Toward Massive Query Optimization in
Large-Scale Distributed Stream Systems

Yongluan Zhou!, Karl Aberer?, and Kian-Lee Tan®*

! University of Southern Denmark
2 EPFL, Switzerland
3 National University of Singapore

Abstract. Existing distributed stream systems adopt a tightly-coupled
communication paradigm and focus on fine-tuning of operator place-
ments to achieve communication efficiency. This kind of approach is hard
to scale (both to the nodes in the network and the users). In this paper,
we propose a fundamentally different approach and present the design
of a middleware for optimizing massive queries. Our approach takes the
advantages of existing Publish/Subscribe systems (Pub/Sub) to achieve
loosely-coupled communication and to “intelligently” exploit the sharing
of communication among different queries. To fully exploit the capability
of a Pub/Sub, we present a new query distribution algorithm, which can
adaptively and rapidly (re)distribute the streaming queries at runtime
to achieve both load balancing and low communication cost. Both the
simulation studies and the prototype experiments executed on Planet-
Lab show the effectiveness of our techniques.

Keywords: Distributed Stream Systems, Publish/Subscribe Systems,
Query Optimization, Load Balance, Overlay Network.

1 Introduction

There is a recently emerging demand for large-scale and widely distributed
stream processing systems. Below is an example scenario, which is also the ap-
plication context of this paper.

With the rapid development of sensor network technologies, more and more
sensor networks are being deployed by many different organizations, such as re-
search institutes and governments etc., to monitor and study our surrounding en-
vironment. The SensorScope project at EPFL (http://sensorscope.epfl.ch)
is one such example. One can imagine that a stream processing system would
be installed locally at each deployment to perform real-time data collection and
analysis. It is desirable to pose queries involving multiple deployments across
the border of countries and even continents. This demands a large-scale and
loosely-coupled architecture to exploit the autonomous and distributed stream
systems to provide a global stream processing service.

* Kian-Lee Tan is partially supported by research grant R-252-000-237-112 from the
National University of Singapore.

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 326 2008.
© IFIP International Federation for Information Processing 2008

http://sensorscope.epfl.ch

Toward Massive Query Optimization 327

While such a system is desirable, two problems should be carefully considered.
First, the communication cost could be very high as it may involve inter-country
and even inter-continental communication. Moreover, streams are typically of
a very high rate and have to be transferred continuously. In comparing to the
abundant processing power provided by the large number of servers, network
bandwidth is the bottleneck in such a context. Hence, it is critical to perform
query optimization to achieve high communication efficiency.

Second, for such an autonomous system, it is desirable to adopt a loosely-
coupled communication architecture, where data sources can just push their data
to the network without keeping track of the destinations, and a data consumer
can retrieve data of its interest without knowing the location of the sources.

1.1 Existing Distributed Stream Systems

In existing distributed stream systems [TJ3I3IT7IT8], the communication between
data sources and consumers adopts the tightly-coupled client-server paradigm. A
node directly connects to the sources to get the streams it wants. As mentioned,
this is not desirable in our context.

Furthermore, operator placement algorithms [TI3IT3IT7] are often employed to
optimize communication efficiency. Such schemes typically adopt a two-phase op-
timization algorithm, which resembles the earlier work on query optimization for
distributed database systems, such as [22]. In the first phase, all the user queries
are collected to a central place and then a global operator graph is generated. In
the second phase, optimization algorithms are run to distribute the operators to
minimize the communication cost [3I7]. Let us look at an illustrating example.
Figure [[[(a) is an example network composed by seven nodes. Nodes n7 and ng
issue two queries Q1 and Q2 (written in CQL [23]) respectively. The first phase
optimization generates a global operator graph for these two queries as shown
in Figure [I(b). Then the second phase may place the operators as depicted in
Figure [[l(c).

Per Oa>10

G,>20
Ge>10 Ga>10
‘ ‘ ‘ Gd<10
s R T Oc>10
(a) Network (b) Operator graph (c) Operator placement
Q1: SELECT =* Q2: SELECT =*
FROM R [Now], S [Now] FROM R [Now], T [Now]
WHERE R.b = S.b AND WHERE R.b = T.b AND
R.a>10 AND S.c>10 R.a>20 AND T.d<10

Fig. 1. Operator placement

328 Y. Zhou, K. Aberer, and K.-L. Tan

While this approach is effective, it assumes that an optimized global oper-
ator graph is available. So far, it lacks scalable algorithm to generate a good
global operator graph. It is even harder to maintain the global operator graph if
new queries were admitted and old queries were terminated frequently. In addi-
tion, the operator placement algorithm assumes the knowledge of the underlying
overlay network. This tightens the coupling between the network layer and the
application layer which may not be desirable for a large-scale system.

1.2 Pub/Sub Systems

Looking from a different angle, we observe that the above optimization can be
divided into three sub-tasks. (1) Avoid duplicate data transfer. In the above
example, both @)1 and Q)5 are interested in stream R. It is desirable to send the
data of R only once over each link along the path to the destinations. This can be
done by sharing the data access of stream R of the two queries. (2) Perform early
data filtering. In the example, this is done by allocating the selection operators
close to the source nodes of the streams. (3) Place the query operators in proper
places. The placement should consider the data rate of the operators’ input and
output as well as the common data interest among the different operators. For
example, in Figure [lc), the two join operators are allocated to the same place.
Hence they can share the bandwidth consumption of transferring data from
stream R. Otherwise, if, for example, we place one of the join operators to node
ns instead, then extra bandwidth will be consumed. Furthermore, if their output
rates are much higher than their input rates, then it might be more beneficial
to place them at their respective destinations (i.e. ng and ny).

It is interesting to note that the first two sub-tasks have been solved nicely
in the literatures of Distributed Publish/Subscribe systems [2I7/I6] or Content-
Based Networking (CBN) [I10]. In these systems, messages are routed based on
their contents as well as the interest profiles of nodes rather than the IP addresses
of the destinations. Each message is represented as a set of attribute/value pairs.
The interest profile (or subscription) of a node is specified as constraints on
the attribute values. Only those messages whose attribute values satisfy the
constraints will be sent to that node.

