

Lecture Notes in Computer Science 5346
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Valérie Issarny Richard Schantz (Eds.)

Middleware 2008

ACM/IFIP/USENIX
9th International Middleware Conference
Leuven, Belgium, December 1-5, 2008
Proceedings

13

Volume Editors

Valérie Issarny
INRIA Rocquencourt
Domaine de Voluceau, 78153 Le Chesnay CEDEX, France
E-mail: valerie.issarny@inria.fr

Richard Schantz
BBN Technologies
10 Moulton Street, Cambridge, MA 02138, USA
E-mail: schantz@bbn.com

Library of Congress Control Number: 2008940422

CR Subject Classification (1998): C.2.4, D.4, C.2, D.1.3, D.3.2, D.2, H.2, H.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-89855-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89855-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© IFIP International Federation for Information Processing, Hofstrasse 3, A-2361 Laxenburg, Austria 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12581047 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the International Middleware Confe-
rence, held in Leuven, Belgium during December 1–4, 2008. This year marked
the ninth rendition of this annual conference in its current format initially ad-
opted in 1998, aspiring to serve as the premier venue focusing exclusively on
important middleware results. A lot has happened over the intervening 10-year
span. Middleware has become pervasive in an increasingly interconnected world,
with its concepts now securely embedded in the notional architectures driving
forward the information age. The conference continues to be a focal point for
important new initiatives and results for new generations of middleware. With
each succeeding year, it has become an even more competitive publishing venue,
further extending its selectivity this year as well. Of the 117 submissions, on-
ly 21 were able to receive acceptance invitations, for an acceptance rate of less
than 18%. Competitive indeed. Additionally, these submissions continue to come
from all over the globe, spanning authors from 23 countries. A truly world-wide
endeavor.

But other things have also changed as we turn the corner on the first decade
of this conference. In many ways, middleware has achieved significant success
where it really counts: in terms of technical innovations, advanced capabilities,
successful ideas, and fielded systems which permeate society, industry, gover-
nment, and academia. With this success comes maturity. Many of the themes
which kicked off the focus on these intermediary technologies have long since
transitioned, and with each new middleware conference, the field takes on a
slightly different view from earlier. This year, the topics were a bit more diver-
se, and represent a blend of maturing themes and new areas of focus for the
conference. Accepted papers in this proceedings volume fall roughly under four
categories: four papers concerned with platforms extended to new capabilities
(e.g., mobility, off-line operation), six papers concerned with advanced software
engineering focusing on specific system properties, five papers focusing on over-
all system management techniques, and six papers concerned with components
and system algorithms and properties. Notably, new avenues of investigation are
coupled with application initiatives and focused properties in deriving new uses
and more detailed scenarios of operation. And more attention is now focused
on keeping systems running or running correctly, in place of merely creating the
system; moreover, focus is shifting to managing resources of the “virtual” varie-
ty, in addition to real and countable ones. Those are all measures of maturing,
but they also leave wide open-space for another wave of innovation. In seeking
these new tributaries from the earlier basics, we are in fact laying a foundation
for new generations of middleware pursuits.

The proceedings contain 21 papers covering a wide-range of recent research.
Each paper submitted to Middleware 2008 was reviewed by a minimum of three

VI Preface

members of the Program Committee (PC), with many having four PC mem-
ber reviewers. After initial reviews were posted, papers with multiple positive
reviews were subject to interactive conferencing among the reviewers and PC
Chairs to debate the pros and cons of each and to allow discussion of differing
viewpoints among reviewers. From these, a more manageable set was selected,
discussed and debated among the entire PC to arrive at the final program. New
to this conference was a shepherding process for a number of papers which were
conditionally accepted pending changes suggested and requested by reviewers
toward an improved quality of the submission. From this extensive and inter-
active, multi-pass process, we believe the proceedings capture the best of the
submissions and provide the reader with the highest quality, most readable re-
sults. We hope you agree. The PC Co-chairs thank each and every one of the 47
members of the PC for putting forth the timely and extra effort involved with
this process; as a result of their diligence these results are available to all.

In addition to the regular papers in the proceedings, this year we introduced a
separate industry track, with its own call for papers, and its own mini-PC. It was
our intent to provide an avenue for papers better suited to industry concerns and
perspectives than to more traditional research papers. These additional papers
are made available separately. The industry track session, along with continuing
venues for a Work in Progress (WiP) session providing an early look at emerging
new research, keynote speakers, panel and demos and posters sessions, comple-
mented by two days of workshops, and the third annual Doctoral Symposium,
round out the program for Middleware 2008.

We hope you share our enthusiasm for the results. In closing we would also
like to express our deepest gratitude to the General Conference Chairs, Wouter
Joosen and Yolande Berbers, the Special Session Chairs, Fred Douglis, Cecilia
Mascolo and Bert Lagaisse, the Publicity Co-chairs, Michael Atighetchi and
Sonia Ben Mokhtar, and to Richard van de Stadt and Davy Preuveneers for
help with online tools for the conference and program selection process, each
contributing significantly to a successful conference.

September 2008 Valérie Issarny
Rick Schantz

Organization

Middleware 2008 was organized under the auspices of IFIP TC6WG6.1 (Interna-
tional Federation for Information Processing, Technical Committee 6 [Commu-
nication Systems],Working Group 6.1 [Architecture and Protocols for Computer
Networks]).

Executive Committee

Conference Chairs Wouter Joosen (K.U.Leuven, Belgium)
Yolande Berbers (K.U.Leuven, Belgium)

Program Chairs Valérie Issarny (INRIA, France)
Rick Schantz (BBN Technologies, USA)

Workshops and Tutorials Frank Eliassen (University of Oslo, Norway)
Chairs Hans-Arno Jacobsen (University of Toronto,

Canada)
Industry Chair Fred Douglis (IBM, USA)
Work In Progress Chair Cecilia Mascolo (University of Cambridge, UK)
Publicity Chairs Michael Atighetchi (BBN Technologies, USA)

Sonia Ben Mokhtar (UCL, UK)
Posters and Demos Chair Bert Lagaisse (K.U.Leuven, Belgium)
Doctoral Symposium Chair Sam Michiels (K.U.Leuven, Belgium)
Corporate Support Chair Katrien Janssens (K.U.Leuven, Belgium)
Local Arrangements Chair Davy Preuveneers (K.U.Leuven, Belgium)

Steering Committee

Gordon Blair (Chair) Lancaster University, UK
Jan De Meer SmartSpaceLab, Germany
Peter Honeyman CITI, University of Michigan, USA
Hans-Arno Jacobsen University of Toronto, Canada
Elie Najm ENST, France
Gustavo Alonso ETH Zurich, Switzerland
Jean-Bernard Stefani INRIA, France
Maarten van Steen Vrije Universiteit Amsterdam, The Netherlands
Shanika Karunasekera University of Melbourne, Australia
Renato Cerqueira PUC-RIO, Brazil
Nalini Venkatasubramanian UC Irvine, USA

Program Committee

Gustavo Alonso ETH Zurich, Switzerland
Christiana Amza University of Toronto, Canada

VIII Organization

Jean Bacon University of Cambridge, UK
Dave Bakken Washington State University, USA
Guruduth Banavar IBM Research, India
Alberto Bartoli University of Trieste, Italy
Christian Becker Universität Mannheim, Germany
Gordon Blair Lancaster University, UK
Roy H Campbell University of Illinois at UC, USA
Renato Cerqueira PUC-Rio, Brazil
Angelo Corsaro PrismTech, USA
Paolo Costa Vrije Universiteit Amsterdam, The Netherlands
Geoff Coulson Lancaster University, UK
Jan De Meer SmartSpaceLab, Germany
Fred Douglis IBM T.J. Watson Research Center, USA
Naranker Dulay Imperial College London, UK
Frank Eliassen University of Oslo, Norway
Markus Endler PUC-Rio, Brazil
Pascal Felber University of Neuchatel, Switzerland
Paulo Ferreira INESC ID / Technical University of Lisbon,

Portugal
Nikolaos Georgantas INRIA, France
Chris Gill Washington University, USA
Paul Grace Lancaster University, UK
Indranil Gupta University of Illinois at UC, USA
Qi Han Colorado School of Mines, USA
Peter Honeyman CITI, University of Michigan, USA
Gang Huang Peking University, China
Shanika Karunasekera University of Melbourne, Australia
Bettina Kemme McGill University, Canada
Fabio Kon University of Sao Paulo, Brazil
Doug Lea Oswego State University, USA
Rodger Lea University of British Columbia, Canada
Mark Linderman Air Force Research Laboratory, USA
Joe Loyall BBN Technologies, USA
Cecilia Mascolo University of Cambridge, UK
Satoshi Matsuoka Tokyo Institute of Technology, Japan
Elie Najm ENST Paris, France
Bala Natarajan Symantec Corp., India
Gian Pietro Picco University of Trento, Italy
Alexander Reinefeld Zuse Institute Berlin, Germany
Luis Rodrigues INESC-ID/IST, Portugal
Antony Rowstron Microsoft Research, UK
Douglas C. Schmidt Vanderbilt University, USA
Jean-Bernard Stefani INRIA, France
Gautam Thaker Lockheed Martin Adv. Tech. Labs, USA
Peter Triantafillou University of Patras, Greece
Apostolos Zarras University of Ioannina, Greece

Organization IX

Referees

Artur Andrzejak
Juliana França Santos Aquino
Mikael Beauvois
Pedro Brandao
Raphael de Camargo
Roy Campbell
Nuno Carvalho
Matteo Ceriotti
Lipo Chan
Sand Correa
Julien Delange
UmaMaheswari Devi
Ioanna Dionysiou
Kevin Dorow
Partha Dutta
David Eyers
Fabiano Cutigi Ferrari
Bruce Fields
José Viterbo Filho
Alessandro Garcia
Joanna Geibig
Harald Gjermundrod
Rick Grandy
Stefan Guna
Manish Gupta
Sebastian Gutierrez-Nolasco
Irfan Hamid
Aaron Harwood
Loren Hoffman
Mikael Högqvist
Jose Mocito
Amadeu Andrade Barbosa Júnior
Kalapriya Kannan
Manos Kapritsos

Bjoern Kolbeck
João Leitão
Renato Maia
Marcelo Andrade da Gama Malcher
Alan Marchiori
Naoya Maruyama
Giuliano Mega
Luca Mottola
Nanjangud C. Narendra
Anh Tuan Nguyen
Sebastian Gutierrez Nolasco
Lakshmish Ramaswamy
Rajiv Ramdhany
Imran Rao
Valeria Q. Reis
Etienne Rivière
Liliana Rosa
Romain Rouvoy
Giovanni Russello
Richard Süselbeck
Gregor Schiele
Florian Schintke
Thorsten Schütt
Rudrapatna K. Shyamasundar
Amirhosein Taherkordi
Francois Taiani
Verena Tuttlies
Zografoula Vagena
Luis Vargas
Luis Veiga
Akshat Verma
Eiko Yoneki
Chenfeng Vincent Zhou

X Organization

Sponsoring Institutions

International Federation for Information Processing
http://www.ifip.org

Association for Computing Machinery
http://www.acm.org

Advanced Computing Systems Association
http://www.usenix.org

Katholieke Universiteit Leuven
http://www.kuleuven.be

Interdisciplinary Institute for Broadband Technology
http://www.ibbt.be

Corporate Sponsors

BBN Technologies
http://www.bbn.com

Google
http://www.google.com

International Business Machines Corporation
http://www.ibm.com

Table of Contents

Platforms

Adaptive Content-Based Routing in General Overlay Topologies 1
Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen

AlfredO: An Architecture for Flexible Interaction with Electronic
Devices . 22

Jan S. Rellermeyer, Oriana Riva, and Gustavo Alonso

Exo-Leasing: Escrow Synchronization for Mobile Clients of Commodity
Storage Servers . 42

Liuba Shrira, Hong Tian, and Doug Terry

Subscription Subsumption Evaluation for Content-Based
Publish/Subscribe Systems . 62

Hojjat Jafarpour, Bijit Hore, Sharad Mehrotra, and
Nalini Venkatasubramanian

Software Engineering

Diagnosing Distributed Systems with Self-propelled Instrumentation 82
Alexander V. Mirgorodskiy and Barton P. Miller

Multithreading Strategies for Replicated Objects . 104
Jörg Domaschka, Thomas Bestfleisch, Franz J. Hauck,
Hans P. Reiser, and Rüdiger Kapitza

A Component Framework for Java-Based Real-Time Embedded
Systems . 124

Aleš Pľsek, Frédéric Loiret, Philippe Merle, and Lionel Seinturier

DeXteR – An Extensible Framework for Declarative Parameter Passing
in Distributed Object Systems . 144

Sriram Gopal, Wesley Tansey, Gokulnath C. Kannan, and
Eli Tilevich

Performance Comparison of PHP and JSP as Server-Side Scripting
Languages . 164

Scott Trent, Michiaki Tatsubori, Toyotaro Suzumura,
Akihiko Tozawa, and Tamiya Onodera

Debugging and Testing Middleware with Aspect-Based Control-Flow
and Causal Patterns . 183

Luis Daniel Benavides Navarro, Rémi Douence, and Mario Südholt

XII Table of Contents

System Management

Enabling Resource Sharing between Transactional and Batch Workloads
Using Dynamic Application Placement . 203

David Carrera, Malgorzata Steinder, Ian Whalley,
Jordi Torres, and Eduard Ayguadé

Biologically-Inspired Distributed Middleware Management for Stream
Processing Systems . 223

Geetika T. Lakshmanan and Robert E. Strom

pMapper: Power and Migration Cost Aware Application Placement in
Virtualized Systems . 243

Akshat Verma, Puneet Ahuja, and Anindya Neogi

Burstiness in Multi-tier Applications: Symptoms, Causes, and New
Models . 265

Ningfang Mi, Giuliano Casale, Ludmila Cherkasova, and
Evgenia Smirni

Towards End-to-End Quality of Service: Controlling I/O Interference
in Shared Storage Servers . 287

Gokul Soundararajan and Cristiana Amza

Components and System Algorithms and Properties

SODA: An Optimizing Scheduler for Large-Scale Stream-Based
Distributed Computer Systems . 306

Joel Wolf, Nikhil Bansal, Kirsten Hildrum, Sujay Parekh,
Deepak Rajan, Rohit Wagle, Kun-Lung Wu, and Lisa Fleischer

Toward Massive Query Optimization in Large-Scale Distributed Stream
Systems . 326

Yongluan Zhou, Karl Aberer, and Kian-Lee Tan

QoS Allocation Algorithms for Publish-Subscribe Information Space
Middleware . 346

Joseph Loyall, Matthew Gillen, and Praveen Sharma

Profiling and Modeling Resource Usage of Virtualized Applications 366
Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat, and
Prashant Shenoy

Prism: Providing Flexible and Fast Filesystem Cloning Service for
Virtual Servers . 388

Xin Zhao, Kevin Borders, and Atul Prakash

Table of Contents XIII

Moara: Flexible and Scalable Group-Based Querying System 408
Steven Y. Ko, Praveen Yalagandula, Indranil Gupta, Vanish Talwar,
Dejan Milojicic, and Subu Iyer

Author Index . 429

Adaptive Content-Based Routing in General
Overlay Topologies

Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen

University of Toronto
gli@cs.toronto.edu, {vinod,jacobsen}@eecg.toronto.edu

http://padres.msrg.toronto.edu

Abstract. This paper develops content-based publish/subscribe algo-
rithms to support general overlay topologies, as opposed to traditional
acyclic or tree-based topologies. Among other benefits, publication routes
can adapt to dynamic conditions by choosing among alternate rout-
ing paths, and composite events can be detected at optimal points in
the network. The algorithms are implemented in the PADRES pub-
lish/subscribe system and evaluated in a controlled local environment
and a wide-area PlanetLab deployment. Atomic subscription notifica-
tion delivery time improves by 20% in a well connected network, and
composite subscriptions can be processed with 80% less network traffic
and notifications delivered with about half the end to end delay.

1 Introduction

Publish/subscribe (pub/sub) is a powerful messaging paradigm that maintains
a clean decoupling of data sources and sinks [3,4,5,8,14,24,31,34]. Interoperating
through simple publish and subscribe invocations is especially useful for the de-
velopment of large, distributed, loosely coupled systems. While there are many
applications based on group communication and topic-based pub/sub protocols
such as information dissemination [17,22], a large variety of emerging applica-
tions benefit from the expressiveness, filtering, distributed event correlation, and
complex event processing capabilities of content-based pub/sub. These applica-
tions include RSS feed filtering [31], stock-market monitoring engines [33], system
and network management and monitoring [7,20], algorithmic trading with com-
plex event processing [10,29], business process execution [32], business activity
monitoring [7] and workflow management [5]. Typically, content-based pub/sub
systems are built as application-level overlays of content-based pub/sub brokers,
with publishing data sources and subscribing data sinks connecting to the bro-
ker overlay as clients. In pub/sub systems, event filtering is supported by atomic
subscriptions, whereas composite subscriptions are used by more sophisticated
pub/sub applications to correlate events from distributed sources [5,7,14,29]. To
support the class of applications above, this paper considers both atomic and
composite subscriptions.

Most existing pub/sub systems [5,8,19,23] are based on an acyclic overlay bro-
ker network. With only one path between any pair of brokers or clients, content-
based routing is greatly simplified. Despite this success, an acyclic overlay offers

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 1–21, 2008.
� IFIP International Federation for Information Processing 2008

2 G. Li, V. Muthusamy, and H.-A. Jacobsen

limited flexibility to accommodate changing network conditions, is not robust
with respect to broker failures, and introduces complexities for supporting other
protocols, such as failure recovery. For example, since only one path exists be-
tween any pair of clients, an acyclic overlay cannot accommodate routing around
congested, overloaded, or failed brokers. Furthermore, because acyclic networks
are more vulnerable to partitions, failure recovery is more expensive and topol-
ogy reconfiguration can be complex since their repair actions must maintain the
acyclic property of the overlay [27]. Maintaining the acyclic property is difficult
since a broker often only knows about its direct neighbors and not the entire
topology.

However, supporting general overlay topologies requires changes to the stan-
dard content-based routing protocols in order to avoid routing messages in cycles.
Consider a topology graph G = (V, E) with vertices V and edges E. Broadcast-
ing a single message in G will generate |E|−|V |

|E| % of redundant messages. For
instance, in a 500 broker topology with an average connectivity of 10 neighbors,
a single advertisement induces 2500 messages, 80% of which must be discarded.

This paper focuses on enabling content-based routing in cyclic overlays. Sup-
porting such general overlays affords great flexibility for selecting an optimal
routing path based on some optimality criteria or utility function, something
not possible in acyclic overlays, where at most one path exists between any data
source and sink pair. A novel dynamic routing algorithm takes advantage of this
capability to route publications based on changing overlay-link statistics. The
flexibility of a cyclic overlay is further exploited by a new composite event de-
tection algorithm that efficiently correlates events from distributed data sources
with the objective of reducing the dissemination of unnecessary messages and
minimizing the notification delay. By allowing for general overlay topologies, the
content-based pub/sub protocols in this paper also provide a foundation for po-
tentially simplifying the support of other features such as failure recovery, load
balancing, path reservation, or splitting message streams across multiple paths.

To address the above problems, this paper makes the following contributions.
First, Section 3 develops significant extensions to standard content-based rout-
ing protocols to enable message routing in general overlay topologies. The design
preserves the original simple publish and subscribe interface to clients, and does
not require changes to a broker’s internal message matching algorithm, allow-
ing the approach to be easily integrated into existing systems. The solution
applies to advertisement-based and to subscription-based routing, and exploits
redundant routing paths so that publications can be routed to subscribers more
optimally, for example, based on assessing load conditions on links. An inter-
esting byproduct of the algorithm is that message routing can be significantly
improved by performing matching only once per message, as opposed to existing
approaches that match messages at each broker in the overlay. Second, Section 4
presents a novel dynamic routing algorithm for handling composite subscriptions
in cyclic overlays. The algorithm is fully distributed, and seeks to minimize the
message delay and network traffic by continually adjusting composite subscrip-
tion propagation paths based on the publication traffic and the overlay network

Adaptive Content-Based Routing in General Overlay Topologies 3

load distribution. Third, Section 4 also develops a cost model that is used by the
composite subscription routing algorithm to dynamically optimize the placement
of composite subscription join points, where publications are filtered and corre-
lated. Finally, in Section 5, implementations of the protocols are experimentally
evaluated on various topologies in a controlled local network environment and
in a wide-area PlanetLab deployment.

2 Related Work

Content-based Pub/Sub: Most pub/sub systems assume an acyclic overlay
network. REBECA [8] explores advanced routing algorithms based on an acyclic
broker overlay network, and JEDI [5] uses a hierarchical overlay for event dis-
patching. SIENA [4], however, proposes a routing protocol for general overlay
networks, using reverse path forwarding to detect and discard duplicate mes-
sages. In this solution, any advertisement, subscription or publication message
may be duplicated. As well, routing path adaptations to changing network con-
ditions and the implications for composite event detection are not addressed.

There have been attempts to build content-based pub/sub systems over group
multicast primitives such as IP multicast [6]. To appreciate the challenge in
doing so, consider a scenario with N subscribers. In a content-based system,
each message may be delivered to any subset of these subscribers, resulting in
2N “groups”. It is infeasible to manage such exponentially increasing numbers
of groups, and the algorithms seek to construct a limited number of groups such
that the number of groups any given message must be sent to is minimized and
the precision of each group is maximized (i.e., minimize the number of group
members that are not interested in events sent to that group). This is an NP-
complete problem [2], but there have been attempts to develop heuristics to
construct such groups [23,30]. To avoid these complexities more recent content-
based routing algorithms [4,5], as well as the algorithms in this paper, have
abandoned the notion of groups and rely on an overlay topology that performs
filtering and routing based on message content.

The expressiveness and filtering capabilities of content-based routing comes
at the price of larger routing table state. Techniques such as subscription cov-
ering [4], merging [13,19] and summarization [34] reduce broker routing state,
message traffic and matching overhead, and are orthogonal to the routing pro-
tocols in this paper.

There have been a number of content-based pub/sub systems that exploit the
properties of distributed hash tables (DHT) to achieve reliability. Hermes [28]
builds an acyclic routing overlay over the underlying DHT topology but does
not consider alternate publication routing paths as in this paper. Other ap-
proaches [3,9,21], construct distributed indexes to perform pub/sub matching.
This paper, on the other hand, assumes a more traditional dedicated broker
network model, one benefit of which is the lack of additional network and com-
putation overhead associated with searching a distributed index to perform pub/
sub matching. The model in this paper can achieve lower delivery latencies when

4 G. Li, V. Muthusamy, and H.-A. Jacobsen

there are no failures, but still use alternate paths for publication routing in case
of congestion or failure. Admittedly, the DHT protocols, designed for more hos-
tile network, tend to be more fault-tolerant than the algorithms in this paper
which assume a more reliable, dedicated broker network.

Pub/Sub systems have been developed for even more adverse environments
such as mobile ad-hoc networks (MANET). These networks as inherently cyclic
but the protocols [12,26] require periodic refreshing of state among brokers due
to the unreliability of nodes and links, an overhead that is not required by the
work in this paper. As well, MANET brokers can exploit wireless broadcast
channels to optimize message forwarding. For example, brokers in ODMRP [12]
do not maintain forwarding tables, but only record if they lie on the path be-
tween sources and sinks in a given group. Brokers simply broadcast messages to
their neighbours (discarding duplicates) until the message reaches the destina-
tions. The protocols in this paper, on the other hand, cannot rely on broadcast
transmission and also explicitly attempt to avoid duplicate message delivery. As
well, ODMRP does not support the more complex content-based semantics.

Composite Subscriptions: A composite subscription correlates publications
over time, and describes a complex event pattern. Supporting an expressive sub-
scription language and determining the location of composite event detection
in a distributed environment are difficult problems. CEA [29] proposes a Core
Composite Event Language to express concurrent event patterns. The CEA lan-
guage is compiled into an automata for distributed event detection supporting
regular expression-type patterns. CEA employs polices to ensure that mobile
event detectors are located at favorable locations, such as close to event sources.
However, CEA’s distribution polices do not consider the alternate paths and the
dynamic load characteristics of the overlay network.

One of the key challenges in supporting composite subscriptions in a dis-
tributed pub/sub system is determining how the subscription should be de-
composed and where in the network event collection and correlation should
occur. While this problem is similar to query plan optimization in distributed
DBMS [25] and distributed stream processing [11], data in a relation or a stream
have a known schema which simplifies matching and routing. Moreover, a data-
base query is evaluated once against existing data, while a subscription is eval-
uated against publications over time. This may result in different optimization
strategies and cost models. In the IFLOW [11] distributed stream processing en-
gine, a set of operators are installed in the network to process streams. IFLOW
nodes are organized in a cluster hierarchy, with nodes higher in the hierar-
chy assigned more responsibility, whereas in our approach, brokers have equal
responsibility.

3 Routing in General Overlays

The work in this paper builds on the PADRES distributed, content-based pub/
sub middleware platform. PADRES uses advertisement-based routing adapted
from SIENA [4] and REBECA [8]. Each broker records its overlay neighbors in an

Adaptive Content-Based Routing in General Overlay Topologies 5

Overlay Routing Tables (ORT), and advertisements are broadcast through the
network forming an advertisement tree. Advertisements are stored in the Sub-
scription Routing Table (SRT) which is logically a list of [advertisement,last
hop] tuples. Subscriptions are propagated in reverse direction along the adver-
tisement trees, and are stored in the Publication Routing Table (PRT), which is
logically a list of [subscription,last hop] tuples, and is used to route publi-
cations. If a publication matches a subscription in the PRT, it is forwarded to
the last hop broker of that subscription until it reaches the subscriber.

Each PADRES broker consists of an input queue, a rule-based matching en-
gine, and a set of output queues. The matching engine takes messages from
the input queue and routes them to the proper output queues after matching
the message content against the SRT and PRT. An output queue represents a
destination which could be a broker, a client, a database or a JMS broker.

3.1 Challenges

1 2

3 4

5 6

Adv2

Adv1

Sub1 Adv1

Adv2

Sub1

X

(a) Scenario 1

1 2

3 4

5 6

Adv2

Adv1

Adv1

Adv2

Sub2

Sub2

Y

(b) Scenario 2

Fig. 1. Cyclic routing of subscriptions

Cycles in the network in-
troduce misleading message
routing paths and redun-
dant traffic. In the network
in Fig. 1(a), advertisements
Adv1 and Adv2 are broad-
cast and form two adver-
tisement trees. Since brokers
discard duplicate advertise-
ments, the trees shown in
Fig. 1(a) may vary based on
relative message delays. Now,
a subscription Sub1 matching
both Adv1 and Adv2 arriving at Broker 1 from Broker X is forwarded both
towards Broker 6 along the Adv1 tree, and towards Adv2. Unfortunately, at
Broker 6, Sub1 matches Adv2 and is routed back to Broker 1, forming a cycle.

Another scenario of a subscription cycle is shown in Fig. 1(b), where Broker 4,
forwards Sub2 to Brokers 6 and 2, following the paths built by Adv1 and Adv2,
respectively. However instead of stopping at Brokers 5 and 1, the two copies of
Sub2 continue to be routed unnecessarily. The duplicate subscriptions are not
detected until they arrive at the same broker, say Broker 3.

Subscription cycles not only cause redundant subscription messages, they can
cause publications to be routed indefinitely in cycles as they keep switching
among matching subscription routing paths.

In summary, cycles in the overlay lead to duplicate advertisements, subscrip-
tions or publications, a problem that is exacerbated in well-connected networks
with many redundant paths. However, since there are relatively few advertise-
ments, detecting and discarding advertisements is advantageous, provided sub-
sequent cyclic routing of subscriptions and publications can be prevented.

6 G. Li, V. Muthusamy, and H.-A. Jacobsen

1 2

3 4

5 6

Adv2

Adv1

Sub1 Adv1

Adv2

X

Adv1: [class = stock][symbol = IBM] .. [TID = Adv1]

Adv2: [class = stock][symbol = HP] .. [TID = Adv2]

Sub1: [class = stock][symbol = *] .. [TID = $Z]

At Broker 1:

Sub1 matching Adv1:

Sub1 matching Adv2:

Sub1: [class = stock][symbol = *] .. [TID = Adv1]

Sub1: [class = stock][symbol = *] .. [TID = Adv2]

Sub1 matching Adv1

Sub1 matching Adv2

(a) Solution for Scenario 1

Adv1

Adv2

Sub2 matching Adv1

Sub2 matching Adv2

1 2

3 4

Adv2

Sub2

Y

SRT4 Last hop

A
d
v Adv1

Adv2

6

2

PRT1 Last hop

S
u
b Sub2

TID

Adv2 2

PRT5 Last hop

S
u
b Sub2

TID

Adv1 6
5 6

Adv1

Last hopPRT4

S
u
b

Sub2

TID

Adv1

Adv2

Y

Y

(b) Solution for Scenario 2

Fig. 2. TID-based subscription routing

3.2 TID-Based Routing

We describe extensions to the standard content-based routing using Fig. 2(a) as
a running example. These extensions are contained within the routing protocol
and do not modify the interface to the pub/sub clients.

Advertisement: Each advertisement is assigned a unique tree identifier (TID)
within the broker network. In our implementation we use message identifiers,
which are unique in our system, as TIDs.

Normally, when a broker receives an advertisement, it broadcasts the adver-
tisement to its neighbors and inserts the advertisement in its subscription rout-
ing table (SRT). For cyclic networks, we extend this behavior such that brokers
discard duplicate advertisements upon receipt, so each advertisement forms a
spanning advertisement tree distinguished by TID. As we will see, our approach
only requires such duplicate detection for advertisements, which we expect to
have fewer of than subscriptions and publications.

Subscription: When a broker receives a subscription from a subscriber, it adds
an existential predicate [TID, =, �Z] that uses a variable binding mechanism.1 If
the subscription matches an advertisement in the SRT, the advertisement’s TID
is bound to the variable �Z. For example, in Fig. 2(a), Sub1 is matched by both
Adv1 and Adv2 at Broker 1. A copy of Sub1 with TID bound to Adv1 is forwarded
to Broker 6 and another copy bound to Adv2 is forwarded toward the publisher.
In our implementation, the TID attribute may have a set of values associated
with it so that only one copy of the subscription is forwarded if subscriptions
with different TIDs have the same next hop.

A subscription with a bound TID value only propagates along the correspond-
ing advertisement tree. Therefore, when a broker receives a subscription with a
bound TID value, it can forward the subscription without matching the sub-
scription against all the advertisements in the SRT. As a result, subscription
1 The predicate tests whether a message contains a TID attribute, in which case the

value is bound to the variable in the subscription. Otherwise, the predicate is false.

Adaptive Content-Based Routing in General Overlay Topologies 7

forwarding is greatly sped up by the use of TIDs, by matching subscriptions
against advertisements only once.

Subscriptions set up paths for routing publications. We extend the publi-
cation routing table (PRT) to a list of [subscription, {TID, last hop of
subscription}], such as PRT4 in Fig. 2(b). Since a subscription may arrive at
a broker via different paths labeled by TIDs, the PRT records the TID and the
last hop broker of the incoming subscription. A subscription not in the PRT is
inserted; otherwise the existing record is updated with the new {TID, last hop
of subscription} pair.

1 2

3 4

5 6

Adv1

Adv2

Sub

X

Y
PRT1 Last hop

S
u

b

Sub

TID

Adv1

Adv2

3

2

SRT3 Last hop

A
d

v Adv1

Adv2

1

4

PRT3 Last hop

S
u

b Sub

TID

Adv1

Adv2

5

5

SRT1 Last hop

A
d
v Adv1

Adv2

X

Y

Adv1

Adv2

Sub matching Adv1

Sub matching Adv2

Fig. 3. Multiple publication routing paths

A subscription matching mul-
tiple advertisements may be
bound to several TIDs, and will
form alternate routing paths for
publications if the subscription
with different TIDs has different
last hops. For instance in Fig. 3,
Sub matches both Adv1 and
Adv2 at Broker 1, and is assigned
two TIDs in PRT1 with differ-
ent last hops. Copies of subscrip-
tions with different TIDs prop-
agate along their corresponding
advertisement trees and these
paths may diverge and recon-
verge at a broker due to intersec-
tions among the advertisement
trees. Thus, a broker may receive multiple copies of a subscription with dif-
ferent TIDs. These are not, however, duplicate messages as they correspond to
different paths, and are stored in the PRT as potential routing path alternatives
for publications.

Alternative paths for publication routing are maintained in PRTs as subscrip-
tion routing paths with different TIDs and destinations. More alternate paths
are available if publishers’ advertisement spaces overlap or subscribers are inter-
ested in similar publications, which is often the case for many applications with
long-tailed workloads. Our approach takes advantage of this and uses multiple
paths available at the subscription level.

Subscription covering, merging, and summarization optimizations [4,13,19,34]
eliminate redundant subscriptions and result in smaller routing tables. These
optimizations can be applied among subscriptions with the same TID.

Publication: When a broker receives a publication from a publisher, the
publication is assigned an identifier equal to the TID of its associated adver-
tisement. From this point, the publication is propagated along the paths set up
by matching subscriptions with the same TID without matching the content of
the publication at each broker. This simple and fast fixed publication routing

8 G. Li, V. Muthusamy, and H.-A. Jacobsen

algorithm is enabled by the use of TIDs. Alternatively, the dynamic publication
routing algorithm described in Section 3.3 exploits alternate paths.

Notice that with the TID extensions, subscriptions form a directed, cycle-free
graph between publishers and their potentially interested subscribers, so publica-
tions are never forwarded in a cyclic manner. In the directed graph, there may be
multiple paths between any pair of brokers depending on how subscriptions are
routed along multiple advertisement trees. In fixed publication routing, brokers
do not need to detect duplicate publications and, consequently, no bandwidth is
wasted due to redundant publication traffic.

Property 1. No broker receives duplicate publication messages.2

It follows from Property 1 that no subscriber receives duplicate publications,
since a subscriber connects to exactly one broker, brokers forward a publication
at most once over a link, and no broker receives duplicate publications.

3.3 Dynamic Publication Routing

Subscriptions are routed to publishers along advertisement trees. If the adver-
tisement trees of different data sources intersect, multiple publication routing
paths to a subscriber result. In Fig. 3, Sub is forwarded to Broker 1 over two
paths (Path 1 via Brokers 5, 3 and 1, and Path 2 via Brokers 5, 3, 4, 2 and
1). Publications of Adv1 take the path through Broker 3, while publications of
Adv2 take the path through Broker 2 in the fixed routing approach. However,
if the TID of a publication could be adapted in transit, a better path may be
chosen. A publication of Adv2 arriving at Broker 1, could be routed to Broker 3
by changing its TID to Adv1 instead of being routed to Broker 2.

A routing algorithm is required to determine the “best” path, based on metrics
such as the fewest hops or the shortest end to end delay. While similar to the
routing problem in IP networks, those solutions cannot be applied to pub/sub
systems directly. In address-based routing, the shortest path can be calculated
based on a global topology graph, such as with link state routing [18], whereas
our brokers are only aware of their overlay neighbors, a property we wish to
retain for scalability and manageability. More importantly, IP networks can rely
on the clustering of addresses; all nodes in a part of the network may have the
same network mask, and can be represented by a single routing table entry. In
content-based pub/sub, however, nodes’ addresses (i.e., their subscription), may
not be clustered. This makes global optimizations infeasible, and instead we use
a decentralized solution based on local link status information.

In the dynamic publication routing (DPR) algorithm, a broker forwards a mes-
sage through the link with minimal cost, using the heuristic that this link is also
on the minimum cost path to the destination. To dynamically select paths while
network traffic loads or topologies change, each broker maintains a Link Status
Table (LST). For example, to minimize the delay cost, the LST can store the
link utilization ratio of each neighbor, and update the ratio whenever messages
2 The proof is presented in [15].

Adaptive Content-Based Routing in General Overlay Topologies 9

are sent or received over the link. The link utilization ratio is U = routput

rsending
, where

routput is the rate of messages entering the output queue corresponding to the
link, and rsending is the rate of messages sent on that link. The link utilization
ratio captures the queueing delay of a link. Other costs can also be modeled in
the LST but are not considered in this paper.

When a broker receives a publication, for each matching subscription that may
come from multiple links with different TIDs, it selects the link with minimal
latency, and assigns the corresponding TID to the publication. The algorithm
ensures that, for one subscription with different TIDs, each representing a path
from a publisher to the subscriber, only one publication is forwarded to one
of the potential neighbors. Also, only one copy of the publication is forwarded
to a neighbor if several matching subscriptions come from the same last hop.
For example, in Fig. 3 PRT1 shows that publications matching Sub have two
available paths, through Broker 2 or 3. Consulting the LST, the broker will
forward the publication to the destination with minimal delay, say Broker 3.

When a broker fails or a link is overloaded, the broker’s neighbors detect the
failure or congestion as a result of messages queueing up in the corresponding
output queue, which cause the link utilization ratio to increase. Consequently,
publications will be routed around the failed or congested broker. While this
approach tries to use as many available paths as possible to route messages
around failures and congestions, it cannot guarantee delivery, such as in the
case of a network partition, until the failures have been repaired by a separate
module. Guaranteed delivery is out of the scope of this paper.

Modifying a publication p’s TID in transit seems to change the set of sub-
scribers notified of this publication, but this is not the case. Intuitively, the
algorithm works because for any given subscription si from a subscriber S that
matches p, p’s TID is only changed to an advertisement’s TID that also matches
si. That means p will be delivered to S by “borrowing” branches of another
advertisement tree. The DPR algorithm is formalized in Algorithm 1 and its
correctness is established by Property 2.

Property 2. Changing a publication p’s TID while in transit will not change
the set of notified subscribers N .3

Our solution exhibits several useful properties. First, it retains the pub/sub
client interface. No changes to the pub/sub matching algorithm are required,
since TID attributes are matched just like any other attributes. Second, with the
TID attribute, optimizations can be performed at each broker to speed up and
simplify subscription and publication propagation. For example, subscriptions
are matched only once while forwarded to publishers. Third, our approach gen-
erates duplicate messages only when broadcasting advertisements; subscription
and publication forwarding do not create redundant traffic. Fourth, subscrip-
tions may determine multiple routing paths for publications. The DPR algorithm
can route publications around failed or congested brokers, making the system
more robust to broker failures and dynamic network traffic. Moreover, the DPR
3 The proof is presented in [15].

10 G. Li, V. Muthusamy, and H.-A. Jacobsen

Algorithm 1. Dynamic Publication Routing
Require: An incoming publication p(c, TIDp)
Ensure: forwardMsgs: A set of publications with destinations and updated TIDs
1. forwardMsgs = ∅
2. S = {si|p matches si in the PRT}
3. for si ∈ S do
4. ℘ = {[TIDj , LastHopj]|[si, TIDj , LastHopj] ∈ PRT}
5. Find m such that link utilization ratio of destination LastHopm is minimal in ℘
6. nextHop = LastHopm

7. if p′.content �= content and p′.nextHop �= nextHop,p′ ∈ forwardMsgs then
8. p.TID = TIDm

9. p.nextHop = nextHop
10. forwardMsgs = forwardMsgs.add(p)
11. end if
12. end for
13. return forwardMsgs

algorithm selects efficient routes based on network conditions to minimize noti-
fication delay. This is useful in applications with quality of service constraints.

4 Composite Subscription Routing

PADRES supports an expressive subscription language that can specify con-
straints on a publication’s content and correlate publications in a distributed en-
vironment. A composite subscription consists of a Boolean function over atomic
subscriptions. For example, the following subscription detects when Yahoo’s
stock opens at less than 22, and Microsoft’s at greater than 31.

[class,eq,�STOCK�],[symbol,eq,�YHOO�],[open,<,22] &

[class,eq,�STOCK�],[symbol,eq,�MSFT�],[open,>,31]

The detection of event patterns is carried out by the broker network in a
distributed manner. In topology-based composite subscription routing [14], a
composite subscription is routed as a unit towards potential publishers until
it reaches a broker B at which the potential data sources are located in dif-
ferent directions in the overlay network. The composite subscription is split at
broker B, called the join point broker, and each individual part is routed to
potential publishers separately. Later, matching publications are routed back to
the join point broker, which carries out the composite event detection. Notice
that topology-based routing requires an acyclic overlay and does not consider
dynamic network conditions.

4.1 Challenges

In a general broker overlay, multiple paths exist between subscribers and publish-
ers, and the topology-based composite subscription routing does not necessarily
result in the most efficient use of network resources. For example, composite
event detection would be less costly if the detection is close to publishers with
a higher publishing rate, and in a cyclic overlay, more alternative locations for

Adaptive Content-Based Routing in General Overlay Topologies 11

composite event detection may be available. The overall savings are significant
if the imbalance in detecting composite events at different locations is large.

In this paper, we develop a novel composite subscription routing algorithm
that selects optimal join point brokers to minimize the network traffic and detec-
tion delay while correctly detecting composite events in a cyclic broker overlay.
The approach benefits greatly from the flexibility made available by content-
based routing in general overlays.

4.2 Dynamic Composite Subscription Routing

The dynamic composite subscription routing (DCSR) algorithm determines how
a composite subscription should be split and routed. A composite subscription
is represented as a tree where the internal nodes are operators, leaf nodes are
atomic subscriptions, and the root node represents the composite subscription.

The DCSR algorithm traverses the subscription tree as follows: if the root of
the tree is a leaf node, that is, an atomic subscription, the atomic subscription’s
next hop destination in the SRT is assigned to the root, and TID-based rout-
ing is applied to the atomic subscription. Otherwise, the algorithm recursively
processes the left and right children separately. If the two children have the
same destination, the root node is assigned this destination, and the composite
subscription is routed to the next hop as a whole. If the children have different
destinations, the algorithm has three choices: assigning the current broker or one
of the children’s destinations to the root node.

The composite subscription cost for each of these choices is estimated based
on the cost model in Section 4.3. A destination broker with minimum cost will
be assigned to the root node. If the root’s destination is the current broker, the
composite subscription is split. Otherwise, it is routed to one of the neighbors
where further decisions are made. The recursive algorithm assigns destinations
to the tree nodes bottom up.

4.3 Cost Model

A broker routing a composite subscription makes local optimal decisions based
on the knowledge available at itself and its neighbors. The cost function can
capture the use of resources such as memory, CPU, and communication. The
total routing cost of a composite subscription CS at a broker is

TRC(CS) = RC(CS) +
n∑

i=1

RCNi(CSNi),

and includes the routing cost of CS at the broker and neighbor brokers (Ni, i =
1..n) where publications contributing to CS may come from. CSNi denotes the
part of CS routed to broker Ni, and may be an atomic or composite subscription.

Routing cost at each broker: The cost of a composite subscription CS
at a broker includes not only the time needed to match publications (from n
neighbors) against CS, but also the time these publications spend in the input

12 G. Li, V. Muthusamy, and H.-A. Jacobsen

queue of the broker, and the time that matching results (to m neighbors) spend
in the output queues. This cost is modeled as

RC(CS) =
n∑

i=1

Tin|P (CSNi)| +
n∑

i=1

Tm|P (CSNi)| +
m∑

i=1

Touti |P (CS)|,

where Tm is the average matching time at a broker, Tin and Touti are the av-
erage time messages spend in the input and output queues to the ith neighbor,
respectively. |P (S)|, defined below, is the cardinality of (atomic or composite)
subscription S. To compute the cost at a neighbor, brokers periodically exchange
information such as Tin and Tm. This information is incorporated into an M/M/1
queueing model to estimate queueing times at neighbor brokers as a result of
the additional traffic attracted by splitting a composite subscription there.

Subscription cardinality: The cardinality of a subscription S, denoted |P (S)|,
is the number of matches of S per unit of time. First, we define the selection factor
of subscription S. If S is atomic, its selection factor with respect to advertisement
A is defined as sfA(S) =

∏k
i=1 sfA(pi), where pi is the predicate of attribute ai

in S and sfA(pi) is the selection factor of predicate pi. The selection factors of
individual predicates are computed based on the predicate’s operator, and the
distribution of attribute values dai across publications, as shown in Table 1.

An advertisement’s attribute distributions are disseminated as a histogram
as part of the advertisement. We note two sources of inaccuracy in the selection
factor estimation that arise from having to tradeoff accuracy with cost. First, the
above equations do not consider the joint distribution among attributes, which
would improve the estimation but require more information to be disseminated.
Also, the accuracy of the attribute distributions themselves depends on the his-
togram bucket size and frequency of updates. We leave the exploration of these
tradeoffs for future work.

We can now calculate the cardinality of an atomic subscription S that inter-
sects advertisements {A1, A2, . . . , Aq}, as |P (S)| =

∑q
i=1 ri ∗ sfAi(S), where

ri is the publication rate associated with advertisement Ai. The cardinality of a
composite subscription CS = Sl op Sr is shown in Table 2.

4.4 Example

We now give an example of how the DCSR algorithm can route composite sub-
scriptions based on the publication traffic and the status of the overlay. Fig. 4
shows a possible routing solution for composite subscription CS = S1&S2, where

Table 1. Selection Factor

Let D =
R Max(ai)

Min(ai)
dai

sfA(ai = val) = dai(val)/D

sfA(ai > val) =
R Max(ai)

val
dai/D

sfA(ai < val) =
R val

Min(ai)
dai/D

Table 2. Subscription Cardinality

|P (CS)| =

8<
:

|P (Sl)| + |P (Sr)| if op = ‖;

min(|P (Sl)|, |P (Sr)|) if op = &.

Adaptive Content-Based Routing in General Overlay Topologies 13

the Si are atomic. At Broker 6, CS is routed as a whole towards Broker 4, where
the destinations of both S1 and S2 are different, and as a result, Broker 4 is
the join point broker of CS in the topology-based routing algorithm. If the
amount of data from S1 is significantly larger than that from S2, it may be
more efficient to evaluate CS at Broker 3 rather than Broker 4. In the DCSR
algorithm this dynamic evaluation occurs at each broker until a broker decides to

… …

6

1

2

4 5

Adv1

Adv2

S2

S1

CS = S1 & S2

3

Fig. 4. Dynamic CS routing

split the composite subscription, say at
Broker 1, in which case Broker 1 be-
comes the join point broker for CS.

Since network conditions, such as de-
lay and bandwidth, may change, the
join point chosen by the DCSR algo-
rithm may not remain optimal, and
should be computed dynamically. If the
join point broker finds a broker that is
able to detect the composite event with
a cost lower than itself, it initiates a join
point movement [16].

The DCSR algorithm determines the location that minimizes the network
traffic and message delay costs of evaluating composite subscriptions. The DPR
algorithm from Section 3.3 further reduces the cost of composite event
detection.

5 Evaluation

In this section, we experimentally evaluate our routing protocols in general over-
lay topologies. For publications, we use stock quote traces obtained from Yahoo!
Finance. Lacking real subscription traces, we generate subscriptions for the stock
quote publication with predicates following a Zipf distribution in order to model
locality among subscribers.4 We explore the properties of the routing protocols
by deploying a broker overlay in a controlled 20 machine local network consisting
of machines with 4GB of memory and 1.86GHz CPUs. Unless otherwise stated,
we evaluate the protocols in a 30 broker topology with an average connection
degree (D) of 4. Each node is a complete content-based pub/sub broker that
implements the protocols described in this paper. As well, 20 publishers and 30
subscribers join the system within the first 30 seconds of the experiment.

We compare the end to end notification delay of the fixed (Section 3.2) and
dynamic (Section 3.3) algorithms and measure the CPU and memory usage per
broker. For dynamic composite subscription routing, we observe the placement
of the join point broker by measuring network traffic. To demonstrate robustness
and scalability, we also evaluate broker networks deployed on PlanetLab.

End to End Notification Delay. The notification delay is computed as the
average time between publishing at the publisher to the corresponding notifi-
cation at the subscriber. This delay varies with the number of hops from the
4 The datasets used in the experiments are available at [1].

14 G. Li, V. Muthusamy, and H.-A. Jacobsen

 0.01

 0.1

 1

 10

 0 500 1000 1500 2000 2500 3000

D
el

ay
 (s

)

Number of notification over time

Publication rate = 600msg/min
Connect degree = 4

Fixed publication routing
Dynamic publication routing

(a) Dense topology

 0.01

 0.1

 1

 10

 0 500 1000 1500 2000 2500

D
el

ay
 (s

)

Number of notification over time

Publication rate = 600msg/min
Connect degree = 2

Fixed publication routing
Dynamic publication routing

 0.0625

 0.125

 0.25

 1600 2400

(b) Sparser topology

 0.01

 0.1

 1

 10

 100

 0 3000 6000 9000 12000 15000 18000

D
el

ay
 (s

)

Number of notification over time

Publication rate = 2400msg/min
Connect degree = 4

Fixed publication routing
Dynamic publication routing

(c) Higher publication rate

 0.01

 0.1

 1

 10

 100

 0 2000 4000 6000 8000 10000

D
el

ay
 (s

)

Number of notification over time

Publication rate = 600msg/min
Connect degree = 4

Fixed publication routing
Dynamic publication routing

(d) More publishers

 0.01

 0.1

 1

 10

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
el

ay
 (s

)

Number of notifications over time

Publication rate = 600msg/min with burst
Connect degree = 4

Fixed publication routing
Dynamic publication routing

(e) Publication burst

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200

D
el

ay
 (s

)

Number of notifications over time

Publication rate = 6 msg/min
Connect degree = 4

Fixed publication routing
Dynamic publication routing

(f) PlanetLab

Fig. 5. End to end notification delay

publisher to subscriber and the workload in the broker network, the latter of
which depends on factors such as the overall publication rate and the number
of subscriptions per broker. The delay metric includes the queueing delay, pro-
cessing and matching time, and transmission delay at each hop.

When the publishers and subscribers join the system, advertisements are
broadcast and subscriptions are matched with advertisements and forwarded
towards potential publishers. This initial traffic contributes to network conges-
tion and large notification delays, and is visible in Fig. 5(a) where the end to

Adaptive Content-Based Routing in General Overlay Topologies 15

end delay is plotted (in log scale) for each notification. After initialization, the
delays of both dynamic and fixed routing algorithms stabilize, with the dynamic
algorithm producing a 20.3% shorter average delay than fixed routing. Our re-
sults show that brokers in the overlay have different traffic loads. In the fixed
routing case, the output queueing delay of an overloaded broker constitutes 25%
of the total end to end routing delay. The dynamic algorithm is able to detect
such congestion and balance publication forwarding across the overlay.

In a less connected network, the benefit of dynamic routing is diminished due
to a lack of alternate paths. In Fig. 5(b), with D = 2, the dynamic routing delay
is only about 4.7% better than that of fixed routing. At some points in the ex-
periment, the dynamic approach even performs worse than the fixed one because
of the overhead of the path selection algorithm. While Fig. 5(a) and Fig. 5(b)
demonstrate that the dynamic approach benefits from a well connected overlay,
the benefit is not proportional to the connection degree. When the experiment is
repeated with a fully connected topology, the delay with the dynamic approach
is 4.1% worse than with the fixed approach. In this case, the overhead of main-
taining link information does not offset gains in alternate path selection since
all publishers and subscribers are already one hop from one another.

We observe that an increase in the publication rate causes the fixed routing
approach to suffer worse notification delays. For instance, in Fig. 5(c) when the
publication rate is increased to 2400 msg/min, the fixed algorithm becomes over-
loaded with messages queueing up at brokers along the routing path, whereas
the dynamic routing algorithm continues to operate by offloading the high work-
load across alternate paths. The results suggest that dynamic routing is more
stable and can handle heavier workloads, especially in a well connected network.
Incidentally, the small but periodic decreases in delay are an artifact of the peri-
odic publication workload. The publications near the end of the workload match
fewer subscribers and are filtered by our routing algorithms before they prop-
agate far into the network. This results in less congestion in the network and
faster routing of the remaining publications. This phenomenon is apparent in all
of the experiments that use this workload.

In the second scenario, we increase the number of publishers to 40, and their
advertisements overlap each other. As described in Section 3.2, overlapping ad-
vertisements increase the number of potential alternate paths. Fig. 5(d) shows
that the delay with the dynamic algorithm stabilizes 5 minutes sooner than with
the fixed algorithm. Furthermore, the end to end delay with dynamic routing
is 46.5% less than that with fixed routing. (We note again the log scale of the
delay axis in Fig. 5). This compares with a relative benefit of 20.3% in Fig. 5(a)
where there were fewer publishers and hence fewer alternate paths.

The third scenario evaluates a dynamic workload. A new publisher now joins
the system five minutes after the other clients, whose publication rates range
from 400∼800msg/min, and publishes a burst of 1500 msg/min for two minutes.
We further remove a publisher after the burst. As illustrated in Fig. 5(e), the
dynamic approach stabilizes first as in previous experiments. While both algo-
rithms suffer from increasing delays due to the burst, the dynamic algorithm

16 G. Li, V. Muthusamy, and H.-A. Jacobsen

maintains a smaller delay, is able to recover faster after the burst, and has a
smaller steady state delay. Overall, the dynamic approach is more resilient to
dynamic workloads.

In Table 3, we list the average end to end delay experienced by three sub-
scribers that are 6, 10, and 12 hops away from the publisher. When the publisher
and subscriber are close to one another, the dynamic algorithm has fewer oppor-
tunities to find suitable alternate paths. In Table 3, with a 6 hop path length,
there is even a 0.8% performance degradation resulting from the overhead of the
dynamic algorithm. When the distance increases to 12 hops, the improvement
is up to 18.6%. We also observe, reading down the columns in Table 3, that the
delay between the 6 and 12 hop subscribers with the fixed approach is 57.7%,
while the corresponding difference with the dynamic algorithm is only 27.4%.
This suggests that the dynamic approach is less sensitive not only to publication
traffic but also to the path lengths between subscribers and publishers.

Table 3. Effect of subscriber distance on delay

Distance Fixed (ms) Dynamic (ms) Improvement

6 hops 47.2 47.6 -0.8%
10 hops 64.5 52.9 18.0%
12 hops 74.4 60.6 18.6%
Max diff 57.7% 27.4%

An important ob-
servation from the
above results is that
our pub/sub routing
algorithms actually
benefit from a cyclic
overlay by reducing
the notification delay
and increasing the re-

silience to loads. To demonstrate the robustness and scalability of our approach,
we repeat our experiments on PlanetLab with a 50 broker overlay network. The
heterogeneous and shared PlanetLab nodes and network make it difficult to de-
rive repeatable and reliable results, but our evaluations on PlanetLab support
the conclusions made from the controlled environment experiments. Fig. 5(f)
confirms that the dynamic algorithm stabilizes faster than the fixed one, and
has a smaller notification delay.

Faster Matching. Both the fixed and dynamic routing algorithms have the
potential to dramatically improve routing and matching performance. It takes
our matching engine about 4.5 ms to match a publication against over 200,000
subscriptions per hop [14]. Once the TID attribute is bound (see Section 3.2),
subsequent brokers only need to match the TID attribute instead of the full
publication content. This can provide significant savings, especially with com-
plex subscriptions, large workloads, or long path lengths. For the dynamic algo-
rithm in the experiment associated with Fig. 5(a), 1926 publications issued by
publishers resulted in 16997 publication messages, requiring 16997 matching op-
erations by brokers. With TID routing, where only the first broker performs full
matching, only 1926/16997 = 11.3% of the matching operations are required.

Overhead of Dynamic Publication Routing. We measure the CPU and
memory usage for all 30 brokers in the network over time for the experiment
shown in Fig. 5(a). In the dynamic approach, we need to periodically (10 ms in

Adaptive Content-Based Routing in General Overlay Topologies 17

this experiment) update a link status table at each broker. When a publication
arrives, the broker selects a better path based on the link status table. The
average CPU and memory usage per broker in the dynamic routing approach is
6.3% and 8.9% higher than those of the fixed routing approach, respectively. The
busiest broker in the dynamic approach has the most neighbors and consumes up
to 83.7% of the CPU processing capacity, while the other brokers only consume
16.6% of the CPU. The results show that fixed and dynamic publication routing
consume similar CPU and memory usage. Therefore, the dynamic algorithm
reduces the notification delay and the resilience to publication workloads without
consuming much more system resources.

Dynamic Routing with Failures. In this experiment, we connect 20 pub-
lishers and 30 subscribers to a fully connected 30 broker network. We simulate
broker failures by randomly killing some of the brokers, and measure the end to
end delay of the dynamic routing approach with failures. The number of failures
the system can tolerate depends on the connectivity of the network, and the
position of the broker in the overlay. For example, a failure that partitions the
network will render it impossible to deliver publications across the partitions.

 0.01

 0.1

 1

 0 2000 4000 6000 8000

D
el

ay
 (s

)

Number of notifications over time

Publication rate = 600 msg/min
Connect degree = 30

Dynamic routing with failures

Fig. 6. Failures

In Fig. 6, immediately after the first
broker failure, which occurs after about
the 1000th notification, the notification
delay increases by up to 89.1%. Rout-
ing around the failed broker temporar-
ily introduces congestion at some other
broker, but the dynamic routing algo-
rithm detects the congestion and auto-
matically balances the traffic among the
remaining alternate paths. When the
second broker failure occurs at around
the 7000th notification, fewer alternate
paths are available, and the notification
delay now increases up to 217.5%. This
time, however, the notification delay stabilizes at about 23.1% higher than be-
fore the failure, because the alternate paths the algorithm finds are longer. This
experiment shows that the dynamic routing approach can route messages around
failures and balance traffic among alternative paths.

Dynamic CS Routing. We evaluate the DCSR algorithm on PlanetLab using
a topology similar to that in Fig. 4. Twenty publishers publish at rates ranging
from 100 to 600 per minute, and 30 subscribers issue subscriptions, with one of
them being a composite subscription. In Fig. 7 we measure the bandwidth of
certain brokers located on the composite subscription routing path. The solid
bars represent the number of outgoing messages at a broker, and the hatched
bars are the number of incoming messages that are not forwarded. Note that
the sum of the solid and hatched bars represents the total number of incoming
messages at a broker. We also measure notification delays in Fig. 8, as measured

18 G. Li, V. Muthusamy, and H.-A. Jacobsen

 0

 20

 40

 60

 80

 100

B1-P1 B2-P2 B4 B5 B6-CS

N
um

be
r o

f m
es

sa
ge

s
(in

 th
ou

sa
nd

s)

Broker ID

Filtering traffic
Simple routing

Topology-based routing
DCSR

Fig. 7. CS traffic

 1

 10

 100

 1000

 0 1000 2000 3000 4000

D
el

ay
 (s

)

Number of notifications over time

Connect degree = 4

Simple routing (Dynamic)
Topology-based routing (Dynamic)

Adaptive routing (Fixed)
Adaptive routing (Dynamic)

Fig. 8. CS delay

from when the last publication contributing to the composite subscription is
published to when the subscriber receives the notification.

The composite subscription is issued at Broker 6 in Fig. 4, and is routed to its
potential publishers using simple routing, topology-based routing or DCSR. In
simple routing, a composite subscription is split into atomic subscriptions at the
broker that first receives the composite subscription from a subscriber. In this
case, the split occurs at Broker 6, and all publications must be routed to this
broker where the composite subscription is evaluated and unmatched publica-
tions are finally filtered out. This is illustrated in Fig. 7 where we see that with
simple routing, only Broker 6 filters any messages, and therefore all preceding
brokers incur higher than necessary message load. In topology-based routing,
however, Broker 4 is the join point broker, and we observe the filtering that oc-
curs here in Fig. 7, as well as the reduced message loads at Brokers 5 and 6.
The DCSR algorithm determines the composite subscription detection location
based on the potential publication traffic. In our topology, the publisher at Bro-
ker 1 has a higher publication rate, and hence this broker is an efficient point
to detect the composite subscription. Fig. 7 shows that filtering indeed occurs
at Broker 1 and that all subsequent brokers enjoy a reduced message load.

To summarize, the topology-based composite subscription routing algorithm
imposes less traffic than simple routing by moving the join point into the network,
and the DCSR algorithm further reduces traffic by moving the join point closer
towards congested publishers as indicated by the cost model. In the scenario in
Fig. 7, compared to simple routing, the DCSR algorithm reduces the traffic at
Broker 1 by 79.5%, a reduction that is also enjoyed by all brokers downstream
of the join point.

In Fig. 8 we see that with the DPR algorithm, the simple composite subscrip-
tion routing performs the worst, and the DCSR the best. Even compared to
the topology-based approach, the DCSR algorithm manages to reduce the noti-
fication delay by 55%, by filtering out messages early in the network and hence
reducing queueing delays. In this scenario, we also evaluate fixed and dynamic
publication routing with the DCSR algorithm. Fig. 8 shows that the dynamic

Adaptive Content-Based Routing in General Overlay Topologies 19

approach improves the delay by 40.1% compared to fixed publication routing.
We expect the benefits to be even more pronounced in larger networks since
longer composite subscription paths in such topologies offer the potential for
more savings in terms of traffic and delay.

6 Conclusions

Current pub/sub systems [5,8,19,23] assume an acyclic broker overlay network
and do not provide special mechanisms to cope with cycles in the overlay. In this
paper, we introduce a content-based routing protocol for general overlays sup-
porting both atomic and composite subscription routing. Content-based routing
in a general overlay improves the scalability and robustness of pub/sub systems
by offering routing path alternatives. Our approach retains the original pub/sub
interface and matching algorithms so it may be easily integrated into existing
pub/sub systems. It also minimizes redundant traffic induced by cycles in the
overlay and reduces message routing delay. Our protocols allow publications to
select optimal paths to matching subscribers and composite subscriptions can be
routed to the best event detection locations in order to satisfy potential quality
of service constraints at the application level.

Experiments in both wide-area PlanetLab and controlled local environments
confirm the benefits of the dynamic publication and composite event routing
algorithms. Publication end to end routing is about 20% faster, stabilizes sooner
after a burst, and is able to route around certain failures in the network. As well,
dynamically determining the optimal composite subscription processing location
saves about 80% of the network traffic and reduces end to end delay by more
than half.

A worthwhile future research direction for this work is to investigate the fea-
sibility of supporting some of the motivating applications from Section 1 with
quality of service guarantees. As well, it would be useful to quantitatively com-
pare content-based pub/sub algorithms designed for acyclic topologies to those
in this paper.

Acknowledgments. The research was funded in part by CA, CFI, IBM, NSERC,
OCE, OIT, and Sun. We would like to thank Serge Mankovski from CA and our
colleagues including Bala Maniymaran for providing valuable feedback on earlier
drafts of this paper. The completion of this research was also made possible
thanks to Bell Canada’s support through its Bell University Laboratories R&D
program.

References

1. Experiment datasets, http://research.msrg.utoronto.ca/Padres/DataSets
2. Adler, M., Ge, Z., Kurose, J., Towsley, D., Zabele, S.: Channelization problem in

large scale data dissemination. In: IEEE ICNP (2001)
3. Aekaterinidis, I., Triantafillou, P.: Pastrystrings: A comprehensive content-based

publish/subscribe DHT network. In: IEEE ICDCS (2006)

http://research.msrg.utoronto.ca/Padres/DataSets

20 G. Li, V. Muthusamy, and H.-A. Jacobsen

4. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. In: ACM ToCS (2001)

5. Cugola, G., Nitto, E.D., Fuggetta, A.: The JEDI event-based infrastructure and
its application to the development of the OPSS WFMS. In: IEEE TSE (2001)

6. Deering, S., Cheriton, D.R.: Multicast routing in datagram internetworks and ex-
tended LANs. In: ACM ToCS (1990)

7. Fawcett, T., Provost, F.: Activity monitoring: Noticing interesting changes in be-
havior. In: ACM SIGKDD (1999)

8. Fiege, L., Mezini, M., Mühl, G., Buchmann, A.P.: Engineering event-based sys-
tems with scopes. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, p. 309.
Springer, Heidelberg (2002)

9. Gupta, A., Sahin, O.D., Agrawal, D., Abbadi, A.E.: Meghdoot: Content-based
publish/subscribe over P2P networks. In: ACM Middleware (2004)

10. Koenig, I.: Event processing as a core capability of your content distribution fabric.
In: Gartner Event Processing Summit, Orlando, Florida (2007)

11. Kumar, V., Cai, Z., et al.: Implementing diverse messaging models with self-
managing properties using IFLOW. In: IEEE ICAC (2006)

12. Lee, S.-J., Su, W., Hsu, J., Gerla, M., Bagrodia, R.: A performance comparison
study of ad hoc wireless multicast protocols. In: INFOCOM (2000)

13. Li, G., Hou, S., Jacobsen, H.-A.: A unified approach to routing, covering and
merging in publish/subscribe systems based on modified binary decision diagrams.
In: IEEE ICDCS (2005)

14. Li, G., Jacobsen, H.-A.: Composite subscriptions in content-based publish/subscribe
systems. In: ACM Middleware (2005)

15. Li, G., Muthusamy, V., Jacobsen, H.-A.: Adaptive content-based routing in general
overlay topologies. TR CSRG-584, University of Toronto (July 2008)

16. Li, G., Muthusamy, V., Jacobsen, H.-A.: Subscribing to the past in content-based
publish/subscribe. TR CSRG-585, University of Toronto (January 2008)

17. Liu, H., Ramasubramanian, V., Sirer, E.G.: Client behavior and feed characteristics
of RSS, a publish-subscribe system for Web micronews. In: IMC (2005)

18. Medhi, D., Ramasamy, K.: Network Routing: Algorithms, Protocols, and Archi-
tectures. Academic Press, London (2007)

19. Mühl, G.: Generic constraints for content-based publish/subscribe systems. In:
Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001. LNCS,
vol. 2172, p. 211. Springer, Heidelberg (2001)

20. Mukherjee, B., Heberlein, L.T., Levitt, K.N.: Network intrusion detection. IEEE
Network (1994)

21. Muthusamy, V., Jacobsen, H.-A.: Small-scale peer-to-peer publish/subscribe. In:
MobiQuitous P2PKM (2005)

22. Nayate, A., Dahlin, M., Iyengar, A.: Transparent information dissemination. In:
ACM Middleware (2004)

23. Opyrchal, L., Astley, M., et al.: Exploiting IP multicast in content-based publish-
subscribe systems. In: ACM Middleware (2000)

24. Ostrowski, K., Birman, K.: Extensible Web services architecture for notification in
large-scale systems. In: IEEE ICWS (2006)

25. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice
Hall, Englewood Cliffs (1999)

26. Petrovic, M., Muthusamy, V., Jacobsen, H.-A.: Content-based routing in mobile
ad hoc networks. In: MOBIQUITOUS (2005)

27. Picco, G.P., Cugola, G., Murphy, A.L.: Efficient content-based event dispatching
in the presence of topological reconfiguration. In: IEEE ICDCS (2003)

Adaptive Content-Based Routing in General Overlay Topologies 21

28. Pietzuch, P., Bacon, J.: Hermes: A distributed event-based middleware architec-
ture. In: IEEE ICDCS (2002)

29. Pietzuch, P., Shand, B., Bacon, J.: Composite event detection as a generic middle-
ware extension. IEEE Network (2004)

30. Riabov, A., Liu, Z., Wolf, J.L., Yu, P.S., Zhang, L.: Clustering algorithms for
content-based publication-subscription systems. In: IEEE ICDCS (2002)

31. Rose, I., Murty, R., et al.: Cobra: Content-based filtering and aggregation of blogs
and RSS feeds. In: NSDI (2007)

32. Schuler, C., Schuldt, H., Schek, H.-J.: Supporting reliable transactional business
processes by publish/subscribe techniques. In: Casati, F., Georgakopoulos, D.,
Shan, M.-C. (eds.) TES 2001. LNCS, vol. 2193, p. 118. Springer, Heidelberg (2001)

33. Tock, Y., Naaman, N., Harpaz, A., Gershinsky, G.: Hierarchical clustering of mes-
sage flows in a multicast data dissemination system. In: IASTED PDCS (2005)

34. Triantafillou, P., Economides, A.: Subscription summarization: A new paradigm
for efficient publish/subscribe systems. In: IEEE ICDCS (2004)

AlfredO: An Architecture for Flexible
Interaction with Electronic Devices

Jan S. Rellermeyer, Oriana Riva, and Gustavo Alonso

Systems Group, Department of Computer Science, ETH Zurich
8092 Zürich, Switzerland

{rellermeyer,oriva,alonso}@inf.ethz.ch

Abstract. Mobile phones are rapidly becoming the universal access
point for computing, communication, and digital infrastructures. In this
paper we explore the software architectures necessary to make the mo-
bile phone a truly universal access point to any electronic infrastructure.
We propose AlfredO, a lightweight middleware architecture that allows
developers to construct applications in a modular way, organizing the
applications into detachable tiers that can be distributed at will to dy-
namically configure multi-tier architectures between mobile phones and
service providers. Through AlfredO, a phone can lease on-the-fly the
client side of an application and immediately become a fully tailored
client. Our experimental results indicate that AlfredO has very little
overhead, it is scalable, and yields very low latency. To demonstrate the
feasibility and potential of the platform, in the paper we also describe
AlfredOShop, a prototype application for spontaneously controlling in-
formation screens from a mobile phone.

Keywords: Mobile Phones, Software as a Service, Universal Interface,
OSGi.

1 Introduction

The mobile phone is quickly transforming itself from a mobile telecommunica-
tion device into a multi-faceted information manager that can support not only
communication among people, but also the processing and manipulation of an
increasingly diverse set of interactions. The trend of a phone as a point of conver-
gence for the user’s activities, in some respects, has already begun. South Korea
Telecom has introduced mobile payment technology and added RFID readers to
phones to allow people to get information about shopping products [1]. Nokia
has integrated GPS receivers to enable sports activity tracking, car navigation,
and multimedia city guides [2,3]. Motorola is researching how to allow its no-
madic devices to interact with a car’s components: if the car airbags deploy, the
phone makes an emergency call; if the driver is maneuvering on a busy road, an
incoming phone call is postponed; and if an urgent calendar entry is approaching,
it can pop up on the car’s display [4].

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 22–41, 2008.
c© IFIP International Federation for Information Processing 2008

AlfredO: An Architecture for Flexible Interaction with Electronic Devices 23

Applications of this type are usually based on ad-hoc implementations and
customized to specific scenarios. In this paper, we investigate the software archi-
tectures required to support rapid prototyping of such applications. Our objec-
tive is to allow a mobile phone to acquire on-the-fly the necessary elements to
immediately turn into a fully tailored client for interaction with any encountered
electronic device.

In the past, distributed systems have supported interactions among embed-
ded devices by either statically preconfiguring the execution environment or by
dynamically migrating code, data, and service state from one device to another.
However, the lack of flexibility of the former approach and the increased security
risks of the latter have hampered their actual deployability in mobile environ-
ments. To overcome these problems and make our approach feasible for resource-
constrained mobile phones, we propose AlfredO, a lightweight middleware archi-
tecture that enables users to flexibly interact with other electronic devices while
providing ease of maintenance and security for their personal devices.

AlfredO stems from two key insights. Our first insight is that most interac-
tions with electronic devices such as appliances, touchscreens, vending machines,
etc., are usually short-term and ad-hoc. Therefore, the classic approach of pre-
installing device drivers for each target device is not practicable. Instead, we
propose to adopt a software distribution model based on the concept of software
as a service. Each target device represents its capabilities as modular service
items that can be accessed on-the-fly by any mobile phone. Our second insight
is that the evolution of client-server computing from mainframes hooked to dumb
user terminals to two-tier architectures (i.e., the classical client-server architec-
ture) and to three-tier architectures (e.g, Web applications) has shown how par-
titioning server functionality yields better overall performance, flexibility, and
adaptability. Therefore, we model each service item as a decomposable multi-
tier architecture consisting of a presentation-tier, a logic tier, and a data tier.
These tiers can be distributed to the interacting mobile phone thus configuring
multi-tier architectures between the mobile phone and the target device.

AlfredO provides several benefits:

– Scalability and ease of administration: with AlfredO a resource-constrained
mobile device such as a mobile phone becomes capable of supporting an un-
bounded number of diverse interactions. Instead of downloading, installing,
and constantly updating the software necessary to interact with every con-
ceivable target device, a mobile phone can simply acquire a stateless interface
to the service of interest.

– Flexibility: AlfredO permits configuring flexible client-server architectures.
A mobile phone, for instance, can host a thin client that simply acquires the
presentation tier of the target service for the time of the interaction and dis-
cards it upon completion. Alternatively, a phone may also decide to acquire
parts of the service logic tier with the aim of providing faster performance
and responsiveness even in high latency networking environments.

– Device independence: To cope with the diversity of the input/output capa-
bilities of the appliances and electronic devices a phone may need to interact

24 J.S. Rellermeyer, O. Riva, and G. Alonso

with, AlfredO completely decouples the abstract design of a user interface
from its implementation. Thereby, different renderings of the same abstract
interface can be implemented on different devices. For example, a user inter-
face can be rendered in one way on a notebook with mouse and large screen,
in a different way on a phone with joystick and small screen, and in another
way on a touchscreen.

– Security: AlfredO allows a phone to become a fully functional client by sim-
ply acquiring the presentation-tier of the target service. This can be achieved
by simply shipping a “description” of the device’s user interface to the mo-
bile phone and letting the phone implement the actual user interface based
on the abstract specifications. As this description file is not allowed to access
the phone’s local resources, this approach provides the security benefits of a
sandbox model.

– Efficiency: AlfredO comes on a phone with a very low footprint of less than
300 kBytes. Yet, it permits interacting with a large variety of electronic de-
vices while remaining latency-efficient. Our experiments show that a phone
such as the Nokia 9300i can manage even 40 concurrent service interactions
with an invocation latency of less than 150 msec over 802.11b WLAN. Fur-
thermore, with AlfredO a phone is capable of turning in a fully operational
client of a target service provider in a few seconds. This provides an end-
user experience fully comparable to that of many other common applications
available on phones, such as text editors, file managers, web browsers, etc.

We have implemented AlfredO using R-OSGi [5], a middleware platform that
allows applications to be distributed using the modularity features of OSGi [6].
The OSGi framework implementation underneath is the very resource-efficient
Concierge [7] platform. The next section gives an overview of the R-OSGi plat-
form. Section 3 describes the design of AlfredO and gives insights into its im-
plementation. Performance results are analyzed in Section 4. MouseController
and AlfredOShop, two prototype applications built using AlfredO, are presented
in Section 5. We discuss related work in Section 6 and conclude the paper in
Section 7.

2 R-OSGi Overview

The R-OSGi [5] middleware extends the notion of OSGi [6] services to appli-
cations that run in a distributed manner. OSGi is an open standard which is
maintained by the OSGi Alliance, a not-for-profit industry alliance with many
major players of the software industry (like IBM, SAP, or Oracle) but also de-
vice vendors (like Nokia, Ericsson, or Motorola) involved. Traditionally, OSGi
has been used to decompose and loosely couple Java applications into software
modules. These modules encapsulate different parts of the whole functionality
and their lifecycle can be individually controlled at runtime. For instance, each
single functional module can be updated with a newer version without restarting
the application, which makes OSGi popular for developing long-running appli-
cations such as the firmware of hardware devices, or extensible applications like

AlfredO: An Architecture for Flexible Interaction with Electronic Devices 25

the Eclipse IDE [8]. Modules typically communicate through services, which are
ordinary Java classes published under a service interface in a central service
registry. Through the service registry service consumers can retrieve a direct ref-
erence to the service object of interest. Hence, OSGi provides a very lightweight
communication model that avoids performance-adverse indirections known from
container systems such as EJB [9].

2.1 Key Principles

With R-OSGi, many of the benefits provided by the OSGi paradigm can be
leveraged to distributed systems. OSGi modules are distributed across several
devices and the R-OSGi middleware transparently manages interactions between
services located on different devices by exploiting the loose coupling of services.
Typically, a service consists of an implementation (i.e., an instance of a class),
one or multiple service interfaces under which the service is published, and a set
of service properties. Since the concrete implementation of a service is hidden
behind the service interface registered with the local service registry, R-OSGi
can dynamically build proxies for remote modules which exhibit the same service
interface as the one registered with the local service registry. Thereby, remote
modules invoke service functions as if they were locally implemented and thus
remain transparent to the network communication involved.

The typical assumption of static and immutable composition of software does
not apply to the OSGi model. Instead, OSGi provides a platform where modules
are dynamic and applications are prepared to react upon service failures or other
kinds of interruptions. Hence, the potentially harmful side effect of introducing a
network link into an application does not break the application model. Further-
more, disconnections between services can be mapped to module unload events,
which the software can handle gracefully.

Remote service invocations are essentially synchronous and blocking remote
communications. R-OSGi additionally supports asynchronous non-blocking in-
teractions through remote events. Likewise, this addition does not introduce any
new concept to the application model. The OSGi specification already contains
an event infrastructure that many applications use when running on a single
Virtual Machine (VM). R-OSGi transparently forwards such events when it de-
tects that a connected remote machine has a registered handler for a specific
event type.

2.2 Service Proxies

In the simplest case, a machine publishes a service under a service interface and
a client machine acquires access to this service by establishing a connection to
its machine. As part of the handshake, the meta-information about registered
services is exchanged. These service descriptions are synchronized between the
devices so that changes of services or unregistration events are immediately
visible to all connected machines. When a client wants to access a service, the
service interface is shipped through the network and a local proxy for the service

26 J.S. Rellermeyer, O. Riva, and G. Alonso

is created from this interface. This proxy is then registered with the local service
registry as an implementation of the particular service. If it happens that the
service interface references types provided by the original service module located
on the remote machine, the corresponding classes will also be transmitted and
injected into the proxy module (type injection).

However, the proxy itself can also provide more functionality than solely del-
egating service calls to the remote machine. Smart proxies implement the idea
of moving parts of the service functionality to the client VM. The remote service
can provide an abstract class as a smart proxy that is shipped to the client.
All implemented methods run locally on the client machine whereas abstract
methods are implemented as remote calls. Therefore, in this way, the service can
explicitly push computation to the client side, if the client allows.

3 System Design and Implementation

Our approach aims to turn nearly-ubiquitous mobile phones into universal in-
terfaces to the surrounding electronic world. Mobile phones nowadays have suf-
ficient computation power to participate in sophisticated applications. However,
they have by design inherent characteristics which distinguish them from typical
general-purpose mobile computing devices, such as laptop computers. Phones
have a different form factor, different display sizes and screen resolutions, and
different input devices. Treating mobile phones like laptop computers overstrains
their capabilities and provides unfeasible solutions. On the other hand, consider-
ing mobile phones as downsized versions of conventional computers neglects the
benefits and unique capabilities they offer, such as built-in cameras and various
sensor devices. Our goal is to look at the phone platform in its own right and
leverage as much as possible its unique characteristics.

AlfredO incorporates three main mechanisms: (1) a service-based software dis-
tribution model for the support of an unbounded number of service interactions
between phones and other electronic devices, (2) a multi-tier service architec-
ture to flexibly configure the service interaction, and (3) a device-independent
presentation model to achieve device independence and provide interface cus-
tomizability.

3.1 Service-Based Software Distribution Model

When a phone needs to interact with an electronic device available in the sur-
rounding environment, from where does it obtain the required software? A simple
approach would be to preinstall the necessary software on the phone and require
a third party to authenticate it. Yet, this approach would result in poor flexi-
bility as mobile phones will more likely need to interact with devices casually
encountered in the environment. Furthermore, each time the original software is
updated, the update needs to be propagated to all phones where the software was
previously installed. As the number and type of electronic devices increase, ex-
plicitly distributing, installing, updating software on each phone would become
an unmanageable task.

AlfredO: An Architecture for Flexible Interaction with Electronic Devices 27

Another possible approach is to dynamically transfer the software from the
electronic device (or from the Internet) to the phone at the beginning of the
transaction. Unfortunately, this approach would expose the phone to several
security risks since in the common case the interaction occurs with unknown de-
vices. Furthermore, downloading, installing, and configuring all necessary soft-
ware is a time-consuming task that very often requires the user involvement and
that consumes lots of communication and computational resources.

Our solution to software distribution is based on the concept of Software as a
Service (SaaS), which has been traditionally applied to Internet services. Accord-
ing to this logic, the new business model for most Internet’s commodity software
is not selling software, but building services enabled by that software. We be-
lieve SaaS can bring interesting benefits also to mobile phones, especially due
to the impossibility for such resource-constrained devices to possess all software
necessary for every possible interaction.

We adopt a service-based software distribution model where software available
on electronic devices is made available to mobile phones in the form of flexible
service items. Specifically, we package the functions provided by each electronic
device as modular services that can be invoked, decomposed, and distributed
using the service-oriented architectural approach of R-OSGi. In R-OSGi, ser-
vices encapsulate whole functional units and dependencies between services are
typically restricted to semantical dependencies at the application level. In the
simplest case, a phone acquires on-the-fly the interface of a service of interest
and discards it once the interaction is completed. In this way, phones are released
from the duty of downloading, installing, and maintaining the software necessary
to interact with all surrounding devices and the number of possible interactions
can therefore grow unbounded. Furthermore, by letting phones acquire interfaces
to arbitrary services high flexibility is provided and a phone’s functonalities are
not limited anymore to what their software platform and middleware layers are
pre-configured for.

Another advantage that this service-based distribution model brings to mobile
phones is its concept of software as a “process”. Instead of software products
that need to be engineered to exactly follow the given specifications, this model
allows software to undergo frequent changes thus flexibly integrating a user’s
new requirements, technological advances, and emerging data models as soon as
they become available. Hence, software on electronic devices can be changed and
upgraded without compromising their interactions with the external world.

3.2 Multi-tier Service Architecture

We envision most interactions between mobile phones, called clients, and other
electronic devices, called target devices, will occur in an ad-hoc manner. A mo-
bile phone may contact a target service directly if its address is known (e.g., the
contact address is provided at the bottom of the touchscreen) or upon service dis-
covery. R-OSGi supports several service discovery protocols such as SLP [10,11].
Alternatively, the target device itself may periodically broadcast invitations to
nearby devices. AlfredO makes the information about new devices available to

28 J.S. Rellermeyer, O. Riva, and G. Alonso

Service

Service

Data
tier

Logic
tier

Presentation
tier

Database

Service

Proxy

Presentation
tier

Proxy

Presentation
tier

Touchscreen

TabletCommunicator

Logic
tier

Service

Proxy

Smart Phone

Description

Description Description
Description-
generated
Presentation

Description

Description Logic
tier

Presentation
tier

Description

Presentation
tier

Description

Fig. 1. Multi-tier service architecture

the user and the user can decide whether to connect to a discovered device. Once
the connection is established, the two devices exchange symmetric leases that
contain the name of the services that each device offers. Thereby, the user can
choose which service to invoke.

As Figure 1 shows, in our approach, services are built using a multi-tier soft-
ware architecture consisting of a presentation tier (i.e., the user interface), a logic
tier (i.e., computational processes), and a data tier (i.e., data storage). Tiers can
be distributed according to different distribution logics and the boundaries of
distribution can be adjusted dynamically. Typically, at the beginning of an inter-
action, the phone and the target device agree on the distribution configuration.
This decision may depend on the phone’s capabilities as well as its current execu-
tion context. For example, if a phone has low free memory, only the presentation
tier is shipped to the phone, whereas if the communication link is unstable also
the logic tier is shipped, thus reducing the communication overhead.

In the current implementation, the data tier always resides on the target
device, while the presentation tier always resides on the client. By default the
service logic tier is not transferred to the mobile phone, but we support also the
case in which parts of the service logic are transferred to the mobile phone .

AlfredO: An Architecture for Flexible Interaction with Electronic Devices 29

Initially, the target device provides the mobile phone with two elements: the
interface of the service of interest and a service descriptor. The service inter-
face is used by the R-OSGi framework running on the mobile phone to build a
corresponding service proxy (see Section 2.2 for the definition of service proxy).
The service descriptor consists of three parts. First, it contains an abstract de-
scription of the user interface (UI) necessary to support the interaction with
the target service. As explained in the next section, based on the UI description
each phone platform can generate a UI customized to the phone capabilities.
Second, it includes a list of services on which the service of interest depends.
Third, for each service in the dependency list it includes an abstract description
of its requirements (e.g., other service dependencies, memory and CPU lower
boundaries, etc.).

The default behavior is to generate a local proxy for the service interface and
host only the presentation tier on the mobile phone. The client device runs the
UI locally and triggers computation on the remote target device by interacting
with the local proxy. As all computation and data management occur on the
target device, this configuration minimizes the load on the resource-constrained
phone. The mobile phone either self-generates a suitable UI based on the ab-
stract description of the UI (see the example with the smart phone in Figure 1)
or directly receives the UI from the target device (see the example with the com-
municator in Figure 1). We envision this will be the case for most interactions
as they are likely to occur in unknown and untrusted environments. Indeed, a
main advantage of this configuration is security. On the server side, the target
device has full control on the implementation of its functions thus limiting at-
tacks from malicious clients. On the client side, the device can decide which
capabilities to expose to the target device in order to support the interaction.
Furthermore, if only a stateless description of the UI is shipped to the mobile
phone the configuration provides the security benefits of a sandbox model.

AlfredO also permits configuring more complex two-tier architectures, where
the client not only acquires the presentation tier but also parts of the service logic
(see the example with the tablet in Figure 1). The client can request additional
services that appear in the list of service dependencies provided by the descriptor
and run them locally. For each requested service, the client receives the associated
descriptor (listing the service dependencies of the new service) and its service
interface. In trusted environments, this approach can be effective in reducing the
communication overhead and improving the application’s responsiveness.

The descriptor provides a declarative description of the system comparable to
other declarative approaches like XForms [12], but it allows for more flexibility.
Indeed, our approach is not restricted to typical interfaces with input validation
and content submission. Instead, it supports all the interaction patterns of the
R-OSGi middleware, such as asynchronous communication through events, high-
volume data exchange through transparent stream proxies, and synchronous
service invocations between services.

The example in Figure 2 shows how a mobile phone can configure a cus-
tomized client application capable of interacting with the remote target device.

30 J.S. Rellermeyer, O. Riva, and G. Alonso

Mobile Phone Platform Target Device Platform

AlfredO
Engine

Renderer

K
ey

bo
ar

dD
ev

ic
e

P
oi

nt
in

gD
ev

ic
e

A
pp

lic
at

io
nS

er
vi

ce

S
cr

ee
nD

ev
ic

e

Descriptor

View

Controller

Fig. 2. An example of system configuration based on the service descriptor

In a typical interaction some services will run on the mobile phone’s platform
(e.g., KeyboardDevice, PointingDevice, etc.) and others on the target device’s
platform (e.g., ApplicationService). The client device receives a descriptor of the
target service and generates the application’s View and Controller.

Instead of defining layouts that typically break on different screen resolutions
and ratios, the UI is specified using abstract controls and relationships. The
Renderer running on the mobile phone decides how to turn this abstract UI
into an implementation (the application’s View) that is tailored to the phone’s
hardware capabilities.

The AlfredOEngine generates the application’s Controller based on the ser-
vice requirements specified in the descriptor. The Controller defines how events
generated through the UI (View) can affect the state of the application consist-
ing of application data as well as configuration parameters and proxy settings.
For example, at some point of the interaction, in order to improve the applica-
tion’s responsiveness the client can decide to acquire additional services currently
running on remote devices. Likewise, the Controller also defines how events gen-
erated by the target device can modify the application’s state. The Controller,
for instance, may periodically poll a certain service method provided by the re-
mote device and react to its changes by invoking another service method or by
changing the implementation of a control command of the UI.

3.3 Device-Independent Presentation Model

In our approach, we consider mobile phones as general-purpose platforms for
interactions with various electronic devices and applications but without disre-
garding the specific characteristics of each device. Electronic devices provide a
wide range of different input and output hardware capabilities. In many cases,
these are customized to the functions each device is designed for. Clearly, a phone
cannot offer every conceivable hardware capability, but capabilities of one device
can be mapped to those of another one. For example, the mouse of a desktop
computer is equivalent to the joystick of a phone or the knob of a coffee machine.

AlfredO: An Architecture for Flexible Interaction with Electronic Devices 31

The service descriptor provides a device-independent specification of the UI.
Ideally, an application developer should describe the input and output needs of
his applications through this description, devices should provide specifications
of their input and output capabilities, and users should specify their prefer-
ences [13]. The system can then self-implement a suitable interaction technique
that takes all these requirements into account.

In AlfredO, the service logic remains agnostic to the specific hardware drivers
available on each device. In other words, the logic tier builds on an abstract UI.
Input and output capabilities that are used by a specific UI are modeled as OSGi
services and accordingly their abstract definition is given by their corresponding
service interfaces. All OSGi service interfaces are then organized in a hierarchy.
For example, the NotebookKeyboard service implements the KeyboardDevice ser-
vice interface which is used for entering characters as well as the PointingDevice
service interface which is used for moving the mouse pointer through the cursor
keys.

Depending on the capabilities offered by the interacting phone, the abstract
description of the UI can be rendered differently, i.e, each phone generates the
UI in a different manner. A device platform without a mouse or trackpoint can
only build a GUI implementing the KeyboardDevice interface and without the
PointingDevice service. Or a phone may have the choice to use a trackpoint or an
accelerometer to implement the PointingDevice interface. Likewise, on a phone
a KeyboardDevice interface may be implemented using the small keyboard of
the phone or a handwriting detection that operates with a stylus. In principle,
multiple devices can be federated to implement the abstract specifications of the
given UI. Furthermore, the UI can be partly on the local phone, partly on the
target device, and partly on other external devices. For example, in Figure 2,
the phone may decide to use a notebook’s screen with larger resolution; in this
case, the ScreenDevice service would be implemented remotely by the notebook
platform and invoked on the phone through a local proxy.

The implementation of the UI can use different rendering engines that are
provided by the client platform. Currently, the default rendering engine produces
a Java AWT [14] application where the abstract user interface is rendered with
AWT panels. Another supported rendering engine is based on the SWT [15]
toolkit. This is especially useful for devices for which an implementation of the
Embedded Rich Client Platform (eRCP) [16] exists. As eRCP runs on top of
OSGi, it requires only a small set of additional bundles to turn an eRCP device
into an AlfredO client. For phone platforms that do not support any graphical
toolkit, it is possible to use a web browser that is fed by a servlet [17] renderer.
This produces HTML enriched with AJAX [18]. In this case, the web browser can
serve as a graphical environment to interact with the headless AlfredO platform.

4 Experimental Evaluation

The goal of this experimental evaluation is threefold. First, it quantifies the foot-
print of AlfredO on resource-constrained mobile phones. Second, it assesses the

32 J.S. Rellermeyer, O. Riva, and G. Alonso

latency to acquire the presentation tier from a target device. Third, it evaluates
the scalability of AlfredO in terms of number of parallel service interactions that
can be supported between a mobile phone and any target device.

4.1 Resource Consumption

As AlfredO is based on a layered and decomposable architecture, the actual size
of the software stack on a phone depends on the actual deployment and the size
of the renderers utilized for generating the user interface. The minimal core plat-
form consists of an OSGi framework, the R-OSGi system, and the AlfredO core
functionality. Using the very lightweight Concierge [7] OSGi implementation, in
total this amounts to a footprint of about 290 kBytes. The renderers typically
have a footprint of around 40 kBytes, except the servlet renderer that has ad-
ditional dependencies from the OSGi HTTP service implementation and adds a
total of 160 kBytes when running with the Concierge HTTP service prototype.

To assess the runtime costs, we use our two prototype applications (MouseC-
ontroller and AlfredOShop), which are discussed in detail in the following section.
The proxy bundle generated for the MouseController consumes 6 kBytes on the
file system and the AlfredOShop proxy bundle takes 7 kBytes.

Runtime memory consumption is hard to measure on embedded devices like
phones because it depends on the state and the timing of the garbage collector.
In a controlled environment on a desktop Java VM, however, the MouseCon-
troller consumes about 200 kBytes of memory and the AlfredOShop 30 kBytes.
The higher memory footprint of the MouseController application is due to
application-generated data (i.e., the RGB bitmap image that the application
periodically receives from the controlled device and that is stored in the local
memory).

Summarizing, the resource consumption of AlfredO is minimal and therefore
very well suits the resource requirements of mobile phones. The whole software
stack has a footprint that can nowadays be easily compared with the footprint
of an average single page of an internet website. For comparison, a hardcopy of
the first page of the ETH Zurich web site (which is not especially fancy), creates
a storage footprint of 200 kBytes. Proxy bundles for services that are no longer
available are not cached but immediately uninstalled as soon as the interaction
is terminated. Therefore, an AlfredO client does not store outdated data over
time. Compared to device drivers or web clients, this is clearly an advantage
and allows much more versatile interactions. The memory footprint is also not
an issue for today’s mobile phones. Even when more complex services and user
interfaces are involved, the memory is not a limiting factor.

4.2 Latency Performance

In these experiments we measure the time a phone client needs to contact and
establish an interaction with a target service. In these tests the phone acquires
only the presentation tier of the service. This includes the interface of the service
of interest, a description of the service requirements and a description of the

AlfredO: An Architecture for Flexible Interaction with Electronic Devices 33

abstract UI. We use a Nokia 9300i that runs a 150 MHz ARM9 processor and
offers both 802.11b wireless LAN and Bluetooth (BT) connectivity, the latter,
however, only with the CLDC VM but not with the CDC VM. As R-OSGi
runs on the CDC VM, for the experiments in BT networks we employ a second
phone, a Sony Ericsson M600i that runs a 208 MHz ARM9 processor. Both
phones interact with a regular desktop machine (single core Pentium 4 class).

We measure the initial start time necessary to contact a service and acquire
its interface, build the proxy bundle, install it on the local R-OSGi framework,
and get the proxy running on the mobile phone (i.e., Start proxy bundle). The
experiment is run with the two different applications, the MouseController and
the AlfredOShop service. The amount of data transferred to the phone accounts
for about 2 kBytes for each application.

Table 1 and Table 2 report the results. The network communication necessary
to acquire the service interface is not the dominant factor in determining the
total start time. Building, installing, and starting the proxy on the phone takes
much longer. Therefore, the time is not primarily influenced by the size of the
service interface. On the other hand, it strongly depends on the phone platform
in use. On the SonyEricsson phone, which has a more powerful processor, the
performance is in average 40% faster. However, from a user point of view, total
start times of both applications are more than acceptable if compared to startup
delays of typical phone applications. On the 9300i Nokia communicator, for
instance, the startup time of the built-in Document text editor application is
about 3 seconds, the startup time of the FileManager is around 6 seconds, and
starting a web browser and displaying the default Nokia homepage takes about
17 seconds (assuming the phone is already connected to the Internet).

Table 1. Initial delay for service interaction on a Nokia 9300i over WLAN

Nokia 9300i WLAN, in ms

Operation MouseController AlfredOShop

Acquire service interface 94 110
Build proxy bundle 3125 3110
Install proxy bundle 703 703
Start proxy bundle 1000 359

Total start time 4922 4282

Table 2. Initial delay for service interaction on a SonyEricsson M600i over BT

SE M600i BT, in ms

Operation MouseController AlfredOShop

Acquire service interface 263 312
Build proxy bundle 1882 1881
Install proxy bundle 259 260
Start proxy bundle 892 246

Total start time 3296 2699

34 J.S. Rellermeyer, O. Riva, and G. Alonso

4.3 Scalability

An important goal of AlfredO is to ensure that phone clients and service providers
can scale to a sufficient number of interactions. We first assess the scalability per-
formance of the service provider and then of the phone client.

In the first set of experiments, the server runs on a typical desktop machine,
i.e., a single core Pentium 4 class. To put the server under stress, multiple concur-
rent clients run on another machine of the same type. Client and server machines
are connected through a 100 Mbit/s ethernet network link. Clients connect to
the server and perform a service invocation of the same service method every
100 ms. In the tests, a new client instance is started every second. We measure
the average invocation time of the last client instance, which is started when
all other client instances are already running. The average is computed over a
period of at least 90 seconds.

Figure 3 shows the results of this experiment. The server performs very fast
and provides an average invocation time of only 1 ms. The invocation time
slightly increases with an increasing number of clients but even with 128 clients
the invocation time is below 2.5 ms.

However, with this configuration we could not run tests with a number of
clients larger than 128. This is because the client machine reaches its upper
bound when running 128 Java VMs concurrently. To investigate the scalability
boundary of our system, we therefore ran a second set of tests, in which the clients
run simultaneously on a cluster of six machines and perform the same experiment
as before. The six client machines are two-processor dual-core AMD opteron
2.2 GHz machines and are connected through a switched 1000 Mb/s ethernet
network. The service provider is an identical machine in the same network.

As depicted in Figure 4, also in these tests AlfredO performs very efficiently.
The server can handle 384 client interactions while providing an average invo-
cation time of 2.2 ms. Given the latency increase observed with 768 concurrent
clients (not shown in the figure), it can be estimated that the scalability limit is
between 400 and 800 clients. Specifically, with 540 clients the latency is 3.6 ms,

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32 64 128

T
im

e
(m

s)

Number of Clients

Method Invocation Time with Multiple Clients

 0

 1

 2

 3

 4

 5

1 2 4 8 16 32 64 128

T
im

e
(m

s)

Number of Clients

Method Invocation Time with Multiple Clients

Fig. 3. Invocation time with multiple concurrent clients on a single machine

AlfredO: An Architecture for Flexible Interaction with Electronic Devices 35

 0

 1

 2

 3

 4

 5

6 12 24 48 96 192 384

T
im

e
(m

s)

Total Number of Clients

Method Invocation Time with Multiple Clients on 6 Cluster Nodes

 0

 1

 2

 3

 4

 5

6 12 24 48 96 192 384

T
im

e
(m

s)

Total Number of Clients

Method Invocation Time with Multiple Clients on 6 Cluster Nodes

Fig. 4. Invocation time with multiple concurrent clients on six cluster nodes

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40

T
im

e
(m

s)

Number of Services

Method Invocation Time with Multiple Services on a Nokia 9300i using WLAN

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40

T
im

e
(m

s)

Number of Services

Method Invocation Time with Multiple Services on a Nokia 9300i using WLAN

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40

T
im

e
(m

s)

Number of Services

Method Invocation Time with Multiple Services on a Nokia 9300i using WLAN

Fig. 5. Invocation time on a Nokia 9300i Phone over 802.11b WLAN

whereas 600 clients lead to a delay over 42 ms per invocation. Therefore, we can
conclude that the upper boundary in this configuration is about 550 concurrent
clients. This boundary on the server scalability enormously exceeds the require-
ments of the applications that we currently envision. A service running on a
coffee machine, on a touchscreen in a shop, or on a vending machine may need
to support an average of 2-3 concurrent users and a maximum of 30 concurrent
users, which still represents only a 5% of the available service capacity.

In the second part of the study, we investigate the scalability of the client
side. The client runs on a Nokia 9300i phone. This time we install 1024 distinct
services on the server. The mobile phone is configured to get a new service
every 10 seconds and then continuously invoke a service method on all acquired
services every second. The measured values represent the average invocation
time of the first instance in each of these time windows over multiple runs of the
experiment. Figure 5 shows the results. The dotted line represents the latency
baseline, an ICMP ping over the network link. As observed on the server side,
AlfredO provides high scalability on the client side as well. The average latency
is around 100 ms.

36 J.S. Rellermeyer, O. Riva, and G. Alonso

We then ran the same experiment on the Sony Ericsson M600i phone (see
Figure 6) using the built-in Bluetooth 2.0 interface. The results are comparable
to the previous platform even though WLAN has in theory an almost four times
higher bandwidth. However, since the messages exchanged are fairly small, the
bandwidth is not a dominating factor unless a larger amount of data is shipped
through the network. For instance, the type of network employed had a larger
impact on the latency to acquire the service interfaces (roughly 2 kBytes of data)
in the experiments reported in Table 1 and Table 2.

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40

T
im

e
(m

s)

Number of Services

Method Invocation Time with Multiple Services on a SonyEricsson M600i using BT

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40

T
im

e
(m

s)

Number of Services

Method Invocation Time with Multiple Services on a SonyEricsson M600i using BT

 0

 50

 100

 150

 200

 250

 5 10 15 20 25 30 35 40

T
im

e
(m

s)

Number of Services

Method Invocation Time with Multiple Services on a SonyEricsson M600i using BT

Fig. 6. Invocation time on a Sony Ericsson M600i phone over Bluetooth 2.0

5 Prototype Applications

Using AlfredO we have built two prototype applications: MouseController and
AlfredOShop.

5.1 MouseController

To demonstrate how AlfredO allows a phone to quickly transforming itself in a
universal remote controller we have built MouseController. This is a very simple
but very powerful service that allows a mobile phone to control the movement
of the mouse on a notebook’s screen. Figure 7 shows how a browser application
running on a notebook can be controlled using the communicator’s cursor keys.
In the figure, the user is minimizing the window opened on the notebook’s screen.

The user interface of the same service (i.e., controlling the mouse pointer) is
rendered in different ways on different phone clients depending on the capabili-
ties of each particular device. For example, the description of the user interface
retrieved by the phone specifies that input commands utilize the PointingDevice
service interface. On a Nokia 9300i phone, this interface is implemented with the
cursor keys of the keyboard. On an iPhone, the same interface is implemented
using the integrated accelerometer, thus allowing the user to move the mouse
pointer on the notebook’s screen by moving the phone itself.

AlfredO: An Architecture for Flexible Interaction with Electronic Devices 37

Fig. 7. MouseController running on a Nokia 9300i phone

On the phone’s screen a small snapshot of the notebook’s screen is displayed.
Since the interactions causing the mouse to move are typically occurring at a
high update rate, there is often not enough network bandwidth left to send
the large updates of the snapshot back to the phone. Therefore, the application
uses asynchronous events between the service and the phone and sends updates
whenever there is enough bandwidth.

5.2 AlfredOShop

AfredOShop is a prototype application that allows users to interact with infor-
mation screens using their mobile phones. For instance, by interacting with an
information screen placed behind a shop window, a user can browse and com-
pare shop’s products even when the shop is closed (e.g., when passing by in the
night). The mobile phone is used as a remote controller of the screen on which
the product description is visualized.

Figure 8 shows AlfredOShop running on Nokia 9300i phone while the user
is browsing the details of the beds available in the shop. In this example, the
information screen is a notebook computer that displays the shop’s interface.

Implementing this application using AlfredO brings several benefits both to
the customer and to user. On the customer side, the application can contribute
increasing the shop’s revenue by making the shop accessible 24 hours a day.
Furthermore, a shop’s owner does not incur in any security risk because AlfredO
provides him a full control on which information to display. On the user side, the
interaction only requires a phone’s keyboard and cursor. Security is guaranteed
because only a passive description of the UI is retrieved from the information
screen and no computation takes place on the actual phone.

Since the AlfredOShop application uses a rich user interface with multiple
informational and control widgets, AlfredO plays an important role in adapting

38 J.S. Rellermeyer, O. Riva, and G. Alonso

Fig. 8. AlfredOShop on a Nokia 9300i Fig. 9. AlfredOShop on an Apple iPhone

the user interface to different phone capabilities as well as to different screen
sizes and output devices. On the Sony Ericsson M600i, AlfredO uses an AWT
rendering. On the Nokia 9300i an eRCP renderer efficiently creates the service
presentation in SWT. Furthermore, as the Sony Ericsson phone has a portrait-
oriented display and the Nokia a landscape-oriented display the output interface
is adapted accordingly. The iPhone platform currently does not run any Java
implementation that supports the graphical toolkit of the device. However, the
AlfredO servlet renderer can be used to generate an AJAX-enhanced set of
dynamic web pages that can be viewed and controlled through the built-in web
browser (Figure 9). In terms of functionality, the AJAX version provides the
same features as the other versions, such as explicitly connecting to a known
service, getting informed of newly discovered devices, and switching between the
user interfaces of different devices and their services.

6 Related Work

Research on distributed systems and ubiquitous computing has variously focused
on the problem of how users can dynamically interact with devices embedded in
the surrounding environment. Proposed solutions can be roughly grouped into
two categories: those that assume an a priori configuration of the interacting
devices and those that configure the devices on-the-fly by downloading the nec-
essary software from the Internet or by migrating it from a nearby device.

For example, systems like Personal Server [19] provide the user with a vir-
tual personal computer environment. Data and code necessary to interact with
external input/output interfaces are pre-stored and pre-installed on the mobile
devices. As these approaches require a pre-configured infrastructure they can
suit only static environments.

AlfredO: An Architecture for Flexible Interaction with Electronic Devices 39

The second class of systems allows for increased flexibility and can there-
fore suit dynamic environments. Technologies based on mobile code [20] have
been considered in several domains, but they are usually disregarded because
of their security and trust concerns. These security problems are alleviated by
systems that rely on a third party (e.g., Internet) for authentication purposes.
CoolTown [21] assume a web presence that connects all embedded devices. Each
device advertises its presence and offered services through URLs. SDIPP [22]
augments the Bluetooth service discovery protocol with web access. A user can
download the required service interface directly from the nearby device using
Bluetooth or from service directories implemented as web services.

Although these approaches can provide some flexibility, AlfredO achieves even
higher flexibility by organizing the services into decomposable tiers that can be
distributed to configure one-tier or two-tier architectures among the interacting
devices. Security is also improved by transferring to the mobile phone only a
description of presentation tier, thus allowing the device to self-implement its
UI. Furthermore, AlfredO does not rely on Internet connectivity and targets the
resource constraints of mobile phones: it is lightweight and highly efficient.

Web services have also been considered in this context. Microservers [23] em-
bed web servers in Bluetooth devices and use WAP over Bluetooth for com-
munication. Specifically tailored to mobile phones, Mobile Web Server [24], also
known as Raccoon, provides a mobile phone with a global URL and with HTTP
access thus enabling a mobile phone to host a universally accessible website.
Even though web services are not employed in the current implementation, they
could be utilized as well. We opted for R-OSGi because it provides a lightweight
implementation optimized to minimize the resource consumption on phones.

We borrow the notion of abstract user interfaces that can be rendered in
different ways on different devices from other research projects [25,26], especially
in the field of human-computer interaction [27]. However, these projects mostly
focus on how to generate the user interface and typically rely on centralized
infrastructures. Instead, our focus is on the system and infrastructure issues.

7 Conclusions

AlfredO enables mobile phones to become universal clients for interaction with
an unbounded number of heterogeneous electronic devices. Ultimately, this ap-
proach blurs the boundaries between mobile phones, appliances, and other elec-
tronic devices and let resource-constrained mobile phones acquire larger value
from services that reside elsewhere. Compared to previous approaches, AlfredO
makes service interactions fully decomposable processes, thus providing high flex-
ibility and customizable security. In addition, a mobile phone benefits from such
an approach also in terms of easier administration (no need to install software)
and automatic maintenance. Experience has shown that our implementation is
highly efficient and it comes on phones with a file footprint of only 290 kBytes.
Future work on AlfredO includes an online optimization mechanism to customize
service distribution at runtime and an automatic distribution mechanism of the
data tiers to provide transparent synchronization.

40 J.S. Rellermeyer, O. Riva, and G. Alonso

Acknowledgments

The work presented in this paper was partly supported by the National Compe-
tence Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation
under the grant number 5005-67322, and partly by the ETH Fellowship Program.

References

1. South Korea Telecom: SK Telecom Releases Upgraded Mobile RFID-based
“Touch Book” Service (2007), http://www.sktelecom.com/eng/jsp/tlounge/

presscenter/PressCenterDetail.jsp?f reportdata seq=3883

2. Nokia: Nokia N95 (2007), http://nokia.com/n95
3. Nokia Research Centre: Sports Tracker (2006),

http://research.nokia.com/research/projects/SportsTracker/index.html

4. Motorola: Nomadic Device Gateway (2006),
http://www.motorola.com/content.jsp?globalObjectId=8253

5. Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-OSGi: Distributed applications
through software modularization. In: Cerqueira, R., Campbell, R.H. (eds.) Mid-
dleware 2007. LNCS, vol. 4834, pp. 1–20. Springer, Heidelberg (2007)

6. OSGi Alliance: OSGi Service Platform, Core Specification Release 4, Version 4.1,
Draft (2007)

7. Rellermeyer, J.S., Alonso, G.: Concierge: A service platform for resource-
constrained devices. In: Proceedings of the 2007 ACM EuroSys Conference (Eu-
roSys 2007), pp. 245–258. ACM, New York (2007)

8. Eclipse Foundation: Eclipse (2001), http://www.eclipse.org
9. Sun Microsystems: JSR 220: Enterprise Java Beans, Version 3.0 (2006)

10. Guttman, E., Perkins, C., Veizades, J.: Service Location Protocol, Version 2. RFC
2608, Internet Engineering Task Force (IETF) (1999),
http://www.ietf.org/rfc/rfc2608.txt

11. Rellermeyer, J.S.: JSLP project, Java Service Location Protocol (2008),
http://jslp.sourceforge.net

12. W3C: XForms 1.0, 3rd edn. (2007)
13. Myers, B., Hudson, S.E., Pausch, R.: Past, present, and future of user interface

software tools. ACM Trans. Hum-Comput. Interact. 7(1), 3–28 (2000)
14. Zukowski, J.: Java AWT Reference. O’Reilly, Sebastopol (1997)
15. Eclipse Foundation: SWT: Standard Widget Toolkit (2004),

http://www.eclipse.org/swt/

16. Eclipse Foundation: embedded Rich Client Platform, eRCP (2006),
http://www.eclipse.org/ercp/

17. Sun Microsystems: Java Servlet Technology (1994)
18. Garrett, J.J.: Ajax: A New Approach to Web Applications (2005)
19. Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M., Light, J.: The personal

server: Changing the way we think about ubiquitous computing. In: Borriello, G.,
Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 194–209. Springer,
Heidelberg (2002)

20. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. IEEE Trans-
actions on Software Engineering 24(5), 342–361 (1998)

http://www.sktelecom.com/eng/jsp/tlounge/presscenter/PressCenterDetail.jsp?f_reportdata_seq=3883
http://www.sktelecom.com/eng/jsp/tlounge/presscenter/PressCenterDetail.jsp?f_reportdata_seq=3883
http://nokia.com/n95
http://research.nokia.com/research/projects/SportsTracker/index.html
http://www.motorola.com/content.jsp?globalObjectId=8253
http://www.eclipse.org
http://www.ietf.org/rfc/rfc2608.txt
http://jslp.sourceforge.net
http://www.eclipse.org/swt/
http://www.eclipse.org/ercp/

AlfredO: An Architecture for Flexible Interaction with Electronic Devices 41

21. Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., Gopal,
G., Frid, M., Krishnan, V., Morris, H., Schettino, J., Serra, B., Spasojevic, M.:
People, places, things: Web presence for the real world. In: Proceedings of the 3rd
IEEE Workshop on Mobile Computing Systems and Applications (WMCSA 2000),
p. 19. IEEE, Los Alamitos (2000)

22. Ravi, N., Stern, P., Desai, N., Iftode, L.: Accessing ubiquitous services using smart
phones. In: Proceedings of the 3rd IEEE International Conference on Pervasive
Computing and Communications (PerCom 2005), pp. 383–393 (2005)

23. Hartwig, S., Stromann, J.P., Resch, P.: Wireless microservers. IEEE Pervasive
Computing 1(2), 58–66 (2002)

24. Nokia: Mobile Web Server (2008),
http://wiki.opensource.nokia.com/projects/Mobile Web Server

25. Ponnekanti, S., Lee, B., Fox, A., Hanrahan, P., Winograd, T.: ICrafter: A service
framework for ubiquitous computing environments. In: Abowd, G.D., Brumitt, B.,
Shafer, S. (eds.) UbiComp 2001. LNCS, vol. 2201, pp. 56–75. Springer, Heidelberg
(2001)

26. LaPlant, B., Trewin, S., Zimmermann, G., Vanderheiden, G.: The universal remote
console: A universal access bus for pervasive computing. IEEE Pervasive Comput-
ing 3(1), 76–80 (2004)

27. Nichols, J., Myers, B., Higgins, M., Hughes, J., Harris, T., Rosenfeld, R., Pignol,
M.: Generating remote control interfaces for complex appliances. In: Proceedings
of the 15th annual ACM Symposium on User Interface Software and Technology
(UIST 2002), vol. 2201, pp. 161–170. ACM Press, New York (2002)

http://wiki.opensource.nokia.com/projects/Mobile_Web_Server

Exo-Leasing: Escrow Synchronization for Mobile
Clients of Commodity Storage Servers�

Liuba Shrira1, Hong Tian2, and Doug Terry3

1 Brandeis University
2 Amazon.com

3 Microsoft Research

Abstract. Escrow reservations is a well-known synchronization tech-
nique, useful for inventory control, that avoids conflicts by taking into
account the semantics of fragmentable object types. Unfortunately, cur-
rent escrow techniques cannot be used on generic “commodity” servers
because they require the servers to run the type-specific synchronization
code. This is a severe limitation for systems that require application-
specific synchronization but need to rely on generic components.

Our exo-leasing method provides a new way to implement escrow
synchronization without running any type-specific code in the servers.
Instead, escrow synchronization code runs in the client providing the
ability to use commodity servers. Running synchronization code in the
client provides an additional benefit. Unlike any other system, our system
allows a disconnected client to obtain escrow reservation from another
disconnected client, reducing the need to coordinate with the servers.
Measurements of a prototype indicate that our approach provides escrow-
based conflict avoidance at moderate performance overhead.

1 Introduction

Mobile collaborators wish to continue their collaborative work wherever they
go. In spite of improving network connectivity, wide-area connectivity cannot be
taken for granted because of physical, economic and energy factors. Moreover,
the increasing trend towards storing data in utility data centers is making it
harder for mobile workers to share and access their data while out of the office.
It is useful, therefore, to develop techniques that enable mobile users to con-
tinue collaborative work while disconnected and operate independently without
compromising data consistency.

Disconnected access to shared data is by now commonly supported via a well
understood process [11]. A mobile client pre-loads objects before disconnect-
ing and optimistically manipulates locally-cached copies of objects, periodically
reconnecting to validate the changes against a ”master copy” of data stored re-
liably at the storage server. If a conflict is detected the client has to abort the
changes or reconcile them, possibly using application-specific resolvers [11,21].
� This research was partially supported by NSF grant CNS-0427408 and Microsoft

Research, Cambridge, UK. The work was done while Hong Tian was at Brandeis
University.

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 42–61, 2008.
c© IFIP International Federation for Information Processing 2008

Exo-Leasing: Escrow Synchronization for Mobile Clients 43

The penalty for aborts and after-the-fact conflict resolution, however, may
be too high in some applications. For example, a mobile salesman may accept
customer orders based on cached, but out-of-date information only to discover,
upon returning to the office, that the purchased items are out of stock, thereby
resulting in cancelled orders or unhappy customers. To avoid costly conflicts,
a mobile client, before disconnecting, can obtain reservations [20](locks) that
guarantee (in-advance) the successful completion of specific transactions while
disconnected. Escrow synchronization [17] is a well-known simple scheme, useful
for inventory control, that provides such reservations. It exploits the properties
of fragmentable [29] object types to avoid conflicts when clients make concurrent
changes to shared objects [20]. For example, members of a mobile sales team
can each obtain a reservation for a portion of the available sales items and
independently validate sales transactions while disconnected.

Current escrow synchronization techniques suffer from a limitation that pre-
cludes the use of generic “commodity” servers because they require type-specific
escrow synchronization code at the servers. Most data centers will not allow
customers to run unproven custom code on shared storage system servers for
performance and security reasons. This is a problem for systems that require
application-specific synchronization but rely on generic components to exploit
economies of scale (for example, “cloud computing” systems are likely to have
this problem).

The contribution of our paper is to fix this limitation. We describe a new
technique called exo-leasing that provides escrow without running type-specific
code at the servers. Instead, this code runs in the client. New applications using
escrow and other fragmentable object types can be developed without modifying
the servers. The result is a modular system with the ability to use commodity
servers. An additional benefit of exo-leasing is the ability to provide new func-
tionality. Unlike any other system, we allow a disconnected mobile salesman on
a sales trip to split and transfer part of a reservation to a partner. Exo-leasing
makes this possible because the synchronization code running at the client encap-
sulates the complete synchronization logic. Disconnected reservation split and
transfer reduces the need to communicate with the servers, providing a comple-
mentary benefit to disconnected cooperative caching [18,24] that transfers data
but not reservations.

We prototyped MobileBuddy, an exo-leasing escrow synchronization system
on top of a generic transaction system, and evaluated the performance overheads
introduced by our techniques. Measurements indicate that if the client obtains
reservations but does not benefit from them, our techniques impose a moderate
performance penalty. If the client benefits from conflict avoidance, enabled by
the reservation and reservation transfer, the cost is reasonable since conflict
avoidance saves work.

To summarize, this paper attacks an important insufficiently studied problem
in mobile computing space, namely, how a commodity storage server can support
escrow synchronization so that client applications can control shared inventory
data while avoiding conflicting updates that later need to be aborted or resolved.

44 L. Shrira, H. Tian, and D. Terry

The paper makes the following contributions: 1) It introduces exo-leasing, a new
approach that combines escrow reservations with optimistic concurrency control.
By offloading the type-specific escrow code from the servers to the clients, it pro-
vides the ability to use commodity servers, making escrow reservations practical
in commodity storage systems. 2) It describes a novel reservation split and trans-
fer facility enabled by exo-leasing, describing its semantics and new transactional
mechanisms for implementing the semantics. 3) It provides measurements of a
prototype system, supporting our performance claims.

2 Our Approach

Our goal is to provide effective support for disconnected client transactions using
escrow synchronization in systems such as inventory control. Specifically, using
the mobile sales example, we require:

1. Ability to acquire sales reservations so that a salesman can carry out sales
transactions while disconnected and be sure the transactions will commit
without conflicts.

2. A proper outcome in the absence of failures. For example, the salesman
should be able to commit only the sales he ultimately manages to finalize.

3. A proper outcome in case of failure. For example if the salesman never final-
izes the sale, the reservation should be released.

Our new approach, based on specialized escrow objects, supports these require-
ments, and, unlike prior work, requires no special processing on the storage
server nodes. This is attractive because one can use generic commodity nodes.
Prior work also made use of specialized escrow data types to avoid concurrency
conflicts and developed a number of implementations [12,17,29]. However, these
approaches involved the use of specialized code running at the server node. Using
our approach, prior escrow schemes can be adapted to use unmodified generic
servers.

In our scheme, the persistent storage for objects resides on storage servers
while mobile clients cache and access local copies of these objects. A disconnected
client runs top-level disconnected transactions that contain within them special
smaller revertible (open nested [30]) transactions. The revertible transactions
perform modifications to objects that are cached on a mobile client and are used
to commit changes, e.g. reservations to items in stock, that may be cancelled
later. They allow clients to coordinate their changes. Fig. 1 summarizes the
steps taken by a mobile client both when connected and disconnected from the
server (for now ignore the split and transfer steps that will be explained later).

Our requirement to not run any special code at the storage nodes implies that
storage nodes do not know anything about the revertible changes. Instead, stor-
age nodes process all commit requests, including revertible transactions, iden-
tically. Our approach, instead, has special processing performed at the client
machines. These computations run on cached copies of data from the storage
server nodes, and these copies will reflect the changes made by other committed

Exo-Leasing: Escrow Synchronization for Mobile Clients 45

Begin top-level transaction

Obtain reservations

Loop {

Refresh/load objects into local cache

Disconnect from server

Loop{

 Perform local tentative transactions

 Validate tentative transactions against reservations

 Record transaction results

 Connect to collaborator // Start reservation split and transfer

 Refresh/load objects if desired

 Provide some reservations if desired

 Obtain new reservations if desired

} // End reservation split and transfer

Connect to the server

Release some reservations if desired

Renew or obtain new reservations if necessary

}

Commit top-level transaction i.e.

 atomically validate/abort local transactions and

release unused reservations.

Fig. 1. Mobile client steps

transactions, including both committed top-level transactions and committed re-
vertible transactions. Thus the computations can observe the revertible changes
of other disconnected transactions and take these into account. Our approach
makes use of special escrow objects. Such an object provides the normal opera-
tions, including obtaining or releasing a reservation for a resource. Additionally,
these objects are prepared to handle the changes committed by revertible trans-
actions. When the user calls a modification operation on such an object, the
operation performs the modification and records the execution of the operation
in a log along with a lease. The lease stores the time at which the revertible
operation will expire. The information about the revertible modifications and
their leases is part of the representation of the object, and thus is written to the
storage server when the mobile client reconnects and the application commits
the revertible transaction. Other clients, upon connecting to the shared storage
server, will observe the revertible modification on the special escrow object.

When the client reconnects and is ready to commit the top-level transaction,
it must first call a special confirm operation on all escrow objects on which it
wants the revertible change to become permanent. This operation updates the
status of that change so that it no longer appears revertible. Additionally, the
transaction can call a special release operation to undo the modifications that
are no longer of interest to it. Thus when the top-level transaction commits, all
of the escrow objects whose modifications have been confirmed will be stored
with those changes having really happened, and objects whose changes have
been released will have those modifications cancelled. Note that the application
need not explicitly cancel (release) the changes that are no longer needed, since

46 L. Shrira, H. Tian, and D. Terry

these modifications will be undone automatically when those objects are used by
other transactions after the leases expire. However, cancelling is desirable since
it can release the resource earlier, before their leases expire.

3 Exo-Leasing

Consider the value of the shared object tracking the balance of in-stock items for
sale in the disconnected sales application, and consider the write/write conflicts
that occur when concurrent transactions add or remove item reservations. These
conflicts are superfluous in the sense that, as long as there remain available items
for sale, no matter in what order the reservations are interleaved they produce the
same in-stock balance. A type-specific synchronization scheme called escrow [17]
avoids these unneeded conflicts by exploiting the semantics of the escrow type.
An object of escrow type provides two commutative operations: split(delta) and
merge(delta). A transaction calls the split operation to make a reservation for
specified (delta) escrow amount, and calls the merge operation to return the
unused escrow amount. As long as the in-stock balance is positive, the escrow
locking protocols allows concurrent transactions to interleave the split and merge
operations without conflicts. The escrow type is a representative of a general class
of fragmentable objects [29]. Objects of this class have commutative operations
that can be exploited by type-specific synchronization schemes like escrow to
avoid conflicts.

Escrow is a simple and effective synchronization method that has been well-
known for a long time but has not been widely deployed in commercial systems.
A principle barrier to the adoption in practice has been the need to modify the
(legacy) concurrency engine since prior proposals run escrow synchronization
code in the server. We show how to implement escrow at the clients yet allow
the same concurrent operation inter-leavings allowed by other escrow proposals.
Our disconnected client/server system runs transactions on cached state in the
client, using a generic fine-grain read/write concurrency control scheme, and a
cache coherence protocol that sends invalidation to the client if the object cached
at the client becomes stale (because another client has modified it).

Server-side escrow. The server-side implementation of a sales account service
using escrow synchronization consists of an object (service object) that exports
a collection of methods. The methods include acquire, release, and expire op-
erations that can be overridden by different fragmentable object implementa-
tions. The object implementation consists of the procedures implementing the
operations and the representation of the shared state they manipulate. The rep-
resentation includes a set of outstanding reservations and an internal in-stock
balance object that implements the escrow operations. The split(delta) opera-
tion is called by the acquire request to obtain the reserved escrow amount, and
the merge(delta) operation is called by the release request to return the unused
escrow amount. The merge(delta) operation is also called by the expire method
that is invoked internally by the service system when a reservation expires. The
reservation requests run as atomic transactions. The acquire request atomically

Exo-Leasing: Escrow Synchronization for Mobile Clients 47

commits the modifications to the in-stock-balance object and inserts a record
describing the reservation into the reservation set. The reservation record spec-
ifies the reservation expiration time, and the recovery actions that need to be
performed if the reservation expires. These reconciler actions are type-specific,
they perform the inverse of the operation invoked by the acquire request. The
release and expire requests atomically commit the effects of the corresponding
merge operation and remove the reservation.

The synchronization code described above resembles a concurrent object with
a type-specific lock manager implemented using a monitor where monitor pro-
cedures implement the reservation requests, and monitor state encapsulates the
internal in-stock-balance object and the outstanding reservation set. Within the
monitor, the procedures use a simple mutex to serialize accesses to the shared
monitor state.

Client-side escrow. A disconnected client/server system that runs transac-
tions on cached state in the client, validates read/write conflicts at the server,
using a cache coherence protocol that detects stale cache entries, can run the
concurrent object on the client side. This is achieved by simply storing the per-
sistent monitor state at the server, caching at the client the monitor code and
state, running the monitor procedures on the cached state, and replacing the mu-
tex synchronization with the cache coherence protocol that coordinates access
to cached state by validating read/write conflicts at the server. When the client
is connected and issues a reservation acquire request, the corresponding monitor
procedure updates the client’s cached state (the reservation set and the state
of the in-stock-balance object) to reflect the reservation and sends the modified
state to the server. If the state sent to the server is not stale, the server can
commit the request making the updated state persistent. If the cached state is
stale because another client has committed a reservation, the server aborts the
request and informs the client. The client gets from the server the up-to-date
monitor state, re-runs the request, and tries to commit with the new state. Even-
tually the request will succeed. If a client needs to return unused reservation the
commit of the release request is similar to the acquire request in that it may
need to be retried.

Lease expiration. In the server-side scheme, the monitor code notices an ex-
pired reservation and invokes the expire request to release the reservation. In the
client-side scheme, the monitor code at a client notices the expired reservation.
Such a client invokes the expire request to release the reservation. There is no
problem with concurrent duplicate invocations of the expire request for the same
expired reservation at multiple clients since after the first release commits other
cached monitor copies become stale. A reservation expiration may not be noticed
for a long time if no client runs a reservation request. On the other hand, the ex-
piration is of no interest until then. We assume the server enforces object access
controls so that only clients having suitable permissions are allowed to modify
the monitor state. Since all escrow reservation requests require write permission
the expired reservation can be reconciled by any client that makes a reservation

48 L. Shrira, H. Tian, and D. Terry

request. Otherwise, the reservation reconciliation may need to wait until noticed
by a client with appropriate permissions. Note, that a client with a fast clock
could expire the lease too soon. To avoid this, we use the server time for lease
expiration (assuming monotonic clocks). That is, a client must have received
a message from the server with a timestamp greater than the lease expiration
time.

We call the above client-side synchronization approach exo-leasing (external-
ized leasing), and refer to the object running the escrow synchronization code
at the client simply as escrow object. We showed how exo-leasing works for
escrow type. The same approach works for other fragmentable types [29]. A gen-
eral transformation from a server-side type-specific synchronization scheme to a
client-side scheme is described in [23].

Considerations. Moving code to the client can adversely impact the perfor-
mance of the system if the monitor object is large and the contention is high.
In general, however, we expect the synchronization objects to be small and con-
tention levels to be moderate. Moving code to the client raises a security concern
if servers are trusted and clients and servers belong to different administrative
domains. A rogue client could corrupt the monitor code, e.g. expire a lease “too
early”, and commit changes that depend on the expiration request. Digital sig-
natures could allow to detect a rogue client after-the-fact, but may introduce
overhead. The security concern is mitigated if a client runs in a secure appli-
ance. A possible general approach, considered future work, is to exploit recently
introduced hardware TCB extensions.

4 2-Level Transactions with Exo-Leasing

We have designed a 2-level transaction system that supports escrow synchro-
nization for disconnected client transactions accessing shared objects stored in
generic storage servers. In the 2-level system, a generic base transaction system,
assumed as given, provides disconnected client/server storage for persistent ob-
jects. The base transactions synchronize using read/write optimistic concurrency
control. Higher-level transactions, called application transactions, correspond to
activities meaningful to the application. For example, reserving items for sale,
running a disconnected sale, and then committing the sales transaction upon
reconnection, may constitute one application transaction. Application transac-
tions synchronize using escrow objects. We describe how we use the base system
to implement escrow objects, to provide application transaction atomicity in the
presence of client crashes and failures to reconnect, and to support disconnected
application transaction validation. A technical report [25] considers the ACID
properties in our 2-level system.

Base transactions. MX disconnected object storage system [24] provides base
transactions, though we could use other generic client-server storage system that
supports cached transactions, e.g. SQL server replication. A disconnected mobile
client runs tentative transactions, accessing the local copies of the cached objects

Exo-Leasing: Escrow Synchronization for Mobile Clients 49

stored persistently in storage servers. A tentative transaction records intention to
commit and allows the client to start up a next transaction. Tentative commits
lead to dependent commits [9]: transaction Tj depends on Ti if it uses objects
modified by Ti because if Ti ultimately aborts so must Tj. A tentative commit
that is not a dependent commit, defines an independent action: [5] a transaction
Tj that does not use objects modified by Ti can commit even if Ti aborts. To
commit a tentative transaction persistently, the client connects to the server.
An optimistic concurrency control scheme (adaptation of OCC [2]), provides
efficient validation of disconnected client transaction read and write sets using
invalidations. The server accumulates the invalidations for objects cached at a
disconnected client, allowing, upon reconnection, to validate client transactions
efficiently, including transactions accessing objects acquired from other clients
while disconnected (using disconnected cooperative caching [24]). A transaction
that passes server validation is committed, and its results are stored persistently
at the server (without re-executing it).

Application transactions and escrow objects. Application transactions
invoke operations on regular cached objects and encapsulated escrow objects.
An application transaction runs as a top-level transaction that contains nested
base transactions (tentative or durable). Application transaction effects become
durable when it commits a base transaction at the server.

