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Preface

The field of multi-sensor fusion and integration is growing into significance as our
society is in transition into ubiquitous computing environments with robotic services
everywhere under ambient intelligence. What surround us are to be the networks of
sensors and actuators that monitor our environment, health, security and safety, as
well as the service robots, intelligent vehicles, and autonomous systems of ever
heightened autonomy and dependability with integrated heterogeneous sensors and
actuators. The field of multi-sensor fusion and integration plays key role for mak-
ing the above transition possible by providing fundamental theories and tools for
implementation.

This volume is an edition of the papers selected from the 7th IEEE International
Conference on Multi-Sensor Integration and Fusion, IEEE MFI‘08, held in Seoul,
Korea, August 20–22, 2008. Only 32 papers out of the 122 papers accepted for
IEEE MFI’08 were chosen and requested for revision and extension to be included
in this volume. The 32 contributions to this volume are organized into three parts:
Part I is dedicated to the Theories in Data and Information Fusion, Part II to the
Multi-Sensor Fusion and Integration in Robotics and Vision, and Part III to the
Applications to Sensor Networks and Ubiquitous Computing Environments. To help
readers understand better, a part summary is included in each part as an introduction.
The summaries of Parts I, II, and III are prepared respectively by Prof. Hanseok Ko,
Prof. Sukhan Lee and Prof. Hernsoo Hahn.

It is the wish of the editors that readers find this volume informative and enjoy-
able. We would also like to thank Springer-Verlag for undertaking the publication
of this volume.

Kyunggi-Do, Korea Sukhan Lee
Seoul, Korea Hanseok Ko
Seoul, Korea Hernsoo Hahn
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Part I
Theories in Data and Information Fusion

Hanseok Ko

Information fusion is a concept describing a process that exploits the synergy offered
by the information originating from various sources. By combining additional inde-
pendent and/or redundant data, an improvement of the results can be obtained in the
form of robustness and reliability, extended coverage and dimensionality in space
and time, and reduced ambiguity, to name a few. Research in information fusion
expresses the properties of the information to be fused, of the methods for fusion,
of the architectures, thus permitting better design, implementation and analysis of
fusion processes. This chapter reports on some recent efforts on information fusion
with 11 contributions, addressing various forms of information fusion and their per-
formance results by combining multiple information sources, all aimed at capturing
the best possible synergy effects.

1. “Performance Analysis of GPS/INS Integrated System by Using a Nonlinear
Mathematical Model”: This paper develops an inertial error model in vehicle
navigation system. The authors’ proposed model, which can be used for the
GPS/INS integration, employs a combination of Bayesian state estimation and
Monte Carlo method. The proposed method is demonstrated to show superior
performance in terms of position estimates, compared to the classical models.

2. “Object-level Fusion and Confidence Management in a Multi-sensor Pedestrian
Tracking System”: Fayad and Cherfaoui propose to fuse asynchronous data
provided by different sensors with complementary and supplementary fields
of view, to detect, recognize, and track pedestrians. The confidence in detection
and recognition is measured based on geometric features and updated using the
Transferable Belief Model Framework.

3. “Effective Lip Localization and Tracking for Achieving Multimodal Speech
Recogntion”: The authors design an effective lip motion analysis system aimed
at deploying it to a multimodal speech recognition system. Several levels of
motion extraction sequence under various environmental conditions are pre-
sented and challenges are discussed.

4. “Optimal View Selection and Event Retrieval in Multi-Camera Office Environ-
ment”: This paper describes multiple cameras used to provide multiple views
of an object for optimal view selection and event retrieval.

1
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5. “Emotion-specific Dichotomous Classification and Feature-level Fusion of
Multichannel Bio-signals for Automatic Emotion Recognition”: This paper
describes all the the essential stages of an automatic emotion recognition
system using multichannel physiological measures, from data collection to the
classification process. A wide range of physiological features from various
analysis domains is presented to correlate them with emotional states.

6. “A Comparison of Track-to-Track Fusion Algorithms for Automotive Sensor
Fusion”: The authors compare the performance of a standard asynchronous
Kalman filter applied to tracked sensor data to several algorithms for the track-
to-track fusion of sensor objects of unknown parameters. Use of covariance
intersection and cross-covariance are found to yield significantly lower errors
than a Kalman filter at a comparable computational load.

7. “Effective and Efficient Communication of Information”: As a part of dis-
tributed sensor network issue, Mack et al propose an information fusion pro-
cedure by effective communication which then makes the interaction between
different fusion processes more efficient and effective.

8. “Most Probable Data Association with Distance and Amplitude Information for
Target Tracking in Clutter”: Song develops a new filter structure accommodat-
ing the probabilistic nature of the data association and builds a target tracking.
The performance is evaluated by a series of Monte Carlo tests and demonstrates
to be effective in terms of error.

9. “Simultaneous Multi-information Fusion and Parameter Estimation for Robust
3-D Indoor Positioning Systems”: This paper develops a theoretical framework
fusing pressure measurements and a topological building map with received
signal strength of a typical WLAN based indoor positioning systems, to render
a robust 3-D indoor positioning system.

10. “Efficient Multi-target Tracking with Sub-event IMM-JPDA and One-point
Prime Initialization”: The author addresses an interacting multi-model joint
probabilistic data association tracker with sub-event decomposition and one-
point prime initialization, which demonstrates to significantly reduce the num-
ber of hypotheses without reducing tracking performance.

11. “Fusion of Inertial, Vision, and Air Pressure Sensors for MAV (miniature un-
manned aerial vehicles) Navigation”: This paper introduces a system for fusing
information from two additional sensors with the IMU (Inertial Measurement
Unit) to improve the navigation performance of the MAV.



Performance Analysis of GPS/INS
Integrated System by Using a Non-Linear
Mathematical Model

Khalid Touil, Mourad Zribi and Mohammed Benjelloun

Abstract Inertial navigation system (INS) and global position system (GPS) tech-
nologies have been widely utilized in many positioning and navigation applications.
Each system has its own unique characteristics and limitations. In recent years, the
integration of the GPS with an INS has become a standard component of high-
precision kinematics systems. The integration of the two systems offers a number of
advantages and overcomes each system’s inadequacies. In this paper an inertial error
model is developed which can be used for the GPS/INS integration. This model is
derived by employing the Stirling’s interpolation formula. The Bayesian Bootstrap
Filter (BBF) is used for GPS/INS integration. Bootstrap Filter is a filtering method
based on Bayesian state estimation and Monte Carlo method, which has the great
advantage of being able to handle any functional non-linearity and system and/or
measurement noise of any distribution. Experimental result demonstrates that the
proposed model gives better positions estimate than the classical model.

Keywords Navigation · GPS/INS integration · Stirling’s interpolation Bayesian
Bootstrap Filter

1 Introduction

Most vehicle navigation systems estimate the vehicle position from Inertial Naviga-
tion System (INS) [1] and Global Positioning System (GPS) [2]. GPS is the most
attractive one for the vehicle navigation system. This is because the position can
be calculated on the globe if more than four satellites are detected. GPS can pro-
vide positioning and navigation information quickly and accurately at relatively low
cost. GPS has made a significant impact on almost all positioning and navigation
applications. However, GPS alone is insufficient to maintain continuous positioning
because of inevitable obstructions caused by buildings and other natural features.
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GPS appears then as an intermittent positioning system that demands the help of an
INS. INS is one of the most widely used dead reckoning systems [3]. It can provide
continuous position, velocity, and also orientation estimates, which are accurate for
a short term, but are subject to drift due to sensors drifts. Unfortunately, most of the
available positioning technologies have limitations either in accuracy of the abso-
lute position GPS accumulated error INS. In general, GPS/INS integration provides
reliable navigation solutions by overcoming each of their shortcomings, including
signal blockage for GPS and growth of position errors with time for INS. Integration
can also exploit advantages of the two systems, such as the uniform high accuracy
trajectory information of GPS and the short term stability of INS. In this paper
an inertial error model is developed which can be used for the GPS/INS integra-
tion. This model is derived by employing the Stirling’s interpolation formula [4].
It is independent on the initial state and can avoid the divergence problem, but its
drawback is the heavy computational load in the update stage. The Bayesian Boot-
strap Filter (BBF) is used for GPS/INS integration [5]. Bootstrap Filter is a filtering
method based on Bayesian state estimation and Monte Carlo method, which has
the great advantage of being able to handle any functional non-linearity and system
and/or measurement noise of any distribution. The paper is organized as follows. In
Sect. 2, we introduce an overview of approximation techniques. Section 3 presents a
dynamic and measurement models. In Sect. 4, a Bayesian Bootstrap Filter algorithm
is described. Experimental results are presented to demonstrate the accuracy of the
proposed model in Sect. 5. Finally, Conclusions are made in Sect. 6.

2 Overview of Approximation Techniques

Numerous approximation techniques for point estimation on nonlinear systems have
been proposed. This section deals with polynomial approximations of arbitrary
functions. In particular we will compare approximations obtained with Taylor’s
formula and Stirling’s interpolation formula.

2.1 Taylor-Series Approximation

Taylor-Series expansion (TSE) is a fundamental tool for handling nonlinearity [6].
We denote the nth-order TSE approximation of a function f at x̄ by: f (x)≈
TSE (x, n, x̄). For an analytic function f(x), it is given by:

TSE (x, n, x̄) = f (x̄)+ f ′(x̄)(x − x̄)+ f ′′(x̄)

2!
(x − x̄)2

+ f (3)(x̄)

3!
(x − x̄)3 + ......+ f (n)(x̄)

n!
(x − x̄)n

(1)

The principle of the TSE is that the approximation inherits still more characteris-
tics of the true function in one particular point as the number of terms increases.
Although the assumption that f is analytic implies that any desired accuracy can
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be achieved provided that a sufficient number of terms are retained, it is in general
advised to use a truncated series only in the proximity of the expansion point unless
the remainder terms has been properly analyzed. Several interpolation formulas
are available for deriving polynomial approximations that are to be used over an
interval. In the following we will consider one particular formula, namely Stirling’s
interpolation formula.

2.2 Stirling’s Interpolation Formula

Let the operators δ and μ perform the following operations (h denotes a selected
interval length):

δ f (x) = f

(
x + h

2

)
− f

(
x − h

2

)
(2)

μ f (x) = 1

2

(
f

(
x + h

2

)
− f

(
x − h

2

))
(3)

With these operators Stirling’s interpolation formula used around the point x = x̄
can be expressed as [4]:

f (x) = f (x̄ + ph) = f (x̄)+ pμδ f (x̄)

+ p2

2!
δ2 f (x̄)+

(
p + 1

3

)
μδ3 f (x̄)

+ p2(p2 − 1)

4!
δ4 f (x̄)+

(
p + 2

5

)
μδ5 f (x̄)+ ......

(4)

In the case of first and second-order polynomial approximations, the formula (4) is
given by:

f (x) ≈ f (x̄)+ f ′DD(x̄)(x − x̄)+ f ′′DD(x̄)

2!
(x − x̄)2 (5)

where

f ′DD(x̄) = f (x̄ + h)− f (x̄ − h)

2h
(6.a)

and

f ′′DD(x̄) = f (x̄ + h)− f (x̄ − h)− 2 f (x̄)

h2
(6.b)

In Fig. 1, the expansion point is x̄ = 0 and for the interpolation formula the
interval length was selected to h = 3.5. The solid line shows the true function, the
dot-dashed line is the second-order Taylor approximation while the dashed line is
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Fig. 1 Comparison of a
second-order polynomial
approximation obtained with
Taylor’s formula and
Stirling’s formula

the approximation obtained with the Stirling’s interpolation formula. Obviously, the
Taylor polynomial is a better approximation near the expansion point while further
away the error is much higher than for the approximation obtained with the Stir-
ling’s interpolation formula. In the following two sections we are going to use the
Stirling’s interpolation formula in a dynamic model of the INS and in a Bayesian
Bootstrap filtering.

3 Dynamic and Measurement Models

In this paper, we propose to use two kinds of sensors:

• Absolute position measurements issued from a GPS. The design of the GPS
requires four satellites to be tracked in order to solve for three dimensional posi-
tions.

• The INS provides us with rotation rate (gyroscopes) and acceleration (accelerom-
eters).

3.1 The Proposed Dynamic Model

The navigation frame inertial navigation equations can be described as:

⎛
⎜⎝

ṙ n

v̇n

Ċn
b

⎞
⎟⎠ =

⎛
⎜⎜⎝

D−1vn

Cn
b f b − (�n

ie +�n
in)vn + gn

Cn
b (�b

ib −�b
in)

⎞
⎟⎟⎠ (7)

where

D−1 =

⎛
⎜⎝

1/(M + h) 0 0

0 1/(N + h) cos ϕ 0

0 0 −1

⎞
⎟⎠ (8)
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where � represents the skew symmetric matrix form of the rotation rate vector �,
�n

ie is the rotation rate of the e-frame with respect to the i-frame projected to the
n-frame, �b

ib is the outputs of the strapdown gyroscopes, �b
in is the rotation rate of

the n-frame with respect to the i-frame projected to the b-frame, Cn
b is the direction

cosine matrix (DCM) from the n-frame to the b-frame [7], f b is the specific force
vector defined as the difference between the true acceleration in space and the accel-
eration due to gravity, gn is the gravity vector and M, N are radii of curvature in the
meridian and prime vertical given by Schwarz and Wei [8].

The state vector is composed of the INS error that is defined as the devia-
tion between the actual dynamic quantities and the INS computed values δX =
X − XINS . The state model describes the INS error dynamic behaviour depending
on the instrumentation and initialization errors. It is obtained by using the second-
order polynomial approximations of Stirling’s interpolation formula (5) to the ideal
equation (7) around the INS estimates as follow:

δ Ẋ = f (X, U )− f (XINS , UINS ) (9)

δ Ẋ = f ′DD(XINS , UINS ) δX + δXt f ′′DD(XINS , UINS )

2!
δX (10)

The state vector is usually augmented with systematic sensor errors:

δX = (δr, δvn, δρ, ba, bg, b, d) (11)

where all the variables are expressed in the navigation frame NED (North, East,
Down).

• δr = (δϕ, δλ, δh) is the geodetic position error in latitude, longitude and altitude,
• δvn = (δvN , , δvE , δvD) is the velocity error vector,
• δρ is the attitude (roll, pitch, and yaw) error vector,
• ba and bg represent the accelerometers and gyrometers biases,
• b = cτr and d are respectively the GPS clock offset and its drift. τr is the receiver

clock offset from the GPS time and c is the speed of light (3× 108m/s).

For short-term applications, the accelerometers and gyrometers can be properly
defined as random walk constants ḃa = ωa and ḃg = ωg . Note that the standard
deviations of the white noises ωa and ωg are related to the sensor quality. The nav-
igation solution also depends on the receiver clock parameters b and d models as
ḃ = d + ωb and ḋ = ωd , where ωb and ωd are mutually independent zero-mean
Gaussian random variables [9]. For simplicity, denote as X (instead of δX ) the state
vector.

For each j∈[1, length of XINS ,k], the discrete-time state model takes the follow-
ing form:

X j
INS ,k+1 = A j

k XINS ,k + 1

2
Xt

INS ,k Bk
j XINS ,k + v

j
k (12)
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where vk denote the dynamical zero-mean Gaussian noise vector with associated
covariance matrix �v , A j

k and B j
k are obtained by using respectively (6.a) and (6.b)

to the j-th element of the second member of (7).
In the classical dynamic model, the state equation is given by the following form:

XINS ,k+1 = Ak XINS ,k + vk (13)

where Ak is a block diagonal matrix which elements are detailed in many standard
textbooks such as [9].

3.2 Measurement Equation

The standard measurement of the GPS system is the pseudo-range. This defines the
approximate range from the user GPS receiver antenna to a particular satellite. Con-
sequently, the observation equation associated to the ith satellite can be defined as:

ρi =
√

(Xi − x)2 + (Yi − y)2 + (Zi − z)2 + b + ωi (14)

where i = 1, . . . . . . , ns (recall that ns is the number of visible satellites). The vec-
tors (x, y, z)T and (Xi , Yi , Zi )T are respectively the positions of the vehicle and the
ith satellite expressed in the rectangular coordinate system WGS-84 [9].

The position of the vehicle is transformed from the geodetic coordinate to the
rectangular coordinate system as follows:

⎧⎨
⎩

x = (N + hINS + δh) cos(λINS + δλ) cos(ϕINS + δϕ)
y = (N + hINS + δh) sin(λINS + δλ) cos(ϕINS + δϕ)
z = (N (1− e2)+ hINS + δh) sin(ϕINS + δϕ)

(15)

where N = a√
1−e2 sin2 ϕ

. The parameters a and e denote respectively the semi-major

axis length and the eccentricity of the earth’s ellipsoid. The expression (15) has to
be substituted in (14) to obtain the highly nonlinear measurement equation:

YGPS ,k = g(XINS ,k)+ βk (16)

where βk ∼ N (0, �β ) and YGPS = (ρ1, ......, ρn).
In the Bayesian bootstrap filter, it is not necessary that the measurement noise βk

must be the white Gaussian. Now we can apply the bootstrap filter using the above
system dynamic and measurement models.



Performance Analysis of GPS/INS Integrated System 9

4 Bayesian Bootstrap Filter

The Bayesian bootstrap filtering approach is to construct the conditional probability
density function (PDF) of the state based on measurement information [10]. The
conditional PDF can be regarded as the solution to the estimation problem. We shall
briefly explain the recursive Bayesian estimation theory and the Bayesian Bootstrap
filter.

4.1 Recursive Bayesian Estimation

The system model is assumed to have the discrete form:

xk+1 = f (xk−1, wk) (17)

where f : IRn × IRm → IRn is the system transition function and wk ∈ IRm

is a zero-mean noise process independent of the system states. The PDF of wk is
assumed to be known as pw(wk). At discrete time, measurements are denoted by
yk ∈ IR p, which are related to the state vector via the observation equation:

yk = h(xk, vk) (18)

where h : IRn × IRr → IR p is the measurement function, and vk ∈ IRr is the
observation noise, assumed to be another zero mean random sequence independent
of both state variable xk and the system noise wk . The PDF of vk is assumed to
be known as pv(vk). The set of measurements from initial time step to step k is
expressed as Yk = {yi }ki=1. The distribution of the initial condition x0 is assumed to
be given by p(x0/Y0) = p(x0).

The recursive Bayesian filter based on the Bayes’ rule can be organized into the
time update state and the measurement update stage [11]. The time update state can
be constructed as:

p(xk/Yk−1) =
∫

p(xk/xk−1)× p(xk−1/Yk−1)dxk−1 (19)

where p(xk/xk−1) is determined by f (xk−1, wk−1) and the known PDF pw(wk−1).
Then at time step k, a measurement yk becomes available and may be used to update
the prior according to the Bayes’ rule:

p(xk/Yk) = p(yk/xk)× p(xk/Yk−1)∫
p(yk/xk)× p(xk/Yk−1)dxk

(20)

where the conditional PDF p(yk/xk) is determined from the measurement model
and the known PDF, pv(vk).
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4.2 Bayesian Bootstrap Filter

The Bayesian Bootstrap Filter (BBF) is a recursive algorithm to estimate the poste-
rior p(xk/Yk) from a set of samples [10]. Suppose we have a set of random samples
{xk−1(i) : i = 1, ..., N } from the PDF p(xk−1/Yk−1). Here, N is the number of Boot-
strap samples. The filter procedure is as follows:

• Prediction: Each sample from PDF p(xk−1/Yk−1) is passed through the system
model to obtain samples from the prior at time step k:

x∗k (i) = f (xk−1(i), wk(i)) (21)

where wk(i) is a sample draw from PDF of the system noise pw(wk).
• Update: on receipt of the measurement yk , evaluate the likelihood of each prior

sample and obtain the normalized weight for each sample:

qi = p(yk/x∗k (i))
N∑

j=1
p(yk/x∗k ( j))

(22)

Define a discrete distribution over
{

x∗k (i) : i = 1, ..., N
}
, with probability mass

qi associated with element i. Now resample N times from the discrete distribution
to generate samples {xk(i) : i = 1, ..., N }, so that for any j, Prob

{
xk( j) = x∗k (i)

} =
qi . It can be contented that the samples xk(i) are approximately distributed as the
required PDF p(xk/Yk) [10]. Repeat this procedure until the desired number of time
samples has been processed. The resampling update stage is performed by drawing
a random sample ui from the uniform distribution over [0, 1]. The value x∗k (M)
corresponding to:

M−1∑
j=0

q j < ui ≤
M∑

j=0

q j (23)

where q0 = 0, is selected as a sample for the posterior. This procedure is repeated
for i = 1, . . . , N . It would also be straightforward to implement this algorithm on
massively parallel computers, raising the possibility of real time operation with very
large sample sets.

5 Simulation

The analysis of some simulations will enable us to evaluate the performance of
the proposed model by using the BBF. The kinematics data used were generated
by SatNav Toolbox for Matlab created by GPSoft. A GPS-INS simulation can be
divided into three parts:
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• Trajectory: the vehicle dynamics is simulated according to position-velocity-
acceleration model.

• INS data: the INS estimates of the vehicle dynamics are then computed for
low cost inertial sensors. The accelerometer bias instability and random walk
are given by 10−3m/s2 and 4.5 m/s/

√
hour. The gyrometer bias instability and

random walk are given by 5 deg/hour and 16deg/
√

hour.
• GPS data: the pseudo-ranges corresponding to the visible satellites from the

vehicle is evaluated (the standard deviations of the GPS measurements noises
are chosen as σβk = 10 m for pseudo-range).

We have fixed the number of particles of the BBF to 2000 and the time of sim-
ulation is equal to 1200 s. In our work, we compare the proposed method with the
classical method [5] for the following two cases:

• Vehicle Dynamics is moderate (i.e., the speed of vehicle is between 10 and
50 m/s).

• Vehicle Dynamics is fast (i.e., the speed of vehicle is between 100 and 200 m/s).

5.1 First Case

The obtained results by using the proposed method and the classical method are
compared for simulation duration of 1200 s. For each method, the horizontal posi-
tioning root mean square error and the horizontal velocity root mean square error
are competed from 100 Monte Carlo runs. Figures 2 and 3 shows the results
obtained with the classical method (solid-line) and proposed method (dashed-line).

Fig. 2 Horizontal positioning root mean square error (m) as a function of time (s)
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Fig. 3 Horizontal velocity root mean square error (m/s) as a function of time (s)

In Figs. 2 and 3, we note that the both method have the same precision. It is due to
the dynamics errors which are reasonable (where the local linearization is possible).

5.2 Second Case

The Figs. 4 and 5 represent respectively the horizontal positioning root mean square
error and the horizontal velocity root mean square error, which are competed from

Fig. 4 Horizontal positioning root mean square error (m) as a function of time (s)
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Fig. 5 Horizontal velocity root mean square error (m/s) as a function of time (s)

Table 1 Root mean errors during satellites outage for first case

Horizontal positioning (m) Horizontal velocity (m/s)

Proposed method 6.9 3.65
Classical method 7.43 3.81

Table 2 Root mean errors during satellites outage for second case

Horizontal positioning (m) Horizontal velocity (m/s)

Proposed method 10.32 7.11
Classical method 15 14.73

100 Monte Carlo runs. In Figs. 4 and 5 the solid-line and dashed-line represent
respectively the results obtained by classical method and proposed method. In
Figs. 4 and 5, we note that the proposed method give better precision that the
classical method. It is due to the dynamics errors which are fast (where the local
linearization is not possible).

Finally a complete GPS signal outage of 50 s was introduced within the GPS data
and both methods were used to predict the INS dynamic, during this period. The root
mean square errors of the two methods in this period are compared respectively in
Tables 1 and 2 for first case and second case.

6 Conclusion

This paper has studied the performance analysis of GPS/INS integrated system
by using a non-linear mathematical model. This model is derived by employing
the second-order polynomial approximation obtained with Stirling’s formula. The
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Bayesian Bootstrap Filter (BBF) is used for GPS/INS integration. In the simulation
results, we showed that the proposed model gives better positions estimate than the
classical model where the vehicle dynamics is fast. But, the disadvantage of the
proposed model is the computing time compared to the classic model. The next step
of this work is to validate the performance of the proposed model on the real data.
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Object-Level Fusion and Confidence
Management in a Multi-Sensor Pedestrian
Tracking System

Fadi Fayad and Véronique Cherfaoui

Abstract This paper1 describes a multi-sensor fusion system dedicated to detect,
recognize and track pedestrians. The fusion by tracking method is used to fuse asyn-
chronous data provided by different sensors with complementary and supplementary
fields of view. Having the performance of the sensors, we propose to differenti-
ate between the two problems: object detection and pedestrian recognition, and to
quantify the confidence in the detection and recognition processes. This confidence
is calculated based in geometric features and it is updated under the Transferable
Belief Model framework. The vehicle proprioceptive data are filtered by a separate
Kalman filter and are used in the estimation of the relative and absolute state of
detected pedestrians. Results are shown with simulated data and with real experi-
mental data acquired in urban environment.

Keywords Multi-sensor data fusion · Pedestrians’ detection and recognition ·
Transferable belief Model · Confidence management

1 Introduction

Recent projects on pedestrian detection [1] or obstacle detection [2] have high-
lighted the use of multi-sensor data fusion and more generally the multiplication
of data sources in order to obtain more reliable, complete and precise data. The
Vehicle to Vehicle communication is an example of enlarging the field of view of
one vehicle by the information coming from other vehicles [3, 4].

The work presented in this paper is a contribution to the development of an
“Advances Driver Assistance Systems” (ADAS). A generic multi-sensor pedestrian

F. Fayad (B)
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detection, recognition and tracking system, is introduced. However, sensors are not
synchronized and have not the same performance and field of view. Thus to explore
the whole capability of sensors in order to benefit of all available data and to solve
the problem of asynchronous sensors, we present a generic method to fuse data pro-
vided by different sensor, with complementary and/or supplementary fields of view,
by tracking detected objects in a commune space and by combining the detection
and/or the recognition information provided by each sensor taking into considera-
tion its performance.

This paper is organized as follows: Sect. 2 presents the proposed multi-sensor
fusion system architecture and describes the Object-Level Fusion by Tracking
method. Section 3 described the state models used to filter and estimate vehicle
and pedestrians’ kinematical state. Section 4 presents the detection and recogni-
tion confidences calculation and update. Experimental results are shown in Sect. 5
illustrating the effect of sensors performance. Conclusion and perspectives will be
proposed in the last section.

2 Object-Level Fusion by Tracking

2.1 Overview of the System

The described multi-sensor pedestrian tracking system is an in-vehicle embedded
real-time system. This generic fusion system (Fig. 1) has as input the unsynchro-
nized data provided by independent unsynchronized sensors with complementary
and supplementary fields of view (Fig. 2).

The system is composed of one “Object-Level Fusion Module” and one “Sensor
Module” per sensor. Each Sensor Module analyzes data provided by the correspond-
ing sensor to supply the Object Level Fusion Module by a list of objects supposed
present in the scene of its field of view. A lot of works in ADAS and robotics appli-
cations are dedicated to the object detection capabilities. For example for pedestrian

Fig. 1 System architecture
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Fig. 2 Complementary and supplementary fields of view of the different sensors: Stereo-camera,
Lidar and Radar

detection, [5] proposes obstacle detection and identification with Lidar sensor; [6]
proposes stereo-vision obstacle detection with disparity analysis and SVM based on
pedestrian classification, [7] gives pedestrian classification resulting from monoc-
ular vision with AdaBoost algorithm. The Object Level Fusion Module takes any
ready object list and combine it with the existing track list, tacking into consid-
eration the vehicle proprioceptive data (filtered by a separate Kalman filter) and
the performance of each detection module (stored in a configuration file with other
tuning parameters). Latency problem can be solved by a time indexed buffer of
observations and state vectors as in [8]. The buffer size depends on the maximum
acceptable observation delay.

2.2 Object Level Input/Output

The Sensor Module works at the frequency of the corresponding sensor, it provides
at each detection cycle a list of objects supposed present in the scene of its field
of view. Objects are described by their position (relative to the sensor), position
error, dimension (if detected), dimension error and two indicators quantifying the
confidence in detection and the confidence in recognition if the sensor is capable
to recognize pedestrians or any type of obstacles. The performance of each sensor
module is quantified by two probability values: PFR representing the probability of
false pedestrian recognition and PFA the probability of false alarm or false detec-
tion. Sensor performance is propagated to the object’s detection and recognition
confidences.

The Object Level Fusion Module has to run at the frequency of the incoming
object lists. It has to combine any ready object list with the existing track list to
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Fig. 3 Commune relative
Lidar coordinate system

yL

xL

zL

provide a list of estimated tracks at the current time. Tracks are characterized by
their relative position, position error, speed, speed error, dimension, dimension error
and three indicators quantifying the confidences in detection, recognition and track-
ing.

To fuse data, all information is represented in the same 3D coordinate system
(X LYL ZL ) showed in Fig. 3: the origin is the center of the Lidar reflection mirror
and the plan (X LYL ) is parallel to the ground. A special calibration procedure is
developed to project vision data into 3D coordinate system and vice versa.

2.3 Fusion by Tracking

The Track’s state is divided into four parts updated by four different processes
(Fig. 1) with the same update stages and models for all tracks:

1. Kinematical state (track’s position and velocity) loosely-coupled with the vehicle
state and updated by a classical Kalman filter detailed in Sect. 3.

2. Tracking confidence: calculated and updated based on the score of Sittler using
likelihood ratio [9].

3. Dimension: updated by a fixed gain filter taking into consideration the objects
partial occultation problem [10].

4. Detection and recognition confidences: updated by a credibilistic model based
on the belief functions and presented in Sect. 4.

When the fusion and state updating module receive a list of object at its input, it
predicts the last list of tracks’ state to the current object list time, and then it runs
an object to track association procedure based on a modified version of the nearest
neighborhood association method. This modified method takes into consideration
the occultation problem by geometrically detecting the occultation areas and allow-
ing multi-object to track association to associate all parts of a partially hidden object
to the corresponding track.
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3 Pedestrian Model for In-Vehicle Tracking

3.1 Coordinate Systems Transformation

Let (o, i, j) be an absolute fixed coordinate system and (O, I , J ) and (OL ,
−→
IL ,
−→
JL )

be two relative coordinate systems attached respectively to the center of the rear
wheel axle and the center of Lidar rotating mirror (Fig. 4). The x-axis is aligned
with the longitudinal axis of the car. Let M be a point of the space and let (x, y),
(X, Y ) and (X L , YL ) be its respective Cartesian coordinate in the three systems.
(X, Y ) and (X L , YL ) are related by the equations:

{
X = X L + L
Y = YL

(1)

The geometry of Fig. 4 shows that:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−→
oM = −→oO +−−→O M−→
oO = xoi + yo j−−→
O M = X I + Y J−→
I = i cos θ + j sin θ−→
J = −i sin θ + j cos θ

(2)

Therefore:
{

x = xo + X cos θ − Y sin θ

y = yo + X sin θ + Y cos θ
(3)

Then:
{

X = (x − xo) cos θ + (y − yo) sin θ

Y = −(x − xo) sin θ + (y − yo) cos θ
(4)

The absolute speed vector of the point M is the derivative of its position vector:

−→v = d
−→
oM

dt
= d

−→
oO

dt
+ X

d
−→
I

dt
+ Y

d
−→
J

dt
+ d X

dt

−→
I + dY

dt

−→
J (5)

Let
−→
V = (d X/dt)

−→
I + (dY/dt)

−→
J be the relative speed of M with respect to the

vehicle coordinate system (O, I , J ) and −→vo = d
−→
oO/dt be the absolute speed of O.

The derivatives of the vectors I and J are:

⎧⎨
⎩

d
−→
I /dt =

[
(− sin θ ) i + (cos θ ) j

]
dθ/dt

d
−→
J /dt =

[
(− cos θ) i + (− sin θ ) j

]
dθ/dt

(6)
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Fig. 4 Absolute and relative
coordinate system
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Let � = dθ/dt be the absolute rotation speed of the vehicle around the point O,
then (4) can be written as:

−→v = −→V +−→vo +�

[− sin θ − cos θ

cos θ − sin θ

] [
X
Y

]
(7)

3.2 Vehicle Model

In modern cars, braking is assisted by ABS systems that use angular encoders
attached to the wheels. In such a case, the sensors basically measure the wheel
speeds. We propose in this paper to use this data to model vehicle movement and to
estimate its kinematical state.

Figure 5 shows the elementary displacement of the vehicle between two samples
at tk and tk+1.The presented car-like vehicle model is a real odometric model [11]
and not the discretized kinematics model used in [12]. Assumptions are made on the
elementary motions and geometric relationships are expressed to provide relations
between the rotations of the wheels and the displacements. The rear wheels’ speeds
are read from the CAN bus of the experimental vehicle. They are supposed constants
between two readings. On the assumption that the road is perfectly planar and the
motion is locally circular, the vehicle’s linear speed vo and angular speed � can be
calculated from the rear wheels speed as follow:

{
vo = (VR R + VRL )/2
� = (VR R − VRL )/e

(8)
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Fig. 5 Confidence updating
algorithm
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Where VRR and VRL represent respectively the rear right and left wheel speeds, and
e is the distance between their points of contact with the road plane.

With the assumption of constant wheels speed between two CAN readings (with
sampling time of Te), the Eq. (7) prove that the linear and angular speeds are also
constant; the vehicle state evaluation between the time tk and tk+1 = tk + Te can be
written as:

⎧⎨
⎩

vo,k+1 = vo,k

θ k+1 = θ k +�k Te

�k+1 = �k

(9)

Where θ k represents the absolute heading angle of the vehicle.



22 F. Fayad and V. Cherfaoui

The vehicle state is filtered and estimated with a traditional Kalman filter having
the state vector:

[
vo θ �

]T
and the measurement vector:

[
VR R VRL

]T

The model error covariance matrix is experimentally approximated based on the
maximum error provided by the assumption of constant angular and linear speed
model. The measurement error covariance matrix is calculated based on the ABS
angular encoders’ error.

3.3 Pedestrian Model

Pedestrians are supposed moving linearly at constant speed. The evaluation of the
absolute position (x, y) and speed (vx , vy) of a pedestrian, with respect to the coor-
dinate system (o, i, j), between the time tk and tk+1 is:

⎧⎪⎪⎨
⎪⎪⎩

xk+1 = xk + vx,k Te

yk+1 = yk + vy,k Te

vx,k+1 = vx,k

vy,k+1 = vy,k

(10)

From the Eqs. (2), (4), (5), (7) and (10) we calculated the relative position and
velocity of a pedestrian with respect to the coordinate system (O, I , J ):

Xk+1 = Xk cos(�k Te)+ Yk sin(�k Te)− vo,k Te cos(�k Te/2)

+ vx,k Te cos(θk +�k Te)+ vy,k Te sin(θk +�k Te)

Yk+1 = Yk cos(�k Te)− Xk sin(�k Te)+ vo,k Te sin(�k Te/2)

− vx,k Te sin(θk +�k Te)+ vy,k Te cos(θk +�k Te)

(11)

Vx,k+1 = Vx,k +�k Te
(
vy,k + vo,k sin(θk −�k Te/2)

)
Vy,k+1 = Vy,k +�k Te

(−vx,k + vo,k cos(θk +�k Te/2)
)

Pedestrians state is filtered and estimated with a traditional Kalman filter (one filter
per pedestrian) having the state vector:

[
vx vy X Y Vx Vy

]T

and the measurement vector:

[
X
Y

]
=
[

X L + L
Y

]
(12)

The model error covariance matrix is experimentally approximated based on the
maximum error provided by the assumption of pedestrian constant speed model. The



Object-Level Fusion and Confidence Management 23

measurement error covariance matrix is calculated based on the sensor’s resolution
saved in a configuration file with other tuning parameters.

After updating the kinematical state by the Kalman filter, the next section will
describe the update method used for the detection and the recognition confidences
by a credibilistic model based on the belief functions.

4 Confidence Indicators

4.1 Definition of Pedestrian’s Confidence Indicators

The objective of the system is the detection and the recognition of pedestrians. To
quantify this goal, we defined two numerical indicators representing respectively the
confidence in detection and in recognition. These indicators can be calculated, for
example, based on statistical approaches or on geometrical features analysis. As an
example, a calculation method of theses indicators is described in [13] for the case
of 4-planes Lidar.

4.2 Confidence Indicators Updating

4.2.1 TBM Principle and Notation

The transferable belief model TBM is a model to represent quantified beliefs based
on belief functions [14]. It has the advantage of being able to explicitly represent
uncertainty on an event. It takes into account what remains unknown and represents
perfectly what is already known.

(a) Knowledge representation
Let � be a finite set of all possible solution of a problem. � is called the frame
of discernment (also called state space); it’s composed of mutually exclusive
elements. The knowledge held by a rational agent can be quantified by a belief
function defined from the power set 2� to [0,1]. Belief functions can be expressed
in several forms: the basic belief assignment (BBA) m, the credibility function
bel, the plausibility function pl, and the commonality function q which are in
one-to-one correspondence. We recall that m(A) quantifies the part of belief that
is restricted to the proposition “the solution is in A ⊆ �” and satisfies:

∑
A⊆�

m(A) = 1 (13)

Thus, a BBA can support a set A ⊆ � without supporting any sub-proposition of
A, which allows to account for partial knowledge. Smets introduced the notion
of open world where � is not exhaustive; this is quantified by a non zero value
of m(∅).
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(b) Information fusion
n distinct pieces of evidence defined over a common frame of discernment and
quantified by BBAs m�

1 · · ·m�
n , may be combined, using a suitable operator.

The most common are the conjunctive and the disjunctive rules of combination
denoted respectively©∩ and©∪ , and defined by the Eqs. (14) and (15).

m�
©∩ (A) = m�

1 (A)©∩ · · ·©∩ m�
n (A)

=
∑

A1∩···∩An=A

m�
1 (A1)× · · · × m�

n (An) ∀A ⊂ � (14)

m�
©∪ (A) = m�

1 (A)©∪ · · ·©∩ m�
n (A)

=
∑

A1∪···∪An=A

m�
1 (A1)× · · · × m�

n (An) ∀A ⊂ � (15)

Obtained BBAs should be normalized in a closed world assumption.
The conjunctive and disjunctive rules of combination assume the independence
of the data sources. In [15] and [16] Denoeux introduced the cautious rule of
combination (denoted by ©∧) to combine dependent data. This rule has the advan-
tage of combining dependent BBAs without increasing total belief: the combi-
nation of a BBA with itself will give the same BBA: m = m ©∧m (idempotence
property). The cautious rule of combination is based on combining conjunctively
the minimum of the weighted function representing dependent BBAs.

(c) Reliability and discounting factor
The reliability is the user opinion about the source [17]. The idea is to weight
most heavily the opinions of the best source and conversely for the less reliable
ones. The result is a discounting of the BBA m� produced by the source into the
new BBA m�,α where:

{
m�,α(A) = (1− α)m�(A), ∀A ⊂ �, A �= �
m�,α(�) = α + (1− α)m�(�)

(16)

The discounting factor (1− α) can be regarded as the degree of trust assigned to
the sensor.

(d) Decision making
The couple (credibility, plausibility) is approximated by a measurement of prob-
ability by redistribute the mass assigned to each element of 2�, different from
singleton, to the elements which compose it. The probability resulting from this
approximation is called pignistic probability BetP ; it’s used for decision making:

∀ωi ∈ � ⇒ BetP�(ωi ) =
∑

ωi∈A⊆�

m�(A)

|A| (1− m�(∅))
(17)
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4.2.2 Confidence Calculation

(a) Defining the frames of discernment
Before defining any quantified description of belief with respect to the objects’
detection and/or pedestrians’ recognition, we must define a frame of discernment
� on which beliefs will be allocated and updated.

For the objects detection problem, we can associate two general cases: object
O and non object NO. The object can be a pedestrian or a non pedestrian object,
but with no object identification, the frame of discernment of the object detection
process is limited to: �d = {O,NO}. As an example, a disparity image analyzer
of a stereo-vision system can have �d as its frame of discernment.

A mono-vision pedestrian recognition process based on an AdaBoost algo-
rithm for example, gives the probability of detecting a pedestrian P or non pedes-
trian N P . The non pedestrian can be a non pedestrian object or a false alarm. Let
�r = {P, NP} be the frame of discernment of this type of recognition processes.

The update stage requires a commune frame of discernment, let � =
{PO,NPO,FA} be the frame containing all possible solutions of the detection
and the recognition problem. The relation between the three frames �, �d and
�r is represented in Fig. 6.

Transforming BBAs from �d and �r to a more detailed frame, such as �, is
called the refinement process and it’s denoted ↑. The inverse transformation is
called coarsening and it’s denoted ↓ [14].

(b) Basic belief assignment calculation
The outputs of the detection and the recognition processes are Bayesian proba-
bility functions. With no additional information, we have to build, based on these
probabilities, the basic belief assignments m�d

d,Ss ,tk
{Oi } (BBA of the detection

module of the object Oi detected by the source Ss and defined over the frame of
discernment �d at time tk) and/or m�r

r,Ss ,tk
{Oi } (BBA of the recognition module

of Oi detected by Ss and defined over �r at time tk).
We are using the inverse pignistic probability transform proposed by Sudano [18]
to calculate belief functions from Bayesian probability functions. So, to build the
BBAs, we calculate from the probability functions the less informative BBAs
who regenerate the same probability as its pignistic probability [19].

Fig. 6 Relation between the
state spaces of the detection
and the recognition processes
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4.2.3 Confidence Updating Algorithm

The fusion and tracking module updates all tracks information such as track’s state
and track’s detection and recognition confidences. The algorithm of track detection
and recognition confidence update with object detection and recognition confidence
consists in: (Fig. 5)

• Transform the probabilities Pd,Ss ,tk {Oi } and Pr,Ss ,tk {Oi } into basic belief assign-
ment BBAs: m�d

d,Ss ,tk
{Oi } and m�r

r,Ss ,tk
{Oi } (see Sect. 4.2.2 b)

• Transform the performance of the sensor module into discounting values: the
probability of false alarm PFA and the probability of false recognition PFR of the
sensor module transform the last BBAs into m�d ,αd

d,Ss ,tk
{Oi } and m�r ,αr

r,Ss ,tk
{Oi } where

αd = 1 − PFA and αr = 1 − PFR are respectively the discounting factors of the
detection and the recognition processes (see Eq. 16).

• Transform beliefs from �d and �r to the commune frame of discernment �
by doing the refinement process, that is, moving the belief on a subset of �d

(respectively �r ) to the corresponding subset of �. We get: m�d↑�,αd
d,Ss ,tk

{Oi } and

m�r↑�,αr
r,Ss ,tk

{Oi } (see Sect. 4.2.2 a).
• The two obtained BBAs are not really independent because they are calculated in

a sensor module based on the same data set. We decided to combine them using
the cautious rule of combination, which take into consideration the dependency
in data (see Sect. 4.2.1 b):

m�
dr,Ss tk

{Oi } = m�d↑�,αd
d,Ss ,tk

{Oi }©∧ m�r↑�,αr
r,Ss ,tk

{Oi } .

• We suppose the temporal independency of data provided by a sensor, thus the
obtained BBA is combined conjunctively (using Eq. 14) with the associated track
belief function m�

tk−1

{
Tj
}

to get m�
tk

{
Tj
}

as result of the combination and update
process:

m�
tk

{
Tj
} = m�

dr,Ss ,tk
{Oi }©∩ m�

tk−1

{
Tj
}

• Finally, the track’s detection and recognition confidence Pd,tk {Ti } and Pr,tk {Ti }
are the pignistic probability BetP calculated from m�

tk

{
Tj
}

(see Sect. 4.2.1 d).

5 Results

5.1 Simulation Results

To show the effect of the proposed confidence updating method with two sensors
with different reliabilities, we simulated the data coming from two unsynchronized
sensors. Results shows that with constant object detection and recognition confi-
dences, the more reliable sensor dominates.
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In (Fig. 7), the sensor 1 is reliable in detection with a probability of false detection
of 20%, but not in recognition (80% false recognition) and the sensor 2 is reliable
in recognition (20% false recognition) but not in detection (80% false detection):
fusion results shows that the corresponding track is well detected and recognized.
Figure (Fig. 8) shows the inverse case: the track detection and recognition confi-
dences go down to zero with the low confidences in detection and recognition given
by the reliable sensors.

5.2 Experimentations

The algorithms are tested as a real time embedded system implemented in the
experimental vehicle CARMEN (Fig. 3) of the laboratory Heudiasyc. CARMEN
is equipped with different sensors such as 4-plans Lidar, stereo and mono cameras

Fig. 7 Track detection and recognition with two sensors: confidences follow the powerful sensor
up to 100%

Fig. 8 Track detection and recognition with two sensors: confidences follow the powerful sensor
down to 0%
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Fig. 9 Projection on the image of the four scanning layers and the pedestrians with their corre-
sponding detection and recognition confidences

and radar. Proprioceptive data, such as wheels speed, is read from the vehicle CAN
bus. Only Lidar and proprioceptive data are used in this experiment while image
data provided by cameras is used to validate results by projecting laser data, tracks
and confidences on the corresponding image (Fig. 9). Experimentations are done in
an urban environment.

To simulate two unsynchronized sensors with different performance, Lidar data
are assigned at each scanning period to one of two virtual Lidars having different
detection and recognition confidences but the same measurement precision as the
real Lidar.

5.3 Experimental Results

Results show the efficiency of the described method in unsynchronized data fusion
especially when the frequency of the incoming data is unknown or variable. As an
example, we will show the detection and recognition confidence result of tracking
one pedestrian detected by the laser scanner.

The probability of false alarm PFA and false recognition PFR of the first virtual
Lidar are fixed respectively to 10% and 40%, while the second virtual Lidar has
more false alarms with PFA = 40% and less false recognition with PFR = 10%.

Figures 10 and 11 show the results of tracking the same pedestrian during 90
Lidar scans. The 90 scans are distributed between the two virtual Lidar sensors.
Figure 10 shows that the track detection confidence follows the confidence variation
of the object detected by the first sensor having less false alarm probability then
the second sensor. While Fig. 11 shows the variation of the tracked pedestrian’s
recognition confidence with the variation of the objects confidence detected by the
two sensors.
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Fig. 10 Track detection confidence variation of one pedestrian detected by two sensors having
different detection performance

Fig. 11 Track recognition confidence variation of one pedestrian recognized by two sensors having
different recognition performance

6 Conclusion and Future Works

In this paper we presented a multi-sensor fusion system dedicated to detect, rec-
ognize and track pedestrians. We differentiated between the two problems: object
detection and pedestrian recognition, and quantified the confidence in the detection
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and recognition processes. The fusion by tracking method is used to solve the prob-
lem of asynchronous data provided by different sensors. The tracks state is divided
into four parts and updated with different filters. Two of them are presented in this
article: Kalman filter used for the kinematical state, and the detection and recogni-
tion confidences updated under the transferable belief framework. Results are shown
with simulated and experimental data acquired in urban environment. Future works
will concentrate on the validation of the method with multi-sensor data such as
image and radar that have different performance in the detection and the recognition
processes.
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Effective Lip Localization and Tracking
for Achieving Multimodal Speech Recognition

Wei Chuan Ooi, Changwon Jeon, Kihyeon Kim, Hanseok Ko
and David K. Han

Abstract Effective fusion of acoustic and visual modalities in speech recognition
has been an important issue in Human Computer Interfaces, warranting further
improvements in intelligibility and robustness. Speaker lip motion stands out as the
most linguistically relevant visual feature for speech recognition. In this paper, we
present a new hybrid approach to improve lip localization and tracking, aimed at
improving speech recognition in noisy environments. This hybrid approach begins
with a new color space transformation for enhancing lip segmentation. In the color
space transformation, a PCA method is employed to derive a new one dimensional
color space which maximizes discrimination between lip and non-lip colors. Inten-
sity information is also incorporated in the process to improve contrast of upper
and corner lip segments. In the subsequent step, a constrained deformable lip model
with high flexibility is constructed to accurately capture and track lip shapes. The
model requires only six degrees of freedom, yet provides a precise description of
lip shapes using a simple least square fitting method. Experimental results indicate
that the proposed hybrid approach delivers reliable and accurate localization and
tracking of lip motions under various measurement conditions.

1 Introduction

A multimodal speech recognition system is typically based on a fusion of acoustic
and visual modalities to improve its reliability and accuracy in noisy environments.
Previously, it has been shown that speaker lip movement is a significant visual com-
ponent that yields linguistically relevant information of spoken utterances. However,
there have been very few lip feature extraction methods that work robustly under
various conditions. The difficulty is caused by variation of speakers, visual capture
devices, lighting conditions, and low discriminability in lip and skin color.
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Historically, there have been two main approaches [1] in extracting lip features
from image sequences. The first method is called the Image-based approach. In
this approach, image pixels (e.g. intensity values) around the lip region are used
as features for recognition. For instance, these approaches are based on a DCT
or a PCA method. The projected low dimensional features are used for speech
recognition. The extracted features not only consist of lip features but also of
other facial features such as tongue and jaw movement depending on ROI size.
The drawback is that it is sensitive to rotation, translation scaling, and illumination
variation.

The second type is known as the model-based method. A lip model is described
by a set of parameters (e.g. height and width of lips). These parameters are calcu-
lated from a cost function minimization process of fitting the model onto a captured
image of the lip. The active contour model, the deformable geometry model, and the
active shape model are examples of such methods widely used in lip tracking and
feature extraction. The advantage of this approach is that lip shapes can be easily
described by low order dimensions and it is invariant under rotation, translation, or
scaling. However, this method requires an accurate model initialization to ensure
that the model updating process converges.

In this paper, we propose a model-based method designed primarily to improve
accuracy and to reduce the processing time. The model-based method requires good
initialization to reduce the processing time. By integrating color and intensity infor-
mation, our algorithm maximizes contrast between lip and non-lip regions, thus
resulting accurate segmentation of lip. The segmented lip image provides initial
position for our point based deformable lip model which has built in flexibility for
precise description of symmetric and asymmetric lip shapes.

We describe in more detail of the PCA based color transformation method in
Sect. 2. In Sect. 3, we present a new deformable model for Lip Contour Tracking.
We also describe cost function formulation and model parameter optimization in the
same section. Experimental Results and comparison with other color transformation
are presented in Sect. 4. The conclusion is presented in Sect. 5.

2 Lip Color and Intensity Mapping

Many methods have been proposed for segmenting the lip region that based on
image intensity or color. We propose a new color mapping of the lips by integrating
color and intensity information. Among color based lip segmentation methods are
Red Exclusion [2], Mouth-Map [3], R–G ratio [4], and Pseudo hue [5]. Theoreti-
cally, pseudo hue method gives better color contrast, but we found that it is only
useful in performing coarse segmentation which is not adequate for our purpose.
Thus, we perform a linear transformation of RGB components in order to gain
maximum discrimination of lip and non-lip colors. We employ a PCA to estimate
the optimum coefficients of transformation. From a set of training images, N pixels
of lip and non-lip are sampled and its distribution shown in Fig. 1(a). Each pixel
is regarded as three dimensional vector xi = (Ri , Gi , Bi ). The covariance matrix
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(a) (b)

Fig. 1 (a) Distribution of lip and non-lip in RGB color space (60 people under different lighting
conditions), (b) Eigenvectors of distribution in Fig. 1(a)

is obtained form the three dimensional vector and the associated eigenvectors and
eigenvalues are determined from the covariance matrix.

v3 = (v1, v2, v3) is an eigenvector corresponding to the third smallest eigenvalue
where lip and non-lip pixels are the least overlapping as shown in Fig. 2(c). Experi-
mentally, v1 = 0.2, v2 = −0.6, v3 = 0.3 are obtained. Thus a new color space, C is
defined as

C = 0.2× R − 0.6× G + 0.3× B (1)

The new color space C is normalized as

Cnorm = C − Cmin

Cmax − Cmin
(2)

Note that after normalization, the lip region shows higher value than the non-lip
region. By squaring the Cnorm, we can further increase the dissimilarity between
these two clusters as shown in Fig. 3. A similar conversion of RGB values using
the Linear Discriminant Analysis (LDA) was employed by Chan [6] to direct the
evolution of snake. PCA based method is simpler compared to LDA especially in
dealing with three dimensional RGB components.

Fig. 2 (a) Histogram of projected pixels onto first principle component, (b) Histogram of projected
pixels onto second principle component, (c) Histogram of projected pixels onto third principle
component

Fig. 3 (a) Original image,
(b) Transformed image, C ,
(c) C squared image
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Fig. 4 (a) Cmap image,
(b) Cmap negative image,
(c) Gray-scale image

After the color transformation, the C squared image may still show low con-
trast in the upper lip region. This problem can be resolved by using the intensity
information I. The upper lip region typically consists of lower intensity values. So
by combining the C squared image (which is well separable in the lower lip) and
intensity image (which has a stronger boundary in the upper lip), we can obtain an
enhanced version of the lip color map Cmap as follows.

Cmap = αCsquar + (1− α)
1

I
(3)

Empirically, α = 0.75 are derived. Higher weight is given to the C squared image
since it captures most of the lip shape except the upper part and corners of lips.

2.1 Threshold Selection

In this paper, the global threshold is selected based on Otsu [7] method. The optimal
threshold Topt is chosen so that between classes variance σ 2

B is maximized.

Topt = Arg max
0<T <1

σ 2
B(T ) (4)

Fig. 5 Segmented images

3 Lip Contour Tracking

3.1 Lip Model

Most of the deformable geometric models are established using quadratic fit-
tings (e.g. parabolic) with a prior assumption of lip shape being always symmet-
ric about the center axis. Our lip model is an enhanced version of the proposed
method in [8]. In [8] the writers integrated flexibility and constrained deformable
template with point distribution model in order to reduce computations. How-
ever the geometric model in the paper is described by 15 parameters resulting
in significant computation for the parameter updating process. Our proposed lip
model is established by six parameters and is composed of three curves defined as
follows:
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• Lower lip, {0 < x < 1}

ylow = αlow · x · (log2 x)+ βlow · (1− x) · (log2(1− x))

+ γlow

(
(x − 0.5)

0.54

4

− (x − 0.5)

0.52

2
)

(5)

• Upper right lip, {0.5 ≤ x < 1}

yup r = −3.148 · αup r · (x − 0.4)
1
2 · (log2 x)+ γup r

(
(x − 0.5)

0.54

4

− (x − 0.5)

0.52

2
)

(6)

• Upper left lip, {0 < x ≤ 0.5}

yup l = −3.148 · αup l · (0.6− x)
1
2 · (log2(1− x))

+ γup l

(
(x − 0.5)

0.54

4

− (x − 0.5)

0.52

2
)

(7)

3.2 Parameters Description

There are six parameters to fully model the lower and upper lips. Parameters αlow

and βlow control vertical height and skewness of lower lip as shown in Fig. 6.

• If αlow = βlow , lip (lower) is symmetric with respect to center point, then center
height=αlow = βlow

• If αlow > βlow , lip shape slides to the left
• If αlow < βlow , lip shape slides to the right

The parameter γlow controls curvature of lower lip shape with values between
0.15 and 0.15 as shown in Fig. 7.

Compared to the lower lip, upper lip shape remains relatively symmetric. This
is due to the fact that the lower lip motion is a result of the mandible movement.
The articulation available of the jaw joint allows the mandible movement of left or

Fig. 6 Lip model for above
cases

Fig. 7 (a) γlow = −1.5, (b)
γlow = 0, (c) γlow = 1.5
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Fig. 8 (a) γup r = γup l = 0 (b)−0.3,−0.3 (c) 0.2, 0.2 (d)−0.2, 0.1

Fig. 9 Lip contour points
converge from initial position
to optimum position

right of the centerline of the face resulting in asymmetric movement of the lower
lip. Thus, we assume the upper lip always remains symmetric

• αup l = αup r = center height of upper lip
• γup r and γup l control curvature of upper lip (with value between 0.2 and −0.3)

Lip shapes according to the variations of the upper lip parameters are shown in
Fig. 8.

3.3 Model Initialization and Normalization

Our model initialization is based on a segmented lip shape image. In order to
reduce the computation time, we limited our model with just 16 points of p =
{p1, p2, ..., p16} where pi = (xi , yi ). The lip points are labeled in anti-clockwise
direction starting from the left corner. These points are divided into three groups
where p1, ..., p9 describe lower lip, p9, ..., p13 describe upper right points, and
p13, ..., p16 describe upper left. The contour point normalization process is applied
to reduce processing time and to simplify the curve fitting process. The left corner
point is fixed as the origin. Rotation and scaling transformations are employed to
normalized all points so that p1 is at (0, 0) and p9 is at (1, 0). Reverse normalization
is applied after curve fitting for obtaining the original coordinates.

3.4 Model Optimization

The optimization procedure is an iterative process and the lip points are adjusted in
order to reduce the cost function in each iteration process.

Our cost function F is defined in (8)

F = arg min
p

16∑
i=1

aEint(pi )+ bEext (pi )+ cEbal (pi ) (8)
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Eint(pi ) is an energy function dependent on the shape of the contour points and
it is the continuity energy that enforces the shape of the contour. Eext (pi ) is an
energy function based on image properties (we use gradient in this paper). Ebal (pi )
is a balloon force that causes the contour to expand (or shrink). In most cases, our
binary image provides a good model initialization. Hence, the model usually takes
only 5–8 iterations to converge to lip shape in a given image.

3.5 Model Fitting to Contour Points

We used least square approach to fit the model onto optimum contour points. By
fitting the model on contour points, we can constraint the deformation of contour
points and preserve a legal shape of lip shape. Furthermore, from the fitted model
parameters, lip features can be extracted and used in visual speech recognition.
The least square fitting is performed for three parts of outer lip separately when
optimums lip contour points are obtained from optimization process. For example,
in lower lip model that employs three parameters, θ = {αlow , βlow , γlow } show a
process of least square method to fit model on contour points and parameter values
are obtained. Note that p1 and p9 are not included since these two points are fixed
in the normalization process.

H =

⎡
⎢⎢⎢⎢⎣

x2 · (log2 x2) (1− x2) · (log2(1− x2))
(

(x2−0.5)
0.54

4 − (x2−0.5)
0.52

2
)

...
...

...

x8 · (log2 x8) (1− x8) · (log2(1− x8))
(

(x8−0.5)
0.54

4 − (x8−0.5)
0.52

2
)

⎤
⎥⎥⎥⎥⎦

θ =

⎡
⎢⎢⎢⎣

αlow

βlow

γlow

⎤
⎥⎥⎥⎦ , Y =

⎡
⎢⎢⎢⎢⎣

ylow2

...

ylow8

⎤
⎥⎥⎥⎥⎦

∵ Hθ = Y

⇒ θ = (H T H )−1 H T Y
(9)

After least square fitting, new contour points can be found by equally deriving
from fitted curves. These contour points are de-normalized by employing reverse
scaling and rotation. Before new iteration is processed, sum of distance of new
contour points is computed and compare to sum of distance of previous contour
points. If the result is less than threshold the iteration process will be terminated.
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4 Experiment Result

4.1 Lip Contour Extraction Result

In order to test the performance of our proposed hybrid procedure, we use 2,000 lip
images with different sizes over 50 people (not including images that were used in
color space training). In the testing images, we also use some images which consist
of complex background like mustache and beard. For evaluating the flexibility of
model asymmetrical lip shape images are incorporated.

Overall, 97% of the lip contours are accurately extracted. Figures 10 and 11 show
examples of such images. We also show that our proposed lip color and intensity
mapping have successfully improved the lip contour extraction performance under
different lightning conditions. With our algorithm implemented in Matlab, the aver-
age computation time for 85× 100 size images was approximately 0.9 s.

From experimental results, it had shown that accuracy of lip contour tracking not
merely depend upon flexibility of built model but also contingent on preprocessing
part. For instance, our proposed lip color and intensity mapping efficiently maximize
dissimilarity of lip and non-lip region. This mapping result will be used to localized
lip model and also provide clear edge information to derive contour points moving
toward lip boundary.

Fig. 10 Lip contour extraction results of female and also male lips

Fig. 11 Lip contour extraction results under different lightning conditions
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4.2 Comparative Studies of Lip Mapping

We apply a quantitative technique to evaluate the performance of our color space
transformation algorithm. Since no ground truth is available, we manually draw the
boundaries of 25 lip images. The first measurement method is the degree of overlap
(DOL) between the lip and the non-lip histograms. DOL [9] is used to measure
discriminability of the transformed color spaces for differentiating the lip and the
non-lip colors. A lower percentage of DOL means a higher contrast between the lip
and the non-lip regions.

DOL =
1∑

i=0
min(Plip(i), Pnonlip(i))

where Plip(i) = Num lip(i)/Total lipPixel

Pnonlip(i) = Numnonlip(i)/TotalnonlipPixel , {0 ≤ i ≤ 1}
(10)

The second method is Classification Error (CE) which is the average of the False
Positive (FP) rate and the False Negative (FN) rate FP is error rate of classifying a
non-lip as a lip pixel. FN is the error rate in classifying the lip as non-lip pixel.

CE = (FN + FP) /2
where FN = Falsenonlip/(Falsenonlip + True lip)

FP = False lip/(False lip + Truenonlip)
(11)

From the results, we can see that our proposed lip color transformation method gives
the lowest DOL and CE.

Table 1 Comparison of DOL and CE based on five mapping methods for below three images

Image 1 (Fig. 12) Image 2 (Fig. 13) Image 3 (Fig. 14)

DOL CE DOL CE DOL CE

MM 0.274 0.195 0.202 0.237 0.232 0.229
Our 0.182 0.150 0.201 0.143 0.173 0.144
RE 0.372 0.466 0.423 0.319 0.291 0.5
PH 0.223 0.243 0.294 0.188 0.210 0.162
RG 0.977 0.496 0.318 0.500 0.993 0.499

Table 2 Comparison for average DOL and CE for below three images and additional 22 testing
images

MM Our RE PH RG

Average DOL (%) 23.8 16.4 36.7 22.9 55.7
Average CE (%) 21.4 12.5 35.8 17.2 36.4
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Fig. 12

Fig. 13

(a)

(g) (h) (i) (j) (k) (l)

(b) (c) (d) (e) (f)

Fig. 14 (a) Test image, (b) Mouth-map method (MM), (c) Our method, (d) Red Exclusion method
(RE), (e) Pseudo Hue method (PH), (f) R–G ratio method (RG), (g) Ground truth image, (i) is
segmented image of (c) based on Otsu thresholding, (h), (j), (k), (l) are segmented images of (b),
(d), (e), (f) with the threshold values proposed by corresponding previous methods

5 Conclusion

In this paper, we describe a new hybrid approach to improve lip localization and
tracking. The first part of our proposed algorithm is lip mapping based on color and
intensity information. From experimental results, our proposed mapping method
successfully enhances the contrast between lip and non-lip regions. Results from
the contrast enhancement process allowed more accurate lip region segmentation.
In the second part, a new flexible while constrained deformable geometric model
is established to accurately locate and track lip shape. Overall, our implemented
hybrid approach has shown high reliability and is able to perform robustly under
various conditions.
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Optimal View Selection and Event Retrieval
in Multi-Camera Office Environment

Han-Saem Park, Soojung Lim, Jun-Ki Min and Sung-Bae Cho

Abstract Recently, diverse sensor technologies have been advanced dramatically,
so that people can use those sensors in many areas. Camera to capture the video
data is one of the most useful sensors among them, and the use of camera with other
sensors or the use of several cameras has been done to obtain more information.
This paper deals with the multi-camera system, which uses the several cameras as
sensors. Previous multi-camera systems have been used to track a moving object in a
wide area. In this paper, we have set cameras to focus on the same place in an office
so that system can provide diverse views on a single event. We have modeled office
events, and modeled events can be recognized from annotated features. Finally, we
have conducted the event recognition, view selection and event retrieval experiments
based on a scenario in an office to show the usefulness of the proposed system.

Keywords Multi-camera system · View selection · Office event

1 Introduction

These days, most people can obtain and use the multimedia data easily as the sensor
technologies to obtain those data have been advanced dramatically [1]. In particular,
camera comes to a representative and useful sensor device since video data is much
more informative than other data types such as text document, sound, and still image
in that it contains specific and realistic information even though its analysis is very
challenging [2].

In a stage for public performance or in a field for sports broadcasting, a number
of cameras are being used to cover a wide area and to display scenes from various
angles. Accordingly, the cameras show different image and information, so it is
required to analyze those images and select a specific one whose information is the
most useful.
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This paper deals with a problem that selects the camera of which view is the
most informative in multi-camera system set in the office environment. In order
to analyze information from input video, we have exploited Bayesian network,
which is a model of a joint probability distribution over a set of random variables.
Bayesian network is represented as a directed acyclic graph where nodes cor-
respond to variables and arcs correspond to probabilistic dependencies between
connected nodes [3]. These models are used to recognize and retrieve office
events.

In previous studies, researchers have used the multi-camera system to track a
certain object or a person in a wide area [4–6]. Multi-camera systems, however,
have another advantage. That is, we can obtain diverse views using multi-camera
system. In this paper, we mainly focus on this possibility.

2 Backgrounds

2.1 Multi-Camera Systems

Previously, the multi-camera systems have been used to track a certain object in
a wide area. Black and Ellis exploited multi-camera systems to track and detect
moving object in outdoor environment [4]. These days, a few research groups have
used multi-camera system in indoor environment. Sumi et al. used multiple cameras
with other ubiquitous sensors to capture simple interactions between humans in a
conference room [5]. Silva et al. presented a system for retrieval and summarization
of multimedia data using multi-camera system and other sensors in a home-like
ubiquitous environment [6].

All these researches used multi-camera system to cover wide areas, that is, they
used only one camera at one place. As mentioned before, we focused on other pos-
sibility of the multi-camera system. We have set multi-camera system in office, so
most of the cameras focused on the same place. Diverse views obtained from this
system have two advantages: recognition of hidden object and higher recognition
accuracy with ensemble. We can obtain information we need even if some cameras
are hidden accidentally. Besides, higher recognition accuracy is expected due to
accurate features extracted from multiple inputs.

2.2 Event Retrieval in Videos

Event retrieval in video data has been researched a lot according as the sensor tech-
nologies including cameras have been advanced [7–9].

In particular, one in sport videos is a very popular problem. Li et al. applied
the event detection and modeling algorithms to different types of sports videos,
and they provided retrieval and summarization of sport events [7]. Ekin et al. pro-
posed a fully automatic and computationally efficient framework for soccer video
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summarization and analysis using some novel low-level processing algorithms and
high level detection algorithms [8]. On the other way, Ersoy et al. presented a frame-
work for the event retrieval in general video. They exploited domain-independent
event primitives to provide adaptability of the system [9]. All these works dealt with
the video data captured by single camera.

3 Optimal View Selection and Event Retrieval Using Bayesian
Network Based Event Modeling

Figure 1 illustrates an overall process of event recognition, view selection, and event
retrieval in the proposed multi-camera system. The whole process is divided into
three parts: event recognition, view selection, and event retrieval. Low-level fea-
tures have been annotated by human expert manually based on predefined domain
knowledge. In event recognition part, the designed Bayesian network (BN) model
recognizes office events with all features from all cameras. This model also recog-
nizes event with features from each camera. View selection part selects the camera
that provides the optimal view considering the recognition probability of given event
and event priority.

Fig. 1 Overall process for view selection and event retrieval
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3.1 Office Event Modeling

To model office events, we have defined eight events, and each event is related to
proper objects or poses based on event definition. Events, objects and poses used in
this paper are as follows.

• Event: Calling, cleaning, conversation, meeting, presentation, sleeping and work
• Object: Computer, phone, note, vacuum, users
• Pose: Stand, sit, rest.

Basic features such as object, person’s pose, position in office and person’s
direction have been annotated by expert based on predefined event, and these
annotated features and events have been used to make Bayesian network event
model learn.

We have modified this learned model. First, we removed the dependencies among
evidences because they are not significant if evidences were set. If we did not find
the evidence, it was checked as ‘no’, meaning there is no evidence. Subsequently,
parameters were also modified because they were just based on the learning data
so that they can recognize office events generally. Figure 2 shows the designed
Bayesian network model.

Fig. 2 Bayesian network structure for event modeling

Table 1 Units for magnetic properties

Person A
Person B
Person C
Accuracy (%)
80.0
90.9
86.4
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We have used three different models by person. They share the same structure,
but the parameters are different. As modeling like this, we can recognize several
events happening at the same time. Performance of models by each person is shown
in Table 1.

3.2 Optimal View Selection

Once an event at a certain time point is recognized by Bayesian network model, the
system selects an optimal camera view at that time considering the probability and
priority of a recognized event. Given an event ek at the segment Si , an optimal view,
Vj is decided as following equation:

Vj = arg max
j

f Si
j (ek) = Vj|Max (prob(ek)) ∧Max (priority(ek))

where prob(e) is the recognition probability of event e and the priority(e) is defined
by an expert based on the domain knowledge. A view with the highest probability
is selected as an optimal one if only one event is captured at one segment. If two
or more events are captured at the same segment, views of events with the highest
priorities are selected as candidates first, and then a view with the highest probability
is selected among the candidates.

3.3 Event Retrieval

Based on the selected view information and the annotated event information in
database, event retrieval is conducted as simply the system retrieves the events,
which satisfies the user query.

4 Experiments

4.1 Experimental Environment

For the validation of the proposed system, we have made the experimental envi-
ronment using 8 cameras in an office. Figure 3 shows the location and coverage of
cameras, and Fig. 4 shows an example captured images. We have used Sony network
camera (SNC-P5), and video has been saved with the resolution of 320 × 240 and
frame rate of 15 fps using MPEG video format.

For learning of Bayesian network model, we have collected the learning data of
three persons in the preset experimental environment. For the event recognition and
view selection experiments, we have collected video data based on the designed
scenario shown in Fig. 5. The scenario is based on the events happening during
office hour-from 9 AM to 6 PM-on one day, and all events have the possibility that
can be occurred in the office.
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Fig. 3 Multi-camera system
(Camera location and
coverage)

Fig. 4 Multi-camera system
(Example of captured
images)

Fig. 5 A scenario in an office

4.2 Event Recognition

We have conducted the event recognition experiment to show the performance of
Bayesian network event model. Table 1 summarizes the accuracies by person. It
shows high accuracy for each person, and the total accuracy is also high.
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There are four incorrectly recognized events: three ‘presentation’ and one ‘meet-
ing’. All ‘presentation’ events are recognized as ‘conversation’ because call cam-
eras does not satisfy the definition of ‘presentation’. ‘Presentation’ requires three
persons, computer and note, but most cameras do not detect all three persons
and note is very difficult to be recognized correctly when three persons are close
together.

4.3 View Selection

Figure 6 demonstrates an example of view selection result. In this frame, a person
is performing event ‘cleaning’. Our system selected a view in camera 7 using view
selection method described in Sect. 3.2, and it is reasonable because it shows an
event ‘cleaning’ clearly.

Fig. 6 An example of view selection (Event ‘Cleaning’)

4.4 Application Implemented and Event Retrieval

We have implemented the application to provide events retrieval in office video.
The screen shots are shown in Figs. 7 and 8. In Fig. 7, all views of eight cam-
eras are displayed in normal mode. Figure 8 shows the retrieved scene with the
keywords Calling, Conversation, and Meeting. Event ‘Meeting’ is shown in this
shot.

5 Conclusions and Future Works

This paper presented the novel multi-camera system that provided diverse views of
each single office event and recognized those events using BN model. Our system
also presents the retrieval of events with the application. As shown in experiments
section, the proposed system performs acceptable results, and BN model recognizes
office events with good accuracies.

There are some limitations that should be solved. Current system considers the
recognition probability at a single time point or for a short time, but it may cause
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Fig. 7 A screen-shot of the
application in normal mode

Fig. 8 A screen-shot of the
application in retrieval mode
(Calling, Conversation, and
Meeting are selected as
keywords)
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a significant problem because the system selects image sequence. Therefore, view
selection process should consider the entire scenario. Also, feature annotation part
should be replaced by fully automatic annotation.

Future work will focus on applying the proposed system to the video in other
domains such as sport videos and comparing the performance of the proposed
method with conventional video retrieval methods. The semantic analysis and sum-
marization of videos in diverse domains also can be interesting topics.
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Fusion of Multichannel Biosignals Towards
Automatic Emotion Recognition

Jonghwa Kim and Elisabeth André

Abstract Endowing the computer with the ability to recognize human emotional
states is the most important prerequisites for realizing an affect-sensitive human-
computer interaction. In this paper, we deal with all the essential stages of an auto-
matic emotion recognition system using multichannel physiological measures, from
data collection to the classification process. Particularly we develop two differ-
ent classification methods, feature-level fusion and emotion-specific classification
scheme. Four-channel biosensors were used to measure electromyogram, electro-
cardiogram, skin conductivity, and respiration changes while subjects were listening
to music. A wide range of physiological features from various analysis domains
is proposed to correlate them with emotional states. Classification of four musical
emotions is performed by using feature-level fusion combined with an extended lin-
ear discriminant analysis (pLDA). Furthermore, by exploiting a dichotomic property
of the 2D emotion model, we developed a novel scheme of emotion-specific multi-
level dichotomous classification (EMDC) and compare its performance with direct
multiclass classification using the pLDA feature-level fusion. Improved recognition
accuracy of 95% and 70% for subject-dependent and subject-independent classifi-
cation, respectively, is achieved by using the EMDC scheme.

Keywords Biosignal ·Multisensor data fusion · ECG · EMG · SC · RSP · Emotion
recognition · Multichannel biosignals · Pattern recognition · Human-computer
interaction ·Music and emotion

1 Introduction

Emotional intelligence (understanding and expression of emotions) is indispensable
in human communication and facilitates successful interpersonal social interaction.
To approach this in human-computer interaction (HCI), the first step is to equip
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machines with the means to interpret and understand human emotions without the
input of a user’s translated intention. Hence, one of the most important prerequi-
sites for realizing such affect-sensitive HCI is a reliable emotion recognition system
which guarantees acceptable recognition accuracy, robustness against any artifacts,
and adaptability to practical applications.

Recently, many works on engineering approaches to automatic emotion recogni-
tion have been reported. For an overview we refer to [1]. In particular, many efforts
have been deployed to recognize human emotions using audiovisual channels of
emotion expression, that is, facial expressions, speech, and gestures. Little atten-
tion, however, has been paid so far to using physiological measures, as opposed to
audiovisual emotion channels. This is due to some significant limitations that come
with the use of multichannel biosignals for emotion recognition. The main difficulty
lies in the fact that it is a very hard task to uniquely map physiological patterns
onto specific emotional states. As an emotion is a function of time, context, space,
culture, and person, physiological patterns may widely differ from user to user and
from situation to situation. When using multiple biosensors at the same time, ana-
lyzing biosignals is itself a complex multivariate task and requires broad insight into
biological processes related to neuropsychological functions. To classify the multi-
channel variables, we first need to design fusion method for multichannel sensory
data and to develop an emotion-specific classification scheme. Most of machine
learning algorithms are generalized method based on statistics or linear regression
of given data and most suitable for binary classification problems. Therefore they
might not be able to capture characteristics of input variables in order to efficiently
solve multiclass problems.

In this paper, we deal with all the essential stages of an automatic emotion
recognition system, from data collection to the classification, based on four-channel
physiological signals: electromyogram (EMG), electrocardiogram (ECG), skin con-
ductivity (SC), and respiration changes (RSP). Generally, fusion of multisensory
data can be performed at least at three levels: data, feature, and decision level. When
observations are of same type, the data-level fusion might be probably the most
appropriate way where we simply combine raw multisensory data. Decision-level
fusion is the approach applied most often for multimodal sensory data containing
time scale differences between modalities. Since, in this paper, we use multichan-
nel biosignals that are measured in synchronized time scale and unique dimension,
feature-level fusion is the most convincing way to classify by single classifier. Fur-
thermore we develop a novel scheme of emotion-specific multilevel dichotomous
classification (EMDC) and compared its performance with direct multiclass classi-
fication.

Throughout the paper, we try to provide a focused spectrum for each process-
ing stage with selected methods suitable for handling the nature of physiological
changes, instead of conducting a comparison study based on a large number of
pattern recognition methods.
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2 Related Research

A significant amount of work has been conducted by Picard and colleagues at MIT
Lab showing that certain affective states may be recognized by using physiolog-
ical data including heart rate, skin conductivity, temperature, muscle activity and
respiration velocity [2, 3]. Nasoz et al. [4] used movie clips based on the study by
Gross and Levenson [5] for eliciting target emotions from 29 subjects and achieved
an emotion classification accuracy of 83% using the Marquardt Backpropagation
algorithm (MBP). More recently, an interesting user-independent emotion recog-
nition system was reported by Kim et al. [6]. They developed a set of recording
protocols using multimodal stimuli (audio, visual, and cognitive) to evoke targeted
emotions (sadness, stress, anger, and surprise) from 175 children aged five to eight.
A classification ratio of 78.43% was achieved for three emotions (sadness, stress,
and anger) and a ratio of 61.76% for four emotions (sadness, stress, anger, and
surprise) by adopting support vector machines as pattern classifier.

The physiological datasets used in most of the aforementioned approaches were
gathered by using visual elicitation materials in a lab setting. The subjects then
“tried and felt” or “acted out” the target emotions while looking at selected photos or
watching movie clips that were carefully prearranged to elicit the emotions. In other
words, to put it bluntly, the recognition results were achieved for specific users in
specific contexts with “forced” emotional states. All the works used simple feature-
level fusion to mix features from each sensor and then to classify by using common
single classfifier.

3 Setting of Experiment

3.1 Musical Emotion Induction

To collect a database of physiological signals in which the targeted emotions cor-
responding to the four quadrants in the 2D emotion model (i.e., EQ1, EQ2, EQ3,
and EQ4 in Fig.1) can be naturally reflected without any deliberate expression, we
decided to use the musical induction method, that is, to record physiological signals
while the subjects were listening to different pieces of music.

The subjects were three males aged 25–38 and who all enjoy listening to music
in their everyday life. They individually handpicked four songs that were intended
to spontaneously evoke emotional memories and certain moods corresponding to
the four target emotions. Figure 11 shows the musical emotion model referred

1 Metaphoric cues for song selection: song 1 (positively exciting, energizing, joyful, exuberant),
song 2 (noisy, loud, irritating, discord), song 3 (melancholic, sad memory), song 4 (blissful, plea-
surable, slumberous, tender).
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Fig. 1 Reference emotional
cues in music based on the
2D emotion model.
EQ1 = positive/high arousal,
EQ2 = negative/high arousal,
EQ3 = negative/low arousal,
EQ4 = positive/low arousal

anger joy

EQ2

sadness pleasure

low arousal
calm

negative
anxious

positive
happy

energetic
high arousal

simple
complex

(song 2)

EQ3
(song 3)

EQ1
(song 1)

EQ4
(song 4)

minor major
laud

staccato

high pitch

low pitch

fast

slow

soft
legato

to for the selection of their songs. Generally, emotional responses to music vary
greatly from individual to individual depending on their unique past experiences.
Moreover, cross-cultural comparisons in literature suggest that emotional responses
can be quite differentially emphasized by different musical cultures and training.
This is why we advised the subjects to choose themselves the songs they believed
would help them recall their individual special memories with respect to the target
emotions. Recording schedules were decided by the subjects themselves and the
recordings took place whenever they felt like listening to music. They were also
free to choose the songs they wanted to listen to. Thus, in contrast to methods used
in other studies, the subjects were not forced to participate in a lab setting scenario
and to use prespecified stimulation material.

During the three months, a total of 360 samples (90 samples for each emotion)
from three subjects were collected. The signal length of each sample was between
3–5 min depending on the duration of the songs.

3.2 Used Biosensors

The physiological signals were acquired using the Procomp2 InfinitiTM with four
biosensors, electromyogram (EMG), skin conductivity (SC), electrocardiogram
(ECG), and respiration (RSP). The sampling rates were 32 Hz for EMG, SC, and
RSP, and 256 Hz for ECG. The positions and typical waveforms of the biosensors
we used are illustrated in Fig. 2.

2 This is an eight channel multi-modal Biofeedback system with 14 bit resolution and a fiber optic
cable connection to the computer. www.MindMedia.nl
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Fig. 2 Position and typical waveforms of the biosensors: (a) ECG, (b) RSP, (c) SC, (d) EMG

4 Feature Extraction

4.1 Signal Segmentation

Different types of artifacts were observed in all the four channel signals, such as
transient noise due to movement of the subjects during the recording, mostly at the
beginning and at the end of each recording. Thus, uniformly for all subjects and
channels, we segmented the signals into final samples of a 160 s each, obtained by
taking the middle part of each signal.

4.2 Measured Features

From the four channel signals we calculated a total of 110 features from various
analysis domains including conventional statistics in time series, frequency domain,
geometric analysis, multiscale sample entropy, subband spectra, etc. For the signals
with non-periodic characteristics, such as EMG and SC, we focused on capturing
the amplitude variance and localizing the occurrences (number of transient changes)
in the signals.

4.2.1 Electrocardiogram (ECG)

To obtain the subband spectrum of the ECG signal we used the typical 1,024 points
fast Fourier transform (FFT) and partitioned the coefficients within the frequency
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range 0–10 Hz into eight non-overlapping subbands with equal bandwidth. First, as
features, power mean values of each subband and fundamental frequency (F0) are
calculated by finding maximum magnitude in the spectrum within the range 0–3 Hz.
To capture peaks and their locations in subbands, subband spectral entropy (SSE)
is computed for each subband. To compute the SSE, it is necessary to convert each
spectrum into a probability mass function (PMF) like form. Equation 1 is used for
the normalization of the spectrum.

xi = Xi∑N
i=1 Xi

, for i = 1 . . . N (1)

where Xi is the energy of i th frequency component of the spectrum and x̃ =
{x1 . . . xN } is to be considered as the PMF of the spectrum. In each subband the
SSE is computed from x̃ by

Hsub = −
N∑

i=1

xi · log2 xi (2)

By packing the eight subbands into two bands, that is, subbands 1–3 as the low
frequency (LF) band and subbands 4–8 as the high frequency (HF) band, the ratios
of the LF/HF bands are calculated from the power mean values and the SSEs.

To obtain the HRV (heart rate variability) from the continuous ECG signal, each
QRS complex is detected and the RR intervals (all intervals between adjacent R
waves) or the normal-to-normal (NN) intervals (all intervals between adjacent QRS
complexes resulting from sinus node depolarization) are determined. We used the
QRS detection algorithm of Pan and Tompkins [7] in order to obtain the HRV time
series. Figure 3 shows examples of R wave detection and interpolated HRV time
series, referring to the increases and decreases over time in the NN intervals.

In the time-domain of the HRV time series, we calculated statistical features
including mean value, standard deviation of all NN intervals (SDNN), standard
deviation of the first difference of the HRV, the number of pairs of successive NN
intervals differing by more than 50 ms (NN50), the proportion derived by dividing
NN50 by the total number of NN intervals. By calculating the standard deviations in
different distances of RR interbeats, we also added Poincaré geometry in the feature
set to capture the nature of interbeat interval fluctuations. Poincaré plot geometry is a
graph of each RR interval plotted against the next interval and provides quantitative
information of the heart activity by calculating the standard deviations of the dis-
tances of R−R(i) to lines y = x and y = −x+2∗R−Rm , where R−Rm is the mean
of all R − R(i), [8]. Figure 3(e) shows an example plot of the Poincaré geometry.
The standard deviations SD1 and SD2 refer to the fast beat-to-beat variability and
longer-term variability of R − R(i) respectively.

Entropy-based features from the HRV time series were also considered. Based on
the so-called approximate entropy and sample entropy proposed in [9], a multiscale
sample entropy (MSE) was introduced [10] and successfully applied to physiologi-
cal data, especially for analysis of short and noisy biosignal [11]. Given a time series
{Xi } = {x1, x2, . . . , xN } of length N , the number (n(m)

i ) of similar m-dimensional
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vectors y(m)( j) for each sequence vectors y(m)(i) = {xi , xi+1, . . . , xi+m−1} is deter-
mined by measuring their respective distances. The relative frequency to find the
vector y(m)( j) within a tolerance level δ is defined by

C (m)
i (δ) = n(m)

i

N − m + 1
(3)

The approximate entropy, h A(δ, m), and the sample entropy, hS(δ, m) are defined as

h A(δ, m) = lim
N→∞

[H (m]
N (δ)− H (m+1)

N (δ)], (4)

hS(δ, m) = lim
N→∞

− ln
C (m+1)(δ)

C (m)(δ)
, (5)

where

H (m)
N (δ) = 1

N − m + 1

N−m+1∑
i=1

ln C (m)
i (δ), (6)

Because it has the advantage of being less dependent on the time series length N ,
we applied the sample entropy hS to coarse-grained versions (y(τ )

j ) of the original
HRV time series {Xi },

y j (τ ) = 1

τ

jτ∑
i=( j−1)τ+1

xi , 1 ≤ j ≤ N/τ, τ = 1, 2, 3, . . . (7)
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The time series {Xi } is first divided into N/τ segments by non-overlapped win-
dowing with length of scale factor τ and then the mean value of each segment is
calculated. Note that for scale one y j (1) = x j . From the scaled time series y j (τ )
we obtain the m-dimensional sequence vectors y(m)(i, τ ). Finally, we calculate the
sample entropy hS for each sequence vector y j (τ ). In our analysis we used m = 2
and fixed δ = 0.2σ for all scales, where σ is the standard deviation of the original
time series xi .

In the frequency-domain of the HRV time series, three frequency bands are of
general interest: the very-low frequency (VLF) band (0.003–0.04 Hz), the low fre-
quency (LF) band (0.04–0.15 Hz), and the high frequency (HF) band (0.15–0.4 Hz).
From these subband spectra, we computed the dominant frequency and power of
each band by integrating the power spectral densities (PSD) obtained by using
Welch’s algorithm, as well as the ratio of power within the low-frequency band
to that within the high-frequency band (LF/HF).

4.2.2 Respiration (RSP)

Including the typical statistics of the raw RSP signal, we calculated similar types
of features, such as the ECG features, the power mean values of three subbands
(obtained by dividing the Fourier coefficients within the range 0–0.8 Hz into non-
overlapped three subbands with equal bandwidth), and the set of subband spectral
entropies (SSE).

