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Preface

This volume contains the proceedings of the first three workshops on Uncertainty
Reasoning for the Semantic Web (URSW), held at the International Semantic
Web Conferences (ISWC) in 2005, 2006, and 2007. In addition to revised and
strongly extended versions of selected workshop papers, we have included invited
contributions from leading experts in the field and closely related areas.

With this, the present volume represents the first comprehensive compilation
of state-of-the-art research approaches to uncertainty reasoning in the context
of the Semantic Web, capturing different models of uncertainty and approaches
to deductive as well as inductive reasoning with uncertain formal knowledge.

The World Wide Web community envisions effortless interaction between hu-
mans and computers, seamless interoperability and information exchange among
Web applications, and rapid and accurate identification and invocation of appro-
priate Web services. As work with semantics and services grows more ambitious,
there is increasing appreciation of the need for principled approaches to the for-
mal representation of and reasoning under uncertainty. The term uncertainty
is intended here to encompass a variety of forms of incomplete knowledge, in-
cluding incompleteness, inconclusiveness, vagueness, ambiguity, and others. The
term uncertainty reasoning is meant to denote the full range of methods designed
for representing and reasoning with knowledge when Boolean truth values are
unknown, unknowable, or inapplicable. Commonly applied approaches to uncer-
tainty reasoning include probability theory, Dempster-Shafer theory, fuzzy logic
and possibility theory, and numerous other methodologies.

A few Web-relevant challenges which are addressed by reasoning under un-
certainty include:

Uncertainty of available information: Much information on the World Wide
Web is uncertain. Examples include weather forecasts or gambling odds.
Canonical methods for representing and integrating such information are
necessary for communicating it in a seamless fashion.

Information incompleteness: Information extracted from large information
networks such as the World Wide Web is typically incomplete. The ability
to exploit partial information is very useful for identifying sources of service
or information. For example, that an online service deals with greeting cards
may be evidence that it also sells stationery. It is clear that search effec-
tiveness could be improved by appropriate use of technologies for handling
uncertainty.

Information incorrectness: Web information is also often incorrect or only
partially correct, raising issues related to trust or credibility. Uncertainty
representation and reasoning helps to resolve tension amongst information
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sources having different confidence and trust levels, and can facilitate the
merging of controversial information obtained from multiple sources.

Uncertain ontology mappings: The Semantic Web vision implies that nu-
merous distinct but conceptually overlapping ontologies will co-exist and
interoperate. It is likely that in such scenarios ontology mapping will benefit
from the ability to represent degrees of membership and/or likelihoods of
membership in categories of a target ontology, given information about class
membership in the source ontologies.

Indefinite information about Web services: Dynamic composability ofWeb
serviceswill require runtime identification of processing anddata resources and
resolution of policy objectives. Uncertainty reasoning techniques may be nec-
essary to resolve situations in which existing information is not definitive.

Uncertainty is thus an intrinsic feature of many important tasks on the Web
and the Semantic Web, and a full realization of the World Wide Web as a source
of processable data and services demands formalisms capable of representing
and reasoning under uncertainty. Unfortunately, none of these needs can be ad-
dressed in a principled way by current Web standards. Although it is to some
degree possible to use semantic markup languages such as OWL or RDF(S) to
represent qualitative and quantitative information about uncertainty, there is no
established foundation for doing so, and feasible approaches are severely limited.
Furthermore, there are ancillary issues such as how to balance representational
power vs. simplicity of uncertainty representations, which uncertainty represen-
tation techniques address uses such as the examples listed above, how to ensure
the consistency of representational formalisms and ontologies, etc.

In response to these pressing demands, in recent years several promising ap-
proaches to uncertainty reasoning on the Semantic Web have been proposed. The
present volume covers a representative cross section of these approaches, from
extensions to existing Web-related logics for the representation of uncertainty to
approaches to inductive reasoning under uncertainty on the Web.

In order to reflect the diversity of the presented approaches and to relate
them to their underlying models of uncertainty, the contributions to this volume
are grouped as follows:

Probabilistic and Dempster-Shafer Models

Probability theory provides a mathematically sound representation language and
formal calculus for rational degrees of belief, which gives different agents the
freedom to have different beliefs about a given hypothesis. As this provides a
compelling framework for representing uncertain, imperfect knowledge that can
come from diverse agents, there are many distinct approaches using probability in
the context of the Semantic Web. Classes of probabilistic models covered with the
present volume are Bayesian Networks, probabilistic extensions to Description
and First-Order Logics, and models based on the Dempster-Shafer theory (a
generalization of the classical Bayesian approach).
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Fuzzy and Possibilistic Models

Fuzzy formalisms allow for representing and processing degrees of truth about
vague (or imprecise) pieces of information. In fuzzy description logics and ontology
languages, concept assertions, role assertions, concept inclusions, and role inclu-
sions have a degree of truth rather than a binary truth value. The present volume
presents various approaches which exploit fuzzy logic and possibility theory in the
context of the Semantic Web.

Inductive Reasoning and Machine Learning

Machine learning is supposed to play an increasingly important role in the con-
text of the Semantic Web by providing various tasks such as the learning of
ontologies from incomplete data or the (semi-)automatic annotation of data on
the Web. Results obtained by machine learning approaches are typically uncer-
tain. As a logic-based approach to machine learning, inductive reasoning provides
means for inducing general propositions from observations (example facts). Pa-
pers in this volume exploit the power of inductive reasoning for the purpose of
ontology learning, and project future directions for the use of machine learning
on the Semantic Web.

Hybrid Approaches

This volume segment contains papers which either combine approaches from two
or more of the previous segments, or which do not rely on any specific classical
approach to uncertainty reasoning.

Acknowledgements. We would like to express our gratitude to the authors of this
volume for their contributions and to the workshop participants for inspiring
discussions, as well as to the members of the workshop Program Committees
and the additional reviewers for their reviews and for their overall support.
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Elie Sanchez Université de La Méditerranée Aix-Marseille II,

France
Oreste Signore ISTI-CNR, Italy
Nematollaah Shiri Concordia University, Canada
Sergej Sizov University of Koblenz-Landau, Germany
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Just Add Weights:
Markov Logic for the Semantic Web

Pedro Domingos1, Daniel Lowd1, Stanley Kok1, Hoifung Poon1,
Matthew Richardson2, and Parag Singla1

1 Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195-2350, U.S.A.
{pedrod,lowd,koks,hoifung,parag}@cs.washington.edu

2 Microsoft Research
Redmond, WA 98052
mattri@microsoft.com

Abstract. In recent years, it has become increasingly clear that the
vision of the Semantic Web requires uncertain reasoning over rich, first-
order representations. Markov logic brings the power of probabilistic
modeling to first-order logic by attaching weights to logical formulas
and viewing them as templates for features of Markov networks. This
gives natural probabilistic semantics to uncertain or even inconsistent
knowledge bases with minimal engineering effort. Inference algorithms
for Markov logic draw on ideas from satisfiability, Markov chain Monte
Carlo and knowledge-based model construction. Learning algorithms are
based on the conjugate gradient algorithm, pseudo-likelihood and in-
ductive logic programming. Markov logic has been successfully applied
to problems in entity resolution, link prediction, information extraction
and others, and is the basis of the open-source Alchemy system.

1 Introduction

The vision of the Semantic Web is that of a web of information that computers
can understand and reason about, organically built with no central organization
except for a common set of standards [1]. This promises the ability to answer
more complex queries and build more intelligent and effective agents than ever
before. The standard languages that have been introduced so far are generally
special cases of first-order logic, allowing users to define ontologies, express a
rich set of relationships among objects of different types, logical dependencies
between them, etc.

Fulfilling this promise, however, requires more than purely logical represen-
tations and inference algorithms. Most things in the world have some degree
of uncertainty or noise – future events, such as weather and traffic, are un-
predictable; information is unreliable, either from error or deceit; even simple
concepts such as “fruit” and “vegetable” are imprecisely and inconsistently ap-
plied. Any system that hopes to represent varied information about the world

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNAI 5327, pp. 1–25, 2008.
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2 P. Domingos et al.

must therefore acknowledge the uncertain, inconsist, and untrustworthy nature
of that knowledge.

The Semantic Web project faces additional or exacerbated sources of uncer-
tainty in a number of areas. Matching entities, ontologies and schemas is essential
for linking data from different sources, but is also inherently uncertain. Moreover,
data may contain false or contradictory information. To simply exclude noisy or
untrusted sources is an inadequate solution since even trusted sources may have
some errors and even noisy sources may have useful information to contribute.
A final problem is incomplete information; when information is missing we may
be able to conclude very little with certainty, but it would be a mistake to ignore
the partial evidence entirely.

Markov logic is a simple yet powerful solution to the problem of integrat-
ing logic and uncertainty. Given an existing knowledge base in first-order logic,
Markov logic attaches a weight to each formula. Semantically, weighted formu-
las are viewed as templates for constructing Markov networks. This yields a
well-defined probability distribution in which worlds are more likely when they
satisfy a higher-weight set of ground formulas. Intuitively, the magnitude of the
weight corresponds to the relative strength of its formula; in the infinite-weight
limit, Markov logic reduces to first-order logic. Since Markov logic is a direct
extension of first-order logic, it does not invalidate or conflict with the exist-
ing Semantic Web infrastructure. With Markov logic, Semantic Web languages
can be made probabilistic simply by adding weights to statements, and Semantic
Web inference engines can be extended to perform probabilistic reasoning simply
by passing the proof DAG (directed acylic graph), with weights attached, to a
probabilistic inference system. Weights may be set by hand, inferred from various
sources (e.g., trust networks), or learned automatically from data. We have also
developed algorithms for learning or correcting formulas from data. Markov logic
has already been used to efficiently develop state-of-the-art models for entity res-
olution, ontology induction, information extraction, social networks, collective
classification, and many other problems important to the Semantic Web. All of
our algorithms, as well as sample datasets and applications, are available in the
open-source Alchemy system [16] (alchemy.cs.washington.edu).

In this chapter, we describe the Markov logic representation and give an
overview of current inference and learning algorithms for it. We begin with some
background on first-order logic and Markov networks.

2 First-Order Logic

A first-order knowledge base (KB) is a set of sentences or formulas in first-order
logic [10]. Formulas are constructed using four types of symbols: constants, vari-
ables, functions, and predicates. Constant symbols represent objects in the do-
main of interest (e.g., people: Anna, Bob, Chris, etc.). Variable symbols range
over the objects in the domain. Function symbols (e.g., MotherOf) represent
mappings from tuples of objects to objects. Predicate symbols represent rela-
tions among objects in the domain (e.g., Friends) or attributes of objects (e.g.,
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Smokes). An interpretation specifies which objects, functions and relations in the
domain are represented by which symbols. Variables and constants may be typed,
in which case variables range only over objects of the corresponding type, and
constants can only represent objects of the corresponding type. For example, the
variable x might range over people (e.g., Anna, Bob, etc.), and the constant C
might represent a city (e.g, Seattle, Tokyo, etc.).

A term is any expression representing an object in the domain. It can be a
constant, a variable, or a function applied to a tuple of terms. For example, Anna,
x, and GreatestCommonDivisor(x, y) are terms. An atomic formula or atom is a
predicate symbol applied to a tuple of terms (e.g., Friends(x, MotherOf(Anna))).
Formulas are recursively constructed from atomic formulas using logical connec-
tives and quantifiers. If F1 and F2 are formulas, the following are also formulas:
¬F1 (negation), which is true iff F1 is false; F1 ∧ F2 (conjunction), which is
true iff both F1 and F2 are true; F1 ∨ F2 (disjunction), which is true iff F1 or
F2 is true; F1 ⇒ F2 (implication), which is true iff F1 is false or F2 is true;
F1 ⇔ F2 (equivalence), which is true iff F1 and F2 have the same truth value;
∀x F1 (universal quantification), which is true iff F1 is true for every object x
in the domain; and ∃x F1 (existential quantification), which is true iff F1 is true
for at least one object x in the domain. Parentheses may be used to enforce
precedence. A positive literal is an atomic formula; a negative literal is a negated
atomic formula. The formulas in a KB are implicitly conjoined, and thus a KB
can be viewed as a single large formula. A ground term is a term containing no
variables. A ground atom or ground predicate is an atomic formula all of whose
arguments are ground terms. A possible world (along with an interpretation)
assigns a truth value to each possible ground atom.

A formula is satisfiable iff there exists at least one world in which it is true. The
basic inference problem in first-order logic is to determine whether a knowledge
base KB entails a formula F , i.e., if F is true in all worlds where KB is true
(denoted by KB |= F ). This is often done by refutation: KB entails F iff KB ∪
¬F is unsatisfiable. (Thus, if a KB contains a contradiction, all formulas trivially
follow from it, which makes painstaking knowledge engineering a necessity.) For
automated inference, it is often convenient to convert formulas to a more regular
form, typically clausal form (also known as conjunctive normal form (CNF)). A
KB in clausal form is a conjunction of clauses, a clause being a disjunction of
literals. Every KB in first-order logic can be converted to clausal form using a
mechanical sequence of steps.1 Clausal form is used in resolution, a sound and
refutation-complete inference procedure for first-order logic [38].

Inference in first-order logic is only semidecidable. Because of this, knowledge
bases are often constructed using a restricted subset of first-order logic with more
desirable properties. The two subsets most commonly applied to the Semantic
Web are Horn clauses and description logics. Horn clauses are clauses containing
at most one positive literal. The Prolog programming language is based on Horn

1 This conversion includes the removal of existential quantifiers by Skolemization,
which is not sound in general. However, in finite domains an existentially quantified
formula can simply be replaced by a disjunction of its groundings.
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Table 1. Example of a first-order knowledge base and MLN. Fr() is short for Friends(),
Sm() for Smokes(), and Ca() for Cancer().

First-Order Logic Clausal Form Weight
“Friends of friends are friends.”

∀x∀y∀z Fr(x, y) ∧ Fr(y, z) ⇒ Fr(x, z) ¬Fr(x, y) ∨ ¬Fr(y, z) ∨ Fr(x, z) 0.7
“Friendless people smoke.”

∀x (¬(∃y Fr(x, y)) ⇒ Sm(x)) Fr(x, g(x)) ∨ Sm(x) 2.3
“Smoking causes cancer.”

∀x Sm(x) ⇒ Ca(x) ¬Sm(x) ∨ Ca(x) 1.5
“If two people are friends, then either
both smoke or neither does.” ¬Fr(x, y) ∨ Sm(x) ∨ ¬Sm(y), 1.1

∀x∀y Fr(x, y) ⇒ (Sm(x) ⇔ Sm(y)) ¬Fr(x, y) ∨ ¬Sm(x) ∨ Sm(y) 1.1

clause logic [21]. Prolog programs can be learned from databases by searching
for Horn clauses that (approximately) hold in the data; this is studied in the
field of inductive logic programming (ILP) [18]. Description logics are a decid-
able subset of first-order logic that is the basis of the Web Ontology Language
(OWL) [7].

Table 1 shows a simple KB and its conversion to clausal form. Notice that,
while these formulas may be typically true in the real world, they are not always
true. In most domains it is very difficult to come up with non-trivial formulas
that are always true, and such formulas capture only a fraction of the relevant
knowledge. Thus, despite its expressiveness, pure first-order logic has limited
applicability to practical AI problems. Many ad hoc extensions to address this
have been proposed. In the more limited case of propositional logic, the prob-
lem is well solved by probabilistic graphical models such as Markov networks,
described in the next section. We will later show how to generalize these models
to the first-order case.

3 Markov Networks

A Markov network (also known as Markov random field) is a model for the joint
distribution of a set of variables X = (X1, X2, . . . , Xn) ∈ X [30]. It is composed
of an undirected graph G and a set of potential functions φk. The graph has a
node for each variable, and the model has a potential function for each clique
in the graph. A potential function is a non-negative real-valued function of the
state of the corresponding clique. The joint distribution represented by a Markov
network is given by

P (X =x) =
1
Z

∏
k

φk(x{k}) (1)

where x{k} is the state of the kth clique (i.e., the state of the variables that
appear in that clique). Z, known as the partition function, is given by Z =∑

x∈X
∏

k φk(x{k}). Markov networks are often conveniently represented as
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log-linear models, with each clique potential replaced by an exponentiated
weighted sum of features of the state, leading to

P (X =x) =
1
Z

exp

⎛
⎝∑

j

wjfj(x)

⎞
⎠ (2)

A feature may be any real-valued function of the state. This chapter will focus on
binary features, fj(x) ∈ {0, 1}. In the most direct translation from the potential-
function form (Equation 1), there is one feature corresponding to each possible
state x{k} of each clique, with its weight being log φk(x{k}). This representation is
exponential in the size of the cliques. However,we are free to specify a much smaller
number of features (e.g., logical functions of the state of the clique), allowing for a
more compact representation than the potential-function form, particularly when
large cliques are present. Markov logic will take advantage of this.

Inference in Markov networks is #P-complete [39]. The most widely used
method for approximate inference in Markov networks is Markov chain Monte
Carlo (MCMC) [11], and in particular Gibbs sampling, which proceeds by sam-
pling each variable in turn given its Markov blanket. (The Markov blanket of a
node is the minimal set of nodes that renders it independent of the remaining
network; in a Markov network, this is simply the node’s neighbors in the graph.)
Marginal probabilities are computed by counting over these samples; conditional
probabilities are computed by running the Gibbs sampler with the conditioning
variables clamped to their given values. Another popular method for inference
in Markov networks is belief propagation [52].

Maximum-likelihood or MAP estimates of Markov network weights cannot be
computed in closed form but, because the log-likelihood is a concave function
of the weights, they can be found efficiently (modulo inference) using standard
gradient-based or quasi-Newton optimization methods [28]. Another alternative
is iterative scaling [8]. Features can also be learned from data, for example by
greedily constructing conjunctions of atomic features [8].

4 Markov Logic

A first-order KB can be seen as a set of hard constraints on the set of possible
worlds: if a world violates even one formula, it has zero probability. The basic
idea in Markov logic is to soften these constraints: when a world violates one
formula in the KB it is less probable, but not impossible. The fewer formulas a
world violates, the more probable it is. Each formula has an associated weight
(e.g., see Table 1) that reflects how strong a constraint it is: the higher the weight,
the greater the difference in log probability between a world that satisfies the
formula and one that does not, other things being equal.

Definition 1. [36] A Markov logic network (MLN) L is a set of pairs (Fi, wi),
where Fi is a formula in first-order logic and wi is a real number. Together with
a finite set of constants C = {c1, c2, . . . , c|C|}, it defines a Markov network ML,C

(Equations 1 and 2) as follows:
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1. ML,C contains one binary node for each possible grounding of each atom
appearing in L. The value of the node is 1 if the ground atom is true, and 0
otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi

in L. The value of this feature is 1 if the ground formula is true, and 0
otherwise. The weight of the feature is the wi associated with Fi in L.

Thus there is an edge between two nodes of ML,C iff the corresponding ground
atoms appear together in at least one grounding of one formula in L. For ex-
ample, an MLN containing the formulas ∀x Smokes(x) ⇒ Cancer(x) (smoking
causes cancer) and ∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) (friends
have similar smoking habits) applied to the constants Anna and Bob (or A and
B for short) yields the ground Markov network in Figure 1. Its features include
Smokes(Anna) ⇒ Cancer(Anna), etc. Notice that, although the two formulas
above are false as universally quantified logical statements, as weighted features
of an MLN they capture valid statistical regularities, and in fact represent a
standard social network model [47].

An MLN can be viewed as a template for constructing Markov networks. From
Definition 1 and Equations 1 and 2, the probability distribution over possible
worlds x specified by the ground Markov network ML,C is given by

P (X =x) =
1
Z

exp

(
F∑

i=1

wini(x)

)
(3)

where F is the number of formulas in the MLN and ni(x) is the number of true
groundings of Fi in x. As formula weights increase, an MLN increasingly resem-
bles a purely logical KB, becoming equivalent to one in the limit of all infinite
weights. When the weights are positive and finite, and all formulas are simul-
taneously satisfiable, the satisfying solutions are the modes of the distribution
represented by the ground Markov network.

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Fig. 1. Ground Markov network obtained by applying an MLN containing the formulas
∀x Smokes(x) ⇒ Cancer(x) and ∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) to the
constants Anna(A) and Bob(B)
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Most importantly, Markov logic allows contradictions between formulas, which
it resolves simply by weighing the evidence on both sides. This makes it well
suited for merging multiple KBs. Markov logic also provides a natural and pow-
erful approach to the problem of merging knowledge and data in different rep-
resentations that do not align perfectly, as will be illustrated in the application
section. Both of these tasks are also key to the success of the Semantic Web.

It is interesting to see a simple example of how Markov logic generalizes first-
order logic. Consider an MLN containing the single formula ∀x R(x) ⇒ S(x)
with weight w, and C = {A}. This leads to four possible worlds: {¬R(A),¬S(A)},
{¬R(A), S(A)}, {R(A),¬S(A)}, and {R(A), S(A)}. From Equation 3 we obtain that
P ({R(A),¬S(A)}) = 1/(3ew + 1) and the probability of each of the other three
worlds is ew/(3ew + 1). (The denominator is the partition function Z; see Sec-
tion 3.) Thus, if w > 0, the effect of the MLN is to make the world that is
inconsistent with ∀x R(x) ⇒ S(x) less likely than the other three. From the
probabilities above we obtain that P (S(A)|R(A)) = 1/(1 + e−w). When w → ∞,
P (S(A)|R(A))→ 1, recovering the logical entailment.

It is easily seen that all discrete probabilistic models expressible as products
of potentials, including Markov networks and Bayesian networks, are expressible
in Markov logic. In particular, many of the models frequently used in AI can be
stated quite concisely as MLNs, and combined and extended simply by adding
the corresponding formulas. Most significantly, Markov logic facilitates the con-
struction of non-i.i.d. models (i.e., models where objects are not independent
and identically distributed).

When working with Markov logic, we typically make three assumptions about
the logical representation: different constants refer to different objects (unique
names), the only objects in the domain are those representable using the con-
stant and function symbols (domain closure), and the value of each function for
each tuple of arguments is always a known constant (known functions). These
assumptions ensure that the number of possible worlds is finite and that the
Markov logic network will give a well-defined probability distribution. These
assumptions are quite reasonable in most practical applications, and greatly
simplify the use of MLNs. After describing how each one can be relaxed, we will
make these assumptions for the remainder of the chapter. See Richardson and
Domingos [36] for further details on the Markov logic representation.

The unique names assumption can be removed by introducing the equality
predicate (Equals(x, y), or x = y for short) and adding the necessary axioms to
the MLN: equality is reflexive, symmetric and transitive; for each unary predicate
P , ∀x∀y x = y ⇒ (P(x) ⇔ P(y)); and similarly for higher-order predicates and
functions [10]. This allows us to deal with instance and reference uncertainty, as
illustrated in Section 7.1.

We can relax the domain closure assumption by introducing new constants to
represent unknown objects. This works for any domain whose size is bounded.
Markov logic can also be applied to a number of interesting infinite domains,
such as when each node in the resulting infinite Markov network has a finite
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number of neighbors. See Singla and Domingos [43] for details on Markov logic
in infinite domains.

Infinite domains can also be approximated as finite ones. Consider the transi-
tive, anti-symmetric relation AncestorOf(x, y), meaning “x is an ancestor of y.”
In a logical KB, the rule “Everyone has an ancestor” is only valid in infinite or
empty domains. In Markov logic, the rule can easily be applied to finite domains,
so that worlds are more likely when more objects have an ancestor within the
domain. Therefore, although Markov logic semantics are well-defined for many
infinite domains, a finite approach suffices for most practical applications.

Let HL,C be the set of all ground terms constructible from the function sym-
bols in L and the constants in L and C (the “Herbrand universe” of (L, C)). We
can remove the known function assumption by treating each element of HL,C

as an additional constant and applying the same procedure used to remove the
unique names assumption. For example, with a function G(x) and constants A
and B, the MLN will now contain nodes for G(A) = A, G(A) = B, etc. This leads
to an infinite number of new constants, requiring the corresponding extension
of MLNs. However, if we restrict the level of nesting to some maximum, the
resulting MLN is still finite.

5 Inference

Recall that an MLN acts as a template for a Markov network. Therefore, we can
always answer probabilistic queries using standard Markov network inference
methods on the instantiated network. We have extended and adapted several of
these standard methods to take particular advantage of the logical structure in
a Markov logic network, yielding tremendous savings in memory and time. We
describe these algorithms in this section.

For many queries, only a small subset of the instantiated Markov network is
relevant. In such cases, we need not instantiate or even consider the entire MLN.
The proof DAG from a logical inference engine can be used to generate the
set of ground formulas and atoms relevant to a particular query. Together with
the MLN weights, this can be used to generate a sub-network to answers the
probabilistic query. In this way, Markov logic can easily be paired with traditional
logical inference methods. This method, traditionally known as knowledge-based
model construction (KBMC) [27], allows us to potentially reason efficiently over
a very large knowledge base (like the Semantic Web), as long as only a small
fraction of it is relevant to the query. In our descriptions, we will assume that
inference is done over the entire MLN, but our methods apply to the sub-network
case as well.

5.1 MAP/MPE Inference

In the remainder of this chapter, we assume that the MLN is in function-free
clausal form for convenience, but these methods can be applied to other MLNs
as well. A basic inference task is finding the most probable state of the world
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given some evidence. (This is known as MAP inference in the Markov network
literature, and MPE inference in the Bayesian network literature.) Because of the
form of Equation 3, in Markov logic this reduces to finding the truth assignment
that maximizes the sum of weights of satisfied clauses. This can be done using
any weighted satisfiability solver, and (remarkably) need not be more expensive
than standard logical inference by model checking. (In fact, it can be faster, if
some hard constraints are softened.) We have successfully used MaxWalkSAT,
a weighted variant of the WalkSAT local-search satisfiability solver, which can
solve hard problems with hundreds of thousands of variables in minutes [13].
MaxWalkSAT performs this stochastic search by picking an unsatisfied clause
at random and flipping the truth value of one of the atoms in it. With a cer-
tain probability, the atom is chosen randomly; otherwise, the atom is chosen to
maximize the sum of satisfied clause weights when flipped. This combination of
random and greedy steps allows MaxWalkSAT to avoid getting stuck in local
optima while searching. Pseudocode for MaxWalkSAT is shown in Algorithm 1.
DeltaCost(v) computes the change in the sum of weights of unsatisfied clauses
that results from flipping variable v in the current solution. Uniform(0,1) returns
a uniform deviate from the interval [0, 1].

One problem with this approach is that it requires propositionalizing the
domain (i.e., grounding all atoms and clauses in all possible ways), which con-
sumes memory exponential in the arity of the clauses. We have overcome this
by developing LazySAT, a lazy version of MaxWalkSAT which grounds atoms
and clauses only as needed [42]. This takes advantage of the sparseness of re-
lational domains, where most atoms are false and most clauses are trivially
satisfied. For example, in the domain of scientific research, most groundings of
the atom Author(person, paper) are false, and most groundings of the clause
Author(person1, paper) ∧ Author(person2, paper) ⇒ Coauthor(person1,
person2) are satisfied. In LazySAT, the memory cost does not scale with the
number of possible clause groundings, but only with the number of groundings
that are potentially unsatisfied at some point in the search.

Algorithm 2 gives pseudo-code for LazySAT, highlighting the places where
it differs from MaxWalkSAT. LazySAT maintains a set of active atoms and a
set of active clauses. A clause is active if it can be made unsatisfied by flipping
zero or more of its active atoms. (Thus, by definition, an unsatisfied clause is
always active.) An atom is active if it is in the initial set of active atoms, or if
it was flipped at some point in the search. The initial active atoms are all those
appearing in clauses that are unsatisfied if only the atoms in the database are
true, and all others are false. The unsatisfied clauses are obtained by simply going
through each possible grounding of all the first-order clauses and materializing
the groundings that are unsatisfied; search is pruned as soon as the partial
grounding of a clause is satisfied. Given the initial active atoms, the definition
of active clause requires that some clauses become active, and these are found
using a similar process (with the difference that, instead of checking whether a
ground clause is unsatisfied, we check whether it should be active). Each run of
LazySAT is initialized by assigning random truth values to the active atoms. This
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Algorithm 1. MaxWalkSAT(weighted clauses, max flips, max tries, target, p)
vars ← variables in weighted clauses
for i ← 1 to max tries do

soln ← a random truth assignment to vars
cost ← sum of weights of unsatisfied clauses in soln
for i ← 1 to max flips do

if cost ≤ target then
return “Success, solution is”, soln

end if
c ← a randomly chosen unsatisfied clause
if Uniform(0,1) < p then

vf ← a randomly chosen variable from c
else

for each variable v in c do
compute DeltaCost(v)

end for
vf ← v with lowest DeltaCost(v)

end if
soln ← soln with vf flipped
cost ← cost + DeltaCost(vf )

end for
end for
return “Failure, best assignment is”, best soln found

differs from MaxWalkSAT, which assigns random values to all atoms. However,
the LazySAT initialization is a valid MaxWalkSAT initialization, and we have
verified experimentally that the two give very similar results. Given the same
initialization, the two algorithms will produce exactly the same results.

At each step in the search, the variable that is flipped is activated, as are any
clauses that by definition should become active as a result. When evaluating the
effect on cost of flipping a variable v, if v is active then all of the relevant clauses
are already active, and DeltaCost(v) can be computed as in MaxWalkSAT. If v
is inactive, DeltaCost(v) needs to be computed using the knowledge base. This is
done by retrieving from the KB all first-order clauses containing the atom that
v is a grounding of, and grounding each such clause with the constants in v and
all possible groundings of the remaining variables. As before, we prune search as
soon as a partial grounding is satisfied, and add the appropriate multiple of the
clause weight to DeltaCost(v). (A similar process is used to activate clauses.)
While this process is costlier than using pre-grounded clauses, it is amortized
over many tests of active variables. In typical satisfiability problems, a small core
of “problem” clauses is repeatedly tested, and when this is the case LazySAT
will be quite efficient.

At each step, LazySAT flips the same variable that MaxWalkSAT would, and
hence the result of the search is the same. The memory cost of LazySAT is on
the order of the maximum number of clauses active at the end of a run of flips.
(The memory required to store the active atoms is dominated by the memory
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Algorithm 2. LazySAT( weighted KB, DB, max flips, max tries, target, p)

for i ← 1 to max tries do
active atoms ← atoms in clauses not satisfied by DB

active clauses ← clauses activated by active atoms

soln ← a random truth assignment to active atoms
cost ← sum of weights of unsatisfied clauses in soln
for i ← 1 to max flips do

if cost ≤ target then
return “Success, solution is”, soln

end if
c ← a randomly chosen unsatisfied clause
if Uniform(0,1) < p then

vf ← a randomly chosen variable from c
else

for each variable v in c do
compute DeltaCost(v), using weighted KB if v 
∈ active atoms

end for
vf ← v with lowest DeltaCost(v)

end if
if vf 
∈ active atoms then

add vf to active atoms

add clauses activated by vf to active clauses
end if
soln ← soln with vf flipped
cost ← cost + DeltaCost(vf )

end for
end for
return “Failure, best assignment is”, best soln found

required to store the active clauses, since each active atom appears in at least
one active clause.)

Experiments on entity resolution and planning problems show that this can
yield very large memory reductions, and these reductions increase with domain
size [42]. For domains whose full instantiations fit in memory, running time
is comparable; as problems become larger, full instantiation for MaxWalkSAT
becomes impossible.

5.2 Marginal and Conditional Probabilities

Another key inference task is computing the probability that a formula holds,
given an MLN and set of constants, and possibly other formulas as evidence.
By definition, the probability of a formula is the sum of the probabilities of the
worlds where it holds, and computing it by brute force requires time exponential
in the number of possible ground atoms. An approximate but more efficient
alternative is to use Markov chain Monte Carlo (MCMC) inference [11], which
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samples a sequence of states according to their probabilities, and counting the
fraction of sampled states where the formula holds. This can be extended to
conditioning on other formulas by rejecting any state that violates one of them.