The escrow object operations (e.g. acquire, release and expire) run as base
transactions nested inside the top-level transaction. They manipulate an escrow
object representation consisting of regular cached objects. For example, the op-
eration to acquire an escrow reservation that reserves a number of sales items
reads the cached copy of the escrow variable to check if a sufficient amount of
sales items is available for the reservation, and updates the cached representation
to reflect an acquired amount. The base transaction that commits the acquire
operation updates the durable copy of the escrow object at the server.

The nested transaction that commits an update to an escrow object at the
server, without committing the top-level transaction, exposes the effects of the
top-level transaction to other clients. Such open nesting [16,30] allows to syn-
chronize top-level transactions running in concurrent clients to avoid conflicts
(e.g. another client can observe the existing reservations and reserve the remain-
ing sales items). Note, that since base transactions are optimistic, the server will
abort a client base transaction if the cached escrow object state is stale, i.e. has
been modified by another client. In such a case, the first client re-fetches the
new state of the escrow object, re-executes the nested transaction on the fresh
state, and retries the commit of the base transaction. The nested transaction is
retried without undoing the top-level transaction.

Recovery. We want to guarantee the atomicity (all-or-nothing) property for top-
level transactions. A top-level transaction that exposes its effects by committing
open nested transactions (running escrow operations) can subsequently crash or
abort. The exposed effects need to be undone (recovered) by running escrow op-
erations that revert the effects. The protocol that accomplishes this resembles

50 L. Shrira, H. Tian, and D. Terry

logical recovery for highly-concurrent data structures, e.g. ARIES recovery for
indexes [7]. Likewise, its mechanisms, cleanup and reconcilers, resemble, respec-
tively, logical recovery procedure and logical undo records. Our protocol differs
because it runs on the client side, and deals with leases rather than locks.

Cleanup runs when transactions commit or abort. The goal of the abort
cleanup is to revert the exposed effects of an open nested transaction when
the top-level transaction aborts. The goal of the commit cleanup is to ensure
that the exposed effects are not reverted when the top-level transaction com-
mits. The cleanup actions invoke operations called reconcilers, defined by the
escrow objects. Reconcilers revert the effect of escrow operations. For example,
the reconciler for an operation that acquires an escrow lease on an item, is an
escrow merge operation that returns the item. The reconcilers are stored in the
part of the escrow object representation, called the reconciler log. A reconciler
is recorded in the log when the open nested transaction runs the associated
escrow operation. A reconciler becomes durable when the open nested transac-
tion commits at the server. The reconciler entry in the reconciler log can be
active, deactivated, or timed-out. The open nested transaction commits an active
reconciler that includes the lease expiration time.

An abort cleanup, running when a top-level transaction aborts, invokes and
deactivates the active reconcilers recorded by its open nested transactions. An
abort cleanup can also run on a different client that observes a timed-out rec-
onciler in the reconciler log. Such abort cleanup runs when the top-level trans-
action at the observing client commits or aborts. A commit cleanup, running
when a top-level transaction commits, deactivates the active reconcilers that
have been recorded by its open nested transactions (without invoking them).
The commit cleanup resembles the release of locks at transaction commit time
in read/write locking schemes but there is an important difference. Where the re-
lease of read/write locks only affects performance, escrow leases must be removed
(deactivated) atomically with the top-level commit to maintain correctness. This
is because, if the top-level transaction commits and subsequently client crashes
without removing the escrow leases, the time-out of the escrow lease will revert
the effects of the lease, thus violating the all-or-nothing property of the top-level
transaction whose commit depends on the acquire of the lease.

A top-level transaction assembles the cleanup actions by registering callbacks
to escrow object handlers called cleanup handlers when open nested transactions
invoke escrow operations. In addition, validation procedures check the leases in
the reconciler logs, and register handlers for the timed-out reconcilers so that
commit or abort cleanup at the observing client will invoke the timed-out rec-
onciler and deactivate it. A cleanup action runs as a nested base transaction
that commits (or aborts) atomically with the top-level transaction. To commit a
nested transaction as part of the top-level transaction commit, the client simply
includes the read/write sets of the nested transaction with the parent read/write
sets. If the server can not commit the joint transaction because the escrow ob-
ject was stale, the client receives an invalidation for the escrow object, re-fetches
the new state of the object, and retries the joint commit without aborting the

Exo-Leasing: Escrow Synchronization for Mobile Clients 51

top-level transaction. Note, that if other data (not the escrow object) was stale,
the application will need to resort to after-the-fact reconciliation for that par-
ticular data.

Example execution. Fig. 2 shows the state of the reconciler logs at the server
and two concurrent clients C1 and C2 running top-level transactions using an
escrow object. The initial escrow object state at the server contains 15 in-stock
escrow items and an empty reconciler log. C1 runs a top-level transaction T1 ac-
quiring a reservation for 5 items by committing (step 1) a connected open nested
transaction that updates at the server the escrow variable e to 10 items to re-
flect the remaining in-stock amount, recording a leased reconciler [merge 5/C1]
that will undo its effect if C1 does not reconnect in time (lease time omitted
to avoid clutter). Note, unlike for regular cached objects, after invoking acquire,
the cached escrow amount at the client and at the server are different. A concur-
rent client C2 runs a top-level transaction T2 that acquires a reservation for 3
items (step 2) updating the durable escrow variable e to 7 to reflect the remain-
ing in-stock amount, and recording a reconciler [merge 3/C2]. C1 consumes 2
escrow items while disconnected (running a special validated DON-transaction
explained below that records tentative update to the cached escrow variable)
resetting cached e to 3. If T1 were to abort at this point, the entire acquired
amount has to be reconciled. If T1 were to commit, only the remaining uncon-
sumed amount, as indicated by the cleanup handlers onCommit and onAbort
registered with T1 (depicted within unshaded box). C1 reconnects and commits
(step 3) the parent transaction T1, releasing the unused escrow amount, and
resetting the durable value of e to 10. The commit deactivates C1’s reconciler

e = 5
recLog: merge 5 / C1

e = 3
recLog: merge 5 / C1

e = 7
recLog: merge 5 / C1

merge 3 / C2

e = 3
recLog: merge 5 / C1

merge 3 / C2

e = 15

Server C1 C2

1

2

e = 10
recLog: * merge 5 / C1

merge 3 / C2

e = 10
recLog: merge 5 / C1

e = 0

3
Commit T1

release e=3

e = e.split (2)

Start T1

acquire e=5

Start T2

acquire e=3

onAbort: merge 5
onCommit: merge 3

Fig. 2. Reconciler logs in escrow leasing

52 L. Shrira, H. Tian, and D. Terry

in the durable reconciler log (deactivated is entry marked *[merge 3/ C1]). The
durable reconciler log at the server still contains the active reconciler for the
open nested transaction committed by C2. If C2 crashes, or does not reconnect
in time, the reconciler will be invoked and deactivated by another client that
accesses this escrow object and observes the expired reconciler.

Disconnected validation. Our system supports disconnected validation [20]
for top-level transactions. Disconnected validation guarantees, at the cost of ex-
tra checking at tentative commit time, that transactions will pass connected
validation, provided the client reconnects in time. Validated transactions are a
useful practical abstraction that reflects the reality of disconnected computation.
For example, a “guaranteed mobile sales transaction” that performs a discon-
nected update to the escrow object, runs as a validated transaction. A new
variant of disconnected tentative transaction we call DON (disconnected open
nested) transaction supports disconnected validation. Unlike regular tentative
transactions in the base transaction system, DON transactions run protected by
the escrow lease and therefore can be validated by a disconnected client. Escrow
operations runs as DON transactions. A specialized validation procedure pro-
vided by escrow objects checks lease expiration. Sec. 6 considers the performance
overhead of disconnected validation.

5 Reservation Split and Transfer

A disconnected salesman may want to transfer a reservation to a partner. Our
system allows a disconnected client (the requester) to acquire reservations from
another client (the helper). Some disconnected client/server systems allow one
disconnected client to obtain consistent objects from another client [3,18,24] but
none support the split and transfer of reservations (locks or leases). Yet, such
a feature might be useful since it reduces the need to communicate with the
servers and permits a new pattern of collaboration within disconnected work-
groups. Consider how reservation split and transfer might be used in a scenario
where a team of three traveling salesman Joe, Sally and Mary share a sales
service account. Mary and Sally each obtain a reservation to sell five items,
disconnect and travel together to a sales destination where each completes a
sales transaction selling one item each. Mary changes her plans, departing for
a different destination. Mary would like to transfer her remaining reservations
to Sally. This would allow Sally to guarantee the additional sales transactions
she hopes to accomplish to cover for Mary. Sally acquires the remaining four
reservations from Mary, completes five sales transactions and, before depart-
ing, transfers her remaining reservations to Joe who arrives to replace Mary.
Sally reconnects to the server and successfully commits her sales transactions,
recording the reservation transfers. The commit reflects the sales of six reserved
items, removing the appropriate reservations for the sold items and adjusting the
pending reservations to four items. Mary reconnects next, recording a reserva-
tion transfer to Sally, and commits her sales transaction. The commit reflects the
sale of one reserved item, adjusting the pending reservations to three items. Joe

Exo-Leasing: Escrow Synchronization for Mobile Clients 53

gets distracted with other matters and lets the remaining reservations expire.
The expire method is invoked canceling the expired reservations and making the
three reserved items available again. At this point, to run a guaranteed sales
transactions Joe would need to reconnect and acquire new reservations. Fig. 1
summarizes the steps taken by a mobile client using reservation transfer. Exo-
leasing makes reservation split and transfer possible because the escrow object
that runs at the client (rather than the server) encapsulates the complete logic
of the escrow reservation manager. The reservation transfer is implemented by a
special transfer procedure defined as part of the escrow object implementation.

Semantics. Escrow reservation split and transfer has to preserve the semantic
invariants of the escrow type. Such transfer should have the same effect as if the
helper never had the reservation, and the requester acquired the reservation by
interacting with the server. That is, the transfer of a part of escrow reservation
from the helper to the requester must simultaneously increase the amount of
escrow in the requester and decrease by the same amount the reserved amount
in the helper. The correctness condition for reservation split and transfer [25]
requires that a transaction system that commits transactions using the trans-
ferred reservations is equivalent to a system that commits the same transactions
without the transfer, where all reservations are obtained by interacting with the
server. Of course, any one of the disconnected clients participating in the typed
lease transfer can crash before reconnecting to the server. Moreover, the par-
ticipating clients can reconnect in any order. For example, a requester that has
acquired the reservation from a helper could reconnect first, and the helper that
has supplied the reservation could crash while disconnected. The correctness
condition for reservation needs to be maintained in the presence of disconnected
client crashes and all possible participant reconnection orders.

Recovery. We implement the reservation split and transfer using a new kind
of transaction. The new transaction, called a 2DON transaction, involves two
clients participating in the transfer, each client runs a nested tentative base
transaction. 2DON transaction is tentative because one or both participants
in the transfer could crash. It commits durably when one or both participants
reconnect to commit the transaction at the server. To insure the atomicity of
the transfer, the 2DON transaction has to record enough information in the
participants to enable any reconnecting participant to recover independently,
if the other participant does not reconnect in time. The reservation transfer
procedure at the helper client calls the escrow object release operation to reflect
the transfer. This updates the cached escrow variable and defines the appropriate
commit and abort cleanup actions, recording the appropriate reconcilers in the
reconciler log. These steps are identical to DON transaction. In addition, the
reservation transfer procedure records the reconcilers of the other participant so
that the reconciler logs at both participants contain identical sets of reconcilers
reflecting the transfer. Using the reconciler logs the eventual cleanup actions
insure that reconcilers for unused reservations are invoked (and deactivated),
and the reconcilers for used reservations are deactivated.

54 L. Shrira, H. Tian, and D. Terry

In a client that reconnects first, the commit cleanup for the top-level trans-
action containing the transfer deactivates the durable original reconciler cre-
ated when the reservation that got transferred was first acquired, and adds the
two reconcilers, generated by the transfer. The reconciler for the amount held
by the reconnecting committing client gets immediately deactivated when this
reconnecting transaction commits. The reconciler for the amount held at the
other participant will get deactivated when the second participant in the trans-
fer reconnects (or by expiration). Our protocol guarantees that the appropriate
cleanup actions for every reconciler will be invoked exactly once, in all three cases
that constitute the possible outcomes of the transfer: when the second participant
reconnects and commits in time, second participant fails to reconnect, or none
of the participants reconnect in time. An example illustrates the protocol steps.

Example execution. Fig. 3 depicts the reconciler logs reflecting escrow reser-
vation transfer. The execution steps are identical to the example in Figure 2,
except for step 2 when helper client C1 connects to requester client C2 and
splits and transfers a reservation for 3 items. The split and transfer runs as the
2DON transaction, resetting the escrow amount to 0 in the helper, and to 3 in
the requester. The 2DON transaction records in the reconciler logs of the partic-
ipants the leased reconcilers reflecting the transfer (same expiration time as the
original helper lease). The requester transfer reconciler [merge 3/C2] accounts
for the case when the requester does not reconnect in time. Such lost trans-
ferred amount needs to be recovered by merging it back into the total available
amount. The reconnecting helper C1 will durably commit this reconciler at the
server. The expiration of this reconciler will trigger the intended cleanup. This

e = 5
recLog: merge 5 / C1

e = 3
recLog: merge 5 / C1

e = 3
recLog: merge 5 / C1

merge 3 / C2
split 3 / C1

e = 15

Server C1 C2

1

2

e = 13
recLog: merge 5 / C1

* merge 3 / C2
split 3 / C1

e = 10
recLog: merge 5 / C1

e = 0
recLog: merge 5 /C1

merge 3 / C2
split 3 / C1

3
Commit T2

release e=3

e = e. split (2)

Start T1

acquire e=5

Start T2

acquire e=3 e = e. split (3)

Fig. 3. Reconciler logs in escrow split and transfer

Exo-Leasing: Escrow Synchronization for Mobile Clients 55

reconciler will be deactivated by the requester C2 if it reconnects in time as part
of the commit of the top-level transaction T2 that run the 2DON transaction.

The helper transfer reconciler [split 3/C1] accounts for the situation where
the helper does not reconnect in time and therefore does not deactivate the
durable reconciler [merge 5/C1] generated by C1’s open nested transaction that
obtained the original reservation. The timeout of the original acquire recon-
ciler could (incorrectly) merge back the entire amount not accounting for the
transferred amount. This is not a problem because the reconnecting C2 has the
reconciler [split 3/C1] generated by the 2DON transaction, and will durably com-
mit it at the server. The expiration of this reconciler, together with the original
acquire reconciler will trigger the execution of both reconcilers during cleanup,
correctly adding back 2 escrow units. Both reconcilers (corresponding to acquire
and transfer) would be deactivated if C1 reconnects on time as part of the top-
level transaction T1 commit. In the example, C2 reconnects to the server first
(step 3), releases all the reservations (no reservations were used up), updates
the server escrow amount to 13 to reflect the returned escrow, deactivates the
requester’s transfer reconciler, and updates the server reconciler log to include
the helper’s reconciler. All of the above actions commit atomically in a base
transaction. After the commit, the cached requester state contains no reserva-
tions (not shown). Consider the possible ways the execution could proceed. If C1
reconnects and commits on-time, this would not change the durable escrow value
but would deactivate the helper’s reservations and corresponding reconcilers, as
explained above. Alternatively, if C1 does not reconnect, the reconciler log at the
server containing the helper’s reconcilers [merge 5/C1] and [split 3/C1] would
eventually be observed and invoked at some other client adding back 2 units. If
both the requester and helper fail to reconnect in time, some client eventually
accessing the escrow object would invoke the timed out reconciler [merge 5/C1]
stored originally in the reconciler log.

6 Experimental Evaluation

We have implemented MobileBuddy, a prototype 2-level transaction system
with exo-leasing and evaluated its performance. MobileBuddy provides discon-
nected application transactions and supports escrow reservations and discon-
nected reservation split and transfer, implementing the protocols described in
Sec. 4 and Sec. 5 on top of the base MX disconnected object storage system [24].
To support expressive applications, following Mobisnap [20], in addition to es-
crow objects, MobileBuddy provides a set of additional generic leases corre-
sponding to the locking modes supported by SQL systems. For brevity, we omit
the details of the MobileBuddy system implementation in MX that are straight-
forward and can be found in a technical report [25,28]. Here we describe our
performance experiments.

Methodology and findings. Exo-leasing provides two types of benefits for dis-
connected collaborators. First, the ability to obtain reservations and to validate
disconnected transactions avoids loss of work due to conflicts and eliminates in

56 L. Shrira, H. Tian, and D. Terry

the normal case some of the potentially high (but not entirely avoidable) costs
of external compensation actions. This benefit, determined by the transaction
workload and application-specific costs, reduces to the general benefit of type-
specific and generic locking, and has been studied before (e.g. the results in [20]
apply). Second, obtaining a reservation from a nearby collaborator, instead of
the server is advantageous when the cost of communicating with the server is
high. This benefit reduces to the benefit of disconnected cooperative caching and
has been studied before (e.g. the results in MX system [24], and others [3,18]
apply). We do not repeat the evaluation of the known benefits of exo-leasing. In-
stead, we evaluate the overhead introduced by the validated DON transactions,
the new feature supported by exo-leasing that has not been studied before.

We evaluate this overhead using the example mobile salesman scenario de-
scribed in Sec. 5, considering two possible situations. In one case, transactions
run with sufficient leases for all the objects they access and therefore validated
transactions can provide a practical benefit to the client. In the other case,
transactions run with insufficient leases and therefore the validations fails. Our
experiments highlight the performance differences between the two cases. The
findings, using transactions running a standard benchmark indicate that in a
mobile transactional object system (many small objects), the extra overhead
imposed by enabling validated DON transactions can be high for application
transactions that do not benefit from the leases (i.e. fail validation, or do not
need to be validated). For transactions that benefit, the overhead is reasonable.
As expected, the overhead for lease transfer is offset by the cost of accessing the
server when network latency is non-negligible. Note, that MobileBuddy system
incurs no additional overhead if the client holds no leases.

Experimental Configuration. We run MobileBuddy in a system configuration
where a server and the clients ran each on a 850MHz Intel Pentium III proces-
sor based PC, 256MB of memory, and Linux Red Hat 9.0, an obsolete version
compatible with the aging MX system implementation. The experiments ran in
an isolated system in the Utah experimental testbed emulab.net [1] that enables
access to older operating systems versions, on a dedicated system. The cost of
the leases is independent of the size of the collaborative group, given the small
group sizes expected in MobileBuddy, and given we do not expect high lease
contention. A system configuration containing a server and two clients is suffi-
cient therefore for our experiment. All reported experimental measurements are
averages of three trial runs showing minimal variance with hot caches.

The OO7 Benchmark. Our workloads are based on the multi-user OO7 bench-
mark [4]; this benchmark is intended to capture the characteristics of complex
data in many different CAD/CAM/CASE applications, but does not model any
specific application. We use OO7 because it allows us to control the sharing
of complex data and because it is a standard benchmark for measuring object
storage system performance. To study the cost of leases, we extended the OO7
database to support escrow objects. Now each atomic part has two additional
escrow objects, so the application can acquire leases on the escrow objects. Oth-
erwise, the database is the same as a normal OO7 database. The cost of checking

Exo-Leasing: Escrow Synchronization for Mobile Clients 57

the leases is workload-dependent, proportional to the number of objects accessed
by a transaction. In the extended OO7 benchmark, each transaction accesses
72,182 objects.

Overheads. Validated transactions incur overhead at three points:

1. Tentative commit: each one of the objects accessed in the tentative transac-
tion (the read set) is checked whether it is protected by a lease, to determine
whether the tentative transaction (and its updates) can pass disconnected
validation.

2. Transfer: all tentative transactions that have accessed objects without leases
before lease transfer are re-validated using the acquired leases.

3. Durable commit at reconnect: the client runs cleanup handlers registered by
transactions using escrow objects.

We distinguish between the validated transaction overhead in the situation
where client holds insufficient leases, and the overhead in the situation where
client holds sufficient leases, referring to the former as Penalty and later as
Cost. Penalty is our main concern since in this case there is no benefit to the
client. For Cost, our concern is whether the overhead is reasonable.

Penalty. Consider the mobile sales scenario discussed in Section 5. Suppose a
salesperson Mary disconnects with leases, but her tentative transactions use
objects unprotected by the leases. Assuming Mary enables the disconnected
validation, each time Mary commits a tentative transaction, the transaction
is validated introducing penalty Tentative, defined as the time of the check
relative to the total tentative commit time. This cost is 9% in our experiment,
but is workload dependent and is higher when the violation is detected later in
the check since the check stops when violation is detected. In terms of absolute
time, in the worst case if all 72,182 objects are checked, this penalty adds 62ms
per tentative commit.

In our scenario, when Mary meets with John, she further obtains some leases
from John. Since her tentatively committed transactions have not used objects
protected by leases, the transfer causes the validation of all her tentative trans-
actions against the transferred leases resulting in penalty Transfer (Tentative
per transaction). This cost would be offset by the cost of fetching leases from
the server when the network latency is non-negligible.

When Mary reconnects to the server, the transaction commit protocol checks
invalidations and runs cleanup handlers that update the persistent copies of
escrow objects, removing leases and returning the unused amounts. We conser-
vatively consider the worst case when Mary has obtains leases on all escrow
objects, and all her escrow objects have pending invalidations due to John’s
reservations. In this case, the client-side commit penalty DurableCommit is
32%. This includes InvalidationChecks, adding 7% extra relative the total re-
connection validation time, and CleanupHandlers, adding 25% extra to total
validation time. In absolute time, DurableCommit adds 305ms to the total re-
connection validation. A realistic workload is unlikely to have that many escrow
leases so the overhead will be lower.

58 L. Shrira, H. Tian, and D. Terry

Cost. In this situation, Mary disconnect with leases that are now used by her
tentative transactions. Mary’s disconnected validation succeeds each time, but
to detect this, she performs the validation at each commit checking all the ob-
jects that the transaction has accessed. This introduces the overhead Tentative,
defined the same way as in Penalty above. This overhead is high, 47% in our
experiment. Recall, the difference between this overhead and the corresponding
one in Penalty situation is that when Mary does not use leases, the checking
procedure stops when it finds the first unprotected access in Mary’s tentative
transaction read set. In contrast, when she has enough leases, the procedure
checks the entire read set.

Table 1 summarizes the client-side overheads Penalty and Cost for validated
DON transactions.

Table 1. Overheads of validated DON transactions

Cost Penalty

TentativeCommit 47 % 9%
Transfer - TentativeCommit * number of transactions

DurableCommit 32% 32%

Two things to note. First, recall the Penalty for lease transfer is incurred
for each tentative transaction accessing objects without holding leases. There is
no corresponding validation Cost associated with lease transfer since in this
case transactions committed before the transfer have accessed objects while
holding leases. Second, the Penalty and Cost overheads for DurableCommit
are equal. Whether client uses a lease, or not, the connected durable commit
cleanup actions check the invalidations and remove the lease, returning unused
escrow amount. In addition, note that client-side DurableCommit overhead is
also incured to obtain the leases before disconnection. The server-side overhead
of obtaining and removing a lease is simply the cost of an update transaction.

Summary. Our experiment indicates that if the client obtains escrow leases but
does use them, the penalty of validated DON transactions is non-negligible. If
the client relies on the reservations, using them to achieve disconnected validated
transactions, then the client pays for the benefit brought by the reservations. We
consider the cost reasonable.

7 Related Work

Our work blends a number of prior ideas, optimistic disconnected client/server sys-
tems, cooperative caching, escrow synchronization and multi-level transactions.
To our best knowledge, none of the prior work has considered moving the synchro-
nization out of the server, or disconnected client-to-client synchronization.

Most disconnected client/server systems are optimistic and handle conflicts
after-the-fact. Coda servers [11] handle conflicting directory updates in a

Exo-Leasing: Escrow Synchronization for Mobile Clients 59

type-specific way. Coda clients handle conflicting updates to files using
application-specific resolvers (ASR) [13], as do Ficus clients [21]. Exo-leasing
differs from ASR because it avoids conflicts (in the normal case) by coordinating
in advance, enabling disconnected validation.

MX [24] introduced disconnected cooperative caching, a feature allowing a
mobile client to transfer consistent objects to another client without contact-
ing a server. Ensemblue [18] mobile appliance system, PRACTI [3] replication
framework, and Sailhan et al [22] also provide this feature. MobileBuddy is imple-
mented on top of MX. Most peer-to-peer systems that transfer mutable objects
support weak consistency. Lazy Replication [14] and Bayou [27] provide strong
consistency for objects and allow to handle conflicts in a type-specific way. The
mobile epidemic quorum system [10] provides multi-object transactions with
standard locking.

Multi-level transactions and escrow have attracted significant research interest
(most relevant approaches identified below), but no commercial systems that we
know about have deployed these techniques. The need to modify the concurrency
engine in the server has been the principal barrier. Weikum [30] proposed multi-
level transactions with open nesting in a locking system, Lomet [15] described
multi-level recovery. Unlike these systems, our base transactions are optimistic,
similar to Manon et al [16], and our recovery approach handles leases [6] rather
than locks. The middleware implementation [19] of the J2EE Activity Service
increases concurrency for long-running connected transactions using semantic
locks [7], as does the promises system [8]. A position paper [23] shows how
to achieve a similar benefit for both long-running transactions and snapshot
queries using exo-leasing with general type-specific synchronization [26]. Escrow
synchronization was introduced by O’Neil [17] and extended to replicated sys-
tems by Kumar and Stonebraker [12]. Walborn et al [29] generalizes escrow to
fragmentable and reorderable data types. The approach in Mobisnap [20] mo-
bile client/server storage system is closest to ours and has inspired our work.
Like exo-leasing, Mobisnap combines optimistic concurrency with lease-based
conflict avoidance and supports disconnected validation. However, like all other
proposals, Mobisnap implements the type-specific synchronization at the server.

8 Conclusion

This paper attacks a pracrical problem in the mobile computing space, namely,
how to support escrow synchronization in a client/server storage systems so
that disconnected clients can operate independently on shared data and vali-
date transactions to avoid conflicting updates that later need to be aborted or
reconciled. To that effect, this paper makes the following contributions: 1) It
describes exo-leasing, a new modular approach to escrow synchronization that
avoids type-specific code at the server providing the ability to use commodity
servers. 2) It describes a reservation split and transfer mechanism that can aid
collaboration in disconnected groups and is enabled by exo-leasing. 3) It presents
performance measurements of MobileBuddy, a prototype escrow synchronization

60 L. Shrira, H. Tian, and D. Terry

and reservation transfer system based on exo-leasing, evaluatinf the client-side
overhead of running disconnected validated transactions.

Acknowledgments. We thank the anonymous referees for helpful suggestions
and Butler Lampson, Barbara Liskov, and Mike Stonebraker for useful com-
ments.

References

1. ’emulab.net’, the Utah Network Emulation Facility. supported by NSF grant ANI-
00-82493

2. Adya, A., Gruber, R., Liskov, B., Maheshwari, U.: Efficient Optimistic Concurrency
Control Using Loosely Synchronized Clocks. In: Proc. of the ACM SIGMOD (May
1995)

3. Belaramani, N., Dahlin, M., Gao, L., Nayate, A., Venkataramani, A., Yalagandula,
P., Zheng, J.: Practi replication. In: Proc. of the NSDI (April 2006)

4. Carey, M., et al.: A Status Report on the OO7 OODBMS Benchmarking Effort
(October 1994)

5. Gifford, D., Donahue, J.: Coordinating Independent Atomic Actions. In: Proc. of
IEEE COMPCON Digest of Papers (February 1985)

6. Gray, C., Cheriton, D.: Leases: An Efficient Fault-tolerant Mechanism for Dis-
tributed File Cache Consistency. In: Proc. the 12th SOSP (October 1989)

7. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques (1993)
8. Greenfield, P., Fekete, A., Jang, J., Kuo, D., Nepal, S.: Isolation support for service-

based applications: A position paper. In: Proc. of CIDR (January 2007)
9. Gruber, R., Kaashoek, F., Liskov, B., Shrira, L.: Disconnected Operation in the

Thor Object-Oriented Database System. In: Proc. of the IEEE Workshop on Mobile
Computing Systems and Applications (December 1994)

10. Holliday, J., Steinke, R., Agrawal, D., Abbadi, A.E.: Epidemic quorums for man-
aging replicated data. In: Proc. of the IEEE ICPCC (February 2000)

11. Kistler, J., Satyanarayanan, M.: Disconnected operation in the Coda file system.
In: ACM TOCS (February 1992)

12. Kumar, A., Stonebraker, M.: Semantics based transaction management techniques
for replicated data. ACM SIGMOD Record 17(3), 117–125 (1988)

13. Kumar, P., Satyanarayanan, M.: Supporting application-specific resolution in an
optimistically replicated file system. In: Workshop on Workstation Operating Sys-
tems, pp. 66–70 (1993)

14. Ladin, R., Liskov, B., Shrira, L., Ghemawat, S.: Providing High Availability Using
Lazy Replication. ACM TOCS 22(3) (November 1992)

15. Lomet, D.B.: Mlr: A recovery method for multi-level systems. In: Proc. of ACM
SIGMOD (June 1992)

16. Ni, Y., Menon, V., Adl-Tabatabai, A., Hosking, A., Hudson, R., Moss, E., Saha,
B., Shpeisman, T.: Open nesting in software transactional memory. In: Proc. of
the PPOP (November 2007)

17. O’Neil, P.: The escrow transaction method. ACM Transactions Database Sys-
tems 11(4), 406–430 (1986)

18. Peek, D., Flinn, J.: Ensemblue: Integrating distributed storage and consumer elec-
tronics. In: Proc. of OSDI (November 2006)

Exo-Leasing: Escrow Synchronization for Mobile Clients 61

19. Perez-Sorrosal, F., Patino-Martinez, M., Jimenez-Peris, R., Vuckovic, J.: Highly
available long running transactions and activities for j2ee applications. In: Proc. of
the IEEE ICDCS (2006)

20. Preguica, N., Martins, J.L., Cunha, M., Domingos, H.: Reservations for Conflict
Avoidance in a Mobile Database System. In: Proc. of the 1st MobiSys (May 2003)

21. Reiher, P.L., Heidemann, J.S., Ratner, D., Skinner, G., Popek, G.J.: Resolving
file conflicts in the ficus file system. In: Proc. of the Usenix Technical Conference
(1994)

22. Sailhan, F., Issarny, V.: Cooperative caching in ad hoc networks. In: Proc. of the
4th Mobile Data Management Conference (January 2003)

23. Shrira, L., Dong, S.: Exosnap: a modular approach to semantic synchronization
and snapshots. In: Proc. of the 2nd Workshop WDDDM, EuroSys 2008, Glasgow,
UK (March 2008)

24. Shrira, L., Tian, H.: MX: Mobile Object Exchange for Collaborative Applications.
In: Proc. of ECOOP (July 2003)

25. Shrira, L., Tian, H., Terry, D.: Exo-leasing: Escrow synchronization for mobile
clients of commodity storage servers. Technical Report MSR-TR-2008-112, Mi-
crosoft Research Silicon Valley (August 2008)

26. Shrira, L., Xu, H.: Snap: a non-disruptive snapshot system. In: Proc. of the ICDE,
Tokyo, Japan (April 2005)

27. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,
C.H.: Managing update conflicts in Bayou, a weakly connected replicated storage
system. In: Proc. of the ACM SOSP (1995)

28. Tian, H.: MX: Mobile Object Exchange for Collaborative Applications. Ph.D the-
sis, Brandeis University (2005)

29. Walborn, G.D., Chrysanthis, P.K.: Supporting semantics-based transaction pro-
cessing in mobile database applications. In: Proc. of the SRDS (1995)

30. Weikum, J.: A theoretical foundation of multi-level concurrency control. In: Proc.
of the ACM PODS (1986)

Subscription Subsumption Evaluation for
Content-Based Publish/Subscribe Systems

Hojjat Jafarpour, Bijit Hore, Sharad Mehrotra,
and Nalini Venkatasubramanian

Department of Computer Science, University of California at Irvine
{hjafarpo,bhore,sharad,nalini}@ics.uci.edu

Abstract. In this paper we address the problem of subsumption check-
ing for subscriptions in pub/sub systems. We develop a novel approach
based on negative space representation for subsumption checking and pro-
vide efficient algorithms for subscription forwarding in a dynamic pub/
sub environment. We then provide heuristics for approximate subsump-
tion checking that greatly enhance the performance without compromis-
ing the correct execution of the system and only adding incremental cost
in terms of extra computation in brokers. We illustrate the advantages of
this novel approach by carrying out extensive experimentation.

Keywords: Publish/Subscribe, Subscription Subsumption, Message-
oriented middleware.

1 Introduction

Content-based Publish/Subscribe (pub/sub) is a customized many-to-many
communication model that can satisfy requirements of many modern distributed
applications [1]. In a pub/sub scheme, subscribers express their interest in con-
tent by issuing a subscription (query). Whenever some content is produced, it
is delivered to the subscribers whose query parameters are satisfied by the con-
tent in the publication. By decoupling communication parties, a pub/sub system
provides anonymous and asynchronous communication making it an attractive
communication infrastructure for many applications. Such applications include
selective information dissemination, location-based services, and workload man-
agement [1].

In order to distribute the load of publications and subscriptions a distributed
content-based pub/sub system uses a set of network brokers (nodes). Differ-
ent architectures have been proposed for connecting brokers in a pub/sub net-
work [2, 12, 11]. Routing protocols for publications and subscriptions in brokers
aim to reduce network traffic that results from transferring publications and
subscriptions between nodes. One way in which publication traffic can be re-
duced is by enabling filtering of publications close to their sources. This can be
achieved by flooding each subscription to all brokers in the network. However,
such a naive approach significantly increases subscription dissemination traf-
fic. Broadcasting all subscriptions over the network also increases subscription

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 62–81, 2008.
c© IFIP International Federation for Information Processing 2008

Subscription Subsumption Evaluation for Content-Based Pub/Sub Systems 63

table size at nodes which makes content matching more expensive during pub-
lication dissemination. An optimization for reducing subscription dissemination
traffic is to exploit ”covering” relationship between a pair of subscriptions. In
this case, if a new subscription is covered by an existing subscription, it is not
forwarded. Applying subscription covering in every broker in a pub/sub overlay
network can greatly reduce the subscription dissemination traffic. Most of the
existing pub/sub systems like SIENA [2], REBECA [6] and PADRES [4] imple-
ment pair-wise subscription cover checking to reduce redundancy in subscription
forwarding. Efficient techniques for checking pair-wise subscription covering have
also been proposed in the other works [5,7].

A more efficient approach for reducing subscription dissemination traffic and
subscription table size is to exploit subscription subsumption relationship be-
tween a new subscription and a set of existing active subscriptions. In this case,
if a new subscription is completely covered (subsumed) by the set of existing
subscriptions, then it is not forwarded. Clearly, since subscription covering is a
special case of subscription subsumption checking for the latter results in greater
efficiencies both in terms of reducing traffic between nodes and reducing size of
the subscription table at nodes. Efficient subscription subsumption checking is
not a trivial task. The subsumption checking problem where subscriptions can be
represented as convex polyhedra has been shown to be co-NP complete [10]1. To
the best of our knowledge the only work that considers subscription subsumption
in pub/sub systems is a ’Monte Carlo type’ algorithm for probabilistic subsump-
tion checking proposed by Ouksel et al. [3]. However, this technique may falsely
determine a subscription to be subsumed by a set of existing subscriptions when
in fact it isn’t. This may result in false negatives in publication dissemination
meaning that a publication may not be delivered to subscribers with matching
subscription. In fact not forwarding some of subscriptions changes behavior of
pub/sub system from deterministic into probabilistic. While it may be accept-
able in some systems, having false negatives in publication dissemination may
not be tolerable in pub/sub systems that are used for dissemination of vital
information such as financial information and stock market data.

Main idea: In this paper we propose a novel approach for exact subscription
subsumption evaluation in d-dimensional content space. Our proposed approach
is based on the following observation: Verifying whether a set of existing sub-
scriptions (covered region) subsumes a new subscription is exactly the same as
verifying whether the new subscription intersects with the uncovered region (i.e.,
portion of the domain which is not covered by any existing subscription) . We
refer to the uncovered portion of the domain as the negative space. Then, one
only needs to forward the subscriptions that overlap with the negative space to
other nodes in the network. In a d-dimensional content space where subscrip-
tions are d-dimensional rectangles, we can always represent the negative space
using a set of non-overlapping d-dimensional rectangles. The main drawback of
1 Note that while subsumption problem in general case is co-NP complete, if the

subscriptions are d-dimensional rectangles as we show in this paper the problem can
be solved in O(nd) where n is the number of existing subscriptions.

64 H. Jafarpour et al.

considering an exact representation of the negative space is that it might re-
quire maintaining a large number of rectangles. One can show that in the worst
case this may lead to O(nd) rectangles where n is the number of active sub-
scriptions. Besides the storage complexity, this can lead to poor performance
during subsumption checking and creation of new negative rectangles as we will
show later in the paper. To alleviate this problem, we propose an approximate
subsumption evaluation technique that enhances performance significantly while
adding a small overhead in terms of not determining some of subsumed subscrip-
tion. This leads to a minor increment in subscription forwarding traffic without
compromising the correctness of the pub/sub functionality, as illustrated by our
experiments. The approximate approach provides knobs to control the accuracy
of subsumption checking by adjusting the required space and time.

The remainder of the paper is organized as follows. In the next section we
formalize the subscription subsumption problem. In Section 3 we present our
approach for subsumption evaluation and subscription and unsubscription for-
warding algorithms. Section 4 describes approximate subsumption evaluation
along with the corresponding subscription and unsubscription algorithms. We
evaluate the proposed approach in Section 5 followed by an overview of the
related work in Section 6. Finally, we draw our conclusion in Section 7.

2 Problem Formulation

The architecture of pub/sub system consists of a set of broker nodes intercon-
nected through transport-level links which form an acyclic overlay network. Each
client is connected to one of these nodes that act as the proxies of the clients on
this network. When a client issues a subscription to the node it is connected to,
it in turn forwards the subscription (if need be) to its neighbors in the network.
Forward propagation is carried out till every node in the network receives the sub-
scription. When a client publishes an event, it sends the event to its designated
node (broker) that forwards the content through the overlay network to the nodes
that have a matching subscription. Finally, the node delivers the content to the ac-
tual client that subscribed to it. Figure 1 depicts a sample broker overlay network
with 11 broker nodes and shows the clients connected to one of these nodes.

Subscription & publication routing: Subscriptions are broadcast to all nodes
in the overlay network. Each node stores subscriptions in its subscription-table
along with the information about which neighbor requested for which subscrip-
tion. Upon receiving a publication from a neighbor or one of its clients, a broker
matches it against the subscriptions in its table and forwards the publication to
a neighbor if and only if it has received a matching subscription from that neigh-
bor. Since the content matching operation is performed at every node along the
path from publisher broker to subscribers, matching time has a significant effect
on the speed of publication dissemination. Several efficient matching techniques
have been proposed in the literature to reduce matching time [8, 9].

Redundancy minimization using pair-wise covering information: To
prevent unnecessary dissemination of subscriptions and reduce the size of

Subscription Subsumption Evaluation for Content-Based Pub/Sub Systems 65

Fig. 1. A sample broker overlay network Fig. 2. s3 is subsumed by s1 and s2

subscription tables, pub/sub systems use subscription covering and subsumption
techniques. A subscription s1 covers subscription s2 if and only if all publica-
tions matching s2 also match s1. When a node N receives a new subscription
from one of its neighbors, say subscription s2 from N

′
, such that it is covered

by some previous subscription s1 also forwarded by N
′
to N , then node N can

simply drop s2 without forwarding it to its other neighbors2. Since the covered
subscriptions are not disseminated to all brokers, it results in lower network
traffic and compact subscription tables. Note that N stores s2 in its passive sub-
scription list since it may need to forward s2 should its covering subscriptions
s1 (and potentially others) be cancelled by an unsubscription request. If s1 were
to be unsubscribed, it is removed from N ’s (active) subscription table and the
subscription(s) that were covered by s1, such as s2 in the passive subscription
list are moved to its subscription table and forwarded to the neighbors along
with the unsubscription request for s1.

Optimal redundancy minimization using subsumption information:
While the above discussion illustrates a simplistic approach to reducing sub-
scription traffic, we address this problem in its most general form. In the general
case, as long as the union of an existing set of subscriptions covers a new sub-
scription entirely, the new subscription need not be forwarded. It is easy to see
that pair-wise covering is a special case of the more general subsumption check-
ing problem. Our goal in this paper is to develop an efficient approximation
scheme for the subsumption checking problem. We define the problem formally
below after describing the notations used in the rest of the paper.

2.1 Notation

Cd denotes the d-dimensional content space where each dimension represents
an attribute. The set of independent (orthogonal) attributes along which

2 Note that if s2 was forwarded by some other neighbor N
′′

then, N would have to
forward s2 to N

′
.

66 H. Jafarpour et al.

subscriptions andpublications are specified is denotedby the setA={a1, a2, ..., ad}.
The domain of each attribute is also pre-specified and is assumed to be ordered3.
One may visualize the content space as a d-dimensional rectangular region of
space. We represent the lowest and highest values taken by an attribute ai by
li and ui respectively. Each publication represents a point in the content space
that is represented by a d-dimensional point p = (v1, v2, ..., vd) where vi is the
value of attribute ai in the publication and vi ∈ [li, ui]. A subscription s is
represented as a conjunction of d predicates where the ith predicate represents
an interval on the ith attribute’s domain. Each predicate in subscription sj is
represented as [lowj

i , upj
i] that indicates the boundaries of the subscription for

ith attribute4. Thus, a subscription corresponds to a d-dimensional rectangle in
the content space. Subscription rectangles partition the content space into two
parts, positive space and negative space.

Definition 1. For a given set of subscriptions, S = {s1, s2, .., sn}, we define
the positive space as the parts of the content space that are covered by at least
one subscription rectangle. We represent the positive space as C+

S where C+
S =⋃

si∈S si. We also define the negative space as the portions of the content space
that are not covered by any subscription rectangle. We represent the negative
space as C−

S . Of course, C+
S ∪ C−

S = CS and C+
S ∩ C−

S = ∅.
We say that publication p matches(satisfies) subscription sj if and only if for

each vi in p, vi ∈ [lowj
i , upj

i]. Subscription s is subsumed by set of subscriptions
S = {s1, s2, .., sn} if and only if for every publication p matching s, there is a
si ∈ S that matches p. We denote subsumption as s � S.

2.2 Subscription Subsumption Problem

We define the subscription subsumption problem for pub/sub system as follows:

Definition 2. Given S = {s1, s2, .., sn} is the set of existing subscriptions, is a
new subscription s subsumed by S?

The solution to the above problem is a ”true” if and only if for every pub-
lication p matching s, there is a si ∈ S that matches p. More succinctly, we
denote this fact by ”s � S iff s ⊂ C+

S ”. A solution to the subscription subsump-
tion problem returns a ”true” or ”false” when posed with an instance of the
problem.

Figure 2 depicts the subscription subsumption concept in a 2-dimensional con-
tent space. There are three subscriptions in this example where s1 = {[175, 510],
[180, 680]}, s2 = {[405, 840], [110, 540]} and s3 = {[380, 720], [230, 495]}. Neither
subscription s1 nor subscription s2 completely cover subscription s3. However,
s3 is fully covered by the union of s1 and s2.
3 In case of nominal attributes, we assume some random order is assigned to the

domain values. Alternatively, a partial order in the form of a taxonomy might also
be utilized to assign the nominal values some numeric identifiers from an ordered
domain.

4 If no interval is specified along a dimension, the selectivity of the corresponding
predicate is assumed to be equal to the whole domain of the attribute.

Subscription Subsumption Evaluation for Content-Based Pub/Sub Systems 67

3 Exact Subscription Subsumption Checking

In this section we present the exact subsumption checking approach and de-
scribe the subscription and unsubscription routing algorithms. We also present
a discussion on the complexity of the proposed algorithms.

As mentioned earlier, if s ⊂ C+
S then s � S. However, since the positive space

consists of the set of subscription rectangles which may be overlapping with each
other subsumption evaluation can be more complicated. On the other hand, we
can easily represent the negative space using a set of non-overlapping rectangles
and more importantly this set can be maintained easily under updates (addi-
tion and deletion of subscriptions). Using negative rectangles we simply need to
determine if a new subscription intersects with at least one of the negative rect-
angles. If this is the case, we can right away conclude that the new subscription
is not subsumed by previous subscriptions.

Proposition 1. Subscription s is not subsumed by the set of existing subscrip-
tions S = {s1, s2, .., sn} if and only if s ∩ C−

S �= ∅.
Initially, when there is no subscription in the system the whole d-dimensional

domain denotes the negative space, C−
S = Cd and the positive space C+

S = ∅.
When the first subscription, s1 is received we will have C−

S = CS − {s1} and
C+

S = {s1} which means that the subscription is added to the positive space
(and forwarded to the neighboring nodes) and at the same time, is subtracted
from the negative space. The remainder of the negative space is not necessarily
a complete rectangle, therefore, it needs to be partitioned into a set of smaller
non-overlapping rectangles. Figure 3 depicts one of the several possible ways of

Fig. 3. Negative space
partitioning

FUNCTION Subtract:
Input ← subscription s
Input ← A negative rectangle r
Input ← i: Subtraction dimension.
Output ← Rnew set of new non-overlapping negative rectangles

1) Rnew = ∅.
2) If i ≥ d then RETURN Rnew

3) NonCoverRange(i) = r(i) − s(i).
(0, 1 or 2 ranges in ith dimension)
4) For each range δ ∈ NonCoverRange(i) {
5) Create new rectangle rρ where ith dimension range is δ
6) and the rest of ranges are the same as r.
7) Rnew = Rnew ∪ {rρ} .
8) }
9) rRemaining: Remainig negative space where ith dimension
10) range is s(i) and the rest of ranges are the same as r.
11) Rnew = Rnew ∪ Subtract(s, rRemaining, i + 1).
12) RETURN Rnew

Fig. 4. Rectangle subtraction function for d-
dimensional space

68 H. Jafarpour et al.

partitioning the negative space after adding the first subscription. We will refer
to this as a rectangle splitting operation.

Figure 4 depicts the rectangle splitting function which returns the set of non-
overlapping negative rectangles after subtraction of a subscription from a nega-
tive rectangle. The function receives the subscription and the intersecting neg-
ative rectangle along with the dimension number, (i), that the splitting should
be done along with. The initial call of the function must pass dimension number
zero (i = 0). For the given splitting dimension number i, the function subtracts
the subscription range from the given negative rectangle range in the ith dimen-
sion and returns the remaining ranges as a set of non-overlapping ranges in ith

dimension (Line 3). Depending on the intersection form, the subtraction of the
subscription range from the negative rectangle’s range can split the rectangle’s
range into one, two or three sub ranges where only one of them intersect with
the subscription’s range in the ith dimension. The sub ranges that are not in-
tersecting with the subscription’s range generate new non-overlapping negative
rectangles with the other ranges of the negative rectagle in the other dimensions
(Lines 4-8). The intersecting section of the rectangle range along with the ranges
in other dimensions represent the remaing part of the negative rectangle. The
function then recursively splits the remaining negative rectangle along with the
other dimensions (Line 11).

In the example in figure 3, the split leads to 4 smaller rectangles, that is 3 more
rectangles than before the split. Figure 5 also depicts the partitioned negative
space after adding s1, s2 and s3. The general case of d dimensions is captured
in the proposition below.

Proposition 2. In a d-dimensional content space, a rectangle splitting operation
can lead to at most 2d - 1 new negative rectangles.

Proof. After subtracting the intersecting region of a subscription from a nega-
tive rectangle, the remaining negative region can always be split into γ smaller
rectangles, where γ is the number of surfaces of the subscription that completely
or partially intersect with the negative rectangle. Since there are 2d faces of a
d-dimensional rectangle, we have at most 2d-1 new rectangles generated in this
process (counting one of them as the old rectangle). �
Observation. After n subscriptions have been added, let the negative space be
represented as an union of some m non-overlapping rectangles, then after the
(n+1)th subscription, the new (reduced) negative space can still be represented
as an union of non-overlapping rectangles by carrying out at most O(m) rectangle
splitting operations.

On an average, the number of splitting operations is much smaller than
O(m). We represent the set of non-overlapping negative rectangles as R(C−

S) =
{r−1 , r−2 , .., r−m}. As stated in the proposition 2 above, this set can be constructed
and maintained incrementally. We illustrate the subsumption checking procedure
using a sequence of 3 subscriptions in Figure 5.

As it can be seen, the negative space is partitioned into four new non-
overlapping rectangles. Assume we use the partitioning method depicted in

Subscription Subsumption Evaluation for Content-Based Pub/Sub Systems 69

figure 3 and we add subscription s2 which is depicted in figure 2. In this case
since subscription s2 intersects with negative rectangles r3 and r4 the subscrip-
tion is not subsumed and we need to add it into the active subscription list.
We also need to subtract the subscription from the intersecting rectangles and
represent the remaining parts of each negative rectangle after subtraction as non-
overlapping rectangles. The new partitioning of the negative space after adding
subscription s2 is depicted in figure 5. The negative space now consists of seven
non-overlapping rectangles. Finally, when we add subscription s3, since it does
not intersect between the subscription and any of the negative rectangles, we
conclude that the subscription s3 is subsumed.

Next, we formally describe the subscription and unsubscription forwarding
algorithms.

Fig. 5. Negative space partitioning af-
ter adding subscriptions s1, s2 and s3

Input ← subscription s
Input ← set of negative rectangles R = {r1, r2, .., rn}
Input ← set of active subscriptions, SA

Input ← set of passive subscriptions, SP

1) Find Rintersect: the set of intersecting rectangles in R.
2) If Rintersect = ∅ then { //s is subsumed and is not forwarded.
3) SP = SP ∪ {s}.
4) RETURN.
5) }
6) Otherwise { // s is NOT subsumed and is forwarded.
7) SA = SA ∪ {s}.
8) For every ri ∈ Rintersect do {
9) R = R − {ri}.
10) R

Remaining
i = ri − s.

11) Partition R
Remaining
i into non-overlapping rectangles.

12) and add them to (Rri
) set.

13) R = R ∪ Rri
.

14) }
15) Forward s.
16) }

Fig. 6. Subscription forwarding Algo-
rithm with exact subsumption cheching

3.1 Subscription Forwarding Algorithm

When a new subscription is issued, we need to quickly determine if it intersects
with any negative rectangle and if so, we need to identify all the rectangles
that may potentially undergo splitting. Any popular multidimensional indexing
structure such as R-Tree or KD-Tree [13, 14] can be used to speed up access
to the rectangles. The data structure used by the algorithm maintains the fol-
lowing information: (i) The set of negative rectangles; (ii) The list of active
subscriptions consisting of the subscriptions that have been forwarded; (iii) The
list of passive subscriptions that contains the subscriptions that are subsumed
and therefore, have not been forwarded. Figure 6 represents the subscription
forwarding algorithm with exact subsumption checking.

The algorithm starts with finding all the negative rectangles that intersect
with the subscription. If the set of intersecting negative rectangles is empty,
the subscription is subsumed and there is no need to forward it. In this case
the subscription is added to the list of passive subscriptions (Lines 2-5). On the

70 H. Jafarpour et al.

other hand, if the set of intersecting negative rectangles is not empty, this implies
that the subscription is not subsumed and it must be forwarded. In this case,
the algorithm first adds the subscription into the list of active subscriptions. For
each of the negative rectangles in the intersecting set, it removes the negative
rectangle from the data structure (Line 9) and carries out the rectangle splitting
operation after determining the intersection area (Line 10-12). Then, the newly
created rectangles are added to the set representing the cover of the negative
space. Finally, the new subscription is forwarded to neighbor brokers except the
one that it was received from.

The space and time complexity of the subscription forwarding with exact
subsumption checking depends on the number of the non-overlapping negative
rectangles. Assuming the number of such rectangles is m(i) after i subscriptions
have been forwarded, we require O(m(i)) space to represent these rectangles. In
the worst-case, the time complexity of the (i+1)th subscription forwarding step
is O(d.m(i)) where d is the dimension of the content space. This is so, because the
(i + 1)th subscription may intersect with O(m(i)) negative rectangles resulting
in O(d(m(i)) splitting related operations. To represent the complexity of the
algorithm based on the number of subscriptions we present an upper bound for
m. We start our analysis with the following proposition about the number of
partitions in one dimensional space.

Proposition 3. In a one dimensional domain n ranges result in at most 2n + 1
non-overlapping ranges.

Proof. Proof is based on induction. Each range has two bounding points, start
and end. Initially there is only one range which covers all the domain. After
adding the first range, the domain will contain at most three ranges (2*1+1).
Assuming the maximum number of partitions resulting from n ranges is 2n + 1,
we add the (n + 1)th range. The boundaries of the new range will intersect with
at most two of the existing non-overlapping ranges which results in partitioning
each of these two ranges into two smaller ranges. Therefore, two new ranges is
added to the number of partitions and the number of non-overlapping ranges
that the domain is partitioned into will be 2n + 1 + 2 = 2(n + 1) + 1. �

Using the above proposition, we can provide an upper bound for the number of
rectangles (positive and negative) that can be generated by n rectangles.

Theorem 1. Given a set of n rectangles in d-dimensional space, an upper bound
to the number of non-overlapping rectangles that can partition the space based
on these rectangles is O(nd).

Proof. Each of the rectangles has a range in each dimension. Therefore, the
domain of each dimension is partitioned with n ranges. The maximum possible
number of non-overlapping ranges resulting from this partitioning is 2n + 1 in
each dimension (according to the Proposition 3). Using the partitioning ranges in
each dimension, the d-dimensional space can be partitioned at most into (2n+1)d

Subscription Subsumption Evaluation for Content-Based Pub/Sub Systems 71

non-overlapping rectangles. Therefore, the maximum number of non-overlapping
rectangles partitioning the space is O(nd). �

Based on the above theorem, the following theorem provides an upper bound
for the number of negative rectangles when there are n subscriptions.

Theorem 2. Given a set of n rectangles in d-dimensional space, an upper bound
for the number of non-overlapping rectangles that partition the negative space
is O(nd).

Proof. According to the Theorem 1 we know that the upper bound for total num-
ber of rectangles partitioning all the space resulted from n rectangles is O(nd).
Each of the given positive rectangles at least include one of the partitioning
rectangles. Therefore, the number of remaining rectangles for the negative space
is at least O(nd − n) which is O(nd). �

Since, the number of negative rectangles can grow really fast (O(nd) for n sub-
scriptions), the time and space complexity of the algorithm can become pro-
hibitive. This motivates our approximation algorithm which checks this growth
and which will be discussed in Section 4.

3.2 Subscription Cancellation Algorithm

If a subscriber wants to cancel a subscription, it makes a ”unsubscription” re-
quest that is forwarded along the path that the corresponding subscription was
forwarded earlier. When such a request arrives at a broker, it needs to check
which subscriptions in the passive list might now get uncovered due to removal
of this subscription and ensure that these queries are forwarded. Figure 7 shows
the algorithm.

To cancel a subscription s the unsubscription algorithm first checks if s is in
the passive set of subscriptions. If it is, then the subscription is subsumed by pre-
viously forwarded queries (active subscriptions) and he only needs to remove it
from the list of passive subscriptions (Lines 1-4). Otherwise, it first removes the
subscription from the list of active subscriptions (Line 5). Then, it finds Sintersect

A

which is the set of all active subscriptions that intersect with s. Unsubscribing
s can result in some uncovered space that needs to be added to the negative
cover. Obviously, the regions within s that are covered by other active subscrip-
tions should not be added to the negative space. To compute these regions, the
algorithm iterates over the set of intersecting active rectangles in Sintersect

A and
subtracts these regions from the s (Lines 8-19). Finally, the new negative space
(if there is one) is added to the set of negative rectangles in line 20. Now, the
algorithm needs to take care of the set of affected passive subscriptions which
is done in lines 21-26. Here, all the passive subscriptions that intersect with s
are detected and removed from the passive subscription list. Then, each of these
subscriptions are evaluated for subsumption against the new set of negative rect-
angles. The subscriptions that are not subsumed anymore are then forwarded to
neighbors along with the unsubscription request.

72 H. Jafarpour et al.

Input ← subscription s that must be cancelled
Input ← set of negative non-overlapping hyper rectangles R = {r1, r2, .., rn}
Input ← set of active subscriptions, SA

Input ← set of passive subscriptions, SP

1) If s ∈ SP {
2) SP = SP − {s}.
3) RETURN.
4) }
5) SA = SA − {s}
6) Find Sintersect

A : the set of active subscriptions in SA that intersect with s.
7) Set RnewNegative = {s} as the set of new negative rectangles.
8) For every si ∈ Sintersect

A do {
9) Sintersect

A = Sintersect
A − {si}.

10) R
si
newNegative = ∅.

11) For every rj ∈ RnewNegative do {
12) If rj ∩ si �= ∅ {
13) RnewNegative = RnewNegative − {rj}.
14) Rrj

= rj − si where Rrj
is in the form of non-overlapping rectangles.

15) R
si
newNegative = R

si
newNegative ∪ Rrj

.
16) }
17) }
18) RnewNegative = RnewNegative ∪ R

si
newNegative.

19) }
20) R = R ∪ RnewNegative.
21) Find Sintersect

P : the set of passive subscriptions in SP that intersect with s.
22) SnewActive = ∅.
23) For each si ∈ Sintersect

P do {
24) SP = SP − {si}
25) Subscribe(si, R, SA, SP).
36) }

Fig. 7. Unsubscription algorithm for the exact case

The unsubscription algorithm searches the negative rectangles, the active sub-
scription and the passive subscription lists. Therefore, the time complexity of the
unsubscription algorithm is O(d.(m + |SA| + |SP |)).

As we mentioned above, the number of negative rectangles can grow very
quickly and make the subscription forwarding as well as unsubscription proce-
dures very expensive. We now develop an approximation algorithms that re-
markably enhances the efficiency at the cost of slightly increased traffic.

4 Approximate Subscription Subsumption Checking

In this section we introduce a heuristic that help maintain an acceptable upper
bound on the number of negative rectangles. The proposed heuristic pays a
small penalty in terms of falsely concluding some subscriptions as being ”not
subsumed” when in reality they are subsumed by the set of active subscriptions.
However, such false decisions do not have any effect on the correct execution of
the pub/sub system.

Subscription Subsumption Evaluation for Content-Based Pub/Sub Systems 73

Subsumption checking heuristic: We restrict the number of new negative
rectangles that are created after adding a new subscription to at most k, a
user specified constant. Assume Rintersect = {r1, r2, .., rα} is the set of α nega-
tive rectangles that intersect with a new subscription s. If α > k, we choose a
RSelected

intersect ⊆ Rintersect such that the number of new negative rectangles created
from subtracting s from rectangles in RSelected

intersect is at most k. The remaining
rectangles in Rintersect are not modified. This relaxation increases the chance
of wrongly concluding that a latter query is not subsumed when it is in fact
subsumed. Restricting the number of newly generated rectangles to k results
in at most O(k.n) negative rectangles after n active subscriptions, which is a
significant improvement over the O(nd) worst-case bound.

Tuning the accuracy of the approximate approach: We can control the
accuracy of subsumption detection by adjusting the value of k. By varying k
one can explore the tradeoff space between the probability of false-positives in
subscription dissemination and the number of negative rectangles generated.

The approximate subsumption checking can either assume a fixed value for k
or a dynamic threshold which changes for each subscription based on the number
of existing negative rectangles. The dynamic approach allows more fine tuning to
balance the two competing factors. For instance, let the threshold be a function
of the order of the subscription, say ζ(i) = k.i−mi−1 where k.i is the maximum
possible number of negative rectangles after i queries and mi−1 is the actual
number after i− 1 queries. This implies, if the number of negative rectangles in
the system is less than the maximum expected number, for the new subscription
si, we can add a larger number of rectangles to the system and therefore increase
the accuracy of subsequent subsumption checks.

Top-k selection: Given the maximum number of new rectangles allowed (k or
ζ(i)), we need to select the best candidates for splitting. We propose a model
based on benefit/cost for selecting these rectangles. We define the benefit of parti-
tioning a negative rectangle with respect to a subscription as the ”volume” of the
intersecting region. We define the corresponding cost to be ”the number of new
negative rectangles that are created”. The benefit is proportional to the increase
in chance of determining subsumption while the cost is proportional to the space
required for the new rectangles as well as the increase in computational cost to
determine intersections for new subscriptions. Therefore, we choose the top-k
negative rectangles with highest benefit to cost ratio are chosen for splitting.
Figure 8 shows the approximate subsumption checking algorithm.

The approximate subsumption checking algorithm in addition to the standard
inputs, also requires the set CoveredBys to be specified. This is the set of rectan-
gles in the content space that are covered only by subscription s. We also specify
k which is the maximum number of new rectangles allowed per subscription (we
only provide the algorithm for the constant k case. The version for variable ζ
is similar). Similar to the exact algorithm, if the subscription does not intersect
with the negative space it is subsumed (Lines 1-5). Otherwise it is added to
the active subscription set. Then for each of the intersecting negative rectangles,

74 H. Jafarpour et al.

Input ← subscription s
Input ← CoveredBys = ∅: list of content space sections covered only by s
Input ← k: maximum number of new negative rectangle for s
Input ← set of negative non-overlapping hyper rectangles R = {r1, r2, .., rn}
Input ← set of active subscriptions, SA

Input ← set of passive subscriptions, SP

1) Find Rintersect: the set of rectangles in R that intersect with s.
2) If Rintersect = ∅ then { // s is subsumed.
3) SP = SP ∪ {s}.
4) RETURN .
5) }
6) Otherwise { //s is NOT subsumed.
7) SA = SA ∪ {s}.
8) For every ri ∈ Rintersect do {
9) rRemaining

i = ri − s.
9) If rRemaining

i is a compelete rectangle {
10) CoveredBys = CoveredBys ∪ (ri ∩ s).
11) R = R − {ri}.
12) R = R ∪ {rRemaining

i }.
13) }
14) Otherwise {
15) Compute the selection metric (Benefit

Cost) for ri.
16) Add ri to the IntersectingSelectionList.
17) }
18) }
19) newNegativeCount = 0
20) While (newNegativeCount ≤ k) {
21) ri = the negative rectangle in IntersectingSelectionList with the maximum selection
metric value (Benefit

Cost).
22) R = R − {ri}.
23) rRemaining

i = ri − s.
24) Partition rRemaining

i into non-overlapping rectangles.
25) and add them to (Rri

) set.
26) newNegativeCount = newNegativeCount + |Rri

|
27) R = R ∪ Rri
28) CoveredBys = CoveredBys ∪ (ri ∩ s).
29) }
30) Forward s.
31) }

Fig. 8. subscription forwarding algorithm with approximate subsumption checking

the algorithm checks if the remaining rectangle after subtracting the subscription
from it is a complete rectangle. If the remaining is a complete rectangle subtract-
ing the subscription does not create a new negative rectangle and the algorithm
updates the negative rectangle (Lines 9-13). Otherwise, the selection metric value
is computed for the intersecting negative rectangle and the rectangle is added
to the IntersectingSelectionList (Lines 14-17). The IntersectingSelectionList
contains the set of negative rectangles that intersect with subscription s (i.e.,
those that create extra negative rectangles after subtracting s from them). The
algorithm then picks the negative rectangle with the highest benefit/cost ratio
and removes it from the set of negative rectangles. Then, the algorithm subtracts
the subscription from it and updates the set of negative rectangles. It also adds
the intersecting section to the CoveredBys list since this section is only covered

Subscription Subsumption Evaluation for Content-Based Pub/Sub Systems 75

by this subscription. The algorithm iterates till the number of extra negative
rectangle reaches k (Line 19-29).

The unsubscription algorithm can be quite complicated depending on the level
of accuracy. We propose an approximate unsubscription algorithm that may
result in larger negative space. However, as mentioned before the larger negative
space only results in not detecting some of subsumption and does not affect the
correctness of the pub/sub system. Also, assuming the rate of unsubscriptions is
much lower that the rate of subscriptions such expansion of the negative space
may be tolerated in many cases. Figure 8 shows the approximate unsubscription
algorithm.

Input ← subscription s
Input ← CoveredBys: list of content space sections covered only by s
Input ← set of negative non-overlapping hyper rectangles R = {r1, r2, , rn}
Input ← set of active subscriptions, SA

Input ← set of passive subscriptions, SP

1) If s ∈ SP {
2) SP = SP − {s}.
3) RETURN.
4) }
5) SA = SA − {s}
6) R = R ∪ CoveredBys

7) Find Sintersect
P : the set of passive subscriptions in SP that intersect with CoveredBys.

8) SnewActive = ∅.
9) For each si ∈ Sintersect

P {
10) SP = SP − {si}
11) Boolean isActive = Subscribe(si, R, SA, SP).
12) If isActive=TRUE {
13) SnewActive = SnewActive ∪ {si}.
14) }
15) SA = SA ∪ SnewActive.
16) Forward all subscriptions in SnewActive along with unsubscription message.
17) }

Fig. 9. Approximate unsubsumption agorithm

Similar to the exact case the subsumed subscription is only removed from the
passive subscription list (Lines 1-4). When a request for cancellation of an active
subscription is received, the algorithm first removes the subscription from the
active subscription list (Line 5). Then, the rectangles in CoveredBys are added
to the list of negative non-overlapping rectangles (line 6). The algorithm then
detects all the passive subscriptions that intersect with the new negative rectan-
gles in CoveredBys (Line 7). For each passive subscription that is not subsumed
anymore the algorithm forwards it along with the unsubscription request to its
neighbors (Lines 9-17).

The approximate unsubscription may increase the negative space volume in-
crementally that may affect the subsumption evaluation accuracy for later sub-
scriptions. In order to achieve more accurate subsumption checking, we can re-
construct the whole negative space using the set of subscriptions in the system.

76 H. Jafarpour et al.

This can be done periodically in an offline manner, where one can recompute the
negative space by making one pass over complete set of existing subscriptions. If
the number of subscriptions is very large, then some pre-processing can be done
to speed up this computation. We will not go into the details of such a step in
this paper. We simply note that such a re-computation process results in new
SA, SP , R and CoveredBys sets.

5 Experimental Evaluation

In this section we evaluate the effectiveness of our proposed subscription sub-
sumption checking approach using extensive simulations. As described in previ-
ous sections, the efficiency of our approach directly depends on the number of
negative rectangles stored. We now describe the setup and the various experi-
ments that we carried out.

Simulation setup: We perform our simulations using 10,000 subscriptions in
2, 3, 4 and 5 dimensional content space. The domain of each dimension is set
as the range [0,1000] and the subscriptions are d-dimensional rectangles in this
domain. We generate the subscriptions by fixing the lower end-point of the range
along each dimension, say x and then selecting the size of the range randomly
from the interval [0, 1000− x] which determines the upper end-point along that
dimension. We sample the Zipfian distribution to pick the lower end-point of a
range along each dimension.

For the approximate subsumption checking experiments, we fix the value of
k to be 50. This implies that we limit the number of new negative rectangles
that are added to the index for each new subscription to at most 50. Recall that,
when the actual number of rectangles is more than k, we compute the best set
of rectangles to split by computing the ratio of benefit to cost and choosing the
ones that yield the highest values. For a negative rectangle and a subscription
the benefit is measured as the volume of the intersecting region and the cost is
the number of newly created negative rectangles as a result of the intersection.

Measuring advantage of subsumption checking: To compare the relative
merit of subsumption checking against the pair-wise covering approach, we mea-
sure how many messages were prevented from being forwarded by employing
each of these approaches. Figure 10 plots the number of redundant subscriptions
detected by the subsumption checking algorithm and the pair-wise subscription
covering approach. The results shown are for 2, 3 and 4 dimensional content
space. As expected, the number of redundant subscriptions detected using the
subsumption checking algorithm is always greater that the covering one. The
graph shows another interesting fact, that the number of subsumed subscrip-
tions is an inversely proportional to the dimension of the content space. This
can be justified by observing that the probability of overlap reduces with in-
creasing dimensionality, therefore reducing the probability of subsumption. The
same trend is seen in the covering relation between subscriptions and increasing
dimensionality of the space. However, even at higher dimensions, the number

Subscription Subsumption Evaluation for Content-Based Pub/Sub Systems 77

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 2000 3000 4000 5000 6000 7000 8000 9000 10000N
u
m

b
er

 o
f

D
et

ec
te

d
 R

ed
u
n
d
an

t
S

u
b
sc

ri
p
ti

o
n
s

Number of Subscriptions

Covering (2D)
Subsumption (2D)

Covering (3D)
Subsumption (3D)

Covering (4D)
Subsumption (4D)

Fig. 10. Subscription Subsumption vs.
Covering

 0

 100

 200

 300

 400

 500

 600

 2000 3000 4000 5000 6000 7000 8000 9000 10000N
u
m

b
er

 o
f

D
et

ec
te

d
 R

ed
u
n
d
an

t
S

u
b
sc

ri
p
ti

o
n
s

Number of Subscriptions

3D Space
4D Space
5D Space

Fig. 11. Extra traffic reduction by ap-
proximate subsumption algorithm

of queries subsumed by the union of 2 or more queries is substantially greater
than number of pair-wise coverings. This result reveals the significance of ex-
ploiting subscription subsumption compared to using only pair-wise subscription
covering. Figure 11 depicts the same results for the approximate subsumption
checking.

Negative rectangle creation rate: The number of negative rectangles di-
rectly affects the efficiency of our subsumption checking algorithm. Therefore,
we measure how the number of negative rectangles vary with increasing number
of subscriptions and as well as content space dimensionality. Table 1 shows the
number of negative rectangles generated against number of subscriptions and
number of dimensions for the exact subsumption checking algorithm. Generally,
by adding more subscriptions, the number of negative rectangle grows. However,
in 2-dimensional space the observed behavior is counter-intuitive, wherein the
number of negative rectangles sharply grow for the first 100 subscriptions and
then remains steady between 140 and 200. This behavior can be explained con-
sidering the number of covered and subsumed subscriptions for 2-dimensional
scenario in our simulations. As depicted in figure 10 more than 95% of sub-
scriptions are subsumed in this scenario and since these subscriptions do not
generate new negative rectangles, the total number of negative rectangles in the
2-dimensional scenario remains significantly small. On the other hand, the num-
ber of negative rectangles significantly increases for 3 and 4 dimensional case. If
we store the negative rectangles in broker’s memory the algorithm may consume
all of the available memory as it is shown in the table for 4-dimensional case with
more than 4000 subscription and a machine with 1GB memory. The significant
number of negative rectangles is a clear justification for using our approximate
subsumption checking algorithm.

Table 2 represents the number of negative rectangles resulting from usage of
the approximate algorithm with value of k set to 50. As we expected, the number
of negative rectangles significantly drops for 4-dimensional space which results in
less space requirement and faster subsumption evaluation. However, this comes
at the cost of not detecting all the subsumed subscriptions.

78 H. Jafarpour et al.

Table 2 also depicts an unexpected trend for 2 and 3 dimensional space where
using the approximate algorithm results in more negative rectangles. Since the
approximate algorithm may not partition all the intersecting negative rectangles
for a subscription, subsequent subscriptions that would have been subsumed will
intersect with the negative space and generate more negative rectangles. This
explains the reason for having more negative rectangles in approximate case
compared to the exact case. However, the number of negative rectangles remains
below the threshold of O(k.n).

Table 1. Number of negative rectangles for
exact subsumption

2000 4000 6000 8000 10000

2D 181 118 81 73 66
3D 15983 20154 19667 20756 22230
4D 364740 665000 – – –

Table 2. Number of negative rectangles
for approximate subsumption

2000 4000 6000 8000 10000

2D 367 405 430 438 443
3D 27928 30221 31755 33071 34079
4D 13455 23414 32148 39969 47064

Approximate algorithm: As mentioned earlier, the approximate algorithm
substantially improves the space and time complexities of subsumption checking
by restricting the number of new negative rectangles. We evaluate the advantage
of using the approximate algorithm for two main decision factors. First, we inves-
tigate the effect of threshold k on the number of detected subsumptions and the
number of new negative rectangles created. Then we evaluate the approximate
algorithm based on the function that is used to select the negative rectangles
for partitioning. The subsumed subscriptions detected in the following experi-
ments are in addition to the covered subscriptions and can not be detected using
traditional pair-wise covering techniques.

Effect of k: Figure 12 depicts the advantage of using the approximate algorithm
for three different k values, 10, 50 and 100 in a 3-dimensional content space. As
we expected, by increasing the value of k the number of detected subscription
subsumptions also increases. Increasing the value of k from 10 to 50 results in

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 2000 3000 4000 5000 6000 7000 8000 9000 10000N
u
m

b
er

 o
f

D
et

ec
te

d
 R

ed
u
n
d
an

t
S

u
b
sc

ri
p
ti

o
n
s

Number of Subscriptions

K=10
K=50
K=100

Fig. 12. Effect of k on subsumtion detec-
tion

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u
m

b
er

 o
f

n
eg

at
iv

e
re

ct
an

g
le

s

Number of Subscriptions

K=10
K=50
K=100

Fig. 13. Negative rectangles for different
k values

Subscription Subsumption Evaluation for Content-Based Pub/Sub Systems 79

considerable improvement in subsumption detection, however, as it can be seen
in the graph there is no considerable improvement in increasing the value of k
from 50 to 100. On the other hand, as shown in figure 13 the number of negative
rectangles considerably increases when we vary k from 50 to 100. Based on the
results in figures 12 and 13 we can conclude that increasing k may not always
result in significant improvement in subsumption detection, however, it results
in increasing number of negative rectangles. Therefore, selecting proper value
for k can improve the performance of the approximate algorithm significantly.

Other Selection Metric Value Function: Figures 14 and 15 show the re-
sults for three different negative rectangle selection functions. Recall, the default
selection function is the ratio of the intersecting areas volume (benefit) to the
number of new generated negative rectangles (cost). We consider two other func-
tions where in the first one we only consider the benefit as the selection function
and in the other one we consider the inverse of cost as the selection function.
As it can be seen, using the ratio of benefit to cost results in better detection
of subsumed subscriptions and fewer negative rectangles. The graphs also show
that considering benefit alone performs slightly better than considering the cost.
The reason is that despite considering only cost reduces the number of new
negative rectangles for a new subscription but it may result in more intersec-
tions and therefore more negative rectangles for the future subscriptions. On the
other hand, if we select negative rectangles based on the intersecting volume, we
increase the probability of detecting subsumption for future subscriptions and
therefore resulting in fewer negative rectangles.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 2000 3000 4000 5000 6000 7000 8000 9000 10000N
u
m

b
er

 o
f

D
et

ec
te

d
 R

ed
u
n
d
an

t
S

u
b
sc

ri
p
ti

o
n
s

Number of Subscriptions

F=Benefit/Cost
F=Benefit
F=1/Cost

Fig. 14. Effect of negative rectangle selec-
tion function

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 32000

 34000

 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u
m

b
er

 o
f

n
eg

at
iv

e
re

ct
an

g
le

s

Number of Subscriptions

F=Benefit/Cost
F=Benefit
F=1/Cost

Fig. 15. Number of negative rectangles
for different selection functions

6 Related Work

Subscription covering concept in pub/sub systems was introduced in Siena event
dissemination system [2]. Siena organizes subscriptions in a partially ordered set
(poset) where the order is defined by covering relation. Siena only considers
pair-wise covering relation between subscriptions and does not exploit subsump-
tion. REBECA is another pub/sub system that not only uses covering, but also

80 H. Jafarpour et al.

considers subscription merging [6]. Subscription covering and merging algorithms
in REBECA have linear execution time regarding to the number of subscriptions.

Li et al. propose a representation of subscriptions using modified binary deci-
sion diagrams (MBD) in PADRES pub/sub system [4]. They propose subscrip-
tion covering, merging and content matching algorithms based on this repre-
sentation. However, the MBD-based approach does not consider subscription
subsumption relation among subscriptions.

Shen et al. propose a novel approach for approximate subscription covering
detection using Space Filling Curves(SFC) [15]. In this approach a subscription
s = {[low1, up1],...,[lowd, upd]} in d-dimensional space which is a d-dimensional
rectangle is transformed into a point p(s) = {−low1,up1,...,−lowd, upd} in 2d-
dimensional space. Considering each subscription as a point, the covering prob-
lem in d-dimensional space is converted into point dominance problem in 2d-
dimensional space. The point dominance problem then is answered using space
filling curve where the rectangle corresponding to a subscription is represented
as set of one dimensional ranges using SFC and if the point of another sub-
scription falls into these ranges it is covered by the subscription. However, the
proposed approach can only detect covering and it is not clear how to extend it
for subsumption.

To effectively detect covering subscriptions Triantafillou et al. propose an
approach based on subscription summaries [7]. Attributes of each incoming sub-
scription are independently merged into their corresponding summary struc-
tures. The summaries will ensure reduction in the network bandwidth required
to propagate subscriptions and the storage overhead to maintain them.

Ouksel et al. present a Monte Carlo type probabilistic algorithm for the sub-
sumption checking [3]. The algorithm has O(k.m.d) time complexity where k is
the number of subscriptions, m is the number of distinct attributes (dimensions)
in subscriptions, and d is the number of tests performed to detect subsumption
of a new subscription. This algorithm may result in false negatives in publication
dissemination. In this algorithm it is possible that propagation of a subscription
is stopped while it is not subsumed by the existing subscriptions. This may result
in not delivering publications to some subscribers that may not be acceptable in
applications like stock ticker.

7 Conclusion and Future Work

In this paper, we studied the problem of subsumption checking for queries in
publish/subscribe (pub/sub) systems. Efficient query subsumption checking can
greatly improve the performance of pub/sub systems by reducing subscription
routing traffic between brokers. We developed a novel approach based on nega-
tive (uncovered) space representation which allows for fast subsumption check-
ing. Specifically, we provided algorithms to maintain a cover of the negative
space using a set of disjoint rectangles, in a dynamic environment where both
subscription and unsubscriptions requests are made by clients. Further, since
certain query workloads can lead to large number of covering (negative) rectan-
gles that can adversely effect performance and storage, we developed a heuristic

Subscription Subsumption Evaluation for Content-Based Pub/Sub Systems 81

that checks the growth of the cover-size. Our approximate subsumption checking
algorithm reduces subscription forwarding traffic without affecting the correct-
ness of execution. Finally, we carried out extensive simulated experiments to
illustrate the advantage of our proposed approach.

As our ongoing and future work, we will be investigating some of other heuris-
tics for efficiency of subsumption checking as well as carry out tests in a real
system. We will look at the other strategies like rectangle merging to reduce
the number of negative rectangles. An interesting direction is to extend this ap-
proach to other more complex query classes and different query workloads, with
higher proportions of unsubscription request.

References

1. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Computing Surveys 35(2) (2003)

2. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and Evaluation of a Wide-
Area Event Notification Service. ACM Transactions on Computer Systems 19(3),
332–383 (2001)

3. Ouksel, A.M., Jurca, O., Podnar, I., Aberer, K.: Efficient Probabilistic Subsump-
tion Checking for Content-Based Publish/Subscribe Systems. In: Proceedings of
Middleware 2006, pp. 121–140 (2006)

4. Li, G., Hou, S., Jacobsen, H.-A.: A Unified Approach to Routing, Covering and
Merging in Publish/Subscribe Systems Based on Modified Binary Decision Dia-
grams. In: Proceedings of IEEE ICDCS 2005, pp. 447–457 (2005)

5. Shen, Z., Tirthapura, S.: Approximate Covering Detection among Content-Based
Subscriptions Using Space Filling Curves. In: Proceedings of IEEE ICDCS (2007)

6. Mühl, G.: Large-scale content-based publish/subscribe systems. Ph.D Dissertation,
University of Darmstadt (September 2002)

7. Triantafillou, P., Economides, A.: Subscription Summarization: A New Paradigm
for Efficient Publish/Subscribe Systems. In: Proceedings of ICDCS 2004, pp. 562–
571 (2004)

8. Fabret, F., Jacobsen, H.A., Llirbat, F., Pereira, J., Ross, K.A., Shasha, D.: Fil-
tering algorithms and implementation for very fast publish/subscribe systems. In:
Proceedings of ACM SIGMOD 2001, pp. 115–126 (2001)

9. Carzaniga, A., Wolf, A.L.: Forwarding in a Content-Based Network. In: Proceed-
ings of ACM SIGCOMM 2003, pp. 163–174 (2003)

10. Srivastava, D.: Subsumption and indexing in constraint query languages with linear
arithmetic constraints. Annals of Mathematics and Artificial Intelligence 8, 315–
343 (1992)

11. Costa, P., Picco, G.P.: Semi-Probabilistic Content-Based Publish-Subscribe. In:
Proceedings of ICDCS 2005, pp. 575–585 (2005)

12. Castelli, S., Costa, P., Picco, G.P.: HyperCBR: Large-Scale Content-Based Routing
in a Multidimensional Space. In: IEEE INFOCOM (2008)

13. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of ACM SIGMOD 1984, pp. 47–57 (1984)

14. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer, Heidelberg (1985)

15. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the Cluster-
ing Properties of the Hilbert Space-Filling Curve. IEEE Trans. Knowl. Data
Eng. 13(1), 124–141 (2001)

Diagnosing Distributed Systems with
Self-propelled Instrumentation

Alexander V. Mirgorodskiy1 and Barton P. Miller2

1 VMware, Inc.
mirg@vmware.com

2 Computer Sciences Dept, University of Wisconsin
bart@cs.wisc.edu

Abstract. We present a three-part approach for diagnosing bugs and
performance problems in production distributed environments. First,
we introduce a novel execution monitoring technique that dynamically
injects a fragment of code, the agent, into an application process on
demand. The agent inserts instrumentation ahead of the control flow
within the process and propagates into other processes, following com-
munication events, crossing host boundaries, and collecting a distributed
function-level trace of the execution. Second, we present an algorithm
that separates the trace into user-meaningful activities called flows. This
step simplifies manual examination and enables automated analysis of
the trace. Finally, we describe our automated root cause analysis tech-
nique that compares the flows to help the analyst locate an anomalous
flow and identify a function in that flow that is a likely cause of the
anomaly. We demonstrate the effectiveness of our techniques by diagnos-
ing two complex problems in the Condor distributed scheduling system.

Keywords: distributed debugging, performance analysis, dynamic in-
strumentation, trace analysis, anomaly detection.

1 Introduction

Quickly finding the cause of software bugs and performance problems in pro-
duction environments is a crucial capability. Despite its importance, the task of
problem diagnosis is still poorly automated, requiring substantial time and effort
of highly-skilled analysts. We believe that such diagnosis can be substantially
simplified with automated techniques that work on unmodified systems and use
limited application-specific knowledge. In this paper, we present our diagnostic
framework, demonstrate that it is able to work on complex distributed systems,
and describe real-world problems that it enabled us to diagnose in the Condor
distributed cluster management software [28,41].

The ability to collect and analyze traces from unmodified and unfamiliar sys-
tems is crucial in production environments, where the following three challenges
significantly complicate problem investigation. First, many problems in produc-
tion environments are difficult to reproduce on another system. Such problems
require analysis in the field and demand collaboration between the customer

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 82–103, 2008.
c© IFIP International Federation for Information Processing 2008

Diagnosing Distributed Systems with Self-propelled Instrumentation 83

and the developers. Second, modern systems are built of interacting black box
components that often come from different vendors and provide limited support
for execution monitoring. Finally, if a system does support detailed execution
monitoring, the volume of collected data can be exceptionally high and often
impossible to analyze by hand.

Our diagnostic approach uses a previous observation that problems often cor-
respond to infrequent execution paths or paths that have properties deviating
from common behavior [5,10,17,20,27]. By finding where the execution diverged
from the norm, we may be able to determine the problem location. Our approach
monitors system execution at a fine granularity, discovering and instrumenting
communicating processes on-the-fly, and collecting function-level traces in dis-
tributed environments. Our trace analysis algorithm automatically compares
traces to each other to identify unusual activities and point the analyst to a
possible root cause of the problem. While there are several projects that collect
event traces or profiles and analyze them automatically to simplify problem di-
agnosis [5,10,11,15,16,20,27,30,44], the following features of our approach make
it suitable for on-demand diagnosis in production environments:

Dynamic binary instrumentation across processes and hosts. We
use self-propelled instrumentation to collect detailed function-level control flow
traces from unmodified and unfamiliar systems [34]. The corner stone of self-
propelled instrumentation is an autonomous fragment of code called the agent
that is injected into the system on a user-provided external event. After injec-
tion, the agent starts monitoring system execution by inserting trace statements
into the system’s code ahead of the flow of control. With this technology, tracing
can be rapidly enabled on demand so that the users experience no overhead if
the system operates normally and no tracing is necessary.

This paper extends self-propelled instrumentation to propagate from one pro-
cess to another on inter-process communication. It allows us to discover com-
municating components and obtain distributed control flows. For example, we
can start tracing a Web browser and propagate into the Web server and other
components of an e-commerce system to obtain the complete control flow trace
from the request to the reply.

Identification of concurrent flows with limited system knowledge. In a
system that processes more than one request at a time, the collected trace may
contain events of concurrent requests arbitrarily interleaved. The presence of
unlabeled events from multiple unrelated activities may be confusing for manual
trace examination. Furthermore, events that belong to unrelated requests may
occur in a different order in different runs. This behavior complicates automated
analysis: a normal trace being examined may appear substantially different from
previous ones and thus marked as an anomaly. To overcome these limitations,
we decompose the trace into a collection of per-request traces that we call flows.
Each flow is user-meaningful and more deterministic than the original trace.

Our flow-construction approach uses application-independent rules where
possible but can incorporate application-specific knowledge into analysis. As a

84 A.V. Mirgorodskiy and B.P. Miller

result, our framework is likely to be easier to apply to a new system than pre-
vious application-specific techniques [5, 10, 24, 26]. Yet, unlike the application-
independent techniques of DPM [32] and Whodunit [9], the user can improve
the accuracy of flow construction by providing additional knowledge into analy-
sis. Unlike the technique of Aguilera et al. [3], our approach is not probabilistic
and can construct accurate flows even for infrequent requests.

Root cause analysis with limited user effort. Similar to dynamic program
dicing [11,30], Triage [43], and Pinpoint [10], we focus our analysis on differences
in coverage between successful and failed flows. We look for functions that have
been executed only in the successful or only in the failed flows. Such functions are
correlated with the occurrence of the problem and often point to its root cause.
In our experiments however, the number of differences in call path coverage
perfectly correlated with failures proved to be large and most such differences
corresponded to normal variations between flows. The key feature of our analysis
is its ability to further reduce the number of differences to be examined manually
yet attempt to retain the cause of the problem. The following sections discuss our
approach in detail and show its effectiveness, finding the causes of two non-trivial
bugs in the Condor distributed batch scheduling system [28,41].

2 Propagation and Tracing

We locate bugs and performance problems by comparing control-flow traces for
normal and anomalous activities in a system, e.g., comparing per-request traces
in an e-commerce environment. Here, we describe our trace collection approach
that we call self-propelled instrumentation. The corner stone of self-propelled
instrumentation is an autonomous agent that is injected in the system upon
a user-provided external event (e.g., a keypress) and propagates through the
code carried by the flow of execution. Propagation is the process of inserting
monitoring statements ahead of the flow of execution within a process and across
boundaries between communicating processes. The key feature of this approach
is its ability to work on unmodified distributed systems and start collecting traces
on demand without a system restart. When the user decides to stop tracing, the
agent can be deactivated.

Within a process, we use the spTracer framework [34, 35] to intercept the
execution of an application at function call instructions, though finer-grained
branch-level instrumentation also can be implemented. The agent takes control
at a call site in the application’s code, generates a trace record, instruments the
next point of interest, and returns control to the application.

This paper extends the self-propelled instrumentation technology to propagate
across process and host boundaries on inter-process communication events. We
follow the flow of control within a process where the start event happened, and
carry the tracing over into another process when the two processes communicate.
Each process generates an in-memory control-flow trace. When the user-specified
deactivation event happens, we stop trace collection, assemble all per-host traces
at a central location, and arrange observed events in a system-wide Parallel

Diagnosing Distributed Systems with Self-propelled Instrumentation 85

Dynamic Program Dependence Graph (PDG) [13]. The PDG is a DAG where
nodes represent observed events and edges represent happened-before depen-
dences between the events [25].

To construct the PDG, we need to observe events in different processes and
establish the correspondence between matching send events in one process and
recv events in another. Our framework collects the necessary data dynamically,
using five steps to propagate from one component to another: intercept a send
event, identify the name of the destination process, inject the agent into the
destination process (possibly, on a remote host), detect the receipt at the des-
tination process, and follow the execution of the destination process. We begin
by describing these steps for the foundational case of communication via TCP
sockets and generalize it to other types of communication later.

2.1 Propagation over a TCP Socket

To enable the agent to propagate across host boundaries, we run daemon pro-
cesses, called spDaemons, on all hosts in the system. These daemons can be
started at system boot time, or they can be started by the agent on-demand,
if nodes in the system support remote operations such as SSH (Secure Shell).
Figure 1 shows how the agent in process P propagates into process Q. First,
the agent library, agent.so, instruments the send and write routines in P . When
reached, this instrumentation determines whether the accessed file descriptor
corresponds to a TCP socket, and in that case, intercepts control of the process
before it sends the message.

Second, the instrumentation determines the name of the peer process, a tuple
〈hostid, pid〉, where hostid is the IP address of the host and pid is the process
identifier on that host. The remote hostid for a given socket can be found with the
standard getpeername function. Since there is no standard mechanism for finding
the remote pid, we use a two-step process to determine it. We use getpeername
to find the remote port portid and send it to our spDaemon on the remote host.
That daemon uses a technique similar to that of the netstat utility to map portid
to pid : map port number to the inode number identifying the socket and scan
the /proc tree to locate processes that opened a socket with that inode.

Third, spDaemon injects a copy of the agent into the identified process using
the Hijack mechanism [45]. This mechanism causes the process to load our shared

markmsg

spDaemon:

Host B

find process by port, inject agent

a.out

recv(msg) start propagation
if (got mark)

recv(msg)
jmp back

socket
send(msg)

jmp back

send(mark)
send(msg)

getpeer(ipB,portQ)
inject(ipB,portQ)

a.out agent.soProcess P Process Q

spDaemon

agent.so

Host A

Fig. 1. Propagation of the agent from process P on host A to process Q on host B
when P attempts to send a message to Q over a TCP socket

86 A.V. Mirgorodskiy and B.P. Miller

library at run time. Fourth, the sender’s agent uses the TCP OOB (Out-of-band)
mechanism to mark the first byte of the message and lets the application proceed
with the send operation. At injection time, the receiver’s agent also instruments
the entry points for recv and read library calls to identify the moment when the
message arrives. When this instrumentation is executed, it checks whether the
file descriptor corresponds to the original socket and whether the OOB mark has
arrived. If so, the current recv event corresponds to the send event that triggered
cross-process propagation. Our agent instruments all functions on the stack, from
main to the recv and starts the propagation procedure on the receiver side.

Subsequent send and recv operations on this socket are matched using byte-
counting: counting the number of bytes sent and received by each endpoint.
A socket can be shared by multiple processes on a host, e.g., multiple HTTP
daemons often share the same listening socket to accept multiple concurrent
connections. To address this scenario, we keep byte counts in shared memory
and each agent updates them atomically.

Note that our technique does not send the code of the agent across the bound-
aries: each host uses a locally-installed copy of the agent and does not need to
run untrusted downloaded code. This property can enable secure deployment of
self-propelled instrumentation across administrative domains. To support such
deployments, spDaemons could implement security policies specifying remote
users who can request propagation through processes on this host and users who
can download the resulting trace. This paper does not study this aspect further.

2.2 Other Communication Mechanisms

Similar to TCP sockets, our prototype propagates across UNIX pipes and UDP
sockets. The primary difference between our support for these communication
mechanisms lies in techniques for matching send and recv events. This task
is non-trivial in presence of in-flight messages or for mechanisms that do not
preserve the order of messages. In both cases, the first recv event observed after
the injection may not correspond to the send event that triggered the injection.

As mentioned above, we address this problem for TCP sockets by using the
OOB mechanism and subsequent byte-counting. The OOB mechanism is sup-
ported only for TCP sockets. For local order-preserving communication mecha-
nisms such as pipes and UNIX-domain sockets we can use a different technique
for dealing with in-flight messages. After injection, the agent in the receiving
process uses the FIONREAD ioctl interface [40] to determine the size of the
backlog (the number of bytes queued in the channel). After this number of bytes
have been received, the agent can start tracing the process. Further send and
recv operations on this channel are matched using byte-counting.

To match send and recv operations on UDP sockets, we use a datagram-
marking technique similar to the approaches of Causeway [8] and SDI [37]. On
each send operation, we put a sequentially-numbered mark on the datagram
encoding it as a TS (timestamp) IP option and record the mark value in the
local trace. On each recv operation, we extract the mark from the datagram and
append it to the local trace. At the analysis time, send and recv operations with

Diagnosing Distributed Systems with Self-propelled Instrumentation 87

equal mark values can be matched together. The limitation of this technique is
that routers and firewalls in some environments may remove IP options from
forwarded packets, drop packets with options, or process them slower than nor-
mal packets. Determining how common such environments are and developing
alternative solutions remain subjects for future work.

Shared memory communication creates other challenges, and for these situa-
tions, we plan to use the technique from Whodunit [9].

3 Reconstruction of Distributed Control Flows

Bugs and performance problems in complex systems are often manifested by
deviations of control flow from the common path. To identify such deviations
and determine the root cause of a problem, we collect control-flow traces and
analyze them manually or automatically. In distributed environments however,
collected traces may contain events that correspond to different concurrent ac-
tivities such as HTTP requests, possibly of multiple users. Events that corre-
spond to one request are not explicitly labeled in the trace and can appear
interleaved with events from other requests. Such interleaving of unrelated ac-
tivities complicates manual trace analysis. It also increases trace variability and
thus presents challenges for automated analysis. Events from different activities
may appear in a different order in different runs. As a result, a normal trace
may appear substantially different from previous ones and can be marked as an
anomaly.

To overcome these problems, we decompose the execution of an application
into units that correspond to different semantic activities, referred to as flows.
Flows are easier to analyze manually and automatically than the original trace.
They contain logically-related events and there is little trace variability within a
flow. For example, a Web server process can execute requests from two users in
an interleaved order, as shown in Figure 2. Flows are shown as disjoint shaded
areas in that figure. Unlike previous techniques for flow construction [3, 5, 9, 10,
24,26,32], our approach uses general rules to construct flows but can incorporate
application-specific knowledge into analysis when the rules are insufficient.

end of a blocking event

Legend

same−flow events

beginning of a blocking event

select

browser 2

browser 1

web server
select

send URLclick2

select

accept select

show pagereceive page

page
sendreceive

URL

connect

send
pageURL

receive

select

send URL show pagereceive page

accept

connectclick1

request start/stop events

non−blocking event

removed edge

b

e

eb

e b

b e

e b

b e

e

eb

be b

Fig. 2. Flows in a Web server executing requests from two Web browsers

88 A.V. Mirgorodskiy and B.P. Miller

3.1 Flow-Construction Algorithm

Our prototype traces function calls, returns, and communication events. This
section describes our flow-construction algorithm in its general form since it
also applies to a wider class of events. We define an event as an execution
instance of an instruction in a process. Such an event can be represented by a
tuple 〈location, seq id〉, where location identifies the process and the instruction
address within that process, while seq id is a sequence number, i.e., the number of
executions of this instruction in the history preceding this event. This definition
includes message-passing send and recv events since they typically correspond
to execution of system call trap instructions.

In our representation, flows are sets of events, where x ∈ Φ denotes that
event x belongs to flow Φ. We formulate the task of constructing flows as a
graph problem. First, we represent a system-wide control-flow trace as a PDG.
This PDG is constructed from a set of start events S provided by the user
(e.g., request-arrival events). Then, we apply several graph transformations to
the PDG, removing and adding edges to the graph to partition it into disjoint
subgraphs. Each subgraph represents one flow.

To transform the graph, we apply two application-independent rules to each
pair of connected events u and v in the PDG. Both rules determine whether the
pair of events must belong to the same flow. If these events do not satisfy either
rule, we remove the edge u → v from the PDG. In the second step, we traverse
the transformed PDG to find events reachable from events in the start set S.
Events reachable from an event si ∈ S compose flow Φi.

The first rule is the communication-pair rule that dictates that the pair of
matching communication events belongs to the same flow: if s and r are matching
send and recv events, then Φ(s) = Φ(r). This rule implies that inter-process
edges in the PDG must not be removed. The second rule is the message-switch
rule that dictates that a process can switch from one flow to another only on
receiving a message. A pair of adjacent events xi−1 and xi in a process belong
to the same flow unless the second event is a recv (a node with more than one
immediate predecessor): if deg+(xi) = 1 then Φ(xi) = Φ(xi−1). Here, deg+(x) is
the in-degree of x, the number of immediate predecessors of x in the PDG.

To illustrate our algorithm, consider Figure 2. Both requests are serviced
by the same server process in the interleaved order. By locating all nodes in
the PDG with the in-degree of two and removing intra-process edges incidental
to such nodes, we obtain a transformed PDG where all edges satisfy our rules.
Inter-process edges satisfy the communication-pair rule and the remaining intra-
process edges satisfy the message-switch rule. Next, we traverse the transformed
PDG beginning from the start events and construct two disjoint components
that accurately represent the two user requests.

Our representation of flows is most similar to dependence trees of Magpie [5].
However, Magpie does not use such trees to separate events from different re-
quests. Instead, it relies on application-specific rules provided by the user and
builds a tree later to represent each already-separated request. In contrast, the

Diagnosing Distributed Systems with Self-propelled Instrumentation 89

graph representation is central to our algorithm: we construct requests by sepa-
rating the PDG into disjoint subgraphs.

3.2 Custom Directives

Our application-independent algorithm may attribute some events to the wrong
flow. Consider a single-process server that receives requests from clients, en-
queues them, services them later, and replies to the clients. In Figure 3, the
process receives a request from client2, enqueues it, dequeues an earlier request
from client1, and handles it. While Figure 3 shows the correct assignment of
events to requests, this assignment could not be generated without knowing the
relationship between enQ and deQ operations. The enQ2 and following deQ1
events belong to different requests, but our message-switch rule would attribute
them to the same flow since they are not separated by a recv node.

To provide application-specific knowledge to the analysis, we introduce the
concept of a mapping directive. Each directive identifies a pair of events that
should belong to the same flow. The added relation between two events allows us
to insert a new edge into the PDG. An important simplification is our observation
that each directive needs to connect two events within the same process (inter-
process dependences are correctly constructed by the communication-pair rule
already). To give directives preference over the message-switching rule, we insert
the edges first, treat them as inter-process edges, and then apply the local edge-
removing algorithm described in the previous section.

Since directives require knowledge of system internals, they can be provided
by system developers, rather than end users. To specify directives, we apply the
event-join formalism of Magpie [5] to control-flow traces: our directives have the
form 〈bb,jattr 〉, where bb is the address of a basic block in the code, jattr is a
so-called join attribute, e.g., a program variable. The result of this directive is
labelling an event corresponding to execution of bb with the join attribute of
jattr. Control-flow events u and v with the same value of the join attribute are
assigned to the same flow: if v.jattr = u.jattr, then Φ(v) = Φ(u). We translate
each directive into a code fragment that is inserted into the basic block bb. When
executed, the fragment saves the value of jattr along with bb in the trace. At
analysis time, events with the same value of jattr are assigned to the same flow.

To match the enqueue and dequeue events in Figure 3, we can provide a simple
directive: 〈enQ:entry,arg〉 → 〈deQ:exit,ret val 〉. This directive assumes that the
argument to the enQ routine is the address of the request structure to enqueue;
the deQ routine returns that address on exit. At analysis time, we identify trace

edge added by the directives
1enQ

2deQ

client2

server

client1

enQ
edge removed by the rules

1deQ flow 1
event in

flow 2
event in

Legend

2

Fig. 3. Flows constructed with the help of directives

90 A.V. Mirgorodskiy and B.P. Miller

records where the argument to enQ was equal to the return value of deQ and
introduce an artificial PDG edge between them. This operation increases the
in-degree of the deQ node, causing us to remove the original intra-process edge
incidental to deQ and allowing us to separate the two requests.

4 Identification of Anomalies and Their Causes

Specialized techniques aim at locating a single type of bugs, such as buffer over-
runs, memory leaks, or race conditions. Our approach however, belongs to an-
other class of techniques that can locate a wide variety of problems, provided
that they are manifested by deviation of the execution from the norm.

Our approach looks for problems manifested by unusual control flow, such as
functions that only executed in failed flows or took substantially more time in
failed flows. To identify the causes of such problems, we use a two-step process.
First, we perform data categorization: identify anomalous flows, i.e., one or sev-
eral flows that are different from the rest and may correspond to failed requests.
Second, we perform root cause identification: examine the differences between
the anomalous flows and the normal ones to help the analyst identify the causes
of the anomalies. To reduce the required manual effort, we eliminate some dif-
ferences that are effects of earlier ones. We also rank the remaining differences
to estimate their importance to the analyst.

4.1 Data Categorization

Our framework can be deployed in two different scenarios: on-demand diagnosis
of a particular problem and always-on system monitoring. In the first scenario,
the end user often is able to categorize collected flows manually. If the problem
occurs for a particular HTTP request, the user can mark that request as an
anomaly. For always-on system monitoring however, manual categorization may
not be feasible. A flow may fail silently, without user-visible effects. A flow may
also start misbehaving after a non-fail-stop failure.

To identify anomalous flows, we started with the algorithm of spTracer [35]
and extended it to operate on distributed flows. spTracer summarizes each per-
process control flow trace as a fixed-length vector (a time profile), defines a
distance metric between pairs of profiles, and finds one or more profiles that are
most distant from the rest. To extend this approach to the distributed scenario,
we construct distributed per-flow profiles. Each profile now summarizes activities
in a single flow, spanning multiple processes where these activities occurred.
Profiles that are most distant from the rest correspond to flows whose behavior
is most different from common.

In this paper, we use two types of flow summaries: coverage and composite
profiles. The coverage profile for flow Φ is a bit vector pv(Φ) = 〈v1, . . . , vF 〉 of
length F , where F is the number of different functions in all executed binaries.
Bit vi is set if and only if the corresponding function fi was executed in flow
Φ. Therefore, the difference between two coverage profiles identifies functions

Diagnosing Distributed Systems with Self-propelled Instrumentation 91

present in one flow and absent from another. As a result, flows that execute
similar code will result in similar coverage profiles and vice versa. Our profiles
also include call path profiles if we treat different call paths from main to each
function as a separate function. For simplicity, we refer to components of profile
vectors as functions. The experiments in Section 5, use the path-based method
due to its higher accuracy.

The composite profiles capture both the temporal behavior and the commu-
nication structure of a distributed application. A composite profile for flow Φ
is a concatenation of two vectors: a multi-process time profile and a communi-
cation profile. The multi-process time profile pt(Φ) = 〈t1, . . . , tF 〉 is a natural
extension of single-process time profiles used by spTracer. Here, ti is the frac-
tion of time flow Φ spends on path i. The communication profile, is a vector
ps(Φ) = 〈s1, . . . , sF 〉. Here, si is the normalized number of bytes sent by path
i on flow Φ. The addition of the communication structure allows us to detect
anomalies that cause little change in the temporal behavior. For example, UDP
message loss and retransmission will be visible in the communication profile while
the time to handle this condition may not be noticeable in the time profile.

In Section 5, both composite and coverage profiles proved equally effective at
identifying anomalous flows. In other scenarios, composite profiles may be more
suitable for detecting problems that result in little change in function coverage:
indefinite blocking in system calls, infinite loops, and performance problems.
In contrast, coverage profiles may be more effective for locating anomalies in
workloads with large normal variations in time or bytes sent on each flow. Fur-
thermore, we use coverage profiles at the second stage of our diagnosis. They
allow us to identify a problem even if it was in a short-running function that did
not involve communication activities (e.g., a double free causing a later crash).

Once profiles are constructed, we compute a distance metric between each
pair of profiles as the Manhattan norm of their per-component difference. Then,
we use the pair-wise distance metric to compute the suspect score of a profile,
that is the distance of the profile to common or known-normal behavior. Finally,
we report the profile with the highest score to the analyst as the most unusual.
An important feature of this algorithm is its ability to integrate prior examples
of known-normal behavior into analysis and thus avoid reporting unusual but
normal behaviors as anomalies.

4.2 Root Cause Identification

spTracer focused on finding the most visible symptom of a problem (the func-
tion where the most unusual amount of time was spent). This paper presents a
root cause analysis approach that may identify more subtle problem causes oc-
curring long before the failure. To locate such causes, we examine differences in
coverage between normal and anomalous flows. Namely, we construct the set ∆a

containing call paths that are present in the anomalous profiles and absent from
all normal ones, the set ∆n containing call paths that are present in the normal
profiles and absent from all anomalous ones, and their union ∆ = ∆a ∪ ∆n. By
inspecting each path in ∆ and determining why it is present only in normal or

92 A.V. Mirgorodskiy and B.P. Miller

only in anomalous flows, the analyst may be able to find the problem cause. For
example, an intermittent double free bug would manifest itself by an extra call
to free in anomalous flows, thus adding a path to ∆a. Similarly, an attempt to
reference unallocated memory would result in an extra call to malloc in ∆n.

In our experience however, the number of call paths in ∆ is often large. In
addition to the call path corresponding to the root cause of the problem, ∆ may
contain subsequent symptoms of the same problem. We refer to such call paths
as problem-induced variations in coverage. ∆ may also contain unrelated paths
that are caused by slight differences in system load or program input between
flows. We refer to such call paths as normal variations in coverage.

While we cannot distinguish problem-induced variations from normal vari-
ations automatically, we can substantially reduce the number of variations of
each type. In our experience, a single variation in the execution can generate
multiple call paths in ∆. We attempt to retain one path for each cause by using
two transformations of set ∆. We present these transformations on the example
of ∆a; the same techniques also apply to ∆n.

First, assume that function main called functions A and D only in the anoma-
lous run; function A also called functions B and C. As a result, set ∆a will contain
call paths main → A, main → A → B, main → A → C, and main → D.
The corresponding call tree is shown in Figure 4a. To understand why the
anomalous run was different from the normal run, we must explain why paths
main → A and main → D are part of ∆a. Longer paths, main → A → B and
main → A → C would become part of ∆a automatically: since main → A was
never observed in a normal run, any longer path also could not be observed in a
normal run. Our first transformation examines each path π ∈ ∆a and discards
all longer paths that contain π as a prefix. We denote the transformed set ∆a

as ∆′
a and show it in Figure 4b.

Second, we merge call paths in ∆′
a that differ only in the last call as such

paths typically correspond to a single cause. The reason why functions A and
D were invoked only in the anomalous flow is located in their parent, function
main, thus making the parent, not the leaves, a potential problem location.
We can therefore replace the two paths in ∆′

a with a single composite path
main → [A, D], creating ∆′′

a shown in Figure 4c. If the application exhibited
more than one problem in a single function, this optimization might hide one
of the problems. However, we believe this case to be quite rare and the merging
optimization to be widely beneficial.

main

DA

CB

(a) ∆a

main

DA

(b) ∆′
a

main

A,D

(c) ∆′′
a

Fig. 4. Call tree before and after the transformations

Diagnosing Distributed Systems with Self-propelled Instrumentation 93

To further simplify examination of call paths in ∆′′
a, we introduce two com-

peting ranking techniques. The first technique arranges call paths in the order of
their first occurrence in the trace. It assumes that the earlier differences between
anomalous and normal flows are more likely to correspond to the root cause of
a problem. This assumption holds for problem-induced variations in coverage
(since all symptoms happen after the root cause). However, it may be violated
for normal variations that can occur even before the root cause. Our second
technique orders shorter call paths before longer ones. Shorter paths are easier
to analyze. Furthermore, they often represent more substantial differences in the
execution than longer paths.

5 Experience

Our earlier prototype proved useful for diagnosing bugs and performance prob-
lems in single-process scenarios and in a collection of identical processes [34,35].
To evaluate our techniques in a distributed environment, we applied them to
finding the causes of two bugs in the Condor distributed scheduling system.
Condor provides batch scheduling, execution, and monitoring facilities for high-
throughput computing tasks [28,41]. It can schedule sequential and parallel jobs.
Condor operates in a variety of environments from loosely-connected networks
of desktop workstations to large-scale supercomputers and the Grid.

Condor is a complex system that has a multi-tier architecture where different
services are performed by different daemons communicating over the network.
A simple user job requires cooperation of six different daemons on multiple
hosts and also several auxiliary programs. In complex Grid environments, it
involves even more services. Internally, Condor uses several standard commu-
nication mechanisms including pipes, TCP sockets, and UDP sockets. It also
implements custom primitives such as queues and timers for deferring actions.

5.1 File Transfer Problem

Condor allows the user to specify multiple jobs to be run as part of a single
submission. Such a submission is referred to as a cluster. A recent bug caused
the output files for some jobs in a cluster to be created in a wrong directory.
The output for the first job is placed at the correct location, but the output
for all subsequent jobs are created in the current working directory rather than
the directory specified by the user. This problem has been fixed by Condor
developers. Here, we describe how we found it with the help of our techniques.

To diagnose this problem, we submitted a cluster of five jobs to Condor (Ver-
sion 6.7.17) and collected the traces starting from the condor submit command.
Our tracer propagated through all the daemons and auxiliary programs involved
in handling the jobs. When the last job in the cluster terminated, we saved the
traces to disk. Collected traces allowed us to construct the PDG for the execu-
tion. Figure 5 shows a summary diagram that we created automatically from the
PDG and visualized the resulting graph with the Graphviz package [18]. It shows

94 A.V. Mirgorodskiy and B.P. Miller

submit schedd

startd

collector

starter rm tmp_dir

negotiator

job

shadow mail

Fig. 5. Communication diagram for scheduling a Condor job. Manually annotated with
process names.

the traces for a single-job submission since a five-job diagram and the full PDG
are more complex. Each node in this diagram corresponds to a process that our
agent traced. Each edge corresponds to one or several repeating communication
events: sending a message, forking a child, or waiting for a child’s completion.

This diagram allows us to understand the job scheduling process: condor sub-
mit contacts the schedd daemon on the local host, and schedd adds the job to
its scheduling queue. Next, the schedd contacts the negotiator daemon to find a
matching execution host for the job. The negotiator uses information maintained
by the collector daemon to find an idle execution host and contact its startd
daemon. The startd spawns an auxiliary process called the starter, and the schedd
on the submitting machine spawns a process called the shadow. The starter and
the shadow communicate to transfer the job input to the execution machine,
start and monitor the job, and transfer the output files to the submitting machine
on job completion. Finally, Condor notifies the user via email.

Once all five jobs completed, we attributed collected events to separate flows,
where each flow represented processing one user job. While following component
interactions did not use Condor-specific knowledge, flow construction required di-
rectives. Without directives, communication diagrams for two consecutive identi-
cal jobs appeared substantially different from each other. By examining detailed
flow graphs, we identified two instances where schedd switched from working on
one job to another without a recv event. After introducing simple directives, the
flows for identical jobs became visually similar.

To quantify the accuracy of flow construction, we reused the core of our
anomaly detection algorithm. We computed the distance metric between cov-
erage profiles for two known-different jobs and the distance between two known-
similar jobs. The distance between different jobs was 4.7 times higher than that
between similar jobs. That is, our algorithm constructed similar flows for similar
activities and substantially different flows for different activities. Another ap-
proach for validating the results of flow construction is to use high-level knowl-
edge about the system. Consider a system for example, where the event of send-
ing a packet from the server to the client always belongs to the same flow as the
earlier incoming request from the client. If the results of the automated algorithm
satisfy this property, we obtain additional assurance that flows are constructed

Diagnosing Distributed Systems with Self-propelled Instrumentation 95

accurately. Such properties can be naturally expressed by our custom directives.
The effectiveness of this technique remains to be seen.

Next, we obtained the profiles for each flow. In this study, profiles were al-
ready classified: the first job corresponded to the normal profile, subsequent
ones corresponded to problem profiles. Therefore, we did not need to perform
the anomaly detection step and directly applied our root cause identification
technique. Namely, we compared the call path coverage profiles for the normal
flow and the anomalous flow with the most similar coverage (corresponding to
the second job). Each profile contained more than 80,000 distinct call paths.

We represented each call path as a string of function addresses, sorted them
lexicographically, and found strings present in one flow but not the other. This
technique identified more than 21,000 differences between the flows; examining
them manually would be infeasible. However, the transformations described in
Section 4.2 were able to reduce the number of differences to 107 paths, a factor of
200 reduction, thus enabling manual path investigation. This result shows that
filtering is essential for analysis of detailed coverage data in distributed systems.

To locate the cause of the problem, we examined the remaining paths in the
order of their first occurrence in the flow. Several early paths corresponded to
normal variations in coverage: processing of the first job in the cluster requires
additional initialization tasks. However, the 15th earliest difference pointed us
to the root cause of the problem. The path (main → read condor file → queue
→ SetTransferFiles → InsertJobExpr → HashTable〈MyString, int〉::lookup) in
condor submit was present in the anomalous flow but not in the normal one.
By examining the source code for SetTransferFiles and InsertJobExpr, we found
that the name of the output file was incorrectly registered in a hash table as a
per-cluster attribute. Per-cluster attributes are shared among all jobs in a cluster
while the output file has to be unique for each job. Changing SetTransferFiles
to treat the output file name as a per-job attribute fixed the problem.

This study also uncovered a limitation of our current prototype. After fixing
the problem, we discovered that the discussed path to HashTable〈MyString, int〉
::lookup was still part of the difference between the first and the second flow. Al-
though this path was no longer taken when constructing the output file attribute,
it was taken for several unrelated attributes that were correctly marked as per-
cluster. Function SetTransferFiles invoked InsertJobExpr from several call sites,
but our prototype did not distinguish these invocations as different paths. Un-
like the path for the output file attribute however, these paths corresponded to
normal variations between flows and must be ignored.

Such variations did not prevent us from finding the cause of this problem.
However, finding the causes of other problems may require analysis of paths
that are distinguished by the call site information. Since our agent already uses
call site instrumentation, augmenting our approach to record the site address
for each function call is straightforward. Our analyses would be able to han-
dle call paths of the form (main → site1 → A → site2 → B) without any
modification.

96 A.V. Mirgorodskiy and B.P. Miller

5.2 Job-Run-Twice Problem

Techniques that allowed us to find the cause of the file-transfer problem also
proved useful for finding another previously-diagnosed problem in the Condor
environment. The shadow daemon contained an intermittent bug that could
cause it to crash after reporting successful job completion. In such cases, the
schedd daemon restarted the shadow and the job was run for the second time.
Re-running the job after reporting its successful completion caused a higher-level
work-flow management component built on top of Condor to abort; reporting
job completion twice also was confusing for the end user.

To model this hard-to-reproduce problem in our test environment, we inserted
a controlled intermittent fault in the Condor source code. If the fault occurs, it
terminates the execution of the shadow daemon after it writes the job completion
entry in the log; if the fault does not occur, the shadow completes successfully.
Similar to the file-transfer problem, we then submitted a cluster of five identical
jobs to Condor, obtained the system-wide trace that began at condor submit,
and separated the trace into flows. One of the flows contained an instance of the
problem and our anomaly detection algorithm was able to identify such a flow
as follows.

Figure 6a shows the suspect scores computed for composite profiles of all
flows without prior reference traces. Flows 1 and 5 have higher scores than the
rest of the flows. Detailed examination of their differences from the common
behavior showed that these differences corresponded to normal variations in
activities performed only for the first and the last job in the cluster. Therefore,
this approach is unable to locate the true anomaly. Coverage profiles performed
similarly to the composite profiles and also could not locate the anomaly.

Unlike the file-transfer scenario however, this problem was intermittent. As a
result, we were able to obtain a set of known-correct traces, where the problem
did not happen, and used them to improve the accuracy of anomaly detection.
Figure 6b shows the suspect scores for all flows computed using such known-
correct traces as a reference. Flows 1 and 5 receive low suspect scores because
similar flows were present in the normal run. In contrast, Flow 3 exhibits an
anomalous behavior; it has not been observed in previous normal executions.
Analysis of coverage profiles showed similar results. By examining Condor job-
completion log records, we confirmed that our automated approach identified
the correct anomaly: Flow 3 corresponded to the job that was run twice.

To identify the root cause of this problem, we analyzed differences in call path
coverage between Flow 3 in the anomalous run and Flow 3 in the known-normal
previous run. The total number of paths present only in the anomalous flow
or only in the normal flow was 964. After applying our filtering techniques, we
reduced the number of paths to inspect to 37, a factor of 26. While substan-
tial, the reduction factor was lower than that in the file-transfer problem since
most differences corresponded to functions with smaller call path subtrees. Our
techniques still enabled us to examine the remaining ones manually.

We ranked all the paths by time of first occurrence. Similar to the file-transfer
problem, several early paths corresponded to normal variations in the workload

Diagnosing Distributed Systems with Self-propelled Instrumentation 97

job1 job2 job3 job4 job5

su
sp

ec
t s

co
re

0.
0

0.
5

1.
0

1.
5

(a) Without reference

job1 job2 job3 job4 job5

su
sp

ec
t s

co
re

0.
00

0.
10

0.
20

0.
30

(b) With normal traces

Fig. 6. Suspect scores for five jobs with and without reference traces

rather than anomalies. However, the 14th path corresponded to an immedi-
ate effect of the fault: schedd ’s function Scheduler::child exit invoked Daemon-
Core::GetExceptionString only in the anomalous flow. By examining the source
code, we determined that child exit calls GetExceptionString when the shadow
crashes or aborts. Next, this function writes a warning record to the schedd log
file and reschedules the job. Due to the large log file, and the large number of
log files from other Condor components, finding this record via manual inspec-
tion of the logs would be difficult. In contrast, our approach presented a small
number of reports to the analyst and significantly simplified locating the failed
component. To find the location of the fault in the shadow, we examined the
last functions the shadow called in the anomalous Flow 3. The call path at the
crash time pointed to the location where we previously inserted the fault thus
correctly identifying the cause of the problem.

To compare our ranking strategies, we also ordered call paths by their length.
This strategy placed the call path to DaemonCore::GetExceptionString in the
first position: this path was the shortest among the differences. Here, ranking by
length was more effective than ranking by time of occurrence. In the file-transfer
problem however, the true cause was ranked 31st by length and 15th by time.
Determining which ranking technique works better in most environments and
designing alternative ranking techniques remains future work.

5.3 Run-Time Overhead

In our previous experiments with real-life applications, the overhead of function-
level instrumentation ranged from 35% for a call-intensive workload to less than
1% for an I/O-bound workload [33, 34, 35]. While some elusive problems may
be masked by any amount of overhead, this limitation exists in all run-time
diagnostic tools. Yet, they are still widely used and effective in many cases.
Furthermore, the overhead of our tool might be lowered by using static structural
analysis to reduce tracing of functions in inner loops. Another alternative is
to combine our distributed propagation infrastructure with hardware branch-
tracing capabilities available in recent Intel R© processors [19]. Whether tracing
every branch in hardware introduces less run-time overhead than tracing every
function call with instrumentation is likely workload-specific. The efficacy of
these optimizations is yet to be studied. Most importantly, the key feature of

98 A.V. Mirgorodskiy and B.P. Miller

our approach is dynamic deployment in distributed environments, introducing
zero overhead in normal execution, where no diagnosis is required.

6 Related Work

Our framework collects event traces, identifies semantic activities in the traces,
such as requests, locates anomalous activities, and attempts to explain the causes
of the anomalies. While several previous diagnostic approaches follow the same
steps, we use substantially different techniques to target unmodified production
environments. Below, we survey related work at each of these steps.

6.1 Techniques for Data Collection

Our approach can collect detailed traces from already-running unmodified dis-
tributed systems and it introduces zero overhead when disabled. AjaxScope di-
agnoses problems in a client’s browser by instrumenting the JavaScript source
passing through a proxy server [22]. This approach works on unmodified systems
but applies only to scripting environments. Within a single host, our technique
is most similar to dynamic binary translation [1,7,12,29,31,36,39]. Triage com-
bines binary translation of PIN [29] with record-replay capabilities [43]. The
novel feature of our approach however, is its ability to cross host boundaries,
propagating from one process into another in a distributed system. This prop-
erty enables system-wide on-demand analysis of individual requests in the field.

Unlike the single-host case, previous techniques for distributed tracing could
not be applied to an already-running system and they typically collect coarse-
grained traces that may be insufficient for accurate diagnosis. Magpie obtains
traces of kernel events using probes already available in Windows and relies on
binary rewriting for application-level tracing. Similarly, SysProf relies on static
Linux kernel instrumentation [2]. Pinpoint and Stardust [42] collect traces of
communication events by modifying middleware and applications.

Some mechanisms can obtain more detailed traces, but they still require sys-
tem modification and restart. Traceback uses offline binary-rewriting to instru-
ment application components [4]. King and Chen obtain system-wide dependence
graphs from applications that communicate via standard UNIX mechanisms [23].
To intercept all communication operations, they run the entire system inside a
virtual machine and modify the virtual machine monitor to capture all system
calls made inside the guest operating system. Whodunit tracks communications
through shared memory by running critical sections of the application in an in-
struction emulator [9]. To intercept message-passing communications, Whodunit
uses send and recv wrappers in all components.

6.2 Techniques for Flow Reconstruction

A trace from a real-world distributed system may contain interleaved events
from several concurrent user requests. To simplify trace analysis, several previous

Diagnosing Distributed Systems with Self-propelled Instrumentation 99

approaches attempted to separate events from different requests into flows [3,5,9,
10,24,26,32,42]. Our approach aims to support many systems with application-
independent rules. These rules are similar to the algorithms of DPM [32] and
Whodunit [9]. In scenarios where such rules are insufficient however, we allow
the analyst to provide additional application-specific directives to analysis. These
directives have the form similar to the event-join schema of Magpie [5]. The key
feature of our flow-reconstruction approach is its ability to combine generic and
application-specific knowledge in a uniform algorithm.

Aguilera et al. studied probabilistic techniques for building causal flows with-
out application-specific knowledge [3]. This approach looks for frequent causal
paths in the system and thus may be used for locating performance bottlenecks.
However, results presented by the authors indicate that this probabilistic ap-
proach generates many false paths for rare requests. As a result, it may not be
accurate for locating the causes of infrequent bugs and performance anomalies.

Another approach for flow construction is to assign a unique identifier to
each request-arrival event and modify the source code of the system to pass
this identifier to other components on inter-component communications. This
technique has been used by Pinpoint [10], Stardust [42], the works of Li [26], and
Krempel [24]. These projects can accurately track the paths of requests through
components. However, they require extensive middleware modifications.

6.3 Techniques for Data Analysis

Our data analyses contain two steps. First, we use an anomaly detection al-
gorithm to find an unusual request. In this step, we use the algorithm of sp-
Tracer [35], extended to operate on distributed rather than per-process flows.
Second, we perform root cause analysis to find why the identified request is un-
usual. Below, we focus on this step, surveying techniques for root cause analysis.

Several projects attempt to diagnose problems by correlating observed events
with failures. Pinpoint looks for components (hosts or software modules) that are
present only in failed requests. Jones et al. apply a similar idea at the program
statement level, identifying statements that are frequently present in failed runs
and absent in passing runs [20]. Dynamic program dicing [11,30] and Triage [43]
compare the dynamic backward slice for a variable with an incorrect value (a
set of program statements or basic blocks affecting the variable) to the slice
for a variable with a correct value, e.g., the same variable in a successful run.
Finally, Cooperative Bug Isolation CBI) samples various predicates during pro-
gram runs (e.g., whether each conditional branch in the code was taken) and
reports predicates correlated with failures to the analyst [27].

We apply a similar approach to function-level coverage data in a distributed
system. Triage and dynamic program dicing have a finer level of detail, but they
work in a single process. Another important feature of our approach is its ability
to substantially reduce the number of differences to examine. In distributed envi-
ronments, slicing-based approaches may also require similar filtering techniques
though it remains to be seen. Similar to CBI and Jones et al., we also rank the
differences so that more likely problem causes are ranked higher. However, our

100 A.V. Mirgorodskiy and B.P. Miller

scheme can order even functions that are perfectly correlated with the failure
rather than assigning the same highest rank to them.

Magpie attempts to locate the cause of the problem from raw traces rather
than trace summaries [6]. It automatically builds a probabilistic state machine
that accepts the collection of traces, processes each anomalous trace with the
machine, and marks events that correspond to state transitions with low proba-
bilities as the causes of anomalies. Pip also operates on raw traces of events and
checks them against a manually-constructed model [38]. These techniques could
also be applied to our function-level traces. In our experience however, function-
level traces in distributed systems are highly variable and the first difference is
often caused by minor variations in workload for different runs. We eliminate
most of such variations by summarizing traces as call path profiles.

Yuan et al. propose a supervised technique for identifying known problems in
failure reports coming from the field [44]. They summarize the system call trace
for a failed run and find an already-diagnosed problem with the most similar
summary. Cohen et al. construct signatures of application performance met-
rics and search the collection of signatures for previously-diagnosed performance
problems [15]. Unlike both approaches, we operate on detailed function-level
traces and thus can perform diagnosis with higher precision. Furthermore, these
techniques target known problems and would be unable to diagnose new failures.

Finally, there are several approaches that attempt to localize the root cause of
a problem via repetitive modification of system parameters. Delta Debugging [46]
and the first stage of Triage look for the minimum change in program input that
cause the incorrect run to complete successfully. Delta Debugging also attempts
to isolate the problem to a minimum set of program variables. Choi and Zeller
diagnose race conditions by finding the minimum change in thread schedules
that would make the problem disappear [14]. Whether these techniques can be
generalized to handle production distributed systems remains to be seen.