We illustrate more details by a scenario in an example Pub/Sub: Siena [7].
First, the data source nz in Figure P(a) advertises the data that it provides
through a multicast tree. The advertisement has similar data structure as a
subscription and specifies the constraints that the messages produced by the
source will satisfy. Then every node knows what kind of messages will be sent
from its neighbors. Now, the data receivers (ng and n; in Figure (b)) can
multicast their subscriptions under the guidance of the advertisements of the
data sources. At n; the two subscriptions are merged before being propagated
to mo. mo only propagates the subscription to ng based on the advertisement
information. After the subscription propagation, a routing table is built at each
node as shown in Figure 2lc). When a message is produced, the source just send
it to the neighbor who is interested in the message. Figure [2(d)shows how two
example messages are routed in the network.

Toward Massive Query Optimization 329

(c) Message routing tables (d) Message routing

Fig. 2. Distributed Pub/Sub Systems

It can be seen that a Pub/Sub inherits the advantage of the multicast commu-
nication paradigm where a message is sent over each link at most once. Further-
more, the messages are filtered as soon as possible on the way to the interested
parties. More importantly, this is done without global planning. Finally, data
sources and destinations in a Pub/Sub are loosely-coupled as they need not
keep track of each other. As mentioned, this is desirable in our context.

1.3 COSMOS

Based on the above observation, we intend to build our distributed stream pro-
cessing system by using a Pub/Sub as the communication substrate to achieve
loosely-coupled communication. We design a middleware, called COSMOS (CO-
operated and Self-tuning Management Of Streaming data), which perform query
optimization by leveraging the underlying Pub/Sub to accomplish the searching
of common data interest of the queries and the global tuning of the placement
of filters along the overlay paths (from the sources to the destinations).

Now what is left behind is the third sub-task of the optimization: placing
the query operators in the proper locations. To do so, a new query distribution
scheme is proposed.

In this paper, we distribute the query loads in the unit of queries (instead
of operators) to reduce the complexity of the problem and make the adaptation
algorithms run faster at runtime. Furthermore, allocating operators of a query to
multiple nodes would require synchronizations among the nodes, including the
synchronizations during query processing as well as those during query insertions
and removals. This not only impairs the scalability of the system but also hard
to be implemented in a loosely-coupled and autonomous system.

Our query distribution scheme distinguishes itself in several aspects: (1) It is
more scalable. It does not require global planning to generate a global opera-
tor graph. Moreover, new hierarchical techniques are also employed to enhance
the algorithm’s scalability. (2) It takes the communication characteristics of a

330 Y. Zhou, K. Aberer, and K.-L. Tan

t OR.a>105 0S.c>10
1° Q1
tOR.a>20 0T.d<10
F Q2

P3: OR.a>10;, 0S.c>10;
OT.d<10

(a) Profile generation

(b) Routing Tables

Fig. 3. COSMOS

Pub/Sub into consideration, which has not been explored before. (3) It tar-
gets both load-balancing and minimizing communication cost, while existing
approaches [BIIEITTI20/2TI24] only focus on either one of them. (4) It stresses the
problem of fast arrival and removal of queries, which is also often overlooked in
most existing work.

Figure B(a) shows an example distribution with both Q; and Q2 distributed
to ny. Then, ny will generate two subscriptions for each query. For example,
for Q1, one subscription p} is generated to retrieve the source data to feed
Q1. Furthermore, another subscription p? is generated and sent to the query
originator n7. p? is inserted into the Pub/Sub by n7 to receive the result stream
of Q1. Similarly p and p3 are generated for Q2. At ny, the two subscriptions pi
and pi will be merged into a subscription ps, which will then be inserted into
the Pub/Sub. Figure Bl(b) shows the routing tables at each node after all the
subscriptions are inserted. Finally, queries are evaluated at n; when the data
are received from the underlying Pub/Sub. The results will then be transfered
by the Pub/Sub to ng and n; respectively.

In short, we propose a fundamentally different query optimization approach
to achieve communication efficiency, which does not require the maintenance
of a global operator graph. It leverages Pub/Sub to eliminate duplicate data
transfer, to perform early data filtering and to achieve loose-coupling of data
sources from data consumers.

1.4 Paper Layout

The rest of the paper is organized as follows. We first present an overview of
the system in Section 2l The load distribution scheme is presented in Sections Bl
Section [presents the results of a performance study of the load distribution
scheme. Section [B] concludes the paper.

2 System Overview

The whole system consists of a number of, say N, distributed processors inter-
connected with a widely distributed overlay network. In addition, a number of
data sources continuously publish their data to the network through the proces-
sors. A user first connects to a processor, which works as the proxy for him. In
this case, the user and the proxy are said to be local to each other. User queries,

Toward Massive Query Optimization 331

l“P‘“f“mmS Input Streams Table 1. Example queries
@% Q éQ o Qs: SELECT S2.%
— 3 FROM Stationl [Range 30 Minutes] S1,
S S5 V‘ Station2 [Now] S2)
WHERE Sl.snowHeight > S2.snowHeight
@ @ Sl.snowHeight > 10

Q4: SELECT Sl.snowHeight, S1.timetamp,

NN AN
; '\ K N S2.snowHeight, S2.timestamp
@ @ FROM Stationl [Range 1 Hour| S1,
Station2 [Now] S2

(a) Non-Share (b) Share WHERE Sl.snowHeight > S2.snowHeight
Qs5: SELECT S2.*%, Sl.snowHeight, S1.timestamp
. . FROM Stationl [Range 1 Hour] S1,
Fig. 4. Result stream delivery Station2 [Now] S2

WHERE S1.snowHeight > S2.snowHeight

specified in an SQL-like language similar to CQL [23], are submitted through
their proxies. The proxy is also responsible for retrieving the result stream and
sending it back to the user. For simplicity, only continuous queries are consid-
ered and no stored tables are involved. The query is first passed to the COSMOS
middleware, which places the query at an appropriate processor to optimize the
system performance. This paper focuses on solving this optimization problem.

The delivery of data streams are handled by the Pub/Sub middleware, which
is assumed to support subscriptions similar to those in Siena [7]. Below, we use
an example to illustrate how COSMOS leverage the Pub/Sub component.

2.1 An Illustrating Example

Table [lists a few queries specified using CQL [23]. These queries are extracted
and simplified from the typical snow drift monitoring tasks performed by the
environmental scientists.