In order to investigate inherent correlation between respiration rate and heart
rate, we considered a novel feature content for the RSP signal. Since an RSP sig-
nal exhibits a quasi periodic waveform with sinusoidal properties, it does not seem
unreasonable to conduct an HRV-like analysis for the RSP signal, that is, analysis of
breathing rate variability (BRV). After detrending using the mean value of the entire
signal and lowpass filtering, we calculated the BRV time series, referring to the
increases and decreases over time in the peak-to-peak (PP) intervals, by detecting
the peaks in the signal using the maxima ranks within each zero-crossing. From
the BRV time series, we calculated the mean value, SD, SD of the first difference,
MSE, Poincaré analysis, etc. In the spectrum of the BRV, peak frequency, power
of the two subbands, the low-frequency band (0–0.03Hz) and the high-frequency
band (0.03–0.15 Hz), and the ratio of the power within the two bands (LF/HF) were
calculated.

4.2.3 Skin Conductivity (SC)

The mean value, standard deviation, and mean of first and second derivations were
extracted as features from the normalized SC signal and the low-passed SC signal
using a cutoff frequency of 0.2 Hz. To obtain a detrended SCR waveform without
DC-level components, we removed the continuous, piecewise linear trend in the two
low-passed signals, that is, the very low-passed (VLP) and the low-passed (LP) sig-
nal with a cutoff frequency of 0.08 Hz and 0.2 Hz, respectively (see Fig. 4 (a)–(e)).
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Fig. 4 Analysis examples of SC and EMG signals

The baseline of the SC signal was calculated and subtracted to consider only
relative amplitudes. By finding two consecutive zero-crossings and the maximum
value between them, we calculated the number of SCR occurrences within 100 s
from each LP and VLP signal, the mean of the amplitudes of all occurrences, and
the ratio of the SCR occurrences within the low-passed signals (VLP/LP).

4.2.4 Electromyography (EMG)

For the EMG signal, we calculated types of features similar to those of the SC signal.
The mean value of the entire signal, the mean of the first and second derivations,
and the standard deviation were extracted as features from the normalized and low-
passed signals. The occurrence number of myo-responses and the ratio of that within
VLP and LP signals were also added to the feature set and were determined in the
same way as the SCR occurrence but using cutoff frequencies with 0.08 Hz (VLP)
and 0.3 Hz (LP) (see Fig. 4(f)–(j)).

In the end, we obtained a total of 110 features from the 4-channel biosignals; 53
(ECG) + 37 (RSP) + 10 (SC) + 10 (EMG).
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5 Classification Result

5.1 pLDA Feature-Level Fusion

Figure 5 shows the feature-level fusion model for multichannel biosensor data. For
classification we used the pseudoinverse linear discriminant analysis (pLDA) [12],
combined with the sequential backward selection (SBS) [13] to select significant
feature subset. The pLDA is a natural extension of classical LDA by applying
eigenvalue decomposition to the scatter matrices, in order to deal with the sigularity
problem of LDA.

Table 1 with confusion matrix presents the correct classification ratio (CCR) of
subject-dependent (Subject A, B, and C) and subject-independent (All) classifica-
tion where the features of all the subjects are simply merged and normalized. We
used leave-one-out cross-validation where a single observation taken from the entire
samples is used as the test data and the remaining observations are used for training
the classifier. This is repeated such that each observation in the samples is used once
as the test data.

The table shows that the CCR varies from subject to subject. For example, the
best accuracy was 91% for subject B and the lowest was 81% for subject A. Not only
does the overall accuracy differ from one subject to the next, but the CCR of the
single emotions varies as well. For example, EQ2 was perfectly recognized for sub-
ject C while it caused the highest error rate for subject B. It was three times mixed
up with EQ1 which is characterized by opposite valence. As the confusion matrix
shows, the difficulty in valence differentiation can be observed for all subjects. Most
classification errors for Subject A and B lie in false classification between EQ1 and
EQ2 while an extreme uncertainty can be observed in the differentiation between
EQ3 and EQ4 for Subject C. On the other hand, it is very meaningful that relatively
robust recognition accuracy is achieved for the classification of emotions that are
reciprocal in the diagonal quadrants of the 2D emotion model, that is, EQ1 vs.
EQ3 and EQ2 vs. EQ4. Moreover, the accuracy is much better than that of arousal
classification.
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Fig. 5 Feature-level fusion for four-channel biosensor data, combined with SBS and pLDA
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Table 1 Recognition results in rates (error 0 .00 = CCR 100%) achieved by using pLDA with
SBS and leave-one-out cross validation. # of samples: 120 for each subject and 360 for all

EQ1 EQ2 EQ3 EQ4 Total* Error

Subject A (CCR % = 81%)
EQ1 22 4 1 3 30 0.27
EQ2 3 26 1 0 30 0.13
EQ3 1 2 23 4 30 0.23
EQ4 3 0 1 26 30 0.13

Subject B (CCR % = 91%)
EQ1 27 3 0 0 30 0.10
EQ2 3 25 1 1 30 0.17
EQ3 0 2 28 0 30 0.07
EQ4 0 1 0 29 30 0.03

Subject C (CCR % = 89%)
EQ1 28 0 2 0 30 0.07
EQ2 0 30 0 0 30 0.00
EQ3 0 0 24 6 30 0.20
EQ4 0 0 5 25 30 0.17

All: subject-independent (CCR % = 65%)
EQ1 62 9 8 11 90 0.31
EQ2 15 57 13 5 90 0.37
EQ3 9 6 58 17 90 0.36
EQ4 8 5 21 56 90 0.38
∗ Actual total # of samples.

We also tried to differentiate the emotions based on the two axes, arousal and
valence, in the 2D emotion model. The samples of four emotions were divided into
groups of negative valence (EQ2+EQ3) and positive valence (EQ1+EQ4) and into
groups of high arousal (EQ1+EQ2) and low arousal (EQ3+EQ4). By using the
same methods, we then performed a two-class classification of the divided samples
for arousal and valence separately. It turned out that emotion-relevant ANS speci-
ficity can be observed more conspicuously in the arousal axis regardless of subject-
dependent or independent cases. Classification of arousal achieved an acceptable
CCR of 97–99% for the subject-dependent recognition and 89% for the subject-
independent recognition, while the results for valence were 88–94% and 77%,
respectively.

5.2 Emotion-specific Multilevel Dichotomous Classification

By taking advantage of supervised classification (where we know in advance which
emotion types have to be recognized) we developed an emotion-specific multilevel
dichotomous classification (EMDC) scheme. This scheme exploits the property of
the dichotomous categorization in the 2D emotion model and the fact that arousal
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classification yields higher CCR than valence classification or direct multiclass
classification. This proves true in almost all previous works and according to our
results as well. Figure 6 illustrates the EMDC scheme and provides an example of
the dyadic decomposition for an eight-class problem.

First, the entire training patterns are grouped into two opposing “superclasses”
(on the basis of valence or arousal), C̄ consisting of all patterns in some subset
of the class categories and C as all remaining patterns, that is, C̄ ∩ C = {}.
This dyadic decomposition using one of the two axes is serially performed until
one subset contains only two classes. The grouping axis can be different from
each dichotomous level. Then multiple binary classifiers for each level are trained
from the corresponding dyadic patterns. Therefore, the EMDC scheme is obvi-
ously emotion-specific and effective for a 2D emotion model. Note that the per-
formance of the EMDC scheme is limited by a maximum CCR of first level clas-
sification and makes sense only if the CCR for one of the two superclasses is
higher than that for direct multiclass classification (theoretically this always holds
true). Because we used four emotion classes in our experiment, we needed a two-
level classification based on arousal and valence grouping for both superclasses in
parallel.
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Fig. 6 Framework of emotion-specific multilevel dichotomous classification (EMDC). (a) Dia-
gram of decomposition process, (b) Decomposition example for an eight-class problem
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Table 2 Results using EMDC scheme with the best features

Subject A (CCR % = 94%, 113/120)
EQ1 & EQ2 EQ3 & EQ4

58
EQ1 & EQ1 EQ2
EQ2 EQ1 27 1

2

EQ2 1 29
58

EQ3 & EQ3 EQ4
EQ4

2
EQ3 29 0
EQ4 1 28

Subject B (CCR % = 98%, 117/120)
EQ1 & EQ2 EQ3 & EQ4

60
EQ1 & EQ1 EQ2

EQ2 EQ1 30 0
0

EQ2 0 30
59

EQ3 & EQ3 EQ4
EQ4

1
EQ3 29 1
EQ4 1 28

Subject C (CCR % = 94%, 113/120)
EQ1 & EQ2 EQ3 & EQ4

60
EQ1 & EQ1 EQ2
EQ2 EQ1 30 0

0

EQ2 0 30
59

EQ3 & EQ3 EQ4
EQ4

1
EQ3 27 2
EQ4 4 26

Subject All (CCR % = 70%, 251/360)
EQ1 & EQ2 EQ3 & EQ4

155
EQ1 & EQ1 EQ2

EQ2 EQ1 62 13
25

EQ2 15 65
164

EQ3 & EQ3 EQ4
EQ4

16
EQ3 64 19
EQ4 21 60

Table 2 shows the dichotomous contingency table of recognition results by
using the novel EMDC scheme. As expected, the CCRs significantly improved
for all class problems. For the classification of four emotions, we obtained an
average CCR of 95% for subject-dependent and 70% for subject-independent
classification. Compared to the results obtained for pLDA, the EMDC scheme
achieved an overall CCR improvement of about 5–13% in each class problem (see
Table 3).

Table 3 CCR Comparison between pLDA and EMDC

Subj. A Subj. B Subj. C Subj. All Average (ABC)

pLDA 81% 91% 89% 65% 87%
EMDC 94% 98% 94% 70% 95%

6 Conclusion

In this paper, we dealt with all the essential stages of an automatic emotion recog-
nition system using multichannel physiological measures, from data collection to
the classification process. By analyzing a wide range of physiological features
from various analysis domains, we found that SC and EMG are linearly correlated
with arousal change in emotional ANS activities, and that the features in ECG and
RSP are dominant for valence differentiation. Particularly, the HRV/BRV analysis
revealed the cross-correlation between heart rate and respiration.
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By fusing the multichannel features at the feature-level, we achieved an average
recognition accuracy of 98%, 91%, and 87% for arousal, valence, and four emotion
classes respectively. In order to further improve the accuracy of the four emotion
classes, we developed a new classification scheme (EMDC). Although this new
scheme is based on a very simple idea, it significantly improves the recognition
accuracy obtained by common feature-level fusion. We actually achieved an aver-
age recognition accuracy of 95% improved which also connotes more than a prima
facie evidence that there are some ANS differences among emotions. Moreover, the
accuracy is higher than that in the previous works reviewed in this paper, even when
considering the different experimental settings in the works, such as the number of
target classes, number of subjects, naturalness of dataset, etc.
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A Comparison of Track-to-Track Fusion
Algorithms for Automotive Sensor Fusion

Stephan Matzka and Richard Altendorfer

Abstract In exteroceptive automotive sensor fusion, sensor data are usually only
available as processed, tracked object data and not as raw sensor data. Applying
a Kalman filter to such data leads to additional delays and generally underesti-
mates the fused objects’ covariance due to temporal correlations of individual
sensor data as well as inter-sensor correlations. We compare the performance of
a standard asynchronous Kalman filter applied to tracked sensor data to several
algorithms for the track-to-track fusion of sensor objects of unknown correlation,
namely covariance union, covariance intersection, and use of cross-covariance.
For our simulation setup, covariance intersection and use of cross-covariance
turn out to yield significantly lower errors than a Kalman filter at a comparable
computational load.

1 Introduction

Driver assistance systems (DAS) such as adaptive cruise control (ACC) or lane
departure warning (LDW) are being offered by many car manufacturers and
are getting more and more popular. While most current systems rely on only
one exteroceptive sensor (e.g., radar or laser for ACC and camera for LDW) in
addition to proprioceptive sensors such as wheel speed and yaw rate sensors,
enhanced versions of the above DAS such as ACC operating at the entire speed
range or new systems such as autonomous braking for collision avoidance will
require a more sophisticated exteroception that is based upon multiple sensors.
Hence exteroceptive sensor fusion will play a crucial role for the performance of
future DAS.

Automotive sensors such as radar are produced by automotive suppliers and
usually output processed, tracked object lists. While a raw data interface might be
provided by suppliers, hardware-specific,proprietary sensor knowledge is necessary
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to gain full advantage of raw sensor data. For DAS developed at car manufacturers,
fusion of already tracked sensor objects is therefore the more likely type of data
fusion.

In general sensor data from different sensor are output at different cycle times and
are not synchronized to a common clock. The probably simplest level 1 fusion [1] of
such sensor data would be achieved by an asynchronous Kalman filter for “sensor-
to-track” fusion, where the fused object list of the Kalman filter is updated asyn-
chronously every time a new sensor object list arrives. However, the application
of Kalman filtering to such data is in principle incorrect since sensor objects of
each sensor are temporally correlated due to previous filtering and since tracked
objects from different sensors are in general also correlated because of for example,
common modeling assumptions [2]. In addition, applying a Kalman filter to already
(Kalman) filtered data will result in additional phase delays due to the Kalman fil-
ter’s low-pass characteristics.

In order to overcome the above difficulties several track-to-track fusion algo-
rithms have been proposed. In this paper we focus on three well-established meth-
ods, namely use of cross-covariance [3], covariance intersection [4], and covariance
union [5]. The goal of this paper is to assess the improvement in tracking accuracy
by those algorithms with respect to an asynchronous Kalman filter that is often used
despite its known shortcomings, see e.g. [6]. By comparing the root mean squared
errors (RMSE) and correlation coefficients for simulated trajectories of the four
aforementioned fusion strategies, we want to quantify in detail an assessment of
track-to-track fusion algorithms briefly mentioned in [7].

The paper is organized as follows: in Sect. 2 we present an overview of our Sim-
ulation Setup. In Sect. 3 we briefly review the Track-to-Track Fusion algorithms to
be used. Section 4 contains a detailed discussion of the simulation results. Details of
the simulation setup such as the vehicle dynamics or the sensor model are relegated
to the appendix.

2 Simulation Setup

In order to assess different fusion strategies by numerical simulation, the following
subsystems are needed: the generation of a reference trajectory for the target vehicle
to be observed by sensors, the simulation of the sensor measurements and the sen-
sor processing (Kalman filter), implementations of the abovementioned “sensor”-to-
track fusion and track-to-track fusion algorithms and an error computation module
that compares the fusion results to ground truth – the reference trajectory. In this
setup we restrict ourselves to a single target vehicle in order to cleanly assess the
performance of the fusion algorithms without additional errors due to false associa-
tions. Furthermore, the simulated scenario is static in the sense that the ego vehicle
on which the sensors are mounted does not move; hence no “ego-compensation” is
necessary and the relative measurements that the sensors provide are also measure-
ments in an inertial system whose origin is taken to be at the ego vehicle. A block
diagram of the simulation setup is shown in Fig. 1.
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Fig. 1 Block diagram of the simulation setup. CA (constant acceleration) model refers to a white
noise jerk model and CV (constant velocity) model refers to a white noise acceleration model both
detailed in the appendix

2.1 Reference Trajectory Generation

The trajectory of the target vehicle is generated with a 2D white noise jerk model,
for details see Appendix 6.1. It is run at a cycle time of 1 ms. With process noise
covariance values of 10

(
m/s3

)2
, trajectories are the result of random walk dynamics

and tend to proceed in a relatively straight line. If the target leaves a rectangular
region of ± 200 m in x-direction and ± 150 m in y-direction around the centre, a
constant bias of

...
x = −sgn(x) · 10

m

s3
, if |x| > 200 m

...
y = −sgn(y) · 10

m

s3
, if |y| > 150 m

is superimposed on the white noise jerk in order to force the object back into the
rectangular region. The repulsive force is applied as long as the trajectory pro-
ceeds along its path away from the centre and is outside the defined rectangular
region.

Parts of the vehicle trajectory where this non-random jerk component is applied
are crucial in assessing the different fusion algorithms’ performances since the
underlying dynamical models of the various Kalman filters in this simulation setup
will not be appropriate in these cases.
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2.2 Sensor Simulation

Measurements of the two sensors are assumed to be the relative position of the target
vehicle with respect to the ego vehicle as would be appropriate for a laser scanner,
for example. The measurements are corrupted by Gaussian noise and are then fed
into a Kalman filter with a white noise jerk model, for details see Appendix 6.2. For
a realistic sensor scenario, the two sensors output data at different cycle times of
40 ms and 55 ms.

2.3 “Sensor”-to-Track Fusion

The “sensor”-to-track fusion of the two sensors is achieved by an asynchronous
Kalman filter, that is, a Kalman filter that updates its state every time a new mea-
surement arrives. This Kalman filter – like the sensor Kalman filters – also uses
a white noise jerk model (see Appendix 6.1). In our setup we assume that auto-
motive applications that use sensor fusion data require fused objects at a constant
cycle time of 63 ms. Hence a prediction module using the same dynamical model
as the Kalman filter is activated every time an output is required by the application.
Kalman filter and prediction module together constitute the “sensor”-to-track fusion
module.

2.4 Track-to-Track Fusion

In track-to-track fusion, the states to be fused must be synchronized, that is, must
have the same time stamp. In general, however, sensors output data at different
cycle times with local, non-synchronized clocks. While synchronization methods
of various degrees of sophistication have been proposed in literature [8], we use
the simplest one, namely prediction of all sensor data to the time required by the
application. Since the details of sensor preprocessing and tracking are usually kept
confidential by automotive suppliers, we make the conservative choice of a white
noise acceleration model for the prediction inside the track-to-track fusion mod-
ule. The synchronized sensor data are then fed into one of the track-to-track fusion
algorithms under consideration, namely use of cross-covariance, covariance inter-
section, and covariance union. A brief review of those three algorithms is provided
in Sect. 3.

2.5 Error Computation

Every 63 ms the asynchronous Kalman filter and the three track-to-track fusion
algorithms output fused target state vectors and their covariances. Using the target
vehicle reference trajectory the RMSE can be computed at every time step. We
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then average the RMSE of the position coordinates over entire simulation runs of
40 s. This allows us to evaluate the benefits of track-to-track fusion versus Kalman
filtering when the dynamical model of the Kalman filter is valid and when it is not.

3 Track to Track Fusion

3.1 Use of Cross-Covariance

The use of cross-covariance method was first described in [3]. Given two state esti-
mates ξ̂a and ξ̂b and their covariance matrices Pa and Pb, the fused estimate using
cross-covariance reads

ξ̂c = ξ̂a + χ [ξ̂b − ξ̂a] (1)

where

χ = [Pa − Pab]U−1
ab (2)

Uab = Pa + Pb − Pab − PT
ab (3)

The covariance matrix for the estimation pair is calculated using

Pc = Pa − [Pa − Pab]U−1
ab [Pa − Pab]T (4)

The cross-covariance matrix Pab is initially set to Pab(0|0) and subsequentially
updates using a recursive relationship

Pab(k|k) = αa(k)β(k − 1)αT
b (k) (5)

where

αa(k) = I − Ka(k)Ha(k), αb(k) = I − Kb(k)Hb(k)

β(k − 1) = Fa Pab(k − 1|k − 1)F T
b + Q(k − 1)

However, for αa(k) and αb(k) in (5) the details of both sensors’ Kalman filters
such as Hi , Ki , and Fi as well as Q have to be known. This is not always the case,
especially for industrial sensors with integrated tracking. For this case, an alternative
computation of Pab is proposed in [8] where the cross-covariance matrix is approx-
imated by the Hadamard (or entrywise) product of both input covariance matrices.

Pab ≈ ρ
√

Pa • Pb (6)

where ρ represents an effective correlation coefficient. It can be determined numer-
ically by Monte-Carlo simulations for specific setups; in [8] values of ρ ≈ 0.4 were
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found to be optimal for the fusion of 2D Cartesian position vectors (x,y). For the
fusion of other state vectors, for example, state vectors including velocity entries,
other values of ρ should be used.

3.2 Covariance Intersection

In [4, 9] the use of a fusion rule named Covariance Intersection (CI) for combining
tracks of unknown correlation is proposed.

Based upon two estimates A and B that can originate both from a sensor or a
model of the observed process it is possible to determine a fused estimate C . For
consistent estimates A, B, it is possible to represent these as a pairs of estimated
state and covariance A = {ξ̂a, Pa} and B = {ξ̂b, Pb}. Note that these pairs do not
contain any information about the cross correlation between A and B.

The fused estimate C can then be determined using

P−1
c = ωP−1

a + (1− ω)P−1
b (7)

ξ̂c = Pc
(
ωP−1

a ξ̂a + (1− ω)P−1
b ξ̂b

)
(8)

where

ω = arg min(det(Pc)) (9)

The computation of ω in Eq. (9) is determined through an optimisation process
to minimise det(Pc), which is proposed in [10]. Yet is is also possible to minimise
tr(Pc) or other criteria of uncertainty. For all ω ∈ [0, 1] the consistency of the esti-
mate is guaranteed. Moreover, in [9] this estimate is shown to be optimal if the
cross-covariance is unknown.

3.3 Covariance Union

A common problem in track-to-track data fusion is the resolution of statistically
inconsistent states – known as database deconfliction. The covariance union method
proposed in [5] allows to unify two tracks, even if the difference of the state esti-
mates exceeds the covariance indicated by at least one track. To obtain a unified
estimate, a new state vector estimate ξ̂c is determined. The unified covariance matrix
Pc is a covariance exceeding both Pa and Pb.

While covariance union is not commonly used as an independent fusion method
but only for the fusion of states that are deemed to be statistically inconsistent we
use it here as a standalone fusion method in order to cleanly separate its performance
from the influence of a criterion for statistical inconsistency.
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Fig. 2 (a) Covariance ellipses (locus of points xT P−1x = 1) of A (dotted red ellipse) and
B (dashed blue ellipse) and their covariance intersection fusion result C (solid green ellipse) for
ω = 0.5. (b) Example of a covariance union for Pa (dotted red ellipse) and Pb (dashed blue ellipse).
For ξ̂u = (1 1)T det(Pc) is minimal (solid green ellipse)

The unified estimate C = {ξ̂c, Pc} can be determined by

Ua = Pa + (ξ̂c − ξ̂a) · (ξ̂c − ξ̂a)T (10)

Ub = Pb + (ξ̂c − ξ̂b) · (ξ̂c − ξ̂c)T (11)

Pab = max (Ua, Ub) (12)

ξ̂c = arg min(det(Pab)) (13)

As for the covariance intersection method an optimisation process has to be
performed to minimise a criterion of uncertainty such as determinant, trace, etc.
For the covariance union method, ξ̂c has to be determined, which represents a
multi-dimensional optimisation problem. In our simulation setup, we optimise
ξ̂c = (x y)T .

3.4 Computational Costs of Track-to-Track Fusion

Computational costs for the asynchronous Kalman filter and the track-to-track
fusion algorithms are measured in our simulation setup running on a 2 GHz Pentium
IV processor in eight test runs of 10,000 updates and predictions for each method.
The computation times are given in Table 1 as well as the relative time per update
and prediction as compared to the asynchronous Kalman filter.

The measured computational costs in Table 1 show that the use of cross
covariance approach performs at the smallest computational cost, followed by
covariance intersection. The asynchronous Kalman filter requires slightly more
computational resources, but far less than the covariance union method. Note that
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Table 1 Mean absolute and relative computation times for the asynchronous Kalman filter and the
track-to-track fusion algorithms

Method Absolute [ns] Relative

Async. Kalman 151.75 1.00
Use of cross cov. 103.95 0.69
Cov. intersection 132.30 0.87
Cov. union 397.50 2.62

the multi-dimensional optimisation for the covariance union has been implemented
in a preliminary way using simple gradient descent. It can clearly be sped up using
more sophisticated multi-dimensional minimization techniques such as Nelder-
Mead, etc.

4 Evaluation

Evaluation of the Track-to-Track Fusion algorithms discussed in Sect. 3 is per-
formed using our simulation setup. In the following two effects are discussed: the
effect of sensor cross-correlation and the sensors’ auto-correlation.

4.1 Cross Correlation

The adverse effect of correlated input sources is a major problem in track-to-track
fusion. We use our simulation setup to evaluate the performance of three different
track-to-track fusion algorithms and compare their performances to that of a stan-
dard asynchronous Kalman filter. Towards this end, we determine the RMSE at the
outputs of both sensor Kalman filters. The inter-sensor (track-to-track) correlation
of the errors is computed numerically over entire simulation runs by comparing
the sensor outputs to the reference trajectories. Track-to-track fusion results are
evaluated in the error computation module by comparing the reference trajectory
to the fusion results. The resulting overall RMSE values for an individual test run
are plotted against the measured track-to-track correlation in Fig. 3

It can be seen from Fig. 3 that the asynchronous Kalman filter performs well,
that is with a lower RMSE value than both input tracks, for most test runs with a
cross-correlation ρ < 0.15. However, for input tracks with a correlation ρ > 0.15,
the fusion errors become higher than the RMSE of both input vectors. On the other
hand the errors of the track-to-track fusion methods are smaller than those of the
Kalman filter with the exception of covariance intersection at small correlations;
their range is also smaller.

The mean and median RMSE values for 2,000 test runs over 40 s can be seen
from Table 2. Considering the mean RMSE values, the use of cross covariance
algorithm yields the lowest RMSE, followed by covariance union, covariance inter-
section, and finally the asynchronous Kalman filter.
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Fig. 3 Root mean squared errors (RMSE) of track fusion results and input tracks Track 1 and Track
2 depending on the cross correlation of the latter. Due to considerably differing RMSE values of
the asynchronous Kalman filter and the other fusion algorithms two diagrams with differing RMSE
ranges are used

Table 2 Mean (median) Root mean squared error of all test runs, test runs with low cross-
correlation and high-cross correlation

Method Overall −0.2 < ρ < 0.2 0.2 < ρ < 0.6

Async. Kalman 0.283 (0.317) 0.181 (0.138) 0.369 (0.358)
Use of cross cov. 0.151 (0.150) 0.131 (0.129) 0.167 (0.164)
Cov. intersection 0.189 (0.187) 0.178 (0.176) 0.199 (0.198)
Cov. union 0.156 (0.156) 0.137 (0.134) 0.172 (0.170)

4.2 Auto Correlation

Apart from the cross-correlation between the two Kalman filter tracks, the auto-
correlation of each Kalman track is determined numerically assuming ergodicity.
The auto-correlation for the position and velocities of both Kalman sensor tracks is
drawn against the time difference in Fig. 4.

The auto-correlation plot in Fig. 4 is indicative of a Gauss-Markov process of
second order or higher, as is expected from the third order (white noise jerkmodel)
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Fig. 4 Auto-correlation coefficient ρ of Kalman filter tracks Track 1 and Track 2 respectively
drawn against the time difference δt
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dynamics of the underlying Kalman filter. The degree of auto-correlation is
significant since even after 0.25 s the auto-correlation coefficient exceeds 0.5 for
both sensors.

Therefore the assumption of temporal independence does not hold for the
Kalman filter tracks which are used in the the track-to-track fusion process. This
property does not affect the discussed track-to-track fusion algorithms as these
perform the fusion exclusively on the most actual track updates. However, the
asynchronous Kalman filter assumes temporal independence which is clearly not
the case for the given setup. Those temporally correlated measurements can be
“decorrelated” in a Kalman filter by augmenting its dynamical model by a shaping
filter (see e.g. [11]). The shaping filter can for example be identified by fitting the
autocorrelation function of linear models of increasing order to the numerically
determined autocorrelation graphs of Fig. 4.

5 Conclusions and Outlook

We presented an assessment of a standard Kalman filter applied to tracked sensor
data of unknown correlation versus several well-known algorithms for track-to-track
fusion. Tracked sensor data were evaluated for inter-track correlation as well as for
auto-correlation.

Among the three track-to-track algorithms, the use of cross-covariance returned
the best quality of fusion results with respect to RMSE. Moreover, the run time
of the use of cross-covariance was the lowest of the four fusion methods. Covari-
ance intersection required the second fastest runtime with a RMSE that was lower
than the Kalman filter but higher than both use of cross covariance and covariance
union. The covariance union algorithm showed RMSE values comparable to the
use of cross-correlation albeit at a considerably higher computational cost. The
standard Kalman filter performs well for small inter-track cross-correlations how-
ever for large cross-correlations the RMSEs are a factor of 2–3 larger than for the
track-to-track correlation methods. Its computational cost is between those of use of
cross-covariance and covariance intersection, and the cost for covariance union.

The poor performance of the Kalman filter at large correlations was expected.
More interesting is the ranking of the track-to-track fusion methods with respect
to RMSE: as was observed in [10], covariance intersection is a conservative fusion
method that can be improved if partial knowledge of cross-covariance can be incor-
porated. Hence the better results for the use of cross-covariance. Perhaps more
unexpectedly, covariance union yields results better than covariance intersection
and comparable to those of use of cross-covariance. Due to the application of non-
random jerk during the vehicle motion (cf. Sect. 2.1) statistically inconsistent sensor
states1 might arise that are better taken care of by covariance union than by covari-
ance intersection.

1 Statistical inconsistency of two states representing the same physical entity can for example be
characterized by a threshold for the Mahalanobis distance (cf. [5]).
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The auto-correlation of both sensor tracks have been evaluated to be significant,
exceeding 0.9 for a single fusion cycle of 40 ms and 55 ms, respectively. Auto-
correlation does not affect the track-to-track fusion algorithms investigated in this
paper, as they do not include past states and covariances. The detrimental effect of
autocorrelated measurements on the Kalman filter is due to its assumption of the
whiteness of the measurement noise. The Kalman filter can, however, be improved
by using an augmented state that includes a model of the autocorrelation dynam-
ics [11]. The exact system identification and its incorporation into the Kalman filter
constitutes future work.

While the numerical study presented in this paper gives an indication of perfor-
mance improvements using track-to-track fusion for automotive applications, many
simplifying assumptions about vehicle dynamics, sensor characteristics, sensor fil-
tering, etc have been made. The next step will be the implementation of the above
track-to-track algorithms in a test vehicle and their performance assessment in real-
istic traffic scenarios using real sensor data.

6 Appendix

6.1 Vehicle Dynamics

The reference vehicle trajectory is characterized by a six-dimensional state vector

ξ = (x y ẋ ẏ ẍ ÿ)� (14)

The dynamical model is a discrete-time counterpart white noise jerk model [12]

ξ (k + 1) = F(k + 1, k)ξ (k)+ G(k + 1, k)ν(k) (15)

where

F(k + 1, k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 Δtk 0 Δt2
k

2 0

0 1 0 Δtk 0 Δt2
k

2
0 0 1 0 Δtk 0
0 0 0 1 0 Δtk
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

G(k + 1, k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δt3
k

6 0

0 Δt3
k

6
Δt2

k
2 0

0 Δt2
k

2
Δtk 0
0 Δtk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)
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with Δtk = tk+1 − tk . The two-dimensional stochastic process vector ν(k) ∈ IR2

models the process noise of the vehicle dynamics. It is a white, Gaussian process
with cov (ν(k)) = V = diag(10, 10)

(
m
s3

)2 ∀k. In our simulation the state ξ is
updated every 1 ms using Eq. (15).

This model is also referred to as CA model in Fig. 4. The CV model used in the
track-to-track predictions is a truncated CA model.

6.2 Sensor Measurements

Sensors 1 and 2 are assumed to measure position only, hence the output equation
for the Kalman filter reads

zi (k) = H (k )̂ξi (k)+ wi (k) i ∈ {1, 2} (17)

where zi (k) are the measurements, ξ̂i (k) are the internal states of the sensor Kalman
filters and wi (k) are two-dimensional stochastic processes simulating the sensor
noise. The output function is given by

H (k) =
(

1 0 0 0 0 0
0 1 0 0 0 0

)

The noise processes are characterized by

cov (w1(k)) = W1 = diag(0.25, 0.25) m2 ∀k

cov (w2(k)) = W2 = diag(0.16, 0.09) m2 ∀k (18)
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Effective and Efficient Communication
of Information

Jan Willem Marck, Leon Kester, Miranda van Iersel, Jeroen Bergmans and
Eelke van Foeken

Abstract Research fields such as Network Enabled Capabilities, ubiquitous
computing and distributed sensor networks, etc. deal with a lot of information
and a lot of different processes to fuse data to a desired level of situation awareness.
Already quite some research is done in applying information theoretic concepts to
sensor management. Effective communication between functional components in
the fusion hierarchy can be achieved by combining these approaches. We propose a
method that makes the interaction between different fusion processes more efficient
and effective. This is particularly useful in situations with costly or overused
communication facilities.

1 Introduction

At the moment a great amount of research is done in the fields of Network Enabled
Capabilities, ubiquitous computing and distributed sensor networks. A common
theme is that a lot of information is available or is extracted from the environment
and that there are processes that fuse this information to reach a desired level of
situation awareness. There are at least two distinct approaches to these kind of
problems. One is data fusion, that develops information fusing architectures and
design principles for such systems. The other is sensor management, focusing on
information quality and intelligent choices on when to use which sensor. Our work
tries to bridge the gap between these two approaches, as they are related and strongly
interdependent.

Several architectures [1–3] are developed for describing and designing large,
scalable, modular fusion systems, that need to provide fused data according to some
(implicitly or explicitly given) information need. The Joint Directors of Laboratories
(JDL) data fusion model [3] is perhaps the most well known. The Networked Adap-
tive Interactive Hybrid Systems (NAIHS) model [1, 2] builds upon this to describe
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the interactions between different functional components (human or machine) more
completely. We will use the NAIHS model throughout this paper as a guideline.

Extensive research is done in information theoretical approaches to sensor man-
agement [4, 5]. Less research is done [6] in managing different functional compo-
nents e.a. combining the sensor management approach on higher level sensor fusion
processes, while this is just as important in systems with distributed processes.

In distributed, networked systems various functional components exist. Various
properties determine the interaction between those functional components. This
interaction determines how effective the system complies with the required Situation
Awareness (SA). Some of these properties are:

• bandwidth,
• update rate,
• dealing with costly or limited resources,
• scalability,
• dealing with irrelevant information/communication,
• when to transmit or request information.

The common denominator in these properties is that transmission and processing of
irrelevant information is undesired and causes bad performance.

In Sect. 2 the theory of our method is explained. Section 3 describes two experi-
ments and Sect. 4 discusses results from these experiments. Section 5 concludes this
paper.

2 Theory

Consider a component A that has expressed a certain need for data. It requests this
service to deliver data from other processes called B1 . . . BN (see Fig. 1). The pro-
cesses A and Bi are for example components in different NAIHS or JDL levels. In
this paper we will study how the communication between consumer A and providers
Bi can be minimized so that only relevant information is transmitted.

Process A, the consumer has a certain information need. For this A has to acquire
relevant information from other processes B1,...,N , the provider processes. The com-

Fig. 1 Process A requests
data from multiple providers
Bi to get information
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munication between A and Bi should be optimized for optimal performance of
process A with respect to the communication costs. How should be decided when
process Bi sends information to A? Somehow A should express its information need
in such a way that Bi can decide when the gains outweigh the costs of transmitting
information.

We denote the state of process A by X A. Z Bi is the information in process Bi in
which A is interested. The contributional value of Z Bi to A can be determined by
comparing state P(X A) with and without incorporating Z Bi . A widely used method
for this is the Kullback–Leibler divergence (KLD) [7] between the probability func-
tions: P(X A) and P(X A|Z Bi ) Eq. (1):

Di = DK L (X A|Z Bi ||X A)

=
∑

z∈Z Bi

∑
x∈X A

P(x |z) log
P(x |z)

P(x)
. (1)

Di is the KLD in process A caused by the knowledge of Z Bi . Z Bi is the proba-
bility mass function (PMF) of the information requested by process A. Z Bi is only
known in process Bi . Bi should decide when to transmit it to A. X A is a PMF that
describes the state of process A and X A known in process A only.

If Z Bi does not have impact on state X A (low KLD), the information is irrelevant
to transmit or process. Ignoring irrelevant information makes all concerned pro-
cesses more cost effective. Z Bi is sent by process Bi to A when DK L (X A|Z Bi ||X A)
exceeds a threshold function C(·) as in Eq. (2):

DK L (X A|Z Bi ||X A) > C(·). (2)

This cost function can describe the amount of bytes transmitted, the battery
power used for communication or it can be there to allow information with a certain
minimum impact on X A. Or supply and demand could set a value to C(·). For the
sake of simplicity we keep C(·) constant throughout this paper and consider it known
by all processes.

2.1 The Problem

To calculate the KLD, knowledge of process A, its state X A and information Z Bi

is necessary. The processes Bi and A each contain only a part of the necessary
information to calculate the divergence. Process A has up-to-date knowledge of state
X A and about its own process. Process Bi has the up to date knowledge of Z Bi and
should know when to send this to A.

It is undesirable for Bi (the provider) to calculate the divergence because this
requires intricate knowledge of process A (the consumer) and state X A. This would
mean that the complete functionality of A is replicated in Bi . This will turn the sys-
tem into a monolithic construct instead of a scalable, adaptive and modular system
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as suggested by the NAIHS architecture [2]. When A needs multiple processes Bi to
fulfill its task, placing the functionality of A in every Bi will not solve the problem,
because the information from the other Bi processes is still needed.

Also it clearly is not possible for process A to determine the divergence before
Z Bi is transmitted.

The remaining possibility is that A and Bi each calculate the divergence par-
tially. The KLD is a function of X A and Z Bi . When X A can be marginalized out of
the KLD. Process A can calculate the marginal over X A and send this over to Bi .
Subsequently Bi determines the divergence for a current Z BI to asses whether it is
to be sent.

This way, the divergence in the state space of the consumer is mapped into that
of the provider. In other words A paraphrases its request to Bi into a function and
sends this to Bi . Using this function Bi calculates the KLD and determines whether
or not to send Z Bi .

2.2 Splitting the Divergence

To calculate to divergence in two steps it has to be split in two separate parts. This
is done in the following way. Eq. (1) is rewritten by using Bayes’ rule and splitting
the logarithm. Factors that depend on z only are moved out of the sum over x .

Di =
∑

z∈Z Bi

1

P(z)

∑
x∈X A

P(z|x)P(x) log P(z|x)

−
∑

z∈Z Bi

log P(z)

P(z)

∑
x∈X A

P(z|x)P(x) (3)

Di =
∑

z∈Z Bi

Ei (z)

P(z)
− Fi (z) log P(z)

P(z)
. (4)

The sums Ei (z) and Fi (z) are the parts of the KLD that are calculated by A and
subsequently sent to Bi :

Ei (z) =
∑
x∈X A

P(z|x)P(x) log P(z|x) (5)

Fi (z) =
∑
x∈X A

P(z|x)P(x). (6)

Using Ei and Fi process Bi can now calculate Di and determine when to send an
update to A. In Eq. (6) state X A is marginalized out of the joint probability over
both X A and Z Bi . From the result Fi be interpreted as the estimation of Z Bi made
by process A. We will use this interpretation later on.
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2.3 Updating Ei and Fi

It is the responsibility of process A to keep Ei and Fi up to date in Bi . Ei and Fi

change whenever X A changes. But this change will not always be a large change.
It is not always relevant to communicate a new Ei and Fi if they have not changed
significantly since their last update. A method is needed to decide when to transmit
Ei and Fi .

The following is a working heuristic for the experiments we performed to solve
the problem of when to update Ei and Fi . If process A receives an update Z Bi it
calculates Ei and Fi for the Bi that sent information Z Bi . Subsequently process A
transmits Ei and Fi to Bi . This results in an extra communication overhead. Process
A than waits until it gets new information. Then A repeats this process.

3 Experiments

We illustrate the method described above using two experiments. In the first experi-
ment only one process, B1, is used. In the second experiment two processes, B1 and
B2, are used to illustrate the method.

Real world problems or more realistic problems usually contain continuous
spaces. The experiment is designed to make an as simple as possible proof of con-
cept. For this a discrete environment is used.

3.1 Experimental Setup

A single target is moving in one dimensional (1D) space. The space in which the
target is moving is divided into three sectors (Fig. 2). The target cannot move out
of the three sectors. The track is generated by combining various random sinusoidal
curves to simulate a more or less unpredictable target motion.

Process A has to report in which sector the target is and the state of A, X A con-
sists of three probabilities, for each sector the probability that the target is in that
sector. To decide in which sector the target is A uses process Bi to get the position
information Z Bi . To accurately report the sector not every position update from Bi

is useful. If the target is in the middle of a sector a small change of position will not

Fig. 2 A target moves
through three sectors on a
random path T

X
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Fig. 3 Part of the sequence of segments that contain the histogram of Z Bi

affect state X A as much as if the target would be near a sector border. Preferably the
Bi processes only communicate information Z Bi to A when it is relevant A.

The 1D space of Z Bi is divided into 150 equal segments. Each Process Bi is
capable of monitoring a part the world, a sequence of the segments. The area covered
by each process may overlap, like sensors with overlapping field of views. Z Bi is
a histogram with each element describing the probability that the target is in this
element (Fig. 3)

The state of process A, X A, consists of the three probabilities that the target is in
each respective sector. To calculate X A at each iteration A maintains also a world
size histogram of where the target might be. If A receives Z Bi than this histogram
incorporates Z Bi otherwise A increases the uncertainty of the position estimate. In
other word process A tries to map Z Bi into its state space, X A.

In the experiments the partial divergences, Ei and Fi , are both vectors with the
length of Z Bi . Both Ei and Fi are immediately calculated and send to Bi by A, when
A receives Z Bi . This results in a communication overhead with twice the size of the
amount of Z Bi communication.

Both experiments follow the same setup. The following run is done for both. The
target moves with a random track over the sectors. Each time step X A is evaluated
with and without communication. This is done to compare the case with “relevant”
communication to the one with 100% communication. In both experiments such an
example run is used to illustrate the method.

Next a more encompassing variant is done. The run is done multiple times in
sets. Each subsequent set has a slightly higher cost function C(·). This is done to
illustrate the quality of less but “relevant” communication.

3.2 Experiment 1

In the first experiment one process B1 observes all three sectors using 150 segments
as is shown in Fig. 4. First an example track is given and explained. Next the experi-
ment is done repeatedly with a higher communication cost for each subsequent run.
This results in a decrease in communication and an increase in the proportion of
sector misclassifications. The amount of sector misclassifications is plotted against
the amount of communication cost, both relative to the case where B1 communicates
its data every time step.
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Fig. 4 Process A requests
information from a single
process B1. Process B1

covers the entire world using
150 segments

E1, F1

(a) Processes (b) Space mapping

A

ZB1

B1

3.2.1 Results Experiment 1

The target motion is shown in Fig. 5. The crosses represent the times that process
B1 communicates information Z Bi to process A. In this run of a 500 iterations B1

sends a total of 58 updates to A.
For this case, Fig. 6 shows the estimation made by A in which sector the target

is located. In a thousand iterations there are two misclassifications. These are small
delays of a single iteration in deciding which the most probable sector is.

Figure 7 illustrates the probabilities of X A of this run with relevant communica-
tion (b) set out against the same run but with 100% communication (a).

When the communication cost is varied, the amount of Z Bi transmissions deter-
mines the proportion of sector misclassifications. This is shown in Fig. 8. With a
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Fig. 5 An example run and the times that process B1 communicates with process A
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Fig. 6 The correct and faulty sector classifications for the target motion from Fig. 5
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Fig. 7 Sector probabilities with 100% communication (a) and with limited communication (b) for
the target motion from Fig. 5
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Fig. 8 The communication costs are varied. The amount of communication is plotted against the
proportion of erroneous sector classifications

high communication cost there is less communication and more sector misclassi-
fications. With a low communication cost there is more communication and less
misclassifications.

3.2.2 Conclusion Experiment 1

The amount of communication of Z Bi can be reduced by at least a factor ten with
only small errors in sector classification. Including Ei and Fi overhead this results
in a decrease of 70% of communication, compared to the case that Z Bi is always
communicated and no Ei and Fi communication is necessary. The method avoids
irrelevant communication and decides to communicate when the target is close to
sector borders, resulting in a significant reduction of communication.
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3.3 Experiment 2

In the second experiment two processes Bi are used (Fig. 9). Both cover two out of
three sectors. Firstly we will show the algorithm with two B processes. Next, the
same experiment is done repeatedly and the quality of sector classification is plotted
against the amount of communication.

Fig. 9 Process A requests
information from two
processes B1 and B2.
Together processes B1 and B2

cover all 150 segments

E1, F1
E2, F2

(a) The Processes. (b) The space mapping.

A

ZB1

ZB2

B1 B2

3.4 Ei , Fi Transmission Timing

The heuristic used in the former experiment for deciding when to transmit Ei and
Fi does not work always. If the target moves out of the field of view of a given Bi ,
both vectors Ei and Fi contain only very small values. This results in a small Di ,
despite a significant values of Z BI . This results in a shutdown of the process Bi .

To deal with a stopped process that has become relevant again, process A has to
decide at a certain moment that process Bi may supply relevant information once
again and that it should be restarted. This is done in following way.

First the target moves out of the field of view of the process Bi . A transmits
an Ei and an Fi close to zero, stopping process Bi . A determines from now on
in which sector the target is with information from the other and relevant process.
The term Fi as calculated in A with Eq. (6) is the estimation from A of Z Bi . If the
sum over Fi for a certain stopped Bi grows larger than a given threshold (Process
A estimates that the target is moving into the field of view of Bi ), Ei and Fi are
recalculated and send the process Bi , effectively restarting the process by indicating
a more significant information need.

3.4.1 Results Experiment 2

Figure 10 illustrates a track with plotted communications from the processes Bi , and
the restarts from A. The processes Bi communicate with process A near the sector
borders.

Figure 11 shows the sector classifications for the target motion from Fig. 10. The
behavior is very similar to the case of a single process B1.

Figure 12 shows the sector probabilities, X A. With 100% communication (a) and
limited communication (b). Again this is quite comparable to the case with a single
process B1.
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Fig. 10 An example track with communication from processes B1, B2 and A. Process B1 covers
the lower two sectors and process B2 covers the upper two sectors
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Fig. 11 Good and erroneous sector classifications for the target motion from Fig. 10

0 100 200 300 400 500 600
0

0.5

1

Time

Sector 1
Sector 2
Sector 3

0 100 200 300 400 500 600
0

0.5

1

Time

Sector 1
Sector 2
Sector 3

(a)

(b)

P
(X

A
)

P
(X

A
)

Fig. 12 Sector probabilities with 100% communication (a) and with limited communication (b)
for the target motion from Fig. 10



Effective and Efficient Communication of Information 93

0% 2.5% 5% 7.5 10% 12.5%
0

0.05

0.1

0.15

0.2

0.25

Percentage of possible ZBi communication

P
ro

po
rt

io
n 

of
 s

ec
to

r
m

is
cl

as
si

fic
at

io
ns

.   

 

 

high comm. cost

low comm. cost

Fig. 13 Like Fig. 8. The communication cost is varied. The proportions in error sector classifica-
tions is set out against the percentage of communicated Z Bi . The over head of communicating Ei

and Fi adds roughly 1% of communication

The elaborate variant of this experiment is depicted in Fig. 13. The communi-
cation cost is varied and the amount of Z Bi transmissions is set out against the
proportion of sector misclassifications.

3.4.2 Conclusion Experiment 2

The amount of Z Bi communication can be reduced to 7.5% for each process Bi with
only small errors in sector classification. Note however that each process covers
only two thirds of the area. The 7.5% is slightly more than two thirds of the 10%
of Experiment 1. This is caused by both processes sending the same information.
The probabilities over the sectors are negatively influenced by reduced communi-
cating. Process A sends out restarts to either process Bi in 1% of all iterations. As in
the first experiment the method prevents unnecessary communication and increases
communication when the target is close to sector borders.

Another interesting phenomenon can be observed in Fig. 10 when the target
approaches a sector border close to the field of view of Bi . The provider communi-
cates its measurements sooner than it would for a border that lies in its field of view
completely. The characteristics of the divergence that causes this will be looked at
in future work.

4 Conclusion

In both experiments the method leads to a reduction of the communication of
provider to consumer. A downside is that the Ei and Fi overhead is significant as
well. We believe that an improved heuristic will be able to limit this overhead.

In both experiments there are some rare degenerate cases where process A does
not notice a sector transition for an extended period. This is caused by an imperfect
transformation of the KLD in consumer space to provider space. In Fig. 14 a typical
degenerate case is depicted. Around iteration 200 the KLD goes up, while Di goes
down. This results in a period where no communication takes place at a point where
the provider clearly has to communicate in order to comply with the information
need of its consumer.
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Fig. 14 Di calculated in space of the provider and compared to the actual divergence. The upper
graph (a) is the actual divergence. The lower graph (b) is the same divergence as calculated by
process Bi . The more these are alike, the better the method should work

One important aspect of mapping the divergence from consumer space into
provider space is that resolution and/or dimensionality in both spaces will differ.
In Ei and Fi Eqs. (5) and (6) the term P(z|x) translates the coarse resolution of X A

into the finer resolution of Z Bi . For a given x ∈ X A (one of the three sectors) this
results in a uniform piecewise probability distribution in Z Bi space. This uniform
distribution is compared with the more precise Z Bi from Eq. (4). The fact that the
estimation of Z Bi , Fi , and the actual Z Bi have differently shaped densities causes a
big difference in Di as calculated in Bi and the actual divergence. This is depicted
in Fig. 14.

For a particular consumer/provider pair this mapping problem has as result that
Di must be scaled by an unknown factor and it has to be manually set. For the exper-
iment this works, but this makes it hard to design a cost function that is applicable
on a general provider/consumer pair.

When the method is better equipped to deal with these transformation errors, the
communication needed will decrease.

5 Discussion and Future Work

We have shown that the method proposed provides a way to communicate only rele-
vant information between different functional components. This results in a signifi-
cant reduction of communication and enables the system to operate more efficiently
and effectively.
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If both consumer and provider use the method described in this paper, the
provider process can determine the relevance of the information it could provide
without having to understand the consumer process. This is an important aspect
because it allows distributed, modular and scalable systems, without having to deal
with an overload of communication. It enables the effective service oriented com-
munication between functional components as the described in the NAIHS model.

Another aspect is that the amount of irrelevant information exchanged in the
system is minimized. It is clear that this method is particularly useful in situations
with costly or overused communication facilities. In larger systems where informa-
tion goes through multiple processes, the method will have more impact because if
irrelevant information is removed in one functional component, it will not be passed
on to the next functional component.

5.1 Future Work

The proposed method can be improved in a number of aspects. A better heuristic for
the updates of Ei and Fi , could reduce the amount of communication. More impor-
tantly, a better understanding of mapping the divergence into representation space
of the provider is necessary to extend the method to more complex applications.
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Most Probable Data Association with Distance
and Amplitude Information for Target Tracking
in Clutter

Taek Lyul Song

Abstract In this paper, a new target tracking filter combined with data association
called most probable and data association (MPDA) is proposed and its performance
is evaluated by a series Monte Carlo simulation tests. The proposed MPDA method
utilizes both distance to the predicted target measurement and amplitude infor-
mation as the probabilistic data association with amplitude information (PDA-AI)
method however, it is one-to-one association of track and measurement. All the
measurements inside the validation gate at the current sampling time are lined up
in the order of the closeness to the predicted target measurement. Probability that
the measurement is target-originated is evaluated for each measurement by utiliz-
ing order statistics. The measurement with the largest probability is selected to be
target-originated and the measurement is used to update the state estimate with the
probability used as a weighting factor of the filter gain. To accommodate the proba-
bilistic nature of the MPDA algorithm, a filter structure is developed. The proposed
MPDA algorithm can be easily extended for multi-target tracking.

Keywords Target tracking · Data association · PDA ·MPDAF · Clutter

1 Introduction

Accurate target state estimation in an adverse environment including false alarms
and ECM generated by a stand-off jammer is essential for modern missile combat
management systems. In this paper, a new target tracking filter combined with data
association called most probable data association (MPDA) is proposed and its per-
formance is compared with the probabilistic data association filter (PDAF) with
amplitude information.

The nearest neighbor filter (NNF) [1] and the strongest neighbor filter (SNF) [2]
are known for simplicity and easiness of implementation. However, performance
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of each filter algorithm in a cluttered environment is poor because each filter
may conclude unconditionally that the selected measurement is target-originated
in spite of clutter. To overcome such defects, the probabilistic nearest neighbor
filter (PNNF) [3], probabilistic strongest neighbor filter (PSNF) [4], PNNF with
m validated measurements (PNNF-m) [5], and PSNF with m validated measure-
ments (PSNF-m) [6] are proposed. Moreover, The PNNF-m and PSNF-m directly
utilize the number of validated measurements so that they have reliable performance
even for the case of unknown clutter density. The probabilistic data association filter
(PDAF) [7] and the PDAF with amplitude information (PDAF-AI) [8]are known to
have superior tracking performance at a cost of high computational complexity. The
MPDA algorithm utilizes both distance and amplitude information as the PDA-AI
algorithm however, it delves one-to-one track-to-measurement association unlike
one-to-many association of the PDA-AI algorithm. The proposed MPDA evaluates
the probabilities that the designated measurement is target originated for each mea-
surement in the validation gate. All of the measurements at the present instance are
lined up in the order of closeness to the predicted target measurement.

The measurement with the largest probability is selected to be target-originated
and the measurement is used to update the target state estimate of a filter struc-
ture called the most probable data association filter (MPDAF) with the probability
weight. Amplitude information is involved in the probability weight calculation
similar to the highest probability data association (HPDA) algorithm [9]. But the
HPDA utilizes order statistics based on signal intensity so that resulting algorithms
are different. In this paper, first, the MPDA algorithm and the corresponding filter
structure, MPDAF, are developed. The MPDAF is applied to single target tracking
problems and its performance is compared with that of the PDAF-AI by using a
series of Monte Carlo simulation runs.

The proposed MPDAF algorithm can be easily extended to multi-target tracking
problems with slightly increased computational complexities and it can also be used
to avoid track coalescence phenomenon that prevails when several close tracks move
together as is often seen in target tracking with the joint probabilistic data associ-
ation (JPDA) filter [10]. Finally, the MPDAF is applied to multi-target tracking in
clutter and its performance is compared with that of the JPDAF-AI.

2 Most Probable Data Association Filter (MPDAF)

Most probable data association (MPDA) proposed in this paper utilizes a set of
validated measurements at the present sampling instance. Similar to the HPDA algo-
rithm [9], it considers both distance and signal amplitude information to evaluate the
probabilities that the designated measurement is target-originated however, it uti-
lizes distance to the predicted measurement for ordering the validated measurements
whereas amplitude information is used for measurement ordering of the HPDA algo-
rithm. When the distance information alone is used for probability calculation, the
NN has the highest probability so that the NN measurement is always regarded to be
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target-originated. However, this is not the case when the amplitude information is
involved in addition to the distance information. Order statistics is applied to evalu-
ate the probabilities for selecting the most plausible target-originated measurement
based on probabilistic natures of distance and amplitude distributions for a target
and clutter.

The NN is defined as the measurement with the smallest normalized distance
squared (NDS) [1, 3, 5] among a set of m validated measurements Zk ={
z1

k, z2
k, · · · , zm

k

}
at the kth sampling instance. The measurements in the set Zk

are lined up with the NDS so that z1
k is the measurement of the NN and z2

k is the
second nearest measurement and so on. Each zl

k represents location information.
There are at most two events for each zl

k , l = 1, 2, · · · , m, except m = 0 case
where there is no validated measurements. The two events are as follows : (1) zl

k is
target-originated (Ml

T ) and (2) zl
k is from a false target (Ml

F ). When m = 0, we refer
the event of M0. The location information is n-dimensional and the residual repre-
senting the difference between location information and the center of validation gate
which is the predicted target measurement, The validation gate used is the ellipsoid

Gγ (k) = {νk : νT
k S−1

k νk ≤ γ
}

(1)

where νk is a zero-mean Gaussian residual with covariance of Sk for the true
measurement. The gate size of Gγ (k) is defined as

√
γ .

The NDS D of a measurement zk is defined as Dk = νT
k S−1

k νk . The volume of
the n-dimensional gate Gγ satisfies

VG = Cn |Sk |1/2 γ n/2 (2)

where C1 = 2, C2 = π, C3 = (4/3) π , etc.
The following assumptions are used in the paper.

(A1) The probability that the target is detected and inside the validation gate
is PD PG , where PD is the probability of target detection indicating that the
target signal amplitude exceeds a threshold τ ; and PG is the probability that
the target falls inside the validation gate.

(A2) The true target signal amplitude is the magnitude-square output of a
matched filter, so that the signal is χ2-distributed with probability density
function (pdf)

f1 (a) = 1

1+ ρ
e−a/(1+ρ) (3)

where ρ is the expected signal-to-noise ratio. The clutter signal amplitude
satisfies
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f0 (a) = e−a . (4)

PD in this case satisfies PD = e−τ (1+ρ), and the probability that the false
measurement signal exceeds the threshold τ is Pf a = e−τ .

(A3) The number of validated false measurements in the validation gate,
denoted by m F , is Poisson distributed with a spatial density λ such that

μF (m) = P
(
m F = m

) = (λVG)m

m!
e−λVG . (5)

(A4) The state prediction error ek = xk − xk for any given time k is a
zero-mean Gaussian process with a covariance Pk . Hence, ek is said to satisfy
N
(
ek ; 0, Pk

)
.

(A5) The validated false measurements at any time are independent and
identically distributed (i.i.d.) and uniform over the gate.

(A6) The location of a validated false measurement is independent of the true
measurement at any time and other validated false measurements at any other
time.

(A7) The randomized discrete events Ml
T , Ml

F , and M0 are considered to be the
ones without any correlation with the previous events.

(A8) The target is existing and can be detectable, that is, it is perceivable [11].

2.1 Probability Density Functions (PDFs)

The NDS of the lth measurement with the location information zl
k satisfies Dl =

νlT
S−1νl where the subscript k indicating the current time step is omitted for brevity.

The lth measurement has the amplitude information denoted here as al . The follow-
ing probability functions derived in Theorems are needed to calculate the probability
that each validated measurement is target-originated and to select most plausible
measurement. Moreover, they are used to derive the information reduction factor of
the proposed filter structure.

Theorem 1. With assumptions (A1)–(A8),
f (Dl, al |Ml

T , m) is given by

f (Dl, al |Ml
T , m) = 1

P(Ml
T , m)

f (Dl, al , Ml
T , m)1(γ − Dl), (6)

f (Dl, al , Ml
T , m) = PD

nVD

2D
N (D) f τ

1 (a)
(m − 1)!

(l − 1)!(m − l)!
×
((

D

γ

)n/2
)l−1

·
(

1−
(

D

γ

)n/2
)m−l

μF (m − 1)|D=Dl ,a=al (7)
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where f τ
1 (a) is the pdf of the target signal amplitude which exceeds the threshold

τ such that f τ
1 (a) = (1/PD) f1(a), N (D) is the Gaussian pdf of the target residual

under Ml
T .

Such that N (D) = e−D/2/
√|2π S|, and 1(x) is the unit step function defined 1 as

if x ≥ 0, and 0 for elsewhere.
P(Ml

T , m) of (6) satisfies

P(Ml
T , m) =

∫ γ

0

∫ ∞

τ

f (D, a, Ml
T , m)dadD . (8)

Proof. Omitted.
Note that (D/γ )n/2 is the probability of the event that a validated false measure-

ment has the NDS smaller than D while (1 − (D/γ )n/2) is the probability of the
complement event. The volume of the ellipse with the gate size

√
D is denoted as

VD = Cn |S|1/2 Dn/2.
For Ml

F , the lth measurement is from a false target and it has the location infor-
mation zl

k and the signal amplitude information al . There are four events concerning
the target location under Ml

F :

1. The target is located inside Gγ but not detected.
2. The target is located outside Gγ .
3. The target is located and detected inside Gγ but the NDS of the target is bigger

than Dl .
4. The target is located and detected inside Gγ but the NDS of the target is smaller

than Dl .

Based on these events, one can establish f (Dl, al |Ml
F , m) by using order statistics.

Theorem 2. With assumptions (A1)–(A8),

f (Dl, al |Ml
F , m) is given by

f (Dl, al |Ml
F , m) = 1

P(Ml
F , m)

f (Dl, al , Ml
F , m), (9)

f (Dl, al , Ml
F , m) = f τ

D(a)[(1− PD PG) fCl (D|m)μF (m)

+ PD(PG − PR(D)) fCl (D|m − 1)μF (m − 1)

+ PD PR(D) fCl−1 (D|m − 1)μF (m − 1)]|D=Dl ,a=al (10)

where fCl (D|m) is the conditional pdf of NDS D of the lth measurement under
the assumptions that the lth measurement is from a false target and the number of
validated false targets m F is m. fCl (D|m) is expressed as
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fCl (D|m) = m!

(l − 1)!(m − l)!

((
D

γ

)n/2
)l−1

n

2D

(
D

γ

)n/2
(

1−
(

D

γ

)n/2
)m−l

.

(11)

PR(D) in Eq. (10) is the probability that the target exists in the ellipsoid with gate
size

√
D such that [5]

PR(D) = nCn

2n/2+1πn/2

∫ D

0
qn/2−1e−q/2dq. (12)

The joint posterior probability P(Ml
F , m) is obtained by

P(Ml
F , m) =

∫ γ

0

∫ ∞

τ

f (D, a, Ml
F , m)dadD . (13)

Proof. Omitted.
Note that fcl (D|m−1) and fcl−1 (D|m−1) in Eq. (10) are obtained from fcl (D|m)

in Eq. (11) by replacing l and m with corresponding values.
It can be shown that

P(Ml
T , m)+ P(Ml

F , m) = (1− PD PG)μF (m)+ PD PGμF (m − 1) (14)

The result is equivalent to the probability that the number of validated
measurements is m.

The association probability that the lth measurement is from the true target is
denoted as βl and it can be derived from

βl = P(Ml
T |Dl, al , m)

= f (Dl, al , Ml
T , m)

f (Dl, al , Ml
T , m)+ f (Dl, al , Ml

F , m)
.

(15)

In the proposed algorithm, the measurement with the largest association
probability, say β S , is selected to be target-originated and the corresponding location
information zS

k is used for measurement update with the probability weight β S that
satisfies

β S = max
{
βl , l ∈ [1, m]

}
. (16)
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In order to obtain the updated error covariance matrices conditioned on M0 and
Ms

F where s is the argument of the selected measurement among the m validated
measurements, we need to have distributions of the NDS of the true target under
M0 and Ms

F . Under the event M0, there is no measurement in Gγ and the pdf of the
NDS D of the target-originated measurement satisfies [4, 5]

f (D|M0) =
(

nVD

2D

)
N (D)

{(1− PD1(γ − D)}
1− PD PG

. (17)

Under the event Ms
F , the selected measurement with the NDS D is not

target-originated. The pdf of Dt , the NDS of the target-originated measurement,
conditioned on Ms

F and m is needed for error covariance update.

Theorem 3. With assumptions (A1)–(A8) , the pdf of the Dt conditioned on Ms
F , m,

and the NDS D of the selected sth measurement is given by

f (Dt |D, Ms
F , m) = f (Dt , D, Ms

F , m)

f (D, Ms
F , m)

=

nVDt

2Dt
N (Dt )[(1− PD1(γ − Dt )) fCl (D, m)

+PD(1(γ − Dt )− 1(D − Dt )) fCl (D, m − 1)

+PD1(D − Dt ) fCl−1 (D, m − 1)]

(1− PD PG) fCl (D, m)

+PD(PG − PR(D)) fCl (D, m − 1)

+PD PR(D) fCl−1 (D, m − 1)

(18)

where the joint pdf fCl (D, m) is expressed from Eqs. (10) and (11) as fCl (D|m)
μF (m).

Proof. Omitted

2.2 MPDAF

Under M0 where there is no validated measurement in Gγ , the updated error
covariance for the target estimate xk is obtained from Eq. (17) as [4, 5]

Pk,M0 = Pk + PD PG(1− Cτg)

1− PD PG
K SK T (19)

where Pk is the predicted error covariance and K is the filter gain, and Cτg satisfies
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Cτg =
∫ γ

0 qn/2e−q/2dq

n
∫ γ

0 qn/2−1e−q/2dq
. (20)

Furthermore, the update error covariance under Ms
F can be obtained from Eq. (18)

and the result is described in Theorem 4.

Theorem 4. With assumptions (A1)–(A8), the updated error covariance for given
Ms

F with the NDS D of the selected sth measurement and m is given by

P
Ms

F

k (D) = Pk −KSK T + αKSK T (21)

where α satisfies

α =

λ(1− PD PGCτg)VD(VG − VD)
+PD(PG − PR(D)Cτ (D))(m − l)VD

+PD PR(D)Cτ (D)(l − 1)(VG − VD)

λ(1− PD PG)VD(VG − VD)
+PD(PG − PR(D))(m − l)VD

+PD PR(D)(l − 1)(VG − VD)

, (22)

and Cτ (D) is given by

Cτ (D) =
∫ D

0 qn/2e−q/2dq

n
∫ D

0 qn/2−1e−q/2dq
. (23)

Proof. Omitted
Note that the updated error covariance conditioned on Ms

T is equivalent to that
of the standard Kalman filter (SKF) such as Pk,Ms

T
= Pk − K SK T . With Pk,M0 ,

Pk,Ms
F
, and Pk,Ms

T
, we can establish, the updated error covariance for the MPDAF.

The following is the summary of the MPDAF algorithm.
The MPDAF algorithm

• Predicted Step
Identical to the SKF

• Update Step

A) For the case of M0

x̂k = xk

P̂k = Pk,M0

B) For the case of M0

x̂k = xk + Kβsνs

νs = zs
k − zk

P̂k = (1− βs)Pk,Ms
F
+ βs Pk,Ms

T
+ βs(1− βs)KνsνsT K T
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For the case of s = 1 and neglecting the amplitude distributions, the MPDAF
algorithm becomes identical to the PNNF-m algorithm of [5].

3 Simulation Results

In this section, performance of the MPDAF is compared with that of the PDAF-AI
by a series of Monte Carlo simulation studies. Filter states for planar tracking prob-
lems are composed of target position, velocity, and acceleration. The continuous
dynamic model is represented by

ẋ = Ax + Bw (24)

where x = (X, Y, Ẋ , Ẏ , ATX , ATY )T ,

A =

⎡
⎢⎢⎣

02 I2 02

02 02 I2

02 02 − 1

τS
I2

⎤
⎥⎥⎦ , B =

⎡
⎢⎣

0
0

1

τS
I2

⎤
⎥⎦ (25)

and the process noise w = (wX , wY )T is white Gaussian noise vector with
zero-mean and power spectral density of 2τSσAT

2 I2(m2/s4/Hz). It is assumed that
the Singer model represents target acceleration and the time constant τS = 15 s, and
σAT = 0.2(m/s2). The target location information zk is corrupted by a measurement
noise vector such that

zk = (I2, 02, 02)x + vk (26)

where vk is a zero-mean white Gaussian noise vector sequence with covariance of
400 m2 I2. The sampling time interval for target tracking is 0.1 s. The initial posi-
tion of the target is (7 km, 4 km) and the target moves with a speed of 380 m/s
and the heading angle of 30◦ and then executes a 1.5 g maneuver at 5 s. Table 1
shows the track loss percentages obtained from 100 runs of Monte Carlo simu-
lation. Simulation is done with various values of PD , ρ, and λ. The track loss is
declared if the estimation error in location estimation exceeds 10 times the standard
deviation of the measurement noise [12]. Judging from Table 1, the MPDAF has
similar performance to the PDAF-AI in general though the MPDAF shows even
better performance in low PD , low ρ, and high clutter density cases.

The MPDAF algorithm is easily extended to multi-target tracking environments.
The proposed MPDA for multi-target tracking utilizes a track-to-measurement
association matrix of which (i, j) element is β

j
i calculated from Eq. (15). The mea-

surements in the matrix are the validated measurements inside the validation gates of
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Table 1 Track loss percentages

Track loss percentages

ρ PD λ MPDA PDA-AI

0.0001 0 0
0.00015 0 0

20 0.9 0.00025 0 0
0.0003 0 0
0.0001 1 0
0.00015 0 0

10 0.7 0.00025 0 0
0.0003 1 0

5 0.7 0.0001 0 0
0.00015 1 2
0.00025 1 4
0.0003 1 2
0.0001 0 0
0.00015 1 0

15 0.7 0.00025 0 1
0.0003 0 0

the tracks which share common measurements. From the matrix, one can establish
possible combinations of one-to-one track-to measurement association. The score
gain used in this paper is the same as the one in [9] such that

J (θn) =
∑

(i, j)∈θn

β
j

i (27)

where θn is an event in the combinations. The event with the maximum score gain
is selected and the track and measurement pairs of the event with corresponding
β

j
i ’s are selected for weight update for the tracks. After finding the pairs, one may

reevaluate the association probabilities inside the validation gates, however, estima-
tion performance is almost same as the cases without the reevaluation. For practical
purpose, the reevaluation of association probabilities is not mandatory.

Table 2 is the summary of 100 runs of Monte Carlo simulation results of tracking
2 closely located targets. The numbers in the table indicate percentages. The results
are obtained for various values of PD and ρ. The clutter density of λ = 1.5×10−4 is
used for simulation. The initial position of first target is (30.5 km, 28.5 km) and it has
a speed of 380 m/s. with the initial heading angle of 40◦. The initial position of the
second target is (30 km, 29 km) and it has the same speed and initial heading angle
as the first target. The first target executes a 0.3 g maneuver at 80 s but the second
target does not maneuver. Target trajectories can be seen in Figs. 1 and 2. For most
part of the trajectories, the targets are located closely with a separation distance of
350 m, the sampling interval is chosen to be 1 s and the measurement noise covari-
ance is 2002 m2 I2. Table 2 indicates that the JMPDAF, which is the MPDAF with
the data association algorithm for the multi-target tracking environments, outper-
forms the JPDAF-AI especially in avoiding the track coalescence problem which is
a major drawback of the filters employing the PDA-type data association algorithm.
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Table 2 Performance comparison of the JMPDAF and the JPDAF-AI

JMPDAF JPDAF-AI

ρ PD Swap No swap Loss Coalescence Swap No swap Loss Coalescence

20 0.9 6 88 6 0 7 78 10 5
0.8 8 83 9 0 10 39 12 39
0.7 9 79 12 0 10 28 15 47

15 0.85 9 82 9 0 11 65 8 16
0.8 8 82 10 0 10 40 12 38
0.7 10 78 12 0 13 27 11 49

10 0.8 9 80 11 0 12 35 10 43
0.75 11 74 15 0 15 26 17 42
0.7 15 66 16 0 13 22 19 46

5 0.7 20 54 26 0 19 16 28 37
0.65 23 50 22 0 21 14 30 35

Moreover, the JMPDAF is shown to be a better solution for track-swap problems
and it also has better performance in terms of less track loss in general.

Figures 1 and 2 are examples of the true and estimated trajectories generated
by the JMPDAF and the JPDAF-AI respectively. For ρ = 10, PD = 0.7, and
λ = 1.5 × 10−4, the JMPDAF tracks the two targets with nice separation while
the JPDAF-AI has the coalescence problem. It is shown that the JMPDAF has better
performance especially for clutter environments with low PD and low ρ.

Fig. 1 The true and the estimated trajectories of the JMPDAF
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Fig. 2 The true and the estimated trajectories of the JPDAF-AI

4 Conclusion

In this paper a new filter called the most probable data association filter (MPDAF)
based on one-to-one track-to-measurement data association with distance and
amplitude information is proposed. The MPDAF selects the measurement with
the largest association probability whose calculation formula is derived from order
statistics established by ordering the validated measurements with distance infor-
mation. A series of Monte Carlo simulation studies indicates that the MPDAF has
similar performance to the PDAF-AI for single target tracking in clutter with less
computational complexities.

The proposed data association algorithm is extended to multi-target tracking
environments and the performance of the proposed filter is better than the JPDAF-AI
especially in avoiding the coalescence and swap problems.
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Simultaneous Multi-Information Fusion
and Parameter Estimation for Robust 3-D
Indoor Positioning Systems

Hui Wang, Andrei Szabo, Joachim Bamberger and Uwe D. Hanebeck

Abstract Typical WLAN based indoor positioning systems take the received sig-
nal strength (RSS) as the major information source. Due to the complicated indoor
environment, the RSS measurements are hard to model and too noisy to achieve
a satisfactory 3-D accuracy in multi-floor scenarios. To enhance the performance
of WLAN positioning systems, extra information sources could be integrated. In
this paper, a Bayesian framework is applied to fuse multi-information sources and
estimate the spatial and time varying parameters simultaneously and adaptively. An
application of this framework, which fuses pressure measurements, a topological
building map with RSS measurements, and simultaneously estimates the pressure
sensor bias, is investigated. Our experiments indicate that the localization perfor-
mance is more accurate and robust by using our approach.

1 Introduction

Indoor positioning systems recently attracted a lot of research efforts in both
academia and industry for their broad applications such as security, asset tracking,
robotics, and many others [1–3]. Many promising systems utilize the received signal
strength (RSS) of wireless LAN (WLAN) to infer the location information. These
systems have a big advantage in the installation and maintenance cost by using the
existing communication infrastructure. Numerous research results also indicate that
the WLAN positioning system suffers from the noisy characteristics of radio propa-
gation [3]. For example, in large multi-floor buildings, the location error often has a
large variance due to the complexity of indoor environment and insufficient number
of reachable access points (APs) [4]. Although adding more APs could improve the
performance, this solution implies higher installation costs. Another solution is to
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integrate other location related information besides the WLAN signal. For instance,
in our previous work [4, 5], MEMS sensors were used to enhance the localization
performance due to their small sizes and low prices.

To determine the user’s location, the model that maps the sensed measurements
(e.g., RSS, air pressure and etc.) to the location should be known. Most systems
assume that this model has an accurate analytical form and it does not change with
time. But in reality, the model parameters could be inaccurate and sometimes vary
over time and space. For instance, the air pressure is determined not only by the
altitude but also by some unknown environmental change, which could be modeled
as a spatial and time varying bias. Besides, the radio distribution should also be
accurately known and it could be temporally varying due to the changes of trans-
mission power or the movement of scatters.

This paper is intended as an investigation of using the Bayesian filtering frame-
work to fuse location-related information sources and simultaneously estimate their
unknown parameters, that is, to solve a joint state and parameter estimation prob-
lem. Since the localization problem is usually nonlinear, the exact Bayesian fil-
ter is in general intractable. Different approximate estimators like the Extended
Kalman Filter (EKF) [6], Unscented Kalman filter (UKF) [7], Particle Filter [8]
or Hybrid Density Filter [9] could solve this problem. Additionally, dual estima-
tion [10] or the expectation-maximization (EM) algorithm [11], which decouples the
state and parameter estimation into two different problems in a suboptimal way, can
also be used.

There already exists a class of self-estimation and calibration algorithms such
as simultaneous floor identification and pressure compensation [4], simultaneous
localization and learning (SLL) [3], and simultaneous localization and mapping
(SLAM) [12]. These algorithms have a strong requirement with respect to initial
conditions to ensure the convergence. Different from them, this paper aims to use
different information sources to teach each other so that the system is ensured to be
robust.

As an example application of the proposed framework, this paper simultaneously
fuses RSS measurements, a discrete topological map as well as pressure measure-
ments, and estimate the spatial and time varying pressure bias. The resulting poste-
rior joint probabilities are proven to be in a Gaussian-mixture form. For simplicity,
a dual estimation algorithm is applied, which takes a grid-based filter for location
estimation and a Kalman filter for parameter estimation respectively. Our experi-
ments in a typical multi-floor office building indicate that the location performance
is more accurate and robust by using this approach even given an inaccurate initial
condition.

The remainder of this paper is organized as follows: in Sect. 2, the general multi-
information fusion and parameter estimation problem is formulated. In Sect. 3, the
characteristics of the selected information sources are given. In Sect. 4, the specific
form of the Bayesian framework is derived given the information sources in Sect. 3.
Its solution by the dual estimation is described. Section 5 presents the experiment
setup and discusses the result. Finally, conclusions and an outlook to future work
are given in Sect. 6.
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2 Problem Formulation

The indoor positioning system can be modeled as a nonlinear and non-Gaussian
dynamic system. We use xk = [xk, yk, zk]T ∈ L to denote the 3-D location at time
k. L ⊂ R3 denotes the indoor location domain. ok =

[
o1

k , . . . , oN
k

]T ∈ O repre-
sents the sensed measurements from sensor 1 to N at time k, including RSS mea-
surements, pressure measurements and so on. O ⊂ RN denotes the oberservation
domain. γ k =

[
γ s

k, γ
m
k

]T
represents parameters in system model and measurement

model respectively. γ k belongs to the parameter domain P ⊂ RK , where K is
the parameter dimension. The whole system is described by the following system
equation

xk+1 = ak
(
xk, γ

s
k

)+ wk, (1)

and measurement equation

ok+1 = hk
(
xk+1, γ

m
k

)+ νk+1, (2)

where ak (·) is the system function, which updates the current state to the next state.
hk (·) is the measurement function, which relates the state to the measurements. wk

and νk represent system and measurement noise. The system can also be illustrated
by a graphical model in Fig. 1.

The Bayesian approach provides a recursive way to estimate the hidden state of
dynamic systems with the above form. It has also two steps: prediction step

f p
k+1 (xk+1) =

∫
L

f T
k

(
xk+1|xk, γ

s
k

)
f e
k (xk) dxk (3)

and update step

f e
k+1 (xk+1) = 1

ck
f L
k+1

(
ok+1|xk+1, γ

m
k

)
f p
k+1 (xk+1) , (4)

Fig. 1 A sensor fusion
graphic model for
localization problem
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where f p
k+1 (xk+1) is the predicted density at time k. f T

k+1

(
xk+1|xk, γ

s
k

)
is the tran-

sition density, which is given by

f T
k+1 (xk+1|xk, uk) = f w

k

(
xk+1 − ak

(
xk, γ

s
k

))
, (5)

where f w
k (·) is the density of the system noise at time k. f e

k (xk) is the posterior
density function at time k. ck is the normalization constant. f L

k+1

(
yk+1|xk+1, γ

m
k

)
is

the conditional likelihood density given by

f L
k+1 ( yk+1|xk+1) = f v

k+1

(
yk+1 − hk+1

(
xk+1, γ

m
k

))
, (6)

where f v
k (·) is the density of the measurement noise at time k.

If the parameters are not accurately known or vary with time, they can be also
regarded as states. So Eqs. (1) and (2) become

[
xk+1

γ k+1

]
=
[

ax,k
(
xk, γ

s
k

)+ wx,k

aγ,k (γ k)+ wγ,k

]
, (7)

and

ok+1 = hk
(
xk+1, γ

m
k

)+ νk+1. (8)

The joint state and parameter probabilities can also be derived by Bayesian frame-
work as the following

f p
k+1 (xk+1, γ k+1) =

∫
P

∫
L

f T
k (xk+1, γ k+1|xk, γ k) f e

k (xk, γ k) dxkdγ k, (9)

and

f e
k+1 (xk+1, γ k+1) = 1

ck
f L
k+1 (ok+1|xk+1, γ k+1) f p

k+1 (xk+1, γ k+1) (10)

Afterwards, the marginal posterior state and parameter densities are easily obtained
by

f e
k (xk) =

∫
P

f e
k (xk, γ k) dγ k (11)

and

f e
k (γ k) =

∫
L

f e
k (xk, γ k) dxk . (12)

The above equations provide a general framework for simultaneous state and
parameter estimation problem. Theoretically, many problems in the localization area
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can be solved by this framework, such as dynamical radio map estimation, sensor
bias estimation, motion parameter estimation and so on. In the following, we use
this framework to simultaneously fuse the RSS measurements, pressure measure-
ments and a topological map, and estimate the spatial and time varying bias for
pressure measurement. In this example application, one advantage is that the states
are estimated by two different information sources but the unknown parameter is
only related to one of them. So different from state and parameter estimation algo-
rithms, the two information sources can teach each other to ensure the convergence
and robustness of the final result.

3 Models of Information Sources

3.1 RSS of WLAN Signal

In WLAN based localization systems, RSS is most often used as the input of the
positioning algorithm because it is much easier to obtain than the time or the angle
information. The relation between the location and the RSS is modeled by the so-
called radio map function R := R (x), where x = [x, y, z]T is the 3-D location
vector. In theory, the radio map function follows the radio propagation rule. But
in reality, due to the complexity of indoor environment, the radio map function
has a very complicated form. As illustrated in Fig. 2, a real measured radio map
in a office building is hard to be described in an analytic way. So in practice, the
radio map function is usually modeled in a non-parametric way by a number of
selected grid points, that is, x ∈ [xi , yi , zi

]T
, where i = 1, 2, . . . , M is the index

of grid points. In addition, since the wireless channel is influenced by many factors,
for example, measurement noise, changing environment, and moving people, the
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Fig. 2 A radio map example in an office building
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Fig. 3 Temporal variation and histogram of RSS measurements in 6,000 s

measured signal power fluctuates with time as shown in Fig. 3, that is, r = R (x)+
� (x, t) + w, where � (x, t) could be regarded as an unknown spatial and time
varying parameter indicating the inaccuracy of radio map model and its temporal
variation; w is the measurement noise, usually regarded as a Gaussian as Fig. 3.
In this paper, for simplicity, we assume a non-parametric radio map model that is
accurately known and time invariant. Then the measurement equation for the RSS
measurement from AP n becomes

rn = Rn (x)+ wn, x ∈ [xi , yi , zi
]T

, i = 1, 2, . . . , M. (13)

3.2 Pressure Measurement from MEMS Barometric Sensor

As it is well known, the atmospheric pressure is a physical property strongly related
to the altitude. Assuming a constant temperature gradient of dT/dz, the altitude z
can be expressed as a function of pressure p using the following standard equation,

z = T0/ (−dT/dz) ·
[

1−
(

p

p0

)−dT/dz·R/g
]

, (14)

where T0 = 288.15 K and p0 = 101, 325 Pa are the reference temperature and
pressure, respectively. R is in standard conditions equal to 287.052 m2/s2/K; g is

equal to 9.82 m/s2. If the change in pressure
dp

p0
and temperature

dT

T
are small, the

above equation can be approximated as

dz = −dp · R · T

g · p0
(15)

which can be further modified to a linear function between p and z as
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p =
(
− po · g

T · R

)
︸ ︷︷ ︸

=α

·z + p′ + po · g · z′

T · R︸ ︷︷ ︸
=β

, (16)

where p′ and z′ are the reference altitude and pressure. Figure 4 shows the esti-
mated altitude using pressure measurements by a static barometric sensor and a
mobile barometric sensor, which moves in the same floor. We notice that the pres-
sure is varying both temporally and spatially. Fortunately, when we consider the
tracking problem, the pressure variation caused by horizontal moving and temporal
environmental change is relatively small and slow. So we can simply assume that
the pressure is only related to the height and a bias β (t), which is slowly varying,
that is,

p (t) = α · z + β (t) . (17)

3.3 Building Map

A building map is another very important information source. The positions of
obstacles, such as walls or doors, determine the possible routes where people can
move. Mathematically, the map influences the prior joint probability of f (x, y, z)
and the transition density f T (xk+1|xk).

In this paper, we represent the building map by a topological graph consisting
of a number of location points as shown in Fig. 5. These points are connected by
their spatial relation, that is, points which can see each other are connected. In this
way, the indoor environmental restriction such as walls, doors or floors can be easily
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Fig. 5 Example of a
topological map
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integrated. In addition, the topological graph can reflect the restriction to the loca-
tion, for example, the height z is limited to discrete floor heights except in some
special places such as stairs or elevators. With the topological graph, the location
transition density can be represented by a Gaussian distribution

f T
(

xi
k+1|x j

k

)
= N

(
ds (i, j)− v̄ ·Δt, (σv ·Δt)2) , (18)

where ds (i, j) is the shortest distance between xi and x j , which can be calculated
offline by Floyd’s algorithm [13]. v̄ is the mean of moving speed and σv is the
standard deviation of moving speed.

4 Bayesian Filtering for Simultaneous Localization
and Bias Estimation

In this section, the Bayesian framework are used to fuse all the information sources
in the last section and simultaneously estimate the parameter β (t). This is illustrated
by a graph model in Fig. 6. The system is described by the following system function

[
xk+1

βk+1

]
=
[

a (xk, m)+ wx,k

βk + wβ,k

]
(19)

and measurement function
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Fig. 6 A graphic model for
simultaneous
multi-information fusion and
pressure bias estimation

βk βk+1
xk

rk pk rk+1 pk+1

yk zk xk+1 yk+1 zk+1

m
m

[
rn

k+1
pk+1

]
=
[

Rn (xk+1)+ vn
r,k+1

α · zk+1 + βk+1 + vp,k+1

]
, (20)

where m represents the information from the building map; n = 1, . . . , N is the
index of AP; wβ, vr and vp are the noise terms for parameter prediction, RSS and
pressure measurements, following Gaussian distribution N

(
0, σβ

)
, N (0, σr ) and

N
(
0, σp

)
respectively. The corresponding posterior joint density function is hybrid,

which includes both a discrete state xi
k and a continuous state βk . This can be derived

as

f p
k+1

(
xi

k+1, βk+1
) =∑

j

∫
R

f T
k

(
xi

k+1, βk+1|x j
k , βk, m

)
f e
k

(
x j

k , βk

)
dβk (21)

and

f e
k+1

(
xi

k+1, βk+1
) = 1

ck
f L
k+1

(
rk+1, bk+1|xi

k+1, βk+1
)

f p
k+1

(
xi

k+1, βk+1
)
. (22)

Combining (18), (19) and (20),

f T
k+1

(
xi

k+1, βk+1|x j
k , βk, m

)
= f T

xi ,k

(
xi

k+1|x j
k , m

)
f T
β,k (βk+1|βk)

= N
(
ds (i, j)− v̄, σ 2

v

) ·N (
βk+1 − βk, σ

2
β

)
,

and

f L
k+1

(
rk+1, pk+1|xi

k+1, βk+1
)

= f L
r,k+1

(
rk+1|xi

k+1

)
f L

p,k+1

(
pk+1|zi

k+1, βk+1
)

=
N∏

n=1

N
(
rn − Rn

(
xi

k+1

)
, σ 2

r

) ·N (
pk+1 − α · zi

k+1 − βk+1, σ
2
p

)
. (23)
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Fig. 7 Illustration for dual
estimation
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Given the uniformly or Gaussian distributed initial joint density fk+1
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)
, the

hybrid posterior density f e
k

(
xi

k, βk
)

and f e
k (βk) both have Gaussian mixture form.

