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Abstract. In this paper we explore some of the opportunities and chal-
lenges for machine learning on the Semantic Web. The Semantic Web
provides standardized formats for the representation of both data and
ontological background knowledge. Semantic Web standards are used to
describe meta data but also have great potential as a general data for-
mat for data communication and data integration. Within a broad range
of possible applications machine learning will play an increasingly im-
portant role: Machine learning solutions have been developed to support
the management of ontologies, for the semi-automatic annotation of un-
structured data, and to integrate semantic information into web mining.
Machine learning will increasingly be employed to analyze distributed
data sources described in Semantic Web formats and to support approx-
imate Semantic Web reasoning and querying. In this paper we discuss
existing and future applications of machine learning on the Semantic
Web with a strong focus on learning algorithms that are suitable for the
relational character of the Semantic Web’s data structure. We discuss
some of the particular aspects of learning that we expect will be of rele-
vance for the Semantic Web such as scalability, missing and contradicting
data, and the potential to integrate ontological background knowledge.
In addition we review some of the work on the learning of ontologies and
on the population of ontologies, mostly in the context of textual data.

1 Introduction

The world wide web (WWW) represents an ever increasing source of informa-
tion. Until now the WWW is mostly accessible to humans via search engines and
browsers whereas computers only have a very rudimentary understanding of web
content. The vision behind the Semantic Web (SW) is that computers should
also be able to understand and exploit information offered on the web [1]. In
the near future, a web representation might contain human-readable parts and
sections made available in SW-formats to be accessible for automated process-
ing. The SW is based on two concepts. First, a formal ontology provides domain
specific background information that is shared by several parties: It provides a
common vocabulary for a given domain and describes object classes, predicate
classes and their interdependencies, as well as additional background informa-
tion formalized in logical statements. Second, web information is annotated by
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statements readable and interpretable by machines via the common ontological
background knowledge.

One of the prime SW applications will be context/user sensitive information
retrieval where the result will still be in textual or multimedia format, to be
interpreted by a human. But this information will be much more specific to the
user’s needs, since data can be integrated from multiple sites and smart informa-
tion filters can be applied. Thus a search engine becomes more of an agent who
knows the user, who has a deep understanding of the information request, who
knows what to find where on the web and who presents the requested informa-
tion in an appropriate user-friendly form. An immediate benefit from semantic
annotation will be that annotated web pages might obtain a higher search rank
since the match between query and page content can be evaluated with high
confidence. In a second group of applications, the items to be searched for are
not human readable texts or multimedia data but are machine readable informa-
tion about an item or a web service. Semantic web services are of great interest
both for academia and industry [2,3]. Service requests and service offerings can
be formulated precisely based on SW standards and can be understood as pre-
cisely by semantic search engines and web applications. In the third family of
applications the SW becomes the web of data. SW technologies will form the in-
frastructure for a standardized representation of information and for information
exchange. Biomedicine is a forerunner here with almost 1000 databases publicly
available today. If the data were published under a common SW ontological
format, all this information would be accessible for querying and for analysis.
As the WWW brought the knowledge of the world to our finger tips, the SW
will bring the data of the world to our applications. Finally, in a fourth family
of applications, SW technologies are being used in advanced expert systems to
model complex industrial domains [4].

Reasoning plays an important role on the SW: Based on ontological back-
ground knowledge and the set of asserted statements, logical reasoning can derive
new statements. But logical reasoning has its limitations. First, logical reasoning
does not easily scale up to the size of the web as required by many applications;
projects like the EU FP 7 Large-Scale Integrating Project LarKC are under way
to address this issue [5]. Second, uncertain information is not suitable for logical
reasoning. The representation of uncertain information on the SW and reasoning
with uncertainty on the SW have only recently been addressed [6]. Third, logical
reasoning is completely based on axiomatic prior knowledge and does not exploit
regularities in the data that have not been formulated as ontological background
knowledge. In contrast, and as it has been demonstrated in many application
areas, successful solutions can often be achieved by induction, i.e., by learning
from data. The analysis of the potential of machine learning for the SW is the
topic of this contribution.

The most immediate application of machine learning is SW mining, enhancing
traditional web mining applications. Web content mining, web structure mining,
web usage mining and the learning of ranking functions for retrieval will all ben-
efit from the additional information available on the SW [7]. In another group of



284 V. Tresp et al.

applications, machine learning serves the SW by supporting ontology construc-
tion and management, ontology evaluation, ontology refinement, ontology evolu-
tion, as well as the mapping, merging and alignment of ontologies [8,9,10,11,12].
Mostly these tasks are addressed on the basis of unstructured or semi-structured
textual data. After all, most current web pages contain textual information; but
other types of input data will become increasingly important, as well [13]. Alter-
natively, researchers are concerned with learning of data already in SW formats.
As already mentioned, the current trend is that an increasing amount of infor-
mation is made available in SW formats and machine learning and data mining
will be the basis for the analysis of the combined data sources. A particular as-
pect here is the learning of logical constraints that can then be formulated in the
language of the employed ontology [14,15,16,17]. One can also contemplate that
future ontologies should be extended to be able to represent learned informa-
tion that cannot easily be formulated with current standards, e.g., represent the
input-output mapping represented in probabilistic classifiers. The trained sta-
tistical models can then be used to estimate the probability that statements are
true, which are neither explicitly asserted in the database nor can be proven to
be true (or false) based on logical reasoning. Since the conclusions drawn from
machine learning are typically probabilistic, this uncertainty needs to be rep-
resented [6,18,5]. Consequently, querying can include learned statements, e.g., :
Find all female persons that live in the southeastern US, are older than 21 years,
own a house and are likely to own a sailboat where the last information, i.e., the
likelihood of owning a sailboat, was learned from data. Finally, in applications
where the raw data is unstructured, machine learning can support the population
of ontologies, i.e., the mapping of unstructured data to SW statements. Most
work here concerns the population from textual data although the annotation
of semi-structured data and multimedia data. e.g. images and video, is of great
relevance as well. A goal here is to describe multimedia content semantically for
fast content-based reasoning and retrieval.

In this paper we analyze algorithms from machine learning that are suitable
for SW applications. First and foremost, SW data describe relationships between
objects. Consequently, suitable learning approaches should be able to handel the
relational character of the data. By far the majority of machine learning deals
with non-relational feature-based representations (also referred to as proposi-
tional representation or attribute-value representation). Only recently statistical
relational learning (SRL) is finding increasing interest in the ML community [19].
In Section 3 we present a novel discussion on feature-based learning in the SW
and in Section 4 we relate this discussion to learning algorithms from inductive
logic programming (ILP). In Section 5 we discuss matrix decomposition ap-
proaches and in Section 6 we present relational graphical models that are based
on a joint probabilistic model of a relational domain. We discuss the machine
learning approaches with respect to their applicability in a SW context, i.e.,
their scalability to the expected large size of the SW, their ability to integrate
ontological background knowledge, their ability to handle the varying quality
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and reliability of data1 and finally, their ability to deal with missing and contra-
dictory data. In Section 7 we add a discussion on ontology learning and ontology
population based on textual data. Ontology learning and ontology population
are the most developed aspects of machine learning on the SW. In Section 8 we
report first experiments based on the FOAF data set and in Section 9 we present
conclusions. We will start the remaining part of the paper with an introduction
into the SW as proposed by the W3C.

2 Components of the SW Languages

The World Wide Web Consortium (W3C) [21] is the main international stan-
dards organization for the WWW and develops recommendations for the SW.
We will discuss here the main SW standards, i.e., RDF, RDFS and OWL [22,23].
RDF is useful for making statements about instances, RDFS defines schema and
subclass hierarchies, and OWL can be used to formulate additional background
knowledge. Very elegantly, the statements in RDF, RDFS and OWL can all be
represented as one combined directed graph (Figure 1). A common semantics
is based on the fact that some of the language components of RDFS and OWL
have predefined domain-independent interpretations.