Let us first look at Q3. Assume it is distributed to a processor, say ni, by
COSMOS. Then the COSMOS component at n; generates two subscriptions.
The first one, p}, will be used by n; to fetch the source data requested by Q3
via the Pub/Sub component. The content of p$ contains the following:

— A list of streams that are requested by Q3: S = {S1,52}. This is used by
the Pub/Sub to select the data based on their source stream.

— A list of requested data attributes: P = {52.x}. The Pub/Sub can perform
projection of the unnecessary attributes as soon as possible to reduce the
network traffic.

— A list of filters: F = {S1.snowHeight > 10}. This will be used to perform
early data filtering in the Pub/Sub.

The second subscription, p3, is generated for the user to fetch the query result
stream. To do so, a unique stream name is created for the result stream (by
using the unique identifier of the processor n, such as the IP address). Then p3
contains this stream name.

Assume another user submits another query Q4 to the system (the second
query in Table [Z), which is also allocated to processor ni. We can generate the

332 Y. Zhou, K. Aberer, and K.-L. Tan

first subscription, p{, in a similar way. Pub/Sub can automatically perform data
communication sharing.

The tricky part is the second subscription, p3. A naive way is to generate
separate result stream for (J4. Hence we can use the unique name of Q4’s result
stream to compose p3. This situation is shown in Figure The result streams
of Q3 and Q4, i.e. s3 and s, are transfered separately to the two users’ proxies,
ng and ny, respectively.

However, it can be easily seen that the result streams of @5 and Q4 could
have significant overlapping contents. Therefore these common contents have
been transferred twice over the link between n; and nsy in the above scheme. To
further reduce the cost, we should exploit the sharing of result stream delivery.

At each site, if there are multiple queries with overlapping results, the COS-
MOS component will compose a new query @ whose result is the superset of
the overlapping queries and only inserts this @ into the processing engine. In
our example, Q5 (the third query in Table[I) would be created and inserted into
the processing engine at node np instead of the two individual queries 3 and
Q4. As shown in Figure Q@5 is run in nq and its result stream s5 is sent to
ng, where it is “split” into two streams. The “splitting” is fulfilled by composing
appropriate subscriptions for the users to retrieve their results. In our example
they can be composed as follows:

— p3: S={s5}, P={S2.4}, F = {—30(minute) < S1.timestamp—S2.timestamp
< 0 AND S1l.snowHeight > 10}.

—p3 S = {s5},P = {Sl.snowHeight, S1.timetamp, S2.snowHeight,
S2.timestamp}, F = {—1(hour) < Sl.timestamp — S2.timestamp < 0}

To implement this approach, we extend traditional query containment and
equivalence theorems to continuous window-based queries. Readers can refer to
[25] for more details of this approach.

3 Query Distribution

In this section, the details of the query distribution algorithms in the COSMOS
middleware is presented. For ease of exposition, it is assumed that a data source
is also a processor in this paper. Hence, we refer to all the nodes in the network
as processors. The word “data source” refers to those processors which are the
origins of one or more source streams.

In the following subsections, we first present the theoretical model of the
problem and then present the proposed solution.

3.1 Problem Modeling

In the problem model, we assume we do not have the knowledge of the overlay
network topology of the Pub/Sub component. This is to achieve loose coupling
between the components.

Toward Massive Query Optimization 333

Table 2. Mapping Schemes

Scheme Load WEC

Scheme 1 Q1,Q2 — n1 ni: 0.2 165
Q3,Q4 — no na: 0.2

s; — sh, n; —n

Scheme 2 Q1,Q4 — n1 ni: 0.2 115
Q2,Q3 — no na: 0.2

s; — sh, n; —n

Scheme 3 Q1,Q3 — n1 ny: 0.2 110

Q2,Q4 — n2 na: 0.2
(a) Network graph (b) Query graph 5; — 85, np — n}

i

Fig. 5. Graphs

3.1.1 Objectives
Two objectives are considered in our algorithms:

— Balance the load among the processors. We assume the relative computa-
tional capability (the CPU speed) of a processor n; is known and we quantify it
as ¢;. Furthermore, the load of a query is estimated as the CPU time that it will
consume for every unit time in a processor with ¢; = 1. Hence if the total query
load is L and the total capability of the processors is C, the maximum load that
can be allocated to a processor n; is (1 +) - ¢; - é Parameter « is added to
allow slight load imbalance to trade for better communication efficiency. It is set
to 0.1 in our experiments.

— Minimize the total communication cost. The communication cost can be
divided into two parts: (1) transferring source streams from the sources to the
processors; (2) transferring query results from the processors to the users. Similar
to existing work [3UT7ITH], to measure the communication efficiency, we use the
weighted unit-time communication cost » y, . 7(n;,n;)-d(n;, n;), where r(n;, n;)
is the per-unit time traffic (bit/s) on the link between n; and n;, and d(n;, n;)
is the transfer latency of the link.

To achieve both of the above two goals, the queries should be allocated onto
the N processors such that the communication cost is minimized without vio-
lating the load constraints. To develop the algorithm, we model the problem as
a graph mapping problem in the following subsection.

3.1.2 Graph Mapping Model
We first construct a network graph NG = {V,,, E,,, W,,}, where each vertex v; €
Vi, represents a processor in the network and there is one edge e;; € E,, between
each pair of vertices v; and v;. The weight of each vertex v; is given by W, (v;).
W, (v;) is equal to ¢;, the processor’s capability value. Furthermore, the weight of
an edge e;; is also given by W, (e;;) and is equal to the communication latency
between v; and v;. Figure|p(a)[shows an example network graph. Here, there are
two data sources, s1 and s2, which have no computational capability (in terms of
complex query processing) and two processors, nq and ns, have the same ¢;.
Second, a query graph, QG = {V,, E,,W,}, is constructed. There are two
types of vertices in V: query vertex (g-vertex) representing a query and network

334 Y. Zhou, K. Aberer, and K.-L. Tan

vertex (n-vertex) representing a node in the network. An edge between a q-
vertex and a n-vertex represents either a query requests source data from the
data source or a query’s result should be sent back to the proxy. In addition, if
a query’s data source and its proxy happen to be the same node, only one edge
connects the query and that node. Figure shows the query graph when four
queries are submitted to the network of Figure In the figure, there are four
g-vertices, which are drawn in rectangles, and four n-vertices, which are drawn
in circles. @1 and Q)2 request source data from s; and sy respectively and their
results should be sent back to nj.