For each recursive step, the number of mixture components increases so that the
optimal analytical solution is not tractable. The algorithm proposed in [14] can opti-
mally reduce the number of Gaussian components and get the suboptimal solution.
Besides, particle filters are also used by some researchers to solve the similar prob-
lem. One problem using particle filters is that when the parameter is part of state,
the augmented state space model is not ergodic, and the uniform convergence result
does not hold anymore [15].

In this paper, we use another suboptimal algorithm, so-called dual estimation
[10, 16]. The idea of dual estimation is to separate joint state and parameter esti-
mation into two independent processes. As illustrated in Fig. 7, the grid based filter
is used to estimate the discrete location vector xk assuming the parameter βk is
known. The expectation of posterior xk is sent back to the parameter estimator,
which is a Kalman filter in our case. Afterwards, the estimated βk is sent again to
the state estimator. The dual estimation at time k stops either after a given number
of iterations or if the new state estimation is close enough to the old one. Note that
the dual estimation can be regarded as a generalized EM algorithm. Its convergence
to the suboptimal solution is guaranteed by its iterative optimization process [16].

Since only the posterior expectations of height and sensor bias instead of the
whole probability are exchanged between two filters, the dual estimation might
bring a large error if the posterior density function has a complicated form. But
in our case in most of the time the height z is limited to the discrete floor height,
the posterior of z tends to be unimodal. The pressure bias has also a Gaussian-like
shape. That assures the suboptimal dual estimation works well for our application.

5 Experiment Results

5.1 Experiment Setup

We evaluate our algorithm in a typical multi-floor office building depicted in Fig. 5.
Each floor has a area of 50 m× 80 m and has a similar structure like the left figure
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Fig. 8 Test environment and its topological graph for three floors

in Fig. 8. There are 14 access points installed on the first floor. We take three floors
for evaluation. Since APs only exist on the first floor, the 3-D localization error
could be large when users stay in the higher floors. A topological graph is built
automatically based on the chosen reference points. Here we only take the points
along the corridor, stairs, and elevator like the graph in Fig. 6. These points represent
the basic moving possibilities. The rooms can also be easily added to the graph if
some points in rooms are taken. The whole topological graph for three floors is
shown in Fig. 8. The RSS values at reference points are measured offline and their
noise parameters are also estimated according to the measurements. In online step,
we first walked in the corridor of the first floor and then went up to the second floor
by stairs, walked around in the second floor and finally went up to the third floor
by elevator. While moving, the RSS and pressure measurements by the barometric
sensor were recorded simultaneously.

5.2 Results

The parameters taken in our test are list in Table 1. Table 2 shows the comparison
of the nearest neighbour (NN) algorithm that only uses RSS measurements, the
fusion algorithm (Fusion) that integrates the RSS, air pressure, and topological map
using grid filter and an assumed sensor bias, and the algorithm that simultaneously
estimates the location and parameter. The criteria for the comparison are the mean

Table 1 The values of parameters

Parameter Value

σr 4 dB
v̄ 0 m/s
σv 2 m/s
σp 6 Pa
σβ 3 Pa
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Table 2 3-D localization results
NN Fusion Fusion and bias estimation

Mean of 3-D error (m) 8.2 6.5 6.1
Standard deviation of 3-D error (m) 7.8 6.6 6.3
Mean of altitude error (m) 1.2 0.2 0

and standard deviation of 3-D localization errors as well as the mean altitude error.
Figure 9 plots the altitude error by different algorithms. Figure 10 compares the true
bias with estimated bias by simultaneous localization and bias estimation algorithm.

From Table 2 it can be seen that both the 2-D and the 3-D localization per-
formances are improved by fusing more information sources. By simultaneously
adapting the bias, the altitude error can be reduced to zero, that is, perfect floor
identification.

5.3 Sensitivity Analysis

The algorithm in our previous paper [4] can also provide very good performance for
floor identification. But since it is actually a self-calibration algorithm, the initial
condition is very important. Given the wrong initial condition, the result can be
totally wrong. The algorithm in this paper uses the RSS measurement to teach the
bias estimation and hence make sure that the bias can be tracked without any limi-
tation for initial value. To validate this, we add an artificial pressure bias −60 Pa to
the real pressure measurement so that the wrong floor (10 m higher) is identified if
only depending on the pressure. Besides, we start with moving in the third floor so
that the intial RSS is also very unaccurate. The altitude errors are given in Fig. 11.
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We see that compare the result in Fig. 9, the error by fusion is obviously larger. That
is because adding the artificial bias, the wrong floor is identified by pressure. If the
same wrong floor also happened to be estimated by RSS measurements, the altitude
error become bigger. But by simultaneously estimating the bias, the sensor bias can
be quickly calibrated and then the altitude error becomes zero.



124 H. Wang et al.

Additionally, we notice that the height z is the variable that influences both
RSS and pressure measurements. Through the inference of RSS and the correla-
tion between (x, y) and z, the estimated z can be used to train the β to ensure the
convergence.

6 Conclusions and Future Works

Bayesian framework can be used to solve joint state and parameter estimation prob-
lems in indoor positioning systems. In this paper, we apply this framework to a
specific problem: simultaneous localization and sensor bias estimation. By fusing
pressure measurements, a topological graph with RSS measurements and simulta-
neously estimating the pressure bias, the WLAN indoor positioning system becomes
more robust and more accurate. In the next step, we will investigate the feasibility of
using Bayesian framework for more complicated parameters, such as the parameter
for the radio map generation and other state and parameter estimation problems
in indoor positioning systems. Other more complicated filtering techniques like
Gaussian mixture filter or particle filter will also be considered to solve the joint
density estimation problems with proper forms.

References

1. P. Bahland and V. N. Padmanabhan. RADAR: An in-building RF-based user location and
tracking system. In: Proceedings of IEEE INFOCOM 2000, pp. 775–784, 2000.

2. T. Roos, P. Myllymaki, H. Tirri, P. Misikangas, and J. Sievanen. A probabilistic approach
to WLAN user location estimation. International Journal of Wireless Information Networks,
9(3), 155–164, 2002.

3. H. Lenz, B. B. Parodi, H. Wang, A. Szabo, J. Bamberger, J. Horn, and U. D. Hanebeck.
Adaptive localization in adaptive networks. In: Chapter of Signal Processing Techniques for
Knowledge Extraction and Information Fusion, Springer, 2008.

4. H. Wang, H. Lenz, A. Szabo, U. D. Hanebeck, and J. Bamberger. Fusion of barometric sensors,
WLAN signals and building information for 3-D indoor campus localization. In: Proceedings
of International Conference on Multisensor Fusion and Integration for Intelligent Systems
(MFI 2006), pp. 426-432, Heidelberg, Germany, 2006.

5. H. Wang, H. Lenz, A. Szabo, J. Bamberger, and U. D. Hanebeck: WLAN-Based pedestrian
tracking using particle filters and low-cost MEMS sensors. In: Proceedings of 4th Workshop
on Positioning, Navigation and Communication 2007 (WPNC’07), Hannover, Germany, 2007.

6. H. W. Sorenson. Kalman Filtering: Theory and Application. Piscataway, NJ: IEEE, 1985.
7. S. J. Julier and J. K. Uhlmann. Unscented filtering and nonlinear estimation. Proceedings of

the IEEE, 92(3), 2004.
8. B. Ristic, S. Arulamplalm, and N. Gordon. Beyond the Kalman Filter. Boston: Artech House,

2004.
9. M. F. Huber and U. D. Hanebeck. The hybrid density filter for nonlinear estimation based on

hybrid conditional density approximation. In: Proceeding of the 10th International Conference
on Information Fusion (FUSION), 2007.

10. E. Wan and A. Nelson. Dual extended Kalman filter methods. In: Kalman Filtering and Neural
Networks (Chap. 5), S. Haykin (ed.). New York: Wiley, 2001.



Simultaneous Multi-Information Fusion 125

11. A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1–38, 1977.

12. H. Durrant-Whyte and T. Bailey. Simultaneous localisation and mapping (SLAM): Part I the
essential algorithms. Robotics and Automation Magazine, 13, 99–110, 2006.

13. R. W. Floyd. Algorithm 97: Shortest Path. Communications of the ACM, 5(6), 345, 1962.
14. U. D. Hanebeck and O. Feiermann. Progressive Bayesian estimation for nonlinear discrete-

time systems: the filter step for scalar measurements and multidimensional states. In: Pro-
ceedings of the 2003 IEEE Conference on Decision and Control (CDC 2003), pp. 5366–5371,
Maui, Hawaii, December, 2003.

15. D. Crisan, J. Gaines, and T. Lyons. Convergence of a branching particle method to the solution
of the Zakai equation. SIAM Journal on Applied Mathematics, 58(5), 1568–1598, 1998.

16. Z. Chen. Bayesian filtering: From Kalman filters to particle filters, and beyond. In: Technical
Report, McMaster University, 2006.



Efficient Multi-Target Tracking with Sub-Event
IMM-JPDA and One-Point Prime Initialization

Seokwon Yeom

Abstract This paper addresses an IMM (interacting multiple model)-JPDA (joint
probabilistic data association) tracker with sub-event decomposition and one-point
prime initialization. In the original JPDA, the number of joint feasible association
events increases exponentially along with the target number, which may cause a
huge computational burden. The proposed sub-event JPDA can significantly reduce
the number of hypotheses while maintaining the same tracking performance. One-
point prime initialization method estimates initial velocities using initial range rates
and azimuths. A scenario of ten multiple targets is tested and performance is eval-
uated in terms of the root mean-squared errors of position and velocity and the
averaged mode probability. It will be shown that the proposed technique can signif-
icantly improved the time efficiency of target tracking.

Keywords Target tracking · State estimation · Data association · Initialization

1 Introduction

There are many challenges to multi-target tracking such as high-maneuvering, false
alarms, low detection probability, and closely located target formations. In literature,
various researches on state estimation, data association, and target initialization have
been performed to overcome those challenges [1–5].

One-point initialization with Doppler information, which we may call “one-point
prime initialization,” has been proposed in [2]. This initialization technique esti-
mates the initial velocity using a measured range rate and an azimuth by means of
the linear minimum mean squared error (LMMSE) estimator. The one-point prime
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initialization has proven to be superior to the one-point initialization method, espe-
cially in clutter environments [2].

The purpose of a state estimator is to properly overcome the uncertainty of the
target state caused by sensor noise and unknown maneuvering. The interacting mul-
tiple model (IMM) approach is a popular state estimation method to deal with high
maneuvering targets [1]. The fine-step IMM estimator has been proposed by Yeom
et al. to track a large number of high-maneuvering airborne military targets with
a long sampling interval and a low detection probability in heavy clutter environ-
ments [2].

Data association is required to maintain multiple tracks given consecutive mea-
surement sets. The probabilistic data association (PDA) method has been proposed
to associate a measurement set at the current frame to a single track [3]. It has
been extended to the joint probabilistic data association (JPDA) technique to process
multiple targets simultaneously [3]. The ND (N-dimension) assignment algorithm
has been developed to overcome the N-P (Non-polynomial) hard problem of the
Bayesian approach [4].

The JPDA evaluates the association probability between the latest set of mea-
surements and the established tracks to update the current target state. However,
the number of the feasible joint association events increases exponentially along
with the number of targets, which may cause huge computational load to hinder a
real-time processing. Although the gating process may reduce the number of the
feasible joint association events by excluding measurements falling outside the val-
idation region, the computational burden may be still high because the feasible joint
association event considers all the measurements and the tracks the same time.

In this paper, the IMM–JPDA tracker with the sub-event decomposition is pro-
posed and implemented with the one-point prime initialization. In this scheme, the
measurements in each validation region are considered separately and the feasible
joint association event is decomposed into multiple sub-events. The scenario of ten
multiple targets is tested during 100 Monte-Carlo (MC) runs. The performance of
the proposed system is evaluated by the computational time, the root mean squared
error (RMSE)’s of position and velocity, and the averaged mode probability. The
simulation result shows significantly improved computational efficiency of the pro-
posed method.

The remaining of the paper is organized as follows. In Sect. 2, the procedures of
the sub-event IMM-JPDA tracker with the one-point prime initialization are illus-
trated in details step by step. Also, the performance evaluation metrics are described.
A test scenario and the parameter design are described in Sect. 3. The simulation
results are presented in Sect. 4. Conclusions follow in Sect. 5.

2 Multi-Target Tracker

The sub-event IMM–JPDA with one-point prime initialization is illustrated in this
section. The procedures of the proposed method will be explained with theoretical
analysis.
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2.1 Dynamic System Modeling

A dynamic state of a target can be modeled with a nearly constant velocity (NCV)
model. Targets’ maneuvering is modeled by the uncertainty of the process noise,
which is assumed to be white Gaussian. The following is the discrete state equation
of a target in two-dimensional (2D) Cartesian coordinates:

x(k − 1) = F(T )x(k)− q(T )�(k), (1)

F(T ) =

⎡
⎢⎢⎣

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤
⎥⎥⎦ , q(T ) =

⎡
⎢⎢⎣

T 2/2 0
T 0
0 T 2/2
0 T

⎤
⎥⎥⎦ , (2)

where T is the sampling time, x(k) is a state vector of a target, and v(k) is a process
noise vector which follows a multivariate Gaussian distribution, N (0; Q), where N
denotes the Gaussian distribution, and Q is the covariance matrix of the process
noise vector which is diag

(
σ 2

x , σ 2
y

)
, where diag (.) indicates a diagonal matrix. A

measurement vector is composed of three components: range (rz), azimuth (θz), and
range rate (ṙz). The measurement equation is described as

z(k) = [rz θz ṙz]
′ = h[x(k)]+ w(k), (3)

where h[x(k)] is a non-linear conversion from 2D Cartesian coordinates to polar
coordinates and w(k) is a measurement noise vector which is assumed to follow a
multivariate Gaussian distribution, N (0; R), where R is the covariance matrix of the
measurement noise vector which is diag(σ 2

r , σ 2
θ , σ 2

ṙ ).

2.2 One-Point Prime Initialization

The conventional one-point initialization assumes zero initial velocity with the stan-
dard deviation proportional to a maximum target speed, but one-point prime ini-
tialization estimates the initial velocity with Doppler information [2]. The initial
velocity vector and covariance matrix are estimated by the LMMSE estimator using
the initial range rate and the initial azimuth. The measurement equation of the range
rate at the initial frame (k = 0) is, approximately,

ṙz(0) = [cos(θz) sin(θz)]
′(ẋ(0)− ẋs(0))− wṙ (0), (4)

where ẋ(0) and ẋs(0) are the velocity vectors of the target and the sensor, respec-
tively. The initial velocity vector ẋ(0) is assumed have a covariance matrix P̄v ,

P̄v =
[

0 σ 2
s

σ 2
s 0

]
(5)
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Therefore, the target’s initial velocity can be estimated as follows [2]

ˆ̇x(0|0) = [ ˆ̇x(0|0) ˆ̇y(0|0)]′

= σ 2
s

σ 2
s + σ 2

ṙ

[
cos(θz(0))
sin(θz(0))

]
ṙz(0)+

[
ẋs(0)
ẏs(0)

]
, (6)

and the covariance matrix of the initial velocity vector becomes

Pv = σ 2
s

⎛
⎜⎜⎝

(
1− σ 2

s

σ 2
s + σ 2

r

)
cos(θz(0)) − σ 2

s

σ 2
s + σ 2

r

cos(θz(0)) sin(θz(0))

− σ 2
s

σ 2
s + σ 2

r

cos(θz(0)) sin(θz(0)) (1− σ 2
s

σ 2
s + σ 2

r

) sin(θz(0))

⎞
⎟⎟⎠ .

(7)
Measurements can be converted from polar coordinates to Cartesian coordinates

by the unbiased conversion method [5]. Therefore, the initialization is completed as
follows

x̂(0|0) = [xu(0) ˆ̇x(0|0) yu(0) ˆ̇y(0|0)]′, (8)

P(0|0) =

⎡
⎢⎢⎣

σ 2
x (0) 0 σ 2

xy(0) 0
0 Pv(1, 1) 0 Pv(1, 2)

σ 2
xy(0) 0 σ 2

y (0) 0
0 Pv(2, 1) 0 Pv(2, 2)

⎤
⎥⎥⎦ , (9)

where xu(0) and yu(0) are the converted measurements in x and y directions, respec-
tively, and σ 2

x (0), σ 2
y (0), σ 2

xy(0) are the corresponding measurement noise vari-
ances [5].

2.3 Multi-Mode Interaction

The state vectors and the covariance matrices of all of the IMM mode filters at the
previous frame k−1 are mixed to generate the initial state vectors and the covariance
matrices for each of the IMM mode filter at the current frame k [1]. The mixing
probability of a target t is described as

μt
i | j (k − 1|k − 1) = pi jμti (k − 1)

c̄t
j

, (10)

c̄t
j =

r∑
i=1

pi jμti (k − 1), (11)

where r is the number of filter modes of the IMM estimator, μ j (k) is the mode
probability of mode j at frame k, and pi j is the mode transition probability. The
initial state vector and the covariance matrix of target t for mode j after the mixing
are, respectively,
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x̂t
0 j (k − 1|k − 1) =

r∑
i=1

x̂ti (k − 1|k − 1)μt
i | j (k − 1|k − 1), (12)

Pt
0 j (k − 1|k − 1) =

r∑
i=1

⎧⎨
⎩

μt
i | j (k − 1|k − 1){Pti (k − 1|k − 1)+

[x̂ti (k − 1|k − 1)− x̂t
0 j (k − 1|k − 1)]×

[x̂ti (k − 1|k − 1)− x̂t
0 j (k − 1|k − 1)]′}

⎫⎬
⎭ (13)

Equations (12) and (13) are valid except for the first frame where the same initial
values for all the IMM mode filters are used from the initialization as

x̂t
0 j (0|0) = x̂t (0|0), (14)

Pt
0 j (0|0) = Pt (0|0), (15)

μt j (0) = 1

r
, (16)

where x̂t (0|0) and Pt (0|0) are estimated by the one-point prime initialization as
described in the previous section.

2.4 Mode Matched Filtering

The mode matched filtering of the IMM-sub event JPDA is composed of several sub-
stages. The main works of these stages are (1) to associate measurements including
false alarms at the current frame to the established multi-tracks at the previous frame
and (2) to estimate the state of the target corresponding to a certain track at the
current frame.

2.4.1 Extended Kalman Filtering (EKF)

The extended Kalman filtering (EKF) is performed for each target and for each
mode of the IMM estimator. The first step is to predict the state of each target of
which the dynamic state is modeled by mode j [1]:

x̂t j (k|k − 1) = Fj (k − 1)x̂t j (k − 1|k − 1), (17)

Pt j (k|k − 1) = Fj (k − 1)Pt j (k − 1|k − 1)Fj (k − 1)+ Q j (k − 1), (18)

where x̂t j (k|k − 1) and Pt j (k|k − 1) are the state prediction and the covariance
prediction for target t and mode j , respectively. Next, the residual covariance St j (k)
and the filter gain Wt j (k) are obtained as

St j (k) = R(k)+ Ht j (k)Pt j (k|k − 1)Ht j (k), (19)

Wt j (k) = Pt j (k|k − 1)Ht j (k)′St j (k)−1, (20)

where Ht j (k) is the first order derivative function of the measurement model:



132 S. Yeom

Ht j (k) = ∇xh|x̂i j (k|k−1)

=
⎡
⎣

(x̂i j (k|k−1)−xs )√
(x̂i j (k|k−1)−xs )2+(ŷi j (k|k−1)−ys )2

0 (ŷi j (k|k−1)−ys )√
(x̂i j (k|k−1)−xs )2+(ŷi j (k|k−1)−ys )2

0

−(η−η0)
(x̂i j (k|k−1)−xs )2+(ŷi j (k|k−1)−ys )2 0 (x̂i j (k|k−1)−xs )

(x̂i j (k|k−1)−xs )2+(ŷi j (k|k−1)−ys )2 0

⎤
⎦
(21)

The measurement prediction ẑt j (k|k − 1) and the measurement residual �
j
mt (k)

are, respectively,

ẑt j (k|k − 1) = h[xt j (k|k − 1)], (22)

�
j
mt (k) = zm(k)− ẑt j (k|k − 1), (23)

where zm(k) is the m-measurement at the current frame.

2.4.2 Measurement Gating

The measurement gating process reduces the number of the feasible joint associ-
ation event outcomes by excluding the association between the measurements out
of the validation regions and the target of that region [3]. Let Z(k) be a set of mk

measurements at frame k:

Z (k) = {zm(k)}, m = 1, . . . , mk . (24)

The measurement gating is Chi-square hypothesis testing assuming the Gaussian
measurement residuals:

Zt (k) =
{

zm(k)|� ĵ
mt (k)′[St ĵ(t)(k)]−1�

ĵ
mt (k) ≤ γ, m = 1, . . . , mk

}
, (25)

ĵ(t) = max
j
|St j (k)|, (26)

�
ĵ
mt (k) = zm(k)− ẑt ĵ (t)(k|k − 1), (27)

where γ is the gating size. Figure 1 illustrates an example of the gating process.
Each ellipsis shows the validation region of each target.

2.4.3 Sub-Event of Feasible Joint Association

Although the gating process may exclude some of candidate associations between
tracks and measurements, the feasible joint association event still causes a large
computational burden because the measurements in different validated regions can
be included in one validation matrix of the JPDA [3]. However, the feasible joint
association event can be decomposed into several sub-events in the sub-event JPDA.
Figure 2 shows the splitting process of the validation matrix where nθ is the number
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Target 1
M1

M2

M3
Target 2

Target 3 Target 4
M4

M5
Target 5

Fig. 1 An example of the measurement gating process

221 =n

52 =n

nθ = 1546

           0   1   2   3   4   5
      1   1   1   1   0   0   0
      2   1   1   1   1   0   0
      3   1   0   1   1   0   0
      4   1   0   0   0   1   0
      5   1   0   0   0   1   1

nt = 5, mk = 5
      0   1   2   3
1    1   1   1   0
2    1   1   1   1
3    1   0   1   1

nt = 3, mk=3

    0   1   2
1  1   1   0
2  1   1   1

nt = 2, mk = 2

Fig. 2 Validation matrices and n′θ s with the sub-event decomposition

of the feasible joint association event outcomes. The validation matrix can be split
if it can be arranged to be block-diagonalized. It is noted that the validation matrix
on the left side in Fig. 2 corresponds to the track-measurement formation illustrated
in Fig. 1. The sub-validation matrices corresponding to the sub-feasible joint asso-
ciation event generate the sub-event outcomes, and nθ decreases significantly in the
sub-validation matrices.

Let � be a sample space of the feasible joint association event as

� = {�(1), . . . , �(nθ )}, (28)

Similarly, �s is defined as the sample space of the s-th sub feasible joint associ-
ation event:

�s = {�s(1), . . . , �s(nθs )}, (29)

where nθs is the number of elements in the set �s . It can be shown that � = �1 ×
�2 × . . . × �ns and � = �1 ∩ �2 ∩ . . . �ns , where �1, . . . , �ns are the sub feasible
joint association events:
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�s =
ms

k⋂
ms=1

θms ts
ms , (30)

where ms
k is the number of measurements in the s-th sub-event at k frame, and t s

ms

indicates a track in the s-th sub-event which is associated with measurement ms .
The following is the overall steps performed at this sub-stage.

1. Block diagonalization of the validation matrix: � → �1, . . . , �ns

2. Partition of the number of measurements and tracks: mk → m1
k, . . . , mns

k , nt →
n1

t , . . . , nns
t , where ns

t is the number of tracks included in the s-th sub-event.
3. Partition of the sets of measurement vectors: Z (k) → Z1(k), . . . , Zns (k) such

that Zs(k) = {zs
m(k)}, m = 1, . . . , ms

k .

2.4.4 Posterior Probability of the Sub Feasible Joint Association Event

One can refer to [3] for detailed explanations for this sub section. In this sub section,
the sub event will replace the event in the original JPDA. The probability of the
sub-event is computed as

P{�s(k)|Zk, M j (k)} = P{�s(k)|Zs(k), ms
k, Zk−1, M j (k)} (31)

= 1

c
P[Zs(k)|�s(k), ms

k, Zk−1, M j (k)]P{�s(k)|ms
k, M j (k)},

where c is a normalization constant, M j (k) denotes the j-th mode in the IMM esti-
mator, and Zk−1 is the set of all measurement up to the frame k − 1. The likelihood
function of measurements is obtained as

P[Zs(k)|�s(k), ms
k, Zk−1, M j (k)] =

ms
k∏

m=1

p[zs
ms (k)|θms ts

ms (k), Zk−1, M j (k)]

= V−φ(�s (k))
ms

k∏
ms=1

{ fts
ms j [zms (k)]}τms (�s (k)), (32)

since

p[zs
ms (k)|θms ts

ms (k), Zk−1, M j (k)] =
{

fts
ms j [zs

ms (k)] ifτms [�s(k)] = 1
V−1 if τms [�s(k)] = 0

, (33)

fts
ms j [zs

ms (k)] = N [zs
ms (k)− ẑtms j (k|k − 1), Stms j (k)], (34)

where V denotes the volume of surveillance region.
The prior probability of the sub joint association event is
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P{�s(k)|ms
k, M j (k)} = P{�s(k), �(�s), φ(�s)|ms

k} (35)

= P{�s(k)|�(�s), φ(�s), ms
k}P{�(�s), φ(�s)|ms

k},

where �(�s) is the target association indicator vector [3]:

�(�s) = [δ1(�s) · · · δns
t
(�s)], (36)

P{�s(k)|�(�s), φ(�s), ms
k} =

(
P

ms
k

ms
k−φ(�s )

)−1
=
(

ms
k!

φ(�s)!

)−1

, (37)

where P denotes permutation. The second term in Eq. (35) is

P{�(�s), φ(�s)|ms
k} = μF (φ(�s))

ns
t∏

t s=1

(PD)δts (�s )(1− PD)1−δts (�s ), (38)

where PD is the detection probability, and μF (φ) is the probability mass function
of the false alarm. The post probability of the joint association event of the non-
parametric model is obtained as

P{�s |Zs(k), Zk−1, M j } = 1

cs
φ(�s)!

ms
k∏

ms=1

{V fts
ms j [z

s
ms (k)]}τms

ns
t∏

t s=1

(PD)δts (�s )(1− PD)1−δts (�s ). (39)

2.4.5 Marginal Association Event

Marginal probability is essential to update the target’s state estimate and covariance
matrix. The marginal probability is obtained as

β
j

mt (k) ≡ P{θmt |Zk , M j }
=
∑
�∈�

P{�|Zk , M j }δ(1− θmt )

=
∑

�1∈�1

· · ·
∑

�ns ∈�ns

P{�1|Z1(k), Zk−1, M j } · · · P{�ns |Zns (k), Zk−1, M j }δ(1− θmt ) (40)

=
∑

�s∈�s

P{�s |Zs (k), Zk−1, M j }δ(1− θmt ),

Since θmt is the association event which is included in only one sub feasible joint
association event �s , the following relationship holds:

∑
�i∈�i

P{�i |Zi (k), Zk−1, M j } =
1 for ∀i �= s as in Eq. (40).
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2.4.6 PDA Update of State Vectors and Covariance Matrices

The state vectors and the covariance matrices of the targets are updated for each
IMM mode. The state estimate is updated as

x̂t j (k|k) = x̂t j (k|k − 1)+Wt j (k)�t j (k), (41)

�t j (k) =
mk∑

m=1

β
j

mt (k)[zm(k)− ẑt j (k|k − 1)]. (42)

The covariance matrix is updated as

Pt j (k|k) = β
j

0t (k)Pt j (k|k − 1)+ [1− β
j

0t (k)]Pt j
c(k|k)+ P̃t j (k), (43)

Pt j
c(k|k) = Pt j (k|k − 1)−Wt j (k)St j (k)Wt j (k)′, (44)

P̃t j (k) = Wt j (k)

[
mk∑

m=1

β
j

mt (k)� j
mt (k)� j

mt (k)′ − �t j (k)�t j (k)′
]

Wt j (k)′. (45)

The likelihood function of measurements is obtained to update the mode proba-
bilities as follows

�t j (k) ≡ P[Z (k)|mk, M j (k), Zk−1] (46)

=
mk∑

m=1

P[Z (k)|θmt (k), mk, M j (k), Zk−1]P{θmt (k)|mk, M j (k), Zk−1},

where the condition probability of measurement is obtained as

P[Z (k)|θmt (k), mk , M j (k), Zk−1] =
{

V−mk+1 P−1
G N [v j

mt (k); 0, St j (k)] if m = 1, . . . , mk

V−mk if m = 0
, (47)

P{θmt (k)|mk , M j (k), Zk−1} =

⎧⎪⎨
⎪⎩

1
mk

PD PG

[
PD PG + (1− PD PG ) μF (mk )

μF (mk−1)

]−1
if m = 1, . . . , mk

(1− PD PG ) μF (mk )
μF (mk−1)

[
PD PG + (1− PD PG ) μF (mk )

μF (mk−1)

]−1
if m = 0

,

(48)

where PG is a compensation factor for the validation region. If the volume of surveil-
lance region for V is used, PG is set at 1.

2.4.7 IMM Update of Mode Probability, State Vector and Covariance Matrix

At the final stage, the mode probability, state vector, and covariance matrix of each
target are updated as follows
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μt j (k) = 1

ct
�t j (k)

r∑
i=1

pi jμti (k − 1), (49)

x̂t (k|k) =
r∑

j=1

x̂t j (k|k)μt j (k), (50)

Pt (k|k) =
r∑

j=1

μt j (k){Pt j (k|k)+ [x̂t j (k|k)− x̂t (k|k)][x̂t j (k|k)− x̂t (k|k)]′}, (51)

where ct is normalization constant. The procedures from Sect. 2.3, 2.4, 2.4.1, 2.4.2,
2.4.3, 2.4.4, 2.4.5, 2.4.6, and 2.4.7 repeat. A target can be terminated when no vali-
dated measurement is detected for several frames.

2.5 Performance Evaluation

The averaged root mean-squared error (RMSE) of position of target t at frame k is
defined as

eP (k, t) =
√√√√ 1

M

M∑
m=1

{
[xt (k)− x̂t (k|k)]2 + [yt (k)− ŷt (k|k)]2

}
, (52)

where M is the number of Monte Carlo (MC) runs, and xt (k) and yt (k) are true
positions of target t in x and y directions, respectively. The averaged RMSE of
velocity is calculated as

eV (k, t) =
√√√√ 1

M

M∑
m=1

{[
ẋt (k)− ˆ̇xt (k|k)

]2 + [ẏt (k)− ˆ̇yt (k|k)
]2}

, (53)

where ẋt (k) and ẏt (k) are true velocities of target t in x and y directions, respectively.
The average mode probability over M runs of the j-th IMM mode is defined as

mμ(k, t ; j) = 1

M

M∑
m=1

μt j (k|k). (54)

3 Scenario Description and Filter Design

3.1 Ground Truth and Measurement Simulation

A scenario is designed to have ten ground targets. The range of the targets cov-
ers 300 m–15.9 km, and the speed varies from 2.8 to 40 m/s. Acceleration is set



138 S. Yeom

Table 1 Acceleration (m/s2) applied to targets

Time (frame) 50 (10) 50 (10) 25 (5) 80 (16) 15 (3) 80 (16) 15 (3) 20 (4) 15 (3) 160 (32)

Target 1,3,5 x 0 0 1 0 −1 0 1 0 0 0
y 0 0 1 0 0 0 0 0 0 0

Target 2,4,6 x 0 0 1 0 0 0 0 0 −1 0
y 0 0 1 0 0 0 0 0 0 0

Target 7,9 x 0 0 −1 0.5 0 0 −1 0 0 0
y 0 0 1 0 0 0 0 0 0 0

Target 8,10 x 0 0 -1 0 0 0 0.5 0 1 0
y 0 0 1 0 0 0 0 0 0 0

at separately in x and y directions to force the targets into maneuvering motion.
Total time duration is 510 s or 102 frames with 5 s sampling interval. The sensor is
assumed to be fixed at the origin. The initial velocities of all the targets are set at
5 m/s in y-direction and 0 m/s in x-direction. Table 1 shows the acceleration applied
to each target. To simulate corrupted measurements, Gaussian random numbers are
generated and added to the ground truths. The standard deviations of the measure-
ment noise are set at 20 m for range, 1.1 × 10−3 radian for azimuth, and 1 m/s for
range rate. The detection probability is set at 1.

3.2 Filter and Parameter Design

Two modes are adopted for the IMM estimator. The following is the detailed values
of the parameters:

1. One-point prime initialization with unbiased conversion: σs = 1 m/s
2. Two NCV models: NCV1 : σx = σy = 0.05 m/s2, NCV2:σx = σy = 2 m/s2

3. Measurement noise: σr = 20 m, σθ = 1.1× 10−3 rad, σṙ = 1 m/s
4. Mode transition probabilities: p11 = p22 = 0.8
5. Volume of surveillance region (V): 104 × 2π × 40 ≈ 2.5× 106 m2/s2

6. Measurement gating size: γ = 25

4 Simulation Results

The sub-event IMM-JPDA estimator is able to track all of the targets for 100 MC
runs. Figure 3 shows the ground truth, measurements, and estimates for one MC run.
Figure 4 shows the averaged position RMSE and Fig. 5 shows the averaged velocity
RMSE for 100 MC runs. Figure 6 shows the averaged mode probabilities of several
selected targets for 100 MC runs. Figure 7 shows the relative time of the original to
the sub-event IMM-JPDA for one MC run which is defined as

R(nt ) = log10

(
Torig (nt )

Tsub(nt )

)
, (55)
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Fig. 4 Averaged position RMSE, (a) target 1∼5, (b) target 6∼10

where Tsub and Torig are the computational times of the sub-event IMM-JPDA and
the original method, respectively, and nt indicates the number of the targets in the
scenario.

Table 2 shows the averaged RMSE’s of position and velocity for the first MC run
to compare the performances between the proposed IMM-JPDA and the original
method:

ēP (nt ) = 1

nt K

nt∑
t=1

K∑
k=1

eP (k, t ; nt ), (56)
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ēv(nt ) = 1

nt K

nt∑
t=1

K∑
k=1

ev(k, t ; nt ), (57)

where K denotes the total number of frames. As shown in Fig. 7 and Table 2, the
proposed algorithm has significant advantage in terms of the computational time.

Table 2 Comparison between sub-event Imm–Jpda and original Imm–Jpda

nt 2 3 4 5 6 7 8 9 10

ēP (nt )
(meter)

Sub 9.48 10.34 10.37 10.39 10.75 10.51 10.42 10.4 10.36

Original 9.48 10.34 10.36 10.39 10.75 10.51 – – –
ēv(nt )

(m/s)
Sub 1.11 1.16 1.2 1.17 1.18 1.19 1.23 1.23 1.25

Original 1.11 1.16 1.2 1.17 1.18 1.19 – – –

5 Conclusions

In this paper, the IMM–JPDA approach with the sub-event decomposition and
one-point prime initialization has been proposed and implemented. This proposed
scheme of the sub-event JPDA decreases the numerical complexity significantly by
reducing the number of the feasible joint association event outcomes. It provides
significantly reduced time complexity while maintaining the same performance of
target tracking. The one-point prime initialization is employed to improve the initial
estimates of targets. The research in the clutter environments is planned to examine
the robustness of the presented technique.
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Enabling Navigation of MAVs through Inertial,
Vision, and Air Pressure Sensor Fusion

Clark N. Taylor

Abstract Traditional methods used for navigating miniature unmanned aerial vehi-
cles (MAVs) consist of fusion between Global Positioning System (GPS) and Iner-
tial Measurement Unit (IMU) information. However, many of the flight scenarios
envisioned for MAVs (in urban terrain, indoors, in hostile (jammed) environments,
etc.) are not conducive to utilizing GPS. Navigation in GPS-denied areas can be
performed using an IMU only. However, the size, weight, and power constraints of
MAVs severely limits the quality of IMUs that can be placed on-board the MAVs,
making IMU-only navigation extremely inaccurate. In this paper, we introduce a
Kalman filter based system for fusing information from two additional sensors (an
electro-optical camera and differential air pressure sensor) with the IMU to improve
the navigation abilities of the MAV. We discuss some important implementation
issues that must be addressed when fusing information from these sensors together.
Results demonstrate an improvement of at least 10x in final position and attitude
accuracy using the system proposed in this paper.

Keywords Vision-aided navigation · GPS-denied narrigation · Sensor fusion

1 Introduction

Recently, Unmanned Aerial Vehicles (UAVs) have seen a dramatic increase in
utilization for military applications. In addition, UAVs are being investigated for
multiple civilian uses, including rural search and rescue, forest fire monitoring, and
agricultural information gathering. Due to their small size, Miniature UAVs (MAVs)
are an attractive platform for executing many of the missions traditionally performed
by larger UAVs. Some of the primary advantages of MAVs include: (1) they are
significantly less expensive to purchase than the large UAVs typically used by the
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military, (2) their small size simplifies transport, launch, and retrieval, and (3) they
are less expensive to operate than large UAVs.

To enable the utilization of MAVs, the ability to accurately navigate (estimate the
location, attitude, and velocity of the MAV) is essential. For example, if an MAV is
being utilized as part of a search and rescue operation, knowing the correct location
and attitude of the MAV is critical to geo-locate an observed object of interest.

Navigation methods implemented in MAVs today are primarily based on the
fusion of measurements from the Global Positioning System (GPS) and an iner-
tial measurement unit (IMU) (e.g. [1–4]). However, there are many scenarios in
which an MAV might prove useful but GPS is not available (e.g., indoors, urban
terrain, etc.). Therefore, a number of methods have been proposed for fusing visual
information with IMU measurements to enable navigation without GPS.

For the most accurate navigation possible, a batch method that analyzes all vision
and IMU information from an entire flight was introduced in [5]. While accurate,
this method cannot be utilized in real-time due to nature of batch optimization rou-
tines. Therefore, the paper also introduces a recursive method which is essentially a
SLAM filter. Other implementations of SLAM-based filters for navigation can also
be found in [6–8]. While SLAM-based methods are highly effective, there are two
bottlenecks to SLAM that make them difficult to implement in the computationally-
limited environments that characterize MAVs. First, visual SLAM requires that
objects in the video be tracked for an extended period of time. Second, the size
of the state grows with the number of landmarks that SLAM is attempting to find
the location for, dramatically increasing the computation time required. In [9], the
size of the state is limited, but tracking of features over a long period of time is still
required.

While it is computationally expensive to track points for an extended period of
time in video, it is relatively simple to track points over a small number of video
frames. Therefore, we focus in this paper on a method that utilizes only the relation-
ship between objects in two frames of video. Other methods that utilize only two
frames of video ( [10–12]) have been introduced previously. Ready and Taylor [11]
and Andersen and Taylor [12], however, requires that the terrain being observed
is planar, while we assume in this paper that the points being tracked from frame
to frame are not planar (a better assumption for indoor or dense environments that
would obscure GPS signals).

In this paper, we focus on utilizing the epipolar constraint for fusing visual
measurements with the IMU as described in [10]. Using the epipolar constraint,
however, has three significant weaknesses that must be addressed when performing
fusion with IMU measurements for MAV navigation. First, the epipolar constraint
biases movements of the camera toward the center of points in the image. Second,
visual measurements always include a “scale ambiguity” – it is impossible to distin-
guish between the camera moving quickly and observing an object that is far away
and the camera moving slowly and observing an object that is close. Third, when
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using vision to navigate, the navigation state of the camera can only be determined
relative to its previous navigation states.1

In this paper, we present methods to overcome each of these three weaknesses
in utilizing the epipolar constraint. First, to overcome the bias in the epipolar con-
straint, we analyze the epipolar constraint equation and propose an alternate algo-
rithm for computing deviations from the epipolar constraint. Second, to overcome
the scale ambiguity of vision, we integrate a differential air pressure sensor into the
fusion system. On a fixed-wing MAV, the differential air pressure sensor is capa-
ble of measuring the airspeed of the MAV. This airspeed can be treated as a direct
measurement of the velocity magnitude, allowing the scale ambiguity of vision to
be overcome. Third, because vision measurements of motion are relative, we pro-
pose using the minimal sampling rate at which vision can be effectively fused with
IMU data. We demonstrate that sampling at the minimal, rather than maximal, rate
increases the accuracy of the overall navigation system. We also discuss limitations
on choosing the minimal sampling rate.

Once the weaknesses of epipolar-based fusion are overcome, it is possible to
enable on-line estimation of inertial sensor biases. We prove this capability by per-
forming an observability analysis of a simplified system, and demonstrate improved
navigation results when estimating biases.

The remainder of this paper is organized as follows. In Sect. 2, we discuss the
general framework used for fusing vision and IMU information. In Sect. 3, we
describe our three modifications for improving the fusion of visual and IMU infor-
mation. In Sect. 4, we describe our method for estimating the biases of the iner-
tial sensors. Section 5 demonstrates the improvement in navigation state estimates
achieved by implementing our modifications. Section 6 concludes the paper.

2 Epipolar Constraint-Based Fusion

In this section, we first describe the epipolar constraint which is used in our fusion
setup. We then describe how the epipolar constraint can be used in a Kalman filter
to enable fusion between visual and inertial information.

2.1 The Epipolar Constraint

The epipolar constraint can be utilized whenever a single fixed object is observed
by a camera at two locations (or two cameras at different locations). Given that any
three points in the world form a plane, a single world point and the two camera
projection centers form a plane in the 3-D world – the epipolar plane. Similarly,
when a world point is observed in two images, the two vectors representing where
the point was observed in the image plane (x′ and x), and the translation vector

1 Note that while it is possible to determine absolute position or attitude using vision, knowledge
of pre-existing visual “landmarks” is required. We do not address these techniques in this paper as
we are interested in using MAVs to explore new areas, not fly over pre-mapped areas.
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between the two camera locations, will all lie on the epipolar plane.2 By assigning
a unique coordinate frame to each camera location, this constraint is represented by
the formula

x′[pc2
c1]×Cc2

c1x = 0, (1)

where Cc2
c1 is the direction cosine matrix between the camera coordinate frames and

[pc2
c1]× is the position of camera 1 in the second camera’s coordinate frame, put into

a skew-symmetric matrix. (In other words, we calculate the cross product between
pc2

c1 and Cc2
c1x.) This constraint enforces that the three vectors x′, Cc2

c1x, and pc2
c1 all lie

within the same plane in the 3-D world.

2.2 Utilizing the Epipolar Constraint in a Fusion Environment

To utilize the epipolar constraint in a fusion environment, we created an Unscented
Kalman Filter (UKF) framework. The state in the Kalman filter must contain enough
information to generate both Cc2

c1 and pc2
c1 during the measurement step. To repre-

sent general motion by an MAV between two different locations, the UKF state

X =
[

χt

χt−1

]
is used, where χt is the navigation state estimate at time t and χt−1

is the navigation state estimate at the previous time. The navigation state at each
time contains pt , the position of the camera at time t in the inertial frame, Ct , the
direction cosine matrix relating the inertial frame to the current camera coordinate
frame, and vt , the velocity of the camera at time t . This method for setting up the
UKF to enable vision and inertial information fusion was first introduced in [12].

2.2.1 Performing the Time Update

The time update for this UKF implementation takes two different forms. The first
form updates χt (the first 10 elements of the current state) every time an IMU
measurement occurs. This makes the first 10 elements of the state the most recent
navigation state estimate. After each measurement update, the state is also updated
using the formula

X+ = AX− where (2)

A =
[

I 0
I 0

]
, (3)

2 Note that image locations are typically in pixels, while the discussion of vectors so far assumes
all vectors are in an unscaled, Euclidean space. In this paper, we assume that the camera has been
calibrated a-priori and that the conversion from image to Euclidean vectors has already occurred
using this calibration information.
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causing the current state to become X =
[

χt

χt

]
. The first 10 elements of the state

vector are then updated by IMU measurements to realize a new current state X =[
χt+1

χt

]
. With this technique, the two most recent χ estimates, corresponding to the

time of the two most recently captured images, are always stored as the current state.

2.2.2 Performing the Measurement Update

To utilize the epipolar constraint as a measurement in a UKF framework, the
“Dynamic Vision” approach introduced in [10] is used. Assuming a feature has been
detected in two images, the locations of the features are represented by x′ and x.
Because the epipolar constraint should always be equal to zero, the “measurement”
used by the UKF is a vector of zeros in length equal to the number of corresponding
features found between the two images. The predicted measurement is x′[pc2

c1]×Cc2
c1x

(from Eq. (1)) for each set of features x′ and x, where pc2
c1 and Cc2

c1 are functions of
χt and χt−1.

While the Dynamic Vision method yields good results in certain cases, it does
exhibit some weaknesses that need to be addressed for use on an MAV. First, the
translation direction estimates are biased in the direction the camera is pointing.
Second, as with all vision-based approaches, it does not estimate the magnitude of
translation. We propose methods for overcoming these weaknesses in the following
section.

3 Improving the Fusion of Visual and IMU Sensors

In this section, we propose three modifications to baseline epipolar constraint-based
fusion of IMU and visual information to significantly increase the accuracy of navi-
gation state estimation on MAVs. These modifications overcome the centering bias,
scale ambiguity, and sampling rate problems discussed in the introduction.

3.1 Overcoming Bias Toward the Center of Image Points

When using the epipolar constraint to fuse inertial and vision sensors together, the
fusion system introduces a bias in estimated translation direction toward the center
of the points observed from frame to frame. To understand the source of this error,
let us analyze the epipolar constraint when the result of Eq. (1) is not zero. The value
x ′[pc2

c1]×Cc2
c1x can be rewritten as a cross product of two vectors followed by a dot

product of two vectors. The final results of this computation will be

||x ′|| ||pc2
c1|| ||x || sin(θpc2

c1→Cc2
c1x ) cos(θx ′→[pc2

c1]×Cc2
c1x ), (4)
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where θpc2
c1→Cc2

c1x is the angle between pc2
c1 and Cc2

c1x and θx ′→[pc2
c1]×Cc2

c1x is the angle

between x ′ and [pc2
c1]×Cc2

c1x .
As mentioned previously, the correct magnitude for these values is 0. Therefore,

the UKF will attempt to set χt and χt−1 in its state vector such that the resulting
pc2

c1 and Cc2
c1 minimizes the set of all measurements. However, there are two ways to

push the set of measurements toward zero: (1) the epipolar constraint can be met by
setting [pc2

c1]×Cc2
c1x to be orthogonal to x ′ (i.e., set cos(θx ′→[pc2

c1]×Cc2
c1x ) = 0), or (2) pc2

c1

can be set parallel to Cc2
c1x (i.e., set sin(θpc2

c1→Cc2
c1x ) = 0). To meet the first condition,

Cc2
c1x , pc2

c1, and x ′ must all lie in a plane, the original justification behind the epipolar
constraint. The second condition, however, can be met by setting the direction of pc2

c1
equal to x ′. Because of this second condition, the results of the epipolar constraint
can be pushed to zero by setting pc2

c1 to be as close to parallel to the set of Cc2
c1x

vectors as possible. Therefore, the translation direction after the UKF measurement
update is biased toward the center of the feature points that have been tracked in the
second image.

To overcome this biasing of the translation direction, we propose modifying the
measurement step of the UKF to eliminate the sin(θpc2

c1→Cc2
c1x ) term from the measure-

ment. To eliminate the effect of sin(θpc2
c1→Cc2

c1x ), the term [pc2
c1]×Cc2

c1x is first computed
and then normalized to be of length one. The inner product of this term with x ′ is
then taken and returned as the predicted measurement.

To determine the results of this modification, we simulated a 16 s flight of an
MAV traveling 200 m in a straight line. (More details on our simulation environment
can be found in Sect. 5.) In Table 1, we show the average and standard deviation
of the error in the final estimated position of the MAV, both before and after the
sin removal modification. Note that before sin removal, the pz location error mean
is a large positive number. This is a result of the bias inherent in the unmodified
epipolar fusion environment. After removing the sin as discussed above, the z error
is dramatically decreased.

Despite the fact that the pz error has been decreased by removing the sin term
from the epipolar constraint, the px error is still quite significant. This error is an
artifact of vision-based techniques where there is always a scale ambiguity in the
direction of travel (in this case, along the x axis). In the next subsection, we discuss
how to reduce the error present in the direction of travel of the MAV due to the scale
ambiguity.

Table 1 This table demonstrates the accuracy improvements achieved by removing the sin term
from the epipolar constraint computation. Each entry lists the mean and standard deviation of the
error, in meters. Note that the average pz error has decreased from 758 to 12 m, demonstrating the
effect of removing the bias from the epipolar computation

px error py error pz error

With sin (μ, σ ) (−607.0, 136.6) (2.83, 76.5) (757.5, 318.1)
sin removed (μ, σ ) (23.1, 85.9) (−1.77, 16.0) (11.8, 9.71)
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3.2 Removing the Scale Ambiguity

To remove the large amount of error present in the direction of travel of the MAV,
we propose integrating another sensor into the UKF framework discussed above. On
a fixed-wing MAV, a pitot tube designed for measuring airspeed can be utilized to
measure the current velocity of the MAV. To integrate this measurement in the UKF,
we utilize the property discussed in [13] that if measurements are uncorrelated,
they can be applied during separate measurement updates of the Kalman Filter.
Therefore, whenever the pitot tube is read (approximately 10 Hz), the current mag-
nitude of the velocity in the state is computed as a predicted measurement, with the
air speed measured by the pitot tube used as a measurement to the UKF.

By applying this measurement at 10 Hz, significant gains in accuracy were
achieved. In Table 2, we present the results of this modification using the same
simulation setup as described for Table 1. Note that both the mean and standard
deviation of error has decreased in all three location parameters, demonstrating the
importance of overcoming the scale ambiguity in visual measurement.

Table 2 This table demonstrates the accuracy improvements achieved by fusing the pitot tube
measurements with vision and IMU information. Note that the standard deviation of error on the
px term has decreased from 86 to 2

px error py error pz error

Without pitot tube (μ, σ ) (23.1, 85.9) (−1.77, 16.0) (11.8, 9.71)
With pitot tube (μ, σ ) (−0.47, 1.92) (−1.01, 11.2) (2.85, 1.08)

3.3 Determining the Optimal Image Sampling Rate

Typically, when fusing information together, the more information that is available,
the more accurate the final result will be. However, with epipolar based visual and
inertial fusion, this is not the case. In this subsection, we show that it best to sample
the imaging sensors at the minimal sampling rate allowed. We also discuss what
limits the minimal possible sampling rate.

In Figure 1, we show plots of the mean squared error (MSE) in the estimated final
location of the MAV for different image sampling rates. The MSE represents the
error in estimated location after a 15 s, straight-line flight. Note that the lowest MSE
point does not lie at the maximal sampling rate. This can be explained by noting
that fusing with the epipolar constraint helps to reduce the amount of error present
between two navigation state estimates (i.e., relative error). The total error at the end
of flight is going to be the summation of all the relative estimation errors during the
flight. Therefore, if the same relative error is achieved by each measurement of the
epipolar constraint, but fewer measurements occur, the total error will be reduced.
This leads to the counter-intuitive fact that the minimal, as opposed to maximal
sampling rate, is ideal for epipolar constraint-based information fusion.
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Fig. 1 Results of fusion for different image sampling rates (x-axis) and different fusion setups
(different plots). Results are mean squared error (in m2). To make all plots appear on the same
axes, two of the plots have been scaled by 5 (up and down) as denoted in the legend

Despite the general rule that the minimal sampling rate is ideal, there are sec-
ondary considerations that must be taken into account when deciding on a sampling
rate. Note that in Figure 1, the MSE is not monotonically decreasing as the sampling
rate decreases. There are two principal causes for the increase in MSE at lower
sampling rates.

First, the time update of the IMU introduces error into the estimated naviga-
tion states, which the UKF attempts to correct using the epipolar constraint. This
correction applied by the UKF is a linear correction. As the distance between the
estimated and measured navigation states increase however, the linear assumption
becomes invalid. Therefore, if too much noise has been added by the IMU, it will
not be possible for the linear update from the epipolar constraint to correct the
IMU-introduced noise. This is demonstrated by the “straight-line” and “straight-
line, half-noise” plots in Figure 1. The only difference between the simulation setup
of the different plots is that the IMU noise was halved for the “straight-line, half
noise” plot. Note that as the IMU noise is decreased, the “optimal” sampling rate
becomes lower (moving from 1 to .67 Hz), demonstrating that there is a limit placed
on the minimal sampling rate by the noise present in the IMU.

Second, the minimal sampling rate is limited by how long the camera can track
features in the image. To demonstrate this fact, a simulation was run where, rather
than tracking a set of objects throughout the entire flight, as in the “straight-line”
simulations of Figure 1, a fixed camera was used so that objects would leave the
field of view more quickly. This is the “straight-line, fixed-camera” plot in Figure 1.
Note that the sampling rate with the minimal MSE is higher (2 Hz) for this plot than
the “straight-line” plot (1 Hz) where the same world points are observed throughout
the MAV flight. Therefore, when applying epipolar constraint-based fusion, it is best
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to apply the minimal sampling rate that is allowed by (1) the noise present in the
IMU and (2) the persistence of features across the images.

4 Estimating Inertial Sensor Biases

Using the modifications proposed in the prior section, it is possible to overcome a
significant amount of error introduced by inertial sensors when navigating an MAV.
In this section, we discuss how fusion based on the epipolar constraint can be used
to estimate biases of the inertial sensors, thereby reducing the noise from those
sensors.

Typical low-cost inertial sensors will have several different types of noise [14,15].
The Kalman Filter setup described in Sect. 2 essentially assumes that all noise from
the inertial sensors is uncorrelated over time. While the existence of correlated noise
(bias for the remainder of this paper) in the inertial sensors can be overcome by
simply increasing the uncorrelated noise covariance estimates, it is preferable to
estimate and remove the bias, thereby reducing the amount of noise present in the
inertial sensor measurements.

Before describing our method for estimating the bias of the inertial sensors,
it is important to demonstrate the feasibility of estimating biases despite the fact
that epipolar constraint measurements yield only relative navigation information. In
this section, we first demonstrate that it is possible to estimate biases using relative
navigation measurements. We then describe our modifications to the Kalman filter
framework described in Sect. 2 to enable estimation of the inertial sensor biases.

4.1 Proof of Ability to Estimate Biases

To prove the feasibility of estimating inertial sensor biases, we will perform an
observability analysis of a simplified system with a setup that is very similar to our
complete MAV navigation system. Our simplified system consists of a state vector
with two locations, lt and lt−1. Similar to the situation where the accelerometers are
used to update the current velocity estimates, we use an external rate measurement
(ˆ̇lt ) to update the current locations. To estimate the bias on this measurement, we
modify the state vector to include the bias, obtaining a state vector of:

xt =
[
lt lt−1 b

]T
, (5)

where b is the bias of the sensor.
The time update for this state over time Δt is

xt+1 = Fxt +Gˆ̇lt (6)

where
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G = [Δt 0 0] (7)

and

F =
⎡
⎣0 1 −Δt

0 1 0
0 0 1

⎤
⎦ . (8)

If the measurement of the system provides relative measurements (like vision does
for MAV motion), then the observation matrix is:

H = [1 − 1 0]. (9)

With this simplified system, we can analyze the observability of b for this Kalman
Filter setup. To prove observability, the rank and null vectors of the matrix

O =

⎡
⎢⎢⎢⎣

H

HF

HFF

· · ·

⎤
⎥⎥⎥⎦ (10)

must be found. Substituting in for H and F in the first three rows of O, we obtain:

O =

⎡
⎢⎣

1 −1 0

0 0 −Δt

0 0 −Δt

⎤
⎥⎦ (11)

By inspection, we find that this system can observe two modes of the system, namely
[1 − 1 0] and [0 0 1]. Because of the second mode, we conclude that biases
are observable when relative measurements of the state are used in a Kalman Filter
framework.

4.2 Filter Setup for Inertial Bias Estimation

Knowing that biases are observable when relative navigation measurements are
used, we can modify the fusion framework developed in Sects. 2 and 3 to estimate
biases. First, we modify the state vector to include biases for all sensors, yielding

X = [χt , χt−1, bax , bay, baz, bgx , bgy, bgz
]T

, (12)

where bnm is the bias estimate with the n subscript denoting a for accelerometer and
g for gyro, and the m subscript denoting which axis the sensor is measuring (x , y,
or z). The A matrix described in Eq. (3) is modified to
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A =

⎡
⎢⎣

I10×10 0 0

I10×10 0 0

0 0 I6×6

⎤
⎥⎦ , (13)

to maintain bias estimates between measurements from the visual sensor. The time
update that utilizes the inertial sensors to update the first 10 elements of the state
is modified to subtract out the bias estimate from the inertial measurements. The
measurement step for the filter remains unchanged. In the following section, we
present results demonstrating the improved navigation performance obtained from
estimating the biases of the inertial sensors.

5 Results

To demonstrate the results of fusing visual, air pressure, and inertial sensors together
as proposed in this paper, we developed a detailed simulator that generated synthetic
MAV flights, together with uncorrupted and corrupted sensor measurements for that
flight. In the subsections that follow, we first describe the simulation environment
in more detail, followed by results demonstrating the efficacy of the fusion system
proposed in this paper.

5.1 Simulation Environment

To enable an evaluation of our epipolar constraint-based fusion environment, we
first need to generate the true navigation states of the MAV over time. To generate
true location data about the MAV, a Bézier curve representing the true path of the
MAV was created. A Bézier curve was chosen due to its inherent flexibility in repre-
senting many different types of curves in 3-D space. In addition, Bézier curves are a
polynomial function of a single scalar t , yielding two significant advantages. First,
the location at any time can be easily determined. Second, by differentiating the
polynomial with respect to t , the velocity and acceleration at any point on the curve
can be computed in closed form. All quantities are assumed to be in a “navigation
frame” which has North as its x axis, East as its y axis, and straight down as the z
axis. The origin of this frame was arbitrarily chosen as a location on the ground in
Utah, near Brigham Young University (close to our MAV flight test area).

In addition to generating the location, velocity, and acceleration of the MAV,
we also need to generate the angular orientation (attitude) of the MAV camera. We
have used two basic approaches to generating the attitude of the MAV camera. First,
for a “fixed” camera, the angular orientation is always constant within the MAV
body frame. Second, we set the attitude of the camera such that a specified world
location will always be in the center of the image, representing a gimbaled camera
that remains pointed at a specific location. We utilize the second approach for the
results presented in this section.
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Once the true location and attitude of the camera are known, the inputs to
the fusion algorithm are generated. We assume the inputs from the IMU consist
of 3-axis accelerometer and gyroscope (gyro) readings. To generate accelerome-
ter readings, the acceleration of the camera is computed from the Bézier curve.
The effects of gravity, Coriolis, and the rotation of the earth are then added to
the accelerometer readings as described in [16], yielding noise-free accelerometer
readings. To generate gyro readings, the attitude at two locations on the Bézier curve
is computed. The locations on the curve are separated by the gyro sample time.
The difference in attitude is then used to compute the angular rates of the camera,
yielding noise-free gyro readings. Noise-free pitot tube readings are computed as
the magnitude of the velocity at a point on the Bézier curve.

Once the noise-free readings have been computed, two types of noise are added to
the sensor readings. First, Gaussian, zero-mean white noise is added to the computed
readings. The variance of the noise values were chosen to approximate measurement
errors observed on a Kestrel autopilot [3]. Second, a constant bias is added to the
gyro and accelerometer readings. For each run of the simulator, biases were ran-
domly selected from a Gaussian distribution with twice the standard deviation of
the white noise for that sensor.

To simulate inputs from the camera, a set of random world points to be imaged
are created. Using the locations of the world points and the location and attitude
of the MAV over time, a set of feature locations corresponding with time along its
flight path are created. Features locations for a specific MAV location and attitude
are computed using the formula

λ

⎛
⎝ xi

yi

1

⎞
⎠ = KCc

n(Xn − pn), (14)

where Xn was the location of the world point (in the navigation frame), pn is the
position of the camera in navigation frame coordinates (determined from its point on
the Bézier curve), Cc

n is the direction cosine matrix from the navigation frame to the
camera frame (also a function of location on the Bézier curve), K is the calibration
matrix of the camera, mapping from Euclidean to pixel locations, λ is a scale factor
used for normalizing the third element of the image frame vector to 1, and xi and yi

are the image coordinates of the point.
After determining the location of the object in the image space, Gaussian white

zero-mean noise is added to the image location. We set the standard deviation of the
noise equal to a single pixel in the image plane. After adding noise, the pixel values
are then “de-calibrated” (multiplied by K−1) to obtain vectors in the same Euclidean
space as the MAV navigation state.
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5.2 Fusion Results

To test the efficacy of our proposed fusion environment, we use two different “flight
scenarios.” In the first scenario, the MAV moves in a straight line starting at 100 m
above the ground and 100 m south of the navigation frame origin. The camera then
moves in a straight line to 100 m north of the navigation frame origin, holding a
constant altitude. In the East-West (y) direction, the MAV is always at 0. Along this
path, 161 images were captured at a rate of 10 Hz, requiring 16 s to fly this path.
These values were chosen to achieve an airspeed (12.5 m/s) typical of MAVs. In
addition, 1,601 samples of the gyro and accelerometer readings were collected. Note
that while this flight scenario may seem like an overly simplistic maneuver (flying in
a straight line), it was chosen because it actually exacerbates one of the fundamental
problem of vision, the universal scale ambiguity. Therefore, this scenario is one of
the most difficult scenarios for vision-aided navigation. Results for this scenario are
shown in Table 3. Note that this scenario was used for the partial results presented
earlier in this paper.

The second scenario represents a more generic flight of an MAV. It starts at
−100 m north, 100 m in altitude. It then flies an “S” pattern, going northeast before
turning to go northwest. While flying northwest, it passes directly over the naviga-
tion frame origin, after which it turns back to head northeast, arriving at−30 m east,
100 m north. During the course of the flight, the altitude also drops from 100 m to
60 m. This entire flight takes 19 s. We refer to this scenario as “The S Pattern”, with
results shown in Table 4.

In both scenarios described above, the world points being observed were dis-
tributed using a three-dimensional Gaussian distribution centered about the naviga-
tion frame origin. To keep the objects in view, the camera is continuously rotated to
“look at” the origin.

To determine the overall accuracy of each fusion technique, we ran each UKF
filter setup with each flight path scenario 100 times. In Tables 3 and 4, the mean and
standard deviation of the errors across 100 runs of the filter are shown. The mean
and standard deviation achieved using only the IMU is also shown for each flight
scenario as a reference. The units for the final position error (px , py , and pz) are
in meters, while the final attitude errors are in degrees. The attitude errors are the
amount of yaw (ψ), pitch (θ ) and roll (φ) that would be required to move from the
true location to the estimated locations.

For each of these flight scenarios, five different setups of our UKF environment
were used. First, we ran epipolar constraint-based fusion without any of the modifi-
cations introduced in Sect. 3 (Baseline). Second, we remove the bias in the direction
the camera is pointed as discussed in Sect. 3.1 (sin Removed). Third, the measure-
ments from the pitot tube are included in the UKF framework (Pitot Added). Fourth,
a slower sampling rate (2 Hz, as opposed to 10 Hz) is used in addition to all the other
modifications (Min. Sampling). Finally, the “Min. Sampling” filter is modified to
estimate the inertial sensor biases (Est. Bias).

As shown in these tables, each modification proposed in this paper significantly
reduces the mean and standard deviation of the error. By including all four proposed
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modifications, more than an order of magnitude decrease in error is achieved from
both IMU-only navigation and the baseline fusion approach. This demonstrates the
necessity of including the proposed modifications when considering epipolar con-
straint based fusion for navigation. It also demonstrates the advantages of estimating
the inertial sensor biases to help reduce noise.

6 Conclusion

In this paper, we have proposed a system for fusing IMU and visual information
together in a UKF framework utilizing the epipolar constraint. However, a naive
implementation of this approach yields sub-optimal results. Therefore, we propose
three modifications to the baseline fusion setup that significantly improve the overall
performance of this system. These include: (1) removing the bias toward the cen-
ter of tracked points when using the epipolar constraint, (2) using a pitot tube to
measure the velocity of th MAV, and (3) minimizing the sampling rate of the image
data to achieve minimal error growth. After implementing these improvements it
is possible to estimate the biases of the inertial sensors, decreasing the amount of
noise present in the system. Gains in accuracy of at least 10X in both the location
and attitude estimates were achieved using these improvements.
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Part II
Multi-Sensor Fusion and Integration

in Robotics and Vision

Sukhan Lee

Multi-sensor fusion and integration play a major role forrobotics and computer
vision. The autonomy in navigation and manipulation that robotics pursue as its goal
requires ultimately the ability of a robot to recognize and model the environment
they are engaged in, often relying on vision. One of the key issues the robotics and
vision field is facing today is how to solve the dependability in recognition and mod-
eling against the many real-world variations, such as the variations in illumination,
texture, surface reflection, occlusion, form factor, sensor pose, etc., in spite of the
presence of fundamental limitations of sensing in, e.g., dynamic range, resolution,
measurement error, field of view, etc. Multi-sensor fusion and integration have been
regarded as indispensible for solving the issue of dependability addressed above.
This chapter presents how multi-sensor fusion and integration can be applied to the
dependability in recognition and modeling of environments, in particular, for robotic
navigation, manipulation, and interaction with human.

The first two papers address the integration and fusion of two heterogeneous
sensors, laser scanners and cameras, to improve the performance of Simultaneous
Localization and Map Building(SLAM). The paper entitled “Simultaneous Estima-
tion of Road Region and Ego-Motion with Multiple Road Models,” by Yoshiteru
Matsushita and Jun Miura addresses the multi-sensor based simultaneous estimation
of road region and ego-motion based on a particle filter. A laser range finder and
an omni-directional camera system are integrated to detect and fuse the L-shaped
curb and the road boundary lines and roadside regions. For the latter, the intensity
gradient and the color gradient images are used, respectively. In addition, particles
representing the gradual road type change are incorporated in the particle filter.
Autonomous driving of a mobile robot is demonstrated as experimentation. The
paper entitled “Visual SLAM in Indoor environments using Autonomous Detection
and Registration of Objects” by Yong-Ju Lee and Jae-Bok Song presents how a
hybrid grid/vision map can be built by integrating vision detected objects with an
IR scanner based grip map. Various 2D visual cues are used to distinguish objects
from the background for detection. The authors claim that their approach requires a
less number of landmarks than the conventional laser scanner based SLAM.

In their paper entitled “The ‘Fast Clustering-Tracking’ Algorithm in the Bayesian
Occupancy Filter Framework,” Kamel Mekhnacha, Yong Mao, David Raulo, and
Christian Laugier propose clustering the occupancy and velocity grid into an object
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level report, where the occupancy and velocity grid describes the probability dis-
tribution of cell occupancy and cell occupancy velocity. Note that a grid of occu-
pancy probabilities and mean velocity estimates representing environments is from
the Bayesian occupancy filter presented as a unified framework for sensor integra-
tion and fusion by the authors. A fast clustering algorithm is proposed as a means
of avoiding the combinatorial complexity in computation. In their paper entitled
“Fusion of Double Layered Multiple Laser range Finders for People Detection from
a Mobile Robot,” Alexander Carballo, Akihisa Ohya and Shinichi Yuta present a
method for simple and accurate detection and tracking of people in an indoor public
area based on multi-layered laser range finders. The laser range finders in a double
layer configuration provide the 360 degree of surroundings at the human chest and
leg levels based on data fusion. The paper has shown that not only the 3D model
of people and their positions but also the direction the person is facing at could
possibly be obtained.

The paper entitled “Model based Recognition of 3D objects using Intersecting
lines” by Hung Q. Truong, Sukhan Lee and Seok-Woo Jang presents the recognition
and pose estimation of 3D objects based on perpendicularly intersecting 3D line
segments as the cues to match with the model. Probabilities are assigned to all the
possible interpretations of the object pose based on the matching scores, such that
the probabilities can be updated as more evidences are accumulated in time. The
paper entitled “Pedestrian Route Guidance System using Moving Projection based
on Personal Feature Extraction” by Takuji Narumi, Yashushi Hada, Hajime Asama,
and Kunihiro Tsuji presents a method of the traffic-line guidance for pedestrians
by projecting moving images on the site of estimated human gaze by a pan-tile
projector. Surveillance cameras are used to estimate the human sight.

In their paper entitled “Behavioral Programming with Hierarchy and Parallelism
in the DARPA Urban Challenge and RoboCup,” Jesse G. Hurdus and Dennis W.
Hong propose a hierarchical state machine for the efficient construction, organiza-
tion and selection of behaviors in such a way that a robot can exhibit contextual
intelligence. Not only the arbitration of competing behaviors but also the assembly
of behaviors into an emergent behavior take place in the proposed hierarchical state
machine.

Ruben Smits, Tinne de Laet, Kasper Claes, Herman Bruyninckx, Joris de Schut-
ter present “iTASC: a Tool for Multi-Sensor Integration in Robot manipulation”
as a unified framework for integrating instantaneous task specification and geo-
metric uncertainty estimation. iTASC helps specify complex tasks for a general
sensor-based robot system based on system constraints. A people tracker based
on encoders, a force sensor, cameras, a laser distance sensor and a laser scanner
is implemented, where kinematic control and uncertainty estimation equations are
derived based on 10 primary constraints, 7 uncertainty coordinates, 6 scalar mea-
surements, and 12 secondary constraints. Mario Prats, Philippe Martinet, Sukhan
Lee and Pedro J. Sanz show in their paper entitled “Compliant Physical Interac-
tion based on External Vision-Force Control and tactile-Force Combination” that
multi-sensor based compliant physical interaction is feasible based on the task frame
formalism. They demonstrate the pull-opening of the handle with a parallel jaw
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gripper, as well as the opening of a sliding door with a three fingered hand, based
on the external vision-force coupling and the extracting of a book from a bookshelf
by tactile and force integration.

In their paper entitled “Recognizing Human Activities from Accelerometer and
Physiological Sensors,” Sung-Ihk Yang and Sung-Bae Cho present the recogni-
tion of 9 kinds of human activities: walking, running and exercising, eating, read-
ing, studying, playing, sleeping, based on an armband sensor system integrated
with accelerometers and physiological sensors. The latter includes heat flux, gal-
vanic skin response, skin temperature sensors and thermometer. The inability of
accelerometer to detect near stationery activities is compensated by other sensors.
About 74% accuracy is reported with the fuzzy logic used for decision. In their
paper entitled “Enhancement of Images Degraded by Fog using Cost Function based
on Human Visual Model,” Dongjun Kim, Changwon Jeon, Bonghyup Kang, and
Hanseok Ko present an estimation of an air-light map generated by fog particles in
order to enhance the image quality by subtracting the estimated air-light map from
the degraded image. The estimation of an air-light map is based on the estimate of
luminance distribution variation under the constraints of the sensitivity derived from
the human visual model.



Enhancement of Image Degraded by Fog Using
Cost Function Based on Human Visual Model

Dongjun Kim, Changwon Jeon, Bonghyup Kang and Hanseok Ko

Abstract In foggy weather conditions, images become degraded due to the pres-
ence of airlight that is generated by scattering light by fog particles. In this paper,
we propose an effective method to correct the degraded image by subtracting the
estimated airlight map from the degraded image. The airlight map is generated using
multiple linear regression, which models the relationship between regional airlight
and the coordinates of the image pixels. Airlight can then be estimated using a
cost function that is based on the human visual model, wherein a human is more
insensitive to variations of the luminance in bright regions than in dark regions. For
this objective, the luminance image is employed for airlight estimation. The lumi-
nance image is generated by an appropriate fusion of the R, G, and B components.
Representative experiments on real foggy images confirm significant enhancement
in image quality over the degraded image.

1 Introduction

Fog is a phenomenon caused by tiny droplets of water in the air. Fog reduces visi-
bility down to less than 1 km. In foggy weather, images also become degraded by
additive light from scattering of light by fog particles. This additive light is called
‘airlight’.

There have been some notable efforts to restore images degraded by fog. The
most common method known to enhance degraded images is histogram equaliza-
tion. However, even though global histogram equalization is simple and fast, it
is not suitable because the fog’s effect on an image is a function of the distance
between the camera and the object. Subsequently, a partially overlapped sub-block
histogram equalization was proposed in [1]. However, the physical model of fog
was not adequately reflected in this effort.
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While Narasimhan and Nayar were able to restore images using a scene-depth
map [2], this method required two images taken under different weather conditions.

Grewe and Brooks suggested a method to enhance pictures that were blurred due
to fog by using wavelets [3]. Once again, this approach required several images to
accomplish the enhancement.

Polarization filtering is used to reduce fog’s effect on images [4, 5]. It assumes
that natural light is not polarized and that scattered light is polarized. However this
method does not guarantee significant improvement in images with dense fog since
it falls short of expectations in dense fog.

Oakley and Bu suggested a simple correction of contrast loss in foggy images [6].
In [6], in order to estimate the airlight from a color image, a cost function is used
for the RGB channel. However, it assumes that airlight is uniform over the whole
image.

In this paper, we improve the Oakley method [6] to make it applicable even
when the airlight distribution is not uniform over the image. In order to estimate
the airlight, a cost function that is based on the human visual model is used in
the luminance image. The luminance image can be estimated by an appropriate
fusion of the R, G, and B components. Also, the airlight map is estimated using
least squares fitting, which models the relationship between regional airlight and
the coordinates of the image pixels.

The structure of this paper is as follows. In Sect. 2, we propose a method to
estimate the airlight map and restore the fog image. We present experimental Results
and Conclusions in Sects 3 and 4 respectively. The structure of the algorithm is
shown in Fig. 1.
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Fig. 1 Structure of the algorithm

2 Proposed Algorithm

2.1 Fog Effect on Image and Fog Model

The foggy image is degraded by airlight that is caused by scattering of light with
fog particles in air as depicted in Fig. 2 (right).
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Fig. 2 Comparison of the clear image (left) and the fog image (right)

Airlight plays the role of being an additional source of light as modeled in [6]
and Eq. (1) below.

I ′R,G,B = IR,G,B + λR,G,B (1)

where I ′R,G,B is the degraded image, IR,G,B is the original image, and λR,G,B rep-
resents the airlight for the Red, Green, and Blue channels. This relationship can be
applied in the case where airlight is uniform throughout the whole image. However,
the contribution of airlight is not usually uniform over the image because it is a
function of the visual depth, which is the distance between the camera and the
object. Therefore, the model can be modified to reflect the depth dependence as
follows.

I ′R,G,B(d) = IR,G,B(d)+ λR,G,B(d) (2)

Note that “d” represents depth. Unfortunately, it is very difficult to estimate the
depth using one image taken in foggy weather conditions, so we present an airlight
map that models the relationship between the coordinates of the image pixels and
the airlight. In this paper, since the amount of scattering of a visible ray by large
particles like fog and clouds are almost identical, the luminance component is used
alone to estimate the airlight instead of estimating the R, G, and B components.
The luminance image can be obtained by a fusion of the R, G, and B components.
Subsequently, the color space is transformed from RGB to YCbCr. Therefore Eq. (2)
can be re-expressed as follows.

Y ′(i, j) = Y (i, j)+ λY (i, j) (3)

where Y ′ and Y reflect the degraded luminance and clear luminance images respec-
tively at position (i,j). Note that λY is the estimated airlight map for the luminance
image. The shifting of mean(Y) can be confirmed in Fig. 3.

In order to restore the image blurred by fog, we need to estimate the airlight map
and subtract the airlight from the foggy image as follows.
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Fig. 3 Comparison of the Y histogram

Ŷ (i, j) = Y ′(i, j)− λ̂Y (i, j) (4)

In this model, Ŷ represents the restored image and λ̂Y is the estimated airlight map.

2.2 Region Segmentation

In this paper, we suggest estimating the airlight for each region and modeling the
airlight for each region and the coordinates within the image to generate the airlight
map. In the case of an image with various depth, the contribution of airlight can be
varied according to the region. Estimating the airlight for each region can reflect the

Fig. 4 Region segmentation
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variation of depth within the image. Regions are segmented uniformly to estimate
the regional contribution of airlght.

2.3 Estimate Airlight

In order to estimate the airlight, we improved the cost function method in [6] using
a compensation that is based on the human visual model.

In Eq. (3), the airlight is to be estimated to restore the image degraded by fog. To
estimate the airlight, the human visual model is employed. As described by Weber’s
law, a human is more insensitive to variations of luminance in bright regions than in
dark regions.

ΔS = k
ΔR

R
(5)

where R is an initial stimulus, ΔR is the variation of the stimulus, and ΔS is a
variation of sensation.

In the foggy weather conditions, when the luminance is already high, a human is
insensitive to variations in the luminance.

We can estimate the existing stimulus in the image signal by the mean of the
luminance within a region. The variation between this and foggy stimulus can be
estimated by the standard deviation within the region. Thus the human visual model
would estimate the variation of sensation as

STD(Y )

mean(Y )
=

√
1

n

n∑
i=1

(yi − Y )2

Y
(6)

Where Y means that mean value of Y. Note that the value of Eq. (6) for a foggy
image, STD(Y ′)/mean(Y ′), is relatively small since the value of numerator is small
and the value of denominator is large.

A(λ) = STD(Y ′ − λ)

mean(Y ′ − λ)
(7)

In Eq. (7), increasing λ causes an increase in A(λ), which means that a human can
perceive the variation in the luminance. However, if the absolute value of the lumi-
nance is too small, it is not only too dark, but the human visual sense also becomes
insensitive to the variations in the luminance that still exist. To compensate for this,
a second function is generated as follows.

B ′(λ) = (mean(Y ′ − λ)) (8)



168 D. Kim et al.

Eq. (8) indicates information about mean of luminance. In a foggy image, the result
of Eq. (8) is relatively large. And, increasing λ causes a decrease in B(λ) which
means that overall brightness of the image decreases.

Functions (7) and (8) reflect different scales from each other. Function (8) is
re-scaled to produce Eq. (9) to set 0 when input image is Ideal. Note that “Ideal”
represents the ideal image having a uniform distribution from the minimum to the
maximum of the luminance range. In general, the maximum value is 235 while the
minimum value is 16.

B(λ) = (mean(Y ′)− λ)× STD(Ideal )
mean(Ideal )2

(9)

For dense foggy image, the result of A(λ)–B(λ) is relatively large when λ is small.
Increasing λ causes a decrease in A(λ)–B(λ). If λ is too large, it cause an increase in
|A(λ)–B(λ)| which means the image becomes dark. The λ satisfying Eq. (10) is the
estimated airlight.

λ̂ = arg min
λ

{|A(λ)− B(λ)|} (10)

2.4 Estimate Airlight Map Using Multiple Linear Regression

Objects in the image are usually located at different distances from the camera.
Therefore, the contribution of the airlight in the image also differs with depth. In
most cases, the depth varies with the row or column coordinates of the image scene.

This paper suggests modeling between the coordinates and the airlight values
that are obtained from each region. The airlight map is generated by multiple linear
regression using least squares (Fig. 5).

2.5 Restoration of Luminance Image

In order to restore the luminance image, the estimated airlight map is subtracted
from the degraded image as Eq. (4).

To correct the blurring due to fog, edge enhancement is performed.

Ŷde–blurr (i, j) = Ŷ (i, j)+ s · g(i, j) (11)

where g(i, j) is the reverse Fourier transformed signal that is filtered by a high pass
filter, s is a constant that determines the strength of enhancement, and Ŷde–blurr (i,j)
is the de-blurred luminance image.
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Fig. 5 Generation of airlight map

2.6 Post-Processing

The fog particles absorb a portion of the light in addition to scattering it. By chang-
ing the color space from YCbCr to RGB, IR,G,B can be obtained. Therefore, after
the color space conversion, histogram stretching is performed as a post-processing
step.

ĨR,G,B = 255× IR,G,B −min(IR,G,B)

max(IR,G,B)−min(IR,G,B)
(12)
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Fig. 6 Histogram stretching
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Fig. 7 Result of the
evaluation

Fig. 8 Results of image enhancement by defogging
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where ĨR,G,B is the result of histogram stretching, max(IR,G,B) is the maximum
value of IR,G,B that is an input for post-processing, and min(IR,G,B) is the minimum
value of IR,G,B .

3 Result

The experiment is performed on a 3.0 GHz Pentium 4 using MATLAB. The experi-
ment results for images taken in foggy weather are shown in Fig. 8.

In order to evaluate the performance, we calculate contrast, colorfulness, and
the sum of the gradient that is based on the important of edges measurement. Con-
trast and colorfulness are improved by 147% and 430% respectively over the foggy
image. In addition, the sum of the gradient is also improved 201% compared to the
foggy image.

4 Conclusion

In this paper, we propose to estimate the airlight using cost function, which is based
on human visual model, and generate airlight map by modeling the relationship
between coordinates of image and airlight. Blurred image due to fog is restored by
subtracting airlight map from degraded image.

In order to evaluate the performance, we calculated contrast, colorfulness and
sum of gradient. The results confirm a significant improvement in image enhance-
ment over the degraded image. In the future, we plan to investigate a methodology
to estimate the depth map from single image. In addition, enhancement of degraded
image in bad weather due to non-fog weather will be investigated.
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Pedestrian Route Guidance by Projecting
Moving Images

Takuji Narumi, Yasushi Hada, Hajime Asama and Kunihiro Tsuji

Abstract We propose a novel route guidance system for pedestrian in public space
by using moving projection and personal feature extraction from computer vision. In
our system, we extract visitor’s features from the images captured by a surveillance
camera. And, the system generates a motion of guidance information based on the
features and presents the guidance information with the image moving by using
moving projector. By this moving image, the system guides him to the correct way
which we aimed. Moreover, for the effective design, we made models are based on
how a person perceives information through sight. Thorough two experiments, we
demonstrate the effectiveness of our method to easily design traffic lines.

1 Introduction

In the present world flooded with information, the ability to select pertinent infor-
mation from all the available information is imperative. According to changes in
the information environment surrounding us, we require a paradigm shift from the
one-way unchanging presentation of a large amount of information to an individual
presentation that is interactive and adaptive. In this paper, we consider the problem
of route guidance for pedestrian in public spaces as an example of the adaptive and
individual presentation. As an application of the individual presentation of informa-
tion in public spaces, we propose a new method for route guidance system by using
moving projection and personal feature extraction from computer vision.

Route guidance for pedestrian is important for an effective utilization of space.
For example, directions to some places, advertising for shops, and directions to a
safe place for evacuation. Although route guidance is important like these, there
are some problems in conventional guidance system. To date, guidance information
for pedestrian has generally been provided in the form of arrows and signboards.
These conventional methods present information uniformly to all people. Since each
individual is different with regard to their age, height, hobbies, etc., these methods
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do not always work effectively. Our motivation is to use space more effective by
developing a more effective route guidance system.

As problems in conventional guidance system, there are three problems. At first,
there is oversight problem. The person who should be guided often cannot notice
the guidance information. Secondly, there is misdirection problem. An indistinct
guidance results in misdirection. Third, presented information is static in most case.
It is not easy to change contents of the guidance even if it is necessary. Moreover,
there is some limitation in the setting. There are two limitations: physical limitation
and designing limitation. We cannot put signboard on the middle of the way. And,
we don’t want to put some object which doesn’t match the spatial design.

According to Hillstrom and Yantis [1], people are more attentive to moving rather
than stationary objects. This information has valuable implications in the context of
our research. In other words, if the movement of guidance information shows a route
to walk, it will attract more attention than the presentation of stationary information.

The contents of guidance information are decided from the relationship between
a person’s position and the target position. Therefore, many researchers have stud-
ied various methods to sense a person’s position. GPS has been used by almost all
the existing methods to locate a person’s position outdoors [2, 3]. Further, tags or
markers are generally placed on a person to sense his/her position indoors [4].

In addition, the conventional methods of information presentation require using
a portable device or multiple fixed devices [5]. However, since the methods that rely
on devices or tags limit the number of people who can utilize the service, they are
unsuitable for traffic line guidance in public spaces, which are visited by a large
number of individuals.

As the existing method that devices or markers were not putted on a person with,
there were studies to show the suitable information for the situation in robotic room
with Pan-Tilt projector [6]. However, the studies only showed the stationary infor-
mation at a place that was chosen from several short listed places. They did not
consider a way to attract the attention of people to the presented information.

Therefore, we propose a new method for pedestrian route guidance; this method
uses an unspecified personal feature extraction by employing intelligent space tech-
nology and moving information projection.

Moreover, we propose a design methodology to realize the effective guidance
intended by service providers. We propose models for the design methodology. In
order to make a person easily notice the guidance information and for him/her to
be easily guided, the models are based on the knowledge of how a person perceives
images through sight.

2 Pedestrian Route Guidance by Moving Image Projection

2.1 An Analysis of Traffic Line Guidance by Moving Information

First, we analyze the general methods of presenting moving information for guid-
ance so that we may design a method by sensing a person’s feature; we then use
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the feature for adapting the guidance information to the person and present adaptive
information with moving information. From the viewpoint of service engineering
[7], we resolved the service of pedestrian route guidance through the presentation
of moving information into five phases from the standpoint of the service recipient.

(i) Pre-recognition
This phase occurs before a visitor notices the guidance information.

(ii) Paying Attention
In this phase, the visitor notices the guidance information and pays attention.

(iii) Inducing Eye Movement
When moving information is presented, the visitor visually tracks the informa-
tion with his/her eyes before following it. This is defined as the inducing eye
movement phase.

(iv) Inducing Body Movement
In the next phase, the visitor follows the guidance information. This is defined
as the inducing body movement phase.

(v) Service End
In this phase, the guidance information completes the task of leading the visitor
to his/her destination.

We can resolve the conventional guidance service by presenting static informa-
tion in phases from the standpoint of the service recipient.

Pre-recognition (i) → Paying Attention (ii) → Service End (v)

By presenting moving information, the inducing eye movement phase (iii) and
inducing body movement phase (iv) are newly introduced.

If the appropriate service is performed in all the phases, the service of route
guidance will be successful. In this paper, we provide guidelines for effectively
designing the service and phase transitions. Five phases and service designs are
listed in Table 1.