2.1 RDF: A Data Model for the SW

The recommended data model for the SW is the resource description framework
(RDF). It has been developed to represent information about resources on the
WWW (e.g., meta data/annotations), but might as well be used to describe other
structured data, e.g., data from legacy systems. A resource stands for an object
that can be uniquely identified via a uniform resource identifier, URI, which is
sometimes referred to as a bar code for objects on the SW. The basic statement
is a triple of the form (subject, property, property value) or, equivalently, (sub-
ject, predicate, object). For example (Eric, type, Person), (Eric, fullName, Eric
Miller) indicates that Eric is of the concept (or class) Person and that Eric’s
full name is Eric Miller. A triple can graphically be described as a directed arc,
labeled by the property (predicate) and pointing from the subject node to the
property value node. The subject of a statement is always a URI, the property
value is either also a URI or a literal (e.g., String, Boolean, Float). In the first
case, one denotes the property as object property and a statement as an object-
to-object statement. In the latter case one speaks of a datatype property and
of an object-to-literal statement. A complete database (triple store) can then
be displayed as a directed graph, a semantic net (Figure 1). One might think
of a triple as a tuple of a binary relation property(subject, property values). A
triple can only encode a binary relation involving the subject and the property
value. Higher order relations are encoded using blank nodes. Consider the origi-
nally ternary relation transaction(User, Item, Rating). The blank node might be

1 Trust learning is an emerging field [20].
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us: Philadelphia 

taubz: me taubz: my_appartment

taubz: my_computer taubz: my_bed

ex: is_in

ex: owns

ex: hasex: owns ex: has

ex: is_next_to

Fig. 1. An RDF-graph fragment. Redrawn from [24].

TransactionId with triples (binary relations): (TransactionId, userRole, User),
(TransactionId, transactionObject, Item) and (TransactionId, evaluation, Rat-
ing). A blank node is treated as a regular resource with an identifier, only that
it might be invisible from outside the file. Blank nodes are also helpful for defin-
ing containers such as bags (unordered container), sequences (ordered container)
and collections (lists).

Each resource is associated with one or several concepts (i.e., classes) via the
type-property. A concept can be interpreted as a property value in a type-of-
statement. Conversely, one can think of a concept as representing all instances
belonging to that concept. Concepts are defined in the RDF Vocabulary De-
scription Language, also called RDF-Schema or RDFS. Both RDF and RDFS
form a joint RDF/RDFS graph. In addition to defining all concepts, the RDFS
also contains certain properties that have a predefined meaning, implementing
specific constraints and entailment rules. First, there is the subclass property. If
an instance is of type Concept1 and Concept1 is a subclass of Concept2, then
the instance can be inferred to be also of type Concept2. Subclass relations
are essential for generalization in reasoning and learning. Each property has a
representation (node) in RDFS as well. A property can be a subproperty of an-
other property. For example, the property brotherOf might be a subproperty of
relatedTo. Thus if A is a brother of B one can infer that A is relatedTo B.

A property can have a domain respectively range constraint: (marry, domain,
Person) and (marry, range, Person) states that if two resources are married then
they must belong to the concept Person. Interestingly, RDF/RDFS statements
cannot lead to contradictions in RDF/RDFS, one reason being that negation is
missing. The same remains true for some less expressive ontologies.

2.2 Ontologies

Ontologies build on RDF/RDFS and add expressiveness. W3C developed stan-
dards for the web ontology language OWL, which comes in three dialects or
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profiles: the most expressive is OWL Full, which is a true superset of RDFS.
A full inference procedure for OWL Full is not implementable with simple rule
engines [23]. Some applications requiring OWL Full might build an application-
specific reasoner instead of using a general one. OWL DL (description language)
is included in OWL Full and OWL Lite is included in OWL DL. Both OWL DL
and OWL Lite are decidable but are not true supersets of RDFS.

In OWL one can state that classes are equivalent or disjoint and that proper-
ties respectively instances are identical or different. The behavior of properties
can be classified as being symmetric, transitive, functional or inverse functional,
. . . (e.g., teaches is the inverse of isTaughtby). In RDFS concepts are simply
named. OWL allows the user to construct classes by enumerating their con-
tent (explicitly stating its members), through forming intersections, unions and
complements of classes. Also classes can be defined via property restrictions. For
example, the constraints that (1) first-year courses must be taught by professors,
(2) mathematics courses are taught by David Billington, (3) all academic staff
members must at least teach one undergraduate course, can all be expressed in
OWL using the constructs allValuesFrom (∀), hasValue, and someValuesfrom
(∃). Furthermore, cardinality constraints can be formulated (e.g., a course must
be taught by someone, a department must have at least ten and at most 30
members) (Examples from [22]). Very attractive is that both instances and on-
tologies can be joined by simply joining the graphs: in fact the only real thing
is the graph [23].

In some data rich applications ontologies will have no relevance beyond the
definition of classes and properties. Conversely, in some domains, such as bioin-
formatics, medical informatics and some industrial applications [4], sophisticated
ontologies have already been developed [23].

2.3 Reasoning

An ontology formulates logical statements, which can be used for analyzing data
consistency and for deriving new implicit statements concerning instances and
concepts. Total materialization denotes the calculation of all implicit triples at
loading time, which might be preferred if query response time is critical [25].
Note, that total materialization is only feasible in some restricted ontologies.

2.4 Rules

RuleML (Rule Markup Language) is a rule language formulated in XML and is
based on datalog, a function-free fragment of Horn clausal logic. RuleML allows
the formulation of if-then-type rules. Both RuleML and OWL DL are different
subsets of first-order logic (FOL). SWRL (Semantic Web Rule Language) is a
proposal for a Semantic Web rules-language, combining sublanguages of OWL
(OWL DL and Lite) with those of the Rule Markup Language (Unary/Binary
Datalog). Datalog clauses are important for modeling background knowledge
in cases where DL might be inappropriate, for example in many industrial
applications.
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2.5 Querying

The recommended RDF-query language for the SW is SPARQL (SPARQL Pro-
tocol and RDF Query Language). The SPARQL syntax is similar to SQL. A
search pattern is a directed graph with variable nodes (i.e., a graph pattern).
The result is is either in the form of a list of variable bindings or in the form of
an RDF-graph.

3 Feature-Based Statistical Learning on the SW

3.1 Feature-Based Statistical Learning

Based on a long tradition, statistical learning has developed a large number of
powerful analytical tools and it is highly desirable to make these tools available
for the SW. Figure 2 (top) shows the main steps that are performed in statistical
learning, analyzing, as example, students in a university. First, a statistical unit
is defined, which is the entity that is the source of the variables or features of
interest [26,27,28]. The goal is to generalize from observations on a few units to
a statistical assembly of units. Typically a statistical unit is an object of a given
type, here a student. In general one is not interested in all statistical units but
only in a particular subset, i.e., the population. The population might be defined
in various ways, for example it might concern all students in a particular country
or, alternatively, all female students at a particular university.

In a statistical analysis only a subset of the population is available for inves-
tigation, i.e. a sample. Statistical inference is dependent on the details of the
sampling process; the sampling process essentially defines the random experi-
ment and, as a stationary process, allows the generalization from the sample to
the population. In a simple random sample each unit is selected independently.
Naturally, sometimes more complex sampling schemes are used, such as stratified
random sampling, cluster sampling, and systematic sampling.

The quantities of interest of the statistical investigation are the features (or
variables) that are derived from the statistical units. In the example, features are
a student’s IQ and a student’s age. In the next step the data matrix is formed
where each row corresponds to a statistical unit and each column corresponds to
a feature. Finally, an appropriate statistical model is employed for modeling the
data, i.e., the analysis of the features and the relationships between the features,
and the final result is analyzed by the user. Naturally, all of this is typically an
iterative process, e.g., based on a first analysis new features might be added and
the statistical model might be modified.