In a query graph, each g-vertex is weighted with the estimated query load,
while n-vertices are assigned with zero weights. In addition, each edge is weighted
with the estimated data rate (bit/s) of the corresponding streams. For example,
in Figure Q1’s load is of value 0.1. In addition, it requests 10 bit/s data
from source s; and generates 1 bit/s result streams to n.

However, the above model is still not enough for our problem. It ignores
the sharing of data communication among queries in a Pub/Sub. To accurately
model the communication cost, we add one edge between each pair of queries
that have overlap in their data interest. The edge weight is equal to the rate of
the data that are of interest to both of its end vertices (queries). The intuition
is to penalize allocation schemes that distribute the two queries to two nodes
that are very far away from each other. In Figure the data requested by
@1 from s; happens to contain those of Q3. So the weight of the edge between
)1 and Q3 is equal to the one between s; and Q3.

Now, we can model the query distribution problem as a graph mapping prob-
lem which maps the vertex set of one graph to the vertex set of another graph.
A mapping from a vertex set V] to another vertex set V5 is defined as a boolean
function M (v;,v;), where v; € Vi and v; € Vs, under the constraint that for
each v; € V4 there is exactly one v; € V5 such that M (v;, v;) = true. The formal
problem statement is as follows:

Given a query graph QG = (V,, E4,W,) and a network graph NG= (Vy,, E,,
Wh), find a mapping M from Vg to V,,, such that the mapping

1. obeys network constraint: an n-vertexr v; in V, is mapped to a vertex
v; in V, which represents the same network node as v;;

2. and obeys load-balancing constraint:

Ay .) < W (vi)- 4 .
v € Vo, Y Wo(vi) < (1+a) - Wi (v)) W (3.1)
v €Vy
M (viv5)

where Wg' =3, ey, We(vi) and Wi =37, oy, Wa(v;);
3. and minimizes the Weighted Edge Cut (WEC): which is given by

WEC= Y > Wylei;) - Walew). (3.2)
v €V, ’UiGVq
v eV, ’UjEVq
M('ui,'uk)
M(vj,vr)

Toward Massive Query Optimization 335

In Table 2l we present three mapping schemes from the query graphs to the
network graphs in Figure Bl which obey both the network constraint and the
load-balancing constraint. In scheme 1, we map all the queries to their own local
processors, while scheme 2 is the optimal mapping if we ignore the potential
sharing of communication of @)1 and Q5. We can see that scheme 3 is a better
mapping, which has a smaller W EC value.

3.2 Challenges and Approach Overview

There are a few practical difficulties to solve this problem. First, it is hard to
construct the global network graph and query graph when the size of the network
and the number of queries scales up. A scalable algorithm is required. Second,
even if we have the global graphs, finding the optimal mapping is an NP-Hard
problem [19]. Hence, an efficient heuristic-based approach is needed. Third, the
queries and stream statistics could change over runtime. A runtime algorithm is
required to redistribute the queries.

To address the problems, distributed coordinators are employed to perform
the heuristic graph mapping and remapping algorithms. They are organized into
a hierarchical tree. Each leaf coordinator constructs a network (sub)graph which
consists of an exclusive set of processors while a parent coordinator constructs a
network (sub)graph composed by its child coordinators. This provides a hierar-
chical view of the network graph. On the other hand, each coordinator also holds
a query (sub)graph which is a coarsened overview of its descendants’ and this
constructs a query graph hierarchy. Each coordinator only performs the mapping
and runtime remapping of its query (sub)graph to its network (sub)graph. The
rest of this section presents the detail of our scheme.

Finally, it is required to frequently estimate the overlaps between a pair of
queries in the following algorithms, which could be very expensive if it is done
by semantical reasoning. Therefore, we partition each stream into a number of
substreams, and represent each query’s data interest as a bit vector indicating
whether a substream overlaps with its interest. In this way, efficient bit opera-
tions could be used to quickly perform the estimation.

3.3 Network Graph Hierarchy

The coordinators are a subset of processors chosen from all the processors in
the system. Each such processor performs two separate logical roles: the stream
processor and the coordinator. We assume that separate resources of these pro-
cessors are reserved for these two roles. For non-coordinators, they perform only
the stream processor role. Hereafter, the words “processor” and “coordinator”
refer to the logical roles.

The coordinators are organized into a hierarchical tree. At the bottom level,
each processor forms a separate cluster and the processor is also called the par-
ent of this cluster. At the second level, the processors are clustered into multiple
close-by (in terms of transfer latency) clusters. Within each cluster, the median
is selected as the coordinator of the cluster which is also called the cluster’s

336 Y. Zhou, K. Aberer, and K.-L. Tan

Algorithm 1. Query graph coarsening algorithm
1 while |V| > vpmqe do

2 Set all the vertices as unmatched;
3 while 3 unmatched vertices A |V| > Vmaz do
4 Randomly select an unmatched vertex w;
5 A — adj(u) — mat(adj(u)) ;
6 if is n(u) then
A— A—{v|v € adj(u) Ais n(v) A (u.clu # v.clu V v.clu = unknown)};
7 Select a vertex v from A such that the edge e(u,v) is of the maximum
weight;
8 Collapse u and v into a new vertex w;
9 Set w as matched;
10 w.weight «— u.weight 4+ v.weight;
11 Re-estimate the weights of the edges connected to w;
12 if is n(u) OR is n(v) then
13 is n(w) «— true;
14 w.clu = is n(u)?u.clu : v.clu;
parent. The median of a set of processors {ny,na,...,n;} is defined as the pro-

cessor n; with minimum total transfer latency to all processors in the cluster,
Le. D0 dni,ng) < 32 << d(ng, ny) for any ny. These coordinators are also
clustered level by level in a similar way. We say a processor belongs to a cluster of
an internal coordinator (at any level) if it is the descendant of this coordinator.
Each coordinator constructs a network subgraph containing only its child
coordinators (or child processors for the leaf coordinators). Here, the weight of
a vertex is equal to the total capability values of all its descendant processors.
We adapt schemes proposed by the networking community to construct a
hierarchical tree of coordinators, such as [5]. The mechanism in [5] tries to main-
tain a tree with the following properties: (1) the size of the cluster in each level
is between k and 3k — 1 (except the cluster of the root whose size could be
less than k); (2) the parent is the median of its cluster. The tree is constructed
incrementally and dynamically. Interested readers can refer to [5].