For the remainder of the chapter, we focus on the typical case where the evi-
dence is a conjunction of ground atoms. In this scenario, further efficiency can be
gained by applying a generalization of knowledge-based model construction [49].
This constructs only the minimal subset of the ground network required to answer
the query, and runsMCMC(or any other probabilistic inferencemethod) on it.The
network is constructed by checking if the atoms that the query formula directly de-
pends on are in the evidence. If they are, the construction is complete. Those that
are not are added to the network, and we in turn check the atoms they depend on.
This process is repeated until all relevant atoms have been retrieved. While in the
worst case it yields no savings, in practice it can vastly reduce the time and memory
required for inference. See Richardson and Domingos [36] for details.

One problem with applying MCMC to MLNs is that it breaks down in the
presence of deterministic or near-deterministic dependencies (as do other prob-
abilistic inference methods, e.g., belief propagation [52]). Deterministic depen-
dencies break up the space of possible worlds into regions that are not reachable
from each other, violating a basic requirement of MCMC. Near-deterministic
dependencies greatly slow down inference, by creating regions of low probability
that are very difficult to traverse. Running multiple chains with random starting
points does not solve this problem, because it does not guarantee that different
regions will be sampled with frequency proportional to their probability, and
there may be a very large number of regions.

We have successfully addressed this problem by combining MCMC with sat-
isfiability testing in the MC-SAT algorithm [32]. MC-SAT is a slice sampling
MCMC algorithm. It uses a combination of satisfiability testing and simulated
annealing to sample from the slice. The advantage of using a satisfiability solver
(WalkSAT) is that it efficiently finds isolated modes in the distribution, and as
a result the Markov chain mixes very rapidly. The slice sampling scheme ensures
that detailed balance is (approximately) preserved.

MC-SAT is orders of magnitude faster than standard MCMC methods such
as Gibbs sampling and simulated tempering, and is applicable to any model that
can be expressed in Markov logic, including many standard models in statisti-
cal physics, vision, natural language processing, social network analysis, spatial
statistics, etc.

Slice sampling [5] is an instance of a widely used approach in MCMC inference
that introduces auxiliary variables to capture the dependencies between observed
variables. For example, to sample from P (X = x) = (1/Z)

∏
k φk(x{k}), we

can define P (X = x, U = u) = (1/Z)
∏

k I[0,φk(x{k})](uk), where φk is the kth
potential function, uk is the kth auxiliary variable, I[a,b](uk) = 1 if a ≤ uk ≤ b,
and I[a,b](uk) = 0 otherwise. The marginal distribution of X under this joint is
P (X =x), so to sample from the original distribution it suffices to sample from
P (x, u) and ignore the u values. P (uk|x) is uniform in [0, φk(x{k})], and thus
easy to sample from. The main challenge is to sample x given u, which is uniform
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Algorithm 3. MC-SAT(clauses, weights, num samples)

x(0) ← Satisfy(hard clauses)
for i ← 1 to num samples do

M ← ∅
for all ck ∈ clauses satisfied by x(i−1) do

With probability 1 − e−wk add ck to M
end for
Sample x(i) ∼ USAT (M)

end for

among all X that satisfies φk(x{k}) ≥ uk for all k. MC-SAT uses SampleSAT [48]
to do this. In each sampling step, MC-SAT takes the set of all ground clauses
satisfied by the current state of the world and constructs a subset, M , that
must be satisfied by the next sampled state of the world. (For the moment we
will assume that all clauses have positive weight.) Specifically, a satisfied ground
clause is included in M with probability 1−e−w, where w is the clause’s weight.
We then take as the next state a uniform sample from the set of states SAT (M)
that satisfy M . (Notice that SAT (M) is never empty, because it always contains
at least the current state.) Algorithm 3 gives pseudo-code for MC-SAT. US is the
uniform distribution over set S. At each step, all hard clauses are selected with
probability 1, and thus all sampled states satisfy them. Negative weights are
handled by noting that a clause with weight w < 0 is equivalent to its negation
with weight −w, and a clause’s negation is the conjunction of the negations of
all of its literals. Thus, instead of checking whether the clause is satisfied, we
check whether its negation is satisfied; if it is, with probability 1− ew we select
all of its negated literals, and with probability ew we select none.

It can be shown that MC-SAT satisfies the MCMC criteria of detailed balance
and ergodicity [32], assuming a perfect uniform sampler. In general, uniform
sampling is #P-hard and SampleSAT [48] only yields approximately uniform
samples. However, experiments show that MC-SAT is still able to produce very
accurate probability estimates, and its performance is not very sensitive to the
parameter setting of SampleSAT.

We have applied the ideas of LazySAT to implement a lazy version of MC-
SAT that avoids grounding unnecessary atoms and clauses. A working version
of this algorithm is present in the open-source Alchemy system [16].

It is also possible to carry out lifted first-order probabilistic inference (akin to
resolution) in Markov logic [3]. These methods speed up inference by reasoning
at the first-order level about groups of indistinguishable objects rather than
propositionalizing the entire domain. This is particularly applicable when the
population size is given but little is known about most individual members.

6 Learning

In this section, we discuss methods for automatically learning weights, refin-
ing formulas, and constructing new formulas from data. Of course, learning is
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but one method for generating an MLN. In a distributed knowledge base such
as the Semantic Web, formulas could come from many different sources and
their weights could be set by the sources themselves or using credibility or trust
propagation (e.g., [35]). When data is available, learning methods allow us to
automatically adjust weights and refine or add formulas to an MLN.

6.1 Generative Weight Learning

MLN weights can be learned generatively by maximizing the likelihood of a
relational database (Equation 3). This relational database consists of one or
more “possible worlds” that form our training examples. Note that we can learn
to generalize from even a single example because the clause weights are shared
across their many respective groundings. This is essential when the training
data is a single network, such as in the Semantic Web. The gradient of the
log-likelihood with respect to the weights is

∂

∂wi
log Pw(X =x) = ni(x) −

∑
x′

Pw(X =x′) ni(x′) (4)

where the sum is over all possible databases x′, and Pw(X = x′) is P (X = x′)
computed using the current weight vector w = (w1, . . . , wi, . . .). In other words,
the ith component of the gradient is simply the difference between the number of
true groundings of the ith formula in the data and its expectation according to
the current model. In the generative case, even approximating these expectations
tends to be prohibitively expensive or inaccurate due to the large state space.
Instead, we maximize the pseudo-likelihood of the data, a widely-used alternative
[2]. If x is a possible world (relational database) and xl is the lth ground atom’s
truth value, the pseudo-log-likelihood of x given weights w is

log P ∗
w(X =x) =

n∑
l=1

log Pw(Xl =xl|MBx(Xl)) (5)

where MBx(Xl) is the state of Xl’s Markov blanket in the data (i.e., the truth
values of the ground atoms it appears in some ground formula with). Computing
the pseudo-likelihood and its gradient does not require inference, and is therefore
much faster. Combined with the L-BFGS optimizer [20], pseudo-likelihood yields
efficient learning of MLN weights even in domains with millions of ground atoms
[36]. However, the pseudo-likelihood parameters may lead to poor results when
long chains of inference are required.

In order to reduce overfitting, we penalize each weight with a Gaussian prior.
We apply this strategy not only to generative learning, but to all of our weight
learning methods, even those embedded within structure learning.

6.2 Discriminative Weight Learning

Discriminative learning is an attractive alternative to pseudo-likelihood. In many
applications, we know a priori which atoms will be evidence and which ones will
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be queried, and the goal is to correctly predict the latter given the former. If
we partition the ground atoms in the domain into a set of evidence atoms X
and a set of query atoms Y , the conditional likelihood (CLL) of Y given X

is P (y|x) = (1/Zx) exp
(∑

i∈FY
wini(x, y)

)
= (1/Zx) exp

(∑
j∈GY

wjgj(x, y)
)
,

where FY is the set of all MLN clauses with at least one grounding involving a
query atom, ni(x, y) is the number of true groundings of the ith clause involving
query atoms, GY is the set of ground clauses in ML,C involving query atoms,
and gj(x, y) = 1 if the jth ground clause is true in the data and 0 otherwise.
The gradient of the CLL is

∂

∂wi
log Pw(y|x) = ni(x, y)−

∑
y′

Pw(y′|x)ni(x, y′)

= ni(x, y)− Ew[ni(x, y)] (6)

In the conditional case, we can approximate the expected counts Ew[ni(x, y)]
using either the MAP state (i.e., the most probable state of y given x) or by
averaging over several MC-SAT samples. The MAP approximation is inspired
by the voted perceptron algorithm proposed by Collins [4] for discriminatively
laerning hidden Markov models. We can apply a similar algorithm to MLNs using
MaxWalkSAT to find the approximate MAP state, following the approximate
gradient for a fixed number of iterations, and averaging the weights across all it-
erations to combat overfitting [40]. We get the best results, however, by applying
a version of the scaled conjugate gradient algorithm [26]. We use a small number
of MC-SAT samples to approximate the gradient and Hessian matrix, and use
the inverse diagonal hessian as a preconditioner. See Lowd and Domingos [22]
for more details and results.

6.3 Structure Learning

The structure of a Markov logic network is the set of formulas or clauses to
which we attach weights. While this knowledge base is often specified by one or
more experts, such knowledge is not always accurate or complete. In addition
to learning weights for the provided clauses, we can revise or extend the MLN
structure with new clauses learned from data. The inductive logic programming
(ILP) community has developed many methods for learning logical rules from
data. However, since an MLN represents a probability distribution, much better
results are obtained by using an evaluation function based on pseudo-likelihood,
rather than typical ILP ones like accuracy and coverage [14]. Log-likelihood or
conditional log-likelihood are potentially better evaluation functions, but are
vastly more expensive to compute. In experiments on two real-world datasets,
our MLN structure learning algorithm found better MLN rules than the standard
ILP algorithms CLAUDIEN [6], FOIL [34], and Aleph [45], and even a hand-
written knowledge base.

MLN structure learning can start from an empty network or from an existing
KB. Either way, we have found it useful to start by adding all unit clauses
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(single atoms) to the MLN. The weights of these capture (roughly speaking)
the marginal distributions of the atoms, allowing the longer clauses to focus on
modeling atom dependencies. To extend this initial model, we either repeatedly
find the best clause using beam search and add it to the MLN, or add all “good”
clauses of length l before trying clauses of length l + 1. Candidate clauses are
formed by adding each predicate (negated or otherwise) to each current clause,
with all possible combinations of variables, subject to the constraint that at least
one variable in the new predicate must appear in the current clause. Hand-coded
clauses are also modified by removing predicates.

Recently, Mihalkova and Mooney [25] introduced BUSL, an alternative, bot-
tom-up structure learning algorithm for Markov logic. Instead of blindly con-
structing candidate clauses one literal at a time, they let the training data guide
and constrain clause construction. First, they use a propositional Markov net-
work structure learner to generate a graph of relationships among atoms. Then
they generate clauses from paths in this graph. In this way, BUSL focuses on
clauses that have support in the training data. In experiments on three datasets,
BUSL evaluated many fewer candidate clauses than our top-down algorithm,
ran more quickly, and learned more accurate models.

We are currently investigating further approaches to learning MLNs, includ-
ing automatically inventing new predicates (or, in statistical terms, discovering
hidden variables) [15].

7 Applications

We have already applied Markov logic to a variety of problems relevant to the
Semantic Web, including link prediction and collective classification, for filling in
missing attributes and relationships; entity resolution, for matching equivalent
entities that have different names; information extraction, for adding structure
to raw or semi-structured text; and other problems [36,40,14,41,32,33]. Even our
simple Friends and Smokers example touches on link prediction, collective clas-
sification, and social network analysis. In this section, we will show in detail
how Markov logic can be used to build state-of-the-art models for entity resolu-
tion and information extraction, and present experimental results on real-world
citation data.

Others have also applied Markov logic in a variety of areas. A system based
on it recently won a competition on information extraction for biology [37].
Cycorp has used it to make parts of the Cyc knowledge base probabilistic [24].
The CALO project is using it to integrate probabilistic learning and inference
across many components [9]. Of particular relevance to the Semantic Web is
the recent work of Wu and Weld [51] on automatically refining the Wikipedia
infobox ontology.

7.1 Entity Resolution

The application to entity resolution illustrates well the power of Markov logic
[41]. Entity resolution is the problem of determining which observations (e.g.,
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database records, noun phrases, video regions, etc.) correspond to the same
real-world objects. This is an important and difficult task even on small, well-
defined, and well-maintained databases. In the Semantic Web, automatically
determining which objects, fields, and types are equivalent becomes much harder
since the data may come from many different sources with varied quality. Manual
annotation does not scale, so automatically determining these relationships is
essential for maintaining connectedness in the Semantic Web.

Entity resolution is typically done by forming a vector of properties for each
pair of observations, using a learned classifier (such as logistic regression) to pre-
dict whether they match, and applying transitive closure. Markov logic yields an
improved solution simply by applying the standard logical approach of removing
the unique names assumption and introducing the equality predicate and its ax-
ioms: equality is reflexive, symmetric and transitive; groundings of a predicate
with equal constants have the same truth values; and constants appearing in a
ground predicate with equal constants are equal. This last axiom is not valid in
logic, but captures a useful statistical tendency. For example, if two papers are
the same, their authors are the same; and if two authors are the same, papers
by them are more likely to be the same. Weights for different instances of these
axioms can be learned from data. Inference over the resulting MLN, with entity
properties and relations as the evidence and equality atoms as the query, nat-
urally combines logistic regression and transitive closure. Most importantly, it
performs collective entity resolution, where resolving one pair of entities helps
to resolve pairs of related entities.

As a concrete example, consider the task of deduplicating a citation database
in which each citation has author, title, and venue fields. We can represent the
domain structure with eight relations: Author(bib, author), Title(bib, title),
and Venue(bib, venue) relate citations to their fields; HasWord(author/title/
venue, word) indicates which words are present in each field; SameAuthor
(author, author), SameTitle(title, title), and SameVenue(venue, venue)
represent field equivalence; and SameBib(bib, bib) represents citation equiva-
lence. The truth values of all relations except for the equivalence relations are
provided as background theory. The objective is to predict the SameBib relation.

We begin with a logistic regression model to predict citation equivalence based
on the words in the fields. This is easily expressed in Markov logic by rules such
as the following:

Title(b1, t1) ∧ Title(b2, t2) ∧ HasWord(t1, +word)
∧ HasWord(t2, +word)⇒ SameBib(b1, b2)

The ‘+’ operator here generates a separate rule (and with it, a separate learnable
weight) for each constant of the appropriate type. When given a positive weight,
each of these rules increases the probability that two citations with a particular
title word in common are equivalent. We can construct similar rules for other
fields. Note that we may learn negative weights for some of these rules, just as
logistic regression may learn negative feature weights. Transitive closure consists
of a single rule:
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SameBib(b1, b2)∧ SameBib(b2, b3)⇒ SameBib(b1, b3)

This model is similar to the standard solution, but has the advantage that the
classifier is learned in the context of the transitive closure operation.

We can construct similar rules to predict the equivalence of two fields as well.
The usefulness of Markov logic is shown further when we link field equivalence
to citation equivalence:

Author(b1, a1) ∧ Author(b2, a2) ∧ SameBib(b1, b2) ⇒ SameAuthor(a1, a2)
Author(b1, a1) ∧ Author(b2, a2) ∧ SameAuthor(a1, a2) ⇒ SameBib(b1, b2)

The above rules state that if two citations are the same, their authors should be
the same, and that citations with the same author are more likely to be the same.
The last rule is not valid in logic, but captures a useful statistical tendency.

Most importantly, the resulting model can now perform collective entity res-
olution, where resolving one pair of entities helps to resolve pairs of related
entities. For example, inferring that a pair of citations are equivalent can pro-
vide evidence that the names AAAI-06 and 21st Natl. Conf. on AI refer to the
same venue, even though they are superficially very different. This equivalence
can then aid in resolving other entities.

Experiments on citation databases like Cora and BibServ.org show that these
methods can greatly improve accuracy, particularly for entity types that are
difficult to resolve in isolation as in the above example [41]. Due to the large
number of words and the high arity of the transitive closure formula, these models
have thousands of weights and ground millions of clauses during learning, even
after using canopies to limit the number of comparisons considered. Learning at
this scale is still reasonably efficient: preconditioned scaled conjugate gradient
with MC-SAT for inference converges within a few hours [22].

7.2 Information Extraction

In this citation example, it was assumed that the fields were manually segmented
in advance. The goal of information extraction is to extract database records
starting from raw text or semi-structured data sources. This has many appli-
cations for the Semantic Web, including using the vast amount of unstructured
information on the Web to bootstrap the Semantic Web. Information extraction
could also be used to segment labeled fields, such as “name,” into more specific
fields, such as “first name,” “last name,” and “title.”

Traditionally, information extraction proceeds by first segmenting each candi-
date record separately, and then merging records that refer to the same entities.
Such a pipeline architecture is adopted by many AI systems in natural language
processing, speech recognition, vision, robotics, etc. Markov logic allows us to
perform the two tasks jointly [33]. This enables us to use the segmentation of
one candidate record to help segment similar ones. For example, resolving a well-
segmented field with a less-clear one can disambiguate the latter’s boundaries.
We will continue with the example of citations, but similar ideas could be applied
to other data sources, such as Web pages or emails.
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The main evidence predicate in the information extraction MLN is Token(t, i,
c), which is true iff token t appears in the ith position of the cth citation. A token
can be a word, date, number, etc. Punctuation marks are not treated as separate
tokens; rather, the predicate HasPunc(c, i) is true iff a punctuation mark appears
immediately after the ith position in the cth citation. The query predicates are
InField(i, f, c) and SameCitation(c, c′). InField(i, f, c) is true iff the ith
position of the cth citation is part of field f, where f ∈ {Title, Author, Venue},
and inferring it performs segmentation. SameCitation(c, c′) is true iff citations c
and c′ represent the same publication, and inferring it performs entity resolution.

Our segmentation model is essentially a hidden Markov model (HMM) with
enhanced ability to detect field boundaries. The observation matrix of the HMM
correlates tokens with fields, and is represented by the simple rule

Token(+t, i, c)⇒ InField(i, +f, c)

If this rule was learned in isolation, the weight of the (t, f)th instance would be
log(ptf/(1−ptf)), where ptf is the corresponding entry in the HMM observation
matrix. In general, the transition matrix of the HMM is represented by a rule of
the form

InField(i, +f, c)⇒ InField(i+ 1, +f′, c)

However, we (and others, e.g., [12]) have found that for segmentation it suffices
to capture the basic regularity that consecutive positions tend to be part of the
same field. Thus we replace f′ by f in the formula above. We also impose the
condition that a position in a citation string can be part of at most one field; it
may be part of none.

The main shortcoming of this model is that it has difficulty pinpointing field
boundaries. Detecting these is key for information extraction, and a number of
approaches use rules designed specifically for this purpose (e.g., [17]). In citation
matching, boundaries are usually marked by punctuation symbols. This can be
incorporated into the MLN by modifying the rule above to

InField(i, +f, c)∧ ¬HasPunc(c, i)⇒ InField(i+ 1, +f, c)

The ¬HasPunc(c, i) precondition prevents propagation of fields across punctu-
ation marks. Because propagation can occur differentially to the left and right,
the MLN also contains the reverse form of the rule. In addition, to account
for commas being weaker separators than other punctuation, the MLN includes
versions of these rules with HasComma() instead of HasPunc().

Finally, the MLN contains rules capturing a variety of knowledge about ci-
tations: the first two positions of a citation are usually in the author field, and
the middle one in the title; initials (e.g., “J.”) tend to appear in either the au-
thor or the venue field; positions preceding the last non-venue initial are usually
not part of the title or venue; and positions after the first venue keyword (e.g.,
“Proceedings”, “Journal”) are usually not part of the author or title.

By combining this segmentation model with our entity resolution model from
before, we can exploit relational information as part of the segmentation pro-
cess. In practice, something a little more sophisticated is necessary to get good
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Table 2. CiteSeer entity resolution: cluster recall on each section

Approach Constr. Face Reason. Reinfor.
Fellegi-Sunter 84.3 81.4 71.3 50.6
Lawrence et al. (1999) 89 94 86 79
Pasula et al. (2002) 93 97 96 94
Wellner et al. (2004) 95.1 96.9 93.7 94.7
Joint MLN 96.0 97.1 95.1 96.7

results on real data. In Poon and Domingos [33], we define predicates and rules
specifically for passing information between the stages, as opposed to just using
the existing InField() outputs. This leads to a “higher bandwidth” of commu-
nication between segmentation and entity resolution, without letting excessive
segmentation noise through. We also define an additional predicate and modify
rules to better exploit information from similar citations during the segmentation
process. See [33] for further details.

We evaluated this model on the CiteSeer and Cora datasets. For entity resolu-
tion in CiteSeer, we measured cluster recall for comparison with previously pub-
lished results. Cluster recall is the fraction of clusters that are correctly output
by the system after taking transitive closure from pairwise decisions. For entity
resolution in Cora, we measured both cluster recall and pairwise recall/precision.
In both datasets we also compared with a “standard” Fellegi-Sunter model (see
[41]), learned using logistic regression, and with oracle segmentation as the input.

In both datasets, joint inference improved accuracy and our approach out-
performed previous ones. Table 2 shows that our approach outperforms previous
ones on CiteSeer entity resolution. (Results for Lawrence et al. (1999) [19], Pasula
et al. (2002) [29] and Wellner et al. (2004) [50] are taken from the correspond-
ing papers.) This is particularly notable given that the models of [29] and [50]
involved considerably more knowledge engineering than ours, contained more
learnable parameters, and used additional training data.

Table 3 shows that our entity resolution approach easily outperforms Fellegi-
Sunter on Cora, and has very high pairwise recall/precision.

Table 3. Cora entity resolution: pairwise recall/precision and cluster recall

Approach Pairwise Rec./Prec. Cluster Recall
Fellegi-Sunter 78.0 / 97.7 62.7
Joint MLN 94.3 / 97.0 78.1

8 The Alchemy System

The inference and learning algorithms described in the previous sections are
publicly available in the open-source Alchemy system [16]. Alchemy makes it
possible to define sophisticated probabilistic models with a few formulas, and
to add probability to a first-order knowledge base by learning weights from a



Just Add Weights: Markov Logic for the Semantic Web 21

Table 4. A comparison of Alchemy, Prolog and BUGS

Aspect Alchemy Prolog BUGS
Representation First-order logic + Markov nets Horn clauses Bayes nets
Inference Model checking, MCMC Theorem proving MCMC
Learning Parameters and structure No Parameters
Uncertainty Yes No Yes
Relational Yes Yes No

relevant database. It can also be used for purely logical or purely statistical
applications, and for teaching AI. From the user’s point of view, Alchemy pro-
vides a full spectrum of AI tools in an easy-to-use, coherent form. From the
researcher’s point of view, Alchemy makes it possible to easily integrate a new
inference or learning algorithm, logical or statistical, with a full complement of
other algorithms that support it or make use of it.

Alchemy can be viewed as a declarative programming language akin to Pro-
log, but with a number of key differences: the underlying inference mechanism
is model checking instead of theorem proving; the full syntax of first-order logic
is allowed, rather than just Horn clauses; and, most importantly, the ability
to handle uncertainty and learn from data is already built in. Table 4 com-
pares Alchemy with Prolog and BUGS [23], one of the most popular toolkits for
Bayesian modeling and inference.

9 Current and Future Research Directions

We are actively researching better learning and inference methods for Markov
logic, as well as extensions of the representation that increase its generality and
power.

Exact methods for learning and inference are usually intractable in Markov
logic, but we would like to see better, more efficient approximations along with
the automatic application of exact methods when feasible.

One method of particular interest is lifted inference. In short, we would like
to reason with clusters of nodes for which we have exactly the same amount
of information. The inspiration is from lifted resolution in first order logic, but
must be extended to handle uncertainty. Prior work on lifted inference such as
[31] and [3] mainly focused on exact inference which can be quite slow. We have
recently extended loopy belief propagation, an approximate inference method for
probabilistic graphical models, to perform lifted inference in Markov logic net-
works [44]. When the amount of evidence is limited, this can speed up inference
by many orders of magnitude.

We are also working to develop a general framework for decision-making in
relational domains. This can be accomplished in Markov logic by adding utility
weights to formulas and finding the settings of all action predicates that jointly
maximize expected utility. Decision-making is key to the original Semantic Web
vision, which called for intelligent agents to act on the information they gathered.
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Numerical attributes must be discretized to be used in Markov logic, but we
have recently introduced methods to incorporate continuous random variables
and features [46]. Continuous values could be useful in a variety of Semantic
Web problems, such as incorporating numeric features into similarities for entity
resolution, ontology alignment, or schema matching.

Current work also includes semi-supervised learning, and learning with in-
complete data in general. The large amount of unlabeled data on the Web is an
excellent resource that, properly exploited, could help bootstrap or enrich the
Semantic Web.

10 Conclusion

The Semantic Web must deal with uncertainty from many sources, including
inconsistent knowledge bases, incorrect or untrustworthy information, missing
data, different ontologies and schemas, and more. Markov logic is a simple yet
powerful approach for adding probability to logical representations such as those
already used by the Semantic Web: Given a set of formulas, just add weights. We
have developed a series of learning and inference algorithms for it, and success-
fully applied them in a number of domains. These algorithms are included in the
open-source Alchemy system (available at alchemy.cs.washington.edu). We hope
that Markov logic and its implementation in Alchemy will be of use to Semantic
Web researchers and practitioners who wish to have the full spectrum of logi-
cal and statistical inference and learning techniques at their disposal, without
having to develop every piece themselves.
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Abstract. This chapter overviews work on semantic science. The idea
is that, using rich ontologies, both observational data and theories that
make (probabilistic) predictions on data are published for the purposes
of improving or comparing the theories, and for making predictions in
new cases. This paper concentrates on issues and progress in having
machine accessible scientific theories that can be used in this way. This
paper presents the grand vision, issues that have arisen in building such
systems for the geological domain (minerals exploration and geohazards),
and sketches the formal foundations that underlie this vision. The aim is
to get to the stage where: any new scientific theory can be tested on all
available data; any new data can be used to evaluate all existing theories
that make predictions on that data; and when someone has a new case
they can use the best theories that make predictions on that case.

1 Introduction

The aim of the semantic web (Berners-Lee and Fischetti, 1999; Berners-Lee et al.,
2001) is that the world’s information is available in a machine-understandable
form. This chapter overviews what we call semantic science, the application of
semantic technology and reasoning under uncertainty to the practice of science.
Semantic science requires machine-understandable information of three sorts: on-
tologies to define vocabulary, data about observations of the world, and theories
that make predictions on such data.

Our idea of semantic science is that scientists can publish data and theories
that can inter-operate by virtue of using common ontologies. The theories can
be judged by how well they predict unseen data and can be used for new cases.

An ontology (Smith, 2003b) is a formal specification of the meaning of the
vocabulary used in an information system. Ontologies are needed so that infor-
mation sources can inter-operate at a semantic level.

There has been recent success in publishing scientific data that adheres to on-
tologies (McGuinness et al., 2007). Publishing data with respect to well-defined
ontologies can allow for semantic inter-operation of the data sets. Meaningful
queries can be made against multiple data sets that were collected separately.

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNAI 5327, pp. 26–40, 2008.
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Data repositories include the Community Data Portal (http://cdp.ucar.edu/) and
the Virtual Solar-Terrestrial Observatory (http://vsto.hao.ucar.edu/index.php).

Science operates by making refutable theories (Popper, 1959). These theories1

are judged by their predictions, by their usefulness, and by their elegance or plau-
sibility. Theories make (probabilistic) predictions about new cases. Theories may
require arbitrary computations to make predictions; indeed many real theories
need enormous computational resources. Semantic science aims to provide an in-
frastructure to test theories on data, and to make theories available for new cases.

Theories need to refer to ontologies as they need to inter-operate with data.
Theories specify what data they can make predictions about, and make predic-
tions that can be checked against the relevant data and applied to new cases.
It is the ontologies that allow the inter-operation of the data and the theories.
Theories can be tested against all of the relevant data sets, and data can be used
to discriminate theories.

Given access to the theories, and information about how they perform on the
available data sets, practitioners can use the best theories to make predictions
on new cases. This thus promises to form a new basis for expert systems.

We have been working on two instances of the semantic science framework in
two domains in earth sciences (Smyth et al., 2007), namely minerals exploration
in the MineMatch R© system (http://www.georeferenceonline.com/minematch/)
and landslides in the HazardMatch

TM system. MineMatch contains about
25,000 descriptions of mineral occurrences (called instances) that are described
at various levels of abstraction and detail using multiple taxonomies, including
the British Geological Survey rock classification scheme (http://www.bgs.ac.uk/
bgsrcs/) and the Micronex taxonomy of minerals (http://micronex.golinfo.com).
We are currently moving to OWL representations of the ontologies. We also
work with more than 100 deposit models (these form the theories about where
to find particular minerals), including those described by the US Geological Sur-
vey (http://minerals.cr.usgs.gov/team/depmod.html) and the British Columbia
Geological Survey (http://www.em.gov.bc.ca/Mining/Geolsurv/MetallicMinerals/
MineralDepositProfiles/). Similarly, HazardMatch uses tens of thousands of spa-
tial instances (polygons) described using standard taxonomies of environmental
modeling such as rock type, geomorphology and geological age. There are cur-
rently about 10 models of different landslide types that are derived from pub-
lished models. We can compare the prediction of the models to known cases and
new cases.

Semantic science allows for a diversity of theories. Each theory will specify
what data it is prepared to make predictions about. Some theories may be com-
peting and some may be complementary. For example, there may be multiple
theories that predict whether a patient has cancer. If they make different predic-
tions in some cases, they can be compared by how well they predict the available
data. There may be other theories that make predictions about the type(s) of

1 Theories are often called hypotheses, laws or models depending on how well estab-
lished they are. This distinction is redundant in the semantic science realm where we
can test how well these actually perform on data.
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cancer for patients with cancer. These theories are not applicable for patients
who don’t have cancer. When making predictions, a doctor may use an ensemble
of multiple complementary theories: e.g., one to predict whether the patient has
cancer and another to predict the type of cancer if cancer is present.

Theories can make predictions in different forms. A theory could make, e.g.,
a definitive prediction, a probabilistic prediction, a range prediction, or a quali-
tative prediction. Users can use whatever criteria they like to judge the theories,
and use whichever theory or mix of theories they like. For different evaluation
criteria, there will be ways to judge the theories on the criteria. We anticipate
that probabilistic predictions will be the most useful, as it is probabilities that
one gets from data, and probabilities are what is needed (with utilities) to make
decisions. However, there are many cases where users will be reluctant to use
probabilistic theories (see below). Scientists who wish to judge a theory by ele-
gance or simplicity, as well as fit to data, are free to do so; they can use published
data to determine its accuracy and whatever criteria they like to evaluate ele-
gance or simplicity.

We mean science in the broadest sense. We can imagine having theories about
what apartment someone would like, or theories about what companies will
make the best investments, or theories about diseases and symptoms. Search
engines such as Google are being used for diagnosis (Tang and Ng, 2006). It is
arguably better to be able to specify symptoms unambiguously using an ontology.
Measures such as pagerank (Page et al., 1999) measure popularity. Fortunately,
searches for diagnostic tend to return authoritative sites. Scientists, however,
should be suspicious of popularity and authority as a basis for prediction. We
should base our predictions on the empirical evidence. Building an infrastructure
for this is the aim of semantic science.

Figure 1 shows the relationship between ontologies, data and theories. The
data depends on the world and the ontology. The theories depend on the ontol-
ogy, indirectly on the world (if a human is designing the theory), and directly

Data

World Ontology

Training
Data Theory

New
Case

Prediction

Fig. 1. Ontologies, Data and Theories in Semantic Science
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on some of the data (as we would expect that the best theories would be based
on as much data as possible). Given a new case, a theory can be used to make
a prediction. The real world is more complicated, as there are many theories,
many ontologies, and lots of data, and they all evolve in time.