In a supervised statistical analysis one partitions the features in explanatory
variables (a.k.a. independent variables, predictor variables, regressors, controlled
variables, input variables) and dependent variables (a.k.a response variables,
the regressands, the responding variables, the explained variables, or the out-
come/output variables). Note that it is often a design choice if one either defines
a population based on the state of a variable or if one uses that variable as
an independent variable. Consider a binary variable male/female. One choice



Towards Machine Learning on the Semantic Web 289

Population Sample

student

rand.

sampl.

student

Data Matrix

student   IQ     age

SW Population Sample Data Matrix

student  class

query rand.

sampl.

student  class stud. class  IQ  diff. grade

Real World

Real World

annotation

To: Ontology

To: Instances

ML
Analysis

ML

Analysis

Ontology

Instances

Views

stud.  IQ class diff. stud. class  grade

Fig. 2. Top: Standard machine learning. Bottom: Machine learning applied to the SW.

might be to partition the population into males and females and learn separate
models for each population. Another option is to simply use gender as an in-
dependent variable and consider a joint population of males and females. The
second choice is for example more appropriate if the sample is small. Hierarchi-
cal Bayesian modeling is a compromise in which statistical inference in different
populations is coupled.

3.2 Feature-Based Statistical Learning on the SW

The main steps for statistical learning on the SW are displayed in Figure 2
(bottom). The first new aspect is that the statistical analysis is based on the
world as it is represented on the SW and that all quantities of interest, i.e.,
statistical unit, population, sample and features, are defined in context of the
SW.2 As before, a statistical unit might be defined to be an object of a given
type, e.g., a student. More generally a statistical unit might be composed of
several objects that have a particular relationship to each other. In Figure 2, as
an example, a statistical unit might be a composed entity consisting of a student
and a class that the student attends, i.e., a registration.

A population might now be defined by a SW query that produces a table
whose tuples (i.e., variable bindings) correspond to the objects that identify a

2 Technically one needs to be aware that the generation of a sample with the help of a
search engine or a crawler might introduce a bias, for example, if snowball sampling
is employed.
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statistical unit. In the example in Figure 2 we might define a query to generate
a population table with objects student and class; a tuple then stands for the
statement that a student registered in a particular class. Sampling, as before,
selects a proper random subset of the population. A particular aspect of SW
data is the dominance of relationships between objects. Thus, features that are
calculated for a statistical unit might reflect this relationship structure.

Technically, one first generates a data matrix. The number of rows in the data
matrix is identical to the number of tuples in the sample table, i.e., the number
of statistical units in the sample. A statistical unit is a primary key for the table.
The data matrix has a fixed number of columns corresponding to the number of
features, which are derived for each unit. All matrix entries are initialized to be
N/A (not available or missing) and will (partially) be replaced by feature values
as described in the following two steps.

Next, database views3 are generated that contain as attributes the objects in a
statistical unit (respectively a subset of those objects) plus additional attributes.
In Figure 2, the first view contains the student’s ID and the student’s IQ, the
second view contains the class ID and the class difficulty and the third view
contains the student ID, the class ID and the grade the student obtained in a
class. Note that views can be generated from rather complex queries.

In the next step, relational features are calculated based on these views. In
the simplest case each statistical unit is represented exactly in one tuple in each
view and features are calculated based on the tuple attributes. The situation
becomes more complex if a statistical unit is not represented in a view or if
it is represented more than once. In the first case, i.e., a statistical unit is not
represented in a view, one either enters zero or another default entry (e.g., the
number of a person’s children is zero) or one does not overwrite the corresponding
N/A entry in the data matrix (e.g., when a student’s IQ is unknown). In the
second case, i.e., a statistical unit is represented in more than one tuple in a
particular view —in the example if a student attended a class twice and got
two grades— some form of aggregation can be applied (number-of, average,
max, min, etc.). In domains like the SW, many-to-many relations often play a
significant role and can lead to a large number of sparse features: The number of
items a customer has acquired is typically still very small if compared to the total
number of items. In the case that object IDs are used as features, the learning
algorithm needs to be able to handle the potentially high-dimensional sparse
data. Technically, it might be possible to execute the described steps, i.e., the
generation of the sample, the views and the data matrix, in one SQL/SPARQL
operation.

Finally, the statistical model can be applied beyond the sample to the pop-
ulation. It is important to note that we have a well-defined statistical problem
as long as we restrict the analysis to the world in as much it is represented in
the SW. Of course the SW can grow (and shrink) such that online learning and
transfer learning might become applicable. To what degree the statistical model

3 A view is a stored query accessible as virtual table composed of the result set of a
query. Alternatively, one could also work with a temporary or persistent table.
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can be generalized to the real world needs to be analyzed carefully since some-
times the SW data are generated by multiple parties for their own reasons and
not for the purpose of a statistical analysis.

3.3 Search for the Best Features

So far it was assumed that the user would be able to define the features of in-
terest. In particular in supervised learning one is often interested to automate
the selection of the best input features. Popescul and Ungar [29] describe a rela-
tional learning approach based on a greedy search for optimal relational features
derived from SQL queries (see also [30]). Features are dynamically generated
by a refinement style search over SQL queries including aggregation, statistical
operators, groupings, richer join conditions and argmax based queries. The fea-
tures are used to predict the target relation using logistic regression. Additional
features are generated by clustering, which leads to new “invented” attributes.
The authors obtain good results on citation prediction and document classifica-
tion. It is straightforward to implement a similar search procedure on SW data.
Note that the automatic generation of candidate features is certainly attractive;
on the other hand the computational burden is quite large; feature definition
based on the experimenters insight and some pruning might be adequate in
many applications.

3.4 Discussion

Statistical learning on the SW, as presented, is highly scalable since the deter-
mining factor is the number of statistical units in the sample, which basically is
independent of the size of the SW. One needs to be aware that sampling with the
help of a search engine or a crawler might introduce a bias. The queries, which
need to be executed for the calculation of the features, can be executed efficiently
with current technology [25]. Ontological backgroundknowledge can be integrated
in different ways. First, one might perform complete or partial materialization,
which would derive statements from reasoning prior to training. Recall that total
materialization is only feasible with less expressive ontologies. Second, since the
ontology is part of the RDF-graph, features can be defined including ontological
concepts of a statistical units, respecting the subclass restrictions. This has effec-
tively been employed in [31]. It is conceivable that the trained statistical models
could be added to an extended “probabilistic” ontology, indicated by the arrow
at the bottom of Figure 2. In addition, the statistical models derive probabilistic
statements about the truth values of triples. For example, if —based on a trained
model— it can be derived that a person has a high IQ, this information could be
added to the SW [6]. An option is a weighted RDF-triple, the weight reflecting
the likelihood that the statement is true. Moreover, if it was found that particular
features generated during learning are valuable, one could define corresponding
statements and add those to the SW as “invented predicates”. The same is true
for the latent variables introduced in a cluster analysis or in a principle compo-
nent analysis (PCA). We should emphasize again that statistical inference strictly
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speaking is only applicable within the experimental setting of a particular statis-
tical unit, population and sampling approach. Thus if a statistical model allows
the conclusion that statement X is true with 90% probability, this is only valid in a
particular statistical context. Experiments have shown, for example, that predic-
tive performance can depend to some degree on the object selected as statistical
unit. An interesting aspect is that the results from a number of statistical models
could be combined in a committee machine [32].

Feature generation is nontrivial and might exploit prior knowledge that is par-
tially available in the domain ontology. For example it is relevant that a person
only has exactly one age, exactly one mother, but zero or more children. In fact
it would be desirable that the ontological information could be exploited in a
way such that the statistical framework is automatically constructed requiring
a minimum of additional domain background knowledge from the user. A prob-
lem with less expressive ontologies might be that one cannot express negation.
Consider the example of gene-gene interactions where the literature primarily
reports positive results, i.e., positive evidence for gene-gene interactions. Evi-
dence that two genes do not interact would be important to report but might
be difficult to represent in less expressive ontologies.