3.4 Query Graph Hierarchy Construction

In this subsection, we look at how to construct the query graph hierarchy. To
begin, each leaf coordinator collects the query specifications from its child nodes
and generates a query graph over them. If the number of vertices of the query
graph is larger than v,,,,, then it runs Algorithm [l to coarsen the query graph.
The graph mapping algorithm at each coordinator, which will be presented in the
following sections, is performed on this coarsened query graph. The coarsening
algorithm repeatedly collapses two selected vertices until the number of vertices
is smaller than or equal to ;4. In the algorithm, a vertex u tends to collapse
with a neighbor v which has an edge e, , with a larger weight, because these
two vertices are more likely to be mapped to the same vertex in the network

Toward Massive Query Optimization 337

graph. For ease of exposition, we define the following functions: (1) adj(u) returns
the set of adjacent vertices of w; (2) is n(u) returns true if w is an n-vertex;
(3) matched(A) is all the matched vertices in a vertex set A. In addition, for
each n-vertex u, a field clu indicates which child cluster of the current coordinator
covers u. Two n-vertices belong to two different child clusters shall not be merged
together because they have to be mapped to different child clusters in the graph
mapping algorithm. Note that if u is not covered by any child cluster of this
coordinator, then their clu field is set as unknown.

The g-vertices in the (coarsened) graph are tagged with the current coordi-
nator’s name and then submitted to the parent coordinator who will perform
the same procedure after receiving all the (coarsened) graphs from its children.
Note that the procedure is run in parallel in different subtrees to accelerate the
whole procedure. The procedure stops when the root gets the (coarsened) query
graph. Now every coordinator holds its query graph. Finally,each coordinator
periodically propagates the update of its query graph to its parents at runtime.

3.5 Inmitial Query Distribution

Once the initial query graph hierarchy is constructed, the root coordinator starts
mapping its (coarsened) query graph to its network (sub)graph. The query sub-
graph mapped to each child is uncoarsened one level back and sent to the child.
This procedure repeats at each level until all the queries are assigned to the
processors. Note that, to uncoarsen a vertex, information of the finer-grained
vertices, if necessary, is retrieved from the corresponding coordinator based on
the tags of the vertex.

The algorithm is illustrated in Algorithm 2l It starts by using a greedy algo-
rithm to get an initial mapping:

(a) Map each n-vertex to a child that manages the node that n-vertex represents.

(b) Map the g-vertices one by one in descending order of their weights. For
each g-vertex, among the children that can accommodate it (i.e. their load-
balancing constraints will not be violated after mapping the g-vertex to
anyone of them), map it to the one that minimizes the current WEC. If no
children can accommodate it, then map it to the one with the minimum
violation of the load-balancing constraint.

Note that finding a mapping that satisfies the load-balancing constraint is an NP-
Complete problem. Our algorithm does not guarantee finding such a mapping.

Lines RlP]iteratively improve the mapping by trying to remap the g-vertices to
other vertices in NG. Here, we use the value of gain(v;, vx) to heuristically guide
our remapping, which is equal to the reduction of the WEC value by remapping
v; € Vg to vy € V,,. To achieve some capability of climbing out of local minima, a
g-vertex v; with a negative gain(v;, vi) value would be considered for remapping
as long as its gain value is the highest and its remapping will not violate the
load-balancing constraint of v. The mapping with minimum WEC value will be
restored at the beginning of each outer iteration.

338 Y. Zhou, K. Aberer, and K.-L. Tan

Algorithm 2. Graph mapping algorithm
Input NG = (an En? Wn)? QG = (‘/:17 V¢17 WQ)

1 use a greedy algorithm to get the initial mapping;

2 compute the gain gain(v;,v;) for each g-vertex v; € V5 and each v; € Vj, ;

3 minW EC «— current WEC; minM apping < current mapping;

4 repeat

5 current mapping «— minM apping;

6 repeat

7 maxGain «— —oo; vertexToRemap «— 0; vertexToRemapTo + (;

8 for each v; € V,, do

9 Find an unmatched g-vertex v; € V; currently mapped to v; and a

vertex vy € Vi, gain(vi, vi) is maximized and remapping v; to vk
does not violate load-balancing or improves a violation (if any);
10 if gain(vi,vr) > mazGain then
11 maxGain «— gain(v,v); vertexToRemap «— v;;
vertexToRemapT o < vi;

12 if vertexToRemap # () then
13 set vertexT oRemap as matched;
14 remap vertexT oRemap to vertexToRemapTo;

15 update gain(v;,vy) for any v; directly connected to vertexToRemap;
16 if current WEC < minW EC then

17 minW EC «current W EC)

18 minM apping < current mapping

19 until vertexToRemap = 0;

20 until minW EC is the same as the last iteration;

3.6 Online New Query Insertion

Unlike prior work which assumes queries are relatively stable, our system stresses
the problem of fast query streaming. The new queries have to be quickly dis-
tributed to the desirable processors. A good distribution can avoid runtime query
migration at a later time (see the next subsection).

While there are many possible new query distribution schemes, in this pa-
per, we only study the use of the hierarchical coordinator tree and show the
significance of new query insertion for the system performance. In this scheme,
a new query is first routed to the root coordinator which then routes it to one
of its children. The routing is done level by level until the query is assigned to a
processor. At each coordinator, the query is added to the query graph and the
weights of the new edges are estimated. Then the new vertex is mapped to a
vertex in the network graph such that the resulting WEC is minimized.