This work is complementary to providing services and other tools to scien-
tists, e.g., using the Semantic Grid (De Roure et al., 2005). We expect that the
semantic grid will be important for implementing the ideas in this paper.

This chapter is based on Poole et al. (2008).

2 Background

2.1 Ontologies

In philosophy, ontology is the study of what exists. In AI, ontology (Smith, 2003b)
has come to mean a specification of the meaning of the symbols (or of the data)
in an information system. In particular, an ontology makes a commitment to
what entities and relationships are being modelled, specifies what vocabulary
will be used for the entities and relationships, and gives axioms that restrict the
use of the vocabulary. The axioms have two purposes: to rule out uses of the
terms that are inconsistent with the intended interpretation, and to allow for
inference to derive conclusions that are implicit in the use of the vocabulary.

An ontology can be any specification, formal or informal, of the meaning of the
symbols. This can be in the head of the person who created the data, or can be
stated in some language. Without an ontology, we do not have information, but
just a sequence of bits. The simplest form of an ontology is a database schema
with informal natural language descriptions of the attributes and the constants.
Formal ontologies allow machine understandable specifications.

Anontologywritten ina languagesuchasOWL(McGuinness and van Harmelen,
2004) specifies individuals, classes and relationships and the vocabularyused to ex-
press them. Sometimes classes and relationships are defined in terms of more prim-
itive classes and relationships, but ultimately they are grounded out into primitive
classes and relationships that are not actually defined. For example, an ontology
could specify that the term “building” will represent buildings. The ontology will
not define a building, but will give some properties that restrict the use of the term.

Ontologies date back to Aristotle (350 B.C.), who defined terms using what
has been called an Aristotelian definition (Berg, 1982; Smith, 2003a). An Aris-
totelian definition of A is of the form “An A is a B such that C”, where B is the
immediate super-class of A and C is a condition that defines how A is special.
Aristotle called the B the genus and C the differentia (Sowa, 2000, p. 4).

To build Aristotelian definitions, we will use what we call the multi-
dimensional design pattern (Alexander et al., 1977), where the differentia in
the Aristotelian definition are built from multiple properties. To define the con-
ditions for a class, we need to think about what properties distinguish this class
from the other subclasses of the super-class. Each of these properties defines a
(local) dimension. The domain of each property is the most general class for
which it makes sense. In the multi-dimensional design pattern, classes are only
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defined in terms of values of properties. The subclass relation can be derived
from this.

There is not a fixed number of dimensions that distinguish all individuals.
Rather, dimensions come into existence at different levels of abstraction. For
example, the dimensions size and weight may appear for physical individuals, but
are not applicable for abstract concepts. “Number of units” may be a dimension
for apartment buildings but may not be applicable for other buildings such as
sewage plants, where other dimensions may be applicable.

This idea is due to Aristotle:

“If genera are different and co-ordinate, their differentiae are themselves
different in kind. Take as an instance the genus ’animal’ and the genus
’knowledge’. ’With feet’, ’two-footed’, ’winged’, ’aquatic’, are differentiae
of ’animal’; the species of knowledge are not distinguished by the same
differentiae. One species of knowledge does not differ from another in
being ’two-footed’.” (Aristotle, 350 B.C.)

Example 1. Geologists define rocks along three major dimensions: genesis (sedi-
mentary, igneous or metamorphic), composition and texture (Gillespie and Styles,
1999). Particular rocks, such as granite and limestone, are defined by particular
values in each dimension (or some subset of the dimensions). Rock taxonomies
built using this approach that commit to splitting rock sub-type based on these di-
mensions in a certain order (usually genesis first, then composition, then texture)
do not conveniently represent the sub-types that occur in real data (Struik et al.,
2002). For example, if the aforementioned order of splitting the taxonomy is used,
there is no convenient single place in the taxonomy for the class of rocks with a
particular texture, independent of its members’ genesis or composition. The multi-
dimensional ontologies seem to be the natural specification, and they also inte-
grate well with probabilities (see Section 4.2).

2.2 Data and Ontologies

Scientists produce lots of data, and science cannot be carried out without data.
By data, we mean information about a domain that is produced from sensing.

In linguistics the Sapir-Whorf Hypothesis (Sapir, 1929; Whorf, 1940), says
essentially that people’s perception and thought are determined by what can
be described in their language. The Sapir-Whorf Hypothesis is controversial in
linguistics, but a stronger version of this hypothesis should be uncontroversial
in information systems:

What is stored and communicated by an information system is con-
strained by the representation and the ontology used by the information
system.

The reason that this should be less controversial is that the representation
and the ontology represent the language of thought or mentalese (Fodor, 1975;
Pinker, 1994), not just the language of communication.
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As an example, suppose the world produces a deterministic sequence of coin
tosses: head, tail, head, tail, head, tail, etc. If the representation and the ontology
does not specify the time of each observation or which is the next coin toss in
the sequence, that information will have been lost in translating the observation
into the internal representation. The best prediction would be to predict heads
with probability of 0.5. As another example, if some data adheres to an ontology
that specifies that a house is a residential building, then, by definition, all of the
observed houses are residential buildings, and so the data cannot refute the fact
that houses are residential buildings.

This hypothesis has a number of implications:

– An ontology mediates how perceptions of the world are stored and commu-
nicated.

– If there is no distinction in the ontology, there will be no distinction in the
data. For example, if an ontology does not have any sub-types of “granite”,
and does not record the information needed to distinguish between types of
granite, the data will not record any sub-types of granite and none can be
discovered.

– Ontologies must come before data. This may be confusing as much work is
done on building ontologies for existing data sets. This activity should be
seen as reconstructing the ontology that was used to create the data set.
Note that this does not imply that finding regularities in data cannot be
used to evolve ontologies; we are claiming that the ontology for each data
set comes logically before that data set. This frequently occurs in research
when a data set may record the output of a sensor where it is unknown
what the senor actually measures (i.e., the meaning of the sensor report is
unknown). The initial ontology will then specify the meaning is just a real
number, perhaps with some range and precision. Later ontologies may give
the output a name.

Some people have argued that uncertainty should be explicitly represented
in an ontology because of the inherent uncertainty in data (Pool et al., 2005;
da Costa et al., 2005; Laskey et al., 2007). While we believe that it is essential
to model the uncertainty in data, we don’t believe actual probability values
should be in the ontology2. The main reason is the ontology is logically prior to
the data, but the models of uncertainty in the data are logically posterior to the
data: it is only by seeing (some of) the data, that we can estimate the uncertainty
(i.e., we want the uncertainty to reflect the posterior distribution after we have
seen some data). Because the probabilities are posterior to the data, they should
change as data comes in, and so should not be part of the stable foundation of
the data that an ontology needs to be. Another way to think about it is that the
ontologies define the vocabulary; they do not make empirical claims. Saying that

2 An ontology will contain the vocabulary to express probability distributions. We
need the vocabulary to express continuous and discrete conditional probability dis-
tributions, e.g., using PR-OWL (da Costa et al., 2005). The ontologies need to be
rich enough to express what scientists want to state in theories.
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a granite is an igneous, felsic, course rock is not an empirical claim, it just defines
what a granite is. Theories make empirical (testable) claims. A specification of
a probability is an empirical claim, even if the probability is theory-based (e.g.,
based on symmetries) and not data-summaries. Thus the probability should
not be in the ontology. Note that our claim that probabilities do not belong in
definitions is an empirical claim, and is not part of the definition of semantic
science.

2.3 Theories

We would argue that theories are best described in terms of probabilities (Polya,
1954) for two main reasons:

– Probabilities summarize the empirical content of data. In particular, we want
predictions that can be evaluated against the empirical evidence, and so can
be optimized with respect to the evidence. Probability distributions optimize
most of the common evaluation criteria, and other predictions (such as the
mean or the mode) can be derived from the probability distribution.

– Probabilities, together with utilities, are what is needed to make decisions.

Like data, theories need to adhere to ontologies. There are a number of reasons:

– Theories make predictions on data that adhere to an ontology. To allow
semantic interoperability between the data and the theories, they should
adhere to a common ontology.

– People should be allowed to disagree about how the world works without
disagreeing about the meaning of the terms. If two people have different
theories, they should first agree on the terminology (for otherwise they would
not know they have a disagreement)—this forms the ontology—and then
they should give their theories. Their theories can then be compared to
determine what their disagreement is. It is by creating these disagreements,
and testing them on data, that science progresses.

Theories can expand the ontology by hypothesizing unobserved objects or prop-
erties (hidden variables) that help explain the observations. By expanding the
ontology, other theories can refer to the theoretical constructs, and they could
appear in data. For example, a theory could postulate that the data is better
explained by having a new form of cancer; other theories could refer to this type
of cancer and this new type of cancer could even be recorded in data. In this
way the theories and the vocabulary can evolve as science advances.

Semantic interoperability can only be achieved by adhering to common on-
tologies. A community needs to agree on an ontology to make sure they use the
same terminology for the same things. However, a community need not, and we
argue should not, agree on the probabilities, as people may have different prior
knowledge and have access to different data, and the probabilities should change
as more data comes in.

To make a prediction, we usually use many theories. Theories that individuals
produce are typically very narrow, only making predictions in very narrow cases.
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The theories that are put together to make a predictions form a theory ensemble.
We judge individual theories by how well they fit into ensembles. An example of
a theory ensemble is “when the speed of the objects involved is less than 70%
of the speed of light, use Newtonian mechanics, otherwise use Einstein’s theory
of relativity”. This ensemble is another theory that may work better than either
of the composite theories in practice. Producing such ensembles is of a different
sort than producing the base theories, and so should be separated. Rather than
dismissing these theories as trivial, they form the basis of prediction for new
cases. Virtually all predictions in complex cases will rely on theory ensembles.

The structure of probabilistic theories does not necessarily follow the structure
of the ontology. For example, an ontology of lung cancer should specify what lung
cancer is, but whether someone will have lung cancer depends on many factors
of the particular case and not just on other parts of ontologies (e.g., whether
they have other cancers and their work history that includes when they worked
in bars that allowed smoking). As another example, the probability that a room
will be used as a living room depends not just on properties of that room, but
on the properties of other rooms in an apartment.

There are major challenges in building probabilistic theories using ontologies
based on languages such as OWL. The main challenge is that OWL sees the
world in terms of individuals, classes and properties, while probability theory
is in terms of random variables. Section 4.2 discusses how to construct random
variables from ontologies.

3 Pragmatic Considerations

The MineMatch and HazardMatch systems we have been developing have mul-
tiple instances that describe entities and their properties at particular locations
on Earth, and models (theories) that make predictions about these locations.
The systems are used in various modes:

– In instance-to-models matching, one instance is compared to multiple mod-
els. Finding the most likely models for the instance can be used to determine
what is the most likely mineral to occur at a location or what types of land-
slides are predicted to occur at a particular place. In both of these cases, the
instance is a place whose description is compared to the models.

– In model-to-instances matching, one model is compared to multiple instances.
This can be used to find the location(s) that are most likely to have landslides
or contain particular minerals.

– In instance-to-instances matching, one instance is compared to multiple in-
stances to find which other instances are most like this instance.

– In model-to-models matching, one model is compared to multiple models to
find which other models are most like this model.

These applications have a number of features that we believe will be shared
by many scientific disciplines:
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– The instances are heterogeneous, described at various levels of abstraction
(using more general or less general terms) and detail (described in terms
of parts and sub-parts or not). Similarly, the models use various levels of
abstraction and detail. Sometimes the distinctions that are in the instance
descriptions are not required by the models, and sometimes the instance
descriptions do not make distinctions that are needed by the models.

– The experts often do not publish probabilities in their models, and are reluc-
tant to have probabilities in the system. There are a number of reasons for
this. First, they may have very few data points for any model, so that the
probabilities will not be based on anything meaningful. Second, the people
who want to make decisions (those who want to decide whether to try to
mine an area profitably, or insurance companies that decide on insurance
premiums) will want to use their own prior probabilities, and may take into
account more information than is used in the system.

– The problem domains are afflicted by combinatorial complexity; there many
possible model combinations, and very large data collections for assessment.
It is difficult to find those few areas that are most likely to contain ore-grade
minerals or be susceptible to landslides, and to provide explanations that
can be used for further analysis.

– The models are “positive”; there are models of where to find a particular
mineral, but people do not publish models of where the mineral is absent.
Similarly for landslides; there are models of where particular types of land-
slides are likely to occur, but not models of where landslides are unlikely to
occur.

– The models are neither covering, disjoint nor independent. Often the models
are variants of each other. Starting from one model, people produce variants
of that model to suit their own purpose. A model does not include all of
the cases where the phenomenon it is modelling may occur; it only about a
specific context.

4 Foundations of Probabilistic Theories

In this section, we describe the logical and probabilistic foundations for building
theories, and relate them to pragmatic choices that we have used in our fielded
systems.

4.1 Role of Models in Decision Making

The Bayesian view of using models for decision making is that we would like
to make a probabilistic prediction of x for a new case based on a description
d of that case. Thus we want P (x|d). The role of the models is to provide a
framework for this prediction.

In terms of probabilities, we can use models as intermediaries:

P (x|d) =
∑

m∈Models

P (x|m ∧ d)P (m|d)
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where Models is a set of mutually exclusive and covering hypotheses. Thus,
for each model, we need to decide what it predicts, and how likely it is based
on the description, d, of the current case. Typically models are rich enough to
convey the information about the rest of the description, and so we assume
P (x|m ∧ d) = P (x|m).

In Bayesian modelling, we try to determine what features best predict (in
unseen data) the phenomenon of interest, and then build probabilistic models
in terms of these features.

Typically, we do not have P (m|d) which specifies how likely the model is given
the description, but instead have predictions of the model, i.e., P (d|m). These
two quantities are related by Bayes’ theorem:

P (m|d) =
P (d|m)P (m)

P (d)

That is, we often have causal or consequential knowledge and want to do evidential
reasoning. For example, we model the symptoms of chicken pox with
P (fever|ch pox) but want P (ch pox|fever). These are related by Bayes’ theorem:

P (ch pox|fever) =
P (fever|ch pox)× P (ch pox)

P (fever)

The reason that we want to store causal or consequential knowledge is that it
is more stable to changing contexts. You would expect the symptoms of chicken
pox to be stable; they would be the same whether the patient was at home, in a
school or in a hospital. However, the probability that someone with a fever has
chicken pox would be different in these three contexts, as the prevalence of fever
and chicken pox is different in these three contexts.

This has an impact on how diagnostic a feature is. Suppose fever and spots
are common given chicken pox, e.g., P (fever|ch pox) = 0.9, P (spots|ch pox) =
0.9. Suppose fever has many causes and spots has few. Then spots is more diag-
nostic of chicken pox, i.e., P (ch pox|spots) > P (ch pox|fever), as P (fever) >
P (spots).

Note also that the probabilities needed for the prediction, namely P (x|m) are
of the same form as P (d|m)—they all specify what the model predicts. Rather
than making a model to be for a particular feature, a model makes predictions
about all of its features.

4.2 Probabilities, Ontologies and Existence

There seems to be a fundamental mismatch between the random variable formal-
ization of probability theory and the formalization of modern ontologies in terms
of individuals, classes and properties. Probabilistic models typically assume we
know what random variables exist at modelling time, but what individuals ex-
ists is often unknown at modelling time. Interestingly, a large body of research
on Bayesian modelling (e.g., Bayesian networks) and modern research into on-
tologies both have their roots in the expert systems of the 1970’s and 1980’s
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(Henrion et al., 1991). Both fields have advanced our understanding of reason-
ing, and part of our research is to bring these together.

We can reconcile these views by having properties of individuals correspond to
random variables. This complicates the probabilistic modelling as the individuals
typically only become known at run-time, and so the random variables are un-
known at modelling time. This has spurred a body of research in first-order proba-
bilistic models or relational probabilistic models (e.g., Poole (1993),
Getoor and Taskar (2007), Kersting and De Raedt (2007), Laskey (2008),
Lukasiewicz (2008)). It is even possible to be unsure about the existence of an
individual, and so unsure about the existence of a random variable (Poole, 2007).

When dealing with probabilities and individuals we need to deal with three
types of uncertainty:
– the probability of existence (Poole, 2007) — the probability that an individ-

ual that fits a description actually exists.
– the probability distribution over the types of an individual. This is compli-

cated when there are complex interrelations between classes that can be the
types of the individuals.

– the probability of property values. Functional properties give a random vari-
able for each individual with a non-zero probability of being in the class that
is the domain of the property. Non-functional properties have a Boolean ran-
dom variable for each value in the range and each individual with a non-zero
probability of being in the domain of the property.

Aristotelian definitions, where a class is defined in terms of its immediate super-
class and differentia, provide a way to reduce the second case to the third case.
The differentia are described in terms of property values with appropriate do-
mains. By having a probability distribution over the values of the properties
(perhaps conditioned on other variable assignments), we can induce a probabil-
ity distribution over the classes. Note that Aristotelian definitions are general:
any class hierarchy can be represented by Aristotelian definitions by introducing
new properties.

For example, a granite can be defined as a rock with the property genesis
having value igneous, property composition having value felsic, and texture is
coarse. By having a probability distribution over the values of genesis, a proba-
bility distribution over the value of composition, and a probability distribution
over the values of texture, we can determine the prior probability that a rock is
a granite.

Note that the probabilistic formulation is complicated by existence prereq-
uisites: only individuals that exist have properties, and only individuals in the
class that is domain of a property can have values for that property.

4.3 Bayesian Modelling Meets Pragmatism

Bayesian modelling of scientific reasoning seems like the appropriate formulation
of the role of theories or models in science. However, the pragmatic considera-
tions discussed above lead us to not adopt it directly, although it remains the gold
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standard. The theories (or models) in our fielded systems are based on quali-
tative probabilistic matching (Smyth and Poole, 2004; Poole and Smyth, 2005;
Lukasiewicz and Schellhase, 2007), with the following properties:

– Rather than using probabilities that experts do not want to give, and can-
not judge the output from, we use qualitative probabilities, using a 5-point
scale (always, usually, sometimes, rarely, never) that is derived from the ter-
minology used in published papers. These qualitative probabilities act like
log-probabilities, where the values add rather than multiply (Pearl, 1989;
Darwiche and Goldszmidt, 1994).

– The models need to be fleshed out for each instance. Models refer to mul-
tiple individuals, but they do not refer to the named individuals in the
instances. Models specify roles that can be filled by the instance individuals.
The predictions of the model for an instance can only be determined given a
role assignment that specifies which instance individuals fill the roles in the
model.

– Rather than averaging over all possibilities and role assignments, we choose
the most likely ones.

– We allow for diverse data about instances and models at multiple levels of
abstraction and detail. We also require prior probabilities of the descriptions;
we do not assume that we can get the probability of a description from the
set of models (as we could if the models were exclusive and covering).

– The explanations for the answers are as important as the answers
themselves.

5 Conclusions

This paper has presented the big picture of what we see as semantic science
as well as the pragmatic considerations that have gone into our fielded systems
that are a first try at realizing our vision. This view of semantic science is
meant to complement other views that provide ontologically-based views of data
(McGuinness et al., 2007) and ontology-based services (De Roure et al., 2005).

There are many challenges in building the semantic science vision, including
how to construct theories, how to determine what theories are useful in making
predictions in a particular case, and in finding the data about which a theory
makes predictions. The growing interest in scientific ontologies, the desire for
scientists (and their funders) to make their data and theories as widely used as
possible, and the desire for users to have the best predictions, indicates that this
semantic science vision should succeed.
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Probabilistic Dialogue Models for Dynamic
Ontology Mapping
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Abstract. Agents need to communicate in order to accomplish tasks
that they are unable to perform alone. Communication requires agents
to share a common ontology, a strong assumption in open environments
where agents from different backgrounds meet briefly, making it impos-
sible to map all the ontologies in advance. An agent, when it receives a
message, needs to compare the foreign terms in the message with all the
terms in its own local ontology, searching for the most similar one. Ho-
wever, the content of a message may be described using an interaction
model: the entities to which the terms refer are correlated with other
entities in the interaction, and they may also have prior probabilities
determined by earlier, similar interactions. Within the context of an in-
teraction it is possible to predict the set of possible entities a received
message may contain, and it is possible to sacrifice recall for efficiency
by comparing the foreign terms only with the most probable local ones.
This allows a novel form of dynamic ontology matching.

1 Introduction

Agents collaborate and communicate to perform tasks that they cannot accom-
plish alone. To communicate means to exchange messages, that convey meanings
encoded into signs for transmission. To understand a message, a receiver should
be able to map the signs in the message to meanings aligned with those intended
by the transmitter.
Therefore agents should agree on the terminology used to describe the domain

of the interaction: for example, if an agent wants to buy a particular product from
a seller, it must be able to specify the properties of the products unambiguously.
Ontologies specify the terminology used to describe a domain [4].
However, a shared ontology can be a strong assumption in an open envi-

ronment, such as a Peer-to-Peer system: agents may come from different back-
grounds, and have different ontologies, designed for their specific needs [13].
In this sort of environment, communication implies translation. The standard

approach is to find mappings between the ontologies, creating a sort of bilingual
dictionary. Many different techniques have been developed for ontology mapping,
but in an open environment it is impossible to know which agents will take part in
the interactions; therefore it is impossible to anticipate which ontologies should
be mapped.

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNAI 5327, pp. 41–51, 2008.
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product

consumer electronicscomputers ...

photographymobiles ...pc laptop

digital analog

digital_SLRdigital_compact

has_brand

has_sensor_resolution

has_optical_zoom

has_cpu

has_ram has_hard_disk

has_weight

Fig. 1. Fragment of buyer ab ontology

Thing

Cell_Phones Cameras Computers...

Analog_CamerasDigital_Cameras ... Desktop_PCsNotebooks ...

BrandLensResolution Hard_Drive_CapacityMemory_Ram Processor_Speed

Weight

Fig. 2. Fragment of seller as ontology

Agents have to map ontologies dynamically when needed. Mapping full on-
tologies is a time-consuming task: in the standard process, each term in one
ontology is compared with all the terms in the other ontology, and the most
similar term is the mapping.
However, agents may meet infrequently, for a single interaction on a specific

topic. A full ontology mapping would be a waste of resources: mapping only
“foreign” terms that have appeared in the conversation can be more convenient.
Comparing a foreign term in a message with all the terms in the ontology can

still be costly. Yet, the entities referred by the signs in the message are not ran-
domly chosen: the dialogue has a meaning because entities are related. For exam-
ple, if the conversation is about the purchase of a laptop, entities related to cars
are unlikely to appear. It is reasonable to compare the signs in the message with
entities about laptops, rather than compare with all the entities indiscriminately.
This paper shows how to extract, represent, and use knowledge about the

relations and properties of the entities in an interaction to support dynamic
ontology mapping.

2 Example Scenario

The example scenario is a purchase interaction between the buyer and seller
agents ab and as. In the dialogue, agent ab asks as about a laptop he needs. The
seller as inquires about properties of the product in order to make an offer.
The two agents do not share the same ontology: the buyer uses the one in

Figure 1 and the seller the one in Figure 2. In the figures the ovals are classes
and the grey boxes are properties. The classes are structured in taxonomies, and
the domains of the properties are shown by grey arrows.
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a((buyer(S), B) ::=
ask(Prd) ⇒ a(vendor, S) ← want(Prd)
then
a(neg_buy(Prd, S), B).

a(neg_buy(Prd, S), B) ::=⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ask(Attr) ⇐ a(neg_vend, S)
then⎛
⎝ inform(Attr, Val) ⇒ a(neg_vend, S) ← required(Prd, Attr, Val)

or
dontcare(Attr) ⇒ a(neg_vend, S)

⎞
⎠

then
a(neg_buy(Prd, S), B)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

or⎛
⎜⎜⎜⎜⎜⎜⎜⎝

propose(Prd, Price, Const) ⇐ a(neg_vend, S)
then⎛
⎝ accept ⇒ a(neg_vend, S) ← afford(Prd, Price)

then
ack ⇐ a(neg_vend, S)

⎞
⎠

or
reject ⇒ a(neg_vend, S)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

or

sorry ⇐ a(neg_vend, S)

In the interaction, the agent ab initially takes the role of buyer: it first sends a request
to agent as for the product it wants to buy (found satisfying want(Prd)) and then
becomes a negotiating buyer, waiting for a reply.
The agent as receives the request: if it has the product, it selects the attributes the
buyer needs to specify and becomes a negotiating seller; otherwise it says sorry. As a
negotiating seller, as recursively extracts the attributes from the list and asks about
them to ab, creating a filter with the received information. The buyer agent receives
the request, and if it cares and knows about the value of each attribute (if it can satisfy
required(Prd, Attr, Val)), replies with it, otherwise it sends a dontcare message.
When the list of attributes is empty, as sends an offer using the created filter. The agent
ab accepts the offer if it can afford the price (afford(Prd, Price) must be satisfied)
or rejects it.

Fig. 3. LCC dialogue fragment used by the buyer agent

3 Communication

An approach to communication, for which Electronic Institution [11] is an exam-
ple, focuses on the interaction itself, using norms, laws and conventions to define
the expected behaviours of the agents, without specifying their mental state.
As described in [12], norms and conventions form the skeleton for many human

coordinated activities, and they work similarly in agents’ societies: they provide
a template for actions, and simplify the decision-making process, dictating the
course of action to be followed in certain situations.

3.1 Lightweight Coordination Calculus

In this paper, interactions are modelled using the Lightweight Coordination Cal-
culus [7,8], that borrows notions from Electronic Institutions.
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Fig. 4. A sequence diagram representing a protocol run between ab and as

The Lightweight Coordination Calculus (LCC) is an executable specification
language adapted to peer-to-peer workflow and has been used in applications such
as business process enactment [5] and e-science service integration [1]. It is also
used to represent interactions between peers in the OpenKnowledge1 project [10].
LCC is based on process calculus: protocols are declarative scripts written in

Prolog and circulated with messages. Agents execute the protocols they receive
by applying rewrite rules to expand the state and find the next move.
It uses roles for agents and constraints on message sending to enforce the social

norms. The basic behaviours are to send (⇒) or to receive (⇐) a message. More
complex behaviours are expressed using connectives: then creates sequences, or
creates choices. Common knowledge can be stored in the protocol.
Figure 3 shows and explains the LCC protocol used by the buyer for the

interaction in the example scenario. Figure 4 represents the sequence diagram
of the exchanged messages and of the constraints satisfied during a run of the
protocol for the purchase of a laptop.

3.2 Communication and Contexts

The agents execute the protocols inside a separate “box”: in theory, it is possible
to write a protocol that can be run without requiring any specific knowledge
from the agent. It requires that the constraints are satisfied with the information
available in the common knowledge.
The “box” in which a protocol is run can be compared to the idea of context

described by Giunchiglia: in [3] he defines a context ci as “partial ” and “approxi-
mate” theory of the world, represented by the triplet 〈Li, Ai, Δi〉. In the tuple,
Li is the language local to the context, Ai is the set of axioms of the context, and
Δi is the inference engine local to the context. Moreover, a reasoner can connect
a deduction in one context with a deduction in another using bridge rules.
For the protocol run context cr = 〈Lr, Ar, Δr〉, the language Lr is composed

by all the terms that can be introduced by the agents involved in the interaction
(terms are tagged with their origin: ab introduces ‘Laptop’ satisfying want(Prd),
and therefore Prd is replaced throughout the protocol with the tagged value
‘Laptop’@ab); the axioms Ar are the role clauses together with the axioms in
the common knowledge and Δr is the protocol expansion engine.
1 http://www.openk.org
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Even though protocols can be autonomous from the agent, they become useful
only if they can exploit the agents’ knowledge, that is if it is possible to bridge
the reasoning between the interaction context cr and in the agent’s local context
ca, for example accessing the peer’s database of products in order to query the
availability or the price of a product. This is accomplished using a bridge rule
that connects the constraints in the protocol with the predicates in the agent’s
local knowledge:

cr : κp(W1, ..., Wn)
ca : κa(Y1, ..., Ym)

(1)

where κp is a formula of a protocol constraint and κa is a formula in the agent’s
local knowledge, that can be satisfied only by using its own language La.

4 Ontology Mapping

In traditional ontology mapping, the bridges should be valid for any value from
Lr and La in two contexts cr and ca:
∀W1...Wn ∈ Lr, ∃Y1...Yn ∈ La. ci : κp(W1, ..., Wn)→ cj : κq(Y1, ..., Ym) (2)

That is, for any value of W1, ..., Wn in κp, it is possible to find the values for
Y1, ..., Yn so that κa is equivalent to κp. In the example scenario, the mappings
should cover the possible requests from the buyer agent ab for buying any element
in its ontology (see figure 1), such as mobile phones, analog cameras and so on
- even if these interactions never take place.
This is a strong requirement: it implies that it is possible to find a correspon-

ding term in La for every term in Lr, and this may not always be the case. Static
ontology mapping tries to achieve this. An ontology mapping function receives
two ontologies and returns the relations between their entities:
map : O1 ×O2 → Ω

where Ω contains all the binary relations r (equivalence, similarity, generalisa-
tion, specialisation, etc) between entities in O1 and O2.
The existence of inconsistencies in the ontologies undermines the possibility of

satisfying the definition in Expression 2. Mapping systems use various methods
to verify the relations between terms: detailed reviews of these approaches can
be found in [9,6].

5 Dynamic Ontology Mapping: Motivation

As said in the introduction, it is possible to limit the mappings to those needed
to handle the occurring interactions, and there is no need to guarantee complete
equivalence between the languages. Therefore an agent needs to map at the
minimum the terms that appear in κp in order to satisfy κa :

∃W1...W ∈ Lr, Y1...Yn ∈ La. cr : κp(W1, ..., Wn) ∧ ca : κa(Y1, ..., Ym) (3)
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This is a much weaker requirement: we need to find the values for Y1, ..., Yn so
that κa is valid for the given instances of W1, ..., Wn. In the example, it means
that only the mappings required for buying the laptop are needed.
Not every grounding of the variables is meaningful: some will make κa more

similar to κp than others. The mapping function:

singlemap : tLr × La → tLa

is the “oracle” used to search the best possible mapping to make the bridge in
Expression 1 meaningful. It does this by comparing tLr with all the terms in La.
The values for the variables W1, ..., Wn in κp are introduced by received mes-

sages (for example, the first ask(Attr) in Figure 4 introduces ‘Memory_Ram’@s),
by satisfying constraints (for example, want(P) introduces ‘Laptop’@b) or when
a role is invoked with parameters. Only terms introduced by received messages
can be defined in other ontologies and require mapping.
Suppose an agent receives a message mk (. . . , wi, . . .), where wi /∈ La is the

foreign term. The task of the oracle is to find what entity or concept, represented
in the agent’s ontology by the term tm, was encoded in wi by the transmitter.
Not all the comparisons between wi and terms tj ∈ La are useful: the aim of
this work is to specify a method for choosing the smallest set Γ ⊆ La of terms
to compare with wi, given a probability of finding the matching term tm ∈ La.
We assume that tm exists and that there is a single best match.
Let p (tj) be the probability that the entity represented by tj ∈ La was used

in Wi inside mk. The oracle will find tm if tm ∈ Γ with probability:

p (tm ∈ Γ ) =
∑

tj∈Γ p (tj)

If all terms are equiprobable, then p (tm ∈ Γ ) will be proportional to |Γ |. For ex-
ample, if |La| = 1000, then p (tj) = 0.001. Setting |Γ | = 800 yields p (tm ∈ Γ ) =
0.8, and there is no strategy for choosing the elements to add to Γ .
Instead, if the probability is distributed unevenly, as described in section 6,

and we keep the most likely terms, discarding the others, we can obtain a hig-
her probability for a smaller Γ . For example, suppose that p (tj) is distributed
approximately according to Zipf’s law (an empirical law mainly used in lan-
guage processing that states that the frequency of a word in corpora is inversely
proportional to its rank):

p (k; s; N) = 1/ks∑
N
n=1 1/ns

where k is the rank of the term, s is a parameter (which we set to 1 to simplify
the example), and N is the number of terms in the vocabulary. The probability
of finding tm becomes:

p (tm ∈ Γ ) =
∑ |Γ |

k=1 1/k∑ |La|
n=1 1/n

For |La| = 1000, then p (tm ∈ Γ ) = 0.70 for |Γ | = 110, and maybe more remar-
kably p (tm ∈ Γ ) = 0.5 for |Γ | = 25, as shown in Figure 5.
Therefore, given a probability distribution for the terms, it is possible to trade

off a decrement in the probability of finding the matching term tm in Γ with an
important reduction of comparisons made by the oracle.
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Fig. 5. uniform distribution vs Zipf’s distribution of terms in a message

The core issue dealt with by this paper is how to create and assign probabilities
to the entities that can be used in a message mk (. . . , wi, . . .). Intuitively, the
type of interaction, the specific topic and the messages already exchanged bind
wi to a set of possible expected entities.
In particular, this paper shows how an interaction model as LCC forms a

framework that enforces relations between the entities: the roles provide a first
filter for them. For example, messages in a buyer role will likely refer to entities
like products, prices, and attributes of the products. Different runs of the same
protocol tend to follow the same path, adding predictability to the interaction.

