that (A, E), (H, K) ∈ Rt, but (G, C), (I, F ) 	∈ Rt

and (C, H), (F, K) 	∈ Rt.
Moreover, we modify the definition of the remaining relations from family R:

– ∀(X, Y ) ∈ ST × ST : (X, Y ) ∈ R1 iff X , Y were noticed in the same frame
and X is going directly before Y ,

– ∀(X, Y ) ∈ ST × ST : (X, Y ) ∈ R2 iff X , Y were noticed in the same frame
and X is driving directly behind Y ,

– ∀(X, Y ) ∈ ST × ST : (X, Y ) ∈ R3 iff X , Y were noticed in the same frame
and X is coming from the opposite direction in comparison with Y ,

– ∀(X, Y ) ∈ ST × ST : (X, Y ) ∈ R4 iff X , Y were noticed in the same frame
and X is driving in the same direction as Y .

�
If some set of complex objects is perceived as an unstructured object (its parts
are not distinguished) and these objects belong to the object set of a certain
information system, then a structure of such set of complex objects is described
by relational structure, that we call a trivial relational structure.

Definition 3. Let A = (U, A) be an information system. For any set of objects
U ′ ⊆ U we define a relational structure (Dom,R,F) such that Dom = {U ′}, R
and F are empty families. Such relational structure is called a trivial relational
structure.

The above trivial relational structures are used to approximate spatial concepts
(see Section 5).

In each collection of complex objects there may occur relations between ob-
jects belonging to this collection. That is why each collection of complex objects
may be treated as a complex object whose parts are objects belonging to the
collection. Hence, the structure of complex object collection may be described us-
ing relational structure, where the domain elements of this structure are objects
which belong to this collection (see Section 4.7).
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4.6 Languages and Property Systems

In the paper, we use many special languages to define features of complex objects.
Any language L is understood as a set of formulas over a given finite alphabet
and is constructed in the following way.

1. First, we define an alphabet of L, some atomic formulas and their semantics
by means of some satisfiability relation |=L. The satisfiability relation is a
binary relation in X ×L, where X denotes a universe of elements (objects).
We will write x |=L α to denote the fact that |=L holds for the pair (x, α)
consisting of the object x and the formula α.

2. Next, we extend, in the standard way, the satisfiability relation |=L on
Boolean combination of atomic formulas, i.e., on the least set of formulas
including atomic formulas and closed with respect to the classical proposi-
tional connectives: disjunction (∨), conjunction (∧), negation (¬) using the
following rules:
(a) x |=L (α ∨ β) iff x |=L α or x |=L β,
(b) x |=L (α ∧ β) iff x |=L α and x |=L β,
(c) x |=L ¬(α) iff non(x |=L α),
where α, β are formulas, x is an object, and the symbol |=L denotes the
satisfiability relation of the defined language.

3. Finally, for any formula α ∈ L, the set |α|L = {x ∈ X : x |=L α} can be
constructed that is called the meaning (semantics) of α in L.

Hence, in the sequel, in specifying languages and their semantics we will
only define atomic formulas and their semantics assuming that the extension on
Boolean combination is the standard one. Moreover, in definitions of alphabets
over which languages are constructed we often omit listing parentheses assuming
that the relevant parentheses are always included in alphabets.

Besides, in modeling complex objects we often use structures called property
systems.

Definition 4 (A property system). A property system is any triple P=(X,L, |=
), where X is a set of objects; L is a language over a given finite alphabet; and
|=⊆ X × L is a satisfiability relation.

We also use the following notation:

1. We write, if necessary, XP , LP , |=P , instead of X , L, and |=, respectively.
2. |α|P = {x ∈ X : x |=P α} is the meaning (semantics) of α in P .
3. By aα for α ∈ LP we denote a function (attribute) from XP into {0, 1}

defined by aα(x) = 1 iff x |=P α for x ∈ XP .
4. Any property system P with a finite set of objects and a finite set of formulas

defines an information system AP = (XP , A), where A = {aα}α∈L.

It is worthwhile mentioning that the definition of any information system
A = (U, A) constructed in hierarchical modeling should start from definition of
the universe of objects of such an information system. For this purpose, we select
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a language in which a set U∗ of complex objects is defined, where U ⊆ U∗. For
specifying the universe of objects of A, we construct some property system Q
over the universe U∗ of already constructed objects. The language LQ consists
of formulas which are used for specifying properties of the already constructed
objects from U∗. To define the universe of objects of A, we select a formula α
from LQ. Such a formula is called type of the constructed information system
A. Now, we assume that the object x belongs to the universe of A iff x satisfies
(in Q) the formula α, i.e., x |=Q α, where x ∈ U∗. Observe, that the universe
of objects of A can be an extension of the set U because U is usually only a
sample of possible objects of A. Notice that the type α selected for a constructed
information system defines a binary attribute aα for this system. Certainly, this
attribute can be used to define the universe of the information system A (see
Section 4.7 for more details). Notice also that the property system Q is con-
structed using property systems and information systems used in modeling the
lower level of concept hierarchy.

4.7 Basic Languages of Defining Features of Complex Objects

As we have written before, the perception of each complex object coming from
the real-life world takes place by detecting its structure (see Section 4.3), whereas
the features of a given complex object may be determined only by establishing
the features of this structure. The structures of complex objects which are the
result of perception of complex objects may be modeled with the help of rela-
tional structures (see Section 4.5). Therefore, by the features of complex objects
represented with relational structures we will understand the features of these
structures.

Each collection of complex objects K may be represented using an informa-
tion system A = (U, A), where the object set U is equal to collection K and
the attributes from set A describe the properties of complex objects from collec-
tion K and more precisely, the properties of relational structures representing
individual objects from this collection.

In the simplest case, the attributes from set A may be sensor attributes, that
is, they represent the readings of sensors recorded for objects from set U (see
Example 1 and Example 2 from Section 4.4).

However, in the case of structured objects whose properties usually cannot
be described with the help of sensor attributes, the attributes from set A may
be defined with the use of the properties of these objects’ parts, the relations
between the parts and information about the hierarchy of parts expressed e.g.,
with the help of concept ontology (see Section 4.10).

In practice, apart from the properties of complex objects described above and
represented using the attributes from set A, other properties of complex objects
are also possible which describe the properties of these objects on a slightly
higher level of abstraction than the attributes from set A. These properties
are usually defined by experts on the basis of domain knowledge and are often
represented with the help of concepts, that is, attributes which have only two
values. For the table in Example 1, e.g., “safe driving”could be such a concept.
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By adding such an attribute to the information system, which is usually called
decision attribute or decision and marking it with d, we obtain decision table
(U, A, d). However, effective approximation of a decision attribute d using at-
tributes from set A usually requires defining new attributes which are often
binary attributes representing concepts. Such concepts may be defined in an
established language on the basis of attributes available in set A.

In this paper, such language is called a language for defining features of com-
plex objects. In the simplest case such a language may be the language of math-
ematical formulas in which formulas enabling calculating the specific properties
of a complex object are formed. For example, if the complex object is a certain
subset of a set of rational numbers with simple addition and multiplication and
the order relation, then the attributes of such a complex object may be: the
minimal value, the maximum value or the arithmetic average over this set.

However, in many cases in order to define attributes of complex objects spe-
cial languages should be defined. In this paper, to define a specific language
defining complex object properties Tarski’s approach is used which requires the
language’s alphabet, set of language formulas and language formula semantics
(see, e.g., [304] and Section 4.6).

For example, in order to define concepts describing new properties of objects
from a given information system a well known language called generalized de-
scriptor language may be used (see, e.g., [16, 165]).

Definition 5 (A generalized descriptor language). Let A = (U, A) be an in-
formation system. A generalized descriptor language of information system A
(denoted by GDL(A) or GDL-language, when A is fixed) is defined in the fol-
lowing way:

• the set ALGDL(A) = A ∪
⋃

a∈A

Va ∪ {¬,∨,∧} is an alphabet of the language

GDL(A),
• expressions of the form (a ∈ V ), where a ∈ A and V ⊆ Va are atomic
formulas of the language GDL(A).

Now, we determine the semantics of the language GDL(A). The language
GDL(A) formulas may be treated as the descriptions of object occurring in
system A.

Definition 6. Let A = (U, A) be an information system. The satisfiability of
an atomic formula φ = (a ∈ V ) ∈ GDL(A) by an object u ∈ U from table A
(denoted by u |=GDL(A) φ) is defined in the following way:

u |=GDL(A) (a ∈ V ) iff a(u) ∈ V.

We still need to answer the question of defining the atomic formulas (expressions
of the form a ∈ V ) belonging to the set of formulas of the above language.

In the case of symbolic attributes, in practical applications the formulas of the
form a ∈ V are usually defined using relations: “=” or “ 	=” (e.g., a = va or a 	= va

for some symbolic attribute a such that va ∈ Va). However, if the attribute a is
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a numeric one, then the correct atomic formulas may be a < va, a ≤ va, a > va

or a ≥ va. Atomic formulas may be also defined using intervals, for example:
a ∈ [v1, v2], a ∈ (v1, v2], a ∈ [v1, v2) or a ∈ (v1, v2), where v1, v2 ∈ Va.

We present a few examples of formulas of the language GDL(A), where A =
(U, A), A = {a1, a2, a3} and v1 ∈ Va1 , v2 ∈ Va2 and v3, v4 ∈ Va3 .

– (a1 = v1) ∧ (a2 	= v2) ∧ (a3 ∈ [v3, v4)),
– (a1 	= v1) ∨ (a2 = v2),
– ((a1 = v1) ∨ (a2 = v2)) ∧ (a3 > v3),
– ¬((a1 = v1) ∧ (a3 ≤ v3)) ∨ ((a2 	= v2) ∧ (a3 ∈ (v3, v4])).

Another example of a language defining complex object properties may be a
neighborhood language. In order to define the neighborhood language a dissimi-
larity function of pairs of objects of the information system is needed.

Definition 7. Let A = (U, A) be an information system.

1. We call a function DISMA : U × U −→ [0, 1] the dissimilarity function of
pairs of objects in the information system A, if the following conditions are
satisfied:
(a) for any pair (u1, u2) ∈ U × U :

DISMA(u1, u2) = 0⇔ ∀ a ∈ A : a(u1) = a(u2),

(b) for any pair (u1, u2) ∈ U × U : DISMA(u1, u2) = DISMA(u2, u1),
(c) for any u1, u2, u3 ∈ U :

DISMA(u1, u3) ≤ DISMA(u1, u2) + DISMA(u2, u3).

2. For any u1, u2, u3, u4 ∈ U , if DISMA(u1, u2) < DISMA(u3, u4) then we
say that objects from the pair (u3, u4) are more different than objects from
the pair (u1, u2), relatively to DISMA.

3. If any u1, u2 ∈ U satisfies DISMA(u1, u2) = 0 then we say that objects
from the pair (u1, u2) are not different, relatively to DISMA, i.e., they are
indiscernible, relatively to DISMA.

4. If any u1, u2 ∈ U satisfies DISMA(u1, u2) = 1 then we say that objects from
the pair (u1, u2) are completely different, relatively to DISMA.

Let us notice that the above dissimilarity function is not a metric (distance)
but a pseudometric. The reason is that the first metric condition is not satisfied
which in the case of the DISMA function would state that the distance between
the pair of objects is equal to 0 if and only if they are the same objects. This con-
dition is not satisfied because of the possibility of existence of non-one-element
abstraction classes of the relation INDA(A), that is, because of the possibility
of repetition of objects in the set U .

We present an example of dissimilarity function of pairs of objects of infor-
mation system.
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Example 5. Let A = (U, A) be an information system A = (U, A), where A =
{a1, ..., am} is the set of binary attributes. We define the dissimilarity function
of pairs of objects in the following way:

∀(u1, u2) ∈ U ×U : DISMA(u1, u2) =
card({a ∈ A : a(u1) 	= a(u2)})

card(A)
. �

Let us notice, that the dissimilarity function defined above is based on a widely
known and introduced by Hamming measurement of dissimilarity of two se-
quences of the same length expressing number of places (positions) on which
these two sequences differ.

Now, we can define the neighborhood language.

Definition 8 (A neighborhood language). Let A = (U, A) be an information
system. A neighborhood language for the information system A (denoted by
NL(A) or NL-language, when A is fixed) is defined in the following way:

• the set ALNL(A) = U ∪ (0, 1] ∪ {¬,∨,∧} is an alphabet of the language
NL(A),

• expressions of the form (u, ε), where u ∈ U and ε ∈ (0, 1] called as neighbor-
hoods of objects, are atomic formulas of the language NL(A).

Now, we determine the semantics of language NL(A). The language NL(A)
formulas may be treated as the descriptions of object occurring in system A.

Definition 9. Let A = (U, A) be an information system and DISMA be a
dissimilarity function of pairs of objects from the system A. The satisfiability
of an atomic formula φ = (u0, ε) ∈ NL(A) by an object u ∈ U from table A
relative to dissimilarity function DISMA (denoted by u |=NL(A) φ), is defined
in the following way:

u |=NL(A) (u0, ε)⇔ DISMA(u0, u) ≤ ε.

Each of formula of languages GDL or NL describes a certain set of objects which
satisfy this formula (see Fig. 10). According to Definitions 5 and 8 a set of such
objects is included in a set of objects U . However, it is worth noticing that these
formulas may be satisfied by objects from outside the set U , that is, belonging
to an extension of the set U (if we assume that attribute values on such objects
can be received) (see Fig. 10).

An explanation is needed if it comes to the issue of defining pairs of objects in an
information system with a dissimilarity function. For information systems many
such functions may be defined applying various approaches. A review of such ap-
proaches may be found in, e.g., [162, 163, 164, 165, 166, 167, 168, 169, 170, 171]).
However, the approaches known from literatureusuallydonot take into account the
full specification of a specific information system. That is why in a general case the
dissimilarity function of a pair of objects should be defined by experts individually
for each information system on the basis of domain knowledge. Such a definition
may be given in the form of an arithmetical expression (see Example 5). Very of-
ten, however, experts in a given domain are not able to present such an expression
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The meaning of 
the formula φ 

U - the set of 
objects from the 

system A 

U* - an extension  
of the set U 

Fig. 10. The illustration of the meaning of a given formula

and content themselves with presenting a set of value examples of this function,
that is, a set of pairs of objects labeled with a dissimilarity function value which
exists between these objects. In this last case, defining dissimilarity function re-
quires approximation with the help of classifiers. The classifier approximating the
dissimilarity function are called dissimilarity classifier of pairs of objects for an in-
formation system.

Definition 10. Let A = (U, A) be an information system A = (U, A) (where
A = {a1, ..., am}) and DISMA is a given dissimilarity function of pairs of objects
from the system A.

1. A dissimilarity function table for the system A relatively to the dissimilarity
function DISMA is a decision table AD = (UD, AD, d), where:
– UD ⊆ U × U ,
– AD = {b1, ..., bm, bm+1, ...., b2m}, where attributes from AD are defined

in the following way:

∀u = (u1, u2) ∈ UD ∀bi ∈ AD : bi(u) =
{

ai(u1) i ≤ m
ai−m(u2) otherwise.

– ∀u = (u1, u2) ∈ UD : d(u) = DISMA(u1, u2).
2. If AD = (UD, AD, d) is the dissimilarity function table for the system A

then any classifier for the table AD is called a dissimilarity classifier for the
system A. Such classifier is denoted by µDISMA .

Let us notice that in the dissimilarity table of the information system A there do
not exist all the possible pairs of objects of system A, but only a certain chosen
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subset of the set of these pairs. This limitation is necessary, for the number of
pairs of U × U product may be so large that the expert is not able to give all
the values of decision attribute d for them. That is why in the dissimilarity table
there are usually only found pairs chosen by the expert which represent typical
cases of dissimilarity function determining which may be generalized with the
help of a classifier.

The dissimilarity classifier may serve determining the value of dissimilarity
function for the pair of objects from the information system. According to Defi-
nition 10 such pairs come from set U ×U , that is, they are pairs of objects from
a given information system A. However, it should be stressed that the dissim-
ilarity classifier may determine the values of the dissimilarity function for the
pairs of objects which do not belong to system A, that is, those which belong to
extension of A. Hence, dissimilarity classifiers may be treated as a way to define
concepts (new two-argument relations).

The described approach to the measure of dissimilarity is applied in this
paper to the measure of dissimilarity between objects in information systems (see
Section 6.7 and Section 6.19), between states in planning graphs (see Section 7.9)
and plans (see Section 7.20).

4.8 Types of Complex Objects

In a given complex dynamical system there may occur many different complex
objects. The collection of all such objects may be represented with the help of
information system, where the set of this system’s objects correspond with the
objects of this collection and the attributes of this system describe the properties
of complex objects from the collection and more precisely the properties of rela-
tional structures representing individual objects of this collection. Such a system
for a given complex dynamical system we call in this paper a total information
system (TIS) for a given complex dynamical system.

Attributes of the system TIS may be sensor attributes or they are defined in
an established language which helps to express the properties of complex objects
(see Section 4.7). To the attribute set of the system TIS one may add the binary
decision attribute representing the concept describing an additional property of
complex objects. The decision attribute may be further approximated with the
help of attributes available from the system TIS (see Section 4.7).

However, in practice the concepts which are examined are defined only in the
set of complex objects of a certain type occurring in a given complex dynamical
system. In the example concerning the traffic (see Example 1) such a concept may
concern only cars (e.g., safe overtaking of one car by another), whereas in the
example concerning patient treatment (see Example 2), the examined concepts
may concern the treatment of infants only, not other people like children, adults
or the elderly whose treatment differs from the treatment of infants.

Therefore, we need a mechanism which enable to appropriate selection of
complex objects, and more precisely relational structures which they represent
and in which we are interested at the moment. In other words, we need a method
which enable to select objects of a certain type from the system TIS.
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In the paper, we propose a method of adding a binary attribute to TIS to
define the types of complex objects, and more precisely the types representing
the objects of relational structures. The value Y ES of such an attribute in a
given row, means that the given row represents the complex object that is of
the examined type, whereas value NO means that the row represents a complex
object which is not of the examined type. The attributes defining types may be
defined with the help of attributes from the system TIS in the language GDL or
any other language in which the attributes form the system TIS were defined.

The example below shows how the attributes defining the types of complex
objects may be defined.

Example 6. Let us assume that in a certain hospital in the children’s ward there
was applied information system A = (U, A) to represent the information about
patients’ treatment, such that U = {u1, ..., un} and A = {a1, ..., am, aage, at, aid}.
Each object of this system represents medical parameters of a certain child in one
day of his/her hospitalization. Attributes a1, ..., am describe medical parameters
of the patient (examination results, diagnoses, treatments, medications, etc.),
while the attribute aage represents the age of patient (a number of days of life),
the at attribute represents the value of a time unit (a number of days) which has
elapsed since the first observation of the patient and the attribute aid provides
identifiers of patients. If system A is treated as the total information system
for a complex dynamical system understood as a set of all patients, then the
“infant” type of patient (it is a child not older than 28 days) labeled with Tinf

may be defined with the help of formula (aage ≤ 28). �
A slightly more difficult situation appears in the case of the information system
from Example 1, when we want to define the passenger car type of object. A
written description of the formula defining such a type may be as follows: the
object is perceived as a rectangle whose length is two to five times bigger than its
width, and the movement of the object takes place in the direction parallel to the
longer side of the rectangle. It is easy to see that in order to define such a formula
the information system from Example 1 would have to be complemented with
sensor attributes determining the coordinates of the characteristic points of the
object for determining its sizes, shape and movement direction.

If we define an additional attribute by determining the type of object in
the system TIS, then we can select information subsystem in which all objects
will have the same value of this attribute. Using a subsystem selected in such
a way one may analyze concepts concerning the established type of objects.
Obviously, during the approximation of these concepts the attribute determining
the type according to which an object selection was previously performed is
useless, because its value is the same for all selected objects. Therefore, the
attributes defining the type of object are not used to approximate concepts, but
only to an initial selection of objects for the need of concept approximation.

In a given complex dynamical system there may be observed very different
complex objects. The diversity of objects may express itself both through the
degree of spatial complexity and by the spatio-temporal complexity (see Sec-
tion 4.3). Therefore, in a general case it should be assumed that in order to
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describe the properties of all complex objects occurring in a given dynamical
system, many languages must be used. For instance, to describe the properties
of a single vehicle at a single time point, the information obtained directly from
the sensors are usually used (e.g., speed, location), to describe the properties of
a vehicle observed for a certain period of time (time window), a language may
be used which enables to define the so-called temporal patterns observed in time
windows (see Section 6.6), whereas in order to describe the properties of groups
of vehicles a language may be used which enable to define temporal patterns ob-
served in the sequences of time windows (see Section 6.17). Moreover, it usually
happens that not each of these languages is appropriate to express the proper-
ties of all complex objects occurring in a given complex dynamical system. For
example, if we want to apply the language of temporal patterns to determine the
properties of a vehicle at a single time point, then it is not feasible because this
language requires information about the vehicle collected in the whole time win-
dow not at a single time point. Therefore, the approach to recognizing types of
complex objects described above must be complemented. Namely, the attributes
defining types of complex objects, apart from the values Y ES and NO men-
tioned before, may also have the UNKNOWN value. This value means that for
a given complex object it is not possible to compute correctly the value of an
attribute.

Summarizing, if we examine complex objects from a certain complex dynam-
ical system and claim that a given complex object u is a complex object of type
T , then it means that in the total information system constructed for this sys-
tem there exists such attribute aT that it takes the value Y ES for object u. One
may also say that a given complex object u is not a complex object of type T
which means that attribute aT corresponding with type T takes the value NO
for object u. The value of attribute aT for object u may also take the value
UNKNOWN which in practice also means that object u is not of type T .

A given complex object may be an object of many types, because there may
exist many attributes identifying types in TIS which take the value Y ES for
this object. For example, in the information system from Example 6 the type of
object Tr may be defined which can be described in words as the patient recently
admitted to hospital (that is admitted not earlier than three days ago) with the
help of formula (at ≤ 3). Then, the infant admitted to hospital for treatment
two days ago is a patient of both type Tinf and Tr.

Finally, let us notice that the above approach to determining types of objects
may be applied not only to complex objects which were observed at the moment
of defining the formula determining the type, but also to those complex objects
which appeared later, that is, belong to the extension of the system TIS. It
results from the properties of formulas of the language GDL which define the
types of objects in the discussed approach.

4.9 Patterns

If an attribute of a complex object collection is a binary attribute (it describes a
certain concept), then the formula enables to determine its values is usually called
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a pattern for the concept. Below, we present a pattern definition assuming that
there is given a language L defining features of complex objects of a determined
type, defined using Tarski’s approach (see, e.g., [304]).

Definition 11 (A pattern). Let S be a collection of complex objects of a fixed
type T . We assume C ⊆ S is a concept and L is language of formulas defining
(under a given interpretation of L defined by a satisfiability relation) features
of complex objects from the collection S (i.e., subsets of S defined by formulas
under the given interpretation).

1. A formula α ∈ L is called a pattern for concept C explained in the language
L if exists s ∈ S such that s ∈ C and s |=L α (s satisfies α in the language
L).

2. If s |=L α then we say that s matches pattern α or s supports pattern α.
Otherwise s does not match pattern or does not support pattern α.

3. A pattern α ∈ L is called exact relative to the concept C when for any s ∈ S,
if s |=L α then s ∈ C. Otherwise, a pattern α is called inexact.

4. The number:
support(α) = card(|α|L)

is called the support of the pattern α.
5. The confidence of the pattern α relatively to the concept C we denote as

confidenceC(α) and define in the following way:

confidenceC(α) =
card({s ∈ C : s |=L α})

support(α)
.

Thus patterns are simple but convenient way of defining complex object prop-
erties and they may be applied to information system construction representing
complex object collections.

Despite the fact that according to Definition 11, patterns are supposed to
describe complex object properties belonging to a given complex object collec-
tion S, they may also describe complex object properties from outside of the S
collection. However, they always have to be complex objects of the same type as
the objects gathered in collection S.

Patterns may be defined by experts on the basis of domain knowledge. In
such a case the expert must define a needed formula in a chosen language which
enables to test objects on their membership to the pattern. In a general case,
patterns may be also approximated with the help of classifiers. In this case, it
is required from the expert to give only examples of objects belonging to the
pattern and counterexamples of objects not belonging to the pattern. Then,
however, attributes which may be used to approximate the pattern are needed.

Sometimes in an information system representing a complex object collection
one of the attributes is distinguished. For example, it may represent a con-
cept distinguished by the expert which requires approximation using the rest of
the attributes. Then such an information system is called a decision table (see
Section 2.1).
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The decision table constructed for a complex object collection may be useful
in classifier construction which ensures the approximation of the distinguished
decision attribute. The approximation may be performed with the help of clas-
sical classifiers (see Section 2) or stratifying classifiers (see Section 3).

As we wrote before, language formulas serving to define complex object prop-
erties may be satisfied by complex objects from outside of a given collection of
complex objects. Thus, for any complex object being of the same type as complex
objects from a given collection, it may be classified using the above mentioned
classifier.

4.10 Approximation of Concepts from Ontology

The method of using ontology for the approximation of concepts presented in
this section consists of approximating concepts from the higher level of ontology
using concepts from the lower levels.

For the concepts from the lowest hierarchical level of ontology (sensor level),
which are not dependent on the rest of the concepts, it is assumed that there are
also available the so called sensor attributes which enable to approximate these
concepts on the basis of applied positive and negative examples of objects.

Below, we present an example of concept approximation using sensor at-
tributes in a certain ontology.

Example 7. Let us consider the ontology from Fig. 11. Each vehicle satisfying the
established condition expressed in a natural language belongs to some concepts
of this ontology. For example, to the concept of Safe overtaking belong vehicles
which overtake safely, while to the concept of Possibility of safe stopping before
the crossroads belong vehicles whose speed is so small that they may safely
stop before the crossroads. Concepts of the lowest ontology level that is Safe
distance from the opposite vehicle during overtaking, Possibility of going back to
the right lane, Possibility of safe stopping before the crossroads, Safe distance
from the front vehicle, Forcing the right of way and Safe distance from the front
vehicle are sensor concepts, that is, they may be approximated directly using
sensor data. For instance, the concept of Possibility of safe stopping before the
crossroads may be approximated using such sensor attributes as vehicle speed,
vehicle acceleration, distance to the crossroads, visibility and road humidity. �

On the higher levels of ontology, however, sensor attributes may not be used di-
rectly to approximate concepts because the semantical distance of approximated
concepts from sensor attributes is too large and they are defined on different lev-
els of abstraction. For example, if we wish to approximate the concept of safe
driving on the higher level and on the sensor level we have at our disposal only
attributes giving simple parameters of vehicle driving (that is, location, speed,
acceleration, etc.), then it is hard to expect that these parameters allow to make
the approximation of such a complex concept as safe driving possible. That is
why in this paper we propose a method of approximating the concept from the
higher level of ontology only with the help of concepts from the ontology level
that is lower by one level, which are closer to the concept under approximation
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Fig. 11. An ontology as a hierarchy of concepts for approximation

than the sensor data. The proposed approach to the approximation of concepts
of the lower level is based on an assumption that a concept from the higher on-
tology level is “not too far” semantically from concepts lying on the lower level
of ontology. “Not too far” means that it can be expected that it is possible to
approximate a concept from the higher level of ontology using concepts from the
lower level for which classifiers have already been built.

The proposed method of approximating concepts of the higher ontology level is
based on constructing a decision table for a concept on the higher ontology level
whose objects represent positive and negative examples of the concept approxi-
mated on this level; and at the same time a stratifying classifier is constructed
for this table. In this paper, such a table is called a concept approximation table
of the higher ontology level concept.

One of the main problems related to construction of the concept approxima-
tion table of the higher ontology level concept is providing positive and negative
examples of the approximated concept on the basis of data sets. It would seem
that objects which are the positive and negative examples of the lower ontology
levels concepts may be used at once (without any changes) for concept approx-
imation on the higher ontology level. If it could be possible to perform, any
ontology concepts could be approximated using positive and negative examples
available from the data sets. However, in a general case, because of semantical
differences between concepts and examples on different levels of ontology, ob-
jects of the lower level cannot be directly used to approximate concepts of the
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higher ontology level. For example, if on a higher level of a concept hierarchy,
we have a concept concerning a group of vehicles, and on a lower one concepts
concerning single vehicles, then usually the properties of single vehicles (defined
in order to approximate concepts of lower levels of ontology) are not sufficient to
describe properties of a whole group of vehicles. Difficulties with approximation
of concepts on the higher ontology level with the help of object properties from
the lower ontology level also appear when on the higher ontology level there
are concepts concerning another (e.g., longer) period of time than concepts on
the lower ontology level. For example, on the higher level we examine a concept
concerning a time window (a certain time period), yet on the lower level they
are concepts concerning a certain instant, i.e., a time point (see Section 6).

That is why in this paper we propose a method for constructing objects of an
approximation table of the concept from the higher ontology level (that is, posi-
tive and negative examples of this concept) by arranging sets of objects which are
positive and negative examples of the lower ontology level concepts. These sets
must be constructed in such a way, that the properties of these sets considered
together with relationships between their elements could be used for the approx-
imation of the higher ontology level concept. However, it should be stressed here
that the complex objects mentioned above (being positive and negative exam-
ples of concepts from the higher and lower ontology levels) are representation
of real-life objects only. In other words, we assume that the relational struc-
tures are expressing the result of perception of real-life objects (see Section 4.5
and Fig. 12). Therefore, by the features of complex objects represented with

Real-life
complex objects

Relational structures 
(representations of real-life 

complex objects)

Fig. 12. Real-life complex objects and representations of their structures
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Fig. 13. The general scheme for construction of the concept approximation table

relational structures we understand the features of these structures. Such fea-
tures are defined using attributes from information systems from the higher and
lower ontology levels.
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In Fig. 13, we illustrate the general scheme for construction of the concept
approximation table for a given concept C depending in some ontology on con-
cepts from the lower level (relatively to the concept C). In the further part of
the subsection, this scheme will be explained in detail.

As we have written before, in this paper we assume that for the concepts of
the lower ontology level a collection of objects which are positive and negative
examples of these concepts is available. Let us also assume that they are ob-
jects of a certain information system A = (U, A), where attributes from set A
represent all available properties of these objects (see label L1 from the Fig. 13).

It should be stressed here that the information about the membership degree
of objects from set U to the concepts from the lower ontology level may serve
defining new attributes which are appended to the set A. However, providing
such information for a randomly chosen object (also for an object which will
appear in the future) requires previous approximation of concepts of the lower
level with the help of classical or stratifying classifiers. At this point, we assume
that for the concepts of the lower ontology level such classifiers were already
constructed, while our aim is to approximate the concept of the higher ontology
level. Incidentally, in the simplest case, the concepts of the lower ontology level
may be approximated with the help of sensor attributes (see Example 7).

Apart from attributes defined on the basis of the membership of objects to
the concepts or to the layers of the concepts, there may be other attributes in
set A. For example, it may be an attribute identifying the recording time of
values of the remaining attributes from set A for a given object from set U or
an attribute unambiguously identifying individual objects or groups of objects
from set U .

Objects being positive and negative examples of the lower ontology level con-
cepts can be very often used to define new objects represented by relational
structures by using available information about these objects. Relations defined
in such structures may be also used to filter (extract) sets of objects or, in a
more general case, sets of relational structures or their clusters as new objects
for a higher level concept.

Relations among objects may be defined on the basis of attributes from the
information system A, with the use of relational structures defined on the value
sets of attributes from set A (see label L2 from the Fig. 13). For example, the
value set of attribute Vat from Example 2 is a subset of the set of integer numbers.
Therefore, it is a domain of a relational structure (Vat , {Rat}), where relation
Rat is defined in the following way:

∀(t1, t2) ∈ Vat × Vat : t1Ratt2 ⇔ t1 ≤ t2.

Relation Rat may be in a natural way, generalized to the relation Rt ⊆ U ×U
in the following way:

∀(u1, u2) ∈ U × U : u1Rtu2 ⇔ at(u1) Rat at(u2).

Let us notice that relation Rt orders in time the objects of the information
system from Example 2. Moreover, it is also worthwhile mentioning that for any
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pair of objects (u1, u2) ∈ U�×U� (where U ⊆ U�) the relation Rt is also defined
(if we assume that attribute values on such objects can be received) (see Fig. 10).

Analogously, a relation ordering objects in time on the basis of attribute t
from the information system from Example 1 may be obtained.

Obviously, relations defined on the basis of the attributes of information sys-
tem A are not always related to the ordering objects in time. The example below
illustrates how structural relations may be defined on the basis of the distance
between objects.

Example 8. Let us consider an information system A = (U, A), whose object
set U = {u1, ..., un} is a finite set of vehicles going from a town T1 to a town
T2, whereas two attributes d and v belong to the attribute set A. The attribute
d represents the distance of a given vehicle from the town T2 while attribute v
represents the speed of a given vehicle. Value sets of these attributes are subsets
of the set of real numbers. Besides, the set Vd is a domain of relational structure
(Vd, {Rε

d}), where the relation Rε
d is defined in the following way:

∀(v1, v2) ∈ Vd × Vd : v1 Rε
d v2 ⇔ |v1 − v2| ≤ ε,

where ε is a fixed real number greater than 0.
Relation Rε

d may be in a natural way, generalized to the relation Rε ⊆ U ×U
in the following way:

∀(u1, u2) ∈ U × U : u1Rεu2 ⇔ d(u1) Rε
d d(u2).

As we see, a pair of vehicles belongs to relation Rε when objects are distant from
each other by no more than ε. Therefore, relation Rε we call the nearness relation
of vehicles and parameter ε is called the nearness parameter of vehicles. Relation
Rε may be defined for different values ε. That is why in a general case the number
of nearness relations is infinite. However, if it is assumed that parameter ε takes
the values from a finite set (e.g., ε = 1, 2, ..., 100), then the number of nearness
relations is finite. If Rε is a nearness relation defined in the set U × U (where
ε > 0), then set of vehicles U is a domain of the pure relational structure S =
(U, {Rε}). The exemplary concepts characterizing the properties of individual
vehicles may be high (average, low) speed of the vehicle or high (average, low)
distance from the town T2. These concepts are defined by an expert and may be
approximated on the basis of sensor attributes d and v. However, more complex
concepts may be defined which cannot be approximated with the help of these
attributes. The example of such a concept is vehicle driving in a traffic jam. The
traffic jam is defined by a number of vehicles blocking one another until they can
scarcely move (see, e.g., [305]). It is easy to notice that on the basis of observation
of the vehicle’s membership to the above mentioned sensor concepts (concerning
a single vehicle) and even observation of the value of sensor attributes for a
given vehicle, it is not possible to recognize whether the vehicle is driving in a
traffic jam or not. It is necessary to examine the neighborhood of a given vehicle
and more precisely to check whether there are other vehicles right after and
before the examined one. Therefore, to approximate the concept vehicle driving
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in traffic jam we need a certain type of vehicle grouping which may be performed
with the help of the above mentioned relation Rε (see Example 9). Let us add
that in recognition of the vehicle’s membership to the concept vehicle driving
in a traffic jam, it is also important that the speed of the examined vehicle and
the speed of the vehicles in its neighborhood are available. However, to simplify
the examples, in this subsection we assume that in recognition of the vehicle’s
membership to the concept vehicle driving in a traffic jam it is sufficient to
check the appearance of other vehicles in the neighborhood of a given vehicle
and considering the speed of these vehicles is not necessary. �

Thus, for a given information system A = (U, A) representing positive and neg-
ative examples of the lower ontology levels concepts there may be defined a pure
relational structure S = (U,R) (see label L3 from the Fig. 13). Next, using
the relations from family R a special language may be defined in which pat-
terns are defined which describe sets of objects (new concepts) for the needs
of approximation of the higher ontology level concepts (see label L4 from the
Fig. 13). The extracted sets of objects of a lower level are also usually nontrivial
relational structures, for the relations determined on the whole set of objects
of the lower ontology level in a natural way are defined on the extracted sets.
Time windows (see Section 6.4) or sequences of time windows (see Section 6.15)
may be such kind of relational structures. In modeling, we use pure relational
structures (without functions) over set of objects extracted from the initial re-
lational structures whose domains are sets of objects of lower ontology level.
The reason is that these structures are defined by extension of relations struc-
tures defined on information about objects of lower ontology level and even if
in the latter structures are defined functions then after the extension we obtain
relations over objects rather than functions.

Example 9. Let us consider an information system A = (U, A) from Example 8.
Let Rε be the nearness relation defined in the set U × U for the fixed ε > 0.
Then, the vehicle set U is the domain of relational structure S = (U, {Rε}) and
the relation Rε may be used to extract relational structures from the structure
S. In order to do this we define the family of subsets F (S) of the set U in the
following way: F (S) = {Nε(u1), ..., Nε(un)}, where:

Nε(ui) = {u ∈ U : uiRεu}, for i = 1, ..., n.

Let us notice that each set from family F (S) is connected with one of the vehicles
from set U . Therefore, each of the sets from family F (S) should be interpreted
as a set of vehicles which are distant from the established vehicle u no more than
by the established nearness parameter ε. In other words each such set is a vehicle
set which are in the neighborhood of a given vehicle, with the established radius
of the neighborhood area. For instance, if ε = 20 meters then vehicles u3, u4, u5,
u6, and u7 belong to the neighborhood of vehicle u5 (see Fig. 14). Finally, let
us notice that each set N ∈ F (S) is a domain of relational structure (N, {Rε}).
Thus, we obtain the family of relational structures extracted from structure S.

�
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Fig. 14. A vehicle and its neighborhood

The language in which, using the relational structures, we define formulas for
expressing extracted relational structures, is called a language for extracting re-
lational structures (ERS-language). The formulas of ERS-language determine
type of relational structures, i.e., relational structures which can appear in the
constructed information system. These new relational structures represent struc-
ture of more compound objects composed out of less compound ones. We call
them extracted relational structures (see label L5 from the Fig. 13). In this paper,
we use the three following ERS-languages:

1. the language assigned to extract trivial relational structures such as pre-
sented in Definition 3 and this method of relational structure extraction is
used in the case of construction of the concept approximation table using
stratifying classifiers (see Section 5.2),

2. the ETW -language assigned to extract relational structures which are time
windows (see Section 6.4),

3. the ESTW -language assigned to extract relational structures which are se-
quences of time windows (see Section 6.15).

However, the above mentioned process of extracting relational structures is
carried out in order to approximate the concept of the higher ontology level
with the help of lower ontology level concepts. Therefore, to extract relational
structures it is necessary to use information about membership of objects of the
lower level to the concepts from this level. Such information may be available
for any tested object thanks to the application of previously created classifiers
for the lower ontology level concepts (see Section 6.4 and Section 6.15).

For relational structures extracted using ERS-language features (properties,
attributes) may be defined using a specially constructed language, that we call
a language for definnig features of relational structures (see label L6 from the
Fig. 13). The FRS-language leads to an information system whose objects are
extracted relational structures and the attributes are the features of these struc-
tures. Such system will be called an information system of extracted relational
structures (RS-information system) (see label L7 from the Fig. 13). However,
from the point of view of domain knowledge, not all objects (relational struc-
tures) extracted using ERS-language are appropriate to approximation of a
given concept of the higher level of ontology. For instance, if we approximate the
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concept of safe overtaking, it is reasonable to use objects representing vehicles
examples that are in the process of overtaking maneuver, for using objects repre-
senting vehicles which are not in the process of an overtaking maneuver, nothing
help to recognize the pairs of vehicles which take part in a safe overtaking with
the pairs of vehicles which overtake unsafely.

For the above reason, that is, to eliminate objects which are unreal or are un-
reasonable, there are defined the so-called constraints which are formulas defined
on the basis of object features used to create attributes from the RS-system. The
constraints determine which objects may be used in order to obtain a concept
example from the higher level and which cannot be used (see label L6 from the
Fig. 13). In this paper constraints are represented by a constraint relation and
are defined as a formula of the language GDL (see Definition 5) on the basis of
attributes appearing in the system RS-system.

The example below illustrates how RS-information systems may be defined.

Example 10. Let us consider an information system A = (U, A), a relational
structure S = (U, {Rε}) and a family F (S) extracted from relational structure S
(see Example 9). We construct an information system F = (F (S), A) such that
A = {af , ab}, where for any u = Nε(u) ∈ F (S) a value af (u) is the number of
vehicles in the neighborhood Nε(u) going in the right lane before vehicle u and
ab(u) is the number of vehicles in the neighborhood Nε(u) going in the right lane
behind vehicle u. Let us notice that attributes of set A were chosen in such a
way that the objects from information system F are relevant to approximate the
concept vehicle driving in a traffic jam. For example, if ε = 20 meters and for
the object u ∈ F (S) values af (u) = 2 and ab(u) = 2, then vehicle u is driving in
a traffic jam (see vehicle u4 from Fig. 15). Whereas, if af (u) = 0 and ab(u) = 0,
then vehicle u is not driving in a traffic jam (see vehicle u7 from Fig. 15). For
the system F we define the following formula:

φ = ((af > 0) ∨ (ab > 0)) ∈ GDL(F).

It is easy to notice that formula φ is not satisfied only by neighborhoods related to
vehicles which definitely not driving in a traffic jam. Therefore, in terms of neigh-
borhood classification to the concept driving in a traffic jam these neighborhoods
may be called trivial ones. Hence, formula φ may be treated as a constraint for-
mula which is used to eliminate the above mentioned trivial neighborhoods from
F. After such reduction we obtain an RS-information system A = (U, A), where

U = {u ∈ F (S) : u |=GDL(F) φ}. �
Let us notice that the definition of attributes of extracted relational structures
leads to granulation of relational structures. For example, we obtain granules
of relational structures defined by the indiscernibility relation defined by new
attributes.

A question arises, how to construct languages defining features of relational
structures, particularly when it comes to approximation of spatio-temporal con-
cepts, that is, those whose recognition requires following the changes of complex
objects over time. One of more developed languages of this type is a temporal
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Fig. 15. Two vehicle neighborhoods

logic language. In literature there are many systems of temporal logics defined
which offer many useful mechanisms (see, e.g., [183, 184, 185]). Therefore, in this
paper, we use temporal logics to define our own languages describing features
of relational structures. Especially interesting for us are the elements appearing
in definitions of temporal logics of linear time (e.g., Linear Temporal Logic) and
branching time logic (e.g., Branching Temporal Logic).

Temporal logic of linear time assumes that time has a linear nature, that is,
one without branches. In other words, it describes only one world in which each
two events are sequentially ordered. In linear time logics there are the following
four temporal operators introduced: �, ♦, © and U . Generally speaking, these
operators enable us to determine the satisfiability of temporal formulas in a
certain time period. Operator � (often also marked as G) determines the satisfi-
ability of a formula at all instants (states) of the time period under observation.
Operator ♦ (often marked as F) determines the satisfiability of a formula at least
at one instant (state) of the time period under observation. Operator © (often
marked as X) determines the satisfiability of a formula at an instant (state) right
after the instant of reference. Finally, operator U (often marked as U) determines
the satisfiability of a formula until another formula is satisfied. Therefore, linear
time temporal logics may be used to express object properties which aggregate
behavior of complex objects observed over a certain period of linear time, e.g.,
features of time windows or features of temporal paths in behavioral graphs (see
Section 6.6 and Section 6.17).

Temporal logic of branching time, however, assumes that time has a branch-
ing nature, that is, at a given instant it may branch itself into parallel worlds
representing possible various future states. In branching time logics there are
two additional path operators A and E introduced. They enable us to determine
the satisfiability of temporal formulas for various variants of the future. The first
operator means that the temporal formula, before which the operator occurs, is
satisfied for all variants of the future. The second, however, means the formula
is satisfied for a certain future. Path operators combined with the three G, F
and X temporal logics operators give six possible combinations: AG, AF, AX, EG,
EF and EX. These combinations give opportunities to describe multi-variant,
extended over time behaviors. Therefore, temporal logics of branching time may
be used to express such complex object properties that aggregate multi-variant
behaviors of objects changing over time (e.g., features of clusters of time windows
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or features of clusters of temporal paths in behavioral graphs) (see Section 6.8
and Section 6.19).

We assume, that in extracted relational structures the time flow has a linear
character. Therefore, languages using elements of temporal logics with linear
time are applied to define their features. In this paper, we use the three following
languages defining features of extracted relational structure:

1. the language assigned to define features of trivial relational structure such
as in Definition 3 - this method of defining features of relational structures
is applied together with extraction of trivial relational structure (see Defini-
tion 3) and is based on the usage of features of objects taken from information
system as features of relational structures after extraction (objects in a given
information system and elements of domains of extracted from this system
relational structures are the same) (see Section 5.2),

2. the language FTW using elements of temporal logic language and is as-
signed to define relational structure properties, which are time windows (see
Section 6.6),

3. the language FTP also using elements of temporal logic language, assigned
to define relational structure properties, which are paths in behavioral graphs
(see Section 6.17).

However, objects of RS-information systems are often not suitable to use their
properties for approximating concepts of the higher ontology level. It happens
this way because the number of these objects is too large and their descriptions
are too detailed. Hence, if they are applied to approximate the concept from the
higher ontology level, the coverage of the constructed classifier would be too lit-
tle, that is, the classifier could classify too small number of tested objects. Apart
from that, there would appear a problem of computational complexity which
means that due to the large number of objects of such information system, the
number of objects in the concept approximation table for the structured objects
(see further part of this subsection) would be too large in order to construct a
classifier effectively.

That is why, a clustering such objects is applied leading to obtaining a family
of object clusters (see label L8 from the Fig. 13).

The example below illustrates in a very simple way how it is possible to define
clusters of relational structures.

Example 11. Let A = (U, A) be an RS-information system from Example 10.
We are going to define clusters of the vehicles’ neighborhoods. For this purpose
we propose a relation Rσ ⊆ U × U , that is defined in the following way:

∀(u1,u2)∈U×U u1Rσu2 ⇔ |af (u1)− af (u2)| ≤ σ ∧ |ab(u1)− ab(u2)| ≤ σ,

where σ is a fixed integer number greater than 0. As we see, to relation Rσ belong
such pairs of vehicle neighborhoods which differ only slightly (no more than by
σ) in terms of attribute values af and ab. Therefore, relation Rσ is called the
nearness relation of vehicle neighborhoods and parameter σ is called the nearness



568 J.G. Bazan

parameter of vehicle neighborhoods. The relation Rσ may be defined for different
values σ. That is why in a general case the number of such nearness relations is
infinite. However, if it is assumed that parameter σ takes the values from a finite
set (e.g., σ = 1, 2, ..., 10), then the number of nearness relations is finite. Let Rσ

be nearness relation of neighborhoods determined for the established σ > 0. Then
the set of neighborhood of vehicles U is the domain of a pure relational structure
S = (U, {Rσ}). The relational structure S is the starting point to extract clusters
of vehicle neighborhoods. In order to do this we define the family of subsets F (S)
of the set U in the following way: F (S) = {Nσ(u1), ..., Nσ(un)},
where:

Nσ(ui) = {u ∈ U : uiRσu}, for i = 1, ..., n.