Maybe the most important issue in SW learning concerns missing or incom-
plete data. We can make a closed-world assumption and postulate that the world
only exists in as much as it is represented in the SW: besides the statements that
are known to be true or can be derived to be true, all statements are assumed
false. Naturally, in many cases we are really interested to perform inference in
the real world and it is more appropriate to assume that the truth values of
some statements are unknown. Here we should distinguish, first, the case that
statistical units are missing and, second, the case that due to missing informa-
tion features cannot be calculated or features are biased. The first case is not a
problem if statistical units are missing at random, e.g., if some of the students
at a university are unknown. The situation is more complex if the fact that a
statistical unit is missing is dependent on features of interest, e.g., if only smart
students are in the data base. Then the missing data mechanism should be in-
cluded in the statistical model. For the second case consider that the age of a
person’s father is an important feature that is not available: Either the age of a
person’s father might be unknown or a person father’s ID might be unknown.
Another example is that if the number of transactions is an important feature,
the feature might be biased if not all transactions are recorded. If a closed-
world assumption is not appropriate, one could deal with missing features using
the appropriate procedures known from statistics [33]. Again, the missing data
mechanism should be included in the statistical model. Also note that ontologi-
cal information can be quite relevant for dealing with missing data. For example
if we know that a person has brown eye color we know that all other statements
about eye color must be false, since a person has only one eye color. Note that
there are statistical models that can easily deal with missing data such as naive
Bayes, many nearest neighbor methods, or kernel smoothers.
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Naturally there are cases where simple missing data models are not appropri-
ate, since missing data can render the independent sample assumption invalid.
Consider objects of type Person and the properties friendOf and income and
age. Furthermore assume that from the age of a person and from the income of
a person’s friends we can predict the income of a person with some certainty.
If all features are available, then training an appropriate classifier is straight-
forward. If in training and testing the income of a person and of a person’s
friends are partially unknown, we have the situation that the income predic-
tion for one person depends on the income prediction of the person’s friends.
The situation, where for the prediction of features of a statistical unit (here a
person’s income) the same features of linked statistical units are required, is
typical for data defined on networks. In the analysis of social networks, this
situation is referred to as a collective classification problem and a mechanism
is added to propagate information using, e.g., Gibbs sampling, relaxation la-
beling, iterative classification or loopy belief propagation. Recent overviews are
presented in [34,35]. One of the first papers demonstrating the benefits of col-
lective classification in social networks is [36] and some important contribu-
tions are described in [37,38,39,40]. It is likely that collective classification will
also concern SW applications. Interestingly, many social networks have been
shown to exhibit homophily, which means that objects with similar attributes
(e.g., persons with similar income) are linked (e.g., are friends). In networks
exhibiting homophily, simple propagation models, for example based on Gaus-
sian random field models employed in semi-supervised learning [41], give very
competitive results. Collective classification is highly related to the relational
graphical model approaches described in Section 6, in particular dependency
networks [42,43]. Note, that in collective classification, features for different
statistical units are not independent and a statistical analysis becomes more
involved. Also recall, that we assumed previously that statistical units were
selected randomly from the population. In contrast, in collective classification
problems the statistical units (for both training and test) would typically be
defined by the complete RDF-graph or a connected RDF-subgraph (compare
Section 6).

4 Inductive Logic Programming

Inductive logic programming (ILP) encompasses a number of approaches that
attempt to learn logical clauses4 In the view of the discussion in the last sec-
tion, ILP uses logical (binary) features derived from logical expressions, typically

4 A (logical) literal is either an atomic sentence or a negated atomic sentence. A
clause is a disjunction of literals: l1 ∨ l2 . . . ∨ ln. In a definite clause exactly one
literal is positive. A definite clause can be written as an implication (if-then rule):
(¬l1 ∧¬l2 ∧ . . .∧¬ln−1) ⇒ ln where ln was assumed to be the positive literal. To the
left of the implication sign is the rule body and ln is the rule head. A Horn clause
has at most one positive literal. A function-free definite clause is a datalog clause.
A program clause can contain negative literals in the body.
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conjunctions of (negated) atoms. Recent extensions on probabilistic ILP have
also address uncertain domains.

4.1 ILP Overview

This section is on “strong” ILP, which covers the majority of ILP approaches
and is concerned with the classification of statistical units and on predicate def-
inition5. Strong ILP performs modeling in relational domains that is somewhat
related to the approach discussed in the previous section. Let’s consider FOIL
(First Order Inductive Learner) as a typical representative [44]. The outcome of
FOIL is a set of definite clauses (a particular if-then rule) with the same head
(then-part).

Here is an example (modified from [45]). Let the statistical unit be a customer
with ID CID. VC = 1, indicates that someone is a valuable customer, GC = 1
indicates that someone owns a golden credit card and SB = 1 indicates that
someone would buy a sailboat. The first rule that FOIL might have learned is
that a person is interested in buying a sailboat if this person owns a gold card.
The second rule indicates that a person would buy a sailboat if this person is
older than 30 and has at least once made a credit card purchase of more than
100 EURO:

sailBoat(CID, SB = 1) ← customer(CID,GC = 1) (1)
sailBoat(CID, SB = 1) ← customer(CID, Age)

∧ purchase(CID, PID, Value, PM)
∧ PM = credit-card ∧ Value > 100 ∧ Age > 30.

In rule learning FOIL uses a covering paradigm. Thus the first rule is derived
to correctly predict as many positive examples as possible (covering) with a
minimum number of false positives. Subsequent rules then try to cover the re-
maining positive examples. The head of a rule (then-part) is a predicate and
the body (the if-part) is a product of (negated) atoms containing constants and
variables.6 Naturally, there are many variants of FOIL. FOIL uses a top down
search strategy for refining the rule bodies, PROGOL [46] a bottom up strategy
and GOLEM [47] a combined strategy. Furthermore, FOIL uses a conjunction of
atoms and negated atoms in the body, whereas other approaches use PROLOG
constructs. The community typically discusses the different approaches in terms
of language bias (which rules can the language express), search bias (which rules
can be found) and validation bias (when does validation tell me to stop refining
a rule). An advantage of ILP is that also non-grounded background knowledge
can be taken into account (typically in form of a set of definite clauses that
might be part of an ontology).

5 A predicate definition is a set of program clauses with the same predicate symbol in
their heads.

6 FOIL learning is called learning from entailment in ILP terminology.
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In view of the discussion in the last section, the statistical unit corresponds
to a customer, and FOIL introduces a binary target feature (1) for the target
predicate sailBoat(CID, SB). The second feature (2) is one if the customer owns
a golden credit card and zero otherwise. Then a view is generated with attribute
CID. A CID is entered in that view each time the person has made a credit
card purchase of more then 100 EURO, but only if that person is older than 30
years. The third feature (3) is binary and is equal to one if the CID is present
in the view at least once and zero otherwise. FOIL then applies a very simple
combination rule: if feature (2) or feature (3) is equal to one for a customer, then
the target feature (1) is true.

4.2 Propositionalization, Upgrading and Lifting

ILP approaches like FOIL can be decomposed into the generation of binary
features (based on the rule bodies) and a logical combination, which in case
of FOIL is quite simple. As stated before, ILP approaches contain a complex
search strategy for defining optimal rule bodies. If, in contrast, the generation
of the rule bodies is performed as a preprocessing step, the process is referred to
as propositionalization [48]. Instead of using the simple FOIL combination rule,
other feature-based learners are often used. It has been proven that in some
special cases, propositionalization is inefficient [49]. Still, propositionalization
has produced excellent results. The binary features are often collected through
simple joins of all possible attributes. An early approach to propositionalization
is LINUS [50].

The inverse process to propositionalization is called upgrading (or lifting) [51]
and turns a propositional feature-based learner into an ILP learner. The main
differences to propositionalization is that the optimization of the features is
guided by the improvement of the performance of the overall system. It turns
out that many strong ILP systems can be interpreted as upgraded propositional
learners: FOIL is an upgrade of the propositional rule-induction program CN2
and PROGOL can be viewed as upgrading the AQ approach to rule induc-
tion. Additional upgraded systems are Inductive Classification Logic (ICL [52])
that uses classification rules, TILDE [53] and S-CART that use classification
trees, and RIBL [54] that uses nearest neighbor classifiers. nFOIL [55] combines
FOIL with a naive Bayes (NB) classifier by changing the scoring function and
by introducing probabilistic covering. nFoil was able to outperform FOIL and
propositionalized NB on standard ILP problems. kFoil [56] is another variant
that derives kernels from FOIL-based features.