6 Modelling the Interactions

6.1 Asserting the Possible Values

The solution proposed is a model that stores and updates properties of the
entities used to instantiate each variableWi in different runs of the same protocol.
As seen in Section 3.1, the variables are replaced by values during protocol

execution, and therefore it is not possible to refer to them directly. A variable Wi

is a slot A (an argument position) in an LCC node N (that can be a message, a
constraint or a role header) inside a role R, and it is represented as 〈N, A〉R. For
example, the variable Prd appears in 〈want, 1〉b, where b means buyer.
In general, the possible values for the slot 〈Ni, A〉R are modelled by M asserti-

ons, each assigning a probability to the hypothesis that the matching entity for
the slot belongs to a set Ψ :

A
〈Ni,A〉R
j

.= Pr (〈Ni, A〉R ∈ Ψ |c) (4)

The probability can be made dependent on the value of another slot. Therefore
the assertion is in the form of a posterior probability: the element c can become a
constraint on the value of another slot. The probability can also be independent
from any other slot: in this case the element c becomes the true constant and
can be omitted.
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Table 1. Mappings for 〈ask, 1〉nb and 〈ask, 1〉s

〈ask,1〉nb
〈want, 1〉b =
Laptop

〈want, 1〉b =
digital_SLR

Total

has_brand 4 5 9

has_cpu 6 0 6

has_ram 6 0 6

has_hard_disk 4 0 4

has_weight 3 1 4

has_optical_zoom 0 5 5

has_sensor_resolution 0 6 6

Total 23 17 40

〈ask,1〉s Total
Digital_Cameras 40

Cell_Phones 30

Laptops 20

PC_Desktops 10

Total 100

How Assertions are Obtained. Assertions are created and updated every
time a protocol is executed. Let’s suppose that the agents as and ab have already
used the protocol in different interactions with other agents. The agent ab has
used it 12 times with different vendors: 6 times searching for a laptop, and 6
times seeking a digital camera. In total, ab has received the message ask(Attr)
that inquired about properties of the requested product 40 times. The content
of the slot in the received messages has been mapped to the entities from its
own ontology (see figure 1) with the frequencies in table 1. The seller agent as

has used the protocol 100 times with different buyers, receiving the message
ask(Prd) every time. The content of the slot has been mapped to entities in its
own ontology (see figure 2) with the frequencies in table 1. The frequencies of the
mappings are used to compute the probabilities in the assertions dynamically.

Assertions About Entities. Assertions can simply be about the prior proba-
bility of entities in a slot, disregarding the values of other slots in the protocol
run:
A
〈Ni,a〉R
j

.= Pr (〈Ni, a〉R ∈ {eq}) = pj

In the scenario, assertions about 〈ask, 1〉nb are:
A

〈ask,1〉nb
1

.= Pr
(
〈ask, 1〉nb ∈ {“has_brand”}

)
= 9

40 = 0.225
. . .
A

〈ask,1〉nb
7

.= Pr
(
〈ask, 1〉nb ∈ {“has_sensor_resolution”}

)
= 6

40 = 0.15

More precise assertions can be about the posterior probability of the entity Ni

given the values of previous slots Ni−d:

A
〈Ni,a〉R
j

.= Pr (〈Ni, a〉R ∈ {eq} |〈Ni−d, a〉R = ek) = pj

In the example scenario, we have:
A

〈ask,1〉nb
10

.= Pr
(
〈ask, 1〉nb ∈ {“has_brand”} | 〈want, 1〉b = “Laptop”

)
= 4

23 = 0.174

A
〈ask,1〉nb
11

.= Pr
(
〈ask, 1〉nb ∈ {“has_cpu”} | 〈want, 1〉b = “Laptop”

)
= 6

23 = 0.260
. . .

Assertions About Properties and Relations. Assertions can also be about
ontological relations between the entities in the slot and other entities. The pos-
sible relations depend on the expressivity of the ontology: if it is a simple list of
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allowed terms, it will not be possible to verify any relation; if it is a taxonomy,
subsumption can be found; for a richer ontology, more complex relations such as
domain or range can be found. The assertions about the probabilities of onto-
logical relations are obtained by generating hypotheses about different relations
and counting the frequencies of the proved ones.
The hypotheses can be about an ontological relation between the entity in the

slot and an entity ek in the agent’s ontology:

A
〈Ni,a〉R
j

.= Pr (〈Ni, a〉R ∈ {X |rel (X, ek)}) = pj

In the example scenario, the seller can prove some relations between the entities
in 〈ask, 1〉s and other entities in its ontology (see figure 2):
A

〈ask,1〉s
1

.= Pr
(
〈ask, 1〉s ∈ {X|subClass(X, “Computers”)}

)
= 30

100 = 0.3

The assertions can also regard the relation with another slot in the protocol:

A
〈Ni,a〉R
j

.= Pr (〈Ni, a〉R ∈ {X |rel (X, 〈Ni−d, ak〉R)}) = pj

In the example scenario the buyer can prove the relation between 〈ask, 1〉nb and
〈want, 1〉b in its ontology (see figure 1):
A

〈ask,1〉nb
20

.= Pr
(
〈ask, 1〉nb ∈

{
X|hasDomain

(
X, 〈want, 1〉b

)})
= 1.0

which means that the domain of the entity in the 〈ask, 1〉nb in the negotiator
clause is always the content of the first slot in the node want in the buyer role.

Assertion Reliability. Assertions that assign probabilities to entities work
correctly in well known and stationary situations. But interactions can have dif-
ferent content, such as the purchase of a different product, and the probabilities
of entities can change over time (for example, a type of product may go out of
fashion). Assertions about ontological relations can work on new content, but
sometimes they can overfit the actual relations in interactions.

6.2 Using Assertions

When a known protocol about a role R is used and the message mk (. . . , wi, . . .)
arrives, the system computes the probability distribution for the terms in 〈mk, i〉R:
all the assertions relative to the slot are selected and instantiated if needed.
In the example in Figure 4, ab receives the message ask(‘Memory_Ram’@s),

and 〈want, 1〉b contains ‘Laptop’@b. Thus, the assertions about 〈ask, 1〉nb are:
A

〈ask,1〉nb
1

.= Pr
(
〈ask, 1〉nb ∈ {“has_brand”}

)
= 0.225

. . .
A

〈ask,1〉nb
6

.= Pr
(
〈ask, 1〉nb ∈ {“has_optical_zoom”}

)
= 0.125

...
A

〈ask,1〉nb
10

.= Pr
(
〈ask, 1〉nb ∈ {“has_brand”} |true

)
= 0.174

...
A

〈ask,1〉nb
20

.= Pr
(
〈ask, 1〉nb ∈ {“has_brand”, “has_cpu”, “has_ram” “has_hard_disk”, “has_weight”}) = 1.0

The assertions can be generated using different strategies, and they assign
probabilities to overlapping sets that can have one or more elements. The moti-
vation of the work is to select the most likely entities for a slot in order to reach
a given probability of finding the mapping, and therefore we need to assign to
the terms the probabilities computed with the assertions.
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Fig. 6. Probability distribution for the terms in slot 〈ask , 1〉nb

This requires two steps. First, probabilities given to sets are uniformly dis-
tributed among the members: according to the principle of indifference, the
probability of mutually exclusive elements in a set should be evenly distributed.
Then, the probability of an entity ti is computed by summing all its probabilities
and dividing it by the sum of all the probabilities about the slot:

p (ti) =
∑

A
〈N,A〉R
j (〈N,A〉R∈{ti})∑

A
〈N,A〉R
k

(5)

In the example above, the entities will have the probabilities:
P(has_brand)= A1+A10+A20/5

A1+...+A20
= 0.225+0.174+0.2

3 =0.2

. . .
P(has_sensor_resolution)= A7

A1+...+A20
= 0.15

3 =0.05

The probabilities of terms related to the interactions have higher probabilities
than those of unrelated terms. As shown in Figure 6, using the first four terms
for the set Γ of terms to compare with the term ‘Memory_Ram’@s in the received
message yields a probability of finding the mapping in Γ greater than 0.8.

7 Conclusion

In this paper we showed an approach for dynamic ontology mapping that exploits
knowledge about interactions to reduce the waste of resources normally employed
to verify unlikely similarities between unrelated terms in different ontologies.
The traditional approaches aim at finding all the possible mappings between

the ontologies, so any possible interaction can occur. As shown in Section 5,
our goal is pragmatic: only the mappings required for the interactions that take
place need to be found. For an agent, this means that only the terms in received
messages and defined in external ontologies will be mapped.
In the standard approach, an ontology mapper oracle compares these “foreign”

terms with all the terms in the agent’s ontology, although most of the compared
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terms are not related. However, the terms that appear in messages are not all
equally probable: given the context of the interaction, some will be more likely
than others. The use of protocols allows us to collect consistent information about
the mappings used during an interaction: in Section 6 we show first how to create
and update a probabilistic model of the content of the messages and then how to
use the model to select what are the most likely entities contained in a message,
so that the mapper oracle can focus on them, improving the efficiency. While in
[2] we gave a first evaluation of the framework, we are currently focussing on the
effect that predictions have on the precision and recall of an ontology matcher.
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Abstract. Probabilistic description logic programs are a powerful tool for
knowledge representation in the Semantic Web, which combine description log-
ics, normal programs under the answer set or well-founded semantics, and prob-
abilistic uncertainty. The task of data integration amounts to providing the user
with access to a set of heterogeneous data sources in the same fashion as when
querying a single database, that is, through a global schema, which is a common
representation of all the underlying data sources. In this paper, we make use of
probabilistic description logic programs to model expressive data integration sys-
tems for the Semantic Web, where constraints are expressed both over the data
sources and the global schema. We describe different types of probabilistic data
integration, which aim especially at applications in the Semantic Web.
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1 Introduction

Recent research on knowledge representation has focused especially on the Semantic
Web, which is an extension of the current Web by standards and technologies that help
machines to understand the information on the Web so that they can support richer
discovery, data integration, navigation, and automation of tasks [1]. The nature of the
vast amount of data that are present on the Web is such that most information that we
can retrieve is conflicting, overlapping with other information, or incomplete.

The Semantic Web as it is now consists of hierarchical layers, at different levels
of abstraction; the Ontology layer is the one that had the fastest development lately,
and it adopts the Web Ontology Language (OWL) [2] in different dialects of different
expressiveness, namely, OWL Lite, OWL DL, and OWL Full. Integrating data [3] and
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mapping ontologies onto one another [4] are the major issues in this field. Besides the
ontology layer, further layers such as the Rules, Logic, and Proof layers aim at providing
support for sophisticated reasoning capabilities [5]. In particular, there is a large body
of work on integrating rules and ontologies, which is a key requirement of the layered
architecture of the Semantic Web. Rules can be build on top of ontologies, that is, rules
may use the vocabulary of an ontology; another possible approach is to build ontologies
on top of rules. Both types of integration are realized in recent hybrid integrations of
rules and ontologies, called description logic programs (or dl-programs), which have
the form KB =(L, P ), where L is a description logic knowledge base and P is a finite
set of rules involving either queries to L in a loose coupling [6,7] or concepts and roles
from L as unary and binary predicates, respectively, in a tight coupling [8].

In Web search engines, which have to deal with pieces of data that are intrinsi-
cally inconsistent, and which provide uncertain information, statistical methods are
commonly applied. Differently, research on probabilistic approaches to the Semantic
Web is fairly recent. An important recent forum for approaches to uncertainty rea-
soning in the Semantic Web is the annual Workshop on Uncertainty Reasoning for
the Semantic Web (URSW); there also exists a W3C Incubator Group on Uncertainty
Reasoning for the World Wide Web. There are especially probabilistic extensions of
description logics [9,10], of Web ontology languages [11,12] (see also [13]), and of
dl-programs [14,15] (to encode ambiguous information, such as “John is a student
with the probability 0.7 and a teacher with the probability 0.3”, which is very dif-
ferent from vague / fuzzy / imprecise information, such as “John is tall with the degree
of truth 0.7”). In particular, probabilistic extensions of the loosely (resp., tightly) cou-
pled dl-programs in [6,7] (resp., [8]) have been proposed in [14] (resp., [15]). Important
related works combine standard answer set programming with probabilities [16] and
positive logic programs with Bayesian networks [17]. The approach of probabilistic
dl-programs [14] is especially promising, since it is extremely expressive and flexible,
and it is able to generalize answer set programming, Bayesian networks, and the inde-
pendent choice logic [18]. In these probabilistic dl-programs, logic is nicely blended
with probability; we indeed show that this allows us to naturally employ dl-programs
in the declarative specification of data integration systems in the Semantic Web. The
techniques found in [19] provide tractable algorithms for reasoning tasks in probabilis-
tic dl-programs; in particular, they provide polynomial data complexity algorithms for
processing queries under a novel semantics, called the total well-founded semantics.

Data integration is a general problem that is among the main goals of the Semantic
Web. In a data integration system for the Semantic Web, heterogeneous data sources in
the Semantic Web are presented to the user as a single database, which can be queried
through a common representation of all the stored information. Such a common repre-
sentation is called the global schema, and is usually virtual (that is, rather than being
stored at the global level, the pieces of data reside at the sources). The crucial issues
in data integration are (i) the declarative representation of the relationship between
the sources and the global schema, called mapping, and (ii) the algorithms to answer
queries that are posed over the global schema.

In this paper, we start from the results of [19] about tight query processing in (loosely
coupled) probabilistic dl-programs, and we provide a natural way of employing such
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dl-programs in the integration of data over the Semantic Web. We show different natu-
ral ways of specifying a data integration framework with probabilistic dl-programs, al-
lowing the use of the efficient reasoning service that are available for such dl-programs.
In particular, we show three different ways of specifying a probabilistic mapping with
probabilistic dl-programs:

– modeling trust probabilities: here, we use probabilities to represent different levels
of trust that we have with respect to different data sources;

– modeling error probability: here, probabilities are used to represent the information
that is stored in data sources that have a certain probability of error; such uncer-
tainty is modeled with rules of a probabilistic dl-program, which encode the proper
inference in case of error or in case of non-error; and

– purely probabilistic mappings: this is the case when different pieces of overlapping
information are collected from the data sources, each with an assigned probability.

Furthermore, we show that the flexibility of probabilistic dl-programs allows us to
represent situations where it is necessary to represent a sort of fine-grained probability
defined on single tuples (ground facts) at the data sources. This is a common scenario in
the literature about probabilistic data, with many applications in practice. Our modeling
is possible because, roughly speaking, probabilistic dl-programs define probabilities
on each single ground atom of the Herbrand base of the program. In such scenarios,
probabilistic dl-programs “filter” the probabilities through the mapping, thus giving a
global representation of the source data that takes into account their uncertainty.

Finally, we remark that probabilistic dl-programs are able to deal with cases of data
integration where constraints (expressible with probabilistic dl-rules) are enforced on
the sources and on the global schema. This is particularly useful when integrating
sources that are represented intensionally by a local ontology.

The rest of this paper is organized as follows. In Section 2, we recall the tractable
description logic DL-Lite. Section 3 describes (loosely coupled) dl-programs under the
answer set and the well-founded semantics. In Section 4, we describe (loosely coupled)
probabilistic dl-programs under the answer set and the total well-founded semantics.
Section 5 presents our approach to probabilistic data integration for the Semantic Web
on top of these probabilistic dl-programs. In Section 6, we summarize our main re-
sults and give an outlook on future research.

2 Description Logics

In this section, we recall the syntax and the semantics of DL-Lite, a tractable description
logic especially suited for representing large amounts of data. Intuitively, description
logics model a domain of interest in terms of concepts and roles, which represent classes
of individuals resp. binary relations between classes of individuals. While we restrict
ourselves to DL-Lite here, the approach continues to be valid for the variants of DL-Lite
in [20], since the reasoning algorithms can be easily extended to such variants.

2.1 Syntax

We first define concepts and axioms and then knowledge bases and conjunctive queries
in DL-Lite. We assume pairwise disjoint sets A, R, and I of atomic concepts, abstract
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roles, and individuals, respectively. We use R− to denote the set of all inverses R− of
roles R∈R. A basic concept B is either an atomic concept A∈A or an exists restric-
tion ∃R, where R∈R∪R−. An axiom is either (1) a concept inclusion axiom B�φ,
where B is a basic concept, and φ is either a basic concept B or its negation ¬B,
or (2) a functionality axiom (funct R), where R∈R∪R−, or (3) a concept mem-
bership axiom B(a), where B is a basic concept and a∈ I, or (4) a role membership
axiom R(a, c), where R∈R and a, c∈ I. A (description logic) knowledge base L is a
finite set of axioms. A conjunctive query over L is of the form Q(x)= ∃y (conj (x,y)),
where x and y are tuples of distinct variables, and conj (x,y) is a conjunction of as-
sertions B(z) and R(z1, z2), where B and R are basic concepts and roles from R,
respectively, and z, z1, and z2 are individuals from I or variables in x or y.

Example 1. A university database may use a description logic knowledge base L to
characterize students and exams. For example, suppose that (1) every bachelor student is
a student, (2) every master student is a student, (3) professors are not students, (4) only
students give exams and only exams are given, and (5) john is a student, mary is a
master student, java is an exam, and john has given it. These relationships are encoded
by the following axioms in L:

(1) bachelor student � student ; (2) master student � student ;
(3) professor � ¬student ; (4) ∃given � student ; ∃given−1 � exam ;
(5) student(john); master student(mary); exam(java); given(john, java) .

2.2 Semantics

The semantics of DL-Lite is defined as usual in first-order logics. An interpretation
I =(ΔI , ·I) consists of a nonempty domain ΔI and a mapping ·I that assigns to
each A∈A a subset of ΔI , to each o∈ I an element of ΔI (such that o1 �= o2 implies
oI1 �= oI2 ; that is, we make the unique name assumption), and to each R∈R a subset of
ΔI ×ΔI . We extend ·I to all concepts and roles, and we define the satisfaction of an
axiom F in I, denoted I |=F , as usual. A tuple c of individuals from I is an answer for
a conjunctive query Q(x)=∃y (conj (x,y)) to a description logic knowledge base L
iff for every I = (ΔI , ·I) that satisfies all F ∈L, there exists a tuple o of elements
from ΔI such that all assertions in conj (c,o) are satisfied in I. In DL-Lite, computing
all such answers is possible in polynomial time in the data complexity.

3 Description Logic Programs

We adopt the (loosely coupled) description logic programs (or dl-programs) of [6,7],
which consist of a description logic knowledge base L and a generalized normal pro-
gram P , which may contain queries to L (called dl-queries) in rule bodies. We re-
mark that these dl-programs can also be extended by queries to other formalisms, such
as RDF theories. We now first define the syntax of dl-programs and then their answer
set and their well-founded semantics. Note that in contrast to [6,7], we assume here
that dl-queries may be conjunctive queries to L.
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3.1 Syntax

We assume a function-free first-order vocabulary Φ with finite nonempty sets of con-
stant and predicate symbols Φc and Φp, respectively, and a set of variables X . We as-
sume that (i) Φc is a subset of I (since the constants in Φc may occur in concept and
role assertions of dl-queries) and that (ii) Φ and A (resp., R) have no unary (resp., bi-
nary) predicate symbols in common (and thus dl-queries are the only interface between
L and P ). A term is a constant symbol from Φ or a variable from X . If p is a predicate
symbol of arity k � 0 from Φ, and t1, . . . , tk are terms, then p(t1, . . . , tk) is an atom.
A literal is an atom a or a default-negated atom not a. A (normal) rule r is of the form

a ← b1, . . . , bk,not bk+1, . . . ,not bm , (1)

where a, b1, . . . , bm are atoms and m � k � 0. We call a the head of r, denoted H(r),
while the conjunction b1, . . . , bk,not bk+1, . . . ,not bm is the body of r; its positive
(resp., negative) part is b1, . . . , bk (resp., not bk+1, . . . ,not bm). We define B(r) as the
union of B+(r)= {b1, . . . , bk} and B−(r)= {bk+1, . . . , bm}. A (normal) program P
is a finite set of normal rules. We say P is positive iff it is “not”-free.

A dl-query Q(t) is a conjunctive query. A dl-atom has the form DL[S1 � p1, . . . ,
Sm � pm; Q(t)], where each Si is a concept or role, pi is a unary resp. binary predicate
symbol, Q(t) is a dl-query, and m � 0. We call p1, . . . , pm its input predicate symbols.
Intuitively,� increases Si by the extension of pi. A (normal) dl-rule r is of the form (1),
where any b∈B(r) may be a dl-atom. A (normal) dl-program KB = (L, P ) consists of
a description logic knowledge base L and a finite set of dl-rules P . We say KB =(L, P )
is positive iff P is positive. Ground terms, atoms, literals, etc., are defined as usual. We
denote by ground(P ) the set of all ground instances of dl-rules in P relative to Φc.

Example 2. A dl-program KB = (L, P ) is given by L as in Example 1 and P consisting
of the following dl-rules, which express that (1) the relation of propaedeutics enjoys the
transitive property, (2) if a student has given an exam, then he/she has given all exams
that are propaedeutic to it, (3) if two students have a given exam in common, then
they have given the same exam, and (4) unix is propaedeutic for java , and java is
propaedeutic for programming languages :

(1) propaedeutic(X, Z) ← propaedeutic(X, Y ), propaedeutic(Y, Z) ;
(2) given prop(X, Z) ← DL[given(X, Y )], propaedeutic(Z, Y ) ;
(3) given same exam(X, Y )← DL[given � given prop; ∃Z(given(X, Z)∧given(Y, Z))] ;
(4) propaedeutic(unix , java); propaedeutic(java, programming languages) .

3.2 Answer Set Semantics

The Herbrand base HBΦ is the set of all ground atoms constructed from constant and
predicate symbols in Φ. An interpretation I is any I ⊆HBΦ. We say I is a model of
a∈HBΦ under a description logic knowledge base L, denoted I |=L a, iff a∈ I . We
say I is a model of a ground dl-atom a =DL[S1�p1, . . . , Sm�pm; Q(c)] under L, de-
noted I |=L a, iff L ∪⋃m

i=1Ai(I) |= Q(c), where Ai(I)= {Si(e) | pi(e)∈I}. We say I
is a model of a ground dl-rule r iff I|=LH(r) whenever I|=LB(r), that is, I |=L a
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for all a∈B+(r) and I �|=L a for all a∈B−(r). We say I is a model of a dl-program
KB =(L, P ), denoted I |= KB , iff I |=L r for all r∈ ground(P ).

Like ordinary positive programs, each positive dl-program KB has a unique least
model, denoted MKB , which naturally characterizes its semantics. The answer set se-
mantics of general dl-programs is then defined by a reduction to the least model se-
mantics of positive ones, using a reduct that generalizes the ordinary Gelfond-Lifschitz
reduct [21] and removes all default-negated atoms in dl-rules: For dl-programs KB =
(L, P ), the dl-reduct of P relative to L and an interpretation I ⊆HBΦ, denoted P I

L,
is the set of all dl-rules obtained from ground(P ) by (i) deleting each dl-rule r such
that I |=L a for some a∈B−(r), and (ii) deleting from each remaining dl-rule r the
negative body. An answer set of KB is an interpretation I ⊆HBΦ such that I is the
unique least model of (L, P I

L). A dl-program is consistent iff it has an answer set.
The answer set semantics of dl-programs has several nice features. In particular,

for dl-programs KB = (L, P ) without dl-atoms, it coincides with the ordinary answer
set semantics of P . Answer sets of a general dl-program KB are also minimal mod-
els of KB . Furthermore, positive and locally stratified dl-programs have exactly one
answer set, which coincides with their canonical minimal model.

3.3 Well-Founded Semantics

Rather than associating with every dl-program a (possibly empty) set of two-valued
interpretations, the well-founded semantics associates with every dl-program a unique
three-valued interpretation.

A classical literal is either an atom a or its negation ¬a. For sets S⊆HBΦ, we
define ¬S = {¬a |a∈S}. We define LitΦ =HBΦ ∪¬HBΦ. A set of ground classical
literals S⊆LitΦ is consistent iff {a,¬a} �⊆S for all a∈HBΦ. A three-valued interpre-
tation is any consistent I ⊆LitΦ. We define the well-founded semantics of dl-programs
KB =(L, P ) via a generalization of the operator γ2 for ordinary normal programs.
We define the operator γKB as follows. For every I ⊆HBΦ, we define γKB(I) as
the least model of the positive dl-program KBI = (L, P I

L). The operator γKB is anti-
monotonic, and thus the operator γ2

KB (defined by γ2
KB (I)= γKB(γKB (I)), for every

I ⊆HBΦ) is monotonic and has a least and a greatest fixpoint, denoted lfp(γ2
KB ) and

gfp(γ2
KB ), respectively. Then, the well-founded semantics of the dl-program KB , de-

noted WFS (KB), is defined as lfp(γ2
KB ) ∪ ¬(HBΦ− gfp(γ2

KB)).
As an important property, the well-founded semantics for dl-programs approximates

their answer set semantics. That is, for all consistent dl-programs KB and �∈LitΦ,
it holds that �∈WFS (KB) iff � is true in every answer set of KB .

4 Probabilistic Description Logic Programs

We now recall the (loosely coupled) probabilistic dl-programs from [14]. We first define
the syntax of probabilistic dl-programs and then their answer set semantics. Informally,
they consist of a dl-program (L, P ) and a probability distribution μ over a set of total
choices B. Every total choice B along with the dl-program (L, P ) then defines a set of
Herbrand interpretations of which the probabilities sum up to μ(B).
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4.1 Syntax

We now define the syntax of probabilistic dl-programs and queries addressed to them.
We first define choice spaces and probabilities on choice spaces.

A choice space C is a set of pairwise disjoint and nonempty sets A⊆HBΦ. Any
A∈C is called an alternative of C, and any element a∈A is called an atomic choice
of C. Intuitively, every alternative A∈C represents a random variable and every atomic
choice a∈A one of its possible values. A total choice of C is a set B⊆HBΦ such
that |B ∩ A|= 1 for all A∈C (and thus |B|= |C|). Intuitively, every total choice B
of C represents an assignment of values to all the random variables. A probability μ
on a choice space C is a probability function on the set of all total choices of C. Intu-
itively, every probability μ is a probability distribution over the set of all variable as-
signments. Since C and all its alternatives are finite, μ can be defined by (i) a mapping
μ :
⋃

C→ [0, 1] such that
∑

a∈A μ(a)= 1 for all A∈C, and (ii) μ(B) = Πb∈Bμ(b)
for all total choices B of C. Intuitively, (i) defines a probability over the values of each
random variable of C, and (ii) assumes independence between the random variables.

A probabilistic dl-program KB =(L, P, C, μ) consists of a dl-program (L, P ), a
choice space C such that (i)

⋃
C ⊆HBΦ and (ii) no atomic choice in C coincides with

the head of any r∈ ground(P ), and a probability μ on C. Intuitively, since the total
choices of C select subsets of P , and μ is a probability distribution on the total choices
of C, every probabilistic dl-program is the compact encoding of a probability distri-
bution on a finite set of normal dl-programs. Observe here that P is fully general and
not necessarily stratified or acyclic. An event α is any Boolean combination of atoms
(that is, constructed from atoms via the Boolean operators “∧” and “¬”). A conditional
event is of the form β|α, where α and β are events. A probabilistic query has the form
∃(β|α)[r, s], where β|α is a conditional event, and r and s are variables.

Example 3. Consider KB = (L, P, C, μ), where L and P are as in Examples 1 and 2,
respectively, except that the following two (probabilistic) rules are added to P :

friends(X, Y ) ← given same exam(X, Y ),DL[master student (X)],
DL[master student (Y )], choicem ;

friends(X, Y ) ← given same exam(X, Y ),DL[bachelor student (X)],
DL[bachelor student(Y )], choiceb .

Let C = {{choicem,not choicem}, {choiceb,not choiceb}}, and let the probability μ
on C be given by μ : choicem, not choicem, choiceb, not choiceb �→ 0.9, 0.1, 0.7,
0.3. Here, the new rules express that if two master (resp., bachelor) students have given
the same exam, then there is a probability of 0.9 (resp., 0.7) that they are friends. Note
that probabilistic facts can be encoded by rules with only atomic choices in their body.
Our wondering about the entailed tight interval for the probability that john and bill are
friends can then be expressed by the probabilistic query ∃(friends(john , bill))[R, S].

4.2 Answer Set Semantics

We now define a probabilistic answer set semantics of probabilistic dl-programs, and
the notions of consistency and tight answers.
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Given a probabilistic dl-program KB = (L, P, C, μ), a probabilistic interpretation
Pr is a probability function on the set of all I ⊆HBΦ. We say Pr is an answer set of
KB iff (i) every interpretation I ⊆HBΦ with Pr(I)> 0 is an answer set of (L, P ∪
{p ← | p∈B}) for some total choice B of C, and (ii) Pr (

∧
p∈B p)=μ(B) for every

total choice B of C. Informally, Pr is an answer set of KB = (L, P, C, μ) iff (i) every
interpretation I ⊆HBΦ of positive probability under Pr is an answer set of the dl-
program (L, P ) under some total choice B of C, and (ii) Pr coincides with μ on the
total choices B of C. We say KB is consistent iff it has an answer set Pr .

Given a ground event α, the probability of α in a probabilistic interpretation Pr , de-
noted Pr (α), is the sum of all Pr(I) such that I ⊆HBΦ and I |= α. We say (β|α)[l, u],
where α and β are ground events, and l, u∈ [0, 1], is a tight consequence of a consistent
probabilistic dl-program KB under the answer set semantics iff l (resp., u) is the infi-
mum (resp., supremum) of Pr (α∧β) / Pr (α) subject to all answer sets Pr of KB with
Pr(α)> 0. Note that this infimum (resp., supremum) is naturally defined as 1 (resp.,
0) iff no such Pr exists. The tight answer for a probabilistic query Q =∃(β|α)[r, s]
to KB under the answer set semantics is the set of all ground substitutions θ (for
the variables in Q) such that (β|α)[r, s]θ is a tight consequence of KB under the an-
swer set semantics. For ease of presentation, since the tight answers for probabilistic
queries Q =∃(β|α)[r, s] with non-ground β|α can be reduced to the tight answers for
probabilistic queries Q =∃(β|α)[r, s] with ground β|α, we consider only the latter type
of probabilistic queries in the following.

4.3 Total Well-Founded Semantics

We now recall the total well-founded semantics for probabilistic dl-programs, which
is defined for all probabilistic dl-programs (as opposed to the answer set semantics,
which is only defined for consistent probabilistic dl-programs) and for all probabilistic
queries to probabilistic dl-programs (as opposed to the previous well-founded semantics
of [14], which is only defined for a very limited class of probabilistic queries).