Let us notice that each of the set from family F (S) is connected with one ve-
hicle neighborhood from the set U . For any u ∈ U the set Nσ(u) will be also
denoted by u, for short. Moreover, these sets are interpreted as neighborhood
clusters which are distant from the central neighborhood in the cluster no more
than the established nearness parameter. In other words, each such family is
a vehicles’ neighborhood cluster which are close to a given neighborhood, with
their established nearness parameter. For instance, if ε = 20 meters and σ = 1,
then neighborhoods Nε(u3), Nε(u5) and obviously neighborhood Nε(u4) belong
to the neighborhood cluster Nσ(u4) (see Fig. 16), whereas the neighborhood
Nε(u7) does not belong to this neighborhood cluster. Finally, let us notice that
each set X ∈ F (S) is a domain of relational structure (X, {Rσ}). Hence, we
obtain the family of relational structures extracted from structure S. �

Grouping of objects in system RS-system may be performed using chosen by
an expert language of extraction of clusters of relational structures, which in
this case is called a language for extracting clusters of relational structures
(ECRS-language). The formulas of ECRS-language express families of clus-
ters of relational structures from the input RS-information systems (see label
L9 from the Fig. 13). Such formulas can be treated as a type of clusters of
relational structures which will create objects in a new information system. In
ECRS-language we may define a family of patterns corresponding to a family
of expected clusters. In this paper, the two following ECRS-languages are used:
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Fig. 16. Four vehicle neighborhoods
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1. the language ECTW assigned to define relational structure clusters which
are time window families (see Section 6.8),

2. the language ECTP assigned to define relational structure clusters which
are path families in complex object behavioral graphs (see Section 6.19).

For clusters of relational structures extracted in such a way features may
be defined using a specially constructed language, that we call a language for
defining features of clusters of relational structures (FCRS-language) (see label
L10 from the Fig. 13). A formula from this language is satisfied (or unsatisfied)
on a given clusters of relational structures if and only if it is satisfied for all
relational structures from this clusters. The FCRS-language leads to an infor-
mation system whose objects are extracted clusters of relational structures and
the attributes are the features of these clusters (see label L11 from the Fig. 13).
Such information system we call an information system of clusters of relational
structures (CRS-information system).

Similarly to the case of the relational structures extracted using ERS-
language, not all objects (relational structures) extracted using ECRS-language
are appropriate to approximation of a given concept of the higher level of on-
tology. Therefore in this case we also define constraints which are formulas de-
fined on the basis of object features used to create attributes from the CRS-
information system. Such constraints determine which objects may be used in
order to obtain a concept example from the higher level and which cannot be
used.

The example below illustrates how CRS-information systems may be defined.

Example 12. Let F (S) be the family extracted from relational structure S (see
Example 11). One can construct an information system F = (F (S), A), where
A = {af , ab} and for any u ∈ F (S) values of attributes af and ab are computed
as the arithmetical average of values of attributes af and ab for neighborhoods
belonging to the cluster represented by u. The attributes of set A were chosen
in such a way that the objects from set U are appropriate for approximation of
the concept vehicle driving in a traffic jam. For example, if ε = 20 meters, σ = 1
and values af (u) and ab(u) are close to 2 then the neighborhoods from cluster
represented by object u contain vehicles which definitely drive in a traffic jam.
Whereas, if af (u) and ab(u) are close to 0 then the neighborhoods from cluster
represented by object u contain vehicles which definitely do not drive in a traffic
jam. For the system F we define the following formula:

Φ = ((af > 0.5) ∨ (ab > 0.5)) ∈ GDL(F).

It is easy to notice that formula Φ is not satisfied only by such clusters to which
belong vehicle neighborhoods definitely not driving in a traffic jam. Therefore, in
terms of cluster classification to the concept driving in a traffic jam these clusters
may be called trivial ones. Hence, formula Φ may be treated as a constraint
formula which is used to eliminate the above mentioned trivial clusters from F.
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After such reduction we obtain an CRS-information system A = (U, A),
where

U = {u ∈ F (S) : u |=
GDL(F)

Φ }. �

Unlike the single relational structures in relational structure clusters the time
flow has a branching character because in various elements of a given cluster
we observe various variants of dynamically changing reality. Therefore, to de-
fine relational structure cluster properties we use elements of temporal logics
of branching time language. In this paper, we use the two following languages
defining cluster properties:

1. the language FCTW using elements of temporal logics language and as-
signed to define cluster features which are families of time windows (see
Section 6.8),

2. the language FCTP also using elements of temporal logics language assigned
to define cluster families which are families of temporal paths in behavioral
graphs, that is, sub-graphs of behavioral graphs (see Section 6.19).

Finally, we assume that to each object, acceptable by constraints, an expert
adds a decision value determining whether a given object belongs to a higher
level approximated concept or not (see label L12 from the Fig. 13). After adding
the decision attribute we obtain the concept approximation table for a concept
from the higher ontology level (see label L13 from the Fig. 13).

The notion of concept approximation table concerning a concept from the
higher ontology level for an unstructured complex object may be generalized in
the case of concept approximation for structured objects (that is, consisting of
parts).

Let us assume that the concept is defined for structured objects of type T
which consist of parts being complex objects of types T1,...,Tk. In Fig. 17 we
illustrate the general scheme for construction of the concept approximation ta-
ble for such structured objects. We see that in order to construct a table for
approximating a concept defined for structured objects of type T , CRS-systems
are constructed for all types of structured object parts, that is, types T1,...,Tk

(see labels L3−1,..., L3−k from the Fig. 17). Next, these systems are joined in
order to obtain a table of approximating concept of the higher ontology level
determined for structured objects. Objects of this table are obtained by arrang-
ing (linking) all possible objects of linked information systems (see label L4
from the Fig. 17). From the mathematical point of view such an arrangement is
a Cartesian product of sets of objects of linked information systems. However,
from the point of view of domain knowledge not all objects links belonging to
such a Cartesian product are possible and reasonable (see [78, 84, 186, 187]). For
instance, if we approximate the concept of overtaking, it is reasonable to arrange
objects of such pairs of vehicles that drive close to each other. For the above
reason, there are defined constraints which are formulas defined on the basis of
properties of arranged objects. The constraints determine which objects may be
arranged in order to obtain a concept example from the higher level and which
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Fig. 17. The general scheme for construction of the concept approximation table for
structured objects

cannot be arranged. Additionally, we assume that to each object arrangement,
acceptable by constraints, an expert adds a decision value determining whether
a given arrangement belongs to a higher level approximated concept or not (see
label L4 from the Fig. 17).

A table constructed in such a way is to serve a concept approximation deter-
mined on a set of structured objects (see label L5 from the Fig. 17). However,
it frequently happens that in order to describe a structured object, apart from
describing all parts of this object, a relation between the parts of this object
should be described. Therefore, in constructing a table of concept approxima-
tion for a structured object, there is constructed an additional CRS-information
system whose attributes entirely describe the whole structured object in terms
of relations between the parts of this object (see label L3−c from the Fig. 17).
In approximation of the object concerning structured objects, this system is
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arranged together with other CRS-information systems constructed for individ-
ual parts of the structured objects (see label L4 from the Fig. 17).

Similarly to the case of the concept approximation table for unstructured
objects, the constraint relation is usually defined as a formula in the language
GDL (see Definition 5) on the basis of attributes appearing in the obtained
table. However, constraint relation may also be approximated using classifiers.
In such a case providing examples of objects belonging and not belonging to
constraint relation is required (see, e.g., [78]).

The construction of a specific approximation table of a higher ontology level
concept requires defining all elements appearing in Figs. 13 and 17. A funda-
mental problem connected with construction of an approximation table of the
higher ontology level concept is, therefore, the choice of four appropriate lan-
guages used during its construction. The first language serves the purpose of
defining patterns in a set of lower ontology level concept examples which enable
the relational structure extraction. The second one enables defining the features
of these structures. The third one enables to define relational structure clusters
and finally the fourth one the properties of these clusters. All these languages
must be defined in such a way as to make the properties of created relational
structure clusters useful on a higher ontology level for approximation of the
concept occurring there. Moreover, in the case when the approximated concept
concerns structured objects each of the parts of this type of objects may require
another four of the languages mentioned above.

Cl

C

C1 ...

The spatial concept of 
the higher ontology level 

(defined for complex 
objects)

Spatial concepts of 
the lower ontology 

level (defined 
for the same type of 

complex objects)

Cl
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C

C1 ...
Spatio-temporal concepts 
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(defined for parts of
structured complex objects)

Case 1 Case 2
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Spatial concepts 
of the lower ontology 

level (defined 
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of complex objects)

The spatio-temporal 
concept of the higher 

ontology level 
(defined for structured

complex objects)

Fig. 18. Three cases of complex concepts approximation in ontology
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However, the definition of these languages depends on semantical difference
between concepts from both ontology levels. In this paper, we examine the follow-
ing three situations in which the above four languages are defined in a completely
different way (see Fig. 18).

1. The approximated concept C of the higher ontology level is a spatial concept
(it does not require observing changes of objects over time) and it is defined
on a set of the same objects as lower ontology level concepts (see Case 1 from
Fig. 18). On the lower level we have a concept family: {C1, ..., Cl}, that are
also spatial concept. Apart from that the concepts {C1, ..., Cl} are defined
for unstructured objects without following their changes over time. That is
why these concepts are defined on the basis of an object state observation
at a single time point or time period established identically for all concepts.
For example, the concept C and the concepts C1,...,Cl may concern the
situation of the same vehicle while concept C may be the concept of Safe
overtaking. On the other hand, to the family of concepts C1,...,Cl may belong
such concepts as: Safe distance from the opposite vehicle during overtaking,
Possibility of going back to the right lane and Possibility of safe stopping
before the crossroads. The methods of approximation of the concept C for
this case are described in Section 5.

2. The concept C under approximation is a spatio-temporal one (it requires
observing object changes over time) and it is defined on the set of the same
objects as the lower ontology level concepts (see Case 2 from Fig. 18).
On the lower level we have a concept family: {C1, ..., Cl}, that are spatial
concept. The concept C concerns object property defined in a longer time
period than the concepts from the family {C1, ..., Cl}. This case concerns
a situation when following an unstructured object in order to capture its
behavior described by the concept C, we have to observe it longer than
it is required to capture behaviors described by concepts from the family
{C1, ..., Cl}. For example, concepts C1,...,Cl may concern simple behaviors
of a vehicle such as acceleration, deceleration, moving towards the left lane,
while the concept C may be a more complex concept: accelerating in the
right lane. Let us notice that determining whether a vehicle accelerates in
the right lane requires its observation for some time which is called a time
window. However, determining whether a vehicle increased its speed requires
only the vehicle’s speed registration at two neighboring instants. Such a case
of the concept C approximation is described in Section 6.

3. The approximated concept C is a spatio-temporal one (it requires observing
object changes over time) and it is defined on a set of structured objects,
while concepts from the family {C1, ..., Cl} are determined on the set of parts
of these objects; and at the same time the concept C concerns the structured
object’s behavior over a longer period of time than concepts from the family
{C1, ..., Cl} (see Case 3 from Fig. 18). This case concerns a situation when
following a structured object in order to capture its behavior described by
the concept C, we have to observe this object longer than it is required to
capture behaviors of single part of this object described by concepts from
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the family {C1, ..., Cl}. For example, concepts from the family {C1, ..., Cl}
may concern complex behaviors of a single vehicle such as acceleration in
the right lane, acceleration and changing lanes from right to left, decelerating
in the left lane. However, the concept C may be even more complex concept
describing a behavior of a group of two vehicles (overtaking and overtaken)
over a certain period of time, for example the overtaking vehicle changes
lanes from the right to left one while the overtaken vehicle drives in the
right lane. Let us notice that the behavior described by the concept C is an
essential fragment of overtaking maneuver and determining if the group of
two vehicles under observation behaved exactly that way requires observation
for a certain time of behavior sequence of vehicles taking part in maneuvers
such as accelerating in the right lane, accelerating and changing lanes from
right to left, maintaining a stable speed in the right lane. This most complex
case of the approximation of the concept C also is described in Section 6.

5 Approximating Spatial Concepts from Ontology

In the present subsection, we describe the case of approximating the concept C
from the higher ontology level using concepts C1,...,Ck from the lower ontology
level when approximated concept C is defined on the set of the same objects
as concepts C1,...,Ck. Moreover, both concept C and concepts C1,...,Ck con-
cern object properties without observing their changes over time. In this paper
such concepts are called spatial concepts. The example below describes a classic
situation of this type resulting from an ontology obtained from a road traffic
simulator (see Appendix A).

Example 13. Let us consider a situation when all ontology concepts concern the
same type of objects, that is, vehicles. We deal with this type of situation in the
case of ontology from Fig. 7. To each concept of this ontology there belong vehicles
satisfying a specific condition expressed in a natural language. For example, to the
concept of Safe overtaking there belong all vehicles which overtake safely, whereas
to the concept of Possibility of safe stopping before the crossroads these vehicles
whose speed is low enough to safely stop before the crossroads. The concepts of
the lowest ontology level, that is, Safe distance from the opposite vehicle during
overtaking, Possibility of driving back to the right lane, Possibility of safe stopping
before the crossroads, Safe distance from the front vehicle, Forcing the right of way
and Safe distance from the front vehicle are sensor concepts, that is, they may be
approximated directly using sensor data. For example, the concept of Possibility
of safe stopping before the crossroads may be approximated using such sensor at-
tributes as the speed of the vehicle, the acceleration of the vehicle, the distance from
the crossroads, visibility and humidity. However, concepts of the higher ontology
level, that is, Safe overtaking and Safe driving should be approximated using con-
cepts from the lower ontology level. For example, the concept of Safe overtaking
may be approximated using the three following concepts: Safe distance from the
opposite vehicle during overtaking, Possibility of going back to the right lane and
Possibility of safe stopping before the crossroads. �
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In order to approximate the higher ontology level concept (for example, the
concept of Safe overtaking in the above example), an approximation table should
be constructed for this concept according to Fig. 13. In order to do this a special
language PEC is necessary, whose definition we provide in the next subsection.

5.1 Language of Patterns Extracted from a Classifier

If the approximation of the lower level ontology concepts is performed, then for
each of these concepts we have at our disposal a classifier which is an algorithm
returning for any tested object (that is, relational structure of the lower ontol-
ogy level) the information about whether this object belongs to the concept or
not. This type of information coming from all classifiers approximating lower
ontology level concepts may serve the construction of binary attributes which
describe crucial properties of the object of the higher ontology level. However,
it should not be expected that in a general case the membership of objects to
the concept of lower ontology level determines the membership of objects to the
concept of higher ontology level. For example, if we assume that the concept of
safe overtaking depends on the three following concepts: safe distance from the
opposite vehicle during overtaking, possibility of driving back to the right lane
and possibility of safe stopping before the crossroads (see Fig. 7), then it is hard
to expect that a given vehicle overtakes safely only when it belongs to these three
concepts. On the other hand, it is hard to expect that if the vehicle does not be-
long to one of these three concepts, then it definitely does not overtake safely. For
example, if the distance from the oncoming vehicle is not safe, that is, a head-on
collision of the overtaking and oncoming vehicles is possible, then it cannot be
determined that the overtaking is safe. However, there are probably situations
when the precise membership of the vehicle to the three concepts above cannot
be acknowledged, but the expert will still claim in the natural language that the
overtaking is safe, or that the overtaking is almost safe or that the overtaking is
safe to some degree. Therefore, in this paper to construct attributes describing
object properties from the lower ontology level, we propose stratifying classifiers
which must certainly be constructed previously for lower ontology level concepts.
This type of attributes inform in a more detailed way about the membership of
objects to the lower ontology level concepts and because of that they are more
useful to approximate higher level concepts.

Let us, now, define a language of patterns extracted from a classifier (PEC)
which are used to describe object properties which are positive and negative
examples of ontology concepts.

Definition 12 (A language of patterns extracted from a classifier). Let us as-
sume that:

– A = (U, A, d) is a decision table, whose objects are relational structures and
examples (positive and negative) for some concept C, described by a binary
attribute d,

– µE
C is a stratifying classifier for the concept C, which classifies objects from U

to l-layers, denoted be labels from the set E = {e1, ..., el}, where the following
three conditions are satisfied (see also Section 3.1):
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1. layer e1 includes objects which, according to an expert, certainly do
not belong to concept C (so they belong to a lower approximation of
its complement),

2. for every two layers ei, ej (where i < j), layer ei includes objects which,
according to an expert, belong to concept C with a degree of certainty
lower the degree of certainly of membership of objects of ej in U ,

3. layer el includes objects which, according to an expert, certainly belong
to concept C, viz., to its lower approximation.

1. The language of patterns extracted from a classifier µE
C (denoted by PEC(µE

C)
or PEC-language, when µE

C is fixed) is defined in the following way:
• the set ALPEC(µE

C) = {µ,∈,¬,∧,∨} ∪ (2E \ ∅) is an alphabet of the
language PEC(µE

C),
• expressions of the form (µ ∈ B), for any B ⊆ E, are atomic formulas

of the language PEC(µE
C).

2. The semantics of atomic formulas from the language PEC(µE
C) is defined

for any B ⊆ E in the following way:

|µ ∈ B|PEC(µE
C) =

{
u ∈ U : µE

C(u) ∈ B
}

.

The issue of defining atomic formulas themselves (expressions of type µ ∈ B,
where B ⊆ E) belonging to the sets of formulas of the language mentioned above
also requires an explanation. Because concept layers from the set E are ordered,
then the formulas of the form µ ∈ B are defined with the help of relation =, 	=,
<, ≤, > and ≥. For example, the µ = e2 formula describes these objects from
the set U which the stratifying classifier µE

C classifies to the layer marked by e2,
however, the formula of the form µ ≥ e3 describes these objects from the set U
which the stratifying classifier µE

C classifies to the e3 layer or higher, that is, to
one of the e3, e4, ..., el layers.

If it is known which stratifying classifier is used to define the language PEC
for a specific concept C and if the set of layers E of the approximated concept
is known, then we often use simplification of pattern description consisting in
replacing (in formulas of the language PEC) the µ symbol with the name of
the approximated concept, which enable to simplify the records in pattern pre-
sentation for several concepts at the same time. For example, in approximation
of concept C using the stratifying classifier µE

C (where E = {e1, ..., el}), pattern
(µ ≥ e3) are recorded as C ≥ e3.

Because the language PEC is the language for construction of the structural
relation properties, then each formula of that language in a given information
system can be called a pattern. Some of these patterns are of great significance in
practical applications. Therefore, we give them special names. The first pattern of
this type is the so-called concept layer pattern which describes objects belonging
to one of the concept layers.

Definition 13. Let C be a concept and µE
C be a stratifying classifier for the

concept C, which classifies objects to l-layers, denoted be labels from the set
E = {e1, ..., el} (see conditions from Definition 12). Any pattern of the form
(µ = ei), where i ∈ {1, ..., l}, is called a layer pattern of concept C.
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Each layer pattern may be treated as a simple classifier which can classify ob-
jects matching this pattern. Thus, it is possible to select objects which belong
to one of the concept layers. However, frequently in practice such accuracy of
indicating one layer for a tested object is often not necessary. For example, we
may be interested in patterns which describe such layers which certainly do not
precede the established layer. These patterns correspond to the situation when
we wish to recognize such concepts that belong to the concept with certainty
at least equal to the previously established certainty level. For example, if we
consider the concept of safe overtaking which has six linearly organized layers
“certainly NO”, “rather NO”, “possibly NO”, “possibly YES”, “rather YES”
and “certainly YES”, then the µ ≥ “possibly YES” pattern describes such ve-
hicles that perhaps overtake safely, rather overtake safely and certainly overtake
safely. Hence, this pattern may be useful as a classifier which is not too certain.
It is easy to change it to µ ≥ “rather YES” by this increasing the certainty of
its classification.

Due to practical applications of the above patterns we use a special term to
call them, which is given in the definition below.

Definition 14. Let C be a concept and µE
C be a stratifying classifier for the

concept C, which classifies objects to l-layers, denoted be labels from the set
E = {e1, ..., el} (see Definition 12). Any pattern of the form (µ ≥ ei), where
i ∈ {1, ..., l}, is called a production pattern of concept C.

The term from the above definition results from the fact that these types of
patterns find application in production rule construction (see Section 5.3).

5.2 Concept Approximation Table Using Stratifying Classifiers

Currently, we present a definition of the approximation table of the higher on-
tology level concept with the help of stratifying classifiers.

Definition 15 (A concept approximation table using stratifying classifiers). Let
us assume that:

– A = (U, A) is a given information system of unstructured objects of the fixed
type,

– C is a concept, dependent in some ontology on concepts C1,...,Ck , where
C ⊆ U and Ci ⊆ U , for i = 1, ..., k,

– Ti = (U, Ai, dCi) is a decision table constructed for approximation of the
concept Ci such that Ai ⊆ A for i = 1..., k and dCi is a decision attribute
which values describe the membership of objects from U to the concept Ci,

– µEi

Ci
is a stratifying classifier for the concept Ci constructed on the basis the

table Ti, which classifies objects from the set U to layers, denoted be labels
from the set Ei, for i = 1, ..., k,

– Φi = {φ1
i , ..., φ

li
i } is a family of patterns defined by formulas from the lan-

guage PEC(µEi

Ci
), which can be used to define new attributes (features) for

objects from the set U , for i = 1..., k,
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– PPEC = (U, Φ, |=PEC) is a property system, where Φ =
k⋃

i=1
Φi and the satis-

fiability relation |=PEC is defined in the following way:

∀(u, φ) ∈ U × Φ : u |=PEC φ ⇔

u |=
PEC(µEi

Ci
) φ, for i ∈ {1, .., k} such that φ ∈ Φi,

– AΦ = (U, AΦ) is an information system defined be the property system PPEC,
– RC ⊆ U is a relation of constraints defined by a formula Ψ ∈ GDL(AΦ)

that is ∀u∈U u ∈ RC ⇔ u |=GDL(AΦ) Ψ .

A concept approximation table using stratifying classifiers for the concept C rel-
atively to concepts C1,...,Ck is a decision table AC = (UC , AC , dC), where:

– UC = RC ,
– AC = AΦ,
– the attribute dC describes membership of objects from the set U to the con-

cept C.

According to the above definition, the conditional attributes of concept approx-
imation table are constructed on the basis of stratifying classifiers µE1

C1
, ..., µEk

Ck

which were generated for concepts of the lower ontology level C1,...,Ck and for
layer sets E1,...,Ek. It ought to be stressed, however, that the number of layers
and the layout of layers in sets E1,...,Ek should be chosen in such a way as to
serve effective approximation of complex concept C. In order to do this the layers
are chosen by an expert on the basis of the domain knowledge or are obtained
on the basis of suitably designed layering heuristics (see Section 3).

It is easy to notice that the table of concept approximation from ontology
using stratifying classifiers defined above is a special case of a concept approxi-
mation table mentioned in Section 4.10.

Let us now go back to Example 7 which concerned approximation of the
concept of Safe overtaking.

Example 14 (The continuation of Example 13). For concept Safe overtaking ap-
proximation we wish to construct an approximation table according to
Definition 15. First, stratifying classifiers for concepts Safe distance from the op-
posite vehicle during overtaking (CSDOV ), Possibility of going back to the right
lane (CPGBR) and Possibility of safe stopping before the crossroads (CSSBC)
should be constructed. Next, conditional attributes are constructed which are
defined as patterns in the language PEC, individually for each of the three con-
cepts. The choice of appropriate patterns takes place on the basis of domain
knowledge. In the simplest case they may be layer patterns for all layers of con-
cepts CSDOV , CPGBR and CSSBC . Next, on the basis of domain knowledge a
relation of constraints is established and used to arrange an approximation table
for the Safe overtaking concept, leaving only objects which belong to this rela-
tion. Finally, also on the basis of domain knowledge values of decision attribute
from the Safe overtaking concept approximation table is established. �
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The concept approximation table using stratifying classifiers may be used for
building a classifier which ensures approximation of this concept. The approx-
imation may take place using classical classifiers (see Section 2) or stratifying
classifiers (see Section 3).

Slightly similar approaches have been successfully applied to approximate con-
cepts in different ontologies (see, e.g., [80, 81, 179, 306, 307]). They have also
been applied in ontology from Fig. 7 (see [179, 306]) obtained from the road
simulator (see Appendix A). However, in this paper we are more interested in
other methods of classifier construction using language PEC which use produc-
tion rules, productions and approximate reasoning schemes. These methods are
described in the next few subsections.

5.3 Production Rules

The production rule (see, e.g., [77, 89, 172, 188, 189, 190, 191, 192, 193]) is a
kind of decision rule which is constructed on two adjacent levels of ontology. In
the predecessor of this rule there are patterns for the concepts from the lower
level of ontology while in the successor the pattern for one concept from the
higher level of ontology (connected by relationships with concepts from the rule
predecessor).

Definition 16 (A production rule). Let us assume that:

– A = (U, A) is a given information system of unstructured objects of the fixed
type,

– C is a concept, dependent in some ontology on concepts C1,...,Ck , where
C ⊆ U and Ci ⊆ U , for i = 1, ..., k,

– Ti = (U, Ai, dCi) is a decision table constructed for approximation of the
concept Ci such that Ai ⊆ A for i = 1..., k and dCi is a decision attribute
which values describe the membership of objects from U to the concept Ci,

– µEi

Ci
is a stratifying classifier for the concept Ci constructed on the basis the

table Ti, which classifies objects from the set U to layers, denoted be labels
from the set Ei, for i = 1, ..., k,

– AC = (UC , AC) is a concept approximation table for the concept C using
stratifying classifiers µEi

Ci
, for i = 1, ..., k,

– µE
C is a stratifying classifier for the concept C, which classifies objects from

the set UC to layers, denoted be labels from the set E.

1. If pi ∈ PEC(µEi

Ci
) is a production pattern for the concept Ci (for i = 1, ..., k)

and p ∈ PEC(µE
C) is a production pattern for the concept C then any formula

of the form:
p1 ∧ ... ∧ pk ⇒ p (6)

is called a production rule for the concept C relatively to concepts C1, ..., Ck

if and only if the following conditions are satisfied:
(a) exists at least one object u ∈ UC such that:

u |=
PEC(µEi

Ci
) pi for i = 1, ..., k,



580 J.G. Bazan

(b) for any object u ∈ UC :

u |=
PEC(µE1

C1
) p1 ∧ ... ∧ u |=

PEC(µEk
Ck

) pk ⇒ u |=PEC(µE
C) p

2. The first part of production rule (i.e., p1 ∧ ...∧ pk) is called a predecessor of
production rule, whilst the second part of production rule (i.e., p) is called a
successor of production rule.

3. The concept from the upper level of production rule (from successor of rule)
is called a target concept of production rule, whilst the concepts from the
lower level of production rule (from predecessor of rule) are called source
concepts of production rule.

Below, we present an example of production rule.

Example 15. We consider the concept C which depends on concepts C1 and
C2 (in some ontology). Besides, concepts C, C1 and C2 have six linearly orga-
nized layers “certainly NO”, “rather NO”, “possibly NO”, “possibly YES”,
“rather YES” and “certainly YES”. In Fig. 19 we present an example of pro-
duction rule for concepts C1, C2 and C. This production rule has the following

C2 ≥ ”rather YES” C1 ≥ ”possibly YES”

C ≥ ”rather YES” 

Fig. 19. The example of production rule

Fig. 20. Classifying tested objects by single production rule
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interpretation: if inclusion degree to a concept C1 is at least “possibly YES”
and to concept C2 at least “rather YES” then the inclusion degree to a concept
C is at least “rather YES”. �

A rule constructed in such a way may serve as a simple classifier enabling the
classification of objects matching the patterns from the rule predecessor into
the pattern from the rule successor. The tested object may be classified by a
production rule if it matches all patterns from the production rule predecessor.
Then the production rule classifies a tested object to the target (conclusion)
pattern.

For example, the object u1 from Fig. 20 is classified by production rule from
Fig. 19 because it matches both patterns from the left hand side of the production
rule whereas, the object u2 from Fig. 20 is not classified by production rule
because it does not match the second source pattern of production rule (the
value of attribute C2 is less than “rather YES”).

The domain of a given production rule is a set of all objects matching all
patterns from the predecessor of this rule.

5.4 Algorithm for Production Rules Inducing

Production rules can be extracted from data using domain knowledge. In this
section we present an exemplary algorithm for the production rule inducing.
The basic structure of this algorithm’s data is a special table called a layer table
which we define for the approximated concept in ontology.

Definition 17 (A layer table). Let us assume that:

– A = (U, A) is a given information system of unstructured objects of the fixed
type,

– C is a concept, dependent in some ontology on concepts C1,...,Ck , where
C ⊆ U and Ci ⊆ U , for i = 1, ..., k,

– Ti = (U, Ai, dCi) is a decision table constructed for approximation of the
concept Ci such that Ai ⊆ A for i = 1..., k and dCi is a decision attribute
which values describe the membership of objects from U to the concept Ci,

– µEi

Ci
is a stratifying classifier for the concept Ci constructed on the basis the

table Ti, which classifies objects from the set U to layers, denoted be labels
from the set Ei, for i = 1, ..., k,

– AC = (UC , AC) is a concept approximation table for the concept C using
stratifying classifiers µEi

Ci
, for i = 1, ..., k,

– µE
C is a stratifying classifier for the concept C, which classifies objects from

the set UC to layers, denoted be labels from the set E.

A layer table for the concept C relatively to concepts C1,...,Ck is a decision table
LTC = (U, A, d), where:

– U = UC

– A = {aC1 , ..., aCk
} ∪ {aC}, where for any object u ∈ U attributes from the

set A are defined in the following way:
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• aCi(u) = µEi

Ci
(u) for i = 1, ..., k,

• aC(u) = µE
C(u).

The layer table for a given concept C, which depends on concepts C1, ..., Ck in
ontology, stores layer labels of objects belonging to the AC table.

Example 16. Let us assume that in a certain ontology the concept C depends
on concepts C1 and C2. Moreover, each of these six concepts has six linearly
organized layers: “certainly NO”, “rather NO”, “possibly NO”, “possibly YES”,
“rather YES” and “certainly YES”. The Fig. 21 presents a sample table of layers
for these concepts. �

Now, an algorithm of production rule searching may be presented (see
Algorithm 5.1). It works on the basis of a layer table and as a parameter re-
quires providing a layer which occurs in the successor of the production rule.

In Fig. 21 we illustrate the process of extracting production rule for concept C
and for the approximation layer “rather YES” of concept C. Is is easy to see that
if from the table LTC we select all objects satisfying aC = “rather YES”, then
for selected objects minimal value of the attribute aC1 is equal to “possibly YES”
and minimal value of the attribute aC2 is equal to “rather YES”. Hence, we
obtain the production rule:

(C1 ≥ “possibly YES”) ∧ (C2 ≥ “rather YES”) ⇒ (C ≥ “rather YES”).

The method of extracting production rule presented above can be applied for
various values of attribute aC . In this way, we obtain a collection of production
rules, that we mean as a production (see Section 5.6).

possibly NOcertainly NOpossibly YES

certainly YESrather YEScertainly YES

certainly NOpossibly NOcertainly NO 

rather YESrather YESpossibly YES

rather NOpossibly NOpossibly YES

possibly YESpossibly NOpossibly YES

rather YEScertainly YESrather YES

certainly NOcertainly NOcertainly NO

certainly YEScertainly YEScertainly YES

aCaC2aC1

C1 ≥ possibly YES

C≥ rather YES

C2 ≥ rather YES

certainly NO < rather NO < possibly NO < possibly YES < rather YES < certainly YES

The target pattern  of 
production rule

The source patterns  of 
production rule

Fig. 21. The illustration of production rule extracting
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Algorithm 5.1. Extracting of production rule
Input:
1. concept C, dependent on concepts C1,...,Ck (in some ontology).
2. layer table LTC for concept C,
3. label e of layer, that can be placed in the successor of computed

production rule.

Output: The production rules with the pattern C ≥ e placed in its
successor.

begin1

Select all rows from the table LTC in which values of column aC is2

not less than e.
Find minimal values e1, ..., ek of attributes aC1 , ..., aCk

from table3

LTC for selected rows in the previous step.
Set sources patterns of new production rule on the basis of minimal4

values e1, ..., ek of attributes that were found in the previous step.
Set the target pattern of new production, i.e., concept C with the5

value e.
return (C1 ≥ e1) ∧ ... ∧ (Ck ≥ ek)⇒ (C ≥ e)6

end7

5.5 Relation of Production Rules with DRSA

In 1996 Professor Greco, Professor Matarazzo and Professor S�lowiński proposed a
generalization of rough set theory for the need of multi-criteria decision problems
(see, e.g., [308, 309, 310, 311]). The main idea of this generalization is replacing
the indiscernibility relation with the dominance relation. This approach is known
under the Dominance-based Rough Set Approach (DRSA). In DRSA it is assumed
that the values of all attributes of a given decision table (together with the
decision attribute) are organized in a preferential way, that is, they are the so-
called criteria. This means that for each attribute a from a given decision table a
two-argument outranking relation is defined on the set of objects from this table,
and at the same time a pair (x, y) belongs to this relation if the object x is at
least as good as object y with regard to the criterion a. Using the outranking
relation the dominance relation of one object on another is defined with respect
to the established criteria set (attributes). Namely, the object x dominates object
y with respect to the criteria set B (attributes), when x outranks y with respect
to all criteria from B.

In DRSA it is possible to construct specific decision rules which is are called
dominance-based decision rules (see, e.g., [312]). Elementary conditions in the
conditional part of these rules represent the statement that the object satisfy
a criterion a (attribute) at least (or at most) as good as a certain established
value of attribute a. Moreover, decision parts of the rules indicate that the object
belongs to at least (or at most) to a given decision class.
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Let us assume that there is given the layer table LTC for the concept C which
depends on concepts C1,...,Ck in a certain ontology. It is easy to notice that each
production rule (see Section 5.3) computed for the table LTC by Algorithm 5.1
is a specific case of dominance-based rule (in the DRSA approach) established
for the table LTC . Namely, it is such a case of dominance-based rule that when
in the dominance-based rule predecessor, we consider the expression “the object
is at least as good as” in relation the concept layers C1,...,Ck represented by
conditional attributes of LTC table, and in the dominance-based rule successor
“the object belongs at least to a given decision class” where decision classes are
layers of the concept C. Moreover, in the rule predecessor of such a dominance-
based rule there occur all conditional attributes.

On account of that, to establish production rules we may successfully apply al-
gorithms known from literature for the induction of rules in the DRSA approach
(see, e.g., [312, 313, 314, 315]).

Using this approach to establish production rules, it should be remembered
that the calculated dominance-based rules do not often have all conditional
attributes in the predecessor. Meanwhile, according to the definition, each pro-
duction rule has all conditional attributes from the table LTC in the predecessor.
However, with an appropriate interpretation each dominance-based rule may be
treated as a production rule. It is enough to add to the predecessor all descrip-
tors corresponding to the rest of conditional attributes; and at the same time
each of the new descriptors must be constructed in such a way as to make all
tested objects match it. This effect may be achieved by placing in the descriptor
the attribute value representing the smallest preference possible.

5.6 Productions

Although a single production rule may be used as a classifier for the
concept appearing in a rule predecessor, it is not yet a complete classifier, i.e.,
allowing to classify all objects belonging to an approximated concept, and not
only those which match concepts of a rule predecessor. Therefore, in practice
production rules are grouped into the so called productions (see, e.g.,
[77, 89, 172, 188, 189, 190, 191, 192, 193]), i.e., production rule collections, in
a way that to each production there belong rules having patterns for the same
concepts in a predecessor and successor, but responding to their different layers.

Definition 18 (A production). Let us assume that:

– A = (U, A) is a given information system of unstructured objects of the fixed
type,

– C is a concept, dependent in some ontology on concepts C1,...,Ck , where
C ⊆ U and Ci ⊆ U , for i = 1, ..., k,

– Ti = (U, Ai, dCi) is a decision table constructed for approximation of the
concept Ci such that Ai ⊆ A for i = 1..., k and dCi is a decision attribute
which values describe the membership of objects from U to the concept Ci,

– µEi

Ci
is a stratifying classifier for the concept Ci constructed on the basis the

table Ti, which classifies objects from the set U to layers, denoted be labels
from the set Ei, for i = 1, ..., k,
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– AC = (UC , AC) is a concept approximation table for the concept C using
stratifying classifiers µEi

Ci
, for i = 1, ..., k,

– µE
C is a stratifying classifier for the concept C, which classifies objects from

the set UC to layers, denoted be labels from the set E.

1. A family of production rules P = {r1, ..., rm} is a production if and only if
for any pair of production rules ri, rj ∈ P such that ri = (p1 ∧ ... ∧ pk ⇒ p)
and rj = (q1 ∧ ... ∧ qk ⇒ q) and i < j the following two conditions are
satisfied:
– |pi|PEC(µEi

Ci
) ⊆ |qi|PEC(µEi

Ci
) for i = 1, ..., k,

– |p|PEC(µE
C) ⊆ |q|PEC(µE

C).
2. The domain of a given production is a sum of all domains of its production

rules.

Bellow, we present an example of production.

Example 17. In Fig. 22 we present three production rules constructed for some
concepts C1, C2 and C approximated by three linearly ordered layers “cer-
tainly NO”, “rather NO”, “possibly NO”, “possibly YES”, “rather YES” and
“certainly YES”. This collection of production rules is an exemplary production
for concepts C1, C2 and C. Moreover, production rules from Fig. 22 have the
following interpretation:

1. if inclusion degree to a concept C1 is at least “rather YES” and to concept
C2 at least “certainly YES” then the inclusion degree to a concept C is at
least “certainly YES”;

2. if the inclusion degree to a concept C1 is at least “possibly YES” and to a
concept C2 at least “rather YES” then the inclusion degree to a concept C
is at least “rather YES”;

3. if the inclusion degree to a concept C1 is at least “possibly YES” and to a
concept C2 at least “possibly YES” then the inclusion degree to a concept
C is at least “possibly YES”. �

C2 ≥ ”certainly YES” C1 ≥ ”rather YES” 

C3 ≥ ”certainly YES”

C2 ≥ ” rather YES” C1 ≥ ” possibly YES” 

C3 ≥ ”rather YES” 

C2 ≥ ” possibly YES”C1 ≥ ” possibly YES”

C3 ≥ ”possibly YES”

Fig. 22. The example of production as a collection of three production rules
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Algorithm 5.2. Classifying objects by production
Input: Tested object u and production P
Output: The membership of the object u to the concept C (Y ES or NO)
begin1

Select a complex concept C from an ontology (e.g., Safe overtaking).2

if the tested object should not be classified by a given production P3

extracted for the selected concept C then
return HAS NOTHING TO DO WITH // The object does4

not satisfy the production guard

end5

Find a rule from production P that classifies object with the maximal6

degree to the target concept of rule
if such a rule of P does not exist then7

return I DO NOT KNOW8

end9

Generate a decision value for object from the degree extracted in the10

previous step
if the extracted degree is greater than fixed threshold (e.g., possibly11

YES) then
return YES // the object is classified to C12

else13

return NO // the object is not classified to C14

end15

end16

In the case of production from Fig. 22 concept C is the target concept and C1,
C2 are the source concepts.

Any production can be used as a classifier. The method of object classification
based on production can be described as follows:

1. Preclassify object to the production domain.
2. Classify object by production.

We assume that for any production a production guard is given. Such a guard
describes the production domain and is used in preclassification of tested objects.
The production guard definition is usually based on the relation of constraints
(see Section 4.10) and its usage consists in checking whether a given object
satisfies the constraints, that is, if it belongs to the relation of constraints.

For example, let us assume that the production P is generated for the concept:
Is the vehicle overtaking safely?. Then an object-vehicle u is classified by produc-
tion P iff u is overtaking. Otherwise, it is returned a message “HAS NOTHING
TO DO WITH (OVERTAKING)”.

Now, we can present an exemplary algorithm for classifying objects by pro-
duction (see Algorithm 5.2).
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It is worth noticing that for objects which went through preclassification posi-
tively, two cases should be distinguished: object classification through production
and recognizing the object through production. Classification of object through
production means that such a production rule is found in the production that
the tested object matches all patterns of its predecessor. However, not classifying
the object through production means that such a production rule is not found.
There also exists a third possibility that the tested object is not recognized by
production. It means that relying on production rules in production, it is neither
possible to state whether the tested object is classified by production nor that
it is not. This case concerns the situation when stratifying classifiers realizing in
practice the production patterns in the production rule predecessor are not able
to recognize a tested object. This difficulty may be greatly decreased or even
removed by applying to production patterns defining such classifiers that always
or almost always classify objects.

A questions arises whether Algorithm 5.2 is universal enough to serve not
only classifying tested objects from a given concept approximation table AC

(see Definition 15), but also to classify objects belonging to the extension of this
table. Algorithm 5.2 works on the basis of production P , which is a family of
production rules generated for concept approximation table AC . The application
of each production rule only requires computation of the values of conditional
attributes of table AC . It is done with the use of stratifying classifiers which were
generated for lower ontology level concepts C1,...,Ck. These classifiers are based
on decision rules, therefore they may effectively classify tested objects outside a
given information system A (see Definition 15 and Section 2.8). It would seem
that this property transfers to Algorithm 5.2 where tested objects are classi-
fied with the help of production rules. Unfortunately, although to classify tested
objects outside table AC production rules may be applied, it is quite natural
that production rules classify tested objects incorrectly. It results from the fact
that production rules were constructed on the basis of dependencies observed
between the attribute values of table AC , whereas in the extension of this table
these dependencies may not occur. Therefore, similarly to the case of classifiers
based on decision rules, while using production rules to classify objects, argu-
ments for and against the membership of the tested object to a given concept
should be taken into consideration. Obviously, such duality of arguments leads
to conflicts in classifying tested objects and these conflicts must be appropri-
ately resolved. In practice, it means that apart from production rules classifying
a tested object to a given concept C, also production rules classifying tested
objects to the complement of concept C should be taken into consideration. The
complement of a given concept may be treated as a separate concept C′ = U \C.
Production rules may also be generated for concept C′ with the help of Algo-
rithm 5.1. It requires, however, a suitable redefining layers of concepts C1,...,Ck

and sometimes using another ontology to approximate C′. As a result we obtain
table AC′ , which may serve generating production rules. Having production PC

generated for concept C and production PC′ for concept C′, the Algorithm 5.2
may be modified in such a way as to be able to resolve conflicts which may occur
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between production rules from PC and PC′ . In this paper, we propose the follow-
ing way of resolving these conflicts. If pC and pC′ are production rules chosen by
Algorithm 5.2 from productions PC and PC′ respectively, then the tested object
is classified to concept C only when the degree of certainty of classification by
pC is higher than the degree of certainty of classification by pC′ . Otherwise, the
tested object is classified to C′.

5.7 Approximate Reasoning Schemes

Both productions and production rules themselves are only constructed
for the two adjacent levels of ontology. Therefore, in order to use the whole
ontology fully there are constructed the so called approximate reasoning
schemes which are hierarchical compositions of production rules (see, e.g.,
[77, 89, 172, 188, 189, 190, 191, 192, 193]).

The synthesis of AR-scheme is carried out in a way that to a particular produc-
tion rule r lying on a lower hierarchical level of AR-scheme under construction
another production rule r′ on a higher level may be attached. However, this
may be done only if one of the concepts for which the pattern occurring in the
predecessor of r′ was constructed is the concept corresponding to the successor
pattern of the rule r. Additionally, it is required that the pattern occurring in a
rule predecessor from the higher level is a pattern superset occurring in a rule
successor from the lower level (in the sense of inclusion object sets matching
both patterns). To the two combined production rules some other production
rules can be attached (from above, from below or from the side) and in this way
a multilevel structure is made which is a composition of many production rules.

In Fig. 23 we have two productions. The target concept of the first production
is C5 and the target concept of the second production is the concept C3. We select
one production rule from the first production and one production rule from the
second production. These production rules are composed and then a simple AR-
scheme is obtained that can be treated as a new two-levels production rule.
Notice, that the target pattern of lower production rule in this AR-scheme is the
same as one of the source patterns from the higher production rule. In this case,
the common pattern is described as follows: inclusion degree (of some pattern)
to a concept C3 is at least “possibly YES”.

In this way, we can compose AR-schemes into hierarchical and multilevel
structures using productions constructed for various concepts. AR-scheme con-
structed in such a way can be used as a hierarchical classifier whose input is
given by predecessors of production rules from the lowest part of AR-scheme
hierarchy and the output is a successor of a rule from the highest part of the
AR-scheme hierarchy.

In this paper, there are proposed two approaches for constructing AR-schemes.
The first approach is based on determining productions for a given ontology with
the use of available data sets. Next, on the basis of these productions many AR-
schemes are arranged which classify objects to different patterns on different
ontology levels. All these productions and AR-schemes are stored in memory
and their modification and potential arrangement of new AR-schemes is possible.
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C5 ≥ ”possible YES” 

C5 ≥ ”rather YES” 

C1 ≥ ”possible YES”   C2 ≥ ”rather YES”    C4 ≥ ”possible YES”

C5 ≥ ”possible YES”

C1 ≥ ”possible YES”    C2 ≥ ”rather YES” 

C3 ≥ ”rather YES”  C4 ≥ ”possible YES” 

C3 ≥ ”possible YES”

C3 ≥ ”rather YES” 

C1 ≥ ”possible YES”    C2 ≥ ”possible” YES” 

C1 ≥ ”possible YES”    C2 ≥ ”rather YES” 

C1 ≥ ”rather YES”   C2 ≥ ”certainly YES” 

C5 ≥ ”certainly YES” 

C3 ≥ ”certainly YES”   C4 ≥ ”certainly YES”    C3 ≥ ”rather YES”    C4 ≥ ”possible YES” 

C3 ≥ ”certainly YES”    C4 ≥ ”rather YES” 

C5 ≥ ”possible YES”

AR-scheme 
as a new 

production
rule 

Production 
for C5

AR-scheme

C3 ≥ ”certainly YES”

Production 
for C3

Fig. 23. Synthesis of approximate reasoning scheme

Hence, if a certain tested object should be classified, it is necessary to search in
memory an AR-scheme appropriate for it and use it to classify the object. This
approach enables steering the object classification depending on the expected
certainty degree of the obtained classification. The drawback of this approach
is a need of a large memory with a quick access to production and AR-schemes
storage.

The second approach is based on a dynamic construction of AR-schemes.
It is realized in a way that only during tested object classification itself, hav-
ing been given different productions, an appropriate AR-scheme for classify-
ing this particular object is built. Hence, this approach does not require so
much memory as the previous approach. However, to its application we need the
method of production method selection in dynamic construction of AR-schemes
for tested object classification. A certain proposal of such a method is given by
Algorithm 5.2 which suggests selecting from production such a production rule
that recognizes the object, i.e., the object matches all patterns from the rule
predecessor and production pattern from the successor of such a rule is based
on a possibly highest layer, i.e., such a rule classifies the object possibly in the
most certain way.

However, similarly to the case of a single production rule one AR-scheme is
not yet a full classifier. That is why in practice there are many AR-schemes con-
structed for a particular concept which approximate different layers or
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concept regions. For example, on the basis of two productions from Fig. 23 three
AR-schemes may be created which we show in Fig. 24. Each of these schemes is
a classifier for one of production patterns constructed for the concept C5.

The possibility of creating many AR-schemes for one concept is of a great
practical significance, because tested objects may be classified to different pro-
duction patterns which enable to capture the certainty degree with regard to
membership of the tested object to the concept. For example, let us assume that
we constructed five AR-schemes for the concept CSD (safe driving) correspond-
ing to production patterns: CSD ≥ “certainly YES”, CSD ≥ “rather YES”,
CSD ≥ “possibly YES”, CSD ≥ “possibly NO” and CSD ≥ “rather NO”. If
a certain tested object is not classified by the AR-scheme constructed for the
CSD ≥ “certainly YES” pattern, then we cannot conclude with certainty that
this object is driving safely. However, what also should be checked is the fact
if this object is not classified by the ARscheme constructed for the CSD ≥
“rather YES” pattern (then we may conclude that the object rather drives
safely) or by the AR-scheme constructed by the CSD ≥ “possibly YES” pat-
tern (which means that the vehicle perhaps drives safely). Only if the tested
object is not classified by any of these three AR-schemes, we may conclude that
the tested object is not going safely. Then the question arises, how dangerously

C5 ≥ ”certainly YES” 

C5 ≥ ”rather YES” C5 ≥ ”possible YES” 

C3 ≥ ”certainly YES”    C4 ≥ ”certainly” YES” 

C3 ≥ ”certainly YES”    C4 ≥ ”rather YES” C3 ≥ ”rather YES”   C4 ≥ ”possible YES” 

C1 ≥ ”rather YES”   C2 ≥ ”certainly YES” 

C1 ≥ ”rather YES”   C2 ≥ ”certainly YES” C1 ≥ ”possible YES”   C2 ≥ ”rather YES” 

AR-scheme  
for pattern  

C5 ≥ ”possible YES” 

AR-scheme  
for pattern  

C5 ≥ ”rather YES” 

AR-scheme  
for pattern  

C5 ≥ ”certainly YES” 

Fig. 24. Three approximate reasoning schemes for concept C5
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that object is behaving? To solve this it should be checked if the object is clas-
sified by the AR-scheme constructed for the CSD ≥ “possibly NO” and then
CSD ≥ “rather NO” pattern. Only if none of these AR-schemes classifies the
object, we may conclude that the tested object certainly does not go safely.