4.3 Discussion

ILP algorithms can easily be applied to the SW if we identify atoms with basic
statements. ILP fits well into the basically deterministic framework of the SW. In
many ways, statistical SW learning as presented in Section 3 is related to ILP’s
propositionalization; the main difference is the principled statistical framework
of the former. Thus most of the discussion on scalability in Section 3 carries over
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to ILP’s propositionalization. When ILP’s complex search strategy for defining
optimal rule bodies is applied, training time increases but is still proportional to
the number of samples. An interesting new aspect is that ILP produces definite
clauses that can be integrated, maybe with some restrictions, into the Seman-
tic Web Rule Language. ILP approaches that consider learning with description
logic (and clauses) are described, for example, in [57,58,14,15,16,17]. An empir-
ical study can be found in [59].

5 Learning with Relational Matrices

Another representation of a basic statement (RDF-triple) is a matrix entry.
Consider the triple (User, buys, Item). Recall that a standard relational repre-
sentation would be the table buys with attributes User and Item. A relational
adjacency matrix on the other hand has as many rows as there are users and as
many columns as there are items and as many matrix entries as there are possibly
true statements. A matrix entry is equal to one if the item was actually bought
by a user and is equal to zero otherwise. Thus SW data can be represented as a
set of matrices where the name of the matrix is the property of the relation under
consideration. Matrix decomposition/reconstruction methods, e.g., the principle
component analysis (PCA) and other more scalable approaches have been very
successful in the prediction of unknown matrix entries [60]. Lippert et al. [61]
have shown how several matrices can be decomposed/reconstructed jointly and
have shown that this increases predictive performance if compared to single
matrix decompositions. By filling in the unknown entries via matrix decomposi-
tion/reconstruction, the approach has an inherent way of dealing with data that
is missing at random. Care must be taken if missing at random is not justified.
In [61], one type of statement concerns gene-gene interactions where only positive
statements are known. Reconstructed matrix entries can, as before, be entered
into the SW, e.g., as weighted triples. Scalability of this approach has not been
studied in depth but the decomposition scales approximately proportional to the
number of known matrix entries. Note that the approach performs a prediction
for all unknown statements in one global decomposition/reconstruction step. In
contrast, the previous approaches would learn separate models for each statisti-
cal unit under consideration. Other approaches, which learn with the relational
adjacency matrix, are described in [62] and [63].

6 Relational Graphical Models

The approaches described in Sections 3 and 4 aim at describing the statisti-
cal, respectively logical, dependencies between features derived from SW data.
In contrast the matrix decomposition approach in the last section and the re-
lational graphical models (RGMs) in this section predict the truth values of
all basis statements (RDF-triples) in the SW. Unlike the matrix decomposition
techniques in the last section, the RGMs are probabilistic models and statements
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are represented by random variables. RGMs can be thought of as upgraded ver-
sions of regular graphical models, e.g., Bayesian networks, Markov networks,
dependency networks and latent variable models. RGMs have been developed
in the context of frame-based logical representations, relational data models,
plate models, entity-relationship models and first-order logic. Here, we attempt
to relate the basic ideas of the different approaches to the SW framework.

6.1 Possible World Models on the SW

Consider all constants in the SW (i.e., all objects and literal values) and all
statements that can possibly be true 7. Now one introduces a binary random
variable U for each possibly true statement (grounded atom), where U = 1 if
the corresponding statement is true and U = 0 otherwise. In a graphical model,
U would be identified with a node. These nodes should not be confused with the
nodes in the RFD-graph, which represent URIs; rather U stands for a potential
link in the RDF-graph. We can reduce the number of random variables if type
constraints are available and if the truth value of some statements are assumed
known in each world under consideration (e.g., if object-to-object statements are
all assumed known, as in the basic PRM model in Subsection 6.2). If statements
are mutually exclusive, e.g., the different blood types of a person, one might
integrate several statements into one random variable using, e.g., multi-state
multinomial variables or continuous variables (to encode, e.g., a person’s height).
An assignment of truth values to all random variables defines a possible world8.
RGMs assign a probability distribution to each world in the form P (U = u).9

The approaches differ in how these probabilities are defined and mapped to
random variables, and how they are learned.

6.2 Directed RGMs

The probability distribution in a directed RGM, i.e., relational Bayesian model,
can be written as

P (U = u) =
∏

U∈U

P (U |par(U)).

U is represented as a node in a Bayesian network and arcs are pointing from
all parent nodes par(U) to the node U . One now partitions all elements of U
into node-classes. Each U belongs to exactly one node-class. The key property
of all U in the same node-class is that their local distributions are identical,
which means that P (U |par(U)) is the same for all nodes within a node-class
and can be described by a truth-table or more complex representations such
as decision trees. For example, all nodes representing the IQ-values of students

7 We only consider a function-free case.
8 RGM modeling would be termed learning from interpretation in ILP terminology.
9 Our discussion includes the case that we are only interested in a conditional distri-

bution of the form P (U = u|V = v), as in conditional random fields [64].
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in a university might form a node class, all nodes representing the difficulties
of university courses might form a node class, and the nodes representing the
grades of students in courses might form a node-class. Care must be taken,
that no directed loops are introduced in the Bayesian network in modeling or
structural learning.

Probabilistic Relational Models (PRMs): PRMs were one of the first
published RGMs and found great interest in the statistical machine learning
community [65,19]. PRMs combine a frame-based logical representation with
probabilistic semantics based on directed graphical models. The nodes in a PRM
model the probability distribution of object attributes whereas the relationships
between objects are assumed known. Naturally, this assumption simplifies the
model greatly. In context of the SW object attributes would primarily corre-
spond to object-to-literal statements. In subsequent papers PRMs have been
extended to also consider the case that relationships between objects (in context
of the SW these would roughly be the object-to-object statements) are unknown,
which is called structural uncertainty in the PRM framework [19]. The simpler
case, where one of the objects in a statement is known, but the partner ob-
ject is unknown, is referred to as reference uncertainty. In reference uncertainty
the number of potentially true statements is assumed known, which means that
only as many random nodes need to be introduced. The second form of struc-
tural uncertainty is referred to as existence uncertainty, where binary random
variables are introduced representing the truth values of relationships between
objects.

For some PRMs, regularities in the PRM structure can be exploited (en-
capsulation) and exact inference is possible. Large PRMs require approximate
inference; commonly, loopy belief propagation is being used. Learning in PRMs
is likelihood based or based on empirical Bayesian learning. Structural learning
typically uses a greedy search strategy, where one needs to guarantee that the
ground Bayesian network does not contain directed loops.

More Directed RGMs: A Bayesian logic program is defined as a set of
Bayesian clauses [66]. A Bayesian clause specifies the conditional probability
distribution of a random variable given its parents on a template level, i.e.
in a node-class. A special feature is that, for a given random variable, sev-
eral such conditional probability distributions might be given. As an example,
bt(X) | mc(X) and bt(X) | pc(X) specify the probability distribution for blood
type given the two different dispositions mc(X) and pc(X). The truth value for
bt(X) | mc(X), pc(X) can then be calculated based on various combination rules
(e.g., noisy-or). In a Bayesian logic program, for each clause there is one condi-
tional probability distribution and for each Bayesian predicate (i.e., node-class)
there is one combination rule. Relational Bayesian networks [67] are related to
Bayesian logic programs and use probability formulae for specifying conditional
probabilities. Relational dependency networks [42] also belong to the family of di-
rected RGMs and learn the dependency of a node given its Markov blanket using
decision trees.
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6.3 Undirected RGMs

The probability distribution of an undirected graphical model or Markov network
can be written as

P (U = u) =
1
Z

∏

k

gk(uk)

where gk(.) is a potential function, uk is the state of the k-th clique and Z is
the partition function normalizing the distribution. One often prefers a more
convenient log-linear representation of the form

P (U = u) =
1
Z

exp
∑

k

wkfk(uk)

where the feature functions fk can be any real-valued function and where wi ∈ R.
We will discuss two major approaches that use this representation: Markov

logic networks and relational Markov models.