Acknowledgments

We wish to thank Naoya Maruyama, Ben Liblit, Somesh Jha, and Miron Livny
for helpful comments and suggestions throughout this work. Discussions with
Jaime Frey and Jim Kupsch helped us in our Condor experiments. This work
is supported in part by Department of Energy Grants DE-FG02-93ER25176
and DE-FG02-01ER25510, and the National Science Foundation. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

References

1. Adams, K., Agesen, O.: A comparison of software and hardware techniques for
x86 virtualization. In: 12th International Conference on Architectural Support for
Programming Languages, ASPLOS (October 2006)

2. Agarwala, S., Schwan, K.: SysProf: Online Distributed Behavior Diagnosis through
Fine-grain System Monitoring. In: 26th International Conference on Distributed
Computing Systems (ICDCS), Lisboa, Portugal (July 2006)

Diagnosing Distributed Systems with Self-propelled Instrumentation 101

3. Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitacharoen, A.: Per-
formance Debugging for Distributed Systems of Black Boxes. In: ACM Symposium
on Operating Systems Principles, Bolton Landing, New York (October 2003)

4. Ayers, A., Schooler, R., Agarwal, A., Metcalf, C., Rhee, J., Witchel, E.: TraceBack:
First-Fault Diagnosis by Reconstruction of Distributed Control Flow. In: Conf. on
Programming Language Design and Implementation, Chicago, IL (June 2005)

5. Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using Magpie for Request Extrac-
tion and Workload Modelling. In: 6th Symposium on Operating Systems Design
and Implementation, San Francisco, CA (December 2004)

6. Barham, P., Isaacs, R., Mortier, R., Narayanan, D.: Magpie: real-time modelling
and performance-aware systems. In: 9th Workshop on Hot Topics in Operating
Systems, Lihue, Hawaii (May 2003)

7. Bruening, D., Duesterwald, E., Amarasinghe, S.: Design and Implementation of
a Dynamic Optimization Framework for Windows. In: 4th ACM Workshop on
Feedback-Directed and Dynamic Optimization, Austin, TX (December 2001)

8. Chanda, A., Elmeleegy, K., Cox, A.L., Zwaenepoel, W.: Causeway: Support For
Controlling And Analyzing The Execution Of Web-Accessible Applications. In: 6th
International Middleware Conference, Grenoble, France (November 2005)

9. Chanda, A., Cox, A.L., Zwaenepoel, W.: Whodunit: Transactional Profiling for
Multi-Tier Applications. In: EuroSys, Lisbon, Portugal (March 2007)

10. Chen, M., Accardi, A., Kiciman, E., Lloyd, J., Patterson, D., Fox, A., Brewer, E.:
Path-based Failure and Evolution Management. In: 1st Symposium on Networked
Systems Design and Implementation, San Francisco, CA (March 2004)

11. Chen, T.Y., Cheung, Y.Y.: Dynamic Program Dicing. In: International Conference
on Software Maintenance, Montreal, Canada (September 1993)

12. Chernoff, A., Hookway, R.: DIGITAL FX!32 Running 32-Bit x86 Applications on
Alpha NT. In: USENIX Windows NT Workshop, Seattle, WA (August 1997)

13. Choi, J.D., Miller, B.P., Netzer, R.H.B.: Techniques for Debugging Parallel Pro-
grams with Flowback Analysis. ACM Transactions on Programming Languages
and Systems 13(4) (1991)

14. Choi, J.D., Zeller, A.: Isolating Failure-Inducing Thread Schedules. In: Interna-
tional Symposium on Software Testing and Analysis, Rome, Italy (July 2002)

15. Cohen, I., Zhang, S., Goldszmidt, M., Symons, J., Kelly, T., Fox, A.: Capturing,
indexing, clustering, and retrieving system history. In: 20th ACM Symposium on
Operating Systems Principles, Brighton, UK (October 2005)

16. Dickinson, W., Leon, D., Podgurski, A.: Finding failures by cluster analysis of exe-
cution profiles. In: 23rd International Conference on Software Engineering, Toronto,
Ontario, Canada (May 2001)

17. Engler, D., Chen, D.Y., Hallem, S., Chou, A., Chelf, B.: Bugs as deviant behavior:
a general approach to inferring errors in systems code. In: 18th ACM Symposium
on Operating Systems Principles (SOSP), Banff, Alberta, Canada (October 2001)

18. Gansner, E., North, S.: An open graph visualization system and its applications to
software engineering. Software: Practice & Experience 30(11) (September 2000)

19. Intel Corp., IntelR© 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, Part 2, Order Number: 253669-022US
(November 2006)

20. Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of test information to assist
fault localization. In: Intl. Conf. on Software Engineering, Orlando, FL (May 2002)

21. Kiciman, E., Fox, A.: Detecting Application-Level Failures in Component-based
Internet Services. In: IEEE Trans. on Neural Networks: Spec. Issue on Adaptive
Learning Systems in Communication Networks (September 2005)

102 A.V. Mirgorodskiy and B.P. Miller

22. Kiciman, E., Livshits, B.: AjaxScope: A Platform for Remotely Monitoring the
Client-Side Behavior of Web 2.0 Applications. In: 21st Symposium on Operating
Systems Principles (SOSP), Stevenson, WA (October 2007)

23. King, S.T., Chen, P.M.: Backtracking Intrusions. In: 19th ACM Symposium on
Operating System Principles, Bolton Landing, NY (October 2003)

24. Krempel, S.: Tracing Connections Between MPI Calls and Resulting PVFS2 Disk
Operations, Bachelor’s Thesis. Ruprecht-Karls-Universität, Heidelberg (2006)

25. Lamport, L.: Time, clocks and the ordering of events in a distributed system.
Commun. of the ACM 21(7) (1978)

26. Li, J.: Monitoring and Characterization of Component-Based Systems with Global
Causality Capture, HP Labs Tech. Report HPL-2003-54 (2003)

27. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable Statistical Bug
Isolation. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, Chicago, IL (June 2005)

28. Litzkow, M., Livny, M., Mutka, M.: Condor–a hunter of idle workstations. In: 8th
Intl. Conf. on Distributed Computing Systems, San Jose, CA (June 1988)

29. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation, Chicago, IL (June 2005)

30. Lyle, J.R., Weiser, M.: Automatic Program Bug Location by Program Slicing. In:
2nd Intl. Conf. on Computers and Applications, Beijing, China (June 1987)

31. Maebe, J., Ronsse, M., De Bosschere, K.: DIOTA: Dynamic Instrumentation, Opti-
mization and Transformation of Applications. In: Workshop on Binary Translation,
Charlottesville, VA (September 2002)

32. Miller, B.P.: DPM: A Measurement System for Distributed Programs. IEEE Trans.
on Computers 37(2) (February 1988)

33. Mirgorodskiy, A.V.: Ph.D. Thesis, University of Wisconsin–Madison (2006)
34. Mirgorodskiy, A.V., Miller, B.P.: Autonomous Analysis of Interactive Systems with

Self-Propelled Instrumentation. In: 12th Multimedia Computing and Networking,
San Jose, CA (January 2005)

35. Mirgorodskiy, A.V., Maruyama, N., Miller, B.P.: Problem Diagnosis in Large-Scale
Computing Environments. In: SC 2006, Tampa, FL (November 2006)

36. Nethercote, N., Seward, J.: Valgrind: A program supervision framework. In: 3rd
Workshop on Runtime Verification, Boulder, CO (July 2003)

37. Reumann, J., Shin, K.G.: Stateful distributed interposition. ACM Transactions on
Computer Systems 22(1), 1–48 (2004)

38. Reynolds, P., Killian, C., Wiener, J.L., Mogul, J.C., Shah, M.A., Vahdat, A.: Pip:
Detecting the Unexpected in Distributed Systems. In: 3rd Symposium on Net-
worked Systems Design and Implementation (NSDI), San Jose, CA (May 2006)

39. Scott, K., Davidson, J.: Strata: a software dynamic translation infrastructure. In:
Workshop on Binary Translation, Barcelona (September 2001)

40. Stevens, W.R.: UNIX Network Programming, 2nd edn., vol. 1. Prentice Hall, En-
glewood Cliffs (1998)

41. Thain, D., Tannenbaum, T., Livny, M.: Distributed Computing in Practice: The
Condor Experience. Concurrency and Computation: Practice and Experience 17(2–
4) (February- March 2005)

42. Thereska, E., Salmon, B., Strunk, J., Wachs, M., Abd-El-Malek, M., Lopez, J.,
Ganger, G.R.: Stardust: Tracking Activity in a Distributed Storage System. In:
International Conf. on Measurement and Modeling of Computer Systems, Saint-
Malo, France (June 2006)

Diagnosing Distributed Systems with Self-propelled Instrumentation 103

43. Tucek, J., Lu, S., Huang, C., Xanthos, S., Zhou, Y.: Triage: Diagnosing Produc-
tion Run Failures at the User’s Site. In: 21st Symposium on Operating Systems
Principles (SOSP), Stevenson, WA (October 2007)

44. Yuan, C., Lao, N., Wen, J.-R., Li, J., Zhang, Z., Wang, Y.-M., Ma, W.-Y.: Auto-
mated Known Problem Diagnosis with Event Traces. In: EuroSys, Leuven, Belgium
(April 2006)

45. Zandy, V.: Force a Process to Load a Library,
http://www.cs.wisc.edu/∼zandy/p/hijack.c

46. Zeller, A.: Isolating Cause-Effect Chains from Computer Programs. In: Intl. Sym-
posium on the Foundations of Software Engineering, Charleston, SC (November
2002)

http://www.cs.wisc.edu/~zandy/p/hijack.c

Multithreading Strategies for Replicated Objects�

Jörg Domaschka1, Thomas Bestfleisch1, Franz J. Hauck1, Hans P. Reiser2,
and Rüdiger Kapitza3

1 Department of Distributed Systems, Ulm University, Germany
{joerg.domaschka,thomas.bestfleisch,franz.hauck}@uni-ulm.de

2 LaSIGE, Faculdade de Ciências da Universidade de Lisboa, Portugal
hans@di.fc.ul.pt

3 Dept. of Comp. Sciences 4, University of Erlangen-Nürnberg, Germany
rrkapitz@cs.fau.de

Abstract. Replicating objects usually requires deterministic behaviour
for maintaining a consistent state. Multithreading is a critical source of
non-determinism, completely unsupported in most fault-tolerant middle-
ware systems. Recent publications have defined deterministic scheduling
algorithms that operate at the middleware level and allow multithreading
for replicated objects. This approach avoids deadlocks, improves perfor-
mance, and makes the development better resemble that of non-replicated
objects. This paper surveys those algorithms and analyses their differ-
ences. It also defines extensions to two efficient multithreading algorithms
to support nested invocations and condition variables with time-bounded
wait operations similar to the Java synchronisation model. In addition,
we provide an experimental evaluation and performance comparison of
the algorithms, indicating the areas in which each algorithm performs
best. We conclude that replication middleware should implement recon-
figurable multithreading strategies, as there is no optimal one-size-fits-all
solution.

1 Motivation

Object replication is an important mechanism for implementing reliable dis-
tributed applications. Many current object middleware systems support replica-
tion. For example, FT-CORBA [1] and Jgroup [2] are architectures for replicating
CORBA and Java RMI objects, respectively.

In many application domains of replication, such as file systems and data
bases, the aim of replication is data-centric. In contrast, the replication of ob-
jects leads to different requirements, as it not only requires consideration of the
state of the objects, but also of their activity. For example, an object method
can actively interact with external services, and concurrently executing methods
might use mechanisms such as semaphores, monitors, and condition variables for

� This work has been supported by the EC through FP6 Integrated Project IST2006-
0033576 (XtreemOS) and project NoE IST-4-026764-NOE (ReSIST), and by the
FCT, through the Multiannual Funding Programme.

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 104–123, 2008.
c© IFIP International Federation for Information Processing 2008

Multithreading Strategies for Replicated Objects 105

coordination. A replication infrastructure should impose as few constraints as
possible on the object implementations. This way, existing non-replicated imple-
mentations can be re-used directly for replication, and the developer can make
use of the programming model he is used to, without paying a lot of attention
to replication-induced restrictions.

Object replication strategies are typically classified as active or passive. In
active replication, all replicas individually execute all requests, and the assump-
tion of deterministic replica behaviour guarantees state consistency. In passive
replication, only a single primary executes method invocations, and then trans-
fers state updates to secondary replicas. At first sight, this strategy eliminates
the need for determinism. However, sending state updates synchronously after
each state modification is expensive. Often, the primary state is only periodi-
cally transferred to secondary replicas, and a message log is used to store client
requests that the primary has executed since the last checkpoint. A secondary
replica has to have the same deterministic behaviour if it wants to obtain a state
identical to that of a failed primary by re-executing requests from such a log.

Multithreaded execution is a source of non-determinism, as multiple threads
might execute at unknown relative speeds and might modify the object state in
an unpredictable order. Non-replicated objects usually use mechanisms such as
locks to coordinate concurrent state modifications. Nevertheless, different repli-
cas of an object can grant locks in a different order, thus causing inconsistencies
between replicas. Most object replication infrastructures avoid this problem by
executing methods strictly sequentially.

In the past few years several authors have proposed solutions that to some ex-
tent enable deterministic multithreading in replicated objects [3,4,5,6]. The main
motivation for multithreading is either to improve the efficiency of replicated
objects, thus reducing the performance difference between replicated and non-
replicated applications, to avoid inherent deadlock problems of single-threaded
executions [7], or to provide a programming model that is as close as possible
to the non-replicated case. This paper builds upon these previous works by en-
hancing some known algorithms and by providing a comparative analysis. The
specific contributions of this paper are as follows:

– It presents a survey of all existing multithreading strategies for replicated
objects known to the authors, clearly stating their differences in objectives,
assumptions, and achieved properties.

– It augments two previously known algorithms with extensions that permit
the use of these algorithms in a broader application spectrum.

– It provides an experimental evaluation and performance comparison of all
algorithms, indicating the areas in which each algorithm performs best, and
demonstrating that a middleware should provide configurability of the mul-
tithreading strategy, as there is no best algorithm for all situations.

This paper is structured as follows. The next section discusses the necessity
of multithreading in replicated objects. Section 3 discusses and compares the
existing algorithms. Section 4 defines extended variants of two algorithms, PDS

106 J. Domaschka et al.

and LSA. Section 5 presents an experimental evaluation based on several use
cases. Finally, Section 6 concludes.

2 Background and Related Work

Many distributed object replication systems, such as OGS [8] and GroupPac [9],
do not support multithreading in replicated objects. Method invocation requests
from clients are executed in a strictly sequential order; a request is processed
only after the preceding request has been completed. This approach avoids any
non-determinism that can arise from thread scheduling, and it provides implicit
synchronization of state modifications, as multiple threads cannot attempt to
modify the state concurrently.

There are, however, several reasons that argue for the use of multithreading
in replicated objects [7]. First of all, multithreading can enhance performance.
On one hand, the computational power of multi-CPU hardware can be uti-
lized better. On the other hand, multithreading allows the system to process
additional method invocations whenever the system becomes idle because the
current thread has to wait, e.g., during external invocations.

Second, a single-threaded execution excludes coordination via condition vari-
ables. For example, a thread might want to interact with an external service
by first issuing an asynchronous external request, and then wait on a condition
variable for the notification by a call-back of the external service.

Third, nested invocations can cause deadlocks in a single-threaded model, if a
thread synchronously calls an external service, which in turn invokes a method
at the originator.

Using multithreading in replicated objects requires that appropriate steps be
taken to remove non-determinism. This means that in spite of concurrent ex-
ecution of threads, the order of conflicting state manipulations must be made
deterministic. The implementation of the replicated object must use some means
to coordinate state modifications that happen concurrently in multiple threads.
The use of explicit locks or monitors is the most popular model, but other mech-
anisms, such as non-blocking or wait-free synchronization, can also be found [10].
In this paper, we assume that multithreaded objects use lock synchronization; if
these objects are replicated, the replication infrastructure must make sure that
locks are granted in a consistent order on all replicas.

Some existing research projects use a modified Java virtual machine to imple-
ment deterministic replication. For example, Napper et al. (based on a modified
Sun JDK 1.2) [11] and Friedman and Kama (based on a modified JikesRVM)
[12] use this approach. Other systems ensure determinism at an even lower sys-
tem level. For example, MARS [13] is strictly time-driven and periodic at the
hardware level, which makes all functional and timing behaviour deterministic.
The features of such a platform can be used for deterministic replication [14].
All these systems can execute multiple threads concurrently. They all require
specifically designed hardware, operating systems, or Java virtual machines to
achieve determinism.

Multithreading Strategies for Replicated Objects 107

In this paper we focus on means to enforce determinism of multithreaded repli-
cated services purely at the middleware level, without requiring special low-level
support in operating system or virtual machine. Several algorithms have been
proposed in this area. On the basis of work by Jiménez-Peris et al. [15], Zhao
et al. [3] propose a strategy to execute a new request during the idle time caused
by a nested invocation of the main thread. Our ADETS-SAT algorithm [6] ex-
tends this approach with support for reentrant locks, condition variables, and
time bounds on wait operations. These strategies allow the execution of a new
thread only if the previous thread suspends. ADETS-MAT [7] is an improved ver-
sion of ADETS-SAT that enables the concurrent execution of multiple threads.
Basile’s Loose Synchronization Algorithm (LSA) [4] supports true multithread-
ing on the basis of a leader-follower model. Basile’s Preemptive Deterministic
Scheduling algorithm (PDS) [5] allows the concurrent execution of a fixed set
of threads in periodic rounds, without requiring communication for consistency.
We compare these algorithms in Section 3.2.

We use our FTflex replication infrastructure on top of the Aspectix middle-
ware [16,17] for evaluating the multithreading strategies. FTflex supports de-
terministic multithreading on the basis of a plug-in interface for configurable
ADETS (Aspectix DEterministic Thread Scheduler) modules.

3 Comparison of Algorithms

In this section, we define a set of criteria that allow a characterization of the
various algorithms. These criteria include the coordination model, the external
interaction model, the deployment, and the multithreading model. On this basis,
we subsequently provide a systematic comparison of algorithms.

3.1 Criteria

Coordination Model. There are numerous different mechanisms for coordi-
nating multiple concurrent threads. We restrict the discussion to locks, monitors,
and Java synchronization, as these are most prevalent in existing systems.

Locks are a basic coordination mechanism that allows protecting the access
to resources, using two operations lock and unlock. Reentrant locks allow one
thread to acquire the same lock multiple times.

Monitors are a synchronization mechanism defined by Hoare that provides im-
plicit locking around monitor procedures. Condition variables within the monitor
allow threads to suspend and temporarily release the lock while waiting for a
condition. Any thread that causes the condition to be true can signal the wait-
ing thread, which in turn atomically regains the lock and resumes. By mapping
a monitor procedure to a pair of lock/unlock operations, any scheduling al-
gorithm for reentrant locks can be used for applications that use monitors for
coordination. However, monitors in addition require support for condition vari-
ables by the scheduling algorithm.

Native Java synchronization uses a concept similar to Hoare monitors. It re-
stricts the model by defining a single implicit condition variable for each monitor

108 J. Domaschka et al.

(instead of an arbitrary number). On the other hand, it supports time-bound
wait operations, which allow a waiting thread to resume after a specific timeout.

Locks and monitors provide sufficient support to protect state modifications
that should be made atomically. Condition variables are useful in situations in
which threads wait for callbacks from external services and for coordinating in
producer/consumer scenarios.

External Interaction Model. In terms of external interaction, we can dis-
tinguish between scheduling strategies that support none (NO), and strategies
that support nested invocations (NI) and callbacks (CB). A nested invocation
is an invocation of a function of a service B, issued by a service A during the
execution of a client request. A callback is an invocation of a function of service
A triggered by the nested invocation from A to a service B.

If a scheduling algorithm is deadlock-free for arbitrary nested invocations,
it will also be deadlock-free for callbacks, which are a special kind of nested
invocation. On the other hand, a scheduling algorithm can use thread IDs to
detect that an incoming nested invocation belongs to an existing local (blocked)
thread and thus identify it as a callback. Algorithms on this basis can supports
deadlock-free callbacks, but are not necessarily deadlock-free for other nested
invocations.

Deployment. Implementations of objects typically use either language-internal
coordination mechanisms (such as in the case of Java) or invocations of synchro-
nization methods of an external library (such as the pthread library for C++
objects). If such object implementations are deployed in a multithreading replica-
tion infrastructure, the synchronization methods have to be adjusted to interact
with the replication infrastructure.

The simplest way is to provide no support at all, forcing developers to modify
the implementation accordingly to interact with the replication infrastructure.
A better alternative is an automated approach. Either, code transformation can
be applied to alter the replica code automatically (as proposed for ADETS-SAT
[6]). Or, low-level interception can redirect external library calls to the replication
infrastructure (as used in Eternal [18]).

The deployment strategy could be considered as a concern orthogonal to de-
terministic scheduling. However, in ongoing work [19] we demonstrate that code
analysis and transformation allows improving concurrency on the basis of pre-
diction of future synchronization steps.

Multithreading Models. We classify the multithreading support of middle-
ware infrastructures into four categories: single thread (S), single logical thread
(SL), single active thread (SA), and multiple active threads (MA).

The S model is the simplest variant, in which the middleware starts executing
a request Ri+1 only after request Ri has fully completed its execution.

In the SL model, a single logical thread of execution exists. In a chain of
nested invocations, the logical thread may call methods of the same object mul-
tiple times. For example, if a thread that executes mA1 at object A starts a
chain of nested invocations that ultimately calls method mA2 at object A, the

Multithreading Strategies for Replicated Objects 109

object A can detect that the invocation mA2 belongs to the same logical thread
as mA1. Thus, object A can execute mA2 using an additional physical thread.
In a sequential execution model without the logical thread abstraction, nested
invocations finally targeting the same object would cause a deadlock.

In the SA model, multiple independent physical threads can exist within a
replica. Only one of them may be active at a time, while all other threads are
blocked (e.g., waiting for a lock or for the return from a nested invocation). Con-
sistency is obtained by a deterministic selection of the active thread. A running
active thread is not preempted; if the active thread blocks or terminates, a deter-
ministic strategy is required to resume one of the existing threads or to create a
new active thread for handling the next request. If the strategy guarantees that
the same choice is made in all replicas, consistency will be maintained.

The SA model does not require the identification of logical threads. However,
such identification is mandatory if a system wants to support reentrant locks. For
example, a method mA2, called by mA1, might want to acquire a lock already held
by mA1. We denote a SA model with appropriate logical thread identification as
SA+L.

In MA, multiple threads may exist and run in parallel. Multiple threads may
either be simultaneously active in a multi-CPU or multi-core CPU setting, or
a low-level thread scheduler may execute them on a single CPU with preemp-
tion. To maintain consistency in true multithreading, all access to shared data
structure needs to be made in a consistent order. The number of threads may
be restricted by an algorithm.

3.2 Algorithms

This section discusses several different algorithms. Table 1 summarizes their
different properties and models compared to a pure sequential execution.

SL in Eternal. The Eternal middleware was the first system to support the
SL model [18] An infrastructure can support this model by tagging nested invo-
cations with context information that identifies the originating logical thread.

SA and ADETS-SAT. Applying the approach of Jiménez-Peris et al. [15] to
a CORBA middleware, Zhao et al. [3] implemented an algorithm for the SA

Table 1. Overview of multithreading algorithms and their properties

Coordination Deadl.-Free Interaction Deployment Multithreading
SEQ implicit NO – S

Eternal implicit CB interception SL
SAT Locks NI+CB interception SA

ADETS-SAT Java NI+CB transformation SA+L
ADETS-MAT Java NI+CB transformation MA

LSA Locks/Monitor NI+CB manual MA
PDS Locks NO manual MA (restr.)

110 J. Domaschka et al.

model in Eternal. ADETS-SAT [6] is an extension of this algorithm that also
offers support for reentrant locks and for Java condition variables. The algorithm
ensures that threads calling wait() are enqueued in a deterministic manner and
dequeued deterministically at a notify().

ADETS-MAT. The ADETS-MAT algorithm [7] works similar to ADETS-
SAT, but instead of using only a single active thread, it allows additional con-
currency. Beside a primary thread that works similar to the active thread in
ADETS-SAT, multiple secondary threads are executed concurrently as long as
they do not request additional mutex locks. ADETS-MAT requires no communi-
cation for granting locks, threads can be created at any time by client requests,
and no restrictions are made on the number and frequency in which a thread
requests locks. Concurrency is constrained by the fact that only the primary
thread can acquire locks. It fully supports the native synchronization model of
the Java programming language. One of the main objectives of the algorithm is
to use the idle time during nested invocations.

LSA. In LSA [4], a single replica works as primary node. This node can exe-
cute an arbitrary number of threads without restrictions, and records the order
in which locks are granted to threads as a sequence of (lock, thread) pairs. It
broadcasts this data structure to all other replicas periodically. All follower nodes
suspend threads that request a lock until the corresponding broadcast is received.
While the basic operation of LSA is very simple, it requires a strategy to handle
the failure of the primary node. Basile et al. define such a fail-over algorithm for
crash failures as well as for Byzantine failures. Failure handling requires addi-
tional communication between replicas to maintain consistent scheduling. This
is a significant difference to other algorithms that do not need any additional
computation or communication to handle node failures.

PDS. Basile et al. have defined two variants of the PDS algorithm, PDS-1 and
PDS-2 [5]. Both algorithms work in sequential rounds. In PDS-1, each thread can
acquire at most one mutex per round. A thread is suspended when it requests a
mutex; as soon as all threads are suspended, a new round is started. As the mutex
requests of all threads are known at the beginning of the round, the mutexes can
be assigned deterministically to all threads. If multiple threads request the same
lock, they get the lock in increasing thread ID order. For example, if two threads
T1 and T2 have both requested a mutex m, T1 may execute and T2 remains
suspended. As soon as T1 unlocks m, T2 may execute concurrently with T1. If
T1 suspends in the current round without unlocking m, T2 remains suspended.

The PDS-2 variant improves concurrency by allowing threads to acquire up to
two locks per round. A round is divided into two phases. Initially, a round starts
execution in phase-1 in the same way as PDS-1, granting mutexes according to
requests made before the start of the round. If a thread requests a new mutex
during phase-1, it is not immediately suspended (as it would be in PDS-1).
Instead, this second mutex is granted under the condition that it is available
and all threads with lower thread IDs have already acquired such a phase-1
mutex. After the second mutex acquisition, the thread enters phase-2, in which

Multithreading Strategies for Replicated Objects 111

a mutex request suspends a thread as in PDS-1. A new round is started as soon
as all threads are suspended.

In both PDS algorithms, the number of threads is constant during the exe-
cution of a round. New threads may be created or removed only at the start of
a new round. Even then, a deterministic rule for changing the set of threads is
necessary. The state of the incoming message queue cannot be used for deciding
an adjustment of the thread pool size, as the group communication system only
ensures a consistent order of message reception, but no consistent time (i.e., some
replica might already have received a message m, while other replicas have not).
The PDS algorithms work best if all threads repeatedly execute lock requests
followed by computations of approximately identical computation times. It re-
quires no communication for deterministically assigning mutex locks to threads.
The algorithm has two main disadvantages. First, as long as one single thread
fails to request a mutex lock, no new round can be started. Second, the number
of threads must be known deterministically at the start of each round. Incoming
requests have to be mapped to a fixed-size thread pool. This means that in each
round, new requests have to be assigned to threads that have finished executing
their previous requests. If no new requests are available, the system cannot start
a new round (as the idling thread will not acquire a lock). The only way to solve
this problem is to deterministically create artificial requests in case that client
requests do not arrive sufficiently frequently.

4 Extending LSA and PDS

In this section, we define extended versions of the LSA and PDS algorithms.
Their primary goal is to support a system model that includes the following fea-
tures: reentrant locks, nested invocations, condition variables, and time-bounded
wait operations. The ADETS-SAT and ADETS-MAT algorithms already sup-
port all of these features. The semantics for condition variables is based upon
the native Java programming language. In addition, we extend LSA to support
an arbitrary number of mutexes without prior registration at the scheduler.

Reentrant locks can be implemented on the basis of any deterministic schedul-
ing algorithm that supports just simple locks. A reentrant mutex is one that can
be acquired multiple times by one thread. The transformation requires a data
structure that, for each thread, stores the number of times a lock has been ac-
quired. Only on the transitions from 0 to 1 (upon lock) and 1 to 0 (upon unlock),
the lock/unlock functions of the base algorithms are called.

4.1 Extending LSA to ADETS-LSA

Nested invocations do not require any dedicated support in the implementation
of the LSA algorithm. Nested invocations do not influence the order of mutex
assignments. In LSA, a thread waiting for a nested invocation reply does not
have any influence on the progress of other threads.

Condition variables without time bounds cause no problems in LSA. A wait()
operation can be called locally at all replicas. Invocations of wait() and

112 J. Domaschka et al.

notify()/notifyAll() on the same condition variable have to be done in the
same relative order. A deterministic order of such concurrent operations is easily
obtained in all replicas by the LSA algorithm, as all operations on a condition
variable are protected by the acquisition of the corresponding mutex. The ba-
sic LSA algorithm guarantees a deterministic order of these mutex acquisitions.
Hence, the order of operations on the condition variable will be deterministic as
well.

Time bounds on wait operations represent a more difficult source of non-
determinism. For example, two threads T1 and T2 might be waiting on a condition
variable, with thread T1 having specified a time bound. A third thread, T3, might
call a notify() operation. The timeout of T1 and the notification of T3 happen
concurrently; thus, the order in which the two happen is non-deterministic. Two
possible execution sequences are (a) that the timeout happens first, with the
effect that T1 is resumed by the timeout and, after that, T2 is resumed by T3’s
notify operation, and (b) that T3’s notification happens first, which cancels the
timeout and resumes only T1.

Handling such timeouts deterministically requires a non-trivial extension to
LSA. In the solution that we provide in the ADETS-LSA algorithm, a local
timeout of a wait operation does not resume the waiting thread directly. Instead,
it creates a new thread, which is also subject to the ADETS-LSA scheduling.
The thread tries to resume the waiting thread by locking the corresponding
mutex and signalling the wait() operation to resume. Thus the basic scheduling
algorithm guarantees that, due to the lock, the signalling is done in a consistent
order on all replicas.

A sample execution of this extension is shown in Figure 1. Thread T1 calls
wait() with a timeout of 20ms. This call causes the LSA scheduler to create a
timeout thread (TO-Thread), which sleeps for 20ms and then tries to resume the
wait. Concurrently, thread T2 tries to call notify(). Both T2 and TO-Thread

T1 T2 LSA

Leader

lock

wait(20) unlock

sendMT
recvMT

recvMT

recvMT

sendMT

sendMT

sleep 20
lock

lock

notify
unlock

lock
unlock

no
effect

T1 T2 LSA

Follower

lock

wait(20) unlock

sleep 20lock

lock

notify

unlock
lock

unlock
no
effect

TO-Thread
TO-Thread

Fig. 1. Sample execution of timeout handling in ADETS-LSA

Multithreading Strategies for Replicated Objects 113

need to lock the same mutex. On the leader node, T2 is faster, causing the
notify() operation of T2 to resume T1, and the timeout thread has no effect.
On the follower node, the timeout thread requests the lock first, but the LSA
scheduler ensures that the lock is first assigned to T2, resulting in a deterministic
behaviour.

The original LSA algorithm assumes that globally known IDs for mutexes
and for threads exist. Basile et al. describe a method for dynamically adding
new mutexes and new threads by explicitly notifying the scheduler. Adding new
threads is feasible in practice if the middleware infrastructure controls the cre-
ation of threads, as it can notify the scheduler. Mutexes, however, are not created
explicitly. In Java, every object can be used as a mutex, and there are no glob-
ally consistent IDs for these objects. In ADETS-LSA, the leader replica assigns
new mutex IDs automatically on the first lock operation on a not yet known
mutex. Follower replicas instead suspend a thread upon a lock operation with
an unknown ID. On all replicas, the lock operation can uniquely be identified
by the thread ID, as the same thread will lock the corresponding mutex on all
replicas. The leader sends its mutex ID with its periodic mutex table broadcast,
which enables the follower replicas to learn the new mutex ID.

4.2 Extending PDS to ADETS-PDS

The PDS algorithm first raises the question of assigning requests to threads.
The algorithm assumes that a thread pool of a fixed size is given. It does not
allow the asynchronous creation of new threads for each incoming client request.
The original publication simply assumes that sufficiently many requests arrive,
so that all threads can continuously execute, without specifying a strategy for
assigning requests to threads. In a practical middleware infrastructure, however,
such a strategy needs to be implemented. The assignment of requests to threads
must be made consistently in all replicas. We suggest two possible strategies:

– A round-robin strategy assigns incoming requests to all threads such that,
given a thread-pool size of N , the i-th incoming request is assigned to thread
i mod N . This strategy works fine if requests have identical computation
times.

– In a synchronized request assignment strategy, a thread that has just finished
processing of its last request locks the mutex of the incoming message queue.
This mutex lock is granted consistently in all replicas, because this operation
is also under the control of the PDS, and thus each request is assigned to the
same thread in all replicas. Our current implementation uses this strategy.

Nested invocations have no impact on the order of lock assignments and thus
are uncritical for consistency, but they can have a serious impact on performance.
We propose two different strategies:

– First, nested invocations can be used simply without any support by the
scheduling algorithm. In this case, however, a thread that waits for a nested
invocation can block all other threads from starting a new round. This ap-
proach seems favourable if the duration of the nested invocation is short

114 J. Domaschka et al.

compared to the execution time between two mutex locks. This approach is
used in the following experimental evaluation.

– Alternatively, the scheduler can consider a thread that has issued a nested
invocation to be suspended. This enables all other threads to continue ex-
ecuting rounds, but requires a deterministic strategy to resume the thread.
For example, if the reply message is processed within some round, the sus-
pended thread can be scheduled for being resumed in the next round. This
approach adds an additional delay to each nested invocation; thus, it is not
useful with nested invocations that have short duration, like it is the case in
our evaluation.

From a consistency point of view, condition variables can be supported in
the PDS algorithm without much effort. All operations on condition variables
are protected by mutex locks, and thus the relative order of these operations is
deterministic on all replicas. The only requirement is that a notify() operation
selects the thread to resume deterministically. This determinism is not guar-
anteed by the native Java notification mechanisms. By implementing a queue
of waiting threads that is modified deterministically by each wait() operation,
such determinism can easily be achieved though.

The integration into the round execution model is done in the following man-
ner. Once a thread t calls wait() in some round, it is considered suspended. After
a new round has been triggered, t is removed from the set of active threads. Con-
sequently, the scheduling decisions in the subsequent rounds are done without
t. When another thread calls notify() during some round, thread t is resumed
immediately, but has first to aqcuire the corresponding lock. This lets thread t
wait until the start of the next round.

Figure 2 shows a sample execution of two replicas A and B. On replica A the
wait() operation of thread t1 happens before the second mutex acquisition of

T1 T2 PDS

Replica A

lock(m)

lock(x)

lock(y) new round

wait(m)

round n+X

round n

...

unlock(m)

lock(m)

notify(m)

unlock(m)

new round

lock(x)
resume
lock(m)

round n+X+1

T1 T2 PDS

Replica B

lock(m) lock(x)

lock(y)

new round

wait(m)

round n+X

round n

unlock(m)

lock(m)

notify(m)

unlock(m)

new round

lock(x)

resume
lock(m)

round n+X+1
...

Fig. 2. Handling of condition variables in ADETS-PDS

Multithreading Strategies for Replicated Objects 115

t2. Thus, the new round is triggered because of t2. On replica B the opposite
happens. The new round is triggered because of the wait() operation.

Having a thread pool of fixed size, however, the use of condition variables can
cause deadlocks. If all available threads suspend in wait() operations, no more
threads are available for handling requests that could resume a waiting thread.
To avoid this problem, we implement a strategy for an automated adjustment of
the thread-pool size. The original PDS algorithm supports changing the set of
threads at the start of a new round. In a deadlock situation, the conditions for the
start of a new round (i.e., all threads are blocked) are met. Thus, at the start of
each round, the number of threads not blocked in a wait() operation is compared
to a minimum threshold. If the number falls below the threshold, additional
threads are added to the thread pool. On the other hand, if there are more non-
waiting threads than the threshold and there are insufficient incoming requests
(i.e., the request assignment strategy has to suspend a thread temporarily due
to the lack of requests), the number of non-waiting threads is reduced to the
minimum threshold.

Timeouts of time-bounded wait operations potentially occur concurrently with
explicit notifications, and thus an extended algorithm has to make sure that any
such non-determinism is avoided. We propose the same concept that is also
used for ADETS-SAT and ADETS-MAT. After a timeout occurs, a timeout
message is sent to all replicas via group communication. This message is handled
by a normal request-handler thread, which notifies the waiting thread. As all
notifications are synchronized by mutexes, a deterministic order is guaranteed.

5 Experimental Evaluation

This section presents an experimental evaluation of the scheduling strategies
discussed in the previous sections. A set of benchmarks capture typical interac-
tion patterns of distributed applications. Each of them is executed with purely
sequential scheduling and with all four multithreaded ADETS variants.

5.1 Implementation Overview

All presented strategies have been implemented on the basis of our FTflex repli-
cation infrastructure [17], which extends the CORBA-based Aspectix middle-
ware [16,17]. FTflex supports multithreading in object replicas using its con-
figurable ADETS (Aspectix DEterministic Thread Scheduler) module. Each
scheduling algorithm is implemented as a separate ADETS plug-in module.

Integrating the scheduling module in the middleware is relatively light-weight.
We added it in between the group communication module, which delivers the
requests, and the object adapter whose task is to enforce at-most-once semantics
and to trigger dispatching and parameter unmarshalling. Thus, the scheduler in-
stances are completely independent of the object implementation. We use code
transformation to intercept calls of synchronisation-related operation in the ob-
ject implementation [6].

116 J. Domaschka et al.

At runtime, the group communication module receives a new request and
passes it on to the scheduler instance. There, a thread that executes the request is
created eventually; the creation happens according to the strategy implemented
by the scheduler. As soon as the thread is running, the scheduler invokes the
object adapter. If the execution of the requested method issues a lock/unlock
operation or an operation on a condition variable, these calls are forwarded to
the scheduler, which in turn handles these operations. The scheduler itself uses
the group communication module to broadcast messages to the other replicas.
Such broadcasts might be timeout messages after a time-bounded operation or
update messages from the primary in case of the LSA scheduling strategy.

5.2 Benchmark Overview

The benchmarks cover three different scenarios: evaluation of local computa-
tions with lock-protected shared state, local computation together with nested
invocations, and usage of condition variables. A final discussion analyses overall
advantages and disadvantages.

All measurements presented in this section were made on a set of PCs with a
AMD Athlon 2.0 GHz CPU and 1 GB RAM. The PCs were using Linux kernel
2.6.17 and were connected by a 100 MBit/s switched Ethernet. The current pro-
totype of the Aspectix middleware was used on the basis of Sun’s Java runtime
environment version 1.5.0 03.

In each benchmark, active replicas of an object were placed on three nodes,
and all clients on separate nodes are started simultaneously in each experiment.
All measurements show the invocation times measured at the client side, aver-
aged over at least 5,000 invocations; to minimize the effects of JIT compilation,
the first 200 invocations of each client are not included in the average. In all
benchmarks the size of the thread-pool in PDS was equal to the number of
clients.

5.3 Local Computations

The first group of benchmarks assumes that the behaviour of object methods is
limited to (a) performing local computations and (b) requesting and releasing
mutex locks. In such a scenario, the only problem of a single-threaded execution
is the lack of parallel execution, which primarily is a disadvantage on multi-CPU
machines. In the benchmarks, a variable number of clients invoke object methods
that have one of the behaviours shown in Figure 3. The measurements for the
invocations were made on the client-side.

(a) compute
(b) compute − lock − state access − unlock
(c) lock − state access and compute − unlock
(d) lock − state access − unlock − compute

Fig. 3. Variants of the local computations benchmark

Multithreading Strategies for Replicated Objects 117

The pattern (a) does not access the shared object state and thus does not
need any mutex access. The pattern (b) first computes and then locks a mutex,
updates the object state, and unlocks the mutex again. This is a typical pattern
for applications that first perform computations on the request arguments such
as verifying digital signatures and preprocessing the client data, and then use this
data to update the object state, using a mutex lock to synchronize the update.
Pattern (c) is typical for applications that require simultaneous access to client
arguments and object state for performing some calculations. The whole request
execution is protected by a mutex lock. Pattern (d) can mainly be found in
practice for methods that read the shared state and then perform computations
(e.g., transformations of state data) to produce the return value for the client.

For the following measurements, it is assumed that the local computations
take 100 ms. The availability of an unlimited number of CPUs on a single-
CPU hardware is simulated by suspending the request-handler thread for the
duration of the computation time instead of performing real computations, thus
freeing the CPU for other threads. Furthermore, it is assumed that the methods
of the replicated object use fine-grained locking. If all methods used the same
mutex lock, this would result in a sequential execution. Instead, the benchmarks
assume that 10 different mutexes are available, with each client invocation using a
randomly selected mutex. The actual state access is assumed to take a negligible
amount of time. Figure 4 shows the result of the benchmarks executed with three
replicas and a variable number of clients.

With pattern (a), SAT executes all requests sequentially, while all other vari-
ants allow a fully concurrent execution. MAT and LSA perform best, as they
can execute all requests immediately in the absence of any synchronization. PDS
shows a slight overhead, because it requires internal synchronization (i.e., mutex
locks for the incoming message queue) for assigning requests to threads.

Pattern (b) results in similar results. While SAT processes all requests se-
quentially, all other variants enable a concurrent execution of the computations.
MAT is the superior variant, as LSA requires communication for the mutex locks,
while PDS uses additional mutex locks for assigning requests to threads.

Pattern (c) produces different results. As all requests start with a lock opera-
tion and do not define internal scheduling points, the MAT algorithm delays all
requests until they become primary and as a result serializes all requests, which
leads to the same poor performance as the SAT algorithm. LSA and PDS both
enable concurrency and show similar behaviour. With an increasing number of
clients, the probability that two requests require the same mutex increases. Such
a collision delays the start of a new round for the PDS algorithm; thus, with
many clients, the LSA algorithm is superior.

Pattern (d) is similar to (c); the only difference is that mutex locks are released
before the computation. The PDS algorithm benefits from this behaviour, as a
collision between two request delays a new round only for the short duration of
the state access, and not for the duration of the computation. As a result, PDS
is the most efficient algorithm for this pattern, while LSA is slightly slower, and
both SAT and MAT achieve no concurrent execution.

118 J. Domaschka et al.

1 2 3 4 5 6 7 8 9 10
number of clients

0

100

200

300

400

500

600

700

800

900

1000

tim
e/

in
vo

ca
tio

n
(m

s)

SAT

SAT

others

PDS
LSA
MAT

(a) compute

1 2 3 4 5 6 7 8 9 10
number of clients

0

100

200

300

400

500

600

700

800

900

1000

tim
e/

in
vo

ca
tio

n
(m

s)

SAT

SAT

PDS

PDS

LSA

LSA

MAT

MAT

(b) compute-lock-unlock

1 2 3 4 5 6 7 8 9 10
number of clients

0

100

200

300

400

500

600

700

800

900

1000

tim
e/

in
vo

ca
tio

n
(m

s)

SAT

SAT & MAT

PDS

PDS

LSA

LSA

MAT

(c) lock-compute-unlock

1 2 3 4 5 6 7 8 9 10
number of clients

0

100

200

300

400

500

600

700

800

900

1000

tim
e/

in
vo

ca
tio

n
(m

s)

SAT

SAT & MAT

PDS

PDS

LSA

LSA

MAT

(d) lock-unlock-compute

Fig. 4. Measurements with local computations and mutex locks

The different benchmark patterns demonstrate that for each algorithm there
are situations in which it performs well, and others in which it does not. Most
important, the MAT algorithm is the most efficient one in the situations (a) and
(b), while it fails to provide any advantage compared to SAT in the situations
(c) and (d). The latter two situations represent worst-case scenarios for MAT.
The poor performance of MAT can be alleviated by the introduction of yield
operations, which enable a selection of a new primary thread without reaching
an implicit scheduling point. Another approach for optimizing MAT is the use
of source-code analysis to predict synchronization behaviour [19].

5.4 Nested Invocations

The second set of benchmarks adds nested invocations to the patterns. As
explained in Section 2, nested invocations can result in deadlocks and reduce
performance by causing idle time in a single-threaded execution model. Hence,
application patterns with nested invocations are an important scenario even on
a single-CPU machine.

In the first scenario, two replica groups A and B are created with each con-
sisting of 3 replicas. A varying number of clients call a method at group A, which
in turn calls a method at group B. Internally, both requests and the reply from
group B to group A are delivered via group communication.

Multithreading Strategies for Replicated Objects 119

1 2 3 4 5 6 7 8 9 10
number of clients

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

tim
e/

in
vo

ca
tio

n
(m

s)

SEQ (2ms)

SEQ (2ms)

SAT (2ms)

SAT (2ms)

SEQ

SEQ

SAT

SAT

(a) nested invocations only

NCS CNS NSC CSN SCN SNC
Interaction Patterns

0

500

1000

1500

2000

2500

tim
e/

in
vo

ca
tio

n
(m

s)

SEQ
SAT
PDS
LSA
MAT

(b) nested invocations, local computa-
tions, and mutex locks

Fig. 5. Measurements with nested invocations

Figure 5(a) shows the average invocation time measured by the clients, us-
ing (i) a strictly sequential execution and (ii) the ADETS-SAT algorithm1. The
solid lines (diamond and triangle symbols) refer to measurements in which the
nested invocation returns immediately. Even in this situation, multithreading
with ADETS-SAT is increasingly better with a rising number of clients. In a
second measurement (dashed lines with circles and squares), the method called
at B suspends for 2ms before it returns. In this case, the benefit from our multi-
threaded approach (which allows to accept new requests at A while the invoca-
tion to B is in progress) is enormous compared to a single-threaded execution.

A comparison of all ADETS scheduling algorithms is provided on the basis
of a set of more complex benchmarks. In each benchmark, the replicas execute
the following operations: a nested invocation (100 . . .150ms, denoted as N), a
local computation (75 . . . 125ms, denoted as C), and a synchronized state update
(lock und unlock operation, denoted as S).

The duration of nested invocations and local computations was simulated to
have a uniform random distribution on the given interval. The three elements
can be combined in six permutations (NCS, NSC, CNS, CSN, SNC, SCN). Fig-
ure 5(b) shows the result of the benchmarks with above parameters, run with
ten clients.

The ADETS-SAT performs better than the single-threaded execution, be-
cause the idle time of a nested invocation is utilized. Local computations cannot
be performed in parallel, however. Thus, the ADETS-SAT performs worse than
the other algorithms. The performance of the ADETS-MAT algorithm heav-
ily depends on the interaction patterns. In some situations (NCS, CSN), the
algorithm performs best of all. In others (NSC, SCN) it offers no significant
advantage compared to the ADETS-SAT algorithm. The problematic pattern is
a state update (S) followed by a computation (C). The ADETS-PDS performs

1 No other algorithms have been evaluated in this nested-invocation-only benchmark.
As there are no lock operations, ADETS-MAT and ADETS-LSA would result in sim-
ilar performance as ADETS-SAT. On the other hand, ADETS-PDS, which assumes
that each thread acquires a lock in each round, would not work appropriately.

120 J. Domaschka et al.

well in all interaction patterns and performs even better than ADETS-LSA. The
performance of neither of them significantly depends on on the pattern.

5.5 Condition Variables

Condition variables are an important mechanism that enables a request to wait
for another request. To examine the performance of the algorithms in combina-
tion with condition variables, we evaluated two scenarios, an unbounded buffer
scenario and a bounded buffer scenario.

A replicated object that implements the unbounded buffer provides two meth-
ods, consume() and produce(). The consume() method returns an available
data item on a condition variable if no item is available. The produce() method
makes an item available, and notifies another request-handling thread that waits
on the condition variable, if such a thread exists. Without support for condition
variables, the consume method needs to be implemented differently; for the eval-
uation we use periodic polling for consume() with pure sequential scheduling.

Figure 6(a) shows the result of this experiment, using a single producer client
and up to ten consumer clients. With an increasing number of consumers, the
single-threaded execution shows an increasing disadvantage. This behaviour is to
be expected due to the periodic polling: the number of unsuccessful iterations of
consume() calls increases with a rising number of consumers competing for the
producer. The other strategies, however, scale linearly because a thread is only
notified if an item in the buffer exists. The ADETS-SAT performs minimally
better than ADETS-MAT and ADETS-PDS. The ADETS-LSA, however, has a
notable overhead due to the leader-follower communication.

The second benchmark for evaluating the scheduler behaviour in combination
with condition variables implements a bounded buffer. In this experiment, both
produce() and consume() block if the buffer is full or empty, respectively. Two
condition variables are used: the first one is used to resume a blocked produce()
call by a consume() call; the second one is used in the reverse direction. Figure
6(b) shows the result of the experiment, in which the same number of producers

1 2 3 4 5 6 7 8 9 10
number of consumers

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

tim
e/

in
vo

ca
tio

n
(m

s) LSA

MAT

SEQ

SAT

SAT

PDS

PDS

LSA
MAT
SEQ

(a) unbounded buffer

1 2 3 4 5
number of consumers

0

10

20

30

40

tim
e/

in
vo

ca
tio

n
(m

s)

SAT

SAT

PDS
PDSLSA

LSA

MAT

MAT

SEQ
SEQ

(b) bounded buffer

Fig. 6. Measurements with condition variables

Multithreading Strategies for Replicated Objects 121

and consumers, each ranging from 1–5, have been used. The size of the buffer
was set to 2. The graph shows the average time per consumer invocation; exactly
the same average time was obtained for producer invocations.

Both experiments show that ADETS-SAT and ADETS-MAT are superior to
all other execution strategies. ADETS-PDS and ADETS-LSA, on the other hand,
show poor performance. In the experiment with the bounded buffer, they perform
even worse than the sequential polling-based approach. With the ADETS-LSA
algorithm, this is due to the additional communication caused by the schedul-
ing algorithm. With ADETS-PDS, threads that resume from a wait operation
need to be delayed until the next internal round starts; this delay increases the
invocation times.

5.6 Overall Performance Comparison

Concluding, we state that the ADETS-SAT algorithm always performs better
than the single-threaded execution. On the other hand, the main disadvantage
is that it does not support true multithreading. As a result, when using multiple
CPUs it yields significantly less performance than to the other strategies.

The ADETS-MAT algorithm in contrast supports true multithreading in typ-
ical usage patterns, such as preprocessing some data and then modifying the
local state, but it does not perform well if calculations require a locked mutex,
because different mutexes cannot be locked concurrently by different threads.

The ADETS-LSA strategy works well independent of a certain pattern. The
leader-follower communication, however, is one disadvantage of the ADETS-
LSA. Obviously, this issue is even more important when using the LSA in a
WAN environment. Due to the communication, the ADETS-LSA also showed
a noticeable overhead in scenarios with condition variables. A second disadvan-
tage is the reconfiguration process that is necessary after the failure of the leader.
This failure must first be detected, which leads to a delay until the reconfigura-
tion process can be started. Furthermore, this reconfiguration defeats essential
advantages of active replication, as it is typically used if minimal downtime after
failures is required.

The ADETS-PDS has a good overall performance when all threads execute
the same pattern concurrently. But it does not perform well in other scenarios
when different patterns are executed, because the round execution model can
cause high delays. Also, in conjunction with condition variables the PDS may
perform worse than ADETS-SAT and ADETS-MAT.

6 Conclusions

In this paper, we have revisited the problem of multithreaded execution of meth-
ods at replicated objects. In active replication, multithreading is a potential
source of non-determinism that has to be made deterministic by an adequate
thread-scheduling strategy. Similar consistency problems can arise in passive
replication if the re-execution of methods after a primary failure is inconsistent

122 J. Domaschka et al.

to the first execution of the primary before its failure. In our CORBA-based
FTflex infrastructure for object replication, we have implemented four different
strategies: ADETS-MAT, ADETS-SAT, ADETS-LSA, and ADETS-PDS.

The first contribution of this paper are the ADETS-LSA and ADETS-PDS
algorithms, an extension of Basile’s LSA and PDS algorithms. Our variants
add support for the native Java synchronization model. Beside reentrant locks,
the most important extensions are the support for condition variables and the
deterministic handling of time bounds on wait operations. PDS was also extended
to support nested invocations.

The second contribution is a comparison of the available thread-scheduling
strategies. In a set of experiments, we have analysed the respective benefits
of each algorithm. We show that the performance of an algorithm is highly
dependent on the interaction patterns. No algorithm is clearly superior to all
others. Our evaluation provides information about which algorithm works bet-
ter in which application scenarios. We conclude that replication infrastructures
should support variability of its thread-scheduling strategy. In all cases, however,
a multithreaded strategy is superior to single-threaded request execution.

References

1. OMG: Common object request broker architecture: Core specification, version
3.0.3. Object Management Group (OMG) document formal/2004-03-12 (2004)

2. Montresor, A.: The Jgroup distributed object model. In: Proceedings of the IFIP
WG 6.1 International Working Conference on Distributed Applications and Inter-
operable Systems II (1999)

3. Zhao, W., Moser, L.E., Melliar-Smith, P.M.: Deterministic scheduling for multi-
threaded replicas. In: WORDS 2005 (2005)

4. Basile, C., Whisnant, K., Kalbarczyk, Z., Iyer, R.: Loose synchronization of mul-
tithreaded replicas. In: SRDS 2002 (2002)

5. Basile, C., Kalbarczyk, Z., Iyer, R.: Preemptive deterministic scheduling algorithm
for multithreaded replicas. In: DSN 2003 (2003)

6. Domaschka, J., Hauck, F.J., Reiser, H.P., Kapitza, R.: Deterministic multithread-
ing for Java-based replicated objects. In: PDCS 2006 (2006)

7. Reiser, H.P., Hauck, F.J., Domaschka, J., Kapitza, R., Schröder-Preikschat, W.:
Consistent replication of multithreaded distributed objects. In: SRDS 2006 (2006)

8. Felber, P., Guerraoui, R., Schiper, A.: The implementation of a CORBA object
group service. Theory and Practice of Object Systems 4(2), 93–105 (1998)

9. Bessani, A.N., da Silva Fraga, J., Lung, L.C., Alchieri, E.A.P.: Active replication
in CORBA: Standards, protocols, and implementation framework. In: DOA 2004
(2004)

10. Fich, F.E., Hendler, D., Shavit, N.: On the inherent weakness of conditional syn-
chronization primitives. In: PODC 2004 (2004)

11. Napper, J., Alvisi, L., Vin, H.: A fault-tolerant Java virtual machine. In: DSN 2003
(2003)

12. Friedman, R., Kama, A.: Transparent fault tolerant Java virtual machine. In: SRDS
2003 (2003)

13. Kopetz, H., Damm, A., Koza, C., Mulazzani, M., Schwabl, W., Senft, C., Zain-
linger, R.: Distributed fault-tolerant real-time systems — the Mars approach. IEEE
Micro 9(1), 25–40 (1989)

Multithreading Strategies for Replicated Objects 123

14. Poledna, S., Burns, A., Wellings, A.J., Barrett, P.: Replica determinism and flexible
scheduling in hard real-time dependable systems. IEEE Trans. Computers 49(2),
100–111 (2000)

15. Jiménez-Peris, R., Patiño-Mart́ınez, M., Arévalo, S.: Deterministic scheduling for
transactional multithreaded replicas. In: SRDS 2000 (2000)

16. Reiser, H.P., Hauck, F.J., Kapitza, R., Schmied, A.I.: Integrating fragmented ob-
jects into a CORBA environment. In: Proc. of the Net.ObjectDays, Erfurt, Ger-
many (2003)

17. Reiser, H.P., Kapitza, R., Domaschka, J., Hauck, F.J.: Fault-tolerant replication
based on fragmented objects. In: Eliassen, F., Montresor, A. (eds.) DAIS 2006.
LNCS, vol. 4025, pp. 256–271. Springer, Heidelberg (2006)

18. Narasimhan, P., Moser, L.E., Melliar-Smith, P.M.: Enforcing determinism for the
consistent replication of multithreaded CORBA applications. In: SRDS 1999 (1999)

19. Domaschka, J., Schmied, A.I., Reiser, H.P., Hauck, F.J.: Revisiting deterministic
multithreading strategies. In: Int. Workshop on Java and Components for Paral-
lelism, Distribution and Concurrency (2007)

A Component Framework for Java-Based
Real-Time Embedded Systems�

Aleš Pľsek, Frédéric Loiret, Philippe Merle, and Lionel Seinturier

INRIA Lille - Nord Europe, ADAM Project-team
USTL-LIFL CNRS UMR 8022
Haute Borne, 40, avenue Halley
59650 Villeneuve d’Ascq, France

{ales.plsek,frederic.loiret,philippe.merle,lionel.seinturier}@inria.fr

Abstract. The Real-Time Specification for Java (RTSJ) [13] is becom-
ing a popular choice in the world of real-time and embedded program-
ming. However, RTSJ introduces many non-intuitive rules and restrictions
which prevent its wide adoption. Moreover, current state-of-the-art frame-
works usually fail to alleviate the development process into higher layers
of the software development life-cycle. In this paper we extend our philoso-
phy that RTSJ concepts need to be considered at early stages of software
development, postulated in our prior work [2], in a framework that pro-
vides continuum between the design and implementation process. A com-
ponent model designed specially for RTSJ serves here as a cornerstone.
As the first contribution of this work, we propose a development process
where RTSJ concepts are manipulated independently of functional
aspects. Second, we mitigate complexities of RTSJ-development by au-
tomatically generating execution infrastructure where real-time concerns
are transparently managed. We thus allow developers to create systems for
variously constrained real-time and embedded environments. Performed
benchmarks show that the overhead of the framework is minimal in com-
parison to manually written object-oriented applications, while providing
more extensive functionality. Finally, the framework is designed with the
stress on dynamic adaptability of target systems, a property we envisage
as a fundamental in an upcoming era of massively developed real-time
systems.

Keywords: Real-time Java, RTSJ, component framework, middleware.

1 Introduction

1.1 Current Trends and Challenges

The future of distributed, real-time and embedded systems brings demand for
large-scale, heterogeneous, dynamically highly adaptive systems with variously
� This work has been partially funded by the ANR/RNTL Flex-eWare project and

by the Interuniversity Attraction Poles Programme Belgian State, Belgian Science
Policy.

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 124–143, 2008.
c© IFIP International Federation for Information Processing 2008

A Component Framework for Java-Based Real-Time Embedded Systems 125

stringent QoS demands. Therefore, one of the challenges is the development
of complex systems composed from hard-, soft-, and non-real-time units. The
Java programming language and its Real-Time Java Specification [13] (RTSJ)
represent an attractive choice because of their potential to meet this challenge.
Moreover, they bring a higher-level view into the real-time and embedded world,
which is desperately needed when avoiding accidental complexities and steep-
learning curves. However, using RTSJ at the implementation level is an error-
prone process where developers have to obey non-intuitive rules and restrictions
(single parent rule [3], cross-scope communication [17], etc.).

One of the answers to these issues are component-oriented frameworks for
RTSJ, such as [10,12,14], abstracting complexities of the RTSJ development
from the developers. Nevertheless, the state-of-the-art solutions still need to
fully address adaptability issues of real-time systems, separation of real-time
and functional concerns, and suffer from the absence of a high-level process that
would introduce real-time concerns during the design phase.

1.2 Goals of the Paper

A complete process for designing of real-time and embedded applications com-
prise many complexities, specially timing and schedulability analysis, which has
to be included in a design procedure. The scope of our proposal is focused on
non-distributed applications and is placed directly afterwards these stages, when
real-time characteristics of the system are specified but the development process
of such a system lies at its very beginning.

The goal of our work is to develop a component framework alleviating the
RTSJ-related concerns during development of real-time and embedded systems.
Our motivation is to consider real-time concerns as clearly identified software
entities and clarify their manipulation through all the steps of software life cycle.
The challenge is therefore to mitigate complexities of the real-time system devel-
opment and offload the burden from users by providing a middleware layer for
management of RTSJ concerns. We therefore summarize the main contributions
that are addressed to achieve the goals:

– Development Process. To propose a methodology to develop RTSJ-based sys-
tems that mitigates possible complexities and allows full-scale introduction
of code generation technics.

– Transparently Implemented Systems. To provide transparent implementation
of systems with comprehensive separation of concerns and extensive support
of non-functional properties.

– Performance. To achieve minimal overhead of the framework, its perfor-
mance and memory overhead should be subtle enough to address real-time
and embedded platforms. Different code-optimization levels should be intro-
duced to address variously constrained environments.

1.3 Structure of the Paper

To reflect the goals, the paper is structured as follows. Section 2 provides an
overview of RTSJ, introduces our example scenario, and presents the component-

126 A. Pľsek et al.

oriented principles we integrate in our solution. Section 3 proposes a new frame-
work for developing real-time and embedded systems. In Section 4 we present
selected design and implementation aspects of our framework. Section 5 evaluates
our approach; we show benchmark results measuring the overhead of the frame-
work and discuss further contributions of our work. We present related work in
Section 6. Section 7 concludes and draws future directions of our research.

2 Background

2.1 Real-Time Java Specification

The Real-Time Java Specification [13] (RTSJ) is a comprehensive specification for
development of predictable real-time Java-based applications. Between many con-
structs which mainly pose special requirements on underrunning JVM, two new
programming concepts were introduced - real-time threads (RealTimeThread,
NoHeapRealTimeThread) and special types of memory areas (ScopedMemory,
ImmortalMemory).

RealTimeThread and NoHeapRealTimeThread (NHRT) are new types of thr-
eads that have precise scheduling semantics. Moreover, NHRT can not be pre-
empted by the garbage collector, this is however compensated by a restriction
forbidding to access the heap memory. RTSJ further distinguishes three memory
regions: ScopedMemory, ImmortalMemory, and HeapMemory, where the first two
are outside the scope of action of the garbage collector to ensure predictable
memory access. Memory management is therefore bounded by a set of rules that
govern access among scopes. Another important limitation is the single parent
rule [3] defining that a memory region can have only one parenting scope.

2.2 Motivation Example

To better illustrate all the complexities of the RTSJ development, we introduce
an example scenario that will be revisited several times through the course of
this paper. The goal is to design an automation system controlling an output
statistics from a production line in a factory and report all anomalies. The
example represents a classical scenario, inspired by [8], where both real-time
and non-real-time concerns coexist in the same system.

The system consists of a production line that periodically generates measure-
ments, and of a monitoring system that evaluates them. Whenever abnormal
values of measurements appear, a worker console is notified. The last part of the
system is an auditing log where all the measurements are stored for auditing
purposes. Since the production line operates in 10ms intervals, the system must
be designed to operate under hard real-time conditions.

A class diagram of the system is depicted in Fig. 1. As we can see, real-time
and non-realtime concerns are mixed together. Identification of those parts of the
system that run under different real-time constrains is difficult, hence the design
of communication between them is clumsy and error-prone. As a consequence,

A Component Framework for Java-Based Real-Time Embedded Systems 127

Fig. 1. Motivation Example

the developer has to face these issues at the implementation level which brings
many accidental complexities.

To avoid this, a clear separation of real-time and memory management from
the functional concerns is required. Moreover, the RTSJ concerns need to be
considered at the design phase since they influence the architecture of the system.
Therefore a proper semantics for manipulating RTSJ concerns during all the
steps of system development has to be additionally proposed.

2.3 Component Frameworks

Component frameworks simplify development of software systems. A proper
component model represents cornerstone for each component framework, its ex-
tensiveness substantially influences the capabilities of a component framework.

We have investigated several component models [7,9,11] to identify features
suitable for our framework. Based on this we extract a fundamental characteris-
tic of a state-of-the-art component model: A lightweight hierarchical component
model that stresses on modularity and extensibility. It allows the definition,
configuration, dynamic reconfiguration, and clear separation of functional and
non-functional concerns. The central role is played by interfaces, which can be ei-
ther functional or control. Whereas functional interfaces provide external access
points to components, control interfaces are in charge of non-functional proper-
ties of the component (e.g. life-cycle or binding management). Components are
sometimes divided into passive and active. Whereas passive components gener-
ally represent services, active components contain their own thread of control.
Additionally, a feature so far provided only by the Fractal component model
[11] is sharing of components which defines that a component could have several
super-components.

Component models usually provide container (also referred as membrane or
membrane paradigm in [18]) - a controlling environment encapsulating each com-
ponent and supporting various non-functional properties specific to a given com-
ponent. This brings better separation of functional and non-functional properties,
which can be hidden in membranes, thus simplifying utilization of components
by end users.

128 A. Pľsek et al.

3 Component Framework for RTSJ-Based Applications

In our previous work [2], we claim that an effective development process of
RTSJ-compliant systems needs to consider RTSJ concerns at early stages of
the system design. Following this philosophy, our framework proposes a new
methodology that facilitate design and implementation of RTSJ-based systems.
We thus clarify manipulation of non-functional properties during all phases of
the system life cycle.

The cornerstone of our framework represents a component model, proposed by
our prior research, which allows us to fully separate functional and non-functional
concerns through all the steps of system development. We recapitulate the basic
model characteristics in Section 3.1. Then, a design methodology incorporated
into our framework is introduced in Section 3.2. As an outcome of this process
we obtain a real-time system architecture that can be used for implementation
of the system. Here, we benefit from separation of functional and non-functional
concerns and design an implementation process that addresses these concepts
separately - whereas functional concerns are developed manually by users, the
code managing non-functional concerns is generated automatically. We elaborate
on this implementation methodology in Section 3.3.

Our hierarchical component model with sharing [2] is depicted in Fig. 2. The
abstract entity Component defines that each component has sub components
expressing hierarchy, and super components, expressing component sharing. We
derive Active and Passive components, basic building units of our model, rep-
resenting business concerns in the system. Each active component contains its
own thread of execution.

Fig. 2. A Real-Time Component Metamodel

3.1 A Real-Time Java Component Metamodel

ThreadDomain represents RealTimeThread, NoHeapRealTimeThread, and Re-
gularThread in a system. Each ThreadDomain component encapsulates all
the active components containing threads of control with the same properties

A Component Framework for Java-Based Real-Time Embedded Systems 129

(such as thread-type or priority). MemoryArea representing ImmortalMemory,
ScopedMemory, and HeapMemory encapsulates all subcomponents that are allo-
cated in the same memory area. Therefore, we are able to explicitly model RT-
concepts at the architectural level by using ThreadDomain and MemoryArea
components. This brings us the advantage of creating the most fitting architec-
ture according to real-time requirements of the system.

Composing and Binding RT-Components. The restrictions introduced by
RTSJ impose several rules on the composition process. Since the component
model includes RTSJ concerns, we are able to validate a conformance to RTSJ
during the composition process. Additionally, our model allows sharing of compo-
nents. Therefore, a set of super components of a given component directly defines
its business and also its real-time role in the system. To give an example of such
rules, the ThreadDomain and MemoryArea components are exclusively composite
components, since they do not implement a functional behaviour. They specify
non-functional properties which are commonly shared by their sub-components.
Therefore, while MemoryArea components can be arbitrarily nested 1, it does not
apply for ThreadDomain. Indeed, an active component should always be nested
in a unique ThreadDomain. An another example of RTSJ constraints between
thread and memory model concerns the NoHeapRealTimeThreadwhich is not al-
lowed to be executed in the context of the Java heap memory. Within our design
space, this constraint is translated by a NHRT ThreadDomain which should not
encapsulate a Heap MemoryArea, regardless of the hierarchical level specified by
functional components.

Similarly, also the RTSJ conformance of bindings between components is eval-
uated at the design time. This allows developers to mitigate complexities of their
implementation by choosing one of several communication patterns [1,5,17] al-
ready at the design time.

All these constraints are verified during the design process, which is presented
in the following section.

3.2 Designing Real-Time Applications

This section further explains how we integrate the component model into the
process of designing real-time applications. The Design Views and the Design
Methodology are proposed with motivation to fully exploit the advantages of the
component model at the design time.

Design Views. We define three basic views that allow designers to gradu-
ally integrate real-time concerns into the architecture: Business View, Thread
Management View, and Memory Management View. Whereas the business view
considers only functional aspects of the system, the two others stress on dif-
ferent aspects of real-time programming - realtime threads and memory areas

1 RTSJ specification defines a hierarchical memory model for scoped memories, as
introduces in Section 2.1.

130 A. Pľsek et al.

Fig. 3. RealTime Component Architecture Design Flow

management. These views therefore allow designers to architect real-time con-
cerns independently of the business functionality. Additionally, the execution
characteristics of systems can be smoothly changed by designing several dif-
ferent assemblies of components into ThreadDomains and MemoryAreas. This
is beneficial when tailoring the same functional system for different real-time
conditions.

Design Methodology. The methodology we propose progressively incorpo-
rates all the views into the design process. The new architecture design flow, de-
picted in Fig. 3, represents a procedure gradually introducing real-time concerns
into the architecture. In three steps, we consequently employ the Business, Re-
altimeThread and Memory Management views to finally obtain RTSJ compliant
architecture. The compliance with RTSJ is enforced during the design process.
This provides an immediate feedback and the designer can appropriately modify
an architecture whenever it violates RTSJ. Moreover, the verification process of
the architecture identifies the points where a glue code handling RTSJ concerns
needs to be deployed, which substantially alleviates the implementation phase.

Motivation Example Revisited. To fully demonstrate the design process
proposed in this section, we revisit our example scenario. By using the business
view, we construct the functional architecture. Then we deploy active compo-
nents into appropriate ThreadDomain components, determining which parts of
the application will be real-time oriented - the thread management view can
be used here. After deploying all components into corresponding ThreadDomain
components, the adherence to RTSJ is verified. As a result, the compositions
violating RTSJ are identified and possible solutions proposed, for example using
RTSJ-compliant patterns [1,5,17]. In the next step, the memory management of
the system has to be designed - the memory management view can be used.

To finally create a complete RT System Architecture, the business view, the
thread and memory management views are merged together. The final RT Sys-
tem Architecture can be seen in Fig. 4. The lower part of the figure presents
the XML serialization of the resulting architecture. The structure of this lan-
guage is consistent with the metamodel sketched out in Fig. 2. It provides the

A Component Framework for Java-Based Real-Time Embedded Systems 131

<!-- Functional Components -->

<ActiveComponent name="ProductionLine"
type="periodic " periodicity="10ms">

<interface name="iMonitor "
role="client"
signature=" IMonitor " />

<content class=" ProductionLineImpl"/>
</ActiveComponent >
<ActiveComponent name="MonitoringSystem"

type="sporadic ">
<interface name="iMonitor "

role="server"
signature=" IMonitor " />

...
</ActiveComponent >

<PassiveComponent name="Console ">
...

</PassiveComponent >
<ActiveComponent name="Audit"

type="sporadic " />
...

</ActiveComponent >

<! -- Bindings -->
<Bind ing >

<client cname=" ProductionLine"
iname="iMonitor " />

<server cname=" MonitoringSystem"
iname="iMonitor " />

<BindDesc protocol ="asynchronous"
bufferSize="10" />

</Bind ing >

<!-- Non - Functional Components -->

<MemoryArea name="Imm1">
<ThreadDomain name="NHRT1">

<ActiveComp
name="ProductionLine"/>

<DomainDesc type="NHRT"
priority ="30" />

</ThreadDomain>
<ThreadDomain name="NHRT2">

<ActiveComp
name="MonitoringSystem"/>

<DomainDesc type="NHRT"
priority ="25" />

</ThreadDomain>

<AreaDesc type="immortal "
size="600KB" />

</MemoryArea>

<MemoryArea name="S1">
<PassiveComp name="Console "/>

<AreaDesc type="scope"
name="cscope" size="28KB" />

</MemoryArea>

<MemoryArea name="H1">
<ThreadDomain name="reg1">

<ActiveComp
name="Audit"/>

<DomainDesc type="Regular " />
</ThreadDomain>
<AreaDesc type="heap" />

</MemoryArea>

Fig. 4. Motivation Example: Real-time System Architecture

whole information needed to implement the execution infrastructure described
in Section 3.3, for example:

– the functional component ProductionLine is defined as a periodic active
component,

– the binding between MonitoringSystem and AuditLog active components
specifies an asynchronous communication and its associated message buffer
size,

– the non-functional components specify RTSJ-related attributes, such as a
memory type and size of a MemoryArea, a thread type and a priority for a
ThreadDomain.

132 A. Pľsek et al.

3.3 Implementing Real-Time Applications

The design analysis described in the previous section yields in the real-time
system architecture which is both RTSJ compliant and fully specifies the system
together with its RTSJ related characteristics. Hence, it can be used as input
for an implementation process where a high percentage of tasks is accomplished
automatically. Indeed, we adopt a generative-programming approach where the
non-functional code (e.g. the RTSJ-specific code) is generated.

This approach allows developers to fully focus on implementation of functional
properties of systems and entrust the management of non-functional concepts
into the competence of the framework. Thus we eliminate accidental complexities
of the implementation process. The separation of concerns is also adopted at the
implementation level where functional and non-functional aspects are kept in
clearly identified software entities.

We therefore introduce a new implementation process incorporating code gen-
eration technics, depicted in Fig. 5.

Fig. 5. Execution Infrastructure Generation Flow

Implementing Functional Concerns of Applications. As the first step of
the implementation flow, see Fig. 5 step 1, functional logic of the system is being
developed. The development process thus follows our approach where developers
implement only component content classes.

Infrastructure Generation Process. As the second step of our development
process, we generate an execution infrastructure of the system, in Fig. 5 step
2. We exploit an already designed RT System Architecture in order to generate
a glue code managing non-functional properties of the system. The generation
process implements several tasks, they are listed below, their implementation is
described in further details in Section 4.

– RTSJ-related Glue Code
• Realtime Threads and MemoryArea management. Real-time Thread and

Memory Areas management is the primary task of the generated code.
Automatical initialization and management of these aspects in confor-
mance to RTSJ thus substantially alleviates the implementation process
for the developers.

• Cross-Scope Communication. Since the RT system architecture already
specifies which cross-scope communication patterns will be used, their
implementation can be moved under the responsibility of the code gen-
eration process.

A Component Framework for Java-Based Real-Time Embedded Systems 133

• Initialization Procedures. The generated code has to be responsible also
for bootstrapping procedures which will be triggered during the launch
of the system. This is important since RTSJ itself introduces a high level
of complexity into the bootstrapping process.

– Framework Glue Code
• Active Component Management. For active components, the framework

manages their lifecycle - generating code that activates their functionality.
• Communication Concepts. Automatical support for synchronous/asyn-

chronous communication mechanisms is important aspect offloading
many burdens from developers.

• Additional Functionality. Additionally, many other non-functional prop-
erties can be injected by the framework, e.g. a support for introspection
and reconfiguration of the system.

Final Composition Process. Finally, by composing results of the functional
component implementation and the infrastructure generation process we achieve
a comprehensive and RTSJ-compliant source code of the system. Here, each
functional component is wrapped by a layer managing its execution under real-
time conditions. This approach respects our motivation for clear separation of
functional and real-time concerns.

4 Framework Implementation Issues

The key design decision characterizing the framework is to employ component-
oriented approach also during the implementation process of developed systems.
Our motivation is therefore to preserve components at the implementation layer.
Apart from well-know advantages of this concept, e.g. reusability of the code,
this approach brings better transparency and separation of concerns. Specially
separation of concerns is important here, since we need to implement functional
and real-time concerns of the system but deploy them in separate entities.

Following these goals, we introduce non-functional components that are
present at runtime. These components represent ThreadDomain and MemoryArea
components, architected at the design time, and manage RTSJ-concerns of the
system. This contributes to a full separation of functional and non-functional
code. Moreover, this approach is further expanded by the membrane paradigm,
introduced in Section 2.3, defining that each component is encapsulated by a
membrane layer that manages its non-functional properties. RTSJ management
is thus deployed at two places - in non-functional components, providing a coarse-
grain approach, and in the membrane of each functional component, providing a
fine-grain approach to management of RTSJ concerns for the specific functional
logic.

Therefore, in Section 4.1 we first present the membranes and how they are
employed in our solution to support RTSJ concerns of components. We also
introduce non-functional components here. Consequently in Section 4.2, we ex-
plain detail implementation of membranes. Finally, Section 4.3 describes the

134 A. Pľsek et al.

infrastructure generation process generating membranes of components and in-
troduces various levels of optimization heuristics which reduce overhead of the
framework.

4.1 Component Framework Implementation

Component-Oriented Membrane. Membrane paradigm, originally intro-
duced in [18], defines that each component is wrapped by a controlling environ-
ment called membrane. Its task is to support various non-functional properties of
the component. The control membrane of a component is implemented as an as-
sembly of so-called control components. Additionally, special control components
called interceptors can be deployed on component interfaces to arbitrate commu-
nication between the component and its environment, they are also integrated
in the membrane. Since membranes can be parameterized, the framework allows
developers to deploy for each component its unequally designed membrane that
directly fits its needs.

RTSJ-oriented Membrane. We employ the concept of membranes to develop
our own set of controllers and interceptors which are specially designed to man-
age RTSJ-concerns in the system. We provide the following extensions of the
control layer:

– Active Interceptors encapsulate active components. They implement a
run-to-completion execution model2 for each incoming invocation from their
server interfaces and are configured by the properties defined by the enclosing
ThreadDomain component.

– Memory Interceptors implement cross-scope communication and are de-
ployed on each binding between different MemoryAreas. Their implementa-
tion depends on the design procedure choosing one of many RTSJ memory
patterns [1,5,17].

Non-Functional Components. An additional construct for manipulation of
RTSJ-concerns at the implementation layer represent non-functional compo-
nents. These components correspond to ThreadDomain and MemoryArea com-
ponents, created at the design time, and provide thus a coarse-grain approach
to management of RTSJ-concerns in the system. More preciously, membranes of
non-functional components contain real-time controllers and interceptors, which
superimpose non-functional concerns over their subcomponents. Thus we man-
age RTSJ concepts of groups of functional components with identical RTSJ
properties.

4.2 Membrane Architecture Analysis

The control components incorporated in membrane can be divided into two
groups. First, the controllers which are specific to the non-functional needs of
2 This execution model precludes preemption for active components.

A Component Framework for Java-Based Real-Time Embedded Systems 135

Fig. 6. Membrane Architecture, Illustration Example

the component - e.g. asynchronous communication controller, RTSJ-related con-
trollers. These components have to be present in the membrane since they im-
plement non-functional logic directly influencing components’ execution. The
second group of controllers represent units which are optional and are not di-
rectly required by the component’s functional code, e.g. Binding or Lifecycle con-
trollers. Access to membrane functionality is provided through control-interfaces,
which are hidden at the functional level to avoid confusion with functional
implementation.

Motivation Example Revisited. To illustrate the membrane architecture, we
revisit our motivation example from Section 2.2, Fig. 6 shows a membrane of the
MonitoringSystem component. In the picture we can see an active Monitoring-
System component encapsulated by its membrane, this composition is then
deployed in a non-functional component NHRT2, an instance of a ThreadDomain
entity representing a NoHeapRealtimeThread. Inside the MonitoringSystem
membrane, various controllers and interceptors are present. ActiveInterceptor
implements execution model of an active component; Asynchronous Skeleton im-
plements asynchronous communication. Both of them represent non-functional
interceptors specific to the MonitoringSystem component. Contrarily, Lifecycle
and Binding Controllers are present to implement introspection and reconfig-
uration of the system, and represent optional part of the membrane that is
independent of functional architecture of the component. Finally, the NRHT2
component contains a ThreadDomain controller that implements logic for man-
agement of NoHeapRealtimeThread subcomponents.

Runtime Adaptability. Already the basic set of controllers - Binding Con-
troller, Content Controller, and Lifecycle controller, supports introspection and
dynamic adaptation of the system. Whereas regular-Java components in our
framework can be flawlessly reconfigured, however, adaptation of real-time code
brings additional challenges and complexities. Since every manipulation of RTSJ

136 A. Pľsek et al.

concepts is bounded by their specification rules, the reconfiguration process
has to adhere to these restrictions as well. Investigation and research of these
controlling mechanisms is however out of the scope of this paper. We therefore
settle for basic support of the adaptability issue and plan to fully tackle this
challenging topic in our future work.

4.3 Soleil - Execution Infrastructure Generator

For the infrastructure generation process we employ Soleil, an extension of Juliac
- a Fractal [11]3 toolchain backend which generates Java source code correspond-
ing to the real-time architecture specified by the designer, including membrane
source code, a framework glue code and a bootstrapping code. Moreover, the tool
offers different generation modes corresponding to various levels of functionality,
optimization and code compactness:

1. SOLEIL. This default mode generates a full componentization of the execu-
tion infrastructure. The RTSJ interceptors and the reconfigurability manage-
ment code are therefore implemented as non-functional components, within
the membranes. The structure of the latter is also reified at runtime, as well as
the ThreadDomain and MemoryArea composite components. This generation
mode provides the complete introspection and reconfiguration capabilities of
the component framework at functional and at membrane level.

2. MERGE-ALL. In this generation mode the implementation of functional com-
ponent code and its associated membrane are merged into a single Java class.
Therefore, it generates one class per each functional component defined by
the developer. Since the number of Java objects in the resulting infrastruc-
ture is considerably decreased, this mode achieves also memory footprint
reduction. In comparison with the SOLEIL mode, it corresponds to a first
optimization level where several indirections introduced by the membrane
architecture are replaced by direct method calls. As component membrane
structures are not preserved at the runtime, the MERGE-ALL mode do not
provides reconfiguration capabilities at membrane level. However, these ca-
pabilities are provided at the functional level.

The source-to-source optimizations performed by the generation process
are based on Spoon [16], a Java program processor, which allows fine-grained
source code transformations.

3. ULTRA-MERGE. The most optimized mode achieves that the whole resulting
source code fits into one unique class. Moreover, the generated code does
not preserve the reconfiguration capabilities anymore. The resulting infras-
tructure is therefore purely static. It exclusively embeddes the functional
implementations merged to the code which takes into account the compo-
nent activations, the asynchronous communications, and the RTSJ dedicated
code.

3 Available at http://fractal.ow2.org/

A Component Framework for Java-Based Real-Time Embedded Systems 137

5 Evaluation

To show the quality of our framework, we evaluate it from several different per-
spectives. First, we conduct benchmark tests to measure performance of the
framework. Then we evaluate the development process introduced by our so-
lution from the code generation perspective. Finally, we summarize the con-
tributions of the framework to the field of real-time and embedded systems
development.

5.1 Overhead of the Framework

The main goal of this benchmark is to show that our framework does not introduce
any non-determinism and to measure the performance/memory-consumption
overhead of the framework. As one of the means of evaluation, we compare dif-
ferently optimized applications developed in our framework against a manually
written object-oriented application.

Benchmark Scenario. The benchmark is performed on the motivation case-
study presented in Fig. 4. We measure the execution time of a complete iteration
starting from the ProductionLine component. Its execution behavior consists of
a production of a state message that is sent to the MonitoringSystem component
using an asynchronous communication. The latter is a sporadic active component
that is triggered by an arrival notification of the message from its incoming
server interface. The scenario of this transaction finally ends after invocation
of a synchronous method provided by the passive Console component and an
asynchronous message transmission to the active AuditLog component.

Evaluation Platform. The testing environment consists of a Pentium 4 mono-
processor (512KB Cache) at 2.66 GHz with 1GB of SDRAM, with the Sun 2.1
Real-Time Java Virtual Machine (a J2SE 5.0 platform compliant with RTSJ),
and running the Linux 2.6.24 kernel patched by Rt-Preempt. The latter con-
verts the kernel into a fully preemptible one with high resolution clock support,
which brings hard realtime capabilities4.

Benchmarking Method. The measurements are based on steady state obser-
vations - in order to eliminate the transitory effects of cold starts we collect
measurements after the system has started and renders a steady execution. For
each test, we perform 10 000 observations from which we compute performance
results. Our first goal is to show that the framework does not introduce any non-
determinism into the developed systems, we therefore evaluate a ”worst-case”
execution time and an average jitter. Afterwards, we evaluate the overhead of
the framework by performance comparison between an application developed
in the framework (impacting the generated code) and an implementation de-
veloped manually through object-oriented approach. Therefore, in the results
presented bellow, we compare four different implementations of the evaluation
4 The Linux Rt-Preempt patch is available at
www.kernel.org/pub/linux/kernel/projects/rt/

138 A. Pľsek et al.

scenario. First, denoted as OO, is the manually developed object-oriented appli-
cation. Then, denoted as SOLEIL, MERGE ALL, and ULTRA MERGE, are applications
developed in our framework constructed with different levels of optimization
heuristics. We refer the reader to Section 4.3 for detail description of the opti-
mization levels.

Results Discussion. The results of the benchmarks are presented in Fig. 7,
where the graph (a) presents the execution time distribution of the 10,000 obser-
vations processed. Fig. 7(b) sums up these results and gives their corresponding
jitters. Fig. 7(c) presents the memory footprints observed at runtime.

(a) Execution Time Distribution

Median Jitter
(µs) (µs)

OO 31,9 0,457
Soleil 33,5 0,453

Merge All 33,3 0,387
Ultra Merge 31,1 0,384

(b) Execution Time Median and Jitter

(c) Memory Footprint

Fig. 7. Benchmark Results

Non-Determinism. As the first result, we can see that our approach does not
introduce any non-determinism in comparison to the object-oriented one, as the
execution time curves of OO and SOLEIL are similar. Moreover, the jitter is
very subtle for all tests. This is caused by the execution platform which ensures
that real-time threads are not preempted by GC, and provides a low latency
support for full-preemption mechanisms within the kernel.

Performance Time. The median execution time for the SOLEIL test is 4.7%
higher than for the OO one. This corresponds to the overhead induced by our
approach based on component-oriented membranes. However, the performance
of the ULTRA MERGE is comparable to the manually implemented OO - it
is even slightly better since ULTRA MERGE’ implementation is more compact.

Memory Footprint. Considering the memory footprint, SOLEIL consumes 280KB
more memory than OO. The price paid for generated membranes providing RTSJ
interception mechanisms, introspection and reconfigurability. MERGE ALL, a
test introducing the first level of optimizations, gives a more precise idea of the
injected code which provides these non-functional capabilities at runtime: 4.7KB.
The memory overhead purely corresponds to the algorithms and data structures

A Component Framework for Java-Based Real-Time Embedded Systems 139

used by our component framework. Finally, the ULTRA MERGE is the most
lightweight - even in comparison to OO.

Bottom Line. The bottom line is that our approach does not introduce any
non-determinism. Moreover, the overhead of the framework is minimal when
considering MERGE ALL, but with the same functionality as our non-optimized
code. Finally, we demonstrate a fitness for embedded platforms by achieving a
memory footprint reduction (ULTRA MERGE) that provides better results than
the OO-approach.

5.2 RTSJ Code Generation Perspective

We further confront our generation process against the set of code generation
requirements identified in [6]. The authors highlight importance of separation of
concerns, stress on compactness of generated code, and demand clear distinction
between generated and manually written code. All these requirements are met
by our generation process since both generated and manually written code are
deployed in clearly identified components. Moreover, an additional requirement
demands a clear separation between functional and non-functional semantics.
This is however supported directly in our component metamodel (ThreadDomain
and MemoryArea components) and thus we inherently meet this requirement.

5.3 Summary of Our Contribution

We further summarize the main contributions of our work, they can be divided
into two categories:

– RTSJ-based Systems Development
• Component Model. The proposed component model allows designers

to explicitly express an architecture combining real-time and business
concerns.

• Designing Real-time Applications. The component model further
allows a separation of real-time concerns and to design them indepen-
dently of the rest of the system. By combining different Thread and
Memory Management compositions we can smoothly tailor a system
for variously hard real-time conditions without necessity to modify the
functional architecture. The verification process moreover ensures that
compositions violating RTSJ will be refused.

• Implementing Real-time Applications. Considering an implementa-
tion of each component, the designed architecture considerably simplifies
this task. Functional and real-time concerns are strictly separated and
a guidance for possible implementations of those interfaces that cross
different concerns is proposed.

– Framework Implementation
• Separation of Concerns. The separation of concerns is consistently

respected through all the steps of development lifecycle. Membrane ex-
tensions and non-functional components are preserved also at the imple-
mentation layer to manage real-time concerns of the system.

140 A. Pľsek et al.

• Code Generation. The code generation approach we integrate in our
framework respects the set of requirements [6] that are key for the fitness
of generated code from the RTSJ perspective.

• Performance. Our evaluations show that we deliver predictable appli-
cations and the overhead of the framework is considerably reduced by
the optimizations heuristics we implement (MERGE ALL optimization
level). Moreover, we achieve an effective footprint reduction suitable for
embedded systems (ULTRA MERGE optimization level). Despite the
wide functionality we provide through out the applications development
and execution life-cycle, performance results are comparable with the
object-oriented approach.

• Dynamic Adaptation of Real-time Systems. Although the dynamic
adaptation of Java-based real-time systems is a novel and complex topic,
we tackle this challenge by introducing a basic support for runtime adap-
tation of systems developed in our framework. We consider this feature
as a potent starting point for our future research.

6 Related Work

Recently significant increase of interest in RT Java is reflected by an intensive
research in the area. However, focus is laid on implementation layer issues, e.g.
RTSJ compliant patterns [1,5,17], rather than on RTSJ frameworks where only
a few projects are involved. Apart from these few frameworks, other projects are
recently emerging with features similar to our work.

Compadres [14], one of the most recent projects, proposes a component frame-
work for distributed real-time embedded systems. A hierarchical component
model where each component is allocated either in a scoped or immortal mem-
ory is designed. However, the model supports only event-oriented interactions
between components. On the contrary to our approach, components can be al-
located only in scoped or immortal memories, therefore communication with
regular non-real-time parts of applications can not be expressed. Since the co-
existence of real-time and non-real-time elements of an application is often con-
sidered as one of the biggest advantages of RTSJ, we believe that it should be
addressed also by its component model. Compadres also proposes a design pro-
cess of real-time applications. However, a solution introducing systematically
the real-time concerns into the functional architecture is not proposed, thus the
complexities of designing real-time systems are not mitigated.

Work introduced in [12] also defines a hierarchical component model for Real-
Time Java. Here, components can be either active or passive. Similarly to our
work, active components with their own thread of control represent real-time
threads. However, the real-time memory management concerns can not be ex-
pressed independently of the functional architecture, systems are thus developed
already with real-time concerns which not only lay additional burdens on design-
ers but also hinders later adaptability.

The project Golden Gate [10] introduces real-time components that encapsu-
late the functional code to support the RTSJ memory management. However,

A Component Framework for Java-Based Real-Time Embedded Systems 141

the work is focused only on the memory management aspects of RTSJ, the usage
of real-time threads together with their limitations is not addressed.

The work published in [4] presents a new programming model for RTSJ based
on aspect-oriented approach. Similarly to our approach, the real-time concerns
are completely separated from applications base code. Although, as we have
shown in [18], aspect- and component-oriented approaches are complementary,
but the component-oriented approach offers more higher-level perspective of sys-
tem development and brings a more transparent way of managing non-functional
properties with only slightly bigger overhead.

The DiSCo project [15] addresses future space missions where key challenges
are hard real-time constraints for applications running in embedded environ-
ment, partitioning between applications having different levels of criticality, and
distributed computing. Therefore, similarly to our goals, the project addresses
applications containing units that face variously hard real-time constraints. Here,
an interesting convergence of both solutions can be revealed. The DiSCo Space-
Oriented Middleware introduces a component model where each component pro-
vides a wide set of component controllers - a feature extensively supported by
our solution.

The work introduced in [6] investigates fitness criteria of RTSJ in model-
driven engineering process that includes automated code generation. The authors
identify a basic set of requirements on code generation process. From this point of
view, we can consider our generation tool as an implementation fully compatible
to the ideas proposed in this work. We further confront our approach with these
requirements in Section 5.2.

7 Conclusion and Future Work

This paper presents a component framework designed for development of real-
time and embedded systems with the Real-Time Specification for Java (RTSJ).
Our goal is to alleviate the development process by providing means to ma-
nipulate real-time concerns in a disciplined way during the development and
execution life cycle of the system. Furthermore, we shield the developers from
the complexities of the RTSJ-specific code implementation by separation of con-
cerns and automatical generation of the execution infrastructure.

Therefore, we employ a component model comprising the RTSJ-related as-
pects that allows us to clearly define real-time concepts as software entities and
to manipulate them through all the steps of the system development. Conse-
quently, we define a methodology that gradually introduces real-time concerns
into the system architecture, thus mitigating complexities of this process. Fi-
nally, we alleviate the implementation phase by providing a process generating
automatically a middleware layer that manages real-time and non-functional
properties of the system.

Our evaluation study shows that we deliver predictable systems and the over-
head of the framework is considerably reduced by the optimization heuristics
we implement. Moreover, we achieve an effective footprint reduction making the
output systems suitable for the embedded domain.

142 A. Pľsek et al.

As for the future work, our primary goal is to extend our framework to support
design and infrastructure generation for additional non-functional properties,
e.g. distribution support. Furthermore, we design our framework with stress on
adaptability of real-time and embedded systems, thus the framework provides a
basic support for dynamic adaptability of all system components. However, to
comprehensively address this issue, adaptation of real-time components needs to
be managed, we therefore plan to fully tackle this challenging topic in our future
work.

References

1. Corsaro, A., Santoro, C.: The Analysis and Evaluation of Design Patterns for
Distributed Real-Time Java Software. In: 16th IEEE International Conference on
Emerging Technologies and Factory Automation (2005)

2. Pľsek, A., Merle, P., Seinturier, L.: A Real-Time Java Component Model. In:
Proceedings of the 11thInternational Symposium on Object/Component/Service-
oriented Real-Time Distributed Computing (ISORC 2008), Orlando, Florida, USA,
May 2008, pp. 281–288. IEEE Computer Society, Los Alamitos (2008)

3. Wellings, A.: Concurrent and Real-Time Programming in Java. John Wiley and
Sons, Chichester (2004)

4. Andreae, C., Coady, Y., Gibbs, C., Noble, J., Vitek, J., Zhao, T.: Scoped Types
and Aspects for Real-time Java Memory Management. Real-Time Syst. 37(1), 1–44
(2007)

5. Benowitz, E.G., Niessner, A.F.: A Patterns Catalog for RTSJ Software Designs.
In: Meersman, R., Tari, Z. (eds.) OTM-WS 2003. LNCS, vol. 2889, pp. 497–507.
Springer, Heidelberg (2003)

6. Bordin, M., Vardanega, T.: Real-time Java from an Automated Code Generation
Perspective. In: JTRES 2007: Proceedings of the 5th international workshop on
Java technologies for real-time and embedded systems, pp. 63–72. ACM, New York
(2007)

7. Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balancing Advanced Features in a
Hierarchical Component Model. In: SERA 2006: Proc. of the 4th International Con-
ference on Software Engineering Research, Management and Applications, USA,
pp. 40–48. IEEE Computer Society, Los Alamitos (2006)

8. Gough, C., Hall, A., Masters, H., Stevens, A.: Real-Time Java: Writing and De-
ploying RT-Java Applications (2007),
http://www.ibm.com/developerworks/java/library/j-rtj5/

9. Clarke, M., Blair, G.S., Coulson, G., Parlavantzas, N.: An Efficient Component
Model for the Construction of Adaptive Middleware. In: Guerraoui, R. (ed.) Mid-
dleware 2001. LNCS, vol. 2218, p. 160. Springer, Heidelberg (2001)

10. Dvorak, D., Bollella, G., Canham, T., Carson, V., Champlin, V., Giovannoni, B.,
Indictor, M., Meyer, K., Murray, A., Reinholtz, K.: Project Golden Gate: Towards
Real-Time Java in Space Missions. In: ISORC, pp. 15–22 (2004)

11. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Fractal
Component Model and its Support in Java. Software: Practice and Experience 36,
1257–1284 (2006)

http://www.ibm.com/developerworks/java/library/j-rtj5/

A Component Framework for Java-Based Real-Time Embedded Systems 143

12. Etienne, J., Cordry, J., Bouzefrane, S.: Applying the CBSE Paradigm in the Real-
Time Specification for Java. In: JTRES 2006: Proceedings of the 4th international
workshop on Java technologies for real-time and embedded systems, USA, pp.
218–226. ACM, New York (2006)

13. Bollela, G., Gosling, J., Brosgol, B., Dibble, P., Furr, S., Turnbull, M.: The Real-
Time Specification for Java. Addison-Wesley, Reading (2000)

14. Hu, J., Gorappa, S., Colmenares, J.A., Klefstad, R.: Compadres: A Lightweight
Component Middleware Framework for Composing Distributed, Real-Time, Em-
bedded Systems with Real-Time Java. In: Proc. ACM/IFIP/USENIX 8th Int’l
Middleware Conference (Middleware 2007), vol. 4834, pp. 41–59 (2007)

15. Prochazka, M., Fowell, S., Planche, L.: DisCo Space-Oriented Middleware: Archi-
tecture of a Distributed Runtime Environment for Complex Spacecraft On-Board
Applications. In: 4th European Congress on Embedded Real-Time Software (ERTS
2008), Toulouse, France (2008)

16. Pawlak, R., Noguera, C., Petitprez, N.: Spoon: Program Analysis and Transforma-
tion in Java. Technical report rr-5901, INRIA (2006)

17. Pizlo, F., Fox, J.M., Holmes, D., Vitek, J.: Real-Time Java Scoped Memory: Design
Patterns and Semantics. In: Seventh IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2004), pp. 101–110 (2004)

18. Seinturier, L., Pessemier, N., Duchien, L., Coupaye, T.: A Component Model En-
gineered with Components and Aspects. In: Gorton, I., Heineman, G.T., Crnković,
I., Schmidt, H.W., Stafford, J.A., Szyperski, C., Wallnau, K. (eds.) CBSE 2006.
LNCS, vol. 4063, pp. 139–153. Springer, Heidelberg (2006)

DeXteR – An Extensible Framework for
Declarative Parameter Passing in

Distributed Object Systems

Sriram Gopal, Wesley Tansey, Gokulnath C. Kannan, and Eli Tilevich

Department of Computer Science
Virginia Tech, Blacksburg, VA 24061, USA

{sriramg,tansey,gomaths,tilevich}@cs.vt.edu

Abstract. In modern distributed object systems, reference parameters
are passed to a remote method based on their runtime type. We argue
that such type-based parameter passing is limiting with respect to ex-
pressiveness, readability, and maintainability, and that parameter pass-
ing semantics should be decoupled from parameter types. We present
declarative parameter passing, an approach that fully decouples parame-
ter passing semantics from parameter types in distributed object systems.
In addition, we describe DeXteR, an extensible framework for transform-
ing a type-based remote parameter passing model to a declaration-based
model transparently. Our framework leverages aspect-oriented and gen-
erative programming techniques to enable adding new remote parameter
passing semantics, without requiring detailed understanding of the un-
derlying middleware implementation. Our approach is applicable to both
application and library code and incurs negligible performance overhead.
We validate the expressive power of our framework by adding several
non-trivial remote parameter passing semantics (i.e., copy-restore, lazy,
streaming) to Java RMI.

Keywords: Extensible Middleware, Metadata, Parameter Passing, As-
pect Oriented Programming, Declarative Programming.

1 Introduction

Organizations have hundreds of workstations connected into local area networks
(LANs) that stay unused for hours at a time. Consider leveraging these idle com-
puting resources for distributed scientific computation. Specifically, we would like
to set up an ad-hoc grid that will use the idle workstations to solve bioinformatics
problems. The ad-hoc grid will coordinate the constituent workstations to align,
mutate, and cross DNA sequences, thereby solving a computationally intensive
problem in parallel.

Each workstation has a standard Java Virtual Machine (JVM) installed, and
the LAN environment makes Java RMI a viable distribution middleware choice.
As a distributed object model for Java, RMI simplifies distributed program-
ming by exposing remote method invocations through a convenient programming

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 144–163, 2008.
c© IFIP International Federation for Information Processing 2008

DeXteR – An Extensible Framework for Declarative Parameter Passing 145

model. In addition, the synchronous communication model of Java RMI aligns
well with the reliable networking environment of a LAN.

The bioinformatics application follows a simple Master-Worker architecture,
with classes Sequence, SequenceDB, and Worker representing a DNA sequence,
a collection of sequences, and a worker process, respectively. Class Worker im-
plements three computatinally-intensive methods: align, cross, and mutate.

interface WorkerInterface {

void align(SequenceDB allSeqs, SequenceDB candidates, Sequence toMatch);

Sequence cross(Sequence s1, Sequence s2);

void mutate(SequenceDB seqs);

}

class Worker implements WorkerInterface { ... }

The align method iterates over a collection of candidate sequences (candid-
ates), adding to the global collection (allSeqs) those sequences that satisfy a
minimum alignment threshold. The cross method simulates the crossing over
of two sequences (e.g., during mating) and returns the offspring sequence. Fi-
nally, the mutate method simulates the effect of a gene therapy treatment on a
collection of sequences, thereby mutating the contents of every sequence in the
collection.

Consider using Java RMI to distribute this application on an ad-hoc grid,
so that multiple workers could solve the problem in parallel. To ensure good
performance, we need to select the most appropriate semantics for passing pa-
rameters to remote methods. However, as we argue next, despite its Java-like
programming model, RMI uses a different remote parameter passing model that
is type-based. That is, the runtime type of a reference parameter determines the
semantics by which RMI passes it to remote methods. We argue that this pa-
rameter passing model has serious shortcomings, with negative consequences for
the development, understanding, and maintenance of distributed applications.

Method align takes two parameters of type SequenceDB: allseqs and ca-
ndidates. allseqs is an extremely large global collection that is being up-
dated by multiple workers. We, therefore, need to pass it by remote-reference.
candidates, on the other hand, is a much smaller collection that is being used
only by a single worker. We, therefore, need to pass it by copy, so that its contents
can be examined and compared efficiently. To pass parameters by remote-
reference and by copy, the RMI programmer has to create subclasses implement-
ing marker interfaces Remote and Serializable, respectively. As a consequence,
method align’s signature must be changed as well. Passing allSeqs by remote-
reference requires the type of allSeqs to become a remote interface. Finally,
examining the declaration of the remote method align would give no indica-
tion about how its parameters are passed, forcing the programmer to examine
the declaration of each parameter’s type. In addition, in the absence of detailed
source code comments, the programmer has no choice but to examine the logic
of the entire slice [3] of a distributed application that can affect the runtime type
of a remote parameter.

146 S. Gopal et al.

Method mutate mutates the contents of every sequence in its seqs param-
eter. Since the client needs to use the mutated sequences, the changes have
to be reflected in the client’s JVM. The situation at hand renders passing by
remote-reference ineffective, since the large number of remote callbacks is likely
to incur a significant performance overhead. One approach is to pass seqs by
copy-restore, a semantics which efficiently approximates remote-reference under
certain assumptions [22].

Because Java RMI does not natively support copy-restore, one could use a
custom implementation provided either by a third-party vendor or an in-house
expert programmer. Mainstream middleware, however, does not provide pro-
gramming facilities for such extensions. Thus, adding a new semantics would
not only require a detailed understanding of the RMI implementation, but also
sufficient privileges to modify the Java installation on each available idle work-
station.

Finally, consider the task of maintaining the resulting ad-hoc grid distributed
application. Assume that SequenceDB is a remote type in one version of the ap-
plication, such that RMI will pass all instances SequenceDB by remote-reference.
However, if a maintenance task necessitates passing some instance of SequenceDB
using different semantics, the SequenceDB type would have to be changed. Nev-
ertheless, if SequenceDB is part of a third-party library, it may not be subject
to modification by the maintenance programmer.

To overcome the limitations of a type-based remote parameter passing model,
we present an alternative, declarative model. We argue that remote parameter
passing should resemble that of local parameter passing in mainstream pro-
gramming languages. Following this paradigm, a passing mechanism for each
parameter is specified at the declaration of each remote method. By decoupling
parameter passing from parameter types, our approach increases expressiveness,
improves readability, and eases maintainability.

Unsurprisingly, mainstream programming languages such as C, C++, and
C# express the choice of parameter passing mechanisms through method decla-
rations with special tokens instead of types. For example, by default objects in
C++ are passed by value, but inserting the & token after the type of a parameter
signals the by reference mechanism. We argue that distributed object systems
should adhere to a similar declarative paradigm for remote method calls, but
properly designed for distributed communication.

While Java always uses the by value semantics for local calls, we argue that
distributed communication requires a richer set of semantics to ensure good
performance and to increase flexibility. We also argue that IDL-based distributed
object systems such as CORBA [11] and DCOM [1] with their in, out, and inout
parameter modes stop short of a fully declarative parameter model and are not
extensible.

Recognizing that many existing distributed applications are built upon a type-
based model, we present a technique for transforming a type-based remote pa-
rameter passing model to use a declaration-based one. Our technique trans-
forms parameter passing functionality transparently, without any changes to the

DeXteR – An Extensible Framework for Declarative Parameter Passing 147

underlying distributed object system implementation, ensuring cross-platform
compatibility and ease of adoption. With Java RMI as our example domain,
we combine aspect-oriented and generative techniques to retrofit its parameter
passing functionality. Our approach is equally applicable to application classes,
system classes, and third-party libraries.

In addition, we argue that a declarative model to remote parameter pass-
ing simplifies adding new semantics to an existing distributed object model.
Specifically, we present an extensible plug-in-based framework, through which
third-party vendors or in-house expert programmers can seamlessly extend a na-
tive set of remote parameter passing semantics with additional semantics. Our
framework allows such extension in the application space, without modifying the
JVM or its runtime classes. As a validation, we used our framework to extend
the set of available parameter passing semantics of RMI with several non-trivial
state-of-the-art semantics, introduced earlier in the literature both by us [22]
and others [4,7,25].

One of the new semantics we implemented using our framework is an optimiza-
tion of our own algorithm for copy-restore [22]. In the original implementation,
the server sends back a complete copy of the parameter to the restore stage of the
algorithm on the client, which is inefficient in high-latency, low-bandwidth net-
working environments. The implemented optimized version of the copy-restore
algorithm, which we call copy-restore with delta, efficiently identifies and encodes
the changes made by the server to the parameter, sending to the client only the
resulting delta. Because the original copy-restore algorithm performs better in
high-bandwidth networks, our extensible framework makes it possible to use
different versions of the copy-restore algorithm for different remote calls in the
same application.

We believe that the technical material presented in this paper makes the
following novel contributions:

– A clear exposition of the shortcomings of type-based parameter passing mod-
els in modern distributed object systems such as CORBA, Java RMI, and
.NET Remoting.

– An alternative declarative parameter passing approach that offers multiple
design and implementation advantages.

– An extensible framework for retrofitting standard RMI applications to take
advantage of our declaration based model and for extending the RMI native
set of parameter passing semantics.

– An enhanced copy-restore mode of remote parameter passing, offering per-
formance advantages for low bandwidth, high latency networks.

The rest of this paper is structured as follows. Section 2 presents DeXteR, our
extensible framework. Section 3 describes how we used DeXteR to add several
non-trivial parameter passing semantics to RMI. Section 4 discusses the advan-
tages and constraints of our approach. Section 5 discusses related work. Finally,
Section 6 outlines future work directions and conclusions.

148 S. Gopal et al.

2 The DeXter Framework

This section discusses the design and implementation of DeXteR (Declarative
Extensible Remote Parameter Passing), a framework for declarative remote
parameter passing.

2.1 Framework Overview

DeXteR implements declaration-based parameter passing semantics on top of
standard Java RMI, without modifying its implementation. DeXteR uses a plug-
in based architecture and treats remote parameter passing as a distributed cross-
cutting concern. Each parameter passing style is an independent plugin compo-
nent.

DeXteR uses the Interceptor Pattern [18] to expose the invocation context
explicitly on the client and the server sites. While Interceptors have been used
in several prior systems [8] to introduce orthogonal cross-cutting concerns such
as logging and security, the novelty of our approach lies in employing Interceptors
to transform and enhance the core functionality of a distributed object system,
its remote parameter passing semantics.

Figure 1 depicts the overall translation strategy employed by DeXteR. The
rank-and-file (i.e., application) programmer annotates an RMI application with
the desired remote parameter passing semantics. The annotations processor takes
the application source code as input, and extracts the programmer’s intent. The
extracted information parameterizes the source code generator, which encom-
passes the framework-specific code generator and the extension-specific code

Extension-
specifc Code
Generators

Extension-
specifc Code
Generators

Annotations
Processor

Framework-specifc
Code Generator

Transformed Application

Aspectj Weaver

Plug-ins

Plugin-specifc
Code Generators

Config.xml

Plugin Developer

Annotated Application

Generated Code Generated Code

Rank-and-file Programmer

Fig. 1. Development and Deployment Process

DeXteR – An Extensible Framework for Declarative Parameter Passing 149

generators. The framework-specific code generator synthesizes the code for the
client and the server interceptors using aspects. The extension-specific code gen-
erators synthesize the code pertaining to the translation strategy for supporting
a specific parameter passing semantics. DeXteR compiles the generated code
into bytecode, and the resulting application uses standard Java RMI, only with
a small AspectJ runtime library as an extra dependency. The generated aspects
are weaved into the respective classes at load-time, thereby redirecting the in-
vocation to the framework interceptors at both the local and the remote sites.

2.2 Framework API

DeXteR provides interception points for parameter passing plugins in the form of
the InterceptionPoint interface. Developing a new plugin involves implement-
ing this interface and identifying the interception points of interest, providing
the functionality at these interception points, and registering the plugin with
the framework.

interface InterceptionPoint {

// Interception points on client-side

Object [] argsBeforeClientCall(Object target, Object [] args);

Object [] customArgsBeforeClientCall(Object target);

Object retAfterClientCall(Object target, Object ret);

void customRetAfterClientCall(Object target, Object [] customRets);

// Interception points on server-side

Object [] argsBeforeServerCall(Object target, Object [] args);

void customArgsBeforeServerCall(Object target, Object [] customArgs);

Object retAfterServerCall(Object target, Object ret);

Object[] customRetAfterServerCall(Object target);

// Plugin-specific code generator

void generate(AnnotationInfo info);

}

The above interface exposes the invocation context of a remote call at different
points of its control-flow on both the client and server sites. DeXteR exposes to
a plugin only the invocation context pertaining to the corresponding parameter
passing annotation. For example, plugin X obtains access only to those remote
parameters annotated with annotation X. DeXteR enables plugins to modify the
original invocation arguments as well as to send custom information between
the client- and the server-side extensions. The custom information is simply
piggy-backed to the original invocation context.

2.3 Implementation Details

The interception is implemented by combining aspect-oriented and generative
programming techniques. Specifically, DeXteR uses AspectJ to add extra meth-
ods to RMI remote interface, stub, and server implementation classes for each

150 S. Gopal et al.

remote method. These methods follow the Proxy pattern to interpose the logic
required to support various remote parameter passing strategies. Specifically,
the flow of a remote call is intercepted to invoke the plugins with the annotated
parameters, and the modified set of parameters is obtained. The intercepted
invocation on the client site is then redirected to the added extra method on
the server. The added server method reverses the process, invoking the param-
eter passing style plugins with the modified set of parameters provided by their
client-side peers. The resulting parameters are used to make the invocation on
the actual server method. A similar process occurs when the call returns, in
order to support different passing styles for return types.

For each remote method, DeXteR injects a wrapper method into the remote
interface and the server implementation using inter-type declarations, and point-
cuts on the execution of that method in the stub (i.e., implemented as a dynamic
proxy) to provide a wrapper in the form of an around advice. All the AspectJ
code that provides the interception functionality is automatically generated at
compile time, based on the remote method’s signature.

2.4 Bioinformatics Example Revisited

DeXteR enables the programmer to express remote parameter passing semantics
exclusively by annotating remote method declarations with the intended passing
semantics. A distributed version of the bioinformatics application from section
1 can be expressed using DeXteR as follows. The different parameter passing se-
mantics are introduced without affecting the semantics of the centralized version
of the application.

public interface WorkerInterface extends Remote

{

void align(@RemoteRef SequenceDB matchingSeqs,

@Copy SequenceDB candidates,

@Copy Sequence toMatch) throws RemoteException;

@Copy Sequence cross(@Copy Sequence s1, @Copy Sequence s2)

throws RemoteException;

void mutate(@CopyRestore SequenceDB seqs)

throws RemoteException;

}

Since remote parameter passing annotations are part of a remote method’s sig-
nature, they must appear in both the method declaration in the remote interface
and the method definitions in all remote classes implementing the interface. This
requirement ensures that the client is informed about how remote parameters
will be passed, and it also allows for safe polymorphism (i.e., the same remote
interface may have multiple remote classes implementing it). We argue, however,
that this requirement should not impose any additional burden on the program-
mer. A modern IDE such as Eclipse, NetBeans, or Visual Studio should be able
to reproduce the annotations when providing method stub implementations for
remote interfaces.

DeXteR – An Extensible Framework for Declarative Parameter Passing 151

3 Supporting Parameter Passing Semantics

This section describes the strategies for implementing several non-trivial param-
eter passing semantics previously proposed in the research literature [22,7,25,4]
as DeXteR plugins. We restrict our description to parameters, as the strategies
for handling return types are identical.

To demonstrate the power and expressiveness of our approach, we chose the
semantics that have very different implementation requirements. While the lazy
semantics requires flexible proxying on-demand, copy-restore requires passing
extra information between the client and the server. Despite the contrasting
nature of these semantics, we were able to encapsulate all their implementation
logic inside their respective plugins and easily deploy them using DeXteR.

3.1 Lazy Semantics

Lazy parameter passing [7], also known as lazy pass-by-value, provides a useful
semantics for asynchronous distributed environments, specifically in P2P appli-
cations. It works by passing the object initially by reference and then transferring
it by value either upon first use (implicitly lazy) or at a point dictated by the
application (explicitly lazy). More precisely, lazy parameter passing defines if
and when exactly an object is to be passed by value.

The translation strategy for passing reference objects by lazy semantics in-
volves using the plugin-specific code generator. As our aim is to decouple param-
eter types from the semantics by which they are passed, to pass a parameter of

A Reference (A) As

Copy (A) Ac

Lazy Semantics
 Plugin (Client)

Lazy Semantics
Plugin (Server)

Server
Application

foo()

download()

foo()

1

2

3

4

5

Fig. 2. Lazy Semantics Plugin Interaction Diagram (A: Serializable Object; As: Stub
of A; Ac: Copy of A; (1) A is passed from client to server; (2) Server invokes foo() on
stub As; (3) Server plugin calls download() on client plugin; (4) Client plugin sends a
copy of A, Ac; (5) Server plugin calls foo() on Ac.)

152 S. Gopal et al.

type A by lazy semantics does not require defining any special interface nor A im-
plementing one. Instead, the plugin-specific code generator generates a Remote
interface, declaring all the accessible methods of A. To make our approach ap-
plicable for passing both application and system classes, we deliberately avoid
making any changes to the bytecode of a parameter’s class A. Instead, we use
a delegating dynamic proxy (e.g., A DynamicProxy) for the generated Remote
interface (e.g., AIface) and generate a corresponding server-side proxy (e.g.,
A ServerProxy) that is type-compatible with the parameter’s class A. As is com-
mon with proxy replacements for remote communication [6], all the direct field
accesses of the remote-reference parameter on the server are replaced with ac-
cessor and mutator methods.1

In order to enable obtaining a copy of the remote parameter (at some point in
execution), the plugin inserts an additional method download() in the generated
remote interface AIface, the client proxy A DynamicProxy and the server proxy
A ServerProxy.

class A {

public void foo() {...}

}

// Generated remote interface

interface AIface extends Remote {

public void foo() throws RemoteException;

public A download() throws RemoteException;

}

// Generated client proxy

class A_DynamicProxy implements AIface {

private A remoteParameter;

public A download() {

// serialize remoteParameter

}

public void foo() throws RemoteException { ... }

}

// Generated server proxy

class A_ServerProxy extends A {

private A a;

private AIface stub;

public A_ServerProxy(AIface stub) {

this.stub = stub;

}

1 Replacing direct fields accesses with methods has become such a common transfor-
mation that AspectJ [13] provides special fields access pointcuts (i.e., set, get) to
support it.

DeXteR – An Extensible Framework for Declarative Parameter Passing 153

synchronized void download() {

// Obtain a copy of the remote parameter

a = stub.download();

}

public void foo() {

// Dereference the stub

stub.download();

// Invoke the method on the copy

a.foo();

}

}

Any invocation made on the parameter (i.e., server proxy) by the server re-
sults in a call to its synchronized download() method, if a local copy of the
parameter is not yet available. The download() method of the server proxy re-
lays the call to the download() method of the enclosed client proxy with the
aim of obtaining a copy of the remote parameter.

The client proxy needs to serialize a copy of the parameter. However, passing
a remote object (i.e., one that implements a Remote interface) by copy presents
a unique challenge, as type-based parameter passing mechanisms are deeply
entangled with Java RMI. The RMI runtime replaces the object with its stub,
effectively forcing pass by remote-reference. The plugin-generated code overrides
this default functionality of Java RMI by rendering a given remote object as a
memory buffer using Serialization. This technique effectively “hides” the remote
object, as the RMI runtime transfers memory buffers without inspecting or mod-
ifying their content. The “hidden” remote object can then be extracted from the
buffer on the server-side and used as a parameter. Once the copy is obtained, all
subsequent invocations made on the parameter (i.e., server proxy) are delegated
to the local copy of the parameter.

Thus, passing an object of type A as a parameter to a remote method will
result in the client-side plugin replacing it with its type-incompatible stub. The
server-side plugin wraps this type-incompatible stub into the generated server-
side proxy that is type-compatible with the original remote object.

We note that a subset of the strategies described above is used for supporting
the native semantics copy and remote-reference.

3.2 Copy Restore Semantics

A semantics with a different set of implementation requirements than that of
lazy parameter passing is the copy-restore semantics. It copies a parameter to
the server and then restores the changes to the original object in place (i.e.,
preserving client-side aliases).

Implementing the copy-restore semantics involves tracing the invocation ar-
guments and restoring the changes made by the server after the call. The task

154 S. Gopal et al.

P PLM

foo(p)

P

Pl + retPl
LM

ret

foo(p)

Copy-Restore
Plugin (Server)

Copy-Restore
Plugin (Client)

Client
Application

1

2

3

4

Fig. 3. Copy-Restore Semantics Plugin Interaction Diagram (P : Set of parameters
passed to foo; PLM : Linear map of parameters; Pl: Modified parameters (restorable
data); ret : values returned by the invocation; P1

LM : Modified linear map; (1) The
client invokes method foo() passing parameter p; (2) The client-side plugin constructs
a linear map PLM and calls the original foo(p); (3) Server-side plugin invokes foo and
returns modified parameters Pl and the return value ret ; (4) Changes restored and the
return value ret is passed to the client.)

is simplified by the well-defined hook points provided by the framework. Prior
to the remote method invocation, the copy-restore plugin obtains a copy of the
parameter A and does some pre-processing on both the client and the server
sites. The invocation then resumes and the server mutates the parameter during
the call. Once the call completes, the server-side plugin needs to send back
the changes to the parameter made by the server to its client-side peer. This
is accomplished using the custom information passing facility provided by the
framework. The client-side plugin uses this information from its server-side peer
to restore the changes to the parameter A in the client’s JVM.

3.3 Copy Restore with Delta Semantics

For single-threaded clients and stateless servers, copy-restore makes remote calls
indistinguishable from local calls as far as parameter passing is concerned [22].
However, in a low bandwidth high latency networking environment, such as in
a typical wireless network, the reference copy-restore implementation may be
inefficient. The potential inefficiency lies in the restore step of the algorithm,
which always sends back to the client an entire object graph of the parameter,
no matter how much of it has been modified by the server. To optimize the
implementation of copy-restore for low bandwidth, high latency networks, the
restore step can send back a “delta” structure by encoding the differences be-
tween the original and the modified objects. The necessity for such an optimized
copy-restore implementation again presents a compelling case for extensibility
and flexibility in remote parameter passing.

DeXteR – An Extensible Framework for Declarative Parameter Passing 155

The following pseudo-code describes our optimized copy-restore algorithm,
which we term copy restore with delta:

1. Create and keep a linear map of all the objects transitively reachable from
the parameter.

2. On the server, again create a linear map, Lmap1, of all the objects transitively
reachable from the parameter.

3. Deep copy Lmap1 to an isomorphic linear map Lmap2.
4. Execute the remote method, modifying the parameter and Lmap1, but not

Lmap2.
5. Return Lmap1 back to the client; when serializing Lmap1, encode the changes

to the parameter by comparing with Lmap2 as follows:
(a) Write as is each changed existing object or a newly added object.
(b) Write its numeric index in Lmap1 for each unchanged existing object.

6. On the client, replay the encoded changes, using the client-side linear map
to retrieve the original old objects at the specified indexes.

Creating Linear Map. A linear map of objects transitively reachable from
a reference argument is obtained by tapping into serialization, recording each
encountered object during the traversal. In order not to interfere with garbage
collection, all linear maps use weak references.

Calculating Delta. The algorithm encodes the delta information efficiently
using a handle structure shown below.

class Handle{

int id;

ArrayList<Long> chId;

ArrayList<Long> chScript;

ArrayList<Object> chObject;

}

The identifier id refers to the position of an object in the client site linear
map. The change indicator chId identifies the modified member fields using a
bit level encoding. chScript contains the changes to be replayed on the old
object. For a primitive field, its index simply contains the new value, whereas
for an object field, its index points to chObject, which contains the modified
references.

Restoring Changes. For each de-serialized handle on the client, the corre-
sponding old object is obtained from the client’s linear map using the handle
identifier id. The handle is replaced with the old object, and the changes en-
coded in the handle are replayed on it. Following the change restoration, garbage
collection reclaims the unused references.

As a concrete example of our algorithm, consider a simple binary tree, t, of
integers. Every node in the tree has three fields: data, left, and right. A subset
of the tree is aliased by non-tree pointers alias1 and alias2. Consider a remote
method such as the one show below, to which tree t is passed as a parameter.

156 S. Gopal et al.

void alterTree (Tree tree) {

tree.left.data = 0;

tree.right.data = 9;

tree.right.right.data = 8;

tree.left = null;

Tree temp = new Tree (2, tree.right.right, null);

tree.right.right = null;

tree.right = temp;

}

Figure 4 shows the sequence of steps involved in passing tree t by copy restore
with delta and restoring the changes made by the remote method alterTree to
the original tree.

We measured the performance gains of our algorithm over the original copy-
restore by conducting a series of micro-benchmarks, varying the size of a binary

(a) (b)

(c) (d)

(e)

Fig. 4. Copy-restore with delta algorithm by example (a) State after step 3. (b) State
after step 4. The remote procedure modified the parameter. (c) State during step 5.
Copy the modified objects (even those no longer reachable through tree) back to
the client; compute the delta script for modified objects using a hash map. (d) State
during step 6. Replace the handles with the original old objects; replay the delta script
to reflect changes. (e) State of the client side object after step 6.

DeXteR – An Extensible Framework for Declarative Parameter Passing 157

tree and the amount of changes performed by the server. The benchmarks were
run on Pentium 2.GHz (dual core) machines with 2 GB RAM, running Sun
JVM version 1.6.0 on an 802.11b wireless LAN. Figure 5 shows the percentage
of performance gain of copy-restore with delta over copy-restore. Overall, our
experiments indicate that the performance gain is directly proportional to the
size of the object graph and is inversely proportional to the amount of changes
made to the object graph by the server.

By providing flexibility in parameter passing, DeXteR enables programmers
to use different semantics or different variations of the same semantics as deter-
mined by the nature of the application. For instance, within the same application
one can use regular copy-restore for passing small parameters and copy-restore
with delta for passing large parameters.

Performance Gain of Copy-restore with delta over
Copy-restore

0

5

10

15

20

25

1 2 3 4 5 6 7

Size of the tree (height)

P
er

ce
n

ta
g

e
o

f
ti

m
e

sa
ve

d

1/4th of the tree
changed

Performance Gain of Copy-restore with delta over Copy-
restore

-10

-5

0

5

10

15

20

1 2 3 4 5 6 7

Size of the tree (height)

P
er

ce
n

ta
g

e
o

f
ti

m
e

sa
ve

d

1/2 of the tree
changed

Fig. 5. Performance gain of copy-restore with delta over copy-restore

3.4 Other Semantics

Additional semantics we implemented using DeXteR include streaming [25], pa-
rameter substitution a.k.a caching [4], and some others. Due to space constraints,
we do not explain them in detail.

DeXteR offers the advantages of supporting a wide variety of remote pa-
rameter passing semantics through a uniform API. Developments in hardware
and software designs are likely to cause the creation of new parameter pass-
ing semantics. These semantics will leverage the new designs, but may be too
experimental to be included in the implementation of a standard middleware
system. DeXteR will allow the integration and use of these novel semantics at
the application layer, without changing the underlying middleware. As a partic-
ular example, consider the introduction of massive parallelism into mainstream
processors. Multiple cores will require the use of explicit parallelism to improve
performance. Some facets of parameter passing are computation-intensive and
can benefit from parallel processing. One can imagine, for instance, how mar-
shaling could be performed in parallel, in which parts an object graph are seri-
alized/deserialized by different cores.

158 S. Gopal et al.

4 Discussion

This section discusses the advantages of DeXteR as well as some of the con-
straints of our design.

4.1 Design Advantages

Expressing remote parameter passing choices as a part of the method declaration
has several advantages over a type-based system. Specifically, a declarative ap-
proach increases expressiveness, improves readability, and eases maintainability.
To further illustrate the advantages of our declarative framework, we compare
and contrast our approach with that of Java RMI.

Expressiveness. Java RMI restricts expressiveness by assuming that all instances
of the same type will be passed identically. Passing the same type using different
semantics therefore requires creating subclasses implementing different marker
interfaces and changing the method signature. By contrast, our approach does
not require any new subclasses to be created or any changes to be made to the
original method signature. Furthermore, under Java RMI, the programmer of
the class has no simple way to enforce how the parameters are actually passed
to its remote methods. The simple declarative style of our annotations makes
enforcement of the parameter passing policies straightforward.

Readability. Examining the declaration of a remote method does not reveal any
details about how its parameters are passed, forcing the programmer to examine
each parameter type individually, which reduces readability and hinders program
understanding. By contrast, our approach provides a single point of reference
that explicitly informs the programmer about how remote parameters are passed.

Maintainability. An existing class may have to be modified to implement an
interface before its instances can be passed as parameters to a remote method.
This complicates maintainability as, in the case of third-party libraries, source
code may be difficult or even impossible to modify. By contrast, our approach
enables the maintenance programmer modify the semantics by simply specifying
a different parameter passing annotation.

Extensibility. Even if the copy-restore semantics gets the attention of the Java
community and is natively supported in the next version of Java, including
new optimization mechanisms such as using copy-restore with delta would still
mean modifying the underlying Java RMI implementation of both the client
and the server. By contrast, our approach supports extending the native remote
parameter passing semantics at the application-level, requiring absolutely no
modifications to the underlying middleware.

Reusability. DeXteR also enables providing the parameter passing semantics as
plugin libraries. Application programmers thus can obtain third-party plugins
and automatically enhance their own RMI applications with the new parameter
passing semantics.

DeXteR – An Extensible Framework for Declarative Parameter Passing 159

Efficiency. Another advantage of our approach is its efficiency. That is, all the
transformations described in Section 3 do not result in any additional overhead
in using objects of type A until they are passed using a particular mode in an
RMI call. This requires that one know exactly when an object of type A is used
in this capacity. The insight that makes it possible to efficiently detect such cases
is that the program execution flow must enter an RMI stub (dynamic proxy) for
a remote call to occur.

To measure the overhead of DeXteR, we ran a series of microbenchmarks com-
paring the execution times of the DeXteR-based parameter passing semantics’
implementations and their native counterparts, of which pass by remote-reference
is of particular interest. In lieu of support for type-compatible dynamic proxies
for classes in Java, our remote-reference DeXteR plugin emulates this function-
ality using a type-incompatible client-side dynamic proxy and a type-compatible
server-side wrapper proxy. Thus, this emulated functionality introduces two new
levels of indirection compared to the standard Java RMI implementation of this
semantics. As any new level of indirection inherently introduces some perfor-
mance overhead, it is important to verify that it is not prohibitively expensive.

To distill the pure overhead, we ran the benchmarks on a single machine. In
the presence of network communication and added latency, the overhead incurred
by the additional levels of local indirection would be dominated. Therefore, the
results do not unfairly benefit our approach. The resulting overhead never ex-
ceeds a few percentage points of the total latency of a remote call executed on a
single machine. Due to space constraints, we do not present the detailed results
of this experiment here, but the interested reader can find them in reference [9].
In general, as the latency of a remote call is orders of magnitude greater than
that of a local call, the overhead incurred by a DeXteR plugin adding a few
simple local calls to a remote call should be negligible.

4.2 Design Constraints

Achieving the afore-mentioned advantages without changing the Java language
required constraining our design in the following ways.

First, array objects are always passed by copy though the array elements could
be passed using any desired semantics. While this is a limitation of our system,
it is still nonetheless a strict improvement over standard RMI, which also passes
array objects by copy, but passes array elements based on their runtime type.

Second, passing final classes (not extending UnicastRemoteObject) by
remote-reference would entail either removing their final specifier or perform-
ing a sophisticated global replacement with an isomorphic type [23]. This re-
quirement stems from our translation strategy’s need to create a proxy subclass
for remote-reference parameters, an impossibility for final classes. Since heavy
transformations would clash with our design goal of simplicity, our approach
issues a compile-time error to an attempt to pass an instance of a final class
by remote-reference. Again, this limitation is also shared by standard RMI.

Finally, since our approach does not modify standard Java, it is not possible
to support direct member field access for instances of system classes passed by

160 S. Gopal et al.

Table 1. Analysis of Java 6 JDK’s public member fields (some overlap exists due to
Exception classes spanning multiple packages)

Classes Analyzed Total Classes With Public Fields Total Public Fields
All User-Accessible Classes 2732 57 123
GUI Classes 913 15 65
Exception Classes 364 33 34
RMI Classes 58 22 22
Java Bean Classes 56 3 3

remote-reference. While this is a conceptual problem, an analysis of the Java 6
library shown in Table 1 indicates that this is not a practical problem. For our
purposes, we analyzed the java.* and javax.* classes, as they are typically
the ones mostly used by application developers. As the table demonstrates, ap-
proximately 1% of classes contain non-final member fields. However, the vast
majority of these classes are either GUI or sound components, SQL driver de-
scriptors, RMI internal classes, or exception classes, and as such, are unlikely to
be passed by remote-reference. Additionally, the classes in java.beans.* pro-
vide getter methods for their public fields, thereby not requiring direct access.
The conclusion of our analysis is that only one (java.io.StreamTokenizer) of
the more than 5,500 analyzed classes could potentially pose a problem, with two
public member fields not accessible by getter methods.

5 Related Work

The body of research literature on distributed object systems and separation
of concerns is extremely large and diverse. The following discusses only closely-
related state of the art.

SeparationofConcerns. Several language-basedandmiddleware-basedapproaches
address the challenges in modeling cross-cutting concerns.

Proxies and Wrappers [20] introduce late bound cross-cutting features, though
in an application-specific manner.

Aspect Oriented Programming (AOP) [14] is a methodology for modular-
izing cross-cutting concerns. Several prior AOP approaches aim at improving
various properties of middleware systems, with the primary focus on modular-
ization [5,26].

Java Aspect Components (JAC) [17] and DJCutter [15] support distributed
AOP. JAC framework enables the dynamic adding or removing of an advice.
DJCutter extends AspectJ with remote pointcuts, a special language construct
for developing distributed systems. DeXteR could use these approaches as an
alternative to AspectJ.

A closely related work is the DADO [24] system for programming cross-cutting
features in distributed heterogeneous systems. Similar to DeXteR, DADO uses
hook-based extension patterns. It employs a pair of user-defined adaplets,

DeXteR – An Extensible Framework for Declarative Parameter Passing 161

explicitly modeled using IDL for expressing the cross-cutting behavior. To ac-
commodate heterogeneity, DADO employs a custom DAIDL (an IDL exten-
sion) compiler, runtime software extensions, and tool support for dynamically
retrofitting services into CORBA applications. DADO uses the Portable Inter-
ceptor approach for triggering the advice for cross-cutting concerns, which do not
modify invocation arguments and return types. Thus, using DADO to change
built-in remote parameter passing semantics would not eliminate the need for
binary transformations and code generation.