In the pre-recognition phase (i), the visitor’s usual behavior is observed. If the
individual features of each service recipient need to be used to adapt the guidance
information, you can extract them most appropriately in this phase ((a) in Table 1).

Table 1 Analysis of route guidance by presenting moving information

Service from the standpoint of the visitor Service design in each phase

(i) Pre-recognition (a) Sensing
↓ (b) Information Presentation

(ii) Paying Attention
↓

(iii) Inducing Eye Movement Presentation of a Movement Route
↓ (c) Presentation of a Movement Route

(iv) Inducing Body Movement (d) Presentation of a Movement Route
↓

(v) Service End (e) Clarification of the Destination
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To change from the pre-recognition phase (i) to the paying attention phase (ii), it
is essential to present information that will attract the visitor’s attention. To attract
his/her attention while he/she is walking, it is preferable to present information at
the position where the visitor is looking ((b) in Table 1).

In the paying attention phase (ii), the visitor attempts to understand the semantic
content of the presented information. For route guidance, if information is presented
in a manner that is easily understood by the visitor, such as an arrow, the guidance
will be more effective.

It can be predicted that the change from the paying attention phase (ii) to the
inducing eye movement phase (iii) will occur smoothly. However, if the speed of
moving information is not appropriate, the visitor will lose track of the information.
Therefore, it is necessary to move the information at a suitable speed so that the
visitor can track it. Moreover, it is favorable that we present information larger. In
the inducing eye movement phase (iii), this guideline is the same.

To change from the pre-recognition phase (i) to the paying attention phase (ii),
it is necessary to have the visitor move along the route of moving information. It
is necessary that a service provider designs an appropriate route and speed for the
moving information so that a visitor may not only track the moving information
with his/her eyes but also follow it. Service designers should understand the charac-
teristics of a person’s sight in order to design the route and speed ((c) in Table 1).

In the inducing body movement phase (iv), it is necessary that the service
provider designs an appropriate route and speed for the moving information so that
the service recipient may understand the information and continue walking as usual
by watching the moving information ((d) in Table 1).

In the ending service phase (v), if the guidance service is abruptly terminated,
that is, it suddenly disappears, the visitor will be puzzled and confused. This con-
fusion can be prevented by providing a presentation that will inform his/her final
destination ((e) in Table 1).

2.2 Proposed Method for Pedestrian Route Guidance by Projecting
Moving Images Basis on Personal Feature Extraction

On the basis of the design guideline obtained from the analysis in Sect. 2, we pro-
pose a method for pedestrian route guidance; this method comprises two methods –
one for the presentation of information adapted to each individual and the other for
the presentation of moving information.

First, for adapting information to each individual, we extract a person’s feature
such as his/her height, movement route, and speed in real time using surveillance
cameras by employing the background difference method.

Second, for presenting the moving information and guiding a visitor along the
target route, we use a pan-tilt projector, which can project an image at an arbitrary
position. To adapt the guidance information to each individual, a movement route of
the projected information, information content, and timing of the presentation are
varied on the basis of the features of the service recipient (Fig. 1).
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Fig. 1 Method for pedestrian
route guidance using moving
projection based on personal
features

2.3 Pan-Tilt Projector

To apply the proposed method, it is necessary to project an arbitrary image onto
an arbitrary place such as the floor or wall. We developed a pan-tilt projector can
change the projected area by swinging a platform. It can move from −90◦ to 90◦ in
pan direction and from−60◦ to 60◦ in tilt direction (Fig. 2). By using this projector,
we present images with moving. Figure 3 shows the moving image presented by the
pan-tilt projector.

Fig. 2 Image of pan-tilt
projector

2.4 Personal Feature Extraction from Camera Image

For the proposed method, we determine a person’s features including his/her height,
movement route, and passing speed by using a camera.

The image center is (uc, vc), κ is the distortion coefficient, and the relation
between point B and point C is given in Eq. (1). The parameter κ depends on the
camera.
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Fig. 3 Moving image
presented by pan-tilt
projector

u − uc =
(
u′ − uc

) (
1+ κr2)

v − vc = (v′ − vv)(1+ κr2) (1)

r2 = (u − uc)2 + (v − vv)2

(u′, v′) is converted into the line p = (xwp, ywp, zwp)T in the world coordinate by
Eq. (2).

p =
⎛
⎝ xwp

ywp

zwp

⎞
⎠ = αR A−1

⎛
⎝ u′

v′

1

⎞
⎠+

⎛
⎝ Tx

Ty

Tz

⎞
⎠ (2)

(Tx , Ty, Tz)T is the positional vector of the camera in the world coordinate. A is the
coordinate transformation matrix, it depends on an internal parameter of the camera.
R is the rotation matrix of the camera. α is a real number parameter. If one point
of the world coordinate corresponding to (u,v) on the image is obtained, α and the
other two points can be determined. We define

R A−1

⎛
⎝u′

v′

1

⎞
⎠ =

⎛
⎝qxu

qyu

qzu

⎞
⎠ (3)

In addition, α in the zw = 0 plane of Eq. (2) is set as α1. Since zu = 0 is already
known, we obtain Eq. (4) from Eqs. (2) and (3).

α1 = −Tz

qzu
(4)
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As a result, we obtain the position of a person standing in the world coordinate.

⎛
⎝ xu

yu

zu

⎞
⎠ =

⎛
⎜⎝
− qxu Tz

qzu
+ Tx

− qyu Tz

qzu
+ Ty

0

⎞
⎟⎠ (5)

We assume that the person stands vertically on the floor and his/her head is above the
position of his/her feet. The value of xt in (xt , yt , zt ) corresponding to the person’s
uppermost point (ut , vt ), which is extracted from a camera image, is set to xu .

We define

R A−1

⎛
⎝u′

v′

1

⎞
⎠ =

⎛
⎝qxt

qyt

qzt

⎞
⎠ (6)

from Eq. (2). In addition, α in the zw = xu plane of Eq. (2) is set as α2.
Since xt = xu is already known, we obtain Eq. (7) from Eqs. (2) and (6):

α2 = xu − Tx

qxt
(7)

The coordinates of the parietal region are obtained from Eqs. (2), (6), and (7).
We obtain

h = xu − Tx

qxt
qzt + Tz (8)

as the person’s height.
From the time series data of the person’s positions that were obtained using the

abovementioned methods, we obtain his/her movement route and average speed.
Then, a service recipient’s height, movement route, and the walking speed are used
for adapting the information of each individual.

3 Information Presentation Considered the Characteristic
of a Person’s Sight

Since the method proposed in Sect. 2, uses projected moving information, the guid-
ance by the method is based on a person’s sight. We propose models based on the
knowledge of how a person perceives images through his/her sight to design the
guidance by the method effectively and naturally for a visitor.
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3.1 Perceiving Images Through the Recipient’s Sight

A person perceives detailed images by gazing at them. In this paper, on the basis
of [8], we define the field of view of a person to be within 30◦ in the right and left
direction, 20◦ in the upper direction, and 40◦ in the lower direction. We devised the
method for the presentation of information on the basis of this range.

3.2 Models Based on the Knowledge of How a Person Perceives
Images Through His/Her Eyesight

As described in Sect. 2.1, in order to provide an effective guidance service by
presenting information that attracts the visitor’s attention, in the initial stages, it is
preferable to present information at the position where the recipient can gaze with-
out problems. In this section, we decide the position where we present information
in the initial stages on the basis of the knowledge of how a person perceives images
through his/her eyesight.

Figure 4 shows the field of view of a person on the ground, as defined in Sect. 3 A.
It is desirable to present information by the proposed method in the area in the initial
stages. Moreover, the larger the information in the eyesight, the more it attracts the
visitor’s attention. It is preferable to present information at the position where a
person looks. We defined L as a criterion for deciding the presentation position. We
obtain

L = h · tan−1 θl (9)

θl , 40◦; h, Height of Person’s Eyes.
Next, we appropriately design the movement route and speed of the moving

information so that the visitor may not only track the moving information with
his/her eyes but also follow it. A person can track the moving information with
his/her eyes only when it is in the defined area. To guide a person effectively, we
propose moving the information leaving the defined area at the initial stages. Route
B in Fig. 4 shows the movement of the information.

Fig. 4 Field of view of a
person on the ground
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3.3 Movement Models of a Person Who Follows the Moving
Information on the Ground

In the inducing body movement phase, controlling the movement route of the pre-
sented information can control a service recipient’s movement route. In this section,
we propose movement models for a person who follows the moving information
when the information moves only on the ground.

If we assume that the visitor considers the position of the information as a tem-
porary destination point each time and walks naturally from the present position in
the direction of the destination point, we obtain model Eq. (10).

xt+1 = xt + yt − xt

|yt − xt |v�t (10)

xt , A person’s position at time t; yt , Presented information’s position at time t; ν,
Walking speed of a person; Δt , Sampling duration

Space designers usually design 1–1.5 times distance of a picture to a person who
looking at it as long as the diagonal length of the picture [9]. We defined the final
destination area from target thing to 1–1.5 times distance as long as the diagonal
length of it. If xt is in the final destination area, we can forecast that a service
recipient stops.

When we input v and the time series data of the position to which we want
to guide the service recipient in Eq. (10), we obtain the time series data of the
movement route of information. Moreover, when we input v, the time series data
of the movement route of information, and a person’s position at the beginning of
the moving information projection in Eq. (10), we obtain the time series data of the
position to which a visitor will move. We can design an appropriate route for the
moving information for each service recipient by using his/her walking speed that
is measured in v.

4 Experiments

4.1 Traffic Line Guidance Experiment in Art Museum

We performed traffic line guidance experiments at the Suntory Museum in Osaka in
June 2005 to evaluate the guidance by the provided proposed method. We show the
entire composition in Fig. 5. After visitors go downstairs from 5F to 4F, they reach
a narrow area. The traffic line is often confused here. Though a service designer
designs the way to look at painting A in Fig. 5, some service recipients first look
at painting B or painting C. We implemented four methods for the guidance in this
place, and we compared their effectiveness. First, we calculated the percentage of
visitors who followed the correct way without guidance. Next, as the conventional
method, we measured the percentage of visitors who walked along the correct way
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Fig. 5 Suntory Museum, fourth floor chart

with the help of a signboard. Furthermore, we guide visitors by projecting moving
information whose speed is always constant. Further, we guide the visitors by pro-
jecting moving information whose speed is adapted to each visitor according to the
proposed method. We compared the effectiveness by evaluating the success rates of
guidance and the questionnaire for these four cases.

4.2 Results

The experimental results are shown in Table 2. The percentage of visitors who fol-
lowed the correct way when there was no guidance was 84.7%. Using the presenta-
tion of moving information, that is, the proposed method, we measured the success
percentage of guidance to be 96%. The result shows that the proposed method is
more effective than the conventional one. The main cause of the failure of guidance
by the proposed method was that the visitor did not notice the presented informa-
tion; the visitor paid attention to a sound coming from the opposite direction. In
this experiment, we excluded the case when the projected information was hidden
behind other guests from a parameter. In such a case, the guest who went to the
front was guided properly, and the guest who came from behind tended to go the
same way. Even if we cannot show the guidance information to all people, we can

Table 2 Success rate of guidance and ease of view

Guidance Ease of Number
success rate view of data

No guidance 84.7% – 170
Guidance Signboard 90.6% – 203

Moving image Constant speed 96.2% 2.67 215
Adapted speed 96.4% 3.48 292

∗Ease of view = Four-stage evaluation using a questionnaire.
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create a flow of traffic line. Moreover, we compared the guidance by projecting
moving information whose speed was constant with the guidance provided by pro-
jecting moving information whose speed is adapted to each recipient. There was
no significant difference between the success rates of the guidance provided in the
two cases. In addition, in the questionnaire, the service recipients stated that the
guidance provided by projecting moving information with a speed adapted to each
visitor was easy to follow. (Significance level is 1%.)

4.3 Experiment for Presentation of Information Considered
Characteristic of a Person’s Sight

We performed traffic line guidance experiments at the Kashiwa Campus of the
University of Tokyo in October 2005 to evaluate the proposed models. We arranged
A1 size posters in the room and observed the action of the guided visitors.

For the evaluation of proposed model (a), we compared the success rate of the
guidance provided by moving information within the area where a person can gaze
(left-hand side of Fig. 6) with the success rate of the guidance provided by moving
information outside the area (right-hand side of Fig. 6). Moreover, we compared the
guided person’s real movement route that was obtained by image data processing
with the movement route obtained from Eq. (10).

Fig. 6 Two movement routes

4.4 Results

The experimental results are shown in Table 3. The success rate of the guidance
provided by moving information within the defined area after the information was
presented at the position where information is viewed at a maximum size in the
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Table 3 Success rate of guidance for each movement route

Route to
poster A

Route to
poster B

Route to
poster C

Stopped

No guidance 75.0% 0.0% 0.0% 25.0%
Guidance by moving

information within the
defined area

25.0% 50.0% 0.0% 25.0%

Guidance by moving
information outside the
defined area

22.7% 0.0% 74.2% 3.0%

∗Stopped = the case in which the person halted during guidance.

Fig. 7 Guided person’s real movement route and movement route obtained from the proposed
model (b) (positioning errors are small)

Fig. 8 Guided person’s real movement route and movement route obtained from the proposed
model (b) (positioning errors are large)
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defined area was 50.0%. The success rate of the guidance provided by moving
information outside the defined area was 74.2%. While being guided by the pro-
posed model, the visitors hardly halted. The results show that the proposed model is
effective.

The percentage of cases in which the differences between the guided person’s
real movement routes and the movement routes obtained from the proposed model
(b) (Ex. Figs. 7 and 8) were less than 10 cm was 20.8%; for differences less than
20 cm and 30 cm the percentages were 50.6% and 87.0%, respectively.

Additionally, the visitors of 80.0[%] stopped at the final destination area defined
by the proposal model.

5 Discussions

In the above mentioned experiment, the extraction of the features and natural behav-
ior of each visitor in the pre-recognition phase and their use in deciding the move-
ment speed of the presented information increased the success rate of guidance.
This is because we could guide the visitors without disturbing their natural walking
pattern. Furthermore, we compared the guidance provided by presenting moving
information with a movement speed that is always constant with the guidance pro-
vided by presenting moving information with a movement speed adapted to each
recipient. The visitors stated that the latter guidance was easy to follow. One reason
was because the satisfaction level of the visitors who were contented with the con-
ventional presentation of information designed for an average person was enhanced.
Another reason was attributed to the presentation of information by the proposed
method was easy to watch for persons whose features are well below or well above
average.

In the experiment pertaining to the presentation of information by considering
the characteristics of a person’s sight, we calculated the position of the person’s feet
from the most inferior point of the person’s domain that was captured by image
processing. Therefore, a positioning error related to the size of the service recip-
ient human size occurs depending on the state of his/her legs: open or close. We
think that most of the positioning errors are caused due to the errors in the image
processing step.

Since the error that is less than 30 cm is not greater than the size of the human
body, the proposed model is sufficiently effective forecasting the position of a walk-
ing person. It was mainly in the last stage of the guidance service that the positioning
error became greater than 30 cm. The visitor stopped at the last stage of the guidance
service. When a person is about to stop walking, it is expected that he/she will
reduce his/her walking speed. In the experiment, v for the proposed model is set to
the average walking speed of a visitor. Large positioning errors were attributed to
the fact that the speed value we used for predictions of the position in the last stage
of the guidance was greater than the actual walking speed. When we observed the
actual walking action of a visitor, we found that the nearer a visitor was to the final
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destination area at the time before stopping, the lesser is the distance he walks in
the last stage. This was due to positioning errors. We show the guided person’s real
movement route and the movement route obtained from the proposed model (b) in
Figs. 7 and 8. Figure 7 shows a case in which the positioning errors are small, and
Fig. 8 shows one in which the positioning errors are large.

6 Conclusion

In this paper, we proposed the novel guidance system using a moving projection.
The method uses adaptive and dynamic information projection for the purpose of
information presentation in public spaces. We developed a route guidance system
that uses personal feature extraction of visitor’s height, walking speed, and direction
of walking by estimating from camera images and that projects moving informa-
tion by using a pan-tilt projector. Moreover, we propose models to design the route
guidance effectively. The models are based on the knowledge of how an individual
information by sight. By performing two experiments, we showed the effectiveness
of the proposed method in effectively designing route guidance.

In future, we can develop a service that offers extra information for guidance
by varying the information content for making it more attractive for commercial
advertisement. We can improve the service by using not only personal features but
also environmental conditions; personal features include a person’s height, walking
speed, age, and hobbies, and environmental situations include the place, time, and a
natural disaster.
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Recognizing Human Activities from
Accelerometer and Physiological Sensors

Sung-Ihk Yang and Sung-Bae Cho

Abstract Recently the interest about the services in the ubiquitous environment has
increased. These kinds of services are focusing on the context of the user’s activ-
ities, location or environment. There were many studies about recognizing these
contexts using various sensory resources. To recognize human activity, many of
them used an accelerometer, which shows good accuracy to recognize the user’s
activities of movements, but they did not recognize stable activities which can
be classified by the user’s emotion and inferred by physiological sensors. In this
paper, we exploit multiple sensor signals to recognize user’s activity. As Armband
includes an accelerometer and physiological sensors, we used them with a fuzzy
Bayesian network for the continuous sensor data. The fuzzy membership function
uses three stages differed by the distribution of each sensor data. Experiments in the
activity recognition accuracy have conducted by the combination of the usages of
accelerometers and physiological signals. For the result, the total accuracy appears
to be 74.4% for the activities including dynamic activities and stable activities, using
the physiological signals and one 2-axis accelerometer. When we use only the phys-
iological signals the accuracy is 60.9%, and when we use the 2 axis accelerometer
the accuracy is 44.2%. We show that using physiological signals with accelerometer
is more efficient in recognizing activities.

Keywords Activity recognition · Physiological sensor · Fuzzy Bayesian network

1 Introduction

The recognition of human activity is a concerning problem to provide interactive
service with the user in various environments. Research about activity recognition
is emerging recently, using various sensory resources. There are studies using cam-
eras or GPS based on the user’s movement by using pattern recognition techniques.
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Many of the other research use accelerometers as the main sensor placing the
accelerometer on the user’s arm, leg or waist. They recognize activities like walk-
ing or running, which has movements in the activity and can be optimized for the
recognition based on the accelerometer.

Accelerometers show a high accuracy in recognizing activities with lots of
movements. But they are weak to recognize the activities with little movements.
Accelerometers also provide continuous sensory data which is hard to separate to
the exact boundary of several states. Other research use physiological sensors to
recognize the user’s context, as the user’s body status can represent the user’s activ-
ity and also the user’s emotion which depends on the activity. Therefore using the
physiological sensor with accelerometers will help to recognize the user’s activity.

In this paper, we use not only an accelerometer but also physiological sensors
to help the recognition of activities. Accelerometers have advantages to measure
the user’s movement and the physiological signals have advantages to measure the
user’s status of the body. Most of these sensors calibrate continuous sensor data, and
if the data is near the boundary of a specific state, the evidence variable will show a
radical difference in small changes. To lessen these changes in this situation we pro-
pose to preprocess the data with fuzzy logic. Fuzzy logic can represent ambiguous
states in linguistic symbols, which is good in continuous sensory data. As sensory
data include uncertainty of calibrating data and also human activity itself has it too,
we use Bayesian network to do the inference, and modify the learning and inference
methods that fit to the fuzzy preprocessing.

2 Background

2.1 Related Works

There are many research groups studying about human activity recognition using
various sensors like cameras, GPS or accelerometers. Tapia used a simple state-
change sensor to detect the objects which the user is using at home [1], and Han used
an infrared camera to contrast the silhouette of the user and recognized the activity
by using the sequence of the images [2]. When using these kinds of sensors such as
state-change sensor, cameras or microphones, the research uses pattern recognition
and tracks the user’s position to recognize the user’s activity.

Using motion detection sensors or cameras can only collect log data about the
user’s activities in an abstract way, and using a camera needs a large consumption
of calculation. There are other research using sensors which can represent the user’s
activity like accelerometers or physiological sensors. These are sensors that mostly
use continuous data values. As these sensors’ measurements are continuous, the
research using these sensors are using various methods to quantize the continuous
measurements. Meijer used a motion sensor and accelerometers for measurements,
calculated the difference with each activity and compared it with a rule [3]. Ravi
uses three axes accelerometers with several classifiers, naı̈ve Bayes, decision tree
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and SVM [4]. Parkka also used three axes accelerometers, and in addition, they
added physiological sensors and used a decision tree for the classifier [5].

Subramanya used a GPS and a light sensor to detect the location and an
accelerometer to recognize the related activity with the location [6]. They used
binning for preprocessing and dynamic Bayesian network for classification. These
research use sensors which collect continuous measurements and classify activ-
ities by using binning or decision tree. Binning and decision tree are useful to
recognize activities but there can be some problems of segmenting the continuous
measurements, especially if the measurements are ambiguous between activities.
In this paper, we use fuzzy logic which has advantages to represent continuous
data in symbolic states for preprocessing [7], and a fuzzy Bayesian network, which
is compromised with the preprocessed fuzzy data, to solve the problem between
ambiguous measurements. We use a sensor, Armband, which has an accelerometer
and physiological sensors as well, and collect the user’s activity log information by
using a PDA.

2.2 Pysiological Sensor

Various sensors are used to recognize the user’s activity such as GPS, cameras,
microphones, accelerometers and physiological sensors. Among those various sen-
sors, Bodymedia’s Armband is a sensor which can measure the user’s physiological
signals. It has five kinds of sensory resources inside, a two axes accelerometer, a
heat flux sensor, a galvanic skin response sensor, a skin temperature sensor, and a
thermometer [8]. With these five sensors it calibrates the sensory data and combines
to 24 kinds of data.

Thus, the Armband can recognize not only the dynamic activities by the
accelerometer but also the stable and static activities by the physiological signals,
too. The Armband has a maximum of 32 Hz sampling rate, and uses the Innerview
professional 5.0 [8] to collect the data. Innerview professional 5.0 is able to show
the collected data in a graph or convert the data to several formats of files. Figure 1

Fig. 1 The Armband worn on the left upper arm (left) and the screen of Innerview professional 5.0
(right)
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shows the appearance of the Armband when it is worn on the upper left arm and the
screen of the Innerview professional 5.0 showing the data in a graph.

In this work, from the 24 kinds of measurements by the Armband, we use the
two axes accelerometer values, galvanic skin response, heat flux, skin temperature,
energy expenditure, metabolic equivalants, and step counts.

2.3 Fuzzy Logic

Fuzzy logic has been used in a wide range of problem domains in process con-
trol, management and decision making, operations research, and classification. The
conventional crisp set model makes decision in black and white, yes or no, and
it has a typical boundary in the classification of several stages. The representation
of the low stage will have a value of 1 until the upper bound, and the moment
the value goes over the upper bound, the value of the low stage will suddenly
change into 0. This crisp set model of classification is simple to implement but
when it is used in continuous values in real number, like sensory data, it is a hard
problem to decide the boundary. It is also a hard problem for the inference models
when the data is nearby the boundary, keeping the robustness of a little change of
the data. By using fuzzy logic, the decision becomes flexible and can keep each
stage’s representation near by the boundary of the data. It helps to represent the
vagueness of human intuition in a linguistic modeling which is hard in the crisp
model [7].

A fuzzy membership function calculates the fuzzy membership for each stage
with a specific value. The most popular function type is a trapezoidal membership
function and a triangular membership function which the graph is shown in Fig. 1.
These functions are easy to implement, have low consuming calculations like for-
mula (1) and (2) [9]. The triangular membership function(M Ftri ) requires three
parameters and the trapezoidal membership function(M Ftrap) requires 4. The value
is simple divided with a rule of the range of data x. The parameter can be chosen
and modified by a direct view of a graph. There are also a membership using the
Gaussian distribution and a sigmoidal membership function.

Fig. 2 The graph of the trapezoidal (left) and triangular (right) fuzzy membership function
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2.4 Bayesian Network

A Bayesian network is a graph with probabilities for representing random variables
and their dependencies. It efficiently encodes the joint probability distribution of
a large set of variables. This representation consists of two components. The first
component is a directed acyclic graph (DAG) and the second component describes
a conditional distribution for each variable. The nodes of the graph represent ran-
dom variables and its arcs represent dependencies between random variables with
conditional probabilities at nodes. As the graph is a directed acyclic graph all edges
are directed and there is no cycle when edge direction are followed.

Each node has a initial probability table which can be measured by a statistical
method or by a expert’s knowledge, so that the network can make a robust result
even if there is a missing value in a uncertain environment. This characteristic is
especially important in the usage of sensory resources. Calculating the probability
of a node is based on the Bayes rule. If a node does not have a parent the proba-
bility is as the initial probability table, and if it has, it is calculated by adding the
multiplication of each probability of the state in the variable node and the condi-
tional probability of the variable node’s state in the parent’s probability table. The
calculation of the probability is like formula (3) [10].

P(A) =
∑

i

P(A|Bi )P(Bi ) (3)

The joint probability of random variables {x1, . . . , xn} in a Bayesian network is
calculated by the multiplication of local conditional probabilities of all the nodes.
Let a node xi denote the random variable xi in the Bayesian network, and parent i

denote the parent nodes of xi , from which dependency arcs come to node xi , Then,
the joint probability of {x1, . . . , xn} is given as the following formula (4).
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P(x1, . . . , xn) =
∏

i

P(xi |parent i ) (4)

It is not a simple task to get the exact conditional probability distribution when
the variables have continuous values and high order dependencies. As conditional
probability table is not suited for continuous values because the values should be
quantized and the table size will grow larger with the dependency order.

So we used fuzzy Bayesian network which can make more flexible inferences
by preprocessing the continuous variable data in fuzzy logic, and train the condi-
tional probability table by a fuzzy training method which can be differed with the
conventional discrete training model.

3 The Fuzzy Bayesian Network for Activity Recognition

As directly using the sensor data is an issue to consider, we need a framework to
quantize the data. The flow of the system is like Fig. 3. The Armband collects the
log data based on the user’s activity, and a PDA is used for the user to annotate
the current activity he or she is doing. These two log data are collected simultane-
ously and save the same format of the current time. Then, the log integrator will
merge these data into entire integrated log data. The preprocessor will use this data
and generate a fuzzy integrated data for each sensor log. With this data the fuzzy
Bayesian network will train the conditional probability tables, and the inference also
uses this fuzzy integrated data.

3.1 Preprocessing with Fuzzy Logic

As measurements from Armband are continuous a step of preprocess is necessary.
Figure 4 shows the distribution of the measurements and the continuous measure-
ments with the discrete function results.

Segmenting continuous data is a considerable issue when the data lay on one side,
like Fig. 4 (top), because a little difference of segmentation makes a huge difference
of the result. We made a fuzzy membership function depending on the distribution
using the mean and standard deviation of the each sensory measurement. As mea-
surements from Armband are continuous a step of preprocess is necessary. Figure 2
shows the distribution of the measurements and the continuous measurements with
the discrete function results.

We separated the data in half by the mean value, and calculated the distribution
of each side with the standard deviation in three stages. If the distribution of a side
is wide it uses a Gaussian membership function, or if it’s distribution is moder-
ate it uses a trapezoidal, and if the distribution is very narrow it uses a triangular
fuzzy membership function. Each side can have these three kinds of different fuzzy
membership function, so by combining the fuzzy membership of each side, there
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Fig. 3 The overview of the system flow

Fig. 4 The distribution of the measurements (left) and continuous data with the discrete function
results (right)
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can be nine kinds of combinations of a full complete membership function. For
the discrete function we used a function based on the fuzzy membership function
which segments the data into three states. The state of the discrete function chooses
the state which has the maximum fuzzy membership value between other states. But
this function can have a problem when the data is like Fig. 4 (bottom). The curve
above represents the continuous data from the sensor and the curve below shows
the results of a discrete function. The higher values have no problem, but the lower
values’ discrete function result shows a shaking result with a small transition. This
can be a problem in the inferring phase, because the evidence will change with just
a small amount of transition.

3.2 Training of the Fuzzy Bayesian Network

Using the same training method with the discrete model will not work perfectly as
the input of each variable are not the same as the discrete model which only chooses
a single state of the variable, but it contains the fuzzy membership value of each
state. As we used fuzzy logic to preprocess the measurements, we used a learning
method which fits to the fuzzy data, differed with the discrete model of training
based on the Bayes theorem. The training method of the discrete model only counts
a state of the data, and the fuzzy method will count all of the state which has a fuzzy
membership value.

As sensory resources are independent to each other without any dependencies,
we used the structure of the naı̈ve Bayes classifier, and make the variables to give no
influence or have any interactions between each other [11]. Naı̈ve Bayes classifier is
based on the Bayes theorem calculating P(B|A). This can be calculated by formula
(5) in a discrete model. In formula (5), μ stands for the discrete function(D) result
of an input of the evidence variable(A) about the state of the evidence(state) with the
input x. The discrete function only allows one state to be counted for the conditional
probability.

μstate =
{

1, D(A) ∈ state
0, D(A) /∈ state

P(state | A) =
∑

x

μstate∑
A

μA
state

(5)

Differed with the discrete model the fuzzy learning method allows more than
one states to be counted for the conditional probability. The fuzzy membership
function(MF) will produce the fuzzy membership value of each state of the input
evidence, and all of the value is considered to be used.

P(state | A) =
∑

x

(M F(x) = μstate )∑
A

∑
x

(M F(x)A = μA
state )

(6)
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This makes the values, on the edge of the discrete function which is ambiguous
of determining the state, to be more flexible and give probability to both of the
ambiguous states.

3.3 Inference of the Fuzzy Bayesian Network

When we use the fuzzy Bayesian network to infer the status of a variable, we use
a discriminant which chooses the state which has the largest probability. The dis-
criminant function f is like formula (7) in a naı̈ve Bayes classifier. It will multiply
each evidences of each variable’s conditional probability. In this formula, E is the
evidence values from the environment, and k is the inferring status of the Bayesian
network. vik means the value of the evidence variable A j [11].

fi (E) = P(Ci )
∏

j

P(A j = v jk + Ci ) (7)

In the discrete method of the naı̈ve Bayes classifier, formula (7), only one of the
evidence conditional probability of each variable only gives influence to the result
of the discriminant. As a very little difference of data will change the results of
the inference of the Bayesian network, in the discrete method there are problems
when the data is like Fig. 4 (bottom). So we modified the discriminant function like
formula (8).

fi (E) = P(Ci )
∏

j

∑
k

(M F(E j )k × P(A j = v jk + Ci ) (8)

In formula (8), when the result of the membership function(MF) is not zero,
which means the data is near the boundary of the status, the conditional probability
each of the status’ above and below the boundary gives influence to the result. This
dissolves the radical difference when the data moves over the boundary and helps
the classifier to keep the changes calm about the data which is ambiguous to divide
into bins.

4 Experiment

4.1 Experiment Method

We collected the data using the Armband sensor for the physiological signals which
was worn on the right upper arm and a PDA for the labeling of the activity by the
user. The user selects an activity saved in the PDA. The program for the labeling was
programmed by Embedded Visual C++ based on the PocketPC standard develop-
ment kit. As physiological signals change moderately the data collection term of the
Armband and the PDA was set for a data once a minute. After the log collected the



196 S.-I. Yang and S.-B. Cho

data from the Armband was converted by the Innerview professional 5.0 program
to an excel format. The converted data is integrated with PDA labeling data by a
integration program, and it is used for the training and testing of the fuzzy Bayesian
network. There are nine kinds of activity which can occur in a real life and office
environment. The activities which can be differed by the movements were walking,
running, and exercising. The other activities were eating, reading, studying, playing,
resting and sleeping. Totally nine activities were collected, in the real life, freely
with no restricts to the user.

The raw sensor data was collected like Fig. 5. The graph shows the sequence
of the sensor signals. By only using the accelerometer signals, the activities which
are dependent of the user’s movements show they are significantly different with
the others, but other activities, which are stable, are hard to recognize the differ-
ence between each other. As the physiological signals in Fig. 5 shows, using these
additional signals can lessen the difficulty only using the accelerometer signals.

The first experiment was in four kinds of combinations of the discrete model
and fuzzy model for the training and testing method. We compared the training
method between the Bayes theorem based method and the fuzzy logic based method.
The testing method was compared between the naı̈ve Bayes classifier and the naı̈ve
Bayes classifier using the fuzzy inference. The total data set has a size of 5,500
samples and placed randomly for the cross validation which is divided to ten folds.

The second experiment was to show the accuracy of the activities when using
different sensor data. The first set uses all of the sensor data, both the physiological
signals and accelerometer signals. The second set only used the physiological sig-
nals, and the third set used the 2 axis accelerometer signals. Each set was trained
and tested in the fuzzy Bayesian network and was compared the accuracy between
activities.

Fig. 5 The Raw Sensor Data from the Accelerometer and Significant Physiological Signals of
Each Activity
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4.2 Experimental Results

Table 1 is the result of the first experiment’s average of the ten folds cross vali-
dation. The discrete methods had 70.0% of accuracy and the combination of the
discrete training and the fuzzy inferring had 71.3% of accuracy. Even though the
training method is a discrete model the fuzzy inference had a higher and more stable
accuracy than the discrete inference. The fuzzy methods show 74.4% of accuracy
and when the discrete inference is used with the fuzzy training the accuracy is low
by 62.3%. This shows that the discrete inference is not capable for the fuzzy train-
ing, but the combination of fuzzy methods has higher accuracy than the discrete
methods.

Table 1 The average results of the experiment

Learning Discrete Fuzzy

Inferring Discrete Fuzzy Discrete Fuzzy
Accuracy 70.0(±2.3) 71.3(±2.0) 62.3(±2.7) 74.4(±1.4)

The following Fig. 6 is a chart of the result of the cross validation with ten folds.
The bar represents the combinations of training and inferring methods, discrete
training and discrete inferring, discrete and fuzzy, fuzzy and discrete, and fuzzy
and fuzzy from the left. As the chart shows, the fuzzy method has higher accuracy
in all ten folds.

Tables 2–4 shows the result of the second experiment, in three different data sets.
Table 2 shows the confusion matrix when using all of the sensor data, and Tables 3
and 4 each shows when using only the physiological signals and accelerometer sig-
nals. The rows show the activity and the columns show the recognition results.

The accuracy of Table 2 is all better than the other tables, Table 3, which only
used the physiological signals, show that it is more efficient when recognizing the
stable activities than Table 4, and in the opposite Table 4 shows that the accelerom-
eter is more efficient when recognizing the dynamic activities. Because there is only

Fig. 6 The results of the cross validation with ten folds. The bars from the left are discrete
learning–discrete inferring, discrete–fuzzy, fuzzy–discrete, fuzzy–fuzzy
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Table 2 Accuracy of the method using both physiological and accelerometer signals (total
accuracy = 74.2%)

Ea P Rea Res Ru Sl St Wa Ex

Eating 43.7 12.1 10.4 0 0 0 14.2 18.9 0
Playing 0 92.7 0 0 0 0 0 0.07 6.6
Reading 16.3 1.0 73.5 5.1 0 0 3.1 0 1.0
Resting 4.0 0 0.5 86.3 0 0 7.6 0 1.6
Running 0 0 1.6 0 84.1 0 0 12.7 1.6
Sleeping 2.4 0.8 9.9 0 0 85.8 0 0.3 0.8
Studying 11.7 0 1.3 5.2 0 0 74.7 2.6 34.5
Walking 6.0 2.7 0.7 0 2.4 0 3.1 75.8 9.3
Exercising 4.7 9.9 8.3 0 1.1 0 1.6 31.2 43.2

Table 3 Accuracy of the method only using physiological signals (total accuracy = 60.9%)

Ea P Rea Res Ru Sl St Wa Ex

Eating 30.9 13.3 0 17.1 0 0 18.3 20.4 0
Playing 0 90.6 0 0 0 0 0 0 9.4
Reading 78.6 1.0 1.0 13.3 0 0 6.1 0 0
Resting 3.0 0 0 55.9 0 0 41.1 0 0
Running 1.6 0 0 0 58.7 0 0 38.1 1.6
Sleeping 13.1 1.1 0 0 0 85.5 0 0.3 0
Studying 13.6 0 0 7.1 0 0 73.5 5.8 0
Walking 1.3 2.2 0 3.5 15.3 0 3.8 57.7 16.2
Exercising 14.6 10.9 0 1.0 3.1 0 0 29.2 41.2

Table 4 Accuracy of the method only using accelerometer signals (total accuracy = 44.7%)

Ea P Rea Res Ru Sl St Wa Ex

Eating 24.2 32.5 0.8 0 0 0 19.2 20.0 3.3
Playing 17.1 67.9 0 2.1 0 0 3.5 3.5 5.9
Reading 5.1 70.4 12.3 2.0 0 0 6.1 3.1 1.0
Resting 1.0 44.7 0.5 48.8 0 0 2.0 0.5 2.5
Running 0 1.6 0 0 82.5 0 0 14.3 1.6
Sleeping 0.8 47.4 1.9 42.2 0 0 6 0.3 1.4
Studying 5.8 7.8 0.6 12.3 0 0 39.7 2.6 31.2
Walking 5.5 3.8 0 0 4.2 0 2 76.3 8.2
Exercising 7.3 13.5 3.1 0 0.5 0 2.1 28.6 44.9

one 2-axis accelerometer worn on the upper right arm the results are not so good,
but the dynamic activity recognition accuracy is as good as or better than Table 2’s
results. As Table 3’s accuracy of each activity is a little lower than Table 2’s accu-
racy, because that even an activity is stable, the accelerometer helps the recognition.
The dynamic activities in Table 3 shows that they are confused with each other
because the there is no accelerometer information. Table 4’s accuracy of walking is
much higher than Table 2 and running and exercising is similar with Table 2. This
means that dynamic activities can be recognized only with the accelerometer. The
reading activity was confused with the eating activity and resting activity, but when
the physiological signals and accelerometer signals are combined it showed 73.5%
of accuracy.
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5 Conclusion

In this paper, we showed that using a fuzzy Bayesian network is more efficient than
the discrete model when using continuous data for recognizing the user’s activity.
We used the Armband sensor which calibrates physiological signals and includes
a 2-axis accelerometer. The first experiment results are, when we used the discrete
model of the naı̈ve Bayes classifier has shown 70.0% of accuracy and the fuzzy
Bayesian network has shown 74.4% of accuracy. The second experiment has shown
that each activity has an efficient sensor to recognize using the physiological signals
or the 2 axis accelerometer depend on the vitality, and combining these two kinds of
sensor helps to recognize all of those activities. In the future work, we will need to
integrate more sensors for the context-aware service about the user activity, change
the frequency of the data collection time, and improve the classifier for a temporal
inference model to analyze the sensory data’s alterations.
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The “Fast Clustering-Tracking” Algorithm
in the Bayesian Occupancy Filter Framework

Kamel Mekhnacha, Yong Mao, David Raulo and Christian Laugier

Abstract It has been shown that the dynamic environment around the mobile robot
can be efficiently and robustly represented by the Bayesian occupancy filter (BOF)
[(Tay et al. 2008)]. In the BOF framework, the environment is decomposed into a
grid-based representation in which both the occupancy and the velocity distributions
are estimated . In such a representation, concepts such as objects or tracks do not
exist. However, the object-level representation is necessary for applications needing
high-level representations of obstacles and their motion. To achieve this, we present
in this paper a novel algorithm which performs clustering on the BOF output grid.
The main idea is to use the prediction result of the tracking module as a form of
feedback to the clustering module, which reduces drastically the complexity of the
data association. Compared with the traditional joint probabilistic data association
filter (JPDAF) approach, the proposed algorithm demands less computational costs,
so as to be suitable for environments with large amount of dynamic objects. The
experiment result on the real data shows the effectiveness of the algorithm.

Keywords Bayesian filtering · BOF · Tracking · Autonomous vehicle

1 Introduction

Perceiving of the surrounding physical world reliably is a major demanding of the
driving assistant systems and the autonomous mobile robots. The dynamic envi-
ronment needs to be perceived and modeled according to the sensor measurements
which are noisy. Normally, this problem is treated within the estimation framework.
The major requirement for such a system is a robust target tracking system. Most
of the existing target tracking algorithms [1] use an object-based representation
of the environment. However, these existing techniques have to take into account
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explicitly data association and occlusion problems which are major challenges to
the performances. In view of these problems, a grid based framework, the Bayesian
occupancy filter (BOF) [2, 3] has been presented in our previous works.

In the BOF framework, concepts such as objects or tracks do not exist. It decom-
pose the environment into a grid based representation. A Bayesian filter [4] based
recursive prediction and estimation paradigm is employed to estimate an occupancy
probability and a velocity distribution for each grid cell. Thanks to the grid decom-
position, the complicated data association and occlusion problems do not exist. The
BOF is extremely convenient for applications where no object-level representation
is needed. The second advantage of the BOF is that the multiple sensor fusion
task could be easily achieved. In some situations, using information from multi-
ple sensors could provide more reliable and robust information of the environment.
However, in traditional multiple sensor fusion techniques, data association problem
could be further complicated. The associations between the two consecutive time
instances from the same sensor as well as the associations among the tracks of
different sensors will have to be take into account at the same time. Fortunately,
these difficulties do not exist in the grid based approaches [5] which deal with the
data association problems in a more feasible way. Uncertainties of multiple sensors
are specified in the sensor models and are fused into the BOF grid naturally with
solid mathematical ground.

Despite of the aforementioned advantages, a lot of applications demand the
explicit object-level representation. In our former work, a joint probabilistic data
association filter (JPDAF) [1] based object detecting and tracking method was
implemented above the BOF layer. However, when there are enormous amount of
dynamic objects in the environment, the number of hypothesises generated by the
JPDAF increases rapidly, which makes the method suffers from the computational
cost. Regarding to this problem, a novel fast object detecting and tracking algorithm
is proposed. The algorithm is hierarchical in which two filtering levels are used
(Fig. 1) namely the robust grid-level sensing and the robust object-level tracking.
The output grid of the BOF grid filter (i.e, the probability distribution on the occu-
pancy of the cell, and the probability distribution on the velocity of the cell occu-
pancy) is used as the input from which object hypothesises are extracted. By taking
the prediction result of the tracking module as a form of feedback to the clustering
module, the clustering algorithm avoids searching in the entire grid which guaran-
tees the performance. A re-clustering and merging strategy is employed whenever
the ambiguous data association occurs. The computational cost of this approach is
linear to the number of dynamic objects detected, so as to be suitable for cluttered
environment. Our approach has been tested on the real data collected on real cars in
highway and cluttered urban environments (Fig. 2), and also on our Cycab experi-
mental platform (Fig. 3).

The paper is organized as follows. In the next section, the Bayesian Occupancy
Filter(BOF) framework is described. The object detecting and tracking approach is
presented in Sect. 3. In Sect. 4, the experimental result of our approach on the real
data collected by the Cycab platform is provided. Finally, conclusions are drawn in
Sect. 5.
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Tracker

Objects

BOF

Occupancy/velocity

Sensor 1

Sensor 2

Sensor 3

Association

Clustering on Grid
(Objects extraction)

Fig. 1 Sensing/Tracking system architecture

Fig. 2 Example of BOF output using a computer vision car detector as input (red boxes): The
images are provided by a camera mounted on the moving ego-vehicle. The BOF output is projected
back on the image. It represents a grid of occupancy probability (blue-to-red mapped color) and
the mean velocity (red arrows) estimates
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Fig. 3 The Cycab platform

2 Bayesian Occupancy Filter (BOF)

The Bayesian Occupancy Filter (BOF) is represented as a two-dimensional grid-
based decomposition of the environment. Each cell of the grid contains two prob-
ability distributions: (i) the probability distribution over the occupancy of the cell
(ii) and the probability distribution over its velocity. Given a set of input sensor
readings, the BOF algorithm allows to update the occupancy/velocity estimates of
each grid cell.

BOF is a special implementation of the Bayesian filter approach [4, 6]. This
approach addresses the general problem of recursively estimating the posterior
probability distribution P(Xk | Zk) of the state X of a system conditioned on its
observation Z . This posterior distribution is obtained in two stages: prediction and
estimation. The prediction stage computes an a priori prediction of the target’s cur-
rent state known as the prior distribution. The estimation stage then computes the
posterior distribution by using the prediction with the current measurement of the
sensor.

In the case of the BOF, using this prediction/estimation scheme allows filtering
out false alarms, miss-detections, and localization errors in sensors data readings.
Figure 3 shows an example of BOF output using a computer vision car detector.

The Bayesian model presented in the following text is a reformulation of the one
we presented in [2]. The aim of this reformulation is to make clearer the strong link
between the discretization of the space and the discretization of the velocity, which
reduces the number of the used random variables and makes the model easier to
explain. The key idea of the model is to represent the 2D space using a regular grid.
Given this space discretization and assuming that objects do not overlap, the velocity
of a given c cell at a time t is directly linked to the identity of its antecedent cell Ac
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from which the content of cell c moved between t − 1 and t . In other words, we can
define the velocity of a given cell by providing the index of its antecedent. There-
fore, estimating the velocity of a given cell is equivalent to estimating a probability
table over all its possible antecedents. Possible antecedents of a cell are defined by
providing a neighbourhood from which the cell is reachable in a time step. This
model applies also to velocities needing more than one time step for a neighbour
cell to reach c. However, for simplicity we will assume only one-step velocities
(neighbours reaching c in one time step).

The BOF model is shown graphically in Fig. 4 and is described as follows:

Fig. 4 The Dynamic
Bayesian Network
corresponding to the BOF
model. Here, we suppose that
only occupancy sensors are
available

t

Hidden state

Observations

Ot1

At2 AtAt1

Ot

Zt1 Zt

2.1 Variables

For a given cell having c ∈ Y as index in the grid, let:

• At
c ∈ Ac ⊂ Y represents each possible antecedent of cell c over all the cells in

the grid domain Y . The set of antecedent cells of cell c is denoted by Ac and is
defined as a neighbourhood of the cell c.

• At−1
c ∈ Ac ⊂ Y the same as At

c but for the previous time step.
• Ot

c ∈ O ≡ {0, 1} is a boolean variable representing the state of the cell in terms
of occupancy at time t , either [Oc = 1] if occupied, [Oc = 0] if empty. Given
the independency hypothesis, the occupancy of each cell at time t is considered
apart from the occupancy of its neighbouring cells at time t .

• Zt
i ∈ Z, 1 ≤ i ≤ S ∈ N, is a generic notation for measurements yielded by

each sensor i , considering a total of S sensors yielding a measurement at the
considered time instant.
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2.2 Joint Distribution Factors

The following expression gives the decomposition of the joint distribution of the
relevant variables according to Bayes’ rule and dependency assumptions:

P(At−1
c At

c Ot
c Z t

1 · · · Zt
S) = P(At−1

c )P(At
c | At−1

c )P(Ot
c | At−1

c )
S∏

i=1

P(Zt
i | At

c Ot
c).

(1)
The parametric form and semantics of each component of the joint decomposi-

tion are as follows:

• P(At−1
c ) is the probability for a given neighbouring cell Ac to be the antecedent

of c at time t − 1. In order to represent the fact that cell c is a priori equally
reachable from all possible antecedent cells in the considered neighbourhood,
this probability table is initialized as uniform and is update in each time step.

• P(At
c | At−1

c ) is the distribution over antecedents at time t given the antecedent of
cell c at t − 1. It represents the prediction (dynamic) model over velocity. If we
assume a perfect constant velocity hypothesis between the two time frames t − 1
and t , this distribution is simply:

P(At
c | At−1

c ) = P(At−1
At−1

c
).

In other words, the predicted probability is simply the probability at the preceding
time instant for the antecedent at t − 1.
Considering imperfect constant velocity hypothesis is possible by introducing
the predicate E ∈ {0, 1} ≡ “There was an erroneous prediction”, and assuming
a probability P(E) = ε. This value is a parameter of the system and corresponds
of the probability of not respecting the constant velocity hypothesis. We have:

P(At
c | At−1

c ¬E) = P(At−1
At−1

c
),

P(At
c | At−1

c E) = U(At
c).

where U(At
c) denotes a uniform distribution on At

c to say that all possible
antecedents have the same probability when constant velocity hypothesis is not
respected. Thus, P(At

c | At−1
c ) may be written as a mixture:

P(At
c | At−1

c ) = P(¬E)P(At
c | At−1

c ¬E)+ P(E)P(At
c | At−1

c E).

Which leads to:

P(At
c | At−1

c ) = (1− ε)P(At−1
At−1

c
)+ ε U(At

c)

= (1− ε)P(At−1
At−1

c
)+ ε/‖Ac‖,

where ‖Ac‖ is the cardinality of the considered antecedents set Ac.
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• P(Ot
c | At−1

c ) is the distribution over occupancy given the antecedent of cell c at
t − 1. It represents the prediction (dynamic) model over occupancy. Similarly to
P(At

c | At−1
c ), the term P(Ot

c | At−1
c ) may be written as a mixture:

P(Ot
c | At−1

c ) = (1− ε)P(Ot−1
At−1

c
)+ ε U(Ot

c)

= (1− ε)P(Ot−1
At−1

c
)+ ε/2.

• P(Zt
i | At

c Ot
c) is the direct model for sensor i . It yields the probability of a

measurement given the occupancy Ot
c and the antecedent (velocity) At

c of cell
c. Measurements for all sensors are assumed to have been taken independently
from each other. For sensors providing measurements depending exclusively of
occupancy, this distribution can be written as P(Zt

i | Ot
c). In the same manner,

for sensors providing measurements depending exclusively of velocity, this dis-
tribution can be written as P(Zt

i | At
c).

2.3 Occupancy and Velocity Estimation Using the BOF Model

At each time step, the estimation of the occupancy and velocity of a cell is answered
through Bayesian inference on the model given in (1). This inference leads to a
Bayesian filtering process (Fig. 5). In this context, the prediction step propagates
cell occupancy and antecedent (velocity) distributions of each cell in the grid to get
the prediction P(Ot

c At
c). In the estimation step, P(Ot

c At
c) is updated by taking into

account the observations yielded by the sensors
∏S

i=1 P(Zt
i | At

c Ot
c) to obtain the a

posteriori state estimate P(Ot
c At

c | [Zt
1 · · · Zt

S]). This allows, by marginalization, to
compute P(Ot

c | [Zt
1 · · · Zt

S]) and P(At
c | [Zt

1 · · · Zt
S]) that will be used for prediction

in the next iteration.

Estimation

Prediction

P(Ot
cAt

c)

P(Ot
cAt

c|[Zt = z])

P(Zt|Ot
cAt

c)

z

Fig. 5 Bayesian filtering in the estimation of occupancy and velocity distribution in the BOF grids
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It’s important to notice that the distribution P(At
c) over antecedents (velocity)

is updated even when no velocity sensors are available. Indeed, suppose we have
only one occupancy sensor described by the model P(Zt

O | Ot
c). The a posteriori

distribution P(At
c | [Zt

O]) leads to the formula:

P(At
c | [Zt

O]) ∝
∑

At−1
c ∈Ac

P(At−1
c )P(At

c | At−1
c )

∑
Ot

c∈{0,1}
P(Ot

c | At−1
c )P([Zt

O] | Ot
c)

(2)
In this case, the update is based exclusively on the occupancy observations.

When an additional velocity sensor P(Zt
V | At

c) is available, it should be used to
update the estimate (2) as follows:

P(At
c | [Zt

O Zt
V]) ∝ P(At

c | [Zt
O])P([Zt

V] | At
c).

Finally, as the relationship between the velocities and antecedent IDs (indexes)
is deterministic (an antecedent id corresponds to a (vx, vy) vector), the probability
P(V t

c ) over the velocity is summarised as a 2D Gaussian distribution using the
distribution P(At

c). Therefore, the output of the BOF algorithm at each time step t
is a grid in which each cell c contains (i) an occupancy probability P(Ot

c) and (ii) a
2D Gaussian distribution P(V t

c ) over velocity.

3 The “Fast Clustering-Tracking” Algorithm

The object-level representation is mandatory for applications needing high-level
representations of obstacles and their motion. This needs a robust multi-target track-
ing system allowing to estimate of the position and the velocity of each moving
object.

The main difficulty of multi-target tracking is known as the “data association”
problem. It includes observation-to-track association and track management prob-
lems. The main goal of observation-to-track association is to decide whether a new
sensor observation corresponds to an existing track. Track management includes
deciding whether existing tracks should be maintained, deleted, or if new tracks
should be created. Numerous methods exist to perform data association. The reader
is referred to [7] for a complete review of the existing tracking methods with one or
more sensors.

In the BOF framework, we proposed in [7] to use a layered architecture as shown
in Fig. 2 to obtain the object-level representation. In [7], the data association is
implemented using a classical JPDA algorithm within the proposed architecture.

In cluttered environments with large numbers of moving objects, the JPDA suf-
fers from the combinational explosion of hypotheses. To overcome this problem, we
propose the “Fast Clustering-Tracking” algorithm. This algorithm could be roughly
divided into a clustering module, an ambiguous association handling module, and a
track management module.
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3.1 Clustering

The clustering module takes the occupancy/velocity grid of the BOF as the input
and extracts object-level reports from it. Its main ideas are:

1. using the prediction result of the tracking module to define a region of interest
(ROI) allowing to avoid searching in the complete grid,

2. using both occupancy and velocity estimates in order to better separate/associated
the extracted clusters.

A natural algorithm to extract a cluster in a grid is to start from a given cell
(pixel) and expand the cluster by deciding, for each eight-neighbor cell, whether the
neighbour is to be included or not according to a connectivity criterion.

In order to avoid searching for clusters in the whole grid, we use the predicted
targets’ states as a form of feedback. For a given target Ti , the predicted state is
used to define a region of interest RO ITi in the BOF grid. RO ITi is used as the
search region in which the clustering module will try to extract a cluster (report) to
be associated implicitly to Ti .

To take advantage of occupancy and velocity estimates provided by the BOF
grid, the used connectivity criterion is as follows. Starting for a given cell c for
which P(Ot

c) ≥ occ threshold, a neighbouring cell n is added to the cluster if and
only if:

⎧⎪⎨
⎪⎩
− Cell n is not associated yet (included in no cluster),

− P(Ot
n) > occ threshold ,

−MahDist
(
P(V t

c ), P(V t
n )
)

< vel threshold ,

where MahDist
(
P(V t

c ), P(V t
n )
)

is the Mahalanobis distance between the velocity
distributions of a two neighbour cells.

If the “Cell n is not associated yet” predicate is not respected, the corresponding
cell is tagged as an ambiguous-associated one. This corresponds to an ambiguous
association case which need to be dealt with in a special manner (3.2). If such a
situation is not encountered, the extracted cluster is implicitly associated to the target
Ti defining the used ROI Ti .

Simple statistics are then performed on the extracted cluster in order to obtain
a 4-dimentional observation corresponding to cluster’s position and velocity. Both
the position and velocity components are represented as 2D Gaussian distributions
(mean vector and covariance matrix).

3.2 Re-Clustering and Tracks Merging

During the clustering process, three possible situations need to be considered
(Fig. 6).
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Fig. 6 Situations occurring during the clustering/association process

• Case 1: no cell with P(Ot
c) > occ threshold is found in ROI Ti defined by the

considered target Ti . The target Ti has not been observed and no association is
needed.

• Case 2: a cluster C is extracted. It’s implicitly associated to the target Ti defining
the used ROI Ti . This situation occurs when there is no ambiguity in the asso-
ciation. This is an advantageous situation allowing a fast clustering-association
procedure. Fortunately, this case is the most frequent one when using the algo-
rithm to the real data sets.

• Case 3: a set of cells ci having P(Ot
ci

) > occ threshold and MahDist (·) <

vel threshold are extracted in ROI Ti . However, they have already been assigned
to other targets. In this conflicted case, an observation (cluster) could be possibly
generated by two (or more) different targets.

The first two cases are the normal cases, however, the third case is referred as an
ambiguous association case which need to be dealt with in a special manner. The
ambiguous association could occur in the following two situations:

• Different targets are being too close to each other and the observed cluster is in
fact the union of the more than one observations generated by different targets.

• The different tracked targets are corresponding to a single object and should be
merged into one.

We take a re-clustering strategy to deal with the first situation and a cluster merg-
ing strategy to deal with the second one.

When an ambiguous association occurs, a set of tracks T1, T2, · · · , Tm are iden-
tified as the potential candidates to be associated to the extracted cluster. We have
to cut up this cluster and generate a sub-cluster (possibly empty) for each candi-
date. A Cartesian distance based K-means [6] algorithm is applied to re-cluster the
ambiguous region.

To deal with the second cause of the ambiguous association, we introduce a
concept of “alias” which is in the form of a two-tuples to represent the duplicated
tracks. When an ambiguous association between two tracks Ti and Tj is detected,
an alias ALIAS (Ti , Tj ) is initialized and added to the potential aliases list. At each
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time frame, the tracker updates this list by confirming or disproving the existence of
each alias hypothesis ALIAS (Ti , Tj ) according to the observation of the ambiguous
association. If an ambiguous association occurs between Ti and Tj , and the alias
ALIAS (Ti , Tj ) is found in the potential alias list, the probability Pt

(
S(Ti , Tj )

)
is

updated by a confirming step using a Bayesian filtering approach as follows:

Pt (S | F) = Pt−1(S)× P(F | S)

Pt−1(S)× P(F | S)+ [1− Pt−1(S)
]× P(F | ¬S)

where:

• S ≡ “the Ti and Tj tracks are alias for the same object”.
• F ≡ “an ambiguous association between the tracks Ti and Tj is observed”.

The probability values P(F | S) and P(F | ¬S) are constant parameters of the
tracker. The former denotes the probability of observing an ambiguous association
when the two concerned tracks are alias of the same object and is set to a constant
value 0.8. The second denotes the probability of falsely observing an ambiguous
association and is set to 0.1.

When ALIAS (Ti , Tj ) is found in the potential alias list but is not observed as an
ambiguous association, its probability is disproved in a similar manner:

Pt (S |¬F) = Pt−1(S)× P(¬F | S)

Pt−1(S)× P(¬F | S)+ [1− Pt−1(S)
]× P(¬F | ¬S)

.

Then, according to the probability Pt
(
S(Ti , Tj )

)
, the decision of merging of

tracks Ti and Tj could be considered. The merging decision is done by comparing
the actual Mahalanobis distance between Ti and Tj to a given threshold.

3.3 New Tracks Creation

For new targets creation, we introduce a concept “cluster seed” to define a cell in the
BOF grid where we will try to find, for each step, a new (non-associated) cluster.
Indeed, the searching for potential new targets is performed after all the existing
tracks are processed. Thus, only non-associated cells will be processed to extract
clusters as the observations for the potential new targets. The “cluster seed” concept
is general and can be implemented via various strategies. The simplest strategy is to
insert a possible seed in each cell of the grid. However, more sophisticated strate-
gies could be more efficient. For example, cluster seeds could be inserted only in
entrance regions of the monitored area.
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3.4 Tracks Updating and Deleting

The prediction and estimation of the targets are accomplished by attaching a Kalman
filter [8] with each track. Once associated to a given track, a report (Gaussian dis-
tributions for both position and velocity) corresponding to an extracted cluster is
used as an observation to re-estimate the position and velocity of the track in a
prediction-update step. For non-observed tracks, only a prediction step is taken by
applying the dynamic model to the estimation result of the precedent time step.

The deleting of tracks is also achieved in a Bayesian manner. If an existing track
T is associated with a given report (cluster), its existence probability is increased
using the following formula:

Pt (E | O) = Pt−1(E)× P(O | E)

Pt−1(E)× P(O | E)+ [1− Pt−1(E)
]× P(O | ¬E)

where:

• E ≡ “the target T exists”.
• O ≡ “the target T has been observed (associated)”.

The parameters P(¬O | E) and P(O | ¬E) are the tracker miss-detections and
false alarms probabilities respectively.

If an existing target is not associated with any report (cluster), its existence prob-
ability is decreased in the similar way:

Pt (E | ¬O) = Pt−1(E)× P(¬O | E)

Pt−1(E)× P(¬O | E)+ [1− Pt−1(E)
]× P(¬O | ¬E)

According to the existence probability, the track deleting operation is achieved
by applying a deleting threshold on it.

4 Experimental Result

The proposed approach has been applied in several driving assistance projects and
achieved satisfied results in conditions including both highway and cluttered urban
environments. The used sensor modalities include:

• multi-layer lidars,
• Computer Vision detection algorithms (Fig. 2),
• Stereovision-based 3D sensors.

However, according to the confidentiality agreements of the on-going projects, the
results could not be published. Here, we provide some recent experiment results on
our Cycab platform.
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The Cycab platform is equipped with SICK lidar, GPS, mono-camera and
odometer. To demonstrate the accuracy of the tracking algorithm, we used several
GPS which are carried by pedestrians or vehicles. Because the experiments were
carried out in the parking area of Inria Rhone-Alpes, within this limited range, the
precision of the GPS is highly reliable, which provides us the ground truth of the
locations of the moving objects. During the experiment, the SICK lidar served as
the main sensor. The camera data was not used by the algorithm right now.

The object of the proposed algorithm is to track the moving objects in scene
robustly and efficiently. However, in a normal environment (except the extremely
cluttered environment) most of the sensor readings come from static objects. Thus,
if we update the BOF with all the lidar data and apply the tracking algorithm directly,
large amount of static objects will be detected and tracked. Basically we could apply
two different straightforward methods to overcome this problem. The first idea is to
remove objects with a speed below a given threshold. This could be achieved by
making use of the velocity estimates of the objects given by the tracker and the ego-
motion estimate provided by the odometer model. Unfortunately, the combination
of the estimated ego-velocity and the targets velocities is not accurate enough, which
leads to removing the low speed moving objects, i.e. pedestrians, by mistake.

The second idea is to divide the lidar data into a static set and a dynamic set,
and only use the dynamic set to update the BOF. We applied the second method
in the experiment. The division of the lidar data is achieved by maintaining a well
discretized occupancy grid map [4] centred at the Cycab and moved along with it.
Each cell in this map represents an occupancy probability. If the occupancy proba-
bility exceeds an given threshold, this cell is regarded as a static cell, and the lidar
data fall into this cell are removed from updating of the BOF. Different from the
BOF, the occupancy grid map is implemented in the global coordinates. Thus, the
ego-motion of the Cycab is also needed to be estimated. We applied the odometer
motion model to predict the location and used an iterative closest point (ICP) [9]
algorithm to update it. In our experiment, this scheme has shown high accuracy.

We first apply our algorithm to detect and track a car which moves in front of the
Cycab in the same direction as shown in Fig. 7. The result of dividing of the lidar
data into dynamic data set and static data set is shown in Figs. 9 and 10. The first
row of the figures corresponds to the data set of the SICK lidar used to update the
BOF. The second row of the figures corresponds to the visualization of the Bayesian
occupancy filter. The colour of the cells represents the occupancy probability. The
third row gives out the tracker output from the fast clustering-tracking algorithm.
The scale of the ellipse represents the uncertainty of the tracked target position.
The small arrow start from the centre of the eclipse gives the estimated velocity
of the target relative to the Cycab. The first column in Figs. 8, 9 and 10 shows
the results using the full dataset as the input to the BOF and tracker. There exist
about 10 targets being detected and tracked. However, only one of them is the real
moving object we are interested in. The second column shows the results using only
the dynamic dataset obtained from the aforementioned data division algorithm. It
is clearly shown that all the static objects are removed, and the moving object is
correctly tracked.
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Fig. 7 Experiment scene

Fig. 8 Comparison of the
laser sensor measurement
data with and without being
divided into stational and
dynamic data sets

Fig. 9 Comparison of the
BOF output with and without
dividing the lidar data into
static and dynamic data sets
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Fig. 10 Comparison of the
tracking results with and
without dividing the lidar
data into static and dynamic
data sets

The result shown in Figs. 11, 12 and 13 demonstrates the accuracy of the tracker
compared with a NNJPDA tracker. The moving car before the Cycab is detected
and tracked consistently for 35 s. The relative position between the Cycab and the
target comes from the GPS data is taken as the ground truth and is compared with
that estimated by the trackers. The comparison of x relative position is shown in
Fig. 11, while the y relative positions are compared in Fig. 12. The distance error of
the estimated target position to the GPS data is shown in Fig. 13. As could be seen in
the figures, our algorithm succeeded in tracking of the target consistently. However,
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Fig. 12 The y relative position of the target compared with the GPS data

from 21 s to 22 s, the NNJPDA tracker lost the target. The average distance error
is 0.39 meters for our algorithm compares with 0.37 m of the NNJPDA tracker.
Consider the scale of the target car (roughly 1.5 m by 2.5 m), these results show that
the precision of both the algorithms are satisfied in this application.

The implementation of the BOF and the tracker is in the C++ programming
language without optimization. Experiments were performed on a laptop with an
Intel Centrino processor with a clock speed of 1.6 GHz. The time consumption of
the grid map methods depends on the discretization and the discretization of the
velocities. In our experiment, we represent the ground plane with a dimension of
30 m by 16 m, with a discretization resolution 0.4 m by 0.4 m. The occupancy grid
map represents the ground plane around the vehicle with a dimension of 30 m by
30 m, with a discretization resolution 0.15 m by 0.15 m. The algorithm processes
with an average frame rate of 6.2 frames/s. The BOF consumes with an average of
0.11 s frame, while the ICP algorithm uses 0.017 s and the updating of the occu-
pancy grid map uses up to 0.078 s frame. The average time consumption of the fast
clustering-tracking algorithm is roughly 0.0003 s frame and increases linearly with
the number of targets in scene which could be discarded compared with that of the
NNJPDA tracker. The time efficiency of the NNJPDA tracker is highly depended on
the number of the targets being tracked and the clusters extracted from the output
of the BOF. When there exist an average of 11 targets and 18 clusters, the NNJPDA
consumes 0.075 s frame. However, this number increases drastically to 5 s frame,
when the number of the targets and the clusters increase up to 22 and 28 accordingly.
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This phenomenon is caused by the combination explosion in the algorithm which
produces sparingly hypotheses that need to be processed. The experimental results
show that both our algorithm and the classical NNJPDA tracker managed to track the
targets accurately and consistently. However, compared with the classical NNJPDA
tracker, the fast clustering-tracking algorithm is far more efficient so as to be suitable
for cluttered environment.

Another experiment is shown from Figs. 14 to till 16 in time sequence. Two
pedestrians walked in the direction perpendicular to the moving direction of the

Fig. 14 The two pedestrians are walking towards each other in the perpendicular direction to the
Cycab



218 K. Mekhnacha et al.

Cycab. The first columns of the figures are the corresponding camera images in
which the target is shown by the bounding box schematically (because of the limi-
tation of the camera’s field of view, there exists a third pedestrian which can not be
seen in the image). The second columns show the outputs of the Bayesian occupancy
filter. The third columns are the tracking results. The uncertainty of the tracked
target is also fitted into a Gaussian distribution and is represented by a ellipse. In
Fig. 14 the pedestrians are properly tracked. In Fig. 15, an occlusion occurs, one
of the targets begin to disappear because of not being associated with any extracted
clusters. In Fig. 16, after the occlusion occurs for several frames and finishes, both
of the targets are detected and tracked again. Note that, the ID of the occluded object
remains the same before and after the occlusion, which is shown by the same colour
of the drawn target. This means the BOF framework and the proposed tracker are
able to manage the targets properly during the short time occlusion, which is an
important characteristic for a wide range of applications.

Fig. 15 An occlusion takes place. The further pedestrian is occluded and not observed by the
Cycab

Fig. 16 The occlusion lasts for several frames. When it finishs, both of the two pedestrians are
observed and tracked again. Note that the color of the targets are not changed which indicates the
shortly occluded target is tracked consistently by the tracker
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5 Conclusions

In this paper, we presented a novel object detecting and tracking algorithm for the
BOF framework. This algorithm takes the occupancy/velocity grid of the BOF as
input and extracts the objects from the grid with a clustering module which takes the
prediction of the tracking module as a feedback to reduce the computational cost.
A re-clustering and merging module is proposed to deal with the ambiguous data
associations. The extracted objects are then tracked and managed in a probabilistic
way. The experiment results show that the presented algorithm is robust as well as
computationally efficient. Future work involves adding richer sensory data including
the IBEO multi-layer laser range finder to the proposed framework.
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Compliant Physical Interaction Based
on External Vision-Force Control
and Tactile-Force Combination

Mario Prats, Philippe Martinet, Sukhan Lee and Pedro J. Sanz

Abstract This paper presents external vision-force control and force-tactile integra-
tion in three different examples of multisensor integration for robotic manipulation
and execution of everyday tasks, based on a general framework that enables sensor-
based compliant physical interaction of the robot with the environment. The first
experiment is a door opening task where a mobile manipulator has to pull the han-
dle with a parallel jaw gripper by using vision and force sensors in a novel external
vision-force coupling approach, where the combination is done at the control level;
the second one is another vision-force door opening task, but including a sliding
mechanism and a different robot, endowed with a three-fingered hand; finally, the
third task is to grasp a book from a bookshelf by means of tactile and force inte-
gration. The purpose of this paper is twofold: first, to show how vision and force
modalities can be combined at the control level by means of an external force loop.
And, second, to show how the sensor-based manipulation framework that has been
adopted can be easily applied to very different physical interaction tasks in the real
world, allowing for dependable and versatile manipulation.

1 Introduction

Management of uncertainty is one of the big challenges in the design of robot appli-
cations able to operate autonomously in unstructured envirnoments like human or
outdoor scenarios. Robot grasping and manipulation of objects is not an exception,
but one of the fields in robotics more affected by the uncertainties of the real world.
The use of data coming from multiple sensors is a valuable tool to overcome these
difficulties.

In particular, vision and force are the most important sensors for task execu-
tion. Whereas vision can guide the hand towards the object and supervise the task,
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force feedback can locally adapt the hand trajectory according to task forces. When
dealing with disparate sensors, a fundamental question stands: how to effectively
combine the measurements provided by these sensors? One approach is to combine
the measurements using multi-sensor fusion techniques [1]. However, such methods
are not well adapted to vision and force sensors since the data they provide measure
fundamentally different physical phenomena, while multi-sensory fusion is aimed
at extracting a single information from disparate sensor data. Another approach is to
combine visual and force data at the control level, as we propose in this paper, where
a novel vision-force control law [2], based on the concept of external control [3],
does the coupling in sensor-space, which allows to control vision and force on all
the degrees of freedom, whereas only the vision control law is directly connected to
the robot.

In the literature we can found several applications of robots performing physical
interaction tasks in real life environments, such as for example [4–6]. However,
very few approaches consider multiple sensors in a general framework. Instead,
ad-hoc applications are usually implemented, leading in specialized robots unable
to perform many different manipulation tasks.

In [7], we presented a general framework for enabling compliant physical inter-
action based on multiple sensor information. The purpose of this paper is twofold:
first, to show how vision and force modalities can be combined at the control level
by means of external vision-force control. And, second, to show how this framework
can be used for the fast implementation of sensor-based physical interaction tasks
in very different robotic systems, as well as its versatility, allowing to perform very
different tasks in household environments, without having specific models of them,
and without being specifically programmed for a particular task. For this, three dif-
ferent applications are described in different scenarios, and involving several robots
and sensors: the first one is a door opening through external vision-force control; the
second one is another vision-force door opening task, but including a sliding mech-
anism and a different robot, endowed with a three-fingered hand; finally, the third
task is to grasp a book from a bookshelf by means of tactile and force integration.

The paper is organized as follows: the sensor-based physical interaction frame-
work detailed in [7] is outlined in Sect. 2. Sections 3, 4 and 5 describe three dif-
ferent examples of the framework application, involving different robots and sensor
combinations. The novel vision-force coupling approach is introduced in the first
experiment. Conclusions and future lines are given in Sect. 5.

2 A Framework for Sensor-Based Compliant
Physical Interaction

A framework for describing physical interaction tasks, based on multisensor inte-
gration is presented in detail in [7]. Our approach is based on the Task Frame
Formalism [7, 8], where a task frame is defined as a cartesian coordinate system,
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given in object coordinates, where the task is defined in terms of velocity and force
references, according to the natural constraints imposed by the environment.

We describe the task by the following elements (see [7] for a complete
description):

• The task frame, T , where the task motion can be naturally described in terms of
a velocity/force reference.

• The hand frame, H , defined in hand coordinates, and the grasp frame, G, defined
in object coordinates, which indicate, respectively, the part of the hand used for
performing the task, and the part of the object where to perform the task.

• The task velocity, v∗, and the task force, f ∗, given in the task frame. The velocity
reference is suitable for tasks where a desired motion is expected, whereas the
force reference is preferred for dynamic interaction with the environment, where
no object motion is expected, but a force must be applied (for polishing a surface,
for example). A 6 × 6 diagonal selection matrix, S f , is used to choose whether
a particular task direction needs a velocity or a force reference. A suitable force
controller must convert the force references on force-controlled degrees of free-
dom (DOFs) to velocities, so that the task is finally described as a desired velocity
given in the task frame: τ ∗T .

In general, the task frame is not rigidly attached to the robot end-effector frame.
The task frame, according to its definition, must be always aligned with the natural
decomposition of the task. Therefore, sensors must be integrated in order to pro-
vide an estimation of the task frame position and orientation during task execution
(sensor-based tracking of the task frame [8]). This estimation is represented by the

homogeneous transformation matrix Ê MT , so that the desired task velocity, τ ∗T , can
be transformed from the task frame to the robot end-effector frame, according to:

τE = Ê WT · τ ∗T (1)

where Ê WT is the 6× 6 screw transformation matrix [6] associated to Ê MT , which
is computed from the kinematic chain linking the robot end-effector with the object

mechanism, i.e. Ê MT = E MH · Ĥ MG · GMT [17].
The relative pose between the robot end-effector and the task frame depends

on the particular execution and must be estimated on-line by the robot sensors,
because it can vary during execution due to the particular object mechanism, or
due to task redundancy, where a particular DOF is controlled by a secondary task.
The robot must always estimate the hand-to-object relationship during task execu-
tion by means of the model, world knowledge, vision sensors, tactile sensors, force
feedback, etc. so that the task frame is always known with respect to the end-effector
frame, thus allowing the robot to perform the desired task motion.
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3 Example I: Pulling Open a Door Through External
Vision-Force Control

In this section, the framework for sensor-based compliant physical interaction is
applied to the task of pulling open the door of a wardrobe, using a mobile manip-
ulator composed of an Amtec 7DOF ultra light-weight robot arm mounted on an
ActivMedia PowerBot mobile robot. The hand of the robot is a PowerCube parallel
jaw gripper. This robot belongs to the Intelligent Systems Research Center (ISRC,
Sungkyunkwan University, South Korea), and is already endowed with recognition
and navigation capabilities [11], so that it is able to recognise the object to manipu-
late and to retrieve its structural model from a database.

3.1 Planning the Task, Hand and Grasp Frame

The structural model of the door is shown in Fig. 1. The task of pulling open the
door can be specified naturally as a rotation around Y axis of frame O , but also as
a negative translation velocity along Z axis of the frame G. The second alternative
has the advantage that we can set GMT = I4×4, without the need to know the door
model. We adopt this approach in order to make the solution valid for other doors.
Thus, T = G, and we set v∗ to be a negative translation velocity along Z axis (the
desired opening velocity). As there is no need for force references for this task,
f∗ = 0 and S f = 06×6.

For the parallel jaw gripper, there are very few manipulation possibilities. We
consider only one possible task-oriented hand preshape, which is the precision

Fig. 1 The different frames
used for manipulation. The
vision task is to align hand
frame H , set at the
middlepoint between the
fingertips, and the grasp
frame G, set to the door
handle. The task of pulling
open the door is specified as a
negative velocity along Z
axis of the task frame, T
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preshape. The hand frame is set to the middle point between both fingertips,
as shown in Fig. 1.

As the door contains a handle, the grasp frame is set to the handle, so that the
grasp is performed on it. More concretely, the grasp frame is set centered at the
handle main axis, as shown in Fig. 1. Then, according to the specification of the
hand and grasp frames, the desired relationship between both is H M∗

G = I4×4, i.e.
the identity: when grasping, the hand frame must be completely aligned with the
grasp frame (the handle must lie in the middle point between both fingertips).

3.2 Task Execution

For this task, a position-based vision-force servoing closed-loop approach has been
adopted. A robot head observes both the gripper and the object and tries to achieve
the desired relative pose between both.

3.2.1 Estimating Hand-Handle Relative Pose

Virtual visual servoing [12] is used to estimate the pose of the hand and the handle,
using a set of point features drawn on a pattern whose model and position is known.
One pattern is attached to the gripper, in a known position E MG P . Another pattern
is attached to the object, also in a known position with respect to the object refer-
ence frame: OMO P . As future research we would like to implement a new feature
extraction algorithm in order to use the natural features of the object instead of the
markers, as in [13] or [14]. Figure 1 shows the different frames involved in the
relative pose estimation process and the task.

The matrix Ĥ MG , which relates hand and handle, is computed directly from the
pose estimation of the gripper and the object, according to the following expression:

Ĥ MG =
(

C MG P · E M−1
G P · E MH

)−1 · C MO P · OM−1
O P · OMG (2)

where C MG P is an estimation of the pose of gripper pattern, expressed in the camera
frame, and C MO P is an estimation of the object pattern pose, also in the camera
frame. E MH and OMG are the hand and grasp frame positions with respect to
the end-effector and the object reference frame respectively, as set in the previous
points.

3.2.2 Improving the Grasp

After pose estimation, a measure of the error between the desired (H M∗
G) and current

(Ĥ MG) hand-handle relative pose is obtained. It is desirable to design a control
strategy so that the grasp is continuously improving during task execution. With a
vision-based approach, any misalignment between the gripper and the handle (due to
sliding, model errors, etc.) can be detected and corrected through a position-based
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visual servoing control law [15]. We set the vector s of visual features to be s =
(t uθ )T , where t is the translational part of the homogeneous matrix Ĥ MG , and uθ

is the axis/angle representation of the rotational part of Ĥ MG . The velocity in the
hand frame τH is computed using a classical visual servoing control law:

τH = −λe+ �̂e
�t

(3)

where e(s, sd ) = L̂+s (s− sd ) (in our case, sd = 0, as H M∗
G = I4×4). The interac-

tion matrix L̂s is set for the particular case of position-based visual servoing:

L̂s =
(−I3×3 03×3

03×3 −Lw

)

Lw = I3×3 − θ

2
[u]× +

(
1− sinc(θ )

sinc2( θ
2 )

)
[u]2

×

where [u]× is the skew anti-symmetric matrix [10] for the rotation axis u. Finally,
the end-effector motion is computed as τE = E WH · τH . Figure 2 shows the kine-
matic screw, computed by Eq. (3) from the error between the desired (H MG) and

the current (Ĥ MG) relative pose of the hand and the grasp frame during reaching the
handle.

3.2.3 Task Motion and Coping with Uncertainties

The end-effector velocity that the robot has to achieve in order to perform the task
motion, is computed by transforming the task velocity, from the task frame to the
end-effector frame, according to Eq. (1).

Even if the relative pose between the hand and the handle, Ĥ WG , is estimated and
corrected continuously, this estimation can be subject to important errors, consider-
ing that it is based on vision algorithms, that can be strongly affected by illumina-
tion, camera calibration errors, etc. Due to this fact, the robot motion is also subject
to errors, and cannot match exactly the desired motion for the task. As the hand is in
contact with the environment, any deviation of the hand motion regarding the task
trajectory will generate important forces on the robot hand that must be taken into
account.

We adopt a novel external vision-force control law (see [2] for details) for inte-
grating vision and force and coping with uncertainties. With this approach, the force
vector, with current external forces, is used to create a new vision reference accord-
ing to:

s∗ = sd + L̂s · L̂−1
× ·K−1(f∗ − f) (4)
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Fig. 2 Kinematic screw during hand-to-handle alignment, following an exponential decrease,
which is the classical behaviour on visual servoing tasks. The kinematic screw converges to zero,

when Ĥ MG = H M∗
G

where f∗ is the desired wrench, added as input to the control loop (null in this
particular case), K is the environment stiffness matrix, and s∗ is the modified ref-
erence for visual features. L̂× relates τE and ẊE according to ẊE = L̂× · τE [15].
Then, the visual servoing control law, described in the previous point, takes as visual
reference the new computed reference, s∗. Unlike most of existing approaches, our
approach for vision-force coupling does the coupling in sensor-space, which allows
to control vision and force on all the degrees of freedom, whereas only the vision
control law is directly connected to the robot, thus avoiding local minima [2].

Fig. 3 The mobile manipulator at ISRC opening a door by means of external vision-force control.
The left image shows a frame of the reaching process. The right image shows the interaction phase.
Small snapshots at the top-right corner of each image show the robot camera view in each case
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In conclusion, there are two simultaneous end-effector motions: one, computed
by Eq. (1), which is in charge of performing the task motion, and another one,
computed by Eq. (3), in charge of continuously aligning the hand with the handle
by external vision-force control. Figure 3 shows two snapshots of the real robot
performing the task, taken at reaching and during interaction. For more experimental
results of the vision-force-based door opening task, along with a detailed analysis
and a demonstration video, please refer to [16].

4 Example II: Opening a Sliding Door Through External
Vision-Force Control

This experiment is very similar to the previous one in the sense that two comple-
mentary sensors (vision and force) are used for a door opening task. However, in
this case, we deal with a sliding door and a more complex robot: a mobile manip-
ulator composed of a PA-10 arm, endowed with a three-fingered Barrett Hand, and
mounted on an ActivMedia PowerBot mobile robot (the UJI Service Robot).

4.1 Planning the Task, Hand and Grasp Frame

The structural model of the new door is shown in Fig. 4. The only difference with
the previous case is that the task is now specified as a negative velocity along X axis
of frame O . However, as before, we choose to specify it as a positive translation
velocity along Z axis of the frame G, so that we can set GMT = I4×4, without the
need to know the door geometric model.

The Barrett Hand offers more advanced capabilities than the parallel jaw gripper.
A task-oriented grasp planner [17] selects a hook preshape as the more suitable hand

Fig. 4 Specification of the sliding door opening task with the adopted framework (left), and the
mobile manipulator at Jaume-I University opening a sliding door with force-vision control (right)



Compliant Physical Interaction 229

configuration for the intended task, and the hand frame is set to the inner part of the
fingertips, as shown in Fig. 4.

The grasp frame is also set by the task-oriented grasp planner to the right part of
the handle. Then, according to the specification of the hand and grasp frames, the
desired relationship between both is H MG = I4×4, which means that the robot has
to use the fingertips to make contact with the right face of the handle.

4.2 Task Execution

Once the task has been specified, it is performed by the same methods explained
in the previous experiment, supporting the claim that the robot is not specifically
programmed for one particular task. Instead, the same algorithms are applied, but
its execution depends on the task specification and the multisensor information that
the robot receives during execution. As in the previous example, an external camera
tracks the robot hand and the object simultaneously and a position-based visual
servoing control is performed in order to reach and keep the desired relative hand-
object configuration, H M∗

G . At the same time, force control is used for ensuring a
successful execution of the task, even in the presence of uncertainties and errors.

5 Example III: Grasping a Book Through Force-Tactile
Combination

Now, the sensor-based compliant physical interaction framework is applied to the
task of taking out a book from a bookshelf, using the UJI Service Robot and force-
tactile combination. The goal of the task is to extract a book from a shelf, while
standing among other books. The approach is to do it as humans do: only one of the
fingers is used, which is placed on the top of the target book and is used to make
contact and pull back the book, making it turn with respect to the base, as shown
in Fig. 6. In this task, the force/torque sensor is used to apply a force towards the
book and avoid sliding, whereas a tactile array sensor provides detailed information
about the contact, and helps estimating the hand and grasp frame relationship. This
sensor consists of an array of 8 × 5 cells, each one measuring the local pressure at
that point.

5.1 Planning the Task, Hand and Grasp Frame

In Fig. 5, a representation of the book grasping task, including the necessary frames,
is shown. There are two possibilities for the task frame in this case. The first is to
set it to the book base (frame T ′ in Fig. 5), so that the task is described as a rotation
velocity around this frame. The second possibility is to set the task frame to the
top edge of the book (frame T in Fig. 5), so that the task is described as a negative
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Fig. 5 Frames involved in the book grasping task. A tactile array sensor, placed on the inner part

of the fingertip, is used to estimate the relationship between the hand and the grasp frame, Ĥ MG .
The task is specified as a hand velocity along negative X axis of the task frame, T , while applying
a force along Z axis

translational velocity along X direction. We have opted for the second solution,
because, in this case, the task frame coincides with the grasp frame, and, then, there
is no need to know the book model. In the first case, the height of the book should be
known in order to transform the task velocity from the task frame to the hand frame.
By adopting the second solution, we make the approach general for any book size.
Two references are set in the task frame, v∗ and f∗. The first one is set to a negative
velocity in X axis, in order to perform the task motion, whereas f∗ is set to a force
along Z axis. This force is needed in order to make enough pressure on the book
surface and avoid slip. We have set it to 10 N for our particular system, but it depends
on the friction coefficient between the fingertip and the book. For small friction, a
bigger force would be needed. Therefore, S f is set to S f = diag(0, 0, 1, 0, 0, 0).

For this task, we define a special hand posture where one of the fingers is slightly
more closed than the other ones, so that we can easily make contact on the top of
the book with one finger, as shown in Fig. 5. The hand frame is set to the inner
part of the middle finger fingertip, just in the centre of the tactile sensor. The hand
frame pose with respect to the robot end-effector, E MH , is computed from hand
kinematics.
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The fingertip has to make contact on the top of the book. Therefore, we set the
grasp frame to the book top surface, which could be located by vision or range
sensors. The desired relationship between the hand and the grasp frame, H M∗

G , is
set to the identity.

5.2 Task Execution

In this case, the task is performed by combining force and tactile feedback. Tactile
information is used to estimate and improve the contact between the hand and the
book, whereas force feedback is used in order to cope with uncertainties and ensure
that a suitable force is performed on the book surface so that there is no slip.

5.2.1 Estimating Hand-Book Relative Pose

Contact on the book is performed with the tactile array. Depending on the sensor
cells that are activated, the relative pose between the sensor surface and the book
can be estimated. It is not possible to compute the complete relative pose only with
tactile sensors, because they only provide local information when there is contact.
However, we can obtain a qualitative description of the relative pose. For example,
if there is contact with the upper part of the sensor, but not with the lower part, we
can deduce that the sensor plane is rotated around Y axis with respect to the book
top plane.