Markov Logic Networks (MLN): Let Fi be a formula of first-order and let
wi ∈ R be a weight attached to each formula. Then a MLN L is defined as a set of
pairs (Fi, wi) [68] [69]. One introduces a binary node for each possible grounding
of each predicate appearing in L (i.e., in context of the SW we would introduce a
node for each possible statement), given a set of constants c1, . . . , c|C|. The state
of the node is equal to 1 if the ground atom/statement is true, and 0 otherwise
(for an N-ary predicate there are |C|N such nodes). A grounding of a formula is
an assignment of constants to the variables in the formula (considering formulas
that are universally quantified). If a formula contains N variables, then there
are |C|N such assignments. The nodes in the Markov network ML,C are the
grounded predicates. In addition the MLN contains one feature for each possible
grounding of each formula Fi in L. The value of this feature is 1 if the ground
formula is true, and 0 otherwise. wi is the weight associated with Fi in L. A
Markov network ML,C is a grounded Markov logic network of L with

P (U = u) =
1
Z

exp

(
∑

i

wini(u)

)

where ni(u) is the number of formula groundings that are true for Fi. MLN
makes the unique names assumption, the domain closure assumption and the
known function assumption, but all these assumptions can be relaxed.

A MLN puts weights on formulas: the larger the weight, the higher is the
confidence that a formula is true. When all weights are equal and become infinite,
one strictly enforces the formulas and all worlds that agree with the formulas
have the same probability.

The simplest form of inference concerns the prediction of the truth value
of a grounded predicate given the truth values of other grounded predicates
(conjunction of predicates) for which the authors present an efficient algorithm.
In the first phase, the minimal subset of the ground Markov network is returned
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that is required to calculate the conditional probability. It is essential that this
subset is small since in the worst case, inference could involve alle nodes. In the
second phase Gibbs sampling in this reduced network is used.

Learning consists of estimating the wi. In learning, MLN makes a closed-
world assumption and employs a pseudo-likelihood cost function, which is the
product of the probabilities of each node given its Markov blanket. Optimization
is performed using a limited memory BFGS algorithm.

Finally, there is the issue of structural learning, which, in this context, defines
the employed first order formulae. Some formulae are typically defined by a do-
main expert a priori. Additional formulae can be learned by directly optimizing
the pseudo-likelihood cost function or by using ILP algorithms. For the latter,
the authors use CLAUDIAN [70], which can learn arbitrary first-order clauses
(not just Horn clauses, as many other ILP approaches).

Relational Markov Networks (RMNs): RMNs generalize many concepts
of PRMs to undirected RGMs [40]. RMNs use conjunctive database queries as
clique templates. By default, RMNs define a feature function for each possible
state of a clique, making them exponential in clique size. RMNs are mostly
trained discriminately. In contrast to MLN, RMNs, as PRMs, do not make a
closed-world assumption during learning.

6.4 Latent Class RGMs

The infinite hidden relational model (IHRM) [71] presented here is a directed
RGM (i.e., a relational Bayesian model) with latent variables.10 The IHRM is
formed as follows. First, we partition all objects into classes K1, ...K|K|, using,
for example, ontological class information. For each object in each class, we
introduce a statement (Object, hasHiddenState, H). If Object belongs to class
Ki, then H ∈ {1, . . . , NKi}, i.e., the number of states of H is class dependent.
As before, we introduce a random variable or node U for each grounded atom,
respectively potentially true basic statement. Let ZObject denote the random
variables that involve Object and H . ZObject is a latent variable or latent node
since the true state of H is unknown. ZObject = j stand for the statement that
(Object, hasHiddenState, j).

We now define a Bayesian network where the nodes ZObject have no parents
and the parents of the nodes for all other statement are the latent variables of
the objects appearing in the statement. In other words, if U stands for the fact
that (Object1, property,Object2) is true, then there are arcs from ZObject1 and
ZObject2 to U . The object-classes of the objects in a statement together with the
property define a node-class for U . If the property value is a literal, then the
only parent of U is ZObject1 .

In the IHRM we let the number of states in each latent node to be infinite and
use the formalism of Dirichlet process mixture models. In inference, only a small
number of the infinite states are occupied, leading to a clustering solution where

10 Kemp et al. [72] presented an almost identical model independently.
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the number of states in the latent variables NCi is automatically determined
during inference.

Since the dependency structure in the ground Bayesian network is local, one
might get the impression that only local information influences prediction. This
is not true, since in the ground Bayesian network, common children U with evi-
dence lead to interactions between the parent latent variables. Thus information
can propagate in the network of latent variables. Training is based on various
forms of Gibbs sampling (e.g., the Chinese restaurant process) or mean field ap-
proximations. Training only needs to consider random variables U corresponding
to statements that received evidence, e.g., statements that are either known to
be true or known not to be true; random variables that correspond to statements
with an unknown truth value (i.e., without evidence) can completely be ignored.

The IHRM has a number of key advantages. First, no structural learning is re-
quired, since the directed arcs in the ground Bayesian network are directly given
by the structure of the SW graph. Second, the IHRM model can be thought of
as an infinite relational mixture model, realizing hierarchical Bayesian model-
ing. Third, the mixture model allows a cluster analysis providing insight into the
relational domain.

The IHRM has been applied to recommender systems, for gene function pre-
diction and to develop medical recommender systems. The IHRM was the first
relational model applied to trust learning [20]. In [31] it was shown how onto-
logical class information can be integrated into the IHRM.

6.5 Discussion

RGMs have been developed in the context of frame-based logical representations,
relational data models, plate models, entity-relationship models and first-order
logic but the main ideas can easily be adapted to the SW data model. One
can distinguish two cases. In the first case, an RGM learns a joint probabilistic
model over the complete SW or a segment of the SW. This might be the most
elegant approach since there is only one (SW-) world and the dependencies
between the variables are truthfully modeled, as discussed in Subsection 3.4.
The draw back is that the computational requirements scale with the number of
statements whose truth value is known or even the number of all potentially true
statements. More appropriate for large-scale applications might be the second
case where one applies the sampling approach as described in Section 3. As an
example consider that the statistical unit is a student. A data point would then
not correspond to a set of features but to a local subgraph that is anchored at the
statistical unit, e.g., the student. As before sampling would make the training
time essentially independent of SW-size. Ontological background knowledge can
be integrated as discussed in Section 3. First, one can employ complete or partial
materialization, which would derive statements from reasoning prior to training.
Second, an ontological subgraph can be included in the subgraph of a statistical
unit [31]. Also note that the MLN might be particularly suitable to exploit
ontological background information: ontologies can formulate some of the first-
order formulas that are the basis for the features in the MLN. PRMs have been
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extended to learn class hierarchies (PRM-CH), which can be a basis for ontology
learning.

The RGM approaches typically make an open world assumption.11 The cor-
responding random variables are assumed missing at random such that the ap-
proaches have an inherent mechanism to deal with missing data. If missing at
random is not justified, then more complex missing data models need to be ap-
plied. As before, based on the estimated probabilities, weighted RDF-triples can
be generated and added to the SW.

7 Unstructured Data and the SW

The realization of the SW heavily depends on (1) available ontologies and (2)
the annotation of unstructured data with ontology-based meta data. Manual
ontology development and manual annotation are two well known SW bottle-
necks. Thus learning-based approaches for both tasks are finding increasing in-
terest [2,9]. In this section, we will concentrate on two important tasks, namely
ontology learning and semantic annotation (for a compilation of current work
on ontology learning and population see, e.g., [73]). A particulary important
source of information for these tasks is unstructured or semi-structured tex-
tual data. Note that there is a close relationship between textual data and SW
data. Textual data describes, first, ontological concepts and relationships be-
tween concepts (e.g., a text might contain the sentence: We all know that cats
are mammals) and, second, instances and relationships between instances (e.g.,
a document might inform us that: Marry is married to Jack). However, the in-
put data for ontology learning and semantic annotation will not be limited to
textual data; especially once the SW will be realized to a greater extent, other
types of input data will become increasingly important. Learning ontologies from
e.g., XML-DTDs, UML diagrams, database schemata or even raw RDF-graphs
is also of great interest [74], but is out of scope here. The outline of this section
is as follows: first, we consider the case, where a text corpus of interest is given
and the task is to infer a prototype ontology. Second, given a text corpus and
an ontology, we want to infer instances of the concepts and their relations.