Remote Parameter Passing. Multi-language distributed object systems such as
CORBA [11], DCOM [1], etc., use an Interface Definition Language (IDL) to
express how parameters are passed to remote methods. Each parameter in a
remote method signature is associated with keywords in, out, and inout desig-
nating the different passing options. This approach however, does not completely
decouple parameter passing from parameter types. When the IDL interface is
mapped to a concrete language, the generated implementation still relies on a
type-based parameter passing model of the target language. Specifically, in map-
ping IDL to Java [12], an IDL valuetype maps to a Serializable class, which
is always passed by copy. Conversely, an IDL interface maps to a Remote class,
which is always passed by remote-reference. Additionally, even if we constrain
parameters to valuetypes only, the mapped implementation will generate differ-
ent types based on the keyword modifiers present [10]. Thus, remote parameter
passing in IDL-based distributed object systems is neither fully declarative, nor
it is extensible.

.NET Remoting [16] for C# also follows a mixed approach to remote param-
eter passing. It supports the parameter-passing keywords out and ref. However,
the ref keyword designates pass by value-result in remote calls rather than the
standard pass by reference in local calls. This difference in passing semantics may
lead to the introduction of subtle inconsistencies when adapting a centralized
program for distributed execution. Furthermore, in the absence of any optional
parameter passing keywords, a reference object is passed based on the parameter
type. While this approach shares the limitations of Java RMI, remote-reference
proxies are type-compatible stubs, which provide full access to the remote ob-
ject’s fields. Therefore, while the parameter passing model of .NET Remoting
contains some declarative elements, it has shortcomings and is not extensible.

Doorastha [2] represents a closely related piece of work on increasing the
expressiveness of distributed object systems. It aims at providing distribution
transparency by enabling the programmer to annotate a centralized application
with distribution tags such as globalizable and by-refvalue, and using a specialized
compiler for processing the annotations to provide fine-grained control over the
parameter passing functionality. While influenced by the design of Doorastha,
our approach differs in the following ways. First, Doorastha does not completely
decouple parameter passing from the parameter types, as it requires annotating
classes of remote parameters with the desired passing style. Unannotated remote
parameters are passed based on their type. Second, Doorastha does not sup-
port extending the default set of parameter passing modes. Finally, Doorastha

162 S. Gopal et al.

requires a specialized compiler for processing the annotations. While Doorastha
demonstrates the feasibility of many of our approach’s features, we believe our
work is the first to present a comprehensive argument and design for a purely
declarative and extensible approach to remote parameter passing.

6 Future Work and Conclusions

A promising future work direction is to develop a declaration-based distributed
object system for an emerging object-oriented language, such as Ruby [21], uti-
lizing its advanced language features such as built-in aspects, closures, and co-
routines. Despite its exploratory nature and the presence of advanced features,
Ruby’s distributed object system, DRuby [19], does not significantly differ from
Java RMI.

We presented a framework for declarative parameter passing in distributed
object systems as a better alternative to type-based parameter passing. We de-
scribed how a declarative parameter passing model with multiple different se-
mantics can be efficiently implemented on top of a type-based parameter passing
model using our extensible framework, DeXteR. We believe that our framework
is a powerful distributed programming platform and an experimentation facility
for research in distributed object systems.

Availability. DeXteR can be downloaded from
http://research.cs.vt.edu/vtspaces/dexter.

Acknowledgments. The authors would like to thank Godmar Back, Doug Lea,
Naren Ramakrishnan, and the anonymous reviewers, whose comments helped
improve the paper. This research was supported by the Computer Science De-
partment at Virginia Tech.

References

1. Brown, N., Kindel, C.: Distributed Component Object Model Protocol–DCOM/1.0
1998, Redmond, WA (1996)

2. Dahm, M.: Doorastha—a step towards distribution transparency. In: Proceedings
of the Net. Object Days 2000 (2000)

3. De Lucia, A., Fasolino, A.R., Munro, M.: Understanding function behaviours
through program slicing. In: 4th IEEE Workshop on Program Comprehension, pp.
9–18 (1996)

4. Eberhard, J., Tripathi, A.: Efficient Object Caching for Distributed Java RMI
Applications. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 15–
35. Springer, Heidelberg (2001)

5. Eichberg, M., Mezini, M.: Alice: Modularization of Middleware using Aspect-
Oriented Programming. In: Gschwind, T., Mascolo, C. (eds.) SEM 2004. LNCS,
vol. 3437. Springer, Heidelberg (2005)

6. Eugster, P.: Uniform proxies for Java. In: OOPSLA 2006: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming systems, lan-
guages, and applications, pp. 139–152. ACM Press, New York (2006)

http://research.cs.vt.edu/vtspaces/dexter

DeXteR – An Extensible Framework for Declarative Parameter Passing 163

7. Eugster, P.T.: Lazy Parameter Passing. Technical report, Ecole Polytechnique
Fédérale de Lausanne, EPFL (2003)

8. Fleury, M., Reverbel, F.: The JBoss Extensible Server. In: International Middle-
ware Conference (2003)

9. Gopal, S.: An extensible framework for annotation-based parameter passing in
distributed object systems. Master’s thesis, Virginia Tech. (June 2008)

10. Object Management Group. Objects by value. document orbos/98-01-18, Fram-
ingham, MA (1998)

11. Object Management Group. The common object request broker: Architecture and
specification, Framingham, MA (1998)

12. Object Management Group. IDL to Java language mapping specification, Fram-
ingham, MA (2003)

13. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–355, 110. Springer, Heidelberg (2001)

14. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Ir-
win, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241. Springer, Heidelberg (1997)

15. Nishizawa, M., Chiba, S., Tatsubori, M.: Remote pointcut: a language construct
for distributed AOP. In: Proceedings of the 3rd international conference on Aspect-
oriented software development, pp. 7–15 (2004)

16. Obermeyer, P., Hawkins, J.: Microsoft .NET Remoting: A Technical Overview.
MSDN Library (July 2001)

17. Pawlak, R., Seinturier, L., Duchien, L., Florin, G., Legond-Aubry, F., Martelli,
L.: JAC: an aspect-based distributed dynamic framework. Software Practice and
Experience 34(12), 1119–1148 (2004)

18. Schmidt, D.C., Rohnert, H., Stal, M., Schultz, D.: Pattern-Oriented Software Ar-
chitecture: Patterns for Concurrent and Networked Objects. John Wiley & Sons,
Inc., New York (2000)

19. Seki, M.: DRuby–A Distributed Object System for Ruby (2007),
http://www.ruby-doc.org/stdlib/libdoc/drb/

20. Souder, T.S., Mancoridis, S.: A Tool for Securely Integrating Legacy Systems into
a Distributed Environment. In: Working Conference on Reverse Engineering, pp.
47–55 (1999)

21. Thomas, D., Hunt, A.: Programming Ruby. Addison-Wesley, Reading (2001)
22. Tilevich, E., Smaragdakis, Y.: NRMI: Natural and Efficient Middleware. IEEE

Transactions on Parallel and Distributed Systems, 174–187 (February 2008)
23. Tilevich, E., Smaragdakis, Y.: J-Orchestra: Automatic Java Application Partition-

ing. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374. Springer, Heidelberg
(2002)

24. Wohlstadter, E., Jackson, S., Devanbu, P.: DADO: enhancing middleware to sup-
port crosscutting features in distributed, heterogeneous systems. In: Proceedings
of the International Conference on Software Engineering, vol. 186 (2003)

25. Yang, C.C., Chen, C.K., Chang, Y.H., Chung, K.H., Lee, J.K.: Streaming support
for Java RMI in distributed environments. In: Proceedings of the 4th international
symposium on Principles and practice of programming in Java, pp. 53–61 (2006)

26. Zhang, C., Jacobsen, H.: Refactoring middleware with aspects. IEEE Transactions
on Parallel and Distributed Systems 14(11), 1058–1073 (2003)

http://www.ruby-doc.org/stdlib/libdoc/drb/

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 164–182, 2008.
© IFIP International Federation for Information Processing 2008

Performance Comparison of PHP and JSP as
Server-Side Scripting Languages

Scott Trent, Michiaki Tatsubori, Toyotaro Suzumura, Akihiko Tozawa,
and Tamiya Onodera

IBM Tokyo Research Laboratory
16-23-14 Shimotsuruma Yamato-shi, Japan 242-8502

{trent,mich,toyo,atozawa,tonodera}@jp.ibm.com

Abstract. The dynamic scripting language PHP has become enormously
popular for implementing lightweight web applications, and is widely used as a
server-side scripting language for web servers. To contrast the performance of
PHP and JSP for this purpose, we used the SPECweb2005 benchmark, which
provides three application scenarios implemented in both PHP and JSP. This
paper describes and contrasts the results of SPECweb2005 performance
benchmark testing performed on different configurations of PHP and JSP using
the popular web servers Apache and Lighttpd. Despite the execution overhead
of interpretation in PHP engines observed in micro benchmarks, the
experimental result of SPECweb2005 benchmark yields valuable performance
data for web server implementers. The efficiency of scripting language
runtimes still matters for the end-to-end performance. However, once carefully
architected and tuned, the language runtime is less of a bottleneck than the web
server performance itself.

Keywords: PHP, JSP, SPECweb, Benchmarking, Web Server.

1 Introduction

The dynamic scripting language PHP (PHP Hypertext Preprocessor) has become
enormously popular for implementing lightweight web applications, and is widely
used to access databases and other middleware. Apache module popularity surveys
performed by Security Space in October 2007 indicate that 37% of Apache servers
have PHP support enabled [11], making it the most popular Apache module by 10
percentage points. Businesses are quickly realizing the powerful combination of a
service oriented architecture environment with dynamic scripting languages like PHP
[5]. However, we believe that there are still critical performance issues involving PHP
which remain to be investigated.

This paper focuses on the use of dynamic scripting languages to implement web
server front-end interfaces. This corresponds with the way that the industry standard
web server performance benchmark SPECweb2005 utilizes PHP and JSP (JavaServer
Pages). In this case, scripts are used for the implementation of dynamic page
generation, rather than the realization of complex business logic. This contrasts with

 Performance Comparison of PHP and JSP as Server-Side Scripting Languages 165

the traditional uses of complex JSP-based business logic implementation. While there
are numerous studies on dynamic web content, this paper complements these studies
with detailed analysis focusing on PHP. For example, following the performance
study on CGI (Common Gateway Interface) based web servers for dynamic content
by Yeager & McGrath back in 1995, researchers and practitioners have been
examining the performance of more recent dynamic Web content generation
technologies [3, 13, 15, 17]. These works, however, handle application scenarios
where servlet front-ends implement relatively complex business logic.

Although Warner and Worley discuss the importance of also using PHP with
SPECweb2005 [18], to the best of the author’s knowledge, this paper is the first to
publish a detailed analysis of SPECweb2005 experimental results using both PHP and
JSP. The detailed analysis of PHP and JSP performance based on SPECweb2005
offered by this paper enables designers and implementers of web servers to
understand the relative performance and throughput of different versions and
configurations of PHP and JSP.

The rest of this paper is organized as follows. Section 2 discusses multi-tier web
server architecture and the lightweight front-end approach using PHP and JSP.
Section 3 reports on our findings regarding PHP and JSP language runtime micro
benchmark performance. Section 4 details our SPECweb2005 benchmark methodol-
ogy, environment, and test configurations. Section 5 analyzes SPECweb2005 bench-
mark throughput results, CPU usage profiling, and related performance metrics.
Section 6 discusses the importance of these results. Section 7 covers related work,
followed by our conclusions in Section 8.

2 Multi-tier Web Server Architecture: Lightweight Front-End
Using PHP/JSP

Developers typically use PHP to implement a front-end interface to dynamic Web
content generators, which are combined with web server software and back-end
servers to provide dynamic content. The web server directly handles requests for
static content and forwards requests for dynamic content to the dynamic content
generator. The dynamic content generator, supported by back-end servers, executes
code which realizes the business logic of a web site and stores dynamic state. Back-
end servers may be implemented as a straight-forward database, or may be more
complex servers handling the business logic of the web site. The front-end
implementation may vary from heavy-weight business logic handlers to lightweight
clients composing content received from back-end servers.

This paper focuses on multi-tier web site development scenarios utilizing such
lightweight front-ends, supported by one or more layers of heavy-weight back-ends.
This assumption is reasonable when considering Service-Oriented environments
where PHP scripts are used to implement a "mash-up" of services provided elsewhere,
in addition to the case of simple web sites such as bulletin boards where PHP scripts
are just a wrapper to a database. Within the scenarios described in this paper, the
dynamic content generator provides client implementation in addition to page
composition. It connects to the back-end server through a network using either
standard protocols such as HTTP or application/middleware-specific protocols.

166 S. Trent et al.

JSP technology can be considered an alternative to PHP in implementing such
front-ends. While it is part of the Java Servlet framework, developers typically use
JSP to implement lightweight front-ends. Both PHP and JSP allow developers to write
HTML embedded code. In fact, although there are language inherent differences
between PHP and Java, the use of PHP scripts and JSP files can be very similar.

The objective of the experiments detailed in this paper is to measure the
performance of lightweight front-end dynamic content generation written in PHP and
JSP with popular web servers such as Apache and Lighttpd. This web server
architecture scenario involves users who access a web server with pages written in
plain static HTML, as well as JSP and PHP scripts which mix scripting language with
HTML code. The configuration assumed within the paper is a typical one, where web
server software, such as Apache, distinguishes between pure HTML, JSP, and PHP
respectively with suffixes such as .html, .jsp, and .php. HTML code is directly
returned to the requesting end-user’s web browser, where JSP and PHP pages are
respectively parsed by the Tomcat script engine and the PHP runtime engine which
both provide pure HTML which is forwarded to the end-user on a remote system. (A
sample comparison of similar trivial JSP and PHP scripts, along with resulting HTML
code can be seen in Table 1) A common point between JSP and PHP is that
implementations which perform well have a dynamically compiled and cached byte
code. For example, the Java runtime used by the Tomcat script engine which we used
performs much better when the Just-in-Time (JIT) compiler is enabled to create
efficient cached native runtime code. Similarly, the Zend PHP runtime we used also
performs significantly better when the Alternative PHP Cache (APC) is enabled, in
which APC stores PHP byte codes compiled from the script source code in shared
memory for future reuse.

Table 1. Sample PHP and JSP scripts with resulting HTML code

PHP Script JSP Script R esulting HTML Code
<html> <body>
The date is
<?php
echo
date(DATE_RFC822);
?>
</body> </html>

<html> <body>
The date is
<%=
new
java.util.Date();
%>
<body> </html>

<html> <body>
The date is
Tue, 1 Jan 08
12:00:00
</body> </html>

3 Language Runtime Performance Micro Benchmarking

To understand the difference in performance characteristics between PHP and Java at
the language runtime level, we compared the following engines using a series of
micro benchmark tests:

− PHP 4.4.7
− PHP 5.2.3
− Java 5 with Just-In-Time (JIT) compilation (IBM J9 VM 1.5.0 Build 2.3)
− Java 5 without Just-In-Time (JIT) compilation (same as above)

 Performance Comparison of PHP and JSP as Server-Side Scripting Languages 167

The PHP language framework allows developers to extend the language with
library functions written in C. These functions, which are known as “extensions”, are
then available to be used within PHP scripts. The PHP runtime provides a variety of
extensions for string manipulation, file handling, networking, and so forth. Since our
first goal was to understand the performance of the PHP runtime itself, we conducted
our experiments without the use of extensions. We developed the following micro
benchmarks:

− A quick sort benchmark which sorts 100 integers,
− A Levenshtein benchmark which measures the similarity between two strings of 56

characters,
− A Fibonacci benchmark which calculates the 15th value in a Fibonacci series with

two arbitrary starting values.

These PHP benchmarks were implemented entirely with PHP language primitives
and avoided the use of PHP extensions. The Java versions also focused on using
language primitives rather than standard classes. We compared the total run time of
executing each test 10,000 times with each engine. We also executed each benchmark
an additional 10,000 times as a warm-up, before the measured test. This prevents
Java just-in-time compilation overhead from impacting the score in the Java tests.
We ran the experiment on an Intel Pentium 4 CPU at 3.40 GHz with 3GB RAM
Memory, with the Linux 2.6.17 kernel.

This test demonstrates large performance differences between each of the
measured scripting languages and implementations. The experimental results in
Figure 1 indicate that “Java 5 with JIT compilation” performs the best, followed by

Fig. 1. Pure Script Benchmark Performance

168 S. Trent et al.

“Java 5 without JIT compilation”, “PHP 5.2.3”, and “PHP 4.4.7” in all measured
cases. Java 5 with JIT demonstrated nearly three orders of magnitude better
performance due to the use of efficiently generated native code. It is also obvious that
PHP 5.2.3 has a two to three times performance improvement over PHP 4.4.7 with the
measured computations.

Secondly to determine the performance effect of PHP extensions compared with
Java class methods, we developed and tested three additional micro benchmarks:
regular expression matching, MD5 encoding, and Levenshtein comparison. For
regular expression matching, the Perl Compatible Regular Expression extension
(through the preg_match() function) was used in PHP, and the java.util.regex
package was used in Java. For MD5 encoding, the MD5 extension was used in PHP
and java.security.MessageDigest was used in Java. This experiment does not compare
exactly the same logic, but rather demonstrates that the use of PHP extensions is
competitive with Java using just-in-time compilation, as seen in Figure 2.

Fig. 2. Script Class Library/Extension Benchmark Performance

Although the pure script experiment showed three orders of magnitude difference
between the performance of various implementations of Java and PHP, the use of
PHP extensions (written in C) and compiled Java class libraries show much less
variation. In the extreme, the regular expression test showed a maximum performance
difference of about five times between Java and PHP, on the other end, the MD5 test
results were nearly equivalent between Java and PHP. Thus a inherent performance
risk of interpreted scripted languages such as PHP can be overcome with the use of
efficient library functions such as PHP extensions written in C.

 Performance Comparison of PHP and JSP as Server-Side Scripting Languages 169

4 PHP/JSP SPECweb2005 Benchmark Methodology

Although micro benchmarks are simple to implement and analyze, and are thus often
used in performance analysis, we next used the industry standard SPECweb2005
benchmark to understand the impact of different versions and configurations of PHP
and JSP in more realistic situations. The SPECweb2005 benchmark, developed by
the Standard Performance Evaluation Corporation (SPEC), is comprised of three test
scenarios based on common website usage: a banking site scenario, an e-commerce
site scenario, and a support site scenario. The banking site scenario allows for typical
encrypted account transactions with Secure Sockets Layer (SSL) libraries where 60%
of the data is generated through dynamic web pages. The e-commerce shopping site
allows a user to browse catalogs and “purchase” products using both encrypted and
unencrypted data. As shown in Table 2, experimentally about 5% of the data in the e-
commerce scenario is transmitted using SSL encryption and 70% of the data
transmitted is generated through dynamic web pages. Finally, the vendor support site
provides downloading of large unencrypted support files such as manuals and
software. As this scenario primarily allows for accessing large non-confidential static
files, there is no encryption, and only 12% of the data transmitted is generated
through dynamic web pages. Since SPECweb2005 is implemented in both PHP and
JSP, it is particularly well suited for comparing performance between the two
languages. Yet because every single officially published SPECweb2005 benchmark
result as of Summer 2008 was performed using JSP rather than PHP [12], this paper
provides a unique comparison of both implementations, which is valuable considering
the popularity of real world web servers based on PHP.

Table 2. Experimentally measured percentage of encrypted and dynamic data transfered for
each SPECweb2005 scenario

Banking Ecommerce Support
Percentage of encrypted data 100% 4.4% 0%
Percentage of dynamic data e.g., script output 59.5% 71.6% 11.7%

A typical SPECweb2005 test bed has multiple client machines controlled by a
Prime Client to provide a load on the System Under Test (SUT) to simulate hundreds
to tens of thousands of users accessing the scenario web sites. Although multiple
software components can run on the same physical system, a high level of distribution
is desirable to provide a realistic environment. For example, an average of 22 physical
clients were used in the officially published SPECweb2005 scores [12]. To reflect
modern multi-tier web server architecture, SPECweb2005 uses one or more machines
to serve as a Back End SIMulator (BESIM), emulating the function of a “Back End”
database server.

4.1 SPECweb2005 Benchmark Environment

We used a single System Under Test machine running the web server, a BESIM
server running the Back End SIMulation engine, a prime client machine, and three

170 S. Trent et al.

additional dedicated client machines. The computers were connected via a gigabit
Ethernet network. The System Under Test was an IBM IntelliStation M Pro with a
3.4 GHz Xeon uniprocessor running Fedora Core 7 (kernel 2.6.23), Apache 2.2.6, and
Lighttpd 1.4.18. Apache Tomcat was used as the JSP servlet container [1]. PHP
5.2.4, and Tomcat 5.5.25 were used in their respective tests. Tomcat was configured
to use an IBM implemented Java Virtual Machine: J9 VM 1.5.0 Build 2.3. The
standard distribution of SPECweb2005 was installed and configured as described in
SPEC documentation [12].

4.2 Testing Methodology

In addition to following the guidelines laid down in the SPECweb2005 documentation
[12] we developed a testing tool which could be configured to automatically run
multiple tests, iterating such variables as the script engine language (PHP, JSP), the
web server (Apache, Lighttpd), the number of simultaneous sessions, and the
SPECweb2005 scenario (banking, ecommerce, and support), and other tuning factors.
We varied the number of simultaneous sessions from 250 to 3000 by increments of
250. To ensure valid results, the SPECweb2005 test harness will abort individual tests
when the web server response threshold is exceeded. We used 3000 simultaneous
connections as our maximum because beyond this, with our configuration, it is rare
for a test to run successfully to completion. To avoid genetic skewing of data, this
paper only displays data for tests that ran successfully without repeated retries. Load
levels that may not run to completion are extremely unlikely to result in a suitable
Quality of Service (QoS) level to qualify as a valid SPECweb2005 test run.

To assure a fair comparison, before each individual test is initiated, our testing tool
restarted the SPECweb2005 client components, all middleware such as Tomcat, and
web server, and otherwise ensured that the environment on each system in this
distributed environment was in a consistent and receptive state. An officially
published SPECweb2005 benchmark score is a single value which based on three 30-
minute test runs from each of the three scenarios shows the performance improvement
over SPEC’s reference machine. This can be used to compare the relative perform-
ance of web serving hardware platforms from different vendors. Since our goal was to
analyze in detail how the use of different scripting languages and web servers affects
performance, we used internal metrics such as the number of good/tolerable/failed
requests served as reported from the SPECweb2005 test harness for each test. To
improve test coverage in the time available, we used 10-minute test runs rather than
the official 30-minute run, and only ran each test once rather than three times.
Although our test runs are not suitable for reporting as an official score, they are very
useful for identifying trends seen as over tens of tests, and variation seen with
identical test runs was small as demonstrated in Figure 3. The vmstat command was
also used to monitor such performance statistics as memory usage, swapping activity,
and CPU utilization [6]. No swapping activity was observed during our reported tests.
In separate test runs, we used the oprofile tool to identify process, module, and
function CPU utilization.

 Performance Comparison of PHP and JSP as Server-Side Scripting Languages 171

Fig. 3. Repeated test runs demonstrate similar results

We measured each of the SPECweb2005 scenarios with the following five
configurations of scripting language and web server with the goal of contrasting JSP
with PHP, and Apache with Lighttpd:

− JSP with Apache via mod_jk connector
− JSP with Lighttpd via mod_proxy module
− PHP with Apache via FCGI protocol
− PHP with Lighttpd via FCGI protocol
− PHP with Apache via in-process mod_php

While as the four potential combinations of two scripting languages and two web
servers are obvious, the methods for connecting scripting languages and web servers
are rather arcane. We chose connectors and connection methods based on availability
and general practice. mod_jk is a commonly used connector between Apache and
Tomcat using the Apache JServ Protocol (AJP). FCGI (Fast Common Gate Way
Interface) is a protocol developed by Open Market to improve the performance and
usability of the CGI model for web server to back-end (e.g., scripting language
engine) communication which is commonly used with the Lighttpd web server. In our
test, the Lighttpd mod_proxy module serves as a general purpose connector between
Tomcat and the Lighttpd web server. mod_php is a dynamically loadable module for
Apache which enables PHP script processing within the web server process via direct
function calls rather than interprocess communication as used by the other methods.
With Apache, mod_php is more common than FCGI for PHP script processing.

4.3 Tuning Considerations

Significant tuning effort was expended to ensure that performance was not limited by
obvious configuration limitations or trivial system resource limitations. We removed
unused daemons, services, and web server modules to reduce computational noise [8].

172 S. Trent et al.

When initial tests suffered from thrashing under high loads, we added more physical
memory, and paid attention to memory related tuning [6]. We considered guidelines
used by published SPECweb2005 results [12], and techniques described in Linux,
Apache, PHP, and Tomcat reference books and primary websites [2, 4, 6, 7, 8, 9, 14].
Although the Lighttpd web server is designed as a minimally threaded asynchronous
event-handling program, with Apache we used the single-threaded/multi-process
“prefork” model, since it considered more reliable and is more commonly used than
the multi-threaded “worker” model. The significant tuning parameters that we found
beneficial in our environment include the following.

Table 3. Significant Tuning Parameters

Tuning Modification Benefit
/etc/security/limits.conf

nofile 65536
Allow more files/sockets to be simultaneously

opened by specific user.
sysctl fs.file-

max=1000000
Allow more files/sockets to be open

simultaneously.
Apache

KeepAliveTimeout 2 on
SUT

Reduce time an httpd process spends waiting for
client response.

Apache
KeepAliveTimeout 28800
on BESIM

Enable BESIM to use persistent http connections
to reduce connection restart overhead.

Apache ServerLimit
1200

Specify enough httpd processes so that
connection availability is not a bottleneck, yet not so
many that httpd process memory usage causes
thrashing.

Apache
MaxRequestsPerChild 0

Avoid overhead of having httpd processes
restarted after receiving a certain number of
requests.

sysctl
net.core.so.maxconn=10000

Increase the connection queue size to prevent
denied connections.

vm.swappiness = 50 Improve caching throughput.
max*threads in

tomcat5/server.xml = 15000
Improve the response time provided by JSP.

APC extension compiled
into PHP

Improve PHP processing time. (Comparable to
using JIT in Java.)

tmpfs filesystem used for
/tmp

Improved performance for access to temporary
files in /tmp.

Lighttpd max-procs=16,
max-connections=8192,
max-fds=16484, max-
worker = 2

Ensure that lighttpd has sufficient sockets and
FCGI processes to avoid bottlenecks.

Non-error logging
minimalized

Avoid unnecessary overhead.

Debug modes disabled Avoid unnecessary overhead.

 Performance Comparison of PHP and JSP as Server-Side Scripting Languages 173

5 PHP/JSP Performance Benchmark Results

5.1 Overall Performance

Figure 4 shows the maximum performance for each configuration and scenario, as
determined by the maximum number of simultaneous sessions (e.g., users) which can
be supported with acceptable Quality Of Service as defined by SPEC. The results were
largely consistent between test scenarios, showing that JSP tended to perform better
than PHP (yet PHP with Lighttpd performs nearly as well as the JSP test cases), and
Lighttpd tends to perform better than Apache (yet, JSP with Apache performs nearly as
well as Lighttpd). Although the Ecommerce test scenario stands as it handles as much
as 50% more simultaneous sessions than the other scenarios, since the load per session
is not normalized between test scenarios, one must conclude that a single user
SPECweb2005 Ecommerce scenario session load is less than that of either a Banking
or Ecommerce scenario user session load. However, the fact that the high performing
JSP/Apache, JSP/Lighttpd, and FCGI PHP/Lighttpd configurations had a higher
percentage performance increase in the Ecommerce scenario than Apache using either
mod_php or FCGI PHP does emphasize the superiority of these configurations.

Fig. 4. SPECweb2005 Performance Peak

5.2 Throughput Results

Figures 5-7 show the number of tolerable (or better) requests fulfilled for each of the
configurations. At low loads, throughput performance is not gated by SUT resources,

174 S. Trent et al.

Fig. 5. SPECweb2005 Banking Scenario (Tolerable or better) Requests Completed

Fig. 6. SPECweb2005 Ecommerce Scenario (Tolerable or Better) Requests Completed

but rather simply by the amount of load placed by the SPECweb2005 test harness,
hence at low loads all configurations demonstrate nearly the same throughput. JSP
with both servers demonstrated the highest peak throughput in all tests, and generally
performed better than PHP under high loads.

Although the performance of PHP in performing fine grain tasks such as executing
trivial function calls and simple instructions has been shown to be hundreds of times
slower than C, PHP does relatively better at coarse grain activities such as calling
complex external libraries to perform actions such as DB access [10]. Ramana and
Prabhakar [10] use micro benchmarks to demonstrate that file I/O on PHP is more
efficient than, for instance, calculating Fibonacci numbers in PHP. (These results are
also consistent with the micro benchmarks we used in Section 3 of this paper.) Thus

 Performance Comparison of PHP and JSP as Server-Side Scripting Languages 175

Fig. 7. SPECweb2005 Support Scenario (Tolerable or Better) Requests Completed

we theorize that although all scenarios in SPECweb2005 contain a significant number
of fine grain tasks, the high level of file I/O performed in the SPECweb2005 Support
scenario allowed PHP to narrow the performance gap with JSP under high loads in
this case, as seen in Figure 7. This result implies that micro benchmarks of read
performance for large static files would be comparable between PHP and JSP.

Figures 8-12 show detailed results of the Ecommerce scenario for each of our five
configurations with test loads from 250 to 3000 simultaneous sessions. Similar
results are observed with the Banking and Support scenarios, which are omitted to
save space. Data on the number and quality of requests serviced at each point is
gathered and shown in these graphs. A “Good Response” is one that is returned to the
user within 2-3 seconds (depending on the scenario), a “Tolerable Response” is one
that is returned within 4-5 seconds (depending on the scenario), a “Failed Response”
is one that returns after that, and a “Validation Error” is a response which is incorrect
irregardless of how fast or slow it is. As observed earlier, performance under low
loads is the same with each configuration, since the limiting factor is simply the load
provided by the SPECweb test suite. As load increases, the expected shifting of
request categorization from Good to Tolerable to Failed is observable with all
configurations. This shifting can be directly predicted by the increase in average
response time reported by the SPECweb2005 test harness. The JSP Lighttpd
configuration demonstrated the best performance, but the JSP/Apache and PHP
(mod_php) Apache configurations continued to service 10-15% of their requests with
good Quality of Service even under extremely high loads, where the other
configurations did not. This indicates a wider standard deviation among request
response time, implying a potentially “unfair” (e.g., not FIFO) scheduling algorithm
with configurations that continue to return a percentage of “Good Responses” under
very high load.

176 S. Trent et al.

Fig. 8. SPECweb2005 Ecommerce Performance with JSP and Apache

Fig. 9. SPECweb2005 Ecommerce Performance with JSP and Lighttpd

 Performance Comparison of PHP and JSP as Server-Side Scripting Languages 177

Fig. 10. SPECweb2005 Ecommerce Performance with PHP and Apache (via FCGI)

Fig. 11. SPECweb2005 Ecommerce Performance with PHP and Lighttpd (via FCGI)

178 S. Trent et al.

Fig. 12. SPECweb2005 Ecommerce Performance with mod_php and Apache

5.3 CPU Usage

Not surprisingly, using oprofile to profile CPU usage for each test scenario at the
maximum throughput level shows that the ratio of CPU time spent in script engine vs.
web server depends on both the test scenario and the web server configuration, as
seen in Figures 13-15. This implies that improvements to either the language runtime,
or the web server will result in performance increase. In Figure 14 we observe that
encryption accounted for a large amount of web server CPU time when used (e.g., in
the Banking scenario), and of course that scenarios with a higher percentage of

Fig. 13. High-Level View of CPU Usage for Each SPECweb Scenario

 Performance Comparison of PHP and JSP as Server-Side Scripting Languages 179

Fig. 14. Detailed View of CPU Time Used within Web Serving Processes

Fig. 15. Detailed View of CPU Time Used within Scripting Engine

dynamic data created by scripting engines tended to use more time in the script
engine. The high percentage of SSL computation time spent in the Lighttpd as
compared with Apache was puzzling until we identified that SSL connection
negotiation data is not shared among multiple Lighttpd processes as it is with Apache.
Data from vmstat show that the kernel accounted for 34-44% and user time
accounted for 36-59% of CPU time. The seemingly high levels of system time are
reasonable considering the disk and network I/O involved in running the SPECweb
benchmark. At the function level, the memcpy() function call was observed as being
a significant consumer of CPU in every configuration, implying that additional
application of the zero-copy principal may be warranted [19].

180 S. Trent et al.

6 Discussion

One of the first questions which comes to mind when reviewing the performance
benchmark results is, “Why does JSP tend to perform better then PHP under high
loads?” One major reason is the Java Just in Time (JIT) Compiler. Although JIT has
been compared with PHP APC, APC is merely a bytecode cache which reduces the
need for re-interpretation of source code, whereas JIT enables the execution of highly
optimized local machine instructions. This is reflected in Figure 14, where Java with
JIT shows the least time spent in the runtime engine. Another factor is that JSP
realizes parallelization through the threading model, whereas the commonly used
Apache worker/mod_php approach adopted in this testing realizes parallelization
through the use of multiple processes. Thus under high CPU loads, one would expect
less scheduling and context switch overhead with the threading model used with the
JSP implementation.

Another seemingly anomalous point is that PHP used with Lighttpd outperformed
JSP under high loads in the Support scenario, implying that PHP can handle I/O better
than JSP. Initially, one would expect different performance characteristics of a
program such as the PHP runtime which is written in low level C, and that of the Java
based JSP environment. The difference in web server architectures also plays a factor,
where the asynchronous event-handling approach used in Lighttpd appears preferable
to Apache’s multi-process “prefork” approach. The use of in-process language
processing appears successful when reasonably lightweight, as is the case with
mod_php. Likewise, external language processing as with Tomcat seems to be
successful by avoiding replication of a heavy-weight JVM for each process. The
external language processing approach via FCGI also appears highly successful with
Lighttpd. The internal mod_php approach offers the advantage that data read from
disk is immediately available to Apache, since the PHP engine runs in the same
address space as the Apache daemon. However, the JVM used with JSP as well as
PHP accessed via FCGI runs in a separate process and thus incurs domain socket
communication overhead to transmit file data from one process to another, as well as
potential inefficiencies from process context switching and coordination.

7 Related Work

Titchkosky and associates established that serving dynamic web content can reduce
throughput by 8 times as compared with static web content [13], providing our team
with encouragement to identify methods to reduce the negative performance impact of
using scripted language dynamic web content. Ramana and Prabhakar analyzed the
performance differences between PHP and compiled languages such as C, pointing out
the relative performance downside of PHP [10], which corresponds with our tests on
pure-script implemented benchmarks vs. scripts using standard class library or PHP
extensions implemented in C language. The upside of our benchmarking is that we
found the use of C-language PHP extensions for computationally intensive functions to
enable PHP scripts to perform comparably with Java. Cecchet and colleagues analyze
various middleware architectures based on technology such as Apache, PHP, Tomcat,
MySQL, and JOnAS [3, 17], which helped guide our methodology. Warner and Worley

 Performance Comparison of PHP and JSP as Server-Side Scripting Languages 181

describe the importance of using technology such as PHP rather than just JSP for real-
world benchmarking with SPECweb2005 [18]. We have contributed to this line of
reasoning as we were motivated to write this paper since we have not seen data from
an industry standard web server benchmark that provides a detailed comparison of the
performance PHP and JSP as a web server dynamic scripting language.

8 Conclusion

When implementing a web server system which will never experience high load, or in
which performance, throughput, and reliability under high load is not an issue, then
the use of any of the analyzed languages or web servers will achieve similar
performance results. If outstanding performance and throughput is the primary goal,
then the use of JSP over PHP is advisable. However, if a 5-10% difference in
throughput and performance is acceptable, then the implementer of a web system can
achieve similar results using either PHP or JSP. In which case, other requirements
such as developer language familiarity and programming efficiency, maintainability,
security, reliability, middleware compatibility, etc. would be the deciding factors. It is
also reassuring to developers of both language runtimes and web servers, that
enhancements to either can offer performance improvements to the community.

Acknowledgements

We are appreciative of the many useful discussions with Graeme Johnson and
Andrew Low, from the IBM Ottawa Software Lab, which have provided valuable
direction. Mathematical guidance from Mei Kobayashi, and perceptive feedback
from the Systems Department, both at the IBM Tokyo Research Laboratory resulted
in a more consistent and rigorous analysis. We are also deeply indebted to the
feedback and comments regarding PHP and SPECweb2005 testing which we received
from the PHP team at IBM Hursley.

References

1. Apache Software Foundation (2008), http://tomcat.apache.org
2. Bergsten, H.: Java Server Pages. O’Reilly, Sebastopol (2003)
3. Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., Zwaenepoel, W.: Performance

Comparison of Middleware Architectures for Generating Dynamic Web Content. In: 4th
ACM/IFIP/USENIX International Middleware Conference (2003)

4. Chopra, V., Galbraith, B., et al.: Professional Apache Tomcat (2003) ISBN 0-764-5372-5
5. IBM (2006),

 http://www-03.ibm.com/press/us/en/pressrelease/19822.wss
6. Johnson, S., Huizenga, G., Pulavarty, B.: Performance Tuning for Linux Servers. IBM

Press (2005) ISBN 0-131-44753-X
7. Lecky-Thompson, E., Eide-Goodman, H., Nowicki, S., Cove, A.: Professional PHP5.

Wrox Press (2005) ISBN 0-764-57282-2

182 S. Trent et al.

8. Petrini, F., Kerbyson, D., Pakin, S.: The case of the Missing Supercomputer Performance:
Achieving Optimal Performance on the 8,192 Processors of ASCI Q. In: Proceedings of
IEEE/ACM SC (2004)

9. PHP Group (2008), http://www.php.net
10. Ramana, U., Prabhakar, T.: Some Experiments with the Performance of LAMP

Architecture. In: Proceedings of the 2005 Fifth International Conference on Computer and
Information Technology (2005)

11. Security Space (2007), http://securityspace.com
12. Standard Performance Evaluation Corporation (2008), http://www.spec.org
13. Titchkosky, L., Arlitt, M., Williamson, C.: A Performance Comparison of Dynamic Web

Technologies. In: 11th IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer Telecommunications Systems (2003)

14. Wainwright, P.: Professional Apache 2.0 (2002) ISBN 1-861-00822-1
15. Wu, A.W., Wang, H., Wilkins, D.: Performance Comparison of Alternative Solutions For

Web-To-Database Applications. In: Proceedings of the Southern Conference on
Computing (2000)

16. Garcia, D.F., Garcia, J.: TPC-W E-Commerce Benchmark Evaluation. IEEE
Computer 36(2), 52–48 (2003)

17. Amza, C., et al.: Specification and implementation of dynamic Web site benchmarks. In:
Proceedings of the 5th IEEE Workshop on Workload Characterization (2002)

18. Warner, S., Worley, J.: SPECweb2005 in the Real World: Using Internet Information
Server (IIS) and PHP. In: 2008 SPEC Benchmark Workshop (2008)

19. Stancevic, D.: Zero Copy I: User-Mode Perspective. Linux Journal 3(105) (2003)

Debugging and Testing Middleware with
Aspect-Based Control-Flow and Causal

Patterns�

Luis Daniel Benavides Navarro, Rémi Douence, and Mario Südholt

OBASCO project; EMN-INRIA, LINA
Dépt. Informatique, École des Mines de Nantes

4 rue Alfred Kastler, 44307 Nantes cédex 3, France
{lbenavid,douence,sudholt}@emn.fr

Abstract. Many tasks that involve the dynamic manipulation of mid-
dleware and large-scale distributed applications, such as debugging and
testing, require the monitoring of intricate relationships of execution
events that trigger modifications to the executing system. Furthermore,
events often are of interest only if they occur as part of specific execu-
tion traces and not all possible non-deterministic interleavings of events
in these traces. Current techniques and tools for the definition of such
manipulations provide only very limited support for such event relation-
ships and do not allow to concisely define restrictions on the interleaving
of events.

In this paper, we argue for the use of aspect-based high-level program-
ming abstractions for the definition of relationships between execution
events of distributed systems and the control of non-deterministic inter-
leavings of events. Concretely, we provide the following contributions: we
(i) motivate that such abstractions improve on current debugging and
testing methods for middleware, (ii) introduce corresponding language
support for pointcuts and advice defined in terms of causal event se-
quences by extending an existing aspect-oriented system for the dynamic
manipulation of distributed systems, and (iii) evaluate our approach in
the context of the debugging and testing of Java-based middlewares, in
particular, JBoss Cache for replicated caching.

1 Introduction

Many tasks that involve the dynamic manipulation of middleware and large-scale
distributed applications, such as debugging and testing, require the monitoring
of intricate relationships of execution events that trigger modifications to the
executing system. Such relationships, which often include events occuring on dif-
ferent hosts, have to be defined declaratively as well as monitored and modified
efficiently. Consider, for instance, coherency of replicated data under transac-
tional control in middleware cache infrastructures, such as JBoss Cache: in this
� Work partially supported by AOSD-Europe, the European Network of Excellence in

AOSD (www.aosd-europe.net).

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 183–202, 2008.
c© IFIP International Federation for Information Processing 2008

184 L.D. Benavides Navarro, R. Douence, and M. Südholt

case, the correctness of sequences of events corresponding to executions of two-
phase-commit protocols involving multiple machines has to be checked. Further-
more, execution events of a distributed system frequently are of interest only if
they occur as part of specific execution traces but not in the presence of different
interleavings of the events that are part of those traces and occur due to non-
deterministic executions. The definition of reproducible test cases, for instance,
frequently requires constraints to be imposed on non-deterministic executions.

Several approaches to define such relationships among and constraints on
events in distributed systems have been proposed. Such approaches include, for
example, causal event relationships based on logical clocks [1, 13, 17], data path
expressions for concurrent programs [23], and control-flow based event relation-
ships [18]. However, such declarative means for the definition of event relation-
ships have not been integrated into mainstream middlewares and corresponding
support in current tools for the debugging and testing of distributed infras-
tructures is very limited. Intricate relationships between distributed events and
restrictions on the interleavings of concurrent events can be directly defined
in current execution environments only in terms of conditions on the execution
state of individual hosts. Hence, relationships involving multiple hosts have to be
expressed using complex encodings that are difficult to understand, to maintain,
and result in inefficient event monitoring and execution of modifications.

In this paper, we argue for the use of high-level abstractions for the definition
of relationships between execution events of distributed systems, their modifica-
tion and the control of non-deterministic interleavings of events. Concretely, we
provide three contributions. First, we motivate that such mechanisms improve
on current debugging and testing methods for distributed systems, in particular,
real-world middleware infrastructures (Sec. 2). Second, we introduce correspond-
ing aspect-based programming language support that provides declarative means
to monitor and modify causal sequences of events in pointcuts and advice. We
present suitable language support (Sec. 3) and a corresponding implementation
(Sec. 4) in terms of an extension of the AWED language and system [2, 4] for the
dynamic manipulation of distributed systems using distributed aspects. Third,
we evaluate our approach in Sec. 5 in the context Java-based middlewares, in
particular, for debugging and testing of JBoss Cache, a Java-based middleware
for replicated caching, and ActiveMQ, the Apache message broker. We also show
how current best practices for the debugging and testing of distributed systems
can be improved using our approach in a practical and efficient manner. Related
work is discussed in Sec. 6 and a conclusion given in Sec. 7.

A copy of the code, the benchmarks and evaluations in the context of JBoss-
Cache and ActiveMQ can be found at [2].

2 Motivation

In this paper, we argue for the use of sophisticated relationships between events
to be used to monitor and manipulate middleware and distributed infrastruc-
tures. We claim, in particular, that control-flow based relationships, sequence

Debugging and Testing Middleware with Aspect-Based Control-Flow 185

relationships and events that are causally-connected, e.g., with respect to a no-
tion of logical time, are crucial in this context. In this section, we motivate these
claims for typical debugging and testing tasks of distributed infrastructures.

2.1 Expressive Breakpoints for Distributed Debugging

Current tools for distributed debugging, such as Eclipse and the Distributed
Debugging Tool [12, 26], apply debugging techniques for sequential programs to
distributed applications. Such tools almost always employ a centralized debug-
ging component that coordinates execution of independent local debuggers that
only support breakpoints in terms of local entities (e.g., updates of local objects,
local files, etc.). The distributed debugger can match local breakpoints in differ-
ent machines and control the execution by, e.g., stopping it and inspecting the
local state of different machines. However, this kind of tools has not been widely
adopted by developers, mainly because they do offer only small added value over
the use of sequential debuggers on a per-machine basis.

We argue that there are two major reasons for this lack of added value:

– Lack of means for the expressive definitions of distributed breakpoints in-
volving, in particular, control flow and sequence relationships between dis-
tributed execution events.

– Lack of means to handle non-determinism in distributed and concurrent
applications.

In the following, we consider three basic debugging scenarios that frequently
occur in middlewares to illustrate these issues involving control-flow relation-
ships and non-deterministic relationships among events, especially ones involv-
ing causally-connected events (thus effectively extending discussions in recent
work on distributed debugging [18, 20]).

Debugging control flow. As a first example, consider a distributed appli-
cation that uses synchronous remote method invocation (e.g., Java RMI) for
communication between three different hosts. A developer may be interested in
setting a line breakpoint in one host, H say, that is triggered only in the dynamic
extent of a (previous) method call occuring on another host G. Note that such
debugging scenarios are based on (typically implicit) specifications of correct
program behavior. e.g., that an erroneous execution path is characterized by the
sequence of calls G;H on the mentioned hosts where H occurs before the call to G
returns. Using current tools, the developer has three options:

– She can apply a breakpoint to the method called on host G and once this
match is triggered she can, at runtime, add the line breakpoint at H. However,
in this case all subsequent occurrences of the second breakpoint are matched:
identifying a specific call of interest can be very difficult.

– The programmer could pollute the original code with state information to
track the necessary control flow dependencies (i.e., store state information
that then has to be suitably forwarded to the other hosts) and match the
specific breakpoint in H.

186 L.D. Benavides Navarro, R. Douence, and M. Südholt

– The programmer could add a breakpoint directly on the execution of H,
match the corresponding breakpoint there without taking into account the
originating control flow and decide manually what to do at each match.

Using (formal or informal) reasoning mechanisms, all of these options could be
proven to correctly identify the erroneous path with respect to the specifications
above. However, clearly none of these situations is acceptable, because they are
tedious to implement and are highly error prone. All three represent common
practice with current debuggers for distributed middleware and applications,
though.

Debugging non-deterministic event relations. Events that may occur con-
currently and that should trigger debugging operations only if they are in-
terleaved in specific ways further complicate matters. Debugging of replicated
caching infrastructures, for example, may involve replication actions that orig-
inate from the same transaction but are triggered asynchronously (e.g. as part
of a two phase-commit protocol). Errors often depend in this case on the order
in which the replication actions are applied but the decision, as part of a debug-
ging action, whether two actions occur in the relevant order is difficult to take if
debugging processes (as is often the case) may introduce arbitrary delays in the
observation of events.

Since current debugging tools do not provide abstractions to concisely express
such cases, programmers once again have to resort to manually encode and
interpret distributed state by applying one of the three options introduced above.
This approach becomes, however, rapidly unmanageable if many events and
many hosts are involved.

Often such debugging tasks can be much facilitated by ensuring that occur-
rences of events obey strict ordering requirements, possibly imposing determinis-
tic sequences of events in a previously non-deterministic systems. This is useful,
in particular, in order to systematically explore possible erroneous traces. Once
again current debuggers do not support such facilities, but have to resort to
encodings of distributed state. Extending previous work [14, 18, 20, 23] that
has highlighted casual relationships as a means to remedy this problem, our
approach seamlessly integrates notions of causality with expressive control-flow
based event relationships.

2.2 Test-Driven Development

Current techniques for the test-driven development for distributed applications
are also limited by a lack of support for the expression of distributed event
relationships. Distributed unit test cases, in particular, are almost always imple-
mented by means of sequential abstractions that test conditions of distributed
concerns on the local state of individual machines. For example, test cases related
to replication in JBoss Cache [15] frequently use a seemingly intuitive testing
scenario: a test case is defined in terms of two cache instances, such that after
an operation on a source cache, the state of the second cache can be tested to

Debugging and Testing Middleware with Aspect-Based Control-Flow 187

compare the new and old versions. This idiom seems obvious and simple; how-
ever, it does not allow to take into account, for example, the communication
behavior, such as sequences of intermediate synchronous or asynchronous calls,
which obviously may strongly interfere with the cache behavior. Consequently,
the definition of reproducible test cases are subject to the same restrictions as
discussed above, for example, if reproducibility depends on specific interleavings
of a set of concurrent events being tested (that are part of a potentially much
larger set of possible interleavings).

3 Language Support

In this section we propose a language to support manipulations and evolutions
of distributed applications. It is based on the AWED system (Aspect With Ex-
plicit Distribution [4, 6]): that explicitly supports monitoring of sequences of
distributed execution events that trigger dynamic modifications. This enables
us to concisely express different debugging scenarios involving control-flow and
sequence-like relationships between events. Furthermore, we introduce in this
paper an extension of AWED in order to support causally-related events and
causal communications (based on an event reordering mechanisms).

3.1 The AWED Language

Aspect Oriented Programming supports separation of concerns. An aspect modi-
fies a base application: its pointcut specifies points of interest (i.e., events) in the
base application execution and its advice specifies a piece of code to be executed
before, after, or instead of such a point of interest. In this paper, a pointcut can
denote a single event (e.g., a method call) or a sophisticated sequence of events.
The base application and the aspect are woven into a single application where
the aspect monitors the base program execution and triggers its advice.

AWED supports AOP in a distributed context. In particular, a pointcut can
monitor events on several hosts. A sequence of events can involve different hosts.
An advice can be executed remotely, synchronously or asynchronously to the
base execution. Furthermore, an aspect can be deployed on a group of hosts.

The grammar shown in Fig. 1 shows the essentials of pointcut definitions
in the AWED language (the full language definition can be found in [6]). The
pointcut language allows matching of method calls (terminal call), nested calls
(cflow means control-flow) and arbitrary (regular) sequences of method calls
(non-terminal Seq). The constructors host and on specify (groups of) hosts
where a pointcut is matched (or where an advice is executed). The constructors
target and args bind values (such as the receiver or the arguments of a method
call) to variables. This enables values to be passed from a matching execution
event to the corresponding advice. Pointcuts can be composed using logical op-
erators (union, intersection and complement). Sequences (Seq) are defined in
terms of transitions of non-deterministic finite-state automata. An automaton
is a set of transitions Step. Each transition has a label id and its pointcut Pc

188 L.D. Benavides Navarro, R. Douence, and M. Südholt

// Pointcuts

Pc ::= call(MSig) | cflow(Pc) | Seq
| host(Group) | on({ Hosts })
| target({Type}) | args({Arg})
| Pc ‖ Pc | Pc && Pc | !Pc

Seq ::= Id : seq({Step}) | step(Id ,Id)
Step ::= Id : Pc →Target
Target ::= Id ‖ ... ‖ Id
Hosts ::= localhost | jphost | ”Ip:Port” | GroupId

Fig. 1. The AWED language (excerpts)

non-deterministically leads to a set of Id . The constructor step identifies the
transition in the automaton that should trigger advice.

3.2 Distributed Debugging with AWED

AWED can be applied to debug intricate relationships between execution events.
It generalizes previous approaches to the debugging of control-flow based rela-
tionships between events. In this subsection we show how the original AWED
model allows to handle debugging problems expressed in terms of control-flow-
based and arbitrary sequence-based relationships between distributed events.

Distributed control flow. Sequences of calls that are nested within each
other’s control flow can be defined using the cflow pointcut constructor. Ex-
tending Nishizawa’s et al. [22] work, AWED supports control-flow pointcuts
over distributed executions taking into account Java’s thread model as well: it
enables matching of sequences of events that originate in local threads, span
threads spawned at remote locations, and spawned child threads. The control-
flow model is also transparent regarding synchronous and asynchronous commu-
nication contexts.

As an example consider testing and debugging of JBoss Cache as presented
in the motivation section. A concrete problem of the two-phase commit protocol
consists in ensuring that remote calls to prepare methods are always triggered
by a corresponding call at a local cache site. A remote call that has not been
appropriately triggered can be caught by the following pointcut:

!cflow(call(∗ Transaction.prepare(..)) && host(”source”))
&& call(∗ Cache.remotePrepare(..)) && host(”target”)

This pointcut matches all the calls to the remotePrepare method on hosts be-
longing to the host (or host group) target that are not in the distributed control
flow of calls occurring at source hosts. Hence, a simple pointcut definition can
address the complexity of a distributed control flow breakpoint. Such control-
flow relationships for debugging have already been studied, e.g., as part of Li’s
work [18] for distributed (CORBA and COM) component-based systems and
Chern and De Volder’s work on sequential control-flow based breakpoints [9]: we

Debugging and Testing Middleware with Aspect-Based Control-Flow 189

extend such approaches by supporting the notion of control flow in the presence
of asynchronous and synchronous method calls.

Distributed sequences of events. As introduced above, AWED supports
pointcuts over sequences of execution events, e.g., sequences of calls that do not
have to be nested into other calls of the sequence. Hence, such sequences allow
the definition of more general event-based contexts than the control-flow based
event sequences considered above.

In the context of the debugging of JBoss Cache, for example, a very frequent
requirement consists in the definition of contexts depending on the activation
state of the cache. Concretely, one may want to identify remote put operations
(which introduce data in the cache) that occur after the local cache has been
initialized and before it has been stopped. A corresponding pointcut can be
specified in AWED as follows:

a1 : seq(start > t1,
t1: call(∗ Cache.start(..)) && host(localhost)> t2 || t3,
t2: call(∗ Cache.put(..)) && !host(localhost) > t2 ||t3,
t3: call(∗ Cache.stop(..)) && host(localhost) > t1)

&& step(a1,t2)

Fig. 2. Graphical represen-
tation of a start-action(s)-
stop automaton

This pointcut defines an automaton named a1
having three transitions t1, t2 and t3: once started,
put operations can occur or the cache can be
stopped. Note that the start and stop operations
of the cache are matched on the local host, while
the put operations must not occur on the local
host. The term step(a1, t2) allows an advice to
be triggered relative to a specific transition t2 of
the automaton. At the first line start > t1 defines
that the initial transition is t1. The expression t1:
pointcutDef > t2 || t3 is interpreted as follows: if pointcutDef matches the
current event, then the automaton is now ready to accept an execution event as
defined by t2 or t3. Figure 2 shows the graphical interpretation of the defined
automaton.

The expressive power of our approach is mainly determined by the expres-
sivity of our pointcut language. AWED basically provides regular pointcuts. An
extension by guards on transitions of the corresponding finite-state machines,
thus providing a turing-complete pointcut language, is however unproblematic
(and is provided as part of the existing implementation). This feature would also
allow to directly characterize concurrent and timed events. By explicitly provid-
ing regular pointcuts, existing analysis techniques of, e.g., deadlocks using model
checking of distributed and concurrent systems, should be applicable. This is,
however, subject of future work.

A second element determining the power of our approach is the granularity of
events that can be referred to by pointcuts. We have restricted the pointcut lan-
guage deliberately to method calls: a more fine-grained event model that would

190 L.D. Benavides Navarro, R. Douence, and M. Südholt

allow, e.g., to refer to the evaluation of subexpressions of arithmetical expres-
sions (that are supported by some aspect approaches) could incur considerable
execution overhead and are less relevant for the debugging of middlewares.

The case for causality relationships. Sequence pointcuts in AWED do not
guard against problems of the underlying communication network, in particular
concerning message delivery such as inversion of sent messages due to random
delays in message transmission. The previous sequence pointcut involving start,
put and stop on JBoss Cache events is unproblematic in this respect since
message inversions resulting in put operations outside the ordinary operating
conditions of cache can be easily filtered out by additional pointcuts if necessary.
In other cases, e.g., inversion of bank deposits and withdrawals, such problems
would however wreak havoc.

Generally, AWED’s automata-based pointcuts are therefore subject to two
problems:

– They may not match valid sequences of events that happen to arrive in the
wrong order at the host where the sequence is to be matched.

– They may match wrong sequences that stem from events that occur at differ-
ent hosts in the wrong order but whose order has been inverted, e.g., because
of message delays, at the host where the sequence is matched.

An AWED developer has to take care in order to avoid these problems: either
by the careful definition of pointcuts and manual synchronization of distributed
executions or by ensuring that additional constraints on the base application’s
semantics exclude them. The next subsection proposes new language constructs
to enable pointcuts to directly support causality relationships and ordering con-
straints of messages.

3.3 AWED with Causal Pointcuts

Much research work has been done on orderings of distributed events starting
with Lamport’s landmark paper [17] on the use of logical time. In particular,
vector clocks [19] can be used to enforce causal relations between events and
implement causal communication by reordering events. We now show how we
have integrated these notions into AWED.

Causal sequences without reordering. To extend AWED with causal in-
formation, without including reordering of messages, we have introduced a new
sequence constructor seqCausal and two transition modifiers, causal and conc,

// Pointcuts
Seq ::= Id : SeqCons({Step}) | step(Id ,Id)
SeqCons ::= seq | seqCausal | seqCausalOrder

Step ::= [[!]causal | conc]Id : Pc →Target

Fig. 3. AWED with causal pointcuts

Debugging and Testing Middleware with Aspect-Based Control-Flow 191

see Fig. 3. The two modifiers respectively ensure that the labelled transition is
causally related to or concurrently executed with respect to the transitions lead-
ing to the start state of the labelled transition. The constructor seqCausal is
syntactic sugar for sequence pointcuts whose transitions are by default labelled
as causal unless they have been explicitly declared using conc to execute con-
currently.

As an example let us consider the following pointcut definition:

a1 : seqCausal(causal s1: call(∗ Cache.prepare(..)) && host(”source”) > s2,
conc s2: call(∗ Cache.commit(..)) && host(”target”) > s1)

&& step(a1, s2)

This sequence matches a prepare event in a JBoss Cache transaction, followed
by a commit only if it is not causally related to the prepare event. Then the
following prepare event is matched only if it is causally related to the previous
matched commit event. This pointcut can therefore be used to test for unex-
pected calls to commit methods. As we show in the evaluation section, Sec. 5,
this pointcut is useful to test for a real bug that affected the JBoss Cache in-
frastructure.

Causal pointcuts with reordering. Causal pointcuts without reordering only
enforce that causally-related events are matched but they do not ensure all
sequences will be matched.

To resolve this second problem, we harness the property — already demon-
strated by Lamport’s totally ordered broadcast operation [17] — that logical
time values cannot only be used to test for causality relationships but that they
also support the reordering of messages that arrive at a host in the wrong order.
To allow reordering according to causal relationships, we have extended AWED
with a third sequence pointcut constructor, seqCausalOrder that ensures that
all causal relations are matched by, if necessary reordering, incoming events. Its
semantics ensures that each event is delayed to wait for the event that precedes
it causally.

As a concrete example, the following pointcut can be used to ensure that
commit operations are correctly interleaved with prepare operations:

a1 : seqCausalOrder(
t1: call(∗ Cache.prepare(..)) && host(”source”) > t2 || t3,
t2: call(∗ Cache.commit(..)) && host(”target”) > t1,
t3: call(∗ Cache.prepare(..)) && host(”source”))

&& step(a1, t3)

Indeed, a cache web repeats sequences of prepare commit. So, two prepare
should never occur in a row (transition t3): an error should be reported in
this case. In order to prevent reporting of spurious errors (e.g., when a commit
occurs before prepare but is monitored after it) the messages must be ordered
as specified by seqCausalOrder.

Note that this construct requires a larger overhead than the one without
reordering. In particular with the previous construct the events are consumed
as soon as they arrive, and causality is only an additional test defined by the

192 L.D. Benavides Navarro, R. Douence, and M. Südholt

causal and conc labels. In the case of causally ordered sequences, messages are
delayed and processed only once all the causally preceding messages are received.
The causal and conc labels are automatically supported in the totally ordered
construct (they do not pose an additional overhead).

4 Implementation

In this section, we present how distributed aspects with support for causal events
and message reordering have been implemented by extending the non-causal
implementation of the AWED system [4, 5]. Note that while we present a Java-
based implementation (and an evaluation of Java-based middlewares in the fol-
lowing section), conceptually our approach is not tied to Java. The Arachne
aspect system, for instance, features (non causal) regular sequence pointcuts for
C applications and has been applied to the modification of network protocols
used for the communication in distributed systems [11].

In the following, we first present the overall architecture of the resulting sys-
tem. Second, we discuss how AWED can be used to test causality on distributed
infrastructures that have not been prepared for the provision or use of causality
information. Third, we discuss the implementation of the framework that sup-
ports causal finite state machines to support causal sequences without message
reordering. Finally, we will present the mechanisms for message reordering that
were included to support the pointcut construct seqCausalOrder.

4.1 AWED Architecture

AWED is a dynamic aspect language that weaves aspects with classes at load
time and allows aspect deployment and undeployment at execution time. Its
implementation presents an optimized partially evaluated interpreter for dis-
tributed aspects. Figure 4 shows the overall architecture, i.e., its compilation
chain and the main structures of its runtime framework. In the top left part of
the figure we can see how the application and aspect code is compiled into
Java bytecode. The bytecode is then read by AWED’s instrumentation and
transformation framework at load time, producing a version of the application
that is instrumented at the necessary joinpoints (here a subset of the method
calls). When executing the instrumented application, and once it reaches an in-
strumented joinpoint, the application dispatches joinpoint notifications to the
Registry framework that takes care of the recognition of distributed sequence
pointcuts. This framework passes the joinpoint notification to each aspect in-
stance, that, in turn, evaluates each joinpoint to match pointcuts and to ap-
ply advice. An AWED runtime framework, including a registry, is running at
runtime on each logical host, i.e., JVM. In order to support remote pointcuts
each registry, i.e., each JVM, communicates joinpoint notifications to the other
JVMs using an extension of the JGroups framework [16], one of the most popular
Java-based middleware for group communication. This part of the infrastructure
contains all necessary support for non-causal event relationships, in particular
remote regular sequence pointcuts.

Debugging and Testing Middleware with Aspect-Based Control-Flow 193

In figure 4, we have also detailed the two main extensions incorporated to the
runtime framework in order to support the causal constructs. First, the commu-
nication framework (see the box labelled “JGroups extension” in the figure) has
been extended to support causality-supporting protocols. The extended JGroups
component uses the original JGroups framework augmented with specific proto-
cols for causality. In the figure we show a traditional protocol stack that supports
different protocols, including the User Datagram Protocol (UDP). The protocol
stack shows, at the top, the Causal AWED protocol. This protocol can be any
of two new protocols that we have implemented. Second, the pointcut class hi-
erarchy (see the class diagram for causal pointcuts highlighted in magnifying
glass in the figure) has been augmented by support for causal sequence-based
aspects, concretely by support for causal pointcuts with or without reordering
and a notion of transition guards. In the following we present both extensions
in some more detail.

Causality-supporting protocols. The two new protocols that support causality do
not modify actual communication, but just handle causality and delegate actual
communication to the other protocols in the protocol stack. The first proto-
col that we have implemented is the Causal tags + clock increase protocol.
This protocol tags the distributed messages with a vector clock time, and will
calculate the value of the new vector clock times at a host upon arrival of new
messages. This protocol can be used to detect causal relations, but it can not

Fig. 4. AWED architecture

194 L.D. Benavides Navarro, R. Douence, and M. Südholt

be used to impose causal ordering of messages. The second protocol that we
have implemented is Causal tags. This is a more lightweight protocol that tags
messages with vector clock times but does not update the vector clock. This
protocol can be used with specialized adapters to add causality information to
distributed infrastructures and applications that have not been aware of causal-
ity information in the first place.

4.2 Adding Causality to Non-causal Distributed Applications

Most distributed infrastructures and applications do not implement causality
natively. Adapting such applications to support causality typically is very cum-
bersome and error prone. To avoid this problem, we propose specialized adapters
that can be used to instrument causality transparently in legacy applications.
To prove that this is a feasible solution we have implemented an adapter for
RMI based applications, thus covering a wide spectrum of distributed Java ap-
plications. This adapter is realized using Java’s notion of customized sockets.

The adapter basically implements a mechanism similar to that provided by
the Causal tags + clock increase protocol. Thus, each message in the legacy
application is now tagged with a vector clock and a local vector clock is updated
upon arrival of each RMI message. This connector can be combined with the
AWED framework that is running the Causal tags protocol to detect causal
relations in the legacy application. This deployment do not need any partic-
ular modification of the legacy application. To use the specific connector, the
programmer just specifies an option for the JVM when invoking AWED.

Causal sequence constructs with guarded finite state machines. In order to im-
plement the causal sequence construct as presented in section 3 we have modified
the compiler and the runtime infrastructure of the previous non-causal execution
system of AWED. The previous AWED system has already used finite state ma-
chines to support regular sequence pointcuts. The corresponding implementation
evaluates each join point and, depending on the current state of the automaton,
accepts or rejects a joinpoint. In case of acceptance, a state transition is executed
before executing the advice. We have extended this model to support guards.
Thus, at compile time the state machine is constructed with specific guards,
mainly to support the causal tests required by causal relationships expressed
using the conc or causal transition modifiers.

At runtime, the new execution system includes two major extensions. First,
before accepting or rejecting a joinpoint, the state machine evaluates the corre-
sponding guard, e.g., the causal information of the current joinpoint, and if the
guard is satisfied the joinpoint is evaluated. The second modification address
the management of vector clocks: evaluation of causal regular sequences has to
compute a new value for the vector clock each time that it accepts a joinpoint.
This approach has a major benefit compared with other frameworks implement-
ing causality: finer grained control over events tagged with vector clocks and, as
a consequence, less performance overhead.

To implement the causal sequence construct with reordering we have fur-
ther extended the automata-based pointcut recognition component. Each such

Debugging and Testing Middleware with Aspect-Based Control-Flow 195

component now has its own vector clock that is advanced each time a message
is processed (including messages not in the alphabet of the state machine). To
address reordering, the state machine uses a delay queue where it stores the
messages that do not arrive in the right (causal) order. The messages in this
queue are causally ordered but not necessarily consecutive. Upon arrival of a
new message it gets evaluated: if it is accepted and if the message causally is
the next message with respect to the vector clock of the state machine, it is
processed and the first message in the delay queue is evaluated again.

Finally, a note on the scalability of our approach: Concerning scalability of the
pointcut matching, the principal property is that the AWED architecture (cf.
Fig. 4) does not impose any centralized control, in particular, for the monitor-
ing of pointcuts that involve causal relationships. The other components of the
AWED architecture (principally matching of other pointcut types and execution
of remote advice) do not require central control either as discussed as part of
our previous work [4].

5 Evaluation

In this section we present a qualitative and quantitative evaluation of our ap-
proach using JBoss Cache [15], a Java-based middleware infrastructure for repli-
cated caching (part of JBoss middleware tools). First, we analyze a non-trivial
test case for replicated caching and show that aspects based on control-flow
and causal patterns significantly improve the corresponding debugging and unit
testing tasks. Second, we evaluate the performance of our prototype implemen-
tation in a two-fold manner. A series of micro-benchmarks provides evidence
that our implementation supports regular causal sequences with no to reason-
able small performance overhead. Finally, in order to provide concrete evidence
that we meet the objectives set out in the motivation, we compare AWED’s use
of sophisticated regular causal sequences to the use of the Eclipse debugger as
a popular tool for the debugging of distributed Java applications by means of
loose coordination of per-host debugging sessions.

5.1 Qualitative Evaluation

In the following we present a qualitative evaluation of our approach involving
debugging and testing scenarios in two Java-based middlewares, JBoss Cache [15]
and Apache’s ActiveMQ [27].

Deadlock testing in JBoss Cache. In JBoss Cache (Ver. 2.0.0GA) the method
performTest of class ReplicatedTransactionDeadlockTest (see Fig. 5) imple-
ments a test case to detect a deadlock bug. The test case uses two caches, actions
on the first cache are replicated onto the second cache by means of the replica-
tion framework. The method triggers multiple workers in multiple threads. Each
worker starts a transaction, puts a value in the cache (all workers use the same
memory position in the cache) and commits the transaction. The test has to be

196 L.D. Benavides Navarro, R. Douence, and M. Südholt

1 private void performTest() throws Exception {
2 // repeat the test several times since it’s not always reproducible
3 for (int i = 0; i < NUM RUNS; i++) {
4 if (exception != null) { // terminate the test on the first failed worker
5 fail(”Due to an exception: ” + exception); }
6 // start several worker threads to work with the same FQN
7 Worker[] t = new Worker[NUM WORKERS];
8 for (int j = 0; j < t.length; j++) {
9 t[j] = new Worker(”worker ” + i + ”:” + j); t[j].start(); }

10 // wait for all workers to complete before repeating the test
11 for (Worker aT : t) aT.join(); } }

Fig. 5. Deadlock detection test case method

repeated a number of times (first for block in the figure) since it can’t be repro-
duced easily. The original bug occurred when a worker, after a successful prepare
phase of the two phase commit protocol, commits a transaction and releases the
lock over the source cache after the local commit but before completing the final
commit phase with the remote caches. In this case, other workers may interleave
their transaction operations, in particular, acquire the lock at the same cache
position and thus preclude the first transaction to terminate its remote com-
mit phase, thus entering a deadlock situation, because no worker can acquire all
necessary local and remote locks anymore.

A programmer dealing with that bug faces tree problems: (i) how two repro-
duce the problem, (ii) how to debug it and (iii) how to write a suitable test
case to identify it in the future. To deal with the first problem the code shown
in Fig. 5 triggers several threads that execute transactions concurrently, hoping
for the bug to be reproduced. This approach is subject to several problems, in
particular, that a unit test session could pass over the bug without noticing it.
Regarding the second problem, as part of a corresponding debugging session
a programmer would have to apply a breakpoint either to the line for remote
prepare or in the line that throws the corresponding exception. In the first case
the debugger will stop on each prepare (buggy or not). In the second case it
will, eventually, stop only on an error of one of the threads. Then, depending of
how threads are scheduled, it could stop the application(s) in a buggy state or
in a correct state, because the other action could have or have not enough time
to complete the transaction. Additionally, the programmer could perform many
runs without reproducing the bug. A test case for this bug is, of course, subject
to all the problems detailed above.

Using our approach we can improve on the three development scenarios: de-
bugging, unit testing and bug reproduction. Fig. 6 shows a pointcut that can be
used to define a breakpoint that will occur only if the bug appears. The pointcut
implements a sequence (i.e., finite state machine) with three states and three
transitions. The first state accepts a call to the method runPreparePhase, from
the ReplicationInterceptor class in the cache that belongs to the source
group (source and target are dynamic groups that can be handled using
AWED). Once such a method is received, the state machine changes its state to
a state that accepts tCommit transitions and tSecondPrepare, the latter repre-
senting a prepare operation issued by another worker. If the target cache receives

Debugging and Testing Middleware with Aspect-Based Control-Flow 197

1 pointcut deadlock():
2 s1:seqCausalOrder(
3 tPrep:
4 call(∗ ReplicationInterceptor.runPreparePhase(..)) && host(src) > tCommit || t2ndPrep,
5 tCommit: call(∗ PessimisticLockInterceptor.commit(..)) && host(targ) > tPrep,
6 tSecondPrepare: call(∗ ReplicationInterceptor.runPreparePhase(..)) && host(src)) &&
7 step(s1, tSecondPrepare);

Fig. 6. Pointcut for deadlock detection in a synchronous transactional cache

1 pointcut prepare(): call(∗ ReplicationInterceptor.runPreparePhase(..)) && host(src);
2 pointcut commit(): ... && call(∗ BaseRpcInterceptor.replicateCall(..)) && ...
3

4 pointcut generateDeadlock():
5 s1:seqOrderedCausal(
6 tPrep : prepare() > tCommit || t2ndPrep,
7 tCommit : commit() > tCommit || t2ndPrep,
8 t2ndPrep: prepare());
9

10 before(): generateDeadlock() && step(s1, tCommit) { while(block){ Thread.yield(); } }
11 after(): generateDeadlock() && step(s1, t2ndPrep) { block=false; }

Fig. 7. Aspect ensuring the generation of the buggy behavior for deadlock detection

a tCommit message, the normal behavior, it returns to the first state. Finally, if
the sequence detects, after the first tPrepare message, a tSecondPrepare mes-
sage on the source cache, the state machine recognizes a deadlock state. Note
that the sequence definition must be ordered causally in order to ensure that the
events will be detected in the correct order in any distributed setting.

AWED’s regular causal pointcut definitions can also be helpful for bug repro-
duction and unit testing. The main problem with current test case definitions,
such as that introduced above, is that it is of haphazard nature, i.e., it does
not always allow to reproduce the bug situation. Figure 7 shows an excerpt of
code from an aspect that will interact with the original test case of Fig. 5 to
impose the desired order of events in the presence of only two workers. The as-
pect excerpt includes the definition of a state machine that matches a call to
the method runPreparePhase, which means that the corresponding transaction
has acquired the lock and is going to broadcast a prepare message to the target
cache. Then, if it detects a call to the replicateCall method having as pa-
rameter a commit method call, a before advice will suspend the current thread
until another runPreparePhase is detected. A buggy implementation will allow
this reordering of events, a correct implementation will produce a lock-timeout
exception because the cache node will be locked by the second transaction.

Debugging ActiveMQ. We have also performed experiments over the Apache
project’s ActiveMQ message broker [27] that is used, e.g., for the integration of
enterprise information systems. From an analysis of the list of the 359 open issues
in ActiveMQ’s bug tracking system as of Aug. 2008, we have found six issues
classified as blockers : at least four of these are caused by the wrong ordering of
events or messages. Similarly, out of the 13 messages classified as critical at least

198 L.D. Benavides Navarro, R. Douence, and M. Südholt

five are related to message or event ordering. We have successfully woven causal
aspects on ActiveMQ. To test the applicability of our approach we have de-
bugged a use case regarding a deadlock situation in a configuration setting with
four brokers and a use case involving the wrong ordering of repeatedly delivered
messages in the context of transactions session with roll back. In both cases we
have successfully defined simple pointcut definitions that exactly test for the
corresponding error situations. These tests provide evidence that our approach,
in particular the AWED system, is applicable generally to Java-based middle-
ware. Finally, as for JBoss Cache, these debugging experiments have incurred
only minimal overhead in both the Java client and the ActiveMQ broker.

5.2 Micro-benchmarks

We have run performance tests of our implementation using the performance
framework of JBoss Cache. This framework allows to run multiple performance
test over cache configurations. The tests were performed in a cluster of 4 nodes.
Each node was equipped with a double core AMD Opteron 250 (2400 MHz)
processor in 32 bit mode, 4 GB of memory and a 1 GB network interface. The
test case scenario we have used is the default Web-Session simulator of the
JBoss Cache framework that basically simulates the interaction of a replicated
http session in a cluster of application servers. This test can be parametrized on
the number of requests and the ratio of reads to writes requests.

We have evaluated the performance of the extended protocols developed to
support causality in AWED. To this end, we have compared four different
protocol configurations: (i) the performance of JBoss Cache with a standard,
non-causal, configuration of its communication protocol stack (denoted Normal
below), (ii) the causality protocol Causal natively provided by JGroups and (iii)
our new protocols Causal tags and Causal tags + clock increment.

Table 1 shows the results of several test sessions in our cluster. The first
set of sessions was performed with a ratio of 80% reads and 20% writes over
100.000 operations (left part of the table) and the second set of tests considers
a ratio of 20% reads and 80% writes (right part of the table). Each node in
the test executes 100.000 requests and only the writes are replicated to the
other members. The data shows that in both cases the Normal protocol and
the Causal tags protocol presents the best performance average For the test
with 20% writes, the Causal protocol (full causality, i.e., vector clocks, clock

Table 1. Test results of 100.000 requests with respectively 20% and 80% writes

Protocol Requests per second
20% writes 80% writes

Average Standard dev. Average Standard dev.
Normal 63,350.23 7,004.93 58,033.77 9,792.51
Causal 60,961.14 11,867.69 53,814.05 7,085.89
Causal tags + clock inc. 52,107.34 27,790.92 53,463.53 7,310.65
Causal tags 60,396.03 7,420.05 59,487.43 7,405.64

Debugging and Testing Middleware with Aspect-Based Control-Flow 199

increment and reordering) presents lower performance overhead than the Causal
tags + clock increment protocol. Overall our new protocols do not impose a
significant performance overhead (especially in the case of a large number of
writes to the cache) compared to the standard JBoss Cache protocols.

5.3 Remote Debugging vs. Distributed Debugging

In order to provide evidence that we have achieved the main objective set out in
the motivation part, that is, that regular causal sequences improve on a per-host
approach to debugging, we compare the performance of a remote debugging ses-
sion with Eclipse and a distributed debugging session with AWED. To this end,
we have again used the JBoss Cache benchmark framework. We first compare
two debugging sessions, one with Eclipse and one with AWED, without break-
points in order to measure the overhead of the frameworks. We then compare
both debugging sessions in the presence of a high-frequency breakpoint (i.e.,
reached and fired many times).

AWED runtime overhead vs. Eclipse remote debugging overhead. Table 2 (left
part) compares the overhead of the debugging infrastructure posed by eclipse
in a debugging session and the overhead posed by our AWED prototype. This
test doesn’t include any breakpoint, thus it only compares the overhead of the
execution frameworks. The table shows small and comparable overhead for both
frameworks. This is not surprising due to the fact that both frameworks are
based on the Java agent technology and no breakpoints are evaluated.

As a last experiment we have compared the overhead of Eclipse and AWED in
the presence of a high-frequency breakpoint: a breakpoint in the method invoke
of the interceptor class ReplicationInterceptor. Table 2 (right part) shows the
behavior of the Eclipse debugger attached to four nodes running the JBoss Cache
framework and the behavior of AWED breakpoints under such conditions. In
table 2 the protocol configuration labeled as invasive causality implies that the
application being debugged has been invasively modified with an adapter for
causality, thus AWED system can predicate over application’s own messages.
Using the Eclipse debugger we have executed the benchmarks first in JBoss
Cache normal configuration and then with JBoss Cache using JGroups default
CAUSAL protocol. The performance in these configurations is very bad and after
several problems with memory overflow and unacceptable delays for the test
we have reduced the number of request to 100. On the other hand, the test of

Table 2. Debugging session without breakpoints (left half) and with a high-frequency
breakpoint (right half)

Protocol Requests per second No. of Requests per second No. of
Average Std. dev. requests Average Std. dev. requests

Eclipse Normal 55,111.79 7,792.45 105 2.80 0.21 100
Debugger Causal 55,172.60 5,764,97 105 3.39 0.30 100
AWED Causal tags + clock inc. 56,079.85 5,983.75 105 234.77 5.07 105

Invasive causality 53,045.19 10,223.90 105 237.61 7.58 105

200 L.D. Benavides Navarro, R. Douence, and M. Südholt

performance using the AWED framework are at least seventy times faster and
do not impose any restrictions in the conditions of the test. This is due to the
fact that, even tough the Eclipse debugger and AWED’s dynamic framework use
similar execution technology, AWED implements several optimization techniques
and was designed with distribution in mind [6]. Our approach thus scales much
better than the discussed debugging methods using Eclipse.

6 Related Work

Our approach for causality is based on the idea of causality based on vector
clocks introduced by Mattern [19] (that itself extended Lamport’s approach on
logical time introduced in the landmark pape [17]). These results were later
integrated into actual middleware for reliable distributed systems based on group
communication,e.g., see the Horus framework [28]. The benefits and limitations
of using causal communications, in particular, the resulting overhead that is
added to all communication, has been actively discussed [7, 8, 24]. Our approach
extends similar current approaches, e.g., the support for causality in JGroups [3]
We have provided concrete evidence that expression of causal communication at
the language level is useful in the presence of real-world debugging scenarios in
current middleware.

Debugging of control-flow based relationships between execution events has
been one of the main domains of application of causality and logical clocks, see
e.g., [10, 13, 14, 23, 25]. Hseush et al. [14] and Ponamgi et al. [23] have pre-
sented Data Path Expressions (DPE), a control-flow based debugging language
for concurrent applications. Our sequence construct combined with the pointcut
language provide similar flexibility as their theoretical language, additionally we
provide a fully distributed solution with no central monitoring component.

More recently Sen et al. [25] proposed an algorithm for decentralized moni-
toring used to check violations of safety properties in distributed systems. Mon-
itoring expressions in their approach are written in past time linear logic. Their
proposal presents knowledge vectors (inspired by vector clocks) and propose the
Diana tool and actors as an implementation support. Our approach provides
richer expressivity because of our general notion of transition guards and allows
group relationships to be expressed.

Other approaches have addressed the implementation and formalization of
distributed models for debugging (e.g., see [10, 21]). However, either they do not
consider the causality concept and ordering of events (e.g., De Rosa et al. [10])
or, they restrict the concept of causality to the concept of distributed control
flow (e.g., Mega and Kon [21] as well as Li’s work on monitoring of component-
based systems [18]) These approaches can only express a small subset of the
relationships we consider. Finally, control flow relationships for the debugging
using aspects have been considered only for the sequential case, notably by Chern
and De Volder [9].

Debugging and Testing Middleware with Aspect-Based Control-Flow 201

7 Conclusion

In this paper, we have argued for the use of programming abstractions as ex-
pressive support for the debugging and testing of distributed middleware, in
particular for the definition of sophisticated relationships between distributed
events and the recognition of event sequences in the presence of non-deterministic
executions. We have presented a corresponding aspect-based language and im-
plementation support that introduces causal event sequences into AWED, an
aspect system for the dynamic manipulation of distributed systems. We have
validated our approach in the context of Java-based middleware, in particular
for the debugging and unit testing of a JBoss Cache and Apache’s ActiveMQ.
This evaluation has shown that our implementation has reasonable overhead and
that our approach significantly improves on the use of debuggers, such as Eclipse,
that are based on the manual coordination of per-host debugging sessions.

This work paves the way for several leads of future work. On a conceptual level,
more flexible abstractions to define relationships that mix events that partially
are causally ordered and partially are not are of foremost interest. Furthermore,
exploring the use of our abstractions in other application domains, such as grid
infrastructures, should be explored.

References

1. Anderson, J.H.: Lamport on mutual exclusion: 27 years of planting seeds. In: PODC
2001: Proceedings of the twentieth annual ACM symposium on Principles of dis-
tributed computing, pp. 3–12. ACM Press, New York (2001)

2. Awed home page (2008), http://www.emn.fr/x-info/awed
3. Ban, B.: JGroups, reliable multicast comm. (2002), http://www.jgroups.org/
4. Benavides Navarro, L.D., Südholt, M., et al.: Explicitly distributed AOP using

AWED. In: Proceedings of the 5th ACM Int. Conf. on Aspect-Oriented Software
Development (AOSD 2006). ACM Press, New York (2006)

5. Benavides Navarro, L.D., Südholt, M., Vanderperren, W., De Fraine, B., Suvée, D.:
Explicitly distributed AOP using AWED. Research Report 5882, INRIA (March
2006)

6. Benavides Navarro, L.D., Südholt, M., Vanderperren, W., Verheecke, B.: Mod-
ularization of Distributed Web Services Using Aspects with Explicit Distribution
(AWED). In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4276, pp. 1449–
1466. Springer, Heidelberg (2006)

7. Birman, K.: A response to cheriton and skeen’s criticism of causal and totally
ordered communication. SIGOPS Oper. Syst. Rev. 28(1), 11–21 (1994)

8. Cheriton, D.R., Skeen, D.: Understanding the limitations of causally and totally
ordered communication. In: SOSP, pp. 44–57 (1993)

9. Chern, R., De Volder, K.: Debugging with control-flow breakpoints. In: AOSD
2007: Proceedings of the 6th international conference on Aspect-oriented software
development, pp. 96–106. ACM, New York (2007)

10. De Rosa, M., Goldstein, S.C., Lee, P., Campbell, J.D., Pillai, P., Mowry, T.C.: Dis-
tributed watchpoints: Debugging large multi-robot systems. International Journal
of Robotics Research (2007)

http://www.emn.fr/x-info/awed
http://www.jgroups.org/

202 L.D. Benavides Navarro, R. Douence, and M. Südholt

11. Douence, R., Fritz, T., Loriant, N., Menaud, J.-M., Ségura-Devillechaise, M.,
Südholt, M.: An expressive aspect language for system applications with arachne.
In: Proc. of AOSD 2005. ACM Press, New York (2005)

12. Eclipse Foundation. Remote debugging in Eclipse (2008),
http://www.eclipse.org

13. Fowler, J., Zwaenepoel, W.: Causal distributed breakpoints. In: Proceedings of
the 10th International Conference on Distributed Computing Systems (ICDCS),
Washington, DC, pp. 134–141. IEEE, Los Alamitos (1990)

14. Hseush, W., Kaiser, G.E.: Modeling concurrency in parallel debugging. In: PPOPP,
pp. 11–20 (1990)

15. JBoss Cache home page (2008), http://labs.jboss.com/jbosscache
16. JGroups home page (2008), http://www.jgroups.org
17. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.

Commun. ACM 21(7), 558–565 (1978)
18. Li, J.: Monitoring and characterization of component-based systems with global

causality capture. In: 23th Int. Conf. on Distributed Computing Systems, Provi-
dence, RI. IEEE, Los Alamitos (2003)

19. Mattern, F.: Virtual time and global states of distributed systems. In: Proceedings
of the international Workshop on Parallel and distributed Algorithms, Chateau de
Bonas, France (October 1988)

20. Mega, G., Kon, F.: Debugging distributed object applications with the Eclipse
platform. In: Eclipse 2004: Proceedings of the 2004 OOPSLA workshop on eclipse
technology exchange, pp. 42–46. ACM, New York (2004)

21. Mega, G., Kon, F.: An Eclipse-Based Tool for Symbolic Debugging of Distributed
Object Systems. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS,
vol. 4803, pp. 648–666. Springer, Heidelberg (2007)

22. Nishizawa, M., Shiba, S., Tatsubori, M.: Remote pointcut - a language construct
for distributed AOP. In: Proc. of AOSD 2004. ACM Press, New York (2004)

23. Ponamgi, M.K., Hseush, W., Kaiser, G.E.: Debugging multithreaded programs
with MPD. IEEE Software 6(3), 37–43 (1991)

24. Schwarz, R., Mattern, F.: Detecting causal relationships in distributed computa-
tions: in search of the holy grail. Distrib. Comput. 7(3), 149–174 (1994)

25. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of
safety in distributed systems. In: ICSE, pp. 418–427. IEEE, Los Alamitos (2004)

26. Allinea Software. Distributed debugging tool (2008), http://www.allinea.com/
27. The Apache software foundation. Apache ActiveMQ is an open source message

broker (2008), http://activemq.apache.org/
28. van Renesse, R., Birman, K.P., Maffeis, S.: Horus: a flexible group communication

system. Commun. ACM 39(4), 76–83 (1996)

http://www.eclipse.org
http://labs.jboss.com/jbosscache
http://www.jgroups.org
http://www.allinea.com/
http://activemq.apache.org/

Enabling Resource Sharing between Transactional and
Batch Workloads Using Dynamic Application Placement

David Carrera1, Malgorzata Steinder2, Ian Whalley2, Jordi Torres1,
and Eduard Ayguadé1

1 Technical University of Catalonia (UPC) - Barcelona Supercomputing Center (BSC)
Barcelona, Spain

{david.carrera,jordi.torres,eduard.ayguade}@bsc.es
2 IBM T.J. Watson Research Center

Hawthorne, NY 10532
{steinder,inw}@us.ibm.com

Abstract. We present a technique that enables existing middleware to fairly
manage mixed workloads: batch jobs and transactional applications. The tech-
nique leverages a generic application placement controller, which dynamically
allocates compute resources to application instances. The controller works to-
wards a fairness goal while also trying to maximize individual workload perfor-
mance. We use relative performance functions to drive the application placement
controller. Such functions are derived from workload-specific performance
models—in the case of transactional workloads, we use queuing theory to build
the performance model. For batch workloads, we evaluate a candidate placement
by calculating long-term estimates of the completion times that are achievable
with that placement according to a scheduling policy. In this paper, we propose
a lowest relative performance first scheduling policy as a way to also achieve
fair resource allocation among batch jobs. Our technique permits collocation of
the workload types on the same physical hardware, and leverages control mech-
anisms such as suspension and migration to perform online system reconfigura-
tion. In our experiments we demonstrate that our technique maximizes mixed
workload performance while providing service differentiation based on high-
level performance goals.

1 Introduction

Transactional applications and batch jobs are widely used by many organizations to
deliver critical services to their customers and partners. For example, in financial insti-
tutions, transactional web workloads are used to trade stocks and query indices, while
computationally intensive non-interactive workloads are used to analyse portfolios or
model stock performance. Due to intrinsic differences among these workloads, they
are typically run today on separate dedicated hardware, which contributes to resource
under-utilization and management complexity. Therefore, organizations demand man-
agement solutions that permit such workloads to run together on the same hardware,
improving resource utilization while continuing to offer performance guarantees.

Integrated performance management of mixed workloads is a challenging problem.
First, performance goals for different workloads tend to be of different types. For

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 203–222, 2008.
c© IFIP International Federation for Information Processing 2008

204 D. Carrera et al.

interactive workloads, goals are typically defined in terms of average or percentile re-
sponse time or throughput over a short time interval, while goals for non-interactive
workloads concern the performance (e.g., completion time) of individual jobs. Sec-
ond, due to the nature of their goals and short duration of individual requests, inter-
active workloads lend themselves to automation at short control cycles, whereas non-
interactive workloads typically require calculation of a schedule for an extended period
of time.

In addition, different types of workload require different control mechanisms for
management. Transactional workloads are managed using flow control, load balancing,
and application placement. Non-interactive workloads need scheduling and resource
control. Traditionally, these have been addressed separately.

To illustrate the problems inherent in managing these two types of workload together,
let us consider a simple example. Consider a system consisting of 4 identical machines.
At some point in time, in the system there is one transactional application, TA, which
requires the capacity of 2 machines to meet its average response time goal. The system
also includes 4 identical batch jobs, each requiring one physical machine for a period
of time t and having completion time goal of T = 3t. The jobs are placed in a queue
and are labeled J1, J2, J3, and J4, according to their order in the queue. The system
must decide how many jobs should be running—that is, how many machines should be
allocated to the transactional application and to batch jobs respectively. Let us consider
two of the possible configurations. In the first configuration, one machine is allocated
to batch workload and three machines are used by TA. Thus, jobs execute in sequence
and complete after time t, 2t, 3t, and 4t. As a result, J4 violates its SLA goal, while TA
overachieves its SLA target. In the second configuration, two machines are allocated
to batch workload, which permits the four jobs to complete at times t, t, 2t and 2t,
respectively. Thus all jobs exceed their SLA goal, while TA also meets its SLA target.
Clearly, the second configuration is a better choice.

Let us now assume that that the second configuration is put into effect, but then, at
time t/2, the workload intensity for TA increases such that it now requires all 4 ma-
chines to meet its SLA goal. In the current configuration, all jobs will exceed their
SLA goals, but TA will violates its goal. If, for the sake of easy calculation, we assume
that the response time of TA is proportional to the inverse of its allocated capacity,
then TA will violate its response time goal by 100%. Therefore, it makes sense to con-
sider suspending one of the running jobs, J2, and allocating its capacity to TA. If this
change occurs at time t/2, then J1, J2, J3, and J4, complete at times t, 1.5t, 2.5t, and
3.5t respectively—all jobs run in series on a single machine, and J2 resumes halfway
through its execution. Thus, J1, J2, and J3 exceed their SLA goals, J4 violates its goal
by about 16%, and TA violates its goal by about 33%. This results in an allocation
that, when the goals of all workloads cannot be met, spreads goal violations among
workloads so as to achieve the smallest possible violation for each application.

These examples show that in order to manage resource allocation to a mix of trans-
actional and batch workloads, the system must be able to make placement decisions
at short time intervals, so as to respond to changes in transactional workload intensity.
While making decisions, the system must be able to look ahead in the queue of jobs and

Enabling Resource Sharing between Transactional and Batch Workloads 205

predict the future performance (relative to goals) of all jobs—both those started now,
and those that will be started in the future. It must be able to make trade-offs between
the various jobs and the transactional workload, taking into account their goals.

Enabling resource sharing between transactional and batch workloads also intro-
duces a number of challenges in the area of application deployment, update, config-
uration, and performance and availability management. Many of these challenges are
addressed by virtualization technologies, which provide a layer of separation between a
hardware infrastructure and workload, and provide a uniform set of control mechanisms
for managing these workloads embedded inside virtual containers. Our technique relies
on common virtualization control mechanisms to manage workloads.

In addition, our system uses Relative Performance Functions (RPF from here on)
to permit trade-offs between different workloads. The RPFs define application perfor-
mance relative to that application’s goal. It can therefore be seen that equalizing the
achieved relative performance between two applications results in “fairness”—the ap-
plications will be equally satisfied in terms of relative distance from their goals. The
original contribution of this paper is a scheme for modeling the performance of, and
managing, non-interactive long-running workloads.

This paper is organized as follows. In Section 2, we explain the contributions of this
paper in the context of related work. In Section 3, we present our approach to managing
heterogeneous workloads using resource allocation driven by application relative per-
formance. In Section 4, we describe the calculation of the relative performance function
for non-interactive applications. In Section 5 we evaluate our approach via simulation.

2 Related Work

The explicit management of heterogeneous workloads was previously studied in [1],
in which CPU shares are manually allocated to run mixed workloads on a large multi-
processor system. This is a static approach, and does not run workloads within virtual
machines. Virtuoso [2] describes an OS scheduling technique, VSched, for heteroge-
neous workload VMs. VSched enforces compute rate and interactivity goals for both
non-interactive and interactive workloads (including web workloads), and provides soft
real-time guarantees for VMs hosted on a single physical machine. VSched could be
used as a component of our system for providing resource-control automation mecha-
nisms within a machine, but our approach addresses resource allocation for heteroge-
neous workloads across a cluster of machines.

The relative performance functions we use in our system are similar in concept to
the utility functions that have been used in real-time work schedulers to represent the
fact that the value produced by such a system when a unit of work is completed can
be represented in more detail than a simple binary value indicating whether the work
met its or missed its goal. In [3], the completion time of a work unit is assigned a value
to the system that can be represented as a function of time. Other work in the field of
utility-driven management are summarized in [4] with special focus on real-time em-
bedded systems. In [5], the authors present a utility-driven scheduling mechanism that

206 D. Carrera et al.

aims to maximize the aggregated system utility. Our technique does not focus on real-
time systems, but on any general system for which performance goals can be expressed
as relative performance functions. In addition, we introduce the notion of fairness into
our application-centric management technique—our objective is not to maximize the
system relative performance, but to at least maximize the performance of the least per-
forming application.

Outside of the realm of the real-time systems, the authors of [6] focus on a utility-
guided scheduling mechanism driven by data management criteria, since this is the
main concern for many data-intensive HPC scientific applications. In our work we focus
on CPU-bound heterogeneous environments, but our technique could be extended to
observe data management criteria by expanding the semantics of our RPFs.

Despite the similarity between an RPF and a utility function, one difference should
be pointed out. While utility functions are typically used to model user satisfaction or
business value resulting from a particular level of performance, an RPF is merely a
measure of relative performance distance from the goal. Hence, unlike in [7,8] we do
not study the correctness of RPFs with respect to modeling user satisfaction. If such a
satisfaction model exists, it may be used to transform an RPF into a utility function.

There is also previous work in the area of managing workloads in virtual machines.
Management of clusters of virtual machines is addressed in [9] and [10]. The authors
of [9] address the problem of deploying a cluster of virtual machines with given re-
source configurations across a set of physical machines. The authors of [10] define
a Java VM API that permits a developer to set resource allocation policies. In [11]
and [12], a two-level control loop is proposed to make resource allocation decisions
within a physical machine, but these do not address integrated management of multi-
ple physical machines. The authors of [13] study the overhead of a dynamic allocation
scheme that relies on virtualization as opposed to static resource allocation. Their evalu-
ation covers both CPU-intensive jobs and transactional workloads, but does not consider
mixed environments. Neither of these techniques provides a technology to dynamically
adjust allocation based on SLA objectives in the face of resource contention.

Placement problems in general have also been studied in the literature, frequently
using techniques including bin packing, multiple knapsack problems, and multi-
dimensional knapsack problems [14]. The optimization problem that we consider
presents a non-linear optimization objective while previous approaches [15,16] to simi-
lar problems address only linear optimization objectives. In [17], the authors evaluate a
similar problem to that addressed in our work (restricted to transactional applications),
and use a simulated annealing optimization algorithm. Their strategy aims to maximize
the overall system utility while we focus on first maximizing the performance of the
least performing application in the system, which increases fairness and prevents star-
vation, as was shown in [18]. In [19], a fuzzy logic controller is implemented to make
dynamic resource management decisions. This approach is not application-centric—
it focuses on global throughput—and considers only transactional applications. The
algorithm proposed in [20] allows applications to share physical machines, but does
not change the number of instances of an application, does not minimize placement
changes, and considers a single bottleneck resource.

Enabling Resource Sharing between Transactional and Batch Workloads 207

3 Integrated Management of Heterogeneous Workloads

3.1 System Architecture

We consider a system that includes a set of heterogeneous physical machines, referred
to henceforth as nodes. Transactional web applications, which are served by applica-
tion servers, are replicated across nodes to form application server clusters. Requests
to these applications arrive at an entry router which may be an L4 or L7 gateway that
distributes requests to clustered applications according to a load balancing mechanism.
Long-running jobs are submitted to the job scheduler, placed in its queue, and dis-
patched based on the resource allocation decisions of the management system.

The request router monitors incoming and outgoing requests and measures their ser-
vice times and arrival rates per application. It may also employ an overload protection
mechanism [21,22] by queuing requests that cannot be immediately accommodated by
server nodes. A separate component, called the work profiler [23], monitors resource
utilization of nodes and (based on a regression model that combines the utilization val-
ues with throughput data) estimates an average CPU requirement of a single request to
any application. Based on these findings, our system builds performance models that
allow it to predict the performance of any transactional application for any given allo-
cation of CPU power. The size and placement of application clusters is determined by
the application placement controller (APC).

Batch jobs are submitted to the system via the job scheduler. Each job has an as-
sociated performance goal. Currently we support completion time goals, and we plan
to extend the system to handle other performance objectives. The job scheduler uses
APC as an advisor as to where and when a job should be executed. When APC makes a
decision, actions pertaining to batch jobs are given to the scheduler to be put into effect.
The job scheduler also monitors job status and notifies APC, which uses the informa-
tion in subsequent control cycles. A job workload profiler estimates job resource usage
profiles, which are fed into APC. Job usage profiles are used to derive an RPF of a given
resource allocation to jobs, which is used by APC to make allocation decisions.

APC operates in a control loop with period T , which is of the order of minutes. A
short control cycle is necessary to allow the system to react quickly to transactional
workload intensity changes which may happen frequently and unexpectedly. In each
cycle, APC examines the placement of applications on nodes and their resource al-
locations, evaluates the relative performance of this allocation and makes changes to
the allocation by starting, stopping, suspending, resuming, relocating or changing CPU
share configuration of some applications. In the following sections we will concentrate
on the problem solved by APC in a single control cycle.

3.2 Problem Statement

We are given a set of nodes,N ={1, . . . , N} and a set of applicationsM={1, . . . , M}.
We use n and m to index into the sets of nodes and applications respectively. With each
node n we associate its memory and CPU capacities. With each application, we asso-
ciate its load independent demand, that represents the amount of memory consumed by
this application whenever it is started on a node. We use symbol P to denote a place-
ment matrix of applications on nodes. Cell Pm,n represents the number of instances of

208 D. Carrera et al.

application m on node n. We use symbol L to represent a load placement matrix. Cell
Lm,n denotes the amount of CPU speed consumed by all instances of application m on
node n. A RPF for each application may be expressed as a function of L.

Use of Relative Performance Functions. A relative performance function for a given
application is a measure of the relative distance of the application’s performance from
its goal. It has a value of 0 when the application exactly meets its performance goal.
Values greater than 0 and less than 0 represent the degree with which the goal is ex-
ceeded or violated, respectively. In our system we associate an RPF to each existing
application.

RPFs are used to model the relation between delivered service level and applica-
tion satisfaction. For resource allocation purposes, such functions can be transformed
to model application satisfaction given particular resource allocation. Notice that ap-
plication satisfaction can be understood as a measurement of relative performance.
Section 3.3 and Section 4 describe how RPFs are calculated for both transactional
applications and long-running jobs in our system. Our system aims to make fair place-
ment decisions in terms of relative performance – application performance relative to
its goal. The use of RPFs in our system is justified by the fact that they provide uni-
form workload-specific performance models that allow fair placement decisions across
different workloads.

Although in our system we use linear functions, other models could be decided as it
is discussed in section 2. Deciding the best shape for application performance models is
out of the scope of this particular work, but the technique here presented will continue
to work for any existing monotonic growing model.

Optimization Objective. Given an application placement matrix P and a load distribu-
tion matrix L, a relative performance value can be calculated for each application. The
performance of the system can then be measured as an ordered vector of application
relative performance. The objective of APC is to find the best possible new placement
of applications as well as a corresponding load distribution such that maximizes the
performance of the system.

The optimization objective is an extension of a maxmin criterion, and differs from
it by explicitly stating that after the maxmin objective can no longer be improved
(because the lowest performing application cannot be allocated any more resources),
the system should continue improving the relative performance of other applications.
The APC finds a placement that meets the above objective while ensuring that neither
the memory nor CPU capacity of any node is overloaded. In addition, APC employs
heuristics that aim to minimize the number of changes to the current placement. While
finding the optimal placement, APC also observes a number of constraints, such as
resource constraints, collocation constraints and application pinning, amongst others.

Algorithm Outline. The application placement problem is known to be NP-hard and
heuristics must be used to solve it. In this paper, we leverage an algorithm proposed
in [18].

The core of the algorithm is a set of three nested loops. An outer loop iterates over
nodes. For each visited node, an intermediate loop iterates over application instances
placed on this node and attempts to remove them one by one, thus generating a set of

Enabling Resource Sharing between Transactional and Batch Workloads 209

configurations whose cardinality is linear in the number of instances placed on the node.
For each such configuration, an inner loop iterates over all applications, attempting to
place new instances on the node as permitted by the constraints.

The order in which nodes, instances, and applications are visited is driven by rela-
tive performance functions. In the process, the algorithm examines application relative
performance asking the following questions:

– What is the relative performance of an application in the specified placement?
– Given application placement, how much additional CPU power must be allocated

to an application such that it achieves the specified relative performance value?

In Section 3.3, we briefly explain how these questions are answered for web work-
loads. Section 4 introduces the relative performance function for long-running work-
loads, which is an original contribution of this paper.

3.3 Performance Model for Transactional Workloads

In our system, a user can associate a response time goal, τm with each transactional
application. Based on the observed response time for an application tm, we evaluate the
system performance with respect to the goal using an objective function um, which is
defined as follows:

um(tm) =
τm − tm

τm
(1)

We leverage the request router’s performance model and the application resource
usage profile to estimate tm as a function of the CPU speed allocated to the application,
tm(ωm). This allows us to express um as a function of ωm, um(ωm) = um(tm(ωm)).

Given a placement P and the corresponding load distribution L, we obtain um(L)
by taking um(ωm), where ωm =

∑
n Lm,n. Likewise, we can calculate the amount of

CPU power needed to achieve a relative performance u by taking the inverse function
of um, ωm(u).

The performance model for transactional workloads is not an original contribution
of this work, but is in the core of the middleware upon which our work relies. Thus, the
reader is referred to [21] for a detailed description of the model.

4 Performance Model for Non-interactive Workloads

In this section, we focus on applying our placement technique to manage long-running
jobs. We start by observing that a performance management system cannot treat batch
jobs as individual management entities, as their completion times are not independent.
For example, if jobs that are currently running complete sooner, this permits jobs cur-
rently in the queue (not yet running) to complete sooner as well. Thus, performance
predictions for long-running jobs must be done in relation to other long-running jobs.

Another challenge is to provide performance predictions with respect to job com-
pletion time on a control cycle which may be much lower than job execution time.
Typically, such a prediction would require the calculation of an optimal schedule for
the jobs. To trade-off resources among transactional and long-running workloads, we

210 D. Carrera et al.

would have to evaluate a number of such schedules calculated over a number of possible
divisions of resources among the two kinds of workloads. The number of combinations
would be exponential in the number of nodes in the cluster. We therefore propose an
approximate technique, which is presented in this section.

4.1 Job Characteristics

We are given a set of jobs. With each job m we associate the following information:

Resource Usage Profile. A resource usage profile describes the resource requirements
of a job and is given at job submission time—in the real system, this profile comes from
the job workload profiler. The profile is estimated based on historical data analysis.
Each job m consists of a sequence of Nm stages, s1, . . . , sNm , where each stage sk is
described by the following parameters:

– The amount of CPU cycles consumed in this stage, αk,m.
– The maximum speed with which the stage may run, ωmax

k,m .
– The minimum speed with which the stage must run, whenever it runs, ωmin

k,m.
– The memory requirement γk,m.

Performance Objectives. The SLA objective for a job is expressed in terms of its desired
completion time, τm, which is the time by which the job must complete. Clearly, τm

should be greater than the job’s desired start time, τ start
m , which itself is greater than or

equal to the time when the job was submitted. The difference between the completion
time goal and the desired start time, τm − τ start

m , is called the relative goal.
We are also given an RPF that maps actual job completion time tm to a measure of

satisfaction from achieving it, um(tm). If job m completes at time tm, then the relative
distance of its completion time from the goal is expressed by the RPF of the following
form.

um(tm) =
τm − tm

τm − τ start
m

(2)

Runtime State. At runtime, we monitor and estimate the following properties for each
job: Current status, which may be either running, not-started, suspended, or paused; and
CPU time consumed thus far, α∗

m.

4.2 Hypothetical Relative Performance

To calculate job placement, we need to define an RPF which APC can use to evaluate its
placement decisions. While the actual relative performance achieved by a job can only
be calculated at completion time, the algorithm needs a mechanism to predict (at each
control cycle) the relative performance that each job in the system will achieve given
a particular allocation. This is also the case for jobs that are not yet started, for which
the expected completion time is still undefined. To help answer questions that APC
is asking of the RPF for each application, we introduce the concept of hypothetical
relative performance.

Enabling Resource Sharing between Transactional and Batch Workloads 211

Estimating Application Relative Performance Given Aggregate CPU Allocation.
Suppose that we deal with a system in which all jobs can be placed simultaneously, and
in which the available CPU power may be arbitrarily finely allocated among the jobs.
We require a function that maps the system’s CPU power to the relative performance
achievable by jobs when placed on it.

Let us consider job m. Based on its properties, we can estimate the completion time
needed to achieve relative performance u, tm(u) = τm − u(τm − τ start

m). Then we can
calculate the average speed with which the job must proceed over its remaining lifetime
to achieve u, as follows:

ωm(u) =
αcr

Nm,m

tm(u) − tnow
(3)

where we define αcr
Nm,m as the remaining work to complete all stages up to stage

Nm, m.
To achieve the relative performance of u for all jobs, the aggregate allocation to all

jobs must be ωg =
∑

m ωm(u). To create the RPF, we sample ωm(u) for various values
of u and interpolate values between the sampling points.

Let u1 = −∞, u2, . . . , uR = 1, where R is a small constant, be a set of sampling
points (target relative performance values from now on). We define matrices W and V
as follows:

Wi,m =
{

ωm(ui) if ui < umax
m

ωm(umax
m) otherwise

(4)

Vi,m =
{

ui if ui < umax
m

umax
m otherwise

(5)

Cell Wi,m contains the average speed with which application m should execute start-
ing from tnow to achieve relative performance ui, and cell and Vi,m contains the relative
performance value ui if it is possible for application m to achieve this performance level
ui. If relative performance ui is not achievable by application m, these cells instead con-
tain the average speed with which the application should execute starting from tnow to
achieve its maximum achievable relative performance, and the value of the maximum
relative performance, respectively.

For a given ωg, there exist two values k and k + 1 such that:∑
m

Wk,m ≤ ωg ≤
∑
m

Wk+1,m (6)

Allocating a CPU power of ωg to all jobs will result in a relative performance um

for each job m in the range Vk,m ≤ um ≤ Vk+1,m. That corresponds to a hypothetical
CPU allocation ωm in the range Wk,m ≤ ωm ≤ Wk+1,m.

At some point the algorithm needs to know the relative performance that each appli-
cation will achieve (um) if it decides to allocate a CPU power of ωg to all applications
combined. We must find values ωm and um for each application m such that equation 6
is satisfied and that fall within the ranges described above. It must also be satisfied that∑

m ωm = ωg. As finding a solution for this final requirement implies solving a system
of linear equations, which is too costly to perform in an on-line placement algorithm, we
use an approximation based on the interpolation of ωm from cells Wk,m and Wk+1,m,

212 D. Carrera et al.

where k and k + 1 follow equation 6, and deriving um from ωm. This technique is not
included here because of space constraints, but is described in detail in [24].

Evaluating Placement Decisions. Let P be a given placement. Let ωm be the amount
of CPU power allocated to application m in placement P . For applications that are not
placed, ωm = 0.

To calculate the relative performance of application m given a placement P calcu-
lated at time tnow for a control cycle of length T , we calculate a hypothetical relative
performance function at time tnow + T . For each job, we increase its α∗ by the amount
of work that will be done over T with allocation ωm. We use thus obtained hypothetical
relative performance to extrapolate um from matrices W and V for ωg =

∑
m ωm.

Thus, we use the knowledge of placement in the next cycle to predict the job’s
progress over the cycle’s duration, and we use the hypothetical function to predict job
performance in the following cycles. We also assume that the total allocation to long-
running workload in the following cycles will be the same as in the next cycle. This
assumption helps us balance batch work execution over time.

4.3 Hypothetical Relative Performance: An Illustrative Example

In this example (created using the simulator discussed in more detail in Section 5)
we illustrate how the hypothetical relative performance guides our algorithm to make
placement decisions.

We use three jobs, J1, J2, and J3, with properties shown in Table 1, and a single
node with 2000MB of RAM and one 1000MHz processor. The memory characteristics
of the jobs and the node mean that the node can host only two jobs at a time. J1 can
completely consume the node’s CPU capacity, whereas J2 and J3, at maximum speed,
can each consume only half of the node’s CPU capacity.

We execute two scenarios, S1 and S2, which differ in the setting of the completion
time factor for J2, which in turn affects the completion time goal for J2, as illustrated
in Table 1. Note that J3 has a completion time factor of 1, which means that in order to
meet its goal it must be started immediately after submission and that it must execute
with the maximum speed throughout its life. To improve the clarity of mathematical
calculations, we also use unrealistic execution times (in the order of seconds) and a
control cycle T = 1s.

Figure 1 shows cycle-by-cycle executions of the algorithm for S1 and S2, respec-
tively, illustrating relevant placement alternatives that are considered in successive

Table 1. Hypothetical Relative Performance Example: System Properties

Scenario 1 Scenario 2
Job property J1 J2 J3 Job property J1 J2 J3 J1 J2 J3
Start time [s] 0 1 2 Relative goal factor 5 4 1 5 3 1
Max speed [MHz] 1,000 500 500 Relative goal [s] 20 16 8 20 12 8
Mem requirement [MB] 750 750 750 Completion time goal [s] 20 17 10 20 13 10
Work [Mcycles] 4,000 2,000 4,000
Min execution time [s] 4 4 8

Enabling Resource Sharing between Transactional and Batch Workloads 213

Placement:
J1 - 1000

3000
1000
0.8

1000

J2 arrives

Placement:
J1 - 1000

2000
2000
0.7
500

2000
0

0.7
500

2500
1500
0.7
612

1500
500
0.7
387

Placement:
J1 – 500
J2 – 500

J1 arrives

Placement:
J1 - 10003000

1000
0.8

1000

J2 arrives

Placement:
J1 - 1000

2000
2000
0.70
500

2000
0

0.60
500

2500
1500
0.65
516

1500
500
0.65
483

Placement:
J1 – 500
J2 – 500

J1 arrives

Scenario 1

Placement:
J1 – 500
J2 – 500

Placement:
J2 – 500
J3 – 500

J3 arrives

2500
1500
0.50
231

1500
500
0.50
268

4000
0

-0.15
500

2000
2000
0.45
266

1500
500
0.45
233

3500
500

0
500

Placement:
J1 – 500
J2 – 500

Placement:
J1 – 500
J3 – 500

2000
2000
0.4
217

1500
500
0.4
282

3500
500

0
500

2500
1500
0.45
295

1000
1000
0.45
204

3500
500

0
500

2500
1500
0.35
245

1500
500
0.35
254

4000
0

-0.15
500

Placement:
J2 – 500
J3 – 500

Scenario 2

Control
Cycle 1

Control
Cycle 2

Control
Cycle 3

Control
Cycle 1

Control
Cycle 2

Control
Cycle 3

J3 arrives

Fig. 1. Hypothetical Relative Performance Example: Cycle-by-cycle execution. Rectangular
boxes show the outstanding work, αm − α∗

m, work done, α∗
m, value of hypothetical relative

performance and corresponding CPU allocation for each job currently in the system.

control cycles. The boxes with solid outlines show the choices that the algorithm makes,
and those with dotted outlines indicate viable alternatives that are not chosen. The rea-
soning for the choices made is described below.

In cycle 1 of S1 and S2, only one job, J1, is in the system, hence the only reasonable
placement is the one that allocates the maximum speed to J1. After the arrival of J2, in
cycle 2, two placements are considered: P1, in which both J1 and J2 are running with
an allocated speed of 500 MHz (for J1 this amounts to 50% reduction of the capacity
allocated in cycle 1), and P2, in which J2 is not placed and J2 continues to run at
maximum speed. In S1, P1 and P2 have the same relative performance value of 0.7
to both applications. Therefore, P2 is selected, since it does not require any placement
changes. In S2, due to the tightened goal of J2, the utilities of P1 and P2 are (0.65, 0.65)
and (0.6, 0.7), respectively, where (x, y) is an increasingly ordered vector of utilities for
J1 and J2. Therefore, in S2, P1 is better choice as it equalizes the relative distance of
the performance of J1 and J2 from their respective goals.

The difference in the value of hypothetical utilities between S1 and S2, can be illus-
trated using J2 as an example. If J2 is not started in cycle 2, and hence is started in cycle
3 or later, its earliest possible completion time is 19. In S1, this results in a maximum
achievable relative performance of 0.65 (≈ (16 − 5)/16), whereas in S2, it is only 0.6
(≈ (12 − 5)/12).

Since in cycle 2 of S1 and S2 the algorithm has made different decisions, from this
point the scenarios diverge. However, a similar rationale may be used to explain the
decisions made by the algorithm in cycle 3, also shown in Figure 1.

214 D. Carrera et al.

5 Experiments

In this section we present three experiments performed using a simulator previously
used and validated in [25] and [18].

The simulator implements a variety of scheduling policies for batch jobs and also
includes a performance model for transactional workloads, as described in Section 3.3.
It assumes a virtualized system, in which VM control mechanisms such as suspend,
resume, and live migration are used to configure application placement. The costs
of these mechanisms, in terms of the time they take to complete, are obtained from
measurements taken using a popular virtualization product for Intel-based machines.
These measurements reveal simple linear relationships between the VM memory
footprint and the cost of the operation, and can be described as Suspend Cost =
VM Footprint ∗ 0.0353s, Resume Cost = VM Footprint ∗ 0.0333s, Migrate Cost =
VM Footprint ∗ 0.0132s. The boot time observed for all our virtual machines was 3.6s.

For the purpose of easily controlling the tightness of SLA goals, we introduce a
relative goal factor which is defined as the ratio of the relative goal of the job to its

execution time at the maximum speed, τm−τ start
m

tbest
m

.
In the experiments, we first study the effectiveness of our technique in handling

a homogeneous workload. This paper focuses on batch workload, as the benefits of
our approach in managing transactional workload have been shown previously [18].
This permits us to study the algorithm’s behavior with a reduced number of variables,
while also providing an opportunity to compare our techniques to existing approaches.
In the final experiment, we evaluate the effectiveness of our technique in managing a
heterogeneous mix of transactional and long-running workloads.

5.1 Experiment One: Relative Performance Prediction Accuracy

In this experiment, we examine the basic correctness of our algorithm by stressing it
with a sequence of identical jobs—jobs with the same profiles and SLA goals. We use
this scenario to examine the accuracy with which hypothetical relative performance
predicts the actual job performance.

When jobs are identical, the best scheduling strategy is to make no placement
changes (suspend, resume, migrate). This is because there is no benefit to job com-
pletion times (when considered as a vector) to be gained by interrupting the execution
of a currently placed job in order to place another job.

We consider a system of 25 nodes, each of which has four 3.9GHz processors and
16GB of RAM. We submit to this system 800 identical jobs with properties shown
in Table 2. Jobs are submitted to the system using an exponential inter-arrival time

Table 2. Properties of Experiment One

Property Value Property Value
Maximum speed [MHz] 3,900 (1 CPU) Minimum execution time [s] 17,600
Memory requirement [MB] 4,320 Relative goal factor 2.7
Work [Mcycles] 68,640,000 Relative goal [s] 47,520

Enabling Resource Sharing between Transactional and Batch Workloads 215

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

R
el

at
iv

e
P

er
fo

rm
an

ce

Time (s)

Avg hypothetical relative performance
Relative performance at completion time

Fig. 2. Experiment One: Average hypothetical relative performance over time and actual relative
performance achieved at completion time

distribution with an average inter-arrival time of 260s. This arrival rate is sufficient to
cause queuing at some points during the experiment. The control cycle length is 600s.

Observe that each job’s maximum speed permits it to use a single processor, and so
four jobs could run at full speed on a single node. However, the memory characteristics
restrict the number of jobs per node to three. Consequently, no more than 75 jobs can
run concurrently in the system. Each job, running at maximum speed, takes 17,600s to
complete. The relative goal factor for each job is 2.7, resulting in a completion time
goal of 47,520s (2.7 ∗ 17, 600), as measured from the submission time.

The maximum achievable relative performance for a job described in Table 2 is 0.63.
This relative performance will be achieved for a job that is started immediately upon
submission and runs at full speed for 17,600s. In that case, the job will complete 29,920s
before its completion time goal, and thus will have taken 37% of the time between the
submission time and the completion time goal to complete. This relative performance
is an upper bound for the job, and will be decreased if queuing occurs.

In Figure 2, we show the average hypothetical relative performance over time as well
as the actual relative performance achieved by jobs at completion time. When no jobs
are queued, the hypothetical relative performance is 0.63 and it decreases as more jobs
are delayed in the queue. Notice that the relative performance achieved by jobs at their
completion time has a shape similar to that of the hypothetical relative performance, but
is shifted in time by about 18000 sec. This is expected, as the hypothetical relative per-
formance is predicting the actual relative performance that jobs will obtain at the time
they complete, as thus is affected by job submissions, while the actual relative perfor-
mance is only observed at job completion. The algorithm does not elect to suspend or
migrate any jobs during this experiment, hence we do not include a figure showing the
number of placement changes performed. Finally, we evaluated the execution time for
the algorithm at each control cycle when running on a 3.2GHz Intel Xeon node. In nor-
mal conditions, the algorithm produces a placement for this system in about 1.5s. We
also observed that when all submitted jobs can be placed concurrently, the algorithm is
able to take internal shortcuts, resulting in a significant reduction in execution time.

216 D. Carrera et al.

5.2 Experiment Two: Comparing Different Scheduling Algorithms

In this experiment, we compare our algorithm with alternative scheduling algorithms.
We do so in a system presented with jobs with varying profiles and SLA goals. The
relative goal factors for jobs are randomly varied among values 1.3, 2.5, and 4 with
probabilities 10%, 30%, and 60%, respectively. The job minimum execution times
and maximum speeds are also randomly chosen from three possibilities—9,000s at
3,900MHz, 17,600s at 1,560MHz, and 600s at 2,340MHz which are selected with prob-
abilities 10%, 40%, and 50%, respectively.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

400 350 300 250 200 150 100 50

Job inter-arrival time (s)

%
 o

f j
ob

s

FCFS EDF APC

Fig. 3. Experiment Two: Percentage of jobs that met the deadline

We compare our algorithm (referred to as APC) with simple, effective, and well-
known scheduling algorithms: Earliest Deadline First (EDF) and First-Come, First-
Served (FCFS). Note that while EDF is a preemptive scheduling algorithm, FCFS does
not preempt jobs. In both cases, a first-fit strategy was followed to place the jobs.

We use eight different inter-arrival times, ranging from 50s to 400s, and continue to
submit jobs until 800 have completed. The experiment is repeated for the three algo-
rithms: APC, EDF, and FCFS. In the paper we concentrate on the results for inter-arrival
times of 200s and 50s due to space limitations (see [24] for more results).

Figure 3 shows the percentage of jobs that met their completion time goal. There is no
significant difference between the algorithms when inter-arrival times are greater than
100s—this is expected, as the system is underloaded in this configuration. However,
with an inter-arrival period of 100s or less, FCFS starts struggling to make even 50%
of the jobs meet their goals. EDF and APC have a significantly higher, and comparable,
ratio of jobs that met their goals. At a 50s inter-arrival time, the goal satisfaction rate
for FCFS has dropped to 40%, and the goal satisfaction rate is actually higher for EDF
than for APC. However, Figures 4 and 5 show the penalties for EDF’s slightly (10%)
higher satisfaction rate.

Figure 4 shows that one of these penalities is that EDF makes considerably more
placement changes than does the APC once the inter-arrival time is 150s or less. Recall
that FCFS is non-preemptive, and so makes no changes. Note that in this experiment,

Enabling Resource Sharing between Transactional and Batch Workloads 217

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1400,00

400 350 300 250 200 150 100 50

Job inter-arrival time (s)

pl

ac
em

en
t c

ha
ng

es

FCFS EDF APC

Fig. 4. Experiment Two: Number of jobs migrated, suspended, and moved and resumed

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

APC EDF

1.3X

FCFS APC EDF

2.5X

FCFS APC EDF

4.0X

FCFS

D
is

ta
nc

e
to

 th
e

de
ad

lin
e

(s
)

1.3X 2.5X 4.0X

(a) 200s

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

APC EDF

1.3X

FCFS APC EDF

2.5X

FCFS APC EDF

4.0X

FCFS

D
is

ta
nc

e
to

 th
e

de
ad

lin
e

(s
)

1.3X 2.5X 4.0X

(b) 50s

Fig. 5. Experiment Two: distribution of distance to the goal at job completion time, for two dif-
ferent mean inter-arrival times (50s and 200s)

we did not consider the cost of the various types of placement changes—this does not
change the conclusions, as our technique is making many fewer changes that EDF under
heavy load. This figure, coupled with Figure 3, shows our algorithm’s ability to making
few changes to the system whilst still achieving a high on-time rate.

Figure 5 shows the distribution of distance to the deadline at job completion time for
the three different relative goal factors (1.3, 2.5 and 4.0). We show these results for inter-
arrival times of 200 and 50 seconds, in Figure 5 (a) and (b), respectively. Points with
distance to the goal greater than zero indicate jobs that completed before their goal. Ob-
serve that for inter-arrival times of 200s, all three algorithms are capable of making the
majority of jobs meet their goal, and the points for each algorithm are concentrated—
for each algorithm and each relative goal factor, the distance points form three clusters,
one for each minimum execution time. However, at an inter-arrival time of 50s, the al-
gorithms produce different distributions of distances to the goal. In particular, observe
that for APC the data points are closer together than for EDF (this is most easily ob-
served for the relative goal factor of 1.3). This illustrates that APC outperforms EDF in
equalizing the satisfaction of all jobs in the system.

218 D. Carrera et al.

5.3 Experiment Three: Heterogeneity

In this experiment, we examine the behavior of our algorithm in a system presented with
heterogeneous workloads. We demonstrate how our integrated management technique
is applicable to combined management of transactional and long-running workloads.
The experiment will show how our algorithm allocates resources to both workloads in
a way that equalizes their satisfaction in terms of distance between their performance
and performance goals. We compare our dynamic resource sharing technique to a static
approach in which resources are not shared, and are pre-allocated to one type of work.
This static approach is widely used today to run mixed workloads in datacenters.

We extend Experiment One by adding transactional workload to the system, and
compare three different system configurations subject to the same mixed workload.
In the first configuration we use our technique to perform dynamic application place-
ment with resource sharing between transactional and long-running workloads. In the
second and third configurations we consider a system that has been partitioned into
two groups of machines, each group dedicated to either the transactional or the long-
running workload. In both configurations, we use a First-Come First-Served (FCFS) to
place jobs—FCFS was chosen because it is a widely adopted policy in commercial job
schedulers. Notice that creating static system partitions is a common practice in many
datacenters. In the second configuration, we dedicate 9 nodes to the transactional work-
load (9 nodes offer enough CPU power to fully satisfy this workload), and 16 nodes
to the long-running workload. In the third configuration, we dedicate 6 nodes to the
transactional application and 19 to the long-running workload.

To simplify the experiment, the transactional workload is handled by a single appli-
cation, and is kept constant throughout. Note that the long-running workload is exactly
the same as that presented in Section 5.1. The memory demand of a single instance of
the transactional application was set to a sufficiently low value that one instance could
be placed on each node alongside the three long-running instances that fit on each node
in Experiment One. This was done to ensure that the two different types of workload
compete only for CPU resources (notice from Experiment One that a maximum of 3
long-running instances can be placed in the same node because of memory constraints).

The relative performance of transactional workloads is calculated as described in
Section 3.3. A relative performance of zero means that the actual response time exactly
meets the response time goal: lower relative performance values indicate that the re-
sponse time is greater than the goal (the requests are being serviced too slowly), and
higher relative performance values indicate that the response time is less than the goal
(the requests are being serviced quickly). In this experiment, the maximum achievable
relative performance for the transactional workload is around 0.66, at an approximate
allocation of 130,000MHz. Allocating CPU power in excess of 130,000MHz to this
application will not further increase its satisfaction: that is, it will not decrease the re-
sponse time. This is normal behavior for transactional applications—the response time
cannot be reduced to zero by continually increasing the CPU power assigned. Notice
that 130,000MHz is less than to the CPU capacity of 9 nodes, and so the transactional
workload can be completely satisfied by 9 nodes.

The experiment starts with a system subject to the constant transactional workload
used throughout, in addition to a small (insignificant) number of long-running jobs

Enabling Resource Sharing between Transactional and Batch Workloads 219

 0

 0.2

 0.4

 0.6

 0.8

 1

10000 20000 30000 40000 50000 60000

R
el

at
iv

e
P

er
fo

rm
an

ce
Bold line - Transactional (TX) workload Thin line - Long running (LR) workload

Time (s)

APC - dynamic resource sharing

10000 20000 30000 40000 50000 60000

TX 9 nodes, LR 16 nodes
TX 6 nodes, LR 19 nodes

Fig. 6. Experiment Three: actual relative performance for the transactional workload and average
calculated hypothetical relative performance for the long-running workload

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

10000 20000 30000 40000 50000 60000

A
llo

ca
tio

n
(M

hz
)

Bold line - Transactional (TX) workload Thin line - Long running (LR) workload

Time (s)

APC - dynamic resource sharing

10000 20000 30000 40000 50000 60000

TX 9 nodes, LR 16 nodes
TX 6 nodes, LR 19 nodes

Fig. 7. Experiment Three: CPU power allocated to each workload for the three system
configurations

already placed. Then, we start submitting a number of long-running jobs using an inter-
arrival time short enough to produce some job queueing. As more long-running jobs
are submitted, following the workload properties described in Section 5.1, more CPU
demand is observed for the long-running workload. In the end of the experiment, the
long-running job inter-arrival time is increased to a value high enough to expect that the
job queue length will start decreasing.

Figures 6 and 7 show the results obtained for the three system configurations de-
scribed above. Figure 6 shows the relative performance achieved by both the transac-
tional and long-running workload for each of the configurations. For the transactional
workload we show actual relative performance, and for the long-running workload we
show hypothetical relative performance, described in Section 4.2. Although hypotheti-
cal relative performance is a predicted value, previous experiments have already shown
that this approximation is accurate enough for performance prediction purposes. In ad-
dition, we verified for this particular experiment that the utilities achieved by jobs at
completion time, long after they were submitted and placements calculated, met their

220 D. Carrera et al.

predicted performance. Figure 7 shows the CPU power allocated to each workload over
the experiment.