All the tactile cells lie in the XY plane of the hand frame. We consider that the
finger is completely aligned with the book surface when there are cells activated on
each of the four XY quadrants of the hand frame, i.e., all the tactile sensor surface
is in contact. If there is contact on the upper half of the sensor, but not on the lower
half, or vice versa, we consider that there is a rotation around Y axis, between the
sensor (hand frame) and the book surface (grasp frame). Similarly, a rotation around
X axis can be detected.

5.2.2 Improving the Grasp

The goal of this process is to align the finger (tactile sensor) surface with the book
surface, taking as input the qualitative description of the relative pose, described
in the previous point. We follow a reactive approach, where the fingertip rotation
around X and Y axis of the hand frame is continuously controlled, in order to obtain
contact on each of the XY quadrants of the hand frame. With this approach, the
behaviour of the robot is completely reactive to the tactile sensor readings. The goal
is to keep the sensor plane always parallel to the book top plane, thus ensuring that
Ĥ MG = H M∗

G = I4×4.
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5.2.3 Task Motion and Coping with Uncertainties

According to the task description, the task motion is performed by moving the hand
along negative X axis of the task frame, while applying a force along Z axis. This
motion makes the book turn with respect to the base, as shown in Fig. 6. Note
that, as the fingertip moves backwards and the book turns, the tactile sensor may
lose contact with the lower part. This situation is detected by the qualitative pose
estimator, and corrected with the control strategy described in the previous point,
so that the hand frame is always aligned with the grasp frame, ensuring that task
motion can successfully be transformed to end-effector coordinates by equation 1.
Figure 6 shows a sequence of the robot performing the task.

Fig. 6 The robot grasping the book by means of force and tactile-based continuous estimation of
hand-to-object relative pose

6 Conclusion

We have shown three different examples of robotic execution of everyday chores,
built on top of a new vision-force controller [2] and a general framework for speci-
fying multisensor compliant physical interaction tasks [7]. Two door-opening tasks
with different robotic systems and a book grasping task have been implemented
making use of external vision-force control and force-tactile integration. The three
examples exhibit a reasonable degree of robustness, in the sense that the use of force
feedback allows to deal with uncertainties and errors. External vision-force control
allows to avoid local minima which is one of the main drawbacks of the existing
approaches. The implementation of these examples in very different robotic systems
during a short period of time shows the suitability of the framework for versatile
specification of disparate multisensor physical interaction tasks.

As future research, we would like to use the proposed framework for the specifi-
cation and compliant execution of several tasks, based on the integration of visual,
tactile and force feedback. We think that the combination of multiple and disparate
sensor information for hand-to-object pose estimation is a key point for successful
and dependable robotic physical interaction.
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iTASC: A Tool for Multi-Sensor Integration
in Robot Manipulation

Ruben Smits, Tinne De Laet, Kasper Claes, Herman Bruyninckx
and Joris De Schutter

Abstract iTASC (acronym for ‘instantaneous task specification using constraints)
[1] is a systematic constraint-based approach to specify complex tasks of general
sensor-based robot systems. iTASC integrates both instantaneous task specifica-
tion and estimation of geometric uncertainty in a unified framework. Automatic
derivation of controller and estimator equations follows from a geometric task
model that is obtained using a systematic task modeling procedure. The approach
applies to a large variety of robot systems (mobile robots, multiple robot systems,
dynamic human-robot interaction, etc.), various sensor systems, and different robot
tasks. Using an example task, this paper shows that iTASC is a powerful tool for
multi-sensor integration in robot manipulation. The example task includes multi-
ple sensors: encoders, a force sensor, cameras, a laser distance sensor and a laser
scanner. The paper details the systematic modeling procedure for the example task
and elaborates on the task specific choice of two types of task coordinates: feature
coordinates, defined with respect to object and feature frames, which facilitate
the task specification, and uncertainty coordinates to model geometric uncertainty.
Experimental results for the example task are presented.

Keywords Constraint-based programming · Multi-sensor fusion · Sensor-based
roboties

1 Introduction

The goal of our research is to develop programming support for the implementation
of complex, sensor-based robotic tasks in the presence of geometric uncertainty.
Examples of complex tasks include sensor-based navigation and 3D manipulation
in partially or completely unknown environments, using redundant robotic systems
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such as mobile manipulator arms, cooperating robots, robotic hands or humanoid
robots, and using multiple sensors such as vision, force, torque, tactile and distance
sensors.

The foundation for this programming support is iTASC, a generic and systematic
approach [1] to specify and control a task while dealing properly with geometric
uncertainty.

Previous work on specification of sensor-based robot tasks, such as force
controlled manipulation [2–5] or force controlled compliant motion combined with
visual servoing [6], was based on the concept of the compliance frame [7] or task
frame [8]. In this frame, different control modes, such as trajectory following, force
control, visual servoing or distance control, are assigned to each of the translational
directions along the frame axes and to each of the rotational directions about the
frame axes. The drawback of the task frame approach is that it only applies to
task geometries for which separate control modes can be assigned independently
to three pure translational and three pure rotational directions along the axes of a
single frame.

A more systematic approach is to assign control modes and corresponding
constraints to arbitrary directions in the six dimensional manipulation space. This
approach, known as constraint-based programming, opens up new applications
involving a much more complex geometry and/or involving multiple sensors that
control different directions in space simultaneously.

Seminal theoretical work on constraint-based programming of robot tasks was
done by Ambler and Popplestone [9] and by Samson and coworkers [10]. Our
own preliminary work on iTASC was presented in [11], while iTASC, the mature
framework of which this paper shows an application, is thoroughly discussed in [1].
Other applications of iTASC were presented in [12] and [13].

This paper is organized as follows. Section 2 introduces the example task and
states the contribution of the paper. Section 3 provides a brief overview of the
generic control and estimation approach. Section 4 applies the task modeling
procedure of [1] to the example task. Sections 5 and 6 provide details on the used
control and estimation equations. Finally, Sections 7 and 8 present experimental
results and state the conclusions.

2 Example Task

This paper shows the application of iTASC to a multi-robot manipulation task
involving multiple sensors, underconstrained specification as well as estimation of
uncertain geometric parameters.

2.1 Robot System

The robot system consists of two six degrees of freedom (dof) robots.



iTASC 237

2.2 Robot Task

The task consists of three subtasks which are executed simultaneously:

1. the contour of an unknown 2.5D workpiece, held by robot 1, is tracked by a
probe mounted on robot 2, as shown in Fig. 1(a). Both the contact force between
probe and contour and the tangential velocity along the contour are controlled.
In addition, the orientation of the probe with respect to the contour tangent and
the distance of the probe with respect to the front plane of the workpiece are kept
constant, while the probe axis remains perpendicular to the front plane of the
workpiece. This subtask specifies six (equality) constraints.

2. the end effector of robot 1 keeps a specified minimum distance to the closest
person as shown in Fig. 1(b). This subtask specifies one (inequality) constraint.

3. a camera (camera 1) attached to robot 1, shown in Fig. 1(c), keeps the closest
person in vertical position in the middle of the image. This subtask specifies
three (equality) constraints.

All together the contour following task in the human populated environment
specifies 10 (or 9)1 constraints for the 12 dof robot system. The two (or three)
remaining dofs of the robot system are used to satisfy 12 secondary constraints: to
keep the robots as close as possible to their nominal working position, specified in
their respective joint spaces.

2.3 Geometric Uncertainty

In this application following sources of geometric uncertainty are explicitly
modeled: (1) the shape of the describing contour of the 2.5D workpiece; (2) the
height and orientation of the front plane of the workpiece relative to the end effector
of robot 1, and (3) the position of the closest person, expressed in x, y-coordinates of
the world frame. All together these sources of geometric uncertainty are modeled by
seven coordinates. All other geometric transformations are supposed to be known,
even though there may be other sources of geometric uncertainty. For example, the
relative position between both robots is only poorly calibrated, which introduces
important geometric errors.

2.4 Sensors

Robot 1 is equipped with a camera (camera 1, Fig. 1(c)) mounted on its end effector.
This camera provides an image of the closest person, but this image is not used for
visual servoing. Robot 2 is equipped with three sensors mounted on its end effector
(Fig. 1(a)): (1) a six axis force/torque sensor is used to control the contact force

1 If the inequality constraint is not active.
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between the probe and the contour, and to estimate the orientation of the contour
tangent and normal. Only two force components of the sensor are used in this appli-
cation; (2) a camera (camera 2) directed towards the contact point provides a second
estimate of the contour tangent and normal; (3) (not shown in Fig. 1(a:) a laser
distance sensor measures the distance of the end effector to the front plane of the
workpiece. This information is used to control the distance of the probe with respect
to the front plane of the workpiece and to keep the probe axis perpendicular to this
plane. Additionally, the robot system contains a horizontal laser scanner (Fig. 1(b)
and (c)), fixed to the environment, which is used to estimate the motion of people in
the robot environment. All together six scalar signals are measured and fed back to
the robot system.

2.5 Contribution of the Paper

The main contributions of the paper are: (1) to show how to derive the control and
estimation equations for this task involving ten primary constraints, seven uncer-
tainty coordinates, six scalar measurements and twelve secondary constraints, (2) to
present experimental results for this integrated task, (3) the development of a laser
scanner based people tracker, Sect. 6.1, (4) extension of the 2D contour tracking
approach [1] to a 3D context, and (5) presentation of experimental results for this
contour tracking approach ( [1] only contains a 2D simulation).

3 Control and Estimation Scheme

Figure 2 shows the general control and estimation scheme presented in [1] and used
throughout this paper. This scheme includes the Plant P, the Controller C, and the
Model Update and Estimation block M+E. The Plant P represents both the robot
system (where q represents the robot joint positions) and the environment.

The control input to the plant is u, in the case of a velocity-based control scheme,
this input corresponds to the set of desired joint velocities. The system output is
y, which represents the controlled variables. Task specification consists of impos-
ing constraints to the system output y. These constraints take the form of desired
values yd (t)2. The plant is observed through measurements z. Not all system outputs
are directly measured, and an estimator is needed to generate estimates ŷ. These
estimates are needed in the control law C.

In general the plant is disturbed by various disturbance inputs. Here we focus on
geometric disturbances, represented by coordinates χu . These coordinates represent
modeling errors, uncontrolled degrees of freedom in the robot system or geometric
disturbances in the robot environment. As with the system outputs, not all these

2 Further on we omit time dependency in the notation.
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Fig. 2 General control and
estimation scheme including
plant P , controller C , and
model update and estimation
block M + E P
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disturbances can be measured directly, but they can be estimated by including a
disturbance observer in the estimator block M + E .

4 Task Modeling

A typical robot task accomplishes relative motion between objects. The relative
motion between two objects is specified by imposing constraints on the relative
motion between one feature on the first object and a corresponding feature on the
second object. Each such constraint needs four frames: two object frames (called
o1 and o2, each attached to one of the objects), and two feature frames (called f 1
and f 2, each attached to one of the corresponding features of the objects). For an
application in 3D space, there are in general six degrees of freedom between o1
and o2. The connection o1 → f 1 → f 2 → o2 forms a kinematic chain, that is,
the degrees of freedom between o1 and o2 are distributed over three submotions: the
relative motion of f 1 with respect to o1 (I), the relative motion of f 2 with respect to
f 1 (II), and the relative motion of o2 with respect to f 2 (III). The three submotions
are modeled using feature coordinates χ f I , χ f II and χ f III , respectively, with

χ f =
(
χ f I χ f II χ f III

)T
. (1)

We consider two kinds of geometric uncertainty: (1) uncertainty in the pose of an
object with respect to the world, and (2) uncertainty in the pose of a feature with
respect to its corresponding object. Uncertainty coordinates χu are introduced to
represent the pose uncertainty of a real frame with respect to a modeled frame:
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Fig. 3 Feature and
uncertainty coordinates. The
primed frames represent the
modelled frame poses while
the others are the actual ones
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, (2)

in which:

• χuI represents the pose uncertainty of o1,
• χuII represents the pose uncertainty of f 1 with respect to o1,
• χuIII represents the pose uncertainty of f 2 with respect to o2, and
• χuIV represents the pose uncertainty of o2.

Figure 3 summarizes the definitions of the object and feature frames, and of the
feature and uncertainty coordinates. In this figure w represents the world frame.

For the example task four kinematic loops as defined in Fig. 3 are recognized, one
for following the contour of the unknown object (a), one for keeping a minimum
distance to the closest person (b), one for pointing the camera to the head of the
closest person (c), and one for measuring the distance of the end effector of robot 2
to the front plane of the workpiece (d). Each of these loops is further detailed below.

4.1 Contour Following

The contour following task was described in [1] for the two-dimensional case. This
paper extends the contour following to the three-dimensional context of the example
task. The object and feature frames are defined as follows (Fig. 1(a)):

• frame o1a is fixed to the workpiece held by robot 1, with the z-axis perpendicular
to the front plane of the workpiece;

• frame o2a is fixed to the probe held by the robot 2, with its z-axis along the
probe’s symmetry axis;

• frame f 1a is located at the current contact point between the contour and the
probe. The frame’s z-axis is parallel to the z-axis of o1a , its x-axis is parallel to
the tangent of the contour.

• frame f 2a has the same position and orientation as o2a .

In the case of a known contour a minimal set of feature position coordinates exists
representing the six degrees of freedom between o1a and o2a :
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χ f I
a = (za sa

)
, (3)

χ f II
a = (ya θa φa ψa

)T
, (4)

χ f III
a = (−) , (5)

where za is expressed in f 1a and represents the distance from the contact point
to the front plane of the workpiece, sa is the arc length along the contour, ya is
expressed in f 1a and represents the distance of the robot end effector to the contour
perpendicular to the contour, and θa , φa and ψa are Z XY -Euler angles expressed in
f 1a and represent the orientation of the probe with respect to the contour. Using sa

and the planar contour model, the pose of frame f 1a with respect to o1a in a plane
parallel to the front plane of the workpiece can be determined.

In the case of an unknown contour no set of minimal position coordinates exists to
model the relative position of f 1a with respect to o1a . A minimal set of coordinates
however exists at velocity level: χ̇a

f I = (ża ṡa). Instead of integrating ṡa , the homo-
geneous transformation matrix between f 1a and o1a has to be updated at each time
step using χ̇a

f I .
Since the real contour is not known, the modeled contour frame f 1a may deviate

from the real contour frame. Therefore, uncertainty coordinates are introduced:

χuII
a = (ya

u θa
u

)T
, (6)

with ya
u the distance between the modeled and the real contour, and θu the orientation

error between the tangents of the modeled and the real contour.
For this subtask constraints are specified on the following outputs, and are easily

expressed using the feature coordinates:

y1 = za, ẏ2 = ṡa, y3 = ya − R,

y4 = θa, y5 = φa, and y6 = ψa,
(7)

where R is the radius of the probe following the contour.
The measurement equations for the magnitude of the contact force and the ori-

entation of the tangent to the contour are easily expressed using the feature coordi-
nates:

z1 = K (ya − R), z2 = θa, and z3 = θa, (8)

where z, represents the normal contact force with K the contact stiffness, z2 repre-
sents the orientation of the tangent obtained from the force measurement, while z3

represents the orientation of the tangent obtained using the image of camera 2.
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4.2 Minimum Distance to Closest Person

For the minimum distance loop (Fig. 1(b)):

• frame o1b = o1a ;
• frame o2b is at the position of the closest person and with the same orientation as

w;
• frame f 1b is located on the ground, just below o1b and with its z-axis perpendic-

ular to the floor;
• frame f 2b has the same position as o2b, its z-axis is perpendicular to the floor

and its x-axis pointing towards the origin of f 2b.

χ f I
b = (αb βb γ b zb

)
, (9)

χ f II
b = (xb

)T
, (10)

χ f III
b = (θb

)
, (11)

where αb, βb and γ b are the ZXZ-Euler angles expressed in f 1b that describe the
orientation of o1b with respect to f 1b. zb, expressed in f 1b, represents the height
of the end effector with respect to the ground. xb, expressed in f 2b, represents
the distance of the closest person to the robot end effector. θb, expressed in o2b,
represents the direction in which the closest person is located.

The position of the closest person is unknown. Therefore, uncertainty coordinates
are introduced:

χuIV
b,c = (xb,c

u yb,c
u

)T
, (12)

with xb,c
u and yb,c

u the x- and y-position of the closest person in the world reference
frame.

An inequality constraint is specified on:

y7 = xb. (13)

The measurement equations for the position of the closest person as determined
by the laser scanner based people tracker are easily specified using the uncertainty
coordinates:

z4 = xb,c
u and z5 = yb,c

u . (14)

4.3 Camera Pointing to Closest Person

For the camera pointing loop (Fig. 1(c)):

• frame o1c = o1a ;
• frame o2c is at the position of the closest person and with the same orientation

as w,
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• frame f 1c is fixed to camera 1 held by the robot 1 and with the z-axis along the
camera’s principal ray (the line through the principal point and the origin of the
pinhole model);

• frame f 2c is located at the closest person’s head and is rotated π
2 around x with

respect to o2c (to avoid singularities).

The feature coordinates expressing the submotions are:

χ f I
c = (−) , (15)

χ f II
c = (xc yc zc φc θ c ψc

)T
, (16)

χ f III
c = (−) , (17)

where xc, yc and zc are expressed in f 1c and xc and yc represent the position of the
closest person’s head in the camera image and zc the distance of the person’s head
to the camera. φc, θ c and ψc are XY Z -Euler angles expressed in f 1c and represent
the pan and tilt of the camera and the orientation of the closest person’s head in the
camera image respectively.

The position of the closest person is modeled as in Sect. 4.2, while constraints
are specified on:

y8 = xc, y9 = yc, and y10 = ψc. (18)

4.4 Laser Distance Sensor

This kinematic loop is modeled in detail in [1], and is only briefly described here.
Three uncertainty coordinates are introduced corresponding to the errors on the
height, zd

u and the orientation, αd
u and βd

u of the front plane of the workpiece with
respect to their modeled values:

χuI
d = (zd

u αd
u βd

u

)T
, (19)

The laser distance measurement is denoted by z6. If the laser distance measurement
is not available, the uncertainty coordinates are kept constant.

4.5 Nominal Working Position

As secondary constraints the robot has to keep the robot as close as possible to its
nominal working position, see Sect. 2.2. To this end, constraints can be set to the
robot joint positions:

ysi = qi , (20)
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where s indicates the secondary nature of the constraints and with i = 1, . . . , 12
and qi the i’th joint of the robot system.

4.6 Overview

Figure 4 provides an overview of the four kinematic loops showing the object and
feature frames, the feature coordinates and the uncertainty coordinates.

loop a

loop b

loop c

loop d

w

o1a=o1b=o1co1a =o1d

o2a=o2d o2b=o2c

f 1a

f 1a

f 2a

f 1b

f 2b

f 1c

f 2c

f 1d

f 2d

q1

q2

χuII
a

χuI
d

χuIV
b,c

χfI
a

χfII
a

χfIII
a

χfI
b

χfII
b

χfIII
b

χfI
c

χfII
c

χfIII
c

χfI
d

χfII
d

χfIII
d

Fig. 4 Object and feature frames and feature coordinates

All feature coordinates are collected into a single vector χ f , all uncertainty
coordinates are collected into a vector χu , while all measurements are collected
into a vector z.

5 Control Block

The equations for the control block follow automatically from the task model of
Sect. 4. While [1, 12, 13] show the derivation of a velocity based control scheme,
other control schemes are discussed in detail in [14].

Since we use a velocity based control scheme, the control input for the robot
corresponds to:

q̇d = A#
W

(
ẏ◦d + B̂̇χu

)
, (21)

where #
W denotes the weighted pseudoinverse [15,16] with weighting matrix W and

ẏ◦d = ẏd + Kp (yd − y) . (22)
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The first term of the desired joint velocities (21) controls the system outputs to their
desired values, while the second term corresponds to a feedforward term accounting
for the rate of change of the (estimated) uncertainty coordinates. The first term of
control Eq. (22) corresponds to a feedforward of the time derivative of the desired
constraint values (7,13,18), while the second term is a feedback term to compensate
for drift, modeling errors and disturbances3.

The expressions for A and B are given in [1]. We use the Orocos Kinematics
and Dynamics Library (KDL, http://www.orocos.org/kdl) to derive the jacobians
necessary to build A and B based on the kinematic loops defined in Sect. 4.

Secondary constraints are only realized to the extent that they do not conflict with
the primary constraints [17]. The inclusion of secondary constraints (20) modifies
the control input (21) to:

q̇d = Ap
#
Wp

(
ẏ◦d,p + Bp̂̇χu

)+(
I− Ap

#
Wp

Ap

) (
As

(
I− Ap

#
Wp

Ap

))#

Ws(
ẏ◦d,s + Bŝ̇χu − As Ap

#
Wp

(
ẏ◦d,p + Bp̂̇χu

))
, (23)

where the subscripts p and s denote primary and secondary, respectively. Ap, Bp

and ẏ◦d,p are constructed using the primary constraints (7), (13) and (18), while As ,
Bs and ẏ◦d,s are constructed using the secondary constraints (20).

6 Model Update and Estimation Block

The goal of model update and estimation is threefold: (1) to provide an estimate for
the system outputs y to be used in the feedback terms of constraint equations (22),
(2) to provide an estimate for the uncertainty coordinates χu and their derivatives,
to be used in the control input (21), and (3) to maintain the consistency between the
joint and feature coordinates q and χ f based on the loop constraints.

Model update and estimation makes use of a prediction/correction procedure [1]
and is based on an extended system model and on the measurement equations. The
extended system model for this example is constructed according to [1], while the
measurement equations are given by (8), (14) and the measurement equation for z6.

The extended system model contains a motion model for the uncertainty coordi-
nates. For example, if a constant velocity model is used for the uncertainty coordi-
nates, the motion model is expressed as: χ̇u = Cte or d

dt χ̇u = 0. The estimated ̂̇χu

can be used as feedforward in (21).
The uncertainty coordinates χu , χ̇u , . . . can also be estimated by a dedicated,

external estimator. In the example task, both the position of the closest person and
the vision-based estimation of the contour tangent and curvature are provided by

3 There is no feedback term for ẏ2 = ṡa , only a feedforward term.
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external estimators. The next two subsections outline the operation of the people
tracker and the vision-based estimator.

6.1 People Tracker

The people tracker is estimating the position and velocity of multiple persons. Only
the position and velocity of the closest person, χuIV

b,c and χ̇uIV
b,c are used by iTaSC.

χ̇uIV
b,c is used in (21) as feedforward.

Estimating the position of multiple moving persons is significantly harder than
estimating the position of a single person. First, one has to determine the number
of persons that are currently in the field of view. Furthermore, the update process
is harder, since observations may result in ambiguities, features may not be distin-
guishable, objects may be occluded, or there may be more features than persons.
Hence, a system for tracking multiple moving persons must be able to estimate the
number of persons and must be able to assign the observed features to the persons
being tracked.

Figure 5 presents the process flow of the people tracker. A laser scanner measures
the range of the objects over 180◦. From the measured distances, the measurement
resulting from the environment is selected if the probability that the measurement
does result from the environment is higher than a threshold:
P (z /∈ environment | ≥) pud , with pud a user-defined threshold. From the selected
measurements, low level features are extracted using a Variational Bayesian cluster
finding algorithm (VBC) [18]. The VBC provides automatic relevance detection,
that is, it automatically selects the most probable number of clusters.

To keep track of multiple moving persons requires estimation of the joint prob-
ability distribution of the state of all persons. In practice, however, this is already
intractable for a small number of persons, since the size of the state space grows
exponentially with the number of persons. To overcome this problem, a common
approach is to track the different persons independently, using factorial representa-
tions for the individual states. A general problem in this context is to determine
which measurement is caused by which person. In this paper we apply a Joint
Probabilistic Data Association Filter (JPDAF) [19] and/or a Sequential Joint Proba-
bilistic Data Association Filter (SJPDAF) for this purpose [20]. The data association
algorithm computes a Bayesian estimate of the correspondence between the low
level features and the different persons to be tracked. Using these correspondences
the individual filter for each person is updated. The JPDAF uses a Kalman filter
to track the individual persons while SJPDAF uses a particle filter. To improve the
tracking of individual persons, even in case of occlusions, a motion model is used.
In this paper a constant velocity model was incorporated in the estimation.

The data association filters assume that the number of persons to be tracked is
known. In our application, however, the number of objects often varies over time.
As suggested by [20] this is handled by an extra discrete estimator estimating the
number of persons from the low level features.
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Fig. 5 Scheme for people tracker

6.2 Vision-Based Estimator

The visual contour estimator estimates the tangent and curvature of the unknown
contour at the current contact point using camera 2 mounted on robot 2 (Fig. 1(a)).
The tangent and curvature can be used to give an estimate of θa

u (6) and the estimate
ˆ̇θa
u can be used as feedforward in Eq. (21). At the beginning of the contour follow-

ing task, once contact is established between contour and probe, an initialization is
carried out in which the user indicates the foreground, that is, a point on the object.
Next, information on properties of foreground and background are gathered using
cue integration through voting for defocus, hue and saturation cues. Then, based on
the integrated cues a floodfill segmentation is carried out using an automatic opti-
mal threshold through a quality number. This quality number is obtained through a
voting procedure in which the cues are: the total number of segmented pixels (the
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more the better), the increase in number of segmented pixels between two thresh-
olds (if the floodfill segmentation overflows in the next valley, the previous thresh-
old has reached an intensity ridge), the average pixel value of the image obtained
through cue integration, with the segmented pixels as a mask and an indicator to
check whether the segmentation reaches the edges of the camera image. The image
segmented with this optimal threshold is smoothed to find a two dimensional edge
and subsequentially, a natural cubic spline is fitted to the obtained edge.

For efficiency reasons, the initialization is not repeated on line: during the
motion, the spline knots are corrected using line segments perpendicular to the
spline [21]. Within each of these 1D search spaces, another voting procedure (cues:
a minimal average correct hue/saturation, a maximal average difference in correct
hue/saturation, an ISEF edge detector [22], and a weight on the distance to the
previous knot position.) determines the optimal new knot position. A base for this
procedure is the cue integration of hue and saturation along these line segments.

7 Experimental Results

In our experimental setup robot 1, holding the workpiece, is a Kuka K160 robot
while a Kuka K361 robot is holding the probe. The force sensor is a JR3 100M40A3-
I63-DH. A Sick laserscanner (LMS200, range 8m) is used to track the persons in
the neighborhood of the robot.

We carried out two different experiments. During the first experiment different
persons, one standing still and two walking, are present in the robot environment
while all constraints are switched on. In the second experiment, only the contour
following constraints (7) are activated, by putting the weights of the constraints for
the minimum distance to the closest person (13) and the camera tracking of the
closest person (18) to zero.

A constant velocity along the contour of 0.01 m
s (ẏ2) was applied in both experi-

ments, while a contact force of 30N was desired, resulting in a desired y3 of 0.006m.
The desired angles between contour and follower were set to 0◦ (y4 = y5 = y6 =
0◦). A minimum distance of 3.7m to the closest person was commanded (y7), while
the closest person was kept straight in the middle of the image (y8 = y9 = 0m,
y10 = 0◦).

The contour of the 2.5D workpiece estimated during the two experiments is
shown in Fig. 6(a). The difference between the estimated contour in the two exper-
iments is due to the imperfect kinematics and relative position of the two robots.
Figure 7 shows the estimated uncertainty on the height of the frontplane of the
workpiece. The variation of ∼ 0.01 m is partially due to the imperfect kinematics
and relative position of the two robots. Figure 8 shows the output on the distance
from the contact point to the front plane of the workpiece. This uncertainty is very
well compensated by the feedback controller. Figure 9 shows that the inequality
constraint on the distance of the closest person is only active when y7 < 3.7m.
As expected, the orientation error of the probe with respect to the contour in the
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Estimated contour (first)

Estimated contour (second)

(a) Estimated contour.

(b) Curvature profile computed froma CAD-model of the contour.

Fig. 6 Contour and curvature profile of contour of workpiece

Fig. 7 zd
u , estimated height of the frontplane of the workpiece
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Fig. 8 y1, output on the distance from the contact point to the frontplane of the workpiece (zero is
starting position)

plane of the contour, y4, (Fig. 10), is proportional to the curvature of the con-
tour (Fig. 6(b)). This suggests that the tracking would benefit from feedforward of
the curvature information, which can be obtained from the vision-based estimator
(Sect. 6.2).

The closest person switches from one to the other when s = 0.5m and s = 0.9m.
This causes a sudden difference in the distance of the closest person (y7) (Fig. 9)
and of position of the closest person in the image (y8 and y9) for the first experiment
(Fig. 11). This sudden error is also reflected in y3 and y4 (Fig. 12, Fig. 10).

xb

x
b

d

Fig. 9 y7, distance to closest person
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a (first)
a (second)

Fig. 10 y4, orientation of probe with respect to the contour

xc [m]

yc [m]
c [rad]

Fig. 11 y8, y9 and y10, position and orientation of closest person in camera image

ya (first)

ya (second)

ya
d

Fig. 12 y3, deformation corresponding to contact force
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Remark that the realized outputs are influenced by the imperfectly known kine-
matics, dynamics and relative position of the two robots, as well as the relatively
stiff contact (we did not add any flexibility between contour and probe!).

Movies of different experiments are available at http://people.mech.kuleuven.
be/∼ orocos/

8 Conclusions and Future Work

Using an example task, this paper showed that iTASC is a powerful tool for multi-
sensor integration in robot manipulation. The example task includes multiple sen-
sors: encoders, a force sensor, cameras, a laser distance sensor and a laser scanner.
The paper detailed the systematic modeling procedure, derived control and esti-
mation equations for the task involving ten primary constraints, seven uncertainty
coordinates, six scalar measurements and twelve secondary constraints, presented a
laser scanner based people tracker and presented experimental results for the exam-
ple task.

Future work includes the development of a user friendly interface to support
the task specification to enable high-level task programming. We will also perform
experiments with an acceleration-based control scheme including dynamic models
of the robots, and compare the results with the velocity-based scheme.
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Behavioral Programming with Hierarchy
and Parallelism in the DARPA Urban Challenge
and RoboCup

Jesse G. Hurdus and Dennis W. Hong

Abstract Research in mobile robotics, unmanned systems, and autonomous man-
portable vehicles has grown rapidly over the last decade. This push has taken the
problems of robot cognition and behavioral control out of the lab and into the field.
In such situations, completing complex, sophisticated tasks in a dynamic, partially
observable and unpredictable environment is necessary. The use of a Hierarchical
State Machine (HSM) for the construction, organization, and selection of behav-
iors can give a robot the ability to exhibit contextual intelligence. Such ability is
important for maintaining situational awareness while pursuing important goals,
sub-goals, and sub-sub goals. Using the approach presented in this paper, an assem-
blage of behaviors is activated with the possibility of competing behaviors being
selected. Competing behaviors are then combined using known mechanisms to pro-
duce the appropriate emergent behavior. By combining hierarchy with parallelism
we present an approach to behavior design that balances complexity and scala-
bility with the practical demands of developing behavioral systems for use in the
real-world. The effectiveness of merging our hierarchical arbitration scheme with
parallel fusion mechanisms has been verified in two very important landmark chal-
lenges, the DARPA Urban Challenge autonomous vehicle race and the International
RoboCup robot soccer competition.

Keywords Action Selection · Hybrid Architecture · DARPA Urban Challenge ·
RoboCup

1 Introduction

The problem of high-level behavioral programming is defined primarily by its
position within a greater Hybrid Deliberative-Reactive control architecture such
as [1–6]. Traditionally, behavior-based software agents are responsible for low-level
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Fig. 1 Inputs and outputs for a behavioral software module

reflexes and direct actuator control while deliberative agents are used for more
cognitive, high-level functions. With the rapid growth of computing technology,
however, there has been a re-emergence of deliberative methods for low-level
motion planning [6–8]. Such methods provide the important traits of predictability
and optimality, which are extremely useful from an engineering point of view. This
trend, along with the need for robots capable of handling more and more complex
problems, has resulted in a shift in scope and responsibility for behavior-based soft-
ware agents within Hybrid control architectures .

The need now exists for a behavioral control component capable of bridging
the gap between high-level mission planning and low-level motion control. This
behavioral module must be capable of abstract decision making in order to complete
complex, multi-faceted, temporal problems. This reactive, behavior-based software
agent receives perception information about the world through virtual sensors and
dictates desired high-level action through virtual actuators. Virtual sensors use sen-
sor independent perception messages to provide a filtered view of the world and
virtual actuators specify abstract motion commands to a deliberative motion planner.

The responsibility of this behavioral module is to provide two important aspects
of embodied A.I., contextual intelligence and emergent behavior. Contextual intelli-
gence provides the robot with a mechanism for understanding the current situation.
This situation is dependent on both the current goals of the robot, as defined by
the mission planner, as well as the current environment, as defined by the rele-
vant objects present in the world model. Such insight is important for performance
monitoring, self-awareness, and the ability to balance multiple goals and sub-goals.
Emergent behavior is a very important trait of biological intelligence which is under-
stood to be necessary for the success of living organisms in the real world. It allows
for the emergence of complex behavior from the combination of simpler behaviors,
which is important not only for individual intelligence, but cooperative intelligence
in multi-agent systems as well.

This paper presents a novel formulation of a Hierarchical State Machine (HSM)
for providing contextual intelligence within a behavioral agent. A generalized
description of the behavioral HSM is described here for use on mobile robots
with complex applications. This behavioral HSM allows for a subset of behaviors
of varying levels of abstraction be activated and deactivated in real-time. Once
a context dependent set of behaviors are activated, it is expected that conflicting
behavioral outputs be resolved in a manner most appropriate for the specific robot
application.
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2 Background

2.1 The Action Selection Problem

The central focus of behavioral programming is determining at any given moment
what type of action should be performed. Jim Albus, of the National Institute for
Standards and Technology, defines mobile robot intelligence as the ability to “act
appropriately in an uncertain environment, where appropriate action is that which
increases the probability of success, and success is the achievement of behavioral
goals” [9].

The process of deducing the most “appropriate” action is known as the Action
Selection Problem (ASP). Unfortunately, the ability to evaluate “appropriateness”
is a very complex problem and one that causes even many humans trouble. While
choosing the absolutely rational, or optimal action is often impossible without see-
ing into the future, we can hope to select “good enough” or satisficing actions, as
defined in [10]. According to Maes, the following requirements are needed of any
Action Selection Mechanism (ASM) to produce “good enough” behavior [11].

• Goal-orientedness – the favoring of actions that contribute to one or several
goals

• Situatedness – the favoring of actions that are relevant to the current situation
• Persistence – the favoring of actions that contribute to the ongoing goal
• Planning – the ability to avoid hazardous situations by looking ahead
• Robustness – the ability to degrade gracefully
• Reactivity – the ability to provide fast, timely response to surprise

In [10], the following requirements for an ASM capable of producing satisficing
behavior were added.

• Compromise – the favoring of actions that are best for a collection of behaviors,
rather than for individual behaviors

• Opportunism – the favoring of actions that interrupt the ongoing goal and pursue
a new one

From our own experiences developing ASMs for both the Urban Challenge and
RoboCup, a capable ASM should also take into account:

• Temporal Sequencing – the ability to define a necessary order for tasks and
sub-tasks

• Uncertainty Handling – the ability to not react poorly to perception noise

It is very important to note that some of these many requirements conflict with
each other. For example, persistence can be in conflict with opportunism and situ-
atedness. Similarly, planning is in conflict with reactivity. It is therefore impossible
to create an ASM which meets all of these requirements equally. Instead an ASM
must attempt to trade-off between these requirements in a way that best fits the given
application.
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2.2 Existing Action Selection Mechanisms

Taxonomies of existing ASMs are seen in [12–14]. Of these taxonomies, the most
complete and comprehensive is by Pirjanian in [14]. Pirjanian breaks down all
ASMs as being either in the arbitration or command fusion class.

Arbitration ASMs allow “one or a set of behaviors at a time to take control for a
period of time until another set of behaviors is activated” [14]. Arbitration ASMs are
therefore most concerned with determining what behaviors are appropriate given the
current situation. Once this has been determined it is guaranteed that there will be no
conflict in outputs between the running behaviors and so no method of combination
or integration is needed. ASMs within the arbitration category are further broken
down into priority-based, state-based, or Winner-take-all subclasses.

Command fusion ASMs, on the other hand, “allow multiple behaviors to con-
tribute to the final control of the robot” [14]. Rather than being concerned with
selecting appropriate behaviors, command fusion ASMs let all behaviors run con-
currently, then rely on a fusion scheme to filter out insignificant behavioral outputs.
Command fusion ASMs are therefore typically described of as being flat. Since
multiple behaviors can end up desiring the same control, these ASMs present novel
methods of collaboration amongst behaviors. This cooperative approach, rather than
competitive, can be extremely useful in situations with multiple, concurrent objec-
tives. For example, in the robot navigation domain, command fusion ASMs are use-
ful for both avoiding an obstacle and proceeding towards a goal at the same time.
An arbitration ASM would be constrained to doing one or the other. ASMs within
the command fusion category are further broken down into Voting, Superposition,
Fuzzy, or Multiple Objective subclasses.

Arbitration mechanisms, on the other hand, are more efficient in their use of
system resources. By selecting only one behavior from a group of competing behav-
iors, processing power and sensor focus can be wholly dedicated to one thing. In a
flat, command fusion ASM, all behaviors must be operating at all times in order to
vote for the action they prefer. As the complexity of the robot application grows,
the number of behaviors needed grows, and so does the necessary resources in a
command fusion ASM. In a hierarchical arbitration ASM, however, the library of
behaviors can grow as much as it wants, but only a subset of those behaviors will
ever be needed at any given moment.

Well known examples of arbitration ASMs include the Subsumption Architec-
ture [15] and Activation Networks [11]. Popular examples of command fusion
ASMs include Potential Fields [16], Motor Schemas [17], Distributed Architecture
for Mobile Navigation (DAMN) [18], and Fuzzy DAMN [19].

In this paper, a method of merging these two different classes of ASMs is pre-
sented. In doing so, the strengths of both arbitration and command fusion mecha-
nisms hope to be preserved. This is possible by placing an arbitration ASM in
sequence with a command fusion ASM. The result, in essence, is the ability to
select a subset of behaviors given the current situation. Then, if multiple behav-
iors competing for the same output are activated, they can still be cooperatively
combined using a method of command fusion. Specifically, a state-based, hierar-
chical, arbitration ASM is used for behavior coordination. This method utilizes a
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hierarchical network of Finite State Automata (FSA), which can be referred to as a
Hierarchical State Machine (HSM). To integrate the outputs of the activated behav-
iors, almost any known method of command fusion may be used. However, the
chosen method should exhibit the qualities most conducive to the specific robotic
application.

2.3 Hierarchy with Parallelism

It has been shown in [20] that the major bottleneck in developing behavioral intelli-
gence is not selecting the best approach or architecture, but developing the correct
version of this approach. While complexity is needed for multi-faceted problems,
reducing complexity is important for making the robot designer’s job simpler. It
is not enough that a behavioral system be able to do a lot of things, it is equally
important that they do all those things right, and at the right times.

In real-world applications with major repercussions for incorrect behavior, per-
formance predictability can be paramount. The ability to hand code behaviors and
ignore certain perceptual triggers at certain times is extremely useful and important
for goal-orientedness. Hierarchy takes advantage of selective attention to make this
hand-coding of behaviors possible and practical. Yet at the same time, complex
combinations of behaviors are important for developing higher level intelligence.

Combining hierarchy with parallelism in the method presented in this paper pro-
vides important flexibility to the behavioral programmer. Situations in need of pre-
dictability can be catered to, while other situations can still take advantage complex,
parallel, combination schemes. This approach balances quantity and complexity
with design practicality.

3 Behavioral HSMs

Using a hierarchical approach to behavior decomposition is a common practice in
ethology. It allows for the differentiation of behaviors according to their level of
abstraction. According to Minsky in the Society of Mind [21], intelligent beings
consist of agents and agencies. All agents are organized in a hierarchy where
abstract agents are built upon lower, less abstract agents. Each agent has an indi-
vidual motive which it pursues by activating and deactivating lower, subordinate
agents. Groups of related agents in the hierarchy are viewed as sub-systems, and the
hierarchy as a whole is the overall system.

3.1 Hierarchical Structure

A very similar organization has been adapted here, except agents refer to individual
behaviors. All behaviors are similarly organized in a hierarchy with more abstract
behaviors higher in the tree, and more physical behaviors lower in the tree. At any
given time a subset of the total number of behaviors in the hierarchy are activated
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and the rest are deactivated. The activated behaviors are considered to be along the
activation path. Each behavior, or node, in the tree is responsible for determining
which of their sub-behaviors should be activated. This is determined by each behav-
ior’s internal state and is not limited to only one sub-behavior. For example, given
behavior A in state X, two parallel, sub-behaviors may be activated at the same time.
The result is a branch in the activation path and can be seen in Fig. 2.

We can also see from Fig. 2 that all behaviors have implied relationships based
off of their position within the hierarchy tree. Behaviors can have parent-child rela-
tionships or sibling relationships, but it is important to note that these relationships
do not necessarily imply importance or priority. While some arbitration ASMs use
hierarchy to determine the relevance of a behavioral output [15], this approach uses
hierarchy solely as an abstraction method for task decomposition. Simply put, the
primary function of the hierarchical tree is to determine what behaviors to run. Using
a hierarchy allows us to logically break down a complex task into smaller, more
manageable pieces.

Establishing the final output to each virtual actuator (VA) is therefore handled
by a set of command fusion ASMs. As seen in Fig. 2, two sibling behaviors are
collaborating/competing for control of VA1. VA2, on the other hand, has a parent-
child pair producing command messages. It is also possible for a single behavior
to produce more than one VA command if it requires explicit coordination between
two or more VAs. However, it is not required for every behavior to produce a VA
command. Some behaviors, especially higher-level, more abstract behaviors may be
used solely as decision nodes in the hierarchy. The internal state of these behaviors
is important in determining the activation path and subsequently what lower-level
behaviors will run, but do not necessarily request specific action themselves. These
behaviors are seen in Fig. 2 as activated, but not having a specific texture.

Fig. 2 General example of a behavioral HSM
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Any behavior which produces one or more VA commands is classified as a com-
mand behavior. Any behavior which results in the activation of lower sub-behaviors
(i.e., not a leaf node) is classified as a decision behavior. These classifications are
not mutually exclusive, so it is possible for a behavior to be both a command and
decision behavior.

3.2 Behaviors as Finite State Automata

Every behavior is modeled as an individual state machine, or finite state automata
(FSA). Individual behaviors can therefore be formally described as consisting of
a set of controls states csi ∈ C S. Each control state encodes a control policy, πva ,
which is a function of the robot’s internal state and its beliefs about the world (virtual
sensor inputs). This policy, πva , determines what action with respect to a specific VA
to take when in control state csi . All behaviors have available to them the same list
of virtual actuators vai ∈ V A. Furthermore, each control state has hard-coded what
sub-behaviors sbi ∈ SB to activate when in that state.

Transitions between control states occur as a function of the robot’s perceptual
beliefs, in the form of virtual sensors, or built-in events, such as an internal timer.
While each behavior may have a “begin” and “end” state corresponding to the start
and completion of a specific task, a single behavior, or state machine, cannot termi-
nate itself. The higher, calling behavior always specifies what sub-behaviors should
be running. Should a sub-behavior complete its state sequence and have nothing to
do, it will remain in an idle state and not compete for control of any VA.

A simple example of an abstract behavior used for robot soccer is shown Fig. 3.
The Field Player – Attacker behavior shown here is just one behavior within the

Fig. 3 A behavioral state machine for robot soccer
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overall behavior hierarchy needed for a generic soccer playing robot. It is a decision
behavior with four control states and a multitude of transitions for moving between
these control states. While all transitions in this example are based off of perceptual
occurrences, some may require a combination of virtual sensor inputs before being
evaluated to true. For example, Open Shot may require perceiving the goal as being
in front of the robot as well as perceiving the presence of no other robots before trig-
gering.

Of course this individual behavior is only one within a hierarchy of other more,
and less, abstract behaviors. A higher-level behavior might determine the role of
the robot based off of the game situation or user inputs. For example, if the team
is winning significantly it might be desired to have attacking players transition to
a defender role, at which point the behavior shown in Fig. 3 might no longer be
called. On the other side, each control state shown has a selection of sub-behaviors
which are activated when in that control state. Let the Field Player – Attacker
behavior be in csApproachBall , it is possible then that sbWalkToBall , sbTrackBall , and
sbAvoidObstacle are activated, each with their own state machine and correspond-
ing sub-behaviors. Since the behavior shown here is a decision behavior and not a
cmand behavior, csApproachBall has no control policy with respect to a virtual actua-
tor. Instead, the primary function of this behavior is to determine what sub-behaviors
to run given the current situation.

From these examples we see how a HSM, and particularly the current activation
path within that hierarchy, are representative of the robot’s current situation. This
situation is a function of the robot’s environment, the goals of the robot, and the
internal states of the robot. In total, proper construction of the HSM will result in
providing contextual intelligence to the robot. Producing emergent behavior, how-
ever, is left to the Command Fusion mechanism.

3.3 Application Specific Command Fusion

As stated earlier, the hierarchical relationship between behaviors has no relevance
to the likelihood of that behavior’s effect on a specific VA. Once all the behaviors
along the activation path have been defined by the arbitration mechanism described
previously, their hierarchy is thrown out and they are put in a ‘flat’ structure. Their
individual outputs are then combined by a series of command fusion ASMs, with
each instance corresponding to a single virtual actuator. The specific mechanism
used for command fusion is not specified in this approach, and instead should be
determined by the designer according to the robot application and specific virtual
actuator. It is therefore possible to have one command fusion method for VA1 of
robot X, and a separate command fusion method for VA2 and VA3 of the same robot.
This general approach to command fusion is seen in Fig. 4.

Returning to the robot soccer example presented in the previous section, let VA1

be a vector which defines the direction and speed of a walking gait. Based on the
current activation path in the HSM, the walkToBall behavior and the avoidObstacle
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Fig. 4 Layered command fusion mechanisms

behavior are outputting desired gait vectors. It therefore makes sense, in this robot
navigation example, to use a superposition mechanism of command fusion, such
as potential fields or motor schemas. This would be the simplest way of producing
the desired emergent behavior of approaching the ball while avoiding other robots
along the way. Take now the situation where the robot is attempting to kick the ball
into the opposing goal. Let VA2 be a set of discrete kick types, leftFoot forward,
leftFoot backward, rightFoot forward, rightFoot backward, etc. Just the fact that
there are only a set number of discrete kick types makes a superposition-based
ASM inappropriate. Instead a voting-based ASM would be much more applicable,
where each behavior would vote for one type of kick, and the kick with the most
votes would be selected. Taking yet another, further example, examine the behavior
needed to select lanes when driving down in urban street in an autonomous vehicle.
In this situation, one behavior desiring to stay in the right lane for an upcoming turn
is running concurrently with a behavior desiring to pass a slow moving vehicle by
moving to the left lane. Let the VA be the desired lane, and again we see that a
superposition ASM is not appropriate. In this robot application, driving in between
two lanes is unacceptable. Instead, a single lane should be chosen, either the left or
the right.

We see from these examples the result of selecting different fusion ASMs.
Depending on the exact mechanism chosen, completely different emergent behavior
can result. This provides the robot designer with the flexibility to pick and choose
the most appropriate method for the desired emergent behavior.

4 Real-World Application

The ultimate goal of action selection and behavior-based decision making research
within mobile robotics is to build a physically embedded system that can exist
autonomously in the real world. Action selection mechanisms that work in virtual
environments are often unsatisfactory when transported to agents that must deal
with real world uncertainty. It is therefore desirable to inspect the performance of
any approach to behavioral programming on real robots performing real tasks.
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The use of behavioral HSMs as described in this paper has been verified in
two very important examples, the DARPA Urban Challenge and the International
RoboCup soccer competition. At first glance, these two real-world robotic appli-
cations are extremely different. The DARPA Urban Challenge is concerned with
building a full-sized autonomous ground vehicle capable of driving in an urban
environment. RoboCup, on the other hand, is focused on creating a team of
fully-autonomous humanoid robots capable of playing soccer. Across these two
applications, the base platform is drastically different; from a 1.8 ton, 4-wheel,
differentially steered vehicle to a bi-pedal, 2 foot tall humanoid robot. The goals of
each robot are significantly different as well, from urban driving to goal scoring.
In both of these landmark challenges, however, the core problem of a behavioral
control structure is the same. Both robots must somehow balance dynamically
changing desires while trying to achieve mission objectives in a real and unpre-
dictable environment.

4.1 DARPA Urban Challenge – Team VictorTango

In November 2007, the Defense Advanced Research Projects Agency (DARPA)
hosted the Urban Challenge, an autonomous ground vehicle race through an urban
environment. In order to complete the course, the fully autonomous vehicle had
to traverse 60 miles under 6 h while negotiating traffic (both human and robotic),
through roads, intersections, and parking lots. Out of an original field of hundreds
of teams from across the globe, only 35 were invited to the National Qualifying
Event (NQE) in Victorville, California. After rigorous testing, only 11 teams were
selected to participate in the Urban Challenge Event (UCE). Of these 11, only 6
teams managed to finish the course, with the top three places going to Carnegie
Mellon University, Stanford University, and Team VictorTango of Virginia Tech.

In order to complete the challenge, vehicles had to contend with complex sit-
uations in crowded, unpredictable environments. A behavioral system capable of
obeying California state driving laws in merging situations, stop sign intersections,
multi-lane roads, and parking lots was needed. While a vehicle did not need to
actively sense signs or signals such as traffic lights, right-of-way rules had to be
followed as well as precedence-order at predefined intersections. This required the
sensing, classification, and tracking of both static and dynamic obstacles at speeds
up to 30 mph. To be successful, the vehicle had to balance goals of dynamically
changing importance, traversing the course as quickly as possible while remaining
a safe and “defensive” driver. The software module utilized by Team VictorTango to
attack this problem employed a behavioral HSM for arbitration and a voting-based
method for conflict resolution.

This implementation was able to produce an excellent performance at the Urban
Challenge Final Event. Team VictorTango placed third overall, completing the
course and all of its rigorous tests well within the 6 h limit and only minutes behind
the leaders. After post-processing all the recorded data from the final race and exam-
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Fig. 5 Odin, Team Victor Tango’s entry in the DARPA Urban Challenge (Credit: Dr. Al Wicks,
Mechanical Engineering Department, Virginia Tech)

ining hours of video, it was determined that the behavioral component made no
incorrect decisions throughout the entire course of the race.

4.2 RoboCup – Team VT DARwIn

The landmark challenge presented by RoboCup is to develop a team of fully
autonomous humanoid robots that can win against the human world soccer cham-
pion team by the year 2050. While it is unlikely that this will be accomplished in any
near term, the idea of soccer as a standard arena for mobile robots has been widely
accepted. It is estimated that more than 500 teams consisting of 3,000 scientists
from 40 countries will participate in RoboCup 2008 in Suzhou, China, making it
the largest competition in the project’s history.

The Robotics and Mechanisms Laboratory (RoMeLa) of Virginia Tech has
developed a team of fully autonomous humanoid robots for entry in the kid-size
humanoid division [23,24]. In this division a team of 3 fully autonomous humanoid
robots must play the game of soccer against another team of robots. All sensing and
processing must be performed on-board, and wireless transmission may be used
only for communication amongst individual players. All sensing must be roughly
equivalent to the capabilities of a human, prohibiting the use of active sensors that
emit light, sound, or electromagnetic waves. In order to qualify for competition,
robots must be able to localize an unknown ball position, walk to the ball while
maintaining stability, localize a goal and position around the ball for kicking, kick
the ball towards the goal, and autonomously detect and recover from a fall. To per-
form well in competition, robots must also be able to defend against other teams
attacks, dive to block kicks if designated as a goalie, avoid contact with other robots,
and work strategically as a team.
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Fig. 6 DARwIn IIa and IIb competing in RoboCup 2007 (Credit: Dr. Dennis Hong, RoMeLa,
Virginia Tech <www.me.vt.edu/romela/RoMeLa/Meda.html>)

Like the Urban Challenge, each individual robot must be able to handle com-
plex situations in an unpredictable and noisy environment. A behavioral system is
needed that can balance dynamic goals such as scoring, defending, and maneuver-
ing. Therefore, a method for providing contextual intelligence and the ability to pro-
duce emergent behavior are again required for successful operation. For RoboCup,
a software module built around a behavioral HSM was used. By developing this
implementation and comparing it with the Urban Challenge implementation, the
portability of high-level behavioral programming across drastically different plat-
forms and functionality requirements can be seen.

5 Discussion and Conclusion

The arbitration ASM presented in this paper is a novel variant of existing state-
based ASMs and utilizes a Hierarchical State Machine for task decomposition and
behavior selection. The mechanism proposed in this paper provides the robot with
contextual intelligence by maintaining a subset of activated behaviors with internal
states that represent the robot’s current situation. With environmental changes or the
completion of sub-tasks and sub-sub-tasks, the activation path within the behavioral
HSM will reflect the new situation.

In the case of multiple behaviors competing for control of a virtual actuator,
the specific command fusion ASM is not specified and should be chosen based
on the robot application. The organization of ASMs in this approach allows many
typical and well known command fusion ASMs to be implemented. The selection
and implementation of these command fusion mechanisms will result in the selected
subset of behaviors producing the appropriate emergent behavior. In total, the use
of behavioral HSMs addresses many important problems with existing ASMs, but
like any solution, there are some important benefits and drawbacks which should be
identified.



Behavioral Programming with Hierarchy and Parallelism 267

5.1 Benefits

Task Decomposition – The organization of behaviors in a hierarchical tree
according to their level of abstraction is extremely useful for breaking down
a task into manageable sub-tasks, and sub-sub-tasks that can be solved as
independent solutions. Due to the fact that robotic behaviors still need to be
largely hand-coded, a logical method for decomposition is very helpful in
this process.

Temporal Sequencing – Through the use of state machines in each behavior,
the robot designer can easily imply when the order of tasks is important and
when it is not. Every behavior uses a state machine to define which sub-
behaviors are activated. This designer can therefore use state transitions to
imply order in the completion of those lower sub-behaviors.

Behavior Reuse – By taking a “divide-and-conquer” approach to behavioral
problem solving, it is possible to reuse lower-level behaviors for similar
problems. A sub-behavior for control state i of behavior x, can also be a
sub-behavior for control state j of behavior y.

Behavior Commonalities – In conventional state machines, there are many
commonalities amongst different states. In the behavioral programming
example, it is possible that many different behaviors would encode the same
policy for a specific VA. By using a hierarchical state machine, encoding
this policy in every behavior is unnecessary. Instead, a higher-level behavior
allows us to define common policies only once.

Perception Requirements – From a systems engineering perspective, the use
of state machines is very useful because state transitions define all percep-
tion and virtual sensor requirements. By building the behavioral HSM first,
a robot designer is aware of what information needs to be pulled from the
environment.

Uncertainty Handling – A unique property of state-based behaviors is that
they can be made robust to perception noise. This is possible because state
transitions are directional. The requirements for transitioning from control
state A to control state B can be different then the requirements for transi-
tioning from B to A. If there is noise in the perception data (which there usu-
ally is), defining these transitions properly can prevent flip-flopping between
states.

5.2 Drawbacks

Preprogrammed vs. Learned – Individual behaviors and their relationships
within the greater hierarchy must be hand-coded. As a result, determining the
control policies and parameters built into each state of each behavior is a time
consuming and error prone process. Testing, both in simulation and on the
actual robot, is absolutely essential but not always possible. It is desirable to
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automatically generate or learn behaviors, or at least autonomously modify
parameters and control policies based off of the robots actual experience.
Such learning methods are not addressed in our approach but are being
researched elsewhere [22].

Performance Measurement – There exists no formal method for measuring
and comparing the performance of the presented approach against other
existing approaches. While “good enough” behavior defines important
functional requirements, there is no quantitative method of comparison
for “goal-orientedness,” for example. Qualitative observations are the only
major source of comparison which is generally insufficient. Performance
comparison of ASMs can be done in a standard simulation environment [10]
or even better in real-world competitions such as the DARPA Urban Chal-
lenge. However, with non-standardized platforms, sensors, and technology,
the overall performance of any team is not a good indication of the smaller
behavioral programming problem. Furthermore, since the behavior hierarchy
is hand-coded, different implementations of the same approach can have very
different results. The overall performance, therefore, is still dependent more
on the designer than the approach itself.
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Simultaneous Estimation of Road Region
and Ego-Motion with Multiple Road Models

Yoshiteru Matsushita and Jun Miura

Abstract This paper describes a method of estimating road region and ego-motion
for outdoor mobile robots. In outdoor navigation, we have to cope with various road
scenes where, for example, road boundary features such as white lines and curbs
may not be always available. Integration of sensor data from multiple sensors is thus
effective for realizing a robust road region estimation. Since sensor data are obtained
as a robot moves, and since an odometry-based dead reckoning suffers from accu-
mulating errors, we develop a method which simultaneously estimates road region
and robot ego-motion. We implement the method using a particle filter. The method
also has a mechanism of periodically generating new particles using multiple road
models to cope with gradual road shape changes. The proposed method has been
successfully applied to autonomous navigation in various road scenes.

1 Introduction

Research on ITS (Intelligent Transportation Systems) has recently been active. One
of the objectives of ITS research is to realize safe driving by, for example, driver
assistance systems like lane departure warning. Development of autonomous robots
like guide robots has also been widely conducted. These systems require an ability
to recognize traversable regions such as road regions.

GPS systems, combined with an accurate map, can provide location information.
But for safe driving, local information on the road region such as curbs, road and
lane boundary lines, and road shoulders, should be utilized, and such information
can only be obtained on-site. It is, therefore, necessary to estimate road regions
using external sensors such as vision and range finders.
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Many works use vision for detecting road boundaries [1, 2], but such boundaries
are not always easily detectable. Others use range finders to detect road boundaries
from their shape information. If we use a 2D scanning range fingers, guardrails or
clear curbs should exist [3–5].

Road region detection only from the latest observation is vulnerable to occasional
sensing failures or missing of features, such as shadows in the image or discontinuity
of curbs. It is, therefore, necessary to temporally integrate sensor data for reliable
detection.

Wijesoma et al. [3] developed a method of detecting and estimating road bound-
ary from a sequence of curb positions detected by a laser range finder looking
slightly downwards. They estimated road boundary parameters using Kalman
filter. This method assumes that curb positions on both sides are obtained clearly
from the laser data and the vehicle motion is correct. Kirchner and Heinrich [4]
proposed a method of estimating road boundary parameters using a sequence
of horizontal laser-scanned data. They used a 3rd order polynomial boundary
model as an approximation of clothoid curves, and estimated its parameters
using Kalman filter. They estimated only road boundary parameters by assum-
ing a correct vehicle motion. In addition, since they use horizontal scanned
data, some objects (e.g., guardrails) should exist at the roadside along the road.
Cramer and Wanielik [5] proposed a similar method of estimating road boundary
parameters.

Since an accurate ego-motion estimation only from internal sensors (i.e., dead
reckoning) is difficult, it is necessary to estimate the ego-motion as well as the road
region using external sensors. There are various road scenes and, therefore, appro-
priate features to estimate the road region may be different from place to place.
For example, curbs may be removed at the entrance of shops; lanes are sometimes
almost erased in an old road; unpaved roads may be detected by using only color
differences between the road region and the roadside region. We, therefore, use mul-
tiple sensors and features to estimate the road region robustly.

Some previous works have used multiple sensors for navigation. Langer and
Jochem [6] performed a fusion of radar and vision data for detecting roadway
obstacles. Miura et al. [7] developed a method of reliable free space detection by
integrating an omni-directional stereo and a laser range finder. However, the purpose
of these works is not road region detection but obstacle detection.

This paper deals with simultaneous estimation of road region and ego-motion
using vision and laser range data. We implement the estimation method using a
particle filter. To cope with a gradual change of road type, we prepare multiple road
models and devise a technique for generating new particles corresponding to such
multiple models.

The rest of the paper is organized as follows. Section 2 presents a system
overview. Section 3 defines the road models and the state vector. Section 4 explains
the processing of range and image data and the calculation of likelihood of a state.
Section 5 explains the particle filter-based data integration and the model genera-
tion. Section 6 presents experimental results of the method for various road scenes.
Section 7 summarizes the paper and discusses future work.
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2 Method Overview

Figure 1 shows an overview of the proposed method. After each iteration, a set of
particles is kept in the system. Each particle contains a robot pose and the parameters
of a road model with respect to the current origin. The state transition step performs
the following two operations. One is the coordinate transformation using an esti-
mated ego-motion by odometry. The other is road model generation based on the
prediction of possible road type changes. The observation prediction step calculates
what observation will be obtained from the robot position and the road parameters.
The likelihood calculation step processes range and image data to extract features
and calculates the likelihood of each particle from such features and the predicted
observation for the particle. The final step is the resampling.

State Transition
•Ego-motion Prediction
•Road Model Update

Observation prediction

Likelihood Calculation

Resampling

Particle Set
•Local Position
•Road Parameter

Odometry

Laser Range Data

Image Data

Fig. 1 Method overview

3 Road Models and State Vectors

Two-dimensional shape of the road can be classified roughly into straight lines and
curves. Usually a clothoid curve, whose curvature changes smoothly, is used in the
connected part of a straight line and a curve. Since the objective of the method is not
estimating an accurate road shape but get an estimate which is sufficient for safe and
efficient autonomous driving, we use only straight lines and circles as the models of
road shape.
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We connect two consecutive road models so that their tangents coincide with
each other at the connection point. To avoid a frequent switch of road models due to
errors in observations, we switch the road model, if necessary, only when the robot
advances by a certain distance. Currently we set the distance to 10 m; this is the
same as the maximum observation range. When the robot crosses a potential model-
switching point, the new road models are generated (See Sect. 5 for the details).

For a simultaneous estimation of ego-motion and road region, the state vector
includes parameters for both. The elements of the state vector are represented with
respect to the local origin, which is defined by the pose at the previous time step.
The origin is updated in the state transition step in Fig. 1.

The robot pose is represented by its 2D position, x, y and orientation, d. Con-
cerning the road parameters, we use the gradient and the intercept for representing
straight lines, and the center position and the radius for circles. Road parameters are
divided into the front part before the switching point and the rear part beyond the
point. We also use w and h as the road width and the distance to the switching point,
respectively. Figure 2 shows five road models used in this paper. Road boundaries
may sometimes be detected at different positions in range and image data. In such a

switching point
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x

y

h
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2

robot

(a) Line to circle.
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y
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(b) Circle to line.
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(c) Circle to circle.
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(d) Single line.

x

y

(e) Single circle.

Fig. 2 Road models
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Fig. 3 Gap of road
boundaries for range and
image data

case, the boundary for range data usually exists outside the one for image data (see
Fig. 3, for example). So we explicitly represent and estimate the gap between the
boundaries, both on the right and the left side of the road.

4 Image and Range Data Processing for Likelihood Calculation

This section explains how to calculate the likelihood of each particle given a set
of image and range data. We do not explicitly extract road boundaries but derive
likelihood functions to be used for the calculation.

4.1 Range Data Processing

We use a SICK laser range finder (LRF). The LRF is set at the height of 0.45 m
looking downward by 5◦ (see Fig. 4). Let h and φ be the height and the depression
angle of LRF, and let l and α be the distance and the direction of a data point on the
laser scanning plane. Then the position (x, y, z) of that point is given by:

x = l sin α, (1)

y = l cos α cos φ, (2)

z = h − l cos α sin φ. (3)

At a curb position, a range data set has an L-shape but the data points are con-
nected. The connectivity of data points are judged if the distance between a consec-
utive pair of data points is less than 1 m. A set of connected data points including the
central one is analyzed to find L-shapes. We calculate the angle at each point from
the two sets of the five neighboring points on both sides. A likelihood function of
the angle, which assesses how likely a point is on the curb position, is then defined
with a Gaussian; its mean and standard deviation are set to 90◦ and 30◦, respectively.
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Fig. 4 Placement of laser
range finder

scanning plane
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z
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y

LRF

horizontal road plane

h

L-shape features may appear at places other than curb positions; for example,
such a feature exists at the boundary of a pavement and a building wall. To exclude
such spurious road boundaries, we use height information. We suppose that the robot
is on a horizontal road plane, as shown in Fig. 4. In actual road scenes, however,
since the gradient of the road can change, we consider the effect of such a change
by considering the distribution of possible y positions (in the forward direction) of
the road surface in the LRF data. The distribution is modeled as a Gaussian, whose
mean and standard deviation are set to h/ tan φ = 5.1 and 3 m, respectively.
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We discretize the range of the horizontal position x with 0.1 m intervals. For each
interval, we calculate the products of the two likelihood values for data points in the
interval, and take the maximum product as the likelihood for that interval. For an
interval with no data, we calculate the likelihood by linear interpolation. Figure 5
shows an example of likelihood calculation of the intervals.

We use this distribution of likelihood values to calculate the likelihood of each
particle (i.e., each state vector). From the robot position and the road parameters of
a particle, we can calculate the horizontal positions of road boundaries, which are
actually the intersections of the laser scanning plane and the right and the left road
boundary. The likelihood of the particle for laser data is then given by the product
of the likelihood values at both horizontal positions.

4.2 Image Processing

We use a LadyBug2 (Pointgrey Research Inc.) omnidirectional camera system. This
system has 5 CCD cameras, two of which are used in this research to cover the
field of view of about 144◦. We capture a pair of 512 × 384 images. We use two
visual cues: road boundary lines and the boundaries between road and roadside
regions. We use the intensity gradient images for the first cue and the color gradient
images for the second one. The magnitude of gradient for each cue corresponds to
the likelihood of the road boundary.

An intensity gradient image is obtained by applying a series of 3×3 median filter,
a sobel filter, and a 11 × 11 smoothing filter. Figure 6(b) shows the magnitude-of-
gradient image obtained from the input image shown in Fig. 6(a).

Fig. 6 Calculation of intensity and color gradient
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Color gradient images are calculated as follows. We use the CIE L*a*b* color
space, which fits well with the human perception. We model the color of a road
surface with a Gaussian in the 2D color space and estimate it on-line. We sample
color data in the estimated road region from the latest five frames, 100 samples from
each frame. Using the estimated Gaussians, we make the image whose pixel values
indicate how likely each pixel belongs to the road regions (see Fig. 6(c)). From this
images, we calculate the color gradient of a pixel from the four regions of 15 × 7
pixels around that pixel (see Fig. 7). Let Ci be the averaged value of region i . At
the left boundaries, since the gradient is rightward, we calculate the magnitude of
gradient as:

max(Cb − Ca, Cb − Cc, Cd − Ca, Cd − Cc). (4)

Fig. 7 Extraction of the color
gradient

center pixelc

a

d

b

region name 15 pixels

7 pixels

The magnitude of gradient for the right boundaries is calculated similarly.
Figure 6(d) shows the gradient image of road boundaries (red: left, blue: right).

The likelihood of a particle for image data is calculated as follows. Road bound-
ary points in the image coordinates can be calculated from the road parameters and
the robot pose of the particle. The averaged value m of the magnitude on these
points is then calculated and input to the following sigmoid function to calculate the
likelihood:

l(m) = 1

1+ exp(−k(m − mc))
, (5)

where k and mc are experimentally determined parameters.

5 A Particle Filter-Based Estimation Algorithm

5.1 State Transition

5.1.1 Ego-Motion Prediction

This step performs the coordinate transformation (see Sect. 2) using odometry data
and perturbs the robot pose part of each particle with an estimated odometry error.
We currently use a very approximate error estimate; for a 1 m movement, we use



Simultaneous Estimation of Road Region and Ego-Motion 279

the standard deviations of 0.1 m, 0.1 m, and 0.1 [rad ] for x , y, and d, respectively.
These values are set to proportional to the moving distance.

5.1.2 Road Model Update

As we stated in Sect. 2, we switch the road model only when the robot advances by
10 m, and when the robot crosses a potential model-switching point, the new road
models are generated. Each road model has two parts, the front and the rear part (see
Sect. 3). When the robot crosses a model-switching point, the rear part of the current
model is transferred to the front part of a new model and a new rear part is attached.
Since we cannot know in advance what type of road appears in the rear part, we
generate all of the following as the rear road type: the line and a set of circles. The
curvatures of circles are limited to 1/r = 0.02, 0.04, 0.06, 0.08, 0.10 [1/m]. For
a particle which is judged to cross the switching point, multiple descendant parti-
cles are generated corresponding to various read road types. The weight wupdate

of a newly generated particle is set to 1/nnew , the inverse of the number of newly
generated particles. For a particle which is not judged to cross, the weight is one.

5.1.3 Road Parameter Prediction

In Sect. 3, we defined road parameters. Among them, a road width and a gap
between boundaries from range and image data may change as the robot moves. In
addition, since we generate circular road models at the rear road part with a limited
set of curvatures, as described above, we need to gradually adjust the curvature to
the observation. We therefore estimate on-line the width, the gap, and the curvature,
and fix the other road parameters for each particle.

5.2 Likelihood Calculation

The weight of each particle is calculated by the weight determined by the state
transition and the likelihood values for range and image data.

In some cases, however, the likelihood values for one of the sensors (range or
image) on one side become very small due to, for example, a discontinuity of curb
or strong cast shadows. In such a case, the weights of all particles become very
small and, as a result, many promising particles might be deleted. To avoid this,
if the maximum likelihood value for a sensor on one side is less than a threshold
(currently, 0.3), the sensor is considered not to be effective on that side, and the
likehood values for that combination of the sensor and the side are not used.

The final weight wmodel is given by the product of the likelihood values limage

and lLRF for image and range data and the weight wupdate determined at the update
step, that is,

wmodel = (limage · lLRF ) · wupdate . (6)

After calculating the weights, we perform a usual resampling step.
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6 Experimental Result

This section describes the experimental results conducted at two locations in our
campus (See Fig. 8). The first course is on a straight road partially with curbs. The
second one is on a curved road with cast shadows.

Fig. 8 Courses of the
experiments

(a) First experiment. (b) Second experiment.

6.1 Straight Road

Figure 8(a) shows the course of the first experiment. We manually moved the robot
along the road and obtained 130 sets of range, image, and odometry data. The data
are processed off-line with the number of particles being 500. At first there are curbs
on both sides, but as the robot moves, there appears a parking space on the left (see
Fig. 9(a)). At the entrance of the space, there are no curbs and, in this case, LRF data
are not effective for detecting the left road boundary (see Fig. 9(b)). The right road
boundary is, on the other hand, clearly detectable. If we have information on curb
position at least on one side, we can estimate the road parameters by using predicted
road models. Image data are also effective in this case, as shown in Fig. 9(c) and (d).
By integrating multiple information from both sensors, we can robustly estimate the
road region. Figure 10 shows the estimation result when the data shown in Fig. 9
was obtained at step 55. The left figure superimposes the road boundaries obtained
from the particles after resampling on the input image. We assign the three primary
colors to represent the likelihood of each piece of information as follows:

• R: likelihood using color gradient,
• G: likelihood using intensity gradient,
• B: likelihood using range data.

So for example, a purple line indicate that information of color gradient and range
data supports the line. Figure 10(b) shows a kind of certainty distribution of road



Simultaneous Estimation of Road Region and Ego-Motion 281

(a) Input image.
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(b) Likelihood values by range data.

(c) Intensity gradient image. (d) Color gradient image.

Fig. 9 Observation at step 55 in the first experiment

(a) Estimated road boundaries. (b) Certainly distribution for road region.

Fig. 10 Estimation result at step 55 in the first experiment

regions, obtained from the current set of particles, in the robot local coordindates
(the green semicircle is the robot); brighter pixels indicate higher certainties. The
center position of the road is also shown in red, which could be a guide for control-
ling the robot motion.

Figures 11 and 12 are the input image, range and gradient information, and the
estimation result at step 40. Cues on the right side are undetectable due to a branch.
On the left side, a curb gradually moves outside towards a parking space, so many
left curves survive as the estimated road boundaries. A few steps later, however, a
left boundary for the intensity gradient become clearly detectable, and only straight
line road models survive (see Fig. 10).
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(a) Input image.

(c) Intensity gradient image.
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(b) Likelihood values by range data.

(d) Color gradient image.

Fig. 11 Observation at step 40 in the first experiment

(a) Estimated road boundaries. (b) Certainty distribution for road region.

Fig. 12 Estimation result at step 40 in the first experiment

Each particle is split into a set of decendant particles at the road model update
step, and a limited number of particles survive after the resampling. By tracing back
from the current set of particles, we can obtain the global road shape and the motion
history. Figure 13(a) shows the result obtained at step 55. The global shape of road
boundaries and the robot motion histoties from the surviving particles are shown.
Colors of road boundaries indicate road types (straight, left curve, and right curve).
The history obtained from odometry is also shown for comparison. Figure 13(b)
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(b) Result at the final step.

Fig. 13 Estimation results of global road shape in the first experiment

shows the result at the final step. Incorrect road models at step 55 have been elimi-
nated and the straight shape of the road is clearly recovered.

6.2 Curves and Shadow

Figure 8(b) shows the course of the second experiment. The road includes curved
parts and strong shadows are cast on many locations. We obtained 180 sets of data in
this case. At step 38, strong shadows are cast on the road surface (see Fig. 14(a)); this
makes it difficult to detect the right road boundary using colors (see Fig. 14(d)). The
intensity gradient information is not very effective, either (see Fig. 14(c)). The curbs
are clearly observable in the LRF data (see Fig. 14(b)), and this make it possible to
correctly estimate the road region, as shown in Fig. 15.

Figures 16 and 17 are the input image, range and gradient information, and the
estimation result at step 94. Again, a strong sunlight makes it difficult to detect road
boundaries using color, but LRF data on both sides and the intensity gradient on the
left are mainly used for road region estimation.

Figures 18 and 19 are the data at step 129. Because a branch exists on the left
side and a right side curb is undetectable, there is no cue for the estimation. This
results in a diffision of the estimated road boundaries (see Fig. 19). A few steps
later, however, the range and image data on the left side become effective to make
the boundaries converge.

Figure 20 shows the estimation results of the global road shape and the motion
history at step 94 and at the final step. The approximate shape of the road is well
recovered.

The number of particles certainly affect the estimation performance. We quanti-
tatively examined their relationship for the two experimental situations. We ran the
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(a) Input image.
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(b) Likelihood values by range data.

(c) Intensity gradient image. (d) Color gradient image.

Fig. 14 Observation at step 38 in the second experiment

(a) Estimated road boundaries. (b) Certainty distribution for road region.

Fig. 15 Estimation result at step 38 in the second experiment

system 20 times for each number of particles and calculated the success rate. We
judged if the estimation result is successful by visual inspection. Figure 21 shows the
result. The computation time of the proposed estimation method is about 0.5 s per
step using 500 particles. The number of particles depends on the accuracy of dead
reckoning and a model variety. Increasing the accuracy by using, for example, gyro-
scope, would reduce the number of particles thus reducing the computation time.
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(a) Input image.
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(b) Likelihood values by range data.

(c) Intensity gradient image. (d) Color gradient image.

Fig. 16 Observation at step 94 in the second experiment

We combined the estimation method with a simple robot control procedure to
perform the experiments of autonomous driving. Figure 22 shows some snapshots
of the experiments. The robot was able to robustly move autonmously in various
road environments.

(a) Estimated road boundaries. (b) Certainty distribution for road region.

Fig. 17 Estimation result at step 94 in the second experiment
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(a)Input image.
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(b) Likelihood values by range data.

(c) Intensity gradient image. (d) Color gradient image.

Fig. 18 Observation at step 129 in the second experiment

(a) Estimated road boundaries. (b) Certainty distribution for road region.

Fig. 19 Estimation result at step 129 in the second experiment
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Fig. 20 Estimation results of global road shape in the second experiment
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7 Conclusion

This paper has described a new method of simultaneously estimating the road region
and the robot ego-motion. The method effectively integrates two sources of infor-
mation, vision and range finder, using a particle filter with new likelihood functions.
It can also cope with the change of road types by devising a method of generating
particles (hypotheses) corresponding possible road changes. The method has been
tested in various real environments to show its effectiveness.

To cope with more various environments, we are planning to extend the method
in the following two ways. One is to use more features to cope with various scenes.
Human can recognize a road region even when no clear boundaries exist using some
features which can separate road and non-road regions. Seeking and testing effective
features are necessary. The other way is to add more various road models such as
crossings and parking spaces where we cannot observe continuous road boundaries.

References

1. J.D. Crisman and C.E. Thorpe. SCARF: A Color Vision System that Tracks Roads and Inter-
sections. IEEE Trans. Rob. Autom., Vol. 9, No. 1, pp. 49–58, 1993.

2. H. Ishiguro, K. Nishikawa, and H. Mori. Mobile Robot Navigation by Visual Sign Pat-
terns Existing in Outdoor Environments. In Proc. IEEE/RSJ Int. Conf. on Intell. Rob. Syst.,
pp. 636–641, 1992.

3. W.S.Wijesoma, K.R.S. Kodagoda, and A.P. Balasuriya. Road Boundary Detection and Tracking
Using Ladar Sensing. IEEE Trans. Rob. Autom., Vol. 20, No. 3, pp. 456–464, 2004.

4. A. Kirchner and T. Heinrich. Model-Based Detection of Road Boundaries with a Laser Scanner.
In Proc. IEEE Int. Symp. Intell. Veh., pp. 93–98, 1998.

5. H. Cramer and G. Wanielik. Road Border Detection and Tracking in Non Cooperative Areas
with a Laser Radar System. In Proc. Ger. Radar Symp., 2002.

6. D. Langer and T. Jochem. Fusing Radar and Vision for Detecting, Classifying and Avoiding
Roadway Obstacles. In Proc. IEEE Int. Symp. on Intell. Veh., pp. 333–338, 1996.

7. J. Miura, Y. Negishi, and Y. Shirai. Mobile Robot Map Generation by Integrating Omnidirec-
tional Stereo and Laser Range Finder. In Proc. 2002 IEEE/RSJ Int. Conf. on Intell. Rob. Syst.,
pp. 250–255, 2002.



Model-Based Recognition of 3D Objects
using Intersecting Lines

Hung Q. Truong, Sukhan Lee and Seok-Woo Jang

Abstract Exploiting geometric features, such as points, straight or curved lines and
corners, plays an important role in object recognition. In this paper, we present
a model-based recognition of 3D objects using intersecting lines. We concentrate
on using perpendicular line pairs to test recognition of a parallelepiped model and
represent the visible face of the object. From 2D images and point clouds, first, 3D
line segments are extracted, and then intersecting lines are selected from them. By
estimating the coverage ratio, we find the most accurate matching between detected
perpendicular line pairs and the model database. Finally, the position and the pose
of the object are determined. The experimental results show the performance of the
proposed algorithm.

Keywords Line matching ·Model-based recognition · Intersecting line

1 Introduction

Object recognition has been studied extensively in computer vision, and model-
based object recognition is a well regarded method. Most approaches use the cor-
respondence between model features and image features to estimate the pose of the
object. With these approaches, the challenging problem is the selection of the most
useful geometric features for matching.

Some researchers have exploited methods to recognize and estimate the shape
of a 3D object using color features [1]; these algorithms may not be robust when
objects lack texture or discriminating characteristics. Zhang and Faugeras [2] pro-
posed a method to present line matching problems, but the resulting points are
often not the midpoints of the corresponding line segments pairs. Guerra and Pas-
cucci [3] presented an algorithm to match between two sets of 3D line segments
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with unknown line correspondences. Some other matching methods [4–6] were
issued which did not completely solve the general matching problem. Košecká and
Zhang approached more complicated features such as rectangular structures [7]
and Kamgar-Parsi [8], Polygonal Arc Matching. Many researchers are mentioned
in the feature of 2D model line [9] as well as multiple features [10]. However, these
methods have limitations with a large number of models. Lowe [11] determined the
algorithm for SIFT features but this method seems to be ineffective when the object
lacks texture or is occluded. Some approaches have focused on parallel line features
and used that as an independent method to recognize and match up with the object.
Here we have approached model-based recognition of 3D objects using intersecting
lines with more advantages, for instance, almost the shape of the objects generally
store the corners which are constructed by two or more intersecting line segments
while parallel line segments do not appear popularly.

The main contribution of this paper is to demonstrate detection of the intersecting
line segments in the scene, and then select the highest probability pairs which can
fit the shape of one face of object. One proposed method is to represent one object’s
face using the selected intersecting line pairs and calculate the coverage ratios for
each matching case. By comparison, we find the highest coverage probability to
indicate the most accurate pose of the object in the scenario. In our algorithm, we
assume the shape of the object which needs to be recognized contains perpendicular
corners as a box in Fig. 1. Consequently, we extract perpendicular line segments and
represent them as a rectangle for one face of the box.

The paper is organized as follows: Sect. 1 explains 3D line segments’ representa-
tion from model and 3D line extraction from the scene. An algorithm which detects
coplanar line segments and intersecting lines is described in Sect. 2. Interpretation
and matching method between the model and the perpendicular line segment are
explained in Sect. 3. Section 4 demonstrates that our experimental result can be
implemented in the real environment. Finally, Sect. 5 summarizes our results and
states our conclusions.

Fig. 1 The scene and box
model
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2 3D Line Extraction

2.1 3D Line Segments Representation from Model

In this implementation, we represents target object as a box in which its shape is like
a parallelepiped. Besides its perpendicular corners, this model is also determined by
three dimensions, the length, width and height of the parallelepiped, correspond-
ing to Model X, Model Y and Model Z. These dimensions are 3D line segments
connecting the neighboring vertexes of the parallelepiped, and we assume that the
length is known.

2.2 3D Line Extraction from the Scene

In this section, we first extract all lines from the 2D image, and these lines are
converted to 3D lines through mapping the 3D points corresponding to the 2D lines,
using the Hough transform for 2D line fitting. First, the edges are detected by the
Canny edge algorithm. Then, the edges are categorized as horizontal, vertical and
diagonal line segments, based on the connection of the edges. The 2D lines are
found by connecting each line segment with adjoining line segments, based on the
aliasing problem of lines in 2D. 3D lines can be obtained if there are corresponding
3D points at the pixels of the 2D line. In fact, the quality of data obtained by stereo
imaging is not accurate, and each stereo point cloud has uncertainty. Therefore, we
find a method to determine the error of the position or the range resolution (r) of the
3D point in space, described below.

Two images of the same object are taken from different viewpoints. The distance
between the viewpoints is called the baseline b. The focal length of the lens is f.
The horizontal distance from the image center to the object image is dl for the left
image, and dr for the right image. The relationship of these parameters is:

r = b · f

d
where d = dl − dr (1)

�r

�d
= −b · f

d2
= −

(
b· f
d

)2

b · f
= − r2

b · f

⇒ �r = r2

b · f
· �d (2)

The range resolution is a function of the range itself (1). At closer ranges, the
resolution is much better than further away. Range resolution is represented by
the equation (2), the range resolution Δr , is the smallest change in range that is
discernable by the stereo geometry, given a change in disparity of Δd.
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3 Detecting Intersecting 3D Line Segments

As mentioned above, we can obtain all 3D lines connected by two end points and
each of point has range resolution Δr . In order to find the best perpendicular line
pairs for model matching, we implemented some steps as follows:

3.1 Coplanar 3D Line Segments Inspection

The key point we concentrate on here is the distance between two 3D lines. In
three dimensions, the two arbitrary lines generally may not intersect or intersect at
a point, and they can be parallel and even though they may be coincident. If two
3D lines do not absolutely intersect at a point then the distance between them will
be a line segment connected by two points lying on the each line. There is one and
only one shortest line segment joins two lines in three dimensions. We assume two
3D line segments are P1 P2 and P3 P4, the shortest line segments that joins two 3D
lines is Pa Pb as shown in Fig. 2. Pi can be expanded out in the (x,y,z) components
where i ∈ {a, b, 1, 2, 3, 4}. In the analysis to follow, from at least two points we can
define a line equation. A point Pa on line P1 P2 defined by points P1 and P2 can be
expressed by the equation,

Pa = P1 + ma(P2 − P1) (3)

Similarly a point Pb on another line P3P4 defined by points P3 and P4 can be
expressed by the equation,

Pb = P3 + mb(P4 − P3) (4)

The line segment PaPb joins P1P2 and P3P4 and the values of ma and mb can be
the arbitrary real number. Substituting the equations of each of lines gives

Pb − Pa = P1 − P3 + ma(P2 − P1)− mb(P4 − P3) (5)

Fig. 2 The shortest line
segment that joins two 3D
lines

Pb

Pa

P1

P2

P3

P4
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Since Pa Pb is assumed to be like a shortest line segment, it must be perpendicular
to either P1 P2 or P3 P4. We use the dot product equation to denote this property

(Pb − Pa).(P2 − P1) = 0 (6)

(Pb − Pa).(P4 − P3) = 0 (7)

From Eqs. (5–7), we obtain

[P1 − P3 + ma(P2 − P1)− mb(P4 − P3)](P2 − P1) = 0 (8)

[P1 − P3 + ma(P2 − P1)− mb(P4 − P3)](P4 − P3) = 0 (9)

Expanding these Pi in terms of the coordinates (x,y,z), we obtain ma and mb then
Pa , Pb are determined by Eqs. (3) and (4). The length d of the line segment joining
the two 3D lines is defined by (10)

d = |Pb − Pa| (10)

Pa and Pb are points in three dimensional space, so they also have their range
resolutions. Here we illustrate that the range resolution for a 3D point is a sphere
with radius are Δr , with Pa and Pb corresponding to Δra and Δrb as shown in
Fig. 3. Two 3D lines intersect if the shortest distance between them is equal to zero.
In actual use, when each 3D point has its error in position in three dimensional
space, we can not expect that the shortest distance joining two lines is equal to zero.
Instead, a constraint is proposed to make the condition of two coplanar 3D lines be
the most accurate

d ≤ �ra + �rb (11)

With the set of 3D line segments that are detected, we inspect the distance
between every two lines of the set by Eq. (10). The pairs that satisfy the condition
of Eq. (11) are considered to be intersected, and intersecting points are Pa , which

Fig. 3 Measure of the
shortest distance between two
3D line segments

Pb

Pa

Δra

Δrb

d
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lies on the first line and Pb, which lies on the second line. If two lines absolutely
intersect then Pa and Pb are coincident.