7.1 Learning Ontologies from Text

Ontology learning, in general, consists of several subtasks. This includes the
identification of terms, synonyms, polysems, concepts, concept hierarchies, prop-
erties, property hierarchies, domain and range constraints and class definitions.
These tasks can be illustrated as the so-called ontology learning layer cake [74].
Different approaches differ mainly in the way a concept is defined and one dis-
tinguishes between formal ontologies, terminological ontologies and prototype-
based ontologies [75]. In prototype-based ontologies, concepts are represented by
collections of prototypical instances, which are arranged hierarchically in sub-
clusters. An example would be the concept disease, which is defined by a set
11 There are some exceptions, e.g., MLN make a closed-world assumption in training.
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of diseases. Since prototype-based ontologies are defined by instances, they lack
definitions and axiomatic grounding. In contrast, typical examples for termino-
logical ontologies are WordNet and the Medical Subject Headings (MeSH12).
Terminological ontologies are described by concept labels and both nouns and
verbs are organized into hierarchies, defined by hypernym or subclass relation-
ships. For example a disease is defined in WordNet as an impairment of health or
a condition of abnormal functioning. Terminological ontologies typically also lack
axiomatic grounding. A formal ontology such as OWL, in contrast, is seen as a
conceptualization, whose categories are distinguished by axioms and definitions
[76]. Most of the state-of-the-art approaches focus on learning prototype-based
ontologies. Work on learning terminological or formal ontologies is still quite
rare. Here, the big challenge is to deal with uncertain and often even contra-
dicting extracted knowledge, introduced during the ontology learning process.
This is addressed in [77], which presents a system that is able to transform a
terminological ontology to a consistent formal OWL-DL ontology.

Prototype ontologies are often learned based on some type of hierarchical
clustering techniques such as single-link, complete-link or average-link clustering.
According to Harris’ distributional hypothesis [78], semantic similarity between
words can be assessed via the syntactic context, which they are sharing in a
corpus. Thus most approaches base the semantic relatedness between words on
some distributional similarity between the words. Usually, a vector-space model
is used as input and the linguistic context of a term is described by, e.g., syntactic
dependencies, which the term establishes in a corpus [79] The input vector for
a term to be clustered can be, e.g., composed of syntactic expressions such as
prepositional phrases following a verb or adjective modifiers. See [80] for an
illustrative example for assessing the semantic similarity of terms. Hierarchical
clustering, in its classical form, distinguishes between agglomerative (bottom-
up) and divisive (top-down) clustering, whereas the agglomerative form is most
commonly used due to its computational efficiency. Somewhat different from
hierarchical clustering is the divisive bi-section-Kmeans algorithm, which yielded
competitive results for document clustering [81] and has been applied to the task
of learning concept hierarchies as well [82,83]. Another variant is the the Formal
Concept Analysis (FCA) [84]. FCA is closely related to bi-clustering and tries
to build a lattice of so-called formal concepts from a vector space model. FCA
thereby makes use of order theory and analyzes the covariance between objects
and their features. The reader is referred to [84] for more information.

Recently, [74] set up a benchmark to compare the above mentioned clustering
techniques for learning concept hierarchies. While each of the methods had its
own benefits, FCA performed better in terms of recall and precision. All the
methods just mentioned, face the problem of not being able to appropriately label
the resulting clusters, i.e., to determine the name of the concept. To overcome
this limitation and to guide the clustering process, [85] either use hyponyms
extracted from WordNet or use Hearst patterns [86] derived either from the
corpus under investigation or from the WWW.

12 http://www.nlm.nih.gov/mesh/
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Another type of technique for learning prototype ontologies, comes from the
topic modeling community, an active research area of machine learning [87,9].
Topic models are generative models based upon the idea that a document is
made of a mixture of topics, where a topic is represented by a distribution over
words. Powerful techniques such as Latent Semantic Analysis (LSA) [88], Prob-
abilistic Latent Semantic Analysis (PLSA) [89] or Latent Dirichlet Allocation
(LDA) [90] have been proposed for the automated extraction of useful informa-
tion from large document collections. Applications include document annotation,
query answering, document summarization, automatic topic extraction as well
as trend analysis. Generative statistical models such as the ones mentioned, have
been proven effective in addressing these problems. In general, the following ad-
vantages of topic models are highlighted in the context of document modeling:
First, topics can be extracted in a complete unsupervised fashion, requiring no
initial labeling of the topics. Second, the resulting representation of topics for
a document collection is interpretable and last but not least, each document is
usually expressed by a mixture of topics, thus capturing the topic combinations
that arise in documents [89,90,91]. When applying topic modeling techniques in
an ontology learning setting, a topic is referred to as concept. To satisfy the hier-
archical structure of prototype ontologies, [87] extends the PLSA method to an
hierarchical version, where super concepts are introduced. While yielding already
impressive results with this kind of techniques, [87] concentrates on learning pro-
totype ontologies, where no labeling of the concept is needed. Furthermore, the
hierarchy of the ontology is assumed to be known a priori. Learning the hierar-
chical order in topic models is an area of growing interest. Here, [92] introduced
hierarchical LDA, which models the setup of the tree-structure of the topics as a
Chinese Restaurant Process (CRP). As a consequence, the hierarchy is not fixed
a priori, instead it is a part of the learning process. To overcome the limitation
of unlabeled topics or concepts, [93] tries to automatically infer an appropriate
label for multinomial topic models. [9] discusses ontology learning based on topic
models in context of the SW.

Ontology Merging, Alignment and Evolution: In many cases no dominant
ontology will exist, which leads to the problem that several ontologies need to
be merged and aligned. In [11] these tasks have been addressed with the support
of machine learning. Another aspect is that an ontology is not a rigid and fixed
construct — ontologies will evolve with time. Thus, the structure of an ontology
will change and new concepts will be needed to be inserted into an existing
ontology. This leads to another task, where machine learning can play a role in
ontology engineering: ontology refinement and ontology evolution. This task is
usually treated as classification task [76]. The reader is referred to [76,10] for
more information.

7.2 Semantic Annotation

Besides ontological support, a second prerequisite to put the SW into practice, is
the availability of machine-readable meta data. Producing human readable text
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from SW data is simple since an RDF triple can easily be formulated as a textual
statement. However, even though the statement won’t be powerfully eloquent,
it will still serve its purpose. The inverse is much more difficult, i.e., the gen-
eration of triples from textual data. This process is called semantic annotation,
knowledge markup or meta data generation [94]. Hereby, we are following the
notion of semantic annotation as linguistic annotations (such as named entities,
semantic classes, etc.) as well as user annotations like tags (see the ECIR 2008
workshop on ‘Exploiting Semantic Annotations in Information Retrieval’13).

The Information Extraction (IE) community provides a number of approaches
for these tasks. IE is traditionally defined as the process of filling the fields and
records of a database from unstructured text and is seen as precursor to data
mining [95]. Usually, the fields are filled with named entities (i.e., Named En-
tity Recognition (NER)), such as persons, locations or organizations. IE first
populates a database from unstructured text and data mining then aims to
find patterns. IE is, dependent on the task, made up of five subtasks: segmen-
tation, classification, finding associations and last but not least normalization
and deduplication [95]. Segmentation refers to the identification of text phrases,
which describe entities of interest. Classification is the assignment to predefined
types of entities, while finding associations is the identification of relations be-
tween the entities (i.e., relation extraction). Normalization and deduplication
describe the task of merging different text descriptions with the same meaning
(e.g., mapping entities to URIs).

NER is an active field of research and several evaluation conferences such as
the Message Understanding Conference (MUC-6)[96], the Conference on Com-
putational Natural Language Learning (CoNLL-2003) [97] and in the biomedical
domain, the Critical Assessments of Information Extraction systems in Biology
(BioCreAtIvE I+II14) [98] have attracted a lot of interest. While in MUC-6
the focus was NER for persons, locations, organizations in an English newswire
domain, CoNLL-2003 focused on language-independent NER. BioCreAtIvE fo-
cused on the recognition of biomedical entities, in this case gene and protein
mentions. The methods proposed for NER vary, in general, in their degree of
reliance on dictionaries, and their different emphasis on statistical or rule-based
approaches. Numerous machine learning techniques have been applied to NER
tasks such as Support Vector Machines [99], Hidden Markov Models [100], Max-
imum Entropy Markov Models [101] and Conditional Random Fields [64].