Although all queries have to be routed through the root coordinator, this
scheme is scalable to very fast query streams. This is because it only needs to
route the queries to a few children based on some coarse-grained information.
As shown in Section [it can handle more than 800,000 queries per second in
our experimental PC. For higher query stream rates, we can perform online

Toward Massive Query Optimization 339

Algorithm 3. Adaptive load re-balance

1 begin

2 Compute the diffusion solution m; for every ¢, j pair;

3 while there exists an m;; > 0 do

4 Randomly select a pair ¢,j such that m;; > 0;

5 V « query vertices in n; whose benefits differ up to % from the largest

benefit;

Vi < the dirty query vertices in V;

if Vy =0 then V; «— V;

8 Remapping the vertex v € Vy from n; to n; such that it is of the largest
load density and m;; is larger than 90% of its weight;

b\)

9 end

routing only on some queries while simply keeping the other queries at their
proxies. Further trade-offs between routing quality and routing efficiency is an
interesting piece of future work.

3.7 Adaptive Query Redistribution

During runtime, the queries, the workload of processors and the characteristics
of data streams may change. Hence the initial allocation of queries may become
suboptimal. Thus adaptive adjustment of the query distribution has to be per-
formed. Again we employ a hierarchical scheme. The adaptation works in rounds
and each round is initiated by the root coordinator periodically. After making
the redistribution decisions, the root coordinator would transfer the change of
the distribution to each of its children. Each child coordinator retrieves the
finer-grained information of the vertices newly allocated to it from their original
coordinators. Then the child coordinators would perform the same procedure
to make redistribution decisions. This process continues until the leaf coordina-
tors are done with the redistribution. Note that the actual migration of queries
happens after all decisions are made and is done among the processors.

The adaptive redistribution algorithm in each coordinator is composed of two
phases: load re-balancing followed by distribution refinement. In the load re-
balancing phase, the coordinator tries to re-balance the load among its children.
Besides that, there are a few other goals to be achieved:

1. Minimize the WEC of the mapping.

2. Minimize the query migration time. Since migrating queries may incur the
migration of stateful operators (e.g. join), we should minimize the size of the
states to be moved.

In the load balancing phase, to avoid re-mapping from scratch, which may
incur too many query migrations, we adopt a load diffusion approach [14]. A
diffusion solution specifies the load m;; that should be migrated from a coordi-
nator n; to another coordinator n; for each (¢, j) pair. Authors in [I4] proposed
a method to derive a diffusion solution such that the Euclidean norm of the

340 Y. Zhou, K. Aberer, and K.-L. Tan

transferred load is minimized which results in a small number of query migra-
tions. Our redistribution algorithm is presented in Algorithm Bl As n-vertices
are not considered for redistribution, the vertices in the algorithm only refer to
the g-vertices. The benefit of remapping a vertex from n; to n; is defined as the
reduction of the WEC given by Eqn ([8.2]). To achieve good mapping quality, our
algorithm tends to remap those vertices with large benefits.

Furthermore, a vertex is called dirty if it had been picked for remapping in
the earlier iterations in the same adaptation round. We give these vertices higher
remapping priority because moving them again would not increase the amount
of query migration (Note that queries are actually moved after all the decisions
are made in one round.). In addition, the load density of a vertex is equal to
the weight divided by the size of its state. We favor remapping the denser ones
because it may result in less state movement. The value of = in line 3] can be
used to trade mapping quality for lower migration cost. With a larger = value,
we can consider more vertices with lower migration benefit. In our experiments,
we set x = 10.

The distribution refinement phase attempts to reduce the WEC while main-
taining the load balancing condition. Again the query vertices are visited ran-
domly and checked to see whether they belong to one of the following categories:

(1) Mapping the vertex back to its original location can maintain load balance
and the current WEC.

(2) Mapping the vertex to another node can decrease the current WEC without
violating load balance.

The checks are performed in the order given above. Whenever such a vertex is
found, the remapping is performed.

3.8 Statistics Collection

Stream statistics are periodically multicast to the coordinators from the sources.
As stated before, we partition the data streams into multiple substreams and
the data interest of a user query is represented as a bit vector. Hence the stream
statistics we need is the data rate of each substream. In addition, each proces-
sor periodically collects the average CPU time that each of its running queries
consumes per unit time. If any value is changed, then it will be (re)submitted to
the parent coordinator to (re)estimate the workload that the query may incur.

4 Experiments

This section presents a performance study of the proposed techniques. Two sets
of experiments are conducted. In the first one, simulations of a large scale dis-
tributed system and a huge query set are conducted to test the various perfor-
mance aspects of COSMOS. In the second one, we deploy our system prototype
over PlanetLab with a real data set to compare the performance of COSMOS
with the state-of-the-art operator placement algorithms. All software are imple-
mented in C/C++.

Toward Massive Query Optimization 341

4.1 Simulation Study

A network topology with 4096 nodes is generated using the Transit-Stub model
in the GT-ITM topology generator. Among these nodes, 100 nodes are chosen
as the data stream sources, and 256 nodes are selected as the stream processors,
and the remaining nodes act as the routers.

The default cluster size parameter k used in the coordinator tree construc-
tion is set to 4, which will be varied in the experiments. All the streams are
partitioned into 20,000 substreams and they are randomly distributed to the
sources. The arrival rate of each substream is randomly chosen from 1 to 10
(bytes/seconds). To simulate clustering effect of user behaviors, g = 20 groups
of user queries are generated and each group has different data hot spots. The
group that a query belongs to is chosen randomly and the number of substreams
that a query requests is uniformly chosen from 100 to 200. For the queries within
every group, the probability that a substream is selected conforms to a zipfian
distribution with # = 0.8. To model different groups having different hot spots,
we generate g number of random permutations of the substreams. The number
of queries are varied from 5,000 to 60,000 and we set their workload to be pro-
portional to their input stream rates. The adaptive interval of the adaptive query
redistribution algorithm is set to 200 seconds. Because the cost of transmitting
the result streams from the processors to their local users are identical for any
query distribution scheme, we subtract such cost from the reported figures to
ease the comparison.

4.1.1 Initial Query Distribution

In the first experiment, we study the performance of the initial query distribution
scheme with different number of queries. It is compared with three approaches:
(a) Naive: allocate the queries to their local processors. (b) Greedy: only run the
greedy algorithm in Algorithm 2l (c¢) Centralized: a centralized node constructs
a global query graph and a global network graph, and runs Algorithm [2 to
perform a global mapping. While this approach is limited in its scalability, it
serves as a benchmark to examine the optimality of other approaches. Figure[6(a)|
presents the results of all the four approaches. Naive performs the worst because
it cannot identify the data interest of the queries and optimize their locations.
Greedy works a lot better. The two graph mapping algorithms perform the best
and their performances are similar. This also verifies that the graph coarsening
procedure in our hierarchical mapping algorithm does not incur much errors.