3.2 Candidate Intersecting Lines to Match with Model

Here we mention three steps to select perpendicular line segment pairs in order to
interpret the rectangle face of the target object.

In the first step, we eliminate the cases where the intersecting point is interior to
the line segment, as shown in Fig. 4 (a) and (b). We regard the other intersecting
line cases if their intersection point is out of line segments or coincident with the
vertexes of each line segment, as shown in Fig. 4 (c) and (d). These pairs have the
ability to be represented by a rectangle.

In the second step, we consider the angle between two intersecting lines which
satisfy the requirements of the first step. In this paper, since the target object is a
parallelepiped, we therefore detect the pairs containing perpendicular angles. Each
point has a range resolution, so its coordinate in three dimensions appears uncertain.
Once a set of 3D line segments are connected by two points, it has a disparity in
angle also. As Fig. 5 shows, the range of disparity in position of a line segment can
be illustrated as a cylinder. We proposed an optimal measurement to decide the most
accurate angle between two line segments described in Eq. (12)

Fig. 4 Intersection cases of
two arbitrary line segments

(a) (b) 

(c) (d) 

Fig. 5 Angle between two
intersecting lines

Pb

Pa
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P2

P3

P4
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θ = α1 + α + α2 (12)

where θ is probably the angle of the two intersecting lines, as shown in Fig. 5, α is
the angle calculated from the inner product between P1 P2 and P3 P4, and α1 and α2

are variant angles of P1 P2, P3 P4. They are defined by

αi = a sin
�ri

li
(13)

where i = 1 or 2. Δri is the range resolution of an end point on the line segment if
the distance between this point and the intersecting point is larger than the distance
between the remainder end point and intersecting point. li is the length of the line
after it has been extended to the intersecting point. In the case where intersecting
point is coincident with one of two end points of the line segment then li is length of
that line segment. By the more accurate estimation, we issue a constraint to detect
the perpendicular line segment pairs as follows:

π

2
− (α1 + α2) ≤ α ≤ π

2
+ (α1 + α2) (14)

In the third step, we keep the perpendicular line pairs if the line length of each
line is shorter than max(Model X, Model Y, Model Z) and longer than 20% of
min(Model X, Model Y, Model Z).

After three steps, we obtain a set � of perpendicular 3D line segments which has
a high probability to match with a rectangle face of model.

4 Matching with Model

4.1 Interpretation and Matching with Model

From the set � of perpendicular line pairs above, a method to represent a rectangle
face of object is determined. We first assume that (P1 P2, P3 P4) is a pair in set � and
A is its intersecting point. We describe this assumption as is shown in Fig. 6 (a) and
our method is explained following these steps:

Consider the intersecting point A of (P1 P2, P3 P4) is a vertex of rectangle.

Fig. 6 Interpretation a
rectangle from an intersecting
line pair

P1 P2

P

P4

A B 

C D 

P1 P2

P
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A B 
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If P2 A is less than d1 where d1 = {Model X, Model Y or Model Z}, then
extend P2 A so that its length is equal to d1, and the new end point is vertex B.

Similarly, if P4 A is less than d2 where d2 = {Model X, Model Y or Model Z}
and d2 �= d1, then extend P4 A so that its length is equal to d2, the new end point is
vertex D.

By the symmetric property, the remainder vertex C of rectangle is determined.
Each pair can represent one or more rectangles. With the set �, we can represent

a set 	 of rectangles.

4.2 Calculation Coverage and Matching

In order to select the best interpretation of the set 	, we select the cases that have the
highest coverage ratio. This ratio is defined by the equation

w = Nmatched line

Nperimeter
(15)

where w is the coverage ratio, each interpretation in set 	 has a calculated value
for w, hence if 	 has n values then W also consists of n values of w. Nperimeter is the
perimeter of the rectangle. Nmatched line is the sum of the 3D line length on the margin
of the rectangle or the boundary of the rectangle as shown in Fig. 6(b).

A line segment is considered to be on the margin of the rectangle if this line and
the side of the rectangle it adjoins satisfy the coplanar condition, as mentioned in
Sect. 3A and the angle between them is zero.

In the set W, we select one w which is the maximum value. From that w value,
we get the corresponding rectangle’s position, and this rectangle is predicted to be
a visible portion of parallelepiped. Therefore we can indicate the position of target
object.

5 Experimental Results

The proposed method has been tested with a box and we use a Bumblebee stereo
camera to capture the sequence of images.

Fig. 7 shows the result of 3D line segment detection. After that, we select the
perpendicular line pairs which satisfy the condition of set �. Interpretation of the
rectangle based on these pairs are shown in Fig. 8. Figure 9 is the most accurate
result of the matching. In some cases, the object is occluded, as shown in Fig. 10, so
we illustrate the deficient rectangles as probability matching with one visible face of
the object. Figure 11 shows the result of matching in the case of occluded objects.
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Fig. 7 3D line segments
detection result

Fig. 8 Interpretation the
rectangles based on
perpendicular line pairs in
set �
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Fig. 9 A matching result

Fig. 10 Interpretation the
rectangles based on
perpendicular line pairs in set
� (occlusion case)
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Fig. 11 A matching result in
occlusion case

6 Conclusion

We have concentrated on the geometric feature to recognize a given object. Partic-
ularly, we exploit the perpendicular 3D line segment pair to match with the model.
Through the experimental results, we found that intersecting line is necessary and
important information as well as the algorithm to recognize the position of an object
based on that property. Actually, there are many kinds of object with arbitrary shapes
and their sides are not only straight lines but also curves or other shapes. This prob-
lem suggests to us an approach to a new challenge, recognizing a deformed object.

In our approach, even though the target object is occluded by other things, our
algorithm can also detect a portion of the object and can still produce a reliable result
in the face of that deficient information. However, in the weak light environment,
the 3D line detection result is not clear. For our future studies, we will combine the
geometric features, such as parallel line pairs or intersecting line pairs with arbitrary
angles to improve the recognition algorithm.
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Visual SLAM in Indoor Environments
Using Autonomous Detection and Registration
of Objects

Yong-Ju Lee and Jae-Bok Song

Abstract For successful SLAM, landmarks for pose estimation should be contin-
uously observed. This paper proposes autonomous detection of objects as visual
landmarks for visual SLAM. Primitive features such as color and intensity, SIFT
keypoints, and contour information are integrated to investigate environmental
images and to distinguish objects from the background. Autonomous object detec-
tion can enable a robot to extract some objects without any prior information and
it can help a vision system to cope with unknown environments. In addition, an
adaptive weighting scheme and the use of a gradient of the gray scale are proposed
to improve the performance of the proposed scheme. Using detected objects as
landmarks, a robot can estimate its pose. A grid map of an unknown environment
is built using an IR scanner and the detected objects are mapped in the grid map,
which results in a hybrid grid/vision map. Visual SLAM using objects can have the
less number of landmarks than other visual SLAM schemes using corners and lines.
Various experiments show that the algorithm proposed in this paper can improve
visual SLAM of a mobile robot.

Keywords SIFT · SLAM · Object recognition · Visual attention

1 Introduction

When a robot navigates in an unknown environment, both accurate pose estimation
of the robot and map building of the environment are important issues. Therefore,
SLAM (Simultaneous Localization and Mapping) has been one of the most funda-
mental and challenging issues in the field of mobile robotics in recent years.

Range sensors (i.e., laser scanners, sonar sensors, and IR scanners) and vision
sensors (i.e., monocular and stereo cameras) are usually employed for SLAM.
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Early researchers preferred range sensors because they could provide the range
information directly, which made feature extraction easier than vision sensors.
However, features that can be extracted from the range information are limited to
lines and corners. On the other hand, a vision sensor offers much more information
than a range sensor. Although a vision sensor requires complicated image processing
to extract visual features, recent SLAM approaches tend to employ vision sensors
as a main sensor.

As both range- and vision-based schemes use features to estimate the robot pose,
it is clear that observation of features is the most important factor of successful
SLAM. Among various types of features for visual SLAM, objects can serve as a
good visual landmark because some object recognition methods are relatively robust
and invariant to scale and rotation. Objects enable data association simpler than
corners or lines and objects are also found easily in real environment [1].

Two approaches have been mainly used in object recognition; model-based
scheme and appearance-based scheme. While a model-based (top-down) approach
uses the model of an object, an appearance-based (bottom-up) approach does not use
any prior knowledge of an object. Obviously, the latter is more suitable for SLAM
which deals with unknown environments.

Researchers proposed several appearance-based approaches for object recogni-
tion. The saliency-based region selection strategy extracts multi-scale image fea-
tures to find salient objects within a complex natural scene [2,3]. This scheme aims
at searching objects as humans do and it can successfully extract objects from the
background. However, it focused only on the image analysis and often extracts the
objects that are too small or too easily movable (i.e., books and bags) to be used in
navigation.

Another strategy for the appearance-based approach uses only SIFT keypoints
or their clustering within an input image [4, 5]. The main idea of these approaches
is to extract the SIFT keypoints or to use clustering of SIFT keypoints as point
landmarks. The landmarks are used only to estimate a robot pose and they do not
offer any information on the environment, which means that they are just scale
invariant points rather than meaningful objects for human (i.e., sinks and beds).
These schemes have some drawbacks of using too many point features in a relatively
small environment because too many features can cause inefficiency of SLAM or
an increase in computational complexity.

The contribution of this paper is to propose a novel approach to object recogni-
tion that is applicable to SLAM. We propose an approach which finds useful objects
without any prior information and exploits them as natural landmarks to estimate
the robot pose and build an accurate environment map. The proposed scheme con-
sists of the extraction method of various primitive features for reliable outputs and
several steps for not selecting too small objects such as books and bags or parts of
objects. If some objects are determined to be suitable for navigation, these detected
objects are separated from the source image and registered in the database. These
registered objects are subsequently used as landmarks to estimate the robot pose.
Figure 1 shows some useful objects for navigation of a mobile robot in real indoor
environments.
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Fig. 1 Objects useful for navigation in real environments

By both visual feature-based EKF SLAM and the proposed recognition algo-
rithm in this paper, the robot autonomously models an unknown environment. In
this research, both range and vision sensors are used for SLAM and the SLAM
process can be implemented in real-time although it may take long to recognize
objects as the number of objects in the database becomes larger.

The remainder of this paper is organized as follows. Section 2 presents an overall
structure of the proposed scheme and Sect. 3 deals with extraction of various fea-
tures from the camera image. Section 4 represents feature combination and object
selection and Sect. 5 describes EKF-based SLAM using extracted objects. Section 6
describes Experimental Results. Finally, Sect. 7 presents Conclusions.

2 Overall Structure of Autonomous Registration of Objects

Figure 2 shows an overall structure of the proposed object recognition scheme. For
successful performance, it is desirable to use various types of features that are not
correlated with each other. The proposed scheme uses five types of features such as
SIFT keypoints, object contours, hue, saturation, and intensity.

Among the five primitive features, the clustered region of SIFT keypoints and
contours of objects are considered as object candidates. Inside the object candidates,

Fig. 2 Overall structure of
the proposed scheme
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color (hue, saturation, and intensity) information of the object candidates becomes a
criterion to decide whether the object candidate can be selected as a useful object or
not. After selecting an object, SIFT keypoints are exploited for object recognition.
Object recognition offers the range and angle information of a recognized object
because the stereo camera provides the position of the recognized object.

3 Feature Extraction from Camera Images

3.1 SIFT Keypoint Extraction and Contour Detection

SIFT (Scale Invariant Feature Transform) is one of the image recognition methods
and extracts the feature points which are invariant to scale, rotation, and viewpoint
[6]. The region where many SIFT keypoints exist is useful for navigation because
the region is easily recognized by SIFT keypoints. The SIFT keypoints are clustered
into several groups by the pixel distance in the image. Each group can be considered
as a single object (although the keypoints of the group come from different physical
objects) because SIFT keypoints tend to exist in the space whose pattern is obvious
and remarkable (not flat and monotonous).

At the same time, the contour of an object is detected by the Canny edge algo-
rithm [7]. The contour or outline of an object can help distinguish the object from
the background or other objects. As objects in indoor environments are usually char-
acterized by closed polygonal contours, it is useful to consider both the keypoints
and contours together in selecting the objects. As an example, the detected contours
and clustered regions of SIFT keypoints in the input image of Fig. 3 (a) are marked
as rectangles in Fig. 3(b) and (c), respectively. If the size of object candidate is too
small (smaller than 40 pixels in both width and length), this candidate is discarded
because it is not likely to be reliably recognized due to its small size or the distance
from the robot.

(a) (b) (c)

Fig. 3 (a) Input image, (b) contour detection, and (c) clustering of SIFT keypoints
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3.2 Decomposition of Input Image

The input image in the form of RGB (i.e., red, green, and blue channels) is trans-
formed into the form of HSI (i.e., three properties of color; hue, saturation, and
intensity channels) through the procedure introduced in [8]. The HSI space is more
intuitive and gives more information than the RGB space because the HSI space
is similar to the human cognitive system and its three channels are not correlated.
In the hue channel, all colors are represented as the values between 0 and 360.
The saturation channel represents the degree of purity. For instance, dark blue and
light blue are determined by adjusting the saturation channel. The intensity channel
represents light information obtained by the conversion of the color image to the
gray image.

3.3 Extraction of Features from Each Feature Image

Primitive features are extracted from the hue, saturation, and intensity channels.
Gaussian convolution is conducted twice on each channel with variances of σ and
2σ . Boundaries become smooth through Gaussian convolution. Then, difference
between the Gaussian convolution images represents the boundaries. The differ-
ences of Gaussian convolution images represent the complexity of patterns at hue
(color), saturation (purity), and intensity (light) channels. The magnitudes of the
features are represented as a gray scale image as shown in Fig. 4 and the feature
images are obtained by Eq. (1).

I = |L(σ )− L (2σ )| (1)

where L(σ ) and L(2σ ) are the Gaussian convolution images with masks whose
variances are σ and 2σσ , respectively, I of Eq. (1) represents the primitive feature
image. The magnitudes of the features are proportional to the gray scale of the I
image.

A result of feature extraction is shown in Fig. 5. A camera image and feature
images of hue, saturation, and intensity are shown in Fig. 5(a–d), respectively.
The final combined image is made by summing them. The three feature images
are normalized before they are combined because they represent their features with
different ranges.

Fig. 4 DoG (Difference of
Gaussian) image as a
primitive feature image Gaussian images DoG Image

L(2σ)

L(σ)
I
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(a) (b) (c) (d)

Fig. 5 Feature images; (a) Input camera image, (b) features extracted from hue image, (c) features
extracted from saturation image, and (d) features extracted from intensity image

4 Combination of Primitive Features and Object
Selection Mechanism

4.1 Combination of Primitive Features

The feature image extracted from hue, saturation, and intensity image inside an
object candidate is the criterion for selecting suitable objects from the candidates.
The gray scale of the feature images is related to salience. Salient objects or places
look white in the feature images because the gray scale for the corresponding pixels
is high.

Figure 6 shows examples of object candidates and their salience. Figure 6(a) is
the input image. In Fig. 6(a), region A is the clustered region of SIFT keypoints
and region B is the detected contour. The outer (yellow) rectangle in Fig. 6(a) rep-
resents a region of interest, which is used for prevention of the effect of insufficient
information (i.e., the objects outside this region of interest are likely to be cut at the
boundary of the camera image). Figure 6(b) represents the final combined image
of Fig. 6(a). The three feature (hue, saturation, and intensity) images are combined
with equal weights. Figure 6(c) shows the salience of regions A and B. In Fig. 6(c),
all regions of Fig. 6(b) except A and B were discarded for better understanding.
While region A is salient, region B is not salient, as shown in Fig. 6(c).

A

B

(a)

Region of interest

(b)

A

B

(c)

Fig. 6 (a) Object candidates represented as rectangles, (b) the final combined image where hue,
saturation, and intensity feature images are combined with equal weights, and (c) HSI information
of regions A and B in the final combined image
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For successful results, we use an adaptive weighting strategy. The weights of
feature images are determined according to the distribution of the gray scale values.
That is, the weight is increased (or decreased) for the weight of dense (or sparse)
features. It is described mathematically by

IF = ωH IH − ωS IS − ωI II (2)

ωH = σ 2
S σ 2

I

σ 2
Hσ 2

S + σ 2
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H

(5)

where σ represents the distribution of the gray scale in the feature images, ω the
weight of each image and I the feature image. The subscripts H, S, I, and F mean
hue, saturation, intensity, and final combined feature. Whenever various scenes are
captured, the weights change.

An example of adaptive weighting is illustrated in Fig. 7. A rectangle is extracted
by the contour detection algorithm and the region inside the rectangle is assumed
to be a candidate for an object. The variance of hue, saturation, and intensity inside
the candidate is 2,944, 1,561, and 1,584, respectively. From Eqs. (3–5), the weight

IntensitySaturationHue 

+ =+

0.21 0.40 0.39

Final combined 
image

HSI Analysis

Fig. 7 Adaptive weighting; final combined image where hue, saturation, and intensity feature
images are combined with different weights



308 Y.-J. Lee and J.-B. Song

becomes 0.21 for hue, 0.40 for saturation, and 0.39 for intensity. Features commonly
extracted from all feature images become salient and they are represented in white,
whereas non-salient areas in black.

4.2 Object Selection Mechanism

We also propose a filtering step using gray scale values in the final combined image
for robust performance. The main idea is to investigate the average gray scale values
along the boundary (10 pixels from the boundary) in four directions; left, right, top,
and bottom. The scheme of investigating the average gray scale values to the left
of the object candidate is shown in Fig. 8. As the object is distinguishable from the
background in the final combined image, the area outside of the object candidate is
not salient.

A more detailed explanation is described in Fig. 9. In Fig. 9(a), all the averages of
the gray scale values outside the object candidate in four directions are low. On the
other hand, in Fig. 9(b), the gray values outside of the object candidate are relatively
high in all directions. Therefore, the object candidate of Fig. 9(a) is selected as an
object, but that of Fig. 9(b) is discarded.

Figure 10 illustrates the recognized objects during navigation. By the proposed
recognition method, a poster and part of a bookshelf were recognized, as shown
in Fig. 10(a) and (b), respectively. In Fig. 10(c), another poster and a picture are
matched from a quite long distance. In object recognition, the center of an object is
selected as a point representing the object because the object has its own size at the
input image. The red cross in the figures represents the center point of the recognized
object. The affine transform, which calculates the geometrical relationship between
the object recognized in the scene and that stored in the database, is used to extract
the accurate center point with various viewpoints.

Fig. 8 Determination of the
gradient from the boundary

Object 
candidate

Region under 
investigation

Boundary 

10 pixels from 
boundary
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Decreasing

(a)

(b)

Increasing or constant 

0 .09

0 .09 0 .24

0 .19

0 .5

0 .54 0.54

0.49

Fig. 9 Investigation of gradient of object candidates

(a) (b) (c)

Fig. 10 Recognition of autonomously registered objects during navigation by the proposed method

5 EKF-Based SLAM

The EKF (Extended Kalman Filter) algorithm has proven to be the most appropriate
framework in visual SLAM by much literature [9]. It compensates for the error
accumulated due to both systematic and non-systematic errors during navigation. In
EKF, the robot pose and landmark positions are stored in a state vector represented
as X, and the position uncertainties of components of the state vector are stored in a
covariance matrix denoted as P. The state vector and covariance matrix are updated
recursively through sensor measurements.
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5.1 Prediction

At the prediction stage, the state vector and its covariance matrix at time t are
obtained as follows:

X̂−t = f (X̂t−1, ut , t)+ wt (6)

P−t = Fx Pt−1 F T
x + Fu Qt F T

u (7)

where X̂−t and P−t are the predictions of the state vector and its covariance matrix
at time t, respectively, and ut is the displacement of the robot between time t-1 and
time t. The vector wt represents the process noise with zero mean and Q is the
covariance matrix of the process noise. The matrices Fx and Fu are the Jacobian
matrices of the nonlinear motion model f(·) with respect to the state vector and the
displacement ut , respectively.

If the robot observes a feature, it compares this feature with the features in the
state vector X. If it turns out to be a new feature, this feature is initialized and
included in the state vector and its covariance matrix. If it is found to be one of
the existing features, the EKF algorithm conducts the update stage.

5.2 Update

The state variables, the robot pose and landmark positions and the covariance matrix
of the state vector are updated by the measurement of the sensor at the update stage.
In this paper, the measurement is obtained from object recognition in the form of a
relative range and orientation of the object from the robot. The state vector and its
covariance matrix P at time t are updated as follows:

Kt = P−t H T
t (Ht P−t H T

t + Rt )
−1 (8)

X̂t = X̂−t + Kt (Zt − Ẑt ) (9)

Pt = (I − Kt Ht )P−t (10)

where Kt represents the Kalman gain, and Ht is the Jacobian matrix of the sensor
model with respect to the state vector. The error on the pose of the robot due to
disturbances is compensated by the Kalman gain which is proportional to the differ-
ence between predictions and measurements. If none of landmarks are matched, the
uncertainties of landmarks are kept unchanged. In this case, only the robot pose is
calculated by the motion model and the uncertainty of the robot pose increases.

X̂t = X̂−t (11)

Pt = P−t (12)
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6 Experimental Results

Experiments were performed using a robot equipped with an IR scanner (Hokuyo
PBS-03JN) and a stereo camera (Videre STH-MDI-C). The camera is used for
object recognition and the IR scanner is used to build a grid map of the environment.
The experimental environment consists of three rooms, as shown in the Fig. 11 (a).
The total area of the experimental environment is 10 m × 10 m. Figure 11(b) shows
the CAD data of the environment which will be compared with the map built by the
proposed algorithm. The grid size of both the CAD data and the grid map built by
SLAM is 10 cm.

Figure 12 illustrates the mapping process of the experimental environment using
the proposed algorithm. In the experiment, pictures and bookshelves are selected as
objects for estimating the robot pose. Since the cluttered environment such as chairs,
table legs and small objects such as books are useless for localization, these objects
are not selected. Figure 12(a) represents the initial state of the robot. In Fig. 12(b),
the robot moves in the environment, builds the grid map and marks the objects in
their own position. In room 2, it was difficult to detect some objects because of non-
systematic errors generated by a carpet and slip of the wheels of the mobile robot.
The map was distorted after navigating room 2, as shown in Fig. 12(c). However,
the map was recovered from distortion by observing the registered object again,
in Fig. 12(d). The recovery from the distortion is a result of data association, and
object recognition can eliminate accumulated errors. It follows that object recog-
nition makes data association easily compared to other features such as corners or
lines.

Figure 13 shows the constructed map of the environment shown in Fig. 11 and
the comparison of the trajectory estimated by the odometry (dotted line) with that
by the proposed EKF-based SLAM (solid line) approach. The constructed map is
referred to as a hybrid grid/vision map because it contains visual features as well as
occupancy grids. Black objects or legs of tables cannot be represented in the map
because an IR scanner cannot detect a light absorbing object and the object whose
width is narrower than its angular resolution. The positional error of the resulting
map is about ±20 cm and orientation error is 5◦.

IR scanner

Stereo camera

(a) (b)

Room 1 Room 3

Room 2

Fig. 11 Experimental environment; (a) mobile robot platform and experimental environment and
(b) CAD data
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Object

(c)

Robot

IR scanner data

(b)

(d)

DB

Camera view
(a)

Fig. 12 Indoor SLAM with autonomous object registration

Fig. 13 Comparison of robot
trajectory by odometry
(dotted) with that by
EKF-based SLAM (solid)

Trajectory by odometry Trajectory by EKF
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Fig. 14 Objects of different
sizes from the same object

Object A

Object B

Several objects of different sizes can be registered from an identical object due to
some factors such as lighting condition which affects the RGB image and thus HSI
information. However, the hybrid grid/vision map is not much affected by the light
condition because matching of the SIFT keypoints is relatively robust. For exam-
ple, object B is hardly matched to object A in Fig. 14. Research on the consistent
selection of an object under various lighting conditions is under way.

7 Conclusions

Object recognition is useful for navigation of a mobile robot because various objects
exist in indoor environments. Current object recognition schemes require object
information in the database, so objects which do not exist in the database cannot
be recognized. However, the proposed scheme can recognize objects without any
information. The experimental results of the proposed scheme and its application
to SLAM are shown in the previous chapter. From the experiments, the following
conclusions were drawn.

1. It is possible to autonomously select an object or a group of objects and register
them as visual landmarks for SLAM without human interference.

2. The proposed scheme can solve data association or loop-closing problems rela-
tively easily compared to that based on the range sensors alone because object
recognition offers quite accurate feature matching results.

Acknowledgments This paper was performed for the Intelligent Robotics Development Program,
one of the 21st Century Frontier R&D Programs funded by the Ministry of Commerce, Industry
and Energy of Korea.
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People Detection using Double Layered Multiple
Laser Range Finders by a Companion Robot

Alexander Carballo, Akihisa Ohya and Shin’ichi Yuta

Abstract Successful detection and tracking of people is a basic requirement to
achieve a robot symbiosis in people daily life. Specifically, a mobile robot designed
to follow people needs to keep track of people position through time, for it defines
the robot’s position and trajectory.

This work proposes a new method people detection and position estimation from
a mobile robot by fusion of multiple Laser Range Finders arranged in two layers.
Sensors facing opposite directions in a single row (layer) are combined to produce
a 360o representation of robot’s surroundings, then data from every layer is further
fused to create a 3D model of people and from there their position.

The main problem of our research is an autonomous mobile robot acting as mem-
ber of a people group moving in public areas, simple but accurate people detection
and tracking is an important requirement. We present experimental results of fusion
steps and people detection in an indoor environment.

Keywords People Detection · Feature Extraction ·Multilayer LRF

1 Introduction

Companion robots are becoming part of daily life and are designed to directly inter-
act with people, from a pet robot to aid the development process in children as to
provide company to lonely elder people, to complex humanoid robots programmed
with verbal interaction and providing services like guiding, entertainment and com-
pany. One necessary subsystem for such robots is detection, recognition and tracking
of people as well as obstacles in the environment.

Laser Range Finders (LRF), besides being used for obstacle detection are also
an important part of tracking systems, with important advantages over other sensing
devices, like high accuracy, wide view angles, high scanning rates, robustness to
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changes in environment, usage simplicity and relatively less computing power to
process data. However, 2D LRF data is not enough to solve important problems like
occlusion in scan data, a set of multiple laser finders in different locations inside
an area (for example [1, 2]) may reduce occlusion problems and effectively track
multiple people, however detection is limited to the selected area and not suitable
for tracking from a mobile robot.

Current approaches based on LRFs [3–6] place the sensors in the same height
(single row), some 20 to 50 cm from the ground, to detect and track people’s legs.
However, detection of legs in cluttered environments is difficult especially if people
are standing still. In Fod et al. [1] a row of several LRFs on different positions in
a room were used for tracking moving objects, blobs (segments) are extracted and
future positions estimated according to a motion model. Xavier et al. [4] focused on
people detection using a fast method for line/arc detection but from a fixed position.
Cui et al. [2] proposed a walking model to improve position prediction by including
information about leg position, velocity and state. The later model was then used by
Lee in [5] but this time from a mobile robot. Montemerlo et al. [7] also uses LRF
from a mobile robot for people tracking and simultaneously robot localization by
using conditional particle filters. Also in Zhao et al. [3] a mobile platform is used
for a monitoring system based on a cart with two LRFs on a single row, to monitor
people motion; their system also helps covering blind spots by moving the cart.
Finally, Arras et al. [6] considers the problem of how to set the necessary threshold
values and which features to use to successfully detect people from a mobile robot.

We propose in this work a new method for multiple people detection and posi-
tion estimation by fusion of several LRF sensors, as other approaches, but installed
in a multi-layered (multirow) arrangement. The idea is to obtain simultaneously
different-but-complementary features to better detect people even in cluttered envi-
ronments. This approach allows robust people detection even in presence of occlu-
sion and is simple to implement using a mobile robot by placing sensor layers in the
robot body at different heights from the ground depending on the features to detect.

Figure 1 represents our layered approach, every layer has two sensors facing
opposite directions for 360o scanning (Fig. 1(a)), and two layers are used to extract
features from upper and lower parts of a person’s body (Fig. 1(b)).

Our method involves two fusion steps: fusion of sensors in a single layer and
then fusion of layers. In the first step, sensors facing opposite directions in the same

Fig. 1 Scanning from a
double layered approach: (a)
opposite facing sensors (top
view) and (b) two layers of
sensors (lateral view) (a) (b)
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(a) (b)

Fig. 2 (a) Projection of two 2D planes for a 3D representation, (b) a volumetric representation of
people

layer are fused to produce a 360o representation of robot’s surroundings. There is
overlapping of scan data from both sensors (darker areas in Fig. 1(a)) so this fusion
step must deal with data duplication. In the multiple layer fusion step, raw data
from every layer is processed to extract features corresponding to people, then a 3D
representation (a people model) is obtained allowing people detection and person
position and direction estimation.

The main idea of our approach is depicted in Fig. 2, after fusion of sensors in
every layer, geometrical features are extracted (Fig. 2(a)): in the upper one large
elliptical shapes (chest areas) are seen while in the lower layer circular shapes (legs)
are also visible. Then fusion of the extracted features from both layers define a 3D
volume (Fig. 2(b)) enclosing every person detected.

A simple yet logical assumption is that an elliptical shape corresponding to a
chest is always associated to one or two circular shapes corresponding to legs, and
that the large elliptical shape (chest) is always over the set of small circles (legs).
Figure 3 supports this concept, here we present a sequence of real scan images

Fig. 3 A sequence of walking steps from scan data using sensors from both upper layer (darker
points on large curve) and lower layer (smaller curves)
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from a person walking (viewed from the top), both upper layer (large arc-like shape,
chest) and lower layer (small arc-like shapes, legs) are visible. Fusion of extracted
features allows creating a 3D volume (Fig. 2(b)) and from it the estimated person
position is computed.

Our main research goal aims to develop a companion robot with the objective to
study the relationship of an autonomous mobile robot and a group of multiple people
in a complex environment like public areas, where the robot is to move and behave
as another member of the group, while achieving navigation with obstacle avoid-
ance. Some of the basic functions of such companion robot are depicted in Fig. 4,
while the robot acts as another group member it has to detect, recognize and track
the fellow human members (Fig. 4(a) and (c)) and also move in the environment like
the rest of the members (Fig. 4(b) and (d)).

The robot used for our research is depicted in Fig. 5. The robot (Fig. 5(a)) is based
on Yamabico robotic platform [8]. Two layers of LRF sensors are used, the lower
layer is about 40 cm from the ground while the upper layer is about 120 cm. Every
layer consists of 2 LRF sensors, one facing forwards and another facing backwards
for a 360o coverage (Figs. 1 and 5). The sensors used in our system are the URG-
04LX (Fig. 5(b)) range scanners ( [9] provides a good description of the sensor’s
capabilities).

The rest of the paper is organized as follows. In Sect. 2 we describe the step of
fusion of sensors in a single layer into a 360o representation. Section 3 presents our
approach for fusion of multiple sensor layers, including feature extraction, people
detection and position estimation. Section 4 presents experimental results for the
different fusion steps and for people detection. Finally, conclusions and future work
are left for Sect. 5.

Fig. 4 Companion Robot
with a group of people:
motion tracking (a), obstacle
avoidance (b), group
members recognition (c),
mobile obstacle avoidance (d)

(a) (b)

(c) (d)
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Fig. 5 Our robot system for
multiple people detection and
tracking (a), four URG-04LX
are used (b)

(a) (b)

2 Combining LRF Sensors in Single Layer

The robot scans its 360o surroundings from both layers having two sensors in each
layer, one facing forward and one facing backwards. A total of 4 LRFs are used,
as presented in Fig. 5, raw scan data from every sensor is read, timestamped and
integrated with odometry information. According to the top view representation in
Fig. 1(a), real scan data obtained from both sensors in one layer is presented in Fig. 6
(data from the upper layer).

A previous step is to ensure sensor-to-sensor alignment which is to properly fix
the pose of the two sensors so as the resulting combined scan data appears to be
obtained from a single sensor. In other words scan data from areas where the sensors
overlap should match and ideally be indistinguishable. A top view of real scan data
is presented in Fig. 6, this overlap problem at left and right sides of the robot is also
present.

Our application needs scan data from the complete surroundings of the robot,
thus we need to combine readings of the two opposite facing sensors into a 360o.
Ideally if the sensors we perfectly aligned data in the overlapping areas will be indis-
tinguishable, however the different poses of the sensors provide different viewpoints
with different problems, while a sensor’s beam may suffer from reflection problems
in one point the other sensor’s beam (if both hitting the same point) may not. Our
approach to fuse not-perfectly aligned scan data from two sensors in the same layer
is described in next paragraphs.

A sensor s provides range scan points ps
i from a set P s consisting of range and

direction
[

r s
i θ s

i

]
for every beam i , i ∈ 1..N in a local coordinate system L where

direction is in the range {−120o..120o}. Data from sensors facing opposite directions
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Fig. 6 Raw scan data from the upper layer

is transformed into a global system G such that
[

r s
i θ s

i

]
is converted into

[
Rk φk

]
for each sensor.

Figure 7 represents this idea, the pair of sensors 1 and 2 facing opposite direc-
tions and separated in the vertical axis over a distance d(1, 2) are combined by
transforming their scan data into G.

However sensors in this arrangement share scan points in overlapping areas (dark
areas in Fig. 7(b) labeled as A and C , with points in range from −120o in one
sensor to 120o in the opposite) thus a problem of duplication of data exists. Non-
overlapping areas (B and D, right after the end of one overlap to 0o to the start of the
next overlap, in both sensors) correspond to sensor’s independent observations but
those in the overlapping areas include both independent and shared observations,
for the difference in pose of the sensors allows different points of view of the same
object.

r1
i ↪θ 1

i

d(1↪2)

L

(a)

[Rk↪φk]

G

A

B

C

D

(b)

A

(c)

Fig. 7 Fusing scan data of two sensors in the same layer, (a) sensors in local coordinate system L,
(b) converted to global system G and fused, (c) averaging of matching points in overlapping areas
A and C
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To cope with this duplication of data in overlapping areas, a method was imple-
mented to find for every scan data of one sensor the closest on the other sensor and
obtain the average of their positions in G. Data in non-overlapping areas was left
unchanged in G.

After joining every pair of sensors, scan data additionally transformed to include
robot odometry information

[
x y ϕ

]T
. The 2D representation of sensors in both

layers (chest and legs) can be considered as two different XY planes in a 3D repre-
sentation (Fig. 2), thus the Z component for every plane is the actual sensor height
in the robot body (layers are parallel to the ground).

3 Fusion of double layered LRF sensors

Sensors in the same layer are facing opposite directions, individual scan data are
combined into a 360o representation in the previous section. The next step is fusion
of both sensor layers, here data will be divided into clusters with a segmentation
function and then clusters will be classified according to their geometrical proper-
ties. Finally only those segments that match people features will be selected and
joined into a 3D model from where people position is obtained.

3.1 Segmentation

Data clustering can be considered as the problem of breakpoint detection and finding
breaking points in scan data can be considered as the problem of finding a thresh-
old function T to measure separation of adjacent points. Every pair of neighboring
points p j and pk are separated by an angle α which is proportional to the sensor’s
angular resolution (true for points of two adjacent scan steps) and by a distance
D(p j , pk). Points are circularly ordered according to the scanning step of the sensor.

A cluster Ci , where Ci = {pi , pi+1, pi+2, · · · , pm}, is defined according to a
cluster membership function M

M(p j , pk) = (θk − θ j ) ≤ α ∧D(p j , pk) ≤ T (p j , pk) (1)

such that for every pair 〈p j , pk〉 of adjacent points, the Euclidean distance D(p j , pk)
between them is less than a given threshold function T (p j , pk) for p j , pk . A
new point pn is compared to the last known member pm of a given cluster Ci as
M(pm, pn).

Now, the threshold function T is defined for a pair of points, as in the work of
Dietmayer [10], as:

T (pi , p j ) = C0 + C1min(ri , r j ) (2)
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with C1 =
√

2(1− cos(α). Dietmayer’s work includes the constant C0 to adjust the
function to noise and overlapping. In our case C0 is reemplaced by the radius R
of the accuracy area for pi as base point plus a fixed threshold value (10 cm in our
case). R is defined according to the URG-04LX sensor specifications [9, 11] as:

R(pi ) =
{

10 if 20 mm ≤ ri ≤ 1, 000 mm

0.01× ri otherwise
(3)

The proposed threshold function T uses this accuracy information R when checking
for break points, if two neighboring points have a large range value, it will be most
probable that they form part of the same cluster for their bigger accuracy areas.

There is also a cluster filtering step that will drop segments very small to be
considered of significance.

3.2 Feature Extraction

The idea of feature extraction is to match the sensor readings with one or more
geometrical models representing expected behaviour of the data. For example if a
LRF sensor is scanning a wall, then the expected behaviour of a wall scan data is a
straight line. Also if the same sensor is to scan a person then the expected behaviour
is a set of points forming an arc. So in order to identify walls a first requirement is
to correctly associate the scan data with some straight line model, for people the
same: associate a set of scan points to an arc-like shape (a circle or an ellipse).

Before applying any fitting method, it is important to have some information
about the shape of the cluster that allows selecting the method. The information
about clusters is extracted as a set of indicators like number of points, standard
deviation, distances from previous and to next clusters, cluster curvature, etc.

One of the indicators is the cluster’s linearity; our approach here is to classify the
clusters into long-and-thin and those rather short-and-thick. The rationale behind
this is that, straight line segments tend to be long and thin, round obstacles, irregular
objects, etc., do not have this appearance.

Linearity is achieved by computing the covariance matrix � for the cluster Ci

and then its eigenvalues λmax and λmin that define the scale and its eigenvectors
v1 and v2 orientation (major and minor axes) of the dispersion of C. The ratio � =
λmax/λmin defines the degree of longness/thinness of the cluster. We set threshold
values for ratio L and for λmax .

The ellipticality factor ε is computed as the standard deviation σ of the residuals
of a ellipse fitting processes using the Fitzgibbon method [12]. The distance between
a cluster point and an ellipse is computed using Ramanujan’s approximation.

Only clusters with good ellipticality value are selected and segments passing the
linearity criteria (that is lines) can be easily rejected since they do not belong to
people.
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Table 1 Example of indicators and their classifiers

Indicator Classifier Meaning

Width w w ≤ W Ψ
max A leg or a chest has a width no bigger than the threshold

Linearity � � ≤ �Ψ
max Leg and chest features are not linear

Curvature k̄ k̄ ≥ k̄Ψ
min Leg and chest features are curved

Ellipticality ε ε ≤ εΨ
max The fitting error of ellipse for chest under the threshold

We assign a weight value w to every indicator i and compute an scoring function
S for every segment j in in layer Ψ , where Ψ ∈ {top, low}, as:

S
j =

n∑
i

wΨ
i HΨ

i (I j
i ) (4)

where HΨ
i : R → {−1, 1} is a binary classifier function for the i-th indicator

which compares whether the given indicator is under some threshold value. Table 1
presents an example of indicators and their classifiers, the actual list of indicators is
similar to that presented by Arras et al. in [6]. Weight values wi and thresholds for
every indicator i were manually defined after experimental validation.

3.3 People Model and Position Detection

As previously presented in Fig. 2, 3D projection of two planes of scan data from the
layered sensors can be used to represent the position and direction of a person.

The set of geometrical features extracted from the former step are mostly ellipses
and circles. If they belong to a person then another important criteria must be met:
the large elliptical segment should come from the upper layer and the small circles
from the lower layer. No large ellipses are possible for a person in the leg area.
The small circles can not be over the large ellipse (the person height is restricted
according to the height of the upper layer).

To properly establish the previous requirements, it is necessary to associate seg-
ments in the upper layer with those in the lower layer, this is to find the correspond-
ing legs for a given chest. Even if data in both layers is aligned inside a 3D volume,
as in Fig. 8, it is possible that legs lie inside or outside this volume according to the
speed of motion and step length (length between feet when walking).

Latt et al. [13] present a study about how human motion, step length, walking
speed, etc. are selected to optimize stability. Their study present data about different
speeds people prefer when walking. If the average values of step length are used then
it is possible to define the limits of motion of the legs with respect to the projected
chest elliptical area. Figure 9 helps understanding this idea. The average leg height
h is about 84 cm, and the height of the lower layer of sensors l is fixed at 40 cm. s is
the step length which depends on the speed, for example 73 cm for an average speed
of 1.2 m/s [13]. d is calculated as:
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Fig. 8 Views of the walking
of a person if both, the chest
elliptical area and the leg
circular areas (dark) are
associated in the same 3D
volume, step length is
represented by dark color

Fig. 9 Simple representation
of human step to compute the
distance d between leg
segments while walking

l

h

H

S

θ

d

Table 2 Step length according to speed and distance between leg segments d

Mode Speeda Step Lengthb
Distance between leg
segments dc

Normal 1.2±0.04 m/s 73.0± 3 cm 34.40 cm
Very slow 0.5±0.05 m/s 47.0± 3 cm 22.29 cm
Very fast 2.1±0.1 m/s 86.0± 6 cm 39.64 cm
a,b Values according to Latt et al. [13].
c estimated from Eq. (5).

d = 2(H − l) tan(θ ), where θ = sin−1(
s

2h
). (5)

According to [13] the step length for three different walking speeds is presented
in Table 2. In this table we include the parameter d from Fig. 9 about the distance
between leg segments when walking at the different speeds.

Also from [13], the step width w (in Fig. 10) does not vary much with walking
speed and is about 12.0± 1 cm.

With an estimation of the maximum value for d, the separation of legs at the

lower layer height, we can set a search radius of
d

2
± ξ at the center of the chest

elliptical area projected into the lower layer to search for the corresponding legs
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Fig. 10 Searching legs of a
person in an area with radius
d/2± ξ with center at chest
ellipse in the 3D volume

for the chest. We use average walking step length from Latt et al. [13], at normal
walking speed, to compute the value for d. This idea is represented in Fig. 10. Once
associated, the position of the person will be finally set by the position of the chest
ellipse center.

4 Experimental Results

The robot used for our research was presented in Fig. 5, the computer operating the
robot is a Intel Pentium Core Duo based notebook running (Linux kernel 2.6.24) as
operating system and robot control board is powered by a Hitachi SH-2 processor.
The robot system uses 4 URG-04LX range scanners from Hokuyo Automatic Co.,
Ltd. [11], small size (50 x 50 x 70 mm), maximum range 5.6 m, distance resolution
of 10 mm and angular resolution of 0.36o, angular range of 240o operating at 10 Hz.
Scan data from each sensor consists of 682 points circularly ordered according to
scanning step.

Data from each sensor is read every 100 ms by a driver processes and registered
in parallel into a shared memory system (SSM [14]) based on IPC messaging and
multiple ring-buffers with automatic timestamping, one driver process per sensor.
SSM also allows to record raw sensor data into log files and to play it back with the
same rate as the sensor (10 Hz in this case).

Client processes read scan data from the ring-buffers according to sensor’s pose
(those in the top layer and those on the low layer), pairs of LRF sensors are pro-
cessed in the fusion step, sensor layers are further fused and finally people position
is computed.

The processing time for the two layers (four sensors), from single layer fusion
to people position detection, was less than 50 ms, fast enough given the sensor’s
scanning speed.

In the following subsections we present the results of the different tasks involved
in this method for people detection.
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4.1 Fusion of LRF Sensors in Single Layer

Results of fusing opposite facing sensors are presented in Fig. 11. The fusion
method joins correctly the data from both sensors, data from areas B and D (Fig. 7)
is copied as it is, and data from areas A and C uses simple averaging of closest
points from both sensors. Sensor data is joined and a 360o representation of the
surrounding environment is possible.

(a) (b)

Fig. 11 Fusion of sensors in a single layer: (a) raw data (front sensor in red and backward in green
points) (b) results of fusion (black points)

These results are important for the next steps since we obtained one set of points
from the two sensors, from there the segmentation step in the fusion of double layers
can extract clusters without having to consider the case of duplication and further
merging of clusters.

4.2 Fusion of Double Layered LRF Sensors

We performed an experiment for people detection and position estimation from a
mobile robot. In the experiment, five persons walked around the robot and additional
person was taking the experiment video. Log data from each sensor was recorded,
people position detection tests were performed off-line by playing back this log data
using our SSM system. Figure 12 corresponds to the group of people surrounding
the robot.

4.2.1 Segmentation and Feature Extraction

Figure 13 shows results of LRF data segmentation and feature extraction: raw data
from each layer (top layer in Fig. 13(a)) is divided into clusters (Fig. 13(b)) and each
cluster’s indicators analyzed to extract those segments with human-like features and
average sizes (Fig. 13(c)).
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Fig. 12 An experiment for
multiple people position
estimation using the proposed
method

In this figure, arrows in Fig. 13(a) represent the location of people in the envi-
ronment, most of them were successfully detected in the results of feature extrac-
tion (Fig. 13(c)). However one of them has a height below the standard so top-
level sensors were actually scanning his neck area, accordingly his chess ellipse is
smaller than the allowed values, therefore was rejected. Another interesting case is
the segment marked as “column” in Fig. 13(a), although its curvature and linearity
indicators classify it as person, the boundary length and segment width were far
bigger than the allowed values, reducing its scoring and marking it for rejection.

Fig. 13 Results of LRF data segmentation and feature extraction: raw data (a) is segmented (b)
and then classified (c)



328 A. Carballo et al.

4.2.2 Multiple People Detection

Figure 14 shows the results of an experiment for people detection and position esti-
mation from a mobile robot. In the experiment, five persons walked around the robot
and additional person was taking the experiment video (Fig. 14(a)). Log data from
each sensor was recorded, people position detection tests were performed off-line
by playing back this log data using our SSM system.

A 3D visualization process was created to visualize and inspect how the people
detection worked; in Fig. 14(b) chest ellipses and leg circular ellipses are detected
then we place a 3D wooden doll, as a representation of a person, in the estimated
position the person should have. Results were verified by human operator comparing
the experiment video with results.

The members have varied body sizes, from broad and tall to thin and short. Some
of the members have a height a little under the average, as result their chest ellipses
were not correctly detected in the people detection step. As presented in Fig. 14(b),
the person to the right of the robot (represented with blue line segments) is missing
although circles from legs are present.

Additional snapshots of experimental results are presented in Fig. 15, the robot is
represented in all cases as blue line segments. Figure 15(a) and (c) shows raw scan
data from both layers (red for the upper layer and green for the lower one), and in
Fig. 15(b) and (d) a 3D representation of the human detection and position estima-
tion. In the cases of 3D representation, the raw scan data is plotted together with

Fig. 14 Results of the people
detection, (a) snapshot (b) 3D
models in estimated positions
of people in the experiment
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Fig. 15 Experimental results with raw scan data ((a) and (c)) and the corresponding people detec-
tion and position estimation ((b) and (d))

wooden dolls enclosed in the estimated people positions represented with elliptical
shapes, a large one for the chest area and smaller ones for the extracted leg areas.

In Fig. 15(c) there are two rather large arc-like segments in the raw scan image
and two large elliptical shapes in the 3D representation in Fig. 15(d), in both layers.
That is the column inside the indoor environment, as already explained in Fig. 13(a).
The people detection method discards this elliptical object because its dimensions
are larger than the expected for people, those elliptical objects are represented with
red color in this figure. Also we do not expect large elliptical objects from the lower
layer so discarding this column as a non human object was simple.

5 Conclusions and Future Works

Fusion of multiple LRF sensors arranged in a double layer structure for multiple
people position detection from a mobile robot studied in this paper. The proposed
approach is simple and the double layer multiple LRF approach is practical enough
to be implemented on a mobile robot. Instead of fusion of different sensors with
complementary capabilities, we fused the same type but at different heights (layers),
giving different perspectives which also helps solving simple cases of occlusion
where one sensor is occluded and the other is not.
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A simple method for fusion of opposite facing sensors in the same layer was
presented, from it a simple 360◦ representation of the surrounding environment was
possible and simplified the segmentation step in the fusion of both layers.

Fusion of double layers by segmentation of fused scan data, geometrical features
extraction and association in a 3D volume for every detected person allows good
position estimation and a measure of the possible direction the person is facing.

The method used here easily filters out non-people segments by analyzing the
key indicators such as size, compactness, ellipticality and linearity. The addition
of an extra layer of LRFs to detect chest elliptical areas improve the estimation of
people position as the lower part of body (the legs) move faster and wider than the
chest area. The combination of both areas creates a 3D volume which helps locating
the position of the person more closely related to the center of this 3D volume.

As future work, estimation of the person direction from motion and multiple
people tracking will be considered. Also the effectiveness of our method in cluttered
environments will be studied. Future steps of our research include understanding
people group motion and recognition of group members.
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Part III
Applications to Sensor Networks

and Ubiquitous Computing Environments

Hernsoo Hahn

Sensor network is a concept of utilizing multiple sensors in an integrated way to
achieve a single goal in various levels. Individual sensor nodes collect and process
data for their own purpose and also may ask to other sensor nodes to send their
raw or refined information. In this communication among the sensor nodes, each
sensor node may assign belief measure to other sensor nodes individually. There-
fore, the research topics in this field include communication problem among the
sensor nodes, how to assign belief measure to individual sensor nodes, as well as
network topologies. This concept can be applied to many real problems, such as
path selection of robot and autonomous vehicle development. This chapter intro-
duces 10 recent efforts on sensor networks and sensor applications dealing with the
aforementioned issues.

1. “Path-selection Control of a Power Line Inspection Robot Using Sensor Fusion”:
A new wire detection algorithm for power line inspection by a mobile robot has
been proposed in the paper. For the development of power line inspection robot,
DECRO, the sensor fusion and fuzzy control algorithms are developed to detect
the wire and slope of the wire.

2. “Intelligent Glasses: a Multimodal Interface for Data Communication to the
Visually Impaired”: This paper introduces the concept of bimodal visual-tactile
interface, named Intelligent Glasses (IG), designed for assistance of the visually
impaired in their daily tasks such as access to information and mobility. IG sys-
tem can be an alternative solution that provides information on time-variant near
space.

3. “Fourier Density Approximation for Belief Propagation in Wireless Sensor Net-
works”: In order to make the algorithm efficient and accurate, messages which
carry the belief information from to one node to the others should be formulated
in an appropriate format. So this paper presents two belief propagation algo-
rithms where non-linear and non-Gaussian beliefs are approximated by Fourier
density approximations, which significantly reduces power consumptions in the
belief computation and transmission.

4. “Sensor Node Localization Methods based on Local Observations of Distributed
Natural Phenomena”: This paper addresses the model-based localization of
sensor networks based on local observations of a distributed phenomenon.
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For localization process, the proposed method is rigorous exploitation of
strong mathematical models of distributed phenomena. Also it introduces two
approaches: first, the polynomial system localization method, and the other is
the simultaneous reconstruction and localization method.

5. “Study on Spectral Transmission Characteristics of the Reflected and Self-
emitted Radiations through the atmosphere”: This paper develops a software that
predicts spectral radiance from ground objects by considering spectral surface
properties, that is to say, a software for analyzing the radiances through the path
and from the objects in the scene which include the radiative intensities by self-
emission and by reflection of incident radiation. Different material properties are
considered in analyzing the thermal balance and the surface radiation.

6. “3D reflectivity Reconstruction by Means of Spatially Distributed Kalman fil-
ters”: In this paper, a statistical approach is derived, which models the region
of interest as probability density function (PDF) representing spatial reflectivity
occurrences. To process the nonlinear measurements, the exact PDF is approxi-
mated by well-placed Extended Kalman Filters allowing for efficient and robust
data processing.

7. “T-SLAM: Registering Topological and Geometric Maps for Robot Localiza-
tion in Large Environments”: This article reports on a map building method that
integrates topological and geometric maps created independently using multiple
sensors. The T-SLAM approach is mathematically formulated and applied to the
localization problem within the Intelligent Robotic Porter System (IRPS) project,
which is aimed at deploying mobile robots in large environments (e.g. airports).

8. “Map fusion based on a multi-map SLAM framework”: This paper presents a
method for fusing two maps of an environment: one estimated with an applica-
tion of the simultaneous localization and mapping (SLAM) concept and the other
one known a priori by a vehicle. Also, this paper shows how a priori knowledge
available in the form of a map can be fused within an EKF-SLAM framework to
obtain more accuracy on the vehicle poses and map estimates.

9. “Development of a Semi-Autonomous Vehicle Operable by the Visually
Impaired”: This paper presents the development of a system that will allow
a visually-impaired person to safely operate a motor vehicle and specially to
improve the independence of the visually-impaired by allowing them to travel at
their convenience.



Path-Selection Control of a Power Line
Inspection Robot Using Sensor Fusion

SunSin Han and JangMyung Lee

Abstract A new wire detection algorithm for power line inspection by a mobile
robot has been proposed in this paper. There have been a lot of studies in order
to support the high-quality electric power. For the high-quality power supply, it is
necessary to investigate the power lines and insulators before the lines or insulators
were disconnected or damaged. Although Korea Electric power Corp. has made
many efforts for the quality improvement, it is not enough to inspect all the power
lines by human inspectors. According to this problem, it is decided to replace the
human operators by the power line inspection robot. When the robots are used for
the inspection, there could be several advantages, for example, the working effi-
ciency and the prevention of accident. And also the shortage of human power for
dangerous jobs can be resolved. In this paper, as a part of the development of power
line inspection robot, DICRO (DIstribution line Checking RObot), the sensor fusion
and fuzzy control algorithms are developed to detect the wire and slope of the wire.
The effectiveness of the proposed algorithms is proved by the real experiments with
DICRO which is under development so far.

Keywords Power line inspection · Robot insulators

1 Introduction

High quality power supply is very important currently since most of the automated
systems require the power without any perturbation.

To prevent any malfunctioning of the transmission line and equipment, the sys-
tem need to be checked regularly and the fault prediction algorithms are necessary
to be developed.

There are many electric poles and insulators to transmit the power to various
areas. Processed wires are normally made of plastic coated aluminum–copper alloy
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to transmit high voltage power, whose inner sides are filled by steel to keep the
mechanical strength and to reduce the price. The processed wires are tied to the
insulators on the pylon or on the electric pole.

Since the wires and insulators are used on the air long time, there are chemical
reactions, aging, and thermal erosion which cause severe power loss through the
transmission. For the conventional inspection, a human operator checks the wires
and insulators with the aid of infrared cameras periodically. Some of the defects in
hidden areas cannot be detected by the visual inspection [1].

There exists also accident possibility while the operators are working in the
bucket truck to inspect the active power lines, which lowers the safety factor of
the power transmission. Currently even though many researches on the power-line
inspection in England, Japan, Poland, etc., have been done, there is no commercial
product yet. As a candidate tool for the laborious inspection task, a mobile robot
is proposed in this research, which carries CCD and IR cameras, IR sensors, and
microphones to detect noises from the insulators.

The power line inspection robot may reduce the accidents of human workers
and may save money to raise and to maintain the expert for inspecting the power
lines [2, 3]. This paper focuses on the algorithm to detect the existence of a neutral
wire and to measure the tilt angle of the mobile robot against the neutral wire.

2 Sensor Fusion

2.1 Ultrasonic Sensor

Since ultrasonic sensors are cheap and simple to operate, there are many applica-
tions with high object detection reliability. By measuring the traveling time of the
ultrasonic signal, the distance to the object can be measured since the traveling speed
of ultrasonic is well defined. When the TOF (time of freight) is T , the distance to an
object from the robot, L , can be determined as follows:

L = T

2
u (1)

where u represents the traveling speed of ultrasonic signal [4]. Generally, the accu-
racy becomes poor with the distance increase since the sensor has a certain range of
radiation angle.

Even though it cannot provide either precise orientation of the object or the dis-
tance, it is very useful to determine the existence of the object with a rough distance
value. The measuring is relatively robust against environmental condition such as
illumination, temperature, humidity, etc. In this research, FW-H series ultrasonic
sensors of KEYENCE Corp. have been used, which have the effective measuring
range of 15∼70 cm.
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2.2 Infrared Sensor

Infrared sensor transmits the IR signal to an object and measures either the traveling
time or the intensity of the reflected signal. Since the sensors based on the traveling
time are expensive, the cheap IR sensors measure the intensity and calculate the
distance to an object based on the intensity.

Compared to the ultrasonic sensor, the infrared sensor has a high directionality
and accuracy. That is, it can only detect some objects which are on the path of the
ray and measures the distance precisely. However it can neither detect a transparent
object nor identify the color of an object. In this research, GP series IR sensors of
SHARP Corp. have been used, which have the effective range of 10∼80 cm.

2.3 Sensor Fusion Algorithm

When the mobile robot is moving along the neural wire of the power transmission
lines, recognition of the electric pole and detection of the neural wire which is cap-
tured by the robot when it passes over the electric pole are the most important tasks.
The mobile robot is vibrating by the wind while it passes over the electric pole,
which makes it very difficult to detect the neural wire to hold. It also deteriorates
the recognition accuracy of the electric pole, which may result unstable grip of the
electric pole. Therefore detecting the neural wires by using only the infrared sensor
may take too much time to apply for real situations where the location/orientation
information on the wire are not available.

The distance between the robot and the neutral wire is about 23 cm which is
within the effective range of the ultrasonic sensor. However when a high tilt angle
between the robot and the neutral wire exists, the distance can be less than 15 cm
that may not be detected by the ultrasonic sensor. The average distance measuring
error of the ultrasonic sensor is about 3 cm. To improve the grasping accuracy of the
electric pole and holding stability of the neural wire, ultrasonic sensor and infrared
sensor data are heuristically fused.

That is, to measure the distance precisely with easy detection of the wires, ultra-
sonic sensors which have wide range detection capability are used with the infrared
sensors which have precise distance measuring capability. In addition to this, the
IR sensor data are sensitive to sun ray, while the ultrasonic sensor data are robust
against sun ray.

On the top of the electric pole, there is a neutral wire to protect the power lines
from lightning. The robot is holding this neutral wire and moves along the wire.

Figure 1 illustrates the arrangement of sensors on the robot to detect the distances
to the neutral wire.

The sensor fusion process of robot is required when the ultrasonic sensors and
infrared sensors are activated to detect the neural wires as shown in Fig. 1.

The wide region detection capability of ultrasonic sensor has been utilized first,
and the precise distance data can be obtained by the infrared sensor later. In this
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Fig. 1 Arrangement of sensors

process, there exists an error between the distances measured by the two sensors,
which is represented as

Ed = dI R − dsonic (2)

where dI R is the distance to the neural wires measured by the infrared sensor, and
dsonic is that of the ultrasonic sensor. Generally, the distance value measured by the
infrared sensor has high accuracy.

However it is very sensitive to the density of sun ray and is not so reliable. There-
fore the sensor data fusion is applied for reducing the sun ray effects as follows:

{
If |Ed | < ε, dout = dsonic + Ed (= dI R)

otherwise dout = dsonic + ε
2

(3)

where dout represents the determined distance from the sensor fusion, ε is the thresh-
old value for the error. That is, when the error is less than ε, the distance measured
by the infrared sensor is considered as a reliable one. Otherwise, the value is ignored
and the output is determined by the reliable ultrasonic sensor data and the thresh-
old value for the error. The threshold value, ε, is determined heuristically based on
various experiments without disturbances.

3 Fuzzy Controller

Fuzzy controller became popular from 1970’s by Prof. Mamdani [5]. It does not
require plant equations for the system to be controlled. Therefore there are many
applications for nonlinear systems where modeling of the plant is difficult or almost
impossible [6]. Experts may provide some control rules as a mathematical model
according to his own knowledge and experience, which are fuzzy rules.
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Fig. 2 Block diagram of a fuzzy controller

The fuzzy controller is composed of fuzzifier that transforms the measured values
to fuzzy inputs, fuzzy inference part where the fuzzy outs are deduced from the
fuzzy inputs, and defuzzifier that transforms the fuzzy outputs to applicable outputs.
Fuzzy rules and membership functions can be derived from the knowledge base. A
fuzzy controller is implemented in this research as shown in Fig. 2.

The inputs are the sensor outputs corresponding to the motor motion, which are
normalized in the fuzzifier. The outputs of fuzzifier are passed through the fuzzy
interference part and defuzzifier and fed to the inputs of plant as control signals.

3.1 Fuzzy Rules

The first step for implementation of a fuzzy controller is to set up fuzzy control
rules. Initial fuzzy rules could be rough and those can be modified later to obtain
better results. Therefore it is an important issue in the fuzzy controller design how
to apply fuzzy rules to obtain desirable outputs as well as to set up control rules. The
input variables of the power line inspection robot are the data from sensor fusion,
which are represented by

e(k) = (reference)− y(k)

ce(k) = e(k)− e(k − 1)

u(k) = (control input)

(4)

The control rules for fuzzy controller can be represented as [7, 8].

R1 : If e(k) = E1 and ce(k) = C E1 then u(k) = U1

R1 : If e(k) = E2 and ce(k) = C E2 then u(k) = U2

R1 : If e(k) = E3 and ce(k) = C E3 then u(k) = U3
...

R1 : If e(k) = En and ce(k) = C En then u(k) = Un

(5)
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Table 1 Linguistic variables of fuzzy controller

Fuzzy Llabel Meaning

PB Positive Big
PS Positive Small
ZE Zero
NS Negative Small
NB Negative Big

Where y(k) represents the system input, E, CE, and U are defined for the whole
fuzzy space with fuzzy language labels of e(k), ce(k), and u(k). For each input and
output variables, fuzzy controllers can be represented by the fuzzy sets defined in
Table 1.

Also fuzzy rules Ri represented in Eq. (5) can be expanded to the total spaces
LD, RD, and U and represented as

R(E, CE, U ) = R1U R2U · · ·URiU · · ·URn (6)

Using membership function we can represent Eq. (6) as below.

μR(E, CE, U )(e, ce, u) = max

{
n∑

i=0

min [μEi (e), μCEi (ce), μUi (u)]

}
(7)

where μ(·) represents the membership function, n represents the number of fuzzy
control rules, and μEi (e), μC Ei (ce), and μUi (u)represent the strength of fuzzy
variables e, ce, and u to fuzzy functions Ei , C Ei , and Ui , respectively. And the
fuzzy labels have the following set- relations:

Ei ∈ E, CEi ∈ CE, Ui ∈ U (8)

where E , CE and U are error, difference of error, and input space, respectively.

3.2 Fuzzification

To be used as inputs for fuzzy algorithm, membership functions are necessary for
the measured variables. After applying the membership functions to the measured
variables, the variables are fuzzy inputs. This process is fuzzification. The inputs
are quantized and represented as discrete values before they are fed to membership
functions that decide the strength of the inputs to the membership functions. There
are various forms of membership functions. To make it easy, a discrete triangular
form has been adopted in this paper.
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Fig. 3 Membership functions
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Figure 3 illustrates the input membership function for this research. For the easy
application of fuzzy logics and for the design independency of control rules, the
membership functions are normalized.

3.3 Fuzzy Inference

To generate inputs for fuzzy controller, the measured inputs are applied to member-
ship functions and properly inferred. The most popular min–max inference method
is used, which is represented as

μU (u) = max

{
n∑

i=1

min [μCi (c), μCEi (ce), μRi (E, C E, U )(e, ce, u)]

}
(9)

3.4 Defuzzification

The fuzzified outputs of fuzzy inference cannot be applied to the controller directly.
They need to be transformed back to non-fuzzy variables, which is defuzzification
process. In this paper an average weight method is adopted, which is presented as

u0(k) =

n∑
i=1

μUi (u(k)) · u∗ ∗(k)

n∑
i=1

μUi (u∗(k))
(10)

where u0(k) is the control input after defuzzification, u∗(k) represents a fuzzy con-
trol input that maximizes the following membership function by the ith rule, and
μUi (u(k)) is presented that membership function value of solving Eq. (9).

3.5 Knowledge Base

The knowledge base consists of data and rule bases. The data basis defines member-
ship functions of input and output variables, rules for discrete representation, and
normalization method. To determine the control rules, the experiences of expert are
very important with some intelligent learning schemes.
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4 Robot Navigation and Controller Design

4.1 Robot Navigation Principle

Robot navigation consists of four operations:

1. Detection of electric pole while it is moving along the neutral wire,
2. Grasping of the electric pole by the gripper,
3. Rotating the robot body to the new neutral wire to follow,
4. Grasping the neutral wire and following again.

To recognize the type of the electric poles, three ultrasonic sensors are attached
at the bottom of the robot body. There are three types of electric poles as shown
in Fig. 4. To move to the next neutral wire, after detecting the electric pole, the
gripper needs to hold the electric pole. There two gripping modes (horizontal grip
and vertical grip) for the three types of electric poles as shown in Fig. 5. To identify
the stable grasp, photo sensors and limit switches are utilized.

While the gripper is holding the electric pole, the robot body is rotated to the
new neutral wire to follow. To detect the neutral wire to hold by the robot body, two
sets of ultrasonic and IR sensors are used to obtain a stable distance data. Figure 6
illustrates the cable detection and holding processes.

Fig. 4 Types of electric poles

(a) Horizontal grip (b) Vertical grip 

Fig. 5 Post detection and holding
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Fig. 6 Cable detection and holding

When the robot holds a new neutral wire, the gripper releases the electric pole
and is folded back to the bottom of the robot body. This completes a sequence
of electric pole passing operation. The inspection robot follows the neutral wire
until it detects a new electric pole, while it is inspecting the power lines and
insulators [9–12].

4.2 Controller Design

The control inputs are two distance data by the sensor fusion, which are used to
detect the slope of the neutral wire. To make the robot parallel to the neutral wire to
hold, the slope of the neutral wire w.r.t the robot is necessary. The control inputs are
obtained as

d1(k) = fused distance(dout 1)

d2(k) = fused distance(dout 2)

θ (k) = cable tilt

(
tan−1 |d1 − d2|

dL

) (11)

where d1 and d2 represent the distances between the robot and the neutral wire, and
θ represents the slope of the neutral wire w.r.t the robot.

Figure 7 shows the membership functions for detecting tilt angle of the neutral
wire. Upper two membership functions are defined for each set of the ultrasonic and
IR sensors. And the lower membership function represents the membership function
for the tilt angle of the neutral wire.

The 25 fuzzy control rules for inspection robot in a diverging point are summa-
rized in Table 2, which controls the robot body to be parallel to the neutral wire to be
held. To detect the existence of the neutral wire, NB (Negative Big), NS (Negative
Small), ZE (Zero), PS (Positive Small), and PB (Positive Big), P (Positive), N (Neg-
ative), and Z (zero) are utilized as quantization variables. To make the robot body
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Fig. 7 Membership functions
for tilt detecting of neutral
wire

Table 2 Fuzzy control rules at a diverging point

d1 d2 θ action d1 d2 θ action

1 NB NB Z BU 14 ZE PS P TD
2 NB NS P BU 15 ZE PB P TL
3 NB ZE P BU 16 PS NB N TI
4 NB PS P BU 17 PS NS N TI
5 NB PB P TL 18 PS ZE N TI
6 NS NB N TI 19 PS PS Z BD
7 NS NS Z BU 20 PS PB P TL
8 NS ZE P TD 21 PB NB N TR
9 NS PS P TD 22 PB NS N TR
10 NS PB P TL 23 PB ZE N TR
11 ZE NB N TI 24 PB PS N TR
12 ZE NS N TI 25 PB PB Z GS
13 ZE ZE Z CL

and the neutral wire parallel, TL (Turn Left), TR (Turn Right), GS (Go Straight),
BU (Body Up), BD (Body Down), TU (Tilt Up), and TD (Tilt Down) are utilized.
When the parallel status achieved, CL (Cable Lock) function decides the robot to
hold the wire.

Using the 25 fuzzy rules, the inspection robot performs three steps of actions: (1)
Detecting the neutral wire, (2) Control of the tilt angle to match the robot and the
neutral wire to be held together, and (3) To combine the robot body with the neutral
wire.
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5 Experiments and Results

5.1 Experimental Environment and Equipments

The experimental system consists of a mobile inspection robot, the controller, and
a remote controller. The controller based on dspic30fxx series processor has a main
control, sensing, and motor control parts. The sensor part processes various sen-
sor data from ultrasonic, IR, and tilt sensors, and transmits the data to the main
processor. The main control part gathers the sensor data, limit-switch signals, and
motor encoders, and checks the operation status of the inspection robot to generate
and send the next operation command to the motor control part. The motor control
part governs the motor operation based on the input torque values, and it sends the
control results gathered by the encoder back to the main control part.

5.2 Experiments for Sensor Fusion

The sensor fusion experiments are performed for the holding operation of the neu-
tral wire by the inspection robot, where the distance measures by the two sets of
sensors should be the same to provide a suitable holding condition. It is shown by
experiments that by the sensor fusion the distance measuring error could be reduced.

Figure 8 shows the distance measurement results by IR sensor and ultrasonic
sensor for the three real distance values of 20, 26, and 30 cm.

Figure 9 illustrates the distance measurement error of each sensor. The IR sensor
has less than 5 mm in the five measurements. However the ultrasonic sensor has rel-
atively large error at the location where the neural line exists because of its outward-
conic wave propagation property. When there is 21∼25 cm gap between the mobile

Fig. 8 Distance output of IR
sensor and ultrasonic sensor

Ultrasonic sensor
IR sensor
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Ultrasonic sensor
IR sensor

Fig. 9 Distance error

robot and the neutral wire, the maximum allowable error not to cause false operation
was less than 2 cm in this research.

Figure 10 represents the finally determined distance value by the sensor fusion.
The error values are represented in Fig. 11, which are the differences to the real

values for the five measurements. The maximum error could be kept less than 5 mm
which can be acceptable for the inspection robot while it is passing over the electric
poles.

5.3 Fuzzy Control Experiments for Sensor Fusion

To evaluate the performance of the proposed Fuzzy controller, the position tracking
experiments are performed and compared to the PID controller. As it is shown in

Fig. 10 Distance output by sensor fusion
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Fig. 11 Measurement error after sensor fusion

Fig. 9, when the left side distance, d1, and right side distance d2, become the same,
the robot body becomes parallel to the neutral wire to be held.

Figure 12 illustrates the parallel matching (to make d1 equal to d2) time for each
control algorithms of PID and the proposed Fuzzy controller. The necessary time to
make the robot body to be parallel to the neutral wire is 1.5 s shorter than that of
PID controller, the proposed Fuzzy controller.

d1

d2

Fig. 12 Comparison of PID control with Fuzzy control

6 Conclusion

In this paper, a stable holding of the neutral wire by the power line inspection robot
has been implemented by applying sensor fusion techniques that take advantages of
both ultrasonic and IR sensors. The effectiveness of the proposed algorithm has been
proven by real experiments to apply for the power line inspection robot. There are
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many researches to keep the power line stable, which is a vein for power industry.
However there is not any specific commercial product yet.

The power line inspection robot is a new trial to save human workers and money
to keep the stable power line. As a future research, a navigator with self-learning
control algorithm is necessary to guarantee the robustness against environment.
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Intelligent Glasses:
A Multimodal Interface for Data
Communication to the Visually Impaired

Edwige Pissaloux, Ramiro Velázquez and Flavien Maingreaud

Abstract This paper introduces the concept of bimodal visuo-tactile interface,
named Intelligent Glasses (IG), designed for assistance of the visually impaired in
their daily tasks such as access to information and mobility. The IG architecture is
outlined and its preliminary evaluation through original experiments with healthy
blindfolded subjects is provided. The collected results show that the IG system can
be used as a support for the considered tasks.

1 Introduction

Access to information, via reading, shape recognition and mobility are fundamen-
tal tasks for interacting with the external environment. Unfortunately, the neuro-
cognitive processes which underlie these tasks are far from being identified neither
well understood. Therefore, the existing technological assistances for the blind, the
visually impaired and the elderly provide a very limited support for the effective
execution of such tasks.

Indeed, the existing assistive systems offer some support but for separate tasks.
Braille keyboards allow to communicate with PCs for one line data exchanges (not
for window manipulation); Braille city maps (Fig. 1), scattered around towns are
supposed to help the visually impaired to find their way but, in fact, they serve
mainly as a good visual reference for the sighted. As with city maps for the sighted,
maps for the visually impaired are arbitrary oriented and during navigation the user
has no assistance for finding his/her current position in the city and in the map.

The oldest “assistances” for mobility of the visually impaired are the white cane
and the guide dog; both have several limitations. The main one is the fact that they do
not provide information on all obstacles (overhanging and dynamic, for example),
neither some elementary data on the user’s near but global environment. That is why

E. Pissaloux (B)
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Fig. 1 Two examples of
Braille maps

electronic assistances (ETA: electronic travel aids) using several sensors, such as
Mowat’s sensor, Borensteins’ robotic guide cane, Farcy’s TomPouce and Télétact,
Nottingham Obstacle Detector, Key’s SonicGuide or SonicGlasses [1–5] are not
widely accepted by the targeted population. All of them provide point-wise feedback
(tactile of audio) and require the environment’s spatial scanning followed by cogni-
tive (mental) integration to localise all obstacles in the nearby space. Furthermore,
these assistances do not support the subject’s nearest space global representation,
which is time-variant in space, so they do not allow to understand the near local
space and to establish the navigation strategy neither to anticipate dynamic events
and the evolution of the environment while walking.

The Intelligent Glasses (IG) system is an alternative solution that provides infor-
mation on the time-variant near space. We present a first bimodal device that
explores vision and touch through a stereo vision perception system and a dedicated
touch stimulating Braille-like surface.

The rest of the paper is organized as follows. Section 2 outlines the IG system
design; Sect. 3 presents its preliminary evaluation while Sect. 4 concludes the paper
with the IG future work perspectives.

2 Intelligent Glasses System Overview

The IG system consists of two synergetic elements: a visual perception system and
a touch stimulating Braille-like surface (TactiPad) (Fig. 2). They will be presented
and discussed in the following subsections once the IG neuro-cognitive bases are
addressed.

2.1 The IG System Neurocognitive Basis

The IG system aims to provide a support for external world presentation useful for
mobility of the visually impaired. The external world observation strategy elab-
orated by humans since their childhood induces a partition of the space in two
zones: obstacles and obstacles-free zones (Fig. 3(a)). These two zones can be binary
encoded and displayed on a 2D surface as shown on fig. 3(b). However, as this parti-
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Fig. 2 The Intelligent
Glasses system concept

(a) (b)

Fig. 3 (a) Subject observing a 3D scene and (b) encoding of a 3D scene orthographic projection
as nearest obstacles nearest boarders

tion depends on the observer’s gaze direction and current position, it is necessary to
materialize this observation point by using a notch on one of the boarders of the 2D
surface (Fig. 3(b) left). This observation point is indeed the origin of the Euclidean
reference frame of the 3D space orthogonally projected on 2D surface (cf. Fig. 7).
Consequently, the IG system implements the whole process of such display: two
images (convergent stereo) are acquired with a visual perception system and 3D
scene orthogonal presentation (nearest obstacles nearest boarders) is displayed on a
2D surface.

Fig. 4 The Intelligent Glasses operation principle
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The IG operation principle is shown in Fig. 4. This process exploits the fact that
the mechanoreceptors on fingertips are sensitive to gradient of data, i.e. to edges or
boarders (frames) of figures.

2.2 Visual Perception System

The choice of a convergent stereo vision system is mandatory; such stereo rig
increases the size of the solid angle subtended by two cameras (Fig. 5 case 2, [6]).

A couple of portable stereoscopic epipolar cameras in conjunction with an iner-
tial platform (Fig. 6) allow to acquire the orthogonal projection of the observed
scene. The system permits to explore the global environment with different view
points and its orthogonal projection is displayed on the tactile surface. This display
varies with the head movements’ and with user’s spatial position.

Fig. 5 Solid angle size induced by convergent and non-convergent stereo rig

Fig. 6 The IG system visual
perception portable
subsystem
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An obstacle in the peri-personal space can be localized via vision processing
applied to stereovision epipolar rectified images. The system is initially calibrated
by an original genetic algorithm [7] and then updated with the RANSAC algorithm
[8]. Binocular vision principles allow the extraction of the distance to obstacles
(in the cameras referential). Information given by the inertial platform allows to
transform camera referenced data to gravity referenced information (human body
usual referential). Therefore, it is possible to establish a navigation suitable space
partition (Fig. 3(a)) which will be displayed on a touch stimulation surface.

2.3 Touch Stimulation Surface – TactiPad

A 2D matrix of taxels, ie. tactile elements or Braille points, could be a support for
space partition dynamic display. An obstacle, for example a wall, is represented by a
convenient taxel position raised (“1” coded), and its absence by taxel down position
(“0” coded) (Fig. 7 the raised taxel (i,j) corresponds to an obstacle). Therefore, a
binary code provided by a touch stimulating display could be manually explored for
cognitive interpretation.

It should be noted that the proposed tactile interface provides simultaneously
ego- and allo- centred representations of the user’s nearest space (because of its ref-
erence point: a notch on the TactiPad boarder), thus allowing the estimation of both
distance to obstacles (ego-centred) and distance between obstacles (allo-centred).

Since 1960, there have been many initiatives to develop an interface that could
accurately represent the input information. Most relevant examples of these devices
are the Optacon [9], the TVSS [10] (Tactile Vision Substitution System), the Dot
Matrix [11], the VDT TVSS [12] and the Itacti [13]. Typical displays involve arrays
of upward/downward moveable pins or taxels as skin indentation mechanisms.
Tactile exploration concerns slight motions of the fingertips or palm over the raised
pins. Actuation techniques already explored include servomotors [14], piezoce-
ramics [15], pneumatics [16], shape memory alloys (SMA) [17–19] and fluids

Fig. 7 TactiPad and its
referential
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technologies [20]. Each of these approaches has its own advantages and
disadvantages, which finally determine the spatial and temporal resolution of
the tactile stimuli. Recent progresses in the SMA actuation principle [19, 21], its
simplicity, compactness, high power/weight ratio, clean and silent operation have
allowed to design and realize actuators of appropriate dimensions to achieve a
realistic sense of touch. Moreover, they offer high integration capacity in a small
surface, the possibility of independent control, an extremely high fatigue resistance,
market availability and low cost.

Fig. 8(c) shows the actuator integration in the TactiPad Braille-like surface
designed at ISIR, Paris 6 University (UPMC). The TactiPad is a Braille matrix of
8 by 8 SMA-based taxels [19] having a refreshable rate suitable for reading, shape
recognition and mobility of visually impaired.

The possibility and quality of the space integration from tactile snapshots has to
be evaluated via dedicated virtual navigation experiments.

Fig. 8 (a) Information about the environment obtained with cameras and image processing, (b)
the tactile representation of the environment, (c) the used tactile device

3 IG System Experimental Evaluation

Three experiments have been led with healthy sighted blindfolded voluntary sub-
jects. In these experiments, we have used only the TactiPad as tactile percept forma-
tion is the basis of IG system. In Experiments 1 and 2 subjects have been seated in
front of the TactiPad device, while they have carried the TactiPad in place closed to
their gravity center in the Experiment 3.

3.1 Experiment 1: Static form Tactile Perception

The perception of static forms displayed on the tactile surface has been the goal of
this experiment. We wanted to identify if there are (1) preferred geometric shapes
in tactile perceptive modality (line, square, circle, and arrow), (2) preferred tactile
representation (wired-frame (Fig. 9) or full); (3) the best shape size: large (6 taxels
and more), medium (3–5 taxels) and small (1–2 taxels).

The collected results show that line segments and triangle have been recog-
nized by almost all subjects; square and circle were frequently confused because
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Fig. 9 Tested shapes for tactile perception: simple static geometric framed shapes

of TactiPad spatial resolution (intertaxel distance is of 2.54 mm). Indeed, many sub-
jects complain about tactile surface too weak resolution. The recognition of filled
forms is rather difficult. This confirms the fact that our fingertips mechanoreceptors
react to gradient of data (boarders of shapes).

3.2 Experiment 2: Form and Moving Direction Tactile Perception

This experiment collected data in order to evaluate whether or not the displayed
moving shape can induce the moving stimuli direction. Two shapes have been tested
(Fig. 10): a line segment and an arrow (because its role for visual mobility). These
shapes “moved” in orthogonal directions (NEWS: north, east, west and south).

Data collected during this experiment show that it is possible to recognize a
direction, but the recognition process is shape insensitive. Almost all subjects have
successfully recognized moving direction of the line segments, but very few of them
recognized the moving direction of an arrow.

Fig. 10 Moving geometric
shapes: arrow (left) and line
segment (right)

3.3 Experiment 3: Navigation in 3D Space with Tactile Interface

Figure 11 shows navigation in the space using the IG device (natural visuo-tactile
SLAM). The TactiPad is carried on by the end user at his height. The user navigates
on the platform where several obstacles (paper boxes) were randomly placed. An
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Fig. 11 Validation of the IG
system for mobility

assistant (young women) supervises the navigation process and observes the obsta-
cles avoidance procedure.

From the data collected during the Experiment 3, it is possible to conclude that
(1) it is possible to perceive the space organization via its tactile representation; (2)
obstacle edge representation can be appropriate for a space binary representation
(obstacles - obstacle free space) ; (3) it is possible to integrate a space representation
to a navigation tool.

4 Conclusion

This paper has introduced the concept of bimodal -visuo-tactile- interface and has
briefly presented its implementation. The design of the IG system is based upon our
present status on neuro-cognitive human navigation in space.

Future works should integrate more efficiently human navigation strategies and
improve the TactiPad resolution. Larger classification of obstacles should be inte-
grated as different classes of obstacles require different anticipation and avoidance
strategies. A concept of natural visuo-tactile SLAM should be investigated in depth
and new algorithms for data fusion built-in.

Future experiments have to involve visually impaired and seniors and should
be performed in more complex environments. Association of vision system into
experiments will validate the concept of visuo-tactile man-environment device and
the concept to visuo-tactile natural SLAM.
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Fourier Density Approximation for Belief
Propagation in Wireless Sensor Networks

Chongning Na, Hui Wang, Dragan Obradovic and Uwe D. Hanebeck

Abstract Many distributed inference problems in wireless sensor networks can be
represented by probabilistic graphical models, where belief propagation, an iterative
message passing algorithm provides a promising solution. In order to make the
algorithm efficient and accurate, messages which carry the belief information from
one node to the others should be formulated in an appropriate format. This paper
presents two belief propagation algorithms where non-linear and non-Gaussian
beliefs are approximated by Fourier density approximations, which significantly
reduces power consumptions in the belief computation and transmission. We use
self-localization in wireless sensor networks as an example to illustrate the perfor-
mance of this method.

Keywords Density approximation · Belief propagation · Distributed inference ·
Wireless sensor network

1 Introduction

DVANCES in sensor technology and telecommunications make wireless sensor
network (WSN) an appropriate solution for a wide variety of applications [1, 2].
In a WSN, sensor nodes are spatially distributed to monitor the physical or environ-
mental states. Information can be exchanged through the wireless channel so that
the whole network works in a cooperative fashion. Many estimation problems in
WSNs can be represented by probabilistic graphical models and solved by belief
propagation methods. Belief propagation (BP) is an iterative message passing algo-
rithm in which each node calculates its belief about other nodes and communicates
with them to exchange their beliefs about each other. Compact messages that are
transmitted between nodes carry the necessary information of the beliefs, based

C. Na (B)
Siemens AG, Corporate Technology, Information and Communications, Otto-Hahn-Ring 6, 81739,
Munich, Germany
e-mail: na.chongning.ext@siemens.com

S. Lee et al. (eds.), Multisensor Fusion and Integration for Intelligent Systems,
Lecture Notes in Electrical Engineering 35, DOI 10.1007/978-3-540-89859-7 25,
C© Springer-Verlag Berlin Heidelberg 2009

359



360 C. Na et al.

on which the receiver can reconstruct the transmitter’s belief about it. For discrete
beliefs, messages can be a short vector of probabilities. For continuous beliefs
with Gaussian distribution, it is enough to ensemble the mean and variance in the
message. However, in many applications, beliefs have non-linear and non-Gaussian
distributions so that belief calculation and transmission consumes a lot of power.
That limits its application in WSNs which have strong power constraints. Hence, an
appropriate representation of beliefs which reduces the complexity while keeping
the accuracy is necessary but non-trivial.

Monte Carlo methods can be used where messages contain samples that are
drawn from the distribution to represent the beliefs. Gibbs sampling is a popular
method in this case. However, this is only possible for sufficiently small networks.
Authors of [3] used non-parametric BP method where beliefs are represented by
Gaussian mixtures. It generalizes particle filtering for inference in non-linear, non-
Gaussian time series.

In this paper, we introduce Fourier density approximation (FDA) method to
represent the beliefs. Fourier series were first employed to estimate probability
densities in [4]. Recently, [5] and [6] ensured the non-negativity of Fourier series
by approximating the square root of the density instead of the density itself. The
usage of Fourier series in nonlinear Bayesian filtering is also derived in [5] and [6].
Using Fourier density approximation, the belief can be represented sufficiently by
only a small number of Fourier coefficients. Hence, the transmission power and
time between sensor nodes are significantly saved. Compared to other density rep-
resentations like Gaussian mixture or Monte Carlo methods, the optimal number
of coefficients under a required approximation error with respect to a density dis-
tance metric is more efficiently obtained. Furthermore, the sum-product operations
in BP algorithms can be more effectively calculated in Fourier domain since some
convolution-like integral operations are more easily calculated than in space domain.
Since the Fourier series are orthogonal expansions, the coefficients are derived inde-
pendently and effectively [5]. In practice, this is done by efficient Fast Fourier Trans-
form (FFT).

In this paper, the self-localization in WSNs, a common practice of brief propa-
gation, is used to evaluate the performance of Fourier density approximation. Two
Fourier based algorithms are proposed, which are simplified transmission based on
Fourier density approximation (ST-FDA) and simplified computation and transmis-
sion based on Fourier density approximation (SCT-FDA). ST-FDA reduces the size
of the belief message to save radio transmission power, which is a critical factor
for WSNs. SCT-FDA further simplifies the sum-product algorithm (SPA) to reduce
computation power.