Looking at the results for our dynamic resource sharing technique it can be observed
that at the beginning of the experiment the transactional application gets as much CPU
power as it can consume, as there is little or no contention with long-running jobs—
obtaining its maximum achievable relative performance of 0.66. As more long-running
jobs are submitted, the hypothetical relative performance for those long-running jobs
starts to decrease as the system becomes increasingly crowded. As soon as the hypothet-
ical relative performance calculated for the long-running jobs becomes lower that the
relative performance observed for the transactional workload (that is to say, no more re-
sources can be allocated to the long-running workload without taking CPU power away
from the transactional workload), our algorithm starts to reduce the allocation for the
transactional workload and give that CPU power instead to the long-running workload,
until the relative performance each achieves is equalized. At the end of the experiment,
the job submission rate is slightly decreased, which results in more CPU power be-
ing returned to the transactional workload again. The relative performance observed for
both workloads is continuously adjusted by dynamically allocating resources over time.
The result is that the resource sharing between both workloads is dynamically and un-
evenly adjusted, but achieving a similar relative performance for each workload, what
is the main purpose of our proposed technique.

The results for the static system configurations reveal that the overall performance
they deliver is lower than the performance observed for our dynamic resource sharing
technique, and the performance of both static and dynamic approaches is only compa-
rable when the size of each machines partition exactly matches the resource allocation
decided by our technique. Notice that when 9 nodes are dedicated to the transactional
workload (offering more than the CPU power required to fully satisfy it), the relative
performance achieved by the transactional workload is, as expected, 0.66—the maxi-
mum achievable. In this configuration, while transactional workload obtains good per-
formance, long-running jobs struggle to meet their completion time goals, as shown by
the low achieved relative performance values. When only 6 nodes are dedicated to the
transactional workload, the relative performance that it achieves is consistently lower
than that achieved with our dynamic resource sharing technique, while the performance
benefits observed for the long-running jobs are not obvious when compared to the re-
sults obtained with our technique. Recall also that relative performance represents the
relative distance to the goal achieved by each particular workload—distance to the re-
sponse time goal for the transactional application and distance to the completion time
goal for long-running jobs. Thus, relative performance is a direct measurement of the
performance obtained by each workload.

6 Conclusions and Future Work

In this paper we present a technique that allows integrated management of heteroge-
neous workloads composed of transactional applications and long-running jobs, dy-
namically placing the workloads in such a way as to equalize their satisfaction. We
use relative performance functions to make the satisfaction and performance of both

Enabling Resource Sharing between Transactional and Batch Workloads 221

workloads comparable. We formally describe the technique, and then demonstrate that
it not only performs well in presence of heterogeneous workloads but it also shows
consistent performance in presence only of long-running jobs compared to other well-
known scheduling algorithms. We perform our experiments with a simulator already
used and validated against a system prototype in [25,18]. While here we mainly focus
on the description and evaluation of the management of long-running jobs, transactional
workloads were extensively covered in [18]. We expect to extend this technique in the
future to offer explicit support for parallel jobs, and we also need to work on the on-
the-fly generation of job profiles. The optimization technique could also be extended to
focus on resources other than CPU.

Acknowledgments

This work is partially supported by the Ministry of Science and Technology of Spain
and the European Union (FEDER funds) under contract TIN2007-60625 and by the
BSC-IBM collaboration agreement SoW Adaptive Systems.

References

1. Sun Microsystems: Behavior of mixed workloads consolidated using Solaris Resource Man-
ager software. Technical report (May 2005)

2. Lin, B., Dinda, P.: VSched: Mixing batch and interactive virtual machines using periodic
real-time scheduling. In: Proc. ACM/IEEE Supercomputing, Seattle, WA (November 2005)

3. Jensen, E.D., Locke, C.D., Tokuda, H.: A time-driven scheduling model for real-time oper-
ating systems. In: IEEE Real-Time Systems Symposium, pp. 112–122 (1985)

4. Ravindran, B., Jensen, E.D., Li, P.: On recent advances in time/utility function real-time
scheduling and resource management. In: ISORC 2005: Proceedings of the Eighth IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC
2005), Washington, DC, USA, pp. 55–60. IEEE Computer Society, Los Alamitos (2005)

5. Balli, U., Anderson, J.S.: Utility accrual real-time scheduling under variable cost functions.
IEEE Trans. Comput. 56(3), 385–401 (2007); Member-Haisang Wu and Senior Member-
Binoy Ravindran and Member-E. Douglas Jensen

6. Vengerov, D., Mastroleon, L., Murphy, D., Bambos, N.: Adaptive data-aware utility-based
scheduling in resource-constrained systems. Sun Technical Report TR-2007-164, Sun Mi-
crosystems (April 2007)

7. Lee, C.B., Snavely, A.E.: Precise and realistic utility functions for user-centric performance
analysis of schedulers. In: HPDC 2007: Proceedings of the 16th international symposium on
High performance distributed computing, pp. 107–116. ACM, New York (2007)

8. Chun, B.N., Culler, D.E.: User-centric performance analysis of market-based cluster batch
schedulers. In: CCGRID 2002: Proceedings of the 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid, Washington, DC, USA, p. 30. IEEE Comp. Society, Los
Alamitos (2002)

9. Foster, I., Freeman, T., Keahey, K., Scheftner, D., Sotomayor, B., Zhang, X.: Virtual clusters
for grid communities, Singapore (May 2006)

10. Czajkowski, G., Wegiel, M., Daynes, L., Palacz, K., Jordan, M., Skinner, G., Bryce, C.: Re-
source management for clusters of virtual machines, Cardiff, UK, pp. 382–389 (May 2005)

222 D. Carrera et al.

11. Zhu, X., Wang, Z., Singhal, S.: Utility-driven workload management using nested control
design. In: American Control Conference, June 14-16, 2006, p. 6 (2006)

12. Padala, P., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A., Salem, K.:
Adaptive control of virtualized resources in utility computing environments. In: EuroSys
2007: Proceedings of the ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems 2007, pp. 289–302. ACM, New York (2007)

13. Wang, Z., Zhu, X., Padala, P., Singhal, S.: Capacity and performance overhead in dynamic
resource allocation to virtual containers. In: 10th IFIP/IEEE International Symposium on
Integrated Network Management, 2007. IM 2007, May 21–25, 2007, pp. 149–158 (2007)

14. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems (2004)
15. Karve, A., Kimbrel, T., Pacifici, G., Spreitzer, M., Steinder, M., Sviridenko, M., Tantawi,

A.: Dynamic placement for clustered web applications. In: WWW Conference, Edinburgh,
Scotland (May 2006)

16. Kimbrel, T., Steinder, M., Sviridenko, M., Tantawi, A.: Dynamic application placement un-
der service and memory constraints. In: International Workshop on Efficient and Experimen-
tal Algorithms, Santorini Island, Greece (May 2005)

17. Wang, X., Lan, D., Wang, G., Fang, X., Ye, M., Chen, Y., Wang, Q.: Appliance-based au-
tonomic provisioning framework for virtualized outsourcing data center. In: ICAC 2007:
Proceedings of the Fourth International Conference on Autonomic Computing, Washington,
DC, USA, p. 29. IEEE Computer Society, Los Alamitos (2007)

18. Carrera, D., Steinder, M., Whalley, I., Torres, J., Ayguadé, E.: Utility-based placement of
dynamic web applications with fairness goals. In: 11th IEEE/IFIP Network Operations and
Management Symposium (NOMS 2008), Salvador Bahia, Brazil (2008)

19. Xu, J., Zhao, M., Fortes, J., Carpenter, R., Yousif, M.: On the use of fuzzy modeling in
virtualized data center management. In: Xu, J., Zhao, M., Fortes, J., Carpenter, R., Yousif,
M. (eds.) ICAC 2007. Fourth International Conference on Autonomic Computing, June 11-
15, 2007, p. 25 (2007)

20. Urgaonkar, B., Shenoy, P., Roscoe, T.: Resource overbooking and application profiling in
shared hosting platforms. In: Proc. Fifth Symposium on Operating Systems Design and Im-
plementation, Boston, MA (December 2002)

21. Pacifici, G., Spreitzer, M., Tantawi, A., Youssef, A.: Performance management for cluster-
based web services. IEEE Journal on Selected Areas in Communications 23(12) (December
2005)

22. Pacifici, G., Segmuller, W., Spreitzer, M., Steinder, M., Tantawi, A., Youssef, A.: Managing
the response time for multi-tiered web applications. Technical Report Tech. Rep. RC 23651,
IBM (2005)

23. Pacifici, G., Segmuller, W., Spreitzer, M., Tantawi, A.: Dynamic estimation of cpu demand
of web traffic. In: VALUETOOLS, Pisa, Italy (October 2006)

24. Carrera, D., Steinder, M., Whalley, I., Torres, J., Ayguadé, E.: Managing SLAs of heteroge-
neous workloads using dynamic application placement. Technical Report RC 24469, IBM
Research (January 2008)

25. Steinder, M., Whalley, I., Carrera, D., Gaweda, I., Chess, D.: Server virtualization in auto-
nomic management of heterogeneous workloads. In: 10th IEEE/IFIP Symposium on Inte-
grated Management (IM 2007), Munich, Germany (2007)

Biologically-Inspired Distributed Middleware
Management for Stream Processing Systems

Geetika T. Lakshmanan and Robert E. Strom

IBM T. J. Watson Research Center, Hawthorne, NY 10532, USA
{gtlakshm,robstrom}@us.ibm.com

Abstract. We present a decentralized and dynamic biologically-inspired
algorithm for placing dataflow graphs composed of stream processing
tasks onto a distributed network of machines, while minimizing the end-
to-end latency. Our algorithm responds on-the-fly to placement requests
of new flow graphs or to modifications of an already running stream pro-
cessing flow graph, and dynamically adapts to changes in performance
characteristics such as message rates or service times as well as to changes
in processor availability or link performance during runtime. Our algo-
rithm is derived by analogy to pheromone-based cooperation between
ants to fulfill goals such as food discovery. We have conducted extensive
simulation experiments to show the scalability and adaptability of our
algorithm.

Keywords: Distributed Stream Processing, Task Placement, On-The-
Fly Management, Biologically-Inspired, Self-Managing Middleware.

1 Introduction

The complexity of current computer systems has motivated computer scien-
tists to turn towards nature for inspiration. The fault tolerance properties and
decentralized control achieved in natural systems combined with the intuitive
simplicity of their design make them particularly appealing for solving problems
in computer systems. Immune system architectures for computer security meth-
ods [1], firefly-inspired synchronicity for wireless sensor networks [2], bee colony
behavior-based middleware platforms [3] and ant-based ad hoc network multi-
casting [4] are but a few examples of the ways in which biology has influenced
the design of computer systems. Investigation of the collective foraging behavior
of ants has sparked the field of ant colony optimization (ACO) algorithms [5].
These are probabilistic techniques for solving computational problems which
can be reduced to finding optimal paths in graphs. Ant-based algorithms have
been applied to solve combinatorial optimization problems such as the travel-
ling salesman problem, quadratic assignment problem, graph coloring, job-shop
scheduling, sequential ordering and vehicle routing [5]. In addition to these static
problems, where characteristics do not change over time, ant-based algorithms
have also been applied to stochastic time varying problems such as routing
in telecommunications networks [6]. Given the adaptive capabilities built into

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 223–242, 2008.
c© IFIP International Federation for Information Processing 2008

224 G.T. Lakshmanan and R.E. Strom

ant-based algorithms, they are particularly well suited to such problems where
solutions must be adapted online to changing conditions.

Adaptive online task placement is currently an important problem in dis-
tributed stream processing systems [7,8,9,10,11,12,13]. A distributed stream pro-
cessing system (DSPS) streams data from multiple data sources or producers to
multiple clients or consumers interested in the results derived from processing
conducted on the data. Between the producer and consumer the data is pro-
cessed through a number of computational tasks that are linked via a dataflow
graph. Each task receives one or more streams of input data messages, either
from a producer or from an upstream task, each message in a stream arriving
asynchronously. In response to a message, a task performs a computation, which
may access the message, read and modify internal state representing past his-
tory, and may or may not generate one or more messages which are sent either
to consumers or to downstream tasks. Examples of tasks include operators, such
as an incremental join, an aggregation, or a facial recognition operator. Flow
graphs may be designed by an application designer, or may be separately speci-
fied by consumers who write queries. Each query defines the particular messages
a particular consumer requires and the operators or computational tasks needed
to derive these messages from producer streams.

There are a number of well known distributed stream processing systems in
both academic and commercial settings [7,8,9,10,11,12,13]. These systems sup-
port applications such as processing financial market data, managing sensor net-
work data collected from geographically dispersed sources and detecting network
intrusion and other kinds of security violations in computer systems. Stream data
sources typically produce large volumes of data at high and variable rates. Provid-
ing low latency, high throughput execution in the midst of dynamically changing
data and network conditions as well as new, diverse processing requests is a chal-
lenge. One way to reduce traffic and improve performance of the DSPS is by dy-
namically placing stream processing tasks on the machines available in the stream
processing network in order to maximally satisfy some objective function.

In this paper we present a biologically-inspired algorithm for dynamically
placing tasks on a network of machines in a distributed stream processing system.
Obtaining an optimal solution to the static task assignment problem, where the
problem characteristics do not change, is computationally intractable [14]. The
problem we address in this paper is even more difficult, due to the following
additional requirements:

– Dynamic and incremental: We cannot assume that the entire flow graph
and network description is known once and for all prior to deployment.
The placement may need to react to changes, which may be (a) changes
to the flow graph, such as a new query, or new consumer, (b) changes to
the performance characteristics of the streams or operators, (c) changes to
the availability or capacity of the machines or links. The system must react
incrementally: that is, small changes to part of the system may induce small
changes to the placement, rather than re-doing a single placement algorithm
from scratch.

Biologically-Inspired Distributed Middleware Management 225

– Decentralized: We cannot assume a centralized server with global knowl-
edge; instead we require that the placement execute in a distributed fashion
on the same network of machines on which the stream processing system is
executing.

Our biologically-inspired solution is grounded on techniques from ACO. ACO-
based algorithms have several salient features that make them appealing for
placement in distributed systems. ACO algorithms translate problems into find-
ing optimal paths in graphs. Finding optimal paths is achieved through stig-
mergy [5], a method of indirect communication in a self-organizing emergent
system. Stigmergy is achieved in ants through pheromone deposits. The concen-
tration of pheromone guides ants towards appropriate routes. Simulating stig-
mergy in the context of ants in a computer system can be done in a completely
decentralized manner using routing tables stored at every node. Successful global
behavior is achieved by purely local decisions made at each node. The routing
tables are updated by ant-like agents that carry very little state, and perform
simple computations at nodes in order to update routes. Ant-like agents can
be implemented online, in parallel with the functionality of the data processing
system. As a result, the solution is naturally decentralized and dynamic.

Simulating stigmergy alone is not sufficient to achieve distributed task place-
ment in stream processing systems using ants. Establishing an optimal path
between the producers and consumers of a query requires ensuring that the path
qualifies in terms of some quality of service metric (for instance the end-to-end
latency between the producers and consumers of the query), as well as ensuring
that the nodes in this path have sufficient capacity to process operators of the
query without adversely affecting the performance of queries whose operators
are already deployed on these nodes. The algorithm we present in this paper
accomplishes both of these goals by introducing different “species” of ants and
relying on a queueing model to estimate service time of tasks on a server. Place-
ment in our algorithm is orchestrated by three different species of ants. Routing
ants establish paths between the producers and consumers of a query by de-
positing pheromone in pheromone tables maintained at every node. Scouting
ants estimate the cost of placing query operators on a set of machines in a path
between a producer and a consumer of that query. Enforcement ants execute
the placement of a query on a path. To the best of our knowledge, this work
represents the first biologically-inspired algorithm for dynamic task placement
in distributed stream processing systems.

The rest of this paper is organized as follows. After describing related work in
Section 2, we provide complete details of our algorithm in Section 3. In section 4
we investigate our algorithm in simulation and end with conclusions.

2 Related Work

Operator placement has received significant attention in the distributed stream
processing systems community. Existing literature consists of a wide variety
of heuristic algorithms that range from static global optimization solutions to

226 G.T. Lakshmanan and R.E. Strom

complete or partial decentralized solutions that perform local adjustments to
placement dynamically during runtime.

Query Operator Placement in Distributed Stream Processing Systems. In Flux, a
dynamic load balanced strategy is developed in the context of continuous queries
[15]. A centralized controller is responsible for collecting workload information
and making load balancing decisions. Another approach computes placement by
minimizing the average time, estimated by a queueing model, required for an
event originating at the producer to reach its destined consumer, also using a cen-
tralized controller[16]. Operator placement has also been examined in the context
of in-network stream query processing for sensor network environments with pro-
gressively increasing computational power network bandwidth up a hierarchy of
nodes[14]. This approach provides theoretical analysis of a centralized placement
algorithm that minimizes the total cost of computation as well as communication,
but does not consider how the algorithm will respond to dynamic changes during
runtime. A global optimization scheme for maximizing the weighted throughput
of all queries in the system is proposed in [17]. Weights are provided as input
and represent the importance or priority of a query operator. With the exception
of[17], these placement schemes require a centralized controller to recompute the
placement of the entire operator graph in order to respond to dynamic changes
in the environment such as the introduction of new operators, changes in the net-
work data rates, and changes in the availability of machines and network links. In
[17], rather than recomputing an optimal placement in response to bursty data
rates, a centralized controller jointly optimizes the input and output rates of op-
erators, as well as their instantaneous processing rates. The global optimization
scheme does need to be re-run however, when new operators need to be deployed,
and when existing operators expire. Most recently a centralized placement algo-
rithm has been proposed for a scheduler for System S, a distributed stream pro-
cessing middleware, which balances the load on nodes and network traffic, and
minimizes the inter-node traffic while respecting a host of constraints [18].

Decentralized algorithms have been proposed to minimize network usage and
dynamically adjust placement in response to network changes during runtime
[19,20]. These algorithms focus on minimizing communication cost, and do not
explicitly have a load-balancing strategy. One of these algorithms also considers
reusing computation between overlapping queries [19]. It does not, however, com-
pute the performance impact of reusing queries on existing queries. Reusing ex-
isting computation is important in certain stream processing applications where
a majority of query processing requests are redundunt, such as in the financial
services industry. An approach has been developed to address this that focuses
exclusively on reusing component streams to satisfy new placement requests us-
ing a queueing-based quality-of-service impact projection algorithm [21]. This
scheme does not outline how to compute an optimal placement when no existing
computation can be reused.

Several decentralized algorithms only consider load management for comput-
ing an optimal placement [10,22]. A data flow aware load selection strategy has
been proposed in [23]. This approach aims to achieve lower communication cost

Biologically-Inspired Distributed Middleware Management 227

by restricting the scattering of data flows, but does not assign placement by
explicitly minimizing the end-to-end latency between the producers and con-
sumers of queries. Furthermore, the load balancing scheme in this algorithm is
based on partner selection which assigns a fixed number of load balancing can-
didate partners for each node, and load is moved individually for each machine
between its partners. Another approach uses runtime monitoring information
to adapt a decentralized placement algorithm that maximizes business utility
which is defined as a function of the required bandwidth, available bandwidth
and delay on a given edge of the network [24]. This approach proposes stream
management middleware in which nodes self-organize into utility-aware clusters
and requires cluster coordinators to maintain state for all nodes in a cluster. A
component composition algorithm has also been proposed that dynamically com-
poses quality-aware and resource-efficient stream processing applications from a
system’s currently available components while balancing the load [25]. Although
this approach utilizes distributed composition probing, it requires global state.

Biologically-Inspired Task Placement. ACO algorithms have been applied to
static task placement problems in which task and machine characteristics are
fixed. In [26] the authors address the Quadratic Assignment Problem where each
ant visits nodes and assigns a task to each node such that the product of the flows
between activities is minimized by the distance between their locations. Tasks
are assumed to be static and data rates are constant. Another variant is the
Job-Shop Scheduling problem [27] where a job consists of an ordered sequence
of operations. The problem is to assign the operations to time intervals in such
a way that the maximum of the completion times of all operations is minimized
and no two jobs are processed at the same time on the same machine. The
static nature of the problems is a critical assumption that bolsters the success of
these algorithms, and therefore they cannot simply be extended to solve dynamic
task placement problems. In [6], an ant-colony optimization scheme is applied to
dynamic traffic monitoring and routing. They outline how latency minimizing
paths can be established between sources and destinations using ant colonies.

On the evolutionary front, considerable work has concentrated on applying ge-
netic algorithms to static and dynamic task placement. None of these algorithms,
however, are applicable to data stream processing systems where placement is
concerned with tasks that are part of data flow graphs and execute on continuous
streams of data.

3 Design and Algorithm

In this section we define our model, introduce necessary terminology, and present
details of our ant-inspired task placement algorithm for distributed stream pro-
cessing systems.

3.1 Stream Processing Model

We assume that every data source has knowledge of the flow graphs which spec-
ify the tasks executed on the data streams it produces. We also assume that

228 G.T. Lakshmanan and R.E. Strom

stream processing tasks are asynchronous software components with multiple
inputs, multiple outputs, and possible internal state. Tasks may execute asyn-
chronously; messages sent between tasks are asynchronous. Task topology may
change in response to dynamic requests to change the graph, but such changes
are assumed to happen at rates much less frequent than the input streaming
message rates. Servers can be actual machines, or processes or threads within
a machine. At any point during execution, a server has some number of tasks
assigned to it, representing a partition of the total dataflow graph. There is a
single queue of messages waiting to be processed by the server. When the server
is idle and the queue is non-empty, a message is dequeued, delivered to the ap-
propriate task, and processed by that task, which may in turn generate internal
messages for other downstream tasks in the same server. Processing of the mes-
sage finishes when all such downstream tasks have finished executing. There may
be one or more messages queued up for delivery to consumers or to downstream
tasks in other servers; these messages are queued to links which are assumed to
asynchronously transport these messages to consumers or to the queues in the
appropriate servers. In this paper we do not address how to resolve problems
such as lost messages that result from link or server failure. There are several
well known techniques that address this [28].

Total latency depends upon the sum of server queueing delay, task processing
time in each server, link queueing delay and link latency in each link, across the
paths between producers and consumers.

In our approach, the streaming data messages and the tasks are augmented
with ants (following our biological metaphor) and cells. Ants are implemented
as special control messages distinct from data messages; cells are implemented
as special tasks distinct from the tasks being placed. Each server contains one
cell containing information about that server and its neighbors. Cells hold data,
called pheromones, again following our metaphor; ants travel back and forth
between cells carrying various information depending upon the kind of ant.

3.2 Approach Overview

Inspired by the success of Di Caro and Dorigo [6] in using ants to establish routes
in telephone networks, we extend their work to accomplish task placement in a
stream processing system. In particular we enhance their work to incorporate
a queueing model as well as different species of ants. In addition to routing
ants, we introduce scouting ants, and enforcement ants. These ants are respon-
sible for placing each query. Placement is conducted through three stages. First,
routing ants are dispatched by leaders, located at producers. Routing ants con-
tinuously travel between producers and destinations, depositing pheromones on
their return trip in routing tables at every server that reflect different preference
weights given to alternative next hops. Their destinations represent consumers
of a query. Pheromone concentrations guide ants along best paths to their desti-
nations. Once routing ants have established paths to the destination of a query,
the leader dispatches scouting ants towards the same destination. Each scouting
ant travels a particular path guided by pheromone concentrations towards its

Biologically-Inspired Distributed Middleware Management 229

destination and computes the cost of a proposed hypothetical placement of the
query along the path. Upon reaching its destination, it returns to the leader
with its hypothetical placement report. In the third stage, after the leader has
received enough reports from the scouts it had previously dispatched, it picks
the best report, and dispatches an enforcement ant to execute the placement
of the query outlined by the report. Once a query has been placed, the leader
periodically dispatches routing and scouting ants for the query in order to ensure
that its placement adapts to changes in the query tasks, as well as to changes
in network conditions, data characteristics, and other queries being placed. If a
more optimal placement of the query is found, then the leader picks the new
placement, and dispatches enforcement ants to execute the new placement and
discontinue the previous one. The concept of the pheromone vector and the role
of routing ants are exactly as defined in the model by Di Caro and Dorigo [6]. The
additional role of scouting ants and enforcement ants as well as the incorporation
of the queueing model represent our novel contribution.

3.3 Pheromone Vector

There exists one cell per server which contains state relevant to an ant traversing
this server. Each cell is aware of the set of destinations. Each cell C has a set
of neighbors N(C). For each destination D, a cell C maintains a pheromone
vector [6] that maps each neighbor n into a probability ΦC

D,n of choosing neighbor
n as the next hop to travel from cell Cs server to destination D. Because these
are probabilities,

∑
n∈N(C) ΦC

D,n = 1, for each destination D. Initially, when no
information is known about one route versus another, the values of ΦC

D,n may
be set to be equiprobable (uniformly distributed). For each destination D, a cell
C also maintains ΓC = {µC→D, σ2

C→D}, where µC→D is the mean and σ2
C→D is

the variance of the time to traverse both links and service queues on the best
path from C to D.

Each query has one or more producers. Each producer site (or, if the producer
is an external site, then at the server site which is the point of attachment of the
producer, and which will act as a proxy for the producer for the purpose of this
algorithm) contains a leader. Whenever a query is added, deleted, or changed, or
whenever an unchanged query is requested to redo its placement, a leader at one
producer is selected. If there is a single producer, the selected leader is the leader
at that single producer. If there are multiple producers, the producer along the
longest path to the consumer is selected. Thus the flow graph is clipped to a
single linear chain of tasks, which we refer to as a subquery. Figure 1(b) shows
the path selected by the ants for placement of the query in Figure 1(a) which
has fan-in. Once the subquery is placed, the same algorithm is re-executed, one
producer at a time, to place the tasks on paths from other producers that join
in to a task on this path. Figure 1(d) shows the path selected by the ants for the
placement of the query in Figure 1(c) which has fan-out. Once the subquery is
placed, the same algorithm is re-executed, one consumer at a time, to place the
tasks on paths that span out of the fan-out point.

230 G.T. Lakshmanan and R.E. Strom

Fig. 1. (b) shows the path selected by ants for placement for the query in (a) which has
fan-in. (d) shows the path selected by ants for the placement of the query in (c) which
has fan-out. P and C stand for producers and consumers. F stands for the FILTER
operator, J for JOIN, S for SPLIT, A for AGGREGATION.

3.4 Routing Ants: Forward Direction Seeking Paths

Intermittently, a leader residing at a producer of a query, releases a routing ant
with destination D, the server ID of a consumer of the query, and source cell
CS . The number of ants and how frequently they are released are set as user
defined parameters in our implementation. The ant carries on its back (i.e. the
payload of a control message contains) the following information: its destination
D, the path it has taken so far (the ID of each server hosting each cell it has
passed through), and the delay it has experienced so far at each hop, passing
through processing queues and link queues. Initially, only the source cell CS is
in the path. At each step, at a cell C that is not the destination D, the routing
ant does the following:

1. It records on its back how long it has waited in the server queue at cell C.
2. It chooses a next hop towards D, by making a probabilistic choice of next hop

neighbor, i, based upon the pheromone vector ΦC
D,i at C, choosing among

the neighbors it did not already visit, or over all the neighbors in case all of
them had been previously visited.
If a cycle is detected, that is, if an ant is forced to return to an already
visited node, the cycle’s nodes are removed from the ant’s memory, and all
information relating to them is destroyed. If the cycle lasted longer than the
lifetime of the ant before entering the cycle, (that is if the cycle is greater
than half the ant’s age) the ant is destroyed.

3. It enqueues itself on the link towards the next hop neighbor, i, waiting to
crawl through the link.

4. When it arrives at the next hop neighbor, i, it records on its back how long
it has waited in queueing and propagation time passing through the link.

Biologically-Inspired Distributed Middleware Management 231

5. If it is not now at the destination D, it queues itself at the tail of the server
queue of the next hop neighbor, i. Once it is dequeued, it repeats steps 1-5.

6. If it is now at the destination D, it turns around and begins its reverse
journey back towards CS .

3.5 Routing Ants: Reverse Direction Reinforcing Paths

Once a routing ant has reached destination D, it reverses direction and crawls
backward towards the server CS hosting its source cell. It knows how to reach
its source, because it has stored on its back the path it had actually taken. On
the reverse path, at each hop, it bypasses the server queues and goes directly to
each cell C, to update its pheromone vector ΦC

D,n and the estimates, ΓC . After
arriving at cell C from a cell C−1, the ant will update ΦC

D,C−1, which represents
the probability of choosing cell C − 1 as the next hop when attempting to reach
D from C. The pheromone vector at cell C is updated by incrementing the
probability ΦC

D,C−1 associated with neighbor cell C − 1 and the destination D,
and decreasing (by normalization) the probabilities ΦC

D,n associated with other
neighbor nodes n, n �= C −1. The update procedure modifies the probabilities of
the various paths, based on the experience the ant had recorded on its back when
it chose the particular next hop neighbor on its forward path from CS to D. While
this experience can incorporate a variety of factors, in our implementation, we
restrict it to 1

TCS→D
, the inverse of the trip time, which can be computed using

the information the ant loads on its back in the forward path to D, outlined in
Section 3.4. Inverse trip time alone cannot be treated as an exact error measure,
given its dependence on the load on the network. Therefore, the values stored
in the model ΓC are used to guide the adjustment of the trip times. Di Caro
and Dorigo experiment [6] with a number of linear, quadratic and hyperbolic
combinations of the trip time values and the estimates, ΓC in order to create
a reinforcement signal, r ≡ r(1

TC→D
, ΓC), r ∈ [0, 1]. In our implementation, we

define r as 1
TCS→D

and use ΓC to decide when to update the pheromone vector.
If the elapsed trip time of a sub-path is statistically good (i.e. it is less than µ +
I(µ, σ), where I is an estimate of the confidence interval for µ), then the time
value is used to update the pheromone vector ΦC

D,n and the estimates, ΓC . On
the other hand, trip times of sub-paths not deemed good, in the same statistical
sense, are not used. The pheromone vector value ΦC

D,C−1(t) at time t is increased
by the reinforcement value at time t + 1 as follows:

ΦC
D,C−1(t + 1) = ΦC

D,C−1(t) + r.(1 − ΦC
D,C−1(t)) = ΦC

D,C−1(t).(1 − r) + r . (1)

Thus the probability is increased by a value proportional to the reinforcement
received, and to the previous value of the node probability. Given the same
reinforcement, small probability values are increased proportionally more than
big probability values.

The probability ΦC
D,n for all neighbor nodes n ∈ N(C) where n �= C − 1 is

decayed. This is essential to eliminate poor quality paths to D. These n−1 nodes

232 G.T. Lakshmanan and R.E. Strom

receive a negative reinforcement by normalization. Normalization is necessary to
ensure that the sum of probabilities for a given pheromone vector is 1.

ΦC
D,n(t + 1) = ΦC

D,n(t).(1 − r), n �= C − 1 . (2)

After the routing ant has performed the reinforcement step on the cell at each
hop back to the source, it dies. If a cell’s pheromone vector for a destination
is not updated beyond a given amount of time, the vector is destroyed. This
ensures that a cell only maintains information that is relevant to the current set
of queries deployed in the stream processing system, and furthermore prevents
cell size from exploding arbitrarily.

3.6 Queueing Model

In this section we summarize the queueing-based flow performance model, pre-
sented in [16], which is utilized by ants in our algorithm to estimate the queueing
delay experienced by a data packet in a server.

We define a flow as a path in a flow graph from a producer to a consumer that
consists of an ordered sequence of tasks. Each server hosts a subset of the queries
deployed in the stream processing network. This subset can consist of a number
of logically unrelated segments of various flows, denoted as F . The service time
of a flow is the sum of the service times of the tasks in the flow. Since some
tasks are executed more than once if their ancestors in the execution sequence
produce more than one event, batch sizes are incorporated in this calculation.
For a given flow f , let θi be the set of tasks in the path from task ti to the root
task t1, the entry task for events in this flow, with θ1 = {}. Let Bj represent the
batch size of task tj , task i’s ancestor, such that j < i and j > 0. The service
time Sf of a flow f ∈ F is the total amount of time a server is occupied due to
an incoming event arriving at f , and this can be calculated as:

Sf =
∑

i

Si

∏
j|tj∈θi

Bj . (3)

The key insight driving the method in [16] is to first aggregate the input streams
to a server into a single stream and simulate the behavior of all task flows
through the server as one flow. Marginal metrics for individual flows can then be
computed from the combined result. The aggregation/disaggregation approach
proposed by Whitt [31] for servers with multiple incoming streams and multiple
flows is appropriate for computing this. We begin by presenting the aggregation
formulas applicable to our model.

The aggregate flow service rate, µ̂, the sum of the expected values of individual
flow service rates, can be computed as:

µ̂ =
λ̂∑
f

λf

µf

. (4)

where µf = 1
Sf

is the service rate of flow f and λf is its input rate, and the aggre-

gate λ̂ is the sum of the expected values of the individual flow input rates. The
squared coefficient of variance for all the flow service times can be computed as:

Biologically-Inspired Distributed Middleware Management 233

c2
s =

µ̂2

λ̂

⎛
⎝∑

f

λf

µ2
f

(c2
sf

+ 1)

⎞
⎠ − 1 . (5)

where c2
sf

≡ σ2[Sf]
E[Sf]2 is the squared coefficient of the variance of flow f in which

E[Sf] is the flow’s mean service time, and σ2[Sf] is the variance of the flow’s
service time. Assuming a general distribution for arrivals, Whitt’s formula [31]
can be used:

ĉ2
a = (1 − w) + w

⎛
⎝∑

f

c2
af

λf

λ̂

⎞
⎠ . (6)

where
w = [1 + 4(1 − ρ)2(v − 1)]−1 . (7)

where
v = [Σf(

λf

λ̂
)2]−1 . (8)

where c2
af

is the coefficient of variance for the flow f , and ρ = λ̂
µ̂ , is the load.

We can now use these to compute the expected queueing delay, Qf , for a given
flow in a server via a G/G/1 approximation due to Marchal[32]:

Qf =
(

ρ

1 − ρ

) (
ĉ2
a + ĉ2

s

2

)(
1
µ̂

)
. (9)

We can now compute the expected latency Lf of a flow f through a server as
the sum of its expected service time and the queueing delay:

Lf = Qf + Sf . (10)

We can model the delay experienced by a packet across a network link in
the standard way employed in queueing theory. The link is modeled as a server,
and a packet on the link experiences a queueing delay and a transmission delay.
The queueing delay is a function of the link bandwidth and size of the messages
crossing the link.

3.7 Scouting Ants: Hypothetical Placement

Once a threshold number of routing ants return, the selected leader dispatches
multiple scouting ants. Each scouting ant carries information about the tasks
in the subquery to be placed, as well as the ID of the server hosting CS , the
cell releasing the scout, and D, the ant’s destination which is the consumer con-
nected to the subquery. Each scouting ant will explore, in parallel with its team
members, one hypothetical alternative for placing these tasks along a path from
the given producer to the consumer. Exploration proceeds along cells selected
on a hop-by-hop basis using the weighted probabilities in the pheromone vec-
tor in each cell. At each cell residing at a server, the scouting ant computes a
hypothetical placement of tasks in the subquery. It uses a queueing model to
estimate: (1) The given servers contribution to the latency of the hypothetically

234 G.T. Lakshmanan and R.E. Strom

placed tasks, denoted as Lnew; (2) the computational time of other tasks cur-
rently deployed on this server, denoted as Lprev, given the hypothetically placed
tasks. Hypothetical placement calculations do not affect actual placement. The
computational time of tasks currently deployed on the server has to be taken
into account because it is affected and augmented by the additional stream vol-
ume introduced by a hypothetically placed task. In particular, when a new data
stream is directed through a server, it affects the queueing delay experienced
by data packets in all other data streams flowing through the server, and con-
sequently affects the time it takes to service tasks on these other data streams.
The ant greedily places tasks on a server provided that the sum of Lnew and
Lprev does not exceed a user-specified delay threshold, LT :

Lnew + Lold < LT . (11)

The queueing model summarized in the previous section is used to perform this es-
timate. If the delay threshold, LT , is not specified by the user, then the ant ensures
that the load on a server resulting from the combined existing and hypothetical
flows does not become unacceptable. Specifically, the ant ensures that the load on
a server, defined as ρ = λ̂

µ̂ in section 3.6, where λ̂ is the sum of the expected val-
ues of the individual stream input rates and µ̂, the sum of the expected values of
individual stream service rates, is strictly less than a constant α, α ∈ [0, 1].

A parameter g, such that g > 0 and g ∈ Z, represents the level of greediness of
the scout, and controls the number of tasks the scout is willing to hypothetically
place on the server, which is not necessarily the maximum number of tasks that
can be placed on the server without violating the delay threshold, before moving
on to the next server. The leader initializes scouts with randomly generated
values for the parameters α and g.

At each cell, the scout records in its placement report (a) the ID of the server
at which the cell resides, (b) which tasks it is placing on the server, and the sum
of (c) the component of the latency of the hypothetically placed subquery at that
server, and the impact on the latency of tasks in other subqueries deployed at
that server. It then crawls to the next cell, using the pheromone vector exactly
as the routing ants do. If it reaches the destination D without having been able
to place all of its tasks, it declares failure and remains at the cell, CD, in the
destination server. If a number of failed scouts that traversed the same path with
different levels of greediness, g, accumulate at CD, one of them re-traces its steps
to CS and applies a negative reinforcement to the path in order to discourage fu-
ture ants from pursuing the same path. If the scout succeeds in placing the tasks,
it retraces its steps, and presents its scouting report to the producer. On its re-
verse path, the scout may conduct local load balancing of hypothetically placed
tasks by estimating and comparing the service times of the same task on adjacent
servers, and moving the task to the server on which placement is more efficient.

3.8 Enforcement Ants

If a scout succeeds in hypothetically placing all the tasks of the subquery, it re-
turns to its dispatch leader, carrying a scouting report, consisting of the complete

Biologically-Inspired Distributed Middleware Management 235

hypothetical placement, together with the latency statistics it recorded at each
step. The leader waits a designated period of time for scouts to return. When a
threshold number of scouts return the leader selects the best scouting report and
dispatches enforcement ants to perform the placement outlined in this report.
If a timeout occurs with too few scouts returning successfully, the leader may
send out more scouts. Although, generally, the leader will wait for a threshold
number of reports to return before making a decision about which placement to
execute, if one of the scouts returns with an outstanding report, i.e. one with
that has insignificant computational impact on the servers, the leader will pro-
ceed to execute this report without completing its wait for a threshold number
of scouts to return. Before executing placement at each node, the enforcement
ant will recalculate the placement cost of tasks that need to be placed at each
server, and compare this against the statistics in the scout report. If the current
cost of placement exceeds the cost stated in the scout’s report by more than a
threshold, the enforcement ant will return without executing placement, and the
as a result the leader will dispatch more routing and scouting ants to discover
other potential placements of the subquery. Thus, our placement strategy is most
effective when local network conditions do not change significantly during the
placement of a subquery.

Once the subquery has been placed, placement is recursively executed for
other linear task chains in the flow graph. If a query has more than one producer,
join points in the query are selected and the placement algorithm is recursively
executed from each of these producers to this join point. Specifically, the ID of
a server hosting a join point for a query is initialized as the destination in the
routing, scouting and enforcement ants. These ants are released in parallel from
each of the other producers of the query, and they are responsible for completing
the placement of the subqueries that connect to the join point. For instance in
Figure 1(b), the first subquery comprising of the chain of operators F1, J1 and
J2 is placed. Then placement is re-executed from P1 to place F3 with J2 as
the destination and from P3 to place F2 with J1 as the destination. If a query
has fan-out, then multiple scouting and routing ants are dispatched from the
producer to the point of fan-out. From this point the ants are dispatched in
parallel to each consumer, in order to establish paths and place the remaining
parts of the query between the point of fan-out and the other consumers. For
instance in Figure 1(d), the first subquery comprising of the chain of operators
F1, S2, and A4 is placed. Then placement is re-executed from S2 to place A3
with C1 as the destination, and from S2 to place A5 with C3 as the destination.

3.9 Updating Placement

Once a leader completes the placement of a query through enforcement ants,
it periodically dispatches routing and scouting ants to seek more appropriate
placements of the query in response to changing network conditions, such as
changes in message rates, or changes in the network topology. The number of
routing and scouting ants and the frequency with which they are periodically
dispatched by a leader are initialized as user assigned parameters. The routing

236 G.T. Lakshmanan and R.E. Strom

ants update routes to the consumers of the query. The scouting ants traverse
the updated routes to determine new potential placements for the query. The
leader periodically retrieves the current end-to-end service time for a query by
sending an ant along the path on which the query is placed, and compares this
with the service time of hypothetical placement reports of the query gathered by
scouts. If the end-to-end latency of a hypothetical placement of a query is less
than its most recently retrieved end-to-end latency (resulting from an existing
deployment) by a factor β, such that β > 0 and β ∈ R≥0, then the leader
dispatches enforcement ants to execute the new placement of the query, and
discontinue the previous placement of the query. In the case where the query
has one or more stateful tasks that must be moved as a result of the change in
placement, there is a problem of conveying the state from the old location to the
new location, or reconstructing the state at the new location. There are several
well known techniques that address this [15,29,30], and we intend to examine
this in future work.

Placement can also be explicitly updated by a user-initiated request in re-
sponse to changes in performance or resource or flow graph characteristics. Users
can initiate an updated query placement request accompanied with a request to
terminate the deployment of the previous version of the query or request relevant
producers to incrementally redo placement of one or more queries.

3.10 Task Reuse

Operator reuse is incorporated into our model. When a scouting ant conducts hy-
pothetical placement of a task on a server, it retrieves the currently hosted tasks
on that server. If the scout finds a reusable task that produces the same result as
the task to be placed, it reuses this task instead of hypothetically instantiating
a new instance. When executing a placement order by the leader, enforcement
ants first check for reusable tasks on each node instead of instantiating a new
instance.

4 Experimental Evaluation

To evaluate the performance of our algorithm we implemented a discrete event
simulator in Java. We randomly generated queries with both fan-in and fan-out.
Each edge in a query graph is labelled with: (1) the message input rate in units
of messages/millisecond, and (2) the message size in units of bytes/message.
For each task, we define its mean service time in terms of a virtual work unit
(VWU), which corresponds to a time unit (say, 1 second) on some standard
machine such as an IBM ThinkPad T40. The VWU concept is mainly intro-
duced to accommodate different processing capacities of the machines. Tasks in
our queries include query operators such as SELECT, JOIN, PROJECT, AG-
GREGATION and SPLIT. Producers and consumers are assumed to be pinned
to machines in the network. Although we randomly generated queries, we used
meaningful values for the data on query edges and tasks that emulate workloads

Biologically-Inspired Distributed Middleware Management 237

of data streams in the financial services industry. The network topology fed to the
simulator was a transit-stub topology, generated by the GT-ITM internetwork
topology generator. Nodes and links are assigned processing and communication
capacities from discrete classes to simulate a heterogeneous system. The machine
processing capacities are defined in units of VWU/millisecond such that if a T40
ThinkPad has processing capacity of 1, then a twice as fast machine would have
a capacity of 2.

For comparison, we also implement three other common approaches: optimal,
random and centralized. The optimal algorithm chooses the best possible place-
ment with the lowest end-to-end latency based on an exhaustive search over all
possible placements. The random algorithm selects a server for hosting each task
at random and serves as a worst case comparison. We also compare against a
centralized placement algorithm [16] whose goal is to produce an assignment of
unpinned tasks to servers such that the expected average latency from producers
to consumers over all paths is minimized. The centralized algorithm also utilizes
a queueing model of the flow graph to determine how to compute the expected
latencies due to the combination of delays for a given assignment. It employs
a steepest descent search to find an approximate solution to the problem of
minimizing the latencies. The algorithm accepts one flow graph as input which
represents the concatenation of all queries that need to be placed. Placement of
the entire flow graph has to be recomputed each time a new query needs to be
placed, or there is a change in the data or network characteristics.

We evaluate our ant-inspired algorithm in terms of (1) the quality of its solu-
tion, (2) its adaptability and self-management capabilities, and (3) its scalability.
Figure 2(a) compares the end-to-end latency of a flow graph placed by the op-
timal algorithm with our ant-inspired decentralized algorithm for an increasing
number of query tasks. We observe that although the ant-inspired decentralized
algorithm does not guarantee optimal results, the end-to-end latency of the query

Fig. 2. Evaluation of the quality of our algorithm’s placement solution. (a) Comparison
of end-to-end latency achieved for increasing number of query tasks. (b) Comparison
of end-to-end latency achieved for increasing number of queries.

238 G.T. Lakshmanan and R.E. Strom

Fig. 3. Evaluation of our algorithm’s adaptability and self-optimization capabilities.
(a) End-to-end latency variation for a query with and without self-optimization when
data rates are increased at time 20 and at time 60. (b) Average end-to-end latency
variation of 200 concurrently executing queries with and without self-optimization when
50 additional queries are added at time 20 and at time 60.

graph placed by it is notmuch worse than the end-to-end latency of the query graph
placed by the optimal algorithm. Figure 2(b) compares the average end-to-end la-
tency of all queries deployed on the network by the centralized, random and opti-
mal algorithms with our ant-inspired decentralized algorithm. The total number
of queries placed is 100. In this experiment 100 ants are released from each pro-
ducer every 5 seconds. We observe that our ant-inspired decentralized algorithm
consistently achieves better performance than other heuristic algorithms and sim-
ilar performance as the optimal algorithm. While conducting this experiment, we
also recorded the predicted running time of our distributed algorithm as output
by our simulator and compared it against the running time of the centralized al-
gorithm. We find that for queries compiled into flow graphs with more than 150
nodes, the centralized algorithm takes on the order of hours to run, where as the
predicted running time of our algorithm is on the order of seconds.

Second, we evaluate the effectiveness of dynamically updating placement dur-
ing runtime by our algorithm in response to changes in data characteristics.
Figure 3(a) shows the variation in end-to-end latency for a 10-node query graph
with and without self-optimization while network conditions are changing. Dur-
ing the 100 second simulation, the data rates at all producers of the query are
increased by 10 ms at time 20 and then again by the same amount at time
60. We sample the end-to-end latency of the query every 10 seconds. The per-
formance with self-optimization involving dynamic placement updates is clearly
better than without self-optimization. Figure 3(b) shows the variation in aver-
age end-to-end latency for 200 concurrently executing queries with and without
self-optimization in response to new queries being placed. 50 additional queries
are placed at time 20 and at time 60. We observe that our decentralized and
incremental algorithm generates a globally improved solution, as the average

Biologically-Inspired Distributed Middleware Management 239

Table 1. Loss and number of placement updates for different values of β

β Number of Placement Updates Latency-Loss (ms)
1.1 15 0
1.25 10 25.87
1.5 7 59.23
1.75 2 78.67
2.0 1 101.23

Fig. 4. Scalability of our algorithm: success rate of deploying 300 queries on distributed
systems with different number of nodes

end-to-end latency over all queries, with self-optimization, decreases. We also
observe that the change in average end-to-end latency consistently decreases
and reaches a point where it stops decreasing, indicating that our algorithm
does not continue to update placement indefinitely.

Recall from section 3.9 that a decision to discontinue a query’s placement
and move it to a new placement is made when the end-to-end latency of a
hypothetical placement of the query is less than its most recently retrieved end-
to-end latency (resulting from an existing deployment) by a factor β, such that
β > 0 and β ∈ R≥0. We calculate the loss in end-to-end latency incurred due
to sub-optimal deployments of a 10-node query using different values of β in
the presence of network perturbations (cross-traffic). The results are shown in
Table 1. The loss is calculated as the integral over time of the difference between
the maximum achievable end-to-end latency and the current end-to-end latency
of the deployed flow-graph. The loss incurred is sufficiently low for a large number
of values of β, and thus an appropriate value for β can be used to trade-off latency
for a lower number of placement updates.

Finally, we evaluate the scalability of the our algorithm illustrated by
Figure 4. We use different distributed stream processing systems with 200 to
600 nodes. As we add more nodes into the distributed stream processing system,
the number of candidate servers for hosting tasks increases proportionally, so as
to increase the capacity of the distributed stream processing system. We impose

240 G.T. Lakshmanan and R.E. Strom

the same workload of 300 queries on those different distributed stream processing
systems. Figure 4 shows the performance comparison results. We observe that
our algorithm achieves similar scaling property as the optimal algorithm. For
this experiment, we also recorded the message overhead added by our algorithm
to the traffic in the network. We find that, on average, ant messages occupy
0.01% of the traffic on a link in the network of 200 nodes, and 0.022% of the
traffic on a link in the network of 600 nodes.

5 Conclusion and Future Work

In this paper we have presented a biologically-inspired, distributed placement
algorithm that reacts on-the-fly to placement requests of new flow graphs or to
modifications of an already running stream processing flow graph, and dynami-
cally adapts to changes in performance characteristics such as message rates or
service times as well as to changes in processor availability or link performance
during runtime. Our incremental algorithm is inspired by pheromone-based co-
operation in ants and possesses many good properties that emerge as a result
of this analogy such as completely decentralized control and no requirements
for global state. Our simulation results show that our algorithm maintains scal-
able and effective self-management, while achieving high quality placement in
terms of end-to-end latency. Although we choose to optimize placement for end-
to-end latency, our model is generic enough to incorporate other metrics such
as bandwidth or the product of bandwidth and latency. Instead of recording
time at every hop along their forward routes, routing ants can record other met-
ric related information from links and servers and use it to create and update
pheromone entries on their return routes. Although we discussed and evaluated
our algorithm in the context of tasks which are database query operators, it is
applicable to the placement of any sequence of tasks on streams of data.

As future work we plan to develop a theoretical model of our algorithm and
prove its correctness given concurrent placement of tasks by ants. We also in-
tend to define some load placement primitives for each ant in order to prevent
situations where placement continuously oscillates between two or more config-
urations. This can occur when data rates are particularly bursty. In addition
to a queueing model, we would like to explore other methods to estimate the
cost of hypothetical placement that are more suitable for real stream processing
systems. We also intend to implement our algorithm on a real stream processing
system.

References

1. Harmer, P.K., Williams, P.D., Gunsch, G.H., Lamont, G.B.: An artificial immune
system architecture for computer security applications. J. Evolutionary Computa-
tion 23(6), 252–280 (2002)

2. Werner-Allen, G., Tewari, G., Patel, A., Welsh, M., Nagpal, R.: Firefly-Inspired
Sensor Network Synchronicity with Realistic Radio Effects. In: ACM Conference
on Embedded Networked Sensor Systems (2005)

Biologically-Inspired Distributed Middleware Management 241

3. Suzuki, J., Suda, T.: A Middleware Platform for a Biologically Inspired Network
Architecture Supporting Autonomous and Adaptive Applications. IEEE Journal
On Selected Areas In Communications 23(2), 249–260 (2005)

4. Lee, S.-Y., Chang, H.S.: An ant system based multicasting in mobile ad hoc net-
work. IEEE Congress on Evolutionary Computation 2, 1583–1588 (2005)

5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. Oxford University
Press, Oxford (1999)

6. Di Caro, G., Dorigo, M.: AntNet: Distributed Stigmergetic Control for Communi-
cations Networks. Journal of Artificial Intelligence Research 9, 317–365 (1998)

7. Exploratory Stream Processing Systems, http://domino.research.ibm.com/

comm/research projects.nsf/pages/esps.index.html

8. Financial Services: Real Time Data Processing with a Stream Processing Engine.
White paper, http://www.streambase.com/knowledgecenter.htm

9. Abadi, D., et al.: The design of the borealis stream processing engine. In: Proceed-
ings of CIDR, Asilomar, CA (2005)

10. Cherniack, M., et al.: Scalable Distributed Stream Processing. In: Conference on
Innovative Data Systems Research (2003)

11. Motwani, R., et al.: Query Processing, Resource Management, and Approximation
in a Data Stream Management System. In: Conference on Innovative Data Systems
Research (2003)

12. Chandrasekaran, S., et al.: TelegraphCQ: Continuous Dataflow Processing for an
Uncertain World. In: Conference on Innovative Data Systems Research (2003)

13. Damani, O., Strom, R.: Smart Middleware and Light Ends for Simplifying Data
Integration. In: Conference on Information Reuse and Integration (2006)

14. Srivastava, U., Mungala, K., Widom, J.: Operator Placement for In-Network
Stream Query Processing. In: Proc. Principles of Distributed Systems, pp. 250–
258 (2005)

15. Shah, M., Hellerstein, J., Chandrasekaran, S., Franklin, M.: Flux: An adaptive
partitioning operator for continuous query systems. In: International Conference
on Data Engineering (2003)

16. Pandit, V., Strom, R., Buttner, G., Ginis, R.: Performance Modeling and Place-
ment of Transforms for Stateful Mediations, IBM Technical Report No. RI08002
(2004),
http://www.domino.research.ibm.com/library/cyberdig.nsf/index.html

17. Amini, L., Jain, N., Sehgal, A., Silber, J., Verscheure, O.: Adaptive control of
extreme-scale stream processing systems. In: International Conference on Data
Engineering (2006)

18. Wolf, J., et al.: SODA: An Optimizing Scheduler for Large-Scale Stream-Based
Distributed Computer Systems. In: ACM Middleware (2008)

19. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: Proc. of 22nd
ICDE (2006)

20. Ahmad, Y., Cetintemel, U.: Network-aware query processing for stream-based ap-
plications. In: Proceedings of Very Large Data Bases, VLDB (2004)

21. Repantis, T., Gu, X., Kalogeraki, V.: Synergy: Sharing-aware component composi-
tion for distributed stream processing systems. In: ACM Middleware, pp. 322–341
(2006)

22. Balazinska, M., Balakrishnan, H., Stonebraker, M.: Contract-based load manage-
ment in federated distributed systems. In: Symposium on Networked Systems De-
sign and Implementation (2004)

http://domino.research.ibm.com/comm/research_projects.nsf/pages/esps.index.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/esps.index.html
http://www.streambase.com/knowledgecenter.htm
http://www.domino.research.ibm.com/library/cyberdig.nsf/index.html

242 G.T. Lakshmanan and R.E. Strom

23. Zhou, Y., Ooi, B., Tan, K., Wu, J.: Efficient dynamic operator placement in a locally
distributed continuous query system. In: International Conference on Cooperative
Information Systems (2006)

24. Kumar, V., Cooper, B., Schwan, K.: Distributed stream management using utility-
driven self-adaptive middleware. In: International Conference on Autonomic Com-
puting (2005)

25. Gu, X., Yu, P., Nahrstedt, K.: Optimal component composition for scalable stream
processing. In: 25th IEEE ICDCS, Columbus, OH (2005)

26. Maniezzo, V., Colorni, A.: The Ant System Applied to the Quadratic Assignment
Problem. IEEE Transactions on Knowledge and Data Engineering 11(5), 769 (1998)

27. Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M.: Ant System for Job-Shop
Scheduling. JORBEL – Belgian Journal of Operations Research, Statistics and
Computer Science 34, 39–53 (1994)

28. Balazinska, M., Hwang, J.-H., Shah, M.: Fault-tolerance and high availability in
data stream management systems. In: Encyclopedia of Database Systems (to ap-
pear)

29. Liu, B., Zhu, Y., Jbantova, M., Momberger, B., Rundensteiner, E.: A dynami-
cally adaptive distributed system for processing complex continuous queries. In:
Proceedings of Very Large Data Bases, VLDB (2005)

30. Yang, Y., Kramer, J., Papadias, D., Seeger, B.: HybMig: A Hybrid Approach to
Dynamic Plan Migration for Continuous Queries. IEEE Transactions on Knowledge
and Data Engineering 19(3), 398–411 (2007)

31. Whitt, W.: The queueing network analyzer. Bell Systems Technical Journal 66,
2779–2813 (1983)

32. Marchal, W.: Some simpler bounds on the mean queueing time. Operations Re-
search 22, 1083–1088 (1978)

pMapper: Power and Migration Cost Aware
Application Placement in Virtualized Systems

Akshat Verma1, Puneet Ahuja2, and Anindya Neogi1

1 IBM India Research Lab
2 IIT Delhi

Abstract. Workload placement on servers has been traditionally driven
by mainly performance objectives. In this work, we investigate the design,
implementation, and evaluation of a power-aware application placement
controller in the context of an environment with heterogeneous virtual-
ized server clusters. The placement component of the application man-
agement middleware takes into account the power and migration costs
in addition to the performance benefit while placing the application con-
tainers on the physical servers. The contribution of this work is two-fold:
first, we present multiple ways to capture the cost-aware application
placement problem that may be applied to various settings. For each
formulation, we provide details on the kind of information required to
solve the problems, the model assumptions, and the practicality of the
assumptions on real servers. In the second part of our study, we present
the pMapper architecture and placement algorithms to solve one prac-
tical formulation of the problem: minimizing power subject to a fixed
performance requirement. We present comprehensive theoretical and ex-
perimental evidence to establish the efficacy of pMapper.

1 Introduction

Resource provisioning or placement of applications on a set of physical servers
to optimize the application Service Level Agreements (SLA) is a well studied
problem [6,24]. Typically, concerns about application performance, infrequent
but inevitable workload peaks, and security requirements persuade the provi-
sioning decision logic to opt for a conservative approach, such as hardware iso-
lation among applications with minimum sharing of resources. This leads to
sub-optimal resource utilization. Bohrer et al. have studied real webserver work-
loads from sports, e-commerce, financial, and internet proxy clusters to find that
average server utilization varies between 11% and 50% [3]. Such inefficient pro-
visioning leads to relatively large hardware and operations costs when compared
to the actual workload handled by the data center. However, recently two im-
portant trends, viz. server virtualization and the heightened awareness around
energy management technologies, have renewed interest in the problem of ap-
plication placement. The placement logic in the middleware now need to look
beyond just application SLAs into increasing energy-related operations costs. In
this paper, we investigate the Power-aware Application Placement problem and

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 243–264, 2008.
c© IFIP International Federation for Information Processing 2008

244 A. Verma, P. Ahuja, and A. Neogi

present pMapper, an application placement controller that dynamically places
applications to minimize power while meeting performance guarantees.

System management costs have escalated rapidly with the growing number
of densely packed under-utilized machines in the data center. Virtualization is
seen as a solution that can provide the required isolation layer to consolidate
applications running on a large number of low utilization servers to a smaller
number of highly utilized servers. The virtualization layer typically provides flex-
ible runtime mechanisms for fine grain resource allocation. In fact, high speed
live migration of virtual machines is also possible between the physical servers
in a cluster. This enables applications in virtual machine containers to be moved
at runtime in response to changing workload to dynamically optimize the ap-
plication placement on physical servers. Thus mechanisms to allow dynamic
resizing and migration of virtual machine containers among physical servers
enables research in dynamic application placement middleware beyond static
provisioning.

A second trend that is important for dynamic application placement is the
growing awareness about energy consumption in data centers and the significant
adverse impact on the environment in terms of CO2 emissions from the cooling
systems. The current power density of data centers is typically around 100 Watt
per sq.ft. and growing at the rate of 15− 20% per year [17]. Thus, it is increas-
ingly being realized that inefficient use of servers in a data center leads to high
energy costs, expensive cooling hardware, floor space, and also adverse impact on
the environment. There is a large initiative in the industry as well as academia
to develop technologies that will help to create “green” or environment-friendly
data centers that will optimize energy consumption and consolidate hardware
resources, besides being sensitive to application performance and availability
SLAs. To this extent, a dynamic application placement controller can use virtu-
alization to resize VM containers of applications or migrate VMs at runtime to
consolidate the workload on an optimal set of physical servers. Servers unused
over a period of time can be switched to low power states to save energy. Further,
we observed a fairly large dynamic power range (e.g., the static power of an IBM
HS-21 blade was 140Watt and the dynamic potentially non-linear power range
was almost 80Watt for the daxpy benchmark). Hence, even in scenarios where
servers can not be switched off by consolidation, power savings can be obtained
by packing the servers at optimal target utilization.

The use of power management techniques during application placement has its
own implications. A dynamic application placement controller uses live migration
and we found from our testbed experimentation that the cost of live migration
is significant, and needs to be factored by the dynamic placement controller.
For example, a 512MB VM running HPC benchmarks require almost a minute
to migrate and causes a 20-25% drop in application throughput during the live
migration. We also observed that a large number of live migrations are required
for dynamic placement, thus emphasizing the importance of taking migration
cost into account.

pMapper: Power and Migration Cost Aware Application Placement 245

Contributions: In this paper, we make the following contributions to advance
the state of the art. We describe the architecture and implementation of a power-
aware application placement framework, called pMapper, which can incorporate
various scenarios involving power and performance management using virtualiza-
tion mechanisms. pMapper provides the solution to the most practical possibility,
i.e. power minimization under performance constraints. We have implemented
the framework, some algorithms, and the interfaces with an existing commercial
IBM performance-oriented workload manager. We have benchmarked applica-
tions on virtualized server platforms to create utilization-based power models
of application and server combinations and quantify the virtualization related
costs. The characterization study provides us with insights into the structure of
the power-aware placement problem that can be used to design tractable appli-
cation placement solutions. We used the power models, migration cost models,
and power-aware placement algorithms to design a dynamic placement controller
that, under various assumptions, performs better than a static or load balancing
placement controller with increasing heterogeneity of the server platforms, i.e.
their power models. All input models and assumptions in pMapper have been
validated on a testbed using a set of benchmark applications. The various algo-
rithms implemented in pMapper have been compared through simulation on real
utilization trace data obtained from a large production environment.

The rest of the paper is organized as follows. Section 2 describes the var-
ious flavors of the problem and the tool architecture. Section 3 discusses the
assumptions made in the formulation and validates the assumptions through
testbed experiments. Section 4 provides the details of the algorithms. Section 5
describes our implementation and a trace-driven evaluation study of our algo-
rithms. Section 6 presents a comparative discussion with the related work.

2 pMapper: Power and Migration Cost-Aware
Application Placement Framework

In this section, we present the pMapper application placement framework for
power management and the various optimization formulations for power-aware
application placement. We first present the pMapper architecture framework
that leverages power management techniques enabled by virtualization.

2.1 Architecture

We have designed the pMapper framework to utilize all the power management
capabilities available in virtualized platforms. As per the terminology used in
[15], power management actions can be categorized as (i) soft actions like CPU
idling in the hypervisor, (ii) hard actions like DVFS or throttling and (iii) consol-
idation actions. Commercial hypervisors drop all the power management actions
that are taken by the OS. Further, for multi-tiered applications, a single VM
instance may not be able to determine the application end-to-end QoS thus ne-
cessitating the need for a power management channel from the the management

246 A. Verma, P. Ahuja, and A. Neogi

Placement

PERF MODEL

POWER MODEL

MIG MODEL

HYPERVISOR

VM

PM
C

HYPERVISOR

VM

PM
C

HYPERVISOR

VM

PM
C

SERVER FARM

M
O

N
IT

O
R

IN
G

 E
N

G
IN

E

ARBITRATOR

Power
Minimizing
Allocation

Power

Estimate

Estimate

Benefit
Mig Cost
Estimate

Migration Action

MANAGER

PERFOMANCE

MANAGER MANAGER

POWER MIGRATION

VIRTUALIZATION MANAGER

POWER DATA

KNOWLEDGE BASE

PMC

Migration Action

VM Sizes

VM

PERFORMANCE

CHARACTERIZATION

ENGINE

VM
Sizes

Middleware

Fig. 1. pMapper Application Placement Architecture

middleware. In pMapper, all the power management actions are communicated
by three different managers, with an arbitrator ensuring consistency between the
three actions. The soft-actions like VM re-sizing and idling are communicated by
the Performance Manager, that has a global view of the application in terms of
QoS met and performance SLA. Power Manager triggers power management at
a hardware layer whereas a Migration Manager interfaces with the Virtualization
Manager to trigger consolidation through VM live migration.

The resource management flow of pMapper starts with the Monitoring engine,
which collects the current performance and power characteristics of all the VMs
and physical servers in the farm. Performance Manager looks at the current
performance and recommends a set of target VM sizes based on the SLA goals.
In case, the target VM sizes are different from the current VM sizes, it also
presents an estimate of the benefit due to resizing. Similarly, Power Manager
looks at the current power consumption and may suggest throttling (by DVFS or
explicit CPU throttling). The central intelligence of pMapper lies in Arbitrator,
which explores the configuration space for eligible VM sizes and placements and
implements an algorithm to compute the best placement and VM sizes, based
on the estimates received from Performance, Power and Migration managers.

Performance Manager supports interfaces using which the Arbitrator can
query for the estimated benefit of a given VM sizing and placement (for all the
VMs). In order to cater for heterogeneous platforms, the Performance Manager
consults a Knowledge Base to determine the performance of an application, if one
of its VM is migrated from one platform to another. Similarly, Power Manager
supports interfaces using which Arbitrator can get the best power-minimizing
placement for a given set of VM sizes. Also, Power Manager uses a power model
in the Knowledge Base to determine the placement, as well as estimate the power
for a given placement. Migration Manager estimates the cost of moving from a
given placement to a new placement and uses the Migration Model for making
the estimate. Once the Arbitrator decides on a new configuration, Performance
Manager, Power Manager, and Migration Manager execute the VM sizing, server
throttling and live migration operations, respectively.

pMapper: Power and Migration Cost Aware Application Placement 247

We note that for standalone applications running on power-aware virtualized
platforms such as [15], our framework can make use of the OS hints by pass-
ing them on to the Arbitrator. Hence, our framework and proposed algorithms
(Section. 4) can also be used in other power management frameworks [15,23].

2.2 Optimization Formulations

We now formulate the problem of placing N application on M virtualized servers
that have power management capabilities. The power-aware application place-
ment problem divides the time horizon in time windows. In each window, we
compute the application placement that optimizes the performance-cost trade-
off, i.e., maximizes performance and minimizes cost. The cost metric may consist
of management cost, power cost or the application cost incurred due to the mi-
grations that are required to move to the desired placement. We next present
various formulations of the application placement problem.

Cost Performance Tradeoff. The generic formulation of the problem solves
two sub-problems: (i) application sizing and (ii) application placement. Given a
predicted workload for each application, we resize the virtual machine hosting
the application and place the virtual machines on physical hosts in a manner
such that the cost-performance tradeoff is optimized. In this paper, we focus
on the power and migration costs only. Formally, given an old allocation Ao, a
performance benefit function B(A), a power cost function P (A), and a migration
cost function Mig for any allocation A, we need to find an allocation AI defined
by the variables xi,j , where xi,j denotes the resource allocated to application
Vi on server Sj , such that the net benefit (defined as the difference between
performance benefit and costs) is maximized.

maximize
N∑

i=1

M∑
j=1

B(xi,j) −
M∑

j=1

P (AI) − Mig(Ao, AI) (1)

Cost Minimization with Performance Constraint. Data centers today are
moving towards an SLA-based environment with fixed performance guarantees
(e.g., response time of 100 ms with throughput of 100 transactions per second).
Hence, in such a scenario, performance is not a metric to be maximized and
can be replaced by constraints in the optimization framework. In practice, it
amounts to taking away the VM sizing problem away from the Arbitrator. The
VM sizes are now fixed by the Performance Manager based on the SLA and the
Arbitrator only strives to minimize the overall cost of the allocation. Hence, the
optimization problem can now be formulated as

minimize

M∑
j=1

P (AI) + Mig(Ao, AI) (2)

248 A. Verma, P. Ahuja, and A. Neogi

Performance Benefit Maximization with Power Constraints. A third
formulation for the application allocation problem is to maximize the net perfor-
mance benefit given a fixed power budget for each server, where the net benefit
is computed as the difference between the performance benefit and migration
cost.

maximize

N∑
i=1

M∑
j=1

B(xi,j) − Mig(Ao, AI) (3)

We next present the various model assumptions that pMapper needs to make
to solve the application placement problem.

3 Model Assumptions and Experimental Reality

In this section, we study the various underlying model assumptions and the
feasibility of constructing estimation models required by the three formulations
of the application placement problem.

Our testbed to experimentally validate the model assumptions consists of
two different experimental setups. The first setup is an IBM HS-21 Bladecenter
with mutiple blades. Each blade has 2 Xeon5148 dual-core Processors and runs
two compute-intensive applications from an HPC suite, namely daxpy and fma
and a Linpack benchmark HPL [16] on VMWare ESX Hypervisor . Each blade
server has an L2 cache of 4MB, FSB of 1.33 GHz, with each processor running
at 2.33 GHz. The second setup consists of 9 IBM x3650 rack servers running
VMWare ESX with L2 cache of 4MB. Each server has a quad-core Xeon5160
processor running at 2.99 GHz. This setup runs the Trade6 application as well as
the two HPC applications daxpy and fma. The overall system power is measured
through IBM Active Energy Manager APIs [13]. We now list the key model
assumptions and our experimental findings on the veracity (or the lack of it)
of the assumptions. We use these findings to investigate the practicality of the
optimization formulations discussed earlier.

3.1 Performance Isolation in Virtualized Systems

Virtualization allows applications to share the same physical server by creating
multiple virtual machines in a manner such that each application can assume
ownership of the virtual machine. However, such sharing is possible only if one
virtual machine is isolated from other virtual machines hosted on the same phys-
ical server. Hence, we first studied this fundamental underlying assumption by
running a background load using fma and a foreground load using daxpy. The
applications run on two different VMs with fixed reservations. We varied the
intensity of the background load and measured the performance (throughput)
of the foreground daxpy application (Fig. 2(a)).

One can observe that the daxpy application is isolated from the load variation
in the background application. However, we conjectured that applications may
only be isolated in terms of CPU and memory, while still competing for the
shared cache. To validate this conjecture, we increased the memory footprint of

pMapper: Power and Migration Cost Aware Application Placement 249

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80

T
im

e

Background Utilization

Time taken on x3650(daxpy)
Time taken on HS21(daxpy)

Time taken on HS21(HPL)

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

T
im

e

Background Utilization

Time taken on HS21 (daxpy)
Time taken on x3650 (daxpy)

(a) (b)

Fig. 2. Running Time of 30 Billion daxpy operations with change in background load on
HS-21 and x3650 systems at (a) low memory footprint and (b) high memory footprint

both the foreground daxpy and background fma. We observed that as the size
of the arrays being operated exceeded the L2 cache size (4MB), the applications
were no longer isolated (Fig. 2(b)). The throughput of the foreground application
decreases with increase in background traffic as a result of the large number
of cache misses, which are due to increased cache usage by the background
application. However, as one increases the memory footprint of each application
beyond the cache size, the applications are no longer able to use the cache even
in isolation. Hence, we concluded that for a large range of application use (small
and large working set sizes), virtualization is able to successfully isolate two VMs
from each other.

3.2 Migration Cost Modeling

We have proposed the application placement problem as a continual optimiza-
tion problem, where we dynamically migrate the live virtual machines from one
physical server to another in order to optimize the allocation. The migration
of virtual machines requires creation of a checkpoint on secondary storage and
retrieval of the VM image on the target server. Applications can continue to
run during the course of migration. However, the performance of applications
is impacted in the transition because of cache misses (hardware caches are not
migrated) and possible application quiesces. Thus, each migration is character-
ized by a migration duration and a migration cost. The Migration Manager in
pMapper needs to estimate this migration cost for use by the Arbitrator. Hence,
we next studied the feasibility of characterizing migration cost for an application
and study the parameters that affect this cost.

We observed (Fig. 3) that the impact of migration was independent of the
background load and depends only on the VM characteristics. Hence, the cost
of each live migration can be computed a priori. This cost is estimated by quan-
tifying the decrease in throughput because of live migration and estimating the
revenue loss because of the decreased performance (as given by SLA). Hence,

250 A. Verma, P. Ahuja, and A. Neogi

Background Load (CPU) Migration Duration Time (w/o Mig) Time (With Mig)
0 60 210s 259s
12 70 214s 255s
30 63 209s 261s

Fig. 3. Impact of Migration on application throughput with different background traffic

we conclude that it is possible to estimate the cost of live migration of each
application for use by pMapper.

3.3 Power Modeling

The power-aware application placement controller explores various candidate
placements and needs to estimate the overall power drawn for each candidate
placement while selecting a good placement. This estimation is especially re-
quired to solve the power-constraints and power-performance tradeoff formula-
tions. We next study the feasibility of modeling the power for a server given a
mix of applications running on it.

Give a set of N applications and M servers, we can potentially mix a large
variety of applications on each server. Further, any optimization algorithm may
seek to change the ratio of various applications on a server. Hence, creating a
model for all mixes of all applications on all the servers is practically infeasible.
Thus, we may be able to estimate the power drawn by a server only if it is
independent of the applications running on it. We next conducted experiments
to validate this assumption by creating power models for various applications on
the two testbeds.

We found (Fig. 4(a)) that the power drawn by a server varies with the appli-
cations running on it. Hence, an algorithm that requires an exact power model

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

P
ow

er

Utilization

daxpy on x3650
fma on x3650

Trade6 on x3650
daxpy on HS21

fma on HS21
 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

M
ar

gi
na

l P
ow

er

Background Utilization

(fma,fma,hs21)
(fma,daxpy,hs21)

(daxpy,daxpy,hs21)
(daxpy,fma,hs21)

(daxpy,daxpy,x3650)
(fma,fma,x3650)

(a) (b)

Fig. 4. (a) Power drawn by various applications with change in server utilization. (b)
Marginal Power consumed by HPC applications on various platforms with change in
background load and background mix. (A,B, C) denotes incremental power drawn by
A with background traffic of B on platform C.

pMapper: Power and Migration Cost Aware Application Placement 251

for each allocation may be infeasible in practice. Further, since migration takes
a significant amount of time, any measurement-based strategy that tries to learn
the power models for all used application mixes is also practically infeasible in
a dynamic consolidation setting.

We concluded that the power-capping and power-performance tradeoff frame-
works, though interesting in theory, are not feasible in practice as they need
one to compute the exact power consumed by an application. However, we note
that an algorithm to solve the power minimization problem does not need actual
power numbers. The problem that the power minimization framework solves is to
minimize power, without really knowing what the exact power would be. Hence,
an algorithm that can be listed out as a sequence of steps, where each step is
a decision problem for some application to determine which of the candidate
servers the application should be placed on, does not need estimates of power
values. Instead, if the algorithm can figure out which server minimizes the in-
cremental increase in total power due to the new application being placed, then
it can place the application appropriately.

One may, however, note that this approach restricts the algorithm choices to
only those algorithms that take a local view of the problem, and hence can be
locally optimal in the best case. Further, one still needs to solve the ordering
problem, where for any given placement of N − 1 applications on M servers, we
should be able to estimate the best server (in terms of power minimization) to
place the N th application. We next investigate two properties such that even if
any one of them holds, one can make this decision.

Definition 1. Ordering Property: For any two applications V Mi and V Mi′ and
servers Sj and Sj′ at loads ρj and ρj′ respectively, if the server Sj is more power
efficient than Sj′ for V Mi, then Sj is more power-efficient than Sj′ for all V Mi′

as well. Hence, the slopes for any two servers satisfy a uniform ordering across
all applications.

Definition 2. Background Independence Property: An application and a server
are said to satisfy that Background Independence Property if the incremental
power drawn due to the application on the server depends only on the background
load intensity and is independent of the traffic mix in the background.

We next investigate if these properties can be made to hold in certain situations
where we know about the class of applications we are placing. For example, if we
restrict ourselves to consider only HPC applications or only J2EE applications in
a cluster we can demonstrate that these properties hold. We ran two applications
on the two testbeds for various mixes of background traffic picked from the HPC
benchmarks. We observed the Ordering Property to hold for the two applications
on the two testbeds. We noted (Fig. 4(b)) that the x3650 platform is more power-
efficient (incrementally) for both the applications. This is true even when we
changed the background traffic from daxpy to fma on the HS21 Blades. We also
observe that the incremental power drawn by daxpy for both the background
traffic at any given background load value is almost same. Hence, one can assume
the Background Independence Property to hold at a coarse granularity in most

252 A. Verma, P. Ahuja, and A. Neogi

scenarios. We next propose algorithms that use these properties to solve the
power-minimization optimization problem.

4 Application Placement Algorithms

In this section, we describe the various placement algorithms designed for mini-
mizing the overall cost, while meeting a fixed performance SLA. The algorithms
assume that a performance manager provides them with a VM size for each ap-
plication, that can meet its performance goals. We start with a brief description
of the key ideas behind the algorithms.

4.1 Algorithm Idea

Our application placement algorithms that minimize the power and migration
costs are based on three key observations

1. Estimating the power cost of a given configuration may not be possible
because power drawn by a server depends on the exact application mix on
a server.

2. Background Independence Property and Ordering Property allows one to
pick a server for an application that will minimize the incremental power
due to the new application. Hence, local searches are feasible.

3. The above properties may not hold always if servers are equally loaded.
However, the properties will definitely hold if we compare an idle server
with a loaded server.

The first two observations dictate the design of algorithms to be based on local
searches. One can view the application placement problem as a bin-packing
problem with differently sized bins. The servers represent the bins and the virtual
machines represent the balls. The power drawn by a server is represented as the
cost of the bin and the power-minimizing allocation is a packing that minimizes
the cost of the packed bins. Since power drawn by a server depends on the actual
mix of applications, the cost of packing a bin varies depending on the balls being
packed in the bin. Bin packing has many local search algorithms like First-Fit
Decreasing(FFD) [25], Best-Fit and Worst-fit.

We took a close look at FFD, where balls are ordered by size (largest first).
The balls are then packed in the first bin that can accommodate them. We
observed that if servers are ordered based on power efficiency (static power per
unit capacity), then the FFD algorithm can employ the Ordering property to
minimize power. This is because FFD unbalances load, and as per our third
observation, the Ordering property always holds if we are comparing an idle
server with a loaded server. Further, by placing servers based on their power
efficiency, we ensure that more power efficient servers are the ones that are
utilized first. Finally, FFD has good theoretical bounds and is also known to
perform well in practice [25]. Hence, we focus on adapting First Fit to work for
different sized bins with ball-dependent cost functions.

pMapper: Power and Migration Cost Aware Application Placement 253

4.2 Algorithm Details

We first present an algorithm min Power Parity (mPP) in Fig. 5 to place the
VMs on the given set of servers in a manner such that the overall power consumed
by all the servers is minimized. The algorithm takes as input the VM sizes for
the current time window that can meet the performance constraints, a previous
placement and the power model for all the available servers. It then tries to place
the VMs on the servers in a manner that minimizes the total power consumed.

algorithm mPP

Input : ∀iV Mi, Allocold Output = Allocnew

∀Serverj

Allocj = φ, Usedj = 0
Sort VMs by size in decreasing order
for i = 1 to N

∀Serverj compute Slope(Usedj)
Pick the Servermin with the least Slope
Add V Mi to Allocmin, Usedmin+ = Size(V Mi)

End For
Allocnew = FFD(Used)
returnAllocnew

end mPP

Fig. 5. Power-minimizing Placement Algorithm

mPP works in two phases: In the first phase, we determine a target utilization
for each server based on the power model for the server. The target utilization
is computed in a greedy manner, where we start with a utilization of 0 for each
server. We then pick the server with the least power increase per unit increase
in capacity. We continue the process till we have allocated capacity to fit all the
VMs. Since we may not be able to estimate the server with the least slope for all
possible background traffic mixes, we pick an arbitrary traffic mix to model the
power for each application and use this model in the selection process. We will
later show that modeling based on an arbitrary background traffic mix also leads
to a good solution. In the second phase, we call the bin-packing algorithm FFD
based on First Fit Decreasing to place the VMs on the servers, while trying to
meet the target utilization on each server. The bins in our version have unequal
capacity, where the capacity and order of each bin is defined in the first phase
whereas standard FFD that works with randomly ordered equal-sized bins.

Theorem 1. If the Ordering Property or the Background Independence Prop-
erty hold for a given set of servers and applications, then the allocation values
obtained by mPP in its first phase are locally optimal.

Proof. Let there be any two servers Sj and Sk such that we can shift some load
between the two. For simplicity, assume that the load shift requires us to move

254 A. Verma, P. Ahuja, and A. Neogi

algorithm iFFD
Input : Alloco, Used Output = Allocn

Donors = φ, Receivers = φ

For all servers Sj

Prevj =sum of VMs in SjbyAlloco

If(Prevj > Usedj)
Add Sj to Donors

Migj = Prevj − Usedj

Else

Add Sj to Receivers

End − For

For all Sj in Donors

Pick the smallest VMs that add upto
Migj and add them to MigList

End − For

Sort MigList based on size
For all V Mi in MigList

Place V Mi on the first Donorj that
can pack it within Usedj

End − For

Return Allocn

algorithm pMaP
Input : Alloco, V Mi Output : Migs

Allocn = mPPH(Alloco, V Mi)
MList = getMigList(Alloco , Allocn)
∀Serverj with no VMs placed in Allocn

V Gj =VMs placed on Serverj in Alloco

Add V GjtoMList

∀migi ∈ MList

Costi = getMigrationCost(migi),
Benefiti = getBenefit(migi)

Sort MList by Benefiti/costi (decreasing)
migbest = most profitable entry in MList

while(profitbest > costbest)AND(MList �= Φ)
Migs = Migs ∪ migbest

Delete migbest from MList

Recompute Cost and Benefit for MList

End While

return Migs

end pMaP Algorithm

(a) (b)

Fig. 6. (a)History Aware Packing Algorithm, (b) Migration Cost-aware Locally Opti-
mal Placement Algorithm

the VM V Mi from Sj (at load ρj) to Sk (at load ρk). Also, since we had selected
Sj over Sk for the additional load, there exists some VM V Mi′ for which the
slope of Sj at load ρj is less than the slope for the server Sk at load ρk. However,
by the Ordering assumption, such a VM V Mi′ can not exist. This leads to a
contradiction and proves the required result.

The proof for the Background Independence Property is straightforward. If this
property holds, then the incremental load due to application V Mi is independent
of the workload mix, and as a result, we can always compute the exact increase
in power on all candidate servers for V Mi and pick the best server. Hence, the
shares allocated to the servers are locally optimal. This completes the proof.

One may also observe that if all the power models are concave, then the utiliza-
tion allocation obtained is globally optimal as well. However, we did not observe
this property to hold in our experiments and concluded that mPP can provably
lead to locally optimal allocations only.

The mPP algorithm is designed to minimize power. However, it is oblivious of
the last configuration and hence may entail large-scale migrations. This may lead
to a high overall (power + migration) cost. Hence, we next propose a variant of
FFD called incremental FFD (iFFD) for packing the applications on physical
servers, given a fixed target utilization for each server in Fig. 6(a).

iFFD first computes the list of servers that require higher utilization in the
new allocation, and labels them as receivers. For each donor (servers with a
target utilization lower than the current utilization), it selects the smallest sized
applications to migrate and adds them to a VM migration list. It then runs FFD

pMapper: Power and Migration Cost Aware Application Placement 255

with the spare capacity (target capacity - current capacity) on the receivers as
the bin size and the VM migration list as the balls. iFFD has the nice property
that it starts with an initial allocation, and then incrementally finds a set of
migrations that will help it reach the target utilization for each server. Hence,
the packing algorithm migrates VMs only to the extent required to reach the
target utilization for each server.

We use iFFD to design a power-minimizing placement algorithm that in-
cludes history, and is aptly named as min Power Placement algorithm with His-
tory mPPH . It works identically as mPP in the first phase. For the second
phase, it invokes iFFD instead of FFD, thus selecting a placement that takes
the earlier placement as a starting point. mPPH algorithm tries to minimize mi-
grations by migrating as few VMs as possible, while moving to the new optimal
target utilization for the servers. However, even though it is migration aware, it
does not compromise on the power minimization aspect of the algorithm. Hence,
if the target utilization for servers change significantly in a time-window, mPPH
still resorts to large scale migrations to minimize power cost.

We next propose an algorithm PMaP that takes a balanced view of both
power and migration cost, and aims to find an allocation that minimizes the sum
of the total (power + migration) cost. pMaP (Fig. 6(b)) continually finds a new
placement for VMs in a fashion that minimizes power, while taking the migration
cost into account. The algorithm is based on the fundamental observation that
all the migrations that take us from an old power-minimizing placement to a
new power-minimizing placement may not be optimizing the power-migration
cost tradeoff. Hence, the algorithm first invokes any power-minimizing placement
algorithm (mPPH is our choice) and gets a new power-minimizing placement. It
then computes the difference between the two placements (the set of migrations
that will change the old placement to the new placement) and determines a
subset to select. The selection process is based on sorting all the migrations
based on their incremental decrease in power per unit migration cost. We note
that a set of multiple migrations may be atomic and have to be separately
considered en masse as well, while estimating their incremental decrease in power
per unit migration cost. We then select the most profitable migration if the
power savings due to migration is higher than the migration cost. We repeat the
above procedure till no migrations exist that optimize the power-migration cost
tradeoff. We prove the following Local Optimality property for PMaP along the
same lines as Theorem 1.

Lemma 1. If pMaP at any given time has a placement P , then the next mi-
gration selected by P achieves the highest power-migration cost tradeoff. Hence,
every iteration that selects the next migration in pMaP is locally optimal.

5 pMapper Implementation and Experimental Validation

We now present our implementation of pMapper and an experimental study to
demonstrate its effectiveness.

256 A. Verma, P. Ahuja, and A. Neogi

5.1 Implementation

We have implemented pMapper to solve the cost minimization problem de-
scribed in Eqn. 2. In this formulation, the Arbitrator is driven by performance
goals and only arbitrates between the Power Manager and Migration Manager
to find a placement that optimizes the power-migration cost tradeoff. The Power
Manager implements the power-minimization algorithms mPPH and mPP ,
whereas the Arbitrator implements the pMaP algorithm to optimize the power
migration tradeoff.

We use IBM Active Energy Manager [13] for monitoring power usage and
EWLM [14] as the performance manager. In order to use the Active Energy
Manager for monitoring, we have writen a monitoring agent that is co-located
with the IBM Director Server and uses network sockets to communicate with
the pMapper framework. EWLM uses a metric called Performance Index (PI)
to indicate if an application is meeting its required SLA. A PI value of 1 is
achieved when the response time of the application equals the target response
time as specified in its SLA. Whenever, an application fails to meet its PI or
outperforms its SLA, EWLM automatically resizes the VM so that the PI value
for the application reaches 1. We have implemented our Arbitrator to work with
a workload manager independent datastructure that captures a configuration in
terms of VM sizes and their placements. Hence, the Arbitrator uses an adapter
that allow it to understand the performance characteristics and partition sizes as
reported by EWLM. We have implemented pMapper for VMWare ESX-based
platforms and hence we use VMWare Virtual Center as the Virtualization Man-
ager. We use the VI API provided by VMWare ESX 3.0 to communicate with
the Virtualization Manager and execute migration actions. In order to execute
throttling actions, we use the IBM Active Energy Manager interface that directly
communicates with the BMC via IPMI commands.

We next describe our experimental setup for the performance study.

5.2 Experimental Setup

Our experimental testbed is driven by server utilization traces obtained from the
server farm of a large data center. We initially wanted to conduct our experiments
on the complete implementation of pMapper. However, we soon realized that
this would take an inordinately long time (running the experiments for Fig. 7(b)
only would take 4 months as it required 60 different runs). Initially, we looked
at ways to speed up the experiments but we could not do so because the data
refresh rate of Active Energy Manager was 5 minutes. We realized that our
implementation was not focussing on performance (which was out-sourced to
EWLM) and we only needed to study the power and migration cost minimization
ability of pMapper.

Hence, we simulated the performance infrastructure by replacing the Per-
formance Manager with the application trace data. Further, once the Arbitrator
came up with a final placement, we fed the output to a Simulator that estimated
the overall cost of the placement. Since we had characterized the applications on
the platform earlier, we could design a table-driven simulator that was accurate

pMapper: Power and Migration Cost Aware Application Placement 257

with 99% confidence. The Simulator simulates the placement of these servers on
a HS-21 Bladecenter according to the configuration given by the Arbitrator. For
comparison, we used the following algorithms

– Load Balanced: This placement strategy places the VM in a manner such
that the load is balanced across all the blades in the Bladecenter.

– Static: This algorithm takes long term history into account to find the place-
ment that minimizes the power. The algorithm first estimates the minimum
number of servers required to serve all the requests without violating blade
server capacities. It then places the VMs (only once) on the servers to min-
imize power

– mPP: The minPowerPlacement Algorithm dynamically determines the place-
ment that minimizes the power for that time window and is based on FFD.

– mPPH: The minPowerPlacement with History Algorithm determines the
power-minimizing placement that takes into account the previous placement.

– PMaP: The PMaP Algorithm optimizes the tradeoff between power cost and
migration cost, while computing the new placement for the window.

In our experiments, the Performance Simulator maps each server utilization
trace to a Virtual Machine (VM) on the HS-21 with the VM size being set to
the CPU utilization on the server. The trace is divided into time windows, and
in each time window, the Arbitrator determined a new placement for each of
the placement strategies based on the utilization specified by the Performance
Manager in the time window. We feed the placements to the Simulator, which
estimates the cost of each placement and logs it.

We studied the various methodologies with respect to the power consumed,
the migration cost incurred, and the sum of power cost and migration cost. We
then conducted a comparative study of the algorithms with change in server
utilization. We also increased the number of blades in the Bladecenter to inves-
tigate the ability of the algorithms to scale and deal with fragmentation. We used
a metric to quantify the relative impact of migration cost with power cost and
termed it MP Ratio. The migration cost is determined by estimating the impact
of migration on application throughput and consequent revenue loss, computed
as per the SLA. This cost is compared with the power cost using the power
drawn and the price/watt paid by the enterprise. We pick a reasonable value for
this ratio in our baseline setting based on typical SLAs and then vary this ratio
to study its impact on the performance of various algorithms. We also plugged in
some other power models to investigate if the algorithms are dependant on spe-
cific power models. Further, by mixing different kinds of physical servers (with
different power models), we investigate the ability of the algorithms to handle
heterogeneity. We finally studied the practicality of the assumptions made.

5.3 Results

We first study the behaviour of various algorithms as the traces are played with
time (Fig. 7(a)). The aggregate utilization of the VMs varies during the run and
the dynamic algorithms continually try to adapt to the changed workload. We

258 A. Verma, P. Ahuja, and A. Neogi

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 50 100 150 200 250 300
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
ow

er
(W

at
ts

)

A
ve

ra
ge

 U
til

iz
at

io
n

Time

Average Utilization
Static Power
mPP Power

mPPH Power
LB Power

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ne

rg
y(

K
ilo

jo
ul

es
)

Utilization

Static Energy
mPP Energy

mPPH Energy
LB Energy

(a) (b)

Fig. 7. Power consumed by various placements strategies with (a) time and (b) in-
creasing overall utilization

observe that the dynamic algorithms mPP and mPPH are able to save about
200W of power (25%) from the Load Balanced and Static Placements. However,
as the utilization exceeds 0.75, the savings drop significantly. This is because,
at high utilization, there is not much scope for consolidation. However, even at
high loads, our algorithms are able to save some power by taking the decreasing
slope of the power curves into account. We observed that our algorithms try to
run most servers at close to their full capacity because the power-curve saturates
at high capacity. Hence, instead of balancing the load across all servers, it makes
sense to unbalance load even when all the servers are switched on. We also
observe that the proposed algorithms show very strong correlation with the
average utilization. This establishes their ability to continually adapt to workload
variations and save power accordingly.

We next investigate the impact on power at different average utilization val-
ues. Towards this purpose, we compressed (or decompressed) all the traces so
that the average utilization of the servers could be varied. The trace was com-
pressed to achieve a higher utilization than the baseline, and decompressed to
achieve lower utilizations. We observed that the power savings obtained by the
proposed power-minimizing algorithms is significant at low utilization values.
This is because our algorithms are able to consolidate the VMs on a few servers
only, and save a significant amount of power due to the high static power cost.
Our study (Fig. 7(a)) reaffirms that most savings come from consolidation and
not by unbalancing load. This is evident because the savings of proposed algo-
rithms increase significantly when the average utilization goes below 0.75 and
0.5. These are the utilization values at which one can switch off an additional
server. Note that the discontinuities are not so noticeable in Fig. 7(b). However,
since at an average utilization of 0.75, there are many time instances where the
utilization goes beyond 0.75 and no server can be switched off, the difference
between overall energy consumption between average utilization of 0.7 and 0.75
is not as large as one would expect from Fig. 7(a).

We have only investigated the performance of algorithms w.r.t power con-
sumed by their corresponding placements. We now take into account the

pMapper: Power and Migration Cost Aware Application Placement 259

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 100

 200

 300

 400

 500

T
ot

al
 C

os
t

M
ig

 C
os

t

Utilization

Static Total Cost
mPP Total Cost

mPPH Total Cost
pMaP Total Cost

LB Total Cost
mPP MigCost

mPPH MigCost
pMaP MigCost

LB MigCost

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 0

 100

 200

 300

 400

 500

 600

 700

 800

T
ot

al
 C

os
t

M
ig

 C
os

t

Migration Cost Ratio

Static Total Cost
mPP Total Cost

mPPH Total Cost
pMaP Total Cost

LB Total Cost
mPP MigCost

mPPH MigCost
pMaP MigCost

LB MigCost

(a) (b)

Fig. 8. Migration Cost and Overall Cost with (a) increasing overall utilization (b)
change in MP (Migration to Power Cost) Ratio

migration cost and compare the power-minimizing algorithms with the migration
cost aware pMaP algorithm as well (Fig. 8(a)). We observe that even though
the power drawn by pMaP (difference of total cost and migration cost) is higher
than mPP or mPPH , the total cost of pMaP is the least amongst all com-
peting algorithms. This establishes the importance of taking both the migration
and power cost into account, while coming up with a new placement. We also
observe that mPP pays a very high migration cost at higher utilization, and
underperforms even the LB(Load − balanced) and Static placements at very
high loads. On the other hand, mPPH incurs very low migration cost (of the
same order as load-balanced) and as a result, has a total cost very close to the
best performing algorithm pMaP . This is a direct result of the fact that mPPH
takes the previous placement into account while computing a new placement,
and tries to minimize the difference between the two placements. Hence, even
though mPPH does not compromise on saving power as opposed to pMaP ,
which can prefer a placement with high power and low migration cost, the mi-
gration costs incurred by mPPH are not significant. This establishes mPPH as
a good alternative to pMaP , because of its relative simplicity.

The MP ratio (migration to power cost ratio) varies from one enterprise to
another and depends on factors such as energy cost and SLA revenue models.
We next investigate the various algorithms at different MP ratio. We observed
(Fig. 8(b))that MP ratio directly affects the overall performance of mPP . Hence,
mPP is the best performing algorithm (approaching mPPH and pMaP) at low
migration costs and underperforms even the power-unaware algorithms at very
high migration cost. This underscores the importance of taking migration cost
into account, along with the power cost for dynamic placement. On the other
hand, pMaP takes the increased migration cost factor into account by cutting
down migrations. Hence, a high MP ratio does not affect its performance.

In our next set of experiments, we investigated the scalability of the algorithms
along with their ability to deal with fragmentation (large VM sizes). Hence, we
increased the number of servers from 4 to 16. We observed that pMaP and

260 A. Verma, P. Ahuja, and A. Neogi

 0

 500

 1000

 1500

 2000

 2500

 3000

 4 6 8 10 12 14 16

 0.2

 0.4

T
ot

al
 C

os
t

P
en

al
ty

Number of Servers

Static Total Cost
mPP Total Cost

mPPH Total Cost
pMaP Total Cost

mPP Penalty
mPPH Penalty
pMap Penalty

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.2

 0.4

T
ot

al
 C

os
t

P
en

al
ty

Utilization

pMaP Total Cost
pMaP+ Total Cost

Static Penalty
mPP Penalty

mPPH Penalty
pMaP Penalty

pMaP+ Penalty
LB Penalty

(a) (b)

Fig. 9. (a) Overall Cost and Penalty with increase in servers (b) Power and Penalty
with increase in fragmentation for penalty aware and unaware algorithms

mPPH are the top two performing algorithms even with increased number of
servers. However, we observed (Fig. 9(a)) that while aiming to unbalance load
for minimizing power, pMaP was leading to a large number of requests being
dropped (or delayed). We call the drop in requests as Penalty of a placement. A
reason for this penalty is the huge variance in workload. Hence, at an average
load of 0.7 approximately, there are many instances when the transient load goes
beyond 1.0 and, as a result, many requests need to be dropped (irrespective of
the placement methodology). However, since pMaP is unaware of penalties, it
drops more requests than others, while striving to minimize cost. This makes
pMaP undesirable for use at high load intensities.

We next engineered pMaP to take penalty into account, while exploring the
search space between the old placement and the new placement. The modified
algorithm pMaP+, during its exploration, picks only those intermediates whose
penalty are below a bound. We fixed the bound to be 0.1 in our experiments.
We observe (Fig. 9(b)) that the penalty aware algorithm pMaP+ now incurs
the least penalty amongst mPP , mPPH , pMaP and static. The penalty seen
by the Load Balanced algorithm is the baseline penalty incurred solely because
of traffic variations and pMaP+ now has a penalty approaching that of Load
Balanced. This engineering allows pMaP+ to again be the algorithm of choice
under all scenarios. We also observe that the penalties of the Static placement
also varies a lot, approaching 20% in certain cases. This is again, a result of
the load-shifts that happen with time, re-affirming the importance of a dynamic
placement strategy.

In this set of experiments, we simulate heterogeneity with various power mod-
els. We simulate another server with a power model where the static power or
the dynamic power or both may be reduced to half. We increase the number of
such servers from 0 to 2 to increase the complexity in Static Power or Dynamic
Power (Fig. 10(a)). We observed that increased complexity (due to heterogene-
ity) leads to higher power savings relative to the Static Placement, which is the
best power-unaware placement method. Further, the power savings are almost

pMapper: Power and Migration Cost Aware Application Placement 261

00.511.52
0

0.5
1

1.5
2

10

15

20

25

30

Static Power ComplexityDynamic Power Complexity

P
ow

er
 S

av
in

gs
 (

%
)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35 40

P
en

al
ty

 (
W

at
ts

)

VM Number (In order of placement)

Load Factor = 15%
Load Factor = 35%
Load Factor = 45%
Load Factor = 70%
Load Factor = 90%
Load Factor = 93%

(a) (b)

Fig. 10. (a) Power Savings of mPP and mPPH in comparison to Static Place-
ment with increasing heterogeneity. (b) Penalty incurred because of the Ordering
Assumption.

additive with increase in static or dynamic complexity. Hence, the proposed
algorithms are capable of working even better in heterogeneous clusters, thus
establishing their efficacy in a wide variety of settings.

Our algorithms are based on the assumption that for each application being
placed, we can characterize the incremental power drawn by it at various work-
loads on all the server platforms. We can then use this incremental power table
to decide which server to place the application on, during dynamic application
placement. We now investigate the practicality of this assumption. In order to
study this, we looked at a a random sample of 100 points from this selection
trace log and measured the incremental power drawn due to our selection and
the incremental power drawn by selecting any other server. Fig. 10(b) shows the
accuracy of our estimate in terms of the penalty accrued due to wrong selection
for each placed application. If we made the right selection, we get a penalty of
0 whereas if there was another server with less incremental power, we incur a
penalty equal to the difference. We observe that the Ordering property holds
for most of the applications with a few errors resulting in an error of 1 watts
or less. As compared to the total power consumption of about 750W , this er-
ror is insignificant. Further, we observe that the property does not hold only
for the last few applications being placed. Hence, any errors made do not get
cascaded to other applications, as most of them were already placed. This is a
direct result of the fact that we chose to adapt FFD, which leads to unbalanced
load. Hence, for most of the comparisons that used the Ordering property, we
compared an idle server with a loaded server, and very clearly the loaded server
was selected because of the huge static power cost. Hence, our local search based
on the Ordering property worked close to optimal. Further, a closer look at the
plots reveal that we pay the penalty only when the overall load approaches 50%
or 75%. This is because in these cases all the servers that were loaded were close

262 A. Verma, P. Ahuja, and A. Neogi

to their capacity. Hence, we had to select between servers that where all loaded.
In such a scenario, the Ordering property did not seem to hold in a few instances
(about 1 in 5). However, this scenario encompasses only a very small portion of
the overall problem space. Hence, we conclude that pMapper is able to make
use of the Ordering property to quickly come up with placements that are very
close to optimal (less than 0.2% penalty).

6 Related Work and Conclusion

Energy management in server clusters has been a popular area of research since
the beginning of this decade [1,12]. Chen et al. [6] combine server level CPU
scaling techniques with the application provisioning problem in the same for-
mulation. However, in contrast to pMapper, they do not work in a virtualized
setting with migration costs and only deal with homogeneous clusters for place-
ment. Muse pose a resource allocation problem in [4], where services are allocated
to enough number of resource containers on physical servers based on an eco-
nomic model. Since energy cost is part of the model and the load is dynamic,
resources are allocated dynamically in a manner that is aware of the energy
costs. However, the model does not explicitly consider migration costs of con-
tainers or deal with the complexity of application specific power models in a
heterogeneous server cluster. Bobroff et al. [2] describe a runtime application
placement and migration algorithm in a virtualized environment. The focus is
mainly on dynamic consolidation utilizing the variability in workload but they
do not perform power-aware placements on heterogeneous servers.

Most of the cluster energy management literature addresses the problem of
distributing requests in a web server cluster in such a way that the performance
goals are met and the energy consumption is minimized [4,5,10,19,21]. There
are a number of papers that describe server or cluster level energy management
using independent [8,18] or cooperative DVS techniques [7,11]. There are other
efforts in reducing peak power requirements at server and rack level by doing
dynamic budget allocation among sub-systems [9] or blades [20].

In this work, we have presented an application placement controller pMapper
that minimizes power and migration costs, while meeting the performance guar-
antees. pMapper differs from all existing literature because it addresses the prob-
lem of power and migration cost aware application placement in heterogeneous
server clusters that support virtualization with live VM migration. It investigates
the viability of using CPU utilization based application specific power models
to develop placement algorithms and validates the assumptions through testbed
experimentation. Through a carefully designed experimental methodology on
two server platforms, we concluded that only a power minimization framework
is feasible practically. We use insights from our study to pin down the conditions
under which this problem can be solved. We proposed three dynamic placement
algorithms to minimize power and migration cost and experimentally demon-
strated the various scenarios in which each algorithm is effective. We established

pMapper: Power and Migration Cost Aware Application Placement 263

the superiority of our most refined algorithm pMaP+ under most settings over
other power unaware algorithms as well as power aware algorithms both theo-
retically and experimentally.

References

1. Bianchini, R., Rajamoni, R.: Power and energy management for server systems.
IEEE Computer, 68–76 (November 2004)

2. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for
managing sla violations. In: IEEE IM (2007)

3. Bohrer, P., et al.: The case for power management in web servers. In: Power Aware
Computing (2002)

4. Chase, J., Anderson, D., Thakar, P., Vahdat, A., Doyle, R.: Managing energy and
server resources in hosting centers. In: Proc. ACM SOSP (2001)

5. Chase, J., Doyle, R.: Balance of power: Energy management for server clusters. In:
HotOS (2002)

6. Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang, Q., Gautam, N.: Man-
aging server energy and operational costs in hosting centers. In: Sigmetrics (2005)

7. Elnozahy, E., Kistler, M., Rajamony, R.: Energy- efficient server clusters. In: Pro-
ceedings of the Workshop on Power-Aware Computing Systems (2002)

8. Elnozahy, M., Kistler, M., Rajamony, R.: Energy conservation policies for web
servers. In: Proc. of USITS (2003)

9. Felter, W., Rajamani, K., Keller, T., Rusu, C.: A performance-conserving approach
for reducing peak power consumption in server systems. In: ICS (2005)

10. Heath, T., Diniz, B., Carrera, E., Meira Jr., W., Bianchini, R.: Energy conservation
in heterogeneous server clusters. In: Proc. of ACM PPoPP (2005)

11. Horvath, T.: Dynamic voltage scaling in multitier web servers with end-to-end
delay control. IEEE Trans. Comput. 56(4) (2007)

12. Lefurgy, C., Rajamani, K., Rawson, F., Felter, W., Kistler, M., Keller, T.W.: En-
ergy management for commercial servers. IEEE Computer 36(12), 39–48 (2003)

13. IBM Active Energy Manager,
http://www-03.ibm.com/systems/management/director/extensions/

actengmrg.html

14. IBM Enterprise WorkLoad Manager,
http://www.ibm.com/developerworks/autonomic/ewlm/

15. Nathuji, R., Schwan, K.: Virtualpower: coordinated power management in virtu-
alized enterprise systems. In: ACM SOSP (2007)

16. HPL-A Portable Implementation of the High Performance Linpack Benchmark for
Distributed Memory Computers, http://www.netlib.org/benchmark/hpl/

17. Control power and cooling for data center efficiency HP thermal logic technology.
An hp bladesystem innovation primer (June 2006)

18. Rajamani, K., Hanson, H., Rubio, J., Ghiasi, S., Rawson, F.: Application-aware
power management. In: IISWC, pp. 39–48 (2006)

19. Rajamani, K., Lefurgy, C.: On evaluating request-distribution schemes for saving
energy in server clusters. In: ISPASS (2003)

20. Ranganathan, P., Leech, P., Irwin, D., Chase, J.: Ensemble-level power manage-
ment for dense blade servers. In: ISCA (2006)

http://www-03.ibm.com/systems/management/director/extensions/actengmrg.html
http://www-03.ibm.com/systems/management/director/extensions/actengmrg.html
http://www.ibm.com/developerworks/autonomic/ewlm/
http://www.netlib.org/benchmark/hpl/

264 A. Verma, P. Ahuja, and A. Neogi

21. Rusu, C., Ferreira, A., Scordino, C., Watson, A.: Energy-efficient real-time hetero-
geneous server clusters. In: Proc. of RTAS (2006)

22. VMWare Distributed Resource Scheduler,
http://www.vmware.com/products/vi/vc/drs.html

23. Stoess, J., Lang, C., Bellosa, F.: Energy management for hypervisor-based virtual
machines. In: Proc. Usenix Annual Technical Conference (2007)

24. Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: An analytical
model for multi-tier internet services and its applications. In: Sigmetrics (2005)

25. Yue, M.: A simple proof of the inequality ffd(l) ≤ (11/9)opt(l) + 1, for all l, for the
ffd bin-packing algorithm. Acta Mathematicae Applicatae Sinica (1991)

http://www.vmware.com/products/vi/vc/drs.html

Burstiness in Multi-tier Applications:
Symptoms, Causes, and New Models�

Ningfang Mi1, Giuliano Casale1, Ludmila Cherkasova2, and Evgenia Smirni1

1 College of William and Mary, Williamsburg, VA 23187, USA
{ningfang,casale,esmirni}@cs.wm.edu

2 Hewlett-Packard Laboratories, Palo Alto, CA 94304, USA
lucy.cherkasova@hp.com

Abstract. Workload flows in enterprise systems that use the multi-tier paradigm
are often characterized as bursty, i.e., exhibit a form of temporal dependence.
Burstiness often results in dramatic degradation of the perceived user perfor-
mance, which is extremely difficult to capture with existing capacity planning
models. The main reason behind this deficiency of traditional capacity planning
models is that the user perceived performance is the result of the complex inter-
action of a very complex workload with a very complex system. In this paper, we
propose a simple and effective methodology for detecting burstiness symptoms in
multi-tier systems rather than identifying the low-level exact cause of burstiness
as traditional models would require. We provide an effective way to incorporate
this information into a surprisingly simple and effective modeling methodology.
This new modeling methodology is based on the index of dispersion of the service
process at a server, which is inferred by observing the number of completions
within the concatenated busy periods of that server. The index of dispersion to-
gether with other measurements that reflect the “estimated” mean and the 95th
percentile of service times are used to derive a Markov-modulated process that
captures well burstiness and variability of the true service process, despite in-
evitable inaccuracies that result from inexact and limited measurements. Detailed
experimentation on a TPC-W testbed where all measurements are obtained by HP
(Mercury) Diagnostics, a commercially available tool, shows that the proposed
technique offers a simple yet powerful solution to the difficult problem of infer-
ring accurate descriptors of the service time process from coarse measurements
of a given system. Experimental and model prediction results are in excellent
agreement and argue strongly for the effectiveness of the proposed methodology
under both bursty and non-bursty workloads.

Keywords: Capacity planning, multi-tier systems, transactions, sessions, bursty
workload, bottleneck switch, index of dispersion.

1 Introduction

The performance of a multi-tier system is determined by the interactions between the
incoming requests and the different hardware architectures and software systems that
� This work is partially supported by NSF grants CNS-0720699 and CCF-0811417, and a gift

from HPLabs. A short version of this paper titled “How to Parameterize Models with Bursty
Workloads” appeared in the HotMetrics 2008 Workshop (non-copyrighted) [5].

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 265–286, 2008.
c© IFIP International Federation for Information Processing 2008

266 N. Mi et al.

serve them. In order to model these interactions for capacity planning, a detailed char-
acterization of the workloads and of the application is needed, but such a “customized”
analysis and modeling may be very time consuming, error-prone, and inefficient in
practice. An alternative approach is to rely on live system measurements and to assume
that the performance of each software or hardware resource is completely characterized
by its mean service time, a quantity that is easy to obtain with simple measurement
procedures. The mean service times of different classes of transaction requests together
with the transaction mix can be used as inputs to the widely-used Mean Value Analysis
(MVA) models [13,26,30] to predict the overall system performance under various load
conditions. The popularity of MVA-based models is due to their simplicity and their
ability to capture complex systems and workloads in a straightforward manner. In this
paper, we present strong evidence that MVA models of multi-tier architectures can be
unacceptably inaccurate if the processed workloads exhibit burstiness, i.e., short uneven
spikes of peak congestion during the lifetime of the system. Motivated by this problem,
we define here a new methodology for effective capacity planning under bursty work-
load conditions.

Internet flash-crowds are familiar examples of bursty traffic and are characterized by
periods of continuous peak arrival rate that significantly deviate from the average traffic
intensity. Similarly, a footprint of burstiness in system workloads is the presence of short
uneven peaks in utilization measurements, which indicate that the server periodically
faces congestion. In multi-tier systems, congestion may arise from the super-position
of several events including database locks, variability in service time of software op-
erations, memory contention, and/or characteristics of the scheduling algorithms. The
above events interact in a complex way with the underlying hardware/software systems
and with the incoming requests, often resulting in short congestion periods where the
entire system is significantly slowed down. For example, even for multi-tier systems
where the database server is highly-efficient, a locking condition on a database table
may slow down the service of multiple requests that try to access the same data and
make the database the bottleneck server for a time period. During that period of time,
the database performance dominates the performance of the overall system, while most
of the time another resource, e.g., the application server, may be the primary cause
of delays in the system. Thus, the performance of the multi-tier system can vary in
time depending on which is the current bottleneck resource and can be significantly
conditioned by dependencies between servers that cannot by captured by MVA models.
However, to the best of our knowledge, no simple methodology exists that captures in
a simple way this time-varying bottleneck switch in multi-tier systems and its perfor-
mance implications.

In this paper, we present a new approach to integrate workload burstiness in perfor-
mance models, which relies on server busy periods (they are immediately obtained from
server utilization measurements across time) and measurements of request completions
within the busy periods. All measurements are collected with coarse granularity. After
giving quantitative examples of the importance of integrating burstiness in performance
models, we analyze a real three-tier architecture subject to TPC-W workloads with dif-
ferent burstiness profiles. We show that burstiness in the service process can be inferred
effectively from traces using the index of dispersion for counts of completed requests,

Burstiness in Multi-tier Applications: Symptoms, Causes, and New Models 267

a measure of burstiness frequently used in the analysis of time series and network
traffic [8,11]. The index of dispersion jointly captures service variability and burstiness
in a single number and can also be related to the well-known Hurst parameter used in
the analysis of long-range dependence [4]. Furthermore, the index of dispersion can be
inferred reliably also if the length of the trace is short. Using the index of dispersion, we
show that the accuracy of the model prediction can be increased by up to 30% compared
to standard queueing models parameterized only with mean service demands [21].

Exploiting basic properties of bursty processes, we are also able to include in the
analysis the 95th percentile of service times, which is widely used in computer perfor-
mance engineering to quantify the peak-to-mean ratio of service demands. Therefore,
our performance models are specified by three parameters only for each server: the
mean, the index of dispersion, and the 95th percentile of service demands, making
a strong case of being practical, easy, yet surprisingly accurate. To the best of our
knowledge, this paper makes a first strong case in the use of a new practical modeling
paradigm for capacity planning that encompasses workload burstiness. We stress that
the prediction models we propose do not require explicit identification of the cause(s) of
the observed burstiness. Instead, they use a powerful but simple abstraction that captures
the effects of burstiness in complex multi-tiered environments.

The rest of the paper is organized as follows. In Section 2, we introduce service
burstiness using illustrative examples and present the methodology for the measurement
of the index of dispersion to parameterize the proposed model. In Section 3, we discuss
the multi-tier architecture and the TPC-W workloads used in experiments and show
that existing queueing models can not work if bottleneck switch exists in the system.
The proposed modeling paradigm that integrates burstiness in performance models
is presented in Section 4. Section 4 also shows the experimental results that validate
the accuracy of the new methodology in comparison with standard mean-value based
capacity planning. Finally, Section 6 draws conclusions.

2 Burstiness in Performance Models: Do We Really Need It?

In this section, we show some examples of the importance of burstiness in performance
models. In order to show that burstiness can consistently affect the performance of a
system and gain intuition about its fundamental features, we use a simple example. Let
us consider the four workloads shown in Figure 1.

Each plot represents a sample of 20, 000 service times generated from the same
hyperexponential distribution with mean µ−1 = 1 and squared coefficient-of-variation
SCV = 3. The only difference is that we impose to each trace a unique burstiness
profile. In Figure 1(b)–(d), the large service times progressively aggregate in bursts,
while in Figure 1(a) they appear in random points of the trace. In particular, Figure 1(d)
shows the extreme case where all large requests are compressed into a single large burst.
Thus, we use the term “burstiness” to indicate traces that are not just “variable” as the
sample in Figure 1(a), but that also aggregate in “bursty periods” as in Figure 1(b)–(d).

What is the performance implication on systems of the different burstiness profiles
in Figure 1(a)-(d)? Assuming that the request arrival times to the server follow an
exponential distribution with mean λ−1 = 2 and 1.25, a simulation analysis of the

268 N. Mi et al.

0 0.5 1 1.5 2

x 10
4

0

10

20

30

40

50

60
mean=1, SCV=3, index of dispersion=3.0

Service Time Sample Sequence Number (K)

S
er

vi
ce

 T
im

e

(a)

0 0.5 1 1.5 2

x 10
4

0

10

20

30

40

50

60
mean=1, SCV=3, index of dispersion=22.3

Service Time Sample Sequence Number (K)

S
er

vi
ce

 T
im

e

(b)

0 0.5 1 1.5 2

x 10
4

0

10

20

30

40

50

60
mean=1, SCV=3, index of dispersion=92.6

Service Time Sample Sequence Number (K)

S
er

vi
ce

 T
im

e

(c)

0 0.5 1 1.5 2

x 10
4

0

10

20

30

40

50

60
mean=1, SCV=3, index of dispersion=488.70

Service Time Sample Sequence Number (K)

S
er

vi
ce

 T
im

e

(d)

Fig. 1. Four workload traces with identical hyper-exponential distribution (mean µ−1 = 1,
SCV = 3), but different burstiness profiles. Given the identical variability, trace (d) represents
the case of maximum burstiness where all large service times appear consecutively in a large
burst. The index of dispersion I , introduced in this paper for the characterization of workloads
in multi-tier architectures and reported on top of each figure, is able to capture the significantly
different burstiness of the four workloads. As the name suggest, the dispersion of the bursty
periods increases up to the limit case in Figure (d) as I grows.

M/Trace/1 queue1 at 50% and 80% utilization, respectively, provides the response
times, i.e., the service time plus waiting/queueing times in a server, shown in Table 1.

Irrespectively of the identical properties of the service time distribution, burstiness
clearly has paramount importance for queueing prediction, both in terms of response
time mean and tail. For instance, at 50% utilization the mean response time for the
trace in Figure 1(d) is approximately 40 times slower than the service times in Figure
1(a) and the 95th percentile of the response times is nearly 80 times longer. In general,
the performance degradation is monotonically increasing with burstiness; therefore it
is important to distinguish the behaviors in Figure 1(a)–(d) via a quantitative index.

1 We remark that workload burstiness rules out independence of service time samples, thus the
classic Pollaczek-Khinchin formula for the M/G/1 queue does not apply if the service time
distribution is bursty.

Burstiness in Multi-tier Applications: Symptoms, Causes, and New Models 269

Table 1. Response time of the M/Trace/1 queue relatively to the service times traces shown in
Figure 1. The server is evaluated for utilizations ρ = 0.5 and ρ = 0.8.

Response Time (util=0.5) Response Time (util=0.8) Index of Dispersion
Workload mean 95th percentile mean 95th percentile I

Fig. 1(a) 3.02 14.42 8.70 33.26 3.0
Fig. 1(b) 11.00 83.35 43.35 211.76 22.3
Fig. 1(c) 26.69 252.18 72.31 485.42 92.6
Fig. 1(d) 120.49 1132.40 150.32 1346.53 488.7

Overall the results in Table 1 give intuition that we really need burstiness in perfor-
mance models. The index of dispersion introduced in the next section is instrumental to
capture the difference in the burstiness profiles and provides a simple way to generalize
queueing models to effectively capture the performance of bursty workloads and the
effects of bottleneck switch.

2.1 Characterization of Burstiness: The Index of Dispersion

We use the index of dispersion I for counts to characterize the burstiness of service
times [8,11]. This is a standard burstiness index used in networking [11], which we
apply here to the characterization of workload burstiness in multi-tier applications.

The index of dispersion has a broad applicability and wide popularity in stochastic
analysis and engineering [8]. From a mathematical perspective, the index of dispersion
of a service process is a measure defined on the squared coefficient-of-variation SCV
and on the lag-k autocorrelations2 ρk, k ≥ 1, of the service times as follows:

I = SCV

(
1 + 2

∞∑
k=1

ρk

)
. (1)

The joint presence of SCV and autocorrelations in I is sufficient to discriminate traces
like those in Figure 1(a)–(d), e.g., for the trace in Figure 1(a) the correlations are stati-
cally negligible, since the probability of a service time being small or large is statistically
unrelated to its position in the trace. However, for the trace in Figure 1(d), consecutive
samples tend to assume similar values, therefore the sum of autocorrelation in Eq. (1)
is maximal in Figure 1(d). The last column of Table 1 reports the values of I for the
four example traces. The values strongly indicate that I is able to reflect the different
burstiness levels in Figure 1(a)–(d) which directly affect the performance results.

Note that I = 1 if service times are exponential, then the index of dispersion may be
interpreted qualitatively as the ratio of the observed service burstiness with respect to a
Poisson process; therefore, values of I of the order of hundreds or more indicate a clear

2 Autocorrelation is used as a statistical measure of the relationship between a random variable
and itself [4]. In a time series of random variables {Xn}, where n = 0, . . . ,∞, ρk expresses

the value of the autocorrelation coefficient as follows: ρk = E[(Xt−µ−1)(Xt+k−µ−1)]

σ2 , where
µ−1 is the mean, σ2 is the common variance of {Xn}, and k denotes the time separation
between the occurrences Xt and Xt+k.

270 N. Mi et al.

departure from the exponentiality assumptions and, unless the real SCV is anomalously
high, I can be used as a good indicator of burstiness. Although the mathematical defi-
nition of I in Eq. (1) is simple, this formulation is not practical for estimation because
of the infinite summation involved and its sensitivity to noise. In the next subsection,
we describe a simple alternative way of estimating I .

2.2 Measuring the Index of Dispersion

Instead of Eq. (1), we provide an alternative definition of the index of dispersion for
a service process as follows. Let Nt be the number of requests completed in a time
window of t seconds, where the t seconds are counted ignoring the server’s idle time
(that is, by conditioning on the period where the system is busy, Nt is a property of
the service process which is independent of queueing or arrival characteristics). If we
regard Nt as a random variable, that is, if we perform several experiments by varying
the time window placement in the trace and obtain different values of Nt, then the index
of dispersion I is the limit [8]:

I = lim
t→+∞

V ar(Nt)
E[Nt]

, (2)

where V ar(Nt) is the variance of the number of completed requests and E[Nt] is the
mean service rate during busy periods. Since the value of I depends on the number of
completed requests in an asymptotically large observation period, an approximation of
this index can be also computed if the measurements are obtained with coarse granu-
larity. For example, suppose that the sampling resolution is T = 60s, and assume to
approximate t → +∞ as t ≈ 2 hours, then Nt is computed by summing the number of

Input
T , the sampling resolution (e.g., 60s)
K, total number of samples, assume K > 100
Uk, utilization in the kth period, 1 ≤ k ≤ K
nk, number of completed requests in the kth period, 1 ≤ k ≤ K
tol, convergence tolerance (e.g., 0.20)
Estimation of the Index of Dispersion I

1. get the busy time in the kth period Bk := Uk · T , 1 ≤ k ≤ K;
2. initialize t = T and Y (0) = 0;
3. do

a. for each Ak = (Bk, Bk+1, . . . , Bk+j),
Pj

i=0 Bk+i ≈ t,
aa. compute Nk

t =
Pj

i=0 nk+i;
b. if the set of values Nk

t has less than 100 elements,
bb. stop and collect new measures because the trace is too short;

c. Y (t) = V ar(Nk
t)/E[Nk

t];
d. increase t by T ;
until |1 − (Y (t)/Y (t − T))| ≤ tol, i.e., the values of Y (t) converge.

5. return the last computed value of Y (t) as estimate of I .

Fig. 2. Estimation of I from utilization samples

Burstiness in Multi-tier Applications: Symptoms, Causes, and New Models 271

completed requests in 120 consecutive samples. Repeating the evaluation for different
positions of the time window of length t, we compute V ar(Nt) and E[Nt]. Here, we
use the pseudo-code in Figure 2 to estimate I directly from Eq. (2). The pseudo-code
is a straight-forward evaluation of V ar(Nt)/E[Nt] for different values of t. Intuitively,
the algorithm in Figure 2 calculates I of the service process by observing the com-
pletions of jobs in concatenated busy period samples. Because of this concatenation,
queueing is masked out and the index of dispersion of job completions serves as a good
approximation of the index of dispersion of the service process.

3 Burstiness in Multi-tier Applications: Symptoms and Causes

Today, a multi-tier architecture has become the industry standard for implementing
scalable client-server enterprise applications. In our experiments, we use a testbed of
a multi-tier e-commerce site that is built according to the TPC-W specifications. This
allows to conduct experiments under different settings in a controlled environment,
which then allows to evaluate the proposed modeling methodology that is based on
the index of dispersion.

3.1 Experimental Environment

TPC-W is a widely used e-commerce benchmark that simulates the operation of an
online bookstore [10]. Typically, this multi-tier application uses a three-tier architecture
paradigm, which consists of a web server, an application server, and a back-end
database. A client communicates with this web service via a web interface, where the
unit of activity at the client-side corresponds to a webpage download. In general, a web
page is composed by an HTML file and several embedded objects such as images. In
a production environment, it is common that the web and the application servers reside
on the same hardware, and shared resources are used by the application and web servers
to generate main HTML files as well as to retrieve page embedded objects. We opt to
put both the web server and the application server on the same machine called the front
server3. A high-level overview of the experimental set-up is illustrated in Figure 3 and
specifics of the software/hardware used are given in Table 2.

Client 1

Client 2

Front Server Database Server

MySQL query

MySQL replyHTTP reply

HTTP request

Fig. 3. E-commerce experimental environment

3 We use terms “front server” and “application server” interchangeably in this paper.

272 N. Mi et al.

Table 2. Hardware/software components of the TPC-W testbed

Processor RAM OS
Clients (Emulated-Browsers) Pentium D, 2-way x 3.2 GHz 4 GB Linux Redhat 9.0
Front Server - Apache/Tomcat 5.5 Pentium D, 1-way x 3.2 GHz 4 GB Linux Redhat 9.0
Database Server - MySQL5.0 Pentium D, 2-way x 3.2 GHz 4 GB Linux Redhat 9.0

Table 3. The 14 transactions defined in TPC-W

Browsing Type Ordering Type

Home Shopping Cart
New Products Customer Registration
Best Sellers Buy Request

Product detail Buy Confirm
Search Request Order Inquiry
Execute Search Order Display

Admin Request
Admin Confirm

Since the HTTP protocol does not provide any means to delimit the beginning or
the end of a web page, it is very difficult to accurately measure the aggregate resources
consumed due to web page processing at the server side. Accurate CPU consumption
estimates are required for building an effective application provisioning model but there
is no practical way to effectively measure the service times for all page objects. To
address this problem, we define a client transaction as a combination of all processing
activities that deliver an entire web page requested by a client, i.e., generate the main
HTML file as well as retrieve embedded objects and perform related database queries.

Typically, a continuous period of time during which a client accesses a Web service
is referred to as a User Session which consists of a sequence of consecutive individual
transaction requests. According to the TPC-W specification, the number of concurrent
sessions (i.e., customers) or emulated browsers (EBs) is kept constant throughout the
experiment. For each EB, the TPC-W benchmark defines the user session length, the
user think time, and the queries that are generated by the session. In our experimental
environment, two Pentium D machines are used to simulate the EBs. If there are m EBs
in the system, then each machine emulates m/2 EBs. One Pentium D machine is used
as the back-end database server, which is installed with MySQL 5.0 having a database
of 10,000 items in inventory.

There are 14 different transactions defined by TPC-W. In general, these transactions
can be roughly classified of “Browsing” or “Ordering” type, as shown in Table 3.
Furthermore, TPC-W defines three standard transaction mixes based on the weight of
each type (i.e., browsing or ordering) in the particular transaction mix:

– the browsing mix with 95% browsing and 5% ordering;
– the shopping mix with 80% browsing and 20% ordering;
– the ordering mix with 50% browsing and 50% ordering.

Burstiness in Multi-tier Applications: Symptoms, Causes, and New Models 273

One way to capture the navigation pattern within a session is through the Customer
Behavior Model Graph (CBMG) [16], which describes patterns of user behavior, i.e.,
how users navigate through the site, and where arcs connecting states (transactions)
reflect the probability of the next transaction type. TPC-W is parameterized by the set of
probabilities that drive user behavior from one state to another at the user session level.
During a session, each EB cycles through a process of sending a transaction request,
receiving the response web page, and selecting the next transaction request. Typically,
a user session starts with a Home transaction request.

The TPC-W implementation is based on the J2EE standard – a Java platform which
is used for web application development and designed to meet the computing needs of
large enterprises. For transaction monitoring, we use the HP (Mercury) Diagnostics [29]
tool which offers a monitoring solution for J2EE applications. The Diagnostics tool
collects performance and diagnostic data from applications without the need for ap-
plication source code modification or recompilation. It uses bytecode instrumentation,
which enables a tool to record processed transactions and their database calls over time
as well as to measure their execution time (both transactions and their database calls).
We use the Diagnostics tool to measure the number of completed requests nk in the kth
period having a granularity of 5 seconds. We also use the sar command to obtain the
utilizations of two servers across time with one second granularity.

3.2 Bottleneck Switch in TPC-W

For each transaction mix, we run a set of experiments with different numbers of EBs
ranging from 25 to 150. Each experiment runs for 3 hours, where the first 5 minutes and
the last 5 minutes are considered as warm-up and cool-down periods and thus omitted
in the analysis. User think times are exponentially distributed with mean Z = 0.5s.
Figure 4 presents the overall system throughput, the mean system utilization at the
front server and the mean system utilization at the database server as a function of EBs.
Figure 4(a) shows that the system becomes overloaded when the number of EBs reaches
75, 100, and 150 under the browsing mix, the shopping mix, and the ordering mix,
respectively. Beyond these EB values, the system throughput remains asymptotically
flat. This is due to the “closed loop” aspect of the system, i.e., the fixed number of EBs

 0

Ordering

Browsing

 50

 100

 150

 200

 250

 20 40 60 80 100 120
 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160

cp
u

ut
ili

za
tio

n
(%

)

Number of EBs

(c) Database Server

Browsing

Shopping

Ordering

 140 160
 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160

cp
u

ut
ili

za
tio

n
(%

)

Number of EBs

(b) Front Server

Browsing

Shopping

Ordering

T
PU

T
 (

tr
an

sa
ct

io
n/

s)

Number of EBs

(a) System Throughput

Shopping

Fig. 4. Illustrating a) system overall throughput, b) average CPU utilization of the front server,
and c) average CPU utilization of the database server for three TPC-W transaction mixes. The
mean think time Z is set to 0.5 seconds.

274 N. Mi et al.

(customers), that is effectively an upper bound on the number of jobs that circulate in
the system at all times.

The results from Figures 4(b) and 4(c) show that under the shopping and the ordering
mixes, the front server is a bottleneck, where the CPU utilizations are almost 100% at
the front tier but only 20–40% at the database tier. For the browsing mix, we see that
the CPU utilization of the front server increases very slowly as the number of EBs
increases beyond 75, which is consistent with the very slow growth of throughput. For
example, when the front server is already 100% utilized under the shopping and the
ordering mixes, the front server for the browsing mix is just around 80%. Meanwhile,
for the browsing mix, the CPU utilization of the database server increases quickly
as the number of EBs increases. When the number of EBs is beyond 100, it is not
obvious which server is responsible for the bottleneck: the average CPU utilizations
of two servers are about the same, differing by a statistically insignificant margin. In
presence of burstiness in the service times, this may suggest that the phenomenon of
bottleneck switch occurs between the front and the database servers across time. This
phenomenon is not specific to the testbed described in the current work. In an earlier
paper [31], a similar situation was observed for a different TPC-W testbed. That is, a
server may become the bottleneck while processing consecutively large requests, but be
lightly loaded during other periods. In general, additional investigation to determine the
existence of bottleneck switch is required when the average utilizations are relatively
close or when the workloads are known to be highly variable.