It is worth noticing that similarly to the case of production rule, two cases
should be distinguished here: object classification by the AR-scheme and object
recognition by the AR-scheme. Object classification by the AR-scheme means
that the tested object belongs to all patterns lying at the bottom of the AR-
scheme and this object is classified to the pattern lying at the top of the AR-
scheme. However, not classifying the object means that the tested object does
not belong to at least one of the patterns lying at the bottom of the AR-scheme.
There is a third possibility that the tested object is not recognized by the AR-
scheme. This means that, relying on a given AR-scheme, it is not possible to
state that the tested object belongs to the pattern lying at the top of the AR-
scheme. This case concerns the situation when stratifying classifiers executing, in
practice, patterns lying at the bottom of the AR-scheme are not able to recognize
the tested object. In such a situation with regard to classifying the tested object,
there are two ways of procedure. Firstly, it may be acknowledged that the tested
object cannot be classified using available AR-schemes. However, this approach
frequently causes that the number unclassified objects is too large. Therefore,
in practice the other approach is applied which consists in trying to classify the
tested object with the AR-schemes classifying objects to patterns representing
smaller certainty of the concept belonging, counting on the fact that such AR-
schemes have a greater extension. The drawback of this approach is, however,
the fact that a false resulting in decrease of the certainty of the tested object’s
membership to the concept is possible. This difficulty may be greatly diminished
or even removed by applying, in the production pattern, such classifiers that
always or almost always classify objects.

It is worth noticing that similarly to the case of production rules, in the
case of using AR-schemes to construct classifiers, arguments for and against the
membership of the tested object to a given concept should be taken into consid-
eration. Thus, the obtained classifier will be able to serve effective classification
not only of tested objects from a given concept approximation table AC (see
Definition 15) but also to classify objects belonging to the extension of this table.
In practice it means that apart from AR-schemes which classify the tested object
to a given concept, also AR-schemes which classify tested objects to the com-
plement of this concept should be taken into consideration. Obviously, conflicts
occurring at this point in classification of tested objects should be appropriately
resolved, for instance like in the case of conflicts between production rules (see
Section 5.6).

5.8 Experiments with Data

To verify effectiveness of classifiers based on AR schemes, we have implemented
our algorithms in the AS-lib programming library. This is an extension of the
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RSES-lib programming library creating the computational kernel of the RSES
system (see Section 2).

The experiments have been performed on the data set obtained from the road
simulator (see Appendix A). Data set consists of 18101 objects generated by the
road simulator. We have applied the train and test method. The data set was
randomly divided into two parts: training and test ones (50% + 50%). In order
to determine the standard deviation of the obtained results each experiment was
repeated for 10 random divisions of the whole data set.

In our experiments, we compared the quality of two classifiers: RS and ARS.
For inducing RS we use RSES system generating the set of decision rules by
algorithm LEM2 (see Section 2.4) that are next used for classifying situations
from testing data. ARS is based on AR schemes.

During ARS classifier construction, in order to approximate concepts occur-
ring in ontology we used the LEM2 algorithm (see Section 2.4).

For production rule construction we used the expert method of stratifying
classifier construction (see Section 3.2). However, to classify objects using the
ARS classifier we used the method of dynamic construction of the AR-schemes
for specific tested objects (see Section 5.7).

We compared RS and ARS classifiers using the accuracy, the coverage, the
accuracy for positive examples (the sensitivity or the true positive rate), the
accuracy for negative examples (the specificity or the true negative rate), the
coverage for positive examples and the coverage for negative examples, the learn-
ing time and the rule set size (see Section 2.9).

Table 2 shows the results of the considered classification algorithms for the
concept Is the vehicle driving safely? (see Fig. 6). Together with the results we
present a standard deviation of the obtained results.

One can see that accuracy of algorithm ARS for the decision class NO is
higher than the accuracy of the algorithm RS for analyzed data set. The decision

Table 2. Results of experiments for the concept: Is the vehicle driving safely?

Decision class Method Accuracy Coverage Real accuracy
YES RS 0.977 ± 0.001 0.948 ± 0.003 0.926 ± 0.003

ARS 0.967 ± 0.001 0.948 ± 0.003 0.918 ± 0.003
NO RS 0.618 ± 0.031 0.707 ± 0.010 0.436 ± 0.021

ARS 0.954 ± 0.016 0.733 ± 0.018 0.699 ± 0.020
All classes RS 0.963 ± 0.001 0.935 ± 0.003 0.901 ± 0.003

(YES + NO) ARS 0.967 ± 0.001 0.937 ± 0.004 0.906 ± 0.004

Table 3. Learning time and the rule set size for concept: Is the vehicle driving safely?

Method Learning time Rule set size
RS 488 ± 21 seconds 975 ± 28

ARS 33 ± 1 second 174 ± 3
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class NO is smaller that the class Y ES. It represents atypical cases in whose
recognition we are most interested in (dangerous driving a vehicle on a highway).

Table 3 shows the learning time and the number of decision rules induced
for the considered classifiers. In the case of the algorithm ARS we present the
average number of decision rules over all concepts from the relationship diagram
(see Fig. 6).

One can see that the learning time for ARS is much shorter than for RS and
the average number of decision rules (over all concepts from the relationship
diagram) for ARS algorithm is much lower than the number of decision rules
induced for RS.

The experiments showed that classification quality obtained through classi-
fiers based on AR-schemes is higher than classification quality obtained through
traditional classifiers based on decision rules (especially in the case of the class
NO). Apart from that the time spent on classifier construction based on AR-
schemes is shorter than when constructing classical rule classifiers. Also, the
structure of a single rule classifier (inside the ARS classifier) is less complicated
than the structure of RS classifier (a considerably smaller average number of de-
cision rules). It is worth noticing that the the performance of the ARS classifier
is much more stable than the RS classifier because of the differences in data in
samples supplied for learning (e.g., to change the simulation scenario).

6 Behavioral Pattern Identification

An efficient complex dynamical systems monitoring very often requires
the identification of the so-called behavioral patterns or a specific type of
such patterns called high-risk patterns or emergent patterns (see, e.g.,
[93, 99, 100, 132, 138, 139, 140, 141, 142, 143, 144, 173, 174, 175, 176]). They are
complex concepts concerning dynamic properties of complex objects, dependent
on time and space and expressed in a natural language. Examples of behavioral
patterns may be overtaking on a road, behavior of a patient faced with a serious
life threat, ineffective behavior of robot team. These types of concepts are much
more difficult to approximate than complex concepts whose approximation does
not require following object changes over time and may be defined for unstruc-
tured or structured objects. Identification of some behavioral patterns can be
very important for recognition or prediction of behavior of a complex dynamical
system, e.g., some behavioral patterns correspond to undesirable behaviors of
complex objects. In this case we call such behavioral patterns as risk patterns
and we need some tools for identifying them. If in the current situation some risk
patterns are identified, then the control object (a driver of the vehicle, a medicine
doctor, a pilot of the aircraft, etc.) can use this information to adjust selected
parameters to obtain the desirable behavior of the complex dynamical system.
This can make it possible to overcome dangerous or uncomfortable situations.
For example, if some behavior of a vehicle that cause a danger on the road is
identified, we can try to change its behavior by using some suitable means such
as road traffic signalling, radio message or police patrol intervention. Another



594 J.G. Bazan

Classifier construction 
for behavioral patterns

Perception of 
behavioral patterns

Data sets

Domain knowledge
(e.g., ontology of concepts, 

behavioral pattern specification)

Networks of 
classifiers

System 
behavior view

Data logging 
by sensors

Intervention 
by special tools

Control
module

Complex 
dynamic 
system

Fig. 25. Complex dynamical systems monitoring using behavioral patterns

example can be taken from medical practice. A very important element of the
treatment of the infants with respiratory failure is appropriate assessment of the
risk of death. The appropriate assessment of this risk leads to the decision of
particular method and level of treatment. Therefore, if some complex behavior
of an infant that causes a danger of death is identified, we can try to change its
behavior by using some other methods of treatment (may be more radical) in
order to avoid the infant’s death (see Section 6.26).

In the Fig. 25 a scheme of complex dynamical system monitoring with the help
of behavioral patterns is presented. This monitoring takes place in the following
way. At the beginning, as a result of complex dynamical system observation,
there are registered data sets describing changing over time parameter values of
complex objects occurring in the system under observation. For a given com-
plex dynamic system domain knowledge is gathered concerning, among others,
complex behaviors of objects occurring in this system. Next, classifier nets are
constructed on the basis of this knowledge and gathered data sets which en-
able perception of these patterns’ behaviors whose detection is crucial for the
correct functioning of the complex dynamical system. Identification of such pat-
terns enable to find out important facts about the current system situation. This
knowledge may be used by a control module which may perform a sequence of in-
tervening actions aiming at restoring or maintaining the system in a safe, correct
or convenient condition. Moreover, during complex dynamical systems monitor-
ing data sets may still be collected. On the basis of these data sets a classifier
structure identifying behavioral patterns is updated. This enable a certain type
of adaptation of applied classifiers.
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In this section a methodology of complex object’s behavior monitoring is
proposed which is to be used for approximating behavioral patterns on the basis
of data sets and domain knowledge.

6.1 Temporal Information System

The prediction of behavioral patterns of a complex object evaluated over time is
usually based on some historical knowledge representation used to store informa-
tion about changes in relevant futures or parameters. This information is usually
represented as a data set and has to be collected during long-term observation
of a complex dynamical system (see, e.g., [173, 174, 175, 176, 316, 318]). For
example, in the case of road traffic, we associate the object-vehicle parameters
with the readouts of different measuring devices or technical equipment placed
inside the vehicle or in the outside environment (e.g., alongside the road, in a
helicopter observing the situation on the road, in a traffic patrol vehicle). Many
monitoring devices serve as informative sensors such as Global Positioning Sys-
tem (GPS), laser scanners, thermometers, range finders, digital cameras, radar,
image and sound converters (see, e.g., [97, 153]). Hence, many vehicle features
serve as models of physical sensors. Here are some exemplary sensors: location,
speed, current acceleration or deceleration, visibility, humidity (slipperiness) of
the road. By analogy to this example, many features of complex objects are
often dubbed sensors. It is worth mentioning, that in the case of the treatment
of infants with respiratory failure, we associate the object parameters (sensors)
mainly with values of arterial blood gases measurements and the X-ray lung
examination.

Data sets used for complex object information storage occurring in a given
complex dynamical system may be represented using information systems (see,
e.g., [318]). This representation is based on representing individual complex ob-
jects by object (rows) of information system and information system attributes
represent the properties of these objects. Because in a complex dynamical sys-
tem there may occur many different complex objects, the storing of information
about individual complex object identifiers is necessary. This information may
be represented by the distinguished information system attribute which we mark
by aid. For convenience of the further discussion (see Algorithm 6.2) we assume
that the set of values of the aid attribute is linearly ordered. Therefore, the aid

attribute must be enriched by the relation ordering the set of values of this at-
tribute in a linear order. Apart from that, it should be remembered that the
complex objects occurring in complex dynamical systems change over time and
their properties (object states) should be registered at different time instants (in
other words time points). Hence, it is also necessary to store together with the
information about a given object an identifier of time in which these properties
are registered. This information may also be represented by the distinguished
information system attribute which we mark as at. Because we assume that the
identifiers of a time point are linearly ordered, then attribute at must be enriched
by a relation ordering the set of values of this attribute in a linear order.
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Hence, in order to represent complex object states observed in complex dy-
namical systems, the standard concept of information system requires extension.
Therefore, we define a temporal information system [318].

Definition 19 (A temporal information system).

1. A temporal information system is a six-element tuple:

T = (U, A, aid,≤aid
, at,≤at), where:

(a) (U, A) is an information system,
(b) aid, at are distinguished attributes from the set A,
(c) ≤aid

is a relation of linear order on the set Vaid
,

(d) ≤at is a relation of linear order on the set Vat .
2. About an object u ∈ U we say that it represents the current parameters of

the complex object with identifier aid(u) at time point at(u) in the temporal
information system T.

3. About an object u1 ∈ U we say that it precedes an object u2 ∈ U in the
temporal information system T if and only if

u1 	= u2 ∧ aid(u1) = aid(u2) ∧ at(u1) ≤at at(u2).

4. About an object u2 ∈ U we say that it follows an object u1 ∈ U in the
temporal information system T if and only if u1 precedes u2.

5. About an object u ∈ U we say that it is situated between objects u1, u2 ∈ U
in the temporal information system T if and only if u1 precedes u and u
precedes u2.

A typical example of a temporal information system is an information system
whose objects represent vehicles’ states at different instants of their observation.

Example 18. Let us have temporal information system T = (U, A, aid, ≤aid
,

at, ≤at) whose objects represent vehicles’ states at different instants of their
observation. Attributes from the set A describe sensor parameters of the vehicle
at individual instants (e.g., speed, location, lane, etc.). The distinguished aid

attribute is a unique number identifier of each vehicle, registered in the system
T. The at attribute represents the number of time units (e.g., seconds) which
have elapsed since the starting moment of all vehicles’ observation. However, the
relations ≤aid

and ≤at are common relations ≤ on the set of natural numbers.
�

6.2 Representing Spatial Properties Using Concepts

In the presented approach the first step to identify the behavior of complex
objects changing over time is representing and recognizing spatial properties of
complex objects, that is, those which concern a certain chosen time point and
their recognition does not require observing complex object changes over time.
One of the most popular ways to represent these properties is representing them
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using concepts. Each concept introduces the partitioning the sets of objects into
two classes, that is, the class of these objects which belong to the concept and
at the same time satisfy the property connected with the concept and the class
of objects not belonging to the concept and at the same time not satisfying the
property connected with the concept. If complex objects changing over time are
represented using temporal information systems, then the concepts representing
these objects’ properties may be defined using attributes available in this sys-
tem. The language of defining such concepts may be for example the language
GDL(T) (see Definition 5) where T is a temporal information system. Using
this language spatial properties of complex objects may be observed at single
time points. They may be for example, such concepts as: low vehicle speed, high
body temperature, considerable turn or dangerous inclination of a robot.

Another language allowing to define properties of complex objects is a lan-
guage of elementary changes of object parameters using information about how
at a given time instant the values of the elementary parameters of the com-
plex object changed in relation to the previous observation of this object (see
[88, 173, 174, 175, 176, 178]). This property defining language is very useful
when we wish to observe complex object parameters in relation to their previous
observation. Examples of such properties may be: increasing or decreasing the
speed of the vehicle, moving the vehicle towards the right lane, the increasing the
patient’s body temperature.

However, the use of the two above mentioned languages for defining proper-
ties of complex objects is possible only when the concepts being defined can be
defined using formulas which use attribute values representing the current or
previous value of the complex object’s parameter. In practice, formulas of this
type may be defined by experts on the basis of domain knowledge. However, an
expert is often not able to give such an accurate definition of the concept. For ex-
ample, the concept expressed using an expert’s statement that the vehicle speed
is low is difficult to be described without additional clues using a formula of the
language GDL based on sensor attributes, although intuitively the dependence
of this concept on the sensor attributes does not raise any doubt. Similarly, an
expert’s statement that the patient’s body temperature has fallen slightly since
the last observation is difficult to be formally described without additional clues,
using the language of elementary changes of the complex object parameters (in
this case the complex object is a treated patient). Meanwhile, in everyday life
we often use such statements. Therefore, in the general case describing concepts
concerning complex object properties requires the approximation of these con-
cepts with the help of classifiers. This approximation may take place on the
basis of a decision table whose conditional attributes are attribute arrangement
from a given information system, while the decision attribute values given by
the expert (on the basis of domain knowledge) describe the membership of the
objects of the table under construction to the concept being approximated. The
classifier constructed for such a table allow to test the membership of any object
to the concept being approximated.
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6.3 Temporal Information System Based on Concepts

If we decide to represent complex object properties using concepts, then a spe-
cific type of temporal information system is necessary which we call a temporal
information system based on concepts.

Definition 20 (A temporal information systems based on concepts). A temporal
information system T = (U, A, aid, ≤aid

, at, ≤at) we call a temporal information
system based on concepts (c-temporal information system or a c-system), if all
attributes from the set A apart from the aid and at attributes are attributes
representing concepts determined in the set of objects U .

Each attribute of c-system (apart from the aid and at attributes) is then a binary
attribute (taking two values). In this paper, we assume that they are 1 and 0
values, with 1 symbolizing the membership of the objects to the concept and 0
symbolizing the membership of the object to the concept complement.

Data sets gathered for complex dynamical systems and represented using tem-
poral information systems usually contain continuous attributes, that is, ones
with a large number of values which we often associate with different sensor
indications. Therefore, if we wish to use c-systems for learning complex behavior
of objects changing over time, then at the beginning of the learning process a
c-system must be constructed on the basis of the available temporal informa-
tion system. In order to do this a family of concepts must be defined which
replaces all attributes (apart from the aid and at attributes) of the original tem-
poral information system. It is also necessary to construct a family of classifiers
which approximate concepts from the defined family of concepts. These classi-
fiers serve as replacements of the attributes of the input system with the c-system
attributes. Such an operation are called the c-transformation.

Definition 21. Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at) is a temporal information system,

– C1, ..., Ck is a family of concepts defined on U ,
– µ1, ..., µk are a family of classifiers approximating concepts C1, ..., Ck based

on the chosen attributes from set A \ {aid, at}.

1. An operation of changing the system T to a c-system

Tc = (U, Ac, aid,≤aid
, at,≤at)

is called a c-transformation of the system T, if Ac = {aid, at, c1, ..., ck} and
for any u ∈ U : ci(u) = µi(u), for i = 1, ..., k;

2. The C-system Tc is called a result of c-transformation of the system T.

Now, we present the c-transformation algorithm for the temporal information
system (see Algorithm 6.1). Performance of this algorithm is based on construct-
ing a new information system which apart from attributes aid and at has all the
attributes based on the previously defined concepts.
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Algorithm 6.1. C-transformation
Input:
1. temporal information system T = (U, A, aid, ≤aid

, at, ≤at) such that
U = {u1, ..., un},

2. family of concepts C1, ..., Ck defined in the set U ,
3. family of classifiers µ1, ..., µk approximating concepts C1, ..., Ck on the

basis of attributes from the set A \ {aid, at}.

Output: The C-system Tc = (U, Ac, aid,≤aid
, at,≤at) such that

Ac = {aid, at, c1, ..., ck}, where attributes c1, ..., ck represent
concepts C1, ..., Ck

begin1

Create an empty information system Tc which has attributes2

aid, at, c1, ..., ck where attributes aid and at are of the identical
type as their counterparts in system T and attributes c1, ..., ck are
binary attributes // Tc is without any objects for the
time being

for i := 1 to n do3

Create an empty list of values L.4

Add aid(ui) to the list L.5

Add at(ui) to the list L.6

for j = 1 to k do7

Add µj(ui) to the list L.8

end9

Add new object represented by values from L to the system Tc.10

end11

return Tc12

end13

With the assumption that each of the classifiers µ1, ..., µk can classify an
object within the time of order O(C), where C is a certain constant, then the
time complexity of the above algorithm is of order O(n · k), where n = card(U)
and k is the number of concepts used for constructing the attributes.

Example 19. Let us take into consideration the temporal information system
such as the one in Example 18. In such a system there may occur many con-
tinuous attributes like: the speed of the vehicle, the location of the vehicle with
regard to the crossroads, the location of the vehicle with regard to the left and
right lane, visibility and others. Therefore, this system, before being used in or-
der to approximate temporal concepts, requires c-transformation which has to
be executed on the basis of the established concepts. Also, classifiers for these
concepts which were constructed earlier with the use of attributes from a given
system are necessary. They may be, for example, the following concepts:
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1. low (average, high) vehicle speed (approximation using the attribute: speed),
2. increasing (decreasing, maintaining) the vehicle speed in relation to the pre-

vious time point (approximation using attributes: speed and speed in the
previous time point),

3. high (average, low) distance from the crossroads (approximation using the
attribute: distance from the crossroads),

4. driving in the right (left) lane (approximation using the attribute: the loca-
tion of the vehicle with regard to the left and right lane),

5. small movement of the vehicle towards the left (right) lane (approximation
using attributes: the location of the vehicle with regard to the left and right
lane and the location of the vehicle with regard to the left and right lane in
the previous time point),

6. location of the vehicle at the crossroads (symbolic attribute moved from the
initial system),

7. good (moderate, bad) visibility on the road,
8. high humidity (low humidity, lack of humidity) of the road.

After performing the c-transformation, the temporal information system from
Example 18 is already a c-temporal information system, that is, apart from aid

and at attributes all of its attributes are binary ones representing concepts. �

Let us notice that the concepts applied during the c-transformation are usually
constructed using discretization of chosen continuous attributes of a given infor-
mation system performed manually by the expert. Obviously, this discretization
may also be performed with the use of automatic methods (see Section 2.2).

6.4 Time Windows

The concepts concerning properties of unstructured complex objects at the cur-
rent time point in relation to the previous time point are a way of representing
very simple behaviors of the objects. However, the perception of more complex
types of behavior requires the examination of behavior of complex objects over
a longer period of time. This period is usually called the time window (see, e.g.,
[173, 174, 175, 176, 316, 318]), which is to be understood as a sequence of objects
of a given temporal information system registered for the established complex
object starting from the established time point over the established period of
time or as long as the expected number of time points are obtained. Therefore,
learning to recognize complex types of behavior of complex objects with use
of gathered data as well as the further use of learned classifiers to identify the
types of behavior of complex objects, requires working out of the mechanisms
of extraction of time windows from the data and their properties. That is, why
we need the language of extraction of time windows from the c-system which we
are about to define.

Definition 22 (A language for extracting time windows). Let T = (U, A, aid,
≤aid

, at, ≤at) be a c-temporal information system and let Z2 be the set of integer
numbers equal or greater than 2. A language for extracting time windows from
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system T (denoted by ETW (T) or ETW -language, when T is fixed) is defined
in the following way:

• the set ALETW (T) = Vaid
∪ Vat ∪ Z2 ∪ {“, ”} is called an alphabet of

the language ETW (T),
• the set of atomic formulas of the language ETW (T) is defined as a set of
three-element tuples in the following form: (i, b, s), where i ∈ Vaid

, b ∈ Vat

and s ∈ Z2.

Now, we determine the semantics of the language ETW (T). The language
ETW (T) formulas may be treated as the descriptions of object sequences oc-
curring one after another in system T.

Definition 23. Let T = (U, A, aid, ≤aid
, at, ≤at) be a c-temporal information

system. A satisfiability of an atomic formula φ = (i, b, s) ∈ ETW (T) by an
object u ∈ U from T (denoted by u |=ETW (T) φ), is defined in the following way:

u |=ETW (T) (i, b, s)⇔

aid(u) = i ∧ card({x ∈ U : x precedes u ∧ b ≤at at(x)}) < s.

Let us notice that an object u ∈ U satisfies a formula φ = (i, b, s) ∈ ETW (T)
iff the following two conditions are satisfied:

1. the identifier of the object u is equal i,
2. the number of objects registered since b to at(u) is less than s.

Formulas of the language ETW describe sets of objects which we call time
windows.

Definition 24 (A time window). Let T = (U, A, aid, ≤aid
, at, ≤at) be a c-

temporal information system.

1. A time window in the c-temporal information system T is a set |φ|ETW (T),
where φ ∈ ETW (T).

2. The family of all time windows from the c-temporal information system T
is denoted by TW (T).

3. If W ∈ TW (T) then the number card(W ) is called a length of time window
W and is denoted by Length(W ).

4. The family of all time windows from the c-temporal information system T
with length equals to s is denoted by TW (T, s).

Because according to the definition of semantics of the language ETW (T) the el-
ements of each time window W ∈ TW (T, s) are linearly ordered by relation ≤at ,
then each time window may be treated as an ordered sequence W = (u1, ...., us)
of objects from set U . Additionally each i-th object of time window W we mark
with W [i], where i ∈ {1, ..., s}.

Here is an example of extraction of the time window from the c-temporal
information system.
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Example 20. Let us consider c-system T = (U, A, aid, ≤aid
, at, ≤at) whose ob-

jects represent the states of vehicles at different time points. The attributes from
set A describe concepts representing sensor properties of vehicle parameters at
individual points (e.g., high velocity, small acceleration, etc.). The distinguished
attribute aid is a unique identifier of each vehicle and attribute at represents
the observation time registered in a given object of system T. To simplify mat-
ters let us assume that the values of attributes at and aid are natural numbers.
Let us consider the vehicle with identifier 5 for which one hundred time points
have been registered in the system from the time point with identifier 11 to the
time point with identifier 109. For this vehicle we could, for example, isolate a
time window defined by formula (5, 20, 31) which represents the behavior of the
vehicle from the time point marked 20 to the time point marked 50. �

6.5 Temporal Concepts

More complex types of behavior of complex objects may be defined using time
widows over complex concepts which we call temporal concepts. We assume
that temporal concepts are specified by a human expert. Temporal concepts
are usually used in queries about the status of some objects in a particular
time window. Answers to such queries can be of the form Y es, No or Does not
concern. For example, in the case of road traffic one can define complex concepts
such as Is a vehicle accelerating in the right lane?, Is a vehicle speed stable while
changing lanes?, or Is the speed of a vehicle in the left lane stable?.

Intuitively, each temporal concept (defined on the time window) depends on
object properties observed at some time points. At the same time we mean both
spatial properties, that is, properties registering the spatial value of the complex
object parameter observed at the time point, e.g., the left driving lane of the
vehicle, high speed of the vehicle, low the patient’s body temperature) as well as
the properties describing elementary changes of complex object parameters in
relation to the previous observation of this object (e.g., increasing or decreas-
ing the speed of the vehicle, small move of the vehicle towards the right lane,
the increasing the patient’s body temperature). Such simple concepts we call el-
ementary concepts. Usually it is possible to provide the ontology which shows
a dependence between a temporal concept and some elementary concepts. For
example, the temporal concept accelerating and changing lanes from right to left
depends on such elementary concepts as high speed, low speed, increasing speed,
decreasing speed, small move of the vehicle towards the left lane.

6.6 Temporal Patterns

It would seem that temporal concepts as concepts on the higher hierarchical level
of ontology may be approximated using elementary concepts which are on the
lower ontology level (see Section 6.5). It is sufficient to build a concept approx-
imation table for the approximated concept. However, during the construction
of such a table we encounter a serious problem resulting from the difference in
meaning (semantical difference) of objects being examples and counterexamples
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of concepts on both ontology levels. Therefore, concepts on the lower ontology
level are defined for time points, while temporal concepts on the higher ontology
level are determined on time windows. In other words the observations of objects
at time points are examples and counterexamples for concepts on the lower on-
tology level. However, the objects which are examples and counterexamples for
temporal concepts are the observations of complex objects registered over time
windows, that is, sequences of object observations from time points. For this
reason we cannot apply here the construction method of conditional attributes
from Section 5.1 which is based on the language PEC, since that method re-
quired for the concepts existing on both ontology levels to concern the same type
of objects.

That is why to define the attributes which approximate temporal concepts we
need to introduce a different language which can make it possible to transfer the
spatial properties of complex objects registered at time points onto the property
level of complex objects over the time window. In this paper, for this purpose
we propose a language for definnig features of time windows.

Definition 25 (A language for definnig features of time windows). Let T =
(U, A, aid, ≤aid

, at, ≤at) be a c-temporal information system. A language for
definnig features of time windows of c-temporal information system T (denoted
by FTW (T) or FTW -language, when T is fixed) is defined in the following way:

• the set ALFTW (T) = (A \ {aid, at}) ∪ {ExistsPoint, EachPoint,
MajorityPoints, MinorityPoints, FirstPoint, LastPoint, OrderPoints}
∪ {¬,∨,∧} is an alphabet of the language FTW (T),
• for any a, b ∈ A \ {aid, at} expressions of the form ExistsPoint(a),
EachPoint(a), MajorityPoints(a), MinorityPoints(a), FirstPoint(a),
LastPoint(a), OrderPoints(a, b) are atomic formulas of the language
FTW (T).

Now, we determine the semantics of the language FTW (T). The formulas of the
language FTW (T) may be treated as the descriptions of time windows in system
T. For example, the formula ExistsPoint(a) is interpreted as the description of
all those time windows of system T in which such an object u has been observed
that a(u) = 1. Thus, we observed an object belonging to the concept represented
by attribute a. Time windows may be described by different formulas, however,
for formula φ to have sense in system T, that is, to be semantically correct in
the language FTW (T), there has to exist at least one time window which is
described by formula φ. For such a window we say that it satisfies formula φ.

Definition 26. Let T = (U, A, aid, ≤aid
, at, ≤at) be a c-information system

and let s be a length of time windows. The satisfiability of an atomic formula
φ ∈ FTW (T) by a time window W ∈ TW (T, s) (denoted by W |=FTW (T) φ), is
defined in the following way:

1. W |=FTW (T) ExistsPoint(a)⇔ exists u ∈ W such that a(u) = 1,
2. W |=FTW (T) EachPoint(a)⇔ for any u ∈ W is satisfied a(u) = 1,
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3. W |=FTW (T) MajorityPoints(a)⇔

card({u ∈ W : a(u) = 1}) > /(Length(W )− 1)/20,

4. W |=FTW (T) MinorityPoints(a)⇔

card({u ∈ W : a(u) = 1}) < ((Length(W )− 1)/2),

5. W |=FTW (T) FirstPoint(a)⇔ a(W [1]) = 1,
6. W |=FTW (T) LastPoint(a)⇔ a(W [s]) = 1,
7. W |=FTW (T) OrderPoints(a, b) ⇔ exist i, j ∈ {1, ..., s} such that:

i < j ∧ a(W [i]) = 1 ∧ b(W [j]) = 1.

It is worth noticing that the formulas of the language FTW (T) may not only
be satisfied by time windows from the set TW (T) but also by time windows of
the set TW (T′) where T′ is a temporal information system with an extended
set of objects in relation to system T.

Below we present several examples of formulas of the language FTW .

– If attribute a stores information about membership to the concept of low
speed, then formula EachPoint(a) describes a time window in which the
vehicle’s speed is low all the time.

– If attribute a stores information about membership to the concept of accel-
erating, then formula ExistsPoint(a) describes time windows in which the
vehicle happened to accelerate.

– If attribute a1 stores information about membership to the concept of accel-
erating and attribute a2 stores information about membership to the concept
of driving in the right lane, then formula ExistsPoint(a1) ∧ EachPoint(a2)
describes the time window in which the vehicle happened to accelerate and
the whole time drive in the right lane.

It is worthwhile mentioning that the language FTW defined above should be
treated as an exemplary language for defining features of time windows, which
has been used in experiments related to this paper. Obviously, it is possible to
define many other languages of this type.

The FTW language formulas can be used to define patterns describing the
properties of time windows, therefore, we call them temporal patterns.

Definition 27 (A temporal pattern). Let T = (U, A, aid, ≤aid
, at, ≤at) be a

c-temporal information system. Any formula of the language FTW (T) is called
a temporal pattern of the system T.

Temporal patterns are often used in queries with binary answers such as Yes or
No. For example, in the case of road traffic we have exemplary temporal patterns
such as Did vehicle speed increase in the time window?, Was the speed stable in
the time window?, Did the speed increase before a move to the left lane occurred?
or Did the speed increase before a speed decrease occurred?.

We assume that any temporal pattern ought to be defined by a human expert
using domain knowledge accumulated for the given complex dynamical system.
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Fig. 26. The scheme of an information system of time windows

6.7 Information System of Time Windows

The properties of the accessible time windows could be represented in a special
information system which is called an information system of time windows (see
also Fig. 26).

Definition 28 (An information system of time windows). Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at) is a c-temporal information system,

– s is a fixed length of time windows such that 1 < s ≤ card(U),
– Φ = {φ1, ..., φk} ⊆ FTW (T) is a family of temporal patterns defined by

experts (sub-language of the language FTW (T)),
– PFTW = (U, Φ, |=FTW (T)) is a property system, where U = TW (T, s).

The information system T = (U, A) defined by the property system PFTW is
called an information system of time windows (TW -information system).

Apparently, construction system T requires generating the family of all time
windows of established duration. Therefore, below we present the algorithm for
generating all time windows of established duration (length) from a given c-
system (see Algorithm 6.2).

On account of sorting objects in system T, pessimistic time complexity of
Algorithm 6.2 is of order O(n · log n), where n is the number of objects in the
system T.

Example 21. For the c-temporal information system from Example 19 an infor-
mation system of time windows may be constructed. In order to do this, we
may use for example temporal patterns chosen from the following collection of
patterns:

1. low (moderate, high) vehicle speed at the first point (at the last point, at
any point, at all points, at the minority of points, at the majority of points)
of the time window,

2. low (moderate, high) maximal (minimal, average) speed of vehicle at the
time window,
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Algorithm 6.2. Generating all time windows
Input:
– temporal information system T = (U, A, aid, ≤aid

, at, ≤at) such that
U = {u1, ..., un},

– fixed length s of time windows such that 1 < s ≤ n.
– relation of linear order ≤{aid,at} defined on U × U in the following way:

∀(u1, u2) ∈ U × U : u1 ≤{aid,at} u2 ⇔ u1 ≤aid
u2 ∧ u1 ≤at u2.

Output: The set of time windows TW (T, s)
begin1

Create empty list TW of windows2

Sort set U using relation ≤{aid,at}3

Create empty list window of objects from the set U4

currentID := aid(u1)5

Insert u1 to the list window6

for i := 2 to n do7

if (aid(ui) = currentID) then8

if (Length(window) < s) then9

Add ui to the end of the list window10

else11

Remove the first object from the list window12

Add ui to the end of the list window13

Add window to family TW14

end15

else16

Clear the list window17

currentID := aid(ui)18

Insert ui to the list window19

end20

end21

return TW22

end23

3. increasing (decreasing, maintaining) the speed of the vehicle (at the last
point, at any point, at all points, at the minority of points, at the majority
of points) of the time window,

4. low speed (moderate speed, high speed, increasing speed, decreasing speed,
maintaining speed) in the time window before high speed (moderate speed,
low speed, increasing speed, decreasing speed, maintaining speed) in the
further part of the time window,

5. low (moderate, high) distance of the vehicle from the crossroads at the first
point (at the last point, at any point, at all points, at the minority of points,
at the majority of points) of the time window,



Hierarchical Classifiers for Complex Spatio-temporal Concepts 607

6. driving in the right (left) lane at the first point (at the last point, at any
point, at all points, at the minority of points, at the majority of points) of
the time window,

7. a slight turn towards the left (right) lane at the first point (at the last point,
at any point, at all points, at the minority of points, at the majority of
points) of the time window,

8. the location of the vehicle at the crossroads at the first point (at the last
point, at any point, at all points, at the minority of points, at the majority
of points) of the time window,

9. good (moderate, bad) visibility at the first point (at the last point, at any
point, at all points, at the minority of points, at the majority of points) of
the time window,

10. high humidity (low humidity, lack of humidity) of the road at the first point
(at the last point, at any point, at all points, at the minority of points, at
the majority of points) of the temporal.

It is easy to notice that each of the above patterns may be expressed in language
FTW . �

The choice of specific patterns for the construction of the information system of
time windows should depend on the concept which is to be approximated with
the help of this system, obviously after performing the grouping (clustering) of
objects (see Section 6.9).

6.8 Clustering Time Windows

The properties of time windows expressed by temporal patterns could be used
for approximating temporal concepts which express more complex properties
of time windows. However, it often happens that the objects of the informa-
tion system of time windows (that is, system T) are not yet sufficient to use
their properties for approximating temporal concepts. It is so due to the fact
that there are too many of those objects and the descriptions of time windows
which they represent are too detailed. Hence, if they are used for approximat-
ing temporal concepts, then the extension of the created classifier would be too
small, which means that the classifier could classify too small number of tested
objects.

Therefore, in this paper we use clustering (grouping) such objects which leads
to obtaining a family of object clusters (clusters of time windows). From the
general view point the grouping objects is always done using the language chosen
by an expert and it is based on the fact that the clusters of objects are represented
using formulas (patterns) defined in the language of grouping. Thanks to those
patterns not only the objects of a given system are grouped but it is also possible
to examine membership of other (tested) objects to individual clusters. Namely,
we may say about the tested object that it belongs to the cluster when it satisfies
the pattern describing this cluster.
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In this paper, we propose the language NL(T) (neighborhood language) (see
Definition 8) for grouping objects of system T = (U, A). The application of this
language for object grouping requires defining the two following elements:

1. the dissimilarity function DISMT of object pairs in the information system
T (see Definition 7),

2. the family of formulas included in the set NL(T) which defines clusters of
objects in system T (see Definition 8).

We define the dissimilarity function using a dissimilarity classifier µDISMT
ap-

proximating it which is constructed for the dissimilarity table carefully specified
by the expert.

However, defining the family of formulas included in NL(T), which defines
clusters of objects in system T, requires the introduction of a subset of objects
of system T which are centers (generators) of clusters being created and the se-
quence of radiuses corresponding to them and limiting the clusters. Each atomic
formula of the language NL(T) is, therefore, expression (u, ε) (where u ∈ U and
ε ∈ (0, 1]), and at the same time such a formula encompasses all the objects
for which the value of the dissimilarity function DISMT in relation to object
u does not exceed value ε. Therefore, meanings of such formulas are in a sense
neighborhoods of the objects membership to U .

Algorithm 6.3. Clustering objects from an information system of time
windows (version 1)

Input:
– information system of time windows T=(U, A) such that U={u1, . . . , un},
– dissimilarity function DISMT of object pairs in the system T,
– deviation from standards ε.

Output: The family of formulas F ⊆ NL(T) defining clusters in the
system T

begin1

F := ∅2

for i := 1 to n do3

Compute a neighborhood N(ui) = {u ∈ U : DISMT(ui, u) ≤ ε}4

end5

Sort the set U in descending order // By sizes of neighborhoods6

computed in the previous step
repeat7

Take object u ∈ U such that its neighborhood is maximal8

F := F ∪ (u, ε)9

U := U \N(u)10

until U 	= ∅11

return F12

end13
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The choice of the centers of those neighborhoods in order to construct formu-
las defining clusters should not be made at random. Objects being the centers of
neighborhoods are called standards whereas the radiuses of neighborhoods devi-
ations from the standards (see, e.g., [89]). Both the standards and the deviations
from them could be provided by experts. However, if this is for some reason diffi-
cult, there could be applied methods of determining standards and the deviations
from them known from literature. It should be noted that in contemporary lit-
erature methods of this kind are often called granulation methods and the neigh-
borhoods are called granules (see, e.g., [89, 90, 91, 317, 319, 320, 321, 322, 323]).

In this paper, we propose the following clustering algorithm for automatic
generation of object clusters, which is very similar to the algorithm presented in
paper [165]. This algorithm is a greedy algorithm which initially chooses the ob-
ject which has the biggest neighborhood and removes from the set being covered
objects belonging to this neighborhood, thus choosing another neighborhood
until it covers the whole set of objects (see Algorithm 6.3).

On the account of calculation of the neighborhoods for all the objects from
set U , the computational time complexity of Algorithm 6.3 is of order O(n2). In
the case of bigger tables it may hinder or even make it impossible to effectively
use this algorithm. Therefore, we also present a random version of the above
algorithm (see Algorithm 6.4 and [165]).

As it can be observed, Algorithm 6.4 is in practice significantly faster in rela-
tion to Algorithm 6.3 because it does not require determining neighborhoods for
all the objects from set U , but only for the objects chosen randomly from set U .

Algorithm 6.4. Clustering objects from an information system of time
windows (version 2)

Input:
– information system of time windows T =(U, A) such that U ={u1, ..., un},
– dissimilarity function DISMT of object pairs in the system T,
– deviation from standards ε.

Output: The family of formulas F ⊆ NL(T) defining clusters in the
system T

begin1

F := ∅2

repeat3

Randomly select u ∈ U4

Compute a neighborhood N(u) = {v ∈ U : DISTT(u, v) ≤ ε}5

F := F ∪ (u, ε)6

U := U \N(u)7

until U 	= ∅8

return F9

end10
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From the formal viewpoint, clusters of time windows are defined using the
language ECTW .

Definition 29 (A language for extracting clusters of time windows). Let us
assume that:

– T = (U, A, aid, ≤aid
, at, ≤at) is a c-temporal information system,

– T = (U, A) is information system of time windows for the system T.

Any neighborhood language NL(T) is called a language for extracting clusters
of time windows from system T (denoted by ECTW (T) or ECTW -language,
when T is fixed).

The formulas of the language ECTW describe clusters of time windows from
the temporal information system.

Definition 30 (A cluster of time windows). Let T = (U, A, aid, ≤aid
, at, ≤at)

be a c-temporal information system. The meaning any formula φ ∈ ECTW (T)
is called a cluster of time windows from the system T.

In the example below we illustrate how the dissimilarity function may be defined
for the time windows grouping.

Example 22. For the information system of time windows obtained in
Example 21, a dissimilarity function may be constructed on the basis of ex-
pert knowledge. In order to do this, the value of the dissimilarity function for
a certain (the most representative set of object pairs of this system) should be
obtained from the experts. To make it happen, the expert should know what
temporal concept is approximated using clusters obtained with the help of cur-
rently defined dissimilarity function (see Section 6.9). Let us assume that it is
the concept accelerating in the right lane. In terms of this concept the expert
may immediately define several vehicle groups which behave very similarly, that
is, vehicles being in one of such groups, in terms of the dissimilarity function
being constructed, should not differ too much. For example, they may be the
following vehicle groups:

A. vehicles which accelerate in a given time window but they do it with a smaller
or bigger intensity,

B. vehicles which accelerate in a given time window, however, they do not do it
in a continuous manner, sometimes maintaining stable speed but they never
decrease it,

C. vehicles which in a given time window increase, decrease or at times maintain
stable speed,

D. vehicles which decrease speed in a given time window but they do it with a
smaller or bigger intensity.

In Table 4, values of chosen attributes (temporal patterns) are presented for
objects u1, u2, u3, u4, and u5 of a certain information system of time windows.
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Table 4. Exemplary objects of some TW-information system

No Temporal patterns u1 u2 u3 u4 u5

1. High speed of the vehicle at the first point of the
time window

0 0 0 0 1

2. Moderate speed of the vehicle at the first point of
the time window

0 0 0 1 0

3. Low speed of the vehicle at the first point of the
time window

1 1 1 0 0

4. Increasing the speed of the vehicle at all points of
the time window

1 1 0 0 0

5. Increasing the speed of the vehicle at some point
of the time window

1 1 1 1 0

6. Maintaining stable speed of the vehicle at all
points of the time window

0 0 0 0 0

7. Maintaining stable speed of the vehicle at some
time window point

0 0 1 1 0

8. Decreasing speed of the vehicle at all points of
the time window

0 0 0 0 1

9. Decreasing speed of the vehicle at some point of
the time window

0 0 0 1 1

10. High speed of the vehicle at the last point of the
time window

0 1 0 1 0

11. Moderate speed of the vehicle at the last point of
the time window

1 0 1 0 0

12. Low speed of the vehicle at the last point of the
time window

0 0 0 0 1

It is easy to notice that object u1 belongs to the group of vehicles A and does
not belong to the groups B, C and D. Similarly, object u2, which is presented
in the table, also belongs to group A. The reason for this is the fact that both
objects increased the speed the whole time, but object u2 at the end of the time
window reached a high speed and object u1 only moderate speed. That is why,
the dissimilarity function value for these two objects is low, that is, 0.1, whereas
object u3 belongs to group B, for it maintained stable speed throughout a part
of the window. Therefore, the dissimilarity function between objects u2 and u3 is
bigger and equals 0.25. Object u4 belongs to group C and therefore the difference
between this object and object u1 is 0.5. Finally, the dissimilarity function value
between objects u2 and u5 (u5 belongs to group D) is the biggest and is as big
as 1.0, for in terms of the concept accelerating in the right lane these objects
differ to the maximum because object u1 is increasing speed and object u5 is
decreasing speed all the time. The dissimilarity function values proposed for all
object pairs are compared in Table 5. Finally, we notice that objects u1, u3, u4
and u5 may be treated as standards for which the deviation is 0.1. �
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Table 5. Values of dissimilarity function for pairs of time windows

u1 u2 u3 u4 u5

u1 0 0.1 0.25 0.5 1.0
u2 0.1 0 0.25 0.5 1.0
u3 0.25 0.25 0 0.25 0.75
u4 0.5 0.5 0.25 0 0.5
u5 1.0 1.0 0.75 0.5 0

If there is a family of standards given along with their deviations, then on their
basis we can construct a family of formulas of the language NL(T) which rep-
resent the established clusters in system T. Now, in order to construct a new
information system which represents the clusters’ properties we need to define
the language defining the cluster features.

Definition 31 (A language for defining features of clusters of time windows).
Let T = (U, A, aid, ≤aid

, at, ≤at) be a c-temporal information system and T =
(U, A) be an information system of time windows for the system T. A language
for defining features of clusters of time windows for the system T (denoted by
FCTW (T) or FCTW -language, when T is fixed) is defined in the following way:

• the set ALFCTW (T) = ALFTW (T) ∪ {ExistsWindow, EachWindow,
MajorityWindows, MinorityWindows} is an alphabet of the language
FCTW (T),
• for any α, β ∈ FCTW (T) expressions of the form: ExistsWindow(α),
EachWindow(α), MajorityWindows(α), MinorityWindows(α) are
atomic formulas of the language FCTW (T).

Now, we define the semantics of the language FCTW (T). The formulas of the
language FCTW (T) may be treated as the descriptions of families of time win-
dows in system T. For example, formula ExistsWindow(α) is interpreted as
the description of all those families of time windows of system T in which there
exists at least one such window that satisfies formula α.

Definition 32. Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at) is a c-temporal information system,

– T = (U, A) is a information system of time windows for the system T.

The satisfiability of an atomic formula α ∈ FCTW (T) by a family of time
windows W = {W1, ..., Wk} ⊆ TW (T) (denoted by W |=FCTW (T) α), is defined
in the following way:

1. W |=FCTW (T) ExistsWindow(α) ⇔ ∃W∈W W |=FTW (T) α,
2. W |=FCTW (T) EachWindow(α)) ⇔ ∀W∈W W |=FTW (T) α,
3. W |=FCTW (T) MajorityWindows(α)) ⇔

card({W ∈ W : W |=FTW (T) α}) > /(k − 1)/20,
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4. W |=FCTW (T) MinorityWindows(α)) ⇔

card({W ∈ W : W |=FTW (T) α}) < ((k − 1)/2).

Below we present several examples of formulas of the language FCTW .

– If attribute a1 of system T stores information about membership to the con-
cept of accelerating, then formula ExistsWindow(LastPoint(a1)) describes
such clusters of time windows where there is a window in which acceleration
occurred at the last point of this window.