The paper is organized as follows. Section 2 presents BP as a general approach
to the inference problems in WSNs. Fourier density approximation method will be
introduced in Sect. 3. Section 4 uses a sensor self-calibration example to illustrate
the use of Fourier density approximation for BP. ST-FDA and SCT-FDA algorithms
are proposed. Their performances will be evaluated through simulation and the
results will be shown in Sect. 5. Finally, Sect. 6 concludes the paper.
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2 Belief Propagation in Wireless Sensor Networks

This chapter presents the general probabilistice inference problem in sensor
networks and shows that belief propagation is a suitable solution.

2.1 Probabilistic Model of a Wireless Sensor Network

Lets consider a WSN with sensor nodes that are distributed in space. We use xi

to denote the physical state associated with sensor node i and use x to denote
the collection of state variables at all sensor nodes. Each sensor makes a local
noisy observation which we denote by yi . In general, the following assumptions
are valid:

1. Given the state variables, observations at different nodes are independent, i.e.
p(yi , y j | x) = p(yi | x)p(y j | x).

2. Observation at one node depends only on a subset of state variables, i.e.
p(yi | x) = p(yi | xPa(yi )) with { xPa(yi )} ⊂ { x}.

3. Usually, local correlation exists between neighboring nodes. This indicates that
the joint probability of state variables can be factorized into a product of local
functions which present the correlation among the nodes in neighborhoods, i.e.
p( x) =∏c p( xc).

Based on these assumptions and using the Bayes rule, the joint distribution of
state variables and observations can be factorized in the following form:

p( x, y) = p( y| x)p( x) =
(

N∏
i=1

p(yi | x)

)
p( x)

=
(

N∏
i=1

p(yi | xPa(yi ))

)
p( x) =

(
N∏

i=1

p(yi | xPa(yi ))

)∏
c

p( xc) . (1)

The conditional independences encoded in (1) can be presented by a graphical
model, e.g. Markov random field [7]. A graphical model consists of a set of vertices
which represent the variables. There exists an edge between two vertices which
indicates the conditional dependence between them. So the whole graph represents
the factorization of a joint distribution of all variables. The relationship between the
graphical model and the joint distribution is given by the Hammersley-Clifford the-
orem [8], that is, a joint probability can be written as a product of potential functions
which are defined on cliques (sub-graphs that are fully connected). In probabilistic
inference in WSNs, we’d like to write this factorization as:
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p( x, y) =
N∏

i=1

ϕi (yi | xci ) (2)

so that each factor in Eq. (2) can be associated with one sensor node. Such a fac-
torization automatically provides the possibility to distribute the computation. Each
node processes parts of the total computation and results are eventually disseminated
through the communication between nodes.

Each potential function in Eq. (2) is obtained from Eq. (1). We first assign
p(yi | xPa(yi )) as a factor of ϕi (yi | xci ), then distribute each factors in

∏
c p( xc) into

one of the potential functions. In many applications, the distribution of
∏

c p( xc) is
not unique. For the assignment, we should also take factors such as computational
complexity, communication connectivity and transmission power into considera-
tion. Authors of [9] have introduced a method that first constructs a spanning tree
and then assigns factors to the nodes of the tree. Such an assignment eventually
results in a junction tree that can be solved by message passing algorithms [10]. In
some other applications, the final graphical model is a graph with loops.

2.2 Belief Propagation in Wireless Sensor Networks

Inference of the variables defined on a graphical model has been intensively studied.
For a graph without loops, this can be solved by junction tree algorithm. Exact infer-
ence on a graph with loops is generally an N-P hard problem. Approximate methods,
such as loopy BP [11] have produced convictive results in many applications. BP is
an iterative message passing algorithm in which each node calculates its belief about
other nodes and communicates with them to exchange their beliefs about each other.
Each node updates its beliefs when it receives messages from other nodes. Updated
beliefs will be sent in messages to other nodes. This procedure repeats for a number
of iterations or until a defined convergence criterion has been met.

In WSN applications, we are interested in the posterior probability of p(xi | y) for
each state variable xi . Such an inference problem on graphical models can be solved
by using sum-product algorithm, which is a common practice [12].

Having defined the local potentials for each node like in (2), we can write the
analytic formula for the belief updating in SPA at each sensor node. We define
mt

i j ( xci ∩ xci ) to be the message sent from node i to node j in the t th iteration.
Having received messages from all neighboring nodes in the t th iteration, node i
calculates the message to be sent to node j for the t + 1th iteration by:

mt+1
i j ( xci ∩ xci ) = α ·

∫
{ xci }\{ xc j }

ϕi (yi | xci )
∏

k∈N (i)\ j

mt
ki ( xci ∩ xck ) (3)

where α is a constant value to normalize the message. N (i) denotes the neighbors
of node i . At node i , we can also conclude the marginal probability of the variables
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in ϕi (yi | xci ). This is done by combining all the incoming messages with its local
potential:

p̂t ( xci ) = α · ϕi (yi | xci )
∏

k∈N (i)

mt
ki ( xci ∩ xck ) (4)

2.3 Form of the Messages

The computation in SPA is relatively simple if the messages and potential functions
involved in (3) are discrete or Gaussion. However, in many cases, the local potential
functions have a very complex non-Gaussian distribution and there exist high non-
linear relationships between the variables. Discretizing the continuous functions
(uniform sampling method) would be too expensive for many inference problems.
Other forms of representation of the belief functions are needed.

A particle-based method, called non-parametric BP (NBP) is presented in [3] to
solve self-localization problem in WSNs. In NBP, messages are presented by Gaus-
sian particles which are generated from the belief functions. This method enables
the use of SPA. However, calculating products of Gaussian mixtures and generating
proper samples is not a trivial task.

The following part introduces a novel implementation of messages in BP using
FDA method.

3 Fourier Density Approximation

Brunn et al. [5,6] derived the basic operations using Fourier density approximation.
Here some important equations related to BP are briefly described.

3.1 Definition of Fourier Densities

A d-dimensional density function can be approximated by a d-dimensional Fourier
expansion as:

p(x) =
∑
κ∈K

γκe jκT x =
∑
κ∈K

(ακ + βκ )e jκT x (5)

where x = [x1, x2, . . . xd ]T ∈ [−π, π ]d is a multidimensional variable. γκ = ακ+βκ

is the coefficients of the Fourier series. κ = [κ1, κ2, . . . κd ]T ∈ K is an index vector,
where K = {−κo

1 ,−κo
1 + 1, . . . κo

1

}× . . .× {−κo
d ,−κo

d + 1, . . . κo
d

}
denotes the set

of all valid indices [6].
In practice, the coefficients are obtained by the efficient Fast Fourier Transform

(FFT) which has a complexity of O (n log(n)) where n denotes the number of sam-
pling points.



364 C. Na et al.

3.2 Fourier Density Product

Given two densities pa(x) and pb(x), they are represented by the Fourier density
approximation as:

pa(x) =
∑
κ∈Ka

γ a
κ e jκT x (6)

and

pb(x) =
∑
κ∈Kb

γ b
κ e jκT x , (7)

their product can be expressed as:

pc(x) = pa(x)pb(x) =
∑
κ∈Kc

γ c
κ e jκT x (8)

with

γ c
κ =

∑
μ∈κc

γ̄ a
μ γ̄ b

μ−κ (9)

where the bar denotes a valid index:

γ̄ (·)
μ =

{
γ̄ (·)

μ μ ∈ K(·)
0 otherwise

(10)

of γ a
κ and γ b

κ . The order of pc(x) is
∏d

l=1 (κo,a
l + κ

o,b
l ), i.e. as many other approxi-

mation approaches like Gaussian mixture, the number of coefficient is significantly
higher after production. But we can show later that the coefficient reduction in FDA
is much easier than its counterparts.

3.3 Generalized Convolution Integral

Considering the Fourier densities of

pa(x) =
∑
μ∈Kx

γ a
μe jμT x (11)

and

pb(y, x) =
∑

μ∈Kx,
κ∈Ky

γ b
μ,κe jμT x+ jκT y (12)
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their generalized convolution integral is given by:

pc(y) =
∫

pb(x, y)pa(x)dx =
∑
κ∈Kx

γ c
κ e jκT y (13)

with γ c
κ =

∑
μ∈κy

γ a
−μγ b

μ,κ .

Note that the order of resulting density only depends on the order of function
pb(y, x) not pa(x), which limits the computational complexity.

In addition, if the function pb(y, x) has a form:

pb(x, y) = pb(y− x) , (14)

(13) becomes

pc(y) =
∫

pb(x, y)pa(x)dx =
∫

pb(y− x)pa(x)dx

= pb(y) ∗ pa(x) (15)

which is actually a convolution. Thus the coefficients of pc(y) are the multiplication
of the coefficients of pb(y) and pa(x). In this way, the computation is simplified
by replacing a high dimensional function pb(x, y) with a low-dimensional function
pb(y).

3.4 Coefficient Reduction

For many density mixture approximation approaches like Gaussian mixture, Dirac
mixture or Monte Carlo methods, the number of coefficients increased exponen-
tially after the product operation. Keeping all coefficients are practically impossible.
Determining how many coefficients and which ones are needed is challenging. [13]
provides a progressive way to calculate the parameters of mixture densities opti-
mally. But the computational requirement is relatively high.

The coefficient reduction in FDA is relatively more efficient. As well known, the
signal power in space domain and Fourier domain are equal. The Fourier coeffi-
cients ordered by their squared magnitude reflect the order of their influences to the
square error between true density function and its Fourier approximation. Therefore,
coefficient reduction in FDA is just deleting the coefficients with minimal squared
magnitudes under the required density square error.

3.5 Ensuring Non-Negativity

FDA with reduced coefficients is sometimes negative which brings problem for fur-
ther calculation. [5] proposed to use the square root of density function instead of
density function itself for calculation. In this way, the final approximated density is
ensured to be non-negative.
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3.6 Computational Complexity

Table 1 lists the comparison of computational complexities for density product
and generalized convolution between FDA and uniform sampling method where m
denotes the number of coefficients used by Fourier density approximation. n is the
number of uniform distributed samples. From this table, we see that the computation
power is saved for the generalized convolution given the same number of m and n.
By reducing the Fourier coefficients, both operations can be more efficient.

Table 1 Comparison of computational complexity

FDA Uniform sampling

Generalized convolution O(m) O(n2)
Product O (m log m) O(n)

4 Sensor Localization Example

In this chapter, we will use a sensor localization example to illustrate the BP method
we proposed. Sensor localization is obtained by combining absolute positioning
information (e.g. GPS) with relative distance information (e.g. time delay or power
decay of the signal transmitted between sensors). In this paper, we restudy the self-
calibration problem presented in [3] where each sensor has noisy measurements
of its distances to neighboring nodes. The problem is formulated as a probabilistic
inference problem that can be presented by probabilistic graphical model. BP algo-
rithm is applied to exchange the calibration information between sensor nodes so
that each sensor can obtain the MAP estimate of its location. Instead of Gaussian
mixtures, FDA will be used to present the messages that are transmitted between
nodes. Relative sensor geometry or the absolute sensor positions can be obtained
depending on whether extra information about absolute positions is available at
certain sensors.

4.1 System Model

Lets assume that we have a WSN with N sensors distributed in a planar space. The
position of sensor i is denoted by xi . The measurement taken at sensor i about its
distance to sensor j takes the form:

di j =
∥∥xi − x j

∥∥+ νi j (16)

where di j denotes the observation, νi j is additive Gaussian noise with zero mean
and standard deviation of σ .

∥∥xi − x j

∥∥ calculates the Euclidean distance between
two points. di j is not always available since sensor i does not always detect its
neighbor j . We use a binary random variable oi j to indicate whether a distance
measurement is available, i.e. oi j = 1 when observation is made, oi j = 1 otherwise.
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According to [3], the probability that distance between sensor i and j is available
with a probability of:

p(oi j = 1|xi , x j ) = exp

(
−
∥∥xi − x j

∥∥ρ

Rρ

1

)
(17)

Furthermore, each sensor has a prior knowledge about its position, which is given by
a prior distribution p(xi ). The prior distribution is normally uninformative unless the
sensor has obtained its position information from other resources, e.g. GPS signal.
In this case, the prior distribution might look like a Dirac function.

4.2 Belief Propagation in Sensor Localization

Apparently, the assumptions mentioned in Sect. 2 are valid for this model. The joint
distribution of the sensor locations {xi } and the observations {di j } and {oi j } can be
factorized as:

p({xi }, {di j }, {oi j }) =
∏
(i, j)

p(oi j |xi , x j )
∏

(i, j):oi j=1

pν(di j |xi , x j )
∏

i

p(xi ) (18)

Based on Eq. (7), we can define the local potential for sensor i :

φi (x1, . . . xN ) = p(xi ) ·
∏
j : j �=i

p(oi j |xi , x j )
∏

j : j �=i,oi j=1

pν(di j |xi , x j ) (19)

so that each sensor has now its local potential function.
Distributed inference can be done by using SPA. For sensor location problem,

the message updating equation, obtained from Eqs. (3) and (19), takes the form:

mt+1
i j (x1, . . . xN ) = α · ϕi (x1, . . . xN )

∏
k∈N (i)\ j

mt
ki (x1, . . . xN ) (20)

Each message in Eq. (20) involves N variables. The presentation of messages and
the multiplication of messages will be too complicated that it makes the inference
intractable. To simplify the problem, we define a message from node i to node j
to be a function that only involves x j . In another word, message from node i to
node j only contains a summary of sensor i’s belief on the position of j . Position
information about other sensor nodes are summed out. Based on this simplification,
Eq. (20) will be revised to:
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mt+1
i j (x j ) = α

∫
{x1,...xN }\x j

ϕi (x1, . . . xN )
∏

k∈N (i)\ j

mt
ki (xi )

= α

∫
{x1,...xN }\x j

p(xi )
∏

k:k �=i

p(oik |xi , xk)
∏

k:k �=i
ok j=1

pν(dik |xi , xk)
∏

k∈N (i)\ j

mt
ki (xi )

= α

∫
xi

p(xi )ϕi j (xi , x j )
∏

k∈N (i)\ j

mt
ki (xi ) (21)

where ϕi j (xi , x j ) is defined as:

ϕi j (xi , x j ) =
{

p(oi j = 1|xi , x j ) · p(di j |xi , x j )

1− p(oi j = 1|xi , x j )
(22)

The marginal probability of sensor location is given by:

p̂t
i (xi ) = α · p(xi )

∏
k∈N (i)

mt
ki (xi ) (23)

Although the complexity of messages has been greatly simplified in Eq. (21), calcu-
lation in Eqs. (21) and (23) is still complicated because of its non-linearity and the
non-Gaussian distribution. To solve this problem, we use FDA method to approx-
imate the density functions and present the messages as a collection of Fourier
components and their coefficients.

4.3 Algorithm Description

Using FDA and the coefficient reduction method introduce in Sect. 3, the size of the
messages are significantly reduced. This has brought benefits in two folds. On one
side, it reduces the transmission power. On the other hand, it reduces the complexity
of the SPA with a penalty of computing FFT.

We propose two algorithms. The ST-FDA algorithm, depicted in Table 2, uses
FDA only to reduce the transmission power. SCT-FDA, depicted in Table 3, does all
the calculation in the frequency domain thus reduces both the transmission power
and the computational complexity.

5 Simulation Results

To verify the performance of the FDA based BP methods, we simulate the BP for
self-localization problem in a WSN that is illustrated in Fig. 1. The positions of
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Table 2 Description of ST-FDA algorithm

ST-FDA

1. Discretize the local potential functions.
2. Initialize messages, e.g. a vector of ones.
3. Calculate the outgoing message using Eq. (21). Since now the

potential functions and the messages are discrete, we replace
the integral in Eq. (21) with sum. Use FFT to transform the
outgoing message into the frequency domain and use
coefficient reduction method introduced in Sect. 3 to reduce
the size of the messages.

4. Once a new message (presented by Fourier coefficients) is
received, an IFFT will be used to change the message to the
2D space domain for the SPA.

5. Run SPA for a defined number of iterations.
6. Posterior probability can be calculated by using Eq. (23).

Table 3 Description of SCT-FDA algorithm

SCT-FDA

1. Discretize the local potential functions.
2. Initialize messages, e.g. a vector of ones.
3. Use FFT to transform all messages and potential functions to

frequency domain. Use coefficient reduction method
(Sect. 3.4) to reduce the number of Fourier components. All
messages stay in frequency domain until the end of the
algorithm.

4. The SPA of Eq. (21) in the frequency domain is implemented by
using Eqs. (8) and (15). Coefficient reduction is done in each
step.

5. Run SPA for a defined number of iterations.
6. Finally, use IFFT to convert the posterior probability from

frequency domain into space domain.

sensor node 1, 2 and 3 are known as (0, 0), (1, 0) and (1, 1) respectively. Unknown
sensor nodes 4 and 5 are located at (−1, 0.4) and (−0.2, 0.8). Note that although
the Fourier densities are defined in [−π, π ]d in Eq. (5), the definition in a large area
can be also derived by a simple linear mapping. In this paper, we limit the area to
[−π, π ]2 for simplicity.

The parameter ρ and R1 in Eq. (17) are set to 2 and 3 m respectively. The standard
deviation of distance measurements σ in Eq. (16) is set to 0.4 m. The BP is forced
to stop after seven iterations. Figure 2 depicts the estimates of posterior distribution
of sensor positions at node 4 (Fig. 2 (a2)−(a6)) and node 5 (Fig. 2 (a2)− (a6))
by SCT-FDA using different number of Fourier coefficients to represent a single
potential function or a message and compare them with the true result generated
by uniform sampling based method (Fig. 2 (a1) and (a2)). The sampling resolu-
tion is 65x65 for all experiments. From the results we can see with 100 Fourier
coefficients, the approximation is already very close to the true value, whereas
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Fig. 1 Sensor distribution

too few components can not fully characterize the very non-linear, non-Gaussian
distribution.

Figure 3 shows the estimation results from SCT-FDA algorithm using different
sampling resolutions. Sampling resolution of 15 × 15, 25 × 25, 35 × 35, 65 × 65
are applied to Fig. 3 (a1) to (a4) and Fig. 3 (b1) to (b4) respectively. The sampling
resolution determines the precision of the estimate. According to Nyquist Theorem,
original function can be recovered from its samples only if the sampling rate is
greater than twice the maximum frequency of that function. Bad results can be
observed from Fig. 3 (b3) and (b4) because the sampling rate is too low. Figure 4

Fig. 2 Comparison of distribution estimates by SCT-FDA with different number of coefficients
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Fig. 3 Comparison of distribution estimate by SCT-FDA from different sample resolutions

plots the error of the position estimate of node 4 vs. number of Fourier coeffi-
cients curves of STFDA and SCT-FDA algorithms. It can be seen that, increas-
ing number of coefficients results in a better performance for both methods. But
compared to the result by uniform sampling which requires 4,225 samples to repre-
sent a message, a close result is achieved by much less Fourier coefficients. In the
simulation, 119 messages are transmitted. If sample resolution is 65 × 65 and 50
Fourier coefficients are kept, ST-FDA and SCT-FDA methods transmit 23,800 com-
ponents while uniform sampling based method has to transmit 502,775 components.
Obviously, Fourier density approximation significantly reduces the transmission
power.

ST-FDA method outperforms SCT-FDA methods in Fig. 4 because approxima-
tion is only made for the transmission in ST-FDA while SCT-FDA method also
greatly simplifies the computation by using fewer coefficients in the SPA. Although
SCT-FDA loses some accuracy, it saves the computation power and time. Further-
more, note that ST-FDA performs FFT and IFFT at the transmission and reception

Fig. 4 Comparison of estimation errors in uniform sampling, STFDA and SCT-FDA
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of each message while in SCT-FDA, FFT is only performed at the beginning and
the end of BP, which further reduces the complexity.

6 Conclusions and Future Work

WSNs can be modeled by graphical models, where BP algorithm provides a promis-
ing solution. However, in WSNs, the computational ability and battery life of sensor
nodes are limited. The intensive probability density computation and transmission
between nodes required by BP make a big problem. This paper presents a method
to use Fourier density approximation to represent belief densities. ST-FDA algo-
rithm uses Fourier approximation to compress the complex non-Gaussian densities
in order to reduce the radio transmission which is regarded as the most power con-
suming part in WSNs. Another algorithm SCT-FDA implements the SPA in Fourier
domain so that it saves power consumptions not only in transmissions but also in
belief calculations.

ST-FDA and SCT-FDA use a fixed number of Fourier coefficients. A more
general algorithm with adaptive Fourier coefficient reduction can be investi-
gated. In addition, other density representation like wavelet approximation could
also be considered for the same application. The comparison between Fourier
approximation and standard Gaussian mixture representation in [3] would also be
interesting.
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Passive Localization Methods Exploiting Models
of Distributed Natural Phenomena

Felix Sawo, Thomas C. Henderson, Christopher Sikorski
and Uwe D. Hanebeck

Abstract This paper is devoted to methods for localizing individual sensor nodes
connected in a network. The novelty of the proposed method is the model-based
approach (i.e., rigorous exploitation of physical background knowledge) using local
observations of a distributed phenomenon. By exploiting background phenomena,
the individual sensor nodes can be localized by only locally measuring their sur-
rounding without the necessity of heavy infrastructure. Two approaches are intro-
duced: (a) the polynomial system localization method and (b) the simultaneous
reconstruction and localization method. The first approach (PSL-method) is based
on restating the mathematical model of the distributed phenomenon in terms of a
polynomial system. Solving the system of polynomials for each individual sensor
node directly leads to the desired locations. The second approach (SRL-method)
regards the localization problem as a simultaneous state and parameter estimation
problem within a Bayesian framework. By this means, the distributed phenomenon
is reconstructed and the individual nodes are localized in a simultaneous fashion,
while considering remaining stochastic uncertainties.

1 Introduction

The research work presented here is a modified version of [1], however explana-
tions about the novel localization process are given in considerably extended way,
with the focus on describing the actual estimation process with its different stages,
i.e., identification/calibration stage and actual application stage. For more details
about the used Bayesian estimator and its prospective applications, we refer to our
previous research work [1–5].
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Recent developments in various areas dealing with sensor networks and the fur-
ther miniaturization of individual nodes make it possible to apply wireless sensor
networks for observing natural large-area physical phenomena [6]. Examples for
such physical quantities are temperature distribution [4], chemical concentration [7],
fluid flow, structural deflection or vibration in buildings, or the surface motion of a
beating heart in minimally invasive surgery [8].

For the reconstruction of such distributed phenomena, the individual sensor
nodes are densely deployed either inside the phenomenon or close to it. Then, by
distributing local information to a global processing node, the phenomenon can be
coöperatively reconstructed in an intelligent and autonomous manner [3, 9, 10]. In
such scenarios, the sensor network can be exploited as a huge information field
collecting data from its surrounding and then providing useful information both to
mobile agents and to humans. Hence, the corresponding tasks are accomplished
more efficiently, thanks to the extended perception provided by the sensor network.
By this means, sensor networks can forecast or prevent dangerous situations, such
as forest fires, seismic sea waves, or avalanches [11].

For most sensor network applications, the sensory data has only limited util-
ity without location information. In particular for the accurate reconstruction of
distributed phenomena, the locations of the individual sensor nodes are necessary.
Manually measuring the location of every node in the network becomes infeasible,
especially when the number of sensor nodes is large, the nodes are inaccessible or
in the case of mobile sensor deployments. This makes the localization problem one
of the most important issues to be considered in the area of sensor networks.

Classification of Localization Methods In general, the main goal of a localiza-
tion system is to provide an estimate about the location of the individual nodes in
the sensor network in the area of interest. There are several ways to classify the
huge diversity of localization methods. In this work, they are classified into active
localization methods and passive localization methods, depicted in Fig. 1.

• Active localization methods: Active localization methods obtain an estimate of
the sensor node location based on signals that are artificially stimulated and
measured by the network itself or by a global positioning system. The stimuli

Localization methods

Global positioning system Based on natural physical systems
Artificial signals between nodes Field strength distribution

Acoustic wave propagation
Temperature distribution
Topological surface map

(a)Active localization (b)Passive localization

Fig. 1 Classification of localization methods: (a) Active localization, such as methods based on
artificial signals between nodes and global positioning systems, and (b) passive localization, such
as methods based on locally measuring a naturally existing distributed phenomenon
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usually used in such scenarios consist of artificially generated acoustic events. It
is obvious that the active localization process is performed in fairly controlled
and well accessible environments. As it stands, these circumstances incur sig-
nificant installation and maintenance costs. A comprehensive survey on active
localization methods can be found in [12].

• Passive localization methods: In the case of passive localization methods, which
in contrary occur in a non-controlled and a possibly inaccessible environment,
the stimuli necessary for the localization process occur naturally. In Fig. 1 (b)
prospective examples of natural physical systems are stated, which can be used
as stimuli for localizations. The clear advantage of using passive methods for
the localization is that they do not need additional infrastructure. This certainly
keeps the installation and maintenance costs at a very low level. In addition, these
methods become particularly important for applications where global positioning
systems are simply not available. This is for example the case of sensor networks
for monitoring the snow cover [11], applications in deep sea, indoor localization
[5, 13, 14], or robotic-based localization [15].

There are various techniques and methods that can be considered for localization
systems using different kind of infrastructures in different scenarios. In general, for
the estimation of a distributed phenomenon by a sensor network, the existing infras-
tructure could consist of both a number of sensor nodes with known locations and
nodes with unknown or uncertain locations. For the minimization of the installation
and maintenance costs, it is benefical to develop a method that requires no addi-
tional hardware such as a global positioning system or other heavy infrastructures.
Moreover, there are various application scenarios without the possibility to access
a global positioning system for the localization, such as the indoor localization of
mobile phones [5, 16] or sensor networks deployed deep inside the snowpack for
predicting snow avalanche risks, to name just a few. For that reason, a novel passive
process is proposed that does not require such a global positioning system or the
localization based on landmarks. It is important to emphasize that the passive local-
ization technique proposed in this work can be employed in combination with other
localization methods for further improving the location accuracy.

Key Idea of the Proposed Localization Method For the passive localization of
sensor nodes, we present model-based approaches based on local observations. The
novelty of the methods introduced in this work is the rigorous exploitation of a
strong mathematical model of the distributed phenomenon for localizing individual
sensor nodes. Furthermore, within this framework, the often remaining uncertainties
in the sensor node locations can be considered during the reconstruction process of
the distributed phenomenon [4]. The use of such a mathematical model for node
localization was proposed in [11]. However, there was no consideration of uncer-
tainties naturally occuring in the measurements and in the used model. The key
idea of the proposed localization approach is depicted in Fig. 2. Roughly speaking,
for localizing sensor nodes, the mathematical model and the resulting distribution of
the spatially distributed phenomenon is exploited in an inverse manner. That means,
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Fig. 2 Visualization of the key idea of the proposed novel localization method based on locally
measuring a distributed phenomenon. (a) Possible distribution pk (x, y) of a physical system char-
acterized by a strong mathematical model. (b) Sectional drawing of the system at a specific location
in x-direction. Depicted are the possible locations (deterministic case) and the respective density
function f e(r sy

k ) (stochastic case)

locally measured physical quantities are used to obtain possible locations where the
measured values could have been generated.

In this research work, we introduce two different methods for the model–based
passive localization of sensor nodes based on local observations: (a) the polynomial
system localization method, and (b) the simultaneous reconstruction and localiza-
tion method. The first approach (PSL-method) is purely deterministic, meaning
that neither uncertainties in the model description nor in the measurements are
considered. This direct method is based on restating the model of the distributed
phenomenon in terms of a polynomial system including the state of the physical
system and the location to be identified. Then, solving a system of polynomial equa-
tions leads directly to the desired location of the sensor node. The second approach
(SRL-method) considers uncertainties both in the mathematical model and the mea-
surements during the localization process. It is shown that the localization problem
can be regarded as a simultaneous state and parameter estimation problem, with
node locations as the parameters to be identified. This leads to a high-dimensional
nonlinear estimation problem, making the employment of special types of estima-
tors necessary. By this means, the sensor nodes are localized and the distributed
phenomenon is reconstructed in a simultaneous fashion. The improved knowledge
can be exploited for other nodes to localize themselves.

2 Problem Formulation

The main goal is to design a novel localization method for sensor network applica-
tions, where individual nodes are able to locally measure a distributed phenomenon
only. We assume to have a strong mathematical model of the phenomenon, i.e., with
known model structure and model parameters. This model could possibly result
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(a) Identification task

Simultaneous reconstruction ...
Estimation of distributed system

Simultaneous reconstruction ...
Estimation of distributed system

... and system identification.

Unkown structure and para-
meters of distributed system

Fixed and known node locations
(possibly known beacons)

... and node localization.
Known structure and parameters
of distributed system
Unknown location of movable 
or newly deployed nodes

(b) Localization task

(c) Sensor planning and scheduling

Fig. 3 Visualization of two tasks for the estimation of a distributed phenomenon. The individual
tasks are managed by a planning and scheduling process (not considered in this research work)

from an earlier identification task, visualized in Fig. 3 (a). Based on this mathemat-
ical model and local measurements, newly deployed or movable sensor nodes can
be efficiently localized without using a global positioning system, see Fig. 3 (b).

Considered Distributed Phenomenon Throughout this paper, we consider
the localization based on the observation of a distributed phenomenon
described by the one-dimensional diffusion equation

L (p(r, t)) = �p(r, t)

�t
− α

�2 p(r, t)

�r2
− s(r, t) = 0 , (1)

where p(r, t) denotes the distributed state of the phenomenon at the spatial
coordinate r and at the time t . The diffusion coefficient α can be varying in
both time and space. Given an estimated solution p(·), the aim is the estima-
tion of the location r si

k of the individual sensor nodes based on local measure-
ments ŷ

k
of a realization of the distributed phenomenon p(·). In this work,

we consider the worst-case scenario where the node locations are completely
unknown and the phenomenon p(·) still contains some uncertainties. The same
methods can be utilized for simply considering uncertainties in the locations
during the reconstruction of distributed phenomena (i.e., without localizing
sensor nodes).

3 Overview of the Passive Localization Method

The model-based passive localization method proposed in this research work can
be considered as a two-stage technique: The first stage is the so-called identifi-
cation/calibration stage, which is responsible for building a sufficiently accurate
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probabilistic model of the considered physical phenomenon and its environment.
This can be regarded as a system identification and training phase. Then, during
the localization stage, the previously created and identified model is exploited to
estimate the location of individual sensor nodes by local measurements of the dis-
tributed phenomenon. This stage can be seen as the usage stage performing the
actual localization task based on locally measuring the distributed phenomenon.

3.1 Identification/Calibration Stage

For the derivation of a sophisticated model describing the underlying distributed
phenomenon exploited for the localization, a series of calibration measurements is
required. This can be performed by using a certain number of sensor nodes sens-
ing the physical quantity at known locations. Here, these nodes are assumed to be
responsible only for identifying the underlying phenomenon, however, not necessar-
ily for the actual localization process. At each sensor node with the precisely known
position rBSi

k , a realization of the distributed phenomenon pk(·) is locally measured.
For physical phenomena distributed over a wide area, gathering the measure-

ments can become tedious. However, the automation of this process can be achieved
using mobile devices (with an accurate independent navigation system) moving in
the area of interest in an autonomous and self-organized manner. Such a system
was, for example, proposed in [17], where a mobile robot autonomously collects
information about the signal strength for indoor localization purposes [13, 18].

The identification or calibration stage strongly differs in the way they actually
make use of the measurements obtained. In this research work, the localization
based on static as well as dynamic phenomena is of interest. In particular, depending
on the type of the system, the description to be obtained during the identification
stage is different. For static systems, a mathematical model only in terms of a
probability density function is required, whereas for dynamic systems additional
parameters describing the dynamic and distributed behavior need to be identified
and calibrated.

Static Phenomena In the case of localizing sensor nodes based on a static dis-
tributed phenomenon, the identification stage consists only of finding an appropriate
model description in terms of the conditional density function f e(p|r ), as visualized
in Fig. 4. This description characterizes the distribution of the considered physical
quantity and its uncertainty in the area of interest. In this sense, for each position r
a density function about the distributed phenomenon is obtained. There are several
ways for the actual derivation of the model describing the distribution of the phys-
ical quantity. For example, this can be achieved by data-driven approaches [19],
which use the calibration measurements to directly estimate the underlying den-
sity function f e(p|r ) of the static distributed phenomenon. Another possibility is to
use probabilistic learning techniques, such as the simultaneous probabilistic local-
ization and learning method (SPLL-method) proposed in [20], which additionaly
allows the simultaneous localization during the identification and calibration stage.
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Fig. 4 Visualization of the
model description for the
localization of sensor nodes
exploiting static and
distributed physical
phenomena. The model is
given in terms of a
conditional density function
f e(p|r ) over the position r
and the distributed physical
system p; here depicted for
the one-dimensional case for
simplicity purposes only 10
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Dynamic Phenomena For dynamic distributed phenomena, it is not sufficient to
derive a description only about the current spatial distribution of the physical quan-
tity, rather additional parameters characterizing the dynamic behavior are neces-
sary. The main advantage of exploiting dynamic phenomena for the localization is
that additional information about the dynamics allows excluding specific values of
the otherwise possibly ambiguous location estimates. However, this advantage is
opposed by the more sophisticated and costly identification/calibration stage that
must be accomplished before or simultaneous to the actual localization stage. That
means, the precise identification of the structure and the parameters of the model
description for the distributed phenomenon is required. This can be achieved by the
Simultaneous Reconstruction and Identification method (SRI-method), see [3].

3.2 Localization Stage

In the localization stage, the individual sensor nodes with unknown location r si
k mea-

sure the underlying distributed phenomenon locally, e.g., temperature distribution or
signal strength distribution. The locations of the N sensor nodes to be identified are
collected in the parameter vector ηM

k
, according to

ηM
k

:= [r s1
k , r s2

k , . . . , r s N
k

]T ∈ R
N .

In the following, two different approaches for the passive localization are intro-
duced: (a) the polynomial system localization method (PSL-method) and (b) the
simultaneous reconstruction and localization method (SRL-method).
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4 Polynomial System Localization Method

This section is devoted to a deterministic approach for the localization of indi-
vidual nodes in a sensor network based on local measurements of a distributed
phenomenon. The key idea of the proposed direct method is to solve the partial
differential equation (1) in terms of the unknown node locations. This leads to a
straightforward solution as long as the resulting nonlinear equations can be readily
solved. Solving these equations for all sensor locations is called the Polynomial
System Localization Method (PSL-method). The PSL-method basically consists of
two steps: (1) spatial and temporal discretization of the mathematical model, and
(2) reformulating and finally solving the resulting system of polynomial equations
in terms of the desired locations.

1. Spatial and Temporal Discretization The simplest method for the spatial
and temporal discretization of distributed phenomena is the finite-difference
method [10,11]. In order to solve the partial differential equation (1), the deriva-
tives need to be approximated with finite differences according to

�p(r, t)

�t
= pi

k+1 − pi
k

Δt
,

�2 p(r, t)

�r2
=

pi+1
k −pi

k

r i+1
k −r i

k
− pi

k−pi−1
k

r i
k−r i−1

k

1
2 (r i+1

k − r i−1
k )

(2)

where Δt is the sampling time. The superscript i and subscript k in pi
k denote the

value of the distributed phenomenon at the discretization node i and at the time
step k. Plugging the finite differences (2) into the mathematical model of the dis-
tributed phenomenon (1), in general, leads to a system of polynomial equations
of degree three. However, for the case of one unknown sensor node location, this
reduces to a single quadratic equation, as shown in the next subsection.

2. Solving Polynomial System Equations Based on the spatial and temporal dis-
cretization, the partial differential equation (1) may be expressed as a finite dif-
ference equation and put in the following form at each discretization point, pi

k ,
in the interval in question

0 = Ai
k(r i+1

k − r i
k)(r i

k − r i−1
k )(r i+1

k − r i−1
k )

− Bi
k(r i

k − r i−1
k )+ Ci

k(r i+1
k − r i

k) , (3)

where

Ai
k =

pi
k+1 − pi

k

2αΔt
, Bi

k = pi+1
k − pi

k , Ci
k = pi

k − pi−1
k .

At this point, it is important to mention that r i
k represents the unknown location

of the sensor node to be localized and r i+1
k and r i−1

k are the known locations of
neighboring nodes. The derived system equation (3) can be simply regarded as an
explicit relation between three positions on a line (two known endpoints and one
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unknown location between them), and four values of the measured phenomenon (all
known and one at each location at time t and one at the unknown location at time
t + 1). In order to derive the unknown location r i

k of sensor node i , the polynomial
system of equations (3) needs to be solved and the root selected, which best fits the
conditions (e.g., must be between the two known locations r i−1

k and r i+1
k ).

The PSL-method assumes a densely deployed sensor network in which every
node i communicates with its neighboring nodes i−1 and i+1. This means that
measurements of the distributed phenomenon pi−1

k and pi+1
k need to be transmit-

ted between adjacent nodes. It can be stated that the denser the sensor nodes are
deployed, the more accurate the individual nodes in the network can be localized.
The proposed localization approach involves neither errors in the mathematical
model nor uncertainties in the measurements. However, it can be easily implemented
and has low computational complexity.

5 Simultaneous Reconstruction and Localization Method

For the state reconstruction of distributed phenomena, the precise knowledge about
the node locations is essential for deriving precise estimation results. However, using
any kind of positioning system, some uncertainties in the location estimate remain.
In order to obtain consistent and accurate reconstruction results, these uncertainties
in the node location need to be systematically considered during the reconstruction
process. Hence, the simultaneous method proposed in this section does not only
allow (a) the localization of sensor nodes, but especially (b) the systematic consid-
eration of uncertainties in the node locations during the state reconstruction process.

After the derivation of a finite-dimensional model for the node localization based
on a system conversion, a method for the Simultaneous Reconstruction of dis-
tributed phenomena and node Localization (SRL-method) is introduced. There are
four key features characterizing the novelties of the proposed method: (a) approach
is based on local measurements only, (b) systematic consideration of uncertain-
ties in the model description and the measurements, (c) derivation of an uncer-
tainty measure for the estimated node location in terms of a density function,
and (d) improvement of the estimation of distributed phenomena thanks to the
simultaneous approach.

5.1 Conversion of Distributed Phenomena

The model–based state reconstruction of distributed systems based on a distributed–
parameter description (1) is quite complex. The reason is that a Bayesian esti-
mation method usually exploits a lumped–parameter system description. In order
to cope with this problem, the system description has to be converted from a
distributed–parameter form into a lumped–parameter form. In general, the conver-
sion of the system description (1) can be achieved by methods for solving partial
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differential equations, such as modal analysis [8], the finite-difference method [10,
11], the finite-element method [4], and the finite-spectral method [21]. Basically,
these methods consist of two steps, namely spatial decomposition and temporal
decomposition.

1. Spatial decomposition By means of the spatial decomposition, the partial dif-
ferential equation (1) is converted into a set of ordinary differential equations [4].
First, the solution domain Ω = [0, L] needs to be decomposed into Nx subdo-
mains Ωe. Then, the solution p(r, t) in the entire domain Ω is represented by a
piecewise approximation according to

p(r, t) =
Nx∑

i=1

Ψ i (r ) xi (t) , (4)

where Ψ i (r ) are analytic functions called shape functions and xi (t) their respec-
tive weighting coefficients. It is important to note that the individual shape
functions Ψ i (r ) are defined on the entire solution domain. The essence of all
aforementioned conversion methods lies in the choice of the shape functions
Ψ i (r ), e.g., piecewise linear functions, orthogonal functions, or trigonometric
functions [4].

2. Temporal discretization In order to derive a discrete-time system model the sys-
tem of ordinary differential equations (derived from the spatial decomposition)
needs to be discretized in time. The temporal discretization produces a linear
system of equations for the state vector xk containing the temporal discretized
weighting factors xi

k of the finite expansion (4). The resulting discrete-time
lumped-parameter system represents the distributed system (1).

In the case of linear partial differential equations (1), the aforementioned meth-
ods for the spatial and temporal decomposition always result in a linear system of
equations according to

xk+1 = Ak xk + Bk
(
ûk + wx

k

)
. (5)

The global state vector xk characterizes the state of the distributed system and the
vector wx

k represents the system uncertainties. The structure of the system matrix Ak

and the input matrix Bk merely depend on the applied conversion method [4].

5.2 Derivation of Measurement Model

In this section, we derive the measurement model for the purpose of localizing
sensor nodes based on local observations of a physical phenomenon. The sensor
nodes are assumed to measure directly a realization of the distributed phenomenon
p(r si

k , tk) at their individual locations r is
k . Then, the measurement equation for the

entire network is assembled from the individual shape functions Ψ j (·) as follows
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ŷ
k
=

⎡
⎢⎣

Ψ 1(r s1
k ) · · · Ψ Nx (r s1

k )
...

. . .
...

Ψ 1(r s Ns
k ) · · · Ψ Nx (ηs Ns

k )

⎤
⎥⎦

︸ ︷︷ ︸
Hk (ηM

k
)

xk + vk , (6)

where vk denotes the measurement uncertainty and Ns represents the number of
sensor nodes used in the network. The measurement model (6) directly relates the
measurements ŷi

k to the state vector xk characterizing the distributed phenomenon
and to the location vector ηM

k
. The structure of the measurement matrix Hk for local-

izing sensor nodes in a network is shown in the following example:

Example of Measurement Model In this example, we visualize the structure
of the measurement matrix Hk subject to piecewise linear shape functions.
The entire solution domain Ω is represented by Nx = 4 shape functions Ψ i (·).
In addition, there are two sensor nodes located at r s1

k and r s2
k in the subdomains

Ω1 and Ω2. Then, the measurement model is given as follows

[
ŷ1

k
ŷ2

k

]
=

⎡
⎢⎢⎢⎢⎣

Ψ 1(r s1
k )︷ ︸︸ ︷

c1
1 + c1

2 r s1
k

Ψ 2(r s1
k )︷ ︸︸ ︷

c1
3 + c1

4 r s1
k 0 0

0 c2
1 + c2

2 r s2
k︸ ︷︷ ︸

Ψ 2(r s2
k )

c2
3 + c2

4 r s2
k︸ ︷︷ ︸

Ψ 3(r s2
k )

0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

x1
k

x2
k

x3
k

x4
k

⎤
⎥⎥⎦+

[
v1

k
v2

k

]
,

where the constants c j
i arise from the definition of the piecewise linear shape

functions in each subdomain and thus the geometry of the applied grid for the
finite elements. The extension to orthogonal polynomials and trigonometric
functions can be derived in a straightforward fashion [3, 4].

From the previous example, it is obvious that the structure of the measurement
matrix Hk merely depends on the location collected in the parameter vector ηM

k
of the individual sensor nodes. That means, for the accurate reconstruction of the
distributed phenomenon (1) based on a sensor network, the exact node locations are
necessary. Due to this dependency, deviations of true locations from the modeled
node locations lead to poor estimation results, as shown in our previous research
work [1]. On the other hand, thanks to the dependency of the measurement matrix
Hk on the node locations, the localization problem can be stated as a simultaneous
state and parameter estimation problem. By this means, the distributed phenomenon
can be reconstructed and the nodes can be localized in a simultaneous fashion.
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5.3 Augmented System Description for Node Localization

For the simultaneous node localization and reconstruction of distributed phenom-
ena, the unknown locations of the sensor nodes ηM

k
are treated as additional state

variables. By this means, conventional estimation techniques can be used to simul-
taneously estimate the location and the state of the distributed phenomenon. Hence,
an augmented state vector zk containing the system state xk and the additional
unknown node locations ηM

k
is defined by zk := [xT

k , ηT
k

]T .
The augmentation of the state vector with additional unknown parameters leads

to the so-called augmented system model. In the case of localizing sensor nodes, the
augmentation leads to the following augmented system model

[
xk+1
ηM

k+1

]
=
[

Ak xk + Bk ûk
ak(ηM

k
)

]
+
[

Bk wx
k

w
η

k

]
, (7)

and measurement model

ŷ
k
= Hk(ηM

k
)xk︸ ︷︷ ︸

hk (xk ,η
M
k

)

+vk , (8)

where the nonlinear function ak (·) describes the dynamic behavior of the node loca-
tions contained in the vector ηM

k
to be estimated.

The structure of the augmented system model (7) and (8) for the node localization
is depicted in Fig. 5 (a). In this case, it is obvious that the augmented measure-
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Fig. 5 Visualization of dynamic system and estimator for the node localization based on local
observations. (a) The system description contains a high-dimensional linear substructure. The
individual node locations r si

k collected in the parameter vector η
k

characterizes the measurement
matrix Hk (·), and thus, the individual measurements ŷ

k
. (b) The Bayesian estimator is based on

sliced Gaussian mixture densities consisting of a Gaussian mixture and Dirac mixture
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ment model is nonlinear in the augmented state vector zk due to the multiplication
of Hk(ηM

k
) and the system state xk . Since the parameter vector ηM

k
characterizes

the measurement matrix Hk , it also has a direct influence on the actual measured
values. It is important to emphasize that the measurement model (8) contains a
high-dimensional linear substructure, which can be exploited by the application of
a more efficient estimator. In the following section, we briefly describe a Bayesian
estimator allowing the decomposition of the localization problem.

5.4 Estimation Based on Sliced Gaussian Mixture Densities

There are several methods to exploit the linear substructure in the combined lin-
ear/nonlinear system equation (7) and measurement equation (8). The marginalized
particle filter [22] integrates over the linear subspace in order to reduce the dimen-
sionality of the state-space. Based on this marginalization, the standard particle
filter is extended by applying the Kalman filter to find the optimal estimate for
the linear subspace (which is associated with the respective individual particles).
The marginalized filter certainly improves the performance in comparison to the
standard particle filter. However, some drawbacks still remain. For instance, special
measures have to be taken in order to avoid effects like sample degeneration and
impoverishment. More importantly, it does not provide a measure on how well the
true joint density is represented by the estimated one.

For that reason, a more systematic Bayesian estimator is employed for the simul-
taneous reconstruction of distributed system and node localization. For the exploita-
tion of linear substructures in general nonlinear systems, we introduced in our previ-
ous research work [2] a systematic estimator, the so-called Sliced Gaussian Mixture
Filter (SGMF). There are two key features leading to a significantly improved esti-
mation result compared to other state of the art estimation approaches.

• Novel density representation The utilization of a special kind of density
allows the decomposition of the general estimation problem into a linear and
nonlinear problem. To be more specific, as a density representation the so-called
sliced Gaussian mixture density is employed for the simultaneous reconstruction
and localization of sensor nodes.

• Systematic approximation The systematic approximation of the density
resulting from the estimation update leads to (close to) optimal approximation
results. Thus, less parameters for the density representation are necessary and a
measure for the approximation performance is provided.

Despite the high-dimensional nonlinear character, the systematic approach for
the simultaneous reconstruction and localization for large-area distributed phenom-
ena is feasible thanks to the decomposition based on the Sliced Gaussian Mixture
Filter. Furthermore, the uncertainties occuring in the mathematical system descrip-
tion and arising from noisy measurements are considered by an integrated treatment.
The systematic estimator exploiting linear substructures basically consists of three
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steps: the decomposition of the estimation problem, the utilizaton of an efficient
update, and the reapproximation of the density representation [2, 3].

6 Simulation Results

In this section, the performance of the proposed localization methods is demon-
strated by means of simulation results.

Assumption of Simulated Case Study In this simulation, we consider the
localization based on the one-dimensional partial differential equation (1),
with assumed initial condition and Dirichlet boundary conditions as consid-
ered in [1]. The nominal parameters for the system model (5) are given by

s(r, t) = 0 , α = 1 Δt = 0.2 , r s
true = 16 ,

where r s
true denotes the true node location. The aim is the localization of a sen-

sor node with initially unknown location based on local observations only. The
system noise term is Cw

l = diag {20, . . . , 20}, the noise term for the node loca-
tion is given by Cw

n = 0.02, and for the local measurement of the node to be
localized is assumed to be Cv = 0.01. Here, we compare different approaches
for the passive localization based on local measurements: (a) PSL-method,
(b) deterministic approach introduced in [11] (CSN-method), (c) SRL-method
based on sliced Gaussian mixture filter (50 slices), (d) SRL-method based on
marginalized particle filter (500 particles). These approaches are compared
based on 100 independent simulation runs.

The simulation results for the PSL-method are depicted in Fig. 6. It is important
to mention that this deterministic approach was simulated with perfect information,
i.e., there is noise neither in the system nor in the measurements. Furthermore, we
assume that the sensor node to be localized receives information about distributed
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phenomenon and locations from neighboring nodes. Since the diffusion equation
has derivatives involving Δt and Δx , the PSL-method is sensitive to the distance
between the two adjacent known locations. Evidence of this effect is shown in Fig. 6
which plots the values found by the PSL-method for known points of varying dis-
tance from the unknown. It is obvious that the denser the nodes are deployed the
more accurate the location can be identified.

The simulation results for the SRL-method with considering all the aforemen-
tioned uncertainties is shown in Fig. 7. Here, we assume the sensor network consists
only of a single sensor node locally measuring the phenomenon. Furthermore, the
sensor node has only very uncertain knowledge about the initial distributed phe-
nomenon, see Fig. 7 (a).

Fig. 7 (c) depicts one specific simulation run for the estimation of the unknown
node location ηS

k . It can be seen that after a certain transition time the SRL-method
based on sliced Gaussian mixture filter (with 50 slices) offers a nearly exact location
estimation, while the determinstic approach CSN-method strongly deviates (due to
neglecting system and measurement noises). The root mean square error (rms) of all
100 simulation runs over time is depicted in Fig. 7 (d). It is obvious that in this exam-
ple the SRL-method based on the Sliced Gaussian Mixture Filter (with 50 slices)
outperforms both the deterministic approach (CSN-method) and the approach based
on marginalized particle filter (with 500 particles); mainly due to the consideration
of uncertainties and the systematic and deterministic approximation of the density.
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Comparing Fig. 7 (a) and (b), it is obvious that thanks to the simultaneous prop-
erty of the SRL-method, not only can the sensor node be accurately localized, but
also the estimation about the distributed phenomenon can be further improved. This
can be exploited by other sensor nodes to localize themselves.

7 Conlusions and Future Work

In this paper, we introduce the methodology of two novel localization approaches
for sensor nodes measuring locally only their surrounding. The PSL-method is
a deterministic approach and is mainly based on restating the mathematical
model in terms of the location. In the case of no noise in the model description
and the measurement, this method leads to sufficient results for a dense sensor
network. The stochastic SRL-method basically reformulates the localization prob-
lem as a simultaneous state and parameter estimation problem. This leads to a
high-dimensional nonlinear estimation problem, which makes the employment
of special types of estimators necessary. Here, the Sliced Gaussian Mixture
Filter (SGMF) and the marginalized particle filter (MPF) are applied for the
decomposition of this estimation problem. Thanks to the stochastic approach,
the SRL-method leads to better estimation results for the location, even with noisy
information. Furthermore, the simultaneous approach allows to improve the knowl-
edge about the phenomenon, which then can be exploited by other nodes for the
localization.

The application of the proposed localization methods (PSL-method and SRL-
method) to sensor networks provides novel prospects. The network is able to
localize the individual nodes without relying on a satellite positioning system
(which is not always available) as long as a strong model of the surrounding is
available.

For the PSL-method it is necessary to incorporate uncertainties into the mathe-
matical model as well as the sensors, and to study the robustness of the method in
the presence of noise. Another issue for future work is that if the locations of sev-
eral nodes are unknown, they may be solved separately using the method described
in this paper; however, we should compare it to the simultaneous solution of the
system of degree three equations. So far, the model parameters and structure were
assumed to be precisely known for the SRL-method. In many real world appli-
cations, the parameters contain uncertainties. The combination of the parameter
identification of distributed phenomena and the node localization is left for future
work. Finally, we intend to test the proposed localization methods on real sensor
data.
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Automatisierungstechnik – Automatisierungstechnik, Sonderheft: Datenfusion in der Automa-
tisierungstechnik, 53(7):314–321, July 2005.

20. Bruno Betoni Parodi, Andrei Szabo, Joachim Bamberger, and Joachim Horn. SPLL:
Simultaneous Probabilistic Localization and Learning. In Proceedings of the 17th IFAC World
Congress (IFAC 2008), Seoul, Korea, 2008.

21. George E. Karniadakis and Spencer J. Sherwin. Spectral/hp Element Methods for Computa-
tional Fluid Dynamics. Oxford University Press, 2005.

22. Thomas Schön, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized Particle Filters for
Nonlinear State-space Models. Technical Report, Linköping University, 2003.



Study on Spectral Transmission Characteristics
of the Reflected and Self-emitted Radiations
through the Atmosphere

Jun-Hyuk Choi and Tae-Kuk Kim

Abstract This paper is a part of developing a software that predicts spectral radi-
ance from ground objects by considering spectral surface properties. The mate-
rial surface properties are essential for determining the reflected radiance by solar
energy and the self-emitted radiance from the object surface. We considered the
composite heat transfer modes including conduction, convection and spectral solar
irradiation for objects within a scene to calculate the surface temperature distri-
bution. The software developed in this study could be used to model the thermal
energy balance to obtain the temperature distribution over the object by consider-
ing the direct and diffuse solar irradiances and by assuming the conduction within
the object as one-dimensional heat transfer into the depth. MODTRAN is used to
model the spectral solar irradiation including the direct and diffuse solar energy
components. Resulting spectral radiance in the MWIR (3∼5 
m) region and LWIR
(8∼12 
m) regions arrived at the sensor are shown to be strongly dependent on the
spectral surface properties of the objects geometric features, such as points, straight
or curved lines and corners, plays an important role in object recognition. In this
paper, we present a model-based recognition of 3D objects.

1 Introduction

The infrared (IR) signature is mainly affected by atmospheric effects, object temper-
ature and surface properties etc. Models for calculating infrared signatures including
the targets and background are useful assessment tools of IR signatures. We are
encouraged to utilize the software to get the spectral images because it is almost
impossible to obtain all of the desired data by measurement due to a large variety of
objects, environments, and meteorological conditions [1]. A few of the developed
countries possess the infrared image generation software which can deal with the
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targets within a certain designated region. These softwares can also be used to con-
vert normal images to infrared images such as DIRSIG (Digital imaging and Remote
Sensing Image Generation, USA, [2]), PRISM (Physically Reasonable Infrared
Signature Model, USA, [3]), OKTAL (France, [4]), Ship IR/NTCS (Canada, [5]),
SensorVision (Australia, [6]), CameoSim (CAMouflage Electro-Optic SIMulation,
United Kingdom, [7]) and RadThermIR (USA, [8]) etc. Not all of these softwares
are open to the public otherwise they are very expensive even with the limited appli-
cability. These softwares can be used as the synthetic image generation tools which
produce simulated imagery in the visible through thermal infrared region. They are
designed to produce broad-band, multi-spectral and hyper-spectral imagery through
the integration of a suite of first principles based on the radiation propagation
sub models. These sub models are responsible for tasks ranging from the BRDF
(Bi-directional Reflectance Distribution Function) predictions of a surface to the
dynamic geometry scanning by a line scanning imaging instrument. The DIRSIG
model is an integrated collection of independent first principles based models which
work in conjunction to produce radiance field images with high radiometric fidelity
in the 0.3∼30.0 
m region. The PRISM has been the US Army’s standard tool
for infrared signature and thermal modeling. The OKTAL has been utilized in the
fields of virtual reality scene, synthetic environment design, and 3-D modeling. The
ShipIR/NTCS includes generic models of an infrared seeker and IR flare coun-
termeasure to simulate the IR signature of a ship, its flare deployments, and an
infrared-guided missile. The SensorVision is a VEGA-based application that pro-
duces IR scenes in real time with a certain amount of simplifications in order to
obtain the real time imagery. The CameoSim is an advanced IR program aiming
at producing high fidelity physics based images originally applied to camouflage
assessments. The RadThermIR is a three-dimensional heat transfer program that
uses FDM (Finite Difference Methods) to predict the temperature distribution over
a target which is used to predict the IR radiance.

The atmosphere radiative transmission introduces both multiplicative terms from
absorption features and additive terms in the form of scattered and emitted energy. In
the thermal region, reflected atmospheric emission and scattered radiance terms con-
tribute to the target signature. Therefore, atmospheric propagation must be included
to realistically synthesize an infrared scene. Atmospheric models, such as LOW-
TRAN [9], MODTRAN [10], and FASCODE [11] are used to simulate the effects
of the atmosphere on radiation.

This study is aimed at the development of a software for analyzing the radiances
through the path and from the objects in the scene which include the radiative inten-
sities by self-emission and by reflection of incident radiation. Different material
properties are considered in analyzing the thermal balance and the surface radiation.
The spectral radiance received by a remote sensor is consisted of the self-emitted
component directly from the object surface, the reflected component of the solar
irradiance at the object surface, and the scattered component by the atmosphere
without ever reaching the object surface. MODTRAN is used to model the scattered
radiance by the atmosphere, and the solar radiation including the direct and the
diffuse solar energy components.
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2 Theoretical Backgrounds

2.1 Calculation of the Surface Temperature

The surface temperature of an object can be determined by considering the energy
balance over a finite surface element as shown in Fig. 1. In this paper, the ther-
mal model is based on an efficient one-dimensional, time dependent (unsteady
state) equation for calculation of the surface temperature. The resulting equation
is expressed as;

MsC p,s

(
dTs

dt

)
= Qcond + Qconv + Qsolar + Qemiss (1)

where Ts is the surface temperature and t is time. Ms , C p,s are the mass and spe-
cific heat of the surface element. Qcond , Qconv are the conduction and convection
heat transfer. Qemiss is the surface emitted radiative energy. Qsolar is composed
of a direct component (qsolar ,direct and a diffuse component (qsolar ,diffuse ), both
depending on the azimuth and elevation angle of the sun. The radiation incident on
an object surface depends on the scattering and absorbing processes of the atmo-
sphere. The solar energy absorbed by the surface is determined by considering the
surface absorptivity α as;

Qsolar = α · As
(
qsolar ,direct + qsolar ,diffuse

)
(2)

where qsolar ,direct and qsolar ,diffuse are the total solar energy fluxes by direct and
diffuse irradiations.

1. Direct Solar Heat Flux: The direct solar radiation is reached on an object surface
after transmitting through the atmosphere and calculated by using the MOD-
TRAN. The total direct solar radiation incident to a horizontal surface is calcu-
lated as;

qsolar ,direct =
∫ ∞

0
Isolar ,direct (λ) cos θs dλ (3)

where θs is the solar angle measured from the surface normal axis.
2. Diffuse Solar Heat Flux: The diffuse solar radiation is reached on an object sur-

face from all directions exposed to the atmospheric environment through multi-
ple scattering in the atmosphere and is calculated by considering the directional
integration using the TN quadrature [12]. The spectral diffuse solar radiation
components obtained by using the MODTRAN are then used to obtain the hemi-
spherical diffuse solar flux by using the TN quadrature with 100 solid angles
in hemisphere (N = 5). The total diffuse solar radiation incident to the object
surface is then calculated as;
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Fig. 1 Energy balance on a
surface element

qsolar ,direct =
∫ ∞

0

∫
ŵ·n̂<0

Isolar ,diffuse (λ, ω) · n̂ dω dλ (4)

where n̂ is a unit normal vector to the object surface and dω is the solid angle.

2.2 Atmospheric Transmittance Model

In this study, the solar irradiation and path radiation are computed by using the
MODTRAN. The MODTRAN is probably the most widely used and readily avail-
able of the propagation models. This model assumes that the atmosphere is divided
into a number of homogeneous layers. The temperature of each layer can be deter-
mined from radiosonde data acquired at the time of data collection or from generic
profiles stored in the MODTRAN model. The concentration of the permanent gases
and water vapor can be estimated from radiosonde air pressure and relative humidity
data as a function of altitude.

The MODTRAN models the atmosphere as many individual layers, each of
which exhibits either pre-defined or user-specified meteorological conditions, atmo-
spheric composition of gases, aerosol type and specific scattering phase function,
as well as global position. The MODTRAN provides several standard atmospheric
profiles if no detailed data are available from the time of the collection. The MOD-
TRAN calculates atmospheric transmittance, atmospheric background radiance, sin-
gle scattered solar and lunar radiance, direct solar irradiance, and multiple scattered
and thermal radiance by using the supplied input data such as the perpendicular dis-
tributions of temperature, gas component etc through the atmosphere. The spectral
resolution of the model used for the MODTRAN4 is 1 cm−1, but spectral bands of
20 cm−1 are considered for calculation of the spectral solar radiation and the spec-
tral scattered radiance ranging from 0 to 50, 000 cm−1. The spectral atmospheric
solar transmittance and spectral direct solar radiation on July at mid-latitude region
obtained by using the MODTRAN4 are depicted in Figs. 2 and 3.
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Fig. 2 Spectral atmospheric solar transmittance in July

Fig. 3 Spectral solar irradiance in July
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2.3 Spectral Radiance Received by a Remote Sensing

Infrared signatures by MWIR (Mid Wave Infra-Red, 3∼5 
m) and LWIR (Long
Wave Infra-Red, 8∼12 
m) regions sensors are being increasingly used for a variety
of remote sensing applications. In this paper, we analyzed the infrared signatures
received by a remote sensor considering MWIR and LWIR radiances. The spectral
radiance received by a remote sensor is consisted of the components emitted directly
from the object surface, reflected at the object surface by the solar irradiance, and
scattered by the atmosphere without ever reaching the object surface as shown in
Fig. 4 [13–15]. The resulting equation for the radiance at wavelength λ0 (wavelength
band between λ1 and λ2) received by a remote sensor is expressed as;

I (λ0) = Iself ,emitted (λ0)+ I r
solar ,direct (λ0)+ I r

solar ,diffuse (λ0)+ Ipath (λ0) (5)

where Iself ,emitted (λ0) is the emitted radiance from the object surface. I r
solar ,direct

(λ0) and I r
solar ,diffuse (λ0) are the reflected radiances from the ground object due

to the direct and diffuse solar components. Ipath (λ0) is the path-scattered radiance
which is a combination of the path emission and the atmospheric scattering.

1. Self-Emitted Radiance: The self-emitted radiance from the object is calculated
as;

Iself ,emitted (λ0) =
∫ λ2

λ1

τa (λ) · ε (λ) · Iλb (Ts) dλ (6)

where τa (λ) is the spectral atmospheric transmittance between the object and the
sensor. The blackbody intensity is obtained from the Plank’s law as;

Iλb (Ts) = C1

λ5
(
eC2/λTs − 1

) (7)

where Ts is the absolute temperature of the surface. ε (λ) is the spectral emissivity
of the surface.

C1 = 0.59552197× 108
[
W · 
m4/m2 · sr

]
C2 = 14, 387.69

[

m · K] .

2. Direct Solar Radiance: The reflected spectral radiance of the direct solar radia-
tion from the object surface that is directed to the remote sensor can be calculated
as;

I r
solar ,direct (λ0) =

∫ λ2

λ1

τa (λ) · ρ (λ) · Isolar ,direct (λ) dλ (8)
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where Isolar ,direct (λ) is the direct spectral solar intensity and ρ (λ) is the spectral
reflectivity of the object surface which is assumed to be diffuse by considering
normal incidence.

3. Diffuse Solar Radiance: The reflected spectral radiance of the diffuse solar radi-
ation from the hemisphere over a flat surface that is directed to the remote sensor
can be calculated as;

I r
solar ,diffuse (λ0) =

∫ λ2

λ1

∫
2π

τa (λ) · ρ (λ) · Isolar, di f f use (λ, ω) dω dλ (9)

where Isolar ,diffuse (λ, ω) is the diffuse spectral solar intensity.
4. Path-Scattered Radiance: The path-scattered radiance is consisted of molecular

rayleigh scattering for a clear atmosphere and mie scattering for an atmosphere
with aerosols (water vapor) or particulates (dust, smoke). In MODTRAN the
path-scattered radiance is obtained by summing up the radiance contribution of
each layer segment. The path-scattered radiance between the sensor location and
the ground object as depicted in Fig. 4 is given by [16]:

Ipath (λ0) =
∫ S

0
τa
(
S∗, λ

)
J
(
S∗, λ

)
d S∗ (10)

where S∗ and S are atmospheric optical depth from the sensor to the object along
the LOS (Line-Of-Sight). J is the total source term including the path emitted and
solar scattered components which are obtained by using the MODTRAN.

Fig. 4 Radiance received by a remote sensor
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3 Numerical Demonstrations

3.1 Conditions Applied

To examine the capabilities of the software developed in this study, the system
depicted in Fig. 4 is used to obtain the spectral radiance received by the remote
sensor. The horizontal surface element is assumed to be located at the geographical
location described in Table 1.

Table 1 Geographical information of the object considered

Location Seoul, South Korea
Latitude 37.34N
Longitude 126.34E
Sensor angle and range Zenith angle (θθ) 15◦

Azimuth angle (φ) 0◦

Range (R) 1 km, 5 km, 20 km

Two different materials of asphalt and aluminum are considered to determine the
infrared signatures to be received by the sensor. The thermodynamic properties of
the materials considered are listed in Table 2. Figures 5 and 6 shows the spectral
emissivities and reflectivities of asphalt and aluminum (ImageMapper, [17]). The
solar absorptivities of the materials considered are determined by simply averaging
the spectral emissivities over the whole spectrum and are given in Table 2. A uniform
wind is assumed to be directed from south to north with the velocity of 2 m/s.

Table 2 Material properties considered

Material Asphalt Aluminum

Density 2,115 kg/m3 7,870 kg/m3

Specific heat 920.0 J/kg·K 447.7 J/kg·K
Thermal conductivity 0.062 W/m·K 71.965 W/m·K
Total absorptivity (�) 0.94 0.28

3.2 Numerical Results and Discussions

The IR signatures vary according to range (R) between the object and the sensor.
The MODTRAN band models [10] assume that the line strengths and locations are
statistical, and their accuracy increases as both the bin size and number of lines
increase. Model parameters are determined by requiring agreement in the strong-
line and weak-line of the transmittance expressions. In MODTRAN, the band aver-
aged atmospheric transmittance (τa), at wavelength λ around a spectral band (�λ)
is given by [18]:

τa (λ) =
⎛
⎝ 2

�λ

�λ/2∫
0

e−S u b(λ) dλ

⎞
⎠

n

(11)
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Fig. 5 Spectral emissivities and reflectivites in MWIR region

Fig. 6 Spectral emissivities and reflectivites in LWIR region
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Fig. 7 Spectral atmospheric transmittance between the object and the sensor in July (θ = 15◦,
φ = 0◦, R = 1, 5, 20 km)

where b (λ) is the Voigt shape function, u is the absorber amount, and n is the average
number of lines.

The spectral atmospheric transmittances between the object and the sensor in
July obtained by using the MODTRAN with the data in Table 1 are depicted in
Fig. 7.

The spectral radiance to be received by the remote sensor is computed for
given conditions including the components emitted directly from the object surface,
reflected at the object surface by the solar irradiation, and scattered by the atmo-
sphere without ever reaching the object surface. The major spectral region used for
remote sensing are the MWIR and LWIR regions because they contain relatively
transparent atmospheric windows.

1. Daily MWIR Results: Figures 8 and 9 show the daily distributions of the radi-
ances in MWIR from asphalt and aluminum for the three different distances con-
sidered between the sensor and the object. As shown in these figures the MWIR
radiances from the asphalt are nearly 4 to 5 times higher than those from the
aluminum. And the MWIR radiance signals transmitted through the atmosphere
are strongly dependant on the range which many reduce the signal level up to 1/6
at 20 km range as compared to those at 1 km range.

2. Daily LWIR Results: The results obtained from this study show that the strength
of LWIR signals are much stronger than the strength of MWIR signals. This
is because the surface temperatures of the object considered in this study are
relatively low temperature. Figures 10 and 11 show the daily distributions of the
radiances in LWIR from asphalt and aluminum for the three different distances
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Fig. 8 Daily profiles of the radiances in MWIR region (July, Asphalt)

Fig. 9 Daily profiles of the radiances in MWIR region (July, Aluminum)
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Fig. 10 Daily profiles of the radiances in LWIR region (July, Asphalt)

Fig. 11 Daily profiles of the radiances in LWIR region (July, Aluminum)
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considered between the sensor and the object. As shown in these figures the
LWIR radiances from the asphalt are approximately 6 times higher than those
from the aluminum. And the LWIR radiance signals transmitted through the
atmosphere are strongly dependant on the range which many reduce the signal
level up to 1/17 at 20 km range as compared to those at 1 km range.

4 Conclusion

In this study, a computational tool to obtain the infrared radiance received by
a remote sensor is developed and tested. The infrared radiance is obtained by
considering the surface temperature, surface reflectivity and emissivity which are
important parameters in estimating the upwelling radiance calculation. The result-
ing radiances received by the remote sensor are compared for different spectral
radiative surface characteristics considered. The IR signature levels in LWIR show
approximately 6 times those of the MWIR signals, and the IR signature level of
an object is affected significantly by different surface characteristics; signals from
asphalt show up to 4∼6 times stronger than those from aluminum. The IR signals
are attenuated significantly due to the atmospheric transmission; the signal lev-
els at 20 km show about 1/6 of those at 1 km. The radiance results obtained by
using the software developed here show a reasonable trend expected and the soft-
ware can be further developed for infrared image generation. Future improvements
include covering the bi-directional reflectance characteristics and variable sensor
characteristics.
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3D Reflectivity Reconstruction by Means
of Spatially Distributed Kalman Filters

G.F. Schwarzenberg, U. Mayer, N.V. Ruiter and U.D. Hanebeck

Abstract In seismic, radar, and sonar imaging the exact determination of the reflec-
tivity distribution is usually intractable so that approximations have to be applied.
A method called synthetic aperture focusing technique (SAFT) is typically used for
such applications as it provides a fast and simple method to reconstruct (3D) images.
Nevertheless, this approach has several drawbacks such as causing image artifacts as
well as offering no possibility to model system-specific uncertainties. In this paper,
a statistical approach is derived, which models the region of interest as a probability
density function (PDF) representing spatial reflectivity occurrences. To process the
nonlinear measurements, the exact PDF is approximated by well-placed Extended
Kalman Filters allowing for efficient and robust data processing. The performance
of the proposed method is demonstrated for a 3D ultrasound computer tomograph
and comparisons are carried out with the SAFT image reconstruction.

Keywords Data association · Extended Kalman filter · Synthetic aperture focusing
technique · 3D image reconstruction

1 Introduction

The determination of the reflectivity distribution of a region of interest (ROI)
addresses a wide area of applications. Application fields may be found in radar
imaging of the earth [1], sonar imaging of the ocean bed [2], seismic imaging of
the earth’s crust [3] as well as in medical application based on ultrasound imaging
systems [4].

The measurement setup for analyzing reflectivity distributions regarded in this
paper consists of an arbitrarily distributed sensor network that acquires reflectiv-
ity information about a ROI. Additionally, unfocussed transmission of pulses is
regarded as this leads to faster data acquisition especially for 3D applications. For
each emitter and receiver one data set is acquired, which are then fused to achieve
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high resolution and high contrast images. By shifting the transducers to different
positions, e.g., the movement of an airplane in synthetic aperture radar, the sensing
aperture is increased.

The reconstruction of the unknown reflectivity from the measured data is called
an inverse problem [5]. The inverse problem refers to the situation of knowing the
incidence field of the emitter and the measured data of the receivers and trying to
reconstruct the object causing the variation of the incidence field. This requires a
precise knowledge of the characteristics of the transducers as well as the physics
behind the propagation of the incidence wave and its interaction with the object
under investigation. The mathematical solution of this inverse scattering problem
is intractable, thus approximation schemes are applied to yield an analytic [6] or a
numerical [7] solution. The solution with the smallest number of approximations is
known as diffraction tomography [8], which is, however, computationally expensive
as the solution has to be determined iteratively.

To overcome these difficulties, the 3D reflectivity distribution is described by a
statistical approach. For this purpose the reflectivity in the ROI is modeled as a prob-
ability density function (PDF), which may be of arbitrary shape representing sharp
peaks (point scatterers) and structural information about the object under study. The
PDF is approximated by spatially well-placed Extended Kalman Filters, each of
them estimating a local reflectivity. After the complete data set is processed, the
estimates of all Kalman Filters are fused to construct a global reflectivity estimate
in an efficient and robust way.

The paper is organized as follows: Sect. 2 gives a general overview on the prob-
lem of determining the reflectivity distribution measured by an arbitrarily placed
sensor network and presents the general key idea. In Sect. 3, the proposed solution
is introduced and explained. Section 4 presents an application of the proposed image
reconstruction method on a 3D ultrasound computer tomograph and compares the
results with the usually applied synthetic aperture focusing technique approach.

2 Problem Formulation

The problem addressed in this paper is an image reconstruction problem. As uncer-
tainties in the overall system and measurement process cause this problem to be
ill-posed [9], the solution for the inverse problem is intractable for the considered
system setup. In order to render this nonlinear inversion problem tractable, the first-
order Born approximation is employed, i.e., the incidence field at each scatterer is
assumed to be the only source, neglecting the scattered fields from other scatterers.
Furthermore, the refraction of the emitted pulse is ignored.

Each reflection acquired by a receiver is the integral of reflectivity (acoustic
impedance, electrical permittivity) over a hypersurface, see Fig. 1.

By intersecting data sets of different receivers, the source can be located if just
one reflector is present. The naı̈ve solution would be to calculate the intersection
of all ellipsoids. Both analytic and numerical approaches are very time-intensive.
Additionally, in the presence of spatial noise or noise in the data preprocessing the
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Fig. 1 Measurement and data interpretation: On the left an arbitrarily placed emitter e emits a pulse
that is reflected by a scatterer and recorded by an arbitrarily placed receiver r . The measurement of
the receiver is plotted in the middle as an amplitude-over-time plot (A-scan). The value of interest
is the time-of-arrival as shown by the flag. From only one measurement the exact position of the
scatterer can not be derived, only a region containing the scatterer. Assuming a constant speed of
propagation of the emitted pulse, this region becomes elliptical with emitter e and receiver r as
focal points, as each position on this ellipse has the same summed distance to emitter and receiver
(e.g., the solid and the dashed line). In 3D this elliptical region becomes a rotation symmetric
ellipsoid, more precisely a prolate spheroid

intersections are not exact and statistical or heuristic measures have to be applied to
compensate for deviations from the ideal intersection areas.

Since under the Born approximation each measurement restricts the position of
the source on a hypersurface in 3D, only a few points on the surface are true scatterer
positions. All others may be considered as false-positives and represent themselves
as ghosts in the resulting reconstructed reflectivity image. The fusion of several
measurements may therefore be interpreted as a data association problem. The com-
plexity class of the corresponding optimal Bayesian solution is NP-hard and while
further research in this area is still in progress, the data association problem is not
explicitly addressed in this paper.

In addition, real objects do not consist of ideal point scatterers. Regarding non-
isotropic scattering, damping, and the characteristics of the finite-sized transducers,
reflections from the object are not present in all acquired measurements. This forbids
solutions that fuse the measurements in a multiplicative manner, which would cause
blindness for directive scatterers.

In order to avoid intersection calculations and regard realistic scattering behavior,
the underlying space is sampled to create localized reflectivity estimates. The key
idea is to keep track of all true- and false-positive reflections in the sampled volume
and to estimate a probability density that denotes for each point the probability
of being the source of a reflection. These local estimates enable the consideration
of system-specific properties of the measurement process, e.g., regarding sensor
characteristics with respect to the location of the estimator. After processing all
measurements, these distributed samples are fused to an approximation of the global
PDF, which is then used to create an image of reflectivity.

Here the question arises, how those local samples are represented and how the
nonlinear measurements (hypersurfaces) are applied to update the PDF. Since the
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complete data set of the 3D sensor system is usually too large to be processed alto-
gether, it is of interest to obtain a recursive update formulation. Additionally, due to
the numerous error parameters interfering with each other, the overall measurement
error is modeled as normal probability density, as stated by the central limit theorem.
The Kalman Filter as an optimal recursive filter under the condition of normal dis-
tributions for the system model and noise is a good choice for representing the local
samples. In order to handle the nonlinearity of the measurement data, the Extended
Kalman Filter (EKF) is applied, which linearizes the model equations using a first
order Taylor series approximation [10].

3 Reflectivity Probability Density

This section outlines the basic model setup derived to approximate the PDF of a
3D reflectivity distribution from the measurements of a distributed sensor network.
At first, the approximation of the exact PDF is introduced, followed by the model
equations of the EKF. Then an efficient measurement to filter assignment is pre-
sented and the update of the PDF is explained, concluded with the creation of an
image based on the PDF.

3.1 PDF Approximation

The exact PDF is approximated by distributed Extended Kalman Filters that cover
the ROI (Fig. 2). Each of them is a local estimator of reflectivity. The state vector
of the filter is composed of the 3D position of the reflector and can be extended
by any other parameter that may be extracted robustly from the raw input data,
e.g., a frequency analysis by means of a short-time Fourier transform of the current
echo. These parameters are an additional aid for the improvement of the reflectivity
estimate of the object under study.

3.2 Extended Kalman Filter

In the following scenario, we assume a discrete-time dynamic system with linear
system model, but nonlinear measurement model for the local estimates,

xk = Ak−1xk−1 + wk−1,

zk = hk(xk, vk),

wk ∼ N (0, Qk), (1)

vk ∼ N (0, Rk),

evkw
T
j = 0 (∀ k �= j).
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Fig. 2 Example for Kalman Filter placement and affected filters for one measurement. The large
dashed circle represents the sensing aperture with one selected emitter e and receiver r . One mea-
surement (time-of-arrival) covers an elliptical region and the measurement noise determines the
thickness of this region. The ROI is covered with Kalman Filters whose initial covariances are
plotted as spheres with the standard deviation as radius. As shown, the current measurement does
only affect a subset of all filters, which is exploited for an efficient measurement update

Here, xk is a n×1 state vector at time step k, containing at least the [x, y, z]T

position of a local reflection. Ak−1 is the time-variant linear n×n system matrix,
which relates the state vector at time step k−1 to time step k, disturbed by the system
noise wk drawn from a zero mean multivariate normal distribution with covariance
Qk of size n×n. zk is a dz×1 measurement vector, which is a scalar if only the time-
of-arrival (TOA) is taken into consideration. hk(xk, vk) is the time-variant, nonlinear
measurement function, which returns a dz×1 estimate of the next measurement,
given xk and the zero mean Gaussian white measurement noise vk with covariance
Rk of size dz×dz .

The time update equations of the Kalman Filter are given as [11]

x−k = Ak−1x+k−1, (2)

P−k = Ak−1P+k−1Ak−1
T +Qk.

Based on the system model Ak−1, the state x−k as well as the estimate covariance P−k
is predicted for the current time step k.

The measurement update equations as defined by the Extended Kalman Filter
are [10],



412 G.F. Schwarzenberg et al.

Sk = HkP−k Hk
T + Rk,

Kk = P−k Hk
T Sk

−1, (3)

x+k = x−k +Kk(zk − hk(x−k , 0)),

P+k = (I−KkHk)P−k .

The measurement prediction covariance Sk is the expected value of the innovation,
calculated by means of the predicted covariance P−k and the linearization Hk of
the measurement function hk . The dz×n Jacobian matrix Hk is dependent on the
predicted state x−k ,

Hk = �hk

�xk
(x−k , 0). (4)

Kk is the n×dz Kalman gain, which is used to update the state estimate to x+k and
its covariance P+k .

3.3 Measurement to Filter Assignment

Each measurement of an emitter-receiver-combination is an amplitude-over-time
signal (A-scan). For reflectivity imaging, parameters such as TOA, amplitude, fre-
quency or phase information of each echo need to be extracted in a preprocessing
step.

As demonstrated in Fig. 1, each preprocessed echo does only affect a specific
volume (ellipsoidal shell) from where the possible scatterer(s) caused the reflection.
The size of this volume increases with higher uncertainty of the preprocessing step.
Therefore, a filter is only affected if it is close to this volume. This is exploited to
achieve an efficient processing of the Kalman Filter updates as only a subset of all
filters need to be updated for each measurement.

This is achieved by using one part of the Kalman Filter equations. The quadratic
form of the innovation covariance Sk (Eq. (3)) may be regarded as a squared norm,
weighted according to the filter covariance matrix P−k (Mahalanobis distance). This
statistical distance is used to define a set Sk of Kalman Filters at the positions xk

that are updated by the current measurement zk ,

ỹk = zk − hk(x−k , 0),

Sk(γ ) = {xk : ỹT
k S−1

k ỹk ≤ γ
}
. (5)

Sk(γ ) is χ2 distributed with dz degrees of freedom. γ is selected beforehand and
kept constant during the application.

An example for this gating procedure is shown in Fig. 2, where the possible origin
of one measured reflection for the marked emitter and receiver is shown as elliptic
region. The central ellipse represents the current measurement, the bounding ellipses
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represent the error interval defined by, e.g., measurement noise or the imprecise
knowledge of the speed of propagation of the emitted pulse.

3.4 Independent Kalman Filters

Before processing the acquired data for reconstruction, Kalman Filters are placed
throughout the ROI at a desired resolution. This initializes the state vector of each
Kalman Filter.

As each TOA measurement is the integral of reflectivity along an ellipsoidal
shell, multiple positions and thereby multiple Kalman Filters are affected by the
same data. Nevertheless, in this paper the Kalman Filters are assumed to be inde-
pendent of each other to avoid the large increase in complexity.

3.4.1 Update of the Kalman Filters

The nonlinear measurement function hk (Eq.(1)) returns the summed travel time of
the emitted pulse at the propagation speed v between x−k to the emitter e and x−k to
the receiver r ,

hk(x−k , 0) = ‖x−k − e‖ + ‖x−k − r‖
v

. (6)

The Jacobian matrix Hk of this function as defined in equation (4) equals the
normal vector of an ellipsoid through the position x−k with the focal points e and r .

The update of the distributed Kalman Filters with a new measurement zk is per-
formed as follows: First, the gating procedure is applied to determine those Kalman
Filters that have to be updated (Fig. 3(a)). The value of γ (Eq. (5)) is set accordingly
so that it represents a reasonable amount of space, from where the measurement
zk could have originated. Then Hk and hk are determined for each Kalman Filter
state x−k . The update with zk causes the filter state to be shifted along the local
normal (defined by Hk) on the ellipsoid that is defined by zk and the emitter and
receiver position (Fig. 3(b)). The update of the covariance matrices results in smaller
eigenvalues along the local normal vector. During the processing of different spa-
tial emitter-receiver-combinations, the eigenvalues of the covariance matrices are
reduced along different normal vectors (Fig. 3(d)). For example all eigenvalues will
become smaller at true scatterer positions if the object under study is surrounded by
sensors.

3.5 Image Formation

After processing all measurements with the distributed Kalman Filters, an image
has to be created, that shows high values at positions with a high probability of
reflectivity. If a Kalman Filter has been placed at or is close to a true scatterer posi-
tion, multiple measurements will have been used to update the covariance matrix,
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Fig. 3 Example of processing two TOA measurements for 100 distributed Kalman Filters. Their
covariances are plotted as ellipsoids (initially spheres) centered at the positions of each filter. The
point scatterer is shown as blue dot at the position (x, y) = (0.0, 0.0). (a) shows the subset of
filters (red) for the first measurement as determined by the gating procedure. The selected filters
are updated, which shifts their positions towards the measurement and adapts their covariance
matrices accordingly (b). The update procedure is shown for a second measurement ((c) and (d)),
which causes the covariance of the filter closest to the scatterer to shrink the most

resulting in a denser probability mass around the filter position. Integrating this
density over a predefined voxel grid with a desired resolution results in high image
values at those positions where Kalman Filters with small eigenvalues in their
covariance matrices are located.

One voxel of the final image is the sum of the integrals of all Kalman Filters over
the volume of the regarded voxel. For speed-up purposes, only those Kalman Filters
are regarded for a specific voxel that lie closer than four times the standard deviation
corresponding to the covariance matrices.
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4 Application: Ultrasound Computer Tomograph

The derived method is applied to reconstruct reflectivity images of a 3D ultra-
sound computer tomograph (USCT) [4], that has been built at the Institute for
Data Processing and Electronics at Forschungszentrum Karlsruhe. This system has
been developed for early breast cancer diagnosis and enables 3D imaging of a
non-deformed breast with non-ionizing radiation. Fig. 4 shows the measurement
setup.

The sensing aperture is cylindrical with a height of 15 cm and a diameter of
18 cm. It is equipped with 384 emitters and 1536 receivers grouped in 48 trans-
ducer array systems. The transducers have a size of (1.4 mm)2, a center frequency
of 2.4 MHz and an opening angle of±15 degree at−6 dB. A complete measurement
results in a data set of approx. 600.000 A-scans (3 GB), which can be additionally
increased by rotating the cylindrical aperture, thereby acquiring more information
from different angles.

In this paper, a constant speed of sound is assumed. In future work, varying speed
of sound can be introduced by including the speed of sound map of the ROI, which
can be determined with the same data set [12].

Fig. 4 Experimental ultrasound computer tomograph with cylindrical aperture and approx. 2000
transducers that are grouped into 48 transducer array systems (white blocks). The application is
shown at the bottom, the woman lies in prone position on a bed while the breast is hanging in the
measurement tank filled with water
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4.1 Data Preprocessing

The TOA of each recorded echo is detected by means of a pulse detection method
based on the wavelet transform [13]. Each TOA is used as a measurement for updat-
ing the distributed Kalman Filters. The ability of the pulse detection to separate
two interfering echoes has been evaluated as 900 ns (center frequency of 2.4 MHz),
which is used as basic magnitude of the measurement noise.

4.2 Kalman Filter Setup

For the following evaluation, the Kalman Filter equation are adapted as follows:
The system model Ak is set to identity as no prediction on the position of the

state vector may be performed. The application of system noise is also neglected.
The system noise would increase the eigenvalues of the covariance matrices and
thereby unsharpen the image. The analysis of a useful application of system noise
is part of future work.

The measurement noise is constant during the training process and has to be set
depending on the amount of data and the initial values of the covariance matrices of
the Kalman Filters.

The placement of the filters and their initialization is application-dependent. The
choice of the number of Kalman Filters and their distribution is an empirical process
so far and is based on the desired resolution in the final image or its desired quality
with respect to structural information.

4.3 Evaluation

The proposed method is evaluated by means of two experiments. Image reconstruc-
tions with the PDF are compared to the currently applied image reconstruction,
which is based on synthetic aperture focusing technique (SAFT) [14].