More precisely, given a probabilistic dl-program KB = (L, P, C, μ) and a proba-
bilistic query Q =∃(β|α)[r, s] with ground β|α, the tight answer θ for Q to KB under
the previous well-founded semantics of [14] exists iff both ground events α∧β and
α are defined in every S =WFS (L, P ∪{p ←| p∈B}) such that B is a total choice
of C. Here, a ground event φ is defined in S iff either I |=φ for every interpretation
I ⊇S ∩HBΦ, or I �|= φ for every interpretation I ⊇S ∩HBΦ. If α is false in every
WFS (L, P ∪ {p ←| p∈B}) such that B is a total choice of C, then the tight an-
swer is defined as θ = {r/1, s/0}; otherwise, the tight answer (if it exists) is defined
as θ = {r/u

v , s/u
v }, where u (resp., v) is the sum of all μ(B) such that (i) B is a total

choice of C and (ii) α∧β (resp., α) is true in WFS (L, P ∪ {p← | p∈B}).
We define the total well-founded semantics for probabilistic dl-programs as follows.

Definition 1 (Total Well-Founded Semantics). Let KB = (L, P, C, μ) be a proba-
bilistic dl-program, and let Q =∃(β|α)[r, s] be a probabilistic query with ground β|α.
Let a (resp., b−) be the sum of all μ(B) such that (i) B is a total choice of C and (ii)
α∧β is true (resp., false) in WFS(L, P ∪{p←| p∈B}). Let c (resp., d−) be the sum
of all μ(B) such that (i) B is a total choice of C and (ii) α∧¬β is true (resp., false) in
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WFS (L, P ∪ {p ←| p∈B}). Let b =1−b− and d =1−d−. Then, the tight answer θ
for Q to KB under the total well-founded semantics (TWFS (KB)) is defined by

θ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{r/1, s/0} if b= 0 and d= 0;

{r/0, s/0} if b= 0 and d 
= 0;

{r/1, s/1} if b 
= 0 and d= 0;

{r/ a
a+d

, s/ b
b+c

} otherwise.

(2)

We finally report some results from [19] on the complexity of tight query processing
in probabilistic dl-programs under the total well-founded semantics.

Tight query processing in probabilistic dl-programs KB = (L, P, C, μ) in DL-Lite
(where L is in DL-Lite) under TWFS (KB) can be done in polynomial time in the
data complexity. This result follows from the facts that (a) computing the well-founded
semantics of a normal dl-program and (b) conjunctive query processing in DL-Lite can
both be done in polynomial time in the data complexity. Here, |C| is bounded by a
constant, since C and μ define the probabilistic information of P , which is fixed as a
part of the program in P , while the ordinary facts in P are the variable input. Computing
tight answers is EXP-complete in the combined complexity.

5 Probabilistic Data Integration

Integrating data from different sources is a crucial issue in the Semantic Web. In this
section, we show how probabilistic dl-programs can be employed as a formalism for
data integration in the Semantic Web. We first give some general definitions.

A data integration system (in its most general form) [22] I = (G,S ,M ) consists
of (i) a global (or mediated) schema G , which represents the domain of interest of
the system, (ii) a source schema S , which represents the data sources that take part
in the system, and (iii) a mapping M , which establishes a relation between the source
schema and the global schema. Here, G is purely virtual, while the data are stored in S .
The mapping M can be specified in different ways, which is a crucial aspect in a data
integration system. In particular, when every data structure in G is defined through a
view over S , the mapping is said to be GAV (global-as-view), while when very data
structure in S is defined through a view over G the mapping is LAV (local-as-view).
A mixed approach, called GLAV [23,24], associates views over G to views over S .

5.1 Modeling Data Integration Systems

In our framework, we assume that the global schema G, the source schema S, and the
mapping M are each encoded by a probabilistic dl-program. More formally, we par-
tition the vocabulary Φ into the sets ΦG , ΦS , and Φc: (i) the symbols in ΦG are of
arity at least 1 and represent the global predicates, (ii) the symbols in ΦS are of arity
at least 1 and represent source predicates, and (iii) the symbols in Φc are constants.
Let AG and RG be disjoint denumerable sets of atomic concepts and abstract roles,
respectively, for the global schema, and let AS and RS (disjoint from AG and RG)
be similar sets for the source schema. We also assume a denumerable set of individ-
uals I that is disjoint from the set of all concepts and roles and a superset of Φc. A
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probabilistic data integration system PI = (KBG ,KBS ,KBM ) consists of a prob-
abilistic dl-program KBG =(LG, PG, CG, μG) for the global schema, a probabilistic
dl-program KBS=(LS,PS ,CS , μS) for the source schema, and a probabilistic dl-pro-
gram KBM =(∅, PM , CM , μM ) for the mapping:

– KBG (resp., KBS) is defined over the predicates, constants, concepts, roles, and
individuals of the global (resp., source) schema, and it encodes ontological, rule-
based, and probabilistic relationships in the global (resp., source) schema.

– KBM is defined over the predicates, constants, concepts, roles, and individuals of
the global and the source schema, and it encodes a probabilistic mapping between
the predicates, concepts, and roles of the source and those of the global schema.

Our probabilistic dl-rules permit a specification of the mapping that can freely use
global and source predicates together in rules, thus having a formalism that generalizes
LAV and GAV in some way. Moreover, with a simple technicality, we are able to partly
model GLAV systems. In GLAV data integration systems, the mapping is specified by
means of rules of the form ψ ← ϕ, where ψ is a conjunction of atoms of G and ϕ
is a conjunction of atoms of S . We introduce an auxiliary atom α that contains all the
variables of ψ; moreover, let ψ = β1 ∧ . . . ∧ βm. We model the GLAV mapping rule
with the following rules:

β1 ← α
...

βm ← α
α ← ϕ

What our framework does not allow is having rules that are unsafe, that is, having
existentially-quantified variables in the head.

Note also that correct and tight answers to probabilistic queries on the global schema
are formally defined relative to the probabilistic dl-program KB =(L, P, C, μ), where
L =LG ∪LS , P =PG ∪PS ∪PM , C =CG ∪CS ∪CM , and μ =μG · μS · μM .
Informally, KB is the result of merging KBG, KBS , and KBM . In a similar way,
the probabilistic dl-program KBS of the source schema S can be defined by merging
the probabilistic dl-programs KBS1 , . . . ,KBS1 of n � 1 source schemas S1, . . . , Sn.

The fact that the mapping is probabilistic allows for a high flexibility in the treat-
ment of the uncertainty that is present when pieces of data come from heterogeneous
sources whose informative content may be inconsistent and/or redundant relative to the
global schema G , which in general incorporates constraints. Some different types of
probabilistic mappings that can be modeled in our framework are summarized below.

5.2 Types of Probabilistic Mappings

In addition to expressing probabilistic knowledge about the global schema and about
the source schema, the probabilities in probabilistic dl-programs can especially be used
for specifying the probabilistic mapping in the data integration process. We distinguish
three different types of probabilistic mappings, depending on whether the probabilities
are used as trust, error, or mapping probabilities.
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The simplest way of probabilistically integrating several data sources is to weigh
each data source with a trust probability (which all sum up to 1). This is especially
useful when several redundant data sources are to be integrated. In such a case, pieces
of data from different data sources may easily be inconsistent with each other.

Example 4. Suppose that we want to obtain a weather forecast for a certain place by
integrating the potentially different weather forecasts of several weather forecast insti-
tutes. For ease of presentation, suppose that we only have three weather forecast insti-
tutes A, B, and C. In general, one trusts certain weather forecast institutes more than
others. In our case, we suppose that our trust in the institutes A, B, and C is expressed
by the trust probabilities 0.6, 0.3, and 0.1, respectively. That is, we trust most in A,
medium in B, and less in C. In general, the different institutes do not use the same data
structure to represent their weather forecast data. For example, institute A may use a
single relation forecast(place , date,weather , temperature,wind) to store all the data,
while B may have one relation forecast place(date ,weather , temperature,wind) for
each place, and C may use several different relations forecast weather (place , date,
weather ), forecast temperature(place , date, temperature), and forecast wind
(place , date, wind). Suppose the global schema G has the relation
forecast rome global (date, weather , temperature,wind), which may e.g. be posted
on the web by the tourist information of Rome. The probabilistic mapping of the source
schemas of A, B, and C to the global schema G can then be specified by the following
KBM = (∅, PM , CM , μM ):

PM = {forecast rome global(D, W,T, M) ← forecast(rome, D, W,T, M), instA;
forecast rome global(D, W,T, M) ← forecast rome(D, W,T, M), instB ;
forecast rome global(D, W,T, M) ← forecast weather (rome, D, W ),

forecast temperature(rome, D, T ), forecast wind(rome, D, M), instC} ;

CM = {{instA, instB , instC}} ;

μM : instA, instB , instC �→ 0.6, 0.3, 0.1 .

The mapping assertions state that the first, second, and third rule above hold with the
probabilities 0.6, 0.3, and 0.1, respectively. This is motivated by the fact that three
institutes may generally provide conflicting weather forecasts, and our trust in the insti-
tutes A, B, and C are given by the trust probabilities 0.6, 0.3, and 0.1, respectively.

A more complex way of probabilistically integrating several data sources is to associate
each data source (or each derivation) with an error probability.

Example 5. Suppose that we want to integrate the data provided by the different sen-
sors in a sensor network. For example, suppose that we have a sensor network measur-
ing the concentration of ozone in several different positions of a certain town, which
may e.g. be the basis for the common hall to reduce or forbid individual traffic. Sup-
pose that each sensor i∈{1, . . . , n} with n � 1 is associated with its position through
sensor(i, position) and provides its measurement data in a single relation reading i

(date, time, type, result). Each such reading may be erroneous with the probability ei.
That is, any tuple returned (resp., not returned) by a sensor i∈{1, . . . , n} may not hold
(resp., may hold) with probability ei. Suppose that the global schema contains a single
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relation reading(position , date, time, type, result). Then, the probabilistic mapping
of the source schemas of the sensors i∈{1, . . . , n} to the global schema G can be
specified by the following probabilistic dl-program KBM =(∅, PM , CM , μM ):

PM = {aux i(P, D, T, K, R) ← reading i(D, T, K, R), sensor (i, P ) | i ∈ {1, . . . , n}} ∪
{reading(P, D, T, K, R) ← aux i(P, D, T, K, R), not error i | i ∈ {1, . . . , n}} ∪
{reading(P, D, T, K, R) ← not aux i(P, D, T, K, R), error i | i ∈ {1, . . . , n}} ;

CM = {{error i,not error i} | i ∈ {1, . . . , n}} ;

μM : error1,not error 1, . . . , errorn,not errorn �→ e1, 1−e1, . . . , en, 1−en .

Note that if there are two sensors j and k for the same position, and they both return
the same tuple as a reading, then this reading is correct with the probability 1− ejek

(since it may be erroneous with the probability ejek). Note also that this modeling
assumes that the errors of the sensors are independent from each other, which can
be achieved by eventually unifying atomic choices. For example, if the sensor j de-
pends on the sensor k, then j is erroneous when k is erroneous, and thus the atomic
choices {error j ,not error j} and {errork,not errork} are merged into the new ato-
mic choice {errorjerrork, not error jerrork, not error jnot errork}.

When integrating several data sources, it may be the case that the relationships be-
tween the source schema and the global schema are purely probabilistic.

Example 6. Suppose that we want to integrate the schemas of two libraries, and that
the global schema contains the predicate symbol logic programming , while the source
schemas contain only the concepts rule-based systems resp. deductive databases in
their ontologies. These three concepts are overlapping to some extent, but they do
not exactly coincide. For example, a randomly chosen book from rule-based systems
(resp., deductive databases) may belong to the area logic programming with the prob-
ability 0.7 (resp., 0.8). The probabilistic mapping from the source schemas to the global
schema can then be expressed by the following KBM = (∅, PM , CM , μM ):

PM = {logic programming(X) ← DL[rule-based systems(X)], choice1 ;
logic programming(X) ← DL[deductive databases(X)], choice2} ;

CM = {{choice1,not choice1}, {choice2,not choice2}} ;

μM : choice1,not choice1, choice2,not choice2 �→ 0.7, 0.3, 0.8, 0.2 .

5.3 Deterministic Mappings on Probabilistic Data

Finally, we briefly describe an approach to use probabilistic dl-programs to model prob-
abilistic data, such as those in [25].

Example 7. Suppose that the weather in Oxford can be sunny, cloudy, or rainy with
probabilities 0.2, 0.45, and 0.35, respectively, and similar probabilities are assigned
for other cities. This setting is analogous to the “classical” one of probabilistic data,
where there is a probability distribution over ground facts. In such a case, the choice
space is C = {{weather(oxford , sunny), weather(oxford , cloudy), weather (oxford ,
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rainy)}, . . .}, and the probability is μ : weather(oxford , sunny), weather (oxford ,
cloudy), weather (oxford , rainy) �→ 0.2, 0.4, 0.3. A mapping rule such as

candidate destination(L)← weather (L, sunny)

can now express the fact that a destination is a candidate for a day-trip if it has sunny
weather. While the mapping is purely deterministic, the probability distributions on the
sets of atomic choices of the choice space enforce, by virtue of the mapping, a proba-
bility distribution on the ground facts of the global schema. Our framework is able to
capture this situation, providing a framework for query answering over uncertain data.

6 Conclusion

We have considered tractable probabilistic dl-programs for the Semantic Web, which
combine tractable description logics, normal programs under the answer set and the
well-founded semantics, and probabilities. Based on the results of [19], we have intro-
duced a framework to model and represent data integration systems for the Semantic
Web, which are capable of taking into account uncertainty in the mappings and the
data sources. We have shown that probabilistic dl-programs are capable of modeling
probabilistic mappings, and also data where for each tuple a probability is defined.

Our future research will focus on considering more expressive forms of rules, and in
particular rules that have existentially quantified variables in the head, similarly to tuple-
generating dependencies in database theory. Furthermore, we plan to develop top-k
query techniques for the presented framework, which is especially important in the
case of integrating large sets of data in the Semantic Web.
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Abstract. Using mappings between ontologies is a common way of approaching
the semantic heterogeneity problem on the Semantic Web. To fit into the land-
scape of Semantic Web languages, a suitable logic-based representation formal-
ism for mappings is needed, which allows to reason with ontologies and mappings
in an integrated manner, and to deal with uncertainty and inconsistencies in auto-
matically created mappings. We analyze the requirements for such a formalism,
and propose to use frameworks that integrate description logic ontologies with
probabilistic rules. We compare two such frameworks and show the advantages
of using the probabilistic extensions of their deterministic counterparts. The two
frameworks that we compare are tightly coupled probabilistic dl-programs, which
tightly combine the description logics behind OWL DL resp. OWL Lite, disjunc-
tive logic programs under the answer set semantics, and Bayesian probabilities,
on the one hand, and generalized Bayesian dl-programs, which tightly combine
the DLP-fragment of OWL Lite with Datalog (without negation and equality)
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dress this problem, a number of languages for representing semantic relations between
elements in different ontologies as a basis for reasoning and query answering across
multiple ontologies have been proposed [1]. In the presence of real world ontologies,
it is unrealistic to assume that mappings between ontologies are created manually by
domain experts, since existing ontologies (e.g., in the area of medicine) contain thou-
sands of concepts and hundreds of relations. Recently, a number of heuristic methods
for matching elements from different ontologies have been proposed that support the
creation of mappings between different languages by suggesting candidate mappings
(e.g., [2]). These methods rely on linguistic and structural criteria. The resulting map-
ping either contains a fair amount of errors or only covers a small part of the ontologies
involved [3,4]. To leverage the weaknesses of the individual methods, it is common
practice to combine the results of a number of matching components or even the results
of different matching systems to achieve a better coverage of the problem [2].

This means that automatically created mappings often contain uncertain hypotheses
and errors that need to be dealt with, as briefly summarized as follows:

– mapping hypotheses are often oversimplifying, since most matchers only support
very simple semantic relations (mostly equivalence between individual elements);

– there may be conflicts between different hypotheses for semantic relations from
different matching components and often even from the same matcher;

– semantic relations are only given with a degree of confidence in their correctness.

If we want to use the resulting mapping, we have to find a way to deal with these
uncertainties and errors in a suitable way. We argue that the most suitable way of dealing
with uncertainties in mappings is to provide means to explicitly represent uncertainties
in the target language that encodes the mappings. In this paper, we address the problem
of designing a mapping representation language that is capable of representing the kinds
of uncertainty mentioned above. We propose two approaches to such a language, which
are based on an integration of ontologies and rules under probabilistic uncertainty, and
compare them regarding the necessary representation requirements.

We choose rules for the representation of mappings, because they are an intuitive
means for this task. Thinking in if-then statements (e.g., if an instance belongs to a
certain concept in ontology O1, then it belongs to a certain concept in ontology O2) is
very straight-forward and easily comprehensible also to people with few background in
logics. Furthermore, reasoning with rules has the advantage that instance retrieval can
generally be performed more efficiently than with description logics. Another advantage
of rule languages is that they allow to formulate meta-modeling statements while with
description logics this is generally not possible. In this way, the distinction between
concepts and their instances is flattened, that is, instances can also be concepts at the
same time and vice versa [5]. As we want to use a rule language for the representation
of mappings, we need a language that provides a tight integration of a rule language
and a description logic on the formal level.

There is a large body of work on rules for the Semantic Web and on integrating on-
tologies and rules for the Semantic Web; see especially [6] and [7], respectively, for an
overview. Here, we consider two frameworks, namely, (i) tightly coupled dl-programs
[8], which integrate the description logics behind OWL DL resp. OWL Lite and disjunc-
tive logic programs under the answer set semantics, and (ii) generalized dl-programs,
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which are an integration of the DLP-fragment of description logics [9] and Datalog. For
both formalisms, we provide a formal representation and show how mappings can be
represented in these frameworks. Note that both formalisms are decidable and allow the
arbitrary usage of description logic concepts and roles in the rules component.

Other works explore formalisms for uncertainty reasoning in the Semantic Web (an
important recent forum for approaches to uncertainty in the Semantic Web is the annual
Workshop on Uncertainty Reasoning for the Semantic Web (URSW); there also exists a
W3C Incubator Group on Uncertainty Reasoning for the World Wide Web). There are
especially probabilistic extensions of description logics [10], Web ontology languages
[11,12], and description logic programs [13] (to encode ambiguous information, such
as “John is a student with the probability 0.7 and a teacher with the probability 0.3”,
which is very different from vague/fuzzy information, such as “John is tall with the
degree of truth 0.7”). However, to our knowledge, none of these formalisms have been
used for representing uncertain mappings. We provide probabilistic extensions of the
above-mentioned tightly coupled dl-programs and generalized dl-programs, which are
based on general Bayesian probabilities and Bayesian networks [14], respectively.

The main contributions of this paper can be briefly summarized as follows.

– We show how tightly coupled dl-programs can be used for representing and reason-
ing with ontologies and deterministic mappings between ontologies. We introduce
tightly coupled probabilistic dl-programs, and show how they can be used for rep-
resenting and reasoning with ontologies and uncertain mappings between them.

– We introduce generalized dl-programs and generalized Bayesian dl-programs, and
show how they can be used for representing and reasoning with ontologies and
deterministic and uncertain mappings between ontologies, respectively.

– We give a detailed comparison of the features of the two deterministic and the two
probabilistic formalisms with respect to representing and reasoning with ontologies
and deterministic resp. uncertain ontology mappings in the Semantic Web.

The rest of this paper is structured as follows. In Section 2, we define the require-
ments that a formal language has to fulfill for representing mappings between ontolo-
gies in the Semantic Web. In Section 3, we recall the description logics behind OWL DL
and OWL Lite as well as the DLP-fragment [9]. We also provide an example scenario
consisting of two ontologies. In Section 4, we present tightly coupled dl-programs and
generalized dl-programs, and show how they can be used for representing determinis-
tic mappings between ontologies. In Section 5, we present tightly coupled probabilistic
dl-programs and generalized Bayesian dl-programs. We also provide an example sce-
nario, and show how uncertain mappings can be represented in both formalisms and
how reasoning can be performed. We finally conclude with Section 6, where we discuss
the representation features of both formalisms and give an outlook on future research.

2 Representation Requirements

The problem of ontology matching can be defined as follows [2]. Ontologies are theo-
ries encoded in a certain language L. In this work, we assume that ontologies are en-
coded in OWL DL, OWL Lite, or the DLP-fragment of OWL Lite. For each ontology O
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in language L, we denote by Q(O) the matchable elements of the ontology O. Given
two ontologies O and O′, the task of matching is now to determine correspondences
between the matchable elements in the two ontologies. In general, correspondences
are 5-tuples (id, e, e′, r, n) such that

– id is a unique identifier for referring to the correspondence;
– e ∈ Q(O) and e′ ∈ Q(O′) are matchable elements from the two ontologies;
– r ∈ R is a semantic relation;
– n is a degree of confidence in the correctness of the correspondence.

In this paper, we only consider semantic relations r which can be interpreted as an
implication. We consider two formal languages for representing and combining corre-
spondences that are produced by different matching components or systems. From the
above general description of automatically generated correspondences between ontolo-
gies, we can derive a number of requirements for such a formal language for represent-
ing the results of multiple matchers as well as the contained uncertainties:

– Tight integration of mapping and ontology language: The semantics of the lan-
guage used to represent the correspondences between elements in different ontolo-
gies has to be tightly integrated with the semantics of the ontology language used
(here OWL). This is important if we want to use the correspondences to reason
across different ontologies in a semantically coherent way. This also means that the
interpretation of the mapped elements depends on the definitions in the ontologies.
Failing this requirement comes along with not that nice semantic properties.

– Support for mappings refinement: The language should be expressive enough to
allow the user to refine oversimplifying correspondences from the matching system.
This is important to be able to provide a precise account of the true semantic relation
between elements in the mapped ontologies. In particular, this requires the ability
to describe correspondences that include several elements from the two ontologies.

– Support for repairing inconsistencies: Inconsistent mappings are a major problem
for the combined use of ontologies because they can cause inconsistencies in the
mapped ontologies, which can make logical reasoning impossible, since everything
can be derived from an inconsistent ontology. The mapping language should be able
to represent and reason about inconsistent mappings in an approximate fashion.

– Representation and combination of confidence: The confidence values provided
by matching systems is an important indicator for the uncertainty to be taken into
account. The mapping language should be able to use these confidence values when
reasoning with mappings. In particular, it should be able to represent the confidence
in a mapping rule and to combine confidence values on a sound formal basis.

– Decidability and efficiency of instance reasoning: An important use of ontology
mappings is the exchange of data across different ontologies. In particular, we nor-
mally want to be able to ask queries using the vocabulary of one ontology and
receive answers that do not only consist of instances of this ontology but also of
ontologies connected through ontology mappings. To support this, query answering
in the combined formalism consisting of ontology language and mapping language
has to be decidable. Furthermore, to be able to handle large amounts of data in the
Semantic Web, there should be efficient algorithms for answering queries.



70 A. Calı̀ et al.

In the following, we consider two different logic formalisms and investigate their
ability to fulfill the above representation requirements.

3 Representing Ontologies

In this section, we first recall the two expressive description logics SHOIN (D) and
SHIF(D) as well as the DLP-fragment of SHIF(D). We then illustrate along an
example scenario how they are used to represent ontologies.

3.1 The Description Logics SHOIN (D) and SHIF(D)

The description logics SHOIN (D) and SHIF(D) are important in the Semantic
Web, since they stand behind the Web ontology languages OWL DL and OWL Lite
[15], respectively. Intuitively, description logics model a domain of interest in terms of
concepts and roles, which represent classes of individuals and binary relations between
classes of individuals, respectively. A description logic knowledge base encodes espe-
cially subset relationships between concepts and between roles, and the membership of
individuals to concepts and of pairs of individuals to roles.

Syntax. We first describe the syntax of SHOIN (D). We assume a set of elementary
datatypes and a set of data values. A datatype is either an elementary datatype or a set of
data values (datatype oneOf ). A datatype theory D=(ΔD, ·D) consists of a datatype
domain ΔD and a mapping ·D that assigns to each elementary datatype a subset of ΔD

and to each data value an element of ΔD. The mapping ·D is extended to all datatypes
by {v1, . . .}D = {vD

1 , . . .}. Let A, RA, RD, and I be pairwise disjoint (denumerable)
sets of atomic concepts, abstract roles, datatype roles, and individuals, respectively.
We denote by R−

A the set of inverses R− of all R∈RA.
A role is any element of RA ∪R−

A ∪RD. Concepts are inductively defined as fol-
lows. Every φ∈A is a concept, and if o1, . . . , on ∈ I, then {o1, . . . , on} is a concept
(oneOf). If φ, φ1, and φ2 are concepts and if R∈RA ∪R−

A, then also (φ1 � φ2),
(φ1�φ2), and¬φ are concepts (conjunction, disjunction, and negation, respectively), as
well as ∃R.φ, ∀R.φ, �nR, and �nR (existential, value, atleast, and atmost restriction,
respectively) for an integer n � 0. If D is a datatype and U ∈RD, then ∃U.D, ∀U.D,
�nU , and �nU are concepts (datatype existential, value, atleast, and atmost restric-
tion, respectively) for an integer n � 0. We write � and ⊥ to abbreviate the concepts
φ � ¬φ and φ � ¬φ, respectively, and we eliminate parentheses as usual.

An axiom has one of the following forms: (1) φ�ψ (concept inclusion axiom),
where φ and ψ are concepts; (2) R�S (role inclusion axiom), where either R, S ∈
RA ∪R−

A or R, S ∈RD; (3) Trans(R) (transitivity axiom), where R∈RA; (4) φ(a)
(concept membership axiom), where φ is a concept and a∈ I; (5) R(a, b) (resp., U(a,
v)) (role membership axiom), where R∈RA (resp., U ∈RD) and a, b∈ I (resp., a∈ I
and v is a data value); and (6) a = b (resp., a �= b) (equality (resp., inequality) axiom),
where a, b∈ I. Axioms of the form (1)–(3) (resp., (4) and (5)) are also called TBox
(resp., ABox) axioms. A (description logic) knowledge base L is a finite set of axioms.
For decidability, number restrictions in L are restricted to simple abstract roles [16].

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the
oneOf constructor and with the atleast and atmost constructors limited to 0 and 1.
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Semantics. An interpretation I = (ΔI , ·I) relative to a datatype theory D= (ΔD, ·D)
consists of a nonempty (abstract) domain ΔI disjoint from ΔD, and a mapping ·I that
assigns to each atomic concept φ∈A a subset of ΔI , to each individual o∈ I an ele-
ment of ΔI , to each abstract role R∈RA a subset of ΔI ×ΔI , and to each datatype
role U ∈RD a subset of ΔI ×ΔD. We extend ·I to all concepts and roles, and we
define the satisfaction of an axiom F in an interpretation I =(ΔI , ·I), denoted I |= F ,
as usual [15]. We say I satisfies the axiom F , or I is a model of F , iff I |=F . We
say I satisfies a knowledge base L, or I is a model of L, denoted I |= L, iff I |= F for
all F ∈L. We say L is satisfiable iff L has a model. An axiom F is a logical conse-
quence of L, denoted L |= F , iff every model of L satisfies F .

3.2 The DLP-Fragment of SHIF(D)

The description logic programming fragment (or DLP-fragment) of SHIF(D) [9] lies
in the expressive intersection of description logics and logic programs. Hence, it is pos-
sible to translate an ontology in the DLP-fragment into a logic program and vice versa
without loss of declarative semantics. This process, that is, the bidirectional translation
from the description logic syntax to the logic programming syntax and vice versa, has
been called DLP-fusion [9]. It provides a basis for achieving interoperability.

We now describe the restrictions that are imposed on SHIF to obtain the DLP-
fragment. First, negation, equality, inequality, the atleast constructor, and the atmost
constructor are disallowed. Note that some combinations of the atleast and the atmost
constructors in SHIF can be modeled by other constructors. Another restriction on
SHIF is based on a distinction between the body φ and the head ψ of concept in-
clusion axioms φ�ψ: the head is constructed from atomic concepts via conjunctions
and value restrictions, while the body is constructed from atomic concepts via conjunc-
tions, disjunctions, and existential restrictions. In addition, one allows concept inclusion
axioms��∀R.ψ, where R∈RA ∪R−

A, and ψ is a head concept. Furthermore, one al-
lows only concept membership axioms ψ(a), where ψ is a head concept.

Although the DLP-fragment has a restricted expressivity, it has several advantages.
In particular, a large amount of existing ontologies lie within the DLP-fragment. More-
over, reasoning in the DLP-fragment is not only decidable, but also has a much lower
complexity than reasoning in SHIF(D) and SHOIN (D) in theory and practice.

3.3 Example Scenario

We consider a retrieval scenario where two different peers provide information about
publications based on two different bibliographic ontologies O1 and O2.

Ontology O1: (1) technical reports have topics as keywords and persons as authors;
(2) publications are not technical reports; (3) every book is a publication; (4) every
article is a publication; (5) every collection is a publication; (6) a publication is either a
book or an article or a collection; (7) books are not articles; (8) books are not collections;
(9) articles are not collections; (10) publications have topics as keywords and authors
as publications. These relationships are expressed by the following TBox axioms:
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(1) Technical Report � ∀keyword .Topic � ∀author .Person ;
(2) Publication � ¬Technical Report ;
(3) Book � Publication; (4) Article � Publication; (5) Collection � Publication ;
(6) Publication � Book � Article � Collection; (7) Book � ¬Article;
(8) Book �¬Collection ; (9) Article � ¬Collection;
(10) Publication � ∀keyword .Topic � ∀author .Person .

Note that the ontology O′
1 obtained from O1 by removing the axioms (2) and (6)–(9)

lies in the DLP-fragment. The ABox shown below belongs to O1 and O′
1:

(11) Book(b1); (12) Article(a1); (13)Collection(c1); (14)Technical Report(t1);
(15) keyword(b1, artificial intelligence); keyword(a1, artificial intelligence);
(16) keyword(c1, software engineering); keyword (t1, artificial intelligence);
(17) author(b1, John); author (a1,Paul); author(b1,Michael); author (t1,Peter ).

Ontology O2: (1) every paper is a publication; (2) every proceedings is a publication;
(3) papers are not proceedings; (4) the role includes relates proceedings with papers;
(5) proceedings include at least 5 different entities (that is, papers); (6) publications
are not publishers; (7) publications are not persons; (8) publications are not subjects;
(9) persons are not subjects; (10) persons are not publishers; (11) the role published by
relates publications with publishers; (12) the role about relates publications with sub-
jects; (13) the role author relates publications with persons. These relationships are
expressed by the following TBox axioms:

(1) Paper � Publication; (2) Proceedings � Publication ; (3) Paper � ¬Proceedings ;
(4) � � ∀includes.Paper ; � � ∀includes−1.Proceedings ;
(5) Proceedings �� 5 includes;
(6) Publication � ¬Publisher ; (7) Publication � ¬Person ;
(8) Publication � ¬Subject ; (9) Person � ¬Subject ; (10) Person � ¬Publisher ;
(11) � � ∀published by .Publisher ; � � ∀published by−1.Publication ;
(12) � � ∀about .Subject ; � � ∀about−1.Publication ;
(13) � � ∀author .Person ; � � ∀author−1.Publication .

Note again that the ontology O′
2 obtained from O2 by removing the axioms (3) and

(5)–(10) lies in the DLP-fragment. The ABox shown below belongs to O2 and O′
2:

(14) includes(proc1, p1);
(15) about(p1, artificial intelligence), about(p2, artificial intelligence);
(16) author (p1,Mary), author (p2,Elizabeth);
(17) published by(p1,Springer); published by(proc1,Springer);
(18) paper (p2).