– If attribute a1 of system T stores information about membership to the
concept of accelerating, then formula MajorityWindows(EachPoint(a1))
describes such clusters of time windows that in the majority of them the
speed is being increased all the time.

– If attributes a1 and a2 of system T store information about membership
respectively to the concepts of accelerating and decelerating, then formula
¬ExistsWindow(ExistsPoint(a2)) ∧ EachWindow(ExistsPoint(a1)) de-
scribes such clusters of time windows in which there does not exist a single
window in which deceleration occurred and in all the windows of this cluster
the speed is increased.

The patterns of the language FCTW could be utilized to define the properties
of clusters of time windows. Due to this clusters of time windows are represented
by information systems which we call an information system of clusters of time
windows.

Definition 33 (An information system of clusters of time windows). Let us
assume that:

– T = (U, A, aid, ≤aid
, at, ≤at) is a c-temporal information system,

– T = (U, A) is a information system of time windows for the system T.
– ψ1, ..., ψn ∈ ECTW (T) is a defined by experts family of temporal patterns

corresponding to clusters of time windows CL1, ..., CLn,
– Φ = {φ1, ..., φm} ∈ FCTW (T) is a defined by experts family of features of

clusters of time windows,
– PFCTW =(U, Φ,|=FCTW (T)) is a property system, where U ={CL1, ..., CLn}.

The information system T = (U, A) defined be the property system PFCTW is
called an information system of clusters of time windows (CTW -information
system).

It is easy to see that construction of the system T requires generating clusters
of time windows in such a way that it could be possible to check the ability to
satisfy formulas of the language FCTW (T). Such clusters may be generated by
the linear overview of set U and assigning the objects of this set to individual
clusters. The complexity of such an algorithm would be of order O(l · n), where
n is the number of clusters and l = card(U ).
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Example 23. Using the dissimilarity function from Example 22, the objects of
the information system of time windows from Example 21 may be clustered.
However, in order to construct an information system for the determined family
of clusters, patterns should be established. They may be the following:

1. in each time window of a cluster there occurs speed increase the whole
time (the pattern describes the properties of vehicles from group A from
Example 22),

2. in each time window of a cluster there occurs speed increase (the pattern
describes the properties of vehicles from groups A, B, C from Example 22),

3. in the majority of time windows of the cluster there does not occur speed
increase,

4. in the cluster there exists a time window in which there occurs speed decrease
(the pattern describes the properties of vehicles from groups C and D from
Example 22),

5. in each time window of the cluster at the first time point of the window the
speed is low and at the last point of the window it is high or moderate,

6. in most time windows of the cluster the vehicles drive in the right lane the
whole time. �

The choice of specific patterns to construct the information system of clusters
of time windows depends on the temporal concept which is approximated with
the help of this system (see Section 6.9).

6.9 Temporal Concept Table

The properties of clusters of time windows expressed by formulas of the lan-
guage FCTW may be used for constructing decision tables which enable the
identification of temporal concepts. For this purpose, it is necessary to add to
system T a decision attribute which characterizes the cluster’s membership to
the established temporal concept. In this way, we obtain a decision table which
is called the temporal concept table (see Fig. 27).

Definition 34 (A temporal concept table). Let us assume that:

– T = (U, A) is a information system of clusters of time windows,
– C is concept defined in the set U .

A temporal concept table for the concept C is a decision table TC = (U, A ∪
{dC}), where attribute dC is a membership function of the concept C.

A question arises, how it is possible that an expert can propose the value of
decision attribute dC . To make a decision concerning the value of this attribute
an expert has at his disposal the values of attributes from set A. These are
the attributes proposed earlier as the characteristic features of clusters of time
windows. The expert could therefore propose them in such a way that he or she
is now able to use them successively in order to determine the membership of
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Fig. 27. The scheme of a temporal concept table

the whole clusters to concept C. In other words the properties of clusters have
to be defined in such a way that they could serve to determine the time window
clusters’ membership to temporal concept C.

Example 24. The information system obtained on the basis of patterns such
as in Example 23 may be enriched by a decision attribute which describes the
membership of individual clusters of time windows to the established temporal
concept (e.g., the concept of accelerating in the right lane). In this way we obtain
a decision table which may serve to the approximation of this concept. �
If there is given set H of linearly ordered layer labels of concept C, then for table
TC there could be constructed a stratifying classifier µH

C which can indicate, for
each time window cluster, the layer of concept C to which this cluster belongs.

6.10 Classification of Time Windows

In practical applications we encounter a question whether the behavior of the
complex objects observed in the time window belongs to a given temporal con-
cept defined for clusters of time windows. It means the classification of time
windows to the concept determined on the set of clusters of time windows. Mean-
while, the classifier constructed for table TC can classify window clusters and
not single time windows. Therefore, before we use such a classifier, it should be
checked to which cluster of time windows the tested time window belongs. That
is how the algorithm of time window classification works (see Algorithm 6.5).
However, we assume that during execution of the Algorithm 6.5 the following
elements are available (established or computed earlier):

– a training c-temporal information system T,
– a fixed length l of time windows,
– a family of temporal patterns φ1, ..., φm ∈ FTW (T),
– a system T = (U, A) such that attributes from the set A correspond to

formulas φ1, ..., φm,
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– a dissimilarity function DISMT of object pairs from the system T, approx-
imated using the stratifying classifier µDISMT

,
– a family of temporal patterns ψ1, ..., ψn ∈ ECTW (T) such that ψi =

(stdi, εi), for i = 1, ..., n,
– a system T = (U, A) such that objects from the set U correspond to clusters

defined by formulas ψ1, ..., ψn,
– a concept C defined in the set U ,
– a decision table TC = (U, A ∪ {dC}) with decision attribute representing

membership of objects from the set U to the concept C,
– a linearly ordered set (H,≤H) such that H is a set of layer labels of the

concept C and ≤H is a relation of linear order on the set H ,
– a stratifying classifier µH

C constructed for the concept C on the basis the
table TC ,

– a test c-temporal information system TTS .

Because the Algorithm 6.5 classifies time windows to one layer of concept C,
it is the classifier stratifying temporal concept C.

Assuming that all operations of the examination of formulas satisfiability, the
computation of the dissimilarity function values and application of the classifier
µH

C (occurring in the above algorithm) are executed at the constant time, then

Algorithm 6.5. Time window classification (ClassifyWindow)
Input: A test time window W ∈ TW (TTS, l)
Output: The layer of concept C

Procedure ClassifyWindow(W )1

begin2

Create empty list row3

for φ1, ..., φm do4

if W |=FTW (T) φi then5

Add ’1’ to the end of the list row6

else7

Add ’0’ to the end of the list row8

end9

end10

Create new object urow of the system T on the basis values of11

attributes from the list row.
Select a formula ψ = (std, ε) ∈ {ψ1, ..., ψn) such that:12

1. urow |=ECTW (T) ψ and13

2. DISMT(urow, std) = mini∈{1,...,n}{DISMT(urow, stdi)}14

Select object uψ ∈ U corresponding to the formula ψ15

return µH
C (uψ)16

end17
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the time complexity of the above algorithm is of order O(m + n), where m is
the number of temporal patterns for time windows used and n is the number of
time window clusters.

6.11 Behavioral Graphs

Temporal concepts defined for objects from a complex dynamical system can be
treated as nodes of a graph called a behavioral graph, where connections between
nodes represent temporal dependencies. Such connections between nodes can be
defined by an expert or read from a data set that has been accumulated for a
given complex dynamical system.

Definition 35 (A behavioral graph).

1. A behavioral graph G is an ordered pair (V, E), where V is a nonempty
and finite set of nodes (temporal concepts) and E is a set of directed edges
E ⊂ V × V (connections represent temporal dependencies between temporal
concepts).

2. A temporal path in the behavioral graph G = (V, E) is a sequence of nodes
v1, ..., vl such that for any i ∈ {1, ..., l− 1} an edge (vi, vi+1) ∈ E. A number
l is called a length of temporal path v1, ..., vl.

3. The family of all temporal paths with the length l (l > 0) in the behavioral
graph G is denoted by PATH(G, l).

Bellow, we present an example of behavioral graph.

Example 25. Fig. 28 presents an example of behavioral graph for a single object-
vehicle exhibiting a behavioral pattern of vehicle while driving on a road. In this
behavioral graph, for example, connections between node Acceleration on the
right lane and node Acceleration and changing lanes lanes from right to left
indicates that after an acceleration in the right lane, a vehicle can change to the
left lane (maintaining its acceleration during both time windows). �

In addition, a behavioral graph can be constructed for different kinds of ob-
jects such as single vehicles or groups of vehicles and defined for behaviors such
as driving on the strength road, driving through crossroads, overtaking, and
passing. Therefore, we consider any behavioral graph as a model for behavioral
patterns (see Section 6.23).

6.12 Representing Spatial Properties of Structured Objects Using
Concepts

If we wish to observe the behavior of structured objects changing over time, then
it turns out that observing the behaviors of individual parts of these objects sep-
arately is not sufficient. It happens that way because if we observe the behavior
of a certain structured object we have to consider the issue what relations there
are between the types of behaviors of individual parts of this object and how
these relations coexist and change over time. For example, if we observe the
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Fig. 28. A behavioral graph for a single object-vehicle

overtaking maneuver made by the structured object, which is a pair of vehicles
(the overtaking and overtaken vehicles), then we are interested in the relations
between the behavior of the overtaking vehicle and the behavior of the overtaken
vehicle. Another example may concern the observation of the courses of illnesses,
which being in the interaction with one another, develop in a given patient.

The spatial properties of such bounds may be represented using concepts
which concern the sets of structured object parts. Such concepts represent the
partition of all structured objects into those which belong to the concept and
those structured objects which do not belong to the concept being concerned.
Examples of such concepts may be concepts concerning the distance between two
chosen vehicles belonging to the group of vehicles being examined (e.g., short
distance between two vehicles, long distance between two vehicles, driving on
the same lane).

Similarly to the concepts representing spatial properties of unstructured ob-
jects, the concepts representing spatial properties of structured objects also may
be approximated. The approximation may take place on the basis of appropri-
ately constructed for this purpose decision table. Each object of such a table
corresponds to a certain structured object. Conditional attributes are the ar-
rangement of attributes from a given temporal information system registering
the parameters of individual parts of a given structured object. However, the
decision attribute of this table describes the membership of objects of the table
under construction to the approximated concept concerning the spatial property
of the whole structured object and its values are suggested by the expert on the
basis of domain knowledge. The classifier constructed for such a table allows
testing any structured object for the membership to the approximated concept.
Due to the fact that the approximated concept is spatial (it does not require
following changes over time with the exception of parameter changes since the
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last observation of the structured object), we can apply here classical classifiers,
stratifying classifiers as well as classifiers based on AR-schemes. However, during
the construction of the decision table for the purpose of approximation of spa-
tial concepts for structured objects we encounter a serious problem concerning
extraction of relevant context for the parts of structured objects. One of the
solutions to this problem could be application of a sweeping algorithm around
the complex object which is characterized in the following subsection.

6.13 Sweeping Algorithm around the Complex Object

In the paper, each structured object occurring in a complex dynamical system is
understood as an object consisting of parts, that is, objects of lesser complexity
which are linked with one another by relations describing the context in which
individual parts of a structured object occur. Therefore, both learning concepts
concerning structured objects and testing structured objects for membership to
such concepts requires a method of isolating structured objects under examina-
tion. Unfortunately, the elementary approach to isolation of structured objects
which consists in analyzing all the subsets (of established number) from the ex-
isting set of potentially parts of structured objects cannot be used because of
the high computational complexity of algorithms generating and examining such
subsets. For example, if we examine a system which has 20 complex objects (e.g.,
20 vehicles on the road) and we are interested in structured objects defined as
groups of 6 objects (6 vehicles as in the case of examining the dangerous overtak-
ing maneuver) (see Fig. 55) then the general number of groups which require ob-
servation is equal to the number of 6-element combinations from the 20-element
set, that is, (206 ) = 38760. Additionally, if the observation is carried out only over
100 time units, then the temporal information system describing the properties
of all such groups of vehicles would have to have almost 4 million rows!

Another possibility is the application of methods which use the context in
which the objects being parts of structured objects occur. This type of methods
isolates structured objects not by direct indication of the set of parts of the
searched structured object but by establishing one part of the searched struc-
tured object and attaching to it other parts, being in the context to the estab-
lished part. Unfortunately, also here, the elementary approach to determining
the context of the part of the structured object, consisting in examining all pos-
sible subsets (of established number) of the set of potential structured objects to
which the established part of the structured object belongs, cannot be applied
because of a great number of such subsets. For example, in order to identify a
group of vehicles which are involved in a dangerous maneuver and to which the
established vehicle belongs (to which we pay attention), it would be necessary
to follow (in real time) the behavior of all possible groups of vehicles of the
established number (e.g., six vehicles) to which the established vehicle belongs,
which is, with a relatively small number of visible vehicles, still too difficult.

Hence, we need special methods of determining the context of the established
part of the structured object based on domain knowledge, which allows to limit
the number of analyzed sets of parts of structured objects. Therefore, in this
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paper we propose a special method which we call the sweeping method. The
method works in the following way: at the stage of learning the behavior for
structured objects only those structured objects are taken into account that
came into being through the so-called sweeping around of all the complex objects
which may be part of a structured object, and at the same time for each such
object there is only one structured object constructed. The activity of sweeping
is carried out by the special sweeping algorithm which returns to the established
complex object an ordered list of these objects which are significant from the
point of view of the type of examined complex behavior of structured objects.
The organization of this list is important due to the fact that in the obtained
structured object represented by the list, each object (a part of a structured
object) can have its role in the examined complex behavior of structured objects.

Definition 36 (A sweeping algorithm around the complex object). Let T = (U,
A, aid, ≤aid

, at, ≤at) be a temporal information system such that objects from the
set U are unstructured objects of a fixed type T. Each algorithm SA which at the
input receives a chosen object u ∈ U , and at the output returns the subset of U
such that the object u belongs to this subset represented in the form of organized
k-element list SA(u) (where k > 1) is called a sweeping algorithm around the
complex object.

The sweeping algorithms must be constructed individually on the basis of domain
knowledge for each complex behavior which is to be identified. By this we mean
such complex types of behavior as: overtaking vehicles on the road, driving of
a group of vehicles in a traffic jam, chasing one car after another, persistence
of respiratory insufficiency in patients. Also, the parameter k should be fixed
individually for a given sweeping algorithm.

As a result of applying the sweeping algorithm we only obtain as many struc-
tured objects as many complex objects constituting potential parts of structured
objects there are, for each of the established structured objects gets attached to
one unstructured object (one of its parts) which plays a specific role in the
structured object. For example, if we examine the behavior of a group of ve-
hicles connected with the overtaking maneuver, then the vehicle distinguished
during the sweeping algorithm’s activity may be the vehicle which overtakes. In
this group also other vehicles may be distinguished (the overtaken vehicle, the
oncoming vehicle, the vehicle driving in the back, etc.) which takes place when
we apply other sweeping algorithms (constructed for this type of objects).

We present an example of the sweeping algorithm for the purpose of recogniz-
ing the overtaking maneuver, where the distinguished overtaking vehicle is the
complex object (see Algorithm 6.6). This algorithm regards the situation pre-
sented in the Fig. 29. The group of vehicles which are returned by Algorithm 6.6
which is the so called sweeping zone comprises 6 vehicles which are the most
important from the point of view of planning and performing the overtaking
maneuver by a given vehicle (see Appendix A).

Let us notice that in the Algorithm 6.6 a number of auxiliary concepts are
used. They are for example such concepts as: going close to u, going in the
right lane, going in front of vehicle u, going behind vehicle u, going in the same
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Algorithm 6.6. The sweeping algorithm for the purpose of recognizing
the overtaking maneuver

Input:
– temporal information system T = (U, A, aid, ≤aid

, at, ≤at) such that
any object u ∈ U is an object of the fixed type T (a single vehicle),

– object u ∈ U

Output: The sweeping zone around u
begin1

Create empty list L.2

Insert object (vehicle) u to the list L.3

If there is a vehicle in the right lane close behind to vehicle u and going4

in the same direction, add it to list L as vehicle BR (see Fig. 29).
If there is a vehicle in the left lane close behind to vehicle u, going in5

the same direction, add it to list L as vehicle BL (see Fig. 29).
If there is a vehicle close in front of vehicle u in the right lane, going6

in the same direction, add it to list L as vehicle FR1 (see Fig. 29).
If during the previous stage you added a vehicle to list L as vehicle7

FR1, then if in front of this vehicle in the right lane there is another
vehicle going close in the same direction as vehicle u, then add it to
list L as vehicle FR2 (see Fig. 29).
If there is an oncoming vehicle in front of vehicle u in the left lane,8

then add it to list L as vehicle FL (see Fig. 29).
return L as SA(u).9

end10
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Fig. 29. A given vehicle and its sweeping zone
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direction as u, oncoming vehicle. All these concepts require approximation, but
they are spatial concepts and therefore they are much easier to be approximated
than the spatio-temporal concepts. It also means that in the above algorithm
the application of classifiers approximating these concepts is necessary.

One should, however, be aware of the fact that each sweeping algorithm works
on the basis of the sweeping heuristics defined by an expert. Therefore, such an
algorithm isolates only structured objects suggested by this heuristics. That is
why, it is only a very selective perception and its application requires a great
support from the experts who have to provide all crucial sweeping heuristics, in
terms of perception of the whole complex dynamical system.

During experiments with the road simulator (see Section 6.25) the sweeping
algorithm already worked at the stage of generating data using the simulator.
Therefore, in the data set there is already available information about structured
objects consisting of 6 vehicles connected with the identification of the overtaking
maneuver. Whereas, in experiments with medical data (see Section 6.26), where
a group of illnesses is the structured object, the performance of the sweeping
algorithm is based on constructing only such groups of illnesses which occurred
in particular patients from the data at the same time.

6.14 C-temporal Information System for Structured Objects

The sweeping algorithm, defined in Section 6.13, efficiently extracts structured
objects. For objects extracted in such a way we may define concepts which
may be approximated using attributes of a given temporal information system.
Thanks to that c-temporal information systems may be constructed whose at-
tributes describe spatial relation properties between parts of structured objects.
However, because the attributes of such c-system are to concern relation proper-
ties between structured objects extracted with the sweeping algorithm, it comes
into being in a slightly different way than the standard c-system, that is, a spe-
cial algorithm is needed which constructs c-system on the basis of the available
temporal information system with the use of the sweeping algorithm. Such an
algorithm we call a cr-transformation.

Definition 37. Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at) is a c-temporal information system such that

any object u ∈ U is an object of the fixed type T ,
– C1, ..., Ck is a family of spatial concepts determined for structured objects

(parts of such objects must be registered at the same time),
– µ1, ..., µk is a family of classifiers which approximate concepts C1, ..., Ck on

the basis of the parameters of the structured object parts established on the
basis of attributes from set A \ {aid, at},

– SA is a sweeping algorithm around objects from the system T.

1. An operation of changing the system T to the c-system

Tr = (Ur, Ar, cid,≤cid
, ct,≤ct)

is called a cr-transformation of the system T iff
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– Ur = {g1, ..., gn}, where gi = SA(ui) is the result returned by the sweep-
ing algorithm SA for ui, for i = 1, ..., n,

– Ar = {cid, ct, c1, ..., ck} where attributes from the set Ar are defined in
the following way:
• ∀gi ∈ Ur : cid(gi) = aid(ui) ∧ ct(gi) = at(ui),
• attributes c1, ..., ck represent concepts C1, ..., Ck where:

∀g∈Ur ci(g) = µi(g) for i = 1, ..., k.

2. The c-system Tr is called a result of cr-transformation of the system T.

We present the algorithm of the cr-transformation for the temporal information
system (see Algorithm 6.7).

Algorithm 6.7. Cr-transformation
Input:
1. T = (U, A, aid, ≤aid

, at, ≤at) is a c-temporal information system such
that any u ∈ U is a concept object of the fixed type T ,

2. C1, ..., Ck is a family of spatial concepts determined for structured
objects (parts of such objects must be registered at the same time),

3. µ1, ..., µk is a family of classifiers which approximate concepts C1,
..., Ck on the basis of the parameters of the structured object parts
established on the basis of attributes from set A \ {aid, at},

4. SA is a sweeping algorithm around objects from the system T.

Output: The c-information temporal system
Tr = (Ur, Ar, cid,≤cid

, ct,≤ct)
begin1

Create an empty information system Tr which has attributes2

cid, ct, c1, ..., ck where attributes cid and ct are of the identical type
as their counterparts in system T and attributes c1, ..., ck are
binary attributes // Tr is without any objects for the
time being

for i := 1 to card(U) do3

Compute a structured object g := SA(ui).4

Create an empty list of values L.5

Add aid(ui) to the list L.6

Add at(ui) to the list L.7

for j = 1 to k do8

Add µj(g) to the list L.9

end10

Add new object represented by values from L to the system Tr.11

end12

return Tr13

end14
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Fig. 30. A behavioral graph for relations between two vehicles exhibiting a changes of
distance between vehicles while driving on a road

Assuming that each classifier µ1, ..., µk and algorithm SA work over the time
of order O(C), where C is a certain constant, then the time complexity of the
Algorithm 6.7 is of order O(n · k), where n = card(U) and k is the number of
concepts used to construct attributes.

The result of the performance of the algorithm of the cr-transformation is the
c-system and therefore it may be used to approximate temporal concepts describ-
ing the relation between the structured object’s parts. Mechanisms of performing
such approximation are the same as in the case of temporal concepts concerning
unstructured complex objects. Finally, it leads to the behavioral graph describ-
ing complex objects being parts of structured objects with connection to the
types of behavior of other parts of these structured objects.

Fig. 30 presents an example of behavioral graph for relations between two
objects (vehicles) exhibiting a changes of distance between vehicles while driving
on a road.

6.15 Sequences of Time Windows

Complex types of behavior of complex objects, treated as unstructured objects
may be described using behavioral graphs of complex objects. As a result of
temporal concept approximation classifiers may be obtained for all concepts
occurring in behavioral graphs which enable the examination of objects’ mem-
bership to the temporal concepts. Hence, behavioral graphs and classifiers for
temporal concepts allow to follow the types of behavior of the complex ob-
jects over a longer period of time than the time window. This longer period we
call a sequence of time windows. Therefore, the learning of the perception of
the complex behavior of structured objects with the use of the gathered data
and behavioral graphs constructed for all parts of structured objects of a given
type, as well as the further use of the learned classifiers to identify the types of
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behavior of structured objects, requires working out the mechanisms of the
extraction of sequences of time windows. Therefore, we need a language for
extraction of sequences of time windows.

Definition 38 (A language for extracting sequences of time windows). Let T =
(U, A, aid, ≤aid

, at, ≤at) be a c-temporal information system and let Z1 be the set
of integer numbers equal or greater than 1. A language for extracting sequences
of time windows from system T (denoted by ESTW (T) or ESTW -language,
when T is fixed) is defined in the following way:

• the set ALESTW (T) = Vaid
∪ Vat ∪ Z1 ∪ { “, ”} is called an alphabet of

language ESTW (T),
• the set of atomic formulas of the language ESTW (T) is defined as a set of
four-element tuples in the following form: (i, b, l, s), where i ∈ Vaid

, b ∈ Vat

and l, s are integer numbers such that l > 1 and s > 0.

Now, we define a semantics of the language ESTW (T). The formulas of the
language ESTW (T) are treated as descriptions of sequences of time windows
occurring one after another in system T, and at the same time each two neigh-
boring windows of such a sequence overlap at the connecting points of these
windows.

Definition 39. Let T = (U, A, aid, ≤aid
, at, ≤at) be a c-temporal information

system and l is a length of time windows. The satisfiability of formula φ =
(i, b, l, s) ∈ ESTW (T) (where i ∈ Vaid

, b ∈ Vat and l, s are integer numbers such
that l > 1 and s > 0) by a time window W = (u1, ..., un) ∈ TW (T) (denoted by
W |=ESTW (T) φ), is defined in the following way:

W |=ESTW (T) (i, b, l, s)⇔

∀j∈{1,...,n} aid(uj) = i ∧ l = n ∧ p mod (l − 1) = 0 ∧ p

l − 1
< s

where p = card({x ∈ U : x precedes u1 ∧ b ≤at at(x)}).

Let us notice that a time window W = (u1, ..., un) ∈ TW (T) satisfies a formula
φ = (i, b, l, s) ∈ ESTW (T) iff the following four conditions are satisfied:

1. the time window W describes parameters of the object with the identifier i,
2. the size of the time window W is equal l,
3. the integer number of time windows with the length l has been registered

since b to at(u1), i.e., the number of time windows with the first point reg-
istered not earlier than b and preceding time point u1 (in the sense of Defi-
nition 19) is divisible by l − 1,

4. the number of time windows with the length l and with the first time point
registered since b to at(u1) is less than s.

The formulas of the language ESTW describe sets of time windows which we
call sequences of time windows.
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Definition 40 (A sequence of time windows). Let T = (U, A, aid, ≤aid
, at,

≤at) be a c-temporal information system.

1. Each set of time windows |φ|ESTW (T) which is a meaning of a certain for-
mula φ ∈ ESTW (T) we call a sequence of time windows in c-temporal
information system T.

2. A family of all sequences of time windows of a given c-temporal information
system T we denote SEQ(T).

3. If S ∈ SEQ(T) then a number card(S) we call a length of the sequence of
time windows S and it is denoted by Length(S).

4. A family of all sequences of time windows of the length s of a given c-temporal
information system T is denoted by SEQ(T, s).

5. A family of all sequences of time windows of the length s of a given c-
temporal information system T that they are windows of the length l we
denote SEQ(T, l, s).

6. Due to the definition of the language ESTW (T) the elements of each
sequence of time windows S ∈ SEQ(T, l, s) are linearly ordered by rela-
tion ≤at , then each sequence of time windows sequence may be treated as
an ordered time sequence S = (W1, ...., Ws) of time windows from the set
TW (T, l). Additionally, each i-th time window of sequence S we denote by
S[i], where i ∈ {1, ..., s}.

7. Any sequence of time windows S′ = (Wi, ..., Wj) ∈ SEQ(T, j− i+1) created
by removing from the sequence p = (W1, ..., Wk) ∈ SEQ(T, k) time windows
W1, ..., Wi−1 and Wj+1, ..., Wk, where i, j ∈ {1, ..., k} and i < j, is called a
sub-sequence of the sequence S and is denoted by Subsequence(S, i, j).

Here is an example of extracting a sequence of time windows from the c-temporal
information system.

Example 26. Let us consider system T = (U, A, aid, ≤aid
, at, ≤at) whose ob-

jects represent states of vehicles at different time points. Attributes from set
A describe sensor parameters of the vehicle at individual points (e.g., velocity,
acceleration, location, lane). The distinguished attribute aid is a unique identi-
fier of each vehicle and attribute at represents the observation time registered
in a given object in system T. Let us assume, for the sake of simplification,
that attribute values at and aid are natural numbers. Let us take as an exam-
ple a vehicle marked with the identifier 5 for which a hundred time points are
registered in system T from the time point marked with the identifier 1 to the
time point marked with the identifier 100. For such a vehicle a sequence of time
windows may be extracted and defined by formula (5, 1, 4, 3) which represents
three time windows: W1, W2, W3 defined by formulas (5, 1, 4), (5, 4, 4), (5, 7, 4)
(see Fig. 31). �

In practical applications the partition of a time window is an important notion
concerning the sequence of time windows. It concerns the situation in which we
extract the sequence of time windows from a given time window.
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Fig. 31. A sequence of time windows

Definition 41 (A partition of a time window). Let T = (U, A, aid, ≤aid
, at,

≤at) be a c-temporal information system and W ∈ TW (T, m). A family of time
windows Partition(W, k) = {W1, ..., Wk} is called k-partition of time windows
W , if the following conditions are satisfied:

1. {W1, ..., Wk} ∈ SEQ(T, l, k), where k · (l − 1) + 1 = m,
2. W =

⋃
i∈{1,...,k}

Wi.

According to the above definition for a given time window of duration m we can
determine k-partition only when k · (l − 1) + 1 = m that is m−1

k = l − 1, where
l is the length of each of time windows of the obtained partition. Therefore, in
order for us to be able to determine k-partition for a given time window of the
length m, number m reduced by l has to be divisible by k, and the result of this
division is the length of the window in the partition reduced by l. Going back to
Example 26 let us notice that it is possible to determine k-partition for k = 3
for window (5, 1, 10) (where m = 10), and this is the partition into 3 windows,
each of length l = 4. They are windows: (5, 1, 4), (5, 4, 4) and (5, 7, 4). On the
other hand, for the same window (5, 1, 10) we cannot determine k-partition for
k = 4 because number m− l = 9 is not divisible by 4.

Let us notice that it is easy to construct an algorithm which for a given
time window W ∈ TW (T, m) determines the partition Partition(W, k) through
linear overview of window W in order to create k-time windows of this partition.

6.16 Algorithm of Replacing a Sequence of Time Windows with the
Sequence of Nodes of a Behavioral Graph

Each time window could be classified into a given temporal concept with the
use of stratifying classifier. Each such concept corresponds to one node of the
behavioral graph of complex object G. Hence, each sequence of time windows
may be replaced with the sequence of nodes of behavioral graph G. The prob-
lem of classification conflict of a given time window consisting in the fact that a
time window may be classified into many concepts, could be solved by choosing
a concept for which classification certainty is the highest. In other words dur-
ing classification the concept whose result layer of classification is possibly the
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Algorithm 6.8. Replacing a sequence of time windows with the sequence
of nodes of a behavioral graph (MakeT imePath)

Input: A sequence of time windows S = {W1, ...., Wk} ∈ SEQ(T, l, k)
Output: The path P ∈ PATH(G) corresponding to the sequence S

Procedure MakeT imePath(S)1

begin2

Create empty list P3

for i := 1 to k do4

Select vmax ∈ V such that ∀v ∈ V : µH
v (Wi) ≤H µH

vmax
(Wi)5

Add vmax to the end of the list P .6

end7

return P8

end9

highest is chosen. We present an algorithm performing such an operation (see
Algorithm 6.8). However, we assume that during execution of the Algorithm 6.8
the following data structures and algorithms are available:

– T is a temporal information system,
– G = (V, E) is a behavioral graph such that V = {v1, ..., vm},
– (H,≤H) is a linearly ordered set such that H is a set of labels of concepts

layers and ≤H is a relation of linear order on the set H ,
– µH

v1
, ..., µH

vm
is a family of stratifying classifiers, which are constructed for

temporal concepts corresponding to nodes v1, ..., vm ∈ V (see Algorithm 6.5).

Assuming that all operations of classifiers µH
v (for v ∈ V ) applications occur-

ring in the above algorithm are executed at the constant time, then the temporal
computational complexity of the above algorithm is of order O(k ·m), where k is
the length of the sequence of time windows which is replaced and m = card(V ).

6.17 Temporal Concept for Structured Objects

Complex behaviors of structured objects could be defined on sequences of time
windows with the use of complex concepts which are called temporal concepts
for structured objects.

We assume that temporal concepts for structured objects are specified by a
human expert and are usually used in queries about the status of some structured
objects in a particular sequence of time windows. Answers to such queries can
be of the form Y es, No or Does not concern.

Intuitively each such temporal concept (defined on a sequence of time win-
dows) depends on whether there occurred behaviors defined by temporal con-
cepts for unstructured objects in the observed time windows, with those objects
being parts of structured objects. It is usually possible to provide an ontology
which shows such a dependence.
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For example, temporal concept for structured objects which is a group of two
objects (vehicles) unhurried driving vehicle A after vehicle B in the right lane,
depends on such temporal concepts as: driving at stable speed, changing lanes
at constant speed, maintaining constant distance between vehicles A and B, and
others.

Temporal concepts for structured objects cannot be straightforwardly approx-
imated by temporal concepts for single time windows because they concern a se-
quence of time windows, that is, a longer period of time than temporal concepts
for time windows.

Therefore, in order to define attributes approximating temporal concepts for
structured objects we need to introduce another language which enables us to
transfer properties of time windows onto the level of sequences of time windows.

Due to the fact that each sequence of time windows can be replaced with a
temporal path in the behavioral graph (see Section 6.16), while describing the
properties of time windows we can use temporal paths corresponding to them.
In this way, the language FTP below is constructed.

Definition 42 (A language for defining features of temporal paths). Let G =
(V, E) be a behavioral graph of complex objects of the fixed type T . A language for
defining features of temporal paths of behavioral graph G (denoted by FTP (G)
or FTP -language, when G is fixed) is defined in the following way:

• the set ALFTP (G) = V ∪ { ExistsNode, EachNode, MajorityNodes,
MinorityNodes, FirstNode, LastNode, OrderNodes } ∪ {¬,∨,∧} is an
alphabet of the language FTP (G),
• for any v, v′ ∈ V expressions of the form: ExistsNode(v), EachNode(v),
MajorityNodes(v), MinorityNodes(v), FirstNode(v), LastNode(v),
OrderNodes(v, v′) are atomic formulas of the language FTP (G).

Presently, we define the semantics of the language FTP (G). The formulas of
the language FTP (G) express properties of paths in the behavioral graph G.
For example, formula ExistsNode(v) is interpreted as description of all those
paths in the behavioral graph in which there exists node v.

Definition 43. Let G = (V, E) be a behavioral graph of complex objects of the
fixed type T . The satisfiability of an atomic formula φ ∈ FTP (G) by a temporal
path P = (v1, . . . , vk) ∈ PATH(G) (denoted by P |=FTP (G) φ), is defined in the
following way:

1. P |=FTP (G) ExistsNode(v) ⇔ ∃i∈{1,...,k} vi = v,
2. P |=FTP (G) EachNode(v)⇔ ∀i∈{1,...,k} vi = v,
3. P |=FTP (G) MajorityNodes(v)⇔

card({i ∈ {1, ..., k} : vi = v}) > /(k − 1)/20,

4. P |=FTP (G) MinorityNodes(v)⇔

card({i ∈ {1, ..., k} : vi = v}) < ((k − 1)/2),
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5. P |=FTP (G) FirstNode(v) ⇔ v1 = v,
6. P |=FTP (G) LastNode(v)⇔ vk = v,
7. P |=FTP (G) OrderNodes(v, v′)⇔ ∃i,j∈{1,...,k} i < j ∧ vi = v ∧ vj = v′.

Below, we provide a few examples of the FTP -language formulas.

– If node v of a certain behavioral graph of a single vehicle corresponds to
the concept of stable speed in the right lane, then formula EachNode(v)
describes a temporal path in which the vehicle drives the whole time at the
stable speed in the right lane.

– If node v of a certain behavioral graph of a single vehicle corresponds to
the concept of accelerating in the right lane, then formula ExistsNode(v)
describes a temporal path in which the vehicle for a certain amount of time
accelerates.

– If nodes v1 and v2 of a certain behavioral graph of a single vehicle correspond
respectively to the concepts of stable velocity in the right lane and acceler-
ating in the right lane, then formula MajorityNodes(v1)∧ExistsNode(v2)
describes a temporal path in which for most of the time the vehicle drive at
the stable speed but for some time the vehicle increases speed.

Formulas of the FTP language can be used for defining temporal path features
in such a way that to each formula a temporal pattern for temporal paths can
be attached.

Definition 44 (A temporal pattern for temporal paths). Let G = (V, E) be a
behavioral graph of complex objects of the fixed type T . Each formula of the lan-
guage FTP (G) is called a temporal pattern for temporal paths in the behavioral
graph G.

We assume that any temporal pattern ought to be defined by a human expert
using domain knowledge accumulated for the given complex dynamical system.

6.18 Information System of Temporal Paths

The properties of accessible temporal paths may be represented in special infor-
mation system which is called an information system of temporal paths.

Definition 45 (An information system of temporal paths). Let us assume that:

– G = (V, E) is a behavioral graph of complex objects of the fixed type,
– s is a fixed length of temporal paths (s > 1),
– Φ = {φ1, ..., φk} ⊆ FTP (G) is a defined by experts family of temporal pat-

terns for temporal paths (sub-language of the language FTP (G)),
– PFTP = (U, Φ, |=FTP (G)) is a property system, where U ⊆ PATH(G, s).

The information system G = (U, A) defined be the property system PFTP is
called an information system of temporal paths (TP -information system).
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Evidently, construction of system G requires generating a family of temporal
paths of a fixed length. It is possible to construct an algorithm generating all
temporal paths of the established duration s from a given behavioral graph
G = (V, E) which would work in such a way that for each node v ∈ V there
would be generated all paths of the established duration s which start in the
node. If the number of edges coming out of a given node of graph G equaled no
more than r, then the number of paths generated using such an algorithm would
be pessimistically equal card(V ) ·rs−1, which in practice may be a great number
of paths. For example, if card(V ) = 10, r = 4 and s = 10 then the number of
paths to generate equals over 2.6 million! Therefore, in practice, during system
G construction only chosen paths from the set PATH(G, s) are generated.

Although the set PATH(G, s) may be sampled, it is reasonable to assume
that in system G only those paths are taken into account which occur in the
training data. This means that in system G only such a path exists that is reg-
istered in the data for the specific complex object. Obviously, the node sequence
is not directly registered in the data, but time point sequence is registered which
may be grouped into time windows and then into sequences of time windows.
These sequences, thanks to classifiers constructed for individual temporal con-
cepts, may be changed into the node sequence from set V informing about the
membership of time windows to individual temporal concepts. The set of all
temporal paths observed in data of duration s we denote as DPATH(G, s).
For small behavioral graphs the size of the set DPATH(G, s) is comparable
with the size of the set PATH(G, s). However, for nontrivially small behavioral
graphs the size of the set DPATH(G, s) is much smaller than the size of the
set PATH(G, s). We present the algorithm of generating the set DPATH(G, s)
(see Algorithm 6.9).

Algorithm 6.9. Generating temporal paths observed in data
Input:
– temporal information system T = (U, A, aid, ≤aid

, at, ≤at) such that
U = {u1, ..., un},

– behavioral graph G = (V, E) such that V = {v1, ..., vm},
– fixed length of temporal paths s (where s > 1),
– fixed length of time windows l (where l > 1).

Output: The set DPATH(G, s)
begin1

Generate set TW := TW (T, s · (l − 1) + 1).2

Create empty list of paths DPATH .3

for all W ∈ TW do4

path := MakeT imePath(Partition(W, s))5

Add path to the list DPATH .6

end7

return DPATH8

end9
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In regard to determining the set TW (T, s · (l − 1) + 1) and executions of
procedures MakeT imePath and Partition, the pessimistic time complexity of
the Algorithm 6.9 is of order O(n · log n + n · s · l + n · s ·m), where n is the
number of objects in the set U , s is the length of temporal paths, l is the length
of time windows and m = card(V ).

Example 27. For the behavior graph from Fig. 28 an information system of tem-
poral paths may be constructed. In order to do this one may use temporal pat-
terns for temporal paths chosen from the following collection of patterns:

1. the vehicle accelerates (decelerates, maintains stable speed) in the right lane
at the first node (at the last node, at some node, at all nodes, at the minority
of nodes, at the majority of nodes) of the temporal path,

2. the vehicle accelerates and at the same time changes the lane from the right
to the left one at the first node (at the last node, at some node, at all nodes,
at the minority of nodes, at the majority of nodes) of the temporal path,

3. the vehicle decelerates (maintains stable speed) and at the same time changes
lanes from the left to the right one at the first node (at the last node, at
some node, at all nodes, at the minority of nodes, at the majority of nodes)
of the temporal path,

4. the vehicle accelerates (decelerates , maintains stable speed) in the right lane
at some node of the temporal path, and after that the vehicle accelerates
(decelerates , maintains stable speed) in the right lane at one of the following
nodes,

5. the vehicle accelerates (maintains stable speed) and at the same time changes
the lane from the right to the left one at some node of the temporal path, and
after that at one of the following nodes the vehicle decelerates (maintains
stable speed) in the right lane,

6. the vehicle decelerates (maintains stable speed) and at the same time changes
the lane from the left to the right one at some node of the temporal path, and
after that at one of the following nodes the vehicle decelerates (maintains
stable speed) in the right lane.

It is easy to notice that each of the above patterns may be expressed in language
FTP . �

In approximating temporal concepts for structured objects (see Section 6.20), it
is necessary to use information systems of temporal paths which are constructed
on the basis of behavioral graphs illustrating relation changes between parts of
structured objects. The example below shows how such an information system
for behavior graph from Fig. 30 may be constructed.

Example 28. The behavioral graph from Fig. 30 describes distance changes be-
tween parts of the structured object which is a pair of vehicles driving on the
road. For this graph the information system of temporal paths may be con-
structed using temporal patterns for temporal paths chosen from the following
collection of patterns:
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1. the distance between both vehicles is short and is decreasing (is increasing,
is stable) at the first node (at the last node, at some node, at all nodes, at
the minority of nodes, at the majority of nodes) of the temporal path,

2. the distance between both vehicles is long and is decreasing (is increasing,
is stable) at the first node (at the last node, at some node, at all nodes, at
the minority of nodes, at the majority of nodes) of the temporal path. �

The choice of specific temporal patterns to construct the information system of
temporal paths depends on the temporal concept which is to be approximated
using this system, obviously after performing the grouping (clustering) of tem-
poral paths (see Section 6.20).

6.19 Clustering Temporal Paths

The properties of temporal paths expressed using temporal patterns may be used
to approximate temporal concepts for structured objects. Frequently, however,
objects of system G are not yet suitable for their properties to describe temporal
concepts for structured objects. It happens that way because there are too many
of these objects and the descriptions of temporal paths, which they represent, are
too detailed. Hence, if applied for temporal concept approximation for structured
objects, the extension of the created classifier would be too small, that is, the
classifier could classify too small number of tested paths.

Therefore, similarly to the case of temporal concepts for time windows the
object clustering is applied which leads to obtaining the family of clusters of
temporal paths. The grouping tools are the same as in the case of time window
grouping. Therefore, to define path clusters we use the language ECTP which
similarly to the language ECTW is based on the language NL.

Definition 46 (A language for extracting clusters of temporal paths). Let us
assume that:

– G = (V, E) is a behavioral graph of complex objects of the fixed type,
– G = (U, A) is an information system of temporal paths of behavioral graph

G.

Any neighborhood language NL(G) we call a language for extracting clusters of
temporal paths from behavioral graph G (ECTP -language) and we denote it by
ECTP (G).

Formulas of the language ECTP enable to define clusters of temporal paths
from the behavioral graph.

Definition 47 (A cluster of temporal paths). Let G = (V, E) be a behavioral
graph of complex objects of the fixed type. We call the meaning of each formula
φ ∈ ECTP (G) a cluster of temporal paths of behavioral graph G.

In the example below we illustrate how the dissimilarity function may be defined
for grouping temporal paths.
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Example 29. For the information system of temporal paths obtained with the
use of temporal patterns from Example 27, the dissimilarity function may be
constructed on the basis of expert knowledge. In order to do this, the dissimilarity
function value should be obtained from experts for a certain, i.e., the most
representative set of object pairs of this system. It should be also determined
what temporal concept is approximated using clusters obtained with the help
of the dissimilarity function being defined (see Section 6.20). It is possible to
approximate concepts defined on the set of unstructured objects as well as on
the set of structured objects. Let us assume that this is the concept concerning
the overtaking maneuver of vehicle B by vehicle A and we mean this fragment
of the overtaking maneuver when vehicle B drives in the right lane and vehicle
A while driving behind vehicle B changes the lane from the right to the left
one. In terms of this concept and knowledge about typical behaviors of vehicle
A, the expert may instantly define several groups of vehicles which, if put in
place of vehicle A, behave very similarly, that is, vehicles which are in one of
such groups in terms of the dissimilarity function which is being constructed,
should not differ significantly. For example, they may be the following groups of
vehicles:

I. vehicles which at the beginning of the temporal path drive in the right lane
and then drive off the right lane into the left one,

II. vehicles which along the whole temporal path drive in the right lane,
III. vehicles which along the temporal path drive in the left lane,
IV. vehicles which at the beginning of the temporal path drive in the left lane

and then drive off the left lane into the right one.

Let us now consider five specific vehicles which behave in the following way:

1. vehicle u1 accelerates in the right lane at the beginning of the temporal path,
and then still accelerates and commences changing lanes from the right to
the left one, but at the end of the temporal path is still not in the left lane,

2. vehicle u2 drives at a stable speed in the right lane at the beginning of the
temporal path, and then commences changing lanes from the right to the
left one at a stable speed, but at the end of the temporal path it is still not
in the left lane,

3. vehicle u3 drives at a stable speed in the right lane along the whole temporal
path,

4. vehicle u4 drives at a stable speed in the left lane at the beginning of the
temporal path, and then decelerates in the left lane,

5. vehicle u5 drives at a stable speed in the left lane at the beginning of the
temporal path, and then at a stable speed commences changing lanes from
the left to the right one, but at the end of the temporal path it is still not
in the right lane.

In Table 6 values of chosen temporal patterns for objects u1, u2, u3, u4 and
u5 are presented.

It is evident that object u1 belongs to the group of vehicles I and it does not
belong to groups II, III and IV. Similarly, object u2 also belongs to group I. The
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Table 6. An exemplary objects of some TP-information system

No Temporal patterns for temporal paths u1 u2 u3 u4 u5

1. The vehicle accelerates driving in the right lane
at the first node of the temporal path

1 0 0 0 0

2. The vehicle drives at a stable speed in the right
lane at the first node of the temporal pattern

0 1 1 0 0

3. The vehicle accelerates and changes lanes from
the right to the left one at some node of the tem-
poral path

1 0 0 0 0

4. The vehicle drives at a stable speed and changes
lanes from right to the left one at some node of
the temporal path

0 1 0 0 0

5. The vehicle drives at a stable speed in the left
lane at the first node of the temporal path

0 0 0 1 1

6. The vehicle decelerates in the left lane at some
node of the temporal path

0 0 0 1 0

7. The vehicle drives at a stable speed and changes
lanes from the left to the right one at some node
of the temporal path

0 0 0 0 0

8. The vehicle decelerates and changes lanes from
the left to the right one at some node of the tem-
poral path

0 0 0 0 1

9. The vehicle drives at a stable speed in the right
lane at the last node of the temporal path

0 0 1 0 0

10. The vehicle drives at a stable speed in the left
lane at the last node of the temporal path

0 0 0 0 0

reason for this is the fact that both objects drive in the right lane first and then
drive off to the left lane, but object u2 drives at a stable speed the whole time and
object u1 accelerates. Therefore, the dissimilarity function value for these two
objects is low, that is, 0.1, whereas object u3 belongs to group II because it drives
in the right lane the whole time. That is why its behavior differs significantly
from the behavior of object u2, for object u3 only drives in the right lane while
object u2 changes lanes from the right to the left one. Hence, the dissimilarity
function value for objects u2 and u3 is larger and equals 0.3. Object u4 belongs
to group III (drives only in the left lane) and therefore its behavior has even less
in common with the behavior of object u2. Therefore, the dissimilarity function
value for the pair of objects u2 and u4 is 0.4. Finally, object u5 belongs to group
IV and its behavior differs the most from the behavior of object u1. The reason
for this is the fact that object u5 not only commences driving in the left lane
(unlike u1, which commences driving in the right lane), but at the end of the
considered temporal path u5 changes lanes from the left to the right one, unlike
u1, which changes lanes from the right to the left one. Moreover, the object u5
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Table 7. Values of dissimilarity function for pairs of temporal paths

u1 u2 u3 u4 u5

u1 0 0.1 0.4 0.4 1.0
u2 0.1 0 0.3 0.3 0.9
u3 0.4 0.3 0 0.6 0.4
u4 0.4 0.4 0.6 0 0.4
u5 1.0 0.9 0.4 0.4 0

decelerates, while the object u1 accelerates. Therefore, the dissimilarity function
value for the pair of objects u1 and u5 is the highest possible and equals 1.0. Let
us notice that the dissimilarity function value for the pair of objects u2 and u5 is
bit smaller (0.9) because the object u5 decelerates, while the object u2 maintains
stable speed. The dissimilarity function values for all pairs of objects proposed
by the expert are put together in Table 7. Finally, let us notice that objects u1,
u3, u4 and u5 may be treated as standards for which the deviation is 0.1. �

Now, to construct a new information system which represents the features of
clusters of temporal paths we need to define a new language.