The first experiment consists of ten vertically spanned nylon threads (Fig. 5 left).
This experiment was used for experimental resolution assessment in the horizontal
plane. The reconstructed images of the nylon threads are compared by evaluating
the contrast of each image. A second and more complex experiment with a clinical
breast phantom (Fig. 5 right) is done to demonstrate the proposed method for breast
imaging.

To reconstruct an image with SAFT, each recorded A-scan A(i, j) from an emitter
and a receiver at the positions ei and r j is backprojected to the image position x of
the image I using

I (x) =
m∑

i=1

n∑
j=1

A(i, j)

(‖ei − x‖ + ‖r j − x‖
v

)
, (7)
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Fig. 5 Left: Ten vertically spanned nylon threads with a diameter of 0.2 mm, each spaced 2 mm
apart for evaluating the horizontal resolution of the USCT. Right: Tissue mimicking triple biopsy
breast phantom for evaluating the breast imaging capability of the USCT

where v is the speed of propagation of the emitted pulse, here assumed to be con-
stant. The A-scans used for the image reconstruction with SAFT are created by
convolving the TOA data from the preprocessing step with a Gaussian window of a
temporal length of 1 μs. This compensates for the error induced by the preprocess-
ing step and further errors caused by the imprecise knowledge of the speed of sound
and the positioning of the transducers, respectively.

As measure for the contrast, the signal difference to noise ratio (SDNR) is eval-
uated, which is calculated by comparing the mean amplitude of the reconstructed
object μobject to the background artifacts. These are evaluated as the mean μBG and
standard deviation σBG ,

SDN R = μobject − μBG

σBG
. (8)

For evaluating the contrast of the nylon thread reconstructions, the background
has to be segmented from the object. This is performed separately for each nylon
thread by taking those pixel into account that have higher values than half of the
local maximum.

4.3.1 Thread Experiment

The ten nylon threads have a diameter of 0.2 mm, each spaced 2 mm apart and are
vertically spanned through the center of the USCT. Only the physically neighboring
transducers closest to the slice image were used resulting in 16 sending and 64
receiving elements. This is sufficient for reconstructing the threads but also causes
image artifacts due to the sparseness of the sensing aperture. This gives a good basis
for comparing the two image reconstruction approaches via the contrast function.
The ideal image reconstruction of these threads would result in ten distinct dots as
shown at the top of Fig. 6.
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Fig. 6 The slice image reconstruction (407×407 pixel) of the ten vertically spanned nylon threads
with SAFT shows ten clearly distinguishable points, see the ideal image at the top. Nevertheless,
along the normal of the line connecting the ten threads, lots of artifacts are visible, which is due to
the sparseness of our sensor aperture. The image reconstruction with 87 × 87 distributed Kalman
Filters also clearly shows ten points. There are also reconstruction artifacts but less visible and
more homogeneous. The SDNR value of this reconstruction is twice times higher compared to the
SAFT image reconstruction

The reconstruction of the nylon threads with the SAFT approach (407 × 407
pixel) is shown on the left of Fig. 6. The ten threads are clearly visible, neverthe-
less, there are many artifacts in the proximity of the threads. The computed SDNR
resulted in a value of 5.1.

The image reconstruction with 87 × 87 distributed Kalman Filters is shown on
the right of Fig. 6. The threads are also imaged as distinctive points, but the recon-
struction artifacts are significantly reduced. The evaluated contrast value of 10.5 is
twice times higher than the value of the SDNR of the SAFT image reconstruction.

4.3.2 Breast Phantom Experiment

The clinical breast phantom is a triple modality test object for biopsy and can
be imaged with X-ray, MRI, and ultrasound [15]. This breast phantom has sev-
eral inclusions mimicking cysts and cancer structures. The average attenuation is
0.5 dB/MHz/cm. For comparison, a slice region was chosen that shows two cysts
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that have a strong directive scattering behavior and one cancerous structure that
scatters more isotropic.

For this experiment the ground truth for ultrasonic reflectivity is unknown. In
order to get an idea of the inner structure of the breast phantom, an MRI image of
the same breast phantom has been acquired. The according slice region is shown at
the top of Fig. 7. A high resolution reconstruction with SAFT (805 × 605 pixel) is
shown on the left of Fig. 7. The boundaries of the cysts are not completely visible
and the cancerous structure dominates the image, as most of the backprojections
fell in this region. The image reconstruction with 73 × 55 Kalman Filters of the
same region is shown on the right of Fig. 7. The boundaries of the cysts are more
distinct and the cancerous structure does not dominate the image. The high amount
of reflections from this region causes the covariance matrices to shrink resulting in a
slightly visible grid. Compared to the boundaries of the cysts, which are formed by
covariance matrices deformed along the tangent of the boundary, the value calcu-
lated from a single covariance matrix is not as high as the sum of largely overlapping
Kalman Filters along the boundaries.

MRI
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Fig. 7 The slice image reconstruction (805 × 605 pixel) of the breast phantom with SAFT shows
two cyst mimicking structure that have a directive scattering behavior as well as another circular
structure (“cancer”) that has scatters more isotropic. For comparison, see the MRI image of the
whole slice at the top with the marked region chosen for evaluation. The boundaries of the cysts
are not completely visible and the strong scattering region dominates the image as a bright region.
The image reconstruction with 73 × 55 distributed Kalman Filters shows the boundaries of the
cysts more clearly. The cancerous region is displayed completely different compared to the SAFT
image. The high amount of reflections from this area caused the covariance matrices to shrink,
which is slightly visible as dot grid. Due to the reduced data set taken for this reconstruction, the
skin of the breast is not visible in the ultrasound images, as the skin reflects the ultrasonic pulses
to regions that are far below the regarded slice image
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5 Conclusion and Future Work

A new approach was presented for the reconstruction of the 3D reflectivity distribu-
tion of a region of interest measured by an arbitrarily distributed sensor network. The
imaging system regarded here is based on the synthetic aperture approach, which is
widely applied in seismic, sonar, and radar imaging. The presented approach models
the region of interest as a PDF representing spatial reflectivity occurrences. The data
is processed in a recursive manner to update the distributed Extended Kalman Filters
used to approximate the PDF. This allows to process the nonlinear measurements as
well as fusing information of objects under study that are only partly available in
the acquired measurements.

Experiments with a 3D ultrasound computer tomograph showed that the pro-
posed method results in a higher image quality with less image artifacts and higher
structural information. The run-time for reconstructing images with the distributed
Kalman Filters is in the same order of magnitude as the SAFT approach. The results
also showed that the amount of Kalman Filters does not have to be as high as the
number of voxel used with the SAFT approach.

The image quality may be additionally improved by regarding system-specific
parameters such as sensor characteristics, uncertainties in transducer positioning,
and speed of propagation determination as well as object properties. With the pro-
posed method, a basic framework is available for future work. More precisely, the
following issues will be analyzed:

• The estimation of measurement noise during Kalman Filter training with a sec-
ond estimation of the reflectivity may help reduce the artifacts further and also
sharpen the image.

• The application of system noise to those Kalman Filters that were not affected by
processing the TOA data of one A-scan could also decrease false-positives.

• The utilization of the information of non-occurring echoes at specific times could
eventually be used to diminish directly artifacts in the image.

This work demonstrated a statistical approach for 3D image reconstruction,
which is easily extendable with system-specific parameters and is able to consider
uncertainties in system parameters and input data.
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T-SLAM: Registering Topological
and Geometric Maps for Robot Localization

F. Ferreira, I. Amorim, R. Rocha and J. Dias

Abstract This article reports on a map building method that integrates topological
and geometric maps created independently using multiple sensors. The procedure is
termed T-SLAM to emphasize the integration of Topological and local Geomet-
ric maps that are created using a SLAM algorithm. The topological and metric
representations are created independently, being local metric maps associated with
topological places and registered at the topological level. The T-SLAM approach is
mathematically formulated and applied to the localization problem within the Intel-
ligent Robotic Porter System (IRPS) project, which is aimed at deploying mobile
robots in large environments (e.g. airports). Some preliminary experimental results
demonstrate the validity of the proposed method.

Keywords Topological maps · View-based localization · SLAM geometric maps ·
Robot localization.

1 Introduction

This article explores the use of combinations of topological and local geometric
maps. There are a number of methods in the literature that attempt to exploit the
perceived advantages of combined, hybrid or hierarchical maps for use in environ-
ment representation and mobile robot localization. There are some methods that are
described in the literature that allude to Topological SLAM [1–13] in order to create
an association with (geometric) Simultaneous Localization and Mapping (SLAM),
a well-accepted means of building maps [14–16].

We could classify the methods that utilize both topological and metric infor-
mation into hierarchical or hybrid methods. While the distinction is primarily
semantic in nature, hierarchical methods could be seen as maintaining different
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Table 1 Glossary of terminology used in T-SLAM

K total number of nodes in the topological map
k an index, node occupied by the robot or position in the topological map
V t
obs the set of observations at time t

M total number of distinct metric maps
m an index, usually employed to denote a particular metric map
X t

m representation of the metric map m at time t
αi the mixture component coefficient or component prior probability
V the FIM, or the complete set of views/vectors as collected during

Environment-Familiarisation stage
π the initial probability distribution over the hidden states of the Hidden

Markov Model
ai j the probability of transiting from [hidden] state i to state j in the Hidden

Markov Model
bi (n) the observation or emission probability for the symbol bi at the place n

within the Hidden Markov Model
j an index, usually employed to denote a particular feature, j
k∗ the estimated place as obtained by applying the maximum criterion to the

Belief over the indices of the Reference Sequence
M the number of [hidden] states in the Hidden Markov Model
N the number of [visible] observations/symbols in the Hidden Markov

Model
Z Hidden or incomplete data in a Mixture Mode
zk the vector from matrix Z corresponding to the view/vector Vk

λ the parameter set, 〈N , M, {πi }, {ai j }, {bi (n)}〉, of the Hidden Markov
Model

�i a single component of the mixture model with the named features

representations in order to accomplish different purposes such as long-term planning
in the topological map and precise motion control for navigating among obstacles
using metric information.

One of the earliest and possibly one of the most well known approaches in this
category is the Spatial Semantic Hierarchy or the SSH developed by Ben Kuipers
[1,2]. The SSH is described as a model of knowledge of large-scale space consisting
of multiple interacting representations, both qualitative and quantitative. The repre-
sentation of the environment is maintained in the form of a hierarchy of maps –
including metric and topological levels – each of which allows some abstraction
of the perception and interaction of the robot with the environment. The advan-
tages gained from using SSH or similar hierarchical model of representations is that
incomplete or uncertainty in the information is handled in different forms depending
on which particular localization or navigation problem is to be solved. Local metric
maps help to perform place recognition, (middle-level) topological maps help create
consistent maps in the face of challenges such as loop-closing problems, and the
global metric maps maintain an overall consistency in the global position of the
robot.

Hybrid approaches are usually employed to resolve specific disadvantages of one
representation with regards to the other. In certain approaches that primarily depend
on geometric maps, the loop closure problem has been resolved by simultaneously
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having locally precise geometrical information and globally consistent topological
information about a (large) environment.

One such hybrid method is proposed by Choset and Nagatani [3] propose a
SLAM method that exploits topology of the free space to localize the robot on a
partial map. Low-level control laws are used to generate Voronoi graph (VG) and
explore the unknown space. A graph matching process over the VG structure is used
for robot localization, whereby the robot locates itself to one of the places of the VG,
though the robot does not know its metric coordinates.

Thrun [17] builds a global metric (grid-based) map of the environment and then
extracts a topological graph from this metric representation. Besides being not scal-
able to large environments, this method requires a globally consistent metric map,
which is in general very difficult to obtain.

There are also attempts to utilize graph based approaches to solve particular
problems that appear at the time of creation of metric maps. Methods such as [5],
use graphical methods to maintain hypothesis for map expansion and closure, i.e.
graph-like methods are used to maintain multiple map hypothesis of the main map
which is geometrical. There are works that enhance the applicability of metric maps
and the ability of users to interact with these such as representing individual objects.
In [18], Limketkai and others store the representation of objects (some of which
might also be used by persons) using a technique called Random Markov networks.

Tomatis et al. [13] developed a hybrid map representation wherein a global
topological map connects local metric maps. The robot may switch between both
representation when navigation conditions change (e.g. leaving a room and crossing
a door). When doing this, the method requires a detectable metric feature in order to
determine the transition point where the change from topological to metric has to be
done and allows robust initialization of the metric localization (relocation and loop
closure). The method was validated within office-like environments but its potential
is unclear for different and larger environments.

In [19] Zimmer utilizes a clustering algorithm based on neural networks to cluster
the local polar maps and ultimately register them in the global topological map. The
experiments were performed on a small environment and the results are unclear
regarding the scalability for larger environments. A similar idea is behind the proce-
dure adopted by Zivkovic [20] where panoramic images are grouped and semantic
information is associated with the groups. It is stated that this method bears sem-
blance to the way animals represent their environment. As in the case of [4], a clus-
tering approach is used to group images and represent places in the environment by
using a typical set of images for that place. In [21], Thomas and Donikian hypothe-
size a hierarchical set of (topological) representations that represent the environment
using similarity of places. The developers of these methods claim that such labeling
of (similar-looking) places is in line with the spatial concepts that humans employ.

In the current work, we propose a generic method to integrate a global topological
map with a set of two or more geometric maps. Some of the nodes of the topolog-
ical map are associated with the individual metric maps, as depicted in Fig. 1. Our
method tracks the global position of the robot only within the topological map. The
localisation procedure in the topological map isolates features or properties of the
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Fig. 1 Depiction of T-SLAM: the use of combined Topological and Geometric maps

environment into groups that are used to recover the node in the topological map
that is currently occupied by the robot. By exploiting the associations between the
nodes and the metric maps, we also maintain the local position of the robot enabling
the precise geometric positioning of the robot. Localisation in each local metric
map is performed independently and simultaneously. Map updating is performed
simultaneously in these local metric maps as would be performed in a conventional
SLAM algorithm.

In the next section, the method of localisation in the hierarchical representation
is presented. In Sect. 2.2 a brief overview of the topological localization method is
presented. In Sect. 2.3, a selected SLAM algorithm is used to create a geometric
map. In Sect. 2, the combination of topological and geometric maps is described
together with the localization system. In Sect. 3, the preliminary result from experi-
ments using combined Topological and geometric maps.

2 Integrating Topological and Geometric Maps

Our representation of the environment is composed of a global topological map and
a set of two or more local geometric maps. Let K be the total number of nodes in
the topological map, these nodes indexed by the variable k = 1, . . . , K . Let M be
the total number of metric maps identified by m = 1, . . . , M . Let X t

m denote the
representation of the robot in the topological map m at the discrete instance of time
t . X t

m varies depending on how the position of the robot is maintained in the metric
map.
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Fig. 2 Depiction of
Independent creation of
Topological and Metric maps

Since there exists a single global topological map and multiple geometric maps
conditioned on this global topological map, as depicted in Figs. 2 and 3.

The probability of the robot being localised in both, the topological k and metric
map m is given by P(X t

m, k|Vobs ) in Eq. (1).

P(X t
m, k|Vobs ) = P(X t

m |k, Vobs )× P(k|Vobs ) (1)

The above expression conditions the probability of localisation on both maps on
the probability of localisation on the global topological map. The term P(k|Vobs )
in Eq. (1) denotes the localisation in the topological map. Without prejudice to
the general case, the index indicating time has been removed from the remaining
expressions.

P(Xm |k, Vobs ) represents the localisation in the metric map, conditioned on the
robot being positioned at node k in the topological map and can be expanded as in
Eq. (4).

Fig. 3 Depiction of
Superimposition that actually
exists between the
topological map and the set
of geometric maps
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P(Xm |k, Vobs ) = P(Xm, k, Vobs )

P(k, Vobs )
(2)

= P(Vobs |k,Xm)× P(Xm |k)× P(k)

P(Vobs |k)× P(k)
(3)

= P(Vobs |k,Xm)× P(Xm |k)

P(Vobs |k)
(4)

P(Xm |k) captures the association that the nodes of the topological map have with
the individual metric maps. The exact nature of this association can vary depend-
ing on the features that are used with the topological and metric map and on the
assumptions that are associated with the creation of each type of map. T-SLAM is
an attempt to explore one type of association between a set of local geometric maps
and a global topological map.

The real advantage of T-SLAM will emerge in scenarios in which the set of
metric maps is registered to the global map only at certain places. For example,
some nodes in the topological map might be associated with way points in the metric
maps, through the use of artificial environment properties such as Radio Frequency
Identification (RFID) tags [22] as depicted in Fig. 4.

The splitting of the environment, into many smaller regions or sections, that is
described in this article is not new, see [6,23–25] for a recent approach. The advan-
tages of using the approach put forth in this article is that the knowledge of the
position of the robot is conditioned on the nodes of the graph, the probability of
which is valid globally, over the entire environment i.e. over all the sections of the
environment.

T-SLAM T-SLAM

Topological Map Topological Map

Radio Frequency
IDs, RFID

Camera images

Doors
Walls

Magnets

New !

3D Reconstruction (llg)

New !

3D Reconstruction (llg)

Ambiguous Markers Unique Markers

Feature-based Maps Feature-based Maps

i j k i j k

Fig. 4 Registration of topological and geometric maps
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2.1 Current Problem formulation

In this article, the first version of T-SLAM is presented. Each node of the topological
map is registered with every local geometric map. Each node k, in the topological
map is associated with one or more geometric maps m by a human operator. This
association is represented in the form of Node-Metric Map association matrix. Each
element amk of this association matrix is assigned the value of 1 is the node is asso-
ciated with the geometric map, 0 otherwise. Each line in the matrix corresponds
to a particular metric map m and each column to a particular node k, leading to
the expression (5). The Node-Metric map association matrix allows us to express
the probability distribution associated to a map m∗, conditioned on the node k,
P(Xm∗ |k), by:

P(Xm∗ |k) = am∗k∑M
m=1 amk

(5)

The global probability of being at a particular position within the set of metric
maps m is given by

∑K
k=1 P(X t

m, k|Vobs ) and the location of the robot might be
expressed as in (6) where L(Xm) is the Maximum Likelihood operator. The current
observation is used to update the geometric map within which the robot is located.

Additionally, in the current method outlined in this article, we localise the robot
in the topological and metric maps independently. This results in the simplification:
P(Vobs |k,Xm) = P(Vobs |k) ∗ P(Vobs |Xm).

L(Xm) =MLEk

(
K∑

k=1

P(Vobs |Xm)× P(k|Vobs )∑M
m=1 amk

)
(6)

In the following Sect. 2.2, an expression will be developed for P(k|Vobs ), where
the topological map is built from a sequence of raw-image sequences. In Sect. 2.3, a
well-known SLAM algorithm is utilised to create metric maps and localise the robot
within them.

2.2 Topological Maps from Raw Sensor Data

In [26], a procedure was developed to localize a robot as it travelled along a path.
During a first trip around the environment, the Environment Familiarization phase,
depicted at left in Fig. 5, the robot samples the environment according to a sampling
plan, collecting features by using its various sensors into the Reference Sequence.

A repetition of the motion performed during the place recognition should pro-
pel the robot along the path described by the Reference Sequence. Any maneuver
other than the ones taken during the Environment Familiarization phase will take
the robot to a place that was not sampled in the Environment Familiarization phase.
The Lost Places , in all a total of K in number, accommodate these possible views.
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Fig. 5 The robot is led through the environment on the Environment Familiarization run to create
the Reference Sequence (left). This Reference Sequence constitutes a left-to-right graph (right)
composed of ‘K ’ views, ordered as they were sampled during the Environment Familiarization

Thus, each Lost Place takes into account the fact that the robot might be seeing
views that were not seen in the Environment Familiarization phase.

The sampled views, which would normally be modelled as a left-to-right graph
as at right in Fig. 5, are augmented by the insertion of ‘Lost Places’ as depicted in
Fig. 6.

The sequence begins with PLost 0 which indicates that the robot is completely
lost or has never localized. Also, before every original place Pi , there is a PLost i .
By moving forward from one Lost Place , the robot can transition from PLost i to
any node Pk where k > i . Similarly, from Pi the robot can transition to Pk : k > i
or to PLost i+1 . The graph does not allow a single-step transition from one PLost i

to another PLost j .

Pi
Pi - 1 Pi + 1

Pi + 2P 1

PLost_0

PK

P
Lost_i-1

PLost_i+1

PLost_i

PLost_i+1

Pi

Insertion or
Lost nodes

Views in the  Original
Reference Seqiemce

Fig. 6 The figure depicts a modified Markov chain, with ‘Lost Places’ inserted within the original
Reference Sequence, to perform place-recognition. The dotted lines indicate the transitions to the
Places in the original Reference Sequence and which have not been drawn to avoid cluttering the
figure
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When the robot needs to localize itself, it moves through the same environment,
the current view is compared to the previously collected views and an inference
is made of the current position of the robot. A Hidden Markov Model (HMM) is
used to perform place recognition using the modified Markov Chain in Fig. 6 as
a model for the transitions between the hidden states of the HMM. The Viterbi
algorithm is commonly used in the context of HMMs to determine the most probable
sequence of hidden states that gave rise to a particular sequence of observations. It is
an inference tool that is associated with the process of making inferences in a HMM
and is utilized to position the robot within the Reference Sequence by using the
current sequence of observations. The HMM is specified in terms of its parameters
λ, as in Eq. (7), where N corresponds to the number of states in the HMM, M the
number of observations that will be used to make the inference, π represents the
initial probability on the states, the ai j s correspond to the transition probabilities
between a pair of states i and j and bi (n) represents the probability of viewing
symbol n at state i .

λ = 〈N , M, {πi }, {ai j }, {bi (n)}〉 (7)

The transition between the states is influenced by the transition probabilities
between a pair of places in the graph shown in Fig. 6. An elementary robot motion
model is developed to evaluate the transition probability matrix. For each sequence
of M observations, a simple distribution is used to model the transition probability
distribution from each Lost Place to the remaining original places in the Reference
Sequence favoring places that lie closer in the Reference Sequence. The transition
probability leading away from any of the original places in the Reference Sequence
is uniformly split between the next original place (to the right) and to the corre-
sponding Lost Place . The one-step transition probability from one Lost Place to
another Lost Place is zero.

The first hidden state is always matched to the first Lost Place , PLost 0. This
PLost 0, has a non-zero probability of reaching any place in the original Reference
Sequence.

The observation model of the HMM is based on matching the current view with
the views in the Reference Sequence. In the absence of any information regarding
the view that will be visible at the ‘Lost Place’, we arbitrarily define the observation
probability as an Uniform distribution over the K view in the original Reference
Sequence. The features from each view in the Reference Sequence are converted
into binary form and are represented within a Feature Incidence Matrix (FIM),
V . Due to the large dimensionality of the FIM, it is subsequently modelled as a
Bernoulli Mixture Model (BMM). The parameters of the BMM are obtained by
running the Expectation Maximization(EM) algorithm.

The Mixture parameters and the posterior probabilities over the components, the
Z terms in Eq. (8), are used to evaluate the likelihood as depicted in Eq. (8), P(Vk)
representing the prior probabilities over each view k, in the Reference Sequence. As
expressed in Eq. (9), the Maximum Likelihood Estimation is used to obtain the index
k∗ in V that best describes the object to be matched, Vobs .
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P(k|Vobs) =
∑M

j=1 P(Vk)zk jα j P(Vobs |� j )∑K
k=1

∑M
j=1 P(Vk)zk jα j P(Vobs |� j )

(8)

P(k∗|Vobs) = K
argmax

k
P(k|Vobs ) (9)

2.3 Creating and Updating Local Metric Maps Using SLAM

The incremental creation of Geometric maps from sensor data has been an area of
much research over the last two decades. Simultaneous Localization and Mapping
SLAM and Concurrent Mapping and Localization, CML, algorithms have been pro-
posed by various researchers for the creation of different geometric maps. These
algorithms have been very successful in the creation and utilisation of maps in
indoor environments [14].

A couple of state of the art SLAM algorithms was used to create the local geo-
metric maps. We experimented with the DP-SLAM [15] and the Fast-SLAM [27]
algorithms. Both methods create grid-based metric maps using particle filters. The
local geometric maps presented in this article were created using the Fast-SLAM
algorithm.

A particle filter is a method of obtaining a description of a certain state space
through partial observations of that space, which inevitably contain measure-
ment errors. It maintains a weighted, and normalized, set of sampled states,
S = {s1, s2, . . . , sp}, called particles. At each step, and given an observation
vector z and a control vector u (in our context), the particle filter:

1. Samples m new states S′ = {s ′1, s ′2, . . . , s ′p} from S, with replacement, using the
probability density given by the weights of the elements in S.

2. Runs the state given by each particle through the corresponding motion model,
using the previous states and u, obtaining in this way the new generation of
particles.

3. Each new particle is then weighted, using the observation model together with
the vector z.

4. Normalizes the weights of the new set of states.

The Fast-SLAM algorithm [27] is known for the speed at which the map is
updated and for the relatively good quality of the geometric maps that are outputted.
While the original Fast-SLAM algorithm [27] procedure was developed for metric
maps using landmark, modifications and improvements were subsequently made
including an adaptation to grid-based maps [16]. An implementation of this algo-
rithm was obtained from the Open-SLAM web page [28]. In our current work we
have create adopted a gird-based
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3 Experiments and Results

Initial experiments have been performed on the localisation using a global topo-
logical map and a set of multiple metric maps. The topological representation of
the environment was maintained in the form of a sequence of laser range scans and
images gathered while leading the robot along one or more paths in the environment.

Our robot platform is equipped with two cameras and a Laser Range Finder,
LRF, as seen in Fig. 7. The acquisition of data from the sensors and the control of
the robot is performed within CARMEN. The two cameras, one facing forwards and
the other facing onto one side, are capable of taking gray-scale 640 × 480 images.
SIFT features [29] are utilised to perform matching between current observations
and previously obtained images.

The forward-facing LRF provides a set of 361 range measurements through a
180 degree interval. Features from this sensor are used within the topological rep-
resentation of the environment. The raw data from the sensor is used directly by the
SLAM algorithm to build and maintain the topological map

The robot was first led along a path, depicted in Fig. 8, to create the topological
and the set of geometric maps. The images from the cameras and the LRF were used
to create the topological representation of the path, while raw laser range finder data
and odometry were used to create the geometric maps. A new geometric maps was
created after a specific amount of time of robot travel. A set of three geometric maps
were created in all as shown in Fig. 9.

As stated in Sect. 2.1, the association between places that are represented in the
topological map and the individual metric maps is represented in a Node-Metric
maps association table. Excerpts of this map are shown in Table 2.

In a second experiment, the robot was driven along a path lined primarily by glass
panes and pillars, Fig. 10. Typically, such an environment is difficult for SLAM
applications given the absence of features in the direction lateral to the direction
of robot travel. Excerpts of the Node-Metric Map association matrix are shown in
Table 3. A few images from the set of 150 images that were used to construct the
topological representation are presented in Fig. 11. As is seen in the above image,
this environment, the robot is often surrounded by reflective and glazed surfaces,
which make the SLAM difficult. The combined maps are depicted in Fig. 12.

Fig. 7 The sensor platform
comprising of two laser range
finders and two cameras is
mounted on the Segway RMP
200
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Robot path
(Experiment 1)

0 10 m 20 m

Fig. 8 Experiment 1: The robot was driven along a long hallway and map-building and localisation
were performed to create independent topological and geometric representations

Fig. 9 Experiment 1: The set of three metric maps that are created by running the Fast-SLAM
algorithm after the initial run through the environment in Experiment 1

Table 2 The Node-Metric map association matrix for Experiment 1

1 2 . . . 53 54 55 . . . 94 95 96 . . . 143 144

m = 1 1 1 . . . 1 0 0 . . . 0 0 0 . . . 0 0
m = 2 0 0 . . . 1 1 1 . . . 1 0 0 . . . 0 0
m = 3 0 0 . . . 0 0 0 . . . 1 1 1 . . . 1 1
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Robot Path
(Experiment 2)

0 10m 20m

Fig. 10 Experiment 2: Mapping and localisation is performed in a second environment that com-
prises pillars and glass surfaces

Table 3 The Node-Metric map association matrix for Experiment 2

1 2 . . . 54 55 55 . . . 114 115 116 . . . 149 150

m = 1 1 1 . . . 1 0 0 . . . 0 0 0 . . . 0 0
m = 2 0 0 . . . 1 1 1 . . . 1 0 0 . . . 0 0
m = 3 0 0 . . . 0 0 0 . . . 1 1 1 . . . 1 1

Fig. 11 Experiment 2: Typical images from a set of 150 images that comprise the topological
representation of the path

There is some super position since the individual paths are created incrementally.
Some of the larger amount of overlap that is present between the sections is removed
during the process of merging topological paths. A small amount of overlap is main-
tained to allow transition between paths.
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P1 P2 P54 P55 P114 P115 P149 P150

Fig. 12 Experiment 2: The association of the nodes of the topological map with the set of three
metric maps. In the current version of T-SLAM, the registration of topological and metric maps is
maintained in the form of the Node-Metric Map association matrix

4 Conclusions

Initial results were presented in this work on the simultaneous use of one global
topological whose nodes are registered with multiple metric maps.

Current work includes the improved registration of the topological map with
each metric map such that the uncertainty in the topological map can be transferred
over to the metric maps and vice versa. We expect that this will lead to increased
robustness in the localisation within the geometric maps and to reliable loop closing
procedures in the topological map.
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to hybrid metric–topological slam. IEEE Transactions on Robotics, 24(2):259–270, 2008.



438 F. Ferreira et al.

24. K. Rohanimanesh, G. Theocharous, and S. Mahadevan. Hierarchical map learning for robot
navigation. In In AIPS Workshop on Decision-Theoretic Planning, 2000.

25. G. Theocharous, K. Murphy, and L. P. Kaelbling. Representing hierarchical pomdps as dbns
for multi-scale robot localization. In IEEE International Conference on Robotics and Automa-
tion, 2004, 2004.

26. F. Ferreira, V. Santos, and J. Dias. A topological path layout for autonomous navigation of
multi-sensor robots. International Journal of Factory Automation, Robotics and Soft Comput-
ing, 1:203–215, 2007.

27. M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to
the simultaneous localization and mapping problem. In Proceedings of the AAAI National
Conference on Artificial Intelligence, Edmonton, Canada, 2002. AAAI.

28. www.openslam.org
29. David G. Lowe. Distinctive Image Features-From Scale-Invariant Keypoints. IJCV, 60(2):

91–119, 2004.



Map Fusion Based on a Multi-Map SLAM
Framework

François Chanier, Paul Checchin, Christophe Blanc and Laurent
Trassoudaine

Abstract This paper presents a method for fusing two maps of an environment:
one estimated with an application of the Simultaneous Localization and Mapping
(SLAM) concept and the other one known a priori by a vehicle. The goal of such
an application is double: first, to estimate the vehicle pose in this known map and,
second, to constrain the map estimate with the known map using an implementation
of the local maps fusion approach and a heterogeneous mapping of the environment.
This article shows how a priori knowledge available in the form of a map can be
fused within an EKF-SLAM framework to obtain more accuracy on the vehicle
poses and map estimates. Simulation and experimental results are given to show
these improvements.

Keywords EKF SLAM ·Multi map fusion · Robotcentric local map approach

1 Introduction

The Simultaneous Localization and Mapping (SLAM) problem corresponds to the
ability of a robot to build a map of its environment while localizing itself in that
map. Since the seminal paper [1], the understanding of the Extended Kalman Filter
(EKF) approach to the SLAM problem made real progress [2, 3]. Many researchers
underlined the problem of filter consistency [4, 5] and improved it with multi-map
solutions [6–8]. Other difficulties were addressed like data association [9] and com-
putational burden [10].

Generally, in such applications, both the trajectory of the vehicle and the location
of the landmarks are estimated online without the need for any a priori knowledge
of location [3]. However, we choose to use absolute data in a form of an a priori map
in a SLAM application. This information fusion is done to improve the EKF-SLAM
estimates. Few SLAM applications use available information on the environment.
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One example is described in Lee et al. [11] suggest a path-constrained SLAM solu-
tion using a priori information in the form of a digital road map.

Furthermore, such map fusion approaches can answer questions about solving
the problem of observability in SLAM systems. This property is important, and
is related to the problem of consistency. A lower limit on the estimated error can
only be guaranteed if the designed state (vehicle and map) is completely observable.
In [12], a demonstration proves that EKF-SLAM formulation is not fully observable
without absolute information. In other words, SLAM approaches, with on board
exteroceptive and proprioceptive sensors which provide relative measurements bet-
ween the moving vehicle and the observed landmarks, give only partially observable
estimates and fail to yield the absolute robot pose and feature positions in the global
coordinates.

The method presented in this paper uses as absolute information an a priori
known map of the environment as soon as the vehicle position is available in this
known map. So, our method is composed of two parts and our paper contribu-
tion deals with the second part. First, Fig. 1, the vehicle uses a multi-map SLAM
method [6] without constraint. The environment is divided into numerous local maps
and the size of these maps depends on a maximal number of filter iterations. At an
upper level, all these local maps are fused into a global one. Until the global map
contains enough information, the vehicle position is estimated in the a priori known
map. Then, the known map is used in an added EKF iteration to update the local
and global maps, Fig. 1.

Finally, our method has three principal advantages: estimating the vehicle pose in
a known map, answering to the observability problem and updating estimates with
the known map. At the beginning of the experiment, initial vehicle position is not
known in the a priori environment map. The system realizes the vehicle localization
using matching between the estimate of the global map and the a priori known map.
Since this position is estimated, the method solves the observability problem as
stated in [12]. Besides, if the environment has changed, the a priori known map is
updated using our constrained method.

The remainder of this paper is organized as follows: Sect. 2 presents the SLAM
approach and the environment representation. In Sect. 3, details are given on the

Fig. 1 Scheme of SLAM
update step: classical and
with known map
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update stage with the known map and more especially the algorithm used to find
vehicle position in the a priori map. In Sect. 4, simulation and experimental results
underline the improvement with regard to the estimated vehicle path and mapped
features. They also show the consistency of the fusion approach.

2 SLAM Approach Description

In this section, the SLAM part of our method is based on the Robotcentric map
joining approach [6]. This SLAM approach is chosen because it is reliable, see the
results presented in Castellanos et al. [6]. Indeed, if the vehicle pose in the a priori
known map can not be estimated early in the experiment, the environment mapping
has to remain consistent without being constrained, until the estimated map provides
enough information to determine this vehicle pose, see Sect. 3.2.

2.1 Robotcentric Map Joining Approach

As reported in Castellanos et al. [6], the Robotcentric map joining approach consists
in building a sequence of consecutive uncorrelated local maps and joining them
together in a full correlated map. This technique limits the number of update steps
for each local map, thus, limiting both feature location uncertainties and the effects
of linearization errors [5]. This section introduces the different formulations of local
and global maps used in the presented approach.

2.1.1 Local Maps

Each local map is represented with a Robotcentric approach. Features, XR
Fi

with i =
{1, · · · , n}, are referenced to a frame attached to the vehicle R. The local reference
Wlocal is included as a non-observable feature in the stochastic state vector, Xlocal :

Xlocal =
[

XR
Wlocal

XR
F1
· · · XR

Fn

]T
(1)

with the associated covariance matrix Clocal .

2.1.2 Global Map

Each local map is joined in a global map represented by the same robotcentric
approach. Features, XWlocal

Gi
with i = {1, · · · , m}, are referenced to the current local

frame Wlocal and the global reference is Wglobal . The global vector state is writ-
ten as:

Xglobal =
[

XWlocal

Wglobal
XWlocal

G1
· · · XWlocal

Gm

]T
(2)

with the associated covariance matrix Cglobal .
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To update the global map, the local map vector Xlocal is joined in Xglobal . It is
supposed that these local maps are not correlated. The vector state is written as:

Xsystem =
[

Xglobal Xlocal

]T
(3)

with the associated covariance matrix:

Csystem =
[

Cglobal 0
0 Clocal

]
(4)

Innovation calculation (distance between local and global associated features),
used in EKF update step, is done in local map frame. The nonlinear observation
function, hk that formulates global feature coordinates in local map frame, is given
by:

Z = hk(Xsystem ) =  XR
Fk
⊕ XR

Wlocal
⊕ XWlocal

Gk
= 0 (5)

The Jacobian matrix is given by:

Hk =
[

0 HGk 0 HR 0 HFk 0
]

(6)

with HGk is the Jacobian of hk with respect to XR
Gk

, HR is the Jacobian of hk with
respect to XR

Rg
and HFk is equal to identity matrix as covariance matrix associated

to the measurement (local map feature) is null.
In the last step, named composition, vehicle and feature poses in the global map

are updated with respect to the vector XR
Wlocal

.

2.2 Heterogeneous Mapping

Heterogeneous representation allows a more exact mapping than in a one-feature
based SLAM and, also, provides more information in order to estimate the vehicle
position in the known map, Sect. 3.2. Two geometric feature types, line and circle,
are used to represent the environment in two dimensions and are shown in Fig. 2.

2.2.1 Line

The SPmap model [13] is used to represent line features. The state vector is written
as:

Xline =
[

xline yline θline

]T
(7)
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Fig. 2 Representation of circle and line states

The states, xline and yline , are the Cartesian coordinates of line frame and θline

represents the orientation of this frame in the map reference, see Fig. 2. Only angular
and lateral displacements are used in EKF update step. The other parameter xline is
used to improve data association step with ambiguous matching (parallel walls for
example).

2.2.2 Circle

Circle features are represented by:

Xcircle = [xcircle ycircle rcircle ]T (8)

The states, xcircle and ycircle , are the Cartesian coordinates of circle center and
rcircle is the radius, see Fig. 2. The estimation of these parameters is based on a
Levenberg-Marquardt algorithm, see Triggs et al. [14].

In this heterogeneous mapping concept, the general form of state vectors of the
local and the global maps, respectively Xlocal and Xglobal , is:

Xmap = [Xline Xcircle ]T (9)

3 Update SLAM with known Map

In this section, the part of our method where the EKF-SLAM estimates are cons-
trained by the knowledge of an a priori map of the environment is presented, Fig. 1.
It corresponds to the contribution to the approach presented in Sect. 2.1.
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3.1 Known Map Description

Known map is composed of line and circle features, as presented in Sect. 2.2. This
map is composed of l features. The state vector is written as:

Xknown =
[

XWknown

E1
· · · XWknown

El

]T
(10)

If this map is perfectly known, for example obtained from blueprints of building,
map uncertainty is null. However, for the presented experiments in Sect. 4, feature
poses are measured with a differential GPS sensor. The sensor standard deviation is
around 5 cm. This uncertainty is translated in the known map by the matrix Cknown :

Cknown =

⎡
⎢⎣

σ 2 0
. . .

0 σ 2

⎤
⎥⎦ (11)

with σ deviations on the feature states. Six different variables are defined:

• σxl , σyl and σθl for line type features,
• σxc , σyc and σrc for circle type features.

3.2 Geometric Transformation Determination

Combined constraint data association (CCDA), presented in Bailey et al. [15], is
used to determine geometric transformation between the references of the global
map, Wglobal and the known map Wknown , see Fig. 3. The vector XWglobal

Wknown
, (12),

represents the a priori map reference pose, Wknown , in the global map.

XWglobal

Wknown
= [xknown yknown θknown ]T (12)

xknown et yknown are the Cartesian coordinates and θknown is the orientation.
To calculate XWglobal

Wknown
, two steps are necessary: matching global map with a pri-

ori map features and finding the position and the orientation of the a priori map
reference, Wknown , in the global map.

First, CCDA algorithm performs batch-validation gating by constructing and
searching a correspondence graph. The different features of a map are represented
by a graph where each node is a feature and each edge is an invariant relationship
between two features. Three different relationships are used by CCDA: between two
lines, between two circles and between a circle and a line. These relationships only
use center coordinates for circles and angular and lateral displacements for lines.

Having generated two feature graphs with the relationships, one for the global
map and the other one for the known map, a correspondence graph is created. The
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Fig. 3 Geometric transformation between the global map and the known map

nodes of this graph represent all the possible pairings of the different features of
both maps. An algorithm, used in Bailey et al. [15], searches the maximum clique.
If the clique is long enough, it means that there are enough feature pairings (more
than three), the vector XWglobal

Wknown
and the covariance matrix CWglobal

Wknown
are estimated.

3.3 Update Step with known Map

3.3.1 Insertion of the Translation Vector in Local and Global Map Vectors

The vector XWglobal

Wknown
specified in Sect. 3.2, is now referenced to the frame attached to

the vehicle Wlocal:

XWlocal

Wknown
= XWlocal

Wglobal
⊕ XWglobal

Wknown
(13)

XWlocal

Wknown
is included in the global map state vector (2) as a non observable feature.

Its estimate can be improved during the update steps of the EKF filter:

Xglobal =
[

XWlocal

Wknown
XWlocal

Wglobal
XWlocal

F1
· · · XWlocal

Fm

]T
(14)

The covariance matrix associated with the new vector Xglobal is given by:

Cglobal = G ×
[

CWglobal

Wknown
0

0 Cglobal

]
× GT (15)
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with

G =
[

Jg JXglobal

0 I

]
(16)

and Jg is the Jacobian of equation (13) with respect to XWglobal

Wknown
, JXglobal

is the Jaco-
bian of equation (13) with respect to Xglobal and I is equal to identity matrix.

The XWlocal

Wknown
is also included in each local map state vector. As these maps are

initialized at the position of XWlocal

Wglobal
, the vector XR

Wknown
can be initialized by the last

value of XWlocal

Wknown
. The vector Xlocal is now given by:

Xlocal =
[

XWlocal

Wknown
XWlocal

Wlocal

]T
(17)

XWlocal

Wlocal
is equal to zero. It is supposed that the vector XR

Wknown
is uncorrelated with

the initial vehicle pose in the local map. The initial values of the uncertainties on
vehicle states are null. So, the associated covariance matrix Xlocal is initialized with:

Clocal =
[

CWlocal

Wknown
0

0 0

]
(18)

With this translation vector, states of local and global maps can be updated with
the known map using equations presented in the next part. Moreover, the estimate
of this vector is improved at each algorithm iteration.

3.3.2 Update of Local Maps and Global Map with known Map

This update is realized at every step after the update of local maps. To update the
local map, the vector Xknown is joined in the vector Xlocal :

Xsystem = [Xlocal Xknown ]T (19)

Feature positions are estimated, once the data association step is done, with the
same formulation introduced in Castellanos et al. [6]. However, the observation
equation (5) has to be changed to introduce the translation (13):

Z = hk(Xsystem ) =  XWlocal

Fk
⊕ XWlocal

Wknown
⊕ XWknown

Ek
= 0 (20)

The Jacobian matrix is given by:

Hk =
[
Hknown 0 HFk 0 HEk 0

]
(21)

with Hknown is the Jacobian of hk with respect to XWlocal

Wknown
, HFk is the Jacobian of hk

with respect to XWlocal

Fk
and HEk is equal to identity matrix.
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3.3.3 Update of the Translation Vector

Vector XWlocal

Wknown
is estimated using both the global and local map vectors. When a

local map is joined to the global map, this vector is updated with the observation
equation given by:

XR
Wknown

= hknown (XR
Wlocal

, XWlocal

Wknown
)+ wknown (22)

with wknown , Gaussian noise and the observation function hknown defined by:

XR
Wknown

= XR
Wlocal

⊕ XWlocal

Wknown
(23)

the corresponding Jacobian matrix is given by:

Hknown =
[
Hglobal

known 0 Hlocal
known HR 0

]
(24)

with Hglobal
Wknown

the Jacobian of hknown with respect to XWlocal

Wknown
, HR Jacobian of hknown

with respect to XR
Wlocal

(vector equal to XR
Wlocal

) and Hlocal
Wknown

the identity matrix.

3.3.4 SLAM Constrained by a known Map Algorithm

The method algorithm is presented in Algorithm 1. It summarizes the whole method
and the conditions of switching between the SLAM approach and the constrained
SLAM approach with an a priori known map.

Algorithm 1 : Constrained SLAM approach with an a priori known map algorithm
known← false
hypothesis← 0
loop

if known is false then
Building a local map without constraint (Sect. 2.1.1)

else if known is true then
Building a local map with constraint (Sect. 3.3)

end if
Joining local map in the global one (Sect. 2.1)
if known is false then

Matching global and known maps (Sect. 3.2)
hypothesis← number of validated matches
if hypothesis > 3 then

Estimate of X
Wglobal

Wknown
(Sect. 3.2)

known← true
end if

end if
if known is true then

Update of the translation vector (Sect. 3.3)
end if

end loop
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4 Simulation and Experimental Results

4.1 Consistency Definition

As ground-truth is available with simulation and experimental data (differential
GPS) for the vehicle states, a statistical test for filter consistency can be carried
out on the Normalized Estimation Error Squared (NEES):

d = (XWglobal

Wlocal
− X̂Wglobal

Wlocal
)T (PWglobal

Wlocal
)−1(XWglobal

Wlocal
− X̂Wglobal

Wlocal
) (25)

As it is defined in Bar-Shalom et al. [16], the filter results are consistent if:

d ≤ χ2
dof ,1−α (26)

where χ2
dof ,1−α is a threshold obtained from the χ2 distribution with 3 degrees of

freedom and a significance level equal to 0.05.

4.2 Simulation Results

The vehicle travels the map presented in Fig. 4 along a loop-trajectory of 600
meters, moving 0.25 m/step. The vehicle starts at [−29,−11, π/3]. It is equipped
with a range-bearing sensor with a maximum range of 80 m, a 180 degrees frontal

Fig. 4 A priori known map and vehicle trajectory of the simulation
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Table 1 Range-bearing and control standard deviations

Sensor Variable units Standard deviation value

Telemeter range σρ m 0.05
Telemeter bearing σβ rad π /720
Vehicle velocity σv ms−1 0.10
Vehicle heading angle σϕ rad π /360

field-of-view. The sensor frequency is set to 8 Hz. Gaussian-distributed errors are
presented in Table 1.

The a priori known map of the simulated environment is shown in Fig. 5. The
reference Wknown is equal to [0,0,0] and the feature state deviations are fixed at
10 cm for coordinates, 10 cm for circle radiuses and 0.05 rad for line angles.

The evolution of errors and uncertainties (2 σ bounds) of the vehicle states is
presented in Fig. 6. The error curves stay in the confidence bounds (dotted lines).
These errors on the vehicle states are logical with the uncertainty values estimated
in the associated covariance matrix. So the probability test of the filter consistency,
defined by (26), is checked.

The application of our method brings some substantial improvement in the esti-
mated vehicle path shown in Fig. 7. Errors on vehicle poses are maintained under
15 cm while errors with SLAM approach without constraint reach up to 50 cm in
the environment part which is furthermost from the trajectory start. This accuracy
improvement confirms the purpose to constrain a SLAM approach with an a priori
known map.

Fig. 5 Simulation ground truth: vehicle trajectory and feature poses
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Fig. 6 Errors on the vehicle states bounded by the 2 σ confidence bounds (dotted curves)

Fig. 7 Errors on the vehicle pose estimates: SLAM approach without map fusion (normal curve)
and with map fusion (dotted curve)
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The last result corresponds to the localization of the initial vehicle pose in the
reference Wknown . The estimated vector XWglobal

Wknown
is [−28.968,−10.980, 1.0472], it

corresponds to a 0.14% error compared to the true pose equal to [−29,−11, π/3].
This error on the vehicle pose estimates proves that our method is accurate in a
localization context.

4.3 Experimental results

This section shows experimental results of our fusion approach. The goal here is
to confirm the results obtained using the simulated data in the previous section. A
SICK LMS221 laser sensor and dead reckoning sensors equip one of our Auto-
mated Individual Public Vehicle (AIPV). The vehicle was hand driven along an
outdoor path about 200 m, presented in Fig. 8 (gray line), at a speed of 1.2 ms−1.
This air-view image presents also the a priori known map of the experiment which
is represented by circles and lines and is referenced in W , Fig. 8. A differential
GPS was used to record the feature poses with an accuracy of 5 cm. All the other
parameters of this experiment are the same than in the simulation part, Sect. 4.2 and
Table 1.

A quantitative evaluation of the accuracy of our EKF-SLAM approach with or
without map fusion is done studying the evolution of the error on the vehicle pose,
Fig. 9. First, these results correspond to the simulation results and confirm the
improvement carried by the map fusion. Errors with our approach are maintained at

Fig. 8 Air-view image of experimental environment: red draws (line, circle and reference W )
represents a priori known map and green line shows real vehicle trajectory
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Fig. 9 Errors on the vehicle
pose estimates: SLAM
approach without constraint
(normal curve) and with
constraint (dotted curve)

a lower level than with the classical SLAM approach. The difference with simulation
results on error amplitude can be explained by the fact that the floor is not flat in this
environment.

The estimated map with the known map used in this experiment is presented
in Fig. 10. An air-view of the final results is shown in Fig. 11. The mean error of
20 cm on the vehicle position is explained by the fact that the estimated map is not
exactly overlaid with the known map. Two interesting things can be underlined.
First, the loop closing is well done. The features observed at the beginning of the

Fig. 10 Vehicle trajectory (black line) and map (red draws) estimates with presented approach,
known map of the environment (blue draws) and real trajectory (green line)
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Fig. 11 Air-view image of experimental mapping results: red draws (line and circle) represents
the estimated map, magenta line represents vehicle trajectory estimate and green line shows real
vehicle trajectory

experiment are matched at the end of the trajectory. Second, the known map of this
environment is updated. The new and the old features compared with the known are
clearly identified.

5 Conclusion

In this paper, a fusion between an a priori known map and an estimated map in a
multi-map SLAM framework is presented. The simulation and experimental results
prove that this fusion increases the estimate accuracy of vehicle pose and map com-
pared to a classical SLAM approach. Our approach allows to use available map of
the visited environment and to update these information. A direct application of our
method is to detect changes on a known map of any place without GPS system.
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Development of a Semi-Autonomous Vehicle
Operable by the Visually-Impaired

Dennis W. Hong, Shawn Kimmel, Rett Boehling, Nina Camoriano, Wes
Cardwell, Greg Jannaman, Alex Purcell, Dan Ross and Eric Russel

Abstract This paper presents the development of a system that will allow a
visually-impaired person to safely operate a motor vehicle. Named the Blind
Driver Challenge, the purpose of the project is to improve the independence of the
visually-impaired by allowing them to travel at their convenience under their own
direction. The system is targeted to be deployed on Team Victor Tango’s DARPA
Urban Challenge vehicle, “Odin.” DARPA stands for the Defense Advanced
Research Projects Agency. The system uses tactile and audio interfaces to relay
information to the driver about vehicle heading and speed. The driver then corrects
his steering and speed using a joystick. The tactile interface is a modified massage
chair, which directs the driver to accelerate or brake. The audio interface is a pair
of headphones, which direct the driver where to turn. Testing software has been
developed to evaluate the effectiveness of the system by tracking the users’ ability
to follow signals generated by the Blind Driver Challenge code. The system will
then be improved based on test results and user feedback. Eventually, through a
partnership with the National Federation of the Blind, a refined user interface and
feedback system will be implemented on a small-scale vehicle platform and tested
by visually impaired drivers.

1 Introduction

The National Federation of the Blind Jernigan Institute created the Blind Driver
Challenge (BDC) with the goal of creating a semi-autonomous vehicle that can be
driven by people with significant visual impairments. Currently, there are about 10
million blind and visually-impaired people in the United States, and 1.3 million of
them are legally blind [1]. In today’s world, people desire independence to live freely
and lessen their reliance on others. New technologies are being created to help the
blind attain this goal. The main focus of this project is to pioneer the development
of non-visual interfaces as assistive driving technologies for the blind.
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2 Background

The idea of allowing a blind person to drive a vehicle is viewed by many as overly
ambitious. However, many driver assistance systems currently being researched
directly relate to the BDC. One of these is the Honda Advanced Safety Vehicle.
This vehicle has the ability to recognize imminent collisions and take precautions
to minimize damage or avoid a collision altogether [2, 3]. This technology can be
used in fully autonomous vehicles such as those found in the DARPA Urban Chal-
lenge. These intelligent vehicle systems can collect enough information to drive
without human sight. Theoretically, this information can be provided to a blind
person through other senses to allow him to drive.

Other senses that a person possesses include olfaction (smell), audition (sound),
tactition (touch), and gestation (taste). Given the current state of technology, the
most feasible senses with which to interface are audition and tactition. Purdue Uni-
versity is conducting research on a haptic back display using a chair outfitted with
tactors. This research has discovered links between visual information and tactile
cues, which can be used to increase the effectiveness of tactile feedback [4]. The
University of Genova is investigating the use of 3D sound to provide information to
the driver. This allows sound to be generated at any spatial coordinate or even along
an arbitrary 3D trajectory [5].

In order to provide the driver with sufficient information to drive a vehicle, it
is expected that the interface will need to include multiple senses. The Department
of Veterans Affairs Medical Center has researched a wearable computer orientation
system for the visually-impaired [6]. Three systems are being tested: a virtual sonic
beacon, a speech output, and a shoulder-tapping system. Similar non-visual human
interfaces may be used to supply necessary feedback to blind drivers regarding their
surrounding environment.

3 Odin: The Autonomous Vehicle

Odin, pictured in Fig. 1, is the autonomous vehicle developed by Team Victor Tango
as Virginia Tech’s entry into the DARPA Urban Challenge. The BDC system was
designed to be integrated into Odin for testing in actual driving scenarios. Odin has
the ability to give the BDC system all the information it needs to allow a blind driver
to operate the vehicle.

3.1 Odin’s Sensors

Odin’s ability to recognize the surrounding environment is crucial for safe,
autonomous driving. To accomplish this task, Odin is equipped with the sensor
array shown in Fig. 2. The sensors gather data regarding drivable area and potential
static and dynamic obstacles.
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Fig. 1 Odin. Team Victor Tango’s DARPA Urban Challenge Vehicle

The sensor array consists of two IBEO Alasca XT LIDARs, two IEEE 1394
color cameras, four SICK LMS rangefinders, one IBEO Alasca A0 LIDAR, and a
GPS/INS (Global Positioning System/Inertial Navigation System). The two IBEO
Alasca XTs and the IBEO Alasca A0 are used to detect obstacles and the drivable
area in front and behind Odin respectively. The two Alasca XTs are controlled by
an external control unit (ECU). The ECU pre-processes data before sending it to
Odin’s computer. This feature creates a larger sensor resolution and was the factor
for selecting the Alasca XTs as Odin’s main forward sensors [7]. The four SICK
LMS rangefinders monitor side blind spots and provide extended road detection.
The two forward-facing IEEE 1394 color cameras are used as the primary means of
road detection.

Fig. 2 Odin’s sensor
coverage. The colored areas
indicate the maximum range
of the sensor or the point at
which the sensors scanning
plane intersects the ground.
Odin is facing towards the
right
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Odin uses the GPS/INS system in coordination with the RNDF (Route Network
Definition File) and MDF (Mission Data File) for navigating to a final destination.
The RNDF contains a GPS-based map of all drivable paths within the route network
where Odin is operating. This file is used for creating the fastest route to Odin’s
destination. The MDF contains road checkpoints that Odin must pass through to
reach the final destination.

3.2 Odin’s Software

The sensor data must be translated into useful information that is understood by
Odin’s planning software. First, Odin’s classification software interprets and con-
verts the raw data into information such as drivable area, obstacles, and location.
This refined data is sent to Odin’s planning software, which processes the infor-
mation further to determine the next move. Odin’s planning hierarchy is constantly
receiving updated information and reforming its plans to maintain its desired route.
Each part of the software has its own tasks to complete which are critical to safely
reaching the destination.

The Route Planner uses the RNDF and MDF to plan an overall route before
Odin begins driving. This route is optimized to take Odin to the destination in the
shortest possible time. Driving Behaviors handles the “rules of the road” such as
changing lanes, passing, intersection negotiation, and parking [7]. Driving Behav-
iors also monitors obstacles that are detected by Odin’s sensors. If Odin’s path is
blocked, Driving Behaviors instructs the Route Planner to plan a new set of direc-
tions. Motion Planning is responsible for the real-time motion of Odin. Motion Plan-
ning creates the Motion Profile that keeps Odin in the correct lane and allows it to
avoid objects in the road. The Motion Profile is also essential to the BDC system,
and will be discussed later in more detail. The final piece of the planning software
is the Vehicle Interface. The Vehicle Interface software receives the motion profile
from Motion Planning and translates it into commands to actuate the vehicle.

To effectively communicate between all of Odin’s components, the JAUS (Joint
Architecture for Unmanned Systems) message protocol is used. Originally devel-
oped for military use, Team Victor Tango was the first to implement JAUS with
LabVIEW [7, 8]. JAUS allows software running on the same network to communi-
cate using standard messages. Any systems that are JAUS-compatible can commu-
nicate between one-another regardless of their programming languages or affiliated
hardware.

4 The Blind Driver System

The goal of creating a semi-autonomous vehicle for use by a blind driver required
development of both hardware and software systems. Tactile and audio cues
are provided through a physical interface to present the driver with necessary
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information, including desired heading and speed. The audio system gives the driver
directional guidance while the tactile system gives speed guidance. A joystick was
chosen as the driver input device due to its portability and low cost. Rationale for
these design decisions, as well as details about each of the individual components,
will be discussed in the following sections.

4.1 BDC Software Architecture

The BDC software architecture, as seen in Fig. 3, is designed to be highly modu-
lar. It combines audio, tactile, and user interface systems in parallel, independently
running sub-functions. The front control panel uses multiple tabs to organize the
code by component. Each tab holds the component’s configuration settings. The
BDC code receives two standardized cluster inputs: the Motion Profile and the Run
Settings. The Motion Profile consists of all the information needed to navigate the
vehicle: velocity, acceleration, curvature, and rate of change of curvature. The Run
Settings cluster includes the configuration settings needed for each component. The
BDC code only needs the Motion Profile and the Run Settings cluster to work. This
creates modular software suitable for use on multiple platforms.

Fig. 3 BDC software architecture diagram. The tactile, audio, and user interface sub-functions are
processed in parallel within the BDC code

4.2 The Tactile System

The BDC tactile system utilizes the driver’s sense of touch to provide feedback
regarding the speed of the vehicle under operation. The system uses a modified
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Fig. 4 Tactile feedback system. The vibrating chair is shown with a schematic depicting the motor
wiring and configurations

vibrating massage chair, as seen in Fig. 4, to provide the user with tactile cues. These
cues alert the driver to accelerate or decelerate by selectively varying the vibration
intensity in the individual motors. The chair is controlled by a custom circuit board.

In order to choose how tactile messages would be relayed to the driver, all phys-
ical points of contact between the driver and the vehicle were considered. These
points included the hands, chest, feet, upper-legs, and back. Feedback could have
been provided to these areas through the steering wheel, seat belt, pedals, and seat,
respectively. The upper-legs and back were chosen for the research discussed in
this paper. A design was chosen for a device that would best accommodate tactile
feedback on this area of the body. The current system was chosen after careful
consideration of its ease of use, comfort, and cost. Using a vibrating chair allows
the driver to receive tactile feedback without being burdened by bulky equipment
attached to the body. This allows the user to enter and exit the vehicle without hav-
ing to attach and detach any components. Electronically, the chair has one point of
connection, a DB-25 connector. The chair is fitted with sufficient padding in order to
maximize user comfort without inhibiting the ability to sense changes in vibration
intensity.

The tactile hardware is controlled using the BDC software written in LabVIEW.
The tactile component of the software takes in the desired vehicle speed from the
Motion Profile, the actual vehicle speed, and the tactile configuration from the Run
Setup. From the difference between the desired and actual speed of the vehicle,
the software sends the appropriate signals to the circuit board. The signals acti-
vate a specified number of motors at either a low or high intensity. The motors
are supplied either 9 or 15 V, causing this low or high intensity vibration. As the
difference between the desired and actual speed increases, the system increases the
number of vibrating motors and their intensity. According to the configuration used
for testing, when the driver needs to accelerate, the chair vibrates on the driver’s
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back, beginning at the top and traveling down the back as the required acceleration
increases. Conversely, when the driver needs to decelerate, the chair vibrates on the
back of the thighs, beginning at the front of the seat and traveling to the back of the
seat as required deceleration increases.

4.3 The Audio System

An audio alert system was chosen to provide the directional guidance. The system
relays information to the driver by using audible tones in the driver’s ears which
tell the driver both the direction and the magnitude of the desired turn, which is
determined by curvature. The only hardware necessary for the audio system is a
pair of headphones. The Motion Profile provides the code with a desired curva-
ture, which is the curvature that the vehicle should be traveling, and a current
curvature, which is the curvature at which the vehicle is actually traveling. The
program then finds the difference and determines the degree to which the driver
needs to correct his steering. The system then alerts the driver with a tone which
indicates both the direction and magnitude of the required curvature. The change in
“magnitude” of the tone reflects how much the driver should turn. This change can
be in the form of increasing volume, increasing frequency, or some other change
depending on the configuration chosen. The magnitude of the change is governed
by Eq. (1).

M = V · |Cd − Cc|
Cmax

(1)

where Cd is the desired curvature, Cc is the current curvature, Cmax is the max-
imum curvature of the vehicle, and V is the maximum strength of the signal.
V could be maximum volume, maximum frequency, or maximum beeping fre-
quency depending on the configuration. The direction of the tone is governed by
Eq. (2).

D = Cd − Cc (2)

If D is positive, it means the driver is steering too far to the left, and if negative, the
driver is steering too far to the right. D determines where the tone will be heard by
the driver, depending on the configuration.

The driver may choose which configuration is most suitable from the options
listed in Fig. 5. The configuration chosen for testing was the “center zero” setting.
This setting tells the driver the direction of the desired turn by outputting a constant
tone to the driver’s ear corresponding to the desired direction. If the driver is steering
in the correct direction, then there is no sound output, hence the name “center zero.”
This also saves the driver from hearing a tone for an extended period of time. Also,
the magnitude of the turn is conveyed by changing the volume of the tone, where
V is the maximum volume in Eq. (1). Encountering a sharper turn will result in a
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Fig. 5 Configuration options
for audio system. The options
for the “center zero” setting
are shown with a box around
them

louder tone. The audio code is source-independent, resulting in a modular and adap-
tive design. When the code is implemented in an autonomous vehicle, the desired
curvature comes from the vehicle, and the current curvature is supplied from the
steering wheel.

4.4 User Input

The user input device allows the driver to control the motion of the vehicle. It takes
the place of the steering wheel and pedals in a normal automobile, allowing the
user to drive the car in simulation. Currently, a joystick is used for this system. The
y-axis of the joystick controls the acceleration of the vehicle. Forward (+y) creates a
positive acceleration and backward (−y) creates a negative acceleration. The x-axis
of the joystick controls the direction of the vehicle. Left (−x) steers the vehicle to
the left and right (+x) steers the vehicle to the right. The trigger button may be used
to simulate an emergency brake, creating a large deceleration when depressed.
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5 Experimentation

A standardized test was created to benchmark the current system. The goal of this
test is to provide objective information about the performance of the system in its
current state. The test consists of the collection of both qualitative and quantitative
data based on user opinions and performance, respectively. This data will help to
indicate possible improvements to the current system. In addition, the data will be
used as a point of comparison for future system developments.

5.1 Setup and Procedure

The testing software uses a sequence in LabVIEW to implement the BDC code. The
testing software takes advantage of the BDC code’s modularity because it is able to
pass the Run Settings and a pre-defined Motion Profile to the BDC code without
any modifications. Once the testing code passes a Motion Profile to the BDC code,
the system functions as it would in the driving simulator or an autonomous vehicle.

The test begins with an orienting paragraph read by the test administrator. This
paragraph outlines the test procedure for the test subject and assures confidentiality
and safety. After this point, the test is run solely by the software. Using a text-to-
speech module in LabVIEW, the test subject is advised that there will be an interface
test. Using the buttons on the joystick, the user can choose to replay or continue to
the next set of instructions. The interface test begins with instructions on how to use
the buttons on the joystick. Next, the software verifies that the headphones work and
are worn correctly. Following the headphone test, joystick functionality is verified
by asking the test subject to tilt the joystick left. To complete the interface test, the
system checks the vibration chair by alerting the user that he will feel vibrations in
his legs and back. Then the program explains and demonstrates which vibrations
indicate acceleration and which vibrations indicate braking.

Once the interface test is successfully completed, the system loads a pre-defined
1-minute driving course. The predefined function follows a figure-8 path to simulate
the full range of motion experienced under normal driving conditions. The rate of
change of speed and curvature vary throughout the driving schedule to test the user’s
reaction time. The test subject hears a 5 s countdown and then begins driving. The
first driving test is broken into three sections. In the first section, the subject receives
only audio feedback. The tactile system is disabled so that the subject will feel no
vibrations during the audio test. In the second section, the same course is driven
with the audio system disabled and the tactile system enabled so the subject only
receives acceleration and braking instructions. The third section combines the first
two so that the driver navigates the same pre-defined course while controlling both
speed and direction. Between these sections, the computer explains which system(s)
will be in use for the next section. The third section is repeated two more times in
order to benchmark driver improvement. The computer simulation is followed by a
brief survey.
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5.2 Data Collection and Analysis

The software collects, processes, and stores test data to be used for evaluating the
user’s performance. The error between the desired and actual motion is continuously
calculated and logged during the test at a rate of about 3 Hz. Upon completion of
the test, the average error for speed and curvature is calculated. These statistics
provide an easy way to track improvement between successive tests and compare
performance for different tactile and audio configurations. They may also provide
insight into performance trends between different user demographics. In order to
maintain user anonymity, the data is logged under a testing code known only to that
user. This allows future testing administrators to affiliate this data with any future
data if the user returns for additional testing.

6 Discussion of Results

Ten Virginia Tech students with an average of 6 years of driving experience partici-
pated in the initial research of the BDC. It was predicted that the average error would
decrease with subsequent runs of the combined audio and tactile tests. However, the
average errors for curvature and speed showed no significant improvement through
the three runs.

User feedback indicated some possible factors which may have contributed to
this error. The lag in reaction time is one such contributor. This lag can be seen in
Figs. 6 and 7 as a slight phase shift between the desired and actual curvature, and
speed respectively. Another important parameter shown in these figures is the degree
of oscillation in the user responses for curvature and speed. User feedback confirmed
that oscillation was more prevalent in the audio system than the tactile system. One
possible solution is to create a larger dead-band region for the center-zero setting
of the audio system. This would decrease the amount of overshoot and oscillation
because the user would have more leeway to obtain a satisfactory curvature.

Recall that the users were tested independently on the audio and tactile system,
followed by three tests of the operation of both systems simultaneously. The average
curvature error increased by 64% between the audio-only and the combined test.
Similarly, the average speed error increased by 52% between the tactile-only and
the combined test. This indicates that the increased mental load of controlling both
systems decreases the driver’s performance.

Although the increase in reaction time due to the combined tests appears sub-
stantial, keep in mind that the user is given only one minute to become familiar with
each individual feedback and control system before beginning the combined tests.
The overall reaction time would most likely decrease with sufficient training and
practice.

In a real-world driving environment, reaction time is vital for the safe operation
of a vehicle. The predefined desired path, depicted as a bold line in Figs. 6 and 7, is
standardized for all tests, and is designed to simulate various real-world driving
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Fig. 6 Curvature vs. time plot. Shows the average time-response of curvature during the audio only
and combined audio-tactile test. A positive curvature value indicates a right turn, and a negative
curvature value indicates a left turn

Fig. 7 Speed vs. time plot. Shows the average time-response of speed during the tactile only and
combined audio-tactile test
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conditions. The first 42 s of each test are designed to simulate normal driving
conditions that may be encountered, for example, at a stop light or intersection.
Whereas the final 18 s of each test are designed to simulate the sudden reactions
required of a driver during critical situations like avoiding a potential collision. Of
these reactions, the ability to decelerate and stop quickly is arguably the most impor-
tant. To address this need, the BDC system is structured so that whenever the desired
velocity suddenly jumps to zero, all motors in the chair that indicate deceleration
will vibrate on full intensity, regardless of the difference between actual and desired
velocity. Figure 7 shows that this feature successfully reduces the reaction time to
an almost instantaneous compliance. Although it can be seen that not all driving
situations resulted in such outstanding user performance, it is important to highlight
that despite the lack of training, users were still able to react quickly in the event of
a critical situation.

Many participants indicated that the tactile system would be more intuitive if
the Run Settings were changed so that acceleration is indicated by vibration in the
legs and deceleration in the back. Also, 85% of participants indicated that a steering
wheel and pedals would be a more suitable and realistic form of user input. Mak-
ing these configurations more intuitive would increase the reaction time, which is
necessary for vehicle operation in real-world environments. Users also indicated the
potential for numerous alternate applications of this audio and tactile feedback sys-
tem. Some of these applications include increased situational awareness for sighted
drivers, new driver education, aircraft pilots flying in instrument conditions, surgi-
cal operations, mining, biking, military operations, deep sea exploration, operation
of construction equipment, adaptive automobile cruise control, obstacle proximity
sensing for remote robotics applications, and video games.

7 Conclusions and Future Work

The BDC team designed, implemented, and tested non-visual interfaces to simulate
a blind individual safely navigating a motor vehicle along a pre-determined course.
Directional guidance is provided to the driver through audio cues via a set of head-
phones. Speed guidance is provided to the driver through tactile cues via a vibration
chair. These systems are controlled by a modular software system which allowed
them to be tested independently from a vehicle. Future integration with Odin and
Team Victor Tango’s software simulator is under consideration. The simulator was
developed for testing software in a virtual environment [9]. Odin’s on-board com-
puter will create the Motion Profile required for integration with the BDC software.

The BDC system was tested and shown to be effective when the audio and tactile
systems were independent of each other. However, when integrated, they proved
to be overwhelming. It was not experimentally determined whether the feedback
(audio and tactile) or input method (joystick) was the cause. Feedback from test sub-
jects gave valuable insight on possible improvements to the user interface. The three
main suggestions were to use a steering wheel and pedals in place of the joystick,
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reverse the tactile configuration, and increase the dead-band range in the audio
settings. The current sample of test participants does not include any legally blind
individuals. However, through a renewed partnership with the National Federation
of the Blind, future testing will include blind individuals in order to authenticate our
benchmarking analysis.

The BDC project has the potential to serve a dual purpose by supporting blind
drivers and satisfying the demand for driving assistance in other demographics. The
innovative non-visual interface technology being developed through this research
can be used in a myriad of applications to provide vital feedback in ways rarely
utilized in today’s technological world.

Abbreviations

BDC Blind Driver Challenge
DARPA Defense Advanced Research Projects Agency
ECU External Control Unit
GPJ/INS Global Position System/Inertial Navigation System
JAUS Joint Architecture for Unmanned Systems
MDF Mission Data File
RNDF Route Network Definition File
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Process Diagnosis and Monitoring of Field Bus
based Automation Systems using
Self-Organizing Maps and Watershed
Transformations

Christian W. Frey

Abstract A cost-effective operation of complex automation systems requires the
continuous diagnosis of the asset functionality. The early detection of potential fail-
ures and malfunctions, the identification and localization of present or impending
component failures and, in particular, the monitoring of the underlying physical
process are of crucial importance for the efficient operation of complex process
industry assets. With respect to these suppositions a software agent based diagnosis
and monitoring concept has been developed, which allows an integrated and contin-
uous diagnosis of the communication network and the underlying physical process
behavior. The present paper outlines the architecture of the developed distributed
diagnostic concept based on software agents and presents the functionality for the
diagnosis of the unknown process behaviour of the underlying automation system
based on machine learning methods.

Keywords Machine learning · Self organizing maps · Monitoring · Diagnosis ·
Software agents

1 Motivation

Technological progress in automation system engineering presents great challenges
for system operators and especially for implementation and maintenance personnel.
Functions which have hitherto been performed by mechanical or electromechanical
devices are being increasingly replaced by software-based mechatronic systems.
Functions that were previously visible and easily understood are now implemented
using software and digital communications systems. Information that was previ-
ously transmitted, for example, as analogue electrical signals and was thereby sim-
ple to verify, is now transmitted as digital messages in fast data networks. Due
to the decentralization of intelligence and the transition to distributed automation
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architectures, the engineering and implementation of systems is becoming ever more
complex. The associated costs meanwhile exceed the basic hardware costs of the
components by a large factor. It is here that effective diagnostic concepts offer great
potential for cost savings. Verification that a system is functioning correctly, fault
diagnosis, early detection of impending component failures and, in particular, mon-
itoring of the process are of crucial importance for the cost-effective operation of
complex automated processes.

The continuous diagnosis of the functionality, the early detection of potential
failures and the continuous monitoring of the underlying physical process itself
is essential for the cost-effective operation of complex automation systems. With
respect to these suppositions a software agent based diagnosis and monitoring con-
cept has been developed, which allows an integrated and continuous diagnosis of the
communication network and the underlying physical process behavior. The present
paper outlines the architecture of the developed distributed diagnostic concept based
on software agents and explains the functionality for the diagnosis of the unknown
process behaviour of the underlying automation system.

2 Diagnostic Concept Based on Software Agents

The field bus forms the “central nervous system” of distributed automation systems
and represents both the object of the diagnosis as well as the access point for the
diagnosis of the system components and the system functionality. The diagnosis of
technical systems can be understood as a two-stage hierarchical process, in which
quantitative information in the form of sensor signals is transformed into qualitative
information, that is to say, diagnostic results [1].

In the first stage, the feature generation, the objective is to convert the measurable
state variables of the system by transformation into a suitable compressed represen-
tation format, such that the possible diagnostic results are reliably reflected. The
second step of the diagnostic process, the feature evaluation, represents a logical
decision-making process in which the compressed quantitative knowledge in the
form of features is transformed into qualitative diagnostic knowledge.

The developed diagnostic concept, illustrated in Fig. 1, is based on the idea of
continuously analysing the messages transmitted on the field bus and extracting
characteristic features, which describe in compressed form the behaviour of the
respective field device and its interaction with the overall automation system. Fea-
tures can be generated from the field bus messages concerning both the commu-
nication behaviour, for example, by analysing the response time of a field device,
and the actual physical process behaviour, for example, by analysing a manipulated
variable or a measurement value. The features represent a compressed description
of the system functionality on the communications as well as on the process levels,
which in turn can be linked together by a logical decision-making process in the
higher-level feature-analysis stage to form an integrated diagnostic result.

The permanent analysis of the field bus data stream requires an effective com-
pression of the data transmitted over the field bus, as otherwise the quantity of data
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Fig. 1 Schematic overview of the developed software agent-based diagnostic concept for field bus
based automation networks

produced would no longer be manageable. As an example of this, in a automation
network with 12 Mbit/s transmission speed, as much as 1 MByte of data is transmit-
ted per second – in Ethernet-based systems with transmission rates of up to 1 Gbit/s
this can be over 100 MByte/s. It is clear that under these boundary conditions even
a selective sampling of field bus data messages with subsequent off-line analysis
would fail due to the non-availability of the requisite levels of computing capacity
or storage media. The generation of meaningful features based on the immense data
stream coming from the field bus places the highest demands on the efficiency and
intelligence of the software design that is used. When considering the design of
the diagnostic system, and especially in view of the heterogeneous communications
networks or the different software platforms deployed on the control level in an
automation system, particular attention must be paid to the effective coordination
and cooperation of the distributed software components. Taking account of these
requirements, a hierarchical diagnosis and monitoring concept for field bus based
systems has been developed, based on software agents.

The diagnostic agents, in the lowest level of the hierarchy, are software compo-
nents which as far as possible run autonomously on dedicated embedded systems,
for example, so-called field bus gateways. The task of the various diagnostic agents
is to analyse the field bus messages of the field devices assigned to the section of the
field bus and to generate meaningful features. The higher-level diagnosis manager
is also implemented as a software agent and contains the actual diagnostic function-
ality. Implemented as a separate executable application or as a component of the
host system, the diagnosis manager cyclically retrieves the features generated in the
diagnostic agents of the respective strands of the field bus and passes them to the
feature analysis stage.

With regard to integration into existing automation systems, the newly developed
concept provides additional software agents, for example, for linking to different
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physical implementations of the field bus (Profibus, Foundation Fieldbus), for
displaying the diagnosis results (GUIAgent) or for archiving them (ArchiveAgent).

There are various development environments available for building and imple-
menting multi-agent systems, which provide the developer with basic functions for
deploying software agents. For the implementation of the proposed diagnostic con-
cept the JADE development environment (Java Agent Development Framework)
was selected [2, 3].

3 Diagnosis and Monitoring of Process Behaviour

When considering an integrated diagnosis of industrial processes, the field bus,
being the central communications network of the system components, represents
both the object of the diagnosis in terms of communications technology, and at
the same time it is an ideal access point for the diagnosis of the physical process
behaviour of the underlying automation process. To guarantee diagnostic function-
ality that is as transparent and robust as possible, the concept that has been developed
splits up the diagnosis task into the diagnosis of the communication behaviour of the
field bus and the diagnosis or monitoring of the physical system behaviour of the
underlying automation process.

To diagnose the communication behaviour, relevant features are generated from
the field bus messages, such as the response time of a field device. These features
are evaluated by frequency-based neuro-fuzzy membership functions and an expert
knowledge base implemented in a fuzzy-rulebase (i f . . . then . . .) [4]. A detailed
presentation of this neuro-fuzzy based design is given in [3].

In contrast to the diagnosis of the communications layer, in which only signal-
based feature generation methods are used, the diagnosis of the underlying physical
process behaviour relies on model-based methods. The basic principle of model-
based diagnosis for technical systems is based on a quantitative mathematical model
of the process to be monitored. Using a suitable distance measure, the measured
process variables are compared with the calculated process variables of the pro-
cess model. The greater the distance between measured and modelled variables,
the greater the probability of a deviation from the normal behaviour of the process
assumed in the modelling step [1, 5]. The difficulty in implementing such model-
based diagnostic systems lies in generating a suitable process model, in particu-
lar if analytical modelling approaches are used. This means that, for example, in
industrial process-engineering applications, setting up a robust model for feature
generation often requires a comprehensive development effort, calling on detailed
expert knowledge about the physical interactions involved in the process.

An alternative to the analytic model-based methods is offered by data-driven
adaptive modelling approaches. In these approaches, the most prominent technique
is that of artificial neural networks. On the basis of measured historical process
variables (training data), neural networks can use a learning algorithm to acquire the
static and/or dynamic transmission behaviour of the process [6, 7]. The advantage
of this approach is that no analytically formulated process model is needed a priori,
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and thus the developer is not hampered by “unsafe” assumptions about the physical
interactions of the process that are present when modelling. Frequently used meth-
ods in the so-called Black-Box Modelling approach are back-propagation networks.
These neural structures are based on a supervised learning task, which requires a
correct assignment of the available process variables to input and output variables
of the process model.

In the context of the diagnosis of an unknown physical behaviour in field bus
based automation systems, however, the following problem arises. While in prin-
ciple all in- and output values of the physical sub-processes can be retrieved from
the messages in the field bus data stream, the allocation in terms of input/output
values itself requires a very detailed knowledge of the underlying system, which
has usually to be obtained from the system documentation or expert knowledge.
Based on these boundary conditions, the concept developed for the diagnosis of
the unknown physical behaviour uses the properties of self-organizing maps for
data-driven modelling of the process behaviour.

The so-called self-organising feature maps (SOM), a special neural network, are
capable of generating a topology-preserving mapping of a high-dimensional feature
space into an output space of lower dimensionality [8]. These neural models, also
known as Kohonen maps, are capable of extracting and displaying unknown clusters
in the database to be analysed (structure discovery), “unsupervised” without a priori
information in terms of input/output assignment.

The basic components of SOMs are referred as neurons, but they differ from
the neuronal model of the back-propagation networks in their basic function. The
neurons do not function as processing units that respond to particular inputs with
particular outputs, but assume the role of simple memory units, the content of which,
known as stored pattern vectors or also prototypes, can be read out and rewritten
with new data. The neurons of the SOMs, as shown in Fig. 2, are arranged in a
specific topology, that is, the neurons are in a topological relationship to one another.
This quality of the network is generally referred as neighbourhood. Self-organizing
maps are based on an unsupervised, concurrent learning process – during the learn-
ing process a feature vector M from the learning task is presented to the network and
its distance from the prototype vectors W stored in the neurons is calculated. The
neuron with the smallest distance from the input vector, the so-called Best Matching
Unit (BMU), is then modified according to the following equation:

W k+1
j = W k

j + ημ(M −W k
j )

Beside the “winner neuron,” the Kohonen learning rule also includes neigh-
bouring neurons in the learning process. The introduction of neighbourhood learn-
ing enables “similar” feature vectors to be projected onto topographically similar
regions of the map. Using the neighbourhood coefficient n, this property can be
made stronger or weaker during the learning process. A measure of how well the
map represents a training dataset is provided by the so-called quantisation error,
which is calculated using, for example, the Euclidean distance between input feature
vector M and prototype vector W of the winner neuron.
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Fig. 2 Self-organizing map
with a two-dimensional
lattice topology

By applying the so-called UMatrix-representation of a self-organizing map, it
is possible to perform a classification or a clustering of the feature space [7]. The
UMatrix-transformation is based on the idea to add an additional dimension to the
SOM lattice topology, which reflects the distance between the individual neuron to
its surrounding neighbours. As an example of this, such a UMatrix representation of
a 2D SOM is visualized in Fig. 3. The valleys in this UMatrix-plot (blue) represent

Fig. 3 UMatrix representation of a 2D SOM
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regions in which the stored pattern vectors are very similar, the regions shown in red
characterise a transition from one feature-space cluster to the next cluster.

In terms of the diagnosis and monitoring of a technical process, the valleys in the
UMatrix-plot can be interpreted as stationary process phases, which are separated
by so-called transient process phases. It should be noted here that the topology of
the SOM corresponds to a toroid: opposite edges of the UMatrix-plot are joined
together, that is, valleys of the UMatrix can extend across the boundaries of the map
to the opposite side.

In principle, the segmentation or subdivision of a UMatrix into cluster regions
can be performed manually by the observer. This method rapidly becomes impracti-
cal however with increasing size of the map or structural complexity of the UMatrix.
For the automatic segmentation of the UMatrix, the diagnosis and monitoring con-
cept we have developed uses the method of the Watershed transformation which
is well-known from the image processing field [9]. The basic idea of the method
can be made clear with the analogy of “drops of water” which fall on the UMatrix
“mountains.” Through the “mountain ridges” flooded regions are formed, which
correspond to the clusters of the UMatrix. Figure 4 shows the result of such a Water-
shed transformation – the UMatrix has been segmented into six different clusters,
corresponding to process phases.

As already indicated, in the data stream of the field bus, or alternatively in
the messages of the field devices, all process variables are in principle retriev-
able and can be extracted by the diagnostic agents without detailed expert knowl-
edge. Depending on the complexity of the system under consideration and the
transmission speed of the field bus, the state variables of the process are summed
over time and combined into an integrated state variable vector M (cf. Fig. 2). This

Fig. 4 Segmentation of a UMatrix into cluster regions by applying the watershed transformation
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high-dimensional state variable vector describes the interaction of all field devices
with the overall system and constitutes the basis of the model-based diagnosis. In
the initial training phase of the diagnostic concept the data-driven model of the
system is generated in the form of a SOM using the feature vector. The duration of
the training process depends essentially on the complexity of the process (number
of field devices), or in the case of cyclical process behaviour, on the duration of
the batch. The success of the learning process can be evaluated with the aid of the
resulting quantisation error of the map. It is clear that during this data-driven pro-
cedure, as close as possible to all operating states of the system should be acquired
in order to obtain a robust diagnostic performance. Based on this trained map, an
online diagnosis and monitoring of the process behaviour can then be performed. By
analysing the quantisation error of the map, or the progress of the process phases
respectively the BMU-trajectory, deviations from the normal behaviour of the sys-
tem can be detected and thus traced back to possible errors in the behaviour of the
system.

4 Testing the Diagnostic Concept

The experimental system, illustrated in Fig. 5, consists essentially of two containers
between which liquid is pumped around in cycles at varying pumping powers and
valve positions. It should be noted here that in the case of the demonstrator system

Fig. 5 Schematic overview of the installed demonstrator system
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the nature of the field devices (measured or manipulated variable), the physical
meaning of the process variables acquired (e.g., flow rate meter, temperature sen-
sor), and in principle the processing behaviour implemented by the control system
are all known. The diagnostic concept developed however does not rely on this
additional information.

Figure 6 shows an example of the temporal course of the standardised process
data obtained from the field bus data stream, or field bus messages as appropriate.
From this curve the cyclically recurring behaviour of the process can be clearly
recognised. On the basis of this training data, a data-driven model of the system
in the form of a self-organizing map was generated. With the aid of the UMa-
trix transformation, the various process phases or operating states of the system
(e.g., emptying containers or filling containers) were identified using the Water-
shed transformation. Based on this trained feature map an online-diagnosis of the
process behaviour is then made. To do this, the IO-data of the field devices is
filtered out online from the field bus data stream by the diagnosis agents and
presented to the feature map. By analysis of the quantisation error of the map,
deviations from the learned normal behaviour can be detected. As an example,
Fig. 7 shows the behaviour of the quantisation error over the duration of the pro-
cess during abnormal process behaviour. In error case 1 the venting of the sys-
tem was reduced in order to disrupt the behaviour of the process, while in error
case 2 the flow cross-section was reduced. These interventions in the process
behaviour of the system are clearly revealed in the curve of the quantisation error of
the map.

By observing the BMU trajectory in combination with the process phases found
by watershed segmentation, it is also possible to analyse the progress of the process
phases. Figure 7 shows, in addition to the quantisation error, the time course of the
identified process phase – the modified progress of the process phases in error case
2 can be clearly seen.

Fig. 6 Time course of the process state variables extracted from the field bus messages during
normal operation
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Fig. 7 Time course of state variables, quantisation error and process phase during abnormal pro-
cess behaviour
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5 Summary

The agent-based diagnostic concept that has been developed represents an integral
component of the automated system, and enables a continuous integrated diagnosis
and monitoring of the process under consideration. The present paper has outlined
the architecture of this distributed diagnostic concept based on software agents and
explained its embedded functionality for diagnosing the unknown process behaviour
using self-organizing feature maps. The functionality and performance of the devel-
oped diagnostic concept was validated with the aid of a process-engineering demon-
strator system. The concept is currently being transferred to a wide range of indus-
trial process in the chemical industry.
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