Since the above two ontologies describe overlapping domains, a user may want to query
the information represented by both of them in an integrated manner. For example, a
user may be looking for all technical reports in both ontologies, or a user may be inter-
ested in all publications about artificial intelligence in both ontologies. In the following,
we investigate two formal information integration frameworks that allow dealing with
ontologies and with mappings encoded in a probabilistic rule language at the same time.
At first, however, in Section 4, we look at their deterministic variants.
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4 Representing Deterministic Ontology Mappings

The integration task is stated as follows. Let O = O1 ∪O2 be the union of two on-
tologies O1 and O2 with overlapping domains. Let O1, O2, and O be encoded in the
description logics L1, L2, and L =L1 ∪L1, respectively. Let the logic program P rep-
resent a set of deterministic mappings. How can we then reason with O and P such
that queries reflect the integrated knowledge? In the following, we present two formal
frameworks that aim at integrating description logic ontologies with mapping rules.

For this purpose, we assume a first-order vocabulary Φ with finite nonempty sets
of constant and predicate symbols, but no function symbols. We use Φc to denote the
set of all constant symbols in Φ. We also assume a set of data values V (relative to a
datatype theory D=(ΔD, ·D)) and pairwise disjoint (denumerable) sets A, RA, RD,
and I of atomic concepts, abstract roles, datatype roles, and individuals, respectively, as
in Section 3. We assume that (i) Φc is a subset of I∪V, and that (ii) Φ and A (resp.,
RA ∪RD) may have unary (resp., binary) predicate symbols in common. Let X be a
set of variables. A term is either a variable from X or a constant symbol from Φ. An
atom is of the form p(t1, . . . , tn), where p is a predicate symbol of arity n � 0 from Φ,
and t1, . . . , tn are terms. Such an atom is ground iff t1, . . . , tn are constant symbols.

4.1 Tightly Coupled DL-Programs

We now recall the tightly coupled approach to disjunctive description logic programs
(or tightly coupled dl-programs) KB =(L, P ) under the answer set semantics from [8],
where KB consists of a description logic knowledge base L and a disjunctive logic pro-
gram P . Their semantics is defined in a modular way as in [7], but it allows for a much
tighter integration of L and P . Note that we do not assume any structural separation be-
tween the vocabularies of L and P . The main idea behind the semantics is to interpret
P relative to Herbrand interpretations that are compatible with L, while L is interpreted
relative to general first-order interpretations. Thus, we modularly combine the standard
semantics of logic programs and of description logics, which allows for building on
the standard techniques and results of both areas. As another advantage, the novel dl-
programs are decidable, even when their components of logic programs and description
logic knowledge bases are both very expressive. See especially [8] for further details on
the novel approach to dl-programs and for a comparison to related works.

Syntax. A literal l is an atom p or a default-negated atom not p. A disjunctive rule (or
simply rule) r is an expression of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . , not βn+m , (1)

where α1, . . . , αk, β1, . . . , βn+m are atoms and k, m, n � 0. We call α1 ∨ · · · ∨ αk

the head of r, while the conjunction β1, . . . , βn,not βn+1, . . . ,not βn+m is its body.
We define H(r)= {α1, . . . , αk} and B(r)= B+(r)∪B−(r), where B+(r)= {β1, . . . ,
βn} and B−(r)= {βn+1, . . . , βn+m}. A disjunctive program P is a finite set of dis-
junctive rules of the form (1). We say P is positive iff m =0 for all disjunctive rules (1)
in P . We say P is a normal program iff k � 1 for all disjunctive rules (1) in P .
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A tightly coupled disjunctive description logic program (or simply tightly coupled
dl-program) KB =(L, P ) consists of a description logic knowledge base L and a dis-
junctive program P . It is positive (resp., normal) iff P is positive (resp., normal).

Semantics. We now define the answer set semantics of tightly coupled dl-programs
as a generalization of the answer set semantics of ordinary disjunctive logic programs.
In the sequel, let KB = (L, P ) be a tightly coupled dl-program.

A ground instance of a rule r∈P is obtained from r by replacing every variable
that occurs in r by a constant symbol from Φc. We denote by ground(P ) the set of all
ground instances of rules in P . The Herbrand base relative to Φ, denoted HBΦ, is the
set of all ground atoms constructed with constant and predicate symbols from Φ. We
use DLΦ to denote the set of all ground atoms in HBΦ that are constructed from atomic
concepts in A, abstract roles in RA, and datatype roles in RD.

An interpretation I is any subset of HBΦ. Informally, every such I represents the
Herbrand interpretation in which all a∈ I (resp., a∈HBΦ− I) are true (resp., false).
We say an interpretation I is a model of a description logic knowledge base L, de-
noted I |=L, iff L∪ I ∪ {¬a |a∈HBΦ− I} is satisfiable. We say I is a model of a
ground atom a∈HBΦ, or I satisfies a, denoted I |= a, iff a∈ I . We say I is a model of
a ground rule r, denoted I |= r, iff I |= α for some α∈H(r) whenever I |=B(r), that
is, I |= β for all β ∈B+(r) and I �|= β for all β ∈B−(r). We say I is a model of a set
of rules P iff I |= r for every r∈ ground(P ). We say I is a model of a tightly coupled
dl-program KB =(L, P ), denoted I |= KB , iff I is a model of both L and P .

We now define the answer set semantics of tightly coupled dl-programs by general-
izing the ordinary answer set semantics of disjunctive logic programs. We generalize
the definition via the FLP-reduct [17] (which coincides with the answer set seman-
tics defined via the Gelfond-Lifschitz reduct [18]). Given a dl-program KB =(L, P ),
the FLP-reduct of KB relative to an interpretation I ⊆HBΦ, denoted KBI , is the dl-
program (L, P I), where P I is the set of all r∈ ground(P ) such that I |= B(r). An
interpretation I ⊆HBΦ is an answer set of KB iff I is a minimal model of KBI .
A dl-program KB is consistent (resp., inconsistent) iff it has an (resp., no)
answer set.

We finally define the notions of cautious (resp., brave) reasoning from tightly cou-
pled dl-programs under the answer set semantics as follows. A ground atom a∈HBΦ

is a cautious (resp., brave) consequence of a tightly coupled dl-program KB under the
answer set semantics iff every (resp., some) answer set of KB satisfies a.

4.2 Generalized DL-Programs

We next present generalized description logic programs (or generalized dl-programs),
which informally generalize the DLP-fragment of SHIF(D) by Datalog rules.

Syntax. A generalized description logic program (or generalized dl-program) KB =
(L, P ) consists of a knowledge base L in the DLP-fragment of SHIF(D) and a logic
program P in Datalog (without negation), which consist of a set of rules r of the form

h ← β1, . . . , βm, (2)
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where h, β1, . . . , βm are atoms and m � 0. We call the atom h (resp., the conjunction
β1, . . . , βm) the head (resp., body) of r. Note that all the variables in r are implicitly
universally quantified. We say r is a fact iff i =0 and h is ground.

Semantics. We interpret generalized dl-programs as Datalog programs, via the trans-
lation of L into its Datalog equivalent (as L lies in the intersection of SHIF(D) and
Datalog). Due to the absence of negation, this also corresponds to the semantics of
first-order logics. Note that when L is translated into Datalog, we only obtain 2-ary
predicates and the variable graph of the body of each rule is connected and acyclic.

4.3 Example Scenario Cont’d

We now compare the two formalisms above regarding the representation requirements
stated in Section 2. For this purpose, we first show how tightly coupled and generalized
dl-programs KB =(L, P ) can be used for representing (possibly inconsistent) map-
pings (without confidence values) between two ontologies. Intuitively, L encodes the
union of the two ontologies, while P encodes the mappings between the ontologies.

Tightly coupled and generalized dl-programs KB =(L, P ) naturally represent two
heterogeneous ontologies O1 and O2, and mappings between O1 and O2 as follows. The
description logic knowledge base L is the union of two independent description logic
knowledge bases L1 and L2, which encode the ontologies O1 and O2, respectively.
Here, we assume that L1 and L2 have signatures A1, RA,1, RD,1, I1 and A2, RA,2,
RD,2, I2, respectively, such that A1 ∩A2 = ∅, RA,1 ∩ RA,2 = ∅, RD,1 ∩ RD,2 = ∅,
and I1 ∩ I2 = ∅. Note that this can easily be achieved for any pair of ontologies by a
suitable renaming, e.g., as done below by using the prefix ’Oi:’. A mapping between
elements e1 and e2 from L1 and L2, respectively, is then represented by a simple rule
e2(x)← e1(x) in P , where e1 ∈A1 ∪RA,1 ∪RD,1, e2 ∈A2 ∪RA,2 ∪RD,2, and x is
a suitable variable vector. Informally, such a rule encodes that every instance of (the
concept or role) e1 in O1 is also an instance of (the concept or role) e2 in O2. Note that
demanding the signatures of L1 and L2 to be disjoint guarantees that the set of rules
that represents ontology mappings is stratified as long as there are no cyclic mappings.

The simple mappings above are the kind of mappings usually found by common
matching tools. Both tightly coupled and generalized dl-programs allow to represent
such simple mappings. Examples of such mapping rules found by a specific typical
matcher m between the ontologies in our example scenario are the following ones:

(1) O1 : Publication(x) ← O2 : Publication(x);
(2) O1 : Article(x) ← O2 : Paper(x);
(3) O1 : Technical Report(x) ← O2 : Paper(x);
(4) O1 : Person(x) ← O2 : Person(x);
(5) O1 : Book(x) ← O2 : Proceedings(x);
(6) O1 : Collection(x) ← O2 : Proceedings(x);
(7) O1 : keyword (x, y) ← O2 : about(x, y);
(8) O1 : author (y, x) ← O2 : author (x, y).

These mappings are very simple Horn rules without negation and with only one body
atom. They can be expressed with both tightly coupled and generalized dl-programs.
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These simple mappings can be refined, e.g., if we want to add in the mapping rule (7)
that only those tuples in the relation “about” are allowed to be mapped to the relation
“keyword” that have a subject which is also a topic in O2. In this way, the integration
does not consider relations where topics are involved that do not occur in O1:

(9) O1 : keyword(x, y) ← O2 : about(x, y) ∧ O2 : Subject(y) ∧ O1 : Topic(y).

Such refinements are possible in both tightly coupled and generalized dl-programs.
We next consider the mapping rules (2) and (3). In O1, there is an axiom that declares

Publication and Technical Report as being disjoint and another axiom that declares Ar-
ticle as being a subclass of Publication. Thus, these two rules produce an inconsistency,
because a concept of O2 is mapped to two disjoint concepts of O1 at the same time.
In [19], a method for detecting such inconsistent mappings is presented which can be
used for this purpose. There are different approaches for resolving this inconsistency.
The most straightforward one is to drop mappings until no inconsistency is present
anymore. Peng and Xu [20] have proposed a more suitable method for dealing with
inconsistencies in terms of a relaxation of the mappings. In particular, they propose to
replace a number of conflicting mappings by a single mapping that includes a disjunc-
tion of the conflicting concepts. In this example, we would replace the two mapping
rules (2) and (3) by the following one:

(10) O1 : Article(x) ∨ O1 : Technical Report(x) ← O2 : Paper(x).

This new mapping rule resolves the inconsistency and can be represented in tightly cou-
pled dl-programs, but not in generalized dl-programs. More specifically, for a particular
paper p in the ontology O2, it imposes the existence of two partial answer sets

{O1 : Article(p), O2 : Paper(p)};
{O1 : Technical Report(p), O2 : Paper(p)}.

None of these answer sets is invalidated by the disjointness constraints imposed by
the ontology O1. However, we can only deduce O2 :Paper(p) cautiously, the other
atoms can be deduced bravely. More generally, with such rules, instances that are only
available in the ontology O2 cannot be classified with certainty.

We can solve this issue by refining the rules again and make use of nonmonotonic
negation which again can be used only in the framework of tightly coupled dl-programs
and not in the framework of generalized dl-programs. In particular, we can extend the
body of the original mappings with the following additional requirement:

O1 : Article(x) ← O2 : Paper (x) ∧ O2 : published by(x, y);
O1 : Technical Report(x) ← O2 : Paper(x) ∧ not O2 : published by(x, y).

This refinement of the mapping rules resolves the inconsistency and also provides a
more correct mapping because background information has been added. A drawback of
this approach is the fact that it requires manual post-processing of mappings because
the additional background information is not obvious. In the next section, we present
a probabilistic extension of tightly coupled dl-programs that allows us to directly use
confidence estimations of matching engines to resolve inconsistencies and to combine
the results of different matchers.
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With both tightly coupled and generalized dl-programs, it is possible to refine map-
pings positively by adding constraints by means of additional conjuncts in the body.
With tightly coupled dl-programs, it is additionally possible to refine mappings by ad-
ditional nonmonotonic negated conjuncts in the body. Another refinement possibility
supported by tightly coupled dl-programs, but not by generalized dl-programs is relax-
ing the antecedent of the rule by means of additional disjuncts in the head.

5 Representing Probabilistic Ontology Mappings

In this section, we present probabilistic extensions of tightly coupled and generalized
dl-programs, called tightly coupled probabilistic dl-programs and generalized Bayesian
dl-programs, respectively. Intuitively, they extend the rule component of tightly coupled
and generalized dl-programs by Bayesian probabilities.

5.1 Tightly Coupled Probabilistic DL-Programs

We now present a tightly coupled approach to probabilistic disjunctive description logic
programs (or tightly coupled probabilistic dl-programs) under the answer set semantics.
Differently from [13] (in addition to being a tightly coupled approach), the probabilistic
dl-programs here also allow for disjunctions in rule heads. Similarly to the probabilis-
tic dl-programs in [13], they are defined as a combination of dl-programs with Poole’s
ICL [21], but using the tightly coupled disjunctive dl-programs of [8] (see Section 4.1),
rather than the loosely coupled dl-programs of [7]. The ICL is based on ordinary acyclic
logic programs P under different “choices”, where every choice along with P produces
a first-order model, and one then obtains a probability distribution over the set of all
first-order models by placing a probability distribution over the different choices. We
use the tightly coupled disjunctive dl-programs under the answer set semantics of [8],
instead of ordinary acyclic logic programs under their canonical semantics (which co-
incides with their answer set semantics).

Syntax. We now define the syntax of tightly coupled probabilistic dl-programs and
queries to them. We first introduce choice spaces and probabilities on choice spaces.

A choice space C is a set of pairwise disjoint and nonempty sets A⊆HBΦ−DLΦ.
Any A∈C is an alternative of C and any element a∈A an atomic choice of C. Intu-
itively, every alternative A∈C represents a random variable and every atomic choice
a∈A one of its possible values. A total choice of C is a set B⊆HBΦ−DLΦ such
that |B ∩ A|= 1 for all A∈C (and thus |B|= |C|). Intuitively, every total choice B
of C represents an assignment of values to all the random variables. A probability μ
on a choice space C is a probability function on the set of all total choices of C. Intu-
itively, every probability μ is a probability distribution over the set of all variable as-
signments. Since C and all its alternatives are finite, μ can be defined by (i) a mapping
μ :
⋃

C→ [0, 1] such that
∑

a∈A μ(a)= 1 for all A∈C, and (ii) μ(B) = Πb∈Bμ(b)
for all total choices B of C. Intuitively, (i) defines a probability over the values of each
random variable of C, and (ii) assumes independence between the random variables.

A tightly coupled probabilistic disjunctive description logic program (or tightly cou-
pled probabilistic dl-program) KB = (L, P, C, μ) consists of a tightly coupled
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dl-program (L, P ), a choice space C such that no atomic choice in C coincides with
the head of any rule in ground(P ), and a probability μ on C. Intuitively, since the total
choices of C select subsets of P , and μ is a probability distribution on the total choices
of C, every probabilistic dl-program is the compact representation of a probability dis-
tribution on a finite set of disjunctive dl-programs. Observe here that P is fully general
and not necessarily stratified or acyclic. We say KB is normal iff P is normal. A prob-
abilistic query to KB has the form ∃(c1(x)∨ · · · ∨ cn(x))[r, s], where x, r, s is a tuple
of variables, n � 1, and each ci(x) is a conjunction of atoms constructed from pred-
icate and constant symbols in Φ and variables in x. Note that the above probabilistic
queries can also be easily extended to conditional expressions as in [13].

Semantics. We now define an answer set semantics of probabilistic dl-programs, and
we introduce the notions of consistency, consequence, tight consequence, and correct
and tight answers for queries to tightly coupled probabilistic dl-programs.

Given a tightly coupled probabilistic dl-program KB =(L, P, C, μ), a probabilistic
interpretation Pr is a probability function on the set of all I ⊆HBΦ. We say Pr is an
answer set of KB iff (i) every I ⊆HBΦ with Pr(I)> 0 is an answer set of (L, P ∪
{p ← | p∈B}) for some total choice B of C, and (ii) Pr(

∧
p∈B p)=

∑
I⊆HBΦ, B⊆I

Pr(I)= μ(B) for every total choice B of C. Informally, Pr is an answer set of KB =
(L, P, C, μ) iff (i) every I ⊆HBΦ of positive probability under Pr is an answer set of
the dl-program (L, P ) under some total choice B of C, and (ii) Pr coincides with μ on
the total choices B of C. We say KB is consistent iff it has an answer set Pr .

We define the notions of consequence and tight consequence as follows. Given a
probabilistic query ∃(q(x))[r, s], the probability of q(x) in a probabilistic interpreta-
tion Pr under a variable assignment σ, denoted Prσ(q(x)) is defined as the sum of all
Pr(I) such that I ⊆HBΦ and I |=σ q(x). We say (q(x))[l, u] (where l, u∈ [0, 1]) is a
consequence of KB , denoted KB‖∼ (q(x))[l, u], iff Prσ(q(x))∈ [l, u] for every answer
set Pr of KB and every variable assignment σ. We say (q(x))[l, u] (where l, u∈ [0, 1])
is a tight consequence of KB , denoted KB ‖∼tight(q(x))[l, u], iff l (resp., u) is the in-
fimum (resp., supremum) of Prσ(q(x)) subject to all answer sets Pr of KB and all σ.
A correct (resp., tight) answer to a probabilistic query ∃(q(x))[r, s] is a ground substi-
tution θ (for the variables x, r, s) such that (q(x))[r, s] θ is a consequence (resp., tight
consequence) of KB .

Example Scenario Cont’d. We now show how tightly coupled probabilistic dl-pro-
grams KB =(L, P, C, μ) can be used for representing (possibly inconsistent) mappings
with confidence values between two ontologies. Here, (i) L is the union of two descrip-
tion logic knowledge bases L1 and L2 encoding two ontologies O1 and O2, respectively,
and (ii) P , C, and μ encode the mappings between the two ontologies O1 and O2, where
confidence values are encoded as error probabilities to combine mappings produced by
different matchers, and inconsistencies are resolved via trust probabilities (in addition
to using disjunctions and nonmonotonic negations in P ).

More concretely, we interpret the confidence value as an error probability and state
that the probability that a mapping introduces an error is 1−p. Conversely, the probabil-
ity that a mapping correctly describes the semantic relation between elements of the dif-
ferent ontologies is 1 − (1 − p) = p. This means that we can use the
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confidence value p as a probability for the correctness of a mapping. The indirect for-
mulation is chosen, because it allows us to combine the results of different matchers in
a meaningful way. In particular, if we assume that the error probabilities of two match-
ers are independent, we can calculate the joint error probability of two matchers that
have found the same mapping rule as (1 − p1) · (1 − p2). This means that we can
get a new probability for the correctness of the rule found by two matchers which is
1− (1− p1) · (1− p2). This way of calculating the joint probability meets the intuition
that a mapping is more likely to be correct if it has been discovered by more than one
matcher because 1− (1− p1) · (1− p2) � p1 and 1− (1− p1) · (1− p2) � p2.

In addition, when merging inconsistent results of different matching systems, we
weigh each matching system and its result with a (user-defined) trust probability, which
describes our confidence in its quality. All these trust probabilities sum up to 1. For
example, the trust probabilities of the matching systems m1, m2, and m3 may be 0.6,
0.3, and 0.1, respectively. That is, we trust most in m1, medium in m2, and less in m3.

We illustrate this approach along our example scenario. The following rules in P
encode the mappings that have been produced by two matchers m1 and m2:

(1) O1 : Publication(x) ← O2 : Publication(x),m1,1;
(2) O1 : Article(x) ← O2 : Paper (x),m1,2;
(3) O1 : Technical Report(x) ← O2 : Paper(x), m2,1;
(4) O1 : Person(x) ← O2 : Person(x),m1,3;
(5) O1 : Person(x) ← O2 : Person(x),m2,2;
(6) O1 : Book(x) ← O2 : Proceedings(x), m2,3;
(7) O1 : keyword (x, y) ← O2 : about(x, y), m1,4;
(8) O1 : author (y, x) ← O2 : author (x, y),m2,4.

More concretely, every rule contains a conjunct mi,j , identifying with i and j the match-
ing system that has created it and the mapping, respectively. Thus, mappings (1), (2),
(4), and (7) have been found by m1, while mappings (3), (5), (6), and (8) have been
found by m2. These additional conjuncts mi,j are atomic choices of the choice space Ci

and link probabilities (which are specified in the probability μi on the choice space Ci)
to the rules. The two choice spaces C1 and C2 of the matchers are

C1 = {{m1,i,not m1,i} | i ∈ {1, 2, 3, 4}}, C2 = {{m2,j ,not m2,j} | j ∈ {1, 2, 3, 4}}.

They come along with the probabilities μ1 and μ2 on C1 and C2, respectively, which
assign the corresponding confidence value p to each atomic choice m1,i and the comple-
ment 1− p to the atomic choice not m1,i (and the same holds for m2,j and not m2,j).
For example, we have μ1(m1,1) = 0.9 and μ1(not m1,1) = 0.1. Because the proba-
bility value of each atomic choice is determined by the probability value of the other
atomic choice in an alternative, we restrict the presentation of the probability to only
one element of each alternative: μ1(m1,2) = 0.62, μ1(m1,3) = 0.73, μ1(m1,4) = 0.84.
μ2(m2,1) = 0.94, μ2(m2,2) = 0.96, μ2(m2,3) = 0.72, and μ2(m2,4) = 0.93.

The benefits of this explicit treatment of uncertainty becomes clear when we now try
to merge the mappings of m1 with the mappings of m2. Note that the mappings (2) and
(3) produce an inconsistency, since the same concept of the source ontology O2 (here,
O2 : Paper ) is mapped to two disjoint concepts of the target ontology O1. Note also
that the mappings (4) and (5) are identical and found by each of the matchers.
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Directly merging these two mappings as they are is not a good idea for two reasons.
First, by adding mappings (2) and (3), we encounter an inconsistency problem as men-
tioned above. Therefore, rules (2) and (3) cannot contribute to a model of the knowledge
base. Second, a simple merge does not account for the fact that the mappings (4) and (5)
are identical and have been found by both matchers, and should thus be strengthened.
Here, the mapping rule has the same status as any other rule in the mapping and each
instance of O2 : Person has two probabilities at the same time.

Suppose we associate with m1 and m2 the trust probabilities 0.55 and 0.45, respec-
tively. Based on the interpretation of confidence values as error probabilities, and on
the use of trust probabilities when resolving inconsistencies between rules, we can now
define a merged mapping set, which consists of the mappings (1), (4), (5), (6), (7), and
(8) from above and the following two rules instead of (2) and (3):

(2′) O1 : Article(x) ← O2 : Paper(x), m1,2, sel m1,2;
(3′) O1 : Technical Report(x) ← O2 : Paper(x), m2,1, sel m2,1.

The choice space C and the probability μ on C are obtained from C1 ∪C2 and μ1 · μ2
(which is the product of μ1 and μ2, that is, (μ1 · μ2)(B1 ∪B2) = μ1(B1) · μ2(B2)
for all total choices B1 of C1 and B2 of C2), respectively, by adding the alternative
{sel m1,2, sel m2,1} and the probabilities μ(sel m1,2)= 0.55 and μ(sel m2,1)= 0.45
for resolving the inconsistency between the first two rules.

It is not difficult to verify that, due to the independent combination of alternatives,
the last two rules encode that the rule O1 : Person(x)←O2 : Person(x) holds with
the probability 1− (1−μ(m1,3)) · (1−μ(m2,2))=0.9892, as desired. Informally, any
randomly chosen instance of Person of the ontology O2 is also an instance of Person
of the ontology O1 with the probability 0.9892. In contrast, if the mapping rule would
have been discovered only by m1 (resp., m2), such an instance of Person of O2 would
be an instance of Person of O1 with the probability 0.73 (resp., 0.96).

A probabilistic query Q asking for the probability that a specific publication pub
in the ontology O2 is an instance of the concept Article of the ontology O1 is given
by Q =∃(Article(pub))[R, S]. The tight answer θ to Q is given by θ = {R/0, S/0},
if pub is not an instance of the concept Paper in the ontology O2 (since there is no
mapping rule that maps another concept than Paper to the concept Article). If pub
is an instance of the concept Paper , however, then the tight answer to Q is given
by θ = {R/0.341, S/0.341} (as μ(m1,2) ·μ(sel m1,2) = 0.62 · 0.55 = 0.341). Infor-
mally, pub belongs to the concept Article with the probabilities 0 resp. 0.341.

5.2 Generalized Bayesian DL-Programs

In [22], we have proposed Bayesian dl-programs for information integration and re-
trieval. We now define generalized Bayesian dl-programs, which extend Bayesian dl-
programs to the generalized dl-programs presented in Section 4.2. More concretely,
the logic programming component is extended to full Datalog (without equality and
negation). That is, the predicates are allowed to be of a higher arity than 2 and the de-
pendency graph of the rules does not need to be connected and fully acyclic anymore.
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Syntax. A generalized Bayesian dl-program is a 4-tuple KB =(L, P, μ,Comb), where
(i) (L, P ) is a generalized dl-program, (ii) μ associates with each rule r : h← b1, . . . , bn

in ground(P ) and every truth valuation v : {b1, . . . , bn}→{false, true} of the body
atoms of r a probability function μ(r, v) over all truth valuations w : {h}→{false,
true} of the head atom of r, and (iii) Comb is a combining rule, which defines how
rules r∈ ground(P ) with the same head atom can be combined to obtain a single rule.

Semantics. Each generalized Bayesian dl-program KB =(L, P, μ,Comb) encodes the
structure of a Bayesian network BN and provides a complete specification of its condi-
tional probability distributions. We now describe the translation from KB to BN .

We first translate (L, P ) into its Datalog equivalent DE . We say a ground atom a is
active iff it belongs to the canonical model of DE . We say r∈ ground(DE ) is active
iff all its atoms are active. Every active ground atom then corresponds to a node in BN ,
and the dependencies between the active ground atoms that are encoded in the active
rules r∈ ground(DE ) correspond to the parent relationships in BN . For this reason,
we also implicitly assume that the set of all active rules in ground(DE ) is acyclic.

The function μ is the conditional probability density of each of the random variables
that are represented by the direct influence relationship between ground atoms encoded
by the active rules in ground(P ). In terms of a Bayesian network, each of these func-
tions is translated to links connecting the node representing the possible instantiations
of the head with the nodes representing the instantiations of the different atoms in the
body. Note that rules with empty bodies are facts for which the a-priori probability den-
sity is given in the same way. Note also that the function μ is implicitly extended to
all active ground instances of rules r : h← b1, . . . , bn in the Datalog equivalent of L,
by assuming that μ(r, v) : h,¬h �→ 1, 0 iff v(bi)= true for all i∈{1, . . . , n}. If an
active ground atom h can be deduced by only one active rule r∈ ground(DE ), then
its conditional probabilities are given by the distributions attached via μ to this rule. If,
however, we have at least two active rules r∈ ground(DE ) with the same head h, then
the conditional probabilities of h need to consider all these rules. For this purpose, the
combining rule Comb generates a joint conditional distribution from the individual ones
of the involved rules. More concretely, Comb maps a finite set of conditional probabil-
ity densities {p(h|ai,1, . . . , ai,ni) |m � i � 1, ni � 0}, m � 1, to the conditional prob-
ability density p(h|b1, . . . , bn) with {b1, . . . , bn}= ∪m

i=1 {ai,1, . . . , ai,ni}. Different
combining rules are allowed. The simplest combining rule is the maximum of the con-
ditional probability densities, which we use in the following, as it fulfills our purposes.
More sophisticated ways of combining rules are, e.g., variations of noisy-or.

Example Scenario Cont’d. We now show how we can use generalized Bayesian dl-
programs KB =(L, P, μ,Comb) for reasoning with ontologies and uncertain mappings
between them. Here, (i) L is the union of two description logic knowledge bases L1 and
L2 encoding two ontologies O1 and O2, respectively, and (ii) P , μ, and Comb represent
the mappings between the two ontologies O1 and O2. Note that μ associates with the
mapping rules in P conditional probability distributions, and Comb is the combination
rule, which in our example simply corresponds to the maximum, as mentioned above.

We illustrate this approach along our example scenario. The following rules in P
(including the conditional probability distributions via μ) encode the mappings be-
tween O′

1 and O′
2 that have been found by a matcher m:
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(1) O′
1 : Publication(x)

(0.9,0.2)← O′
2 : Publication(x);

(2) O′
1 : Article(x)

(0.7,0.2)← O′
2 : Paper(x);

(3) O′
1 : Person(x)

(0.9,0.2)← O′
2 : Person(x);

(4) O′
1 : Collection(x)

(0.7,0.2)← O′
2 : Proceedings(x);

(5) O′
1 : keyword(x, y)

(0.7,0.2)← O′
2 : about(x, y);

(6) O′
1 : author(y, x)

(0.7,0.2)← O′
2 : author (x, y).

Here, we use an intuitive graphical representation of P and μ. This is possible because
the rules contain only one head atom and one body atom: we write only the probabilities
p1 and p2 for the true head atom given the true resp. false body atom. The probabilities
of the false head atom given the true resp. false body atom are then 1− p1 resp. 1− p2.
For example, the mapping (1) says that (i) each publication in O′

2 is also a publication
in O′

1 with the probability 0.9, and (ii) each non-publication in O′
2 (that is, each element

of ¬Publication ) in O′
2 is a publication in O′

1 with the probability 0.2.
In order to reason with the ontologies and the mappings, the ontologies need to be

translated into their logic programming syntax. The translation is shown below:

Translation of O′
1:

(1a) Topic(y) ← Technical Report(x) ∧ keyword(x, y);
(1b) Person(y) ← Technical Report(x) ∧ author (x, y);
(3) Publication(x) ← Book(x); (4) Publication(x) ← Article(x);
(5) Publication(x) ← Collection(x);
(10a) Topic(y) ← Publication(x) ∧ keyword (x, y);
(10b) Person(y) ← Publication(x) ∧ author (x, y).

Translation of O′
2:

(1) Publication(x) ← Paper(x); (2) Publication(x) ← Proceedings(x);
(4a) Paper(y) ← includes(x, y); (4b) Proceedings(x) ← includes(x, y);
(11a) Publisher(y) ← published by(x, y); (11b) Publication(x) ← published by(x, y);
(12a) Subject(y) ← about(x, y); (12b) Publication(x) ← about(x, y);
(13a) Person(y) ← author(x, y); (13b) Publication(x) ← author(x, y).

As described above, for every ground instance of such a rule, the probability of the head
atom being true is 1, if all the body atoms are also true, and 0, otherwise.

The processing of queries posed to a generalized Bayesian dl-program KB consists
of two steps of a so-called knowledge-based model construction. If we consider KB
without probability densities attached, then we obtain a logic program KB ′, called the
corresponding logic program of KB . In the first step, the least Herbrand model M
of KB ′ is deduced by means of logic programming. The Bayesian network that corre-
sponds to KB is then created by means of the ground atoms in M .

The construction of the Bayesian network BN for KB is briefly described as follows:
for each fact f of KB , a node in BN is created, and the probability density of f is
attached to the node. For each ground instance r of a rule that has been used for properly
deriving the (ground) head atom h, there are then two possibilities:
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Fig. 1. The Bayesian network for the example scenario

– a node that corresponds to h does not exist in BN : Then, such a node is created
and for each body atom of the rule r, an arc from the corresponding node in BN
(which already exist in BN , since each time a ground rule r can derive a new head
atom, the body atoms are already in M ) to the newly created node is created. The
probability density of this rule in KB is attached to this node.