Definition 48 (A language for definnig features of clusters of temporal paths).
Let us assume that:

– G = (V, E) is a behavioral graph of complex objects of the fixed type,
– G = (U, A) is a information system of temporal paths for behavioral graph G.

A language for definnig features of clusters of temporal paths for behavioral graph
G (denoted by FCTP (G) or FCTP -language, when G is fixed) is defined in
the following way:

• the set ALFCTP (G) = ALFTP (G) ∪ {ExistsPath, EachPath,
MajorityPaths, MinorityPaths} is an alphabet of the language FCTP (G),

• for any α, β ∈ FTP (G) expressions of the form: ExistsPath(α),
EachPath(α), MajorityPaths(α), MinorityPaths(α) are atomic formulas
of the language FCTP (G).

Now, we determine semantics of the language FCTP (G). The formulas of the
language FCTP (G) we interpret as a description of clusters of temporal paths of
graph G. For example, formula ExistsPath(α) is interpreted as the description
of all those clusters of temporal paths in which there exists at least one path
satisfying formula α.

Definition 49. Let G = (V, E) be a behavioral graph of complex objects of the
fixed type T . The satisfiability of an atomic formula φ ∈ FCTP (G) by a family
of temporal paths P = {P1, ...., Pk} ⊆ PATH(G) (denoted by P |=FCTP (G) φ)
is defined in the following way:
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1. P |=FCTP (G) ExistsPath(α) ⇔ ∃P∈P P |=FTP (G) α,
2. P |=FCTP (G) EachPath(α) ⇔ ∀P∈P P |=FTP (G) α,
3. P |=FCTP (G) MajorityPaths(α) ⇔

card({P ∈ P : P |=FTP (G) α}) > /(k − 1)/20,

4. P |=FCTP (G) MinorityPaths(α)⇔

card({P ∈ P : P |=FTP (G) α}) < ((k − 1)/2).

The patterns of the language FCTP may be applied to define the features of
clusters of temporal paths.

The example below illustrates how one may define properties of clusters
of temporal paths which are constructed using the dissimilarity function from
Example 29.

Example 30. Using the dissimilarity function from Example 29, the objects from
the information system of temporal paths from Example 27 may be grouped.
However, in order to construct an information system for the determined family
of clusters, patterns should be established which serve computing features of
clusters of temporal paths. For example, they may be the following patterns:

1. in each temporal path of the cluster vehicles first drive in the right lane and
then change lanes from the right to the left one (the pattern describes the
property of vehicles from group I from Example 29),

2. in each temporal path of the cluster vehicles drive only in the right lane ( the
pattern describes the property of vehicles from group II from Example 29),

3. in each temporal path of the cluster vehicles first drive in the left lane and
then change lanes from the left to the right one (the end of the overtaking
maneuver),

4. in each temporal path of the cluster there exists a node at which vehicles
drive in the left lane,

5. in the majority of temporal paths of the cluster there occurs no deceleration,
6. in the majority of temporal paths of the cluster vehicles drive at a stable

speed the whole time.

It is easy to notice that each of the above patterns may be expressed in language
FCTP . �
The choice of specific patterns to construct the information system of the tem-
poral path clusters depends on the concept which is to be approximated with
the help of this system (see Section 6.20).

Clusters of temporal paths are represented by the information systems which
we call an information system of clusters of temporal paths.

Definition 50 (An information system of clusters of temporal paths). Let us
assume that:

– G = (V, E) is a behavioral graph of complex objects of the fixed type,
– ψ1, ..., ψn ∈ ECTP (G) is a defined by experts family of temporal patterns

corresponding to clusters of temporal paths CL1, ..., CLn,
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– Φ = {φ1, ..., φm} ⊆ FCTP (G) is a defined by experts family of features of
clusters of temporal paths,

– PFCTP =(U, Φ, |=FCTP (G)) is a property system, where U ={CL1, ..., CLn}.

The information system G = (U, A) defined be the property system PFCTP is
called an information system of clusters of temporal paths (CTP -information
system).

Evidently, constructing system G requires generating clusters of temporal paths
in such a way that it would be possible to check the ability to satisfy the formulas
of the language FCTP (G). Such clusters may be generated by the linear search
in the table G and assigning objects of this table to individual clusters.

Algorithm 6.10 presented bellow determines for a given temporal path the
list of feature values of the cluster to which the tested temporal path belongs.
Therefore, this algorithm is important for testing temporal paths. We assume

Algorithm 6.10. Computation features of cluster to which the tested
temporal path belongs

Input: temporal path P = (v1, . . . , vs) ∈ PATH(G).
Output: The list of feature values of the cluster to which the tested

temporal path P belongs

Procedure GetClusterRow(P )1

begin2

Create empty list row3

for φ1, ..., φm do4

if P |=FTP (G) φi then5

Add ’1’ to the end of the list row6

else7

Add ’0’ to the end of the list row8

end9

end10

Create new object urow of the system G on the basis values of11

attributes from the list row.
Select a formula ψ = (std, ε) ∈ {ψ1, ..., ψn) such that:12

1. urow |=FCTP (G) ψ and13

2. DISMG(urow, std) = mini∈{1,...,n}{DISMG(urow, stdi)}14

Select object uψ ∈ U corresponding to the formula ψ15

Create empty list clusterRow16

for i = 1 to k do17

clusterRow := clusterRow + ai(uψ)18

end19

return clusterRow20

end21
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that during execution of the Algorithm 6.10 the following data structures are
available:

– a behavioral graph G = (V, E) of complex objects of a fixed type,
– a fixed length s of temporal paths in the behavioral graph G,
– a family of temporal patterns φ1, ..., φm∈FTP (G)) and a system G=(U, A)

such that attributes from the set A correspond to formulas φ1, ..., φm,
– a dissimilarity function DISMG of object pairs from the system G, approx-

imated using the stratifying classifier µDISMG
,

– a family of temporal patterns ψ1, ..., ψn∈ECTP (G) such that ψi =(stdi, εi)
(for i = 1, ..., n) and a system G = (U, A) such that objects from the set U

correspond to clusters described by formulas ψ1, ..., ψn and A = {a1, ..., ak}.

Assuming that all operations of checking the satisfiability of formulas for a
given path and computing values of dissimilarity function (occurring in the above
algorithm) are carried out at the constant time, then the temporal computational
complexity of the above algorithm is of order O(m+n+k) where m is the number
of used temporal path features, n is the number of clusters of temporal paths,
and k is the number of features of clusters of temporal paths.

6.20 Temporal Concept Table for Structured Objects

CTP -information systems constructed for different unstructured objects may be
joined in order to obtain information systems describing features of structured
objects. We obtain objects of such a system by arranging (joining) all possible
objects of information systems being joined. From the mathematical point of
view such an arrangement is the Cartesian product of sets of objects of joined
information systems (see [78, 84, 186, 187]). In this way we obtain an information
system that may be used to approximate concepts for structured objects (see
Definition 52). However, from the point of view of domain knowledge not all
mentioned above object arrangements are possible and sensible. For example, if
we approximate the concept of overtaking performed by two vehicles (overtaking
and overtaken ones), then it is sensible to link the three following path clusters:

1. the first path cluster (coming from the behavior graph of the overtaking
vehicle) describes a sequence of vehicle behaviors which behave in the same
way as the overtaking vehicle (e.g., accelerate and change lanes from the
right to the left one),

2. the second path cluster (coming from the behavior graph of the overtaken
vehicle) describes a sequence of vehicle behaviors which behave in the same
way as the overtaken vehicle (e.g., drive with a stable speed in the right
lane),

3. the third path cluster (coming from the behavior graph describing relation
changes between the overtaking and overtaken vehicle) describes a sequence
of behaviors of such vehicles pairs that the relations determined between
them change in a way connected with overtaking (e.g., the distance between
vehicles decreases rather quickly).
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For the above reason, that is, to eliminate object arrangements which are
unreal or are not sensible, a relation of constraints is formulated which informs
which objects may be arranged in order to obtain positive or negative example
of approximated concept (for structured objects) and which cannot be arranged.
The relation of constraints we define in the form of the formula of the language
GDL.

Definition 51 (An information system of clusters of temporal paths for struc-
tured objects). Let us assume that:

– Gi = (Vi, Ei) is a behavioral graph of complex objects of the fixed type Ti,
for i = 1, ..., k,

– Gi = (U i, Ai) is a CTP -information system for behavioral graph Gi, for
i = 1, ..., k,

– GR = (VR, ER) a behavioral graph representing changes of relations between
parts of structured objects, where such parts are objects of types T1, ..., Tk,

– GR = (UR, AR) is a CTP -information system for behavioral graph GR,
– G⊗ = (U⊗, A⊗) is an information system, where:

• U⊗ = U1 × . . .× Uk × UR,
• A⊗ = A1 ∪ . . . ∪Ak ∪ AR, where attributes from sets A1, ..., Ak, AR are

natural extension of attributes from sets A1, ..., Ak, AR on the set U⊗,
– Φ ∈ GDL(G⊗) is a formula of constraints.

An information system of clusters of temporal paths for structured objects
(SCTP -information system) is an information system G�� = (U��, A��), where:

– U�� = {u ∈ U⊗ : u |=GDL(G⊗) Φ},
– A�� = A⊗, i.e., the set A�� contains all attributes from the set A⊗, that are

restricted to U��.

The notion of information system G�� may be used to approximate concepts for
structured objects. In order to do this it is sufficient to add a decision attribute
to this system which describes the approximated concept. We assume that for
each arrangement of objects accepted by constraints (satisfying the formula of
constraints), the expert adds the decision value informing about whether a given
arrangement belongs to the approximated concept of the higher level or not.

Now, the definition of a temporal concept table for structured objects may be
presented.

Definition 52 (A temporal concept table for structured objects). Let us assume
that:

– G�� = (U��, A��) is an information system of clusters of temporal paths for
structured objects,

– C ⊆ U�� is a temporal concept for structured objects.

A temporal concept table for structured objects for the concept C is a decision
table GC

��
= (U��, A��, dC), where the decision attribute dC is representing mem-

bership of objects from the set U�� to the concept C.
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As we already mentioned, the relation of constraints is defined as a formula in
the language GDL (see Definition 5) on the basis of attributes of the table G⊗.
However, the relation of constraints may also be approximated with the help of
classifiers. It is required, in such a case, to give examples of objects belonging and
not belonging to this relation, that is, satisfying and not satisfying the formula
Φ corresponding to this relation (see [78]).

Example 31. In Fig. 32 there is presented a construction scheme of temporal
concept table for structured objects consisting of two vehicles, i.e., an overtaking
vehicle (vehicle A) and an overtaken vehicle (vehicle B). Any object of this table
is represented by a triple of clusters (P (A)

i , P
(B)
i , P

(R)
i ) for i ∈ {1, ..., card(U��)},

where:

– P
(A)
i denotes the cluster of overtaking vehicles,

– P
(B)
i denotes the cluster of overtaken vehicles,

– P
(R)
i denotes the cluster of pairs of both vehicles.

Attributes describing the clusters of overtaking and overtaken vehicles, e.g.,
clusters P

(A)
i and P

(B)
i are constructed as presented in Example 30. They de-

 

         C 
         YES 

          
          
         NO 

          
          
         YES 

…
 

…
 

Columns computed 
on the basis of 

temporal patterns 
defined for clusters 

of overtaking 
vehicles 

Columns 
computed on  
the basis of 

temporal patterns
defined for 

clusters of pairs 
of vehicles 

Columns 
computed on the 
basis of temporal 
patterns defined 
for clusters of 

overtaken vehicle 

The 
column 
defined 
by an 
expert 

Vectors are joined on the basis  
 

of constraints  
 

(according to the investigated temporal concept)  

Behavioral graph for  
an overtaking vehicle 

(graph A) 

Behavioral graph of 
relations between 

both vehicles 
(graph R) 

Behavioral graph for 
an overtaken vehicle 

(graph B) 

( ))(
1

)(
1

)(
1 ,, RBA PPP

( ))()()( ,, R
i

B
i

A
i PPP

( ))()()( ,, R
k

B
k

A
k PPP

Clusters of 
paths from 
behavioral  

graphs:  
A, B and R 
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scribe rather general behaviors of individual vehicles observed during the sequence
of time windows. Whereas, the attributes describing cluster P

(R)
i describe the

properties of both vehicles (A and B) in terms of relation changes between these
vehicles. During observing vehicles during the overtaking maneuver the most im-
portant thing is to observe the distance changes between these vehicles (see Ex-
ample 28). Therefore, to describe the properties of P

(R)
i clusters the following

patterns may be applied:

1. in each temporal path of the cluster, at the majority of nodes the distance
between A and B is short and is still decreasing,

2. in each temporal path of the cluster there exists a node at which the distance
between A and B is long,

3. in each temporal path of the cluster at the majority of nodes the distance
between A and B is short and is increasing,

4. in the majority of temporal paths of the cluster there exists a node at which
the distance between A and B is long and it is decreasing, and after it
there exists a node at which the distance between A and B is short and is
decreasing,

5. in each temporal path of the cluster and at all the nodes of these paths the
distance between A and B is short.

The information system obtained in such a way may be enriched with the
decision attribute which describes the membership of individual clusters of time
windows to the established temporal concept for the group of both vehicles
(e.g., it may be the concept: vehicle B drives in the right lane and vehicle A
while driving behind vehicle B changes the lane from the right to the left one). In
this way we obtain a decision table which may serve the approximation of this
concept.

It is worth noticing that the attribute created on the basis of the last of the
above mentioned patterns may be used to construct the constraint formula. If
we build the constraint formula based on this attribute, then the clusters joints
representing vehicles which are at a long distance are eliminated from the system
G⊗. Such cluster joints are not useful for differentiating pairs of vehicles which
drive close to each other and are involved in the overtaking maneuver from those
pairs of vehicles which also drive close to each other, but they are not involved
in the overtaking maneuver. �
A question arises, how it is possible that the expert may propose the decision
value related to the membership to system G��. To make this decision the expert
has at his or her disposal attribute values from the set A��. They are attributes
proposed earlier by the expert as features of clusters of temporal paths. The
expert is able to propose them in such a way that he/she may now use them
successively to determine the membership of the whole clusters to concept C. In
other words cluster features must be defined in such a way that they could serve
to determine the membership of clusters of time paths to temporal concept C.

If E = {e1, ..., el} is a family of layer labels of concept C, then for table GC
��

stratifying classifier µE
C may be constructed. This classifier enables classifying

structured objects to concept C.
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6.21 Classification of Structured Objects

In this section, we present an algorithm which allows to answer the question
whether the behavior of structured objects observed in a sequence of time win-
dows belongs to a given temporal concept defined for structured objects.

Stratifying classifier µE
C constructed for table GC

��
enables the classification

of structured objects to concept C. However, it may be applied for the tested
object which is the arrangement of clusters of temporal paths of the behavioral
graph for complex objects being parts of the examined structured object and
clusters of temporal paths of the behavioral graph describing relation changes
between the parts of the examined structured object. That is why it is necessary
to construct earlier a suitable object (like in the table GC

��
) in order to test of

structured object. We present the algorithm of structured object classification.
However, we assume that during execution of the Algorithm 6.5 the following
elements are available:

– a test c-temporal information system TTS−P ,
– a sweeping algorithm SA around objects from systems TTS−P ,
– a test c-temporal information system TTS−R representing features of rela-

tions between parts of structured objects determined by the algorithm SA,
– a formula of constraints Φ ∈ GDL(G⊗),
– a concept C defined by experts in the set U��, representing some feature of

structured objects of a fixed type T , where any object of the type T consists
of parts, that are objects of types T1, ..., Tk,

– a temporal concept table GC
��

for the concept C, constructed using the for-
mula of constraints Φ,

– a linearly ordered set (H,≤H) such that H is a set of labels of concepts
layers and ≤H is a relation of linear order on the set H ,

– a stratifying classifier µH
C constructed for the concept C on the basis the

table GC
��
.

The Algorithm 6.11 works as follows. On the input of the algorithm there is a
description given of the behavior of a certain structured object, in the form of se-
quences of time windows: S1, ..., Sk, Sk+1 which describe the behavior of a part of
this object (sequences: S1, ..., Sk) and the relation changes between the parts of
this object (the sequence Sk+1). Next, on the basis of the sequences of time win-
dows obtained on the input and with the usage of algorithms MakeT imePath
and GetClusterRow, there is created a new object urow which has the structure
of objects from the G⊗ table. Next, it is checked whether object urow satisfies
the constraints expressed by formula Φ. If it happens this way, then object urow

is classified by the stratifying classifier µH
C , otherwise the algorithm returns the

information that it cannot classify the behavior of the complex object whose
description is given on the input of the algorithm.

Assuming that the operation of examining the satisfiability of formula Φ and
the operation of classification with the help of classifier µH

C may be performed
in constant time and considering the complexity of procedures MakeT imePath
and GetClusterRow, the pessimistic time complexity of the Algorithm 6.11 is of
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Algorithm 6.11. Structured object classification to the temporal concept
Input: Family of sequences of time windows S1, ..., Sk, Sk+1 describing

behavior of a given structured object, where Si ∈ SEQ(TTS−P ),
for i = 1, ..., k and Sk+1 ∈ SEQ(TTS−R)

Output: Information about the membership of the observed structured
object to the concept C

begin1

Create empty list row2

for i := 1 to k + 1 do3

path := MakeT imePath(Si) (see Algorithm 6.8)4

pRow := GetClusterRow(path) (see Algorithm 6.10)5

Add pRow to the end of the list row6

end7

Create new object urow of the system G⊗ on the basis values of8

attributes from the list row.
if urow 	|=GDL(G⊗) Φ then9

return “Has nothing to do with”10

else11

return µH
C (urow)12

end13

end14

order O(k ·s ·m+k ·npf +k ·nc +k ·ncf), where k is the number of parts of which
the examined structured objects consist, s is the length of each S1, ..., Sk, Sk+1
sequences, m is the maximum number of nodes from the behavior graphs of
individual parts of structured objects, npf is the maximum number of features
used to define path properties in behavior graphs, nc is the maximum number of
path clusters in behavior graphs and ncf is the maximum number of the applied
features of such clusters.

6.22 Behavioral Graphs for Structured Objects

Analogously to the case of temporal concepts for unstructured complex objects,
temporal concepts defined for structured objects may also be treated as nodes of
a certain directed graph that we call a behavioral graph for a structured object.
One can say, that the behavioral graph for a structured object expresses temporal
dependencies on a higher level of generalization than the behavioral graph on
lower level, i.e., the behavioral graph for unstructured objects.

Definition 53 (A behavioral graph for a structured object).

1. A behavioral graph for a structured object G is an ordered pair (V , E), where
V is a nonempty and finite set of nodes (temporal concepts for structured
objects) and E is a set of directed edges E ⊂ V × V (connections represent
temporal dependencies between temporal concepts for structured objects).
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2. A temporal path in the behavioral graph G = (V , E) is a sequence of nodes
v1, ..., vl such that for any i ∈ {1, ..., l− 1} an edge (vi, vi+1) ∈ E. A number
l is called a length of temporal path v1, ..., vl.

3. A family of all temporal paths with length l (l > 0) in the behavioral graph
G is denoted by PATH(G, l).

Bellow we present an example of behavioral graph for a structured object.

Example 32. In Fig. 33, we present exemplary behavioral graph for a structured
object, that is a group of two vehicles: vehicle A and vehicle B, related to the
standard overtaking maneuver. There are 6 nodes in this graph representing
the following temporal concepts: vehicle A is driving behind B on the right lane,
vehicle A is changing lanes from right to left, vehicle A is moving back to the right
lane, vehicle A is passing B when A is on the left lane and B is on the right lane,
vehicle A is changing lanes from left to right and vehicle A is before B on the
right lane. There are 7 connections representing spatio-temporal dependencies
between temporal concepts from nodes. For example, after the node Vehicle A
is driving behind B on the right lane the behavior of these two vehicles matches
to the node (temporal concept) Vehicle A is changing lanes from right to left
and B is driving on the right lane. �

6.23 Behavioral Patterns

Both the behavioral graph for an unstructured object and the behavioral graph
for a structured object may be used as a complex classifier enabling the identifi-
cation of the behavioral pattern described by this graph. It is possible based on
the observation of the behavior of a unstructured object or a structured object
over a longer period of time and testing if the behavior matches the chosen path
of the behavioral graph. If this is the case, it is stated that the behavior matches

1. Vehicle A is
 behind B on the right lane

2. Vehicle A is changing
lanes from right to left,

vehicle B is driving on the
right lane

3. Vehicle A  is moving back
to the right lane,

vehicle B is driving on the
right lane

4. Vehicle A is driving on
the left lane and

A is passing B (B is
driving on the right lane)

6. Vehicle A is before B on
the right lane

5. Vehicle A is changing
lanes from left to right,

vehicle B is driving on the
right lane

 

Fig. 33. A behavioral graph for the maneuver of overtaking
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Algorithm 6.12. Behavioral pattern identification
Input: Family of sequences of time windows S1, ..., Sk, Sk+1 describing

behavior of a given structured object, where:
– Si ∈ SEQ(TTS−P ), for i = 1, ..., k and Sk+1 ∈ SEQ(TTS−R),
– Length(Si) = z · s, where z is a natural number and s is a length of

sequences of time windows used for identification of temporal concepts
for structured objects, for i = 1, ..., k + 1.

Output: The binary information (YES or NO) about matching the
observed structured object to the behavioral pattern
represented by the graph G

begin1

Create empty list path2

for i := 0 to z − 1 do3

SS1 := Subsequence(S1, i · s + 1, (i + 1) · s)4

...5

SSk := Subsequence(Sk, i · s + 1, (i + 1) · s)6

SSk+1 := Subsequence(Sk+1, i · s + 1, (i + 1) · s)7

vmax := v18

layermax := µH
v1

(SS1, ..., SSk, SSk+1)9

for j := 2 to m do10

layer := µH
vj

(SS1, ..., SSk, SSk+1)11

if layermax ≤H layer then12

layermax := layer13

end14

end15

Add vmax to the end of the list path.16

end17

if path ∈ PATH(G, z) then18

return YES19

else20

return NO21

end22

end23

behavioral pattern represented by this graph which enables detecting particular
behaviors in a complex dynamical system.

In result, we can use a behavioral graph as a complex classifier for perception
of the complex behavior of unstructured or structured objects. For this reason,
a behavioral graph constructed for some complex behavior is called a behavioral
pattern.

We present a detailed algorithm of behavioral pattern identification (see
Algorithm 6.12). However, we assume that during execution of the Algorithm 6.12
the following elements are available:
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– a test c-temporal information system TTS−P ,
– a sweeping algorithm SA around objects from system TTS−P ,
– a test c-temporal information system TTS−R representing features of rela-

tions between parts of structured objects determined by the algorithm SA,
– a behavioral graph G = (V , E) of structured objects of a fixed type T deter-

mined by the algorithm SA such that V = {v1, ..., vm},
– a linearly ordered set (H,≤H) such that H is a set of labels of concepts

layers and ≤H is a relation of linear order on the set H ,
– a family of stratifying classifiers µH

v1
, ..., µH

vm
constructed for concepts corre-

sponding to nodes v1, ..., vm ∈ V .

The way of working Algorithm 6.12 is the following. On the input there is a
description given of the behavior of a certain structured object, in the form of
sequences of time windows: S1, ..., Sk, Sk+1 which describe the behavior of a part
of this object (sequences: S1, ..., Sk) and the relation changes between the parts
of this object (sequence Sk+1). The length of these sequences is established and
equals z · s, where z is a fixed natural number and s is the length of sequences
of time windows needed to identify a single temporal concept for structured
objects. Further, for the all subsequence families of the length s isolated from
the input sequences, stratifying classifiers are applied constructed for concepts
corresponding to all nodes of behavior graph G. Thus, it is possible to chose
such a node for each subsequence family that the classifier corresponding to it
classifies the subsequence family to the possibly lowest layer (if there are more
such nodes the choice among them is nondeterministic). The chosen node is
put at the end of the path represented using the path list. After choosing the
node of graph G for all subsequence families and what follows completing the
path list, the return of decision value occurs which tells us whether the examined
structured object matches the behavioral pattern represented by graph G or not.
Namely, the Y ES decision is returned when the list path is a path in graph G,
otherwise the NO value is returned.

The above algorithm is able to classify a given structured object only when
all subsequence families isolated from the input family of the sequence of time
windows may be classified. However, this is possible only when each subsequence
family is classified at least by one of the stratifying classifiers available for nodes
from set V .

Let us notice that in terms of computational complexity the time cost of
executing the Algorithm 6.12 is equal, with an accuracy of constant, the sum
of costs of (z ·m)-times execution of Algorithm 6.11, where z is the number of
the subsequences of the length s into which the input sequences are divided and
m = card(V).

Example 33. Let us study the behavioral graph presented in Fig. 33 for a group
of two objects-vehicles (vehicle A and vehicle B) related to the standard over-
taking maneuver. We can see that the path of temporal concepts with indexes
“1, 2, 3, 1, 2, 4” matches a path from this behavioral graph, while the path with
indexes: “6, 5, 4” doesn’t match any path from this behavioral graph (this path
can match some other behavioral patterns). �
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A path of temporal patterns (that makes it possible to identify behavioral pat-
terns) should have a suitable length. In the case where the length is too short,
it may be impossible to discern one behavioral pattern from another pattern.
For example, we can make a mistake between an overtaking and a passing by a
vehicle in traffic.

6.24 Discovering Rules for Fast Elimination of Behavioral Patterns

In this section, we present how the method of behavioral patterns identification
presented in Section 6.23 can be speeded up using special decision rules. Let us
assume that we have a family of behavioral patterns BP = {b1, ..., bn} defined
for structured objects (or parts of a given structured object). For any pattern bi

from the family BP one can construct a complex classifier based on a suitable
behavioral graph (see Section 6.23) that makes it possible to answer the question:
“Does the behavior of the investigated structured object (or the part of a struc-
tured object) match the pattern bi?”. The identification of behavioral patterns
of any structured object is performed by investigation of a sequence of time win-
dows registered for this object during some period (sometimes quite long). This
registration of time windows is necessary if we want to avoid mistakes in iden-
tification of the investigated structured object. However, in many applications,
we are forced to make a faster (often in real-time) decision if some structured
object matches the given behavioral pattern. In other words, we would like to
check the investigated structured object at once, that is, using the first or second
time window of our observation only. This is very important from the compu-
tational complexity point of view, because if we investigate complex dynamical
systems, we usually have to investigate many structured objects. Hence, faster
verification of structured objects can help us to optimize the process of searching
among structured objects matching the given behavioral pattern.

The verification of complex dynamical systems consisting of some structured
objects can be speeded up by using some special decision rules, that are computed
by an Algorithm 6.13 (see also Fig. 34).

Any decision rule computed by the Algorithm 6.13 expresses a dependency
between a temporal concept and the set of behavioral patterns that are not
matching this temporal concept. Such rules can make it possible to exclude very
quickly many parts of a given complex object as irrelevant for identification of a
given behavioral pattern. This is possible because these rules can be often applied
at once, that is after only one time window of our observation. Let us consider
a very simple illustrative example. Assume we are interested in the recognition
of overtaking that can be understood as a behavioral pattern, defined for the
group of two vehicles. Using the methodology presented above, we can obtain
the following decision rule:

– If the vehicle A is overtaking B then the vehicle B is driving
on the right lane.
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Algorithm 6.13. Discovering decision rules for fast elimination of behav-
ioral patterns

Input:
– c-temporal information system T,
– a family of behavioral patterns BP = {b1, ..., bn} defined for structured

objects or parts of structured objects.

Output: Decision rules for fast elimination of behavioral patterns from
the family BP

1. Define a family of temporal concepts TC = {t1, ..., tm} that have
influence on matching investigated structured objects to behavioral
patterns from family BP (defined on the basis of information from
time windows from the set TW (T)).

2. Construct classifiers for all temporal concepts from TC using the
method from Section 6.9.

3. For any temporal concept ti from the family TC create a decision table
DTi, that has the following structure:
(a) any row of the table DTi is constructed on the basis of information

registered during a period that is typical for the given temporal
concept ti,

(b) the condition attribute b of table DTi registers the index of
behavioral pattern from the family BP (the index computation is
based on observation that any complex classifier from BP can check
for the investigated structured objects if there is a sequence of time
windows matching the given behavioral pattern and starting from a
given time window),

(c) the decision attribute of the table DTi is computed on the basis of
values returned by classifier constructed for ti in previous step.

4. Compute decision rules for DTi using methods of discretization by
attribute values grouping (see Section 2.2).

After applying the transposition law, we obtain the following rule:

– If the vehicle B is not driving on the right lane then the
vehicle A is not overtaking B.

The last rule (see also Fig. 35) allowing fast verification whether the inves-
tigated structured object (two vehicles: A and B) is matching the behavioral
pattern of overtaking.

Of course, in case of the considered complex dynamical system, there are many
other rules that can help us in the fast verification of structured objects related
to the overtaking behavioral pattern. Besides, there are many other behavioral
patterns in this complex dynamical system and we have to calculate rules for
them using the methodology presented above.
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Fig. 34. The scheme of rules extraction for the fast elimination of behavioral patterns
from data tables

 

B

A

If the vehicle B is not driving on the 
right lane then the vehicle A is not 
overtaking B. 
 

Fig. 35. The illustration of the decision rule for fast elimination of behavioral pattern

The presented method, that we call the method for on-line elimination of
non-relevant for a given behavioral pattern parts of complex object (ENP method
[177, 178]), is not a method for behavioral pattern identification. However, this
method allows to eliminate some paths of a given complex object behavior that
are not relevant for checking if this object matches a given behavioral pattern.
After such elimination the complex classifiers based on a suitable behavioral
graphs should be applied to the remaining complex objects.

6.25 Experiments with Road Simulator Data

To verify the effectiveness of classifiers based on behavioral patterns, we have
implemented the algorithms from the Behavioral Patterns library (BP-lib), which
is an extension of the RSES-lib 2.1 library forming the computational kernel of
the RSES system (see [15]). Our experiments have been performed on the data
sets obtained from the road simulator (see Appendix A) and on the medical data
sets. In this section we report results of experiments preformed on the data sets
obtained from the road simulator. Results obtained for the medical data sets are
presented in Section 6.26.
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In the case of experiments on the data sets obtained from the road simulator,
we have applied the train-and-test method. A training set consisted of about
17 thousands objects generated by the road simulator during one thousand of
simulation steps. Whereas, a testing set consisted also of about 17 thousands
objects collected during another (completely different) session with the road
simulator.

In our experiments, we compared the quality of three classifiers: rough set
classifier with decomposition (RS-D), Behavioral Pattern classifier (BP) and Be-
havioral Pattern classifier with the fast elimination of behavioral patterns (BP-
ENP).

For induction of RS-D, we employed RSES system generating the set of min-
imal decision rules by algorithm LEM2 (see Section 2.4) that are next used for
classification of situations from the testing data. However, we had to use the
method of generating decision rules joined with a standard decomposition al-
gorithm from the RSES system (see Section 2.7). This was necessary because
the size of the training table was too large for the direct generation of deci-
sion rules. The classifiers BP is based on behavioral patterns (see Section 6.23),
whilst BP-ENP are based on behavioral patterns too but with application of fast
elimination of behavioral patterns related to the investigated group of objects
(see Section 6.24).

In application of BP and BP-ENP methods the distance between time points
was constant, that is time points were recorded after each stage of the simulation.
The prediction of temporal concepts for individual vehicles was performed on
the basis of time windows whose duration equals 3 time points, whereas the
prediction of temporal concepts for pairs of vehicles was performed on the basis
of sequence of time windows whose duration was equal 2. Finally, the behavioral
pattern was recognized on the basis of vehicle observation over 2 sequences of
time windows, that is on the basis of vehicle observation over 4 time windows.
The tested object for the analyzed behavioral pattern was, thus, the sequence of
9 successive time points. Therefore, classifier RS-D used the table whose objects
were sequences of 9 successive time points, whereas the attributes gave the values
of sensor attributes for all these points. The value of decision attribute was given
by the expert in the same manner for all three classification methods.

We compared RS-D, BP, and BP-ENP classifiers using the accuracy, the cov-
erage, the real accuracy, the accuracy for positive examples (the sensitivity or
the true positive rate), the coverage for positive examples, the real accuracy
for positive examples, the accuracy for negative examples (the specificity or the
true negative rate), the coverage for negative examples and the real accuracy for
negative examples (see Section 2.9).

In order to determine the standard deviation of the obtained results each ex-
periment was repeated for 10 pairs of tables (training table + testing table).
Therefore, 20 tables in total were applied (collected during 20 completely differ-
ent sessions with the road simulator).

Table 8 shows the results of applying these classification algorithms for the
concept related to the overtaking behavioral pattern.
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Table 8. Results of experiments for the overtaking pattern

Decision class Method Accuracy Coverage Real accuracy
Yes RS-D 0.875 ± 0.050 0.760 ± 0.069 0.665 ± 0.038

(overtaking) BP 0.954 ± 0.033 1.000 ± 0.000 0.954 ± 0.033
BP-ENP 0.947 ± 0.031 1.000 ± 0.000 0.947 ± 0.031

No RS-D 0.996 ± 0.001 0.989 ± 0.003 0.985 ± 0.001
(no overtaking) BP 0.990 ± 0.004 1.000 ± 0.000 0.990 ± 0.004

BP-ENP 0.990 ± 0.004 1.000 ± 0.000 0.990 ± 0.004
All classes RS-D 0.993 ± 0.002 0.980 ± 0.004 0.973 ± 0.002
(Yes + No) BP 0.988 ± 0.003 1.000 ± 0.000 0.988 ± 0.003

BP-ENP 0.988 ± 0.003 1.000 ± 0.000 0.988 ± 0.003

One can see that in the case of perception of the overtaking maneuver (deci-
sion class Yes) the accuracy and the real accuracy of algorithm BP are higher
than the accuracy and the real accuracy of algorithm RS-D for the analyzed data
set. Besides, we see that the accuracy of algorithm BP-ENP (for decision class
YES) is only 0.7 percent lower than the accuracy of algorithm BP. Whereas, the
algorithm BP-ENP allows us to reduce the time of perception, because during
perception we can usually identify the lack of overtaking earlier than in the al-
gorithm BP. This means that it is not necessary to collect and investigate the
whole sequence of time windows (that is required in the BP method) but only
some first part of this sequence. In our experiments with the classifier BP-ENP
it was enough to use on average 59.7%±1.5% percent of the whole time window
sequence for objects from the decision class No (the lack of overtaking in the
sequence of time windows). However, it should be stressed that this result con-
cerns only identification of vehicle groups which were preliminarily selected by
the sweeping algorithm (see Section 6.13), whereas in comparison with the num-
ber of time windows needed to analyze all possible two-element vehicle groups, in
using the sweeping algorithm and BP-ENP method the number of analyzed time
windows constitutes only 2.3%± 0.1% of the number of time windows needed to
analyze all 2-element vehicle groups.

6.26 Risk Pattern Identification in Medical Data: Case Study

An identification of some behavioral patterns can be very important for identifi-
cation or prediction of behavior of a complex dynamical system, especially when
behavioral patterns describe some dangerous situations. In this case, we call such
behavioral patterns risk patterns and we need some tools for their identification.
If in the current situation some risk patterns are identified, then the control
object (a driver of the vehicle, a medical doctor, a pilot of the aircraft, etc.) can
use this information to adjust selected parameters to obtain the desirable be-
havior of the complex dynamical system. This can make it possible to overcome
inconvenient or unsafe situations. For example, a very important element of the
treatment of the infants with respiratory failure is the appropriate assessment of
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the risk of death. The appropriate assessment of this risk leads to the decision of
particular method and level of treatment. Therefore, if some complex behavior
of an infant that causes a danger of death is identified, we can try to change
her/his behavior by using some other methods of treatment (may be more rad-
ical) in order to avoid the infant’s death. In this section we describe how the
presented approach in previous sections can be applied to identification of the
infants’ death risk caused by respiratory failure (see Appendix B). In this ap-
proach, a given patient is treated as an investigated complex dynamical system,
whilst diseases of this patient (RDS, PDA, sepsis, Ureaplasma and respiratory
failure) are treated as complex objects changing and interacting over time.

It is also worthwhile mentioning that the research reported in this section is
a continuation, in some sense, of the previous research on the survival analysis
(see [324, 325, 326]).

Medical Temporal Patterns. As we wrote before (see, e.g, Section 6.4), the
concepts concerning the properties of complex objects at the current time point
in connection with the previous time point are a way of representing very simple
behaviors of the complex objects. These concepts, that we call elementary con-
cepts, usually characterize a status of sensor’s values. In the case of our medical
example (the treatment of the infants with respiratory failure), we can distin-
guish the following elementary concepts such as low value of FiO2 (the percent
concentration of oxygen in the gas entering the lungs), increase in FiO2 , decrease
in PaO2 (the arterial oxygen tension), decrease in PaO2/FiO2, low creatinine
serum (blood) level. However, a perception of more complex behaviors requires
identification of elementary concepts over a longer period called a time window
(see Section 6.6). Therefore, if we want to predict such more complex behaviors
or discover a behavioral pattern, we have to investigate elementary concepts reg-
istered in the current time window. Such investigation can be expressed using
temporal patterns. For example, in the case of the medical example one can
consider patters expressed by following questions: “Did PaO2/FiO2 increase in
the first point of the time window?”, “Was PaO2/FiO2 stable in the time win-
dow?”, “Did the PaO2/FiO2 increase before the closing of PDA?” or “Did the
PaO2/FiO2 increase before a PaO2/FiO2 decrease occurred?”. Notice that all
such patterns ought to be defined by a human, medical expert using domain
knowledge accumulated for the respiratory failure disease.

Behavioral Graph for a Disease. The temporal patterns can be treated as
new features that can be used to approximate temporal concepts (see
Section 6.6). In the case of the treatment of infants with respiratory failure
one can define temporal concepts such as “Is the infant suffering from the RDS
on level 1?”, “Was an multi-organ failure detected?”, or “Is the progress in
multi-organ failure on level 4?”.

Temporal concepts defined for objects from a complex dynamical system and
approximated by classifiers, can be treated as nodes of a graph called a behavioral
graph (see Section 6.11), where connections between nodes represent temporal
dependencies. Fig. 36 presents a behavioral graph for a single patient exhibiting
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Fig. 36. A behavioral graph of sepsis by analyzing the multi-organ failure

a behavioral pattern of patient by analysis of the organ failure caused by sepsis.
This graph has been created on the basis of observation of medical data sets
(see Appendix B) and the SOFA scale (Sepsis-related Organ Failure Assessment)
(see [327, 328] for more details).

In this behavioral graph, for example, connections between node “Progress in
multi-organ failure on level 1” and node “Progress in multi-organ failure on level
3” indicates that after some period of progress in organ failure on level 1 (rather
low progressing), a patient can change his behavior to the period, when progress
in organ failure is high. In addition, a behavioral graph can be constructed for
different kinds of diseases (like RDS, PDA, Ureaplasma) (see Appendix B) or
groups of diseases represented for example by the respiratory failure (see Fig. 37).

Medical Risk Pattern. The temporal concepts defined for structured objects
and approximated by classifiers, are nodes of a new graph, that we call a be-
havioral graph for a structured object (see Section 6.22). In Fig. 37, we present
an exemplary behavioral graph for group of four diseases: sepsis, Ureaplasma,
RDS and PDA, related to the behavior of the infant during high death risk
period due to respiratory failure. This graph has been created on the basis of
observation of medical data sets (see next subsection) and with support of med-
ical experts. There are 16 nodes in this graph and 21 connections represented
spatio-temporal dependencies between temporal concepts from nodes. For exam-
ple, after the node “Stabile and mild respiratory failure in sepsis” the behavior
of patient can match the node “Exacerbation of respiratory failure from mild to
moderate in sepsis”.



Hierarchical Classifiers for Complex Spatio-temporal Concepts 655

Stable and mild 
respiratory failure 

in sepsis

Stable and moderate respiratory 
failure in RDS and PDA

Stable and severe respiratory failure  
in sepsis, RDS and PDA

Stable and severe 
respiratory failure in RDS

Exacerbation of respiratory failure 
from mild to moderate in sepsis

Stable and moderate 
respiratory failure in sepsis

Stable and severe respiratory 
failure in RDS and PDA

Stable and severe 
respiratory failure 

in PDA

Exacerbation of respiratory failure from 
moderate to severe in RDS and PDA

Stable and moderate respiratory failure 
in sepsis, RDS and PDA

Exacerbation of respiratory 
failure from moderate 

to severe in sepsis

Stable and severe respiratory 
failure in sepsis 

Stable and severe respiratory 
failure in sepsis and PDA

Stable and severe 
respiratory failure 
in sepsis and RDS

Exacerbation of respiratory failure from 
moderate to severe in sepsis, RDS and PDA

Exacerbation of respiratory 
failure from mild to severe 

in sepsis

 

Fig. 37. A behavioral graph of the infant during high death risk period due to respi-
ratory failure

This behavioral graph is an example of risk pattern. We can see that the
path of temporal patterns: (“Stable and mild respiratory failure in sepsis”, “Ex-
acerbation of respiratory failure from mild to severe in sepsis”, “Stable and
severe respiratory failure in sepsis”) matches a path from this behavioral graph,
while the path: (“Stable and severe respiratory failure in sepsis”, “Exacerbation
of respiratory failure from moderate to severe in sepsis”, “Stable and moder-
ate respiratory failure in sepsis”) doesn’t match any path from this behavioral
graph.

Experiments with Medical Data. In this section we present results of exper-
iments performed for obtained from Neonatal Intensive Care Unit, First Depart-
ment of Pediatrics, Polish-American Institute of Pediatrics, Collegium Medicum,
Jagiellonian University, Krakow, Poland. The data were collected between 2002
and 2004 using computer database NIS, i.e, Neonatal Information System (see
[329]). The detailed information about treatment of 340 newborns are available
in the data set, such as perinatal history, birth weight, gestational age, lab tests
results, imagine techniques results, detailed diagnoses during hospitalization,
procedures and medication were recorded for the each patient. The study group
included prematurely born infants with the birth weight ≤ 1500g, admitted to
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the hospital before end of the 2 day of life. Additionally, the children suffer-
ing from the respiratory failure but without diagnosis of RDS, PDA, sepsis or
Ureaplasma infection during their entire clinical course were excluded from the
study group (193 patients stayed after the reduction).

In our experiments, we used one data table extracted from the NIS system,
that consists of 11099 objects. Each object of this table describes parameters of
one patient in single time point.

The aim of conducted experiments was to check the effectiveness of the algo-
rithms described in this paper in order to predict the behavioral pattern related
to a high risk of death of infants. This pattern was defined by experts (see
Fig. 37). It is worth adding that as many as 90.9% of infants whose behavior
matched this pattern died shortly after (this fact results from a simple analysis
of medical data set which were gathered).

As a measure of classification success (or failure) we use: the accuracy, the
coverage, the real accuracy, the accuracy for positive examples (the high risk of
death), the coverage for positive examples, the real accuracy for positive exam-
ples, the accuracy for negative examples (the low risk of death), the coverage for
negative examples and the real accuracy for negative examples (see Section 2.9).

We have applied the train-and-test method. However, because of the speci-
ficity of the analyzed data the method of data division differed slightly from the
standard method. Namely, in each experiment the whole patient set was ran-
domly divided into two groups (training and testing one). The same number of
patients belonged to each of these groups, at the same time patients who died
and those who survived were divided separately. In other words, in each of two
groups the number of dead patients and those who survived was the same. This
division of data was necessary because the correlation between patient’s death
and the fact of matching patient’s behavior the considered behavioral pattern
is very strong. Obviously, the information about whether the patient died or
survived the treatment was not available during learning and testing process of
classifiers.

In the discussed experiments the distance between time points recorded for a
specific patient was variable, that is, various time points of different frequencies
were recorded in the data over different periods of time. For instance, if pa-
tient’s condition was serious, then quite often (e.g., every two hours) parameters
representing his or her condition were registered and recorded for this patient,
whereas if the patient’s condition was good and stable, then the information
about this patient was recorded rather rarely (e.g., once a day). In relation to
this, although the prediction of temporal concepts for individual disease (RDS,
PDA, sepsis, Ureaplasma) was always performed on the basis of time windows
having 2 time points, then in practice these windows had very different temporal
durations. This way, the duration of time windows was in a certain way deter-
mined by experts. However, the prediction of temporal concepts for respiratory
failure was performed on the basis of the sequence of time windows whose dura-
tion was equal 2. Finally, the pattern of high death risk was recognized on the
basis of patient observation for 3 sequences of time windows that is on the basis
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Table 9. Results of experiments for the risk pattern of death due to respiratory failure

Decision class Accuracy Coverage Real accuracy
Yes (the high risk of death) 0.994 ± 0.008 1.0 ± 0.000 0.994 ± 0.008
No (the low risk of death) 0.938 ± 0.012 1.0 ± 0.000 0.938 ± 0.012

All classes (Yes + No) 0.958 ± 0.010 1.0 ± 0.000 0.958 ± 0.010

of observation over 6 time windows. A tested object for the analyzed behavioral
pattern was, therefore, the sequence of 7 successive time points.

As a result of the above mentioned division of patients into training and test-
ing ones, each of these parts made it possible to create approximately 6000 time
windows having duration of 7 time points. Time windows created on the basis of
training patients created a training table for a given experiment, while time win-
dows created on the basis of tested patients created a test table for the experiment.

In order to determine the standard deviation of the obtained results each
experiment was repeated for 10 random divisions of the whole data set.

Table 9 shows the results of applying this algorithm for the concept related
to the risk pattern of death due to respiratory failure. Together with the results
we present a standard deviation of the obtained results.

Notice, that the accuracy of decision class Yes in medical statistics (see [260]
and Section 2.9) is called a sensitivity (the proportion of those cases having a
true positive test result of all positive cases tested), whereas the accuracy of
decision class No is called a specificity (the proportion of true negatives of all
the negative samples tested). We see both main parameters of our classifier (i.e.,
sensitivity and specificity) are sufficiently high.

Experimental results showed that the suggested method of behavioral pat-
terns identification gives good results, also in the opinion of medical experts
(compatible enough with the medical experience) and may be applied in med-
ical practice as a supporting tool for infants suffering from respiratory failure
monitoring.

Some results of our experiments on medical data were surprising even for med-
ical experts (e.g., very low frequency of fatal cases in infants with Ureaplasma
infection). Therefore, one can say that our tools were useful for development of
new interesting observation and experience.

Finally, let us notice that the specific feature of the methods considered here is
not only high accuracy (with low standard deviation) but also very high coverage
(equal 1.0).

7 Automated Planning Based on Data Sets and Domain
Knowledge

Behavioralpatterns described in Section 6 may be very useful for effective complex
dynamical systems monitoring, particularly when certain behavioral patterns are
connected to undesirable behaviors of complex objects. If during the observation
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of complex dynamical system such a pattern is identified then the control mod-
ule may try to change, using appropriate actions, the behavior of the system in
such a way as to get the system out of an uncomfortable or dangerous situation.
However, these types of short-term interventions may not be sufficient for a per-
manent rescuing the system out of an undesirable situation. Therefore, very often
the possibility of using some methods of automated planning is considered.