To confirm our conjecture about the existence of bottleneck switch in the browsing
mix experiment, we present CPU utilizations of the front and the database servers across
time for the browsing mix, as well as for the shopping and the ordering mixes with 100
EBs, see Figure 5. A bottleneck switch occurs when the database server utilization
becomes significantly higher than the front server utilization, as clearly visible in Fig-
ure 5(a) under the browsing mix workload. As shown in Figures 5(b) and 5(c), there
is no bottleneck switch for the shopping and the ordering mixes, although these two
workloads are also highly variable.

The bottleneck switch is a characteristic effect of burstiness in the service times. This
unstable behavior is extremely hard to model. Later, in Section 4.3, we show that the

 60

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

cp
u

ut
ili

za
tio

n
(%

)

time (s)

(a) Browsing Mix

 80

 100

 0 50 100 150 200 250 300

cp
u

ut
ili

za
tio

n
(%

)

time (s)

(b) Shopping Mix

 0 50 100 150 200 250 300

cp
u

ut
ili

za
tio

n
(%

)

time (s)

(c) Ordering Mix

Front Server DB Server

 0

 20

 40

 60

 80

 100

 0

 20

 40

 0

Fig. 5. The CPU utilization of the front server and the database server across time with 1 second
granularity for (a) the browsing mix, (b) the shopping mix, and (c) the ordering mix under 100
EBs. The monitoring window is 300 seconds.

Burstiness in Multi-tier Applications: Symptoms, Causes, and New Models 275

 80

 20

 40

 60

 80

100

 0 20 40 60 80 100 120
time (s)

(a) Browsing Mix

 100 120
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120
time (s)

(b) Shopping Mix

time (s)

(c) Ordering Mix

CPU Utilization (range 0−100%) Average DB Queue Length (range 0−100, there are 100 EBs)

 0

 20

 40

 60

 80

 100

 0 20 40 60
 0

Fig. 6. The CPU utilization of the database server (dashed lines) and average queue length at the
database server (solid lines) across time for (a) the browsing mix, (b) the shopping mix, and (c)
the ordering mix. In this figure, the y-axis range of both performance metrics is the same because
there are 100 EBs (clients) in the system. The monitoring window is 120 seconds.

browsing mix exhibits a significantly higher index of dispersion for both the front and
database server compared to the shopping and ordering mixes.

3.3 The Analysis of Bottleneck Switch

Now, we focus on the burstiness in a multi-tier application to further analyze the symp-
toms and possible causes of the bottleneck switch. Indeed, for a typical request-reply
transaction, the application server may issue multiple database calls while preparing
the reply of a web page. This cascading effect of various tasks breaks down the overall
transaction service time into several parts, including the transaction processing time at
the application server as well as all related query processing times at the database server.
Therefore, the application characteristics and the high variability in database server may
cause burstiness in the overall transaction service times.

To verify the above congecture, we record the queue length at the database server at
each instance that the database request is issued by the application server and a prepared
reply is returned back to the application server. Figure 6 presents the queue length across
time at the database server (see solid lines in the figure) as well as the CPU utilizations
of the database server (see dashed lines in the figure) for all three transaction mixes.

Here, in order to make the figure easy to read, we show the case with 100 EBs such
that the y-axis range for both performance metrics (i.e., queue length and utilization)
is the same. First of all, the results for the browsing mix in Figure 6(a) verify that
burstiness does exist in the queue length at the database server, where the queue holds
less than 10 jobs for some periods, while sharply increases to as high as 90 jobs during
other periods. More importantly, the burstiness in the database queue length exactly
matches the burstiness in the CPU utilizations of the database server. Thus, at some
periods almost all the transaction processing happens either at the application server
(with the application server being a bottleneck) or at the database server (with the
database server being a respective bottleneck). This leads to the alternated bottleneck
between the application vs the database servers.

In contrast, no burstiness can be observed in the queue length for the shopping and
the ordering mixes, although these two workloads have also high variability in their

276 N. Mi et al.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

av
er

ag
e

qu
eu

e
le

ng
th

time (s)

(a) Browsing Mix

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

av
er

ag
e

qu
eu

e
le

ng
th

time (s)

(b) Shopping Mix

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

av
er

ag
e

qu
eu

e
le

ng
th

time (s)

(c) Ordering Mix

OverallBest Seller Transaction

Fig. 7. The overall queue length at the database server (dashed lines) and the number of current
requests in system for the Best Seller transaction (solid lines) across time for (a) the browsing
mix, (b) the shopping mix, and (c) the ordering mix, with 100 EBs and mean think time equal to
0.5s. The monitoring window is 120 seconds.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

av
er

ag
e

qu
eu

e
le

ng
th

time (s)

(a) Browsing Mix

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

av
er

ag
e

qu
eu

e
le

ng
th

time (s)

(b) Shopping Mix

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

av
er

ag
e

qu
eu

e
le

ng
th

time (s)

(c) Ordering Mix

Home Transaction

Fig. 8. The number of current requests in system for the Home transaction across time for (a) the
browsing mix, (b) the shopping mix, and (c) the ordering mix, with 100 EBs and mean think time
equal to 0.5s. The monitoring window is 120 seconds.

utilizations, see Figures 6(b) and 6(c). These results are consistent with those shown in
Figures 5(b) and 5(c), where the application server is the main system bottleneck.

According to the TPC-W specification, different transaction types may have differ-
ent number of outbound database queries. For example, the Home transaction has two
database queries in maximum and one in minimum for each transaction request while
the Best Seller transaction always has two outbound database queries per transaction
request. To analyze whether burstiness in the database queue length originates from
some particular transaction types, we measure the number of current requests for each
transaction type over time. After revisiting all 14 transaction types, we find that the
sources of this burstiness are indeed due to specific transaction types. Figures 7 and 8
show the results for two representative transaction types, the Best Seller transaction and
the Home transaction, under three transaction mixes.

In Figure 7, the overall database queue length across time is also plotted as a base
line. As shown in Figure 7(a), although in the browsing mix only 11% of requests
belongs to the Best Seller transaction type, the number of these requests dominates the
overall database queue length: the spikes in the overall queue length in the database
clearly originate from this particular transaction type. Furthermore, there is burstiness

Burstiness in Multi-tier Applications: Symptoms, Causes, and New Models 277

in the number of requests for this transaction type and this burstiness “matches” well
the overall queue length in the database server. In addition, for some extremely high
spikes, e.g., at timestamp 40 in Figure 7(a), the requests of another popular transaction
type, the Home transaction, also contribute to burstiness (see Figure 8(a)). These figures
indicate that Best Seller and Home transactions share some resources required for their
processing at the database server, and it leads to extreme burstiness during such time
periods.

For the shopping and the ordering mixes, there is no visible burstiness in either the
queue length at the database server or the number of current requests for each transac-
tion type, as shown in Figure 7(b)-(c) and Figure 8(b)-(c), respectively.

In summary, we showed that

– burstiness in the service times can be a result of a certain workload combination
(mix) in the multi-tier applications (e.g., burstiness in the service times may exist
under the browsing mix in the TPC-W testbed);

– burstiness in the service times can be caused by a bottleneck switch between the
tiers, and can be a result of “hidden” resource contention between the transactions
of different types and across different tiers.

Systems with burstiness result in unstable behavior that is extremely hard to ex-
press and model. The super-position of several events, such as database locking con-
ditions, variability in service time of software operations, memory contention, and/or
characteristics of the scheduling algorithms, may interact in a complex way, resulting
in burstiness in the system. The question is whether instead of identifying the low-
level exact causes of burstiness as traditional models would require, one can provide
an effective way to infer this information using live system measurements in order to
capture burstiness into new capacity planning models.

3.4 Traditional MVA Performance Models Do Not Work

In this section, we use standard performance evaluation methodologies to define an
analytical model of the multi-tier architecture presented in Section 3.1. Our goal is to
show that existing queueing models can be largely inaccurate in performance prediction
if the system is subject to bottleneck switches. We show in Section 4 how performance
models can be generalized to correctly account for burstiness and bottleneck switches
based on the index of dispersion.

We model the multi-tier architecture studied in our experiments by a closed queueing
network composed of two queues and a delay center as shown in Figure 9. Closed
queueing networks (see [13] for an introduction) are established as the standard capacity
planning models for predicting the performance of distributed architectures using inex-
pensive algorithms, e.g., Mean Value Analysis (MVA) [22]; we refer to these models in
the rest of the paper as MVA models.

In the MVA model shown in Figure 9, the two queues are used to abstract perfor-
mance of the front server and of the database server, respectively. The delay center is
instead representative of the average user think time Z between receiving a Web page

278 N. Mi et al.

µ2

MAPDB

DB Server

µ1

MAPFS

Front Server

Clients

Z

Fig. 9. The closed queueing network for modeling the multi-tier system

and submitting a new page download request4. The two queues serve jobs according
to a processor-sharing scheduling discipline. In the real application, the servlet code is
a mix of instructions at the front server and the database server: without an expensive
analysis of the source code, it is truly difficult to characterize the switch of the execution
from the front server to the database server and back, we thus make a simplification by
assuming that requests first execute at the front server without any interruption and then
the residual service time is processed at the database server5. Consequently, with this
simplification, the two queues in Figure 9 are connected in series.

The proposed MVA model can be immediately parameterized by the following
values:

– the mean service time SFS of the front server;
– the mean service time SDB of the database server;
– the average user think time Z;
– the number of emulated browsers (EBs).

Note that the arrival process at the multi-tier system, which is in the real system the
arrival of new TPC-W sessions, is fully reproduced by the Z parameter. In fact, a new
TPC-W session is generated in Z seconds after completion of a previously-running user
session: thus, the feedback-loop aspect of TPC-W is fully captured by the closed nature
of the queueing network and the user think time Z completes the model of the TPC-W
arrival process.

The values of SFS and SDB can be determined with linear regression methods from
the CPU utilization samples measured across time at the two servers [30]. Instead, Z
and the number of EBs are imposed to set a specific scenario. For example, in Figure 10,
we evaluate an increase of the number of EBs under the fixed think time Z = 0.5s; other
choices of the delay are possible, see Section 4.2 for a discussion. Indeed, increasing the

4 The main difference between a queue and a delay server is that the mean response time at the
latter is independent of the number of requests present.

5 In the following sections, we consider the burstiness associated to the execution of these
requests at the front server and at the database server. Our abstraction ignores the order of
execution of portions of the servlet code and has no impact on the burstiness estimates because
the requests complete faster than the monitoring window of the measurement tool. Thus, for
an external observer, it would be impossible to distinguish between samples collected from the
real system and those of the abstracted system where the code first executes only at the front
server and then completes at the database server.

Burstiness in Multi-tier Applications: Symptoms, Causes, and New Models 279

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 20 40 60 80 100 120 140 160

T
PU

T
 (

tr
an

sa
ct

io
n/

s)

Number of EBs

Experiment

MVA

(c) Ordering Mix − Negligible Bottleneck Switch

 40
 60
 80

 100
 120
 140
 160
 180
 200

 20 40 60 80 100 120 140 160

T
PU

T
 (

tr
an

sa
ct

io
n/

s)

Number of EBs

MVA

Experiment

(b) Shopping Mix − Negligible Bottleneck Switch

 40
 60
 80

 100
 120
 140
 160
 180
 200

 20 40 60 80 100 120 140 160

T
PU

T
 (

tr
an

sa
ct

io
n/

s)

Number of EBs

Experiment

MVA

(a) Browsing Mix − Bottleneck Switch

Fig. 10. MVA model predictions versus measured throughput

EB number is a typical way in capacity planning to explore the impact of increasingly
larger traffic intensities on system performance. Figure 10 shows the results of the MVA
model predictions versus the actual measured throughputs (TPUTs) of the system as a
function of the number of EBs.

The three plots in the figure illustrate the accuracy of the MVA model under the
browsing, shopping, and ordering mixes. The results show that the MVA model predic-
tion is quite accurate for the shopping and ordering mixes, while there exists a large
error up to 36% between the predicted and the measured throughputs for the brows-
ing mix, see Figure 10(a). This indicates that MVA models can deal very well with
systems without burstiness (e.g., the ordering mix in Figure 10(c)) and with systems
where burstiness does not result in a bottleneck switch (e.g., the shopping mix in Figure
10(b)). However, the fundamental and most challenging case of burstiness that causes
bottleneck switches reveals the limitation of the MVA modeling technique, see Figure
10(a). This is consistent with established theoretical results for MVA models, which
rule out the possibility of capturing the bottleneck switching phenomenon [2].

4 Integrating Burstiness in Performance Models

Here, we use a measure of burstiness for the parameterization of the performance model
presented in Figure 9. In Section 4.1, we first present the methodology for integrating
the burstiness in queueing models and then discuss the impact of measurement gran-
ularity in Section 4.2. The experimental results that validate the proposed model are
given in Section 4.3.

4.1 Integrating I in Performance Models

In order to integrate the index of dispersion in queueing models, we model service
times as a two-phase Markovian Arrival Process (MAP(2)) [6,19,23]. An MAP(2)
is a Markov chain that jumps between two states and the active state determines the
current rate of service. For example, one state may be associated with slow service
times, the other may represent fast service times. While processing the sequence of
jobs, the MAP(2) jumps between these two states according to predefined frequencies.
Simultaneously, the service rate offered to the jobs changes according to the current
state. The variation of service rates of the MAP(2) is sufficient to reproduce the bursti-
ness observed in the measured trace. The challenge is to assign the service rates of the

280 N. Mi et al.

two states and the jumping frequencies such that the service times received by the jobs
served by the MAP(2) in the queueing model have the same burstiness properties of
the service times in the measured trace. Fortunately, MAP(2) service rates and jumping
frequencies can be fitted with closed-form formulas given the mean, SCV , skewness,
and lag-1 autocorrelation coefficient ρ1 of the measured service times [7,9].

We use these closed-form formulas to define the MAP(2) as follows. After estimat-
ing the mean service time and the index of dispersion I of the trace, we also estimate
the 95th percentile of the service times as we describe at the end of this subsection.
Given the mean, the index of dispersion I , and the 95th percentile of service times,
we generate a set of MAP(2)s that have ±20% maximal error on I , see [1,12] for
computational formulas of I in MAP(2)s. Among this set of MAP(2)s, we choose the
one with its 95th percentile closest to the trace. Overall, the computational cost of fitting
the MAP(2)s is negligible both in time and space requirements. For instance, the fitting
of the MAP(2)s has been performed in MATLAB in less than five minutes6 for the
experiments in this paper.

We conclude by explaining how to estimate the 95th percentile of the service times
from the measured trace. We compute the 95th percentile of the measured busy times
Bk in Figure 2 and scale it by the median number of requests processed in the busy
periods. If the trace has high dispersion (e.g., I >> 100), this estimate is very accurate
because the nk jobs that are served in the kth busy period receive a similar service
time Sk and the busy time is therefore Bk ≈ nkSk. This approximation consists in
assuming that nk is always constant and equal to its median value med(nk). Under this
hypothesis the 95th percentile of Bk is simply med(nk) times the 95th percentile of Sk.
Conversely, if the trace has low dispersion (e.g., I < 100), the estimation is inaccurate.
Nevertheless, we observe that we can still use this simplification, because under low-
burstiness conditions the queueing performance is dominated by the mean and the SCV
of the distribution, and therefore a biased estimate of the 95th percentile does not have
any appreciable effect on accuracy. In practice, we have found this estimation approach
to be highly satisfactory for system modeling as shown by the experimental results
reported in the next sections.

4.2 Impact of Measurement Granularity and Monitoring Windows

Starting from the MAP-based model defined in the previous section, we validate the
accuracy of the new analytic model using the same experimental setup as in Section
3.4. We denote by Zqn the think time used in the capacity planning queueing network
model that represents the system presented in Section 3.4. For validation, we always
compare the predictions of this model with a real experiment where the TPC-W has
think time Zqn. The notation Zestim denotes the TPC-W think time used in experi-
ments to generate the traces from which we estimate I and the MAP(2)s. In general,
Zestim can differ from Zqn, e.g., if we want to explore the sensitivity of the system to

6 Occasionally, and only for certain combinations of I and 95th percentile, there may exist more
than one MAP(2) with identical mean, I , and 95th percentile. We have not found this case
during the experiments in this paper, but in general we recommend to choose the MAP(2)
with largest lag-1 autocorrelation since this results in a slightly more aggressive burstiness
profile that provides conservative capacity planning estimates.

Burstiness in Multi-tier Applications: Symptoms, Causes, and New Models 281

different think times we may consider models with different Zqn, but the MAP(2)s are
parameterized from the same experimental trace obtained for a certain Zestim �= Zqn. A
robust modeling methodology could predict well the performance of the system also for
Zqn �= Zestim and we are seeking for a robust characterization of the service processes
which is insensitive to the value Zestim that describes a characteristic of the arrival
process to the multi-tier system, rather than a property of the servers.

In all validations, we set Zqn = 0.5s and evaluate throughput and an increase of
the number of EBs. The default think time value for the TPC-W benchmark is 7s,
but setting Zqn = 7s we would need to set the number of EBs as high as 1200 to
reach heavy-load. Unfortunately, no existing numerical approach can solve the model
for exact solutions when the system has such a large number of EBs. Since in this work
we are interested in validating models with respect to their exact accuracy, we have
explored exact solutions in Section 3.4 by reducing the user think time to Zqn = 0.5s,
such that the system becomes overloaded when the number of EBs is around 100−150.
Models with larger number of EBs should be evaluated with approximations, e.g., with
the class of performance bounds presented in [6]. In the rest of paper, we only consider
queueing network models with Zqn = 0.5s. By building the underlying Markov chain
and solving the system of linear equations, we solve the new analytic model and get
the analytic results, see [6] for a description of the Markov chain underlying a MAP
queueing network.

Here, we first present validation results on the browsing mix for different values
of the measurement granularity Zestim. Since measurements should not interfere with
normal server operations, we have set the monitoring window resolution of the Diagnos-
tics tool to a standard W = 5s, which means that hundreds of requests may be served
between the collection of two consecutive utilization samples. For instance, when the
user think time in TPC-W is set to Zestim = 0.5s and the number of EBs is 50, there are
on average 465 requests completed in a monitoring window of W = 5s. A reduction
of the frequency of sampling makes it difficult to collect a large number of samples
(e.g., tens of thousands), and this significantly reduces the statistical robustness of the
index of dispersion estimates7. Conversely, we have found that decreasing the mean
throughput of the system by an increase of Zestim can have beneficial effects on the
quality of the index of dispersion estimation without having to modify the monitoring
window resolution.

Figure 11 compares the analytic results with the experimental measurements of the
real system for the browsing mix. A summary of the think time values used in the two
models is given in Table 4. In all models, we set the mean user think time to Zqn = 0.5s
and vary the system loads with different EBs. To evaluate the effect of the measurement
granularity on the analytic model, we have estimated two sets of MAP(2)s by using
the measured traces from the experiments with 50 EBs and two different levels of
measurement granularity, i.e., the user think time Zestim = 0.5s, and Zestim = 7s,
respectively. As Zestim increases, we are getting monitoring data of finer granularity,

7 Robustness depends on the relative frequency of service time peaks, e.g., if congestion events
due to bursty arrivals as in Figure 1(d) are not frequent, then a large volume of experimental
data may be needed to distinguish such events from outliers and correctly identify the bursty
behavior.

282 N. Mi et al.

9.
5%2.

4%

9.
5%4.

6%

6.
1%

4.
3%

150

 160

 180

 200

 220

T
PU

T
 (

tr
an

sa
ct

io
n/

s)

Number of EBs

Browsing Mix

Experiment

Model−Z7

 120

 100

 80

 60

 40

Model−Z0.5

25 75

 140

Fig. 11. Comparing the results for the model which fits MAPs with different Zestim = 0.5s and
Zestim = 7s. On each bar, the relative error with respect to the experimental data is also reported.

Table 4. Think time values considered in the accuracy validation experiments

Queueing Network MAP(2) Estimation
Model-Z0.5 Zqn = 0.5s Zestim = 0.5s
Model-Z7 Zqn = 0.5s Zestim = 7s

because in the same monitoring window W a smaller number of requests is completed.
This makes the estimation of the variance of Nt in the algorithm in Figure 2 more
accurate as the finer granularity reveals better the nature of the service times. This is
intuitive, e.g., in the extreme case where Zestim is so large that only a single request is
completed during a single monitoring window W , then our measurement corresponds
to a direct measure of the request service time and the estimation becomes optimal8.

In Figure 11, the corresponding relative prediction error, which is the ratio of the ab-
solute difference between the analytic result over the measured result, is shown on each
bar. The figure shows that precision increases non-negligibly when a finer granularity
of monitoring data is used. As the system becomes heavily loaded, the model with finer
granularity (i.e., Zestim as high as 7s) dramatically reduces the relative prediction error
to 2.4%.

4.3 Validation of Prediction Accuracy on Different Transaction Mixes

Figure 12 compares the analytical results with the experimental measurements of the
real system for the three transaction mixes. The values of the index of dispersion for
the front and the database service processes are also shown in the figure. Throughout
all experiments, the mean user think time Zqn is set to Zqn = 0.5s; the MAP(2)s are
obtained from experimental data collected with Zestim = 7s.

8 Indeed, a large increase of Zestim to this level would be unrealistic because it would hide
possible slowdowns in service times that become evident only when several requests are served
simultaneously, e.g., increased memory access times in algorithms due to an increase in size
of shared data structures. For this reason, it is always advisable to increase Zestim such that
there are some tens of requests completed in a time window W during the experiment.

Burstiness in Multi-tier Applications: Symptoms, Causes, and New Models 283

 40

 60
 80

 100
 120
 140
 160
 180
 200
 220

 20 40 60 80 100 120 140 160

T
PU

T
 (

tr
an

sa
ct

io
n/

s)

Number of EBs

(c) Ordering Mix − I_front=3 & I_db=98

Experiment

Model

MVA

 60 80 100 120 140 160
 40

 60

 80

 100

 120

 140

 160

 180

 200

 20 40 60 80 100 120 140 160

T
PU

T
 (

tr
an

sa
ct

io
n/

s)

Number of EBs

(a) Browsing Mix − I_front=40 & I_db=308

Experiment

Model

MVA

T
PU

T
 (

tr
an

sa
ct

io
n/

s)

Number of EBs

(b) Shopping Mix − I_front=2 & I_db=286

Experiment

Model

MVA

 40

 60

 80

 100

 120

 140

 160

 180

 200

 20
 40

Fig. 12. Modeling results for three transaction mixes as a function of the number of EBs

Figure 12 gives evidence that the new analytic model based on the index of disper-
sion achieves gains in the prediction accuracy with respect to the MVA model on all
workload mixes, showing that it is reliable also when the workloads are not bursty. In
the browsing mix, the index of dispersion enables the queueing model to effectively
capture both burstiness and bottleneck switch. The results of the proposed analytic
model match closely the experimental results for the browsing mix, while remaining
robust in all other cases.

The shopping mix presents an interesting case: as already observed in Section 3.4,
the MVA model performs well on the shopping mix despite the existing burstiness
because, regardless of the variation of the workload at the database server, the front
server remains the major source of congestion for the system and the model behaves
similarly to a MVA model (i.e., there is no bottleneck switch).

In the ordering mix, the feature of workload burstiness is almost negligible and the
phenomenon of bottleneck switch between the front and the database servers cannot be
easily observed, see Section 3.2. For this case, MVA yields prediction errors up to 5%.
Yet, as shown in Figure 12(b) and 12(c), our analytic model further improves MVA’s
prediction accuracy. This happens because the index of dispersion I is able to capture
detailed properties of the service time process, which can not be captured by the MVA
model.

All results shown in Figure 12 validate the analytic model based on the index of
dispersion: its performance results are in excellent agreement with the experimental
values in the system, and it remains robust in systems with and without the feature of
workload burstiness and bottleneck switch.

5 Related Work

Capacity planning of multi-tier systems is a critical part of the architecture design pro-
cess and requires reliable quantitative methods, see [17] for an introduction. Queueing
models are popular for predicting system performance and answering what-if capacity
planning questions [17,26,27,28]. Single-tier queueing models focus on capturing the
performance of the most-congested resource only (i.e., bottleneck tier): [28] describes
the application tier of an e-commerce system as a M/GI/1/PS queue; [20] abstracts the
application tier of a N -node cluster as a multi-server G/G/N queue.

284 N. Mi et al.

Mean Value Analysis (MVA) queueing models that capture all the multi-tier archi-
tecture performance have been validated in [26,27] using synthetic workloads running
on real systems. The parameterization of these MVA models requires only the mean
service demand placed by requests at the different resources. In [24] the authors use
multiple linear regression techniques for estimating from utilization measurements the
mean service demands of applications in a single-threaded software server. In [15], Liu
et al. calibrate queueing model parameters using inference techniques based on end-
to-end response time measurements. A traffic model for Web traffic has been proposed
in [14], which fits real data using mixtures of distributions.

However, the observations in [18] show that autocorrelation in multi-tier systems
flows, which is ignored by standard capacity planning models, must be accounted for
accurate performance prediction of multi-tiered systems. Indeed, [3] presents that
burstiness in the World Wide Web and its related applications peaks the load of the
Web server beyond its capacity, which results in significant degradation of the actual
server performance. In this paper we have proposed for the first time robust solutions
for capacity planning under workload burstiness. The class of MAP queueing networks
considered here has been first introduced in [6] together with a bounding technique
for approximate model solution. In this paper, we have proposed a parameterization of
MAP queueing networks using for the service process of each server its mean service
time, the index of dispersion, and the 95-th percentile of service times. The index of
dispersion has been frequently adopted in the networking literature for describing traffic
burstiness [11,25]; in particular, it is known that the performance of the G/M/1/FCFS
queue in heavy-traffic is completely determined by its mean service time and the index
of dispersion [25]. Further results concerning the characterization of index of dispersion
in MAPs can be found in [1].

6 Conclusions

Today’s IT and Services departments are faced with the difficult task of ensuring that
enterprise business-critical applications are always available and provide adequate per-
formance. Predicting and controlling the issues surrounding system performance is a
difficult and overwhelming task for IT administrators. With complexity of enterprise
systems increasing over time and customer requirements for QoS growing, effective
models for quick and automatic evaluation of required system resources in production
systems become a priority item on the service provider’s “wish list”.

In this work, we have presented a solution to the difficult problem of model parame-
terization by inferring essential process information from coarse measurements in a real
system. After giving quantitative examples of the importance of integrating burstiness
in performance models pointing out its role relatively to the bottleneck switching phe-
nomenon, we show that coarse measurements can still be used to parameterize queueing
models that effectively capture burstiness and variability of the true process. The param-
eterized queueing model can thus be used to closely predict performance in systems
even in the very difficult case where there is persistent bottleneck switch among the
various servers. Detailed experimentation on a multi-tiered system using the TPC-W
benchmark validates that the proposed technique offers a robust solution to predict
performance of systems subject to burstiness and bottleneck switching conditions.

Burstiness in Multi-tier Applications: Symptoms, Causes, and New Models 285

The proposed approach is based on measurements that can be routinely obtained
from existing commercial monitoring tools. The resulting parameterized models are
practical and robust for a variety of capacity planning and performance modeling tasks
in production environments.

References

1. Andersen, A.T., Nielsen, B.F.: On the statistical implications of certain random permuta-
tions in markovian arrival processes (MAPs) and second-order self-similar processes. Perf.
Eval. 41(2-3), 67–82 (2000)

2. Balbo, G., Serazzi, G.: Asymptotic analysis of multiclass closed queueing networks: Com-
mon bottlenecks. Perf. Eval. 26(1), 51–72 (1996)

3. Banga, G., Druschel, P.: Measuring the capacity of a web server under realistic loads. World
Wide Web 2(1-2), 69–83 (1999)

4. Beran, J.: Statistics for Long-Memory Processes. Chapman & Hall, New York (1994)
5. Casale, G., Mi, N., Cherkasova, L., Smirni, E.: How to parameterize models with bursty

workloads. In: Proceedings of First Workshop on Hot Topics in Measurement & Modeling
of Computer Systems, HotMetrics 2008 (2008)

6. Casale, G., Mi, N., Smirni, E.: Bound analysis of closed queueing networks with workload
burstiness. In: Proceedings of ACM SIGMETRICS, pp. 13–24 (2008)

7. Casale, G., Zhang, E., Smirni, E.: Interarrival times characterization and fitting for
markovian traffic analysis. Number WM-CS-2008-02 (2008), http://www.wm.edu/
computerscience/techreport/2008/WM-CS-2008-02.pdf

8. Cox, D., Lewis, P.: The Statistical Analysis of Series of Events. John Wiley and Sons, New
York (1966)

9. Ferng, H., Chang, J.: Connection-wise end-to-end performance analysis of queueing net-
works with MMPP inputs. Perf. Eval. 43(1), 39–62 (2001)

10. Garcia, D., Garcia, J.: TPC-W E-commerce benchmark evaluation. In: IEEE Computer, pp.
42–48 (February 2003)

11. Gusella, R.: Characterizing the variability of arrival processes with indexes of dispersion.
IEEE JSAC 19(2), 203–211 (1991)

12. Heindl, A.: Traffic-Based Decomposition of General Queueing Networks with Correlated
Input Processes. Ph.D. Thesis. Shaker Verlag, Aachen (2001)

13. Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative System Perfor-
mance. Prentice-Hall, Englewood Cliffs (1984)

14. Liu, Z., Niclausse, N., Jalpa-Villanueva, C.: Traffic model and performance evaluation of
web servers. Perform. Eval. 46(2-3) (2001)

15. Liu, Z., Wynter, L., Xia, C.H., Zhang, F.: Parameter inference of queueing models for it
systems using end-to-end measurements. Perf. Eval. 63(1), 36–60 (2006)

16. Menascé, D.A., Almeida, V.A.F.: Scaling for E-Business: Technologies, Models, Perfor-
mance, and Capacity Planning. Prentice-Hall, Inc., Englewood Cliffs (2000)

17. Menascé, D.A., Almeida, V.A.F., Dowdy, L.W.: Capacity planning and performance model-
ing: from mainframes to client-server systems. Prentice-Hall, Inc., Englewood Cliffs (1994)

18. Mi, N., Zhang, Q., Riska, A., Smirni, E., Riedel, E.: Performance impacts of autocorrelated
flows in multi-tiered systems. Perf. Eval. 64(9-12), 1082–1101 (2007)

19. Neuts, M.F.: Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel
Dekker, New York (1989)

20. Ranjan, S., Rolia, J., Fu, H., Knightly, E.: Qos-driven server migration for internet data
centers. In: The 10th International Workshop on Quality of Service (IWQoS 2002) (2002)

http://www.wm.edu/computerscience/techreport/2008/WM-CS-2008-02.pdf
http://www.wm.edu/computerscience/techreport/2008/WM-CS-2008-02.pdf

286 N. Mi et al.

21. Reiser, M.: Mean-value analysis and convolution method for queue-dependent servers in
closed queueing networks. Perf. Eval. 1, 7–18 (1981)

22. Reiser, M., Lavenberg, S.S.: Mean-value analysis of closed multichain queueing networks.
JACM 27(2), 312–322 (1980)

23. Robertazzi, T.G.: Computer Networks and Systems. Springer, Heidelberg (2000)
24. Rolia, J., Vetland, V.: Correlating resource demand information with arm data for application

services. In: Proceedings of WOSP 1998, pp. 219–230. ACM, New York (1998)
25. Sriram, K., Whitt, W.: Characterizing superposition arrival processes in packet multiplexers

for voice and data. IEEE JSAC 4(6), 833–846 (1986)
26. Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: An analytical model for

multi-tier internet services and its applications. In: Proceedings of the ACM SIGMETRICS
Conference, Banff, Canada, pp. 291–302 (June 2005)

27. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic provisioning of multi-tier in-
ternet applications. In: ICAC 2005: Proceedings of the Second International Conference on
Automatic Computing, pp. 217–228 (2005)

28. Villela, D., Pradhan, P., Rubenstein, D.: Provisioning servers in the application tier for e-
commerce systems. ACM Trans. Interet Technol. 7(1), 7 (2007)

29. Mercury Diagnostics, www.mercury.com/us/products/diagnostics
30. Zhang, Q., Cherkasova, L., Mathews, G., Greene, W., Smirni, E.: R-capriccio: A capacity

planning and anomaly detection tool for enterprise services with live workloads. In: Pro-
ceedings of Middleware, Newport Beach, CA, pp. 244–265 (2007)

31. Zhang, Q., Cherkasova, L., Smirni, E.: A regression-based analytic model for dynamic re-
source provisioning of multi-tier applications. In: Proceedings of ICAC 2007, p. 27 (2007)

www.mercury.com/us/products/diagnostics

Towards End-to-End Quality of Service:
Controlling I/O Interference in Shared Storage

Servers

Gokul Soundararajan and Cristiana Amza

Department of Electrical and Computer Engineering
University of Toronto

Abstract. Due to the imperative need to reduce the costs of manage-
ment, power and cooling in large data centers, operators multiplex sev-
eral concurrent applications on each physical server of a server farm
connected to a shared network attached storage. Determining and en-
forcing per-application resource quotas on the fly in this context poses a
complex resource allocation and control problem spanning many levels
including the CPU, memory and storage resources within each physical
server and/or across the server farm. This problem is further complicated
by the need to provide end-to-end Quality of Service (QoS) guarantees
to hosted applications.

In this paper, we introduce a novel approach towards controlling
application interference for resources in shared server farms. Specifi-
cally, we design and implement a minimally intrusive method for pass-
ing application-level QoS requirements through the software stack. We
leverage high-level per-application requirements for controlling I/O inter-
ference between multiple database applications, by QoS-aware dynamic
resource partitioning at the storage server. Our experimental evaluation,
using the MySQL database engine and OLTP benchmarks, shows the
effectiveness of our technique in enforcing high-level application Service
Level Objectives (SLOs) in shared server farms.

1 Introduction

As the costs of management, power and cooling in large data centers become
prohibitive, automated server consolidation techniques for better resource usage
while providing differentiated Quality of Service (QoS) to applications become in-
creasingly important. With server consolidation, several concurrent applications
are multiplexed on each physical server of a server farm connected to consoli-
dated network attached storage (see Figure 1). Such architectures are common
in large data centers and consist of multiple levels of software, including web and
application servers, database servers, operating systems and the storage server
at the lowest level. The challenge for providing QoS to applications in these en-
vironments lies in the complexity of the dynamic resource partitioning problem
for avoiding application interference at multiple levels, i.e., for CPU, memory
and storage.

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 287–305, 2008.
c© IFIP International Federation for Information Processing 2008

288 G. Soundararajan and C. Amza

Logical
Volume

Logical
Volume

Logical
Volume

Machine-A Machine-B Machine-C

Gold Silver Bronze

STORAGE SERVER

DisksStorage Management

Fig. 1. Modern enterprise architecture: Server farm with resource consolidation

Previous work on dynamic resource partitioning in shared server environments
focuses on partitioning a single resource within a single software tier at a time.
Specifically, resource virtualization through virtual machine monitors (VMMs)
has been used in both generic server systems [3] and database systems [14,15] to
enforce per-application CPU quotas. Similarly, memory quota enforcement has
been studied within the buffer pool of a database system running several appli-
cations [4,5]. Finally, several techniques have been studied for partitioning the
I/O bandwidth between applications within the storage server [11,12,19]. How-
ever, the above approaches fall short of providing effective resource partitioning
due to the following two reasons.

The first reason is that application QoS is usually expressed as a high-level
Service Level Objective (SLO), e.g., desired latency or throughput, not as per-
resource priorities or quotas. There is currently no automatic mechanism to
assign the relative priority levels or resource quotas for applications correspond-
ing to a high-level application metric. A dynamic approach to resource allocation
is clearly more desirable than extensive off-line profiling in modern data center
environments, where the set of co-scheduled applications, and/or the type and
availability of hardware resources may change frequently and unpredictably.

The second reason that prevents current approaches from providing effective
resource partitioning is the absence of coordination between different resource
controllers. This absence of coordination might lead to situations where local
goals may conflict with each other, or with the high-level per-application goals.
For instance, the operating system may optimize fairness in thread scheduling
across applications, while the storage server may optimize I/O latency. Each
resource controller optimizes local goals, oblivious to the goals of other resource
controllers, and to the per-application SLO’s. There is little or no previous work
on correlating priority or quota enforcement across several resources or software
components.

To address the dynamic resource allocation problem in consolidated server envi-
ronments, we introduce a novel technique for controlling application interference.

Towards End-to-End Quality of Service: Controlling I/O Interference 289

Our technique determines per-application resource quotas on the fly, with min-
imal application instrumentation. To achieve this, we monitor application-level
metrics relative to SLOs periodically and pass these as application utility values
down through all levels of the software stack i.e., from the DBMS to the OS
running on each physical server in a server farm, and then to the shared storage
server.

The monitored application-level metrics are utilized by a coordinated dis-
tributed learning technique, with one adaptive controller per software compo-
nent. Each resource controller uses a reinforcement learning algorithm, called
learning automata (LA) [13], for resource allocation. Specifically, each LA con-
troller employs a feedback loop to dynamically converge towards a resource par-
titioning setting that minimizes the perceived penalties for all applications.

Though our technique is general enough to be applied for partitioning all
shared resources, at all tiers, in this paper, we focus on dynamically partitioning
the storage bandwidth. Towards this goal, we implement our technique in a
prototype that enforces coordinated resource quotas per application at two levels:
i) at the operating system I/O scheduler within each physical server of the server
farm and ii) at the shared storage level. Our prototype implementation shows
that our approach can be integrated in existing environments and applications
with minimal changes to interfaces between components.

Specifically, we modify the Linux kernel and the Network Block Device (NBD)
protocol, a network block protocol that is bundled with the Linux kernel, to allow
passing the application-level utility on I/O calls, and to implement our learning
and I/O scheduling algorithms. Our technique is sufficiently flexible to enforce
resource quotas and to change them dynamically, for different applications, but
also per application thread within the same application e.g., to enforce differen-
tiated QoS for performance-critical transactions or queries.

We perform experiments on a cluster of dual processor servers connected
to a storage server with external direct attached storage. We use the MySQL
database engine and two applications: DBT-2 and the ORION (Oracle IO Num-
bers) storage utility. DBT-2 is a classic OLTP workload similar to TPC-C. Orion
emulates part of the common I/O workload of the Oracle database server. We
run experiments in several configurations where instances of the two applica-
tions share physical servers as well as the storage server. We show convergence
to the per-application quotas that meet the high-level application SLO’s for each
application when using our coordinated dynamic learning technique.

The remainder of this paper is structured as follows. Section 2 describes the
role of each software component in servicing I/O requests and the motivation to
use end-to-end resource partitioning. Section 3 describes the architecture of our
system and introduces our coordinated learning and our I/O bandwidth parti-
tioning technique. Section 4 describes our prototype implementation. Section 5
presents our benchmarks and experimental platform, while Section 6 presents
the results of our experiments on this platform. Section 7 discusses related work
and Section 8 concludes the paper.

290 G. Soundararajan and C. Amza

2 Background and Motivation

Enterprise storage servers (Figure 1) provide an abstraction of a single large
logical storage device carved into several logical volumes. An application, like a
database system or file system, mounts the logical volumes and uses the under-
lying storage. Within this storage hierarchy, we focus on the following two levels
of control: (1) the OS I/O scheduler, which schedules I/O requests from a storage
client to the underlying storage device, and (2) the storage server I/O scheduler,
which manages bandwidth allocations to different logical volumes.

The interactions between the storage client and server travel through the op-
erating system’s block layer. The block layer maps logical to physical accesses
on block devices e.g., in a RAID. It provides a wide range of functionality from
request sorting and merging, prefetching, to I/O scheduling i.e., reordering re-
quests to optimize the disk seek time. Due to this commonly used optimization
objective, physically sequential I/O will be preferentially scheduled, typically
regardless of its high-level application SLO. To counter starvation, implemen-
tations of I/O scheduling either attach a deadline for every request or provide
fairness among several streams. However, these approaches are typically unaware
of application SLOs. Similar to the operating system I/O scheduler, the storage
server schedules I/O requests from different logical volumes. While the operating
system I/O scheduler attempts to minimize seek times, the storage server I/O
scheduler controls when each workload’s request is sent to the disk firmware e.g.,
in order to meet a pre-specified I/O latency [12], but oblivious to the high-level
application SLO.

As we can see from our description of the storage hierarchy described above,
storage bandwidth allocations are influenced by both the operating system and
the storage server, in an uncoordinated, SLO unaware, and possibly conflicting
manner. In the following, we show through a motivating experiment that unpre-
dictably large performance degradation can occur for co-scheduled applications
due to I/O interference, whether or not CPU priorities are enforced at the OS
level.

2.1 Motivating Example

Using current I/O schedulers in existing operating systems, we show that the
performance of an application can be severely affected when paired with another
I/O intensive process, whether or not we enforce per-application CPU priorities
at the operating system level.

We run DBT-2, a TPC-C like workload, on MySQL, concurrently with OLTP-
A, an online transaction processing (OLTP) workload, generated using the
ORION (Oracle IO Numbers) tool. We configure DBT-2 to use 200 warehouses,
resulting in a database size of 64GB. We provide additional details of our
workloads in Section 6. In our experiments, we run MySQL/InnoDB on direct-
attached storage and show the effects of I/O interference between applications.
In our experimental setup, we use either the cfq scheduler, recently added to the
Linux kernel, which attempts to provide fair queuing among several processes, or

Towards End-to-End Quality of Service: Controlling I/O Interference 291

0

200

400

600

800

1000

1200

1400

1600

Alone Equal Priority Favored

T
h

ro
u

gh
p

u
t

(T
P

M
)

(a) Throughput

0

100

200

300

400

500

600

700

800

Alone Equal Priority Favored

L
at

e
n

cy
 (

s)

(b) Latency

Fig. 2. Co-scheduling DBT-2/OLTP-A on Direct-Attached Storage with CFQ schedul-
ing

the more traditional deadline scheduler in Linux, which primarily targets min-
imizing I/O seek time. Neither the cfq scheduler, nor the deadline scheduler
support enforcement of application SLOs.

Figure 2 shows the I/O interference between DBT-2 and OLTP-A when using
the cfq scheduler at the operating system. We see that, when DBT-2 runs alone,
it achieves 1498 TPM (transactions per minute) and its 90th percentile latency
is 78 seconds. However, when DBT-2 is co-scheduled with OLTP-A, there is a
significant slowdown. DBT-2’s throughput is only 13% of its throughput running
in isolation and the latency is 8.3x the original latency. In an attempt to achieve
better performance for DBT-2, we set the CPU nice levels for DBT-2 to -10
(high priority) and OLTP-A to +10 (low priority) and re-run the experiment.
We see a very small gain in DBT-2’s performance. The throughput increases
slightly from 196 TPM to 198 TPM.

The interference effect is even more pronounced when using the traditional
deadline scheduler in Linux. In this case, DBT-2’s throughput when co-scheduled
with OLTP-A is only 2.3% of its throughput when running in isolation i.e., 80
TPM compared to 3391 TPM. As before, setting the DBT-2 process to a higher
priority, by using the UNIX nice utility, does not significantly alleviate the
problem.

These results show that there is currently no method of enforcing I/O re-
quirements of applications at the operating system level. Furthermore, there is
no method of communicating application SLO requirements and enforcing them
at the storage server. Since both the OS and the storage server perform I/O
scheduling in a per-application QoS oblivious manner, current architectures are
unable to enforce end-to-end quality of service. As we have shown, this results
in potentially high performance degradation for the high priority application.

In this paper, we address these issues by providing a method of transmitting
application SLO requirements throughout the storage hierarchy. This allows the
individual I/O controllers at each level to determine the bandwidth allocations
dynamically.

292 G. Soundararajan and C. Amza

3 Providing End-to-End QoS Via Coordinated Learning

In this section, we describe our approach to dynamic resource allocation in a
server farm with network attached storage. Our objective is to allocate each
application enough resources (i.e., bandwidth) to meet its SLO. Towards this, we
use coordinated learning to determine resource quotas dynamically, at two levels
in the system: the OS and the storage server. In the following, we first introduce
the overall architecture of our system and an overview of our approach. Then,
we describe our coordinated learning and dynamic quota enforcement algorithm
in detail. Finally, we discuss the trade-offs made in our design.

3.1 Architecture and Problem Statement

The architecture of our system is presented in Figure 1. We show the storage
server hosting a number of virtual devices connected to several physical servers
i.e., machines A, B, and C. Each physical server hosts a number of application
classes, e.g., gold, silver, and bronze hosted on Machine-B in the Figure.

In this environment, the problem of resource allocation can be described as
follows. For k servers hosting n application classes connected to s virtual volumes
hosted on the storage server, we need to find the following proportions in order
to meet the specified SLOs: i) We need to find proportions PS1 , PS2 , . . . , PSs

for enforcing disk bandwidth partitioning among the workload for the virtual
volumes at the storage server. and ii) At each machine m ∈ {1, 2, . . . , k}, we need
to determine the proportions Pm1 , Pm2 , . . . , Pmn for scheduling the respective
requests to the virtual device at the level of the OS I/O scheduler (e.g., PBgold

,
PBsilver

, and PBbronze
for the OS on Machine-B in Figure 1.

Finding an optimal solution to this problem is challenging since there is no
clear mapping from the specified SLOs to disk bandwidth. As such, we use
adaptive machine learning techniques as described next.

3.2 Overview of Approach

Towards achieving the specified SLOs, we embed resource controllers at the OS
and at the storage server. All resource controllers use a learning algorithm for
dynamic resource partitioning at its level. Specifically, each resource controller
changes its own per-workload proportions dynamically, converging to a local
solution based on application-level feedback values.

We coordinate learning between the OS and the storage server through a
token-passing scheme. The learners at the two levels take turns in making ac-
tions and observing the application feedback. In this way, each level can observe
the application feedback based only on its actions, thus converging to a solution.
We ensure convergence to a stable global resource partitioning solution for the
different learners by using the same feedback metric for learners at both the
OS and the storage server levels. This application-level feedback metric, called
Deviance from Target (dft), is periodically monitored for each application. The
most recent dft is then passed from the application level through all levels of the

Towards End-to-End Quality of Service: Controlling I/O Interference 293

software stack, including the OS, to the storage server on each I/O call of the
corresponding application. Finally, each resource controller enforces the learned
resource partitioning through quanta based scheduling for its workloads. Modi-
fications to existing interfaces between components are minimal; all information
exchanged between the two levels is piggybacked on regular communication.

In the following, we introduce the high-level application metric we use for
coordinated learning (the dft metric). Next, we introduce the learning algorithm
employed at each resource controller and the coordination between resource con-
trollers. Finally, we explain the quanta-based scheduling algorithm used by each
resource controller for enforcing the resource partitioning.

3.3 Deviance From Target (DFT) Metric

We use a single high-level application-level metric, called Deviance from Tar-
get (dft), for guided learning at all resource controllers. The dft represents the
utility to the service provider from meeting the service level objective (SLO) of
the corresponding application. This utility is typically mapped directly to an
expected monetary reward (or penalty) for hosting a particular application and
it may combine two factors: i) a performance indicator i.e., the relative distance
of a pre-specified application metric, such as transaction throughput, or latency
from a contracted SLO value over time and ii) the contracted client priority or
class for the corresponding application e.g., gold/silver/bronze or best-effort.

Without loss of generality, for the purposes of this paper, we use as perfor-
mance indicator a number that indicates the deviation from expected application
performance, where a 0.0 value corresponds to target achieved, a positive value
means we have exceeded the objective and a negative value means a violation
of the contracted performance, hence a penalty for the service provider. For
example, in order to compute the dft for a particular high priority OLTP ap-
plication, we periodically sample the transactions completed. Then we compute
the normalized distance between the average transaction throughput value over
the last sampling interval and the contracted/expected throughput value (the
SLO). To produce the dft, this value would be typically weighted to include the
priority class. For simplicity, for the purposes of this paper, we use only two
classes: priority and best effort. For a best effort application we always provide a
dft feedback value of 0.0 regardless of the performance indicator. For a priority
application, we provide its performance indicator as the dft feedback.

Finally, we also support assigning different dft values for different threads,
transactions or queries inside an application. Specifically, we support selectively
tagging fine-grained application contexts with the overall dft value of an appli-
cation, while all other I/O from that application should be classified as best
effort. For example, a database application may signal that a DBMS application
thread carries its overall utility rather than a DBMS statistics logger thread;
alternatively, the application may assign all its utility to a key transaction type
e.g., a payment transaction.

In the following, we describe our learning algorithm at each resource controller.
We then introduce a lightweight and minimally intrusive technique to coordinate

294 G. Soundararajan and C. Amza

the multiple controllers implemented at different levels in order to provide end-
to-end QoS.

3.4 Learning at Each Resource Controller

We determine the workload proportions dynamically using a reinforcement learn-
ing algorithm [18]. In reinforcement learning, the learning agent learns how to use
various actions to maximize a numerical reward. We use a simple reinforcement
learning algorithm named learning automata (LA) [13].

Learning automata are adaptive decision-making devices that operate in un-
known environments. A learning automaton has a finite set of actions and each
action has a certain probability (unknown to the automaton) of getting rewarded
by the environment of the automaton. The aim is to learn to choose the optimal
action (i.e. the action with the highest probability of being rewarded) through re-
peated interactions with the system. If the environment is sufficiently stationary
during the learning period, the iterative process of interacting with the environ-
ment in the LA algorithm is guaranteed to converge to the optimal solution [13].
We use a linear reward-penalty learning automata, where an automaton can
probabilistically choose one of r actions {a1, a2, . . . , ar} with associated proba-
bilities {p1, p2, . . . , pr} respectively. Let p(k) denote the probability of an action
to be taken at iteration k and suppose action ai is taken at iteration k.

The result of an action ai is mapped to a range between 0.0 and 1.0, where
0.0 represents the maximum positive feedback and 1.0 represents the maximum
negative feedback. The feedback for the kth action is represented using the vari-
able f(k). The probabilities for taking each action are updated as follows. The
probability pi corresponding to action ai is updated to:

pi(k + 1) = pi(k) − βf(k)pi(k) + α(1 − f(k))(1 − pi(k)) (1)

All other actions, aj where i �= j are updated to:

pj(k + 1) = pj(k) + f(k)(
β

r − 1
− βpj(k)) − α(1 − f(k))pj(k) (2)

The parameters α and β scale the reward and penalty. Typically, α > β for
faster convergence.

We describe how we adapt the LA learning algorithm to enable dynamic
allocations in our controller. The goal at each controller is to minimize the sum
of the squared deviations from 0.0 (error) for the dft of all applications. For
example, if the storage server was hosting s virtual volumes with each virtual
volume hosting n applications, then the error (e) would be computed as

e =
s∑

i=1

n∑
j=1

[dfti,j]2 (3)

Each controller dynamically determines proportions between its workloads,
i.e., between applications in the operating system and between virtual devices

Towards End-to-End Quality of Service: Controlling I/O Interference 295

in the storage server scheduler, with the objective of minimizing the error (e).
For instance, consider a controller which schedules two workloads at the storage
server. Such a controller will simply have to determine the proportion 0 ≤ P ≤
1.0, such that one workload receives a fraction P and the other workload receives
1 − P of the resource. For that particular controller, in order to determine P ,
we define a number of actions for the LA learning algorithm representing band-
width allocations. The controller’s action sets the proportions by picking from a
collection of discrete choices. In our example here, a possible collection of choices
might be {10/90, 30/70, 50/50, 70/30, 90/10}.

At each learning iteration, the controller first measures the current error, ecur,
in the system. Then, it probabilistically selects an action to take. For example,
the controller may select the action corresponding to enforcing a proportion of
50/50. After selecting an action, the controller waits until the effects of its action
are visible, for either a fixed time interval or a fixed number of requests. It then
evaluates the application-level feedback, computes the new error value, enew,
and updates the variable f(k) with a new value between 0.0 and 1.0, depending
on the perceived benefit of its action. Finally, the controller updates the prob-
abilities corresponding to taking each action using the new value of f(k) in the
formulas above.

3.5 Coordinated Learning

While all controllers in our system have the same goal, i.e., to optimize the dft
error for all applications, each learns iteratively through trial and error. Thus, if
all learners actuate their proportions in parallel, the feedback received by each
learner is the result of actions taken by all controllers, not just by itself. To
enable accurate feedback, hence convergence towards an end-to-end solution, we
coordinate the multiple learners in the hierarchy using a simple token passing
scheme. We thus let either the OS-level controllers or the storage server controller
learn at a given time, while keeping the proportions fixed at the other level.
Token requests and replies are passed on regular requests and replies between
the two levels. Whenever holding the token, a learner takes a number of actions
actuating its per-workload proportions and observes the application feedback on
incoming requests.

3.6 Enforcing Proportions through Quanta-Based Scheduling

We enforce proportions by using quanta-based scheduling [19] at both the OS
and storage resource controllers. Specifically, we partition a scheduling period
into time intervals and assign intervals to workloads to meet their respective
proportions. For example, let the scheduling period be 100 milliseconds with 100
slices. If two applications, A and B require equal proportions, then, each would
be given exclusive access to storage for 50 milliseconds in every 100 milliseconds
scheduling period. Scheduling based on time quanta allows for a good combina-
tion of enforcing proportions between workloads as well as taking advantage of
the usual storage optimizations for per-workload locality. This is because when

296 G. Soundararajan and C. Amza

only one workload is allowed to run during a time interval, during that time,
both the OS/storage I/O schedulers can optimize disk seeks with the usual tech-
niques e.g., using elevator scheduling and also exploit the disk cache for that
workload.

3.7 Discussion

In this section we discuss the trade-offs in our scheduling technique. We then
present a theoretical argument for convergence to a global optimal solution for
our end-to-end approach.

Trade-offs in Scheduling Technique. While quanta-based scheduling ensures
that each workload receives a share of the disk bandwidth, there is an inherent
tradeoff between using coarse-grained versus fine-grained scheduling intervals,
hence quanta. At the limit, the scheduler can simply not use time quanta at
all, and issue requests proportionally from each workload. Using large quanta
may waste disk bandwidth if insufficient requests from the respective workload
are available to the scheduler during a particular quantum. On the other hand,
as mentioned before, using coarse-grained quanta has the advantage of reducing
the potential disk seeks and cache conflicts caused by switching between multiple
workloads.

We note that in many practical cases, the adaptivity inherent in our approach
will naturally alleviate penalties, by self-regulating the quanta granularity. For
example, assume that a sequential workload suffers due to increased disk seeks
when interleaved with a random-access workload at the storage. If these penal-
ties are significant, they will be reflected in the application’s high-level metrics.
Hence, the sequential workload will automatically receive a larger proportion of
I/O bandwidth. The larger bandwidth allocation will implicitly translate into a
larger quanta.

Global Convergence to an Optimal Solution. Our coordinated learning
technique will converge towards a state with the minimum penalties achievable
for the applications, hence for the service provider, if the application behavior
and environment does not substantially change during learning.

When using multiple learners with a common feedback signal, as in our case,
each environment state is determined by a combination of actions from all learn-
ers. In this case, the environment states form a composite environment which
is referred to as Markovian Switching Environment. In such an environment, it
can be theoretically shown [13] that a variable-structure automata with ergodic
techniques, such as the linear reward-penalty learning automata we use, con-
verges to the optimal set of actions by the multiple learners within a margin of
error due to the continuous learning and exploratory nature of LA controllers.

The ideal solution, where all application dft’s are 0.0 may be, however,unattain-
able, e.g., because of insufficient overall I/O bandwidth, and dynamic provisioning
of additional resources may become necessary.

Towards End-to-End Quality of Service: Controlling I/O Interference 297

4 Prototype Implementation

In this section, we describe our prototype implementation for passing high-level
application metrics through the software stack to the storage controller, and our
virtual storage controller implementation.

4.1 Overview of Prototype Implementation

We embed our LA controller into Linux and our virtual storage prototype. We
leverage the Network Block Device (NBD) code available with Linux for this
purpose. NBD is a standard storage access protocol, similar to iSCSI, supported
by Linux. NBD provides a method for a storage client (in our case MySQL) to
communicate with a storage server over the network; specifically, NBD provides
a pair of client/server modules, which run on the same physical machines as the
storage client/server, respectively.

We implement a Linux-based virtual storage prototype, which we deploy on
top of our commodity storage (RAID) firmware. We modify the existing client
and server NBD protocol processing modules in order to pass high-level applica-
tion metrics to our LA storage bandwidth controller. Specifically, we piggyback
the application’s performance (dft), the application identifier, and a learning
token on the I/O call path. Our storage controller enforces bandwidth quota
allocations, maps virtual to physical block accesses and issues the appropriate
I/O requests to disk.

4.2 Code Changes

We instrument MySQL to capture the application-level metrics of interest, pe-
riodically, and to compute the dft metric relative to a predefined SLO for each
application context. For example, for DBT-2, we monitor transaction throughput
as application level metric and for Orion we use latency, which are the standard
QoS metrics for these applications.

For every I/O call made from MySQL on behalf of the application, we add
arguments to the corresponding system call and pass the application context
identifier and the periodically updated dft metric for that application context.
Context identifiers are assigned in such a way to be unique cluster-wide. In order
to support differentiated QoS for fine-grained and/or dynamic application-level
contexts, e.g., per application thread, or per-transaction, we also add a new sys-
tem call, ioprio_context(), to the Linux kernel. ioprio_context() signals
the beginning and end of an application context. We add corresponding system
calls in MySQL, reusing pre-existing begin and end markers in the application
structure e.g., for transaction begin and commit or thread creation and destruc-
tion. We modify the Linux kernel and the NBD packet format to tag each I/O
call with the application-level information and pass this information through the
respective software layers. In addition, for the coordinated learning algorithm,
we piggyback the learning token on request and reply NBD packets.

298 G. Soundararajan and C. Amza

4.3 I/O Scheduling Implementation

When a workload is given a quantum, we first determine the number of requests
we can issue to disk such that they complete within the workload’s quantum. To
compute this value, we maintain an exponentially weighted average of the disk
service time and the application’s concurrency level. Using these two values, we
compute the number of requests that can be issued per workload such that all
requests finish within the quantum. First, we issue requests that were enqueued
while waiting for the quantum to begin. Then, we issue requests that arrive
during the scheduling quantum. We stop issuing requests if we determine that
by issuing a request, we will exceed the workload’s quantum. In this case, new
requests will be enqueued as we wait for the requests to return from disk before
the next quantum begins.

5 Experimental Methodology

We create a multi-tier system with shared storage using NBD, as shown in
Figure 3. We use three machines: a storage server (S) and two application servers
(A and B). In this system, we can run 4 applications, A0, A1, B0, and B1.
The storage server (S) serves two virtual block devices which are mounted by
machines A and B, respectively. The applications A0 and A1 share one virtual
block device and B0 and B1 share the other. In addition, each machine runs a LA
based controller that determines the bandwidth allocation for the two incoming
streams. Machine A determines PA, the fraction of the bandwidth allocated to
A0. Conversely, A1 receives (1−PA) bandwidth. Similarly, Machine B determines
PB and the storage server S determines PS .

The application servers are Dell PowerEdge SC1425 with dual Intel Xeon
processors running Ubuntu Linux 6.06 with our modifications, and connected by
Gigabit Ethernet. The storage server is a Dell PowerEdge PE1950 with 4 Intel
Xeon processors running at 3Ghz and 3GB of memory. The storage server is
connected to an external direct attached storage with 15 10K RPM SAS hard

STORAGE
SERVER

MACHINE
B

DISK

MACHINE
A

A
0

A
1

B
0

B
1

PA

PB

PS

MACHINE
S

Fig. 3. Experimental Multi-tier System with Shared Storage

Towards End-to-End Quality of Service: Controlling I/O Interference 299

drives. The attached storage is configured using RAID-0. We benchmark the
direct attached storage using ORION and found it provides 800 IOPS for our
microbenchmark OLTP-A. Our NBD based storage server increases the latency
by at most 10%.

We use MySQL/InnoDB and configure it to use a raw device and a buffer
pool of 512 MB. We use ORION (Oracle IO Numbers) as a I/O load gener-
ator. ORION is a calibration tool released by Oracle to benchmark different
storage architectures for database workloads. It allows the user to set different
parameters like block size, read/write ratio, and number of outstanding I/Os.
By changing the parameters, one can generate different types of database work-
loads. We set these parameters to generate an OLTP-like workload classified
with equal amount of reads and writes, many random I/O accesses (16KB block
size) and some large I/O (1MB blocks).

5.1 Benchmarks

OLTP-A: OLTP-A is an OLTP-like workloads we generate using the ORION
tool. It is characterized by many random I/O accesses of 16KB and some large
I/O of 1MB. The read/write ratio is 50%. We configure ORION to have 100
outstanding small I/O and 10 outstanding large I/O. OLTP-A issues I/O to a
64GB raw partition.

DBT-2: DBT-2 is an OLTP workload derived from TPC-C benchmark [16]. It
simulates a wholesale parts supplier that operates using a number of warehouse
and sales districts. Each warehouse has 10 sales districts and each district serves
3000 customers. The workload involves transactions from a number of terminal
operators centered around an order entry environment. There are 5 main trans-
actions for: (1) entering orders, (2) delivering orders, (3) recording payments,
(4) checking the status of the orders, and (5) monitoring the level of stock at
the warehouses. We scale DBT-2 by using 256 warehouses and the footprint of
the database is 60GB. In our experiments, we simulate 1000 users connected to
the system.

6 Experimental Results

We present an experimental evaluation of our end-to-end I/O bandwidth al-
location technique. All results are obtained on our experimental configuration
described in the previous section. We first evaluate our learning technique for
enforcing end-to-end resource allocations. We then show the benefits of coordi-
nated versus uncoordinated learning in two sharing scenarios, using the ORION
and DBT-2 benchmarks.

6.1 Benefits of Coordinated Learning

We show the benefits of coordinated versus uncoordinated learning with two
sharing scenarios. First, we run four instances of OLTP-A. Next, we co-schedule

300 G. Soundararajan and C. Amza

DBT-2 with three instances of OLTP-A. For both scenarios, we compare both
coordinated and uncoordinated learning with two ideal scenarios, where propor-
tions are set manually for either i) one resource controller or ii) both resource
controllers. In more detail, we evaluate four schemes:

1. Optimal Settings: We set all proportions manually to the optimal config-
uration.

2. Single Storage Learner: We set the proportions manually in the OS sched-
ulers (PA and PB) but we determine PS at the storage through learning.

3. Uncoordinated Learning: We let all controllers find the optimal values
in parallel.

4. Coordinated Learning: We enable our token passing algorithm to coor-
dinate the controllers. For uncoordinated and coordinated learning, we ini-
tialize the probabilities in each controller to 1

5 = 0.2 such that each action
is equally likely.

In all experiments, we plot the dft (deviation from target) versus time. If
dft < 0 this signifies that the application did not meet its SLO and a dft > 0
indicates that the application performed better than its SLO. Ideally, the dft = 0
throughout the duration of the experiment.

OLTP-A: In the first experiment, we run 4 instances of OLTP-A, two on each of
our physical servers in our experimental setup. Since all workloads are identical,
the optimal configuration is 0.5 at PA, 0.5 at PB and 0.5 at PS . Figure 4 shows
the performance of OLTP-A when allocations were optimally chosen. We show
the results of all four OLTP-A instances. Since there is no learning stage, the
allocations are met from the beginning of the experiment. In the second experi-
ment, we fixed PA = 0.5 and PB = 0.5 and we used our controller to determine
PS . Figure 5 shows that the storage controller initially explores the solution
space. At about the 300 second mark, the controller converges to the optimal
action. After convergence, each application is on target with slight variations
due to the adaptive and exploratory nature of the controller.

0 500 1000 1500 2000 2500 3000 3500

time (s)

-150

-100

-50

0

50

df
t

A0

(a) A0

0 500 1000 1500 2000 2500 3000 3500

time (s)

-150

-100

-50

0

50

df
t

A1

(b) A1

0 500 1000 1500 2000 2500 3000 3500

time (s)

-150

-100

-50

0

50

df
t

B0

(c) B0

0 500 1000 1500 2000 2500 3000 3500

time (s)

-150

-100

-50

0

50

df
t

B1

(d) B1

Fig. 4. OLTP-A performance using Optimal Settings

Towards End-to-End Quality of Service: Controlling I/O Interference 301

0 500 1000 1500 2000 2500 3000 3500

time (s)

-200

-100

0

100

200
df

t
A0

(a) A0

0 500 1000 1500 2000 2500 3000 3500

time (s)

-200

-100

0

100

200

df
t

A1

(b) A1

0 500 1000 1500 2000 2500 3000 3500

time (s)

-200

-100

0

100

200

df
t

B0

(c) B0

0 500 1000 1500 2000 2500 3000 3500

time (s)

-200

-100

0

100

200

df
t

B1

(d) B1

Fig. 5. OLTP-A performance using Single Learner

0 500 1000 1500 2000 2500 3000 3500

time (s)

-200

0

200

400

600

df
t

A0

(a) A0

0 500 1000 1500 2000 2500 3000 3500

time (s)

-200

0

200

400

600

df
t

A1

(b) A1

0 500 1000 1500 2000 2500 3000 3500

time (s)

-200

0

200

400

600

df
t

B0

(c) B0

0 500 1000 1500 2000 2500 3000 3500

time (s)

-200

0

200

400

600

df
t

B1

(d) B1

Fig. 6. OLTP-A performance using Uncoordinated Learning

As shown in Figure 6, the uncoordinated controllers are not able to converge
within the duration of the experiment. Given the duration of the experiment of
almost one hour, each SLO violation shown in the figure is of substantial ampli-
tude, on the order of minutes in duration, and occurs roughly every 5-10 minutes.
Hence, the QoS provided is unacceptable, and performance of all applications
is poor. In contrast, as Figure 7 shows, the token passing algorithm allows the
controllers to converge to an optimal allocation. At about the 2000 second mark,
the three controllers arrive at the optimal solution and the performance of each
application reaches its target. We observe that the token passing algorithm slows
the learning process since each controller can run only while holding the token.

DBT-2/OLTP-A: We run DBT-2 with one OLTP-A workload on one physical
server and 2 OLTP-A workloads on the second server. For DBT-2, we set the
SLO at 80% percent its throughput running alone in the system (as measured
in transactions/minute, TPM) and we classify it as a high priority application.
We classify all OLTP-A workloads as best effort. With these requirements, our

302 G. Soundararajan and C. Amza

0 500 1000 1500 2000 2500 3000 3500

time (s)

-200

-100

0

100

200

300
df

t
A0

(a) A0

0 500 1000 1500 2000 2500 3000 3500

time (s)

-200

0

200

400

600

df
t

A1

(b) A1

0 500 1000 1500 2000 2500 3000 3500

time (s)

-200

0

200

400

600

df
t

B0

(c) B0

0 500 1000 1500 2000 2500 3000 3500

time (s)

-200

0

200

400

600

df
t

B1

(d) B1

Fig. 7. OLTP-A performance, using Coordinated Learning

500 1000 1500 2000 2500 3000 3500

time (s)

-1500
-1000
-500

0
500

1000
1500

df
t

(a) Optimal Settings

500 1000 1500 2000 2500 3000 3500

time (s)

-1000

-500

0

500

1000

df
t

(b) Single Learner

0 1000 2000 3000

time (s)

-1500

-500

500

1500

2500

df
t

(c) Uncoordinated Learning

500 1000 1500 2000 2500 3000 3500

time (s)

-1500
-1000
-500

0
500

1000
1500

df
t

(d) Coordinated Learning

Fig. 8. DBT-2 performance

goal is to satisfy the performance demands of DBT-2 and divide the remaining
bandwidth to the OLTP-A workloads.

We run the same four experiments as before. In the first experiment, we set
the values of PA = 0.9, PB = 0.5 and PS = 0.9 such that DBT-2 receives
PA ∗PS = 0.9∗0.9 = 0.81 = 81% of the available storage bandwidth. Figure 8(a)
shows that, after an initial warmup stage, DBT-2 quickly reaches the target
performance and stays on target for the duration of the experiment.

In the second experiment, we fixed PA = 0.9 and PB = 0.5 but we allow the
controller to determine the optimal value of PS . As shown in Figure 8(b), the
storage controller arrives at the optimal configuration after the initial learning
stage. This experiment also highlights the resilience of our controller. DBT-2 has
an initial warmup stage before it begins to run the measurement stage. In the
warmup stage, the workload uses fewer clients thus placing a smaller demand
on the system. Therefore, the controller chooses a proportion that is optimal for
the warmup stage. When DBT-2 begins the measurement stage, the controller

Towards End-to-End Quality of Service: Controlling I/O Interference 303

adapts by selecting a different proportion that is optimal for the measurement
stage of DBT-2. The results show that, even with the dynamic nature of DBT-2,
the controller is able to adapt and arrive at the optimal configuration by the
1000 second mark of the experiment.

As before, the uncoordinated learners are not able to converge to the optimal
configuration during our experiment (as shown in Figure 8(c). This results in
poor performance for DBT-2, which does not converge to its target performance.
In contrast, Figure 8(d) shows that with coordinated learning, the controllers
are able to converge to the ideal solution at about the 2000 second mark of the
experiment and are able to meet the DBT-2 performance target. The highest
probability actions at each level of control after convergence, are close to the ideal
proportion settings: 90/10 for DBT-2/OLTP-A, and 50/50 for OLTP-A/OLTP-
A for the proportions at the two OS controllers, respectively and 90/10 for the
proportions at the storage controller. Thus, while the DBT-2 performance target
is achieved, requests from the best effort OLTP-A applications are also serviced.

7 Related Work

Resource allocation is a well known technique for improving system performance.
Traditionally, resource scheduling has been achieved using either a priority-based
mechanism or a quanta-based mechanism. Under priority-based mechanisms, ap-
plications with low priority are prone to starvation. This makes such mechanisms
inappropriate when the objective is to provide per application QoS guarantees.
In contrast to priority-based mechanisms, quanta-based scheduling mechanisms
guarantee that each transaction acquires a fair portion of the shared resource
e.g., as in lottery scheduling where processes are assigned tickets proportional to
their share [21]. However, in this work, administrators need to manually spec-
ify the proportions for each application. Real-rate scheduling, is another policy
with similarities to our own, in which the applications provide the OS scheduler
a notion of progress through timestamps [9]. Using this information, the real-
rate scheduler employs a feedback loop to determine resource requirements and
specifies them to a proportion-period scheduler.

Dynamic allocation of the disk bandwidth has been studied to provide QoS at
the storage server. Just like in our prototype, SLEDS [8], Façade [12], SFQ [10],
and Argon [19] place a scheduling tier above the existing disk scheduler which
controls the I/Os issued to the underlying disk. Argon [19] uses a quanta-based
scheduler, while SLEDS [8] uses a leaky-bucket filter to throttle I/Os from clients
exceeding their given fraction. Similarly, SFQ dynamically adjusts the deadline
of I/Os to provide fair sharing of bandwidth. Furthermore, Cello [17] and YFQ [6]
build QoS-aware disk schedulers, which make low-level scheduling decisions that
strive to minimize seek times, as well maintain quality of service. All previous
work in this area has studied methods on disk bandwidth allocation at a sin-
gle level, either at the operating system level or at the storage level. We have
shown that layering of several controllers leads to oscillation, hence suboptimal
behavior. Through our context aware approach, we coordinate the controllers at

304 G. Soundararajan and C. Amza

both the operating system and at the storage server to provide QoS guarantees.
Moreover, our technique is general and can easily be extended to coordinated
resource partitioning of different resources e.g., CPU and disk, and/or resource
controllers for the same resource located within different tiers.

Resource allocation has also been studied in database systems. Current im-
plementations of DBMS rely on simple policies like Round-Robin for scheduling
transaction access to CPU [1,7]. More sophisticated adaptive algorithms provid-
ing per-class response time goals for queries of multiple classes have been studied
for dynamic buffer pool partitioning [4,5]. On the other hand, I/O scheduling as
well as resource allocation to improve application defined metrics have not been
studied in detail in database systems.

Finally, resource containers and Virtual Machine Monitors (VMM) provide
mechanisms to enforce resource allocation [2]. For example, the VMWare ESX
server employs memory allocation algorithms to facilitate the execution of multi-
ple virtual machines on a system and offers a performance guarantee to each [20].
However, I/O performance isolation at the storage level, which is the main bot-
tleneck in modern enterprise environments, is currently not guaranteed with
these mechanisms.

8 Conclusion

We study techniques for enforcing end-to-end Quality of Service for applications
in shared server farms. We introduce a unifying approach for controlling appli-
cation interference for resources at all levels of the storage stack. Our approach
uses coordinated learning based on the degree of achievement of high-level per-
application service level objectives.

We implement our approach with minimal changes to existing interfaces in
a state-of-the-art shared infrastructure using commodity software and hardware
components. We focus on dynamically partitioning I/O bandwidth at two levels:
the operating system I/O scheduler and the shared storage scheduler.

We evaluate coordinated versus uncoordinated learning as well as coordinated
learning versus the optimal manually set configuration for enforcing I/O band-
width allocations. We show experimentally, using industry standard benchmarks,
that our technique converges towards the optimal configuration and is effective
in enforcing high-level application SLOs at the storage server.

References

1. Abbott, R.K., Garcia-Molina, H.: Scheduling real-time transactions with disk res-
ident data. In: VLDB, pp. 385–396 (1989)

2. Banga, G., Druschel, P., Mogul, J.C.: Resource containers: A new facility for re-
source management in server systems. In: OSDI, pp. 45–58 (1999)

3. Barham, P.T., Dragovic, B., Fraser, K., Hand, S., Harris, T.L., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP, pp. 164–177
(2003)

Towards End-to-End Quality of Service: Controlling I/O Interference 305

4. Brown, K.P., Carey, M.J., Livny, M.: Managing memory to meet multiclass work-
load response time goals. In: VLDB, pp. 328–341 (1993)

5. Brown, K.P., Carey, M.J., Livny, M.: Goal-oriented buffer management revisited.
In: Jagadish, H.V., Mumick, I.S. (eds.) SIGMOD Conference, pp. 353–364. ACM
Press, New York (1996)

6. Bruno, J.L., Brustoloni, J.C., Gabber, E., Özden, B., Silberschatz, A.: Disk schedul-
ing with quality of service guarantees. In: ICMCS, pp. 400–405 (1999)

7. Carey, M.J., Jauhari, R., Livny, M.: Priority in DBMS Resource Scheduling. In:
VLDB, pp. 397–410 (1989)

8. Chambliss, D.D., Alvarez, G.A., Pandey, P., Jadav, D., Xu, J., Menon, R., Lee,
T.P.: Performance virtualization for large-scale storage systems. In: SRDS, pp.
109–118. IEEE Computer Society, Los Alamitos (2003)

9. Goel, A., Walpole, J., Shor, M.: Real-rate scheduling. In: IEEE Real-Time and
Embedded Technology and Applications Symposium, pp. 434–441. IEEE Computer
Society, Los Alamitos (2004)

10. Goyal, P., Vin, H.M., Cheng, H.: Start-time fair queueing: a scheduling algorithm
for integrated services packet switching networks. IEEE/ACM Trans. Netw. 5(5),
690–704 (1997)

11. Gulati, A., Merchant, A., Varman, P.J.: pclock: an arrival curve based approach
for qos guarantees in shared storage systems. In: Golubchik, L., Ammar, M.H.,
Harchol-Balter, M. (eds.) SIGMETRICS, pp. 13–24. ACM, New York (2007)

12. Lumb, C.R., Merchant, A., Alvarez, G.A.: Façade: Virtual storage devices with
performance guarantees. In: FAST (2003)

13. Narendra, K.S., Thathachar, M.A.L.: Learning Automata: An Introduction. Pren-
tice Hall, Englewood Cliffs (1989)

14. Ozmen, O., Salem, K., Uysal, M., Attar, M.H.S.: Storage workload estimation
for database management systems. In: Chan, C.Y., Ooi, B.C., Zhou, A. (eds.)
SIGMOD Conference, pp. 377–388. ACM, New York (2007)

15. Padala, P., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A.,
Salem, K.: Adaptive control of virtualized resources in utility computing environ-
ments. In: EuroSys, pp. 289–302. ACM, New York (2007)

16. Raab, F.: TPC-C - The Standard Benchmark for Online transaction Processing
(OLTP). In: Gray, J. (ed.) The Benchmark Handbook. Morgan Kaufmann, San
Francisco (1993)

17. Shenoy, P.J., Vin, H.M.: Cello: a disk scheduling framework for next generation
operating systems. SIGMETRICS Perform. Eval. Rev. 26(1), 44–55 (1998)

18. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998),
http://www.cs.ualberta.ca/∼sutton/book/ebook/the-book.html

19. Wachs, M., Abd-El-Malek, M., Thereska, E., Ganger, G.R.: Argon: performance
insulation for shared storage servers. In: FAST, Berkeley, CA, USA, pp. 61–76.
USENIX Association (2007)

20. Waldspurger, C.A.: Memory Resource Management in VMware ESX Server. In:
OSDI (2002)

21. Waldspurger, C.A., Weihl, W.E.: Lottery Scheduling: Flexible Proportional-Share
Resource Management. In: OSDI, pp. 1–11 (1994)

http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html

SODA: An Optimizing Scheduler for Large-Scale
Stream-Based Distributed Computer Systems

Joel Wolf1, Nikhil Bansal1, Kirsten Hildrum1, Sujay Parekh1, Deepak Rajan1,
Rohit Wagle1, Kun-Lung Wu1, and Lisa Fleischer2

1 IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA
2 Dartmouth College, Hanover, NH 03755, USA

{jlwolf,nikhil,hildrum,sujay,drajan,rwagle,klwu}@us.ibm.com,
lkf@dartmouth.edu

http://www.ibm.com

Abstract. This paper describes the SODA scheduler for System S , a
highly scalable distributed stream processing system. Unlike traditional
batch applications, streaming applications are open-ended. The system
cannot typically delay the processing of the data. The scheduler must
be able to shift resource allocation dynamically in response to changes
to resource availability, job arrivals and departures, incoming data rates
and so on. The design assumptions of System S , in particular, pose ad-
ditional scheduling challenges. SODA must deal with a highly complex
optimization problem, which must be solved in real-time while main-
taining scalability. SODA relies on a careful problem decomposition, and
intelligent use of both heuristic and exact algorithms. We describe the de-
sign and functionality of SODA, outline the mathematical components,
and describe experiments to show the performance of the scheduler.

Keywords: stream processing, scheduling, admission control, flow bal-
ancing.

1 Introduction

The authors of this paper are involved in an ambitious project, started in 2003,
known as System S [1,2, 3,4, 5,6]. System S is highly scalable distributed com-
puter system middleware designed to handle complex jobs involving enormous
quantities of streaming data. A prototype of this system has been built and
continues to evolve.

Early examples of distributed stream processing systems have mostly involved
relational databases augmented with streaming operations [7, 8, 9, 10]. In con-
trast, System S supports arbitrarily complex processing, both in terms of the
design of the basic units of computational software, known as processing ele-
ments (PEs), and the way in which these PEs are interconnected via streams.
Additionally, when designing System S a key assumption was that the offered
load would far exceed system capacity much of the time. Therefore it is expected
that the processing nodes in System S will need to be utilized as close to fully

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 306–325, 2008.
c© IFIP International Federation for Information Processing 2008

http://www.ibm.com

SODA: An Optimizing Scheduler 307

as possible. Scheduling in such a complex, overloaded streaming environment is
challenging problem and requires novel solution techniques.

This overview paper describes the System S scheduler, known as SODA.
(SODA stands for Scheduling Optimizer for Distributed Applications.) We mo-
tivate the design of the scheduler, emphasizing its objectives and functionality.
We describe the four major mathematical components of SODA at a relatively
high level: Space considerations prevent us from giving complete details, but we
refer the interested reader to [11]. We sketch three infrastructure components
which provide critical SODA input. Finally, we describe a number of experiments
which illustrate SODA performance.

1.1 SODA Objectives and Functionality

In contrast with more traditional jobs, stream processing jobs are typically open-
ended. A stream job could in theory continue to execute as long as input data are
available. As a result, standard scheduling metrics involving completion times
and/or makespan are no longer relevant. Figure 1(a) shows the data flow graph of
a typical System S stream processing job. The PEs of the job are the nodes in the
digraph, and streams, in turn, correspond to the directed arcs. Such digraphs are
typically acyclic, as is the case in this figure. Thus, given a topological ordering,
processing of data by the job will proceed from left to right. One can make
a reasonable analogy to a factory assembly line. Raw packets enter in primal
streams at the left. (Primal streams originate externally to systems.) Processing
proceeds through the various PEs along the way, with streams carrying the
progressively more “finished” packets. The final product or products is produced
at the right of the data flow graph, where sink PEs consume the final products
and possibly interface with the external (non-System S) world to deliver these
results. The final streams flowing into the sink PEs are called terminal streams,
and denoted with a star in Figure 1(a). This motivates our choice of objective
function: SODA schedules to maximize a utility-theoretic function based on the
“importance” measured at the terminal streams of the data flow graphs. We will
give a formal definition of importance in Section 3, but it is typically based on
a quantity or quality measure of the stream.

Each PE can only be expected to run satisfactorily if the processing power
allocated to it is within some acceptable range. Thus the overloaded nature of

(a) Original (b) Weight change

LEGEND

PE

Sink PE

Primal
Stream

Stream

Fig. 1. Job Data Flow Graph

308 J. Wolf et al.

System S motivates an important scheduler function: SODA must be prepared
to reject some jobs. Otherwise some PEs may not be given their minimum ac-
ceptable allocations. Some distributed stream processing systems employ load
shedding to deal with momentary processing node overload conditions [12], but
we know of no other actual systems which consider job admission. When the
system is frequently rather than rarely overloaded, shedding load is not enough.
Job admission is essential.

Technically, System S may provide SODA with more than one data flow graph
per job. Each such alternative data flow graph is known as a template. There
might, for example, be a higher and a lower quality template. The natural trade-
off is that the higher quality template would require more processing resources
than the lower quality one. The templates themselves could be very similar or
very different. So an additional and novel function of SODA is the decision of
which template to choose for each admitted job.

Optimizing the allocation of processing resources to the PEs in the chosen
templates of the accepted jobs is extremely difficult for two reasons. The first
reason is the highly interconnected (producer/consumer) nature of the PEs,
potentially even across jobs. These PEs are not independent. The resources al-
located to a PE which produces a stream affects the resources required for the
PE(s) that consume that stream. Flow imbalances can lead on one hand to buffer
overflows (and loss of data), and on the other to under-utilization of processing
nodes. The second reason is again the overloaded nature of System S . In an
underloaded system, flow imbalances simply matter less. A PE can use more of
its allotted resources if needed because the resources are likely to be available.
But in an overloaded system, there is no margin for error. Thus the scheduler
must be parsimonious and carefully balance the allocated resources. We know
of no other schedulers for distributed stream processing systems which perform
this flow balanced resource allocation optimization.

Finally, SODA assigns the PEs in the chosen templates of the accepted jobs
to processing nodes. Here there is a tradeoff between the load on the processing
nodes and stream traffic on the network. Assigning two PEs connected by a
stream to the same processing node eliminates the contribution of that stream
to network traffic, but may contribute instead to overloading the processing node.
So SODA attempts to achieve a balanced placement that does not overload either
network links or node capacities. In fact, it attempts to minimize a weighted
average of six separate metrics associated with processing loads on the nodes
and traffic on the network links. The assignment problem is made more complex
by the addition of many special constraints imposed by System S . These include,
among many others, hardware constraints for certain PEs and nodes (resource
matching), security and license constraints, constraints that pairs of PEs be
placed together (colocation), or that pairs of PEs be placed on distinct nodes
(exlocation). Of course, many PEs may share a node. SODA attempts to provide
each PE with a fraction of the processing power of any node to which it is
assigned, matching as closely as possible the overall PE flow balancing goals
already computed.

SODA: An Optimizing Scheduler 309

To summarize, the functionality of the SODA scheduler for System S includes:

– Job admission. SODA determines which jobs should be accepted and which
jobs should be rejected.

– Choice of templates. For those jobs which are accepted SODA chooses the
template alternative which is most appropriate for the amount of resources
available.

– PE resource allocation. SODA determines how many resources to allocate
to each PE in the chosen template of an accepted job.

– PE fractional assignment. SODA assigns each PE in the chosen template
of an accepted job to fractions of one or more processing nodes.

Additionally, SODA optimizes two key metrics as it makes its scheduling
decisions:

– Importance. SODA attempts to maximize a utility-theoretic measure of
the “goodness” of the work in the system.

– Resource utilization. SODA attempts to balance the load across all re-
sources (node processing capacity, network bandwidth) in the system by
minimizing a weighted average of metrics that model resource utilization.

1.2 SODA Design Overview

Another original design requirement for System S was the ability to react quickly
in a highly dynamic environment. Data rates may change suddenly and dramati-
cally; new jobs may be submitted; jobs may be canceled. The available resources
may also change: Processing nodes may go offline; new nodes may go online.
Even the notion of what is important may change. The scheduler must be able
to incrementally adjust the set of admitted jobs, the PE resource allocations and
the fractional assignments to accommodate these changes.

For this reason SODA is an epoch-based scheduler. At the beginning of each
epoch, SODA obtains as input a snapshot of the current system state, including
the jobs running on the system and the jobs waiting to be admitted. It then
computes for most of an epoch, finally outputting its scheduling decisions at the
end of the epoch. That is, it produces a list of accepted and rejected jobs. For the
accepted jobs it produces a choice of templates and a set of fractional allocations
of the PEs to processing nodes. Those decisions are enforced by System S during
the following epoch, and the entire process repeats indefinitely. Epoch lengths
are a SODA settable parameter, but epochs on the order of a minute are typical.
This is a reasonable compromise between the staleness of the input data and the
time required for the mathematical components of SODA to make high quality
decisions.

To make the scheduling problem tractable, each SODA epoch is divided into
four mathematical phases. For reasonably sized System S installations they are
solved sequentially. Each of the four phases corresponds to a mathematical op-
timization module. The first two phases are known collectively as the macro
model, while the second two are known as the micro model.

310 J. Wolf et al.

– The macro model chooses the jobs that will be admitted, the templates for
those jobs, and the so-called candidate nodes to which the PEs in those jobs
and templates can be assigned. These candidate nodes are a subset of the
resource matched nodes, chosen to balance system load and simultaneously
respect various constraints (security, licensing, colocation, exlocation and so
on). The point is that candidate node choices made in the macro model are
respected by the subsequent micro model, and this makes the decisions of
the micro model easier and more effective.

– The micro model chooses the fractional allocations of the PEs in the jobs and
templates that have been chosen by the macro model. Fractional allocations
of PEs are 0 for a particular node unless that node has been chosen as a
candidate node by the macro model. For this reason the micro model does
not have to consider the difficult constraints handled in the macro model:
They are satisfied automatically.

Within both the macro and micro model, the first (quantity) phase computes
the resource allocation goals, and the second (where) phase computes the actual
assignments. For this reason the four mathematical phases in SODA are known
as macroQ, macroW, microQ, and microW, respectively. These decouplings make
solving the individual optimization problems more efficient.

The remainder of this paper is organized as follows. In Section 2 we give an
overview of System S . Section 3 contains a glossary of key new terms used by
SODA. Understanding these terms is critical to following the overviews of the
four mathematical components in Section 4. In Section 5 we describe experiments
showing the performance benefits of the SODA scheduler. Section 6 contains a
brief review of related work. Conclusions and future work are given in Section 7.

2 Overview of System S

We briefly describe some key components of System S . Readers are referred to
[4,6] for more details. System S is distributed stream processing middleware, and
its components provide efficient services to enable the simultaneous execution
of multiple stream processing jobs on a large cluster of machines. A functional
prototype of System S exists on a Linux cluster consisting of about 125 nodes
interconnected by a Gigabit switched Ethernet network.

Aside from SODA, key run-time components of System S include the Job
Manager (JMN) and the Stream Processing Core (SPC). The JMN is a frame-
work upon which job management, dispatching and node control are built. The
JMN consists of a central orchestrator, a Master Node Controller (MNC), and
a Resource Manager (RMN). Providing the execution and communication sub-
strate for System S, the SPC consists of four major components: the Dataflow
Graph Manager (DGM), the Data Fabric (DF), the Node Controller (NC), and
the PE Execution Container (PEC). The DGM determines stream connections
among PEs and matches descriptions of output ports with the flow specifications
of input ports. The DF is the distributed data transport component, consisting
of a set of daemons, one on each node. The NC manages PEC agents, and each

SODA: An Optimizing Scheduler 311

PEC manages one or more PEs. The PEC provides a run-time context and acts
as a security barrier, preventing the user-written applications from corrupting
the System S middleware as well as each other.

Each job can be described by one or more data flow graphs, as shown in
Figure 1(a). The nodes in the directed graph correspond to the PEs, and the arcs
to the streams. (One stream may show up as several arcs with the same source.)
The PEs consume and produce data streams through their input and output
ports, respectively. These data flow graphs are defined in a job configuration
file, and specify how different PEs are to be connected via flow specifications.
Stream connections are created between input and output ports based on a
publish-subscribe model. System S dynamically determines the PE connections
at run-time by matching stream data types with flow specifications. This allows
PEs to discover new streams that match their flow specifications whenever such
streams become available, allowing an application designer to avoid hard-wiring
PE connections.

3 Glossary of Key New SODA Terms

SODA employs a number of terms that have very specific meanings to the sched-
uler. We list these below, with explicit definitions. The first two items, the value
function and weight, are the key components of the third item, importance. Im-
portance, in turn, is the metric that SODA tries to maximize. The fourth item,
the resource function (RF), is the atomic unit by which we iteratively compute
this notion of importance. Finally, rank, the fifth item, is an orthogonal notion
to importance: It is a priority metric assigned to each job; the lower the better.
Jobs which produce little importance but have a low rank may get done instead
of jobs which have more importance but have a higher rank.

Each derived stream produced by a potential System S job has a value function
associated with it. This is an arbitrary non-negative real-valued function. The
domain of this function might typically be the projected rate of the stream. Or
it might instead be a stream quality measure, such as projected goodput. In
theory it could be a cross product of a variety of quantity, quality and even
other “goodness” measures. The definition is intentionally general, though early
SODA instances have employed rate-based value functions. Also note that value
functions which are 0 everywhere will typically predominate: Although the notion
is also intentionally general we expect to see non-trivial value functions mostly
on terminal streams of various jobs. These are, of course, the “end products” of
System S work, and one would thus naturally want to measure goodness there.

Each derived stream produced by a potential System S job also has a weight
associated with it. This is a non-negative real number. Non-trivial weights will
also typically be quite sparse, as the weight may as well be 0 unless the stream
also has a non-zero value function. Weights are automatically assigned based on
job topology unless explicitly set by the user.

Each derived stream produced by a potential System S job has an importance
which is the product of the weight and the value function. Importance is therefore
a function of the rate or quality of the stream, which in turn depends on the

312 J. Wolf et al.

resources allocated to all the upstream PEs – those PEs which helped to produce
the stream. The summation of this importance over all derived streams is the
overall importance being produced by System S , and this is what SODA attempts
to maximize. (Again, a large majority of streams will typically not contribute
to this importance metric.) Consider Figure 1 again. In Figure 1(a), all starred
streams have positive weights. But in Figure 1(b) the second weight has been
changed to 0. It follows that the 2 PEs immediately upstream of that weight
cannot do work which contributes to overall importance. SODA will therefore
not allocate resources to them. (Other PEs, further upstream, do useful work
in support of streams with positive weights. They may get fewer resources than
they would in the previous figure, but not necessarily none.) Weights are thus
an easy “knob” to turn on and off portions of a job and also a way to adjust
relative importance.

If importance is the metric to be maximized, the natural question is how to
compute it. The first part of the answer is as follows: Each derived stream s in
System S (and by approximate terminology the PE that produces that stream)
has an RF associated with it. The RF is multidimensional. If there are n input
streams to the producer PE, then the RF has n + 1 input parameters. There is
one parameter for each of the input streams, each with the same domain as the
value function. These measure the goodness of the respective input streams. The
final input dimension is the (computational) resources which may be allocated
to the PE, in millions of instructions per second (mips). The output of this
function is again in terms of the same domain, and measures the goodness of
stream s. See, for example, Figure 2. Assuming the domain to be rate-based, the
RF for stream s4 takes 4 parameters as input. The first three are the rates of
streams s1 through s3, and the fourth is the mips allocated to PE 4. The output
is the rate of stream s4. The RF needs to be learned over time by a SODA
infrastructure component known as the Resource Function Learner (RFL). The
RFL component provides crucial input data for SODA and is the subject of
continuing research.

The second part of computing importance involves iteratively traversing the
data flow graphs from “left” to “right”, ending in a final value function calcu-
lation. Consider Figure 3. By topologically sorting [13] a directed acyclic graph,
we can apply ready list scheduling [14] to compute the importance for stream
s5. In the figure three RF s are initially ready because they are fed by primal

s4

s1

s2

s3

PE 1

PE 2

PE 3

PE 4

Fig. 2. The resource function for s4 takes the mips of PE 4 and rates of s1, s2, and s3

as input

SODA: An Optimizing Scheduler 313

s1 s4 s5

s2
s3P

rim
al

st
re

am
s

(a) PE layout

(mips1, mips2, mips3, mips4, mips5) → (rate1, rate2, rate3, mips4, mips5) → (rate3, rate4, mips5) → rate5 → R

RFs 1,2,3

RF 4

RF 5

Value function

(b) Calculating importance

Fig. 3. Calculation of Importance

streams. So we obtain the rates at streams s1 through s3. Then an additional
RF becomes ready (because its inputs have been computed), and we obtain the
rate at stream s4. Next we compute the rate at stream s5. Finally we apply the
weighted value function at s5 to obtain importance. (SODA can also handle data
flow graphs with cycles, but we omit details.)

Each job in System S has a rank, a positive integer which is used to deter-
mine whether the job should be run at all. The importance, on the other hand,
determines the amount of resources to be allocated to each job that will be run.
A lower job rank is better than a higher one. SODA admits jobs such that there
is a specific job rank for which the following holds: All jobs with lower ranks
are admitted, and all jobs with higher ranks are not admitted. Jobs with that
rank may or may not be admitted, depending on the available resources and
the importance associated with the (streams of the) jobs themselves. We call
this property rank-legality. (This statement is a slight simplification, since one
needs to account for inter-job dependencies.) Figure 4 shows job admission in
two different load conditions. Each of the alternatives is rank-legal.

ADMITTED

REJECTED

?

2

1

3

4

5

6

ADMITTED

REJECTED

?

Light Load Heavy Load

Fig. 4. Rank-Legal Job Admission

314 J. Wolf et al.

4 SODA Mathematical Components

In this section we describe, at a relatively high (qualitative) level, the four major
mathematical components of SODA. Space limitations prevent a full exposition,
but the interested reader is referred to [11] for complete details. The basic func-
tionality of the components is as follows.

– macroQ decides which jobs to admit, which templates to choose, and the
processing power goals for each PE in those jobs and templates.

– macroW computes the candidate processing nodes for the PEs given to it by
macroQ.

– microQ, revises the processing power goals for the PEs in light of the candi-
date node decisions made by macroW.

– microW computes the fractional allocations of the PEs to the processing
nodes based on the output of macroW and microQ.

Each SODA component has an internal deadline. Remember that SODA has
slightly less than one epoch to solve the macroQ, macroW, microQ and microW
problems. So the SODA scheduler itself has a scheduler.

4.1 macroQ

The macro quantity model, macroQ, finds a set of jobs to admit during the next
epoch. For each admitted job it chooses a template from among the alternatives
given to it. The jobs have ranks, and the jobs that are chosen by macroQ must
respect the rank-legality constraint. Required jobs must be admitted. Minimum
and maximum PE mips constraints must also be respected. The goal of the
macroQ model is to maximize the projected importance of the streams produced
by the admitted jobs and chosen templates. There is a total amount of processing
power in the system, namely the sum of the power of all the processing nodes.

Thus macroQ becomes a resource allocation problem (RAP) [15]. We solve
a discrete version of the RAP. So we divide the total processing power of the
system into units of equal sized resolution. Also assume a specific rank-legal set
of jobs and templates. The data flow graphs of these jobs and templates may be
interconnected, and we form a digraph by gluing them together appropriately.
macroQ is a divide and conquer algorithm, and the division is based on the
partitioning of this digraph into weak components.

So consider for the moment one such component. The corresponding discrete
RAP within the PEs of that component can then be solved. Note that the ob-
jective function can be regarded as a “black box”, calculated by iterative RF
compositions followed by a weighted value function calculation, as noted in Sec-
tion 3. This RAP can be solved by a scheme known as Non-Serial Dynamic
Programming (NSDP) [15]. As part of the solution we obtain the optimal im-
portance for each level of resolution up to the total resources in the system.

Having performed this NSDP on each component we now consider the prob-
lem of optimizing over all components. The good news here is that the problem
is a separable RAP. Separability here means that each summand is a function of

SODA: An Optimizing Scheduler 315

a single decision variable, and such resource allocation problems are inherently
easier to solve. In fact, if the component importance functions happen to be
concave the problem can be solved by fast algorithms due to Fox or Galil and
Megiddo. If the component importance functions, on the other hand, are not
concave, the problem may still be solved by dynamic programming. See [15] for
details on all of these algorithms. It turns out that concavity is not an uncommon
condition for our component importance functions. So macroQ tests each com-
ponent for concavity and employs the fastest combinations of these algorithms
depending on the results.

At the end of this step we have computed the optimal mips allocations for
each PE. But this can be regarded as just the inner loop of a three step nested
process. In the central loop we evaluate all rank-legal templates. In the outer
loop we evaluate successively finer resolution granularities.

The evaluation of all rank-legal templates is obviously exponential [13] in na-
ture, though most jobs, in fact, only have a single template. The rank-legality
constraints adds another exponential term, but these calculations can be stream-
lined, depending on the macroQ deadline.

The resolution granularity loop is simple in nature: macroQ starts with a
coarse resolution to obtain a quick solution. Then it uses the time already spent
to estimate the finest resolution it believes it can solve in the time remaining,
subject to a reasonable minimum mips value. It outputs the best importance
found, typically the finer resolution.

4.2 macroW

The macro where model, macroW, inputs from macroQ the set of resource alloca-
tion goals for PEs in chosen templates of admitted jobs, as well as the estimates
of stream traffic between pairs of those PEs. The goal of macroW is to find a
balanced allocation of these PEs to candidate nodes. Recall that these candi-
date nodes are a subset of the resource matched nodes, and that these choices
will be respected by the micro model. These candidate nodes need to respect
a large number of constraints, including several types of security and licensing
constraints, memory, colocation and exlocation, limits on the maximum PEs per
node, maximum degrees of parallelism for each PE, fixed PEs, and incremental
constraints.

To balance between the processing node and the bandwidth usage, macroW
minimizes a weighted average of six separate metrics: These consist of the av-
erage and maximum estimated utilizations of the processing nodes, the average
and maximum projected bandwidth of any network link, and the average and
maximum projected utilization of any processing node’s network interface.

macroW uses a two-pronged approach. First, the problem is modeled as a
mixed-integer optimization program [16], and solved using a state-of-the-art
commercial software CPLEX [17]. But the structure of the problem lends it-
self to a local search heuristic. So we have also developed a submodule of
macroW, known as miniW, to do local search on the space of PE candidate node

316 J. Wolf et al.

assignments. This serves as a back-up to the macroW solution, and as a post-
processing heuristic to the “exact” solution provided by CPLEX.

In fact this heuristic has several advantages:

– Fault-tolerance: In case the CPLEX-based solution fails, the heuristic pro-
vides a backup solution.

– Robustness: For large problem instances, integer programming may be slow
and not converge by the macroW deadline. Thus, an alternative that always
produces a (possibly sub-optimal) solution quickly is crucial.

– Accuracy: Traffic components of the linear programming (LP) formulation
are inherently quadratic in nature, and this results in weak LP relaxations
being used by our CPLEX-based macroW. For large problem instances some
of these non-linearities are ignored for smaller streams. A good solution to a
more accurate model may be better than an exact solution to a less accurate
one.

We describe the phases of miniW briefly.
First, a preprocessing phase shrinks the problem size. In particular, PEs with

fixed candidate node assignments are removed, and appropriate bookkeeping
is performed to reduce the remaining processing power of the relevant nodes.
Likewise, streams whose PEs are fixed are removed, and the bandwidth on the
relevant network links are reduced. Processing nodes which are down or fully
utilized are removed from the problem as well. The reduced problem is often of
much smaller size than the original, yielding significant time savings.

Next, the initialization phase provides a first feasible solution. There are sev-
eral algorithms implemented here. In one example, streams are sorted based on
traffic, and processing nodes sorted in terms of available load. Then, the PEs
in these streams are mapped to the nodes, while ensuring feasibility. Another
example is a round-robin approach: First, PEs from previous epochs are as-
signed to their previous candidate nodes. (This avoids incremental movement
constraints as much as possible.) The remaining PEs are assigned to candidate
nodes in round-robin fashion, again ensuring feasibility. A round-robin approach
attempts to ensures that no processing node is overly loaded in terms of number
of allocated PEs. All these solutions are compared with the solution obtained
via CPLEX, and the best solution is used as a starting point for the next phase.

In the local improvement phase, miniW attempts to iteratively improve the
solution by a variety of techniques. It may move a single PE from one candidate
node to another, provided that move is feasible and the objective function de-
creases. (In the neighborhood search literature this is traditionally called a 1-opt
move.) The algorithm may try swapping the candidate nodes of two PEs. (This
is a 2-opt move.) It may assign two PEs connected by a stream to the same can-
didate node. (This is also a 2-opt move.) This reduces traffic, but increases node
utilization. Finally, it may swap all the PEs on a pair of candidate nodes. Each
of these techniques can be helped by judicious orderings of the PEs, streams and
processing nodes. The idea is to calculate how important each is to the overall
solution, and sort by those metrics. For instance, PEs are ordered by decreas-
ing mips requirements, decreasing traffic requirements, or exclusivity. Processing

SODA: An Optimizing Scheduler 317

nodes are ordered by decreasing load. Streams are ordered by decreasing traffic
requirements, or by decreasing allocation goals of the corresponding PEs.

Finally, there may be a perturbation phase. miniW is designed to run until it
reaches its deadline or cannot improve the solution. So if the local improvement
phase reaches a locally optimal solution, miniW will perturb that solution, insist-
ing on feasibility but ignoring the fact that the solution does not improve. The
same techniques as the local improvement phase are employed, with the hope
of escaping the local minimum. The process then continues until the macroW
deadline is reached.

4.3 microQ

The role of microQ, the micro quantity model, is to adjust the PE processing
allocation goals from macroQ based on the PE candidate nodes determined in
macroW. Recall that macroQ knows only the total resources available in System
S , not information on the individual processing nodes. Only macroW considers
the processing node information. So microQ effectively corrects problems that
may arise from the decoupling of the macro model into two sequential problems.

The PEs are grouped into (weak) components, as per macroQ. The desired
resource allocation for a particular PE depends on the overall allocation of mips
to the component that contains it. This connection is described via pacing con-
straints that specify, for each level of allocation of mips to the component, the
proportion of these mips that should be allocated to each PE. For each com-
ponent, we use macroQ to determine a piecewise-linear, concave function which
approximately maps the resources allocated to the component to importance.
The goal is to allocate resources to components to maximize total importance,
satisfying the component-PE pacing constraints.

Since this problem is nonlinear, we do not solve it directly. Instead, we take
an iterative approach, as follows: We estimate the resource allocation for each
component. This determines a set of linear pacing constraints to enforce. Now,
the problem can be solved as an LP that is actually a network flow problem [16]
with these additional pacing constraints. If any component in the solution falls
into a linear segments other than the one assumed, we impose the “revised”
pacing constraints, and re-solve. The final solution is obtained when the process
converges, or when the time allotted to microQ runs out.

4.4 microW

The goal of microW, the micro where model, is to make actual fractional assign-
ments of PEs to processing nodes. The idea is to match as closely as possible
the overall processing power goals computed for each PE by the microQ model,
while meeting various constraints on incremental movement and node changes,
fixed PEs, legal fractional allocations and so on. One constraint, for example,
limits the cumulative amount change in fractional assignment values from the
previous epoch. Another does so on a per PE basis, and a third on the number
of processing nodes that can be modified during the current epoch.

318 J. Wolf et al.

The microW problem is solved via suitably modified techniques borrowed
from the network flow literature [16]. We build and maintain a directed graph
with three types of nodes:

– On the left side the nodes are the under-allocated PEs, ordered from most
under-allocated to least under-allocated.

– In the middle the nodes are the processing nodes themselves.
– On the right side the nodes are the over-allocated PEs, ordered from least

over-allocated to most over-allocated.

Directed arcs in this digraph exist if it is possible to push flow for a particular
PE from one node of the digraph to another. The microW algorithm can be
described as a doubly nested loop. The outer loop is performed on the under-
allocated PEs, from most under-allocated to least under-allocated. The inner
loop is performed on the over-allocated PEs, from most over-allocated to least
over-allocated. A shortest path is chosen between the under-allocated PE and the
over-allocated PE, and the maximal feasible flow is pushed along this path. After
each successful flow push we perform the relevant bookkeeping and maintenance,
adjusting the constraints, recomputing the under- and over-allocated PEs and
incrementally reconstructing the directed graph. If there are no under- or over-
allocated PEs microW ends with a perfect solution. The microW scheme also
ends if flow push failures occur through an iteration of the entire doubly nested
loops or if microW reaches its deadline.

5 Experimental Evaluation

5.1 Methodology

We evaluate SODA in the context of two qualitatively different System S ap-
plications: LSD [1], and DAC [6]. The LSD application is a large application
intended to process high incoming data rates. It is composed of 104 jobs and 737
PEs. The LSD PEs are generally lightweight, but because the final job graph is
large and highly connected, producing a flow-balanced schedule is difficult. The
DAC application is smaller but provides scheduling challenges because its PEs
have a wide range of processing requirements. It consists of six jobs and 51 PEs.
For the experiments, the jobs corresponding to each application are submitted
to the System S cluster, where they are run for ten minutes to collect relevant
data. For both these applications, SODA takes less than a minute to compute a
solution.

We compare the SODA PE placement decisions to three other approaches:

– Random (RAND): PEs are assigned to nodes uniformly at random. In
expectation, each processing node hosts the same number of PEs, but in
fact, the number of PEs hosted by a node may vary quite a bit.

– Round-robin (RR): PEs are processed sequentially and each PE is as-
signed to a node with the minimum PEs assigned so far. This is a very naive
load balancing of PEs across the nodes.

SODA: An Optimizing Scheduler 319

– Expert (EXP): The application developers for LSD and DAC decide on
the number of nodes and an allocation of PEs to nodes based on both their
knowledge of the application as well as several trial-and-error runs where
all PEs are resource matched to specific nodes. These placements are often
tested in underloaded test environments, and cannot be expected to scale
to overloaded environments. But they offer a reasonable measure of perfor-
mance, one that must at least be matched, even in overloaded settings, by
the scheduler.

These three schemes only perform PE placement–they do not address admission
control, template choice or PE fractional allocations.

We evaluate each scheduler using the following metrics:

– Ingest rate: This is a measure of how much data (in Mbps) could be processed
by the system. It is intended as a measure of the system’s “effective capacity”,
and should be correlated to importance.

– Importance: The importance of a job is measured at the sink PEs as a
quantity-based metric that depends on the data rates at the sink PEs. In our
experiments, the streams into the sinks have unit weights and identity value
functions, while all other streams have zero weights and value functions. As
a result, the importance of a job is measured by the data rate flowing into
its sink PEs.

– Stream affinity: One way to measure the quality of the placement is in terms
of the traffic load on the system. We compute the amount of traffic that is
sent between PEs on the same node divided by the total traffic. The higher
this quantity, the better, since PEs which share a stream should be put on
the same node (or nearby) to minimize network utilization.

These metrics are computed from the raw system metrics such as CPU usage
per PE and traffic consumed and produced by each PE.

In the experiments below, we test the scheduler performance under different
resource conditions ranging from under-provisioned to over-provisioned, which
is achieved by varying the number of nodes made available to the scheduler.
This allows us to see how the performance will change as the raw system ca-
pacity changes, and also which scheduler is better at achieving higher system
utilizations and better effective system capacity. We perform three runs for each
combination of scheduler and node pool size, and analyze the average across
these runs.

5.2 Results

The carefully constructed EXP placements use 82 nodes for LSD and 30 nodes
for DAC. SODA uses far fewer nodes yet achieves a higher quality placement
than EXP. In particular, SODA performs favorably with as few as 30 nodes
for LSD and 9 nodes for DAC, 36% and 30% of the number of nodes used in
the expert placement, respectively. To compare with these, we also present the
results for RAND and RR for two scenarios: 30 and 70 nodes for LSD, and 9 and

320 J. Wolf et al.

0

200

400

600

800

1000

1200

1400

SODA RR RAND RR RAND EXP

30 70 82

Placement Approach / Nodes

I
n

g
e
s
t

R
a
te

 (
M

b
p

s
)

(a) LSD

0

5

10

15

20

25

30

35

SODA RR RAND RR RAND EXP

9 29 30

Placement Approach / Nodes

I
n

g
e
s
t

R
a
te

 (
M

b
p

s
)

(b) DAC

Fig. 5. Ingest rate: LSD and DAC

29 nodes for DAC. These allow us to compare their performance with SODA’s
placement at one end of the spectrum (less nodes), and with EXP at the other
end (more nodes).

Figure 5 compares the ingestion rates of SODA, EXP, RR, and RAND. From
the figure, we see that SODA is able to ingest as much traffic as EXP with
far fewer nodes (30) for LSD. For DAC, SODA outperforms EXP by over 50%
with just 9 nodes. This is largely because EXP seeks to ensure that all PEs
receive sufficient MIPS. As a result, the PEs are spread across many more nodes
than they need to be, while SODA recognizes that nine nodes is enough and
so saves on traffic. For a given node pool size, the SODA-computed placement
also consistently ingests more traffic than RAND or RR. The performance of
both RR and RAND is, not surprisingly, poorer than EXP. For instance, with
70 nodes for LSD, RR is able to ingest 25% less traffic than EXP, and with 29
nodes for DAC, RR is able to ingest 15% less traffic than EXP.

One of the metrics that SODA tries to maximize is the importance. Figure 6
presents the importance of DAC, as optimized by SODA in macroQ; recall from
Section 3 that in our case this corresponds to the net traffic flowing into the sink
PEs. Here, we see that SODA matches the performance of EXP in spite of using
a third of the nodes. On the other hand, RR and RAND perform more than 10%
worse than EXP, even when using 29 nodes. In particular, RR achieves only 84%
of the traffic rates at the sinks attained by EXP and SODA.

Another goal of SODA is to ensure the network and nodes are not overloaded.
The effect of the schedulers in terms of two system metrics is shown in Figure 7,
which plots the stream affinity and maximum load for LSD and DAC. Stream
affinity is the fraction of traffic that is sent on streams that have both source and
destination PEs on the same node; higher is better. The load is indicated by the
maximum CPU utilization across the nodes in the cluster; lower is better. From
the figure, we see that SODA increases the intra-node traffic fraction without
significantly increasing the maximum node load.

Considering traffic, with 30 nodes, the SODA placement for LSD sends less
than 30% of the traffic over the network (over 70% on the same node); compared
to 66% for EXP with 82 nodes. In addition to helping reduce network congestion,

SODA: An Optimizing Scheduler 321

0

0.1

0.2

0.3

0.4

0.5

0.6

SODA RR RAND RR RAND EXP

9 29 30

Placement Approach / Nodes

I
m

p
o

r
ta

n
c
e
 (

M
b

p
s
)

Fig. 6. Importance: DAC

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

SODA RR RAND RR RAND EXP

30 70 82

L
o

a
d

 &
 T

ra
ff

ic
 F

ra
ct

io
n

Placement Approach / Nodes

Intra-node
Traffic Fraction
Max Node
Utilization

(a) LSD

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

SODA RR RAND RR RAND EXP

9 29 30

L
o

a
d

 &
 T

ra
ff

ic
 F

ra
ct

io
n

Placement Approach / Nodes

Intra-node
Traffic Fraction
Max Node
Utilization

(b) DAC

Fig. 7. Placement tradeoffs: LSD and DAC

this also contributes to the stronger throughput results obtained by SODA, since
the overhead of sending data to a PE on the same node is lower. Naturally, RAND
and RR fare poorly on this metric since they do not use stream information in
their placement algorithm, and in fact are susceptible to exceeding the network
capacity. In particular, for the case of LSD with 30 nodes, SODA is able to
achieve much higher stream affinity (70%) than RAND and RR (less than 10%)
with the comparable maximum loads (around 50%). For DAC, with 9 nodes,
SODA places 20% more of the traffic on the same node, even though the max-
imum load is comparable to EXP, resulting in a significantly larger ingest rate.

Now considering load, we see that with DAC, RR and RAND do rather poorly
with 9 nodes, by causing some nodes to be highly loaded. This is because the
DAC PEs have dramatically different CPU requirements. In contrast, SODA
balances the PEs across the nodes, thereby resulting in a much lower load, only
slightly higher than the EXP with larger number of nodes. For LSD, the PEs
are much more uniform, so RR and RAND perform satisfactorily in this metric.
SODA results in a slightly higher load, but due to the higher intra-node traffic
and more balanced placement, it is nevertheless able to achieve a higher ingest
rate. Further, this maximum utilization of 52% is not in the problematic range.

322 J. Wolf et al.

In all our experiments, we observe that SODA requires significantly fewer
nodes, and utilizes much less network capacity to perform as well, if not better
than, a carefully constructed expert placement. Furthermore, we see that naive
approaches like RAND and RR perform worse than SODA in general. This
illustrates the strength of the scheduler, and its ability to schedule effectively in
overloaded systems.

6 Related Work

Stream processing systems have been an active area of research in recent years.
Example systems include Borealis [7], TelegraphCQ [8], STREAM [9], Aurora
and Medusa [10]. These systems process voluminous quantities of incoming
stream data, typically performing relational operations such as joins and selec-
tions on them. In contrast, System S is much more general, allowing arbitrarily
complex operators, including relational ones.

Most of these stream processing systems are designed to be run on more than
one node, and thus there has also been work on scheduling and load-balancing
the operators. While these scheduling approaches have some of the flavor of the
work we present here, none targets our problem exactly. We describe some of
these related approaches here.

The FIT algorithm [12] is a load-shedding algorithm which intelligently drops
load. Determining where best to drop load can be quite a complex problem, since
dropping at a particular operator has an effect on the downstream operators,
sometimes an unintended one. In some cases, shedding load on a particular
operator increases the resources for other operators on that node, and so could
increase load at nodes downstream. FIT cleverly addresses this problem in a
distributed way, but without a global notion of importance. The SODA scheduler
provides this same functionality as part of its resource allocation and scheduling,
and does so in a way that takes into account the processing graph for a job and
the total system objectives.

Xing et al. [18, 19] addresses the problem of variance in stream rates. Both
papers describe a way to distribute the load so that changes in input rate have
a smaller chance of overloading the system. However, they do not address the
case when the system is overloaded, and make no decisions about job admission.

Pietzuch et al. [20] provides a scheduling algorithm for a wide-area network
that places operators so as to minimize network latency. In the local area net-
work that we address, bandwidth, not network latency, is the main concern. In
addition, their work does not address the problem of job admission. Lakshmanan
et al. [21] also addresses scheduling to minimize latency.

The STREAM project [22] has goals somewhat similar to those presented
in this paper. Their system handles queries in an SQL-like language. When
resources are tight, they revise queries by dropping packets and/or changing
internal parameters.

Xia et al. [23] address the admission control problem in a hypothetical stream
processing system. Their model assumes a linear processing graph. In other

SODA: An Optimizing Scheduler 323

words, the input stream is processed, successively, by a series of operators. Thus,
no operator takes input from more than one source stream.

7 Conclusions and Future Work

In this paper we have introduced SODA, a scheduler for very large-scale dis-
tributed stream processing applications. This scheduler is implemented and run-
ning as a component in the System S project. We have shown that SODA is
practical, novel, and effective, scheduling as well as or better than expert place-
ment but using well under half the nodes. While schedulers of other stream
processing systems have some features of SODA, SODA is unique in that in
addition to allocating processing to nodes, it also controls job admission and
weights the resources given to the admitted jobs. This overview paper provides
an introduction to the problem, high level descriptions of the solution, and an
experimental analysis which demonstrates SODA’s performance.

One of the more novel features of SODA scheduler is that it can schedule
itself as a separate PE. The value function for SODA would measure the effect
of additional processing resources on solution quality. Giving more resources to
SODA would make the solution quality better at the possible expense of giving
other work in the system more resources. We plan to create a SODA PE which
can be scheduled in the near future.

Note that the notion of SODA scheduling itself is very different from the
notion in Section 4 that SODA has a scheduler. We plan to improve this SODA
scheduler as well.

Though System S is oriented towards streaming applications, traditional work
will invariably be performed as well. So we have created (but not yet integrated)
a scheduler for the more traditional sorts of jobs that invariably are needed in
any system.

For very large problem instances we expect to design a variant of SODA in
which epochs are arranged in a two level temporal hierarchy. In this case, the
macro model will run in a macro epoch, and the micro model will run in a micro
epoch. There will be a number of micro epochs in each macro epoch, allowing the
computationally expensive macro models more time for their optimization. (We
have not yet seen problem instances in which this approach would be necessary.)
For truly large problems we have a design, not yet fully coded, to partition
the work in SODA, allowing for vast scaling, though potentially at some loss of
accuracy.

System S was built for a traditional packet-based network. But there is actu-
ally great affinity between System S and circuit switching architectures: Com-
munication between PEs is long-lived, on the order of multiple minutes or more.
Optical Circuit Switches (OCS) provide all of the benefits of circuit switching
and make the bandwidth of the system more flexible. We have developed (and
are continuing to refine) an extension to SODA that allows it to make link assign-
ments (defining the network topology) at the same time it performs its traditional
role of making PE candidate assignments. A lab prototype has been built.

324 J. Wolf et al.

References

1. Amini, L., Andrade, H., Bhagwan, R., Eskesen, F., King, R., Selo, P., Park, Y.,
Venkatramani, C.: SPC: A distributed, scalable platform for data mining. In: In-
ternational Workshop on Data Mining Standards, Services and Platforms (2006)

2. Douglis, F., Palmer, J., Richards, E., Tao, D., Tetzlaff, W., Tracey, J., Yin, J.:
Position: Short object lifetimes require a delete-optimized storage system. In: ACM
SIGOPS European Workshop (2004)

3. Hildrum, K., Douglis, F., Wolf, J., Yu, P.S., Fleischer, L., Katta, A.: Storage op-
timization for large-scale stream processing systems. In: ACM Transactions on
Storage (2008)

4. Jain, N., Amini, L., Andrade, H., King, R., Park, Y., Selo, P., Venkatramani, C.:
Design, implementation and evaluation of the linear road benchmark on the stream
processing core. In: ACM SIGMOD International Conference on Management of
Data (2006)

5. Jacques-Silva, G., Challenger, J., Degenaro, L., Giles, J., Wagle, R.: Towards au-
tonomic fault recovery in System-S. In: International Conference on Autonomic
Computing (2007)

6. Wu, K.-L., Yu, P.S., Gedik, B., Hildrum, K.W., Aggarwal, C.C., Bouillet, E., Fan,
W., George, D.A., Gu, X., Luo, G., Wang, H.: Challenges and experience in pro-
totyping a multi-modal stream analytic and monitoring application on System S.
In: International Conference on Very Large Data Bases (2007)

7. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang,
J.H., Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y.,
Zdonik, S.: The design of the Borealis stream processing engine. In: Conference on
Innovative Data Systems Research (2005)

8. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,
Hong, W., Krishnamurthy, S., Madden, S.R., Raman, V., Reiss, F., Shah, M.A.:
TelegraphCQ: Continuous dataflow processing for an uncertain world. In: Confer-
ence on Innovative Data Systems Research (2003)

9. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa,
I., Srivastava, U., Thomas, D., Varma, R., Widom, J.: STREAM: The Stanford
stream data manager. IEEE Data Engineering Bulletin 26 (2003)

10. Zdonik, S., Stonebraker, M., Cherniack, M., Cetintemel, U., Balazinska, M., Bal-
akrishnan, H.: The Aurora and Medusa projects. IEEE Data Engineering Bul-
letin 26(1) (2003)

11. Wolf, J., Bansal, N., Hildrum, K., Parekh, S., Rajan, D., Wagle, R., Wu, K.L.,
Fleischer, L.: Scheduling optimizer for distributed applications: A reference paper.
Technical Report 24453, IBM Research Report (2007)

12. Tatbul, N., Çetintemel, U., Zdonik, S.: Staying fit: Efficient load shedding tech-
niques for distributed stream processing. In: International Conference on Very
Large Data Bases, pp. 159–170 (2007)

13. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. McGraw-Hill,
New York (1985)

14. Blazewicz, J., Ecker, K., Schmidt, G., Weglarz, J.: Scheduling in Computer and
Manufacturing Systems. Springer, Heidelberg (1993)

15. Ibaraki, T., Katoh, N.: Resource Allocation Problems. MIT Press, Cambridge
(1988)

16. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John
Wiley and Sons, New York (1988)

SODA: An Optimizing Scheduler 325

17. ILOG: CPLEX, http://www.ilog.com/products/cplex
18. Xing, Y., Hwang, J.H., Çetintemel, U., Zdonik, S.: Providing resiliency to load

variations in distributed stream processing. In: International Conference on Very
Large Data Bases, VLDB Endowment, pp. 775–786 (2006)

19. Xing, Y., Zdonik, S., Hwang, J.H.: Dynamic load distribution in the Borealis stream
processor. In: IEEE International Conference on Data Engineering, Washington,
DC, USA, pp. 791–802. IEEE Computer Society, Los Alamitos (2005)

20. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: IEEE Inter-
national Conference on Data Engineering, Washington, DC, USA. IEEE Computer
Society, Los Alamitos (2006)

21. Lakshmanan, G.T., Strom, R.E.: Biologically-Inspired Distributed Middleware
Management for Stream Processing Systems. In: Issarny, V., Schantz, R. (eds.)
Middleware 2008. LNCS, vol. 5346, pp. 223–242. Springer, Heidelberg (2008)

22. Motwani, R., Widom, J., Arasu, A., Babcokc, B., Babu, S., Datar, M., Manku,
G., Olston, C., Rosenstein, J., Varma, R.: Query processing, approximation, and
resource management in a data stream management system. In: Conference on
Innovative Data Systems Research (2003)

23. Xia, C.H., Towsley, D., Zhang, C.: Distributed resource management and admission
control of stream processing systems with max utility. In: ICDCS 2007: Proceedings
of the 27th International Conference on Distributed Computing Systems (2007)

http://www.ilog.com/products/cplex

Toward Massive Query Optimization in
Large-Scale Distributed Stream Systems

Yongluan Zhou1, Karl Aberer2, and Kian-Lee Tan3,

1 University of Southern Denmark
2 EPFL, Switzerland

3 National University of Singapore

Abstract. Existing distributed stream systems adopt a tightly-coupled
communication paradigm and focus on fine-tuning of operator place-
ments to achieve communication efficiency. This kind of approach is hard
to scale (both to the nodes in the network and the users). In this paper,
we propose a fundamentally different approach and present the design
of a middleware for optimizing massive queries. Our approach takes the
advantages of existing Publish/Subscribe systems (Pub/Sub) to achieve
loosely-coupled communication and to “intelligently” exploit the sharing
of communication among different queries. To fully exploit the capability
of a Pub/Sub, we present a new query distribution algorithm, which can
adaptively and rapidly (re)distribute the streaming queries at runtime
to achieve both load balancing and low communication cost. Both the
simulation studies and the prototype experiments executed on Planet-
Lab show the effectiveness of our techniques.

Keywords: Distributed Stream Systems, Publish/Subscribe Systems,
Query Optimization, Load Balance, Overlay Network.

1 Introduction

There is a recently emerging demand for large-scale and widely distributed
stream processing systems. Below is an example scenario, which is also the ap-
plication context of this paper.

With the rapid development of sensor network technologies, more and more
sensor networks are being deployed by many different organizations, such as re-
search institutes and governments etc., to monitor and study our surrounding en-
vironment. The SensorScope project at EPFL (http://sensorscope.epfl.ch)
is one such example. One can imagine that a stream processing system would
be installed locally at each deployment to perform real-time data collection and
analysis. It is desirable to pose queries involving multiple deployments across
the border of countries and even continents. This demands a large-scale and
loosely-coupled architecture to exploit the autonomous and distributed stream
systems to provide a global stream processing service.
� Kian-Lee Tan is partially supported by research grant R-252-000-237-112 from the

National University of Singapore.

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 326–345, 2008.
c© IFIP International Federation for Information Processing 2008

http://sensorscope.epfl.ch

Toward Massive Query Optimization 327

While such a system is desirable, two problems should be carefully considered.
First, the communication cost could be very high as it may involve inter-country
and even inter-continental communication. Moreover, streams are typically of
a very high rate and have to be transferred continuously. In comparing to the
abundant processing power provided by the large number of servers, network
bandwidth is the bottleneck in such a context. Hence, it is critical to perform
query optimization to achieve high communication efficiency.

Second, for such an autonomous system, it is desirable to adopt a loosely-
coupled communication architecture, where data sources can just push their data
to the network without keeping track of the destinations, and a data consumer
can retrieve data of its interest without knowing the location of the sources.

1.1 Existing Distributed Stream Systems

In existing distributed stream systems [1,3,13,17,18], the communication between
data sources and consumers adopts the tightly-coupled client-server paradigm. A
node directly connects to the sources to get the streams it wants. As mentioned,
this is not desirable in our context.

Furthermore, operator placement algorithms [1,3,13,17] are often employed to
optimize communication efficiency. Such schemes typically adopt a two-phase op-
timization algorithm, which resembles the earlier work on query optimization for
distributed database systems, such as [22]. In the first phase, all the user queries
are collected to a central place and then a global operator graph is generated. In
the second phase, optimization algorithms are run to distribute the operators to
minimize the communication cost [3,17]. Let us look at an illustrating example.
Figure 1(a) is an example network composed by seven nodes. Nodes n7 and n6
issue two queries Q1 and Q2 (written in CQL [23]) respectively. The first phase
optimization generates a global operator graph for these two queries as shown
in Figure 1(b). Then the second phase may place the operators as depicted in
Figure 1(c).

S, T

n1
n2

n7

n6 n5 n4

n3

Q1

Q2

R

(a) Network

T

σ d<10σa>10σ
a>20σ

RS

c>10

(b) Operator graph

R,S

σ
c>10σ

n1
n2

n7

n6 n5 n4

n3

Q1

Q2

R

S, T

a>20σ
a>10σR,T

d<10

(c) Operator placement

Q1: SELECT *

FROM R [Now], S [Now]

WHERE R.b = S.b AND

R.a>10 AND S.c>10

Q2: SELECT *

FROM R [Now], T [Now]

WHERE R.b = T.b AND

R.a>20 AND T.d<10

Fig. 1. Operator placement

328 Y. Zhou, K. Aberer, and K.-L. Tan

While this approach is effective, it assumes that an optimized global oper-
ator graph is available. So far, it lacks scalable algorithm to generate a good
global operator graph. It is even harder to maintain the global operator graph if
new queries were admitted and old queries were terminated frequently. In addi-
tion, the operator placement algorithm assumes the knowledge of the underlying
overlay network. This tightens the coupling between the network layer and the
application layer which may not be desirable for a large-scale system.

1.2 Pub/Sub Systems

Looking from a different angle, we observe that the above optimization can be
divided into three sub-tasks. (1) Avoid duplicate data transfer. In the above
example, both Q1 and Q2 are interested in stream R. It is desirable to send the
data of R only once over each link along the path to the destinations. This can be
done by sharing the data access of stream R of the two queries. (2) Perform early
data filtering. In the example, this is done by allocating the selection operators
close to the source nodes of the streams. (3) Place the query operators in proper
places. The placement should consider the data rate of the operators’ input and
output as well as the common data interest among the different operators. For
example, in Figure 1(c), the two join operators are allocated to the same place.
Hence they can share the bandwidth consumption of transferring data from
stream R. Otherwise, if, for example, we place one of the join operators to node
n5 instead, then extra bandwidth will be consumed. Furthermore, if their output
rates are much higher than their input rates, then it might be more beneficial
to place them at their respective destinations (i.e. n6 and n7).

It is interesting to note that the first two sub-tasks have been solved nicely
in the literatures of Distributed Publish/Subscribe systems [2,7,16] or Content-
Based Networking (CBN) [10]. In these systems, messages are routed based on
their contents as well as the interest profiles of nodes rather than the IP addresses
of the destinations. Each message is represented as a set of attribute/value pairs.
The interest profile (or subscription) of a node is specified as constraints on
the attribute values. Only those messages whose attribute values satisfy the
constraints will be sent to that node.