An F-measure in the mid-90s can now be achieved for extracting persons,
organizations and locations in the newswire domain [95]. For extracting gene
and protein mentions, however, the F-measure lies currently in the mid- to high
80s (see the BioCreAtIvE II conference for details). So NER can provide high
accuracy solutions for the SW, but typically only for a small number of classes,
mostly because of a limited amount of labeled training data. However, when
populating an existing ontology, there will often be the need to be able to extract
hundreds of classes of entities. Thus, systems which are able to scale to a large

13 http://www.yr-bcn.es/dokuwiki/doku.php?id=ecir08 entity workshop proposal
14 http://biocreative.sourceforge.net/biocreative 2.html
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number of classes on a large amount of unlabeled data are needed. Also flexible
and domain-independent recognition of entities is an important and active field
of research. State-of-the-art approaches try to extract hundreds of entity classes
in an unsupervised fashion [102], but so far with a fairly low accuracy. Promising
areas, which could help to overcome current limitations of supervised IE systems,
are semi-supervised learning [103,104] as well as active learning [105].

The same entities can have different textual representation (e.g., ‘Clark Kent’,
‘Kent Clark’ and ‘Mr. Clark’ refer to the same person). Normalization is the pro-
cess of standardizing the textual expressions. This task is usually also referred to
as entity resolution, co-reference resolution or normalization and deduplication.
The Stanford Entity Resolution Framework (SERF), e.g., has the goal to provide
a framework for generic entity resolution [106]. Other techniques for entity resolu-
tion employ relational clustering [107] as well as probabilistic topic models [108].

Another important task is the identification of relations between instances of
concepts (i.e., the association finding stage in the traditional IE workflow). Up
to now, most of research on text information extraction has focused on tagging
named entities. The Automatic Content Extraction (ACE) program provides
annotation benchmark sets for the challenging task of relation extraction. At
ACE, this task is called Relation Detection and Characterization (RDC). A
representative system using an SVM with a rich set of features, reports results
for Relation Detection (74.7% F-measure) and 68.0% F-measure for the RDC
task [109]. Co-occurrence based relation extraction is a simple, effective and
popular method [110], but usually suffers of a lower recall, since entities can
co-occur for many other reasons. Other methods are kernel-based [111] or rule-
based [112]. Recently, [113] propose a new method that treats relation extraction
as sequential labeling task. They extend Conditional Random Fields (CRFs)
towards the extraction of semantic relations. Hereby, they focus on the extraction
of relations between genes and diseases (five types of relations) as well as between
disease and treatment entities (eight types of relations). The work applies the
authors’ method to a biomedical textual database and provides the resulting
network of genes and diseases in a machine-readable RDF graph. Thereby, gene
and disease entities are normalized to Bio2RDF15 URIs.

8 First Experiments in the Analysis of FOAF-Data

The purpose of the FOAF (Friend of a Friend) project [114] is to create a web
of machine-readable pages describing people, the relationships between people
and people’s activities and interests, using W3C’s RDF technology. The FOAF
ontology is defined using RDFS/OWL and is formally specified in the FOAF
Vocabulary Specification 0.91 [115]. In our study we employed the IHRM model
as described in Section 6. The trained IHRM can, for instance, recommend new
friendships, the affiliations of persons, and their interests and projects. Further-
more one might want to predict attributes of certain persons, like their gender

15 http://bio2rdf.org/
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or age. Finally, by interpreting the clustering results of the IHRM one can an-
swer typical questions from social network analysis concerning the relationships
between members of the FOAF social system.

In general FOAF data is either uploaded by each person individually or gen-
erated automatically from user profiles of community websites like Tribe.net,
LiveJournal.com or my.opera.com. The resulting network of linked FOAF-files
can be gathered using a FOAF harvester, a so called “scutter”. Some scutter
dumps are readily available for download, e.g., in one large rdf/xml-file or stored
in a relational database.

Even though this use case only covers a very basic statistical inference problem
on the SW, there still are major challenges to meet. First, there are characteris-
tics of the FOAF-data that need special consideration: For instance, the actual
data is extremely sparse. With more than 100000 users, there are far more po-
tential links as actual links between persons.

Another typical characteristic of friendship data is that the topology of the
knows-RDF-graph consists of a few barely connected star graphs, corresponding
to a few active network users with a long list of friends as the ”center” of the
stars and the mass of users that don’t specify their friends. Second, there are
prevalent challenges of SW data in general that can also be observed in a FOAF
analysis. For instance, there is a variety of additional untested and potentially
conflicting ontologies specified by users. If this information is ignored by only
considering data consistent with the FOAF ontology, most of the information
specified by users is ignored. This also applies to the almost arbitrary use of lit-
erals by users. For instance the relation interest with range Document defined in
the FOAF-schema is in reality mostly used with a literal instead. Consequently,
this results in a loss of semantic information. To still make use of this informa-
tion one would, e.g., need to use automated semantic annotation as described
in Section 7. Another preprocessing step that needs to be considered in practice
is the materialization of triples, which can be inferred deductively. For example
there might be an instance of the relation holdsAccount with domain Person
in the data, which is not given in the schema. However, from the ontology it
can be inferred that Person is a subClassOf Agent which in turn has a prop-
erty holdsAccount. As stated before, total materialization is only feasible in less
expressive ontologies.

Considering these issues, it becomes clear that there are not only theoretical
but also a large number of interesting practical challenges for learning on the SW.

9 Conclusions

Data in Semantic Web formats will bring many new opportunities and chal-
lenges to machine learning. Machine learning complements ontological back-
ground knowledge by exploiting regularities in the data while being robust
against some of the inherent problems with Semantic Web data such as contra-
dicting information and non-stationarity. A general issue with machine learning
is that the problem of missing information needs to be carefully addressed in
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learning, in particular if either the selection of statistical units or the probability
that a feature is missing depend on the features of interest, which is common in
many-to-many relations.

We began with a section on feature-based statistical learning on the Semantic
Web. This procedure is widely applicable, scales well with the size of the Se-
mantic Web and provides a promising general purpose learning approach. The
greatest challenge here is that most feature-based statistical learning approaches
have no inherent way of dealing with missing data requiring additional missing
data models. A common situation in social network data is that features in linked
objects are mutually dependent and need to be modeled jointly. One can expect
that this will also often occur in SW data and SW learning will benefit from
ongoing research in social network modeling.

We then presented the main approaches in inductive logic programming. In-
ductive logic programming has the potential to learn deterministic constraints
that can be integrated into the employed ontology. We presented a discussion on
learning with relational matrices, which is quite attractive if multiple many-to-
many relations are of interest, as in recommendation systems. We then studied
relational graphical models. Although these approaches were originally defined
in various frameworks, e.g., frame-based logical representation, relational data
models, plate models, entity-relationship models and first-order logic, they can
easily be modified to be applicable in context of the Semantic Web. Relational
graphical models are capable of learning a global probabilistic Semantic Web
model and inherently can deal with missing data. Scalability to the size of the
Semantic Web might be a problem for RGMs and we discussed subgraph sam-
pling as a possible solution. All approaches have means to include ontological
background knowledge by complete or partial materialization. In addition, the
ontological RDF-graph can be incorporated in learning and ontological features
can be derived and exploited. Ontologically supported machine learning is an
active area of research. It is conceivable that in future ontological standards,
the developed statistical models could become in integral part of the ontology.
Also, we have discussed that most presented approaches can be used to produce
statements that are weighted by their probability value derived from machine
learning, complementing statements that are derived form logical reasoning. An
interesting opportunity is to include weighted triples in Semantic Web queries.

We reported about initial work on learning ontologies from textual data and
on the semantic annotation of unstructured data. So far, this concerns the most
advanced work in Semantic Web learning covering ontology construction and
management, ontology evaluation, ontology refinement, ontology evolution, as
well as the mapping, merging and alignment of ontologies. In addition there is
growing work on Semantic Web mining extending the capabilities of standard
web mining, although most of this work needs to wait for the Semantic Web to
be realized on a large scale.

In summary, machine learning has the potential to realize a number of exciting
applications on the Semantic Web and can complement axiomatic inference by
exploiting regularities in the data.
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