Automated planning is a branch of artificial intelligence that concerns the real-
ization of strategies or action sequences (called as plans), typically for execution
by intelligent agents, autonomous robots and unmanned vehicles, that can change
their environment (see, e.g., [70, 76, 273]). The essential inputs for planning are
an initial world state, a repertoire of action for changing that world, and a set of
goals. The purpose of plan is to achieve one or more goals. The form of the plan is
commonly just a linear sequence of actions or acyclic directed graph of actions.

In the case of the control of complex dynamical systems, automated gener-
ated plans can be used to carry out a given complex object to more comfortable
or safer situation (see, e.g., [70, 72, 74, 76, 180, 181]). Such plans may be per-
formed by (or on) unstructured objects or structured objects, i.e., by each part
of any structured object separately with a presence of complete synchronization
of actions performed by (or on) individual parts of the structured object).

7.1 Classical Algorithms of Automated Planning

Classical planning algorithms can be classified according to how they structure
the search space. There are three very common such classes, like: state space
planners, plan space planners and planners encoding the planning problem as a
problem of some other kind (see, e.g., [70, 71, 74, 330, 331]).

State Space Planners. In the first class of classical planning algorithm are very
early planners, e.g., STRIPS (see [332]), and some successful recent planners,
like Graphplan (see [333]). These algorithms are based on searching in the state
space, where such searching is most often done either by forward-chaining, i.e.,
searching from the initial state to the goal state, or by backward-chaining, i.e.,
searching from the goal state to the initial state (see, e.g., [70, 71, 74] for more
details).

Plan Space Search. In the second class of planning algorithms are causal link
planners and constraint-based planners (see, e.g., [74]). In this case, the plan
space consists of incomplete plans, which, in contrast to the notion of plan in the
state space view, do not have to be sequences or actions or sets of parallel actions.
One alternative is to view the plan as a partially ordered set of actions. The
potential advantage of this view is that one partially ordered set can represent
many linear plans, and that the planner needs only to enforce the orderings that
are absolutely necessary, whereas in a linear plan, many action orderings are
quite arbitrary (see, e.g., [70, 71, 74] for more details).

Encoding Planning as a Different Problem. A third class of classical
planners encode the planning problem as a problem of some other kind and
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solve this problem. This approach was first used in SATPLAN (see, e.g,
[71, 334, 335, 336, 337]) which converts the planning problem instance into an in-
stance of the Boolean satisfiability problem, which is then solved using a method
for establishing satisfiability such as the DPLL algorithm or WalkSAT (see, e.g.,
[338]). Other methods of planning in which the planning problem has been
encoded as a problem of some other kind are methods based on a linear pro-
gramming (see, e.g., [339, 340]) or using constraint satisfaction problems (CSP)
(see, e.g., [341]).

7.2 Domain Dependent Automated Planning

Planning applications in practice may be large and involve complicated actions,
but they commonly also have a great deal of structure, known to people experi-
enced with the domain. There are many potential plans that are (to the human
domain expert) obviously useless, and sometimes simple criteria can be found
for sifting out the “promising” partial solutions. If this knowledge is encoded
and given to the planner, it should help to speed up the process of finding a
plan. This idea leads to what is called “domain-dependent planning”.

There are many planning methods which use domain knowledge. At this sec-
tion we briefly discuss a few most widely known exemplary approaches, that is
the planning with learning, the planning with time, the planning with incomplete
information, the hierarchical task network planning and the domain-dependent
search control.

Learning in Planning. Generally speaking, machine learning techniques can
be used to extract useful knowledge, from solutions to similar problem instances
in the past or from previous failed attempts to solve the present problem in-
stance. This has been used to improve planning efficiency and to improve plan
quality (see, e.g., [70, 71] for more details). For instance, two of the earliest sys-
tems to integrate machine learning and planning are SOAR (see, e.g., [35, 302]),
a general cognitive architecture for developing systems that exhibit intelligent
behaviour, and PRODIGY, an architecture that integrates planning and learning
in its several modules (see, e.g., [303, 342]).

The approach to automated planning presented in this paper may also be
included into the approaches integrating methods of machine learning with clas-
sical planning. However, there are significant differences between methods known
from literature and methods presented in this paper (see Section 7.3 for more
details).

Planning with Time. In classical planning actions are assumed to take “unit
time”. This assumption is not critically important, as long as there is no deadline
to meet and one does not try to optimize the actual execution time. An early
planner to deal with actions of different duration and goals with deadlines is
Deviser (see [343]). It is based on the idea of partial-order planning, in which
the simple partial order over the actions in the plan are replaced by more complex
constraints on their starting and ending times. The idea has been picked up in
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several later planners (see, e.g., [70, 71, 74] for more details). Recently, temporal
planning has become a very active area of research, and almost every classical
planning approach has been adapted to deal with durative actions.

Planning with Incomplete Information. Another assumption made by most
planners is that all relevant information is available in the problem description,
and that the effects of actions are perfectly predictable. There have been several
approaches to relaxing this assumption, by introducing probabilistic information.
The probabilistic information has been used with state space planners, partial-
order planners but most of all in the form of Markov Decision Problems (see,
e.g., [70, 71, 74] for more details).

Hierarchical Task Network Planning. Hierarchical Task Network (HTN)
planning (see, e.g., [70, 344, 345]) is like classical planning in that each state of
world is represented by set of atoms, and each action corresponds to determin-
istic state transition. However, HTN planners differ from classical planners in
what they plan for and how they plan for it. In an HTN planner, the objective is
not to achieve a set of goals but instead to perform some set of tasks. The input
to the planning system includes a set of operators similar to those of classical
planning and also a set of methods. Each of which is a prescription for how to
decompose some task into some set of subtasks (smaller tasks). Planning pro-
ceeds by decomposition non-primitive tasks recursively into smaller and smaller
subtasks, until primitive tasks are reached that can be performed directly using
the planning operators (see [70, 71] for more details).

Domain-Dependent Search Control. Many search-based planners allow the
speciation of domain-dependent heuristics and rules for controlling and reducing
search. For example, two recent planners, TLPlan (see [346]) and TALplanner
(see [347, 348]) depend entirely on domain-specific search control, given in the
form of logical formulas.

7.3 Automated Planning for Complex Objects

In the all aforementioned approaches to automated planning for complex objects,
it is assumed that we know the current state of the complex object, which results
from a simple analysis of current values of this object’s available parameters. In
other words the state of the complex object may be directly read from the values
of its parameters or from a simple analysis of dependencies between these values.
For example, if we consider a classic blocks world problem (see, e.g., [74, 349])
which consists in planning the way of arranging available blocks on the table to
make a determined construction, the state of the object is the information about
the current placement of the blocks; and at the same time while planning the
arrangement the answers to the three following questions are taken into account.

1. Is a given block lying directly on the table?
2. Is another block lying on a given block?
3. Is another specific block lying on a given block?
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Fig. 38. Four states in the blocks world problem

For example, for the state in which there are three blocks available: A, B and
C where blocks B and C are lying directly on the table and block A is lying
on block B (initial state from Fig. 38), the description of such a state could be
described in a natural language with the help of the five following facts:

1. block A is lying directly on the table,
2. block B is lying directly on the table,
3. block C is lying on block A,
4. there is no block on block C,
5. there is no block on block B.

Let us notice that in the above example concerning arranging a predetermined
construction out of blocks, the description of the current state can be directly
read from the information about the current values of their parameters, that is,
from the information about the arrangement of blocks in relation to the table
and other blocks. In the meantime, in complex dynamical system the state of
the complex object is often expressed in a natural language using vague spatio-
temporal conditions whose authenticity cannot be checked on the basis of a
simple analysis of the available information on the object. For example, while
planning treatment the condition of an infant who suffers from respiratory failure
may be described by the following condition.

– Patient with RDS type IV, persistent PDA and sepsis with mild internal
organs involvement (see Appendix B for mor medical details).

Stating the fact that a given patient is in the above condition requires the
analysis of the examination result of this patient registered over a certain period
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of time with a great support of domain knowledge deriving from experts (medical
doctors). Conditions of this type can be represented by complex concepts and
the identification of the condition is a check if the analyzed objects belong to this
concept or not. However, the identification of such states requires approximation
concepts representing them with the help of classifiers using data sets and domain
knowledge. In a few next sections we describe the automated planning method
for unstructured complex objects whose states are described using this type of
complex concepts.

7.4 Planning Rules and Planning Graphs

The basic concept used in this paper for automated planning is a planning rule.
It is a simple tool for modeling changes of the states of complex objects as a
result of applying (performing) actions.

Definition 54 (A planning rule). Let S be the set of complex objects’ states of
the fixed type T and set A be the set of actions whose application causes the com-
plex objects to change state from one to another. Each expression of the form:
(sl, a) → sr1 |sr2 . . . |srk

, where sl, sr1 . . . srk
∈ S and a ∈ A is called a planning

rule of complex object of type T . Moreover, expression (sl, a) is called a prede-
cessor of the planning rule and expression sr1 |sr2 . . . |srk

is called a successor of
the planning rule.

Such rule can be used to change the state sl of a complex object, using the action
a to some state from the right hand side of a rule. But the result of applying
such a rule is nondeterministic, because there are usually many states on the
right hand side of a planning rule.

Example 34. Let us consider the planning rule from Fig. 39. This is the planning
rule for treating RDS (respiratory distress syndrome) obtained from domain
knowledge (see Appendix B). The rule may be applied when RDS with very
severe hypoxemia is present. The application of the rule consists in performing
a medical action utilizing the respirator in the MAP3 mode (see Example 36
for more medical details). As an effect of the application of this action at the
following time point of observation (e.g., the following morning) the patient’s
condition may remain unchanged or improve so as to reach the condition of
RDS with severe hypoxemia. �

RDS with severe 
hypoxemia 

RDS with very severe 
hypoxemia

Mechanical ventilation 
MAP3 mode

RDS with very severe 
hypoxemia

 

Fig. 39. The medical planning rule
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Let us notice that there exists a certain similarity between the planning rules pre-
sented in the subsection and planning operators known from literature (see, e.g.,
[70]). Similarly to the planning rule each operator describes an action which may
be performed on a given complex object. However, each planning operator may
have many initial conditions of its execution and many effects of its execution
expressed with the help of a family of logical conditions which are to be satisfied
after creating the operator. Whereas, in the approach described in this paper
all initial conditions of executing a given planning rule are represented using
one state which is a complex spatio-temporal concept which requires approxi-
mation. Similarly, the effects of planning rule performance are also represented
using states which require approximation, which also distinguishes the presented
approach from the methods known from literature.

A more complex tool, used to model changes of the states of complex objects
as a result of applying action, is a planning graph whose paths describe such
changes.

Definition 55 (A planning graph).

1. A planning graph for objects of a fixed type is an ordered triple PG =
(S, A, E), where S is a nonempty and finite set of states, A is a nonempty
and finite set of actions and E ⊆ (S×A)∪ (A×S) is a set of directed edges.

2. If PG = (S, A, E) is a planning graph, then any k-element sequence
(v1, ..., vk) of elements from the set S ∪A such that k > 1 and (vi, vi+1) ∈ E
for i ∈ {1, ..., k − 1}, is called a path in the planning graph PG.

3. A family of all paths with length k in the planning graph PG is denoted
by PATH(PG, k), while a family of all paths in the planning graph PG is
denoted by PATH(PG).

4. Any path p′ = (vi, ..., vj) ∈ PATH(PG, j − i + 1) created by removing
from the path p = (v1, ..., vk) ∈ PATH(PG, k) elements v1, ..., vi−1 and
vj+1, ..., vk, where i, j ∈ {1, ..., k} and i < j, is called a sub-path of the path
p and is denoted by Subpath(p, i, j).

Let us notice, that from the point of view of automata theory the planning graph
is an nondeterministic finite automata in which the automata’s states are states
from the planning graph, the automata’s alphabet is the set of actions from
the planning graph and the transfer function is described by the edges of the
planning graph.

Such paths in the planning graph are of a particular meaning for the process
of automated planning. They tell us how it is possible to bring complex objects
from the given state to another given state using actions. Therefore, these types
of paths is called plans.

Definition 56 (A plan in a planning graph). Let PG = (S, A, E) be a planning
graph.

1. Any path (v1, ..., vk) ∈ PATH(PG, k) is called a plan in the planning graph
PG if and only if k > 2 and v1, vk ∈ S.
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2. A family of all plans with length k in the planning graph PG is denoted
by PLAN(PG, k), while a family of all plans in the planning graph PG is
denoted by PLAN(PG).

3. If p = (v1, ..., vk) ∈ PLAN(PG, k), then any sub-path Subpath(p, i, j) such
that vi, vj ∈ S, is called a sub-plan of the plan p and is denoted by
Subplan(p, i, j).

Below, we present an example which illustrates such concepts as: a planning
graph, a path in the planning graph and a plan in the planning graph.

Example 35. Let us consider planning graph PG = (S, A, E) such that S =
{s1, s2, s3, s4}, A = {a1, a2, a3} and E = {(s1, a1), (s1, a2), (s2, a3), (s3, a3),
(a1, s1), (a1, s3), (a1, s4), (a2, s1), (a2, s2), (a3, s4), (a3, s2), (a3, s3)}. This graph
is presented in Fig. 40 where the states are represented using ovals, and actions
are represented using rectangles. Each link between the nodes of this graph
represents a time dependencies. For example, the link between state s1 and action
a1 tells us that in state s1 of the complex object action a1 may be performed,
whereas the link between action a1 and state s3 means that after performing
action a1 the state of the complex object may change to s1. An example of a
path in graph PG is sequence (a2, s2, a3, s4) whereas path (s1, a2, s2, a3, s3) is
an exemplary plan in graph PG. �

Having the concept of the planning graph defined, the so-called planning problem
may be defined which works in the way that for a given initial state it should
be proposed such a sequence of nodes from the planning graph that brings the
initial state to the expected target state. Formally, the planning problem in the
elementary version may be depicted in this way.

Problem. The planning problem Input:

– planning graph PG = (S, A, E),
– initial state si,
– target state st.

Output: Plan p = (v1, ..., vk) ∈ PLAN(PG) such that v1 = si and vk = st.

a2 S2

a3

a1

S1

S3

S4

Fig. 40. An exemplary planning graph
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Fig. 41. The output for the planning problem

Fig. 41 presents a solution to the problem of finding a plan bringing state s1 to
state s4 in the planning graph from Example 35.

The planning graph may be obtained through linking available planning rules,
and in order to obtain a planning graph through linking planning rules belonging
to a given family of planning rule F , the four following steps should be performed:

1. create a set of states S as a sum of all states which occur in the predecessors
and successors of rules of family F ,

2. create a set of actions A as a sum of all actions which occur in the rules of
family F ,

3. create a set of edges E as a sum of all pairs (s, a) for which there exists such
a rule in family F that s is the predecessor of this rule and a is an action
occurring in this rule,

4. add all the pairs (a, s) to set E for which there exists such a rule in family
F that a is the action occurring in this rule and s occurs in the successor of
this rule.

In Fig. 42 we present how the three following rules:

– (s1, a1) → s1|s2,
– (s1, a2) → s1|s2,
– (s2, a1) → s1|s2,

may be linked to make a planning graph.
Let’s notice that it exists an essential difference between the behavioral graph

(see Definition 35 and Definition 53), and the planning graph (see Definition 55).
There is one kind of nodes in the behavioral graph only, representing properties of
behavior of complex objects during certain period (e.g., time window). Whereas,
there are the following two kinds of nodes in the planning graph, namely, states of
complex objects (registered in a time point) and actions, that can be performed
on complex objects during some period (e.g., time window). Hence, the main
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Fig. 42. From planning rules to a planning graph

application of behavioral graphs is to represent observed properties of complex
objects, while the main application of planning graphs is to represent changes
of object’s parameters in the expected direction.

Similarly, there exists a certain similarity here between planning graphs known
from literature and planning graphs defined in this paper. It works in the way
that in both approaches there occur states, actions and links between them.
However, the planning graph known from literature (see, e.g., [70]) is constructed
in order to plan the sequence of actions for the established initial state and its
construction is aimed at this particular state. Moreover, the construction of
this graph is layered and individual layers are connected with the next steps
of the plan under construction. However, in this paper the planning graphs
are constructed in order to depict the whole knowledge (all possible actions
together with their results) concerning the behavior planning of complex objects.
Apart from that, there is a difference in understanding states of complex objects
(nodes of planning graphs). In approaches known from literature the state of a
complex object may be read directly from the values of its parameters or from a
simple analysis of dependencies between these values. However, in the approach
presented in this paper the state of the complex object is described in a natural
language with the help of complex concepts which require approximation (see
the beginning of Subsection 7.3).

There also exists a similarity between the concept of the planning graph (see
Definition 55) and C/E–systems well known from literature (see, e.g., [350]).
The similarity is that both graphs look very similar: the states from the plan-
ning graph correspond to the conditions from C/E–system and actions from the
behavioral graphs correspond to the events from the C/E–system. However, it
should be emphasized here that the interpretation of both graphs is significantly
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different. In the case of C/E–systems the dynamics of the real system modeled
by the net is based on the simulating an occurrence of an event but a given
event might have taken place only when all the conditions from which the arches
are led to a given event are satisfied. Apart from that, after the occurrence of a
given event all conditions, to which the arches of a given event are transferred,
are satisfied. It happens differently in the case of the planning graph. The action
may be performed when the complex object is in one of the initial states of a
given action, that is, in one of the states from which the arches are transferred to
this action (complex object may not be simultaneously in more than one states).
Similarly, after the performance of the action the complex object goes to one
exit state of a given action, which also differentiates significantly the planning
graph from C/E–systems. Besides, there is another important difference. In the
case of C/E–systems, conditions have a local character, whilst in the case of the
planning graph, states have a global character.

7.5 Identification of the Current State of Complex Objects

At the beginning of planning the behavior of the complex object based on a given
planning graph, the initial state of this object should be determined. In other
words, one of the states occurring in the planning graph should be located in
which there is the complex object under examination. In this paper, each state
of the planning graph is treated as a spatio-temporal complex concept and to
recognize such a state we propose the two following approaches:

1. ask an expert from a given domain to indicate the appropriate state in which
there is a given complex object,

2. treat the state as a temporal concept and use methods of temporal concept
approximation described in Section 6.

The first of the above possibilities is very convenient, because it does not
require the construction of any algorithms. It has, however, a very important
drawback: the engagement of an expert in the functioning of the planning system
may be too absorbing. However, in some cases the application of this method is
possible and sensible. For example, in hospital conditions the current condition
of a patient may be determined by an experienced doctor or negotiated by a
group of experienced doctors at the established times of the day (e.g., in the
morning and in the evening), whereas through the remaining time of the day
the treatment of the patient conducted by the doctor on duty may be supported
by the planning system and its performance assumes the initial condition of the
patient determined by a group of doctors and suggests further treatment.

The second possibility of recognition of the current state of the complex object
is treating the state as a temporal concept and using methods of its approxima-
tion described in Section 6; and at the same time the interpretation of such a
concept is slightly different from the one which appeared in Section 6. In Sec-
tion 6, the temporal concept described the behavior of a complex object over
a certain period of time (time window). Here, however, the temporal concept
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represents the consequences of the complex object’s behavior over a certain pe-
riod of time, that is, the current state of a complex object (at a time point).
We assume that to determine the state of a complex object at a time point,
the observation of this object is necessary over a certain period of time (time
window). For example, to determine the fact that the patient’s condition is very
serious, it is often not sufficient to determine what his current medical param-
eters are (e.g., the results of a clinical interview or his/her laboratory results),
but it is necessary to observe how the medical parameters of the patient have
changed recently and how the patient’s organism reacts to specific treatment
methods. It may happen that the patient’s medical parameters are very bad,
but the application of the typical treatment method causes a sudden and per-
manent improvement. A crucial modification of methods of temporal concept
approximation in the case of state approximation is the usage of information
about actions performed on the complex object. This information may be easily
introduced to these methods in the form of additional conditional attributes of
the c-temporal information system.

Therefore, using methods from Section 6 a stratifying classifier may be con-
structed for each state, which for a given complex object, provides the degree to
which this object belongs to a given state. Next, all these classifiers are linked in
order to obtain a general aggregating classifier which recognizes the state of the
complex object. Such an aggregating classifier is called a state identifying clas-
sifier. The performance of the state identifying classifier consists in its choosing
such a state for the tested complex object that the stratifying classifier corre-
sponding to this state provided the highest degree of membership for the tested
complex object.

7.6 Language of Features of Paths of Planning Graphs

In the further part of the section, we construct information systems whose ob-
jects are the paths in the planning graphs and the attributes are the properties
(features) of these paths. Therefore, currently we define the FPPG-language in
which we express features of paths of planning graphs.

Definition 57 (A language for defining features of paths in planning graphs).
Let PG = (S, A, E) be a planning graph and let N be a set of natural num-
bers. A language for defining features of paths in planning graphs (denoted by
FPPG(PG) or FPPG-language, when PG is fixed) is defined for the planning
graph PG in the following way:

• the set ALFPPG(PG) = (2S \ ∅) ∪ (2A \ ∅) ∪ N ∪ (0, 1] ∪ { Exists,
Each, Occurence, F irst, Last, Order } ∪ {¬,∨,∧} is an alphabet of the
language FPPG(PG),
• atomic formulas of the language FPPG(PG) are constructed in the follow-
ing way:
1. for any pair of non-empty sets X, Y ⊆ S, l, r ∈ N and t ∈ (0, 1],

expressions of the form First(X, l, r), Last(X, l, r), Exists(X, l, r),
Each(X, l, r), Occurence(X, l, r, t), Order(X, Y, l, r) are atomic formu-
las of the language FPPG(PG),
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2. for any pair of non-empty sets B, C ⊆ A, l, r ∈ N and t ∈ (0, 1],
expressions of the form First(B, l, r), Last(B, l, r), Exists(B, l, r),
Each(B, l, r), Occurence(B, l, r, t), Order(B, C, l, r) are atomic formu-
las of the language FPPG(PG),

3. for any pair of non-empty sets X ⊆ S and B ⊆ A, l, r ∈ N and t ∈
(0, 1], expressions of the form Order(X, B, l, r) and Order(B, X, l, r) are
atomic formulas of the language FPPG(PG).

Currently, we determine the semantics of the language FPPG(PG). Each for-
mula of the language FPPG(PG) is treated as the description of a set of paths
belonging to the set PATH(PG).

Definition 58. Let PG = (S, A, E) be a planning graph. The semantics of the
language FPPG is defined in the following way:

1. for any non-empty set X ⊆ S, numbers l, r ∈ {1, ..., k} (where l < r) and
t ∈ (0, 1):
– |Exists(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∃i∈{l,...,r} vi ∈ X},

– |Each(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∀i∈{l,...,r} if vi ∈ S then vi ∈ X},

– |First(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : vl ∈ X},

– |Last(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : vr ∈ X},

– |Occurence(X, l, r, t)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) :
card({i ∈ {l, ..., r} : vi ∈ X})
card({i ∈ {l, ..., r} : vi ∈ S}) ≥ t},

2. for any non-empty set B ⊆ A, l, r ∈ {1, ..., k} (where l < r) and t ∈ (0, 1):
– |Exists(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∃i∈{l,...,r} vi ∈ B},

– |Each(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∀i∈{l,...,r} if vi ∈ A then vi ∈ B},

– |First(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : vl ∈ B},
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– |Last(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : vr ∈ B},

– |Occurence(X, l, r, t)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) :
card({i ∈ {l, ..., r} : vi ∈ B})
card({i ∈ {l, ..., r} : vi ∈ A}) ≥ t},

3. for any sets X, Y , B, C (where X, Y ⊆ S and B, C ⊆ A) and l, r ∈ {1, ..., k}
(where l < r):
– |Order(X, Y )|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∃i,j∈{l,...,r}, i<j vi ∈ X ∧ vj ∈ Y },

– |Order(B, C)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∃i,j∈{l,...,r}, i<j vi ∈ B ∧ vj ∈ C},

– |Order(X, B)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∃i,j∈{l,...,r}, i<j vi ∈ X ∧ vj ∈ B},

– |Order(B, X)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∃i,j∈{l,...,r}, i<j vi ∈ B ∧ vj ∈ X}.

Below, we provide several examples of formulas of the language FPPG con-
structed for the planning graph from Example 35.

– Formula First({s2}, 1, 4) describes the path whose first state from the node
number 1 to node number 4 is state s2. This is for example path (s2, a3, s3,
a3, s3).

– Formula Exists({s2}, 2, 5) describes the path in which, from node num-
ber 2 to node number 5 there exists state s2. This is for example path
(s1, a2, s2, a3, s3, a3).

– Formula Exists({s2, s3}, 2, 7) describes the path in which, from node number
2 to node number 5 there exists state s2 or state s3 or both of them. There are
for example paths: (s1, a2, s2, a3, s3, a3, s2, a3), (s1, a1, s3, a3, s3, a3, s3, a3, s3)
or (s1, a2, s1, a2, s2, a3, s2, a3, s2).

– Formula Each({a3}, 1, 5) describes the path, in which from node
number 1 to node number 5 there is only action a3. This is for example
path (s2, a3, s3, a3, s2).

– Formula Occurence({s2}, 3, 7, 0.6) describes the path, in which from node
number 3 to node number 7, at least 60% of all states constitute state s2.
This is for example path number (s1, a2, s2, a3, s3, a3, s2, a3, s4).

– Formula Order({a2}, {a3}, 2, 7) describes the path, in which from node num-
ber 2 to node number 7, firstly action a2 is performed and then action a3.
This is for example path (s1, a2, s2, a4, s3, a3, s3).
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– Formula Order({a2}, {s3}, 2, 7) describes the path, in which from node num-
ber 2 to node number 6, firstly action a2 is performed and then state s3 is
observed. This is for example path (s1, a2, s1, a4, s2, a3, s3).

Patterns of the language FPPG may be applied in defining the path prop-
erties in the planning graph. Owing to this each path in the planning graph
may be represented using the values of its features. It enables approximation
of the concepts determined in the set of paths with the help of classifiers (see
Section 7.7).

7.7 Resolving Table

As we mentioned before, the output for the planing problem for a single complex
object is a path in the planning graph from the initial node-state to the expected
(target) node-state (see Fig. 41).

However, in the planning graphs there often appears a problem of non-
deterministic choice of one of the actions possible to apply in a given state. For
example, in the graph from Fig. 40 action a1 or a2 may be performed in state s1.
Apart from that, there also occurs the uncertainty concerning the choice of the
state after applying the action. For example, in the graph from Fig. 40 in state
s1 after applying action a2 the complex object may change to state s2 or remain
in state s1. That is why there may be usually many solutions to a given planning
problem consisting in going from the initial state to the target state on different
paths in the graph. Assuming that we always treat all actions and states in the
same way and the choice of actions in a given state and the choice of the state af-
ter applying the action is random or directed using a heuristic function onto the
target state, then to solve the planning problem one may use planning methods
known from literature such as: forward search, backward search or heuristic for
state-space search, which in fact would consist in searching the planning graph
(see, e.g., [70, 76]).

However, in practice there often occurs such a situation that the automati-
cally generated plan must be compatible with the plan suggested by an expert
(e.g., the treatment plan should be compatible with the plan suggested by hu-
man experts from a medical clinic). Therefore, it is strongly recommended that
the method of the verification and evaluation of generated plans should be based
on the similarity between the generated plan and the plan proposed by human
experts (see Section 7.21). Apart from that we need tools which during the gen-
erating the automatic plan may be used to solve the conflicts occurring between
actions which may be used at a given planning stage in such a way as to make
this choice compatible with domain knowledge provided by the experts. Such
tools should work on the basis of the current state of the tested complex object
and on the basis of information about the previously observed states of the tested
complex object as well as on the basis of information about actions performed
earlier on this object. In other words, while choosing the action needed to per-
form in a given state of the complex object one has to use information about
the sequence of states and actions which have led the object under examination
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to the current state. In terms of the planning graph such information is simply
a path of an established length k in this graph, which ends in the current state
of the complex object under examination. In practice, for a given state from the
planning graph there exist very many different paths which end exactly with that
state. That is why in constructing tools allowing choosing actions on the basis
of the path in the planning graph preceding the current state of the complex
object, one should use the available data sets gathered during the observation of
the complex dynamical systems. So far, we have used temporal information sys-
tems to represent such data sets. However, in the temporal information system
the actions performed on the complex objects are not represented in an overt
way although they may obviously be represented using the established attribute.
Therefore, we define a certain particular type of a temporal information system
which is called a temporal information system with actions.

Definition 59 (A temporal information system with actions). A temporal in-
formation system with actions is a seven-element tuple:

T = (U, A, aid,≤aid
, at,≤at , ac),

where a tuple (U, A, aid,≤aid
, at,≤at) is the temporal information system and

ac ∈ A is a distinguished attribute in the set A different from attributes aid

and at, which is an attribute identifying the action performed at a time point
represented by a given object of system T.

Thus, in the temporal information system with actions for each object of this
system u ∈ U (at a time point of this system) the action performed at this point
is remembered and it is action ac(u).

Let us notice that we consider here one action performed on the complex
object at a given time point. However, it seems that in practical applications, at
a given time point a sequence of actions could be performed synchronically on the
complex object. However, they are always actions chosen from the established
set of single actions. Therefore, the action performed at a given time point may
be treated as a subset of the established set of single actions. For example, if
M = {m1, m2, m3, m4} is a set of medicaments which may be used during the
treatment of a certain illness, then an example of a specific action of the patient’s
treatment is action {m1, m3} which consists in giving the patient medicine m1
and m2 simultaneously. Apparently, other actions are also possible. For example,
action {m1, m2, m3, m4} is the action of giving all possible medicaments. While,
action { } (empty set) is the action of not giving any medicament.

For temporal information system with actions, one can speak about states
in which there are individual objects of this system. We mean here the states
specified in a planning graph. However, the identification of the state of a given
time point requires application of the classifier constructed specially for this
purpose (see Section 7.5).

If it is possible to identify the current state of the examined object and the
actions performed at individual time points are known, then it is possible to
represent the history of the examined complex object arranged as a path from
the planning graph observed in a given temporal information system.
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Definition 60. Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at , ac) is a temporal information system with

actions,
– PG = (S, A, E) is a planning graph,
– s ∈ S is a fixed state,
– k is a fixed plan length in the planning graph PG.

1. Any plan p = (v1, ..., vk) ∈ PLAN(PG, k) is called a plan occurring in
system T if exists such a time window W = (u1, ..., ul) ∈ TW (T, l) such
that l = k−1

2 + 1) and at the successive time points of this window there
occur states v1, v3, v5..., vk and at the time points from u1, ...., ul−1 actions
v2, v4, ..., vk−1 are performed respectively. For a given plan p such a time
window is called a time window of this plan.

2. A set of all time windows of a given plan p in system T is denoted by
TW (T, p).

3. A set of all plans, occurring in system T of the length k is denoted by
DPLAN(T,PG, k).

4. A set of all plans, occurring in system T and ending with state s and of the
length k, is denoted by DPLAN(T,PG, s, k).

Let us notice that set DPLAN may be determined in such a way that firstly a
set of all time windows for a given temporal information system is determined
(see Section 6.7) and then these windows are treated as potential time windows
of plans from the set DPLAN .

Using the planning graph paths occurring in data, decision tables may be
constructed and what follows there may also be constructed classifiers which
allow solving conflicts between actions which may be performed in a given state
for the complex object. Let us notice that the classifiers mentioned above also
allow determining what the state of the complex object will be after performing
the chosen action. The starting point for the construction of such classifiers is a
resolving table (see Fig. 43).

Definition 61 (A resolving table). Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at , ac) is a temporal information system with

actions,
– PG = (S, A, E) is a planning graph,
– s ∈ S is a fixed state,
– k is a fixed length of path,
– Φ = {φ1, ..., φm} ⊆ FPPG(PG) is a family of formulas defined by experts,
– PFPPG = (U, Φ, |=FPPG) is a property system, where

U = DPLAN(T,PG, s, k)

and the satisfiability relation |=FPPG⊆ U×Φ is defined in the following way:
∀p = (v1, ..., vk) ∈ U and φ ∈ Φ :

u |=FPPG φ ⇔ Subpath(p, 1, k− 2) |=FPPG(PG) φ.
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Fig. 43. The scheme of construction of the resolving table for a given state

A resolving table for the state s from the planning graph PG constructed using
the length of path k is a decision table RT(s, k) = (U, A, d), where:

– (U, A) is an information system defined be the property system PFPPG,
– d is a decision attribute, where values of the attribute d, being ordered pairs

of the form (action, state), are computed in the following way:

∀p = (v1, ..., vk) ∈ U : di(p) = (vk−1, vk).

The objects of this table are paths in the planning graph observed in data,
starting and ending with a state. Thus, they are plans. Conditional attributes
describe the properties of these paths excluding the last two nodes of each path
and they are defined on the basis of the formulas of the language FPPG provided
by the expert, whereas the values of the decision attribute are arrangement of
the action performed after the last but one state on the path and the last state
on the path.

Example 36. In Fig. 44, the planning graph for the RDS treatment is shown. For
each state occurring in the graph, with the use of available data sets concerning
the treatment of respiratory failure, resolving tables may be constructed. Con-
ditional attributes of these tables are created with the use of patterns defined
by experts in language FPPG. Below, we present examples of typical patterns
of this type:

1. the first (last) state in the plan is the RDS excluded (RDS with mild hypox-
emia, RDS with severe hypoxemia, RDS with very severe hypoxemia, RDS
with mild or severe hypoxemia, RDS with severe or very severe hypoxemia)
state,
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Fig. 44. A planning graph for the treatment of infants during the RDS

2. the first (last) action in the plan is the Mechanical ventilation MAP1 mode3

(Mechanical ventilation MAP2 mode, Mechanical ventilation MAP3 mode,
Mechanical ventilation CPAP mode4, Respiration unsupported, Mechanical
ventilation MAP2 or MAP3 mode) action,

3 Invasive mechanical ventilation is a method to mechanically assist or replace spon-
taneous breathing when patients cannot do so on their own. It is administered after
an invasive intubation, a procedure wherein an endotracheal or tracheostomy tube
is inserted into the airway, through which air is directly delivered under pressure
(see [328] for more details). It could be simplify, that mean airway pressure (MAP)
delivered by mechanical device is proportional to severity of respiratory failure. For
purpose of our experiments mechanical ventilation was divided into three following
modes:
– MAP1 - airway pressure lower than 10 cm H2O (low-intensity ventilation),
– MAP2 - airway pressure 10-16 cm H2O (middling-intensity ventilation),
– MAP3 - airway pressure higher than 16 cm H2O (high-intensity ventilation).

4 CPAP (continuous positive airway pressure) - a method of non-invasive ventilation
delivering a stream of compressed air via a hose to a nasal pillow, nose mask or
full-face mask, splinting the airway (keeping it open under air pressure). This is a
gentle type of respiratory ventilation, which can prevent the need for endotracheal
intubation, or allow earlier extubation of critically ill patients (see [328] for more
details).
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3. in the plan there occurs the RDS excluded (RDS with mild hypoxemia, RDS
with severe hypoxemia, RDS with very severe hypoxemia, RDS with mild or
severe hypoxemia, RDS with severe or very severe hypoxemia) state,

4. in the plan there occurs the Mechanical ventilation MAP1 mode (Mechani-
cal ventilation MAP2 mode, Mechanical ventilation MAP3 mode, Mechani-
cal ventilation CPAP mode, Respiration unsupported, Mechanical ventilation
MAP1 or CPAP mode) action,

5. in the plan there occurs only the RDS excluded (RDS with mild hypoxemia,
RDS with severe hypoxemia, RDS with very severe hypoxemia, RDS with
mild or severe hypoxemia, RDS with severe or very severe hypoxemia) state,

6. in the plan there occurs only the Mechanical ventilation MAP1 mode (Me-
chanical ventilation MAP2 mode, Mechanical ventilation MAP3 mode, Me-
chanical ventilation CPAP mode, Respiration unsupported) action,

7. the RDS with very severe hypoxemia state occurs in the 70% of states of the
plan,

8. from the middle of the plan to its end in 80% of the states there occurs the
RDS excluded state,

9. if there occurs the RDS with mild hypoxemia state in the plan then the RDS
with severe hypoxemia state occurs in the further part of this plan,

10. if there occurs the Mechanical ventilation MAP3 mode action in the plan
then the Mechanical ventilation MAP2 mode action occurs in the further
part of this plan,

11. if there occurs the Mechanical ventilation MAP2 mode action in the plan
then RDS with mild hypoxemia state occurs in the further part of this plan.

�

A classifier may be constructed for the resolving table which we call a resolving
classifier.

Definition 62 (A resolving classifier). Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at , ac) is a temporal information system with

actions,
– PG = (S, A, E) is a planning graph,
– s ∈ S is a fixed state,
– k is a fixed length of path,
– RT(s, k) = (U, A, d) is a resolving table for the fixed state s from the planning

graph PG constructed using the length of path k.

1. Each stratifying classifier constructed for table RT(s, k) is called a resolving
classifier and is denoted in general by µRT(s,k). This classifier serves the
classification of paths which belong to the DPLAN(T,PG, s, k − 2).

2. For any p ∈ DPLAN(T,PG, s, k − 2) and resolving classifier µRT(s,k) by
PairList(µRC(s,k)(p)) we denote a list of pairs (action, state) which the clas-
sifier µRC(s,k) returns to the path p ordered in a decreasing order in relation
to weigh values proposed by the classifier for all pairs, and at the same time
only pairs with non-zero weight are returned.
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3. If L is a PairList(µRC(s,k)(p)), then the i-th pair of this list is marked as
L[i]. The first element of the pair L[i] (action) is marked as L[i].action,
whereas the second element of this pair (state) is marked as L[i].state.

Such resolving classifiers can be constructed for all states, i.e., for all associated
resolving tables. In addition, these classifiers make it possible to obtain a list of
actions and states after usage of actions with their weights in descending order.
This is possible using the stratifying classifier.

7.8 Algorithms of Automated Planning for Complex Objects

In the present subsection, we provide three algorithms of automated planning of
the complex object behavior. The first one determines one plan of established
length starting with the established initial state, and at the same time the final
(target) state is not established.

The second algorithm determines the plan starting with the established initial
state and ending with the established final state. The length of the generated
plan is limited from the top by the established constant value.

The third algorithm, however, determines the list of plans starting with the
established (for all plans) initial states, and at the same time the length of the
generated plans is established. Similarly to the second algorithm, the length of
the generated plan is limited from the top by the established constant value.

The first of the algorithms mentioned above is similar to the algorithm
Forward-search known from literature (see, e.g., [70, 76]), but instead of choos-
ing randomly the actions to perform in a given state the algorithm goes to the
next state on the basis of the decision obtained from the classifier solving con-
flicts between actions in a given state. Therefore, this algorithm is called Expert
forward search (see Algorithm 7.1).

However, we assume that during execution of algorithms presented in this
section the following elements should by available:

– a planning graph PG = (S, A, E) for complex objects of a fixed type T ,
– a fixed length of path k in the planning graph PG,
– a resolving classifiers µRC(s,k) for all s ∈ S.

The Algorithm 7.1 starts the planning from path h ∈ DPLAN(T,PG, k)
which describes the previous states of the complex object and the actions applied
for this object. Next, using the resolving classifier µRC(s,k), the most appropriate
pairs: state+action are generated in the next iterations until the plan of the
expected length is obtained.

If it is assumed that each of classifiers µRC(s,k) can classify paths for each
s ∈ S within the time of order O(C), where C is a certain constant, then the
time complexity of the Algorithm 7.1 is of order O(n), where n is the length of
the generated plan.

The Algorithm 7.1 is, on the one hand very fast, but on the other its final
result does not always comply with our expectations. For example, in planning
for a single complex object we usually wish our planning algorithm to find a
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Algorithm 7.1. Expert forward search (EFS)
Input:
– path h = (h1, ..., hk) in the planning graph PG representing history

of a given complex object, that is finished by an initial state to start of
automated planning,

– expected length lp of generated plan.

Output: The plan p generated for the given complex object

Procedure EFS(h, lp)1

begin2

p := “empty plan”3

s := GetLastElementFrom(h)4

p := p + s // Add s to the end of the plan p5

while length(p) < lp do6

L := PairList(µRC(s,k)(h))7

p := p + L[1].action + L[1].state8

RemoveF irstTwoElementsFrom(h)9

h := h + L[1].action + L[1].state10

s := L[1].state;11

end12

return p13

end14

plan which leads the complex object to the established target state. Meanwhile,
the final state of the planning using the algorithm EFS depends on classifier
µRC(s,k) and cannot be imposed. Therefore, we define the algorithm EEFS
which determines the plan starting with the established initial state and ending
with the established final state (see Algorithm 7.2).

The Algorithm 7.2 works in such a way that at the stage of planning of a
single action, its different variants are taken into consideration which may be
performed in a given state. However, for regulation of computational time dura-
tion limitation, the value ActionLimit is used, that is, limitation of the number
of actions which may be performed in a given state (see line 7). Thus, the clas-
sifier µRC(s,k) returns the list of pairs (action + state) sorted decreasingly in
relation to the weights obtained from classification, the actions most recom-
mended by classifier µRC(s,k) are always taken into consideration. In this way
the algorithm constructs a certain type of a plan tree whose root is the initial
state and the leaves are the states after performing the individual variants of the
plan. If, during construction of this tree the final state appears, then the work
of the algorithm is ended and as a solution a sequence of states and actions is
returned which starts in the tree root and ends with the final state that is found.
If, during the construction of the plan tree the algorithm does not encounter the
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Algorithm 7.2. Exhaustive expert forward search (EEFS)
Input:
– path h = (h1, ..., hk) in the planning graph PG representing history of

a given complex object, that is finished by an initial state to start of
automated planning,

– target state of planning st,
– maximal length of generated plan lp.

Output: The plan p generated for the investigated complex object,
ended by the state st

Procedure EEFS(h, st, lp)1

begin2

p := “empty plan”3

s := GetLastElementFrom(h)4

p := p + s // Add s to the end of the plan p5

L := PairList(µRC(s,k)(h))6

for i = 1 to ActionLimit do7

p1 := Copy(p)8

p1 := p1 + L[i].action + L[i].state9

if (L[i].state = st) then return p110

if (lp > 1) then11

h1 := Copy(h)12

RemoveF irstTwoElementsFrom(h1)13

h1 := h1 + L[i].action + L[1].state14

p2 := EEFS(h1, st, lp − 1)15

if (p2 is not empty ) then16

return p + p217

end18

end19

end20

return “empty plan”21

end22

final state, then an empty plan is returned which means that the algorithm has
not found a solution.

The procedure EEFS from the Algorithm 7.2 is recurrent. It is easy to notice
that its time complexity is determined by a recurrent equation:

T (n) =
{

A ·m + B for n = 1
m · T (n− 1) + C ·m + B for n > 1,

where A, B and C are certain constants, n is the duration of the plan under
construction and m is limitation ActionLimit, that is, limitation of the number
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Algorithm 7.3. Full exhaustive expert forward search (FEEFS)
Input:
– path h = (h1, ..., hk) in the planning graph PG representing history

of a given complex object, that is finished by an initial state to start
of automated planning,

– length of generated plan lp.

Output: The list of plans for the investigated complex object

Procedure FEEFS(h, lp)1

begin2

plist := “empty list of plans”3

p := “empty plan”4

s := GetLastElementFrom(h)5

p := p + s // Add s to the end of the plan p6

L := PairList(µRC(s,k)(h))7

for i = 1 to ActionLimit do8

p1 := Copy(p)9

p1 := p1 + L[i].action + L[i].state10

if (lp > 1) then11

h1 := Copy(h)12

RemoveF irstTwoElementsFrom(h1)13

h1 := h1 + L[i].action + L[i].state14

plist1 := FEEFS(h1, lp − 1)15

for j := 1 to Length(plist1) do16

p2 := plist1[j]17

p3 := p1 + p218

Add plan p3 to the end of the list plist19

end20

else21

Add plan p1 to the end of the list plist22

end23

end24

return plist25

end26

of actions which may be performed in a given state. The solution of the above
recurrent equation is the following:

T (n) = A ·mn + B ·mn−1 + C ·m · mn−1 − 1
m− 1

+ B · mn−1 − 1
m− 1

.

Thus, the pessimistic time complexity of the procedure EEFS is of order
O(mn). Such a high pessimistic time complexity means that the effective appli-
cation of this algorithm for non-trivially small n and m is practically impossible.
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Therefore, it may be applied only in constructing very short plans with very
small values m.

In the task of constructing a plan executing a meta-action for a structured ob-
ject another planning algorithm for a single object is necessary (see Section 7.15).
Namely, in this case the planning target state is also not known, but one has to
generate all sensible (compatible with domain knowledge) plans of a given du-
ration for a given complex object. Therefore, we define the algorithm FEEFS
(see Algorithm 7.3).

It is easy to notice that the analysis of time complexity of the Algorithm 7.3
is very similar to the case of Algorithm 7.2. Therefore, the pessimistic time
complexity of the FEEFS is of order O(mn) where n is the duration of the plan
under construction and m is limitation of the number of actions which may be
performed in a given state. This means, that similarly to the case of algorithm
EEFS the effective application of algorithm FEEFS for non-trivially small
n and m is practically impossible. Therefore, this algorithm is used only for
construction of short plans for the need of planning of single meta-actions (see
Section 7.15).

7.9 Partial Reconstruction of Plan

Having constructed the plan for a complex object, its execution may take place.
For example, let us assume that for a certain complex object the plan (s1, a1,
..., ai−1, si, ai, ..., sn, an, sn+1) was constructed which consists of n actions
a1, ..., an and n + 1 states s1, ..., sn+1. The initial state in this plan is state s1
and the target state is the state sn+1. The execution of this plans works in such a
way that after having identified the current state of the complex object as state
s1, actions from the plan are performed successively, with the changing states
of object, until we reach target state sn+1. However, in practice it is not always
possible to execute the whole plan. It may, happen that during the execution of
the plan such a state of an object appeared that is not compatible with the state
proposed by the plan. For example, let us assume that s′i is such a state which
appeared instead of state si (see Fig. 45). Then, a question arises whether the
execution of the plan should be continued or whether it should be reconstructed
(changed). If state s′i differs slightly from state si, then maybe the execution
of the current state may be continued. If, however, state s′i differs significantly
from state si, then the current plan has to be reconstructed. It would seem that
the simplest way to reconstruct a plan is to construct a new one, which starts in
state s′i and ends in target state sn+1. Such a method of reconstruction we call
a total reconstruction. However, in practical applications a total reconstruction
may turn out to be too costly in terms of computation. Therefore, we propose a
different method of plan reconstruction which is called a partial reconstruction.
It consists in constructing a short so-called repair plan which brings the complex
object to such state sj that appears in the current state between the states
si, ..., sn+1. On the basis of the repair plan the reconstruction of the current
plan is carried out by replacing its fragment beginning at si and ending at state
sj with the repair plan.
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Fig. 45. The partial reconstruction of a plan

Of course the shorter the repair plan is, the more effective a partial recon-
struction is in terms of time. If, however, state s′i differs significantly from state
si, then finding a short repair plan is impossible and a total reconstruction is
the only solution.

We still have to face the problem of estimating the degree to which two states
are different. It needs to be done in order to enable the determination when two
states differ slightly, differ significantly or differ very much one from another.

There is yet another problem lying in the fact that the difference between two
states in the context of plan execution depends not only on those states but also
on the context in which those two states are compared, that is, on the fragment
of the plan that has been carried out so far, together with the states that have
appeared during the current plan execution (these states might have slightly
differed from the states described in the plan). Therefore, the estimation of the
difference between the plans should be made on the basis of the history of both
states (the states and actions performed on the complex object over the period
of time preceding the examination of the difference). Formally, the degree to
which two states differ can be expressed with the help of the so-called a function
of dissimilarity between of states.
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Definition 63. Let PG = (S, A, E) is a planning graph for complex objects of
a fixed type T and k is a fixed length of paths in the graph PG. Each function:

DISMPG : PATH(PG, k)× PATH(PG, k) −→ {high, moderate, low}

is called a function of dissimilarity between states from the planning graph PG.