– a node that corresponds to h exists in BN : Then, for each body atom in r, which has
a corresponding node in BN , but no arc from this node to the node that corresponds
to h, such an arc is created. Afterwards, the combining rule is applied to the prob-
ability density of r and the node corresponding to h. Thus, the node corresponding
to h is equipped with a probability density which considers the probability densities
of r and the rules that already have derived the same head atom h.

The resulting Bayesian network BN can be used for answering any probabilistic
query, which is an expression of the form ?−Q1, . . . , Qn|E1, . . . , Em with atoms Qi

and Ej . Such an expression asks for the probability of the conditional event Q1, . . . ,
Qn|E1, . . . , Em, that is, the probability that the Qi’s are true given that the Ej’s are true.
We distinguish between ground and non-ground queries. In the latter case, it is asked for
the probability of each valid grounding of the query. Such queries are processed by first
computing all valid groundings and then asking for the probability of each grounding in
the corresponding Bayesian network. Non-ground queries can be used for information
retrieval where the probabilities are used for ranking.

Fig. 1 shows the Bayesian network for the example scenario. The subgraph in the
upper part of the figure encodes O′

2 and the mappings to O′
1, while the lower part of
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the figure encodes O′
1. Note that there is only one already existing node in O′

1 that
participates in a couple of mappings. This node is O′

1 : Topic(artificial intelligence).
For example, consider the probabilistic query Q(x) = ?−O′

1 : Publication(x),
O′

1 : keyword(x, artificial intelligence). We then obtain the instances Q(a1), Q(b1),
Q(p1), and Q(p2). Since a1 and b1 stem from O′

1, they belong for sure to O′
1 : Publica-

tion and O′
1 : ∃keyword .{artificial intelligence}. Hence, they are delivered with the

probability 1, while p1 and p2 are delivered with the probabilities 0.4731 and 0.7470,
respectively. We see here very nicely how we can rank answers to queries.

6 Conclusion

In this work, we have presented two rule-based approaches for representing uncertain
mappings based on probabilistic concepts. The approaches discussed are tightly coupled
probabilistic dl-programs, on the one hand, and generalized Bayesian dl-programs, on
the other hand. Both approaches have been designed to represent probabilistic mappings
between description logic ontologies, but differ with respect to the kinds of ontologies
and mappings supported. We have discussed both approaches in terms of (i) the kinds of
ontologies supported, (ii) how rule-based mappings and ontologies are linked, (iii) how
rule-based mappings are extended with a probabilistic semantics, and (iv) the reasoning
methods supported by the languages. We now turn back to the requirements for mapping
languages that have been defined earlier and summarize the characteristics of the two
approaches with respect to these requirements.

– Tight integration of mapping and ontology language: Both approaches support the
tight integration of rules and ontologies in the sense that concepts and relations
from ontologies can occur in the head as well as the body of rules, which can there-
fore be used to represent mappings between different ontologies. But this tight in-
tegration is achieved in different ways. As for generalized Bayesian dl-programs,
the integration is achieved by restricting the expressiveness of the ontologies to the
DLP-fragment of SHIF(D). This enables us to translate the overall model into
a Datalog model with a corresponding semantics. Tightly coupled probabilistic dl-
programs do not limit the expressive power of the ontologies. The integration is
achieved in terms of a novel semantics, which consists of a general first-order se-
mantics of the ontological part and a Herbrand semantics of the rules part. From
a representational point of view, this is a big advantage, since it allows us to con-
nect arbitrary OWL ontologies using this framework. This advantage comes at the
price of a new semantics, which is not immediately supported by existing tools and
systems (but can be easily implemented on top of existing tools and systems).

– Support for mappings refinement and repairing inconsistencies: This second re-
quirement is concerned with the expressiveness of the rule language for represent-
ing mappings. As mentioned above, the expressiveness of generalized Bayesian
dl-programs is restricted to plain Datalog. That is, mappings can only state a rela-
tion between conjunctions of concepts and relations in the source ontology to one
concept or one relation in the target ontology. This approach provides limited pos-
sibilities for refining mappings. As discussed in the paper, however, refinement is
primarily needed to deal with inconsistencies. As the language does not support
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negation, inconsistencies cannot occur anyway, significantly reducing the need for
refinement support. This is different for the case of tightly coupled probabilistic
dl-programs. Here, we allow full negation in the ontologies and non-monotonic
negation in rule bodies. This means that mappings can introduce inconsistency in
the model which we have to deal with in order to be able to get a meaningful prob-
ability distribution for the overall model. As we have shown in Section 4.3, the rule
language supports the resolution of inconsistencies using refinement of the body or
generalization of the head of mapping rules. As we have shown in Section 5, in-
consistencies can also be resolved probabilistically in tightly coupled probabilistic
dl-programs. In any case, however, there is a need for mechanisms for detecting
inconsistencies and determining their cause, which is a difficult problem in itself.

– Representation and combination of confidence: Both approaches explicitly address
the problem of representing and combining confidence values in the framework of
probability. The concrete model used, however, is rather different for the two ap-
proaches. Generalized Bayesian dl-programs are based on a complete definition of
the probability distribution and require the confidence to be expressed in terms of
a complete probability distribution over the terms in a mapping rule: we need the
probability for the truth of the head given all combinations of truth values for the
body. While for simple mapping rules, such as those normally produced by auto-
matic matching systems, this is not too much of a problem, and the corresponding
probabilities can be determined either manually or by appropriate statistical estima-
tions. In the presence of complex rules with many terms in the rule body, the num-
ber of probabilities needed grows exponentially, making it much harder to acquire
the corresponding knowledge. Tightly coupled probabilistic dl-programs address
this problem by allowing an incomplete specification of the probability distribu-
tion. As a result, we only have to specify one probability for each mapping rule,
directly showing its confidence. This also means, however, that in such a more gen-
eral modeling, the probability of statements in the overall model may often only be
determined up to an interval which contains the true probability. Using a suitable
definition of the choice space, the approach also allows to express a general confi-
dence in a source that provides mapping information. This is a clear advantage in
practical settings where we might want to combine the results of different matching
systems. In summary, generalized Bayesian dl-programs are suitable for situations
where only simple mappings have to be represented, and there is no need to dis-
tinguish between different sources of information. In more complex situations, the
model used by tightly coupled probabilistic dl-programs is the more suitable one.

– Decidability and efficiency of instance reasoning: The different choices that the
compared approaches make with respect to the expressive power of the logical for-
malism, on the one hand, and the probabilistic model, on the other hand, has of
course a strong influence on the efficiency of reasoning in these formalisms. For
both approaches, the problem of probabilistic query answering, which is central in
the context of probabilistic mapping representation is decidable and corresponding
methods for computing answers have been described. When it comes to efficiency,
however, there are differences. Generalized Bayesian dl-programs have been de-
signed for efficient query processing, not only from a theoretical, but also from
a technical point. They allow the use of the most efficient technologies currently
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available. In contrast to that, tightly coupled probabilistic dl-programs in their full
generality have been designed to maximize expressiveness of the logical as well as
the probabilistic model. The advantages of this choice have already been discussed
in the preceding paragraphs. With respect to reasoning, this does not only mean that
reasoning in general is very expensive in this framework, but also that we cannot
directly rely on existing optimized systems. However, there are also data-tractable
special cases of tightly coupled probabilistic dl-programs [23].

We conclude that the two approaches compared in this paper represent two extremes
with respect to trading off representation and reasoning. Both approaches are useful
in certain situations. In cases where we are concerned with rather weak ontologies,
e.g., plain taxonomies, RDF Schemas, or thesauri, the simpler approach will often be
sufficient for representing ontologies and mappings between them, and we can benefit
from the better immediate computational properties. In other cases, where expressive
ontologies have to be connected by complex mappings, the simple approach will not be
sufficient anymore. Here, we have to revert to the more expressive approach.

An important topic for future research is the exploration of the space between these
two extreme approaches, and to try to find more balanced trade-offs between expres-
siveness and efficiency that address the needs of real problems as directly as possible.
Some first steps in this direction have been done by the identification of tractable subsets
of tightly coupled probabilistic dl-programs [23]. Corresponding work will benefit from
work on combining description logics with expressive rule languages that is currently
being done in connection with the development of the OWL 2.0 standard.
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Abstract. This paper addresses a major weakness of current technologies for 
the Semantic Web, namely the lack of a principled means to represent and rea-
son about uncertainty. This not only hinders the realization of the original vi-
sion for the Semantic Web, but also creates a barrier to the development of new, 
powerful features for general knowledge applications that require proper treat-
ment of uncertain phenomena. We present PR-OWL, a probabilistic extension 
to the OWL web ontology language that allows legacy ontologies to interoper-
ate with newly developed probabilistic ontologies. PR-OWL moves beyond the 
current limitations of deterministic classical logic to a full first-order probabilis-
tic logic. By providing a principled means of modeling uncertainty in  
ontologies, PR-OWL can be seen as a supporting tool for many applications 
that can benefit from probabilistic inference within an ontology language, thus 
representing an important step toward the W3C’s vision for the Semantic Web. 
In order to fully present the concepts behind PR-OWL, we also cover Multi-
Entity Bayesian Networks (MEBN), the Bayesian first-order logic supporting 
the language, and UnBBayes-MEBN, an open source GUI and reasoner that 
implements PR-OWL concepts. Finally, a use case of PR-OWL probabilistic 
ontologies is illustrated here in order to provide a grasp of the potential of the 
framework. 

1   A Deterministic View of a Probabilistic World 

Uncertainty is ubiquitous. If the Semantic Web vision [1] is to be realized, a sound 
and principled means of representing and reasoning with uncertainty will be required. 
Our broad objective is to address this need by developing a Bayesian framework for 
probabilistic ontologies and plausible reasoning services. As an initial step toward our 
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objective, we introduce PR-OWL, a probabilistic extension to the Web ontology lan-
guage OWL.  

Current generation Semantic Web technology is based on classical logic, and lacks 
adequate support for plausible reasoning. For example, OWL, a W3C Recommenda-
tion [2], has no built-in support for probabilistic information and reasoning. This is 
understandable, given that OWL is rooted in web language predecessors (i.e. XML, 
RDF) and traditional knowledge representation formalisms (e.g.. Description Logics 
[3]). This historical background somewhat explains the lack of support for uncertainty 
in OWL. Nevertheless, it is a serious limitation for a language intended for environ-
ments where one cannot simply ignore incomplete information.  

A similar historical progression occurred in Artificial Intelligence (AI). From its 
inception, AI has struggled with how to cope with incomplete information. Although 
probability theory was initially neglected due to tractability concerns, graphical prob-
ability languages changed things dramatically [4]. Probabilistic languages have 
evolved from propositional to full first-order expressivity (e.g., [5, 6]), and have be-
come the technology of choice for reasoning under uncertainty in an open world [7]. 
Clearly, the Semantic Web will pose similar uncertainty-related issues as those faced 
by AI. Thus, just as AI has moved from a deterministic paradigm to embrace prob-
ability, a similar path appears promising for ontology engineering.  

This path is not yet being followed. The lack of support for representing and rea-
soning with uncertain, incomplete information seriously limits the ability of current 
Semantic Web technologies to meet the requirements of the Semantic Web. Our work 
is an initial step toward changing this situation. We aim to establish a framework that 
enables full support for uncertainty in the field of ontology engineering and, as a 
consequence, for the Semantic Web. In this work, we focus on extending OWL so it 
can represent uncertainty in a principled way. 

In Section 2 we present related work on the subject. Then, we start Section 3 with 
an example illustrating the limitations of BNs in terms of expressiveness and how 
those are addressed in MEBN logic. Section 4 conveys the definition of a probabilis-
tic ontology used in this work. In Section 5, we present the PR-OWL probabilistic 
ontology language, its main concepts, and an overview of its structure. PR-OWL is 
implemented in UnBBayes-MEBN, a Java-Based, open source system that is briefly 
explained in Section 6. In order to provide a general idea of the potential use for the 
PR-OWL/MEBN framework, Section 7 discusses how the SOA model can benefit 
from the expressivity and flexibility of a probabilistic ontology system. 

2   Related Research 

One of the main reasons why Semantic Web research is still focused on deterministic 
approaches has been the limited expressivity of traditional probabilistic languages. 
There is a current line of research focused on extending OWL so it can represent 
probabilistic information contained in a Bayesian Network (e.g. [8, 9]). The approach 
involves augmenting OWL semantics to allow probabilistic information to be repre-
sented via additional markups. The result would be a probabilistic annotated ontology 
that could then be translated to a Bayesian network (BN). Such a translation would be 
based on a set of translation rules that would rely on the probabilistic information 
attached to individual concepts and properties within the annotated ontology. BNs 
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provide an elegant mathematical structure for modeling complex relationships among 
hypotheses while keeping a relatively simple visualization of these relationships. Yet, 
the limited attribute-value representation of BNs makes them unsuitable for problems 
requiring greater expressive power. 

Another popular option for representing uncertainty in OWL has been to focus on 
OWL-DL, a decidable subset of OWL that is based on Description Logics [3]. De-
scription Logics are a family of knowledge representation formalisms that represent 
the knowledge of an application domain (the “world”) by first defining the relevant 
concepts of the domain (its terminology), and then using these concepts to specify 
properties of objects and individuals occurring in the domain (the world description).  

Description logics are highly effective and efficient for the classification and sub-
sumption problems they were designed to address. However, their ability to represent 
and reason about other commonly occurring kinds of knowledge is limited. One re-
strictive aspect of DL languages is their limited ability to represent constraints on the 
instances that can participate in a relationship. As an example, suppose we want to 
express that for a carnivore to be a threat to another carnivore in a specific type of 
situation it is mandatory that the two individuals of class Carnivore involved in the 
situation are not the same. Making sure the two carnivores are different in a specific 
situation is only possible in DL if we actually create/specify the tangible individuals 
involved in that situation. Indeed, stating that two “fillers” (i.e. the actual individuals 
of class Carnivore that will “fill the spaces” of concept carnivore in our statement) are 
not equal without specifying their respective values would require constructs such as 
negation and equality role-value-maps, which cannot be expressed in description 
logic. While equality role-value-maps provide useful means to specify structural 
properties of concepts, their inclusion makes the logic undecidable [10]. 

Although the above approaches are promising where applicable, a definitive solu-
tion for the Semantic Web requires a general-purpose formalism that gives ontology 
designers a range of options to balance tractability against expressiveness. 

Pool and Aiken [11] developed an OWL-based interface for the relational probabil-
istic toolset Quiddity*Suite, developed by IET, Inc. Their constructs provide a very 
expressive method for representing uncertainty in OWL ontologies. Their work is 
similar in spirit to ours, but is specialized to the Quiddity*Suite toolset. We focus on 
the more general problem of enabling probabilistic ontologies for the SW. We employ 
Multi-Entity Bayesian Networks (MEBN) as our underlying logical basis, thus pro-
viding full first-order expressiveness.   

3   Multi-entity Bayesian Networks 

The acknowledged standard for logically coherent reasoning under uncertainty is 
probability theory. Probability theory provides a principled representation of uncer-
tainty, a logic for combining prior knowledge with observations, and a learning theory 
for refining the ontology as evidence accrues.  

Bayesian networks provide an elegant framework for implementing probability 
theory, but as we explained in the previous section, the limited expressiveness of their 
attribute-value representation limit their applicability, excluding many real-world 
problems relevant to the SW. To understand this limitation, consider a relational data-
base in which some entries are uncertain. A BN can represent only probabilities for a 
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single table, and treats the rows of the table independently of each other.  For exam-
ple, in a logistics control system, the “Truck” table might include information such as 
type, capacity, current delivery schedule, geographical position, and whether it is 
suitable and available for a given delivery. Assuming such a system being used to 
track possible deliverers within a 100-kilometer range of the depot area, a BN might 
represent the probability of a given truck being an optimal delivery option as a func-
tion of its availability given the traffic along major local routes and its suitability for 
the upcoming weather (e.g. preparation for snow conditions). If a truck is currently 
within the predefined range, the BN of Figure 1 could estimate the probability of this 
truck of being an optimal deliverer given the abovementioned variables.  

 

Fig. 1. One Delivery Truck Scenario 

However, this BN cannot represent relational information such as the increase in 
the probability of being an optimal deliverer for all trucks that are within the 100-km 
range. To incorporate this kind of knowledge in a coherent manner, we need to com-
bine relational knowledge (e.g., trucks that are within the same predefined area) with 
attribute-value knowledge (e.g., heavy traffic and bad weather conditions decrease the 
probability of being an optimal deliverer for trucks farther from the base and for those 
not prepared for inclement weather). 

 

Fig. 2. One Delivery Truck Scenario 

Figures 2 and 3 show that as the number of trucks within the 100-km range 
changes, one must build different BNs. Since this number is variable, multiple BNs 
must be constructed for each specific case.  

MEBN logic [5, 6], which is the logical basis for PR-OWL, combines Bayesian 
probability theory with classical First Order Logic to overcome BNs’ limitations in 
expressiveness. Probabilistic knowledge is expressed as a set of MEBN fragments 
(MFrags) organized into MEBN Theories. An MFrag is a knowledge structure that 
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Fig. 3. Delivery Scenario with Four Trucks 

represents probabilistic knowledge about a collection of related hypotheses. Hypothe-
ses in an MFrag may be context (must be satisfied for the probability definitions to 
apply), input (probabilities are defined in other MFrags), or resident (probabilities 
defined in the MFrag itself). An MFrag can be instantiated to create as many instances 
of the hypotheses as needed (e.g., an instance of all the “Truck X nodes” created for 
each Truck within the predefined range). Instances of different MFrags may be com-
bined to form complex probability models for specific situations. An MTheory is a 
collection of MFrags that satisfies consistency constraints ensuring the existence of a 
unique joint probability distribution over instances of the hypotheses in its MFrags. 

MEBN inference begins when a query is posed to assess the degree of belief in a tar-
get random variable given a set of evidence random variables.  We start with a genera-
tive MTheory, add a set of finding MFrags representing problem-specific information, 
and specify the target nodes for our query.  The first step in MEBN inference is to con-
struct a situation-specific Bayesian network (SSBN), which is a Bayesian network con-
structed by creating and combining instances of the MFrags in the generative MTheory. 
When each MFrag is instantiated, instances of its random variables are created to repre-
sent known background information, observed evidence, and queries of interest to the 
decision maker. If there are any random variables with undefined distributions, then the 
algorithm proceeds by instantiating their respective home MFrags.  The process of re-
trieving and instantiating MFrags continues until there are no remaining random vari-
ables having either undefined distributions or unknown values. An SSBN may contain 
any number of instances of each MFrag, depending on the number of entities and their 
interrelationships. Next, a standard Bayesian network inference algorithm is applied.  
Finally, the answer to the query is obtained by inspecting the posterior probabilities of 
the target nodes. For the Delivery Truck example, the MTheory depicted in Figure 4 
could be used for building each of the BNs in the previous figures as well as BNs for 
any number of Trucks within the predefined range.  
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Fig. 4. The Delivery Truck MTheory 

To draw generalizations about individuals related in various ways, we need first-
order expressive power. Description logics are attractive because they provide limited 
first-order expressivity, yet certain categories of reasoning problem, such as classifi-
cation and subsumption, are decidable. The ontology language P-SHOQ(D) [12] ex-
tends the description logic SHOQ(D) to represent probabilistic information.  

We have chosen to base PR-OWL on MEBN logic because of its expressiveness: 
MEBN can express a probability distribution over models of any finitely axiomatizable 
first-order theory. As a consequence, there are no guarantees that exact reasoning with a 
PR-OWL ontology will be efficient or even decidable. On the other hand, a future ob-
jective is to identify restricted sub-languages of PR-OWL specialized to classes of prob-
lems for which efficient exact or approximate reasoning algorithms exist. There has 
been a great deal of research on classes of problems for which efficient probabilistic 
algorithms exist (e.g., Naïve Bayes classification, in which features are modeled as 
conditionally independent given an object’s class). This research can inform the devel-
opment of restrictions on MEBN theories that lead to efficient inference on particular 
kinds of problem. It is our view that a general-purpose language for the Semantic Web 
should be as expressive as possible, while providing a means for ontology engineers to 
stay within a tractable subset of the language when warranted by the application. 

4   Probabilistic Ontologies 

The usual workaround for representing probabilities in deterministic languages like 
OWL is to show probability information as annotations. This means that numerical 
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information is stored as text strings. Because this solution does not convey the struc-
tural features of a probabilistic domain theory, it is no more than a palliative. This is 
no minor shortcoming. Researchers have stressed the importance of structural infor-
mation in probabilistic models (see [13]). For instance, Shafer ([14], pages 5-9) stated 
that probability is more about structure than it is about numbers.  

A major concept behind PR-OWL is that of probabilistic ontologies. Probabilistic 
ontologies go beyond simply annotating standard ontologies with probabilities, pro-
viding a logically sound formalism to express all relevant uncertainties about the 
entities and relationships that exist in a domain. This not only provides a consistent 
representation of uncertain knowledge that can be reused by different probabilistic 
systems, but also allows applications to perform plausible reasoning with that knowl-
edge. PR-OWL uses the following definition of a probabilistic ontology [15]: 

Definition 1. A probabilistic ontology is an explicit, formal knowledge representation that 
expresses knowledge about a domain of application. This includes: 

1a) Types of entities that exists in the domain; 
1b) Properties of those entities; 
1c) Relationships among entities; 
1d) Processes and events that happen with those entities; 
1e) Statistical regularities that characterize the domain; 
1f) Inconclusive, ambiguous, incomplete, unreliable, and dis-

sonant knowledge; 
1g) Uncertainty about all the above forms of knowledge; 

where the term entity refers to any concept (real of fictitious, 
concrete or abstract) that can be described and reasoned about  
 

within the domain of application.                                                            

Probabilistic Ontologies provide a principled, structured and sharable way to compre-
hensively describe knowledge about a domain and the uncertainty regarding that 
knowledge. They also expand the possibilities of standard ontologies by introducing 
the requirement of a proper representation of the statistical regularities and the uncer-
tain evidence about entities in a domain of application. Ideally, the representation is in 
a format that can be read and processed by a computer. 

5   PR-OWL 

PR-OWL is an extension that enables OWL ontologies to represent complex Bayesian 
probabilistic models in a way that is flexible enough to be used by diverse Bayesian 
probabilistic tools based on different probabilistic technologies. That level of flexibil-
ity can only be achieved using the underlying semantics of first-order Bayesian logic, 
which is not a part of the standard OWL semantics and abstract syntax. Therefore, it 
seems clear that PR-OWL can only be realized via extending the semantics and ab-
stract syntax of OWL. However, in order to make use of those extensions, it is neces-
sary to develop new tools supporting the extended syntax and implied semantics of 
each extension. Such an effort would require commitment from diverse developers 
and workgroups, which falls outside our present scope. 

Therefore, in this initial work our intention is to create an upper ontology to guide 
the development of probabilistic ontologies. Daconta et al.  define an upper ontology 
as a set of integrated ontologies that characterizes a set of basic commonsense  
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knowledge notions [16]. In its current form, PR-OWL is an upper ontology of basic 
notions related to representing uncertainty in a principled way using OWL syntax. If 
PR-OWL were to become a W3C Recommendation, this collection of notions would 
be formally incorporated into the OWL language as a set of constructs that can be 
employed to build probabilistic ontologies. 

The PR-OWL upper ontology for probabilistic systems consists of a set of classes, 
subclasses and properties that collectively form a framework for building probabilistic 
ontologies. The first step toward building a probabilistic ontology in compliance with 
our definition is to import into any OWL editor an OWL file containing the PR-OWL 
classes, subclasses, and properties.   

From our definition, it is clear that nothing prevents a probabilistic ontology from 
being “partially probabilistic”. That is, a knowledge engineer can choose the concepts 
he/she wants to include in the “probabilistic part” of the ontology, while writing the 
other concepts in standard OWL. In this case, the “probabilistic part” refers to the 
concepts written using PR-OWL definitions and that collectively form a complete or 
partial MTheory. There is no need for all the concepts in a probabilistic ontology to 
be probabilistic, but at least some have to form a valid complete or partial MTheory. 
Of course, only the concepts that are part of the MTheory will be subject to the advan-
tages of the probabilistic ontology over a deterministic one. 

The subtlety here is that legacy OWL ontologies can be upgraded to probabilistic 
ontologies only with respect to concepts for which the modeler wants to have  
uncertainty represented in a principled manner, make plausible inferences from that 
uncertain evidence, or to learn its parameters from incoming data via Bayesian learn-
ing. While the first two are direct consequences of using a probabilistic knowledge 
representation, the latter is a specific advantage of the Bayesian paradigm, where 
learning falls into the same conceptual framework as knowledge representation.  

The ability to perform probabilistic reasoning with incomplete or uncertain informa-
tion conveyed through an ontology is a major advantage of PR-OWL. However, it 
should be noted that in some cases solving a probabilistic query might be intractable or 
even undecidable. In fact, providing the means to ensure decidability was the reason 
why the W3C defined three different version of the OWL language. While OWL Full is 
more expressive, it enables an ontology to represent knowledge that can lead to unde-
cidable queries. OWL-DL imposes some restrictions to OWL in order to eliminate these 
cases. Similarly, restrictions of PR-OWL could be developed that limit expressivity to 
avoid undecidable queries or guarantee tractability.  Possible restrictions to be consid-
ered for an eventual PR-OWL Lite include (i) constraining the language to classes of 
problems for which tractable exact or approximate algorithms exist; (ii) restrict the 
representation of the conditional probability tables (CPT) to express a tractable and 
expressive subset of first-order logic; and/or (iii) to employ a standard semantic web 
language syntax to represent the CPTs (e.g. RDF). As an initial step, we chose to focus 
on the most expressive version of PR-OWL, which does not have expressivity restric-
tions and provides the ability to represent CPTs in multiple formats. 

An overview of the general concepts involved in the definition of an MTheory in 
PR-OWL is depicted in Figure 5. In this diagram, the ovals represent general classes; 
and arrows represent major relationships between classes. A probabilistic ontology 
 



96 P.C.G. da Costa, K.B. Laskey, and K.J. Laskey 

 

Fig. 5. Overview of a PR-OWL MTheory Concepts 

must have at least one individual of class MTheory, which is a label linking a group 
of MFrags that collectively form a valid MTheory. In actual PR-OWL syntax, that 
link is expressed via the object property hasMFrag (which is the inverse of object 
property isMFragIn). 

Individuals of class MFrag are comprised of nodes, which can be resident, input, or 
context nodes (not shown in the picture). Each individual of class Node is a random 
variable and thus has a mutually exclusive and collectively exhaustive set of possible 
states. In PR-OWL, the object property hasPossibleValues links each node with its 
possible states, which are individuals of class Entity. Finally, random variables (rep-
resented by the class Nodes in PR-OWL) have unconditional or conditional probabil-
ity distributions, which are represented by class Probability Distribution and linked to 
its respective nodes via the object property hasProbDist. 

The scheme in Figure 5 is intended to present just a general view and thus fails to 
show many of the intricacies of an actual PR-OWL representation of an MTheory. 
Figure 6 shows an expanded version conveying the main elements in Figure 5, their 
subclasses, the secondary elements that are needed for representing an MTheory and 
the reified relationships that were necessary for expressing the complex structure of a 
Bayesian probabilistic model using OWL syntax. 

Reification of relationships in PR-OWL is necessary because of the fact that prop-
erties in OWL are binary relations (i.e. link two individuals or an individual and a 
value), while many of the relations in a probabilistic model include more than one 
individual (i.e. N-ary relations). The use of reification for representing N-ary relations 
on the Semantic Web is covered by a working draft from the W3C’s Semantic Web 
Best Practices Working Group [17]. 

Although the scheme in Figure 6 shows all the elements needed to represent a 
complete MTheory, it is clear that any attempt at a complete description would 
render the diagram cluttered and incomprehensible. A complete account of the 
classes, properties and the code of PR-OWL that define an upper ontology for prob-
abilistic systems is given in [15]. These definitions can be used to represent any 
MTheory. 

In its current stage, PR-OWL contains only the basic elements needed to represent 
any MTheory. Such a representation could be used by a Bayesian tool (acting as a 
probabilistic ontology reasoner) to perform inferences to answer queries and/or to 
learn from newly incoming evidence via Bayesian learning. 
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Fig. 6. Elements of a PR-OWL Probabilistic Ontology 

6   UnBBayes-MEBN 

Building MFrags and all its elements into a PO is a difficult, tedious and error prone 
process that demands deep knowledge of PR-OWL’s syntax, semantics and data 
structure. Creating a PO without a PR-OWL software tool would be very difficult. An 
ordinary OWL ontology can be built using a graphical ontology editor such as  
Protégé. To add probability information, PR-OWL definitions can be imported into 
Protégé (from http://www.pr-owl.org/pr-owl.owl), making the task of building a PO a 
bit easier because it is not necessary to remember all information and OWL tags that 
should be inserted. However, the input of information is not intuitive and the user has 
to know many technical terms as hasPossibleValues, isNodeFrom, hasParents, etc 
(Figures 7 and 8).  

UnBBayes-MEBN [18] is a PR-OWL GUI and reasoner that addresses all the 
above issues. It provides a GUI designed to allow building a PO in an intuitive way, 
enforcing the consistency of an MTheory without the requirement of deep knowledge 
of the PR-OWL specification.  

As an example of the process of creating an MFrag, a click on the “R” icon and 
another click anywhere in the editing panel will create a resident node, as shown in 
Figure 9. After that, clicking on the “+” button allows the user to fill a name and to 
add the states of the node. All the remaining tasks required by PR-OWL syntax (e.g. 
filling the terms as isResidentNodeIn, etc.) are automatically performed by 
UnBBayes. Figure 10 shows how UnBBayes allows a more adequate and better visu-
alization of the MTheory and MFrags being created, as well as their nodes. In short, it 
is not difficult to perceive the advantages of building POs with the GUI implemented 
in UnBBayes.  
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Fig. 7. Node ZoneMD specification with Protégé 

// Individual: http://www.pr-owl.org/pr-owl.owl#ZoneMD 

ClassAssertion(ZoneMD Domain_Res) 
ObjectPropertyAssertion(hasArgument ZoneMD ZoneMD_1) 
ObjectPropertyAssertion(hasArgument ZoneMD ZoneMD_2) 
ObjectPropertyAssertion(hasInputInstance ZoneMD IX6) 
ObjectPropertyAssertion(hasParent ZoneMD ZoneNature) 
ObjectPropertyAssertion(hasParent ZoneMD IX6) 
ObjectPropertyAssertion(hasParent ZoneMD IX5) 
ObjectPropertyAssertion(hasParent ZoneMD ZoneMD) 
ObjectPropertyAssertion(hasPossibleValues ZoneMD Medium) 
ObjectPropertyAssertion(hasPossibleValues ZoneMD High) 
ObjectPropertyAssertion(hasPossibleValues ZoneMD Low) 
ObjectPropertyAssertion(hasProbDist ZoneMD ZoneMD_Table) 
ObjectPropertyAssertion(isParentOf ZoneMD ZoneMD) 
ObjectPropertyAssertion(isResidentNodeIn ZoneMD Zone_MFrag)

 

Fig. 8. Node ZoneMD specification in OWL syntax (Manchester) 

Implementing a complex logic such as MEBN while focusing on the usability re-
quirements of an (probabilistic) ontology editor requires making trade-offs between 
performance, decidability, expressivity, and ease of use. In other words, the complex-
ity of the logic and the fact that it is still in development imply that any implementa-
tion has to include alternative algorithms and optimizations to make a working,  
feasible tool. UnBBayes-MEBN is no exception to this rule, and many of the design 
decisions were based on the above-cited constraints. 