We illustrate more details by a scenario in an example Pub/Sub: Siena [7].
First, the data source n3 in Figure 2(a) advertises the data that it provides
through a multicast tree. The advertisement has similar data structure as a
subscription and specifies the constraints that the messages produced by the
source will satisfy. Then every node knows what kind of messages will be sent
from its neighbors. Now, the data receivers (n6 and n7 in Figure 2(b)) can
multicast their subscriptions under the guidance of the advertisements of the
data sources. At n1 the two subscriptions are merged before being propagated
to n2. n2 only propagates the subscription to n3 based on the advertisement
information. After the subscription propagation, a routing table is built at each
node as shown in Figure 2(c). When a message is produced, the source just send
it to the neighbor who is interested in the message. Figure 2(d)shows how two
example messages are routed in the network.

Toward Massive Query Optimization 329

S, T

n1
n2

n7

n6 n5 n4

n3

R

(a) Advertising

S, T

n1
n2

n7

n6 n5 n4

n3

a>10σ

a>
20

σ

a>10σ
a>10

σ

R

(b) Subscribing

S, T

n1
n2

n7

n6 n5 n4

n3n1a>10σ

a>10σ n2

n7

n6

a>10σ
σa>20

R

(c) Message routing tables

m1.a=15

n1
n2

n7

n6 n5 n4

n3

R

S, T

m1 m2
m1 m

2

m2

m1 m2

m2.a=25

(d) Message routing

Fig. 2. Distributed Pub/Sub Systems

It can be seen that a Pub/Sub inherits the advantage of the multicast commu-
nication paradigm where a message is sent over each link at most once. Further-
more, the messages are filtered as soon as possible on the way to the interested
parties. More importantly, this is done without global planning. Finally, data
sources and destinations in a Pub/Sub are loosely-coupled as they need not
keep track of each other. As mentioned, this is desirable in our context.

1.3 COSMOS

Based on the above observation, we intend to build our distributed stream pro-
cessing system by using a Pub/Sub as the communication substrate to achieve
loosely-coupled communication. We design a middleware, called COSMOS (CO-
operated and Self-tuning Management Of Streaming data), which perform query
optimization by leveraging the underlying Pub/Sub to accomplish the searching
of common data interest of the queries and the global tuning of the placement
of filters along the overlay paths (from the sources to the destinations).

Now what is left behind is the third sub-task of the optimization: placing
the query operators in the proper locations. To do so, a new query distribution
scheme is proposed.

In this paper, we distribute the query loads in the unit of queries (instead
of operators) to reduce the complexity of the problem and make the adaptation
algorithms run faster at runtime. Furthermore, allocating operators of a query to
multiple nodes would require synchronizations among the nodes, including the
synchronizations during query processing as well as those during query insertions
and removals. This not only impairs the scalability of the system but also hard
to be implemented in a loosely-coupled and autonomous system.

Our query distribution scheme distinguishes itself in several aspects: (1) It is
more scalable. It does not require global planning to generate a global opera-
tor graph. Moreover, new hierarchical techniques are also employed to enhance
the algorithm’s scalability. (2) It takes the communication characteristics of a

330 Y. Zhou, K. Aberer, and K.-L. Tan

S, T

n1
n2

n7

n6 n5 n4

n3

Q1

Q2

P2
2

P1
2

P3
R

(a) Profile generation

p1
1: σR.a>10, σS.c>10

p2
1: Q1

p1
2: σR.a>20, σT.d<10

p2
2: Q2

p3: σR.a>10, σS.c>10,
σT.d<10

S, T

n1
n2

n7

n6 n5 n4

n3

Q1 Q2

n7

n6

Q1

Q2

n1σR.a>10
n1

n1

σS.c>10

T.d<10σ

σS.c>10 n2

σT.d<10n2

n2σR.a>10

R

(b) Routing Tables

Fig. 3. COSMOS

Pub/Sub into consideration, which has not been explored before. (3) It tar-
gets both load-balancing and minimizing communication cost, while existing
approaches [3,15,17,20,21,24] only focus on either one of them. (4) It stresses the
problem of fast arrival and removal of queries, which is also often overlooked in
most existing work.

Figure 3(a) shows an example distribution with both Q1 and Q2 distributed
to n1. Then, n1 will generate two subscriptions for each query. For example,
for Q1, one subscription p1

1 is generated to retrieve the source data to feed
Q1. Furthermore, another subscription p2

1 is generated and sent to the query
originator n7. p2

1 is inserted into the Pub/Sub by n7 to receive the result stream
of Q1. Similarly p1

2 and p2
2 are generated for Q2. At n1, the two subscriptions p1

1
and p1

2 will be merged into a subscription p3, which will then be inserted into
the Pub/Sub. Figure 3(b) shows the routing tables at each node after all the
subscriptions are inserted. Finally, queries are evaluated at n1 when the data
are received from the underlying Pub/Sub. The results will then be transfered
by the Pub/Sub to n6 and n7 respectively.

In short, we propose a fundamentally different query optimization approach
to achieve communication efficiency, which does not require the maintenance
of a global operator graph. It leverages Pub/Sub to eliminate duplicate data
transfer, to perform early data filtering and to achieve loose-coupling of data
sources from data consumers.

1.4 Paper Layout

The rest of the paper is organized as follows. We first present an overview of
the system in Section 2. The load distribution scheme is presented in Sections 3.
Section 4 presents the results of a performance study of the load distribution
scheme. Section 5 concludes the paper.

2 System Overview

The whole system consists of a number of, say N , distributed processors inter-
connected with a widely distributed overlay network. In addition, a number of
data sources continuously publish their data to the network through the proces-
sors. A user first connects to a processor, which works as the proxy for him. In
this case, the user and the proxy are said to be local to each other. User queries,

Toward Massive Query Optimization 331

n1

n2

n3 n4

3s s4

3s s4

3Q 4Q

Input Streams

(a) Non-Share

n1

n2

n3 n4

5s

3s s4

Q3 Q4

Input Streams

(b) Share

Fig. 4. Result stream delivery

Table 1. Example queries

Q3: SELECT S2.*
FROM Station1 [Range 30 Minutes] S1,

Station2 [Now] S2
WHERE S1.snowHeight > S2.snowHeight

S1.snowHeight ≥ 10
Q4: SELECT S1.snowHeight, S1.timetamp,

S2.snowHeight, S2.timestamp
FROM Station1 [Range 1 Hour] S1,

Station2 [Now] S2
WHERE S1.snowHeight > S2.snowHeight

Q5: SELECT S2.*, S1.snowHeight, S1.timestamp
FROM Station1 [Range 1 Hour] S1,

Station2 [Now] S2
WHERE S1.snowHeight > S2.snowHeight

specified in an SQL-like language similar to CQL [23], are submitted through
their proxies. The proxy is also responsible for retrieving the result stream and
sending it back to the user. For simplicity, only continuous queries are consid-
ered and no stored tables are involved. The query is first passed to the COSMOS
middleware, which places the query at an appropriate processor to optimize the
system performance. This paper focuses on solving this optimization problem.

The delivery of data streams are handled by the Pub/Sub middleware, which
is assumed to support subscriptions similar to those in Siena [7]. Below, we use
an example to illustrate how COSMOS leverage the Pub/Sub component.

2.1 An Illustrating Example

Table 1 lists a few queries specified using CQL [23]. These queries are extracted
and simplified from the typical snow drift monitoring tasks performed by the
environmental scientists.

Let us first look at Q3. Assume it is distributed to a processor, say n1, by
COSMOS. Then the COSMOS component at n1 generates two subscriptions.
The first one, p3

1, will be used by n1 to fetch the source data requested by Q3
via the Pub/Sub component. The content of p3

1 contains the following:

– A list of streams that are requested by Q3: S = {S1, S2}. This is used by
the Pub/Sub to select the data based on their source stream.

– A list of requested data attributes: P = {S2.∗}. The Pub/Sub can perform
projection of the unnecessary attributes as soon as possible to reduce the
network traffic.

– A list of filters: F = {S1.snowHeight > 10}. This will be used to perform
early data filtering in the Pub/Sub.

The second subscription, p3
2, is generated for the user to fetch the query result

stream. To do so, a unique stream name is created for the result stream (by
using the unique identifier of the processor n1, such as the IP address). Then p3

2
contains this stream name.

Assume another user submits another query Q4 to the system (the second
query in Table 2), which is also allocated to processor n1. We can generate the

332 Y. Zhou, K. Aberer, and K.-L. Tan

first subscription, p4
1, in a similar way. Pub/Sub can automatically perform data

communication sharing.
The tricky part is the second subscription, p4

2. A naive way is to generate
separate result stream for Q4. Hence we can use the unique name of Q4’s result
stream to compose p4

2. This situation is shown in Figure 4(a). The result streams
of Q3 and Q4, i.e. s3 and s4 are transfered separately to the two users’ proxies,
n3 and n4, respectively.

However, it can be easily seen that the result streams of Q3 and Q4 could
have significant overlapping contents. Therefore these common contents have
been transferred twice over the link between n1 and n2 in the above scheme. To
further reduce the cost, we should exploit the sharing of result stream delivery.

At each site, if there are multiple queries with overlapping results, the COS-
MOS component will compose a new query Q whose result is the superset of
the overlapping queries and only inserts this Q into the processing engine. In
our example, Q5 (the third query in Table 1) would be created and inserted into
the processing engine at node n1 instead of the two individual queries Q3 and
Q4. As shown in Figure 4(b), Q5 is run in n1 and its result stream s5 is sent to
n2, where it is “split” into two streams. The “splitting” is fulfilled by composing
appropriate subscriptions for the users to retrieve their results. In our example
they can be composed as follows:

– p3
2: S={s5},P={S2.∗},F = {−30(minute) ≤ S1.timestamp−S2.timestamp

≤ 0 AND S1.snowHeight ≥ 10}.
– p4

2: S = {s5},P = {S1.snowHeight, S1.timetamp, S2.snowHeight,
S2.timestamp},F = {−1(hour) ≤ S1.timestamp− S2.timestamp ≤ 0}

To implement this approach, we extend traditional query containment and
equivalence theorems to continuous window-based queries. Readers can refer to
[25] for more details of this approach.

3 Query Distribution

In this section, the details of the query distribution algorithms in the COSMOS
middleware is presented. For ease of exposition, it is assumed that a data source
is also a processor in this paper. Hence, we refer to all the nodes in the network
as processors. The word “data source” refers to those processors which are the
origins of one or more source streams.

In the following subsections, we first present the theoretical model of the
problem and then present the proposed solution.

3.1 Problem Modeling

In the problem model, we assume we do not have the knowledge of the overlay
network topology of the Pub/Sub component. This is to achieve loose coupling
between the components.

Toward Massive Query Optimization 333

0

2n1

s1
n2

1

5

5

5

5

0

1

1

1

s

(a) Network graph

0.1

4’s1

’n1
’s2

’n2

Q1

Q2

Q3

10

5

101

1

15

5

10 5

0

0 0

0

0.1

0.1

0.1

Q

(b) Query graph

Fig. 5. Graphs

Table 2. Mapping Schemes

Scheme Load WEC
Scheme 1 Q1, Q2 → n1 n1: 0.2 165

Q3, Q4 → n2 n2: 0.2
si → s′

i, ni → n′
i

Scheme 2 Q1, Q4 → n1 n1: 0.2 115
Q2, Q3 → n2 n2: 0.2
si → s′

i, ni → n′
i

Scheme 3 Q1, Q3 → n1 n1: 0.2 110
Q2, Q4 → n2 n2: 0.2
si → s′

i, ni → n′
i

3.1.1 Objectives
Two objectives are considered in our algorithms:

– Balance the load among the processors. We assume the relative computa-
tional capability (the CPU speed) of a processor ni is known and we quantify it
as ci. Furthermore, the load of a query is estimated as the CPU time that it will
consume for every unit time in a processor with ci = 1. Hence if the total query
load is L and the total capability of the processors is C, the maximum load that
can be allocated to a processor ni is (1 + α) · ci · L

C . Parameter α is added to
allow slight load imbalance to trade for better communication efficiency. It is set
to 0.1 in our experiments.

– Minimize the total communication cost. The communication cost can be
divided into two parts: (1) transferring source streams from the sources to the
processors; (2) transferring query results from the processors to the users. Similar
to existing work [3,17,15], to measure the communication efficiency, we use the
weighted unit-time communication cost

∑
∀i,j r(ni, nj)·d(ni, nj), where r(ni, nj)

is the per-unit time traffic (bit/s) on the link between ni and nj , and d(ni, nj)
is the transfer latency of the link.

To achieve both of the above two goals, the queries should be allocated onto
the N processors such that the communication cost is minimized without vio-
lating the load constraints. To develop the algorithm, we model the problem as
a graph mapping problem in the following subsection.

3.1.2 Graph Mapping Model
We first construct a network graph NG = {Vn, En, Wn}, where each vertex vi ∈
Vn represents a processor in the network and there is one edge eij ∈ En between
each pair of vertices vi and vj . The weight of each vertex vi is given by Wn(vi).
Wn(vi) is equal to ci, the processor’s capability value. Furthermore, the weight of
an edge eij is also given by Wn(eij) and is equal to the communication latency
between vi and vj . Figure 5(a) shows an example network graph. Here, there are
two data sources, s1 and s2, which have no computational capability (in terms of
complex query processing) and two processors, n1 and n2, have the same ci.

Second, a query graph, QG = {Vq, Eq, Wq}, is constructed. There are two
types of vertices in Vq: query vertex (q-vertex) representing a query and network

334 Y. Zhou, K. Aberer, and K.-L. Tan

vertex (n-vertex) representing a node in the network. An edge between a q-
vertex and a n-vertex represents either a query requests source data from the
data source or a query’s result should be sent back to the proxy. In addition, if
a query’s data source and its proxy happen to be the same node, only one edge
connects the query and that node. Figure 5(b) shows the query graph when four
queries are submitted to the network of Figure 5(a). In the figure, there are four
q-vertices, which are drawn in rectangles, and four n-vertices, which are drawn
in circles. Q1 and Q2 request source data from s1 and s2 respectively and their
results should be sent back to n1.

In a query graph, each q-vertex is weighted with the estimated query load,
while n-vertices are assigned with zero weights. In addition, each edge is weighted
with the estimated data rate (bit/s) of the corresponding streams. For example,
in Figure 5(b), Q1’s load is of value 0.1. In addition, it requests 10 bit/s data
from source s1 and generates 1 bit/s result streams to n1.

However, the above model is still not enough for our problem. It ignores
the sharing of data communication among queries in a Pub/Sub. To accurately
model the communication cost, we add one edge between each pair of queries
that have overlap in their data interest. The edge weight is equal to the rate of
the data that are of interest to both of its end vertices (queries). The intuition
is to penalize allocation schemes that distribute the two queries to two nodes
that are very far away from each other. In Figure 5(b), the data requested by
Q1 from s1 happens to contain those of Q3. So the weight of the edge between
Q1 and Q3 is equal to the one between s1 and Q3.

Now, we can model the query distribution problem as a graph mapping prob-
lem which maps the vertex set of one graph to the vertex set of another graph.
A mapping from a vertex set V1 to another vertex set V2 is defined as a boolean
function M(vi, vj), where vi ∈ V1 and vj ∈ V2, under the constraint that for
each vi ∈ V1 there is exactly one vj ∈ V2 such that M(vi, vj) = true. The formal
problem statement is as follows:

Given a query graph QG = (Vq , Eq, Wq) and a network graph NG= (Vn, En,
Wn), find a mapping M from Vq to Vn, such that the mapping

1. obeys network constraint: an n-vertex vi in Vq is mapped to a vertex
vj in Vn which represents the same network node as vi;

2. and obeys load-balancing constraint:

∀vj ∈ Vn,
∑

vi∈Vq

M(vi,vj)

Wq(vi) ≤ (1 + α) · Wn(vj) ·
W v

q

W v
n

, (3.1)

where W v
q =

∑
vi∈Vq

Wq(vi) and W v
n =

∑
vj∈Vn

Wn(vj);
3. and minimizes the Weighted Edge Cut (WEC): which is given by

WEC =
∑

vk∈Vn
vl∈Vn

∑
vi∈Vq

vj∈Vq

M(vi,vk)
M(vj ,vl)

Wq(eij) · Wn(ekl). (3.2)

Toward Massive Query Optimization 335

In Table 2, we present three mapping schemes from the query graphs to the
network graphs in Figure 5, which obey both the network constraint and the
load-balancing constraint. In scheme 1, we map all the queries to their own local
processors, while scheme 2 is the optimal mapping if we ignore the potential
sharing of communication of Q1 and Q3. We can see that scheme 3 is a better
mapping, which has a smaller WEC value.

3.2 Challenges and Approach Overview

There are a few practical difficulties to solve this problem. First, it is hard to
construct the global network graph and query graph when the size of the network
and the number of queries scales up. A scalable algorithm is required. Second,
even if we have the global graphs, finding the optimal mapping is an NP-Hard
problem [19]. Hence, an efficient heuristic-based approach is needed. Third, the
queries and stream statistics could change over runtime. A runtime algorithm is
required to redistribute the queries.

To address the problems, distributed coordinators are employed to perform
the heuristic graph mapping and remapping algorithms. They are organized into
a hierarchical tree. Each leaf coordinator constructs a network (sub)graph which
consists of an exclusive set of processors while a parent coordinator constructs a
network (sub)graph composed by its child coordinators. This provides a hierar-
chical view of the network graph. On the other hand, each coordinator also holds
a query (sub)graph which is a coarsened overview of its descendants’ and this
constructs a query graph hierarchy. Each coordinator only performs the mapping
and runtime remapping of its query (sub)graph to its network (sub)graph. The
rest of this section presents the detail of our scheme.

Finally, it is required to frequently estimate the overlaps between a pair of
queries in the following algorithms, which could be very expensive if it is done
by semantical reasoning. Therefore, we partition each stream into a number of
substreams, and represent each query’s data interest as a bit vector indicating
whether a substream overlaps with its interest. In this way, efficient bit opera-
tions could be used to quickly perform the estimation.

3.3 Network Graph Hierarchy

The coordinators are a subset of processors chosen from all the processors in
the system. Each such processor performs two separate logical roles: the stream
processor and the coordinator. We assume that separate resources of these pro-
cessors are reserved for these two roles. For non-coordinators, they perform only
the stream processor role. Hereafter, the words “processor” and “coordinator”
refer to the logical roles.

The coordinators are organized into a hierarchical tree. At the bottom level,
each processor forms a separate cluster and the processor is also called the par-
ent of this cluster. At the second level, the processors are clustered into multiple
close-by (in terms of transfer latency) clusters. Within each cluster, the median
is selected as the coordinator of the cluster which is also called the cluster’s

336 Y. Zhou, K. Aberer, and K.-L. Tan

Algorithm 1. Query graph coarsening algorithm
while |V | > vmax do1

Set all the vertices as unmatched;2

while ∃ unmatched vertices ∧ |V | > vmax do3

Randomly select an unmatched vertex u;4

A ← adj(u) − mat(adj(u)) ;5

if is n(u) then6

A ← A − {v|v ∈ adj(u) ∧ is n(v) ∧ (u.clu
= v.clu ∨ v.clu = unknown)};
Select a vertex v from A such that the edge e(u, v) is of the maximum7

weight;
Collapse u and v into a new vertex w;8

Set w as matched;9

w.weight ← u.weight + v.weight;10

Re-estimate the weights of the edges connected to w;11

if is n(u) OR is n(v) then12

is n(w) ← true;13

w.clu = is n(u)?u.clu : v.clu;14

parent. The median of a set of processors {n1, n2, . . . , nl} is defined as the pro-
cessor ni with minimum total transfer latency to all processors in the cluster,
i.e.

∑
1≤j≤l d(ni, nj) ≤

∑
1≤j≤l d(nk, nj) for any nk. These coordinators are also

clustered level by level in a similar way. We say a processor belongs to a cluster of
an internal coordinator (at any level) if it is the descendant of this coordinator.

Each coordinator constructs a network subgraph containing only its child
coordinators (or child processors for the leaf coordinators). Here, the weight of
a vertex is equal to the total capability values of all its descendant processors.

We adapt schemes proposed by the networking community to construct a
hierarchical tree of coordinators, such as [5]. The mechanism in [5] tries to main-
tain a tree with the following properties: (1) the size of the cluster in each level
is between k and 3k − 1 (except the cluster of the root whose size could be
less than k); (2) the parent is the median of its cluster. The tree is constructed
incrementally and dynamically. Interested readers can refer to [5].

3.4 Query Graph Hierarchy Construction

In this subsection, we look at how to construct the query graph hierarchy. To
begin, each leaf coordinator collects the query specifications from its child nodes
and generates a query graph over them. If the number of vertices of the query
graph is larger than vmax, then it runs Algorithm 1 to coarsen the query graph.
The graph mapping algorithm at each coordinator, which will be presented in the
following sections, is performed on this coarsened query graph. The coarsening
algorithm repeatedly collapses two selected vertices until the number of vertices
is smaller than or equal to vmax. In the algorithm, a vertex u tends to collapse
with a neighbor v which has an edge eu,v with a larger weight, because these
two vertices are more likely to be mapped to the same vertex in the network

Toward Massive Query Optimization 337

graph. For ease of exposition, we define the following functions: (1) adj(u) returns
the set of adjacent vertices of u; (2) is n(u) returns true if u is an n-vertex;
(3) matched(A) is all the matched vertices in a vertex set A. In addition, for
each n-vertex u, a field clu indicates which child cluster of the current coordinator
covers u. Two n-vertices belong to two different child clusters shall not be merged
together because they have to be mapped to different child clusters in the graph
mapping algorithm. Note that if u is not covered by any child cluster of this
coordinator, then their clu field is set as unknown.

The q-vertices in the (coarsened) graph are tagged with the current coordi-
nator’s name and then submitted to the parent coordinator who will perform
the same procedure after receiving all the (coarsened) graphs from its children.
Note that the procedure is run in parallel in different subtrees to accelerate the
whole procedure. The procedure stops when the root gets the (coarsened) query
graph. Now every coordinator holds its query graph. Finally,each coordinator
periodically propagates the update of its query graph to its parents at runtime.

3.5 Initial Query Distribution

Once the initial query graph hierarchy is constructed, the root coordinator starts
mapping its (coarsened) query graph to its network (sub)graph. The query sub-
graph mapped to each child is uncoarsened one level back and sent to the child.
This procedure repeats at each level until all the queries are assigned to the
processors. Note that, to uncoarsen a vertex, information of the finer-grained
vertices, if necessary, is retrieved from the corresponding coordinator based on
the tags of the vertex.

The algorithm is illustrated in Algorithm 2. It starts by using a greedy algo-
rithm to get an initial mapping:

(a) Map each n-vertex to a child that manages the node that n-vertex represents.
(b) Map the q-vertices one by one in descending order of their weights. For

each q-vertex, among the children that can accommodate it (i.e. their load-
balancing constraints will not be violated after mapping the q-vertex to
anyone of them), map it to the one that minimizes the current WEC. If no
children can accommodate it, then map it to the one with the minimum
violation of the load-balancing constraint.

Note that finding a mapping that satisfies the load-balancing constraint is an NP-
Complete problem. Our algorithm does not guarantee finding such a mapping.

Lines 2-2 iteratively improve the mapping by trying to remap the q-vertices to
other vertices in NG. Here, we use the value of gain(vi, vk) to heuristically guide
our remapping, which is equal to the reduction of the WEC value by remapping
vi ∈ Vq to vk ∈ Vn. To achieve some capability of climbing out of local minima, a
q-vertex vi with a negative gain(vi, vk) value would be considered for remapping
as long as its gain value is the highest and its remapping will not violate the
load-balancing constraint of vk. The mapping with minimum WEC value will be
restored at the beginning of each outer iteration.

338 Y. Zhou, K. Aberer, and K.-L. Tan

Algorithm 2. Graph mapping algorithm
Input: NG = (Vn, En, Wn), QG = (Vq, Vq, Wq)
use a greedy algorithm to get the initial mapping;1

compute the gain gain(vi, vj) for each q-vertex vi ∈ Vq and each vj ∈ Vn ;2

minWEC ← current WEC; minMapping ← current mapping;3

repeat4

current mapping ← minMapping;5

repeat6

maxGain ← −∞; vertexToRemap ← ∅; vertexToRemapTo ← ∅;7

for each vj ∈ Vn do8

Find an unmatched q-vertex vi ∈ Vq currently mapped to vj and a9

vertex vk ∈ Vn, gain(vi, vk) is maximized and remapping vi to vk

does not violate load-balancing or improves a violation (if any);
if gain(vi, vk) > maxGain then10

maxGain ← gain(vi, vk); vertexToRemap ← vi;11

vertexToRemapTo ← vk;

if vertexToRemap
= ∅ then12

set vertexToRemap as matched;13

remap vertexToRemap to vertexToRemapTo;14

update gain(vi, vk) for any vi directly connected to vertexToRemap;15

if current WEC < minWEC then16

minWEC ←current WEC;17

minMapping ← current mapping18

until vertexToRemap = ∅;19

until minWEC is the same as the last iteration;20

3.6 Online New Query Insertion

Unlike prior work which assumes queries are relatively stable, our system stresses
the problem of fast query streaming. The new queries have to be quickly dis-
tributed to the desirable processors. A good distribution can avoid runtime query
migration at a later time (see the next subsection).

While there are many possible new query distribution schemes, in this pa-
per, we only study the use of the hierarchical coordinator tree and show the
significance of new query insertion for the system performance. In this scheme,
a new query is first routed to the root coordinator which then routes it to one
of its children. The routing is done level by level until the query is assigned to a
processor. At each coordinator, the query is added to the query graph and the
weights of the new edges are estimated. Then the new vertex is mapped to a
vertex in the network graph such that the resulting WEC is minimized.

Although all queries have to be routed through the root coordinator, this
scheme is scalable to very fast query streams. This is because it only needs to
route the queries to a few children based on some coarse-grained information.
As shown in Section 4, it can handle more than 800,000 queries per second in
our experimental PC. For higher query stream rates, we can perform online

Toward Massive Query Optimization 339

Algorithm 3. Adaptive load re-balance
begin1

Compute the diffusion solution mij for every i, j pair;2

while there exists an mij > 0 do3

Randomly select a pair i, j such that mij > 0;4

V ← query vertices in ni whose benefits differ up to x% from the largest5

benefit;
Vd ← the dirty query vertices in V ;6

if Vd = ∅ then Vd ← V ;7

Remapping the vertex v ∈ Vd from ni to nj such that it is of the largest8

load density and mij is larger than 90% of its weight;

end9

routing only on some queries while simply keeping the other queries at their
proxies. Further trade-offs between routing quality and routing efficiency is an
interesting piece of future work.

3.7 Adaptive Query Redistribution

During runtime, the queries, the workload of processors and the characteristics
of data streams may change. Hence the initial allocation of queries may become
suboptimal. Thus adaptive adjustment of the query distribution has to be per-
formed. Again we employ a hierarchical scheme. The adaptation works in rounds
and each round is initiated by the root coordinator periodically. After making
the redistribution decisions, the root coordinator would transfer the change of
the distribution to each of its children. Each child coordinator retrieves the
finer-grained information of the vertices newly allocated to it from their original
coordinators. Then the child coordinators would perform the same procedure
to make redistribution decisions. This process continues until the leaf coordina-
tors are done with the redistribution. Note that the actual migration of queries
happens after all decisions are made and is done among the processors.

The adaptive redistribution algorithm in each coordinator is composed of two
phases: load re-balancing followed by distribution refinement. In the load re-
balancing phase, the coordinator tries to re-balance the load among its children.
Besides that, there are a few other goals to be achieved:

1. Minimize the WEC of the mapping.
2. Minimize the query migration time. Since migrating queries may incur the

migration of stateful operators (e.g. join), we should minimize the size of the
states to be moved.

In the load balancing phase, to avoid re-mapping from scratch, which may
incur too many query migrations, we adopt a load diffusion approach [14]. A
diffusion solution specifies the load mij that should be migrated from a coordi-
nator ni to another coordinator nj for each (i, j) pair. Authors in [14] proposed
a method to derive a diffusion solution such that the Euclidean norm of the

340 Y. Zhou, K. Aberer, and K.-L. Tan

transferred load is minimized which results in a small number of query migra-
tions. Our redistribution algorithm is presented in Algorithm 3. As n-vertices
are not considered for redistribution, the vertices in the algorithm only refer to
the q-vertices. The benefit of remapping a vertex from ni to nj is defined as the
reduction of the WEC given by Eqn (3.2). To achieve good mapping quality, our
algorithm tends to remap those vertices with large benefits.

Furthermore, a vertex is called dirty if it had been picked for remapping in
the earlier iterations in the same adaptation round. We give these vertices higher
remapping priority because moving them again would not increase the amount
of query migration (Note that queries are actually moved after all the decisions
are made in one round.). In addition, the load density of a vertex is equal to
the weight divided by the size of its state. We favor remapping the denser ones
because it may result in less state movement. The value of x in line 3 can be
used to trade mapping quality for lower migration cost. With a larger x value,
we can consider more vertices with lower migration benefit. In our experiments,
we set x = 10.

The distribution refinement phase attempts to reduce the WEC while main-
taining the load balancing condition. Again the query vertices are visited ran-
domly and checked to see whether they belong to one of the following categories:

(1) Mapping the vertex back to its original location can maintain load balance
and the current WEC.

(2) Mapping the vertex to another node can decrease the current WEC without
violating load balance.

The checks are performed in the order given above. Whenever such a vertex is
found, the remapping is performed.

3.8 Statistics Collection

Stream statistics are periodically multicast to the coordinators from the sources.
As stated before, we partition the data streams into multiple substreams and
the data interest of a user query is represented as a bit vector. Hence the stream
statistics we need is the data rate of each substream. In addition, each proces-
sor periodically collects the average CPU time that each of its running queries
consumes per unit time. If any value is changed, then it will be (re)submitted to
the parent coordinator to (re)estimate the workload that the query may incur.

4 Experiments

This section presents a performance study of the proposed techniques. Two sets
of experiments are conducted. In the first one, simulations of a large scale dis-
tributed system and a huge query set are conducted to test the various perfor-
mance aspects of COSMOS. In the second one, we deploy our system prototype
over PlanetLab with a real data set to compare the performance of COSMOS
with the state-of-the-art operator placement algorithms. All software are imple-
mented in C/C++.

Toward Massive Query Optimization 341

4.1 Simulation Study

A network topology with 4096 nodes is generated using the Transit-Stub model
in the GT-ITM topology generator. Among these nodes, 100 nodes are chosen
as the data stream sources, and 256 nodes are selected as the stream processors,
and the remaining nodes act as the routers.

The default cluster size parameter k used in the coordinator tree construc-
tion is set to 4, which will be varied in the experiments. All the streams are
partitioned into 20, 000 substreams and they are randomly distributed to the
sources. The arrival rate of each substream is randomly chosen from 1 to 10
(bytes/seconds). To simulate clustering effect of user behaviors, g = 20 groups
of user queries are generated and each group has different data hot spots. The
group that a query belongs to is chosen randomly and the number of substreams
that a query requests is uniformly chosen from 100 to 200. For the queries within
every group, the probability that a substream is selected conforms to a zipfian
distribution with θ = 0.8. To model different groups having different hot spots,
we generate g number of random permutations of the substreams. The number
of queries are varied from 5, 000 to 60, 000 and we set their workload to be pro-
portional to their input stream rates. The adaptive interval of the adaptive query
redistribution algorithm is set to 200 seconds. Because the cost of transmitting
the result streams from the processors to their local users are identical for any
query distribution scheme, we subtract such cost from the reported figures to
ease the comparison.

4.1.1 Initial Query Distribution
In the first experiment, we study the performance of the initial query distribution
scheme with different number of queries. It is compared with three approaches:
(a) Naive: allocate the queries to their local processors. (b) Greedy: only run the
greedy algorithm in Algorithm 2. (c) Centralized: a centralized node constructs
a global query graph and a global network graph, and runs Algorithm 2 to
perform a global mapping. While this approach is limited in its scalability, it
serves as a benchmark to examine the optimality of other approaches. Figure 6(a)
presents the results of all the four approaches. Naive performs the worst because
it cannot identify the data interest of the queries and optimize their locations.
Greedy works a lot better. The two graph mapping algorithms perform the best
and their performances are similar. This also verifies that the graph coarsening
procedure in our hierarchical mapping algorithm does not incur much errors.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

6050403020105

W
ei

gh
te

d
C

om
m

. C
os

t (
1k

 b
its

)

of Queries (*1K)

Centralized
Hierarchical

Greedy
Naive

(a) Comm. cost

 0

 10

 20

 30

 40

 50

 60

 70

6050403020105

T
im

e(
10

0
se

c)

of Queries (*1K)

Cen. Total Time
Hie. Total Time

Hie. Response Time

(b) Running time

Fig. 6. Varied #queries

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9 10 11 12

W
ei

gh
te

d
C

om
m

. C
os

t (
1k

 b
its

)

Adaptation Round

NA-Inaccurate
A-Inaccurate

A-Accurate

(a) Comm. Cost

 0

 1

 2

 3

 4

 0 1 2 3 4 5 6 7 8 9 10 11 12

S
ta

rd
ar

d
D

ev
ia

tio
n

Adaptation Round

NA-Inaccurate
A-Inaccurate

A-Accurate

(b) Load deviation

Fig. 7. Adapting to inaccurate statistics

342 Y. Zhou, K. Aberer, and K.-L. Tan

We also report the response time (i.e. the time interval from the begin to the
end of the mapping) and the total time (i.e. the total CPU time consumed in all
the coordinators) of the centralized and hierarchical graph mapping algorithms
in Figure 6(b). Note that the response time and total time are equivalent for the
centralized approach. It is shown that both the response time and total time of
the hierarchical approach are much lower than the centralized one.

4.1.2 Adaptive Query Distribution
In the second set of experiments, we study the performance of the adaptation
scheme. In the above experiments, the graph mapping algorithms perform well if
accurate apriori statistics exist. However, apriori statistics are hard to collect in a
large scale system. Hence, in the first experiment, we study the situation that the
apriori statistics are inaccurate. We model this situation by using a random ini-
tial query allocation scheme. Three algorithms are compared: (1) NA-Inaccurate:
non-adaptive algorithm with inaccurate statistics; (2) A-Inaccurate: adaptive al-
gorithm with inaccurate statistics; (3) A-Accurate: Adaptive algorithm with ac-
curate statistics. Figures 7(a) and 7(b) present the communication cost and the
standard deviation of the system load over the observation period. It can be seen
that the adaptive algorithm can gradually refine the initial query distribution
scheme to minimize the communication cost and balance the system load.

In another experiment, we study the situation that new queries arrive in the
system. Initially, there are 30, 000 queries and new queries are added into the
system incrementally at a 200 seconds interval. At the start of each interval,
there are 1, 500 new queries coming in. We reported the average communication
cost during each interval and the standard deviation of the processor loads.
Three schemes are compared: (1) Random: randomly allocate the new queries
without considering their interest; (2) Online: use our online new query insertion
algorithm; (3) Online-Adaptive: use both the online new query insertion and the
adaptive query redistribution. The results are shown in Figure 8(a) and 8(b). The
performance of Random gets worse with more queries added, while Online can
maintain low communication cost but with increasing load imbalance. Online-
Adaptive performs the best in both metrics because of its ability to re-balance
the load distribution and to refine the query distribution.

In the fourth experiment, we examine the scalability of our system to fast
query streams. The settings are similar to that of the above experiment. We
collect the time for the root coordinator to distribute a query and then compute

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

20181614121086420

W
ei

gh
te

d
C

om
m

. C
os

t (
1k

 b
its

)

Time (*102sec)

Online
Random

Online-Adaptive

(a) Comm. Cost

 0

 0.5

 1

 1.5

 2

 2.5

 3

20181614121086420

S
ta

nd
ar

d
D

ev
ia

tio
n

(*
0.

01
)

Time (*102sec)

Online
Random

Online-Adaptive

(b) Load deviation

Fig. 8. New query arrival

 30

 31

 32

 33

 34

 35

16842

W
ei

gh
te

d
C

om
m

. C
os

t (
1k

 b
its

)

Cluster Size Parameter k

(a) Comm. Cost

 0

 20

 40

 60

 80

 100

16842

T
hr

ou
gh

pu
t(

*1
0K

 q
ue

rie
s/

se
c)

Cluster Size Parameter k

(b) Throughput

Fig. 9. Varied Cluster Size

Toward Massive Query Optimization 343

 30

 40

 50

 60

 70

20181614121086420

IDIIIIIDDI

W
ei

gh
te

d
C

om
m

. C
os

t (
1k

 b
its

)

Time (*102sec)

Rate Perturbation Type

No Adaptive
Adaptive

Remapping

(a) Comm. Cost

 0

 5

 10

 15

 20

 25

 30

20181614121086420

IDIIIIIDDI

S
ta

nd
ar

d
D

ev
ia

tio
n

Time (*102sec)

Rate Perturbation Type

No Adaptive
Adaptive

Remapping

(b) Load deviation

Fig. 10. Perturbation of stream rates

 0

 1

250 1000 4000

N
or

m
al

iz
ed

 C
om

m
 C

os
t

#Queries

Op placement
COSMOS

(a) Comm. cost

 0

 0.2

 0.4

 0.6

 0.8

 1

250 1000 4000

N
or

m
al

iz
ed

 R
un

ni
ng

 T
im

e

#Queries

Op placement
COSMOS

(b) Running time

Fig. 11. Prototype study

the maximum query rate that it can accommodate. We study the root coordi-
nator because it is the potential bottleneck of the system. We vary the cluster
size parameter k. The results are shown in Figure 9. We can see that, with a
smaller value of k, the query distribution quality is worse. That is because there
are more levels in the coordinator tree and more graph coarsening is performed.
On the other hand, the throughput of query streams gets better with a smaller
value of k. The reason is the root coordinator needs to route queries to fewer
number of children. Hence, adaptively setting the parameter k is an interesting
piece of future work.

Finally, we examine the situation when the rates of streams change. At run-
time, we increase (denoted by “I”) or decrease (denoted by “D”) the rates of
800 random streams several times so that load imbalance exists within the sys-
tem. Here, we compare the adaptive scheme with two schemes: (1) Re-mapping:
use the centralized mapping algorithm to remap the global query graph to the
global network graph; (2) Non-Adaptive: no adaptation is done. Figures 10(a)
and 10(b) depict the communication cost as well as the standard deviation of
the load in the system after each change. It is clear that adaptive query redistri-
bution performs close to centralized remapping and can re-balance the system
load to adapt to the new data characteristics without increasing the communica-
tion cost. While the remapping algorithm can achieve better results, it incurred
about 7 times more query migrations than the adaptive algorithm did.

4.2 Prototype Study

In this experiment, our prototype system is deployed on 30 nodes over PlanetLab
from different countries and continents. We use our stream processing system,
GSN (http://gsn.sourceforge.net), which is tailored for processing data from
heterogeneous sensor networks. Real readings from 100 sensors deployed in our
SensorScope project (http://sensorscope.epfl.ch) are used as the dataset.
5 nodes act as the data sources, each with equal number of sensors. A number
(250 ∼ 4000) of random queries are generated. Each query contains one to three
random selection predicates on the sensor readings and sensor types together
with one to three join predicates on the timestamp. A random node is chosen as
the proxy for each query.

In the operator placement approach, an algorithm similar to [12] is imple-
mented to generate an optimized global operator graph. In addition, the algo-

http://sensorscope.epfl.ch

344 Y. Zhou, K. Aberer, and K.-L. Tan

rithm proposed in [3] is also implemented to optimize the operator placement. In
COSMOS, the coordinator tree is constructed such that each cluster has 2 ∼ 3
members. Since [3] did not study adaptive query optimization, a static query set
is used to compare the two approaches.

Figure 11(a) shows the communication cost of the query plans generated by
the two approaches. To ease the comparison, we normalize the values over those
of COSMOS. One can see that COSMOS can achieve similar communication
efficiency as the existing operator placement algorithms with varied number of
queries. The slight difference can be partially attributed to the fact that the
operator placement algorithms in [3] do not consider load balancing and hence
it can obtain a plan with lower communication cost. In Figure 11(b), we depict
the response time of the two algorithms. In this figure, we normalize the values
over the largest one (i.e. the response time of the operator placement algorithm
with 4,000 queries) to see the trend with increasing number of queries. The
result suggests that COSMOS is much more scalable than the existing operator
placement algorithms with larger number of queries. This confirms the efficiency
of the new system architecture and the hierarchical query placement algorithm.

5 Conclusion

This paper proposes a massive query optimization approach for distributed
stream systems. A Pub/Sub is adopted as the communication substrate. Tech-
niques are proposed to leverage the Pub/Sub to “intelligently” eliminate du-
plicate data transmission and perform early data filtering in a scalable way.
Furthermore, a scalable load distribution scheme further improves the system’s
performance. The load distribution problem is modelled as a graph mapping
problem, which considers both load balancing and communication cost minimiza-
tion and also takes account of the communication characteristics of a Pub/Sub.
Both static and adaptive query distribution algorithms are proposed. A new hi-
erarchical scheme is utilized to enhance the algorithms’ scalability. An extensive
simulation study verifies the efficacy and efficiency of all the proposed techniques.

References

1. Abadi, D.J., et al.: The design of the borealis stream processing engine. In: CIDR
(2005)

2. Aguilera, M.K., et al.: Matching events in a content-based subscription system. In:
PODC (1999)

3. Ahmad, Y., et al.: Networked query processing for distributed stream-based appli-
cations. In: VLDB (2004)

4. Amini, L., et al.: Adaptive control of extreme-scale stream processing systems. In:
ICDCS (2006)

5. Banerjee, S., et al.: Scalable application layer multicast. In: SIGCOMM (2002)
6. Carney, D., et al.: Monitoring streams: A new class of data management applica-

tions. In: VLDB (2002)

Toward Massive Query Optimization 345

7. Carzaniga, A., et al.: Design and evaluation of a wide-area event notification ser-
vice. ACM Transactions on Computer Systems 19(3), 332–383 (2001)

8. Carzaniga, A., et al.: A routing scheme for content-based networking. In: INFO-
COM (2004)

9. Carzaniga, A., Wolf, A.L.: Forwarding in a content-based network. In: SIGCOMM
(2003)

10. Carzaniga, A., Wolf, A.L.: Content-based networking: A new communication in-
frastructure. In: Infrastructure for Mobile and Wireless Systems (2001)

11. Chandrasekaran, S., et al.: TelegraphCQ: Continuous dataflow processing for an
uncertain world. In: CIDR (2003)

12. Chen, J., et al.: NiagaraCQ: A Scalable Continuous Query System for Internet
Databases. In: SIGMOD (2000)

13. Cherniack, M., et al.: Scalable distributed stream processing. In: CIDR (2003)
14. Hu, Y.F., Blake, R.J.: An optimal dynamic load balancing algorithm. Technical

report, Daresbury laboratory (1995)
15. Kumar, V., et al.: Resource-aware distributed stream management using dynamic

overlays. In: ICDCS (2005)
16. Papaemmanouil, O., et al.: Semcast: Semantic multicast for content-based data

dissemination. In: ICDE (2005)
17. Pietzuch, P., et al.: Network-aware operator placement for stream-processing sys-

tems. In: ICDE (2006)
18. Repantis, T., et al.: Synergy: sharing-aware component composition for distributed

stream processing systems. In: Middleware (2006)
19. Schloegel, K., et al.: Graph partitioning for high-performance scientific simulations,

pp. 491–541 (2003)
20. Shah, M.A., et al.: Flux: An adaptive partitioning operator for continuous query

systems. In: ICDE (2003)
21. Srivastava, U., et al.: Operator placement for in-Network stream query processing.

In: PODS (2005)
22. Stonebraker, M., et al.: Mariposa: A New Architecture for Distributed Data. In:

ICDE (1994)
23. The STREAM Group. STREAM: The stanford stream data manager. IEEE Data

Engineering Bulletin (2003)
24. Xing, Y., et al.: Dynamic load distribution in the borealis stream processor. In:

ICDE (2005)
25. Zhou, Y., et al.: Rethinking the design of distributed stream processing systems.

In: NetDB (2008)

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 346–365, 2008.
© IFIP International Federation for Information Processing 2008

QoS Allocation Algorithms for Publish-Subscribe
Information Space Middleware*

Joseph Loyall, Matthew Gillen, and Praveen Sharma

BBN Technologies
Cambridge, MA

Abstract. Information spaces have emerged as a powerful concept for provid-
ing managed exchange of information between members of communities of
interest (COIs), including information brokering and dissemination by publish-
subscribe-query middleware. To support COIs with real-time or critical infor-
mation exchange requirements, information spaces require quality of service
(QoS) management algorithms that consider the complex system dynamics
within information spaces, that allocate multiple resources, and that scale to in-
formation spaces of reasonable size. This paper presents two algorithms for
multi-resource QoS allocation within information spaces. The first algorithm
always provides an optimal allocation and includes optimizations that enable it
to scale to information spaces of moderate size. The second algorithm is an ap-
proximation algorithm that provides near optimal solutions in most situations
and scales to much larger information spaces. The paper also presents analyses
and experimental results of the effectiveness and efficiency of the algorithms.

Keywords: Quality of service, multi-resource allocation, publish-subscribe-query
information spaces.

1 Introduction

The concept of information spaces has emerged to support information exchange
within communities of interest (COIs), collections of users that are related by shared
interests or participation in a common mission [23]. Information spaces consist of the
following:

• Middleware services for brokering and managing information exchange
• A collection of information producing and consuming clients
• The clients’ shared vocabulary
• The set of managed information objects (MIOs) that clients exchange [2].

In the information space model [12], clients are information publishers and consum-
ers, communicating anonymously with other clients via an information management

* This work was supported by the USAF Air Force Research Laboratory under contract FA-

8750-05-C-0267.

 QoS Allocation Algorithms for Publish-Subscribe Information Space Middleware 347

system (IMS) [2] with managers that monitor and control the information space.
Information published into the information space is in the form of typed managed in-
formation objects (MIOs) consisting of payload and metadata. Consumers make re-
quests for future (subscriptions) or past (query) information using predicates over
MIO types and metadata values. Information spaces provide topic-based information
exchange, brokering, discovery, and shared understanding [12]. Clients do not need to
be aware of one another, the source of information they consume, or the consumers of
information they publish.

The IMS that we utilize in this work, Apollo [24], builds upon work in distributed
object, component, and service oriented middleware. It provides a set of services that
allow the registration of subscription predicates (specified using XQuery [26]),
matching of metadata for published MIOs (specified using XML [27]), and delivering
matched MIOs to clients using the Java Message Service [20]. Client-side distribution
middleware exposes publication, subscription, and query interfaces conforming to the
Joint Battlespace Infosphere Common API (CAPI) [10] using SOAP messages over
HTTP or HTTPS.

We have developed quality of service (QoS) management middleware for informa-
tion spaces with dynamic interoperability and real-time requirements. Our QoS man-
agement capability extends existing IMS middleware to manage the production, de-
livery, and consumption of information that meets client needs within available
resources, to mediate competing demands for resources, and to adjust to dynamic
conditions. Our QoS Management System (QMS) middleware, illustrated in Figure 1,
builds upon our previous work in QoS management for distributed object and compo-
nent systems [7, 15, 16, 17, 18, 19, 28]. The QMS is multi-layered middleware, de-
scribed in more detail in [14], with an information space QoS manager (ISQM)1 that
provides aggregate QoS allocations and policy for clients and operations throughout
an information space. The ISQM is collocated with the information brokering service
and provides policy to local QoS managers (LQM), each of which enforce the policy
at a local control point, making local decisions as necessary to achieve and maintain

Information space

Information Mgmt
System (IMS)

Publish

Subscribe

QoS Management
System (QMS)

Request

Allocate

Client

Client Client

Client

Infospace QoS Manager

QoS
Mechanism

QoS
Mechanism

QoS
Mechanism

QoS
Mechanism

Local QoS
Manager

Local QoS
Manager

policy status policy status

control/
monitoring

control/
monitoring

Aggregate
Decision
Making

Enforcement/
Actuation

Local
Control and
Feedback

Fig. 1. The QMS layered architecture provides QoS management for an information space IMS

1 The ISQM is called a System Resource Manager (SRM) in [14], a historical term that is not as

accurate with regard to its function. Likewise, the LQM element is referred to as a local re-
source manager (LRM) in that document.

348 J. Loyall, M. Gillen, and P. Sharma

the desired QoS. The QMS also includes QoS mechanisms that control and monitor
resource usage and shape information elements under control of an LQM. The QMS
manages QoS in dynamic information spaces with clients that come and go, and
goals, roles, and priorities that change with time and circumstances.

One of the challenges of providing QMS middleware is the development of algo-
rithms for allocating QoS levels and their associated resources among the varying
numbers of clients, operations, and applications using an information space. These
Multi-Resource QoS (MRQ) allocation algorithms must consider the complex system
dynamics of information spaces, be efficient enough to be used in real-time QoS
management, and scale to the sizes of envisioned information spaces. Multi-resource
QoS allocation is NP-hard2, partially because of the following characteristics:

• There are complex system dynamics among the QoS needs within an information
space. That is, how one resource is allocated can impact the demand positively or
negatively for other resources. For example, a client who is interested in compress-
ing information to lower bandwidth usage may require a higher amount of CPU.

• There is frequently no direct correlation between how important an application is
and the amount of resources it needs.

• The relative ordering of QoS levels does not necessarily reflect the relative amount
of resources that each level uses. That is, a higher QoS level (e.g., with higher pre-
cision, rate, or accuracy of information exchange) does not imply more resource
usage than a lower QoS level and, in fact, might use more of some resources and
fewer of others.

• Resource bottlenecks can change dynamically. That is, addressing a bottleneck
caused by a highly constrained resource can result in a bottleneck in another re-
source.

This paper describes a set of multi-resource QoS allocation algorithms that we have
developed for use within our prototype QMS. The MRQ algorithms are used by the
information space QoS manager to select aggregate QoS allocations that are then en-
forced and maintained by the local QoS managers. The ISQM runs the algorithms and
selects new QoS allocations when there are significant changes in the information
space situation (e.g., change in the number of clients, missions, or resource availabil-
ity) or when the LQM cannot locally keep the QoS behaviors within the constraints
indicated by the ISQM. The ISQM’s MRQ algorithms select QoS levels for clients in
information spaces based on a benefit/cost ratio, i.e., the amount each choice in-
creases the overall utility of the information space (the benefit) compared to the num-
ber and amount of resources that it uses (the cost). The algorithms described in this
paper consider discrete QoS levels for each control point or application (terms that
we use interchangeably), attempting to maximize utility across the entire information
space within the available resources.

Because multi-resource QoS allocation is NP-hard, there is a tension between opti-
mality and timeliness in the algorithms. Optimality refers to the ability of an algorithm

2 Lee et al have reduced the problem to the 0-1 knapsack problem [11].

 QoS Allocation Algorithms for Publish-Subscribe Information Space Middleware 349

to produce the highest utility QoS allocation possible within the available resources.
Timeliness refers to the amount of time needed to determine a QoS allocation. For the
class of MRQ problems, one can arrive at an optimal solution by examining a search
space of all combinations of the applications and all the QoS levels in which they can
operate, but examining this search space can take exponential time.

In this paper, we describe two algorithms for multi-resource QoS allocation in in-
formation spaces that manage the tradeoff between optimality and timeliness in dif-
ferent ways:

• Optimizing Brute-Force always provides an optimal solution but potentially runs in
exponential time. The algorithm includes two optimizations that can prune the
search space and reduce the runtime significantly in some situations.

• Greedy Approximation is an approximation algorithm based on 0-1 integer pro-
gramming. The algorithm produces a near optimal allocation in many scenarios
and runs in polynomial time.

We evaluate each algorithm’s efficacy (how close to optimal the allocations computed
by the algorithms are) and efficiency (how quickly the algorithms can produce an al-
location).

The rest of this paper is organized as follows. First, we describe the MRQ algo-
rithms, including an analysis of their efficiency. We then present our efficacy and ef-
ficiency experiments, including the experimental setup and metrics. Following this,
we present some related work. Finally, we summarize our results.

2 Information Space QoS Allocation Algorithms

The MRQ algorithms that we present in this section select an allocation of QoS levels
for all control points in the information space. Each control point represents a logical
set of related points at which QoS can be affected, such as the information consump-
tion, processing, and production for a single application3. The algorithms consider the
resources needed by each QoS level at each control point4, and attempt to maximize a
measure of overall benefit (i.e., a utility function) defined for an information space
within the available resources. One can determine an optimal solution by examining a
search space of all possible allocations, but this is an exponential search in general
and infeasible for all but modestly sized information spaces. Therefore, we took two

3 Although each of these (consumption, processing, and production) can be controlled sepa-

rately, choices made at each will affect the others. Thus they require a consistent logical QoS
level, e.g., the rate and format of data inputs (consumption) must take into account the speed
of information processing and production.

4 The algorithms need the list of applications, their QoS levels, and their resource usage as in-
put. The QoS levels should be defined to represent the QoS characteristics of most importance
to the end user, from the most desirable level of QoS to the least acceptable level of QoS. The
resource usage can be determined by off- or on-line profiling, or by analysis in some cases
(e.g., bandwidth used by a periodic publisher can be calculated by multiplying the number of
information objects per second that are published times the size of each object).

350 J. Loyall, M. Gillen, and P. Sharma

simultaneous approaches: (1) developing optimizations that can reduce the search
space, and (2) developing an approximation algorithm that runs in less than exponen-
tial time in the worst case. This results in an Optimizing Brute-Force algorithm that
produces optimal solutions and a Greedy Approximation algorithm that produces ap-
proximate solutions but runs in polynomial time.

The goal of each MRQ algorithm is to select an allocation of QoS levels for appli-
cations that simultaneously:

• Is feasible, i.e., fits within the resources available in the information space. An in-
feasible allocation cannot be deployed and hence is not an acceptable solution.

• Maximizes information space utility, i.e., allocates the applications of most impor-
tance to the overall COI goals and provides higher QoS where it is most useful to
the COI.

The utility for any given client corresponds to a higher perceived user perception,
which generally increases as throughput and information quality (e.g., resolution, pre-
cision) increase and as latency and jitter decrease. However, when tradeoffs must be
made, particular QoS attributes will be more desirable than others and these tradeoffs
are captured in the sets of QoS levels for each client. For example, a user that is
watching video is willing to sacrifice some initial latency (for buffering) for a signifi-
cant decrease in jitter. The QoS levels for that user would attach a much higher utility
value to a level that introduced some delay but maintained a steady rate than to one
with lower delay but greater variance in the rate. For the overall information space,
the utility function must combine the utilities for the levels of each of the information
space, but also attach a greater weight to the more important users. That is, just as the
least important attributes for a given user should be degraded when necessary, the
ISQM should degrade QoS for the least important users when necessary. While the
best utility function to use can vary for given situations, goals, or domains, a reason-
able utility function to use for information spaces is one that calculates utility based
on the criticality of the applications that are run and the QoS level at which they are
run. That is, the utility is increased by any of the following factors: (1) running more
applications (i.e., servicing more clients), (2) running higher priority applications, and
(3) running any application at a higher QoS level. For an information space with A
applications, we define utility as follows:

 ()()iq

A

i
ic QwCwUtility ∑

=

=
1

 (1)

where:

• Ci (>= 0) is the relative criticality of application i compared to other applications.
• Qi (>= 0) is the relative quality of QoS level i compared to other QoS levels for the

same application or control point.
• wc and wq are weighting factors (to control the tradeoff of running more applica-

tions or applications at higher QoS levels).

 QoS Allocation Algorithms for Publish-Subscribe Information Space Middleware 351

The feasible allocation with the highest utility is considered the optimal allocation.
Notice that there could be multiple allocations with equal utilities, so there could be
multiple optimal solutions. For the experiments described in Section 0, we use a sce-
nario generator that generates utility measures for each combination of application
and QoS level, simulating in one value the criticality, QoS level value, and relative
weights of these terms.

The above utility function and our experiments do not explicitly consider resource
efficiency, so that two allocations could have equal utilities even if one uses fewer
resources than the other5. However, keeping resources in reserve could lead to more ef-
fective QoS management in dynamic information spaces because wholesale reconfigu-
rations will be reduced if there are resources available to handle overload situations or
the addition of new applications. We accomplish this by adding a reserve factor to the
utility function, i.e., a numerical measure of the benefit for having resources available,
as follows:

 ()() RwQwCwUtility riq

A

i
ic +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

=1

 (2)

where R is a measure of the resources available, and wr is a (non-negative) weighting
factor to control the tradeoff of using available resources now to run more applica-
tions (or higher QoS levels) or keeping the resources in reserve.

2.1 The Optimizing Brute-Force Algorithm

The Optimizing Brute-Force algorithm searches a combinatorial decision tree built
from the control points and their QoS levels. As depicted in Figure 2, each level of the
decision tree represents a control point (e.g., CP-a, CP-b, CP-c, etc.) and each branch
represents a QoS level choice at its parent’s control point (e.g., CP-a has QoS level
choices 1 and 2, CP-b has QoS level choices 3 and 4, and so forth). Each non-leaf
node represents an allocation of control points and QoS levels for the nodes above it
in the graph (e.g., CP-b0 represents an allocation of QoS level 1 to CP-a, while CP-c2
represents an allocation of QoS level 2 to CP-a and QoS level 3 to CP-b). The leaf
nodes represent combinations of an entire set of control points and QoS levels (i.e.,
the complete set of potential allocations) in an information space.

Without optimizations, a brute-force search would traverse the tree recursively and
examine each leaf node for feasibility and utility. If a node is feasible, its utility is
compared with the highest utility of previously evaluated feasible solutions. If the
utility of the node is higher, then it becomes the new best solution. The best solution
after evaluating all the leaf nodes is the optimal allocation, i.e., the feasible solution
with the highest utility.

The brute-force search with no optimizations runs in Θ(qa) where q is the number
of QoS levels for each control point6, and a is the number of control points7. For the

5 However, resource efficiency is considered by the Greedy Approximation algorithm’s effec-

tive gradient computation, described in Section 2.2.
6 Assuming the same number of discrete QoS levels for each application.

352 J. Loyall, M. Gillen, and P. Sharma

Service Level Choice Application / Control Point

Complete set of choices (Every combination of application and service levels);
Only some of these will be feasible, i.e., fit within available resources

CP-c

CP-b

CP-a

Complete set of choices (Every combination of application and service levels);
Only some of these will be feasible, i.e., fit within available resources

CP-c

CP-b

CP-a

Fig. 2. Decision tree that the Brute-Force algorithm creates and traverses to allocate resources

Optimizing Brute-Force algorithm, we use the following optimizations to prune the
search space, significantly in some cases.

Pruning Using an Infeasibility Check. This optimization utilizes the fact that as the
algorithm traverses down from the root node to leaf nodes, the number of applications
and QoS levels represented in the nodes increases. Consequently if the partial alloca-
tion represented by any non-leaf node is not feasible (i.e., it requests more resources
than are available), then all the nodes in the subtree under the non-leaf node are also
infeasible (because each will add applications to the already infeasible partial alloca-
tion). The entire subtree can be bypassed. This optimization works well (i.e., it leads
to significant pruning) when many of the leaf nodes represent infeasible allocations.

Pruning Using a Utility Check. This optimization utilizes the fact that as the algo-
rithm traverses down from the root node to leaf nodes (increase in depth of a tree), the
utility associated with each node will be more than that of its parent node. At each
point in the traversal of the tree, the algorithm walks the path of highest utility first
(essentially following the branches of highest QoS levels whether they are feasible or
not). If the leaf node reached is lower utility than the best solution reached so far, the
entire subtree can be pruned, since all other paths would lead to even lower utility.
This optimization works well when the algorithm finds a high utility feasible solution
early, enabling pruning of many subtrees with lesser utility.

The Optimizing Brute-Force algorithm uses both of the above optimizations to-
gether, along with ordering the tree to maximize the pruning possible. However, in
the worst case, the algorithm finds many feasible nodes and relatively low utility
solutions, resulting in little or no pruning. In these cases, the algorithm may still end

7 Θ notation is a tight upper and lower bound on the algorithm execution, i.e., the algorithm will

check every node of the tree, i.e., exactly qa nodes.

 QoS Allocation Algorithms for Publish-Subscribe Information Space Middleware 353

up examining nearly the entire tree. Therefore, the Optimizing Brute-Force algo-
rithm is O(qa).

2.2 The Greedy Approximation QoS Management Algorithm

Our Greedy Approximation algorithm is based on a 0-1 integer programming algo-
rithm in [21]. 0-1 integer programming tries to maximize the objective function:

 ∑
=

m

i
ii xp

1

 (3)

subject to

∑
=

≤
m

i
jiij LxH

1

 (4)

for j = 1, 2, …, n, where:

• Each xi is an application at a particular QoS level
• pi is the priority of the application
• Hij is the resource usage of xi
• Lj is the vector of the capacity of the resources
• m is the number of applications and n is the number of resources.

Our Greedy Approximation algorithm greedily allocates QoS levels to applications
contending for resources using an effective gradient measure, a ratio of the benefit
that each application provides and the cost that it incurs. The algorithm measures the
benefit of an application as the value it contributes to the objective function above. It
measures the cost of an application at a particular QoS level as the amount of re-
sources requested. The algorithm aggregates the resources into a single dimension and
assigns a penalty to increase the cost associated with requesting a highly contended
resource (i.e., a resource for which a significant amount has already been allocated to
other applications).

Our algorithm extends the algorithm in [21] in the following ways:

1. We have two variable dimensions that need to be considered. Each application can
have multiple QoS levels from which to choose. In the algorithm in [21], each ap-
plication has one service level. Our algorithm treats each combination of applica-
tion and QoS level as a separate viable choice, while ensuring that only one QoS
level can be chosen for each application.

2. We compute an initial penalty vector for resource usage. The algorithm in [21]
only computes penalties as the algorithm progresses, which can lead to signifi-
cantly suboptimal allocation. That is, it treats all resources equally and completely
available at the beginning. In reality, some resources are more likely to become
bottlenecks (e.g., because more applications request them or applications request
higher amounts of them) than others. Our algorithm performs an initial pass and

354 J. Loyall, M. Gillen, and P. Sharma

assigns an initial penalty to resources, making it cost more to request highly con-
tended resources.

3. We guarantee a solution by including a starvation choice at each level, i.e., a QoS
level that uses no resources and provides no benefit and represents starving a par-
ticular application if there are not enough resources to run it at any level.

After computing the initial penalty, the greedy approximation algorithm computes the
total number of application-QoS level combinations as described in 1 above. It iter-
ates over the following steps until either all the applications have been assigned a QoS
level or there are no more resources left to allocate to any remaining choices:

1. It computes the effective gradient for each application-QoS level combination as
the ratio of benefit divided by cost. The benefit is the utility that a given applica-
tion at a given QoS level provides. The cost is the resources requested adjusted by
the penalty.

2. It selects the application and QoS level combination with the highest effective gra-
dient and eliminates further consideration of the other QoS levels for this applica-
tion.

3. It allocates the resources needed by the application and QoS level combination se-
lected in step 2, removing those resources from the available resources.

4. It prunes the list of application-QoS level combinations of any infeasible choices.

2.2.1 Analysis of the Runtime of Greedy Approximation
Pseudocode for the Greedy Approximation algorithm follows:

1: initializeList(CP-QoSLevelList)
2: while (CP-QoSLevelList not empty) {
3: next = find_max_gradient(CP-QoSLevelList);
4: addToUsedResources(next.resourceUsage)
5: removeChosenCP's Other Service Levels
6: removeInfeasible(CP-QoSLevelList)
7: }

Step 1 is the creation of the initial penalty vector. It makes a single pass through the
list of every control point and QoS level choice, CP-QoSLevelList, i.e., a*q elements
where a is the number of control points and q is the number of QoS levels. The loop
bounded by steps 2 and 7 is executed at most a times, since step 5 removes at least q-
1 elements from the list each time. Step 6 could remove more, so the actual number of
times through the loop could be fewer than a times. Steps 3 and 4 are linear time op-
erations on the current list of control points × QoS levels and resources, respectively.

Therefore, the worst case runtime is equal to (aq) + a(arq), or O(a2qr + aq),
where:

• a is the number of applications,
• q is the number of QoS levels, and
• r is the number of resources

 QoS Allocation Algorithms for Publish-Subscribe Information Space Middleware 355

Furthermore, notice that the operation in step 6 affects the runtime of future itera-
tions. If step 6 prunes a significant number of infeasible allocations from the CP-
QoSLevelList, then the number of times through the loop is significantly reduced. In
scenarios where 100% of solutions are feasible, step 6 will never remove anything
and the algorithm will run in worst case time. In scenarios where step 6 removes most
of the elements because many allocations are infeasible, the algorithm will run much
faster. Regardless, in worst case its runtime is polynomial or, more precisely, quad-
ratic in the number of applications.

2.3 Applying the QoS Management Algorithms to Dynamic Information Spaces

As illustrated in Fig. 1, the algorithms described above are used by the ISQM layer of
a multi-layered QoS management architecture. The ISQM uses the allocation algo-
rithms to select a set of QoS levels to apply at the control points throughout an infor-
mation space. The QoS levels are enforced at local control points by LQMs, which
control the rate, size, processing, and other controllable attributes of information
through the system.

The multi-layered approach also allows for QoS enforcement at different
granularities of time. At the lowest layers, QoS mechanisms and LQMs maintain QoS
levels by adjusting parameters like rate, compression level, and scaling factor as fre-
quently as they need to, with feedback control to avoid thrashing. The execution of
the QoS allocation algorithms and subsequent distribution of new QoS levels is ex-
pected to be much less frequent in general and associated with discrete events affect-
ing the entire information space, such as changes in information space makeup (new
clients or clients leaving), resource availability, or goals and priorities. In cases where
the effects of changes can be limited, running the allocation algorithms and distribut-
ing new policies might be avoided altogether. For example, a new client that is rela-
tively lower importance than other existing clients need not lead to recalculation of
QoS levels for other clients. Likewise, if a client leaves, the resources that it is using
can be kept in reserve rather than reallocating the information space, unless there is a
critical need for higher QoS somewhere.

This motivates an important area for future research, namely that of limiting the ef-
fects of changes in allocations. That is, if a change to state occurs requiring the ISQM
to run the QoS allocation algorithms to choose an allocation of QoS levels across the
information space, it is desirable for the selected allocation to require as few changes
at individual control points as possible. This means the ISQM needs to evaluate pos-
sible allocations not only in terms of their feasibility and utility values, but also in
terms of their differences from the last deployed allocation. This is an area that we
have not investigated fully yet.

3 Experimental Evaluation of the QoS Allocation Algorithms

We conducted a set of experiments to evaluate the relative performance of the algo-
rithms, in terms of quality of the solution produced and the speed of execution to
reach a solution. This section describes these experiments and their results.

356 J. Loyall, M. Gillen, and P. Sharma

3.1 Experimental Setup

We executed the experiments on a personal computer with a 2.80 GHz Intel® Pen-
tium®-4 CPU with 512 MB RAM, running the Linux (Fedora Core Release 6) operat-
ing system.

We developed a scenario generator that randomly generates scenarios used as in-
put to a simulator that we developed to execute the algorithms on the scenarios. Each
scenario consists of a set of applications, a set of QoS levels for each application, a
utility value for each QoS level, and a set of resources and amount used by each QoS
level. The generator accepts the following arguments: the number of applications
(control points) in the scenario, the number of QoS levels for each application, the to-
tal number of resources in an information space, and the number of resources (to be
chosen from the total number of resources) for each QoS level. The generator pro-
duces a random value for utility for each combination of application and QoS level,
randomly chooses the resources to use for each QoS level from among those avail-
able, and selects a random amount of each resource that is requested for each QoS
level, generating a discrete uniform distribution of scenarios.

The simulator takes as input a set of scenarios, runs the MRQ algorithms on each
scenario, and produces the solution allocation, the utility of the solution, the runtime
of the algorithm, and values for the metrics described in Section 3.2.

In general, for each of the experiments described in this report, we use the scenario
generator to generate a sizable set of scenarios with the following parameters: 3 QoS
levels, 6 resources per QoS level, and 110 total resources. We varied the number of
applications. For each application set, we generated 100 scenarios. For other experi-
ments, we will describe the specific experiment design as we describe the experimen-
tal results.

3.2 Experimental Metrics

Algorithm Metrics. We collected the following metrics to compute the efficacy and
the efficiency of the QMS algorithms:

• Percent of Optimality: The optimal solution is the feasible solution with the highest
utility. For the solution returned by any algorithm, we compute its percent of opti-
mality by dividing its utility by the utility of the optimal solution. For any given
scenario, we use the utility reported by the Optimizing Brute-Force algorithm as
the baseline against which the optimality of all the algorithms are compared.

• Runtime: We use the simulator to measure how fast each algorithm executes in our
experiments. Although the absolute runtime depends on the hardware on which the
algorithm is executed, the relative runtimes of various algorithms are comparable
because we ran all our experiments on the same machine.

Contention Metrics. As part of our experiments, we evaluated the effect of contention
on our algorithms, i.e., how resource rich or resource scarce the scenario is, and

 QoS Allocation Algorithms for Publish-Subscribe Information Space Middleware 357

collected contention metrics to support this. We use the following contention metric
in the experiments described in this paper:

• Percent of infeasible solutions measures the total number of infeasible solutions
out of the total number of possible solutions (leaf nodes in the search tree created
by the Optimizing Brute-Force algorithm). For example, the total number of possi-
ble solutions (i.e., possible allocations) for 10 applications and 3 QoS levels is
59,049 solutions. If only 200 solutions are feasible, we compute the percent of
infeasibility as (59049-200)/59049. The percent of infeasibility is directly propor-
tional to the level of contention, i.e., the higher the percentage of infeasible solu-
tions, the higher the contention for resources in the scenario.

3.3 Percent of Optimality and Runtime of the Optimizing Brute-Force
Algorithm

The Optimizing Brute-Force algorithm always produces an optimal solution (i.e.,
100% optimality). Hence, we use this as the baseline algorithm for measuring the ef-
fectiveness of the other algorithms.

However, in the worst case Optimizing Brute-Force runs in exponential time. Fur-
thermore, the runtime grows exponentially as either the number of applications or the
number of QoS levels increase. Figure 3 shows boxplots of the results for an experi-
ment in which we generated scenarios with the number of applications varying from
10 to 110 by steps of 10, with 100 scenarios at each step. Each application had 3 QoS
levels, and each QoS level used 6 resources selected randomly from a total of 110 re-
sources.

Boxplots [22] are a visual means of examining and comparing sets of data, regardless
of their distributions, that readily indicates their medians, variance, and skew. As shown
in Figure 3, the box of each
dataset displays the interquar-
tile range (IQR), i.e., the range
from the first to the third quar-
tile in which the middle 50% of
data values lie. The thick black
line in the middle of the box
represents the median. Vertical
lines extending out from the
box and ending in horizontal
bars, called whiskers, represent
the extent of the (non-outlier)
observed values. Circles be-
yond the whiskers represent
outliers, i.e., values above 1.5 ×
IQR + the upper quartile value
or less than -1.5 × IQR below
the lower quartile value.

Fig. 3. Impact of varying the number of applications on
the runtime of the Optimizing Brute-Force algorithm

358 J. Loyall, M. Gillen, and P. Sharma

As Figure 3 indicates, the runtime is good (near one second) until about 40-50 ap-
plications, after which the median runtime and the variance in runtime increase dra-
matically. The median runtime increases to about 70 seconds at 110 applications, with
a worst case runtime of 150 seconds and best case of about 30 seconds. The increased
variance is due to the difference in pruning possible from scenario to scenario. The
scenarios with the highest runtime allow little pruning, causing the Optimizing Brute-
Force algorithm to search nearly the entire space. In contrast, the best measured run-
time (about 25 seconds for 110 applications, 6× faster than the worst case time) are
for scenarios that allow significant pruning (i.e., many infeasible solutions and/or
quickly found high-utility solutions).

Figure 4 depicts the runtime of Optimizing Brute-Force when either the number of
QoS levels or the number of applications increases. For this experiment, we generated
scenarios that varied the number of QoS levels from 1 to 20 for each number of applica-
tions and that varied the number of applications from 1 to 20 for each number of QoS
levels. The runtime is acceptable up to about 10 of either, then increases dramatically.

3.4 Percent of Optimality and Runtime of the Greedy Approximation
Algorithm

Our experiments indi-
cate that the Greedy
Approximation algo-
rithm produces solu-
tions that are close to
optimal, with a sig-
nificant improvement
in runtime over the
Optimizing Brute-
Force baseline. The
boxplot in Figure 5
represents an experi-
ment in which we ran
the Greedy Approxi-
mation algorithm on
50,000 scenarios, with
10 applications8, 3
QoS levels for each
application, 3 re-
sources per QoS level,
and 30, 70, 110, 150,
and 190 total re-
sources (10,000 sce-
narios for each level of

8 We had to generate scenarios with a modest number of applications in order to have an opti-

mality baseline against which to compare, since we have to run the Optimizing Brute-Force
algorithm on each of the 50,000 scenarios to get the optimal solution.

Fig. 4. The impact of simultaneously varying number of applica-
tions for a given QoS level and number of QoS levels for a given
application when running the Optimizing Brute-Force

 QoS Allocation Algorithms for Publish-Subscribe Information Space Middleware 359

total resources). The median so-
lution is 96% of optimal (the
thick black line near the top of
the boxplot), and 75% of the so-
lutions are over 90% of optimal
or better (the grey box and
above), with all but the outliers
producing solutions 80% opti-
mal or better. The worst solu-
tion is 40% of optimal.

In experiments designed to
identify the source of the low
optimality outliers, we deter-
mined that contention adversely
impacts the effectiveness of
Greedy Approximation. Spe-
cifically, we observed the me-
dian optimality decline to 75%
as the level of contention in-
creases significantly. Figure 6
illustrates experiments run with
the number of applications
varying from 10 to 110, 3 QoS
levels, 6 resources per QoS
level, and 20 total resources. In
these experiments, the median
percent of optimality varied be-
tween only 75-85%, although
the worst case percent optimality
is approximately the same as the
experiment in Figure 5.

The difference in the number
of resources being used by each
application and the number of
resources available causes the
experiments depicted in Figures
5 and 6 to exhibit different con-
tention characteristics. The ex-
periments depicted in Figure 5
(selecting 3 resources from 30,
70, 110, 150, or 190 resources)
had scenarios with the percentage of feasible solutions ranging from under 10% to
100%, whereas in the experiments depicted in Figure 6 (selecting 6 resources from 20
available), all of the scenarios had fewer than 0.5% feasible allocations. This provides
evidence that the level of contention affects the optimality of the Greedy Approxima-
tion algorithm.

Fig. 5. Optimality of the Greedy Approximation al-
gorithm on 50,000 scenarios with 10 applications, 3
QoS levels per appli-cation, 3 resources per QoS level,
and 30, 70, 110, 150, and 190 total resources (10,000
scenarios each)

Fig. 6. Optimality of Greedy Approximation on
50,000 scenarios with a varying number of applica-
tions, 3 QoS levels per application, 6 resources per
QoS level, and 20 total resources

360 J. Loyall, M. Gillen, and P. Sharma

Effectiveness of the initial penalty optimizing factor. As described in Section 2.2, our
Greedy Approximation algorithm uses an initial penalty vector. We introduced the
initial penalty vector to handle a set of scenarios (that we dubbed Greedy Achilles’
Heel scenarios) that produced sub-optimal solutions in the base algorithm (without the
initial penalty). These scenarios have one or more high utility applications that request
a significant amount of a highly contended resource. Since the algorithm without an
initial penalty treated all resources equally and completely available at the beginning,
these applications would be greedily assigned resources and potentially starve a large
number of other applications resulting in a significantly suboptimal solution. To pre-
vent this, we enhanced the algorithm to perform an initial pass and assign an initial
penalty to highly contended resources, making it cost more to request these resources.

We conducted experiments to
evaluate the effectiveness of the ini-
tial penalty enhancement. For this
experiment, we generated Greedy
Achilles’ Heel scenarios with a vary-
ing number of applications, 3 QoS
levels for each application, and 6 re-
sources selected randomly from 110
resources for each QoS level. We
varied the number of applications
from 10 to 40 in steps of 10 (again,
the upper bound of 40 allows us to
run the Optimizing Brute-Force algo-
rithm to get the optimal solution
against which to compare). For each
number of applications, we had 100
scenarios on which we ran the
Greedy Approximation algorithm
both with and without the initial penalty. The results show that the initial penalty im-
proves the percent of optimality significantly for this class of scenarios. Without the
initial penalty, Greedy Approximation provides a low median percent of optimality
ranging from approximately 30% to approximately 42% (Figure 7). When we add the
initial penalty to Greedy Approximation, the median percent of optimality on the
same set of scenarios improved to a range of 75% to 85% (Figure 8). Notice that the
percent of optimality declines as the number of applications increase in both cases,
due to an increase in contention (more applications competing for the same number of
resources).

The effect of the number of applications and the number of resources on the runtime
of Greedy Approximation. We also ran experiments that varied the number of applica-
tions and the number of resources, the two scenario attributes that we believed might
scale to large numbers in realistic scenarios. From the analysis in Section 2.2.1, we
expected varying the number of applications to affect the runtime quadratically and
varying the number of resources to affect the runtime approximately linearly.

Fig. 7. Percentage of optimality of Greedy Ap-
proximation for Greedy Achilles’ Heel scenarios
without the initial penalty optimization

 QoS Allocation Algorithms for Publish-Subscribe Information Space Middleware 361

For the experiment varying
the number of applications, we
increased the applications from
10 to 300 in steps of 10, with
100 scenarios for each discrete
number of applications. Each
application had 3 QoS levels,
and each QoS level used 6 re-
sources selected randomly from
a total of 110 resources.

As expected from the analy-
sis above, we observed that the
runtime of Greedy Approxima-
tion increases polynomially with
the increase in the number of
applications (Figure 9). As
comparison, executing the
Greedy Approximation algo-
rithm on a randomly generated
scenario with 110 apps took less
than 0.10 seconds versus 60 sec-
onds for the Optimizing Brute-
Force algorithm. We observed
subsecond runtimes for up to
hundreds of applications (0.6
seconds for 300 applications).

Figure 10 illustrates the re-
sults of an experiment to evalu-
ate the effects of varying the
number of resources. In this ex-
periment, we randomly gener-
ated scenarios with 100 applica-
tions, 3 QoS levels per
application, 3 resources per QoS
level, and total resources vary-
ing from 30 to 180, in steps of
10. We generated 100 scenarios
for each discrete number of resources. Our results indicate that the runtime of Greedy
Approximation grows approximately linearly as the number of resources increases, as
shown in Figure 10, confirming what we expected from the analysis in Section 2.2.1.

4 Related Work

The information spaces concept has grown out of the Joint Battlespace Infosphere
(JBI) [2, 10], a US Air Force initiative supporting network centric warfare concepts. It
is related to other network centric warfare initiatives, including the Global Information

Fig. 8. Percentage of optimality of Greedy Approxima-
tion for Greedy Achilles’ Heel scenarios with the initial
penalty optimization

Fig. 9. Runtime of the Greedy Approximation algo-
rithm as the number of applications increase

362 J. Loyall, M. Gillen, and P. Sharma

Grid (GIG) and Net-Centric En-
terprise Systems (NCES). The
GIG will provide the communi-
cation, networking, and process-
ing capability to enable the inter-
connection of warfighters, com-
mand personnel, and policymak-
ers [4]. NCES is a set of services
(based on Web Services [25])
enabling access to and use of the
GIG in warfighting operations
[3]. The JBI, as exemplified by
the Apollo reference implementa-
tion, enables information ex-
change and management between
tactical and enterprise users and
is intended to interact with and
use NCES services and the GIG
as concrete instances emerge.

Dynamic programming [6] is another approach to solving multi-resource QoS allo-
cation problems, treating them as 0-1 knapsack problems. In general, the runtime of
this class of algorithms is pseudo-polynomial, or technically an exponential function of
their input sizes [9]. This presents a quantization challenge for solving the problem us-
ing dynamic programming. A way to develop a polynomial time dynamic program-
ming algorithm is to limit the sizes of the resources by normalizing them and choosing
a quantization, i.e., a discrete unit of allocation for each resource. This results in re-
sources being allocated in discrete units (e.g., tenths, hundredths, or thousandths).
While this makes the algorithm run much faster, it reduces its effectiveness. For exam-
ple, a quantization of 0.1 allocates resources in tenths of their total amount available
(an application requesting 3% of a resource would get either 0% or 10%). The quanti-
zation also places a limit on the number of applications that can share a resource, e.g., a
0.1 quantization means that at most ten applications can share any resource. A finer
grain quantization should improve the optimality of the solutions but will increase the
runtime significantly. For example, a quantization of 0.01 will allow up to 100 applica-
tions to share each resource and will allocate resources in hundredths, but would in-
crease the execution time of the algorithm by at least 10× over that for a 0.1 quantiza-
tion. For some resources, this would still be a gross quantization. For example, a 100
Mbps link would be allocated in units of 1 Mbps and a 1 Gbps network link would be
allocated in units of 10 Mbps. Our experiments showed significantly better efficacy
and performance from the Greedy Approximation algorithm.

Einbu provides a method for solving the multi-resource allocation problem by
mapping it to the Transportation Problem [5]. The method requires a strictly concave
return function, i.e., a utility function in which the additional gain in utility from each
additional amount of resources used becomes smaller as the number of resources
used increases. While this might be true in many scenarios, it is a limitation that our
algorithms do not require. The algorithm is guaranteed to terminate and produce an

Fig. 10. Runtime of the Greedy Approximation algo-
rithm as the number of resources increases

 QoS Allocation Algorithms for Publish-Subscribe Information Space Middleware 363

optimal solution. However, the paper does not analyze the computational complexity
of the algorithm.

Xu et al present an algorithm for reserving multiple resources as service requests
are made [29]. The algorithm creates a graph for each service request at runtime, with
nodes representing QoS levels and edges representing feasible resource requirements.
It then runs Dijkstra’s shortest path algorithm to determine the suitable resource
reservation. The algorithm can run in polynomial time on graphs with no cycles. To
handle the more general case, which is NP-complete, the paper presents a two-pass
algorithm with heuristics specific to the resource reservation domain. Gopalan and
Chiueh present another heuristic algorithm based on tasks with time ordered use of re-
sources [8]. While it is difficult to fully compare just based on the papers, these ap-
pear to be viable alternatives to the algorithms we present in this paper.

As an alternative to algorithms based on mathematical foundations or heuristics,
Liu et al use a genetic algorithm approach to resource allocation [13]. This approach
is based on task scheduling and produces an optimal allocation, but relies on sequen-
tial tasks and does not evaluate its runtime performance and suitability to run in-line
in a dynamic system.

The work reported in this paper builds upon the authors’ previous work in QoS for
distributed object and component based middleware [14, 17, 19, 28] and previous
work in resource management, such as the Darwin project at CMU [1].

5 Conclusions

For publish-subscribe information spaces to be useful for real-time and critical informa-
tion exchange, they must include quality of service capabilities. However, traditional
QoS mechanisms for resource allocation and differentiated services are not sufficient,
unless they include algorithmic means to mediate the conflicting demands for QoS and
aggregate QoS control over all the clients and operations of an information space.

In this paper, we have advanced the state of the art in middleware-based multi-
resource QoS allocation by defining, evaluating, and prototyping a set of algorithms
that allocate QoS levels and resources across large numbers of applications and con-
trol points within information spaces. The Optimizing Brute-Force algorithm provides
optimal allocations in reasonable execution time for modest numbers of applications
(subsecond response up to 40-50 applications in our experiments). The Greedy Ap-
proximation algorithm provides approximate solutions, but scales well, with a median
of 96% optimality and demonstrated fast execution times to hundreds of applications
with subsecond response in our experiments. Greedy Approximation has the fastest
runtime, but farther from optimal solutions in highly contentious scenarios (defined
by the number of feasible allocations). Conversely, it produces closer to optimal solu-
tions, but takes more time to do so, when contention is low (i.e., there are many feasi-
ble solutions).

Under an ongoing effort with the US Air Force Research Laboratory, we are cur-
rently prototyping these algorithms as part of a practical application of multi-layered
QoS management middleware for information spaces, which will give us the opportu-
nity to evaluate these algorithms in the context of realistic scenarios.

364 J. Loyall, M. Gillen, and P. Sharma

References

1. Chandra, P., Fisher, A., Kosak, C., Ng, T.S., Steenkiste, P., Takahasi, E., Zhang, H.: Dar-
win: Resource Management for Value-Added Customizable Network Service. In: Sixth
IEEE International Conference on Network Protocols (ICNP 1998), Austin, TX (October
1998)

2. Combs, V., Hillman, R., Muccio, M., McKeel, R.: Joint Battlespace Infosphere: Informa-
tion Management within a C2 Enterprise. In: The Tenth International Command and Con-
trol Technology Symposium, ICCRTS (2005)

3. Defense Information Systems Agency, Net-Centric Enterprise Services,
 http://www.disa.mil/nces/

4. DoD CIO, Department of Defense Global Information Grid Architectural Vision, Vision
for a Net-Centric, Service-Oriented DoD Enterprise, Version 1.0 (June 2007),
http://www.defenselink.mil/cio-nii/docs/GIGArchVision.pdf

5. Einbu, J.M.: A Finite Method for the Solution of a Multi-Resource Allocation Problem
with Concave Return Functions. Mathematics of Operations Research 9(2), 232–243
(1984)

6. Giegerich, R., Meyer, C., Steffen, P.: A Discipline of Dynamic Programming over Se-
quence Data. Science of Computer Programming 51, 215–263 (2004)

7. Gill, C., Loyall, J., Schantz, R., Schmidt, D.: Experiences Using Adaptive Middleware in
Distributed Real-time Embedded Application Contexts: a Dependability Perspective. In:
Workshop on Dependable Middleware-Based Systems (WDMS), Part of Dependable Sys-
tems and Networks Conference (DSN 2002), Bethesda, Maryland, June 26 (2002)

8. Gopalan, K., Chiueh, T.: Multi-Resource Allocation and Scheduling with Real-Time Con-
straints. In: Multimedia Computing and Networking (MMCN 2002), San Jose, CA, Janu-
ary 18-25 (2002)

9. Hall, L.: Computational Complexity, The Johns Hopkins University,
 http://www.esi2.us.es/~mbilbao/complexi.htm

10. The Joint Battlespace Infosphere website, http://www.infospherics.org/
11. Lee, C., Lehoczky, J., Rajkumar, R., Siewiork, D.: On Quality of Service Optimization

with Discrete QoS Options. In: Fifth IEEE Real-Time Technology and Applications Sym-
posium (RTAS 1999) (1999)

12. Linderman, M., Siegel, B., Ouellet, D., Brichacek, J., Haines, S., Chase, G., O’May, J.: A
Reference Model for Information Management to Support Coalition Information Sharing
Needs. In: The Tenth International Command and Control Technology Symposium
(ICCRTS) (2005)

13. Liu, Y., Zhao, S.-L., Du, X.-K., Li, S.-Q.: Optimization of Resource Allocation in Con-
struction Using Genetic Algorithms. In: Fourth International Conference on Machine
Learning and Cybernetics, Guangzhou, August 18-21 (2005)

14. Loyall, J., Sharma, P., Gillen, M., Schantz, R.: A QoS Management System for Dynami-
cally Interoperating Net-Centric Systems. In: The SPIE Conference on Defense Transfor-
mation and Net-Centric Systems, Orlando, FL, April 9-12 (2007)

15. Manghwani, P., Loyall, J., Sharma, P., Gillen, M., Ye, J.: End-to-End Quality of Service
Management for Distributed Real-Time Embedded Applications. In: The Thirteenth Inter-
national Workshop on Parallel and Distributed Real-Time Systems (WPDRTS 2005),
Denver, Colorado, April 4-5 (2005)

16. Schantz, R.E., Loyall, J.P., Rodrigues, C., Schmidt, D.C.: Controlling Quality-of-Service
in Distributed Real-Time and Embedded Systems via Adaptive Middleware. Software:
Practice and Experience 36(11-12), 1189–1208 (2006)

 QoS Allocation Algorithms for Publish-Subscribe Information Space Middleware 365

17. Schantz, R.E., Loyall, J.P., Rodrigues, C., Schmidt, D.C., Krishnamurthy, Y., Pyarali, I.:
Flexible and Adaptive QoS Control for Distributed Real-Time and Embedded Middleware.
In: Endler, M., Schmidt, D.C. (eds.) Middleware 2003. LNCS, vol. 2672, pp. 374–393.
Springer, Heidelberg (2003)

18. Sharma, P., Loyall, J., Schantz, R., Ye, J., Manghwani, P., Gillen, M., Heineman, G.T.:
Using Composition of QoS Components to Provide Dynamic, End-To-End QoS in Dis-
tributed Embedded Applications - a Middleware Approach. IEEE Internet Comput-
ing 10(3), 16–23 (2006)

19. Sharma, P.K., Loyall, J.P., Heineman, G.T., Schantz, R.E., Shapiro, R., Duzan, G.: Com-
ponent-Based Dynamic QoS Adaptations in Distributed Real-Time and Embedded Sys-
tems. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS, vol. 3291, pp. 1208–1224.
Springer, Heidelberg (2004)

20. Sun Microsystems, Java Message Service, Version 1.1, April 12 (2002),
 http://java.sun.com/products/jms/docs.html

21. Toyoda, Y.: A Simplified Algorithm for Obtaining Approximate Solution to Zero-One
Programming Problems. Management Science 21 (1975)

22. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)
23. U.S. Air Force. A Guide for Communities of Interest (COIs), Implementing the DoD Net-

Centric Data Strategy and the Air Force Information and Data Management Strategy, Ver-
sion 1.0 (April 2005)

24. US Air Force Air Force Research Laboratory, Apollo v.1.0 User’s Guide
25. W3C, Web Services Architecture, W3C Working Group Note (February 11, 2004),

 http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
26. W3C, XQuery 1.0: An XML Query Language, W3C Recommendation (January 23, 2007),

 http://www.w3.org/TR/xquery/
27. W3C, Extensible Markup Language (XML) 1.0, W3C Recommendation (August 16,

2006), http://www.w3.org/TR/xml
28. Wang, N., Gill, C., Schmidt, D., Gokhale, A., Natarajan, B., Loyall, J., Schantz, R., Rodri-

gues, C.: QoS-Enabled Middleware. In: Mahmoud, Q.H. (ed.) Middleware for Communi-
cations. Wiley, Chichester (2004)

29. Xu, D., Nahrstedt, K., Wichadakul, D.: QoS and Contention-Aware Multi-Resource Res-
ervation. Cluster Computing 4(2), 95–107 (2001)

Profiling and Modeling Resource Usage of
Virtualized Applications

Timothy Wood1, Ludmila Cherkasova2, Kivanc Ozonat2,
and Prashant Shenoy1

1 University of Massachusetts, Amherst
{twood,shenoy}@cs.umass.edu

2 HP Labs, Palo Alto
{lucy.cherkasova,kivanc.ozonat}@hp.com

Abstract. Next Generation Data Centers are transforming labor-inten-
sive, hard-coded systems into shared, virtualized, automated, and fully
managed adaptive infrastructures. Virtualization technologies promise
great opportunities for reducing energy and hardware costs through
server consolidation. However, to safely transition an application running
natively on real hardware to a virtualized environment, one needs to
estimate the additional resource requirements incurred by virtualization
overheads.

In this work, we design a general approach for estimating the resource
requirements of applications when they are transferred to a virtual en-
vironment. Our approach has two key components: a set of microbench-
marks to profile the different types of virtualization overhead on a given
platform, and a regression-based model that maps the native system
usage profile into a virtualized one. This derived model can be used for
estimating resource requirements of any application to be virtualized on
a given platform. Our approach aims to eliminate error-prone manual
processes and presents a fully automated solution. We illustrate the
effectiveness of our methodology using Xen virtual machine monitor.
Our evaluation shows that our automated model generation procedure
effectively characterizes the different virtualization overheads of two di-
verse hardware platforms and that the models have median prediction
error of less than 5% for both the RUBiS and TPC-W benchmarks.

1 Introduction

Virtualization and automation are key capabilities of Next Generation Data
Centers (NGDC), promising to create a more agile and dynamic IT infrastruc-
ture. Virtualization separates the hardware owner from the application owner
– allowing system configuration, monitoring, and management to be homoge-
nized and automated across the data center. While masking the details of server
resources from users, virtualization can optimize resource sharing among appli-
cations hosted in different virtual machines via the ability to quickly repurpose
server capacity on demand, and hence better meet the needs of applications and
respond more effectively to changing business conditions.

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 366–387, 2008.
c© IFIP International Federation for Information Processing 2008

Profiling and Modeling Resource Usage of Virtualized Applications 367

In NGDC, where server virtualization provides the ability to slice larger,
underutilized physical servers into smaller, virtual ones, fast and accurate per-
formance models become instrumental for enabling applications to be consoli-
dated, optimally placed and provided with the necessary resources. In order to
evaluate which workloads can be consolidated to which servers, some capacity
planning and workload analysis must be done. In the simple naive case, the
service provider may estimate the peak resource requirements of each workload
and then evaluate the combined resource requirements of a group of workloads
by using the sum of their peak demands. However, such an approach can lead
to significant resource over-provisioning since it does not take into account
the benefits of resource sharing to accommodate the complementary workload
patterns. A more promising and accurate approach for the design of workload
placement services employs a trace-based approach that assesses permutations
and combinations of workload patterns in order to determine the optimal stack-
ing functions [10, 25, 27]. Under this approach, a representative application
resource usage profile is gathered over some time period (typically 3-6 months).
Then these traces are used for capacity planning and workload placement in
workload consolidation exercises (see existing commercial tools [14, 34]). The
general idea behind trace-based methods is that the historic traces that capture
past application demands are representative of the future application behavior.

However, capacity planning when transitioning to a virtual environment poses
additional challenges due to overheads caused by the virtualization layer. These
overheads depend on the type and implementation specifics of the virtualiza-
tion solution [5, 17, 29, 37]. Often, the “amount” of CPU overhead is directly
proportional to the “amount” of performed I/O processing [7, 11]. Current trace-
based capacity planning and management solutions have the capability to scale
workload traces by a specified CPU-multiplier to account for hardware changes
between platforms, but this form of scaling may not be effective when moving
to a virtualized platform which can exhibit very different levels of overhead
depending on the rate and type of I/O being performed by an application.

In this work, we design a general approach for estimating the CPU require-
ments of applications when they are transferred to a virtual environment.

Our approach has the following key components:

– A selected set of microbenchmarks to profile the different types of virtualiza-
tion overhead on a given platform. This microbenchmark suite is executed on
the native hardware and in a virtualized environment to create two resource
usage profiles: i) native and ii) virtualized;

– Using a regression-based approach we create a model that maps the native
system usage profile into the virtualized one. This model helps to predict the
resource requirements of any application on that platform.

The correct execution phase of the microbenchmark suite is a prerequisite for
building an accurate model between native and virtualized platforms. If some mi-
crobenchmarks have malfunctioned or collected data were corrupted then it can
inevitably impact the model outcome. We perform an additional analysis to filter
out microbenchmark data with high error against the obtained regression-based

368 T. Wood et al.

model. Then, a more accurate model is created by using the reduced data set. We
also can rerun identified “failed” or “malfunctioned” microbenchmarks and re-
peat the analysis phase. Such an approach aims to eliminate error-prone manual
processes in order to support a fully automated solution.

We illustrate the effectiveness of our methodology using Xen virtual machine
monitor [5]. The evaluation shows that our automated model generation proce-
dure effectively characterizes the different virtualization overheads of two diverse
hardware platforms and that the models have a median prediction error of less
than 5% for both the RUBiS [3] and TPC-W [31] benchmarks.

2 Problem Definition

Server consolidation is an approach to reduce the total number of servers in
response to the problem of server sprawl, a situation in which multiple, under-
utilized servers take up more space and consume more resources than can be
justified by their workloads. Virtual Machine Monitors (VMMs) enable diverse
applications to run in isolated environments on a shared hardware platform, and
provide a degree of fault and performance isolation between the applications.

A typical approach for evaluating which workloads can be efficiently con-
solidated together is based on multi-dimensional “binpacking” of resource usage
traces. Under such an approach, each application is characterized by its CPU, I/0
and memory usage over time. Then a binpacking algorithm finds a combination of
workloads with resource requirements which do not exceed the available server
resources. After the initial workload placement, specialized workload manage-
ment tools are used[13, 15] to dynamically adjust system resources to support
the required application performance.

In our work, we are concerned with the initial workload placement phase that
requires as an input the application resource usage traces in virtual environment.
Resource requirements (in particular, CPU requirements) can increase due to
virtualization overheads. It is important to know what an application’s resource
needs are going to be prior to transitioning it to the virtual environment. If these
overheads are not accounted for during initial planning, an application could
be deployed to a server with insufficient resources, resulting in unacceptable
application performance.

Virtual
Machine

Hypervisor

NIC Disk

Net Driver Disk Driver

(a) VMware I/O Model

Virtual
Machine

Hypervisor

NIC Disk

Domain-0

Net Driver

Disk Driver

(b) Xen I/O Model

Fig. 1. Two popular I/O models for VMs

Profiling and Modeling Resource Usage of Virtualized Applications 369

Xen and VMware ESX server demonstrate the two popular I/O models for
VMs. In ESX (and Xen in its original design [5]), the hypervisor itself con-
tains device driver code and provides safe, shared access for I/O hardware (see
Figure 1 a). Later, the Xen team proposed a new architecture [9] that allows
unmodified device drivers to be hosted and executed in isolated “driver domains”
(see Figure 1 b).

In Xen, the management domain Dom-0 hosts unmodified Linux device drivers
and plays the role of the driver domain. This I/O model results in a more complex
CPU usage model. For I/O intensive applications, CPU usage has two compo-
nents: CPU consumed by the guest virtual machine (VM) and CPU consumed
by Dom-0 which performs I/O processing on behalf of the guest domain.

In this work, without loss of generality, we demonstrate our approach using
Xen running paravirtualized VMs. We believe that our approach can be applied
to other virtualization platforms such as VMware ESX Server, but focus on Xen
in this work because it presents the additional challenge of modeling both the
virtualized application and the driver domain (Dom-0) separately.

Given resource utilization traces of an application running natively, we aim
to estimate what its resource requirements would be if the application were
transitioned to a virtual environment on a given hardware platform. For example,
let a collection of application resource usage profiles (over time) in native system
be provided as shown in Figure 2 (top): i) CPU utilization, ii) transferred and
received networking packets, iii) read and written disk blocks.

The goal is to estimate the CPU requirements of the following two components
as shown in Figure 2 (bottom):

– virtual machine (VM) where the application is going to reside and execute;
– Dom-0 which performs I/O processing on behalf of the guest virtual machine.

Intuitively, we expect that CPU utilization of VM is highly correlated and pro-
portional to the native CPU usage profile of the application, while Dom-0 CPU
utilization is mostly determined by a combination of I/O profiles (both network
and disk).

We focus on estimating only CPU utilization since other metrics (such as
disk and network request rates) are not directly impacted by the virtualization

Time

C
P

U

Time

N
et

Time

D
is

k

Time

V
M

 C
P

U

Time

D
om

0
C

P
U

Native App Traces

Virtual App Traces

Fig. 2. Using native application traces to predict resource needs in virtual environments

370 T. Wood et al.

layer–running an application in a virtualizated environment will not cause more
packets to be sent over the network or more disk requests to be generated.
Instead, the virtualization layer incurs additional processing overheads when
I/O is performed; it is these overheads which our models seek to capture.1

Our Approach: We present an automated model generation system which
determines the relationship between the native and virtual platforms being
used. The overhead of the virtual platform is characterized by running a series
of microbenchmarks on both platforms and building a model that relates the
resource requirements on one platform to the other. Although it is created using
data from synthetic benchmarks, the result is a general model which can be
applied to traces from any other application in order to predict what its resource
requirements will be on the virtual platform.

3 Platform Profiling

In this section, we describe the collection of microbenchmarks that are selected
for profiling different types of virtualization overhead on a given platform. In
order to determine a general relationship between the application resource usage
in native and virtual platforms, we first accumulate the samples of such usage
profiles by executing a specially selected set of microbenchmarks in both native
and virtualized environments.

3.1 Microbenchmark Requirements

The microbenchmark selection for our suite is driven by the following objectives:

• Microbenchmarks must be able to apply a range of workload intensities.
There are a large number of benchmarks available which allow you to stress
test a system to see how it performs under maximum load. However, a typical
enterprise application exhibits variable workloads. A benchmark which simply
reports the maximum number of web requests or disk accesses that a system
can perform per second is not useful for us since it only provides information
about the maximum capacity and corresponding resource usage, not about the
utilization under different workloads. In consolidation scenarios, the considered
applications are likely to operate at a light or medium load. Therefore, we
concentrate on creating a suite of microbenchmarks that can be configured to
generate workloads of different intensities, i.e., capable of generating different
networking/disk access rates and consume different CPU amounts.

• Microbenchmarks should run nearly-identical in both native and virtual
environments. This requirement is very important for our approach. The appli-
cation behavior is represented via different resource usage traces over time. When
a workload performs a combination of CPU and I/O activities at time interval
T on a native system, we correlate it with the CPU usage profile (both VM
1 Virtualization also incurs a memory overhead. Both Xen and ESX Server require a

base allocation for Dom-0 or the Service Console, plus a variable amount per VM.

Profiling and Modeling Resource Usage of Virtualized Applications 371

and Dom-0) observed at time interval T in the virtualized environment for the
same workload in order to build the model (relationship) between the native and
virtualized systems. Thus, the requirement for our microbenchmarks is that the
workloads must be nearly-identical in both the native and virtual environments
we test. While our benchmarks allow some non-determinism in the workload
traffic patterns, we carefully design our microbenchmarks to always execute the
same set of activities over the same period of time. We avoid benchmarks with
a strong feedback loop since virtualization overheads may increase latency and
distort the resource usage over time. While our models are primarily designed
for open loop applications, such as web servers where the user “think time” is
much higher than the average request processing time, they still provide a bound
on resource utilization for closed loop systems.2

3.2 Microbenchmark Workloads

The selected microbenchmarks have to create a set of workloads that utilize
different system resources and have a different range of workload intensities.

We use a client-server style setup in our benchmarks. In general, a client
machine issues a set of requests to the benchmark server running on the system
being profiled. The clients adjust the rate and type of requests to control the
amount of CPU computation and I/O activities performed on the test system.
At a high level, our microbenchmarks are comprised of three basic workload
patterns that either cause the system to perform CPU intensive computation,
send/receive network packets, or read/write to disk.

– Our computation intensive workload calculates Fibonacci series when it re-
ceives a request. The number of terms in the series is varied to adjust the
computation time.

– The network intensive workload has two modes depending on the type of
request. In transmit mode, each incoming request results in a large file being
sent from the system being tested to the client. In receive mode, the clients
upload files to the benchmark application. The size of transferred files and
the rate of requests is varied to adjust the network utilization rate.

– The disk intensive workload has read and write modes. In both cases, a
random file is either read from or written to a multilevel directory structure.
File size and request rate can be adjusted to control the disk I/O rate.

Each workload is created by adjusting the request type sent to the server from
the client machines. We split each of the basic benchmark types, CPU-, network-,
and disk-intensive, into five different intensities ranging from 10% load to 90%
load. The maximum load that a server can handle is determined by increasing
the throughput of benchmark requests until either the virtual machine or Dom-
0 CPU becomes saturated during testing. To create more complex and realistic
scenarios, we use a combination workload that exercises all three of the above

2 Sec. 6 provides a more detailed discussion on the issue of “applications with a
feedback loop”.

372 T. Wood et al.

components. The combination workload simultaneously sends requests of all
types to the benchmarked server. The relative intensity of each request type
is varied in order to provide more realistic training data which does not focus
exclusively on a single form of I/O.

The microbenchmarks are implemented as a set of PHP scripts running on
an Apache web server at the benchmarked server side. Basing the microbench-
marks on Apache and PHP has the benefit that they can be easily deployed
and executed on a wide range of hardware platforms within a software environ-
ment which data center administrators are already familiar with. The developed
microbenchmark suite allows us to generate a diverse set of simple and more
complex workloads that exercise different system components. The full set of
PHP scripts, as well as the scripts to create the file structure used in the disk
tests, comprise only a few hundred lines of code.

The client workloads are generated using httperf [22] and Apache JMeter [4].
These tools provide flexible facilities for generating variable and fixed rate HTTP
workloads. The workloads can then be easily “replayed” in different environments.
Both tools can emulate an arbitrarynumber of clients accessingfileson awebserver.

3.3 Platform Resource Usage Profiles

We generate platform profiles by running a set of microbenchmarks on the sys-
tems being tested. While each microbenchmark is running, we gather resource
utilization traces to define the platform profile used as the training data for the
model. Within the native system, we currently gather information about eleven
different resource metrics related to CPU utilization, network activity, and disk
I/O. The full list of metrics is shown in Table 1. These statistics can all be
gathered easily in Linux with the sysstat monitoring package [30]. We focus on
this set of resource measurements since they can easily be gathered with low
overhead. Since these traces must also be gathered from the live application
being transitioned to the virtual environment, it is crucial that a lightweight
monitoring system can be used to gather data.

We monitor three CPU related metrics since different types of activities may
have different virtualization overheads. For example, user space processing such
as simple arithmetic operations performed by an application are unlikely to
have much overhead in current virtualization platforms. In contrast, tasks which
occur in kernel space, such as context switches, memory management, and I/O
processing, are likely to have a higher level of overhead since they can require
traps to the hypervisor.

Table 1. Resource Utilization Metrics

CPU Network Disk

User Space % Rx packets/sec Read req/sec
Kernel % Tx packets/sec Write req/sec
IO Wait % Rx bytes/sec Read blocks/sec

TX bytes/sec Write blocks/sec

Profiling and Modeling Resource Usage of Virtualized Applications 373

We measure both the packet rates and byte rates of the network interfaces
since different platforms may handle I/O virtualization in different ways. For
example, prior to Xen version 3.0.3, incoming network packets were passed
between Dom-0 and the guest domain by flipping ownership of memory pages,
thus the overhead associated with receiving each packet was independent of its
size [11]. Newer versions of Xen directly copy packets from Dom-0 to the guest
domain rather than using page flipping, thus the overhead is also related to
the number of bytes received per second, not just the number of packets. We
differentiate between sending and receiving since these paths may have different
optimizations.

We split disk measurements into four categories based on similar reasoning.
A resource usage trace is gathered for each benchmark set containing values for

all metrics listed in Table 1, plus the time interval, and benchmark ID. After the
resourcemetrics have been gathered on thenative system, theDom-0 andVMCPU
utilizations are measured for the identical benchmark on the virtualized platform.

4 Model Generation

This section describes how to create models which characterize the relationship
between a set of resource utilization metrics gathered from an application run-
ning natively on real hardware and the CPU requirements of the application if
it were run on a virtual platform. Two models are created: one which predicts
the CPU requirement of the virtual machine running the application, and one
which predicts the Dom0 CPU requirements when it performs I/O processing
on behalf of the guest domain.

The model creation employs the following three key components:

– A robust linear regression algorithm that is used to lessen the impact of
outliers.

– A stepwise regression approach that is employed to include only the most
statistically significant metrics in the final model.

– A model refinement algorithm that is used for post-processing the training
data to eliminate or rerun erroneous benchmarks and to rebuild a more
accurate model.

4.1 Model Creation

To find the relationship between the application resource usage in native and
virtualized systems we use the resource usage profile gathered from a set of
microbenchmarks run in both the virtual and native platforms of interest (see
Section 3.3).

Using values from the collected profile, we form a set of equations which
calculate the Dom-0 CPU utilization as a linear combination of the different
metrics:

U1
dom0 = c0 + c1 ∗ M1

1 + c2 ∗ M1
2 + ... + c11 ∗ M1

11

U2
dom0 = c0 + c1 ∗ M2

1 + c2 ∗ M2
2 + ... + c11 ∗ M2

11 (1)

....

374 T. Wood et al.

where

– M j
i is a value of metric Mi collected during the time interval j for a bench-

mark executed in the native environment;
– U j

dom0 is a measured CPU utilization for a benchmark executed in virtualized
environment with the corresponding time interval j.

Let cdom0
0 , cdom0

1 , ..., cdom0
11 denote the approximated solution for the equation

set (1). Then, an approximated utilization Û j
dom0 can be calculated as

Û j
dom0 = cdom0

0 +
11X

i=1

M j
i · cdom0

i (2)

To solve for cdom0
i (0 ≤ i ≤ 11), one can choose a regression method from a

variety of known methods in the literature. A popular method for solving such
a set of equations is Least Squares Regression that minimizes the error:

e =
sX

j

(Û j
dom0 − U j

dom0)
2
j

The set of coefficients cdom0
0 , cdom0

1 , ..., cdom0
n is the model that describes the

relationship between the application resource usage in the native system and
application CPU usage in Dom-0.

We form a set of equations similar to Eq. 1 which characterize the CPU
utilization of the VM by replacing U i

dom0 with U i
vm. The solution cvm

0 , cvm
1 , ..., cvm

n

defines the model that relates the application resource usage in the native system
and application CPU usage in the VM running the application. To deal with
outliers and erroneous benchmark executions in collected data and to improve
the overall model accuracy, we apply a more advanced variant of the regression
technique as described below.

Robust Stepwise Linear Regression: To decrease the impact of occasional
bad measurements and outliers, we employ iteratively reweighted least squares [12]
from the Robust Regression family. The robust regression technique uses a
bisquare weighting function which lessens the weight and the impact of data
points with high error.

In order to create a model which utilizes only the statistically significant
metrics and avoids “overfitting” the data, we use stepwise linear regression to
determine which set of input metrics are the best predictors for the output
variable [8]. Step-wise regression starts with an empty model, and iteratively
selects a new metric to add based on a significance test. A complete description
of the stepwise and robust regression techniques we use is deffered to a separate
technical report [38].

Model Refinement: Our use of robust linear regression techniques helps lessen
the impact of occasional bad data points, but it may not be effective if all
measurements within a microbenchmark are corrupt (this can happen due to

Profiling and Modeling Resource Usage of Virtualized Applications 375

unexpected background processes on the server, timing errors at the client, or
network issues). If some microbenchmarks have failed or collected data were
corrupted then it can inevitably impact the model outcome.

In order to automate the model generation process and eliminate the need
for manual analysis of these bad data points, we must automatically detect
erroneous microbenchmarks and either rerun them or remove their data points
from the training set. At runtime, it can be very difficult to determine whether a
benchmark is executed correctly, since the resource utilization cannot be known
ahead of time, particularly on the virtual platform which may have unpredictable
overheads. Instead, we wait until all benchmarks have been run and an initial
model has been created to post process the training set and determine if some
benchmarks have anomalous behavior.

First, we compute the mean squared error for all data points (i.e., all mi-
crobenchmarks): let us call it emean, as well as the standard deviation of the
squared errors: let us call it estd. Then the model created from the full benchmark
set is applied back to each microbenchmark i individually to calculate the mean
squared error for that benchmark: let us call it ei. Microbenchmarks with high
error values can then be easily separated so that they can either be rerun or
removed from the training set.

4.2 Model Application

Once a model has been created, it can then be applied to resource utilization
traces of other applications in order to predict what their CPU requirements
would be if transferred to the virtual environment. Resource usage traces of the
application are obtained by monitoring the application in its native environment
over time. The traces must contain the same resource metrics as presented in
Table 1, except that CPU utilizations of VM and Dom-0 are unknown and
need to be predicted. Applying the model coefficients cdom0

0 , cdom0
1 , ..., cdom0

11 and
cvm
0 , cvm

1 , ..., cvm
n to the application usage traces in native environment (using

Equation 1), we obtain two new CPU usage traces that estimate the application
CPU requirements in Dom-0 and the virtual machine.

5 Experimental Evaluation

In this section, we first try to justify a set of our choices presented in earlier
Sections 3 and 4: why these metrics? why these microbenchmarks? why this model
creation process? After that, we evaluate the effectiveness of our models under
several realistic web application workloads on two different hardware platforms.

5.1 Implementation Details

Our implementation and evaluation has centered on the Xen virtualization plat-
form. In our evaluation, both the native systems and virtual machines run the
Red Hat Enterprise Linux 5 operating system with Linux kernel 2.6.18-8. We
use paravirtualized Xen version 3.0.3-rc5.

376 T. Wood et al.

Monitoring resource utilization in the native environment is done with the
sysstat package [30] commonly used in Linux environments. The virtual CPU
utilizations are measured using xentop and xenmon, standard resource moni-
toring tools included with the Xen distribution. Statistics are gathered for 30
second monitoring windows in both environments. We have experimented with
both finer grain and longer intervals and found similar results. The system is
configured that Dom-0 resides on a separate CPU.

We evaluate our approach using two realistic web applications:

– RUBiS [3] is an auction site prototype modeled after eBay.com. A client
workload generator emulates the behavior of users browsing and bidding on
items. We use the Apache/PHP implementation of RUBiS version 1.4.3 with
a MySQL database.

– TPC-W [31] represents an e-commerce site (modeled after Amazon.com)
implemented with Java servlets running on Tomcat with a MySQL database.

Both applications have an application and a database tier. We profile and predict
the resource requirements of the application server tier; the databases are hosted
on a separate server which is sufficiently provisioned so that it will not become
a bottleneck.

We have tested our approach on two different hardware platforms:

– HP ProLiant DL385, 2 processors: AMD Opteron model 252 2.6GHz with
1MB L2 single-core, 64-bit; 2 x 2GB memory; 2 x 1 Gbit/s NICs, 72 GB
15K U320 Disk.

– HP ProLiant DL580 G2, 4 processors: Intel Xeon 1.6 GHz with 1MB L2
cache, 32-bit; 3 x 2GB memory; 2 x 1 Gbit/s NICs, 72 GB 15K U320 Disk.

5.2 Importance of Modeling I/O

Our system generates models based on up to eleven different resource utilization
metrics, here we evaluate whether such complexity is warranted, or if a simple
model based solely on scaling CPU requirements is a viable approach. In the sim-
plified approach, a model is created using the same model generation techniques
as described in Section 4, except that instead of using all eleven metrics, only a
single Total CPU metric is used to predict the CPU needs in virtual environment.
We produce a model using each technique to predict the CPU requirements and
demonstrate it using the CPU needs of the guest domain, since, intuitively, it is
more likely that the simplified model will perform better when predicting VM
CPU needs than when predicting Dom-0 since the latter is scheduled almost
exclusively for handling I/O.

Since our models are created with stepwise regression, not all of the eleven
possible metrics are included in the final model. The Dom-0 model uses five
metrics: Kernel CPU, I/O Wait, Rx Packets/sec, Tx Packets/sec, and Disk Write
Req/sec. Dom-0’s CPU utilization is dominated by I/O costs, so a large number
of I/O related metrics are important for an accurate model. In contrast the
virtual machine model uses only three metrics: User Space CPU, Kernel CPU,

Profiling and Modeling Resource Usage of Virtualized Applications 377

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

CPU Scaling Only
Multi−resource

(a)

Test Set Median Error %
CPU Net Disk

CPU 0.36 670 13
Training Net 11 3.4 1

Set Disk 7.1 1798 1.2
All 0.66 1.1 2.1

(b)

Fig. 3. (a) Using CPU as the only prediction metric leads to high error. (b) Using a
subset of benchmarks leads to poor accuracy when applied to data sets with different
type of I/O.

100 150 200 250 300
0

50

100

Request Rate

C
P

U
 U

til
iz

at
io

n

Native
Dom−0
VM

(a) CPU Intensive

200 300 400
0

50

100

Request Rate

C
P

U
 U

til
iz

at
io

n

Native
Dom−0
VM

(b) Network Intensive

Fig. 4. I/O intensive applications exhibit higher virtualization overheads

and RX Packets. We compare this multi-resource VM model to the CPU-Scaling
based model which uses only the Total CPU metric (equal to the sum of User
Space and Kernel CPU).

We evaluate the performance of these two models by training them on our
microbenchmark set and then comparing the error when the models are applied
back to the training data. Figure 3 (a) shows the error CDF for each model,
showing the probability that our predictions were within a certain degree of
accuracy for the virtual machine.

Our multiple resource model performs significantly better than the CPU scal-
ing approach; the 90th error percentile using our approach is 5% while the scaling
approach is 65%. Without information about I/O activities, the simple model
cannot effectively distinguish between the different types of benchmarks, each of
which has different levels of overhead. Even though the VM model only includes
one I/O metric, splitting CPU into User and Kernel time acts as a surrogate
for detecting high levels of I/O. Our results suggest that I/O activity can cause
significant changes in the CPU requirements of both Dom-0 and the guest do-
main: Dom-0 since it must process the I/O requests, and the guest because of
the increased number of hypercalls required for I/O intensive applications.

Figure 4 presents profiles of some of our CPU and network intensive mi-
crobenchmarks. The CPU intensive application exhibits only a small virtual-
ization overhead occurring for the VM CPU requirements and Dom-0 also has
relatively low CPU needs. In contrast, the network intensive application has a
significantly higher requirement in Dom-0 as well as a much larger increase in VM

378 T. Wood et al.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Domain0
VM

(a) Training Error

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

All Benchmarks
Reduced Set

(b) BM Elimination

Fig. 5. (a) CDF error of the training set on the Intel 4 -CPU machine. (b) Automatic
benchmark elimination can increase model accuracy.

CPU requirements relative to the native CPU utilization. This further demon-
strates why creating a model using only the native CPU metric is incapable of
capturing the differences in overhead caused by I/O requests.

5.3 Benchmark Coverage

In this experiment we examine how the three different benchmark types each
add useful information and examine the training set error of our model. Figure 3
(b) illustrates how using only a single type of microbenchmark to build a model
can produce very high error rates when applied to applications with different
workload characteristics.

For example, training the model solely with the CPU intensive microbench-
marks provides accuracy within 1% when applied back to the same kind of
CPU intensive workloads, but the median error rises to 670% when applied to
the network intensive data. This happens because the CPU benchmark includes
only very low network rates. When a model based solely on that data tries to
predict the CPU needs of the network intensive applications, it must extrapolate
well beyond the range of data it was trained with, resulting in wildly inaccurate
numbers. The bottom row in the table corresponds to using all of the benchmark
data to create a model. This provides a high degree of accuracy in all cases –
while a specialized model may provide higher accuracy on data sets very similar
to it, we seek to build a general model which will be effective on workloads with
a range of characteristics.

Figure 5(a) shows the error CDF when all of our benchmark data is used to
create a model and then the model is validated by applying back to the training
set. The error is quite low, with 90% of the predictions being within 3% for
Dom-0 and 7% for the virtual machine. This confirms our hypothesis that a
single linear model can effectively model the full range of training data.

5.4 Benchmark Error Detection

Our profiling system runs a series of microbenchmarks with identical workloads
on both the native and virtual platforms. This experiment tests our anomalous
benchmark detection algorithm. To be effective, it should be able to detect which

Profiling and Modeling Resource Usage of Virtualized Applications 379

benchmarks did not run correctly so that they can be either rerun or eliminated
from the training set. If the detection scheme is too rigorous, it may eliminate
too many data points, reducing the effectiveness of the model.

We first gather a set of training data where 10 percent of the benchmarks are
corrupted with additional background processes. Figure 5(b) shows the change
in model accuracy after the error detection algorithm eliminates the malfunc-
tioning microbenchmarks. We then gather a second training set with no failed
benchmarks and run the error detection algorithm on this clean data set. We
find that the model performance before and after the error detection algorithm
is identical since very few data points are eliminated.

While it is possible for these errors to be manually detected and corrected,
our goal is to automate the model creation procedure as much as possible. The
error detection algorithm reduces the human interaction required to create high
quality models.

5.5 Model Accuracy

To test the accuracy of a model, we use it to predict the CPU requirements
of a test application based on a trace of the application running natively. We
then run the test application within the virtual environment to determine the
prediction error. In this section we evaluate our models on both the RUBiS
and TPC-W web applications. These experiments were run on the Intel system
described previously.

We create a variable rate workload for RUBiS by incrementally spawning
clients over a thirty minute period. The system is loaded by between 150 and
700 simultaneous clients. This workload is repeated twice to evaluate the amount
of random variation between experiments. We record measurements and make
predictions for 30 second intervals. Figure 6 compares the actual CPU utilization
of the RUBiS application to the amount predicted by the model. Note that the
virtual machine running RUBiS is allocated two virtual CPUs, so the percent
utilization is out of 200.

Figure 7(a) shows a CDF of the models’ prediction error. We find that 90%
of our predictions for Dom-0 are within 4% accuracy, and within 11% for pre-
dicting the virtual machine’s CPU utilization. Some of this error is due to model

0 20 40 60 80 100 120
0

20

40

60

80

100

Time (30 second intervals)

%
 C

P
U

 U
til

iz
at

io
n

Predicted
Actual

(a) Dom-0

0 20 40 60 80 100 120
0

50

100

150

200

Time (30 second intervals)

%
 C

P
U

 U
til

iz
at

io
n

Predicted
Actual

(b) VM

Fig. 6. Prediction accuracy of the RUBiS web application

380 T. Wood et al.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Domain0
VM

(a) RUBiS

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Domain0
VM

(b) TPC-W

Fig. 7. Error rates on the Intel platform

inaccuracy, but it can also be due to irregularities in the data used as input to
the model. For example, there is a spike in the predicted CPU requirements of
both Dom-0 and the VM around time interval 10. This spike was caused by a
background process running for a short period when RUBiS was run in the native
environment. Since the predicted values are based on these native measurements,
they mistakenly predict the virtual CPU requirements to spike in the same way.

We have also validated our model on the TPC-W application. We create a
changing workload by adjusting the number of emulated clients from 250 to 1100
in a random (but repeatable) pattern. Figure 7(b) presents the error distribution
for TPC-W. The error for this application is almost identical to RUBiS, with
90th percentile error rates of 5% and 10% for Dom-0 and the virtual machine
respectively.

5.6 Cross Platform Modeling

In many server consolidation scenarios, the transition from a native to a virtual
platform is accompanied by a change in the underlying hardware. However, using
a single model for multiple hardware platforms may be ineffective if they have
different overhead costs. Attempting to apply the model for the Intel system to
the AMD system results in high error rates as shown in Figure 9(a). To inves-
tigate why these two platforms exhibit such a large difference, we compare the
CPU required by the RUBiS application in the native and virtual environments
on both platforms in Figure 8. Not including the Dom-0 requirements, the Intel
system requires approximately 1.7 times as much CPU in the virtual case as it
does natively. On the AMD system, the increase is only about 1.4 times. The
different scaling between the native and virtual traces in each platform suggest
that a single model cannot be used for both platforms.

We test our modeling approach’s ability to determine the relationship between
native and virtual systems running on different hardware platforms by executing
an identical set of microbenchmarks on the Intel and AMD platforms in both
the native and virtual environments. Using this data, we create two models,
one which relates a native usage profile of the Intel platform to a virtual usage
profile of the AMD system and one which relates the native AMD system to the
virtualized Intel system.

Profiling and Modeling Resource Usage of Virtualized Applications 381

0 10 20 30 40 50 60 70
0

50

100

150

200

Time (30 second intervals)

C
P

U
 U

til
iz

at
io

n

Native
Virtual

(a) Intel

0 10 20 30 40 50
0

20

40

60

80

100

Time (30 second intervals)

C
P

U
 U

til
iz

at
io

n

Native
Virtual

(b) AMD

Fig. 8. Comparison of CPU overhead on different hardware platforms

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Domain0
VM

(a)

Dom−0
VM

 0

 5

 10

 15

 20

AMD>Intel Intel>AMD

90
th

 E
rr

or
 P

er
ce

nt
ile

(b)

Fig. 9. (a) Using a single model for different architectures is ineffective, (b) but cross
platform models are feasible

Figure 9(b) presents the 90th error percentiles when these cross platform mod-
els are used to predict the CPU needs of both the TPC-W and RUBiS workloads.
The cross platform models are very effective at predicting Dom-0 CPU needs,
however the VM prediction error is higher, particularly for the AMD to Intel
model. We propose two factors which may cause this jump in error. First, the
AMD system has a significantly faster CPU than the Intel system, so translating
the CPU component from one platform to the other requires a significant scale
up factor. As a result, small variations in the CPU needs of the AMD system can
result in larger fluctuations in the predicted CPU for the Intel system, leading to
higher absolute error values. Secondly, cross platform models for predicting vir-
tual machine CPU are typically more difficult than Dom-0 models. This is because
Dom-0 models are predominantly based on I/O metrics such as packet reception
rates and disk operations, which have similar costs on both platforms. In contrast,
the VM model is primarily based on the CPU related metrics which may not have
a linear relationship between the two platforms due to differences in the processor
and cache architectures. However, it should be noted that in many cases, the AMD
to Intel model performs better than the 90th error percentile indicates; the median
error is only 5%, and all of the points with high error occur at the peaks of the
RUBiS workload where the virtual CPU consumption exceeds 160%.

6 Discussion

In this section, we discuss the impact of the application behavior on the accuracy
of the prediction results and challenges introduced by dynamic frequency scaling.

382 T. Wood et al.

a

b

a

R
eq

ue
st

s

b

Time

Open Loop Closed LoopOriginal

?or

Fig. 10. Resource requirements in different environments is influenced by the amount
of feedback in an application’s workload

• Impact of application behavior on resource use.
The timing for an application’s operations in the native and virtualized envi-
ronments may be slightly different if the application has a strong “feedback
loop” behavior. Figure 10 illustrates the difference between an application with
(closed loop) and without (open loop) feedback. In the original application trace,
a series of requests arrive, with their processing time indicated by the width of
the rectangles. The value of a represents the time from the start of one request
until the start of the next, while b is the time from the end of one request to the
start of the next. When the same application is run on a different platform, the
time to process a request may increase due to virtualization overhead. The two
figures on the right represent how the trace would appear if the application does
or does not exhibit feedback. With an open loop, the time between the start of
each request will remain a, even if the request processing time increases. This
would occur if the requests are being submitted by a client on another machine
sending at a regular rate. For an application with feedback, requests are pro-
cessed then a constant delay, b, occurs before the next request is processed. The
figure illustrates that when request processing times increase, applications with
feedback may process fewer requests in a given time interval (due to a slowdown),
i.e., its CPU overhead is “spread” across a longer time period, resulting in lower
average CPU utilization.

It is impossible to tell if an application’s workload has a feedback loop just by
looking at resource utilization traces of the original application. So the estimated
resource utilization produced by our model for the application with a “feedback
loop” might be higher than in reality since such an application might consume
CPU resources in virtualized environment “slower” than in native one due to
the increased latency on the application’s critical path.

• Understanding Application Performance.
While our models can accurately predict the changes in resource requirements
for a virtualized application, they cannot directly model how application perfor-
mance (ie. response time) will change. Unfortunately, this is a difficult challenge,
akin to making performance predictions under different hardware platforms. Our
approach tells system administrators the minimum amount of resources which
must be allocated to a VM in order to prevent significantly reduced performance
due to resource starvation. The application may still see some performance
penalty due to the longer code path as requests go through the virtualization
layer. To accurately predict this performance change would necessitate carefully
tailored, application specific models.

Profiling and Modeling Resource Usage of Virtualized Applications 383

Our approach helps in estimating the resource requirements that are neces-
sary for the initial application placement in a virtualized environment. After
the initial workload placement, specialized workload management tools may be
used [13, 15] to dynamically adjust system resources to support the required
application performance.

7 Related Work

Virtualization Overheads: Virtualization is gaining popularity in enterprise
environments as a software-based solution for building shared hardware infras-
tructures. VMware and IBM have released benchmarks [33] for quantifying the
performance of virtualized environments. These benchmarks aim to provide some
basis for comparison of different hardware and virtualization platforms in server
consolidation exercises. However, they both are lacking the ability to characterize
virtualization overhead compared to a native platform.

Applicationperformance and resource consumption in virtualized environments
can be quite different from its performance and usage profile on native hardware
because of additional virtualization overheads (typically caused by I/O process-
ing) and interactionswith the underlying virtualmachinemonitor (VMM). Several
earlier papers which describe various VMM implementations include performance
results that measure the impact of virtualization overhead on microbenchmark or
macrobenchmark performance (e.g., [2, 5, 7, 17, 19, 23, 29, 35, 37]). The reported
virtualization overhead greatly depends on the hardware platform that is used
in such experiments. For example, previously published papers [5, 9] evaluating
Xen’s performance have used networking benchmarks in systems with limited
network bandwidth and high CPU capacity. However, there are cases where
throughput degrades because CPU processing is the bottleneck instead of the
network [11, 21]. In many virtualization platforms, the “amount” of CPU over-
head is directly proportional to the “amount” of performed I/O processing [7, 11].
For example, it has been shown that networking packet rates are highly corre-
lated with the measured CPU overhead [11]. Recent work attempts to reduce
the performance penalty of network I/O by bypassing parts of the virtualization
layer [18, 36] or optimizing it [24]. However, since these optimizations typically
target only one source of virtualization overhead (network I/O), our modeling
system can still be employed to provide useful information about the level of
overhead incurred by a wider range of activities.