The values of the function DISMPG which belong to set {high, moderate, low}
are proposed by the expert on the basis of domain knowledge. Value high means a
high dissimilarity between states, value moderate means a moderate dissimilarity
between states and value low means a low dissimilarity between states.

The definition of a specific function of dissimilarity between states may be
given in an overt form, that is, using an expression calculating the value of dis-
similarity function. It often happens, however, that experts from a given field
are not able to present such an expression and limit themselves to presenting
a set of examples of the values of that function, that is, a set of pairs of paths
ended with compared states, labelled with the value of the dissimilarity func-
tion between states. In this case defining the dissimilarity function requires its
approximation using a classifier; and at the same time to define the features of
the paths preceding the compared states one may use a family of concepts of a
specific ontology constructed for the comparison of the paths. The classifier ap-
proximating the function of the dissimilarity between states is called a classifier
of dissimilarity between states.

Definition 64. Let us assume that:

– PG = (S, A, E) is a planning graph for complex objects of a fixed type T ,
– k is a fixed length of path in the planning graph PG,
– a family of concepts C1, ..., Cm ⊆ PATH(PG, k) × PATH(PG, k), which

have been defined by experts in order to describe difference aspects of simi-
larity between plans,

– a function of dissimilarity between states DISMPG.

1. A table of dissimilarity between states from the planning graph PG is a
decision table DITPG = (U, A, d), where:
– U ⊆ PATH(PG, k)× PATH(PG, k),
– A = {a1, ..., am} is a set of attributes created on the basis of concepts

C1, ..., Cm, where for any i ∈ {1, ..., m} values of ai are computed in the
following way:

∀(p1, p2) ∈ U : ai ((p1, p2)) =
{

1 if (p1, p2) ∈ Ci

0 otherwise ,

– d is a decision attribute, where values of the attribute d are computed in
the following way:

∀(p1, p2) ∈ U : d( (p1, p2) ) = DISMPG( (p1, p2) ).
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2. If DITPG = (U, A, d) is a table of dissimilarity between states from the
graph PG, then each classifier for the table DITPG is called a classifier of
dissimilarity between states from the graph PG and is denoted in general by
µDIT (PG).

Let us notice that not all possible pairs of paths from the set PATH(PG, k)
× PATH(PG, k) occur in the table of dissimilarity between states from the
planning graph, but only a certain chosen subset of this set. In practice, this
limitation is needed because the number of pairs of product PATH(PG, k) ×
PATH(PG, k) may be so large that the expert is not able to provide all values
of decision attribute d for them. That is why in the table of dissimilarity between
states there are usually only pairs chosen by an expert, which represent typical
cases of determining the function of dissimilarity between states which may be
generalized using a classifier.

Now, we may present the algorithm simulating the execution of the plan which
foresees the reconstruction of the plan during its execution (see Algorithm 7.4).

However, we assume that during execution of algorithms presented in this
section the following elements should by available:

– a planning graph PG = (S, A, E) for complex objects of a fixed type T ,
– a fixed length of path k in the planning graph PG,
– resolving classifiers µRC(s,k) for all s ∈ S,
– a classifier of dissimilarity µDIT (PG) between states from the planning graph

PG.

The Algorithm 7.4 simulates the execution of the plan found earlier for the
complex object. The simulation is performed based on the procedure Simulate
which on the input takes the history of the current state together with its de-
scription of the current state and the action which is to be performed, and on
the output the algorithm returns the state which is the effect of this action’s ap-
plication. Although it is possible to imagine this type of procedure as a part of a
simulator of the behavior of the complex object (e.g., a traffic simulator, illness
development simulator), in this paper by this procedure we mean the changes
in the real complex dynamical system which may be triggered by performing
particular actions (e.g., changes of the location of the vehicle, changes in the
patient’s states during treatment et.)

The Algorithm 7.4 uses the reconstruction procedure. Therefore, we present
a plan reconstruction algorithm (see Algorithm 7.5).

The Algorithm 7.5 tries to find a short repair plan p2 (not longer than lp),
which leads the initial state of the reconstruction (the last state in history h)
to a state occurring in plan p1 starting with position pos until reaching position
pos + 2 · (dr− 1). The maximum depth of reconstruction dr is, thus, the number
of states in plan p1 (starting with the state in position pos), which the algorithm
tries to reach with the help of the repair plan. The repair plan is searched with
algorithm EEFS (see Section 7.8), although it is possible to apply other planning
algorithms that have at least two following parameters: the target state and the
maximum duration of the created plan.
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Algorithm 7.4. The simulation of the plan with reconstruction
Input:
– path h = (h1, ..., hk) in the planning graph PG representing history of

a given complex object, that is finished by an initial state to start of
simulation,

– plan p generated for a given complex object,
– maximal depth dr of the plan reconstruction,
– maximal length lp of a repair plan during the reconstruction.

Output: The executed plan p
begin1

if (length(p) < 3) then2

return “plan p is too short for execution”3

end4

hs := Copy(h); hp := Copy(h)5

i := 36

while (i < length(p)) do7

s := Simulate(hs, p[i− 1])8

RemoveF irstTwoElementsFrom(hs)9

hs := hs + p[i− 1] + s10

RemoveF irstTwoElementsFrom(hp)11

hp := hp + p[i− 1] + p[i]12

if (s 	= p[i]) then13

dism := µDIT (PG)(hs, hp)14

if (dism is “high”) then15

return “the total reconstruction is necessary”16

end17

if (dism is not “low”)) then18

p′ := Reconstruction(hs, p, i, dr, lp)19

if (p′ is empty) then20

return “the total reconstruction is necessary”21

end22

p := p′23

end24

end25

i := i + 2 // Go to the next state26

end27

end28

The computational complexity of the Algorithm 7.5 depends linearly on the
complexity of algorithm EEFS. However, in practice the application of this
algorithm may significantly accelerate the execution of plans requiring approx-
imation instead of a total reconstruction. Only a partial reconstruction of the
plan is performed whose degree of computational difficulty is much smaller than
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Algorithm 7.5. The partial reconstruction of a plan (Reconstruction)
Input:
– path h = (h1, ..., hk) in the planning graph PG representing history of

a given complex object, that is finished by an initial state to start of
reconstruction,

– plan p1 generated for a given complex object before the reconstruction,
– position pos of initial state of the reconstruction in the plan p1,
– maximal depth dr of the plan reconstruction,
– maximal length lp of a repair plan during the reconstruction.

Output: The plan p1 after reconstruction

Procedure Reconstruction(h, p1, pos, dr, lp)1

begin2

j := pos3

s := GetLastElementFrom(h)4

while j ≤ pos + 2 · (dr − 1) do5

p2 := EEFS(h, p1[j], lp)6

if (p2 is not empty) then7

p3 := Subpath(p1, 1, pos−1)+p2+Subpath(p1, j+1, length(p1))8

return p39

end10

j := j + 211

end12

return “empty plan”13

end14

the degree of difficulty of a total reconstruction (because of a smaller size of
the problem of the partial reconstruction in relation to the size of the total
reconstruction problem).

In practical applications there often occurs a situation that the reconstructed
plan must have the same length as the original one. It happens that way when,
e.g., a plan proposed by the expert, which is to be executed over the established
number of time units (e.g., minutes, hours, days), must be reconstructed. A
question arises, if in such a situation the duration time of partial reconstruction
executed with the help of the algorithm EEFS is in fact always shorter than the
time of total reconstruction which is executed with the same algorithm EEFS?
After all, the increase of the maximum reconstruction depth causes that in case
of not finding the return state, the procedure EEFS must be executed several
times for the next reconstruction depths, that is, for dr = 1, 2, ..., np − 1, where
np is the length of reconstructed plan. If the reconstruction algorithm are used,
assuming that the maximum reconstruction depth dr = np or even dr > np,
then obviously such a reconstruction would be more time costly for many plans
than total reconstruction. Even in the case when dr < np it could seem that
partial reconstruction executed using algorithm EEFS may be for certain plans
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more time costly than total reconstruction. However, this simple intuition is
contradicted by the proposition presented below.

Proposition. Let us assume that:

– p is a plan of np length which requires a reconstruction, where np > 0,
– AP is an automatic planning algorithm that its time cost is expressed using

function T (n) = C ·mn, where C is a constant, m is the maximum number
of actions which are considered during the planning of an action in a given
state and n is the maximum length of the plan under construction (the time
complexity of AP is very similar to time complexity of algorithm EEFS).

If a reconstruction reconstructs a plan of the same length as before this recon-
struction, then for any maximum reconstruction depth dr < np the partial recon-
struction executed with algorithm AP takes less time than total reconstruction.

Proof. The cost of total reconstruction of the plan p is T (np), whereas the cost
of partial reconstruction, with the maximum reconstruction depth dr, is T (1) +
T (2) + ... + T (dr). Therefore, partial reconstruction works faster than the total
one when:

T (1) + T (2) + ... + T (dr) < T (np)

that is:
C ·m1 + C ·m2 + ... + C ·mdr < C ·mnp (7)

Hence:
mnp+1 −mnp −mdr+1 + m > 0 (8)

It is sufficient to show that (8) is satisfied for any m > 1 and 0 < dr < np.
Starting from the left side of (8) we obtain:

mnp+1 −mnp −mdr+1 + m > mnp+1 −mnp −mnp−1+1 + m =

mnp+1 − 2 ·mnp + m = mnp(m− 2) + m ≥ mnp(2− 2) + m = m > 0

This completes the proof. �

On the basis of the above proposition one may state that partial reconstruc-
tion is always more effective than the total one, regardless of the plan length,
maximum number of actions which may be performed in a given state and the
maximum reconstruction depth. It must be stressed here, however, that partial
reconstruction cannot always reconstruct a plan. In such a situation, the use of
total reconstruction is the only option.

7.10 Automated Planning for Structured Complex Objects

In planning the behavior of structured objects, an effective planning of the be-
haviors of all objects which are parts of these objects at the same time is not
possible. Therefore, in such cases the behavior of all objects which are parts of
a structured object is planned separately. However, this approach to planning
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of the behavior for a structured object requires a certain synchronization of the
plans constructed for individual parts in such a way that these plans would not
contradict each other and even complement each other in order to plan the best
behavior for a structured object. For example, the treatment of illness A which is
the resultant of two illnesses B and C requires such illnesses B and C treatment
that the treatments of both illnesses would not be contradictory to each other,
but even support and complement each other. For example, it may happen that
in treating illness B a certain medicine M1 may be used which is usually an
appropriate medicine but it may be applied only when illness C does not occur.
Hence, the synchronization of both illnesses’ treatment should exclude the ap-
plication of medicine M1. In a different situation it may happen that as a result
of application of medicine M2 for illness C the treatment of illness B is safer, for
instead of giving a certain strong medicine M3, which has negative side effects,
it is enough to give a safer medicine M4 which leads to the same improvement
in the patient’s condition as in the case of giving medicine M3.

In a few next subsections we present a generalization of the method for auto-
mated planning described in previous subsection for structured objects.

It is worth noticing that in literature one may observe the increase of interest
in learning methods of common behaviors of structured objects. This issue is
known under the term of learning communication protocols, cooperation and
competition (see, e.g., [351, 352]).

7.11 Planning Graphs for Structured Objects

In this paper, the elementary concept allowing planning the behavior of struc-
tured objects is the planning graph for structured objects.

Definition 65 (A planning graph for structured objects). A planning graph for
structured objects of a fixed type T is a triple PG = (S,A, E) such that (S,A, E)
is the planning graph, where:

– elements of the set S are called meta states and they represent states of
structured objects of the type T ,

– elements of the set A are called meta actions and they represent actions for
structured objects of the type T ,

– elements of sets PATH(PG, k) (where k > 1) and PATH(PG) are called
meta paths,

– elements of sets PLAN(PG, k) (where k > 1) and PLAN(PG) are called
meta plans.

In Fig. 46, we present an exemplary planning graph for a structured object,
that is a group of four diseases: sepsis, Ureaplasma, RDS and PDA, related to
the planning of the treatment of the infant during the respiratory failure (see
Appendix B). This graph was created on the basis of observation of medical data
sets (see Section 7.21) and with support of human experts.

As we see, there are two kinds of nodes in the planning graph for structured
object, namely, meta states nodes (denoted by ovals) that represent the current
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Fig. 46. A planning graph for the treatment of infants during the respiratory failure

state of a structured object specified as complex concepts by a human expert in
natural language, and meta action nodes (denoted by rectangles) that represent
actions defined for structured objects.

The major difference between the planning graph for the unstructured com-
plex object and the planning graph for the structured object is that in the last
one instead of actions performed at a single time point meta-actions occur which
are performed over a longer period of time, that is, a time window.

Similarly to the case of unstructured complex objects the problem of planning
for the structured object consists in constructing such a plan in planning graph
PG that leads the structured object from the initial state to the expected target
state.

7.12 The Identification of the Meta State

At the beginning of planning for a structured object, we identify the current meta
state of this object. Any meta state node from a planning graph for structured
objects can be treated as a complex spatio-temporal concept that is specified
by a human expert in natural language. Such concepts can be approximated
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by classifiers using data sets and domain knowledge accumulated for a given
complex dynamical system. Similarly to states from the planning graph for un-
structured complex objects, any state from the planning graph for structured
objects can be approximated as a temporal concept for unstructured object (see
Section 7.5). However, the state from the planning graph for structured objects
can be also treated as the temporal concept for structured objects. Therefore,
in this case the method of approximation from Section 6.22 can be used instead
of the method from Section 6.9. As a result, it is possible to recognize the initial
state at the beginning of planning for a particular structured object.

7.13 Planning of a Meta Action

Similarly to the single complex object, during planning for some structured ob-
ject the path in the planning graph from the initial node-state to the target
node-state should be found. At the beginning of planning for a structured ob-
ject, we identify the current state of this object. As mentioned earlier, this can
be done by classifiers that have been constructed for all states from the planning
graph. Next, we plan a sequence of meta actions for transforming a structured
object from the current meta state to the target meta state (more expected, safer
or more comfortable). For example, in the case of the treatment of infants with
respiratory failure, if the infant is suffering from severe respiratory failure, we
try to change the patient status using some methods of treatment to change its
status to moderate or mild respiratory failure (see Fig. 46). However, any meta
action from such constructed path should be checked on the lower level, i.e., on
the level of any part of the structured object separately, if such action can be
realized in practice in case of particular part of this structured object. In other
words, it means that for any part of the structured object the sequence of action
should be planed in order to obtain meta-action on the level of the structured
object.

The plan of execution of a single meta-action, which consists of short plans
which execute this meta-action on the levels of individual parts of the structured
object, is called a g-plan.

Definition 66 (A g-plan). Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at , ac) is a temporal information system with

actions,
– T is a type of structured objects, where objects of this type are composed of

l parts of object of types T1,...,Tl,
– PGF = {PG1, ...,PGl} is a family of planning graphs, where PGi =

(Si, Ai, Ei) is a planning graph for complex objects of type Ti, for i = 1, ..., l,
– k is a fixed plan length in planning graphs from the family PGF.

1. A g-plan with length k for the family of planing graphs PGF is a family
of plans {p1, ..., pl} (assigned to be executed for all parts of the established
structured object) such that pi ∈ PLAN(PGi, k) for i = 1, ...l. The set of
all g-plans with length k for the family of planing graphs PGF is denoted by
GPLAN(PGF, k).
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2. Any g-plan {p1, ..., pl} ∈ GPLAN(PGF, k) is called a g-plan occurring in
system T, if pi ∈ DPLAN(T,PGi, k), for i = 1, ..., l and in system T
there exists such a family of time windows {W1, ..., Wl} ⊆ TW (T, k) that
the following conditions are satisfied:
– ∀Wi∈{W1,...,Wl}Wi ∈ TW (T, pi),
– ∀j∈{1,...,k} at(W1[j]) = at(W2[j]) = ... = at(Wl[j]).

3. A set of all g-plans occurring in the system T with length k and constructed
for the family of planing graphs PGF, is denoted by DGPLAN(T,PGF, k).

The g-plan is, thus, a family of plans assigned to be executed for all parts of the
established structured object. The g-plan occurs in the temporal information
system with actions if its performance is observed in the data.

Let us notice that determining the DGPLAN(T,PGF, k) requires not only
determining sets DPLAN for all parts of the structured object but also syn-
chronizing them in time. There arises a problem of isolating structured objects.
If we assume, however, that the structured objects are created with the help of
the sweeping algorithm around parts of structured objects (see Section 6.13),
then the problem of determining the set DGPLAN is significantly simpler.

In practise, all constructed plans for objects (parts) belonging to a given
structured object should be compatible. Therefore, during planning a meta ac-
tion for a structured object, we use a special tool for verifying the compatibility
of plans generated for all members of a structured object. This verification can
be performed by using some special decision rules that we call elimination rules.
Such rules make it possible to eliminate combination of plans that are not com-
patible relative to domain knowledge. This is possible because elimination rules
describe all important dependencies between plans that are joined together. If
any combination of plans is not consistent with any elimination rule, then it is
eliminated. A set of elimination rules can be specified by human experts or can
be computed from data sets. In both of these cases, we need a set of attributes
(features) defined for a single plan that are used for explaining elimination rules.
Such attributes are specified by human experts on the basis of domain knowledge
and they describe some important features of the plan (generated for some part
of structured object) with respect to proper joining a plan with plans generated
for other parts of structured object.

These features are used as a set of attributes in the special table that we
call an elimination table. Any row of an elimination table represents information
about features of plans assigned for structured objects from the training data.

Definition 67 (An elimination table). Let us assume that:

– T is a temporal information system with actions,
– T is a type of structured objects, where objects of this type are composed of

l parts of object of types T1,...,Tl,
– PGF = {PG1, ...,PGl} is a family of planning graphs, where PGi =

(Si, Ai, Ei) is a planning graph for complex objects of type Ti, for i = 1, ..., l,
– k is a fixed plan length in planning graphs from the family PGF,
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– Φi = {φ1
i , ..., φ

mi

i } ⊆ FPPG(PGi) is a family of formulas defined by experts,
for i = 1, ..., l,

– Φ = Φ1 ∪ ... ∪ Φl,
– PGP = (U, Φ, |=GP ) is a property system, where

U = DGPLAN(T,PGF, k) and

the satisfiability relation |=GP⊆ U × Φ is defined in the following way:

∀gp = {p1, ..., pl} ∈ U and φ ∈ Φ : gp |=GP φ ⇔

pi |=FPPG(PGi) φ, for i ∈ {1, .., l} such that φ ∈ Φi.

The information system defined by the property system PGP is called an elimi-
nation table of g-plans from the set GPLAN(PGF, k).

It is easy to notice that if the set DGPLAN(T,PGF, k) has already been de-
termined and the examination of formula satisfiability may be executed over
constant time, then the algorithm which determines the elimination table works
over time of order O(n ·m), where:

n = card(DGPLAN(T,PGF, k)) and m = card(Φ1 ∪ ... ∪ Φl).

Example 37. The respiratory failure may be treated as a result of four follow-
ing diseases: RDS, PDA, sepsis and Ureaplasma. Therefore, treating respiratory
failure requires simultaneous treatment of all of these diseases. This means that
the treatment plan of respiratory failure comes into existence by joining the
treatment plans for diseases RDS, PDA, sepsis and Ureaplasma, and at the
same time the synchronization of the plans is very important. In this paper,
one of the synchronizing tools for this type of plans is the elimination table.
In constructing the elimination table for treatment of respiratory failure, pat-
terns describing the properties of the joint plans are needed. Moreover, planning
graphs for all four diseases are necessary. In Fig. 44 the planning graph for RDS
treatment is shown, whereas in Example 36 we showed how the features of RDS
treatment plans may be defined. In a very similar way the features of treatment
plans for PDA, sepsis and Ureaplasma diseases may be defined. However, in this
paper we do not present the planning graphs for treating these diseases. The
reason for this is a high degree of complexity of these graphs in terms of medi-
cal knowledge (particularly in the case of treating disease sepsis). Therefore, we
also cannot give examples of specific features which may be used to describe the
treatment plans for diseases: PDA, sepsis and Ureaplasma (as we did in the case
of RDS treatment) (see Example 36). �

On the basis of the elimination table a set of elimination rules can be computed
that can be used to eliminate inappropriate plan arrangements for individual
parts of the structured object.
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Definition 68 (An elimination rule). Let us assume that:

– T is a temporal information system with actions,
– T is a type of structured objects, where objects of this type are composed of

l parts of object of types T1,...,Tl,
– PGF = {PG1, ...,PGl} is a family of planning graphs, where PGi =

(Si, Ai, Ei) is a planning graph for complex objects of type Ti, for i = 1, ..., l,
– k is a fixed plan length in planning graphs from the family PGF,
– ET(T,PGF, k) = (U, A) is an elimination table.

1. If a ∈ A then any decision rule with minimal number of descriptors (see
Section 2.3 and Section 2.4) computed for a decision table (U, A \ {a}, a) is
called an elimination rule for the elimination table ET(T,PGF, k).

2. A set of all elimination rules for the elimination table ET(T,PGF, k) is
denoted by ERUL(T,PGF, k).

3. If r ∈ ERUL(T,PGF, k), then an object u ∈ U is eliminated by the elim-
ination rule r iff u matches the predecessor of r and does not match the
successor of the rule r.

Algorithm 7.6. Generation of elimination rules
Input:
– temporal information system with actions T,
– type T of structured objects, where objects of this type are composed

of l parts of object of types T1,...,Tl,
– family of planning graphs PGF = {PG1, ...,PGl}, where

PGi = (Si, Ai, Ei)
is a planning graph for complex objects of type Ti, for i = 1, ..., l,

– fixed plan length k from planning graphs from the family PGF,
– elimination table ET(T,PGF, k) = (U, A) such that A = {a1, ...., am},
– minimal support ts of useful elimination rules.

Output: The set of elimination rules computed for the table
ET(T,PGF, k)

begin1

Create empty set of rules ERUL2

for any a ∈ A do3

Create a decision table ETa = (Ua, Aa, d) such that, Ua = U ,4

Aa = A \ {a} and d = a
Generate a set RUL(ETa) of decision rules with minimal number5

of descriptors (see Section 2.3 and Section 2.4) for the table ETa

Add rules from the set RUL(ETa) to the set ERUL6

end7

Remove from the set ERUL all rules with support less than ts8

return ERUL9

end10
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s1 ... sm pdal...pda1rdsk...rds1un...u1

Attributes specified by human experts describing features of plans 
for members of the group (i.e. sepsis, Ureaplasma, RDS and PDA)

The elimination table

For any attribute from the elimination 
table, we compute the set of rules treating 

this attribute as a decision attribute

Any row represents 
information about features 

of plans assigned for
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exemplary group of 
diseases from the

training data Elimination rules
(Dependencies in the elimination table explained by 
decision rules with minimal number of descriptors, 

e.g., s1=NO & rds2=YES => pda1=YES)

Fig. 47. The scheme of construction of elimination rules for group of four diseases:
sepsis, Ureaplasma, RDS and PDA

So, the set of elimination rules can be used as a filter of inconsistent combinations
of plans generated for members of groups. Any combination of plans is elimi-
nated when there exists an elimination rule that is not supported by features of
a combination while the combination matches a predecessor of this rule. In other
words, a combination of plans is eliminated when the combination matches to the
predecessor of some elimination rule and does not match the successor of a rule.

We propose the following method of calculation the set of elimination rules
on the basis of the elimination table (see Algorithm 7.6).

As we see in the Algorithm 7.6, for any attribute from the elimination table,
we compute the set of rules with minimal number o descriptors (see Section 2.3
and Section 2.4) treating this attribute as a decision attribute. In this way, we
obtain a set of dependencies in the elimination table explained by decision rules.
In practice, it is necessary to filter elimination rules to remove the rules with low
support because such rules can be too strongly matched to the training data.

Fig. 47 shows the scheme of elimination rules of not-acceptable g-plans con-
structed in the case of the treatment of respiratory failure, which is a result of
the four following diseases: sepsis, Ureaplasma, RDS and PDA.

On the basis of the set of elimination rules an elimination classifier may
be constructed that enable elimination of inappropriate plan arrangements for
individual parts of the structured object.

Definition 69 (An elimination classifier). Let us assume that:

– T is a temporal information system with actions,
– T is a type of structured objects, where objects of this type are composed of

l parts of object of types T1,...,Tl,
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– PGF = {PG1, ...,PGl} is a family of planning graphs, where PGi =
(Si, Ai, Ei) is a planning graph for complex objects of type Ti, for i = 1, ..., l,

– k is a fixed plan length in planning graphs from the family PGF,
– ET(T,PGF, k) = (U, A) is an elimination table,
– ERUL(T,PGF, k) is a set of all elimination rules of g-plans from the set

GPLAN(PGF, k).

An elimination classifier based on the set ERUL(T,PGF, k) of all elimina-
tion rules (or on some subset of this set) is a classifier denoted in general by
µET(T,PGF,k) and classifying g-plans in the following way:

∀u ∈ U : µET(T,PGF,k)(u) =
{

false when ∃r∈ERUL u is eliminated by r
true otherwise. .

If the combination of plans for parts of the structured object is consistent (it
was not eliminated by elimination rules), we should check if the execution of
this combination allows us to realize the expected meta action from the level of
structured objects. This can be done by a special classifier constructed for a table
called a meta action table. The structure of a meta action table is similar to the
structure of an elimination table, i.e., attributes are defined by human experts,
where rows represent information about features of plans assigned for parts of
exemplary structured objects from the training data. In addition, we add to this
table a decision attribute. Values of such decision attributes represent names of
meta actions which are realized as an effect of the execution of plans described
in the current row of a training table.

Definition 70 (A meta action table). Let us assume that:

– T is a temporal information system with actions,
– T is a type of structured objects, where objects of this type are composed of

l parts of object of types T1,...,Tl,
– PG = (S,A, E) is a planning graph for structured objects of the type T ,
– PGF = {PG1, ...,PGl} is a family of planning graphs, where PGi =

(Si, Ai, Ei) is a planning graph for complex objects of type Ti, for i = 1, ..., l,
– k is a fixed plan length in planning graphs from the family PGF,
– Φi = {φ1

i , ..., φ
mi

i } ⊆ FPPG(PGi) is a defined by experts family of formulas,
for i = 1, ..., l,

– Φ = Φ1 ∪ ... ∪ Φl,
– PGP = (U, Φ, |=GP ) is a property system, where

U = DGPLAN(T,PGF, k) and

the satisfiability relation |=GP⊆ U × Φ is defined in the following way:

∀gp = {p1, ..., pl} ∈ U and φ ∈ Φ : gp |=GP φ ⇔

pi |=FPPG(PGi) φ, for i ∈ {1, .., l} such that φ ∈ Φi.
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1. A meta action table of g-plans for structured objects is a decision table
MAT(T,PGF, k) = (U, A, d), where:
– (U, A) is an information system defined be the property system PGP ,
– d is a decision attribute that for any g-plan from the set U , represents a

meta action corresponding to execution of this g-plan.
2. If MAT(T,PGF, k) is the meta action table, then any classifier computed

for the table MAT(T,PGF, k) is called a meta action classifier and is de-
noted by µMAT(T,PGF,k).

The classifier computed for an action table makes it possible to predict the name
of a meta action for a given combination of plans from the level of parts of a
structured object. The last step is the selection of combinations of plans that
makes it possible to obtain a target meta action with respect to a structured
object (see Fig. 48).
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Fig. 48. The scheme of meta action planning

Example 38. The treatment of respiratory failure requires simultaneous treat-
ment of RDS, PDA, sepsis and Ureaplasma. Therefore, the treatment plan for
respiratory failure comes to existence by joining the treatment plans for RDS,
PDA, sepsis and Ureaplasma, and at the same time the synchronization of those
plans is very important. The first tool to synchronize these types of plans is the
elimination classifier generated for the elimination table. The second tool, how-
ever, is the meta action classifier generated for the meta action table. Similarly
to the case of the elimination table, also in constructing the meta action table,
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patterns describing the properties of the joint treatment plans for RDS, PDA,
sepsis and Ureaplasma are needed. These patterns are very similar as in the case
of the patterns used to construct the elimination table (see Example 37). �

It was mentioned in Section 7.3 that the resolving classifier used for generation
of a next action during the planning for a single object, gives us the list of actions
(and states after usage of action) with their weights in descending order. This
makes it possible to generate many alternative plans for any single object and
many alternative combinations of plans for a structured object. Therefore, the
chance of finding an expected combination of plans from a lower level to realize
a given meta action (from the higher level) is relatively high.

After planning the selected meta action from the path of actions from the
planning graph (for a structured object), the system begins the planning of the
next meta action from this path. The planning is stopped, when the planning of
the last meta action from this path is finished.

7.14 Data Structures, Algorithms and Numerical Constants
Concerning the Planning for Structured Objects

In the next subsections, we present several algorithms which are needed to plan
the behavior of structured objects. Therefore, in this subsection we formulate the
problem of behavior planning of such objects and we mention elementary data
structures, algorithms, and numerical constants which we use in the described al-
gorithms. This allows avoiding repetitive descriptions of elements of such a kind.

When we speak about the structured object’s behavior planning, we always
mean the behavior planning of a certain structured object O of the established
type T which consists of parts O1, ..., Ol which are respectively the objects of
types T1, ..., Tl. In practical applications, objects O1, ..., Ol are often unstruc-
tured objects, however, they also may be structured objects of lesser complexity
than object O. Hence, the methodology of structured object behavior planning
described here is of a hierarchical character.

In this paper, in automatic planning of complex object behavior we use data
sets represented by the temporal information system with actions T = (U, A,
aid, ≤aid

, at, ≤at , ac). We also use the following data structures, algorithms,
and numerical constants:

– a planning graph PG = (S,A, E) for structured objects of a fixed type T ,
– a fixed plan length K in planning graphs PG,
– a classifier µRC(PG,S,K), for all S ∈ S,
– a classifier of dissimilarity µDIT (PG) between meta states from the planning

graph PG,
– a limitation ActionLimit of the number of meta actions which may be per-

formed in a given state S ∈ S,
– a maximal length Lp of generated plan for structured objects,
– a maximal depth Dr of a plan reconstruction for structured objects,
– a maximal length Lrp of a repair plan for structured objects (during recon-

struction),
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– a family of planning graphs PGF = {PG1, ...,PGl}, where PGi = (Si,
Ai, Ei) is a planning graph for complex objects of type Ti, for i = 1, ..., l,

– a fixed length o plans k in planning graphs from the family PGF,
– a classifier of dissimilarity µDIT (PGi) between states from the planning graph

PGi, for i = 1, ..., l,
– a length lgp of generated g-plan constructed for execution of any meta action

from the set A,
– an elimination classifier µET(T,PGF,k) (see Definition 69),
– a meta action classifier µMAT(T,PGF,k) (see Definition 70),
– a maximal depth d of reconstruction of g-plans,
– a maximal length lrp of a repair of g-plan.

The mentioned above data structures, algorithms, and numerical constants
are used in algorithms presented in further subsections.

7.15 Algorithms of the Meta Action Planning

The basic method of automated planning for the structured object is the method
of planning of the meta-action. The planning of the established meta-action
requires constructing such a g-plan that has a required length, it is compatible
with domain knowledge and its execution corresponds to the performance of the
established meta-action.

We present an example of an automated planning algorithm for a meta-action
which has been used in our experiments (see Algorithm 7.7).

The procedure SearchGPlanMA (see Algorithm 7.7) constructs a g-plan for
the structured object which executes the required meta-action. First, the sets of
plans are generated for all the parts of the structured object separately. Then, the
Cartesian product PCList of these sets is created, whose elements are candidates
for the g-plan that is being searched for. Finally, this product is overviewed
until finding such a g-plan that is not eliminated by classifier µET(T,PGF,k)
and performs the required meta-action on the structured object according to
classifier µMAT(T,PGF,k). If during the overview of the set PCList such a g-
plan occurs, then the execution of the algorithm is ended and exactly this g-
plan is returned as a solution. If during the overview of the PCList set the
algorithm does not encounter such a g-plan, then an empty g-plan is returned
which means that the algorithm has not found the solution. However, before the
overview of the set PCList takes place, it is sorted. The sorting is necessary for
the first g-plan that is found which executes the required meta-action is the most
recommended in terms of all parts of the structured object for which the plans are
constructed. An example of such sorting g-plans may be the sorting in relation
to the weight GPlanWeight which is defined for a given g-plan gp = (p1, ..., pl),
where pi ∈ PListi for i = 1, ..., l, in the following way:

GPlanWeight(gp) =
1∑l

i=1 Index of pi in the list PListi
.

The time complexity of the Algorithm 7.7 depends greatly on the size of the
set PCList. Therefore, the length of the plan lists generated for individual parts
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Algorithm 7.7. Searching for g-plan for a meta action (SearchGPlanMA)
Input:
– path hi ∈ PLAN(PG, k) in the planning graph PGi representing

history of the object Oi, that is finished by an initial state to start of
automated planning for object Oi, for i = 1, ..., l,

– target meta action mat ∈ A,
– length of g-plan lgp.

Output: The g-plan for execution the meta action mat

Procedure SearchGPlanMA({h1, ..., hl}, mat, lgp)1

begin2

PList1 := FEEFS(h1, lgp)3

...4

PListl := FEEFS(hl, lgp)5

PCList := PList1 × ...× PListl6

Sort PlanCompList by established method7

for i := 1 to length(PCList) do8

gplan := PCList[i]9

if (µET(T,PGF,k)(gplan) = true) then10

if (µMAT(T,PGF,k)(gplan) = mat) then11

return gplan12

end13

end14

end15

return “empty g-plan”16

end17

of the structured object should be chosen in such a way that the size of the set
PCList would be feasible for searching over this set.

Sometimes, a slightly different algorithm of g-plans searching is necessary.
We mean the situation when a g-plan is constructed, that satisfies certain con-
ditions for all parts of the analyzed structured object. In such a situation the
Algorithm 7.8 may be used.

As we see, the Algorithm 7.8 constructs such a g-plan for the structured object
that ends with specific states for individual parts of the structured object.

7.16 Automated Planning Algorithm for Structured Objects

Now, we may present the planning algorithm for the structured object which
uses the SearchGPlanMA procedure (see Algorithm 7.9).

The algorithm 7.9 takes into consideration different variants for a meta-action,
that may be performed in a given meta-state. However, only those actions are
taken into account which algorithm SearchGPlanMA can execute using a g-
plan on the level of single parts of the structured object. Similarly to the case of
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Algorithm 7.8. Searching for g-plan for states (SearchGPlan)
Input:
– path hi ∈ PLAN(PG, k) in the planning graph PGi representing

history of the object Oi, that is finished by an initial state to start of
automated planning for object Oi, for i = 1, ..., l,

– target state si for the object Oi, for i = 1, ..., l,
– length of g-plan lgp.

Output: The g-plan ends by states s1, ..., sl

Procedure SearchGPlan({h1, ..., hl}, {s1, ..., sl}, lgp)1

begin2

PList1 := FEEFS(h1, lgp)3

...4

PListl := FEEFS(hl, lgp)5

PCList := PList1 × ...× PListl6

Sort PCList by fixed order7

for i := 1 to length(PCList) do8

{p1, ..., pl} := PCList[i]9

if (µET(T,PGF,k)(gplan) = true) then10

if (p1[lp] = s1) and .... and (pl[lp] = sl) then11

return {p1, ..., pl}12

end13

end14

end15

return “empty g-plan”16

end17

Algorithm 7.2, for the regulation of computing time duration, limitation
ActionLimit is used, that is, limitation of the number of actions which may be
performed in a given state. Besides that, classifier µRC(PG,S,K) returns the list of
pairs (meta action + meta state) sorted decreasingly in relation to the weights
obtained from classification. Hence, the meta-actions are taken into account in
the order from the ones most recommended by the classifier µRC(PG,S,K) to the
less recommended by this classifier. This way, the algorithm constructs a certain
plan tree whose root is the initial meta-state and the leaves are the meta-states
after performing the individual variants of the plan. If during construction of
this tree the final meta-state occurs, then the performance of the algorithm is
ended and as a solution a sequence of meta-states and meta-actions is returned
which starts in the tree root and ends in the final meta-state that has been
found. If during construction of plan tree the algorithm does not encounter the
final meta-state, an empty plan is returned which means that the algorithm has
not found the solution.

The analysis of the pessimistic time complexity of Algorithm 7.9 is very similar
to the Algorithm 7.2. The only difference is that before applying the meta action
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Algorithm 7.9. Exhaustive expert forward search for a structured object
Input:
– path H = (H1, ..., Hk) ∈ PLAN(PG, k) representing history of a given

structured object O, that is finished by an initial meta state to start of
automated planning,

– family of paths h1, ..., hl, where hi is a path from the planning graph
PGi, representing history of the object Oi during execution the last
meta action for this object, for i = 1, ..., l,

– target meta state St ∈ S,
– a maximal length Lp of plan for structured objects.

Output: The plan P for structured object O ended by the meta state St

Procedure EEFSS(H, {h1, ..., hl}, St, Lp)1

begin2

S := GetLastElementFrom(H)3

P := “empty plan”4

P := P + S;5

L := PairList(µRC(PG,S,K)(H))6

for i = 1 to ActionLimit do7

P1 := Copy(P );8

gplan := SearchGPlanMA({h1, ..., hl}, L[i].action)9

if (gplan in not empty) then10

P1 := P1 + L[i].action + L[i].state11

if (L[i].state = St) then12

return P113

end14

if (Lp > 1) then15

H1 := Copy(H)16

RemoveF irstTwoElementsFrom(H1)17

H1 := H1 + L[i].action + L[i].state18

P2 := EEFSS(H1, gplan, St, Lp − 1)19

if (P2 is not empty ) then20

return P + P221

end22

end23

end24

end25

return “empty meta plan”26

end27

the procedure SearchGPlanMA should be executed in order to check how a
given meta-action can be executed for the parts of the structured object. If it
is even assumed that this checking takes place over constant time, then the
pessimistic time complexity of the procedure EEFSS is of order O(mn) where
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n is the length of the constructed plan and m is the limitation of the number of
meta-actions which may be performed in a given meta-state (ActionLimit). This
means that similarly to the case of algorithm EEFS the effective application of
the algorithm EEFSS for nontrivially small n and m is practically impossible.
However, in practice the planning graphs for the structured object are relatively
simple (see Fig. 46) and this algorithm may be used for them.

7.17 Reconstruction of Plan for Structured Objects

The main aim of this section is to present the algorithm of reconstruction of a
plan constructed for structured objects. Similarly to the case of the unstructured
complex object (see Section 7.9) such a reconstruction may be performed dur-
ing the execution of the meta plan for the structured object when the initially
established plan cannot be continued.

We may present the algorithm simulating the execution of the meta plan which
foresees the reconstruction of the plan during its execution (see Algorithm 7.10).

The Algorithm 7.10 simulates the execution of the meta-plan found earlier
for the structured object. The simulation is performed based on the procedure
SimulateMA which on the input takes the history of the current states of all
parts of the structured object. The procedure SimulateMA returns the g-plan gp
which has been performed as a result of the simulation of the meta-action. This
g-plan may differ from the input g-plan, because during the simulation of the
input g-plan a reconstruction on the level of meta-action performance may have
occurred (see Algorithm 7.11). Therefore, it may happen that the simulation
of the meta-action leads to a different meta-state than the one expected in the
original plan. Hence, the procedure MReconstruction can be executed in the
further process a reconstruction for the structured object (see Algorithm 7.13).

Now, we present the simulation algorithm of meta-action for the structured
object with the consideration of reconstruction (see Algorithm 7.11 and Fig. 49).

The simulation is performed based on the procedure GSimulate which on the
input takes the history of the current states of all parts of the structured object
and actions which are to be performed for all these parts. Although it is possible
to imagine this type of procedure as a part of the behavior simulator of the
complex object (e.g., the traffic simulator, the illness development simulator),
in this paper by this procedure we understand the changes in the real system of
complex objects which may be triggered by performing specific meta-actions for
the structured object.

The Algorithm 7.11 uses the procedure of reconstruction GReconstruction.
Therefore, we present this procedure as the Algorithm 7.12.

The Algorithm 7.12 tries to find a short repair g-plan not longer than lrp

which brings the initial states of reconstruction (the last states in the histories
h1, ..., hl) to the states appearing synchronically in the plans p1, ..., pl starting
from position pos as far as position pos + 2 · (dr − 1). The maximum depth of
reconstruction dr is then the number of states in the plans p1, ..., pl (starting
from the states in position pos) which the algorithm tries to reach using the
repair g-plan. The repair g-plan is searched for by algorithm SearchGPlan.
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Algorithm 7.10. The simulation of plan execution for a structured object
Input:
– a path H ∈ PLAN(PG, k) representing history of a given structured

object O, that is finished by an initial meta state to start of a simulation,
– a family of paths h1, ..., hl, where hi is a path from the planning graph

PGi, representing history of the object Oi during execution the last
meta action for this object (before the simulation), for i = 1, ..., l,

– a plan P ∈ PLAN(PG, LP ) established for a given complex object O,
– a sequence of g-plans gp1, ..., gpLP −1

2
implementing meta actions from P .

Output: The plan P executed for the structured object O
begin1

if (length(P ) < 3) return “meta plan P is too short for execution”2

Hs := Copy(H)3

Hp := Copy(H)4

i := 15

while (i < length(P )) do6

gp := SimulateMA({h1, ..., hl}, gp i+1
2

)7

if(gp is empty) return “start total reconstruction”8

S := µMAT(T,PGF,k)(gp)9

RemoveF irstTwoElementsFrom(Hs)10

Hs := Hs + P [i + 1] + S11

RemoveF irstTwoElementsFrom(Hp)12

Hp := Hp + P [i + 1] + P [i + 2]13

if (S 	= P [i + 2]) then14

dism := µDIT (PG)(Hs, Hp)15

if (dism is “high”) then return “start total reconstruction”16

if (dism is not “low”) then17

P ′ := MReconstruction(Hs, {h1, ..., hl}, P, i + 2)18

if (P ′ is empty) then return “start total reconstruction”19

P := P ′20

end21

end22

i := i + 2 // Go to the next meta action from the plan P23

end24

end25

Computational complexity of Algorithm 7.12 depends linearly on the com-
plexity of the algorithm SearchGPlan. However, in practice using this algorithm
may significantly accelerate the execution of plans which require reconstruction
because instead of a total reconstruction, only a partial reconstruction is per-
formed.

If the meta state S, achieved as a result of simulation, differs too much from
its counterpart in plan P , then the total reconstruction of plan P is performed.
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Algorithm 7.11. The simulation of meta-action for the structured object
with the consideration of g-plan reconstruction

Input:
– family of paths h1, ..., hl, where hi is a path from the planning graph

PGi, representing history of the object Oi during execution the last
meta action for this object, for i = 1, ..., l,

– meta action ma ∈ A and g-plan gp = (p1, ..., pl) corresponding to meta
action ma, that should be performed during a simulation.

Output: The g-plan executed for the structured object O

Procedure SimulateMA({h1, ..., hl}, {p1, ..., pl})1

begin2

for j := 1 to l do3

hsj := Copy(hj); hpj := Copy(hj)4

end5

i := 16

while (i < lgp) do7

{s1, ...., sl} := GSimulate({hs1, ..., hsl}, {p1[i + 1], ..., pl[i + 1]})8

DISM := false9

j := 110

while (j ≤ l) and (DISM=false) do11

RemoveF irstTwoElementsFrom(hsj)12

hsj := hsj + pj [i + 1] + sj13

RemoveF irstTwoElementsFrom(hpj)14

hpj := hpj + pj [i + 1] + pj [i + 2]15

if (sj 	= pj[i + 2]) then16

dism := µDIT (PGj)(hsj , hpj)17

if (dism is “high”) then return “generate new g-plan”18

if (dism is not “low”) then DISM := true19

end20

j := j + 121

end22

if (DISM=true) then23

gplan := GReconstruction({hs1, ..., hsl}, {p1, ..., pl}, j − 1)24

if (gplan is empty ) “generate new g-plan”25

for j := 1 to l do pj := gplan[j]26

end27

i := i + 228

end29

return {p1, ..., pl}30

end31

Finally, we present a plan reconstruction algorithm for a structured object on
the level of the planning graph for objects of this type (see Algorithm 7.13).
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Fig. 49. The simulation of meta action execution with reconstruction for a structured
object composed of parts: A, B, C

The Algorithm 7.13 tries to find a short repair plan P2 (not longer than Lrp)
which brings the initial state of the reconstruction (the last state in history H) to
a state appearing in plan P1, starting from position pos as far as position pos+2·
(Dr− 1). The maximum depth of reconstruction Dr is, therefore, the number of
meta states in plan P1 (starting from position pos), which the algorithm tries to
reach using the repair plan. The repair plan is searched for by algorithm EEFSS
although it is possible to use also other planning algorithms.

Computational complexity of the above algorithm depends linearly on com-
plexity of algorithm EEFSS. However, in practice using this algorithm may
significantly accelerate the execution of meta plans which require reconstruction
because instead of a total reconstruction, only a partial reconstruction of the
meta-plan is performed whose degree of computational difficulty is much lower
than the difficulty level of a total reconstruction (with regard to the smaller size
of the problem).

7.18 Estimation of the Similarity between Plans

The problem of inducing classifiers for similarity relations is one of the
challenging problems in data mining and knowledge discovery (see, e.g.,
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Algorithm 7.12. Partially reconstruction of g-plan (GReconstruction)
Input:
– family of paths h1, ..., hl, where hi is a path from the planning graph

PGi, representing history of the object Oi during execution the last
meta action for this object, for i = 1, ..., l,

– position pos of starting state of reconstruction in plans p1, ..., pl.

Output: The reconstructed g-plan p1, ..., pl

Procedure GReconstruction({h1, ..., hl}, {p1, ..., pl}, pos)1

begin2

j := pos3

while (j ≤ pos + 2 · (dr − 1)) do4

{q1, ..., ql} := SearchGPlan({h1, ..., hl}, {p1[j], ..., pl[j]}, lrp)5

if ({q1, ..., ql} is not empty) then6

p1 := Subpath(p1, 1, pos−1)+q1+Subpath(p1, j+1, length(p1))7

...8

pl := Subpath(pl, 1, pos−1)+ ql +Subpath(pl, j +1, length(pl))9

return {p1, ..., pl}10

end11

j := j + 212

end13

return “empty g-plan”14

end15

[162, 163, 164, 165, 166, 167, 168, 169, 170, 171]). The existing methods are based
on building models for similarity functions using simple strategies for fusion of
local similarities. The optimization of the assumed parameterized similarity for-
mula is performed by tuning parameters relative to local similarities and their
fusion. For instance, if we want to compare two medical plans of treatments,
e.g., one plan generated automatically by our computer system and another one
proposed by medical expert, we need a tool to estimate the similarity. This prob-
lem can be solved by introducing a function measuring the similarity between
medical plans. For example, in the case of our medical data (see Section 7.21),
a formula is used to compute a similarity between two plans as the arithmetic
mean of similarity between all corresponding pairs of actions (nodes) from both
plans, where the similarity for the single corresponding pair of actions is defined
by a consistence measure of medicines and medical procedures comprised in these
actions. For example, let M = {m1, ..., mk} be a set consisting of k medicines.
Let us assume that actions in medical plans are specified by subsets of M . Hence,
any medical plan P determines a sequence of actions A(P ) = (A1, ..., An), where
Ai ⊆ M for i = 1, . . . , n and n is the number of actions in P . In our example,
the similarity between plans is defined by a similarity function Sim established
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Algorithm 7.13. Reconstruction of the plan for structured objects
(MReconstruction)

Input:
– path H in the planning graph PG representing history of a given

structured complex object O, that is finished by an initial state to
start of reconstruction,

– family of paths h1, ..., hl, where hi is a path from the planning graph
PGi, representing history of the object Oi during execution the last
meta action,
for i = 1, ..., l,

– plan P1 generated for a given structured object O before reconstruction,
– position pos of starting state of reconstruction in the plan P1.