3 90 [Cenlralizéd —— M Cen. Total Time —=— 270
< go |Hierarchical —u-— > 60 Hie. Total Time s

= Greedy e * Hie. Response Time o
370 Naive ——x» S50

bi
IS

x 60 NA-Inacourate —»—
=1 Y A-dnaccurate —#—
Z 50 i A-Accurate -

L

©

.
O, el
250 P g 40 o 2R

) e)
€40 s F30
o

Stardard Deviation
~

.
OO Bt
8 y S O

NA-Inaccurate —*—

- ° 510 Aclnaccurate -

= Ca— 2, o A-Accurate e

5 10 20 30 40 50 60 5 10 20 30 40 50 60 0123456789101112 0123456789 101112
#of Queries (*1K) #of Queries (*1K) Adaptation Round Adaptation Round

(a) Comm. cost (b) Running time (a) Comm. Cost (b) Load deviation

Fig. 6. Varied #queries Fig. 7. Adapting to inaccurate statistics

342 Y. Zhou, K. Aberer, and K.-L. Tan

We also report the response time (i.e. the time interval from the begin to the
end of the mapping) and the total time (i.e. the total CPU time consumed in all
the coordinators) of the centralized and hierarchical graph mapping algorithms
in Figure Note that the response time and total time are equivalent for the
centralized approach. It is shown that both the response time and total time of
the hierarchical approach are much lower than the centralized one.

4.1.2 Adaptive Query Distribution

In the second set of experiments, we study the performance of the adaptation
scheme. In the above experiments, the graph mapping algorithms perform well if
accurate apriori statistics exist. However, apriori statistics are hard to collect in a
large scale system. Hence, in the first experiment, we study the situation that the
apriori statistics are inaccurate. We model this situation by using a random ini-
tial query allocation scheme. Three algorithms are compared: (1) NA-Inaccurate:
non-adaptive algorithm with inaccurate statistics; (2) A-Inaccurate: adaptive al-
gorithm with inaccurate statistics; (3) A-Accurate: Adaptive algorithm with ac-
curate statistics. Figures and present the communication cost and the
standard deviation of the system load over the observation period. It can be seen
that the adaptive algorithm can gradually refine the initial query distribution
scheme to minimize the communication cost and balance the system load.

In another experiment, we study the situation that new queries arrive in the
system. Initially, there are 30,000 queries and new queries are added into the
system incrementally at a 200 seconds interval. At the start of each interval,
there are 1,500 new queries coming in. We reported the average communication
cost during each interval and the standard deviation of the processor loads.
Three schemes are compared: (1) Random: randomly allocate the new queries
without considering their interest; (2) Online: use our online new query insertion
algorithm; (3) Online-Adaptive: use both the online new query insertion and the
adaptive query redistribution. The results are shown in Figure and The
performance of Random gets worse with more queries added, while Online can
maintain low communication cost but with increasing load imbalance. Online-
Adaptive performs the best in both metrics because of its ability to re-balance
the load distribution and to refine the query distribution.

In the fourth experiment, we examine the scalability of our system to fast
query streams. The settings are similar to that of the above experiment. We
collect the time for the root coordinator to distribute a query and then compute

29

3
8

3 7 =
S g0 Onliné —=— = O 3
= Random ——&-— 3 55 > 2
=70 Online-Adaptive - £ S § 80
2 B 1]
360 s 5 2 8 ES
950 & ki £33 M
£ e 315 £ T
£40 o a S L
S0 | W 2 1 8 z
B20 o 231 S 20
£% g o0s 5 H
3 7] 230 £ o
=0 0 2 4 8 16 2 4 8 16
0246 81012141618 20 0246 81012141618 20 Cluster Size Parameter k Cluster Size Parameter k
Time (*10%sec) Time (*10%sec)
o a) Comm. Cost b) Throughput
(a) Comm. Cost (b) Load deviation (a) (b) ghp

Fig. 8. New query arrival Fig. 9. Varied Cluster Size

Toward Massive Query Optimization 343

Rate Perturbation Type Rate Perturbation Type
IDD I 1 1 1 1D IDD I I 111Dl
No'Adaptive ——
daptive e
Remapping -+

Op pi =
—

COSMOS

~
3

NG Adapfive —=—
25 Adaptive &~
o | Femapping e

15
10

unning Time

o o
3 3

2
&
Normalized Comm Cost

Standard Deviation

Normalized R

=]

Weighted Comm. Cost (1k bits)

5
i oL TN ,
0 2 4 6 8 101214 16 18 20 0246 8101214161820 250 1000 4000
Time (*10%sec) Time (*10%sec) #Queries
(a) Comm. Cost (b) Load deviation (a) Comm. cost (b) Running time
Fig. 10. Perturbation of stream rates Fig. 11. Prototype study

the maximum query rate that it can accommodate. We study the root coordi-
nator because it is the potential bottleneck of the system. We vary the cluster
size parameter k. The results are shown in Figure @l We can see that, with a
smaller value of k, the query distribution quality is worse. That is because there
are more levels in the coordinator tree and more graph coarsening is performed.
On the other hand, the throughput of query streams gets better with a smaller
value of k. The reason is the root coordinator needs to route queries to fewer
number of children. Hence, adaptively setting the parameter k is an interesting
piece of future work.

Finally, we examine the situation when the rates of streams change. At run-
time, we increase (denoted by “I”) or decrease (denoted by “D”) the rates of
800 random streams several times so that load imbalance exists within the sys-
tem. Here, we compare the adaptive scheme with two schemes: (1) Re-mapping:
use the centralized mapping algorithm to remap the global query graph to the
global network graph; (2) Non-Adaptive: no adaptation is done. Figures [L0(a)|
and depict the communication cost as well as the standard deviation of
the load in the system after each change. It is clear that adaptive query redistri-
bution performs close to centralized remapping and can re-balance the system
load to adapt to the new data characteristics without increasing the communica-
tion cost. While the remapping algorithm can achieve better results, it incurred
about 7 times more query migrations than the adaptive algorithm did.