This extensive body of previous work has motivated us to select a set of mi-
crobenchmarks that “probe” system resource usage at different I/O traffic rates
(both networking and disk) and then employ these usage profiles for predicting
variable CPU overhead of virtualized environments.

Trace-based Approaches: In our work, we chose to represent application
behavior via resource usage traces. Many research groups have used a similar
approach to characterize application behavior and applied trace-based meth-
ods to support what-if analysis in the assignment of workloads to consolidated
servers [10, 25, 27, 32]. There are a few commercial tools [14, 16, 34] that employ

384 T. Wood et al.

trace-based methods to support server consolidation exercises, load balancing,
ongoing capacity planning, and simulating placement of application workloads
to help IT administrators improve server utilization. Since many virtualization
platforms introduce additional virtualization overhead, the trace-based capacity
planning and management solutions provide a capability to scale the resource
usage traces of original workloads by a specified CPU-multiplier. For some appli-
cations it might be a reasonable approach, however, in general, additional CPU
overhead highly depends on system activities and operations performed by the
application. Simplistic trace-scaling may result in significant modeling error and
resource over-provisioning.

System Profiling: Finally, there is another body of work [6, 20, 26, 28] that
is closely related to our thinking and the approach presented in the paper. This
body of works goes back to 1995, when L. McVoy and C. Staelin have introduced
the lmbench – a suite of operating system microbenchmarks that provides a set of
portable programs for use in cross-platform comparisons. Each microbenchmark
was purposely created to capture some unique performance problem present in
one or more important applications. Although such microbenchmarks can be
useful in understanding the end-to-end behavior of a system, the results of these
microbenchmarks provide little information to indicate how well a particular
application will perform on a particular system. In [6, 26], the authors argue for
an application-specific approach to benchmarking. The authors suggest a vector-
based approach for characterizing an underlying system by a set of microbench-
marks (e.g., lmbench) that describe the behavior of the fundamental primitives of
the system. The results of these microbenchmarks constitute the system vector.
Then they suggest to construct an application vector that quantifies the way that
the application makes use of the various primitives supported by the system.
The product of these two vectors yields a relevant performance metric. There
is a similar logic in our design: we use a set of microbenchmarks to character-
ize underlying system and virtualization solution. Then we apply the derived
model (analogy to a system vector) to the application usage traces (analogy to
the application vector) and use it for predicting the resource requirements of
applications when they are transferred to a virtual environment.

8 Conclusions

Our work is motivated by the need for improved estimates of application resource
requirements when they are consolidated to virtual environments. To this end,
we designed an automated approach for profiling different types of virtualiza-
tion overhead on a given platform and a regression-based model that maps the
native system profile into a virtualized one. This model can then be used to
accurately assess the required resources and make workload placement decisions
in virtualized environments.

Although such a model is created using data from synthetic benchmarks,
the result is a general model which can be applied to traces from any other
application in order to predict what its resource requirements will be on the

Profiling and Modeling Resource Usage of Virtualized Applications 385

virtual platform. We profile each platform using open source tools that can be
easily deployed and executed on a wide range of hardware platforms within
traditional or next generation data centers. We envision that each system in a
NGDC will be augmented with a model that reflects the relationship between
the native and virtualized usage profiles.

Our evaluation has shown that our automated model generation procedure
effectively characterizes the different virtualization overheads of two diverse
hardware platforms and that the models have median prediction error of less
than 5% for both RUBiS and TPC-W. In future work we plan to experiment
with more diverse application types and different virtualization platforms. We
are also interested in how these modeling techniques can be used to predict
the aggregate resource requirements of virtual machines collocated on a single
host and to determine when an application’s resource requirements are likely to
exceed the virtual system’s capacity.

Acknowledgements. Prashant Shenoy and Timothy Wood were supported in
part by NSF grants CNS-0325868, CNS-0720616, CNS-0720271.

References

1. Agostinelli, C.: Robust Stepwise Regression. Journal of Applied Statistics 29(6)
(2002)

2. Ahmad, I., Anderson, J., Holler, A., Kambo, R., Makhija, V.: An Analysis of
Disk Performance in VMware ESX Server Virtual Machines. In: Proc. of the Sixth
Workshop on Workload Characterization (WWC 2003) (October 2003)

3. Amza, C., Cecchet, E., Chanda, A., Cox, A., Elnikety, S., Gil, R., Marguerite, J.,
Rajamani, K., Zwaenepoel, W.: Specification and implementation of dynamic Web
site benchmarks. In: Proc. of WWC-5: IEEE 5th Annual Workshop on Workload
Characterization (October 2002)

4. Apache JMeter, http://jakarta.apache.org/jmeter/
5. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,

R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003 (2003)
6. Brown, A., Seltzer, M.: Operating System Benchmarking in the Wake of Lmbenc.

In: Sigmetrics 1997 (1997)
7. Cherkasova, L., Gardner, R.: Measuring CPU overhead for I/O processing in the

Xen virtual machine monitor. In: Proc. of USENIX AT (April 2005)
8. Draper, N.R., Smith, H.: Applied Regression Analysis. J. Wiley & Sons, Chichester

(1998)
9. Fraser, K., Hand, S., Neugebauer, R., Pratt, I., Warfield, A., Williamson, M.:

Reconstructing I/O. Technical report (2004)
10. Gmach, D., Rolia, J., Cherkasova, L., Kemper, A.: Capacity Management and De-

mand Prediction for Next Generation Data Centers. In: Proc. of the International
IEEE Conference on Web Services (2007)

11. Gupta, D., Cherkasova, L., Gardner, R., Vahdat, A.: Enforcing Performance Iso-
lation Across Virtual Machines in Xen. In: van Steen, M., Henning, M. (eds.)
Middleware 2006. LNCS, vol. 4290, pp. 342–362. Springer, Heidelberg (2006)

http://jakarta.apache.org/jmeter/

386 T. Wood et al.

12. Holland, P.W., Welsch, R.E.: Robust regression using iteratively reweighted least-
squares. In: Communications in Statistics - Theory and Methods 6.9 (October
2007)

13. HP-UX Workload Manager, http://hp.com/products1/unix/operating/wlm/
14. HP Integrity Essentials Capacity Advisor,

http://h71036.www7.hp.com/enterprise/cache/262379-0-0-0-121.html
15. IBM Enterprise Workload Manager,

http://www.ibm.com/developerworks/autonomic/ewlm/

16. IBM Tivoli Performance Analyzer,
http://www.ibm.com/software/tivoli/products/performance-analyzer/

17. King, S., Dunlap, G., Chen, P.: Operating system support for virtual machines. In:
Proc. of the USENIX Annual Technical Conference, San Antonio, Texas (2003)

18. Liu, J., Huang, W., Abali, B., Panda, D.: High Performance VMM-Bypass I/O in
Virtual Machines. In: Proc. of Usenix AT 2006 (2006)

19. Magenheimer, D., Christian, T.: VBlades: Optimized paravirtualization for the
Itanium processor family. In: Proc. of USENIX VM Research and Technology
Symposium (May 2004)

20. McVoy, L., Staelin, C.: lmbench: Portable tools for performance analysis. In: Proc.
of the 1996 Winter USENIX, San Diego, CA (January 1996)

21. Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J., Zwaenepoel, W.: Diag-
nosing performance overheads in the Xen virtual machine environment. In: Proc.
of Intl. Conf. on Virtual Execution Environments (VEE) (June 2005)

22. Mosberger, D., Jin, T.: Httperf—A Tool for Measuring Web Server Performance.
In: Proc. of Workshop on Internet Server Performance (1998)

23. Padala, P., Zhu, X., Wang, Z., Singhal, S., Shin, K.: Performance Evaluation of
Virtualization Technologies for Server Consolidation. HP Labs Tech. Report HPL-
2007-59 (2007)

24. Santos, J.R., Turner, Y., Janakiraman, G.J., Pratt, I.: Bridging the Gap between
Software and Hardware Techniques for I/O Virtualization. In: Proc. of Usenix
(2008)

25. Rolia, J., Cherkasova, L., Arlitt, M., Andrzejak, A.: A Capacity Management Ser-
vice for Resource Pools. In: Proc. of Intl. Workshop on Software and Performance
(2005)

26. Seltzer, M., Krinsky, D., Smith, K., Zhang, X.: The Case for Appliction-Specific
Benchmarking. In: Proc. of the 1999 Workshop on Hot Topics in Operating Systems
(1999)

27. Seltzsam, S., Gmach, D., Krompass, S., Kemper, A.: AutoGlobe: An Automatic
Administration Concept for Service-Oriented Database Applications. In: Proc. of
the 22nd Intl. Conf. on Data Engineering (ICDE) (2006)

28. Staelin, C., McVoy, L.: mhz: Anatomy of a microbenchmark. In: Proc. of the
USENIX Annual Technical Conference, New Orleans, LA (June 1998)

29. Sugerman, J., Venkitachalam, G., Lim, B.-H.: Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor. In: Proc. of the USENIX AT
(2001)

30. Sysstat-7.0.4, http://perso.orange.fr/sebastien.godard/
31. TPC-W Benchmark, http://www.tpc.org
32. Urgaonkar, B., Shenoy, P., Roscoe, T.: Resource overbooking and application pro-

filing in shared hosting platforms. In: Proc. of Operating Systems Design and
Implementation (OSDI) (December 2002)

33. VMmark: A Scalable Benchmark for Virtualized Systems,
www.vmware.com/pdf/vmmark intro.pdf

http://hp.com/products1/unix/operating/wlm/
http://h71036.www7.hp.com/enterprise/cache/262379-0-0-0-121.html
http://www.ibm.com/developerworks/autonomic/ewlm/
http://www.ibm.com/software/tivoli/products/performance-analyzer/
http://perso.orange.fr/sebastien.godard/
http://www.tpc.org
www.vmware.com/pdf/vmmark_intro.pdf

Profiling and Modeling Resource Usage of Virtualized Applications 387

34. VMware Capacity Planner,
http://www.vmware.com/products/capacity planner/

35. Waldspurger, C.: Memory resource management in VMware ESX server in Oper-
ating Systems Design and Implementation. In: Proc. of Operating Systems Design
and Implementation (OSDI) (December 2002)

36. Wang, J., Wright, K., Gopalan, K.: XenLoop: A Transparent High Performance
Inter-VM Network Loopback. In: Proc. of International Symposium on High Per-
formance Distributed Computing (HPDC), Boston, MA (June 2008)

37. Whitaker, A., Shaw, M., Gribble, S.: Scale and Performance in the Denali isola-
tion kernel. In: Proc. of Operating Systems Design and Implementation (OSDI)
(December 2002)

38. Wood, T., Cherkasova, L., Ozonat, K., Shenoy, P.: Profiling and Modeling Resource
Usage of Virtualized Applications. UMass Technical Report (September 2008)

http://www.vmware.com/products/capacity_planner/

Prism: Providing Flexible and Fast Filesystem
Cloning Service for Virtual Servers

Xin Zhao1, Kevin Borders2, and Atul Prakash2

1 Google Inc.
1600 Amphitheatre Parkway

Mountain View, CA 94043, USA
xinzhao@google.com

2 University of Michigan
2260 Hayward Street

Ann Arbor, MI 48109-2121, USA
{kborders,aprakash}@eecs.umich.edu

Abstract. This paper describes a prototype virtualized file system,
Prism, for supporting hosted servers and utility computing. Prism pro-
vides a filesystem service that allows lightweight creation of filesystems
for new users from existing filesystems. All users’ filesystems are muta-
ble and yet isolated from each other. In our experiments, new filesystems
can be created from existing ones in under one-fifth of a second. Prism
is also designed to make centralized security-related services across mul-
tiple, similar filesystems more efficient. In particular, with Prism, tasks
such as virus checking over multiple filesystem clones are much more ef-
ficient than scanning each user’s filesystem independently. We describe
the design of Prism and present performance results.

1 Introduction

One application scenario of hosted services and utility computing is to be able
to provide remote users with dedicated data and computing facilities using cen-
tralized computing resources. This paper focuses on one aspect of the problem:
providing dedicated filesystems to users on demand, as well as common
filesystem-related services, such as on centralized virus scanning on users’s
filesystems in a lightweight way.

This paper describes a prototype virtualized file system, Prism, which sup-
ports multiple filesystems, where each filesystem can be assigned to a different
user. Each user gets the illusion of having a full-fledged filesystem, which in prin-
ciple, can include system files, applications, and user files, all under the control
of the user. Prism provides an efficient filesystem cloning mechanism to create
new filesystems from existing ones. A filesystem clone is semantically similar
to a copy of the parent filesystem. Once created, it is independent of the par-
ent filesystem. Subsequent changes to either one are not reflected in the other.
Prism’s mechanism guarantees isolation of users’ filesystems, while providing
very fast creation of new filesystems from existing ones. In our tests, new filesys-
tems that are created from existing ones are usable within one-fifth of a second

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 388–407, 2008.
c© IFIP International Federation for Information Processing 2008

Prism: Providing Flexible and Fast Filesystem Cloning Service 389

and provide comparable performance to native ext3 filesystem when the cloning
is complete.

Prism is also designed to make centralized security-related services across
multiple, similar filesystems more efficient. In particular, multiple filesystems
can often be scanned collectively for tasks such as virus checking much more
efficiently than scanning each user’s filesystem independently. In our prototype
setup, simulating a virus scanning task on all the files for eight cloned filesystems
was approximately three times faster than doing eight individual scans.

Prism’s mechanism for instantiating a new filesystem from an existing one
provides a feature called selective cloning. In selective cloning, a user can request
a clone of an existing filesystem, while excluding specified directories or files from
being cloned (optionally replacing them with default substitutes.) We anticipate
that this capability can be a useful feature in specialized scenarios. Consider a
user Alice who is given a virtual machine running Linux on a hosted service
provider, along with a dedicated filesystem that is provided by Prism. She wants
to install a new software application that appears useful, but she is not sure if
she should trust it and is not sure if it will be compatible with existing software.
She decides to request the Prism’s cloning service to provide her a clone of her
filesystem, but excluding sensitive files such as her home directory, contents of
/tmp and /var/log. This new filesystem can be used to provide her a testing
environment that is very close to her current environment, but less susceptible
to data theft, all within a few seconds.

Prism’s cloning abstraction is semantically similar to making a copy of the
entire filesystem, except it appears to be much faster to users. An end-user can
get a usable cloned filesystem almost instantaneously, irrespective of the size
of the cloned filesystem (either in number of files, depth, or total number of
bytes). In addition, the filesystem cloning operation will not interrupt access to
the parent filesystem.

Prism makes extensive use of copy-on-write at both file level and for blocks
within files so as to use disk space efficiently when providing filesystem services
for multiple users. The parent and cloned filesystems share data of unchanged
files, which usually occupy a large portion of files. Furthermore, when a shared
file is modified, an unchanged blocks continue to be shared.

Prism is currently in prototype stage. It has around 5000 lines of code. We
have used Prism to host filesystems for multiple virtual machines. To evaluate
Prism’s cloning performance, we cloned a standard Fedora Core 4 distribution
that consists of over 170K files and over 17K directories. The cloning operation
itself was essentially an immediate operation from the perspective of the end-
user, taking only 0.18 seconds to complete. After 0.18 seconds, both the parent
and the cloned filesystem were completely accessible to end users. In terms of
disk space, a clone took up about 1.3% of the space (77MB for the clone versus
6GB for the parent filesystem).

We also measured performance of a Prism-cloned filesystem on several work-
loads and compared it with solutions based on the ext3 filesystem. On the Con-
nectathon [1] benchmark and an Apache-build workload, the cloned filesystem’s

390 X. Zhao, K. Borders, and A. Prakash

performance was comparable with that of an ext3-based filesystem, with only a
minor performance penalty. For scanning multiple cloned filesystems, Prism out-
performed an ext3-based solution significantly because it was able to skip over
the files that had not been modified since cloning. The performance advantage
of Prism over ext3 went up as the number of clones was increased.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 illustrates the design of the Prism cloning. Section 4 presents evaluation
results. Section 5 concludes this paper.

2 Related Work

Prism borrows ideas from existing filesystems with snapshot and versioning ca-
pability, such as WAFL [2], CVFS [13], VersionFS [9] and Ext3cow [10], but also
introduces some differences. Like them, it makes extensive use of copy-on-write
to help reduce overheads. In versioning filesystems, the notion of providing com-
plete, dedicated filesystems for different users is usually missing. Instead, the
assumption is that all versions are under one administrative control. In contrast,
filesystem clones in Prism are all writable and isolated from each other; they are
designed be exported to different users.

Several recent filesystems, such as Flexclone [4], VMFS [16], Parallax’s filesys-
tem [17], and ZFS [7] provide writable snapshots. Prism differs in a few ways in
its design. These systems generally use block-level copy-on-write, where the file-
level semantics are not available. This would make it difficult to exclude specified
files or directories during a snapshot. In contrast, Prism is aware of filesystem
structure and uses file-level copy-on-write. It is therefore trivial to selectively
exclude directories from a snapshot or even graft part of one filesystem into the
clone of another filesystem to compose a new filesystem. As we show later, file-
level copy-on-write also permits more efficient central scanning across multiple
filesystems.

Some systems, such as UnionFS [19], Ventana [11], Alcatraz [5], IFS [14],
and Feather-weight Virtual Machine (FVM) [18], provide efficient cloning-like
capability using a metadata manipulation technique. The key idea is to deploy
a filesystem virtualization layer to manipulate the pathnames of files when a
client or VM requests to access them. As shown in Figure 1, all other VMs are
assumed to be created by cloning and sharing the base filesystem. If a user needs
to change a shared file, these systems create a new copy in the writing user’s

/
bin opt

/
bin

/
bin opt

Shared base
file space

VM1’s
private space

VM1’s
filesystem view

ps rm ps ps rm

Fig. 1. Cloning via namespace manipulation

Prism: Providing Flexible and Fast Filesystem Cloning Service 391

private space. Upon receiving a file request, the filesystem virtualization layer
first checks the user’s private space so that the private copy can override the
shared copy.

However, cloning filesystem by manipulating pathnames is not as flexible as
the mechanism used by Prism. Prism’s design makes it easy to create clones of
any user’s filesystem, even the parent filesystem is a clone itself. In contrast,
systems like FVM assume that only a base filesystem will be cloned. Furthe-
more, compared with normal filesystems, manipulating pathnames in private
and shared spaces incurs higher lookup overhead to locate the right file cor-
responding to a given pathname. Prism does not introduce another pathname
translating layer and thus achieves performance close to a filesystem without
cloning support.

3 Prism Design

3.1 Background

Prism was designed by modifying the ext3 filesystem and adding support for
cloning and exporting any part of the filesystem to a user. Currently, Prism’s
filesystems are simply exported using NFS. In principle, Prism’s filesystems could
also be made available for access using other protocols such as Samba.

In the most general usage scenario, Prism exports a user’s filesystem to the
user with full read-write privileges. It is trivial to limit the user to read-only
access to selected files that should not be updated by the user, if desired. We
have previously proposed a server-side policy engine to do that in [21].

In the rest of the paper, we assume that each user is accessing the filesystem
from a standard operating system. In our experiments, we emulated these users’
operating systems using guest virtual machines that were hosted by a centralized
server. To simplify terminology (since “user” can be an overloaded term), from
now on, we will refer to user’s operating systems as client virtual machines
(VMs), even though users can access Prism filesystems over a network from
standard operating systems as well.

As shown in Figure 2, Prism runs a modified ext3 filesystem called pext3 to
manage files for all the users. On the pext3 filesystem, Prism stores each client
VM’s files in a fileset. A Prism fileset is similar to a volume in AFS [3,8,12]. It

VMn

Virtual FS
Guest Apps

VM1

Virtual FS
Guest Apps

VM1's Fileset

Prism Ext3 (pext3)

VMn's Fileset......

Fig. 2. Cloning via file sharing

392 X. Zhao, K. Borders, and A. Prakash

is a tree of files and sub-directories on the physical repository managed by the
pext3 filesystem. Prism exports a client VM’s fileset as a virtual filesystem over
NFS. In Prism, cloning a client VM’s filesystem is accomplished by cloning the
VM’s fileset on the pext3 filesystem.

Prism provides three forms of cloning: basic cloning via file sharing, asyn-
chronous cloning, and lazy cloning. We first describe the basic cloning mech-
anism in which the entire directory hierarchy is cloned. Then, we describe the
asynchronous cloning mechanism that allows new filesystems to be usable almost
immediately without cloning the directory hierarchy in entirety. After that, we
describe lazy cloning, in which directories and files are cloned only as needed.

3.2 Synchronous Cloning Via File Sharing

As Figure 3 shows, Prism avoids copying files that are the same in a clone
as in the parent filesystem. To clone a filesystem, Prism always starts from the
filesystem’s root directory to traverse the entire directory structure and clone the
encountered filesystem objects that are not flagged as “nonclonable”. For each
clonable directory, Prism creates a new directory at the corresponding place in
the clone. For a regular file, Prism clones it by creating a hard link to that file
in the clone. In fact, all named files can be regarded as hard links in Prism. The
name associated with a file is simply a label that refers the operating system
to the actual data. More than one name can be associated with the same data.
A hard link is essentially a directory entry that associates a file name with the
actual data. By creating a hard link to the original file’s inode, the cloned file
shares the same content with the original copy without physically duplicating
the data blocks. Copy-on-write is performed to create a new private copy if
either the clone or its parent attempts to change a shared file. All subsequent
modifications are applied to the new copy. As such, the isolation between the
parent filesystem and its clone is still preserved. This cloning procedure is similar
to the copying operation in conventional filesystems and thus very flexible. One
can easily clone any selected part of a filesystem to a specified location.

The above solution is inadequate if support for hard links is required in users’
filesystems. Figure 4 shows an example that helps illustrate this issue. Suppose
a user clones a filesystem FS1 to a new filesystem FS2. We refer to FS1 as the
“parent” filesystem and FS2 as the “child” filesystem. In FS1, the file /a/b and
/x/y are two hard links pointing to the same file on disk. When cloning FS1 to

ftp

/
usr opt home

bin sbin
ftp

/
usr opt

bin sbin

inode1

FS1 FS2

noncloneable

Fig. 3. Cloning via file sharing

Prism: Providing Flexible and Fast Filesystem Cloning Service 393

inode

FS1
/x/y/a/b/x/y/a/b

FS2

inode

FS1
/x/y/a/b/x/y/a/b

1 2 3 4

FS2

inode’

copy-on-write

/a/b changes in FS1

Fig. 4. Copy-on-write on an inode breaks the hard link semantics of a standard filesys-
tem. If both FS1 and FS2 are fully copied filesystems, both /a/b and /x/y should point
to the same inode even if the file content is modified.

FS2, Prism creates two hard links in FS2 for /a/b and /x/y, respectively. Now
there are four hard links point to a same file. We cannot preserve the Prism
cloning semantics and the standard hard link semantics under such a filesystem
structure.

Suppose a user writes the file /a/b in FS1. At this time, the file associated
with /a/b is being shared by FS2. In order to preserve isolation between FS1 and
FS2, Prism duplicates the shared file to a new copy (represented by inode’), and
adjusts the /a/b entry in FS1 to point to the new copy. However, /a/b and /x/y
in FS1 now point to different files. This breaks the hard link semantics that
can be preserved in a fully copied filesystem. According to the standard UNIX
hard link semantics, though hard links have different names, data changes made
through any hard link will affect the actual data and are immediately visible to
other hard links pointing to the same inode. Therefore, /x/y and /a/b should
point to the same file even after the file content is modified.

The current implementation of Prism supports hard links, but the description
of the solution is beyond the scope of this paper. Zhao’s thesis [20] contains the
details of the solution.

3.3 Asynchronous Cloning

File sharing technique significantly reduces the cloning overhead, however, the
Prism cloning mechanism can still incur nontrivial delay before the cloned filesys-
tem is ready for use. The main reason is that the Prism cloning mechanism needs
to traverse the parent filesystems and clone each encountered filesystem object
individually, which incurs nontrivial overhead. On the other hand, to achieve se-
lective cloning, Prism has to examine each filesystem object to determine whether
the object should be excluded from cloning or not.

To better understand the impact of the filesystem traversal on the cloning
performance, we conducted an experiment to clone a Fedora Core 4 system.

394 X. Zhao, K. Borders, and A. Prakash

The filesystem contains around 170K files and 17K directories. The total size
is around 6G bytes. Prism spent approximately 58 seconds to finish the cloning
task. More than 70% of the cloning time is devoted to directory traversal. While
this latency is acceptable in some scenarios, such as an administrator wishing to
create new clones for distribution, it is not good enough for many applications
such as testing untrusted applications. From the perspective of end users, they
always hope to get a usable filesystem as quick as possible. Aiming at this goal, we
developed an asynchronous cloning mechanism for Prism. For easy comparison,
we call the cloning mechanism described in previous subsection synchronous
cloning, because it blocks any requests to the cloned filesystem until the cloning
procedure is completed.

The asynchronous cloning mechanism provides the same cloning semantics
as the synchronous cloning mechanism, but is able to return a usable parent
and cloned filesystem almost immediately (less than 1 second in all experiments
we have conducted). It presents an illusion that the entire directory hierarchy
is completely replicated, as in synchronous cloning, but the replication actually
occurs in the background using a kernel thread. The background thread traverses
the parent filesystem starting from the root to clone the directory tree, but also
aggressively processes a file if it is accessed by the parent or the clone prior
to the completion of the filesystem cloning. Eventually, the final state of the
directory hierarchies in the fully cloned system is identical to that produced by
synchronous cloning.

When a user requests to clone a filesystem, the asynchronous cloning mecha-
nism usually replies to the user that the cloned filesystem is ready for use within
a few seconds. A user will reasonably start to access either the clone or the par-
ent filesystem. The asynchronous cloning mechanism must be carefully designed
to present the same semantics to users as a fully copied filesystem. In particular,
we must properly address the following two situations:

1. A user in the cloned filesystem may access a file that has not been cloned.
Prism should quickly respond to the user, rather than blocking the user until
the cloning thread eventually encounters and clones the file. As described
earlier, the cloning thread works in the background to recursively traverse
the parent filesystem and clone each encountered filesystem object. However,
for a large filesystem, it can take a few minutes before the cloning thread
encounters the requested file, which can be too long for the user to wait.

2. A user in the parent filesystem can modify a file that has not been cloned.
Under such condition, Prism must ensure that the file is cloned before being
modified. According to the cloning semantics, a clone should be identical to
the parent filesystem’s snapshot taken at the beginning of cloning procedure.
Any modification to the parent filesystem afterwards should be transparent
to the clone. However, if a file in the parent filesystem is modified before
being cloned, the modified content will be exposed to the clone. Therefore,
the asynchronous cloning mechanism must ensure that a file in the parent
filesystem is cloned prior to modification.

Prism: Providing Flexible and Fast Filesystem Cloning Service 395

Next, we describe how Prism handles the requests that are issued in the cloned
or parent filesystem before the cloning procedure is finished.

Handling Requests in the Cloned Filesystem. When a user in the cloned
filesystem issues a request to a file that has not been cloned, Prism aggressively
clones the file on demand before processing the user’s request. This avoids block-
ing the user too long.

The Prism on-demand cloning mechanism is based on two observations:

1. Before a process can access a file, Prism first looks up the file.
2. Before looking up a directory for a file, Prism must call the permission

function to check that the requesting process has sufficient rights to access
the directory.

Based on these two observations, Prism implements the on-demand cloning
mechanism by extending the standard permission checking function.

First, we develop a core function, pext3_expand_dir(), that expands a direc-
tory at a time. Note that we use the term “expand” instead of “clone”, because
this function does not recursively go down a directory to clone all filesystem
objects. Given a source directory, the pext3_expand_dir function only clones
the filesystem objects that are directly under this directory. The function clones
regular files as described in Section 3.2. However, for each subdirectory under
the source directory, the function only creates an empty subdirectory at the
corresponding location in the clone. In other words, this function only expands
one level of directory hierarchy, and will not go deeper into subdirectories. The
function flags each subdirectory as “UNEXPANDED” and associates it with
the inode number of the corresponding source directory. To record this infor-
mation, we add two fields, i_expanding_flags and i_srcino, to each pext3
inode. For a regular file, these two fields are not used. For a directory, however,
these two fields indicate whether the directory is expanded or not. If all filesys-
tem objects directly under a directory are cloned, the directory will be flagged
as “EXPANDED”. Note that a directory being flagged as “EXPANDED” does
not mean that all its subdirectories are expanded. Normally, after running the
pext3_expand_dir() on a specified directory, this directory is flagged as “EX-
PANDED”, but all its subdirectories are still empty and flagged as “UNEX-
PANDED”.

Next, as shown in Figure 5, Prism combines the core pext3_expand_dir()
function with the standard permission function to perform asynchronous cloning.
Given a directory, Prism first determines whether the directory is expanded
or not by checking the directory’s i_expanding_flags field. If the directory
is expanded, Prism jumps to the original permission function. If the directory
is not expanded, Prism calls the pext3_expand_dir() function to expand the
directory, and then calls the original permission function.

With the Prism asynchronous cloning mechanism, a parent filesystem object
is cloned by one of the two threads shown in Figure 5. The first thread is the
background cloning thread that recursively traverses the parent filesystem and
clones each encountered filesystem object. The second thread is an on-demand

396 X. Zhao, K. Borders, and A. Prakash

pext3_expand_dir()

is the dir expanded?

original permission
checking function

No

Yes

Prism instrumented
permission function

the background
cloning thread

Users in the cloned
filesystem access files
(on-demand cloning)

Fig. 5. Prism on-demand cloning

cloning thread that aggressively clones the filesystem objects that are requested
by users in the clone.

We first discuss how the background cloning thread works. Upon receiving a
request to clone a filesystem, Prism first creates the root directory in the clone.
Next, Prism flags the directory as “UNEXPANDED” and associates it with the
parent filesystem’s root inode. Then, Prism would start the background cloning
thread to clone the rest of the filesystem and then returns, presenting the user an
illusion that the cloning task is completed immediately. The background cloning
thread works as a directory walker that recursively traverses the entire cloned
filesystem starting from the root directory. The background cloning thread looks
up a file with an arbitrary filename in each encountered directory. The lookup
operation is only used to trigger the permission checking function, which in turn
expands the directory if it is not expanded. Thus, along with the background
cloning procedure recursively traversing the cloned filesystem, the Prism permis-
sion checking procedure will be invoked to expand all encountered directories,
which clones the parent filesystem in the background.

The on-demand cloning thread works in a similar way to aggressively clone the
filesystem objects that are requested by users in the clone. When a user in the
cloned filesystem accesses a file, Prism must look up the file before processing
the request. This will trigger the permission checking function to expand all
directories from the root to the parent directory of the file to be accessed.

To rapidly respond to end users’ requests, Prism allow administrators to lower
the priority of the background cloning thread with Linux command nice. As
such, the background cloning thread will not contend with interactive sessions
for disk bandwidth. Accordingly, the background cloning time could increase.

We use an example to illustrate the on-demand cloning procedure. Suppose
a user accesses a file /a/b/c, but only the root directory / has been expanded.
Prism first looks up the directory “/” for the entry “/a”. The permission check-
ing function is invoked to check the access permission of directory “/”. Because
the “/” directory has been expanded, Prism simply jumps to the normal permis-
sion checking procedure. Next, Prism looks up the directory “/a” for the entry

Prism: Providing Flexible and Fast Filesystem Cloning Service 397

“/a/b”. The permission function is invoked again to check the permission of
“/a”. At this time, the directory “/a” is not expanded yet and flagged as “UN-
EXPANDED”. Prism then calls the pext3_expand_dir() function to expand
the directory “/a”. The directory entry “/a/b” is created but flagged as ”UN-
EXPANDED”. By repeating the above procedure, Prism expands the directories
from “/” to “/a/b/”. Eventually, when Prism looks up the file “/a/b/c”, it has
been cloned on demand. Note that the user process can run in parallel with
the background cloning thread. With the common permission checking function,
Prism seamlessly adjusts the cloning order and aggressively clone the directories
needed for the file request, which achieves the on-demand cloning.

Handling Requests in the Parent Filesystem. With the asynchronous
cloning mechanism, a user can get a command prompt before the parent filesys-
tem is completely cloned. Accordingly, a user can write a file in the parent
filesystem before the file is cloned. If the pext3 filesystem were to allow such
an operation, it breaks the cloning semantics — the modification in the parent
becomes visible to the clone.

One way to preserve the consistency of the parent filesystem is to clone from a
snapshot of the parent filesystem. Many filesystems such as WAFL [2] and ZFS [7]
provide the snapshot feature. We can adapt an existing mechanism to take a
snapshot of the parent filesystem before starting the cloning procedure. This ap-
proach, however, requires substantial changes to disk and filesystem structure.
As an alternative, Prism preserves the parent filesystem’s consistency by detect-
ing and aggressively resolving the consistency issues during background cloning.

Before starting the cloning procedure, Prism flushes the parent filesystem’s
dirty pages to disk, which eliminates the inconsistency caused by the buffered
data. This procedure normally takes less than 1 second. During the period of
cloning, Prism monitors the operations on the parent filesystem. If a process
attempts to write a file in the parent filesystem that has not been cloned, Prism
blocks the process, aggressively clones the file, and then resumes the process to
write the file.

An important step in the above procedure is to tell whether the file to be
changed is cloned or not. This step must be efficient, because it is critical to the
filesystem performance. A naive approach to determine a file’s cloning status is
to maintain the list of files that have been cloned. By looking up the list, one
can determine a file’s cloning status. However, it would be slow to look up the
file list if the filesystem is large and has a lot of files.

Another way to determine a file’s cloning status would be to associate a flag
with each parent file indicating whether the file has been cloned or not. However,
this solution would require that Prism initialize the cloning status of each file in
the parent filesystem before the cloning procedure is started. Otherwise, there
would be no easy way to tell whether a specific file is cloned by current or
previous cloning procedures. However, the initialization procedure would have
taken substantial time for a large parent filesystem, significantly offsetting the
benefit of the asynchronous cloning mechanism.

398 X. Zhao, K. Borders, and A. Prakash

Prism addresses the above problem with three timestamps:

– The global logical timestamp. Prism maintains a global logical timestamp
to record the occurrence time of cloning events. The logical timestamp is a
32-bit unsigned integer and is initialized to zero. This logical timestamp is
incremented at the beginning of each cloning task.

– The clonestart timestamp. Prism maintains a clonestart timestamp for
each filesystem to be cloned. The clonestart timestamp is normally equal
to zero. When Prism starts to clone a filesystem, it sets the parent filesys-
tem’s clonestart timestamp to the current value of the global logical times-
tamp. When the entire cloning task is finished, Prism resets the filesystem’s
clonestart timestamp back to zero.

– The lastclone timestamp. Prism maintains a timestamp, called lastclone
timestamp, for each filesystem object to record the last time when the object
is cloned. The lastclone timestamp is stored in a 4-byte field, lastclone,
in the directory entry of the filesystem object. Every time a filesystem object
is cloned, Prism updates its lastclone timestamp to the current value of
the parent filesystem’s clonestart timestamp.

Prism is able to determine whether an original file has been cloned or not
by comparing the parent filesystem’s clonestart timestamp with the file’s
lastclone timestamp:

– clonestart will never be smaller than lastclone when the filesystem is being
cloned. If a filesystem is not being cloned, its clonestart timestamp is 0.
Prism can serve any operations to the parent filesystem under such condition.

– If clonestart == lastclone, the original file has been cloned by current
cloning procedure.

– If clonestart > lastclone, the original file has not been cloned yet.

If a file in the parent filesystem is to be written, Prism first determines whether
the file has been cloned or not with the above mechanism. If the file has been
cloned, Prism can apply the modification to the file immediately without break-
ing the consistency of the clone. Otherwise, Prism must first resolve the consis-
tency conflict before applying changes to the parent file. To do so, Prism blocks
the writing process, aggressively clones the file, and then unblocks the writing
process and serves the write request.

Cloning Open Files. Prism is designed to deliver a clear cloning semantics —
the clone is identical to the parent filesystem’s snapshot taken at the beginning
of the cloning procedure. After a cloning procedure starts, all file modifications
made to the parent filesystem are isolated from the cloned filesystems.

The current Prism implementation assumes that there are no open files in the
parent filesystem when a cloning command is issued. Based on this assumption,
Prism monitors the open requests to detect write operations in the parent filesys-
tem. If a process requests to open a file for writing after the cloning procedure
begins, Prism will regard the open request as a file modification operation. To

Prism: Providing Flexible and Fast Filesystem Cloning Service 399

preserve cloning semantics, Prism blocks the writing process, aggressively clones
the target file to the clone, then unblocks the writing process.

The above assumption could be too strong in real world scenarios. A file in
the parent filesystem could be opened before the cloning procedure is started.
Our current prototype does not address this scenario, but it can be addressed by
aggressively cloning all open files before starting the background cloning thread.
Upon receiving a clone command, Prism would first suspend the parent filesys-
tem, clone the open files, and then reactivate the parent filesystem. Alternatively,
we could have intercepted write operations and cloned at that point. We plan
to evaluate these alternatives in the future.

Overall, asychronous cloning has the advantage that both the parent filesys-
tem and the cloned filesystem are usable immediately even before the cloning
task is finished. However, the access performance can be lower than normal if
one attempts to access a file that is not cloned. Normally, the latency caused
by file accesses during cloning should be small in practice because the set of
files that are accessed during cloning is usually small compared to the whole
filesystem.

3.4 Lazy Cloning

Prism provides another asynchronous cloning mode called lazy cloning. The lazy
cloning mode is similar to the standard asychronous cloning mode, except that
Prism does not start a background thread to clone the entire parent filesystem.
All files are cloned on demand. In other words, it only clones a file when it is
accessed.

The major advantage of this mode is that it only consumes little system
disk and CPU resource. Prism does not need to pay any cost to clone the files
that are never accessed. This is particularly useful for scenarios that only need
a ephemeral filesystem. Software testing is a good example. Users often tend
to destroy the clone after they test a untrusted application. It is often unnec-
essary to clone the entire filesystem for such an ephemeral system. The lazy
cloning mode is also useful for evaluating the performance impact of the asy-
chronous cloning mechanism on the cloned filesystem. It gives a worst-case bound
of cloning penalty incurred by access to a cloned filesystem, because each ac-
cessed file is cloned on-the-fly.

However, we do not choose this cloning mode as the default Prism cloning
mode. As discussed earlier, if a cloning job is complete, both the parent and
cloned filesystems can be accessed as a normal filesystem without incurring ad-
ditional cloning overhead. In contrast, before the parent filesystem is fully cloned,
modifications to the parent filesystem can potentially cause consistency conflicts.
When such conflicts are detected, Prism has to temporarily block the modifica-
tion operations until the conflicts are resolved on-the-fly. The resolving latency
would negatively impact end users’ experience. To minimize the ”impact win-
dow”, one may want to finish the cloning as soon as possible. Therefore, we
choose the standard asynchronous cloning as the default cloning mode in Prism.

400 X. Zhao, K. Borders, and A. Prakash

3.5 The Prism Copy-on-Write Mechanism

In Prism, copy-on-write (CoW) must be performed if a VM writes a shared
file. The CoW operation can be implemented as file copying. However, that
can incur unncessary overhead, making operations like “chmod” inefficient. As
an alternative, Prism employs a block-level CoW mechanism that is similar to
Ext3Cow [10]. In Prism, each file is regarded as an inode associated with data
blocks. Prism allows a file’s inode and blocks to be shared separately. When
performing CoW on a file to be changed, Prism only replicates the modified
part, and still shares the unmodified part between the old and new copies. To
track the reference counts of blocks, Prism deploys a reference count table for
each block device. Each table entry is a one-byte reference count corresponding
to a 4KB data block (default block size in pext3). A data block’s reference count
records how many files share the data block. If a block is shared by more than
255 files, it will be duplicated to a new block to avoid reference count overflow.
We use the Linux journalling layer (JBD) to protect the block reference count
table from being corrupted even if the system crashes in the middle of reference
count updating.

3.6 Discussion

Prism uses hard links to achieve file sharing between the parent and cloned
filesystem. Each hard link of a file will increase the file’s reference count by
one. In existing Unix-like systems, the maximum value of a reference count is
255. Therefore, if a same file is cloned for many times, the file’s reference count
can overflow. One solution is to make a physical copy when a file’s reference
count is about to overflow. This solution has not been implemented due to the
time limit. While this solution incurs additional data copying overhead, we do
not expect that it will substantially impact the Prism performance, because the
reference count overflow issue is rare in a real world system. In addition, hard
links are only entries in directory files. These entries are stored in each VM’s
own directory tree and will not affect other VMs’ filesystem operation. There-
fore, the increase of the number of hard links will not impact a VM’s filesystem
performance.

Prism’s file sharing mechanism may incur security concerns. For example, one
VM may attempt to modify a shared data block to disrupt other VMs. However,
in Prism, a guest VM can only modify a file by issuing file system requests, which
are subject to the Prism security checking. If a data block is shared by two or
more VMs, copy-on-write operation will be performed to ensure the isolation
between VMs.

4 Evaluation

Table 1 describes our evaluation platform. To facilitate a quick restoration of
the operating system state to a consistent point for all experiments, we ran all
the experiments in a DomainU Xen virtual machine, running a Fedora Core 4

Prism: Providing Flexible and Fast Filesystem Cloning Service 401

Table 1. Experimental platform

Hardware
CPU 3.00GHz Pentium IV

Memory 512MB(Dom0) 512MB(DomU)
Disk Maxtor 7200RPM EIDE

Software
VMM Xen 3.0.2

Domain0 OS Linux 2.6.16-xen0
DomainU OS Linux 2.6.16-xenU

Linux Distribution Fedora Core 4
Apache version 2.0.58

Connectathon version 1.18
Tar version 1.15.1

GNU gcc version 4.0.2
GNU ld version 2.15.94.0.2.2

GNU Autoconf version 2.59
GNU automake version 1.9.5

distribution of Linux. The results reported are averages from multiple runs of
the experiments. Generally, we found the results to be very consistent across the
runs, with low standard deviation as compared to the average values.

4.1 Synchronous and Asynchronous Cloning Latency

We first evaluated the performance of the Prism synchronous and asynchronous
cloning mechanisms. For the parent filesystem, we used a filesystem consisting of
a Fedora Core 4 system with standard software packages, including around 170K
files and over 17K directories. We cloned the filesystem with both mechanisms
32 times and reported the average time elapsed to clone the filesystem.

We first compared the cost of full copying versus synchronous cloning. The
full copying of the filesystem took around 10.5 minutes (630 seconds), while syn-
chronous cloning took 58.7 seconds. This clearly demonstrated that the Prism’s
file sharing technique significantly reduces the cloning overhead.

We then measured the time used by the Prism’s asynchronous cloning mech-
anism to clone the filesystem. With the asynchronous cloning mechanism, the
cloning activity largely occurred in the background. Prism instantly presented
the users with an accessible filesystem clone. The observed latency was 0.18 sec-
onds. The time spent by the background thread to clone the filesystem is about
the same as that used by the synchronous cloning mechanism. This experiment
shows that the asynchronous cloning mechanism significantly reduces the latency
before the cloned filesystem is ready for use. This helps improve users’ experi-
ence in filesystem cloning and makes it more practical to perform tasks such
as testing untrusted applications in VM clones. While the asynchronous cloning
mechanism hides the cloning latency from end users, it does not reduce the

402 X. Zhao, K. Borders, and A. Prakash

cloning overhead. The total time used to clone the filesystem in the background
was approximately the same as that of the synchronous cloning mechanism.

We also measured the disk space used by clones after each round of the cloning
operation. The experiments showed that the used disk space consistently in-
creased by 77MB each clone. This disk space is used to store a separate directory
tree structure for each clone. The size of the fully copied filesystem is around
6GB. The clone size is around 1.3% of the disk space used by the fully copied
filesystem before any modification to the clone. We expect that the disk space
used by the clone will increase over time but will still be smaller than a fully
copied filesystem, because the files that are never written can still be shared
without duplication.

4.2 Performance on the Apache Workload

The asynchronous cloning mechanism presents end users a usable filesystem
before the cloning procedure is finished. When a user in the cloned filesystem
accesses a file that has not been cloned, Prism has to aggressively clone the file
before processing the user’s file request. Therefore, the asynchronously cloned
filesystem could be slower than a fully cloned filesystem before the background
cloning procedure is finished.

We used an Apache build task as a representative of typical workloads on
a normal development machine to evaluate the performance impact of asyn-
chronous cloning. In our experiment, Apache 2.0.58 was used as the benchmark
object. The Apache archive includes 2339 files scattered in 188 directories. The
total size of the archive is 6.13MB before being decompressed. After being de-
compressed, the total size of the Apache directory is 32.9MB. The benchmark
first unpacks the archive of Apache 2.0.58 into a source directory. Next, it runs
configure to build the source code dependency, which involves lots of small data
read and file lookup operations. During the third phase, it builds the Apache
binaries from the source files, which is a CPU intensive task, but also generates
a lot of object files and temporary files. Finally, it removes all Apache files in-
cluding the Apache source tree, generated configuration files, object files, and
Apache executable binaries.

In practice, it is hard to consistently reproduce the dynamics when the bench-
mark and background cloning procedure run concurrently. The benchmark result
can vary with different execution orders and time patterns. For this reason, we
used the “lazy” cloning mode described in Section 3.4 — Prism only clones files
on-demand and does not run the background thread to clone the unvisited files.
As such, all files that are accessed by the benchmark will be cloned at run-
time and all cloning penalties related to the benchmark are included into the
benchmark result. This provides a stable evaluation on the performance penalty
caused by the on-demand cloning mechanism. As another comparison point, to
get the best-case performance for Prism, we also ran the benchmark on a fully
cloned filesystem, which excludes the cloning overhead from the benchmark re-
sults. We compared the ext3, lazily-cloned, and fully-cloned pext3 filesystems on
the Apache workload.

Prism: Providing Flexible and Fast Filesystem Cloning Service 403

0

50

100

150

200

250

300

Unpack Configure Build Remove Total

E
la

ps
e

T
im

e
(S

ec
on

ds
)

Apache Build Benchmark

Ext3
PExt3 Fully Cloned
PExt3 Lazily Cloned

Fig. 6. Performance of Apache build workload. “Ext3” stands for standard Ext3 filesys-
tem;“PExt3” stands for the Prism Ext3 filesystem.

Note that the benchmark needs to use some system tools and libraries such
as tar, gunzip, and gcc. In our experiments, the benchmark process used the
tools on the cloned filesystem. We guaranteed that by using “chroot” [6] to the
cloned filesystem before running the benchmark. As a result, all input and output
files needed for the benchmark are accessed from the cloned filesystem. To avoid
warm cache effects caused by previous runs, we always ran the experiments right
after the filesystem was mounted.

In Figure 6, each bar group shows a phase of the Apache build benchmark,
while the “Total” group represents the total time consumed in the four phases of
the benchmark. Overall, the Apache build benchmark running on a lazily cloned
filesystem was 4.6% slower than on a full copied filesystem. With a fully cloned
filesystem, the performance difference with ext3 was negligible. These results
demonstrate that the performance impact of the Prism asynchronous cloning
mechanism is not significant. Moreover, once the background cloning procedure
is finished, the cloned filesystem can be accessed at the same speed as a fully
cloned filesystem.

4.3 Connectathon Test Suite

We used the Connectathon test suite [1] to evaluate operational correctness and
performance of the pext3 system. The Connectathon test suite is a standard
benchmark widely used by many filesystem projects such as Frangipani [15] and
Ext3cow [10] to verify the correctness of filesystems and their interoperability
with variety of operating systems.

We modified the Connectathon parameters to invoke more filesystem oper-
ations than the default setting. As such, we can better exercise the system
and get more accurate performance results. In the experiment, we allocated
a dedicated disk partition and used the pext3 and ext3 filesystems to manage
this disk partition, respectively. For each setting, we ran the “basic” series of
Connectathon benchmark for 10 times. The “basic” series of Connectathon test

404 X. Zhao, K. Borders, and A. Prakash

0
0.1
0.2

0.3
0.4
0.5
0.6
0.7

0.8
0.9

1

create remove lookup chmod readdir rename symlink

E
la

ps
ed

 T
im

e
(s

)

ext3 pext3

(a)

0

5

10

15

20

25

30

35

40

45

write read

E
la

ps
ed

 T
im

e
(s

)

ext3
pext3

(b)

Fig. 7. Connectathon benchmark results. Each block group shows the latency of a step
of the Connectathon benchmark.

includes nine steps. Each part tests a separate system call. In order, the nine
steps are: (1) create 12400 files 62 directories 5 levels deep, (2) remove these
files, (3) 20000 getcwd and stat calls, (4) 80000 chmods and stats, (5) create and
write 1000 files. The size of each file is 1MB. Next, we read the 1000 files into
8K buffers sequentially. (6) create 400 files in a directory and read the directory
entries for 81000 times using readdir, (7) create 200 files, rename and stat these
files for 4000 times, (8) create 200 files, and perform symlinks and readlinks for
8000 times, and, lastly, (9) perform 15000 statfs calls.

The average time elapsed to run the benchmark on the pext3 and ext3 filesys-
tems were measured and compared. The reported results are the average value
from ten rounds of benchmark and reflect 95% confidence interval. To avoid
warm cache effects caused by previous runs, we rebooted the test VM before
each round of benchmark, and conducted the experiments right after the system
is started.

The performance comparison is illustrated in Figure 7. Overall, the micro-
benchmark results indicate that the pext3 filesystem delivers performance com-
parable to the ext3 filesystem on operations create, lookup, chmod, readdir,
rename, write, and read. The performance differences between pext3 and ext3
on these operations are at most 6.23%.

Pext3 performs 16.67% and 11.27% slower than ext3 on the remove and
symlink operations, respectively. For the ext3 filesystem, a remove operation
mainly involves the updates on metadata including directory entries and block
bitmaps, which are very efficient. The pext3 filesystem, however, uses the refer-
ence count table to track the usage status of data blocks. When removing a file,
the filesystem driver must update the reference count (see Section 3.5) for each
data blocks used by the file, incurring additional overhead. While the overhead
of updating the reference count table is not substantial in term of the absolute
value, it can be more pronounced for the filesystem operations that only incur

Prism: Providing Flexible and Fast Filesystem Cloning Service 405

Central scan of multiple filesystem clones

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8

Number of filesystem clones

E
la

ps
e

T
im

e
(s

ec
on

ds
) ext3

pext3 (group by clone, dup detection)

Fig. 8. Performance of central scanning 8 clones of a filesystem. “ext3” stands for fully
copied filesystems. “pext3 (group by clone dup detection)” stands for cloned filesystem.

very low overhead. The same reason also explains the performance difference for
the symlink operations.

4.4 Central Scan of Multiple Clones

Because of the way Prism does cloning (clones via file sharing), it is very easy
for applications to identify files that are shared across filesystems. This allows
faster versions of centralized applications that scan multiple filesystems (e.g.,
virus scanning or comparing two filesystems for changes) to be designed. The
enhanced central applications can detect the files shared by multiple filesys-
tems and scan them only once. We developed a central virus scanner that can
check multiple filesystems (clones) for viruses. To see if Prism provides such
performance advantages to the central scanner, we cloned the parent system 8
times. We then sequentially scanned n cloned systems and compared the perfor-
mance with scanning n copied filesystems. Both the fully copied filesystem and
the cloned filesystem have 170K files and 17K directories. The Prism central
scanning tool maintained a list of scanned files’ inodes (retrieved via the Linux
stat() call) in a hash table. If it encounters the same inode again from another
filesystem, it does not re-scan the file content.

Figure 8 shows the central scanning performance on both pext3 and ext3
filesystems. For n = 1, ext3 outperformed pext3 because every file had to be
scanned in both systems. For small n, a cloned system is not expected to perform
as well as a fully-copied system because it may have less spatial locality on the
disk. Moreover, when scanning a Prism cloned filesystem, the central scanner
needs to build up the hash table, which incurs additional overhead. For larger
values of n, scanning cloned systems outperformed scanning copied systems by a
significant factor. For pext3, there is still some increase in time with n because
the directory structure still has to be traversed n times, but the slope is around
10 times lower.

406 X. Zhao, K. Borders, and A. Prakash

5 Conclusion

This paper describes the design of a virtualized file system for supporting hosted
servers and utility computing. Prism provides a file-level cloning mechanism that
can clone any selected part of a VM’s filesystem to a specified location. Prism
is implemented by modifying ext3 with about 5000 lines of code. Prism uses an
asynchronous cloning technique that establishes most of the file sharing in the
background and also aggressively on demand. This technique allows both systems
(parent and clone) to be usable almost immediately, irrespective of the size of the
cloned filesystem. On the server side, Prism permits fast centralized scanning.
Any files that have not been modified among parent and child filesystems have
identical inode numbers and need to be only scanned once.

We implemented and evaluated the Prism cloning mechanism. The Prism
cloning mechanism was able to clone a filesystem with around 170K files and
17K directories within 58.7 seconds, and return to the user an usable file system
clone within 0.18 seconds. In contrast, copying the same file system takes more
than 10 minutes. We also evaluated the performance of Prism’s cloned file sys-
tems. On the Connectathon benchmark and the Apache build workload, a Prism
cloned file system’s performance is close to that of a standard ext3 file system.
For applications that require scanning or comparing multiple cloned filesystems,
Prism was found to be significantly faster.

References

1. Connectathon. Introduction to the Connectathon NFS Testsuite (2007),
http://www.connectathon.org/nfstests.html

2. Hitz, D., Lau, J., Malcolm, M.: File system design for an NFS file server appliance.
In: WTEC 1994: Proceedings of the USENIX Winter 1994 Technical Conference on
USENIX Winter 1994 Technical Conference, Berkeley, CA, USA, p. 19. USENIX
Association (1994)

3. Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., Satyanarayanan, M., Side-
botham, R.N., West, M.J.: Scale and performance in a distributed file system. ACM
Transactions on Computer Systems (TOCS) 6(1), 51–81 (1988)

4. Klivansky, M.: A thorough introduction to flexcloneTMvolumes. Technical Report
TR3347, Network Appliance Inc. (October 2004)

5. Liang, Z., Venkatakrishnan, V.N., Sekar, R.: Isolated Program Execution: An Ap-
plication Transparent Approach for Executing Untrusted Programs. In: ACSAC
2003: Proceedings of the 19th Annual Computer Security Applications Conference,
pp. 182–191. IEEE Computer Society, Los Alamitos (2003)

6. McGrath, R.: Free Software Foundation. Chroot 5.2.1 - run command or interactive
shell with special root directory, The Linux Manual Pages (May 2005)

7. Sun Microsystems. Solaris ZFS - The Most Advanced File System on the Planet
(2007), http://www.sun.com/software/solaris/ds/zfs.jsp

8. Morris, J.H., Satyanarayanan, M., Conner, M.H., Howard, J.H., Rosenthal, D.S.,
Smith, F.D.: Andrew: a distributed personal computing environment. Communi-
cations of the ACM 29(3), 184–201 (1986)

http://www.connectathon.org/nfstests.html
http://www.sun.com/software/solaris/ds/zfs.jsp

Prism: Providing Flexible and Fast Filesystem Cloning Service 407

9. Muniswamy-Reddy, K., Wright, C.P., Himmer, A., Zadok, E.: A Versatile and User-
Oriented Versioning File System. In: Proceedings of the Third USENIX Conference
on File and Storage Technologies (FAST 2004), San Francisco, CA, pp. 115–128
(2004)

10. Peterson, Z., Burns, R.: Ext3cow: A time-shifting file system for regulatory com-
pliance. ACM Transcations on Storage 1(2), 190–212 (2005)

11. Pfaff, B., Garfinkel, T., Rosenblum, M.: Virtualization aware file systems: Getting
beyond the limitations of virtual disks. In: NSDI 2006: Proceedings of the 3rd
Symposium of Networked Systems Design and Implementation, pp. 353–366 (May
2006)

12. Satyanarayanan, M.: Scalable, secure, and highly available distributed file access.
Computer 23(5), 9–18, 20–21 (1990)

13. Soules, C.A.N., Goodson, G.R., Strunk, J.D., Ganger, G.R.: Metadata efficiency
in versioning file systems. In: FAST 2003: Proceedings of the 2nd USENIX Con-
ference on File and Storage Technologies, Berkeley, CA, USA, pp. 43–58. USENIX
Association (2003)

14. Sun, W., Liang, Z., Venkatakrishnan, V.N., Sekar, R.: One-Way Isolation: An Ef-
fective Approach for Realizing Safe Execution Environments. In: NDSS 2005: Pro-
ceedings of the Network and Distributed System Security Symposium (2005)

15. Thekkath, C.A., Mann, T., Lee, E.K.: Frangipani: a scalable distributed file system.
ACM SIGOPS Operating Systems Review 31(5), 224–237 (1997)

16. VMware. VMware VMFS: High-performance cluster file system for storage virtu-
alization (October 2006), http://www.vmware.com/pdf/vmfs datasheet.pdf

17. Warfield, A., Ross, R., Fraser, K., Limpach, C., Hand, S.: Parallax: Managing
storage for a million machines. In: Proceedings of the 10th USENIX Workshop on
Hot Topics in Operating Systems (HotOS X), Santa Fe, NM (June 2005)

18. Yu, Y., Guo, F., Nanda, S., Lam, L.c., Chiueh, T.c.: A feather-weight virtual
machine for windows applications. In: VEE 2006: Proceedings of the second in-
ternational conference on Virtual execution environments, pp. 24–34. ACM Press,
New York (2006)

19. Zadok, E., Iyer, R., Joukov, N., Sivathanu, G., Wright, C.P.: On incremental file
system development. ACM Transactions on Storage (TOS) 2(3) (accepted) (August
2006)

20. Zhao, X.: Improving the storage manageability, flexibility, and security in virtual
machine systems, Ph.D thesis, EECS Department, University of Michigan, Ann
Arbor (2007),
http://portal.acm.org/citation.cfm?id=1368534&coll=GUIDE&dl=GUIDE

21. Zhao, X., Borders, K., Prakash, A.: Towards protecting sensitive files in a com-
promised system. In: SISW 2005: Proceedings of the Third IEEE International
Security in Storage Workshop, Washington, DC, USA, pp. 21–28. IEEE Computer
Society, Los Alamitos (2005)

http://www.vmware.com/pdf/vmfs_datasheet.pdf
http://portal.acm.org/citation.cfm?id=1368534&coll=GUIDE&dl=GUIDE

Moara: Flexible and Scalable Group-Based Querying
System

Steven Y. Ko1, Praveen Yalagandula2, Indranil Gupta1,
Vanish Talwar2, Dejan Milojicic2, and Subu Iyer2

1 University of Illinois at Urbana-Champaign
2 HP Labs, Palo Alto

Abstract. Users and administrators of large-scale infrastructures (e.g., datacen-
ters and PlanetLab) are frequently in need of monitoring groups of machines
in the infrastructure. Though there exist several distributed querying systems for
this monitoring purpose, they are not group-based; they mostly focus on querying
the entire system. In this paper, we present Moara, a new querying system that
makes two novel contributions. First, Moara builds aggregation trees for differ-
ent groups and adaptively maintains the trees to optimize the total message cost.
Second, Moara supports a query language allowing groups to be specified implic-
itly via predicates consisting of arbitrarily nested unions and intersections. Our
evaluations on Emulab, on PlanetLab, and with large-scale simulations, demon-
strate Moara’s ability to answer complex queries within a fraction of a second,
to deal with high levels of dynamism in groups, and to incur a low bandwidth
overhead per host per query in comparison to existing centralized and distributed
aggregation systems.

1 Introduction

Large-scale distributed infrastructures have become increasingly common in various
domains. Today’s enterprise data centers [1] are equipped with thousands of machines
and run thousands of different applications and services. Federated computing infras-
tructures such as PlanetLab [2], proposed GENI infrastructure [3], and computational
grids [4] consist of thousands of hosts providing resources for a number of projects.

A frequent need of the users and the administrators of such infrastructures is moni-
toring and querying the status of groups of machines in the infrastructure, as well as the
infrastructure as a whole. These groups may be static or dynamic, e.g., the PlanetLab
slices, the machines running a particular service in a datacenter, or the machines with
CPU utilization above 50%. Further, users typically desire to express complex criteria
for the selection of the host groups to be queried. For example, “find top-3 loaded hosts
where (ServiceX = true) and (Apache = true)” is a query that targets two groups - hosts
that run service X and hosts that run Apache. Dynamic groups mean that the size and
composition of groups vary across different queries as well as time.

In general, users and administrators desire to monitor the performance of these
groups, to troubleshoot any failures or performance degradations, and to track usage
of allocated resources. These requirements point to the need for a group-based query-
ing system that can provide instantaneous answers to queries over in-situ data targeting

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 408–428, 2008.
c© IFIP International Federation for Information Processing 2008

Moara: Flexible and Scalable Group-Based Querying System 409

one or more groups. In fact, several existing distributed aggregation systems [5, 6, 7]
can be considered as a special case of group-based querying systems, as they target
querying of only a single group, i.e., the entire system.

Any group-based querying system should satisfy three requirements: flexibility, effi-
ciency, and scalability. First, the system should be flexible to support expressive queries
that deal with multiple groups, such as unions and intersections of different groups. Sec-
ond, the system should be efficient in query resolution—it should minimize the message
overhead while responding quickly with an answer. Third, the system should scale with
the number of machines, the number of groups, and the rate of queries.

In this paper, we propose Moara, a new group-based distributed aggregation sys-
tem that targets all three requirements. A query in Moara has three parts: (query-
attribute, aggregation function, group-predicate), e.g., (Mem-Util, Average, Apache =
true). Moara returns the resulting value from applying the aggregation function over the
values of query-attribute at the machines that satisfy the group-predicate.

Moara makes two novel design contributions over existing systems [5, 6, 7]. First,
Moara maintains aggregation trees for different groups adaptively based on the under-
lying environment and the injected queries to minimize the overall message cost and
query response time. Basically, the aggregation tree for a group in Moara is an op-
timized sub-graph of a global spanning tree, which spans all nodes in the group. By
aggregating data over these group-based aggregation trees, Moara achieves lower mes-
sage cost and response latency for queries compared to other aggregation systems that
contact all nodes. Further, we adapt each aggregation tree to deal with dynamism.

Second, Moara’s query processor supports composite queries that target multiple
groups simultaneously. Composite queries supported by Moara are arbitrary nested set
expressions built by using logical operators or and and, (respectively set operations ∪
and ∩) over simple group-predicates. Simple group-predicates are of the form (attribute
op value), where op ∈ {<, >,≤,≥, =, �=}. Consider our previous example “find top-
3 loaded hosts where (ServiceX = true) and (Apache = true)”, which is a composite
query that targets the intersection of two groups - hosts that run service X and hosts
that run Apache. Instead of blindly querying all the groups present in a query, Moara’s
query processor analyzes composite queries and intelligently decides on contacting a
set of groups that minimizes the communication overhead.

We implemented a prototype of Moara by leveraging the FreePastry DHT (Distributed
Hash Table) [8] and SDIMS [7] systems. Our evaluation consists of experiments on Em-
ulab [9] and PlanetLab, as well as large-scale simulations. Our experimental results indi-
cate that, compared to previous global hierarchical aggregation systems, Moara reduces
response latency by up to a factor of 4 and achieves an order of magnitude bandwidth
savings. Our scalability experiments confirm that Moara’s overhead for answering a
query is independent of the total number of nodes in the system, and only grows lin-
early with the group size. Finally, we show that Moara can answer complex queries
within hundreds of milliseconds in systems with hundreds of nodes under high group
churn.

In this work, we focus on efficiently supporting one-shot queries (as opposed to
repeated continuous queries) over a common set of groups, since we expect
this type of queries to be more common in the kind of infrastructures we are targeting

410 S.Y. Ko et al.

at — datacenters and federated computing systems. We expect most users will be per-
forming one-shot queries over common groups (e.g., the same PlanetLab slice, ma-
chines in a datacenter, etc) during the time when their service or experiment is running.
Further, a user interested in monitoring groups continually can invoke one-shot queries
periodically. Our use cases in Section 2 motivate this design decision further.

Any distributed system subjected to dynamism in the environment, suffers from the
CAP dilemma [10], which states that it is difficult to provide both strong consistency
guarantees and high availability in failure-prone distributed settings. Moara treads this
dilemma by preferring to provide high availability and scalability, while providing even-
tual consistency guarantees on aggregation results. This philosophy is in line with that
of existing aggregation systems such as Astrolabe [6] and SDIMS [7]. Moara could also
allow the use of metrics proposed by Jain et al. [11,12] in order to track the imprecision
of the query results; however, studying these is beyond the scope of the current paper.

2 Motivation and Use Cases

We highlight the need for on-demand flexible querying and for dealing with dynamism
by presenting two motivating scenarios - data centers and federated infrastructures.

Consolidated Data Centers: In the last few years, medium and large-scale enterprises
have moved away from maintaining their own clusters, towards subscribing to services
offered by consolidated data centers. Such consolidated data centers consist of multiple
locations, with each location containing several thousands of servers [1]. Each server
runs heterogeneous operating systems including virtual machine hosts. While such con-
solidation enables running unified management tasks, it also introduces the need to deal
with scale.

Workloads on these data centers typically include Terminal Services, SOA-based
transaction workloads (e.g., SAP), and Web 2.0 workloads, e.g., searching and collab-
oration. Figure 1 presents some on-demand one-shot queries that data center managers
and service owners typically desire to run on such a virtualized enterprise. Several of
these one-shot queries are for aggregating information from a common group of nodes
including cases where groups are expressed as unions of groups (e.g., the third query
in table), or intersections (e.g., the last query). We would like to generalize this to pro-
vide managers with a powerful tool supporting flexible queries using arbitrarily nested

Tasks Queries
Resource Allocation Average utilization for servers belonging to (i) floor F, (ii) cluster C, (iii) rack R

Number of machines/VMs in a given cluster C
VM Migration Average utilization of VMs running application X version 1 or version 2

List of all VMs running application X and are VMWare based
Auditing/Security Count of all VMs/machines running firewall

Count of all VMs running ESX server and Sygate firewall
Dashboard Max response time for Service X

Count of all machines that are up and running Service X
Patch management List of version numbers being used for service X

Count of all machines that are in cluster C and running service X.version Y

Fig. 1. Illustrative Queries for Managing the Virtualized Enterprise

Moara: Flexible and Scalable Group-Based Querying System 411

unions and intersections of groups. In addition, these workloads vary in intensity over
time, causing considerable dynamism in the system, e.g., terminal services facing high
user turnaround rates.

Federated Computing Infrastructures: In today’s federated computing infrastruc-
tures such as PlanetLab [2] and global Grids [4], as well as in proposed infrastructures,
e.g., GENI [3], users wish to query current statistics for their distributed applications or
experiments. For instance, PlanetLab creates virtual subgroups of nodes called “slices”
in order to run individual distributed applications. Monitoring is currently supported
by tools such as CoMon [13] and Ganglia [14], which periodically collect CPU, mem-
ory, and network data per slice on PlanetLab [2]. Due to their periodic nature, they are
not open to on-demand queries that require up-to-date answers. Further, increasing the
frequency of data collection is untenable due to storage and communication costs.

In contrast to the above systems, we need a system to answer one-shot queries that
seek to obtain up-to-date information over a common group of machines, that can be run
on-demand or periodically by an end-host, and are flexibly specified. Some examples of
our target queries include: number of slices containing at least one machine with CPU
utilization > 90% (basic query), CPU utilization of nodes common to two given slices
(intersection query), or free disk space across all slices in a given organization (union
query).

Need for Group-based Aggregation: As illustrated by above two target scenarios, we
expect that most of the queries are one-shot queries over common groups of machines.
Moreover, the predicate in a query specified as a logical expression involves several
groups, e.g., some groups in the above examples include the set of nodes in a PlanetLab
slice, the set of nodes running a given Grid task, the set of nodes with CPU utilization
> 90%, etc. In the worst case, such a group may span the entire system.

In practice though, we expect the group sizes to vary across different queries and with
time. In Figure 2(a), we plot the distribution of PlanetLab slice sizes, analyzed from an
instance of CoMon [13] data. Notice that there is a considerable spread in the sizes. As
many as 50% of the 400 slices have fewer than 10 assigned nodes, thus a monitoring
system that contacts all nodes to answer a query for a slice is very inefficient. If we
consider only nodes that were actually in use (where a slice has more than one process

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350 400

N
um

be
r

of
 n

od
es

Slices ranked according to the number of nodes

Assigned Nodes
In-Use Nodes

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 200 400 600 800 1000 1200 1400

of

 M
ac

hi
ne

s
U

se
d

Time (min)

Job 0 Job 1

Job 0
Job 1

Fig. 2. (a) Usage of PlanetLab nodes by different slices. We show both node assignment to slices
and active usage of nodes. Data collected from a CoTop snapshot [15]. (b) Usage of HP’s utility
computing environment by different animation rendering jobs. We show the number of machines
each job uses.

412 S.Y. Ko et al.

running on a node), as many as 100 out of 170 slices have fewer than 10 active nodes.
In another example case, Figure 2(b) presents the behavior of two jobs over a 20-hour
period from a real 6-month trace of a utility computing environment at HP with 500
machines receiving animation rendering batch jobs. This plot shows the dynamism in
each group over time.

These trace studies indicate that group sizes can be expected to be varying across
time in both consolidated centers as well as in federated computing infrastructures.
Thus, an efficient querying system has to avoid treating the entire system as a single
group and globally broadcasting queries to all nodes.

3 The Basics of Moara

In this section, we first discuss how Moara end-nodes maintain data and how queries
are structured. Then we discuss how Moara builds trees for individual groups.

3.1 Data and Query Model

Information at each node is represented and stored as (attribute, value) tuples. For ex-
ample, a machine with CPU capacity of 3Ghz can have an attribute (CPU-Mhz, 3000).
Moara has an agent running at each node that monitors the node and populates (at-
tribute, value) pairs.

A query in Moara comprises of three parts: (query-attribute, aggregation function,
group-predicate). The first field specifies the attribute of interest to be aggregated, while
the second field specifies the aggregation function to be used on this data. We require
this aggregation function to be partially aggregatable. In other words, given two partial
aggregates for multiple disjoint sets of nodes, the aggregation function must produce
an aggregate that corresponds to the union of these node sets [6, 7]. This admits aggre-
gation functions such as enumeration, max, min,sum, count, or top-k. Average can be
implemented by aggregating both sum and count.

The third field of the query specifies the group of machines on which the above
aggregation is performed. If no group is specified, the default is to aggregate values
from all nodes in the system. A group-predicate (henceforth called a “predicate”) is
specified as a boolean expression with and and or operators, over simple predicates
of the following form: (group-attribute op value), where op ∈ {<, >, =,≤,≥, �=}.
Note that this set of operators allows us to implicitly support not in a group predicate.
Any attribute that a Moara agent populates can be used as either query-attribute or
group-attribute.

A simple query contains a simple predicate. For example, the simple predicate (Ser-
viceX = true) defines all machines running ServiceX. Thus, a user wishing to compute
the maximum CPU usage across machines where ServiceX is running will issue the
following query: (CPU-Usage, MAX, (ServiceX = true)). Alternately, the user could
use a composite predicate, e.g., (ServiceX = true and Apache = true). This composite
query is defined with set operators ∪ and ∩.

Note that the query model can be easily extended so that instead of a query-attribute,
a querier can specify any arbitrary program that operates upon simple (attribute, value)

Moara: Flexible and Scalable Group-Based Querying System 413

pairs. For example, a querier can specify a program that evaluates (CPU-Available >
CPU-Needed-For-App-A) as query-attribute, to see how many nodes are available for
the application A. Similarly, group-predicate can be extended to contain multiple at-
tributes by defining new attributes. For example, we can define a new attribute att as
(CPU-Available > CPU-Needed-For-App-A), which takes a boolean value of true/false.
Then att can be used to specify a group. However, for this paper, we mainly focus on the
techniques for efficiently answering the queries for given group-predicates and hence
restrict query model to contain only simple attributes.

3.2 Scalable Aggregation

We describe here how Moara aggregates data for each group.

DHT trees: For scalability with large number of nodes, groups, and queries, Moara
employs a peer-to-peer in-network aggregation approach that leverages the computing
and network resources of the distributed infrastructure itself to compute results. These
trees are used for spreading queries, and aggregating answers back towards the source
node. In our architecture, a lightweight Moara agent runs at each server from which
data needs to be aggregated. These agents participate in a structured overlay routing
algorithm such as Pastry [8], Tapestry [16], or Chord [17]. These systems allow routing
within the overlay, from any node to any other node, based on the IDs of these nodes
in the system. Moara uses this mechanism for building aggregation trees called DHT
trees, akin to existing systems [7, 18, 19]. A DHT tree contains all the nodes in the
system, and is rooted at a node that maps to the ID of the group. For instance, Figure 3
shows the tree for an ID with prefix 000 using Pastry’s algorithm with one-bit prefix
correction. We choose to leverage a DHT, since it handles physical membership churn
(such as failures and join/leave) very modularly and efficiently. Also, we can construct
aggregation trees clearly, given a group predicate.

Basics of Resolving Queries: Given a simple query 000

111 110

010

011

001

101 100

Fig. 3. DHT tree for an ID with
prefix 000

with predicate p, Moara uses MD-5 to hash the group-
attribute field in p and derives a bit-string that stands
for the group ID. The DHT tree for this ID is then
used to perform aggregation for this query, e.g.,
Figure 3 shows the DHT tree for an attribute “Ser-
viceX” that hashes to 000.

When a simple query is generated at any node in
Moara, it is first forwarded to the root node of the cor-
responding DHT tree via the underlying DHT routing
mechanism. The root then propagates it downwards
along the DHT tree to the leaves. When a leaf receives a query, it evaluates the predi-
cate p in the query (e.g., ServiceX=true). If the result is true, it replies to its parent the
local value for the query attribute (e.g., CPU-Usage). Otherwise, it sends a null reply to
its parent. An internal node waits to reply to its parent until all its children have replied
or until a timeout occurs (using values in Section 7). Then, it aggregates the values re-
ported by its children, including its own contribution if the predicate is satisfied locally,

414 S.Y. Ko et al.

and forwards the aggregate to its parent. Finally, the root node replies to the original
querying node with the aggregated value.

Moara Mechanisms: The above “global aggregation” approach has every node in the
system receive every query. Hence, it is inefficient in resolving queries targeting specific
groups. Moara addresses this via three mechanisms.

First, Moara attempts to prune out branches of the tree that do not contain any node
satisfying the predicate p. We call this tree a pruned tree or a group tree for p. For
example, in Figure 3, if nodes 111, 110, and 010 do not satisfy the predicate, then
the root does not forward the query to 010. However, this raises a challenge – how do
internal nodes know whether any of their descendants satisfy the predicate. For instance,
if node 110 decides to install ServiceX and thus satisfies the predicate, the path from
the root to this node will need to be added to the tree. Further, if the composition of a
group changes rapidly, then the cost for maintaining the group tree can become higher
than query resolution costs. Section 4 presents Moara’s dynamic adaptation mechanism
that addresses this dilemma.

Second, Moara reduces network cost and response latency by short-circuiting the
group trees, thus reducing the number of internal tree nodes that do not satisfy the pred-
icate. For instance, in Figure 3, if node 010 does not satisfy the predicate but node 110
does, then the former can be eliminated from the tree by having 110 receive queries
directly from the root. Section 5 describes how this reduces the bandwidth cost of ag-
gregating a group with m nodes in a system of N nodes, from O(m log N) to O(m).

Third, Moara efficiently resolves composite queries involving multiple groups by
rewriting the predicate into a more manageable form, and then selecting a minimal
set of groups to resolve the query. For example, an intersection query (CPU-Util, avg,
(floor=F1 and cluster=C12)) is best resolved by sending the query to only one of the
two groups - either (floor=F1) or (cluster=C12) - whichever is cheaper. This design
decision of Moara is detailed in Section 6.

4 Dynamic Maintenance

Given a tree for a specific group, Moara reduces bandwidth cost by adaptively pruning
out parts of the tree, while still guaranteeing correctness via eventual completeness.
Eventual completeness is defined as follows - when the set of predicate-satisfying nodes
as well as the underlying DHT overlay do not change for a sufficiently long time after
a query injection, a query to the group will eventually return answers from all such
nodes. For now, we assume that the dynamism in the system is only due to changes
in the composition of the groups (“group churn”); we will describe how our system
handles node and network reconfigurations (churn in system) later in Section 7.

To resolve queries efficiently, Moara could prune out the branches of the correspond-
ing DHT tree that do not contain any nodes belonging to the group. However, to main-
tain completeness of the query resolution, Moara can perform such aggressive pruning
only if it maintains up-to-date information at each node about the status of branches
at that node. For groups with high churn in membership relative to the number of
queries (e.g., CPU-Util < 50), maintaining group status at each node for all its branches
can consume high bandwidth - broadcasting queries system-wide may be cheaper. For

Moara: Flexible and Scalable Group-Based Querying System 415

relatively stable groups however (e.g., (sliceX = true) on PlanetLab), proactively main-
taining the group trees can reduce bandwidth and response times. Instead of implement-
ing either of these two extreme solution points, Moara uses a distributed adaptation
mechanism that, at each node, tracks the queries in the system and group churn events
from children for a group predicate and decides whether or not to spend any bandwidth
to inform its parent about its status.

Basic Pruning Mechanism: Each Moara node maintains a binary local state variable
prune for each group predicate. If prune for a predicate is true (PRUNE state), then
the branch rooted at this node can be pruned from the DHT tree while querying for
that predicate. Whenever a node goes from PRUNE to NO-PRUNE state, it sends a
NO-PRUNE message to its parent; the reverse transition causes a PRUNE message to
be sent. When the root or an internal node receives a query for this predicate, it will
forward the query to only those of its children that are in NO-PRUNE state.

Note that it is incorrect for an internal node to set its state for a predicate to PRUNE
based merely on whether it satisfies the predicate or not. One or more its descendants
may satisfy the predicate, and hence the branch rooted at the node should continue to
receive any queries for this predicate. Further, an internal or a leaf node should also
consider the churn in the predicate satisfiability before setting the prune variable. For
example, suppose the predicate is (CPU-Util < 50) and a leaf node’s utilization is fluc-
tuating around 50% at a high rate. In this case, the leaf node will be setting and unsetting
prune variable, leading to a large number of PRUNE/NO-PRUNE messages.

Due to the above reasons, we define the prune variable as a variable depending on
two additional local state variables—sat and update. sat is a binary variable to track if
the subtree rooted at this node should continue receiving queries for the predicate. Thus
sat is set to 1 (SAT) if either the local node satisfies the predicate or any child node is
in NO-PRUNE state.

update is a binary state variable that denotes whether the node will update its prune
variable or not. So, when update = 1 (UPDATE state), the node will update the prune
variable; but, when update = 0 (NO-UPDATE state), the node will cease to perform
any updates to the prune variable irrespective of any changes in the local satisfiability,
or any messages from its children. In other words, a node does not send any PRUNE
or NO-PRUNE messages to its parent when it is in NO-UPDATE state. So, to ensure
correct operation, a node can move into NO-UPDATE state only after setting prune =
0. This guarantees that its parent will always send the queries for the predicate to this
node. Formally, we maintain the following invariants:

update = 1 AND sat = 1 =⇒ prune = 0
update = 1 AND sat = 0 =⇒ prune = 1

update = 0 =⇒ prune = 0

The transition rules for the state machine at each node is illustrated in Figure 4. Note
that a node sends a status update message to its parent whenever it moves from PRUNE
to NO-PRUNE state or vice-versa. This state machine ensures the following invariant –
each node in the system performs at least one of the following: (a) sends status updates
upwards to its parent, or (b) receives all queries from its parent. This invariant suffices
to guarantee eventual completeness because after the group stops changing, any node

416 S.Y. Ko et al.

that satisfies the predicate will be in SAT state. Therefore, the node and its ancestors
will all be in NO-PRUNE state, and thus the node will receive the next query. Our
technical report [20] elaborates with pseudo-code how Moara evaluates each variable.

Adaptation Policy: To decide the

UPDATE
SAT

NO−PRUNE

Decided by
dynamic
adaptation policy

SAT
NO−PRUNE

NO−UPDATE

NO−UPDATE

NO−SAT
NO−PRUNE

NO−SAT
PRUNE

UPDATE

SAT 1−>0

SAT 1−>0SAT 0−>1

SAT 0−>1

Start

Fig. 4. State machine for dynamic adaptation
mechanism

transition rules for the update state
variable, Moara employs an adaptation
mechanism that allows different poli-
cies. Our goal is to use a policy that
minimizes the overall message cost,
i.e., sum of both update and query
costs. In Moara, each node tracks the
total number of recent queries and lo-
cal changes it has seen (in the tree) -
we discuss details of how to keep track
of recent queries and local changes in
our technical report [20]. Each node keeps two query counts - qn, the number of queries
recently received by the system while the node is in NO-SAT state, and qs, the number
of recent queries received by the system while it was in SAT state. The node also keeps
track of the number of times the sat variable toggled between 0 and 1, denoted as c.

A node in NO-UPDATE state would exchange a total of BNU = 2× (qn + qs) mes-
sages with its parent (two per query), while a node in UPDATE state would exchange
BUP = c + 2 × qs messages (one per change, and two per query). Thus, to minimize
bandwidth, the transition rules are as follows: (1) a node in UPDATE state moves to
NO-UPDATE if BNU < BUP , i.e., 2×qn < c; (2) a node in NO-UPDATE state moves
to UPDATE if BNU > BUP , i.e., 2× qn > c. In order to avoid flip-flopping around the
threshold, we could add in hysteresis, but our current design performs well without it.

One corner issue with the above approach is that when a node is in the PRUNE
state, it does not receive any more queries and thus cannot accurately track qn. Note
that this does not affect the correctness (i.e., eventual completeness) of our protocol
but may cause unnecessary status update messages. To address this, the root node of
an aggregation tree in Moara assigns a sequence number for each query and sends that
number piggybacked along with the queries. Thus, any node that receives a query with
sequence number s is able to track qn using the difference between s and its own last-
seen query sequence number.

State Maintenance: By default, each node does not maintain any state, which is con-
sidered as being in NO-UPDATE state. A node starts maintaining states only when a
query arrives at the node. Without dynamic maintenance, merely maintaining pruned
trees for a large number of predicates (e.g., a tree for each slice in the PlanetLab case
or a tree for each job in the data center) could consume very high bandwidth in an
aggregation system. With dynamic maintenance, pruning is proactively performed for
only those predicates that are of interest at that time. Once queries stop, nodes in the
aggregation tree start moving into NO-UPDATE state with any new updates from their
children and hence stop sending any further updates to their parents.

Moara: Flexible and Scalable Group-Based Querying System 417

We note that a node in NO-UPDATE state for a predicate can safely garbage-collect
state information (e.g., predicate itself, recent events information, etc) for that predicate
without causing any incorrectness in the query resolution. So, once a predicate goes out
of interest, eventually no state is maintained at any node and no messages are exchanged
between nodes for that predicate. Several policies for deciding when to garbage-collect
state information are possible: we could 1) garbage-collect each predicate after a time-
out expires, 2) keep only the last k predicates queried, 3) garbage-collect the least fre-
quently queried predicate every time a new query arrives, etc. However, studying these
policies is beyond the scope of this paper. We also note that we do not consider DHT
maintenance overhead. In addition, note that global aggregation trees are implicit from
the DHT routing and hence require no separate maintenance overhead.

Finally, since Moara maintains state information for each predicate, it could be more
efficient if we aggregated different predicates. For example, predicates such as CPU-
Util > 50, CPU-Util > 60, and CPU-Util > 70 could be aggregated as one predicate,
CPU-Util > 50, so that Moara could maintain only one tree. This design choice requires
careful study on the tradeoff between the state maintenance overhead and the bandwidth
overhead incurred by combining different trees with the same attribute. This is outside
of the scope of this paper, since we focus on the tradeoff of the bandwidth overhead
based on the query rate and the group churn rate.

5 Separate Query Plane

Given a tree that contains m predicate-satisfying nodes, using the pruned DHT trees
of the previous section may lead to O(m log N) additional nodes being involved in
the tree. These extra nodes would typically be internal tree nodes that are forwarding
queries down or responses up the tree, but which do not satisfy the predicate themselves.
This section proposes modifications to the protocol described in Section 4 in order to
reduce the traffic through these internal nodes.

Our idea is to bypass the internal nodes, thus creating a separate query plane which
involves mostly nodes satisfying the predicate. This optimizes the tree that we built
(Section 4) further by eliminating unnecessary internal nodes. This reduces the tree to
contain only O(m) nodes, and thus resolves queries with message costs independent of
the number of nodes in the system. Note that this technique has similarities to adapta-
tions of multicast trees (e.g., Scribe [18]), but Moara needs to address the challenging
interplay between dynamic adaptation and this short-circuiting.

To realize a separate query plane, each node uses the states, constraints and transi-
tions as described in Section 4. In addition, each node runs operations using two locally
maintained sets: (i) updateSet is a list of nodes that it forwards to its parent; (ii) qSet
is a list of children or descendant nodes, to which it forwards any received queries. We
consider first, for ease of exposition, modified operations only for nodes in the UP-
DATE state. When a leaf node in UPDATE state begins to satisfy the tree predicate, it
changes to SAT state as described in Section 4 and sets its UpdateSet to contain its ID.
In addition, when sending a NO-PRUNE message to its parent, it also sends the up-
dateSet. Each internal node in turn maintains its qSet as the union of the latest received
updateSets from all its children, adding its own ID (IP and port) if the tree predicate is

418 S.Y. Ko et al.

satisfied locally. The leaf nodes do not need to maintain qSets since they do not forward
queries.

Finally, each internal node maintains its updateSet by continually monitoring if |qSet|
< threshold, where threshold is a system parameter. If so, then updateSet is the same as
qSet, otherwise updateSet contains a single element that is the node’s own ID regardless
of whether the predicate is satisfied locally or not. Whenever the updateSet changes at
a node and is non-empty, it sends a NO-PRUNE message to its parent along with the
new updateSet informing the change. Otherwise, it sends a PRUNE message.

The above operations are described assuming that all nodes are in UPDATE state.
When a node is NO-UPDATE state, it maintains qSet and updateSet as described above,
but does not send any updates to its parent. For correctness, a node moving from UP-
DATE to NO-UPDATE state sends its own ID along with the NO-PRUNE message to
its parent so that it receives future queries.

If parameter threshold=1, the above mecha-

D

No-Sat Sat

{B}
Sat

Sat

Sat

Sat

G

R

FCBA

H

{B}

{B}

{B}

{D}

{C,D}

{C}

{H}

{C} {D} {F}

{F}

Sat

Fig. 5. Separate Query Plane for thresh-
old=1. We assume all nodes are in UP-
DATE mode. Each node’s qSet is shown
next to it, and updateSet on the link to its
parent.

nisms produce the pruned DHT tree described
in Section 4, while threshold > 1 gives trees
based on a separate query plane. This is be-
cause with threshold=1, an internal node that re-
ceives an updateSet from any of its children will
pass along to its parent an updateSet contain-
ing its own ID, even if the predicate is not sat-
isfied locally. However, with threshold > 1, the
only internal nodes that do not satisfy the pred-
icate locally but receive queries, are ones that
are maintaining a qSet of size ≥ threshold. Such
nodes are required to receive queries so that they
can be forwarded to its descendants. However,
the tree bypasses several other nodes that do not satisfy the predicate, thus obtaining
bandwidth savings. Specifically, an internal node that has |qSet| < threshold and does
not satisfy the predicate, does not include its own ID in the updateSet, and thus does
not receive queries.

Having a high value of threshold in the system bypasses several internal nodes in
the tree. However, this comes at the expense of a higher update traffic since any up-
dateSet changes need to be communicated to the parent. Figure 5 shows an example
with threshold=1. The overhead of forwarding a query in the separate query plane is
O(m) for a group with m nodes, independent of system size (details can be found in
our technical report [20]).

Our SQP design with updateSet and qSet variables at nodes, as described above,
allow us to easily use the adaptation policy rules described in Section 4. Further details
on this can be found in our technical report [20].

6 Composite Queries

So far, we have described how to build and maintain a single tree corresponding to one
simple predicate. We now describe how a query with a composite predicate is satisfied.

Moara: Flexible and Scalable Group-Based Querying System 419

Specifically, we first expand on the multiple possible trees, one tree per simple predicate
in the composite query, that such a query entails (Section 6.1). Then, we explain how
Moara plans a given query (Section 6.2), and how it selects a low-cost groups of nodes
to execute a given composite query (Section 6.3).

6.1 Maintaining Multiple Trees

Section 4 explains the maintenance of trees for simple predicates, starting from the time
a predicate is first encountered. If this predicate does not reappear again in subsequent
queries in the system, then all nodes in the tree will eventually move to NO-UPDATE
state (due to group churn events), and thus there will be no load, either query or update,
along the tree. Thus, Moara trees become silent and incurs zero bandwidth cost if not
used, obviating the need to explicitly delete trees for simple predicates. Furthermore,
Moara does not maintain trees for composite queries, since these might be exponentially
large in number - instead, it decides which simple predicate trees (existing or not) will
be selected to execute a given composite query. This decision process is described next.

6.2 Composite Query Planning

Consider the following composite query: “find the average free memory across ma-
chines where service X and Apache are running”. Suppose we have one group tree for
(ServiceX=true) and another tree for (Apache=true). A naı̈ve way to resolve the query
would be to query both trees in parallel. However, we observe that bandwidth can be
saved, without compromising completeness of answers, by (1) sending the query to any
one of the trees (because it is an intersection query), and (2) choosing the tree that incurs
a lower query cost.

Based on this observation, Moara answers arbitrary nested queries involving and
and or boolean expressions across simple predicates by selecting a small cover. A
cover for a given composite query Q is defined as a set of groups (selected from among
simple predicates inside Q) which together contain all nodes that satisfy the composite
predicate in Q. Thus, we only need to send Q to a cover to obtain a complete answer.

We can compute a cover for a query Q by exploring the boolean expression structure
recursively as follows:

• cover(Q=“A”) = {A} if A is a predefined group.
• cover(Q=“A or B”) = cover(A) ∪ cover(B).
• cover(Q=“A and B”) = cover(A), cover(B), or (cover(A) ∪ cover(B)).

For example, for a query with expression ((A and B) or C), the above rules derive
{A,C}, {B,C}, and {A,B,C} as possible covers. We call such covers as structural covers
since we infer them from the structure of the boolean expression.

Once the query originating node calculates the cover for a given query Q, the com-
posite query is forwarded to the roots of trees corresponding to each group in the cover,
the answers from these trees are aggregated, and finally returned to the querying node.
Notice that it is possible for some node(s) to receive multiple copies of the query, if they
are present in multiple trees which appear in the cover for Q. Such nodes reply with the

420 S.Y. Ko et al.

attribute value to only one of the trees they are present in, eliminating duplicate an-
swers. This requires nodes to remember the query ids (based on sender IP and sequence
number). Such information is cached for 5 minutes in our Moara implementation.

To further save on bandwidth, we would like to select a low-cost cover. This is done
by minimizing both the number of groups in the selected cover, as well as the total cost
of querying this cover. We explore below three ways of deriving a low-cost cover: (1)
structural optimizations, which rewrite the nested query to select a low-cost structural
cover consisting of simple predicates that already appear within the query, (2) estimates
of query costs for individual trees, and (3) semantic optimizations, which take into ac-
count semantic information obtained from users or query attributes.

6.3 Query Optimization: Finding Low-Cost Covers

Given a composite query, Moara first transforms it into a Conjunctive Normal Form
(CNF) expression using distributive laws of and and or operators. A CNF form is a
two level expression of and’s across a series of or terms.

It is important to notice that in the CNF form of a composite predicate for query
Q, each series of or terms is a possible cover - this is due to the same reason as our
intersection optimization explained earlier. Thus, if Moara can evaluate the query cost
of each of these structural covers (as a sum of the query costs for all sets in the cover),
then it can select the minimal cost cover for executing the query Q. We will describe
query cost calculation soon, but before that we give an example of the query rewriting.
The proof of why the CNF form gives the minimal-cost cover for a composite predicate
can be found in our technical report [20].

Figure 6 shows an example transformation. Consider ((A or B) and (A or C)) or D

CNF Conversion

Cover Evaluation

(A or B or D) and (A or C or D)

min(|A| + |B| + |D|, |A| + |C| + |D|)

Fig. 6. Example query pro-
cessing

a query targeting ((A or B) and (A or C)) or D.
Moara first transforms the expression to the equivalent
CNF: (A or B or D) and (A or C or D). Moara
chooses one cover between the two structural covers -
either {A, B, D} or {A, C, D}, whichever has a lower
cost.

Estimating Query Costs for Trees: In order to enable
low-cost cover calculation, the root node of each tree for
a simple predicate continually maintains the query cost
for that tree. The query cost is fetched by the querying node and used in the low-cost
cover calculation described above. Within the tree, the cost for each query is simply
2 × np, where np is the number of nodes in NO-PRUNE state. The values of np are
aggregated continually up the tree. Each internal node stores this count for its own
subtree, modifies the count according to its own state, and piggybacks this information
atop all updates and query responses to its parents. Although this lazy updating of the
counts means the query costs may be stale at times, this only affects communication
overhead, but not the correctness of the response.

Using Semantic Optimizations: If semantic information is available about the groups,
then Moara can further optimize the communication costs by choosing a better cover.
We explore two kinds of semantic information in our system: (i) information from

Moara: Flexible and Scalable Group-Based Querying System 421

description of the group, and (ii) user supplied semantic information. For example,
consider two groups A and B defined as follows: A = {nodes with memory < 2G}
and B = {nodes with memory < 1G}. Then, we can infer from these definitions that
B ⊆ A. In our technical report [20], we detail a variety of semantic relations between
two groups Moara exploits and how Moara optimizes further to obtain a low-cost cover.

7 Implementation and Evaluation

We have built a prototype of Moara using SDIMS [7] and FreePastry [8]. All other
Moara protocols, described in Section 3 through Section 6, are built atop these systems.
Here, we discuss our implementation details and evaluation methodology.

Moara Front-End: The Moara front-end is a client-side interface of Moara. It includes
an interactive shell, a query parser, and a query optimizer. Through the interactive shell,
a user can submit SQL-like aggregation queries to Moara. The query parser parses the
queries, and the query optimizer determines the groups that need to be queried through
the algorithm described in Section 6. Once the front-end determines the groups to be
queried, it generates a sub-query for each group. Each sub-query is resolved exactly
the same way as a normal query, except that the front-end waits until it receives all the
results from sub-queries, aggregates the results returned by the sub-queries, and returns
the final aggregate to the user.

Reconfigurations: To handle reconfigurations, we leverage the underlying FreePastry
mechanism for failure detection and neighbor set repair. Further details can be found in
our technical report [20].

Evaluation Environments: We use simulation, Emulab, and PlanetLab, and choose
a suitable environment to evaluate each of our design choices. We use simulation ex-
clusively for measuring bandwidth consumption in a large-scale environment. We use
Emulab and PlanetLab to mainly measure the latency in realistic environments, namely,
a medium-scale datacenter (Emulab) and a wide-area infrastructure (PlanetLab).

For each design choice (group-based aggregation, dynamic maintenance, separate
query plane, and composite query processor), we choose the evaluation environments
that are most suitable. First, we evaluate group-based aggregation on Emulab and Plan-
etLab, since group-based aggregation is designed to reduce both latency and bandwidth
consumption. Second, we evaluate dynamic maintenance and separate query plane us-
ing simulation, since both mechanisms are designed for bandwidth optimization and
have wide choices of parameters. However, we evaluate the separate query plane on
Emulab as well to measure the latency. Lastly, we evaluate our composite query pro-
cessor on Emulab, since it only affects latency.

Workload: The workload is characterized by two factors - group churn rate and query
rate. First, since a group is defined over a particular attribute, the group churn rate de-
pends on how dynamic the attribute is (e.g., a group of (OS = Linux) is likely to be
static, while a group of (CPU-util < 60%) is likely to be dynamic). Second, the query
rate depends on the usage of Moara and is expected to vary widely. For example, a data-
center operator might typically query a group once an hour on a day, but several times a

422 S.Y. Ko et al.

minute on days with high workloads or unscheduled downtimes. Thus, we parameterize
these factors and present the performance of Moara over the parameter range.

7.1 Simulation Results

We perform simulation experiments to measure the bandwith overhead of Moara’s dy-
namic tree maintenance and separate query plane. Our simulations are performed with
the FreePastry simulator environment, simulating up to 16,384 nodes. Each node main-
tains an attribute A with value ∈ {0, 1}. All queries are simple queries for (A, SUM,
A = 1), which counts the number of nodes where A is set to 1.

Dynamic Maintenance: To study the dynamic maintenance mechanism under different
workload types, we stress the system by injecting two types of events - query events and
group churn events - at different ratios. For example, a query:churn ratio of 0:500 repre-
sents an extreme type of workload where there is high group churn, but no queries at all.
On the other hand, the query:churn ratio of 500:0 represents the other extreme where
there is high query rate, but no group churn. Each group churn event selects m nodes at
random, and toggles the value of their attribute A. The value of m determines the “burst
size” of attribute churn. We fix the total number of events to 500, and randomly inject
query or group churn events at the chosen ratio. All data points are averaged over 3 runs.

Figure 7 shows the average number

 0

 200

 400

 600

 800

 1000

 1200

0:500 100:400 200:300 300:200 400:100 500:0

of

 M
es

sa
ge

s
pe

r
N

od
e

Query:Churn Ratio

Global
Moara (Always-Update)

Moara

Fig. 7. Bandwidth usage with various query-to-
churn ratios

of messages per node in Moara under
various query:churn ratios, in a sys-
tem of 10,000 nodes with m = 2000-
sized group churn events. In addition
to Moara, we also plot the number of
messages generated by two other static
approaches that lie at the opposing ex-
tremes. These are: 1) the Global ap-
proach, where no group trees are main-
tained and queries are sent to all the
nodes on the DHT trees, and 2) Moara
(Always-Update) approach, where a
tree is aggressively maintained by having each child send an update to its parent on
each attribute churn event.

The Global approach is inexpensive when there are fewer queries in the system, since
it avoids the overhead of tree maintenance. On the other hand, with a high-query:low-
churn ratio, Moara (Always-Update) performs well because it always maintains group
trees and hence incurs lower traffic than Global approach. The plots show that Moara
meets or lowers the message overhead in comparison to either of these extreme design
choices, at all values of query:churn ratios. When group churn is high, Moara suppresses
attribute churn events from propagating to other nodes. With more queries than group
churn events, Moara reduces query cost by maintaining trees aggressively. Thus, Moara
is able to adapt to various workload patterns.

Separate Query Plane: In Figure 8(a), we plot the query cost against the number of
nodes in the system for different threshold values and different group sizes. Note that

Moara: Flexible and Scalable Group-Based Querying System 423

 10

 100

 1000

 1 10 100 1000 10000

A
ve

ra
ge

 Q
ue

ry
 C

os
t

Number of Nodes

(8,1)
(8,2)
(8,4)

(32,1)
(32,2)
(32,4)

(128,1)
(128,2)
(128,4) 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000
 0

 20

 40

 60

 80

 100

Q
ue

ry
 C

os
t

U
pd

at
e

C
os

t

Subset Size

qc, t = 2
qc, t = 4
qc, t = 16

uc, t = 2
uc, t = 4
uc, t = 16

Fig. 8. (a) Bandwidth usage with (threshold > 1) and without the separate query plane (thresh-
old=1) for different group sizes. Each line represents a (group size, threshold) pair (b) Query
costs (qc) and update costs (uc) of the separate query plane in a 8192-node system.

the threshold value of 1 implies the absence of a separate query plane, while higher
threshold values create a separate query plane (refer to Section 5). For this experiment,
we do not introduce any group churn during the experiment. We perform 1,000 queries
and compute the average of the query cost. Even though there is no group churn, there
are updates sent by nodes to their parents as they move into UPDATE state with the first
query message. We count those messages as the update cost.

Figure 8(a) shows that without the separate query plane (threshold=1), the query cost
increases logarithmically as the total system size is raised. However, while maintaining
a separate query plane (threshold>1), the query cost reaches a constant value and stays
flat, independent of the number of nodes in the system. While increasing the value
of threshold decreases query cost, it can lead to more update messages as discussed
in Section 5. In Figure 8(b), we plot the query costs for different threshold values as a
percentage of the query cost for threshold=1 and also plot the percentage increase in the
update costs in comparison to threshold=1. From these two plots, we observe that (1)
with small groups and large total nodes (e.g., 8192 total nodes with group size=8 or 32),
using a query plane saves more than 50% bandwidth in query costs, and (2) while using
a higher value of threshold does reduce bandwidth, the savings are marginal beyond a
threshold of 2 and can incur higher update costs at large group sizes.

7.2 Emulab Experiments

In this section, we study both the latency and communication overhead of Moara under a
real deployment scenario in Emulab, that emulates a medium-scale datacenter. Specif-
ically, we evaluate three different workloads. First, we study performance of Moara
when querying groups of static attributes (e.g., OS = Linux). We vary the size of groups
and show the benefits of using Moara. Second, we study Moara with groups defined
over dynamic attributes (e.g., CPU-util < 60%). We stress Moara by varying the fre-
quency of changes. Third, we study composite queries with varying numbers of groups
per query.

Methodology: We create a network of 50 machines on a 100 Mbps LAN and instantiate
10 instances of Moara on each machine, thus emulating a 500 node Moara system.
Each experimental run is started with one bootstrap node, followed by a batch of 100

424 S.Y. Ko et al.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

group32

group64

group128

group256

group500

SDIM
S

 0

 200

 400

 600

 800

 1000

La
te

nc
y

(m
s)

A
vg

 M
sg

s
pe

r
Q

ry

Latency
Msgs

 0

 50

 100

 150

 200

 250

 300

40 80 120
160

200

La
te

nc
y

(m
s)

of Churn Nodes

Interval 5
Interval 45

Fig. 9. (a) Latency and bandwidth usage with static groups (b) Average latency of dynamically
changing groups. The horizontal line shows the average latency with a static group of the same
size.

new instances joining after intervals of 10 seconds each. After the last join, we wait an
additional 5 minutes to warm up before initiating queries and group churn from a Moara
node. Since we are mainly interested in per-query latency and bandwidth consumption,
we fix the query rate and repeat the same query multiple times. As previously, each node
maintains one binary attribute A. Our default query is a count, providing the number of
nodes with A=1. All data points are the average of 3 runs.

Static Groups: Figure 9(a) compares the performance of Moara (with separate query
plane) w.r.t. both latency and bandwidth. We vary the group sizes and query 100 times
for each experiment. In addition, we compare this performance against an approach
where a single global tree is used system-wide - this is labelled as the SDIMS approach
in the plot. As we can see from the figure, Moara’s latency and bandwidth scale with
the size of the group. The savings are the most significant for small groups (e.g., set32
which has 32 nodes), where the savings compared to the SDIMS approach are up to
4X in latency and 10X in bandwidth. The latency is reduced due to the use of separate
query plane because of short-circuiting long chains of intermediate nodes.

Dynamic Groups: We study the effect of group churn due to attribute-value changes at
individual nodes. We considered a group of 100 nodes, with group churn controlled by
two parameters churn and interval. Every interval seconds, we randomly select churn
nodes in the group to leave, and churn nodes outside the group to join.

Figure 9(b) shows the effect on query latency, of different churn values (x-axis) for
two different interval values. Queries are inserted at the rate of one query per second,
and the data points are averages of 100 queries per run. The plot shows that Moara’s
query latency is not affected significantly by group churn - (1) even when we increase
the group churn rate by a 9-fold factor from Interval=45 to interval=5, Moara experi-
ences only a small increase in latency, and (2) the latency stays low, and around 150 ms
even when the entire group membership changes every 5 seconds.

Figure 10(a) provides an insight into the workings of Moara under the above
workload, for interval=5, churn=160. Notice that the spikes in query latency occur
once every 5 seconds, around the time that the group churn batch occurs. However, no-
tice that (1) the peak latency stays within 300 ms, and (2) Moara query latency stabilizes

Moara: Flexible and Scalable Group-Based Querying System 425

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
s)

Time (sec)

5-sec 160-node churn

 150
 200
 250
 300
 350
 400
 450
 500
 550

 2 3 4 5 6 7 8 9 10

La
te

nc
y

(m
s)

of Groups

Complex
Union
Intersection

Comp. no SP
Uni. no SP
Inter. no SP

Fig. 10. (a) Latency over time with a dynamically changing group. The horizontal line shows the
average latency with a static group of the same size. (b) Latency with composite queries.

very quickly after each group churn batch, typically within 1-2 seconds. Thus Moara
shows high resiliency to dynamism due to rapidly occurring attribute-value changes.

Composite Queries: The experiments so far have focused on single groups in Moara.
Here, we microbenchmark the performance of Moara on composite queries. Assuming
S1, S2, . . . , Sn are simple single predicate groups, we study three types of composite
queries: (1) Intersection queries of the form S1 ∩ S2 ∩ . . . ∩ Sn, for different values of
n; (2) Union queries of the form S1 ∪ S2 ∪ . . . ∪ Sn, for different values of n; and (3)
Complex queries, which are structured as T1∩T2∩. . .∩Tm, where each Ti is a union of
multiple groups. These experiments suffice to characterize Moara’s performance since
the query optimization reduces all query expressions to one of the three. Each basic
group Si consists of 50 nodes selected at random. The complex expression we use1

is T1 ∩ T2 ∩ T3, and each Ti is a union of n basic groups for different values of n.
Figure 10(b) plots the latency for above three types of queries with different values
of n. For composite queries, recall that Moara first sends size probes to root nodes of
group trees, in order to make a query optimization decision. Thus, we plot not only the
total latency of a Moara query, but also the latency excluding the time to finish the size
probes. Each data point is averaged over 300 queries.

First, notice that the average completion times of all queries, including queries with
up to 10 groups, is less than 500 ms. For intersection queries, the completion times
excluding time for size probes (plot line “Inter. no SP”) do not depend on the size of
the expression. This is because Moara selects only one of these groups to propagate the
query. Although size probes are sent in parallel, the latency for size probes increases
slightly since Moara waits until the slowest probe response arrives. For union queries,
the total completion time of a query rises gradually with the size of the expression, as
Moara needs to contact all groups (two “Union” plots). Finally, the completion time for
complex queries is only slightly more than that of union queries, since Moara’s query
optimization selects only one of Ti’s. The additional latency is caused by two factors:
(a) the time taken for size probes is higher as we have to query the sizes for larger
number of groups, and (b) a complex set expression adds more overhead at each node,
because each node evaluates the entire complex expression.

1 We found that the number of Ti’s has little effect on latency because Moara queries only one
of all Ti’s.

426 S.Y. Ko et al.

7.3 PlanetLab Experiments

Methodology: We deploy Moara atop 200 PlanetLab nodes, which span several con-
tinents. Each PlanetLab node runs one instance of Moara. The instances are started
sequentially, the system is given 5 minutes to warm up, and then a series of queries is
injected from a Moara front-end running on a local machine. In order to study the be-
havior of Moara’s query latency in-depth, we perform experiments on only one group
at a time, but for different sizes of this group. Each experiment involves a total of 500
queries injected 5 seconds apart. All plotted data points are the average of 3 runs. We
do not timeout on queries, in order to obtain complete answers.

Query Response Latency: Figure 11 plots the cumulative fraction of replies received
as a function of time since query injection. The plot shows the responsiveness of Moara
in a wide-area setting - even with as many as 100 nodes in the group, the median answer
is received back within 1-2 seconds, while 90% of the answers are received within 5
seconds. Our technical report presents more results with different groups [20].

Moara versus Centralized Aggre-

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40

C
um

ul
at

iv
e

F
ra

ct
io

n
(%

)

Time (sec)

Group 100
Central (Group 100)

Group 150
Central (Group 150)

Fig. 11. Moara vs. Centralized Aggregator

gation: Figure 11 compares Moara
against a centralized approach which
maintains no trees but has the Moara
front-end directly query all nodes in
parallel regardless of whether they sat-
isfy the given predicate or not (la-
belled “Central”). The response for a
query from this centralized aggregator
is considered complete when the cen-
tralized aggregator has received a re-
sponse from every node regarding the query. The figure plots the cumulative fraction of
replies received as a function of time since query injection. This plot illustrates that the
comparison between the centralized aggregator and Moara is akin to the comparison
of “the tortoise and the hare”. For both groups of size 100 and 150, we notice that the
centralized aggregator obtains initial replies faster than Moara, but then it slows down
waiting for the remainder of the query answers from nodes.

Our analysis reveals that the latency of the centralized aggregator is affected by the
slowest node or link in the whole system, while the latency of Moara is only affected by
the slowest node or link in the group. Thus, Moara is faster overall in obtaining a large
fraction of replies. Our technical report further discusses this result [20].

8 Related Work

PlanetLab has several management tools in use, such as CoTop, CoMon, etc [15]. How-
ever, none of the tools addresses scalability and expressive queries simultaneously. Sev-
eral distributed systems have been proposed for aggregating data. Astrolabe [6] provides
a generic aggregation abstraction, but uses a single static tree and hence has limited scal-
ability with the number of metrics. SDIMS [7] constructs multiple trees for scalability
with the number of metrics, but assumes a single group of the entire system. PIER [21]

Moara: Flexible and Scalable Group-Based Querying System 427

supports recursive SQL-style queries, but does not leverage in-network aggregation.
Huebsch et al. [22] present a way to optimize global aggregation queries, while Moara
optimizes multiple group-based aggregation trees. Seaweed [5] focuses on dealing with
data unavailability. MON [23] supports one-shot queries and constructs query trees on-
demand, but does not support expressive queries. Finally, Ganglia [14] uses a single
hierarchical tree, but collects all data without in-network aggregation.

Structured overlay based multicast systems such as Scribe [18], SAAR [24], and Se-
lectCast [25] bear some similarities with Moara, e.g., path collapsing of Scribe [18], the
shared control plane idea of SAAR [24], and predicate-based multicast of SelectCast.
However, all these system focus on building efficient trees for multicast where mainte-
nance overhead is assumed to be much smaller than the data plane costs. CUP [26] and
Shruti [27], while proposing adaptation techniques to reduce query cost, addresses a
different optimization problem than us. In these systems, queries are only spread down
to the nodes where updates are also propagated to (rendezvous points). Moara uses up-
dates for pruning the group trees and queries are sent to all predicate-satisfying nodes.

9 Conclusion

In this paper, we have presented the design and evaluation of Moara, a group-based ag-
gregation system. Moara achieves scalability with increasing numbers of machines, in-
jected queries, and groups, by: (1) intelligently resolving composite query expressions,
(2) constructing single-attribute aggregation trees that perform in-network aggregation,
and (3) dynamically maintaining group trees based on query rates and group churn rates,
thus reducing bandwidth consumption. Our experimental evaluations using simulations
and deployments atop Emulab and PlanetLab demonstrate the effectiveness of Moara
in answering queries accurately within hundreds of milliseconds across hundreds of
nodes, and with low per-node bandwidth consumption.

References

1. HP: HP Data Centre Consolidation, http://h20331.www2.hp.com/enterprise/
cache/141741-0-0-225-121.html

2. PlanetLab, http://www.planet-lab.org/
3. NSF: The NSF GENI Initiative, http://www.nsf.gov/cise/geni/
4. Foster, I.T.: The Grid 2003 Production Grid: Principles and Practice. In: Proc. HPDC-13

(2004)
5. Narayanan, D., Donnelly, A., Mortier, R., Rowstron, A.: Delay Aware Querying with Sea-

weed. In: Proc. VLDB (2006)
6. Renesse, R.V., Birman, K.P., Vogels, W.: Astrolabe: A Robust and Scalable Technology

for Distributed System Monitoring, Management, and Data Mining. ACM Trans. on Comp.
Syst. 21(2), 164–206 (2003)

7. Yalagandula, P., Dahlin, M.: A Scalable Distributed Information Management System. In:
Proc. SIGCOMM (2004)

8. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and Rout-
ing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS,
vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

9. Emulab, http://www.emulab.net
10. Brewer, E.: Towards Robust Distributed Systems (Invited Talk). In: Proc. PODC (2000)

http://h20331.www2.hp.com/enterprise/cache/141741-0-0-225-121.html
http://h20331.www2.hp.com/enterprise/cache/141741-0-0-225-121.html
http://www.planet-lab.org/
http://www.nsf.gov/cise/geni/
http://www.emulab.net

428 S.Y. Ko et al.

11. Jain, N., Kit, D., Mahajan, P., Yalagandula, P., Dahlin, M., Zhang, Y.: STAR: Self Tuning
Aggregation for Scalable Monitoring. In: Proc. VLDB (2007)

12. Jain, N., Kit, D., Mahajan, P., Yalagandula, P., Dahlin, M., Zhang, Y.: PRISM: Precision-
Integrated Scalable Monitoring (extended). In: Proc. OSDI (2008)

13. Park, K., Pai, V.S.: CoMon: a Mostly-scalable Monitoring System for PlanetLab. SIGOPS
OSR 40(1), 65–74 (2006)

14. Massie, M.L., Chun, B.N., Culler, D.E.: The Ganglia Distributed Monitoring System: De-
sign, Implementation and Experience. Parallel Computing 30(7) (2004)

15. PlanetLab: Contributed Software, https://wiki.planet-lab.org/twiki/bin/
view/Planetlab/ContributedSoftware

16. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.: Tapestry: A
Resilient Global-scale Overlay for Service Deployment. IEEE JSAC 22(1) (2004)

17. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scalable Peer-
to-Peer Lookup Service for Internet Applications. In: Proc. SIGCOMM (2001)

18. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: SCRIBE: A Large-scale and De-
centralised Application-level Multicast Infrastructure. IEEE JSAC (2002)

19. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh, A.: SplitStream:
High-bandwidth Multicast in a Cooperative Environment. In: Proc. SOSP (2003)

20. Ko, S.Y., Yalagandula, P., Gupta, I., Talwar, V., Milojicic, D., Iyer, S.: Moara: Flexible
and Scalable Group-Based Aggregation System. Technical Report UIUCDCS-R-2008-2989,
UIUC (2008)

21. Huebsch, R., Chun, B., Hellerstein, J.M., Loo, B.T., Maniatis, P., Roscoe, T., Shenker, S.,
Stoica, I., Yumerefendi, A.R.: The Architecture of PIER: an Internet-Scale Query Processor.
In: Proc. CIDR (2005)

22. Huebsch, R., Garofalakis, M., Hellerstein, J.M., Stoica, I.: Sharing Aggregate Computation
for Distributed Queries. In: Proc. SIGMOD (2007)

23. Liang, J., Ko, S.Y., Gupta, I., Nahrstedt, K.: MON: On-demand Overlays for Distributed
System Management. In: Proc. USENIX WORLDS (2005)

24. Nandi, A., Ganjam, A., Druschel, P., Ng, T.S.E., Stoica, I., Zhang, H., Bhattachargee, B.:
SAAR: A Shared Control Plane for Overlay Multicast. In: Proc. NSDI (2007)

25. Bozdog, A., van Renesse, R., Dumitriu, D.: SelectCast: A scalable and self-repairing multi-
cast overlay routing facility. In: Proc. SSRS (2003)

26. Roussopoulos, M., Baker, M.: CUP: Controlled Update Propagation in Peer-to-Peer Net-
works. In: USENIX (2003)

27. Yalagandula, P., Dahlin, M.: Shruti: A Self-Tuning Hierarchical Aggregation System. In:
SASO (2007)

https://wiki.planet-lab.org/twiki/bin/view/Planetlab/ContributedSoftware
https://wiki.planet-lab.org/twiki/bin/view/Planetlab/ContributedSoftware

Author Index

Aberer, Karl 326
Ahuja, Puneet 243
Alonso, Gustavo 22
Amza, Cristiana 287
Ayguadé, Eduard 203

Bansal, Nikhil 306
Benavides Navarro, Luis Daniel 183
Bestfleisch, Thomas 104
Borders, Kevin 388

Carrera, David 203
Casale, Giuliano 265
Cherkasova, Ludmila 265, 366

Domaschka, Jörg 104
Douence, Rémi 183

Fleischer, Lisa 306

Gillen, Matthew 346
Gopal, Sriram 144
Gupta, Indranil 408

Hauck, Franz J. 104
Hildrum, Kirsten 306
Hore, Bijit 62

Iyer, Subu 408

Jacobsen, Hans-Arno 1
Jafarpour, Hojjat 62

Kannan, Gokulnath C. 144
Kapitza, Rüdiger 104
Ko, Steven Y. 408

Lakshmanan, Geetika T. 223
Li, Guoli 1
Loiret, Frédéric 124
Loyall, Joseph 346

Mehrotra, Sharad 62
Merle, Philippe 124

Mi, Ningfang 265
Miller, Barton P. 82
Milojicic, Dejan 408
Mirgorodskiy, Alexander V. 82
Muthusamy, Vinod 1

Neogi, Anindya 243

Onodera, Tamiya 164
Ozonat, Kivanc 366

Parekh, Sujay 306
Pľsek, Aleš 124
Prakash, Atul 388

Rajan, Deepak 306
Reiser, Hans P. 104
Rellermeyer, Jan S. 22
Riva, Oriana 22

Seinturier, Lionel 124
Sharma, Praveen 346
Shenoy, Prashant 366
Shrira, Liuba 42
Smirni, Evgenia 265
Soundararajan, Gokul 287
Steinder, Malgorzata 203
Strom, Robert E. 223
Südholt, Mario 183
Suzumura, Toyotaro 164

Talwar, Vanish 408
Tan, Kian-Lee 326
Tansey, Wesley 144
Tatsubori, Michiaki 164
Terry, Doug 42
Tian, Hong 42
Tilevich, Eli 144
Torres, Jordi 203
Tozawa, Akihiko 164
Trent, Scott 164

Venkatasubramanian, Nalini 62
Verma, Akshat 243

430 Author Index

Wagle, Rohit 306
Whalley, Ian 203
Wolf, Joel 306
Wood, Timothy 366
Wu, Kun-Lung 306

Yalagandula, Praveen 408

Zhao, Xin 388
Zhou, Yongluan 326

	Title Page
	Preface
	Organization
	Table of Contents
	Platforms
	Adaptive Content-Based Routing in General Overlay Topologies
	Introduction
	Related Work
	Routing in General Overlays
	Challenges
	TID-Based Routing
	Dynamic Publication Routing

	Composite Subscription Routing
	Challenges
	Dynamic Composite Subscription Routing
	Cost Model
	Example

	Evaluation
	Conclusions
	References

	AlfredO: An Architecture for Flexible Interaction with Electronic Devices
	Introduction
	R-OSGiOverview
	Key Principles
	Service Proxies

	System Design and Implementation
	Service-Based Software Distribution Model
	Multi-tier Service Architecture
	Device-Independent Presentation Model

	Experimental Evaluation
	Resource Consumption
	Latency Performance
	Scalability

	Prototype Applications
	MouseController
	AlfredOShop

	Related Work
	Conclusions
	References

	Exo-Leasing: Escrow Synchronization for Mobile Clients of Commodity Storage Servers
	Introduction
	Our Approach
	Exo-Leasing
	2-Level Transactions with Exo-Leasing
	Reservation Split and Transfer
	Experimental Evaluation
	Related Work
	Conclusion
	References

	Subscription Subsumption Evaluation for Content-Based Publish/Subscribe Systems
	Introduction
	Problem Formulation
	Notation

	Exact Subscription Subsumption Checking
	Subscription Forwarding Algorithm
	Subscription Cancellation Algorithm

	Approximate Subscription Subsumption Checking
	Experimental Evaluation
	Related Work
	Conclusion and Future Work
	References

	Software Engineering
	Diagnosing Distributed Systems with Self-propelled Instrumentation
	Introduction
	Propagation and Tracing
	Propagation over a TCP Socket
	Other Communication Mechanisms

	Reconstruction of Distributed Control Flows
	Flow-Construction Algorithm
	Custom Directives

	Identification of Anomalies and Their Causes
	Data Categorization
	Root Cause Identification

	Experience
	File Transfer Problem
	Job-Run-Twice Problem
	Run-Time Overhead

	Related Work
	Techniques for Data Collection
	Techniques for Flow Reconstruction
	Techniques for Data Analysis

	References

	Multithreading Strategies for Replicated Objects
	Motivation
	Background and Related Work
	Comparison of Algorithms
	Criteria
	Algorithms

	Extending LSA and PDS
	Extending LSA to ADETS-LSA
	Extending PDS to ADETS-PDS

	Experimental Evaluation
	Implementation Overview
	Benchmark Overview
	Local Computations
	Nested Invocations
	Condition Variables
	Overall Performance Comparison

	Conclusions
	References

	A Component Framework for Java-Based Real-Time Embedded Systems
	Introduction
	Current Trends and Challenges
	Goals of the Paper
	Structure of the Paper

	Background
	Real-Time Java Specification
	Motivation Example
	Component Frameworks

	Component Framework for RTSJ-Based Applications
	A Real-Time Java Component Metamodel
	Designing Real-Time Applications
	Implementing Real-Time Applications

	Framework Implementation Issues
	Component Framework Implementation
	Membrane Architecture Analysis
	Soleil - Execution Infrastructure Generator

	Evaluation
	Overhead of the Framework
	RTSJ Code Generation Perspective
	Summary of Our Contribution

	Related Work
	Conclusion and Future Work
	References

	$DeXteR$ – An Extensible Framework for Declarative Parameter Passing in Distributed Object Systems
	Introduction
	The $DeXter$ Framework
	Framework Overview
	Framework API
	Implementation Details
	Bioinformatics Example Revisited

	Supporting Parameter Passing Semantics
	Lazy Semantics
	Copy Restore Semantics
	Copy Restore with Delta Semantics
	Other Semantics

	Discussion
	Design Advantages
	Design Constraints

	Related Work
	Future Work and Conclusions
	References

	Performance Comparison of PHP and JSP as Server-Side Scripting Languages
	Introduction
	Multi-tier Web Server Architecture: Lightweight Front-End Using PHP/JSP
	Language Runtime Performance Micro Benchmarking
	PHP/JSP SPECweb2005 Benchmark Methodology
	SPECweb2005 Benchmark Environment
	Testing Methodology
	Tuning Considerations

	PHP/JSP Performance Benchmark Results
	Overall Performance
	Throughput Results
	CPU Usage

	Discussion
	Related Work
	Conclusion
	References

	Debugging and Testing Middleware with Aspect-Based Control-Flow and Causal Patterns
	Introduction
	Motivation
	Expressive Breakpoints for Distributed Debugging
	Test-Driven Development

	Language Support
	The AWED Language
	Distributed Debugging with AWED
	AWED with Causal Pointcuts

	Implementation
	AWED Architecture
	Adding Causality to Non-causal Distributed Applications

	Evaluation
	Qualitative Evaluation
	Micro-benchmarks
	Remote Debugging vs. Distributed Debugging

	Related Work
	Conclusion
	References

	System Management
	Enabling Resource Sharing between Transactional and BatchWorkloads Using Dynamic Application Placement
	Introduction
	Related Work
	Integrated Management of Heterogeneous Workloads
	System Architecture
	Problem Statement
	PerformanceModel for TransactionalWorkloads

	Performance Model for Non-interactive Workloads
	Job Characteristics
	Hypothetical Relative Performance
	Hypothetical Relative Performance: An Illustrative Example

	Experiments
	Experiment One: Relative Performance Prediction Accuracy
	Experiment Two: Comparing Different Scheduling Algorithms
	Experiment Three: Heterogeneity

	Conclusions and Future Work
	References

	Biologically-Inspired Distributed Middleware Management for Stream Processing Systems
	Introduction
	Related Work
	Design and Algorithm
	Stream Processing Model
	Approach Overview
	Pheromone Vector
	Routing Ants: Forward Direction Seeking Paths
	Routing Ants: Reverse Direction Reinforcing Paths
	Queueing Model
	Scouting Ants: Hypothetical Placement
	Enforcement Ants
	Updating Placement
	Task Reuse

	Experimental Evaluation
	Conclusion and Future Work
	References

	pMapper: Power and Migration Cost Aware Application Placement in Virtualized Systems
	Introduction
	pMapper: Power and Migration Cost-Aware Application Placement Framework
	Architecture
	Optimization Formulations

	Model Assumptions and Experimental Reality
	Performance Isolation in Virtualized Systems
	Migration Cost Modeling
	Power Modeling

	Application Placement Algorithms
	Algorithm Idea
	Algorithm Details

	pMapper Implementation and Experimental Validation
	Implementation
	Experimental Setup
	Results

	Related Work and Conclusion
	References

	Burstiness in Multi-tier Applications: Symptoms, Causes, and New Models
	Introduction
	Burstiness in Performance Models: DoWe Really Need It?
	Characterization of Burstiness: The Index of Dispersion
	Measuring the Index of Dispersion

	Burstiness in Multi-tier Applications: Symptoms and Causes
	Experimental Environment
	Bottleneck Switch in TPC-W
	The Analysis of Bottleneck Switch
	TraditionalMVA PerformanceModels Do NotWork

	Integrating Burstiness in Performance Models
	Integrating I in PerformanceModels
	Impact of Measurement Granularity and MonitoringWindows
	Validation of Prediction Accuracy on Different Transaction Mixes

	Related Work
	Conclusions
	References

	Towards End-to-End Quality of Service: Controlling I/O Interference in Shared Storage Servers
	Introduction
	Background and Motivation
	Motivating Example

	Providing End-to-End QoS Via Coordinated Learning
	Architecture and Problem Statement
	Overview of Approach
	Deviance From Target (DFT) Metric
	Learning at Each Resource Controller
	Coordinated Learning
	Enforcing Proportions through Quanta-Based Scheduling
	Discussion

	Prototype Implementation
	Overview of Prototype Implementation
	Code Changes
	I/O Scheduling Implementation

	Experimental Methodology
	Benchmarks

	Experimental Results
	Benefits of Coordinated Learning

	Related Work
	Conclusion
	References

	Components and System Algorithms and Properties
	SODA: An Optimizing Scheduler for Large-Scale Stream-Based Distributed Computer Systems
	Introduction
	$SODA$ Objectives and Functionality
	$SODA$ Design Overview

	Overview of $System S$
	Glossary of Key New $SODA$ Terms
	SODA Mathematical Components
	$macroQ$
	$macroW$
	$microQ$
	$microW$

	Experimental Evaluation
	Methodology
	Results

	Related Work
	Conclusions and Future Work
	References

	Toward Massive Query Optimization in Large-Scale Distributed Stream Systems
	Introduction
	Existing Distributed Stream Systems
	Pub/Sub Systems
	COSMOS
	Paper Layout

	SystemOverview
	An Illustrating Example

	Query Distribution
	Problem Modeling
	Challenges and Approach Overview
	Network Graph Hierarchy
	Query Graph Hierarchy Construction
	Initial Query Distribution
	Online New Query Insertion
	Adaptive Query Redistribution
	Statistics Collection

	Experiments
	Simulation Study
	Prototype Study

	Conclusion
	References

	QoS Allocation Algorithms for Publish-Subscribe Information Space Middleware
	Introduction
	Information Space QoS Allocation Algorithms
	The Optimizing Brute-Force Algorithm
	The Greedy Approximation QoS Management Algorithm
	Applying the QoS Management Algorithms to Dynamic Information Spaces

	Experimental Evaluation of the QoS Allocation Algorithms
	Experimental Setup
	Experimental Metrics
	Percent of Optimality and Runtime of the Optimizing Brute-Force Algorithm
	Percent of Optimality and Runtime of the Greedy Approximation Algorithm

	Related Work
	Conclusions
	References

	Profiling and Modeling Resource Usage of Virtualized Applications
	Introduction
	Problem Definition
	Platform Profiling
	Microbenchmark Requirements
	Microbenchmark Workloads
	Platform Resource Usage Profiles

	Model Generation
	Model Creation
	Model Application

	Experimental Evaluation
	Implementation Details
	Importance of Modeling I/O
	Benchmark Coverage
	Benchmark Error Detection
	Model Accuracy
	Cross Platform Modeling

	Discussion
	Related Work
	Conclusions
	References

	Prism: Providing Flexible and Fast Filesystem Cloning Service for Virtual Servers
	Introduction
	Related Work
	Prism Design
	Background
	Synchronous Cloning Via File Sharing
	Asynchronous Cloning
	Lazy Cloning
	The Prism Copy-on-Write Mechanism
	Discussion

	Evaluation
	Synchronous and Asynchronous Cloning Latency
	Performance on the Apache Workload
	Connectathon Test Suite
	Central Scan of Multiple Clones

	Conclusion
	References

	Moara: Flexible and Scalable Group-Based Querying System
	Introduction
	Motivation and Use Cases
	The Basics of Moara
	Data and QueryModel
	Scalable Aggregation

	Dynamic Maintenance
	Separate Query Plane
	Composite Queries
	Maintaining Multiple Trees
	Composite Query Planning
	Query Optimization: Finding Low-Cost Covers

	Implementation and Evaluation
	Simulation Results
	Emulab Experiments
	PlanetLab Experiments

	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