Output: The plan P1 after reconstruction

Procedure MReconstruction(H, {h1, ..., hl}, P1, pos)1

begin2

j := pos3

while (j ≤ pos + 2 · (Dr − 1)) do4

P2 := EEFSS(H, {h1, ..., hl}, P1[j], Lrp)5

if (P2 is not empty) then6

P3 :=7

Subpath(P1, 1, pos− 1) + P2 + Subpath(P1, j + 1, length(P1))
return P38

end9

j := j + 210

end11

return “empty plan”12

end13

on pairs of medical plans (P1, P2) (of the same length) with the sequences of
actions A(P1) = (A1, ..., An) and A(P2) = (B1, ..., Bn), respectively as follows

Sim(P1, P2) =
1
n

n∑
i=1

|Ai ∩Bi|+ |M \ (Ai ∪Bi)|
|M | .

However, such an approach seems to be very abstract and ad hoc, because it
does not take into account any deeper knowledge about the similarity of plans,
e.g., domain knowledge. Whereas, the similarity relations for real-life problems
are usually more complex objects, i.e., their construction from local similarities
cannot be obtained by simple fusion functions. Hence, such similarity relations
cannot be approximated with the satisfactory quality by employing the existing
simple strategies. For this reason we treat this similarity measure, Sim, only as an
example and do not take into account in our further research (and in our proposed
method). Whereas, to support the process of similarity relation approximation,
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we propose to use domain knowledge represented by concept ontology expressed
in natural language. The ontology consists of concepts used by expert in his expla-
nation of similarity and dissimilarity cases. Approximation of the ontology makes
it possible to obtain some relevant concepts for approximation of the similarity
relation.

7.19 Ontology of the Similarity between Plans

According to the domain knowledge, it is quite common, that there are many
aspects of similarity between plans. For example, in case of comparison of med-
ical plans used for the treatment of infants with respiratory failure, we should
take into consideration, e.g., the similarity of the antibiotics use, the ventilation
mode and the similarity of PDA closing (see Appendix B for mor medical de-
tails). Moreover, every aspect of the similarity should be understood in a different
way. For example, in estimation of the similarity in the antibiotic treatment, it
should be evaluated the kind of antibiotic, as well as the time of administration.
Therefore, it is necessary to investigate and take into account all incompatibili-
ties of the antibiotic use between corresponding pairs of nodes from both plans.
Excessive doses are rather acceptable (based on expert knowledge), whilst the
lack of medicine (if it is necessary) should be taken as a very serious mistake.
In such situation, the difference in our assessment is estimated as very signif-
icant. A bit different interpretation of similarity should be used in case of the
ventilation. As in antibiotic use, we investigate all incompatibilities of the ven-
tilation mode between corresponding pairs of nodes from both plans. However,
sometimes, according to expert knowledge, we simplified our assessments, e.g.,
respiration unsupported and CPAP are estimated as similar (see Example 36 for
more medical details). More complicated situation is present if we want to judge
the similarity in treatment of PDA. We have to assign the ventilation mode, as
well as the similarity of PDA closing procedure. In summary, any aspect of the
similarity between plans should be taken into account in the specific way and the
domain knowledge is necessary for joining all these similarities (obtained for all
aspects). Therefore, the similarity between plans should be assigned on the basis
of a special ontology specified in a dialog with human experts. Such ontology we
call similarity ontology. Using such similarity ontology we developed methods
for inducing classifiers predicting the similarity between two plans (generated
automatically and proposed by human experts).

In the paper, we assume that each similarity ontology between plans has a
tree structure. The root of this tree is always one concept representing general
similarity between plans. In each similarity ontology there may exist concepts of
two-way type. In this paper, the concepts of the first type will be called internal
concepts of ontology. They are characterized by the fact that they depend on
other ontology concepts. The concept of the second type will be called input
concepts of ontology (in other words the concepts of the lowest ontology level).
The input concepts are characterized by the fact that they do not depend on
other ontology concepts. Fig. 50 shows an exemplary ontology of similarity be-
tween plans of the treatment of newborn infants with the respiratory failure.
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Fig. 50. An exemplary ontology of similarity between plans of the treatment of new-
born infants with respiratory failure

This ontology has been provided by human experts. However, it is also possible
to present some other versions of such ontology, instead of that presented above,
according to opinions of some other group of human experts.

7.20 Similarity Classifier

Using the similarity ontology (e.g., the ontology presented in Fig. 50), we de-
veloped methods for inducing classifiers predicting the similarity between two
plans (generated automatically and proposed by human experts).

The method for construction of such classifier can be based on a similarity
table of plans. The similarity table of plans is the decision table which may
be constructed for any concept from the similarity ontology. The similarity ta-
ble is created in order to approximate a concept for which the table has been
constructed. The approximation of the concept takes place with the help of clas-
sifiers generated for the similarity table. However, because of the fact that in
the similarity ontology there occur two types of concepts (internal and input),
there are also two types of similarity tables. Similarity tables of the first type
are constructed for internal concepts, whereas the tables of the second type are
constructed for input concepts.
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Fig. 51. The scheme of the similarity table of plans

Similarity tables for internal concepts of similarity ontology are constructed
for a certain fragment of similarity ontology which consists of a concept of this on-
tology and concepts on which this concept depends. In the case of ontology from
Fig. 50 it may be for instance the concept Similarity of a symptom treatment of
sepsis and concepts Similarity of corticosteroid use, Similarity of catecholamin
use and Similarity of hemostatic agents use. To simplify further discussion let us
assume that it is the concept C that depends in the similarity ontology on the
concepts C1, ..., Ck. The aim of constructing a similarity table is approximation
of concept C using concepts C1, ..., Ck (see Fig. 51). Condition columns of such
similarity table represent concepts C1, ..., Ck. Any row corresponds to a pair of
plans: generated automatically and proposed by experts. Values of all attributes
have been provided by experts from the set {0.0, 0.1, ..., 0.9, 1.0}. Finally, the
decision column represents the concept C.

Definition 71. Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at , ac) is a temporal information system with

actions,
– PG = (S, A, E) is a planning graph,
– k is a fixed length of plans in the planning graph PG,
– C is an internal concept, dependent in some similarity ontology on the con-

cepts C1,...,Ck , where C, C1, ..., Ck ⊆ PLAN(PG, k)× PLAN(PG, k).

A similarity table of plans from planning graph PG constructed for the internal
concept C on the basis of the system T is a decision table (U, A, d), where:

– U ⊆ DPLAN(T,PG, k)×DPLAN(T,PG, k),
– A = {a1, ..., am} is the set of attributes created on the basis of concepts from

the family C1, ..., Cm such that for any i ∈ {1, ..., m} values of ai describe
membership of objects from the set U to the concept Ci and these values are
determined by experts from the set { 0.0, 0.1, ...., 1.0 },
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– the values of decision attribute d which also belong to the set { 0.0, 0.1, ....,
1.0 } are proposed on the basis of the dissimilarity function value (proposed
by an expert) of plans for individual objects from the set U .

Let us notice that in the similarity table defined above there are no all the
possible pairs of plans from set DPLAN(T,PG, k)×DPLAN(T,PG, k), but
only a certain selected subset of the set of these pairs. In practice, this limitation
is very necessary because the number of pairs of product DPLAN(T,PG, k)
× DPLAN(T,PG, k) may be so large that the expert is not able to provide
for them all values of decision attribute d. Therefore, usually in the similarity
table there are only pairs selected by the expert which represent typical cases
of determining similarity functions of plans which may be generalized using a
classifier.

The stratifying classifier computed for a similarity table (called a similarity
classifier) can be used to determine the similarity between plans (generated
by our methods of automated planning and plans proposed be human experts)
relatively to a given internal concept C.

Such stratifying classifiers may be constructed for all concepts from the sim-
ilarity ontology which depend, in this ontology, on other concepts. However,
we also need stratifying classifiers for input concepts of ontology, that is, those
lying on the lowest level of the ontology. Hence, they are the concepts which
do not depend on other concepts in this ontology. To approximate them we do
not use other ontology concepts but we apply the features of comparable plans
which are expressed in the form of patterns defined in the language FPPG (see
Section 7.6). Obviously, such types of patterns are also concepts determined in
the set of pairs of plans. However, they are usually not placed in the similarity
ontology between plans. Therefore, approximation tables of input concepts of
the similarity ontology should be treated as a specific type of similarity table.

Definition 72. Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at , ac) is a temporal information system with

actions,
– PG = (S, A, E) is a planning graph,
– k is a fixed length of plans in the planning graph PG,
– φ1, ..., φm ∈ FPPG(PG) is a family of formulas defined by experts,
– C ⊆ PLAN(PG, k) × PLAN(PG, k) is an input concept of the similarity

ontology between plans.

A similarity table of plans from planning graph PG constructed for the input
concept C on the basis of the system T is a decision table (U, A, d), where:

– U ⊆ DPLAN(T,PG, k)×DPLAN(T,PG, k),
– A = {a1, ..., am, am+1, ..., a2m} is a set of attributes created on the basis of

formulas φ1, ..., φm, where for any i ∈ {1, ..., 2m} values of ai are computed
in the following way:

∀p = (p1, p2) ∈ U : ai(p) =

⎧⎨⎩
1 if i ≤ m and p1 |=FPPG(PG) φi

1 if i > m and p2 |=FPPG(PG) φi

0 otherwise
,
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– the values of decision attribute d describe membership of objects from the set
U to the concept C and these values are determined by experts from the set
{ 0.0, 0.1, ...., 1.0 }.

Let us notice that the similarity table defined above is constructed in the way
that concept C is approximated on the basis of the features of both plans cor-
responding to a given object from the set U .

It is worth noticing that for approximation of complex concepts from the
similarity ontology one can use also features (attributes) describing relations be-
tween plans. Such features are formulated in a natural language using special
questions about both plans. Examples of such questions are: Were antibiotics
used simultaneously in both plans?, Was the average difference between mechan-
ical ventilation mode in both plans significant?. However, it requires a simple
extension of the language FPPG(PG).

Classifiers constructed for similarity tables corresponding to all concepts from
the similarity ontology may be used to construct a complex classifier which gives
the general similarity between plans (represented by the concept lying in the root
of the similarity ontology). We provide an example of how such a classifier works.
Let us assume that there is a certain similarity ontology between pairs of plans in
which there occur six following concepts: C1, C2, C3, C4, C5 and C6. The concept
C1 depends on concepts C2 and C3, the concept C2 depends on concepts C4 and
C5, and the concept C3 depends on concepts C5 and C6. In this ontology concept
C1 is the concept of general similarity between plans, whereas concepts C4, C5
and C6 are input concepts of the similarity ontology (see Fig. 52).

Firstly, we construct similarity tables for concepts C4, C5, C6 and stratifying
classifiers µC4 , µC5 , µC6 corresponding to them. Let us also assume that there are
given stratifying classifiers µC1 , µC2 , µC3 which were constructed for similarity
tables which correspond to concepts C1, C2 and C3. Tested object u = (p1, p2)
which is a pair of compared plans is classified to the layer of concept C corre-
sponding to it in the following way. At the beginning, the object u is classified
by classifiers µC4 , µC5 and µC6 . This way we obtain values µC4(u), µC5(u) and
µC6(u). Next, values µC4(u) and µC5(u) are used as the values of conditional
attributes in the similarity table constructed for concept C2. Thus, the object
u may be classified by classifier µC2 , which gives us value µC2(u). At the same

C3

C1

C2

C4 C5 C6

Fig. 52. The scheme of a simple similarity ontology
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time, values µC5(u) and µC6(u) are used as the values of conditional attributes in
the similarity table constructed for concept C3. It gives the possibility to classify
object u by classifier µC3 and obtain value µC3(u). Finally, values µC2(u) and
µC3(u) are used as the values of conditional attributes of the similarity table
constructed for concept C1. Thus, the object u may be classified by classifier
µC1 to layer µC1(u).

The complex classifier described above can be used to determine the general
similarity between plans generated by our methods of automated planning and
plans proposed by human experts, e.g., during the real-life clinical treatment
(see Section 7.21).

7.21 Experiments with Medical Data

To verify the effectiveness of presented in this paper methods of automated plan-
ning, we have implemented the algorithms in an Automated Planning library
(AP-lib), which is an extension of the RSES-lib library forming the computa-
tional kernel of the RSES system (see [15]).

It should be emphasized that, in general, automated planning of treatment
is a very difficult and complicated task because it requires extensive medical
knowledge combined with sensor information about the state of a patient. Even
so, the proposed approach makes it possible to obtain quite satisfactory results
in the short-term planning of treatment of infants with respiratory failure. The
reason is that medical data sets have been accurately prepared for purposes
of our experiments using the medical knowledge. For example, the collection
of medical actions, that are usually used during the treatment of infants with
respiratory failure, has been divided into a few groups of similar actions (for ex-
ample: antibiotics, anti-mycotic agents, mechanical ventilation, catecholamines,
corticosteroids, hemostatic agents). It is very helpful in the prediction of actions
because the number of actions is significantly decreased.

The experiments have been performed on the medical data sets obtained from
Neonatal Intensive Care Unit, First Department of Pediatrics, Polish-American
Institute of Pediatrics, Collegium Medicum, Jagiellonian University, Krakow,
Poland (see also Section 6.26). We used one data table, that consists of 11099
objects. Each object of this table describes parameters of one patient in single
time point. There were prepared 7022 situations on the basis of this data table,
where the plan of treatment has been proposed by human experts during the
real-life clinical treatment.

We have applied the train-and-test method. However, analogously to experi-
ments from Subsection 6.26 the method of dividing data differed slightly from
the standard method described in Section 2.9. Namely, in each experiment the
whole set of patients was randomly divided into two groups (training and tested
one). Each of these groups allowed creating approximately 4000 time windows
which have duration of 7 time points. Time windows created on the basis of
patients from the training part created a training table for a given experiment
(when plans of treatment have been assigned), whereas time windows created on
the basis of patients from the tested part created a test table for the experiment
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(when plans have been generated by automated method and expert plans are
known in order to compare both plans).

In the discussed experiments, the distance between time points recorded for
a specific patient was constant (one day). In a single experiment concerning a
patient’s treatment, a 7-point sequence of time points was used. In terms of
planning the treatment each such sequence may be written as s1, a1, s2, a2, s3,
a3, s4, a4, s5, a5, s5, a6, s7, where si (for i = 1, ..., 7) is a patient state and ai

(for i = 1, ..., 6) is a complex medical action performed in the state si. The first
part of the above sequence of states and actions, that is, from state s1 to state
s3, was used by the method of automated planning as the input information
(corresponding to the values of conditional attributes in the classic approach to
constructing classifiers). The remaining actions and states were automatically
generated to create plan (s3, a′

3, s′4, a′
4, s′5, a′

5, s′6, a′
6, s′7). This plan may be

treated as a certain type of a complex decision value. Verification of the quality
of the generated plan consisted in comparing plan (s3, a′

3, s′4, a′
4, s′5, a′

5, s′6,
a′
6, s′7) with plan (s3, a3, s4, a4, s5, a5, s5, a6, s7). It is worth adding that

a single complex action concerned one time point, meta action concerned two
time points and a single experiment consisted in planning two meta actions.
Hence, in a single experiment four actions were planned (patient’s treatment
for four days). In other words, at the beginning of the automated planning
procedure the information about the patient’s state in the last three days of his
hospitalization was used (s1, s2, s3) together with the information about complex
medical actions undertaken one or two days before (a1, a2). The generated plan
included information about a suggested complex medical action on a given day
of hospitalization (a′

3), information about actions which should be undertaken
in the three following days of hospitalization (a′

4, a′
5, a′

6) and information about
the patient’s state anticipated as a result of the planned treatment in the four
following days of hospitalization (s′4, s′5, s′6, s′7).

As a measure of planning success (or failure) in our experiments, we use the
special classifier that can predict the similarity between two plans as a number
between 0.0 (very low similarity between two plans) and 1.0 (very high similarity
between two plans) (see Section 7.20). We use this classifier to determine the
similarity between plans generated by our methods of automated planning and
plans proposed be human experts during the real-life clinical treatment. In order
to determine the standard deviation of the obtained results each experiment was
repeated for 10 random divisions of the whole data set.

The average similarity between plans for all tested situations was 0.802. The
corresponding standard deviations was 0.041. The coverage of tested situation
by generated plans was 0.846 with standard deviation 0.018.

Due to the fact that the average similarity is not too high (less than 0.9) and
the standard deviation is relatively high for our algorithm, we present also the
distribution of the results. We describe results in such a way that we present
how many generated plans belong to the specified interval of similarity. For this
reason we divided interval [0.0, 1.0] into 5 equal intervals, i.e., [0.0, 0.2], [0.2,
0.4], [0.4, 0.6], [0.6, 0.8] and [0.8, 1.0]. Table 10 shows the average percent of the
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Table 10. The average percent of plans belonging to the specified interval and the
average similarity of plans in this interval

Intervals Average percent Average similarity
of plans of plans

[0.0, 0.2] 12.1% ± 4.5% 0.139 ± 0.002
(0.2, 0.4] 6.2% ± 1.5% 0.349 ± 0.003
(0.4, 0.6] 7.1% ± 1.7% 0.563 ± 0.002
(0.6, 0.8] 5.8% ± 0.9% 0.773 ± 0.004
(0.8, 1.0] 68.9% ± 5.6% 0.987 ± 0.002

plans belonging to the specified interval and the average similarity of plans in
this interval.

It is easy to see that some group of plans generated automatically is not
enough similar to the plans proposed by the experts. If we assume that inade-
quate similarity is lower than 0.6, in this group we found about 25% of all plans
(see Table 10). To explain this issue, we should observe more carefully plans,
which are incompatible with the proposals prepared by experts. In practice,
the main medical actions influencing the similarity of plans in accordance with
ontology of the similarity from Fig. 50 are mechanical ventilation, antibiotics,
anti-mycotic agents and macrolide antibiotics. Therefore, it may be interesting
how the treatment similarity changed in the range of applying these actions in
the individual intervals of similarity between the plans.
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Fig. 53. The average similarity of plans in the specified interval for medical actions
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On Fig. 53 we can see that a significant incompatibility of treatment plans
most often concerns mechanical ventilation and perhaps antibiotic therapy - the
situation when a patient develops a sudden and severe infection (e.g., sepsis).
Such circumstances cause rapid exacerbation of respiratory failure are required
higher level of mechanical ventilation and immediate antibiotic treatment. For
example, although microbiological confirmation of current infection is achieved
after 2–3 days, physician starts treatment after first symptoms of suspected
disease and often intensify mechanical ventilation mode. It would seem that the
algorithms of automated planning presented in this paper may imitate the strat-
egy of treatment described above. Unfortunately, in practice, these algorithms
are not able to learn this strategy for a lot of information because they were
not introduced to the base records or were introduced with delay. For instance,
hemoglobin saturation which is measured for the whole time, as the dynamic
marker of patients respiratory status, was not found in the data, whilst results
of arterial blood gases were introduced irregularly, with many missing values. So,
the technical limitation of the current data collection lead to the intensive work
modifying and extending both, the equipment and software, served for gathering
clinical data. It may be expected that in several years the automated planning
algorithms, described in this paper, will achieve much better and useful results.

A separate problem is a relatively low coverage of the algorithms described
in this paper which equals averagely 0.846. Such a low coverage results from
the specificity of the automated planning method used which synchronizes the
treatment of four diseases (RDS, PDA, sepsis and Ureaplasma). We may identify
two reasons of a low coverage. Firstly, because of data shortage the algorithm
in many situations may not synchronize the treatment of the above mentioned
diseases. It happens this way because each proposed comparison of plans may be
debatable in terms of the knowledge gathered in the system. Therefore, in these
cases the system does not suggest any treatment plan and says I do not know.
The second reason for low coverage is the fact that the automated planning
method used requires application of a complex classifier which consists of many
classifiers of lesser complexity. Putting these classifiers together often causes the
effect of decreasing the complex classifier coverage. For instance, let us assume
that making decision for tested object u requires application of complex classifier
µ, which consists of two classifiers µ1 and µ2. We apply classifier µ1 directly to
u, whereas classifier µ2 is applied to the results of classification of classifier
µ1. In other words, to make classifier µ2 work for a given tested object u we
need value µ1(u). Let us assume that the coverage for classifiers µ1 and µ2
equals respectively 0.94 and 0.95. Hence, the coverage of classifier µ is equal
0.94 ·0.95 = 0.893, that is the coverage of classifier µ is smaller than the coverage
of classifier µ1 as well as the coverage of classifier µ2.

It is worth noticing that applying other automated planning methods (see
[353, 354]), a higher coverage for the data sets analyzed here may be obtained.
However, in this paper we prefer algorithms EEFS and EEFSS, because they
need not only data sets but also great domain knowledge to work. Moreover, the
quality of their performance depends greatly on the provided domain
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knowledge. Therefore, it may be expected that providing greater and more reli-
able knowledge and more extensive data sets on the input of this algorithm will
allow the quality of automatically generated treatment plans to be more similar
to the quality of treatment plans proposed by the medical experts.

In summation, we conclude that experimental results showed that the pro-
posed automated planning method gives good results, also in the opinion of
medical experts (compatible enough with the plans suggested by the experts),
and may be applied in medical practice as a supporting tool for planning the
treatment of infants suffering from respiratory failure.

8 Summary

The aim of this paper was to present new methods of approximating complex
concepts on the basis of experimental data and domain knowledge which is
mainly represented using concept ontology.

At the beginning of the paper a number of methods of constructing clas-
sical classifiers were overviewed (see Section 2) and methods of constructing
stratifying classifiers were presented (see Section 3). Next, in Section 4, a gen-
eral methodology of approximating complex concepts with the use of data sets
and domain knowledge was presented. In the further part of the paper, this
methodology was applied to approximate spatial complex concepts (see Sec-
tion 5), spatio-temporal complex concepts for unstructured and structured ob-
jects (see Section 6), to identify the behavioral patterns for this type of objects
(see Section 6), and to the automated planning of behavior of such objects when
the states of objects are represented by spatio-temporal concepts which require
an approximation (see Section 7).

We have also described the results of computer experiments conducted on
real-life data sets which were obtained from the road traffic simulator (see Ap-
pendix A) and on medical data which were made available by Neonatal Intensive
Care Unit, First Department of Pediatrics, Polish-American Institute of Pedi-
atrics, Collegium Medicum, Jagiellonian University, Krakow, Poland.

In light of theoretical discourse and the results of computer experiments pre-
sented in the paper the following conclusions may be drawn:

1. The methodology of approximating complex concepts with the use of data
sets and domain knowledge (represented mainly by a concept ontology),
which was proposed in this paper (see Section 4), fills the gap which exists
between spatio-temporal complex concepts and sensor data. It enables an
effective approximation of complex concepts; however, it requires a domain
knowledge represented mainly in the form of a concept ontology.

2. Stratifying classifiers proposed in the paper (see Section 3) are effective tools
for stratifying concepts, that is, they enable to classify objects to differ-
ent layers of the concept corresponding to different degrees of certainty of
membership of a tested object to the concept. Particularly noteworthy here
is the new method of constructing such classifiers based on shortening of
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decision rules with respect to different coefficients of consistency. It makes
an automatic stratification of concepts possible.

3. The method of approximation of complex spatial concepts, described in the
paper, with the help of approximate reasoning schemes (AR-schemes) leads
to better results than the classical methods based on decision rules induced
directly from sensor data because the quality of classifier classification based
on AR-schemes is higher than the quality of classification obtained by clas-
sifiers based on decision rules, particularly for small decision classes repre-
senting atypical cases in the recognition of which we are most interested in,
e.g., a dangerous driving vehicle on a highway (see Section 5). Moreover, for
larger data sets, the time of constructing classifiers based on AR-schemes is
much shorter than the time of inducing classifiers based on decision rules,
and the structure of classifiers based on AR-schemes is less complex than the
structure of classifiers based on decision rules. It is also worth mentioning
that the classifiers based on AR-schemes are more robust (stable or tolerant)
when it comes to changes in training data sets serving the construction of
classifiers, that is, a classifier based on AR-schemes, constructed for one data
set, often proves itself good for another data set. For example, a classifier
constructed for data generated from the traffic simulator with one simula-
tion scenario proves itself useful in classification of objects generated by the
simulator with the use of another simulation scenario.

4. The methodology of modeling complex object behavior with the use of be-
havioral graphs of these objects, proposed in the paper (see Section 6), is a
convenient and effective tool for identifying behavioral patterns of complex
objects. On the one hand this methodology, enables to represent concepts
on a high abstraction level, and on the other hand, owing to the use of a
domain knowledge, it enables to approximate these concepts on the basis of
sensor data and using a domain knowledge.

5. The sweeping method around complex objects is a very fast and convenient
method of isolating objects with complex structure from complex dynamical
systems (see Section 6). A certain difficulty in using this method is the fact
that each of its applications requires appropriate sweeping heuristics which
must be proposed by the expert.

6. The method of eliminating complex objects in behavioral pattern identifi-
cation based on the rules of fast elimination of behavioral patterns greatly
accelerates the identification of behavioral patterns in complex dynamical
systems monitoring (see Section 6). A certain inconvenience of applying this
method is the fact that although it is based on rules of fast elimination of
behavioral patterns obtained from data, in order to determine those rules we
need special temporal patterns supporting the process of elimination, and
the patterns themselves must be proposed by experts.

7. The methods of automated planning of complex object behavior proposed
in the paper facilitate an effective planning of behavior of both unstructured
and structured objects whose states are defined in a natural language us-
ing vague spatio-temporal conditions (see Section 7). The authenticity of
conditions of this type is usually not possible to be verified on the basis
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of a simple analysis of available information about the object and that is
why these conditions must be treated as spatio-temporal complex concepts
and their approximation requires methods described in this paper which are
based on data sets and domain knowledge.

8. The method of solving conflicts between actions during automated planning
of complex object behavior, based on a domain knowledge and data sets
(see Section 7), is ideal for the situation where the choice of one action from
many possible actions, to be performed at a given state should not be random
but it should be made in accordance with the domain knowledge (as in the
example of planning of a patient’s treatment). A significant novelty of the
method presented here in relation to the already existing ones is the fact
that in order to solve conflicts between actions we use classifiers based on
data sets and domain knowledge.

9. The method of synchronizing plans constructed for parts of a structured
object, described in the paper, is an important element of the method of
planning of structured object behavior (see Section 7). If we assume that
plans constructed for parts of a structured object are processes of some
kind, then the method of synchronizing those plans is a method of syn-
chronizing processes corresponding to the parts of the structured object. It
should be emphasized, however, that the significant novelty of the method
of synchronizing processes presented herein in relation to the ones known
from literature is the fact that the synchronization is carried out by using
classifiers determined on the basis of data sets and domain knowledge.

10. The method of partial reconstruction of a plan, proposed in the paper, can ac-
celerate the execution of plans constructed for complex objects significantly
(see Section 7). It is due to the fact that in the case of incompatibility of the
state occurring in the plan with the actual state of the complex object, the
plan needs not be generated from the beginning but it may be reconstructed
using the repair plan.

11. The method of similarity relation approximation based on data set usage
and a domain knowledge expressed in the form of a concept ontology which
has frequently been used throughout our research is an important proposal
of solving a difficult problem of similarity relation approximation.

The main advantage of the methods of construction of classifiers for spatial
and spatio-temporal complex concepts, presented in the paper, is the fact that
besides data sets they also intensely use a domain knowledge expressed, above
all, in the form of a concept ontology. Although using a domain knowledge causes
an increase in effectiveness of the methods presented in this paper, it can be,
however, a source of many difficulties arising during the application of those
methods. The difficulties arise from the fact that the domain knowledge is often
available only to the experts from the given domain. Therefore, projects which
use the methods described in this paper require an active participation of experts
from different domains. Hence, difficulties may often occur to incline experts who
are consent to devote their time to participate in a computer science project.
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In order to overcome these difficulties, there is a need of construction of special
methods of data analysis which might be useful in automatic search of knowl-
edge to replace, at least partially, the domain knowledge obtained from experts.
In the case of methods presented herein, we mean the methods of data analy-
sis which allow an automatic detection of concepts, significant for construction
of complex classifiers. For example, we are concerned with the following data
analysis methods here:

1. Automatic detection of spatial or spatio-temporal concepts which may be
used in approximating other more complex concepts.

2. Automatic detection of complex spatio-temporal concepts occurring in be-
havioral patterns (understood as behavioral graphs) and temporal depen-
dencies among those concepts.

3. Automatic detection of complex spatio-temporal concepts which are states
of unstructured or structured objects in automated planning of behavior of
such objects.

4. Automatic detection of complex spatio-temporal concepts which are meta-
actions to be performed for structured objects in automated planning of
behavior of such objects.

We plan to construct the data analysis methods mentioned above in the future.
In summation, it may be concluded that in executing real-life projects related

to the construction of the intelligent systems supporting decision-making, apart
from data sets it is necessary to apply domain knowledge. Without its applica-
tion successful execution of many such projects becomes extremely difficult or
impossible. On the other hand, appropriate space must be found for the auto-
mated methods of classifier construction wherever it is feasible. It means, thus,
finding a certain type of “the golden mean” to apply appropriate proportions in
domain knowledge usage and automated methods of data analysis. Certainly, it
will determine the success or failure of many projects.
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Computing: Theories, Technologies and Applications. Idea Group, Inc. (2007)

33. Pat, L., George, D., Bay, S., Saito, K.: Robust induction of process models from
time-series data. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the Twentieth
International Conference on Machine Learning, Washington, D.C, pp. 432–439.
AAAI Press, Menlo Park (2003)

34. Skowron, A., Suraj, Z.: Discovery of concurrent data models from experimental
tables: A rough set approach. In: Fayyad, U.M., Uthurusamy, R. (eds.) Proceed-
ings of the First International Conference on Knowledge Discovery and Databases
Mining (KDD 1995), pp. 288–293. AAAI Press, Menlo Park (1995)

35. Soar: Project web site, http://sitemaker.umich.edu/soar/home
36. Suraj, Z.: Discovery of concurrent data models from experimental tables. Funda-

menta Informaticae 28, 353–376 (1996)
37. Suraj, Z.: The synthesis problem of concurrent systems specified by dynamic

information systems. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowl-
edge Discovery 2. Applications, Case Studies and Software Systems. Studies in
Fuzziness and Soft Computing, pp. 418–448. Physica-Verlag, Heidelberg (1998)

38. Suraj, Z.: Rough set methods for the synthesis and analysis of concurrent pro-
cesses. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough set methods and
applications: new developments in knowledge discovery in information systems.
Studies in Fuzziness and Soft Computing, pp. 379–488. Physica-Verlag, Heidel-
berg (2000)

39. Suraj, Z.: Discovering concurrent data models and decision algorithms from data:
A rough set approach. International Journal on Artificial Intelligence and Machine
Learning IRSI, 51–56 (2004)

40. Unnikrishnan, K.P., Ramakrishnan, N., Sastry, P.S., Uthurusamy, R.: Service-
oriented science: Scaling escience impact. In: Proceedings of the Fourth KDD
Workshop on Temporal Data Mining: Network Reconstruction from Dynamic
Data, The Twelfth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data (KDD 2006), Philadelphia, USA, August 20-23 (2006)

41. Breiman, L.: Statistical modeling: the two cultures. Statistical Science 16(3), 199–
231 (2001)

42. Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices
of the American Mathematical Society (AMS) 5, 537–544 (2003)

43. Vapnik, V. (ed.): Statistical Learning Theory. Wiley, New York (1998)
44. Zadeh, L.A.: From computing with numbers to computing with words – from

manipulation of measurements to manipulation of perceptions. IEEE Transactions
on Circuits and Systems – I: Fundamental Theory and Applications 1, 105–119
(1999)

45. Zadeh, L.A.: A new direction in AI: Toward a computational theory of percep-
tions. AI Magazine 1, 73–84 (2004)

46. Zadeh, L.A.: Toward a generalized theory of uncertainty (GTU) - an outline.
Information Sciences 171, 1–40 (2005)

http://sitemaker.umich.edu/soar/home


724 J.G. Bazan

47. Ambroszkiewicz, S., Bartyna, W., Faderewski, M., Terlikowski, G.: An architec-
ture of multirobot system based on software agents and the SOA paradigm. In:
Czaja, L. (ed.) Proceedings of the Workshop on Concurrency, Specification, and
Programming (CS&P 2007), �Lagów, Poland, Warsaw, Poland, Warsaw University,
September 27–29, pp. 21–32 (2007)

48. Domingos, P.: Toward knowledge-rich data mining. Data Mining and Knowledge
Discovery 1, 21–28 (2007)

49. Foster, I.T.: Service-oriented science: Scaling escience impact. In: Proceedings of
the 2006 IEEE/WIC/ACM International Conference on Intelligent Agent Tech-
nology, Hong Kong, China, December 18-22. IEEE Computer Society, Los Alami-
tos (2006)
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H.S., S�lowiński, R. (eds.) RSCTC 2006. LNCS, vol. 4259, pp. 418–427. Springer,
Heidelberg (2006)

182. Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to
Robotic Soccer. The MIT Press, Cambridge (2000)

183. Bolc, L., Sza�las, A. (eds.): Time and Logic: A Computational Approach. UCL
Press, London (1995)

184. Clark, E., Emerson, E., Sistla, A.: Automatic verification of finite state concurrent
systems using temporal logic specifications: A practical approach. ACM Transac-
tions on Programming Languages and Systems 8, 244–263 (1986)

185. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science: Volume B: Formal Models and Semantics, pp.
995–1072. Elsevier, Amsterdam (1990)

186. Skowron, A., Stepaniuk, J.: Constrained sums of information systems. In:
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312. B�laszczyński, J., Greco, S., S�lowiński, R.: Multi-criteria classification – a new
scheme for application of dominance-based decision rules. Journal of Operational
Research 181, 1030–1044 (2007)
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315. Greco, S., Matarazzo, B., S�lowiński, R., Stefanowski, J.: An algorithm for induc-
tion of decision rules consistent with the dominance principle. In: Ziarko, W.P.,
Yao, Y. (eds.) RSCTC 2000. LNCS, vol. 2005, pp. 304–313. Springer, Heidelberg
(2001)

316. Peters, J.F.: Time and clock information systems: Concepts and rough fuzzy petri
net models. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Dis-
covery 2. Applications, Case Studies and Software Systems. Studies in Fuzziness
and Soft Computing, pp. 385–417. Springer-Verlag, Berlin (1998)

317. Polkowski, L.: Granulation of knowledge in decision systems: The approach based
on rough inclusions. The method and its applications. In: Kryszkiewicz, M., Pe-
ters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS, vol. 4585, pp.
69–79. Springer, Heidelberg (2007)

318. Synak, P.: Temporal Aspects of Data Analysis: A Rough Set Approach. Ph.D
thesis, The Institute of Computer Science of the Polish Academy of Sciences,
Warsaw, Poland (2003) (in Polish) (defended in 2004)

319. Polkowski, L., Artiemjew, P.: On granular rough computing with missing values.
In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007.
LNCS, vol. 4585, pp. 271–279. Springer, Heidelberg (2007)

320. Skowron, A.: Toward intelligent systems: Calculi of information granules. In: Ter-
ano, T., Nishida, T., Namatame, A., Tsumoto, S., Ohsawa, Y., Washio, T. (eds.)
JSAI-WS 2001. LNCS (LNAI), vol. 2253, pp. 251–260. Springer, Heidelberg (2001)

321. Stepaniuk, J.: Approximation spaces, reducts and representatives. In: Polkowski,
L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and
Applications. Studies in Fuzziness and Soft Computing, vol. 18, pp. 109–126.
Physica-Verlag, Heidelberg (1998)

322. Stepaniuk, J.: Knowledge discovery by application of rough set models. In:
Polkowski, L., Lin, T.Y., Tsumoto, S. (eds.) Rough Set Methods and Applications:
New Developments in Knowledge Discovery in Information Systems. Studies in
Fuzziness and Soft Computing, vol. 56, pp. 137–233. Physica-Verlag, Heidelberg
(2000)

323. Yao, Y.Y.: Perspectives of granular computing. In: Proceedings of the Conference
on Granular Computing (GrC 2005), Beijing, China, New York. IEEE Press, Los
Alamitos (2005)

324. Bazan, J.G., Osmólski, A., Skowron, A., Ślȩzak, D., Szczuka, M., Wróblewski, J.:
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A Road Simulator

Road simulator is a tool for generating data sets recording vehicle movement on
the road and at the crossroads (see [179, 355]). Such data is extremely crucial in
testing complex decision systems monitoring the situation on the road that are
working on the basis of information coming from different devices. The simulator
was constructed by the author of this paper.

Driving simulation takes place on a board (see Fig. 54) which presents a
crossroad together with the access roads.

During the simulation the vehicles may enter the board from all four direc-
tions, that is, East, West, North, and South. The vehicles coming to the crossroad
from South and North have the right of way in relation to the vehicles coming
from West and East.

Each of the vehicles entering the board has only one aim, i.e., to drive through
the crossroad safely and to leave the board. The simulation takes place step by

http://www.cs.toronto.edu/~fbacchus/tlplan.html
http://www.ida.liu.se/~patdo/aiicssite1/kplab/projects/talplanner/
http://logic.mimuw.edu.pl/~bazan/simulator


Hierarchical Classifiers for Complex Spatio-temporal Concepts 741

Main road

Vehicle

Minor road

STOP sign

Fig. 54. The board of simulation

step and at each of its steps the vehicles may perform the following maneuvers
during the simulation: passing, overtaking, changing direction (at the crossroad),
changing lane, entering the traffic from the minor road into the main road,
stopping, and pulling out.

Planning further steps of each vehicle takes place independently at every step
of the simulation. Each vehicle is “observing” the surrounding situation on the
road, keeping in mind its destination and its own parameters (driver’s profile),
makes an independent decision about its further steps; whether it should accel-
erate, decelerate and what (if any) maneuver should be commenced, continued,
ended or stopped.

Making decisions concerning further driving, a given vehicle takes under con-
sideration its parameters and the driving parameters of five vehicles next to it
which are marked by FR1, FR2, FL, BR, and BL (see Fig. 55).

During the simulation the system registers a series of parameters of the local
simulations, that is, simulations connected with each vehicle separately, as well
as two global parameters of the simulation, that is, parameters connected with
driving conditions during the simulation. The value of each simulation parameter
may vary and can be treated as a certain attribute taking values in a specified
value set.

We associate the simulationparameterswith the readouts of differentmeasuring
devices or technical equipment placed inside the vehicle or in the outside environ-
ment (e.g., by the road, in a helicopter observing the situation on the road, in a
police car). These are devices and equipment playing the role of detecting devices
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Fig. 55. A given vehicle and five vehicles next to it

or converters meaning sensors (e.g., a thermometer, range finder, video camera,
radar, image, and sound converter). The attributes taking the simulation param-
eter values, by analogy to devices providing their values, are called sensors.

The exemplary sensors are the following: initial and current road (four roads),
distance from the crossroad (in screen units), current lane (two lanes), position
of the vehicle on the road (values from 0.0 to 1.0), vehicle speed (values from
0.0 to 10.0), acceleration and deceleration, distance of a given vehicle from the
vehicles FR1, FL, BR, and BL and between FR1 and FR2 (in screen units),
appearance of the vehicle at the crossroad (binary values), visibility (expressed
in screen units, values from 50 to 500), humidity (slipperiness) of the road (three
values: lack of humidity (dry road), low humidity, and high humidity).

If, for some reason, the value of one of the sensors is not determined, the value
of the parameter will become equal to NULL (missing value).

Apart from sensors, the simulator registers a few more attributes whose values
are determined using the sensor values in a way determined by an expert. These
parameters take the binary values and are therefore called concepts in the present
simulator version. The results returned by testing concepts are very often in the
form YES, NO or DOES NOT CONCERN (NULL value).

Here are exemplary concepts:

1. Is a vehicle forcing the right of way at the crossroad?
2. Is there free space on the right lane in order to end the overtaking maneuver?
3. Will a vehicle be able to overtake easily before the oncoming car?
4. Will a vehicle be able to brake before the crossroad?
5. Is the distance from the vehicle FR1 too short or do we predict that it may

happen shortly?
6. Is a vehicle overtaking safely?
7. Is a vehicle driving safely?
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Fig. 56. The relationship diagram for the presented concepts

Besides binary concepts, simulator registers for any such concept one special
attribute that approximatesbinary concept by six linearly ordered layers: certainly
YES, rather YES, possibly YES, possibly NO, rather NO, and certainly NO.

Some concepts related to the situation of the road are simple and classifiers
for them can be induced directly from sensor measurement but for more complex
concepts this is infeasible. In searching for classifiers for such concepts domain
knowledge can be helpful. The relationships among concepts represented in a
domain knowledge can be used to construct hierarchical relationship diagrams.
Such diagrams can be used to induce multi-layered classifiers for complex con-
cepts (see, e.g., [52, 182]). In Fig. 56 there is an exemplary relationship diagram
for the concepts mentioned above .

The concept specification and concept dependencies are usually not given
automatically in accumulated data sets. Therefore, they should be extracted
from a domain knowledge. Hence, the role of human experts is very important
in our approach.

During the simulation, when a new vehicle appears on the board, its so-
called driver’s profile is determined. It may take one of the following values: a
very careful driver, a careful driver, and a careless driver. Driver’s profile is the
identity of the driver and according to this identity further decisions as to the
way of driving are made.

Driver’s profile is determined at the beginning when the vehicle appears on
the board and cannot be changed until it disappears from the board.

For a given vehicle the driver’s profile is determined randomly by the following
probability distribution: a very careful driver 0.4, careful driver 0.25, and careless
driver 0.35.
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Depending on the driver’s profile and weather conditions (humidity of the
road and visibility), speed limits are determined which cannot be exceeded.

The humidity of the road influences the length of braking distance for de-
pending on humidity, different speed changes take place within one simulation
step, with the same braking mode.

The driver’s profile influences the speed limits dictated by visibility. If another
vehicle is invisible for a given vehicle, this vehicle is not taken into consideration
in the independent planning of further driving by a given car. Because this may
cause dangerous situations, depending on the driver’s profile, there are speed
limits for the vehicle.

The data generated during the simulation are stored in a data table (informa-
tion system). Each row of the table depicts the situation of a single vehicle and
the sensor and concept values are registered for a given vehicle and the vehicles
FR1, FR2, FL, BL, and BR (associated with a given vehicle). Within each sim-
ulation step, descriptions of situations of all the vehicles on the road are saved
to a file.

B Neonatal Respiratory Failure

The new possibilities in medical intensive care have appeared during last decades
thanks to the progress in medical and technical sciences. This progress allowed us
to save the live of prematurely born infants including the smallest born between
the 20th and the 24th week of gestation with the birth weight above 500g.

Prematurely born infants demonstrate numerous abnormalities in their first
weeks of life. Their survival, especially without severe multiorgan complications
is possible with appropriate treatment. Prematurity can be characterized as
inappropriate maturity of systems and organs leading to their dysfunction after
birth.

The respiratory system dysfunction appearing in the first hours of life and
leading to respiratory failure is the most important single factor limiting sur-
vival of our smallest patients. The respiratory failure is defined as inappropriate
blood oxygenation and accumulation of carbon dioxide and is diagnosed based on
arterial blood gases measurements. Clinical symptoms increased rate of breath-
ing, accessory respiratory muscles use as well as X-ray lung examination are also
included in assessment of the severity of respiratory failure (see, e.g, [328] for
more details).

The most important cause of respiratory failure in prematurely born infants
is RDS (respiratory distress syndrome). RDS is evoked by lung immaturity and
surfactant deficiency. The other co-existing abnormalities PDA5 (patent duc-

5 PDA (patent ductus arteriosus) is a heart problem that occurs soon after birth in
some infants. In PDA, there is an abnormal circulation of blood between two of the
major arteries near the heart. Before birth, the two major arteries, i.e., the aorta and
the pulmonary artery, are normally connected by a blood vessel called the ductus
arteriosus, which is an essential part of the fetal circulation. After birth, the vessel
is supposed to close within a few days as part of the normal changes occurring in the
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tus arteriosus), sepsis (generalized reaction on infection leading to multiorgan
failure), and Ureaplasma lung infection (acquired during pregnancy or birth)
may exacerbate the course of respiratory failure. Each of these conditions can be
treated as an unrelated disease requiring a separate treatment. But they co-exist
in a patient very often, so in a single patient we may deal with their combination,
for example, RDS + PDA + sepsis. In the holistic therapeutic approach, it is
important to synchronize the treatment of the co-existing abnormalities, which
can finally lead to cure from the respiratory failure.

The respiratory failure dominates in clinical course of prematurity but is not
the only factor limiting the success of treatment. Effective care of the prema-
turely born infant should include all co-existing abnormalities such as infections,
both congenital and acquired, water-electrolyte and acid-base imbalance, circula-
tory, kidney, and other problems. All these factors are related and they influence
one another. The care of the prematurely born infants in their first days of life
requires continuous analysis of plenty of the parameters including vital sings and
the results of the additional tests. These parameters can be divided into station-
ary (e.g., gestational age, birth weight, Apgar score) and continuous changing in
time. The continuous values can be examined on the discrete (e.g., blood gases)
or the continuous basis, e.g., with the monitoring devices (oxygen hemoglobin
saturation, hear rate, blood pressure, temperature, and lung mechanics). The
neonatal care includes assessment of imagine techniques results (ultrasound of
the brain, echocardiography, chest X-ray). The global analysis should also in-
clude current methods of treatment applied in the particular patients. They
may have qualitative (e.g., administration of medication) or quantitative (e.g.,
respiratory settings) characteristics.

Everyday analysis of numerous parameters requires great theoretical knowl-
edge and practical experience. It is worth mentioning that this analysis should
be quick and precise. Assessment of the patient’s state is performed very often
under rush and stress conditions.

Avery important element of this analysis is an appropriate assessment of the risk
of death of the small patient caused by the respiratory failure during next hours or
days. The appropriate assessment of this risk leads to the decision of a particular
method and level of treatment. The life of a sick child depends on this quick and
correct decision. It should be emphasized that the correct assessment of the risk
of death depends not only on analysis of the current clinical status, lab tests, and
imagine techniques results but also on the dynamics observed lately and the char-
acter of changes (e.g., progression of the blood gases indices of respiratory failure).
The additional risk parameters such as birth weight are also important.

Computer techniques can be very useful in the face of difficulties in an effec-
tive data analysis. They may provide a support for the physician in everyday

infant’s circulation. In some infants, however, the ductus arteriosus remains open
(patent). If an infant has a PDA, but has an otherwise normal heart, the PDA may
shrink and go away completely. If a PDA does not shrink, or is due to causes other
than prematurity, surgery may be needed. This surgery is called ligation and involves
placing a suture around the ductus to close it (see, e.g, [328] for more details).
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diagnostic-therapeutic process both as a collecting, storing and patient’s data
presenting tools (e.g., Neonatal Information System [329]) and as a tool of quick,
automatic and intelligent analysis of this data. This approach might enable a
computer presentation of some information based on the observed patterns which
might be helpful in planning of the treatment. An example is the tool detecting
patterns of changes in the newborn clinical status which lead to death with high
probability. This kind of patterns is called the risk patterns (see Section 6.23). In
this approach, a given patient is treated as an investigated complex dynamical
system, whilst diseases of this patient (RDS, PDA, sepsis, Ureaplasma, and the
respiratory failure) are treated as complex objects changing and interacting over
time (see Section 6.22).
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