4.2 Prototype Study

In this experiment, our prototype system is deployed on 30 nodes over PlanetLab
from different countries and continents. We use our stream processing system,
GSN (http://gsn.sourceforge.net), which is tailored for processing data from
heterogeneous sensor networks. Real readings from 100 sensors deployed in our
SensorScope project (http://sensorscope.epfl.ch) are used as the dataset.
5 nodes act as the data sources, each with equal number of sensors. A number
(250 ~ 4000) of random queries are generated. Each query contains one to three
random selection predicates on the sensor readings and sensor types together
with one to three join predicates on the timestamp. A random node is chosen as
the proxy for each query.

In the operator placement approach, an algorithm similar to [12] is imple-
mented to generate an optimized global operator graph. In addition, the algo-

http://sensorscope.epfl.ch

344 Y. Zhou, K. Aberer, and K.-L. Tan

rithm proposed in [3] is also implemented to optimize the operator placement. In
COSMOS, the coordinator tree is constructed such that each cluster has 2 ~ 3
members. Since [3] did not study adaptive query optimization, a static query set
is used to compare the two approaches.

Figure shows the communication cost of the query plans generated by
the two approaches. To ease the comparison, we normalize the values over those
of COSMOS. One can see that COSMOS can achieve similar communication
efficiency as the existing operator placement algorithms with varied number of
queries. The slight difference can be partially attributed to the fact that the
operator placement algorithms in [3] do not consider load balancing and hence
it can obtain a plan with lower communication cost. In Figure we depict
the response time of the two algorithms. In this figure, we normalize the values
over the largest one (i.e. the response time of the operator placement algorithm
with 4,000 queries) to see the trend with increasing number of queries. The
result suggests that COSMOS is much more scalable than the existing operator
placement algorithms with larger number of queries. This confirms the efficiency
of the new system architecture and the hierarchical query placement algorithm.

5 Conclusion

This paper proposes a massive query optimization approach for distributed
stream systems. A Pub/Sub is adopted as the communication substrate. Tech-
niques are proposed to leverage the Pub/Sub to “intelligently” eliminate du-
plicate data transmission and perform early data filtering in a scalable way.
Furthermore, a scalable load distribution scheme further improves the system’s
performance. The load distribution problem is modelled as a graph mapping
problem, which considers both load balancing and communication cost minimiza-
tion and also takes account of the communication characteristics of a Pub/Sub.
Both static and adaptive query distribution algorithms are proposed. A new hi-
erarchical scheme is utilized to enhance the algorithms’ scalability. An extensive
simulation study verifies the efficacy and efficiency of all the proposed techniques.

References

1. Abadi, D.J., et al.: The design of the borealis stream processing engine. In: CIDR,
(2005)

2. Aguilera, M.K., et al.: Matching events in a content-based subscription system. In:
PODC (1999)

3. Ahmad, Y., et al.: Networked query processing for distributed stream-based appli-
cations. In: VLDB (2004)

4. Amini, L., et al.: Adaptive control of extreme-scale stream processing systems. In:
ICDCS (2006)

5. Banerjee, S., et al.: Scalable application layer multicast. In: SIGCOMM (2002)

6. Carney, D., et al.: Monitoring streams: A new class of data management applica-
tions. In: VLDB (2002)

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Toward Massive Query Optimization 345

. Carzaniga, A., et al.: Design and evaluation of a wide-area event notification ser-

vice. ACM Transactions on Computer Systems 19(3), 332-383 (2001)

. Carzaniga, A., et al.: A routing scheme for content-based networking. In: INFO-

COM (2004)

. Carzaniga, A., Wolf, A.L.: Forwarding in a content-based network. In: SIGCOMM

(2003)

Carzaniga, A., Wolf, A.L.: Content-based networking: A new communication in-
frastructure. In: Infrastructure for Mobile and Wireless Systems (2001)
Chandrasekaran, S., et al.: TelegraphCQ: Continuous dataflow processing for an
uncertain world. In: CIDR, (2003)

Chen, J., et al.: NiagaraCQ: A Scalable Continuous Query System for Internet
Databases. In: SIGMOD (2000)

Cherniack, M., et al.: Scalable distributed stream processing. In: CIDR, (2003)
Hu, Y.F., Blake, R.J.: An optimal dynamic load balancing algorithm. Technical
report, Daresbury laboratory (1995)

Kumar, V., et al.: Resource-aware distributed stream management using dynamic
overlays. In: ICDCS (2005)

Papaemmanouil, O., et al.: Semcast: Semantic multicast for content-based data
dissemination. In: ICDE (2005)

Pietzuch, P.; et al.: Network-aware operator placement for stream-processing sys-
tems. In: ICDE (2006)

Repantis, T., et al.: Synergy: sharing-aware component composition for distributed
stream processing systems. In: Middleware (2006)

Schloegel, K., et al.: Graph partitioning for high-performance scientific simulations,
pp. 491-541 (2003)

Shah, M.A., et al.: Flux: An adaptive partitioning operator for continuous query
systems. In: ICDE (2003)

Srivastava, U., et al.: Operator placement for in-Network stream query processing.
In: PODS (2005)

Stonebraker, M., et al.: Mariposa: A New Architecture for Distributed Data. In:
ICDE (1994)

The STREAM Group. STREAM: The stanford stream data manager. IEEE Data
Engineering Bulletin (2003)

Xing, Y., et al.: Dynamic load distribution in the borealis stream processor. In:
ICDE (2005)

Zhou, Y., et al.: Rethinking the design of distributed stream processing systems.
In: NetDB (2008)

	Toward Massive Query Optimization in Large-Scale Distributed Stream Systems
	Introduction
	Existing Distributed Stream Systems
	Pub/Sub Systems
	COSMOS
	Paper Layout

	System Overview
	An Illustrating Example

	Query Distribution
	Problem Modeling
	Challenges and Approach Overview
	Network Graph Hierarchy
	Query Graph Hierarchy Construction
	Initial Query Distribution
	Online New Query Insertion
	Adaptive Query Redistribution
	Statistics Collection

	Experiments
	Simulation Study
	Prototype Study

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