Probabilistic ontologies in UnBBayes-MEBN are saved in the PR-OWL format, 
which is an extension of OWL format. UnBBayes-MEBN uses the Java open source 
Protégé application programming interface (API) for importing and saving OWL 
files. UnBBayes-MEBN provides support for MEBN input/output operations using 
the Protégé-OWL editor, which is based on the class JenaOWLModel. Protégé uses 
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Fig. 9. Node specification with UnBBayes-MEBN 

 

Fig. 10. General view of the MTheory and MFrag in UnBBayes 

the Jena API for various tasks, in particular for parsing OWL/RDF files. Since the 
structure and algorithms behind UnBBayes-MEBN are outside of the scope of this 
Chapter, the interested reader should refer to [19, 20] for more information. 

7   The Role of Probabilistic Ontologies in SOA 

Service Oriented Architecture (SOA) has become the leading approach for accessing 
and using distributed resources developed by independent entities and working with 
independently developed vocabularies and associated semantics.  The advent of SOA 
marks a transformation from a mostly data-driven Web, with little interaction between 
requesters and providers of information, into an environment in which information 
and other resources are accessed and used in a much more dynamic, interactive, and 
unpredictable fashion.  
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The supporting technology for the SOA model is composed of XML-based stan-
dards and protocols focused on providing a shared understanding of the available 
services. Currently, accepted standards for developing solutions based on Web Ser-
vices (the most prevalent implementation of SOA) include SOAP, a message structure 
used for exchanging XML serializations of content and message handling instructions 
in a decentralized, distributed environment [21], and the Web Services Description 
Language (WSDL), which represents messages exchanged when invoking a Web 
Service [22]. However, these XML-based structures do not have the ability to explic-
itly formalize the underlying semantics of a given Web Service description, rendering 
them insufficient to ensure a common understanding of the described Web Service. 
As pointed out by Paolucci et al. [23], two identical XML descriptions may have 
different meanings depending on who uses them and when. Different providers and 
consumers will have perspectives aligned with their respective domains; thus, a com-
mon understanding of a given Web Service can be reached only at the semantic level, 
where the different perspectives and knowledge can be matched. 

Not surprisingly, the need for semantic-aware resource descriptions is widely rec-
ognized, and is being addressed by work focused on enabling Web Service providers 
to describe the properties and capabilities of their Web Services in unambiguous, 
computer-interpretable form (e.g. OWL-S [24], WSMO [25], SWSL [26], and 
SAWSDL [27]).  

This section argues that progress on both SW and SOA is hampered by the lack of 
support for uncertainty in common ontology formalisms. We postulate that probabilis-
tic ontologies can fill a key gap in semantic matching technology, thus facilitating 
widespread usage of Web Services for efficient resource sharing in open and distrib-
uted environments.  

7.1   Uncertainty Present in SOA 

In order to envision the applicability of POs in SOAs, it is necessary to first under-
stand what kind of uncertainties might be present in a service-oriented environment. 
As defined in the SOA reference model [28], SOA is a paradigm for bringing together 
needs and capabilities to address those needs. It requires establishing an execution 
context (EC), which is an alignment of all technical and policy-related aspects, in-
cluding vocabularies, protocols, licensing, quality of service (QoS), etc. Much of this 
specific information is contained in or linked to the service description and/or the 
description of underlying capabilities. Considering the complexity involved, many 
forms of uncertainty can be present within a given execution context. For example, 
uncertainty may arise in the description content (e.g. information is annotated with its 
source, but there is no way to verify whether the identity of the source is correct), in 
the way information is captured as part of a description (e.g. information is annotated 
with its source, but there is no indication of whether it is raw data or what processing 
has been applied), or in the applicability of information to current need (e.g., informa-
tion on recording equipment does not indicate whether the recorded data fall within a 
reasonable range for the recording conditions). An ontology that represents statistical 
information can enable a reasoner to draw inferences about the missing information. 
For example, consider a report that a device has recorded an ambient temperature of 5 
degrees Celsius at Rio de Janeiro's Tom Jobin International Airport (GIG) on 23 
January. This is a highly unlikely, but not impossible, temperature reading for January 
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near Rio. Statistical information about climate, sensor reliability, and data recording 
error rates, if represented in the relevant domain ontologies, could be used to draw 
inferences about the about the likely temperature at GIG on 23 January and could 
appropriately account for the possibility of various kinds of error. If a Web service 
was used to access the temperature, a service description that included or referenced a 
representation of such uncertainties would enable decisions that could improve the 
effective and appropriate use of the available capabilities.  Such an uncertainty feature 
is not incorporated in current Web Service specifications. 

A typical Web Services scenario is often described in terms of the publish-find-
bind triangle: (1) a service provider publishes a service description, (2) a consumer 
searches a service registry for a service satisfying his criteria, analyzes the returned 
information (or link to information) on the message structure to be exchanged and the 
address to exchange it, and (3) interacts with the service to retrieve the resources 
needed. In this triangle, there are implicit, unspoken challenges for which a principled 
representation of uncertainty is needed. For example:    

• The service provider, typically playing the role of description publisher, has 
to choose a vocabulary with which to describe the service (or some other re-
source related to the service), thus setting the properties by which to describe 
that class of item. Service providers attempt to define the “right” set and 
structure of properties that make visible what they wish to highlight as dis-
criminators for those looking for services. The consumer, on the other hand, 
has her own criteria to satisfy but must know and understand the semantics 
of the service provider vocabulary because these are the properties used to 
describe the generic service class and its instances.  The consumer must un-
derstand and use this vocabulary or there must be a known and accessible 
mapping between the properties used for description and those more natu-
rally used by the consumer as search categories. There are many opportuni-
ties for uncertainty about intended meanings of the service class properties, 
the use of those properties to describe service instances, and the relationship 
to consumer search criteria. 

• The publisher uses the chosen property vocabulary as the basis to describe 
and register instances of that class. This means that the publisher associates 
values with the properties and registers the instance.  But what is the vocabu-
lary for the values?  All parties may agree that something has the property 
color and on the meaning of that property, but if the publisher uses only pri-
mary colors and the subscriber’s search criterion asks for the color pink, the 
latter will never find a match for items the first had catalogued.  How does a 
client’s requested value relate to a provider’s published values?  Do they 
agree on the vocabulary? Do they agree on the mechanism to mediate vo-
cabulary mismatches?  

• The publisher chooses a property vocabulary and creates instance  
descriptions by associating values.  One can infer the properties the publisher 
considers important by which properties s/he chooses to populate, assuming 
values are not necessarily assigned for all possible properties.  But what of 
the consumer’s priorities when assigning search criteria?  If the consumer as-
signs relative importance, how does the search engine trade off among dif-
ferent combinations of matches across the consumer’s search criteria, and 
how are missing attribute values handled?  
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7.2   Uncertainty and Semantic Mapping 

Figure 11 uses the example of a Delivery Control System to illustrate the semantic 
mapping challenges that are implicit in the above description. In the diagram, the De-
livery Company (a service provider) has built a local vocabulary (Vocab �) based on a 
vocabulary available for Delivery and Shipping services (Vocab �). The type of a truck 
in Vocab � is defined as Property P and was copied unmodified from Vocab � to Vo-
cab � as property P1. User A, who is interested in the Delivery service, also based his 
vocabulary (Vocab �) on Vocab � and has copied P with no changes to his own P2.  

 

Fig. 11. Challenges of Synchronizing Vocabularies for the Publish-Find-Bind Exchange 

Now given information about the Delivery Company and User A, how likely is that 
the same string (say “large container”) in each vocabulary still refers to the same 
concept (and probably as meant by Vocab �)?To address this question, it is necessary 
to keep track of characteristics such as the overall similarities of the concepts in the 
vocabularies, the origins of each concept, and other characteristics related to the prob-
lem context. A domain independent PR-OWL ontology would keep track of these 
characteristics, and thus be able to infer the likelihood that concepts with the same 
name have the same meaning. 

In a more complex development of the situation depicted in Figure 11, assume Vo-
cab � exists as a vocabulary for Logistics. User B, who wants to use the Delivery 
service based on Vocab �, has its own system based on the Logistics Vocab �, and so 
has developed a mapping from the Vocab � to Vocab �. In Vocab �, the type of a 
truck is indicated by property P3. Two other Users, C and D, have their own systems 
based on the Logistics Vocab �, but are also customers of User A.  To communicate 
with User A, Users C and D have each built mappings from User A system’s Vocab β 
to their respective system’s use of Vocab �. With three different mappings linking 
two ontologies that were based on the same upper ontology to a fourth ontology (the 
Logistics ontology), what is the likelihood that each of them has the same intended 
meaning for the truck type, and that it matches the intended meaning of the original 
upper ontology’s property P? If we wish to infer mappings between Vocab α and 
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Vocab β and have User B’s mapping from Vocab � to Vocab σ, is the mapping of 
User C or of User D from Vocab β to Vocab � more likely to reflect the needs in 
mapping between Vocab α and Vocab β, or does an appropriate combination of the 
User C and the User D mappings provide an optimum result?  Again, a domain inde-
pendent PR-OWL ontology can be used to keep track of such mappings, considering 
parameters such as the expertise of each user to help grading the likelihood of each 
mapping to be closer to the original and more aligned with the eventual need. 

7.3   Uncertainty and Service Composition 

Beyond publish-find-bind for a single service, the vision is to provide services at the 
appropriate granularity, combining atomic services into more complex tasks.  For 
example, suppose a supplier needs to find the dimensions and weight limits for cargo 
containers for future shipments of items it produces.  In today’s integration paradigm, 
the supplier would need to query specific shipping agents directly, and might need to 
develop special-purpose software interfaces to support interactions with individual 
shipping agents.  In the envisioned architecture, the supplier would invoke a service 
that (i) searches a UDDI registry for shipping agents; (ii) queries each for its respec-
tive restrictions; (iii) compares with the supplier’s requirements; and (iv) selects a 
shipper that meets the requirements.  

This simple scenario does not include other actions that must be included in such a 
transaction.  For example, security will be needed to authenticate the supplier to the 
shipping agent and the shipping agent to the supplier. Other actions may be required 
to establish that each party is authorized to engage in business with the other.  The 
interaction itself may require a guaranteed level of service that would fall into the 
realm of reliable messaging to guarantee delivery.  Additionally, the response from 
the shipping agent could optionally include video showing details of container pack-
ing and handling, and these would not be appropriate to send if the supplier is using a 
low bandwidth communications link. 

Security, reliable messaging, and results dissemination are examples of general-
purpose services that could be combined with services for specific business functions, 
thus freeing the business service from the need to create and maintain all supporting 
services.  All of these services will have associated service descriptions so that some-
one composing a robust service combination can identify the appropriate services and 
the process by which these will work together to provide the higher-level functional-
ity. That said, what are the uncertainties in identifying the correct services and com-
bining these to form a consistent package?  Is uncertainty even a relevant concept, or 
is it a black-and-white issue of whether the pieces fit or not? When trying to decide 
among several services that appear to satisfy aspects of the same needed function, 
does the ability to reason under uncertainty come into play in identifying the compo-
nent services to use and how to combine these? 

The above questions do not have simple, universally valid answers.  Undoubtedly, 
there will be problems for which deterministic implementations of SOA elements will 
suffice to build viable solutions. Nevertheless, there are issues that cannot be satisfac-
torily solved without a principled representation of uncertainty. Probabilistic ontology 
languages such as PR-OWL can fulfill this requirement. 
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7.4   Ontology Federation to Support SOA 

Providing a detailed account of how to use PO languages to build standards for SOA 
elements, or even examples of (say) service descriptions with probabilistic elements 
would require detailed explanation that goes beyond the limits of this paper. Thus, as 
a means to explore another possible use of POs in a SOA environment, we now pre-
sent a possible framework using a federation of ontologies (common and probabilis-
tic) for tackling the problem of semantic mapping among concepts used in Web  
Services (WS) descriptions within a WS repository.  

Figure 12 shows a simplified scheme for SOA using probabilistic semantic map-
ping. As a means to illustrate this scheme, we will devise fictitious examples involv-
ing Web Service providers within the geospatial reasoning domain. In this scheme, a 
service consumer or provider that conveys semantic information (ontology that it 
abides to, metadata about its requests, parameters, etc.) is called a SOA node Level 1, 
whereas a SOA node that has no semantic awareness is called a SOA node Level 0.  

  

Fig. 12. Probabilistic Semantic Mapping for Web Services 

In our first use case, S1 needs to generate a travel plan and requests a service for 
assessing the possibility of flooding in a given region due to recent heavy rains. Being 
a Level 1 client, S1 sends its request with embedded data about the ontology it refer-
ences and other semantic information regarding its request (e.g. coordinate system 
used, expected QoS, etc.). The WS repository, which itself uses an ontology, finds S4, 
another Level 1 client using the same ontology as S1. This ontology is the PR-OWL 
ontology “OntB”, which represents a probabilistic model of the geospatial domain 
and has the ability to perform a probabilistic assessment of the requested information. 
In this case, the request was probabilistic, but the uncertainty involved was related to 
the service itself (a probabilistic query on a uncertainty-laden domain), and not to the 
service exchanging process. In other words, the exchange was completed using the 
logical reasoner alone, since there was a perfect matching in terms of ontologies (both 
S1 and S4 abide to the same PR-OWL ontology) and the parameters of the requested 
service, and thus no probabilistic mapping was necessary. (Yet, note that S1’s query 
made use of OntB’s ability to represent uncertainty about the geospatial domain.)  
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In a variation of the previous case, let’s suppose that no perfect match between the 
request and the available providers is found. In this case, the probabilistic reasoner 
accesses the WS repository to search for the most suitable service given the parame-
ters of S1’s request. During that process, it analyses the mapping ontologies related to 
“OntB” (the ontology referenced by S1) and the domain ontologies related to the 
services it deemed promising to fit S1’s request. In the end, an ordered list of possible 
providers is built, and the best possible answers will be returned to S1. This simple 
example shows that there might be many combinations of the use of logical and prob-
abilistic reasoners and ontologies to match the needs of a specific request.  

8   Conclusion 

This paper describes Probabilistic Ontologies as an initial step towards a coherent, 
comprehensive probabilistic framework for the Semantic Web. It also demonstrates 
how the use of such a framework can bring Semantic Web power to bear on the dis-
covery and use of Web Services in a service oriented environment. In order to better 
convey the framework, we provided an explanation of the major concepts behind it, 
such as MEBN logic, probabilistic ontologies, and the PR-OWL language, and lay the 
groundwork for a more comprehensive effort focused on representing uncertainty in 
the Semantic Web. 

A PR-OWL ontology editor that facilitates the creation of probabilistic ontologies 
built on MFrags and MTheories was also presented. It automates many of the steps in 
the ontology building, greatly facilitating the process of writing probabilistic ontolo-
gies.  The automation includes defining MFrags to represent sets of related hypothe-
ses, consistency checking and other tasks that demand unnecessary awareness of the 
inner workings of the present solution.  

Finally, we discussed various aspects of SOA that would be enhanced by a means 
to represent and reason over uncertainty.  We provided examples that demonstrate the 
benefits of probabilistic ontologies to enable semantic negotiation among independ-
ently developed but related vocabularies and to assist in composing complex solutions 
from services providing elementary functionality. 
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Abstract. Although Semantic Web service discovery has been extensively stud-
ied in the literature ([1], [2], [3] and [4]), we are far from achieving an effective, 
complete and automated discovery process. Using the Incidence Calculus [5], a 
truth-functional probabilistic calculus, and a lightweight brokering mechanism 
[6], this article explores the suitability of integrating probabilistic reasoning in 
Semantic Web services environments. We show how the combination of relaxa-
tion of the matching process and evaluation of Web service capabilities based 
on previous performances of Web service providers enables new possibilities in 
service discovery.  

Keywords: Web services, Semantic Web services, discovery, broker, F-X, ca-
pability, probability, Incidence Calculus. 

1   Introduction 

Middleware is the "glue" that facilitates and manages the interaction between applica-
tions across heterogeneous computing platforms.  Web services is a middleware infra-
structure that provides descriptions of certain capabilities of an application (software 
component) and allow its remote execution using Internet protocols.  To reduce man-
ual efforts during the location, combination and use of Web services, machine proc-
essable semantics has been added to them creating Semantic Web services [7]. 

Web service discovery ([1], [8], [2] and [3]) is the act of locating Web services that 
meet certain functional criteria.  Service requesters (clients) usually specify their 
wishes using a goal (a functional description of objectives that clients want to achieve 
using Web services).  Service providers publish Web services capabilities (functional 
descriptions of a Web service) on Matchmakers and/or Brokers (service registry). 
Brokers like Matchmakers [9] are intermediate systems between clients and service 
providers that store web service capabilities and interfaces (description of how the 
functionality of the Web service is achieved), and locate Web services which capabili-
ties match client’s goals.  Brokers also manage the interaction between clients and 
selected web services. 

An exact match between a goal and a required Web service can be sometimes dif-
ficult to get. So, the relaxation of the matching conditions has been suggested to  
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improve Web service discovery [3].  Roughly speaking, the relaxation of the match-
ing process between a goal and web services capabilities has been based on the fol-
lowing set of matching notions [4]: (i) exact-match, a goal and matched Web service 
capabilities are the same; (ii) plug-in-match, a goal is subsumed by matched Web 
service capabilities; (iii) subsume-match, matched Web service capabilities are sub-
sumed by a goal; (iv) intersection-match, a goal and matched Web service capabilities 
have some elements in common; and (v) disjoint-match, a goal and matched Web 
service capabilities does not follow any of the previous definitions. Although match-
ing notions relax the selection of target web services, in a future scenario in which 
thousands of services can potentially fulfil (or partially fulfil) the objectives described 
in a goal, a fine-grained classification of matching notions may be necessary for im-
proving the degree of automation of the discovery process. One possible approach is 
to identify a degree of matching inside of each matching notion; other possibility, 
described in this paper, is to introduce an extra parameter that qualified a selected 
collection of Web services.  Thus, if we found one thousand web services that follow 
an intersection-match pattern, we can filter which are the most promising web ser-
vices for the goal requested based on a selected parameter.  To do this, it would be 
useful to have a mechanism that collects valuable information about chosen Web 
services.  Brokers can be a good choice for keeping a record of the quality of Web 
services, because brokers can analyze which Web services have been frequently 
available and which ones have been successfully used during a client request. 

Identifying the "most promising" (or the "best possible") Web services based on 
their quality introduces a significant degree of uncertainty that requires a specific 
formalism to handle it. The Incidence Calculus [5] is a truth-functional probabilistic 
calculus in which the probabilities of composite formulae are computed from intersec-
tions and unions of the sets of worlds for which the atomic formulae hold true. Inci-
dence Calculus can be easily integrated with other logic formalisms like propositional 
logic and logic programs that provide the foundations of Semantic Web services 
frameworks (e.g. OWL-S1, WSMO2 and Meteor-S3). 

For testing purposes, we have used F-X [6], a modular formal knowledge man-
agement system developed at University of Edinburgh that includes a broker called F-
Broker. The language used in F-Broker for describing Semantic Web services have 
common roots with WSMO (both follows the main principles of UPML [10]), and 
can deal with WSMO/OWL-S ontologies and Web services that fall into DLP frag-
ment [11]. We will show in this paper how we have extended F-Broker to deal with 
relaxed matching notions, how this new version of F-Broker can filter Semantic Web 
services based on their quality, and how Incidence Calculus can be nicely integrated 
to deal with the uncertainty that quality measurements introduced. 

The paper is structured as follows: section 2 introduces process F-X system. In sec-
tion 3 is explained how we enhanced F-Broker using Incidence Calculus. Section 4 
provides a short review of other improvements for F-Broker.  Related work on prob-
abilistic logic in the Semantic Web is described in section 5. Finally, conclusions and 
future work are included in section 6. 

                                                           
1 http://www.daml.org/services/owl-s/  
2 http://www.wsmo.org/ 
3 http://lsdis.cs.uga.edu/projects/meteor-s/  
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2   F-X, a Formal Management System 

The F-X system [6] aims to provide a general modular and extendable architecture 
for formal management systems, spanning the entire knowledge management lifecy-
cle (knowledge acquisition, transformation and publication).  The F-X prototype (see 
figure 1) includes six different components: F-Comp (component representation lan-
guage), F-Broker (broker component), F-Bus (communication component), F-Env 
(component for ontological envelope checker), F-Life (lifecycle manager component), 
and F-Pub (knowledge publication component). The design goal of F-Comp is to 
provide a simple language with a reduced set of primitives, but rich enough to de-
scribe all aspects of the design and interaction (communication) of any distributed 
collection of components capable of expressing knowledge in some form. F-Broker 
is the automated broker mechanism that stores the capabilities of knowledge  
components (i.e. problem-solving methods or Semantic Web services), identifies the 
assemblies of knowledge components appropriate for a given task, and manages (co-
ordinates) interactions of selected knowledge components.  F-Comp and F-Broker 
have been designed for describing and coordinating problem-solving methods and 
Semantic Web services [12]. Thus, F-X has become a vehicle for testing several as-
pects in the design and implementation of Semantic Web services.  The interaction 
between knowledge components is handled by F-Bus, a compact communication 
system for knowledge components.  F-Bus follows main principles of Linda commu-
nication style in which knowledge components publish and read in an asynchronous 
manner tuples (currently Prolog facts) in a tuple-space. F-Life is another component 
of F-X that defines an abstract calculus for modelling lifecycles of knowledge acqui-
sition, transformation and publishing. F-Life provides tool support for building more 
specialized forms of lifecycles and for analyzing existing lifecycles. F-Env provides a 
compact meta-interpretation mechanism for ontological constraint checking.  Finally, 
F-Pub includes tool support for synthesis of Web pages and Web sites from formally 
expressed knowledge. 

 

Fig. 1. F-X Architecture [6] 
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After this brief overview of F-X (more information in [6]), we will present in more 
detail two components (F-Comp and F-Broker) that are relevant to understand our 
work on service discovery using Incidence Calculus. 

2.1   F-Comp, Component Representation Language 

Inspired by previous work on coordination of distributed agents [13] and efforts on 
the Unified Problem-Solving Method (UPML [10]), F-Comp is a language that can 
represent ontologies, domain descriptions, problem-solving methods, and bridges, but 
unlike UPML, it is not able to represent tasks (although it can be possible to reintro-
duce if it is needed). An ontology definition in F-Comp specifies its signature (set of 
terms may be constraining which syntactic structures) and its axioms (set of formal 
definitions of each term of the signature). To characterize the domain knowledge 
available to solve certain problems, F-Comp includes domain definitions.  The es-
sential components of the domain description are: the name of the ontologies used; 
the properties of the knowledge expressed in the domain model; and the domain 
knowledge itself. A key element of F-Comp is a problem-solving method. It defines 
the reasoning process used to solve a concrete problem. The essential components of 
a problem-solving method are: the name of the ontology it uses; the capabilities which 
it provides; and the problem-solving mechanism delivering these capabilities. [12] 
reformulates the F-Comp form for problem-solving method into a close form of the 
DAML-S service profile and specification that is not compatible with the original F-
Comp. Thus, using F-Comp we can model simple Semantic Web service capabilities 
that can be tested by F-Broker.  Knowledge components might be specified using 
different ontologies. A bridge (also called correspondence) defines a translation 
between terms of different ontologies. The essential components of a bridge are: the 
name of the ontology being translated from; the name of the ontology being translated 
to; the renamings and mappings describing the translation; and the constraints apply-
ing to translated terms. For simplicity, task descriptions (similar to the notion of goal 
in Semantic Web services) are not supported by F-Comp.  Essentially, task descrip-
tions are problem-solving methods which do not commit to a specific method, and in 
F-X only existing problem-solving methods can advertise their capabilities. 

2.2   Describing Capabilities Using F-Comp 

The capability language included in F-Comp was designed to describe key informa-
tion which can be obtained from a knowledge component without stipulating how is 
derived.  F-Comp capability language is defined following horn clause notation [14].  
The intuition behind the use of horn clauses for capabilities is that we have four re-
forms of capability, C, each of which is implemented within the expression cap(K, 
C) , denoting that the agent named K can deliver capability, C in at least one instance 
or, if not, will signal failure. Valid options for C are [6]: 
 

� A unit goal of the form P(A1,…,An) , where P is a predicate name and A1,…, An 
are its arguments. 

� A conjunctive goal of the form (C1∧…∧Cm) , where each Ci is a unit goal or a 
set expression. 
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� A set expression of the form setof(X,C,S) , where C is either a unit goal or 
a conjunctive goal; X is a tuple of variables appearing in C; and S is a set of in-
stances of those tuples which satisfy C. 

� A conditional goal of the form Cc←Cp , where Cc is a unit goal which the agent, 
K, will attempt to satisfy (but will not guarantee to satisfy) if the condition, Cp , is 
satisfied. Cp is either a unit goal or a conjunctive goal. 

 

In addition, the capability language of F-Comp is able to describe partial capabili-
ties which are capabilities that require additional information from another knowledge 
component, mediated by the broker.  A partial capability is defined by the expression 
p_cap(K; C; E), which is identical to our original capability description but with 
an additional argument, E, containing the capability required from another knowledge 
component. 

As we mentioned above, there is a version of F-Comp that provides a slightly dif-
ferent version of the capability description language, closer to DAML-S service pro-
file. A detailed description of this revised version of F-Comp can be found in [12]. 

2.3   F-Broker, a Brokering Mechanism 

The purpose of a broker is to find, for a given task (goal) posed by a client, the ways 
in which knowledge components (i.e. problem-solving method, agent or Semantic 
Web services) which have advertised their capabilities might be contacted in order to 
satisfy that task.  F-Broker requires that each knowledge component advertises first its 
capabilities simply by sending each capability to F-Broker.  For the given task, the 
broker constructs from its capability descriptions its internal description, which is 
called "brokerage structure" [6] of how the task might be complete based on those 
capabilities.  It then translates its brokerage structure into a sequence of communica-
tion acts (performative statements in KQML [15]) describing the messages which it 
thinks should enable the task to be satisfied by requesting appropriate knowledge 
components to discharge their capabilities.  In the final stage, the performative infor-
mation generated by the broker is used to establish an appropriate flow of messages 
between the selected knowledge components in order to complete the task requested. 

The brokering mechanism can be divided in three different elements: a formal way 
of representing brokerage structures; a method for constructing brokerage structures; 
and an algorithm for translating brokerage structures into message sequences. 

A brokerable structure in F-Broker has the form c(K, C), where K is the name of 
the knowledge component which should be able to deliver the capability and C is a 
description of the sources of the capability. C can be in any of the following  
forms [6]: 

 

� A capability available directly from K. 
� A term of the form c(K, dq(Q,QC)), where Q is a capability obtainable from 

K conditional on its other capabilities and QC describes how these capabilities are 
obtained. 

� A term of the form c(K, pdq(Q,QC,QP)), where Q is a capability obtainable 
from K conditional on its other capabilities and on capabilities external to K, and 
QC and QP describe how these internal and external capabilities (respectively) are 
obtained. 
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� A term of the form c(conj, co(CQ1,CQ2)), where CQ1 and CQ2 are two 
capability structures which must jointly be satisfied. 

� A term of the form c(K, cn(Q, G, c(K1,Q1))), where K1 is the name of 
an agent different from K which allows capability structure Q to be delivered in 
combination with capability structure Q1 provided that the bridge constraints 
given by G are satisfiable. 

 

We can now describe a method for constructing brokerage structures of the form 
given above using the capability and bridge definitions which reside in the brokering 
system. Notice that this does not involve any additional interaction with the individual 
knowledge components (the computation can be done entirely within the broker). We 
describe the algorithm below as a logic program because this is compact, precise and 
declarative but the mechanism itself could be implemented in a procedural language. 
The algorithm proceeds by cases corresponding to each of the forms of brokerage 
structure given above. The dq structure is obtained from a conditional cap definition; 
the pdq structure from a p_cap definition; the co structure from two capability 
structures; and the cn structure via bridge. In all cases where we introduce a new 
capability into our structure we must demonstrate that it too is obtainable from our 
definitions – hence the recursive use of broker in the algorithm. For partial capabili-
ties (pdq structures) we need the same form of brokering but with the constraint that 
the external capability required by the agent comes from some other source. The easy 
way to describe this is simply to replicate the broker algorithm but with an additional 
argument (Kn in e broker below) that records the original agent name and prevents it 
being used to satisfy the external capability goal. The full definition of our broker is 
then as follows [6]: 
 
% Capabilities of K 
broker(Q,c(K,Q)) 

←cap(K,Q). 
broker(Q, c(K, dq(Q,QC))) 

←cap(K, (Q←C)) ∧  
  broker(C,QC). 

broker(Q, c(K1,pdq(Q,QC,QP))) 

←p_cap(K1, (Q←C), P) ∧  
  broker(C,QC) ∧  
  e_broker(P,K1,QP). 

broker((Q1,Q2), c(conj, 
co(CQ1,CQ2))) 

←broker(Q1,CQ1) ∧ 
  broker(Q2,CQ2). 

broker(Q2, c(K2, cn(Q2, G, 
c(K1,BQ)))) 

←corr(K1,Q1,K2,Q2,G) ∧ 
  Broker(Q1, c(K1,BQ)). 

% External capabilities of K 
e_broker(Q, Kn, c(K,Q)) 

←cap(K,Q) ∧ not(K=Kn). 
e_broker(Q, Kn, c(K, dq(Q,QC))) 

←cap(K, (Q←C)) ∧ not(K=Kn) ∧ 
  broker(C,QC). 

e_broker(Q, Kn, c(K1, 
pdq(Q,QC,QP))) 

←p_cap(K1, (Q←C), P) ∧ 
  not(K1=Kn) ∧ broker(C,QC) ∧  
  e_broker(P,K1,QP). 

e_broker((Q1,Q2), Kn, c(conj, 
co(CQ1, CQ2))) 

←e_broker(Q1,Kn,CQ1) ∧  
  e_broker(Q2,Kn,CQ2). 

e_broker(Q2, Kn, c(Kn, cn(Q2, G, 
c(K1,BQ)))) 

←corr(K1,Q1,Kn,Q2,G) ∧  
  broker(Q1, c(K1,BQ)). 

  
The brokerage structures and the brokering method described above do not prescribe 

the sequence in which it should be transmitted messages to their knowledge components 
which F-Broker is coordinating.  How F-Broker establishes an appropriate sequence of 



114 F. Martín-Recuerda and D. Robertson 

messages depends of the conventions being used for message passing.  F-Broker can 
support several message passing conventions (similarly to DAML-S/OWL-S and 
WSMO that provide several groundings including WSDL/SOAP grounding).  Following 
previous work on KQML [15] (Knowledge Query and Manipulation Language is a 
language and protocol for communication among software agents and knowledge-based 
systems), F-Broker includes a simple version of KQML which uses three communication 
acts ("performatives" in the terminology of KQML) that are transmitted sequentially [6]:  

 

~ ask(K; C) denoting that we are asking the agent named K to discharge the 
competence C. We must obtain a response to this message with an instance 
for C before proceeding with the rest of the sequence.  

~ tell(K; C) denoting that we are informing the agent named K that a 
competence which it required externally can be discharged by a 
correspondence to another agent. We must obtain a response from K 
indicating that it accepts the information before proceeding with the rest of 
the sequence.  

~ test(G) denoting that whatever system is sending the messages should 
attempt to satisfy the constraint, G, before sending any further messages in 
the sequence.  

 

We now need an algorithm for translating the brokerage structures of the previous 
section into message sequences which conform to our message passing conventions. 
We describe this below in the style of a Definite Clause Grammar (DCG) the 
grammar is used to generate the sequence of terminal symbols, corresponding to 
performatives, by unpacking the brokerage structure. We assume in the definitions 
below that the DCG rules are mutually exclusive, so there is only one possible rule for 
each form of brokerage subterm. It is readily implemented in Prolog but could be 
implemented in other languages [6]:  

  

assemble(c(S; dq(Q; QC))) ) fdependent queries(QC;DQ)g;  
assemble(QC);  
[ask(S; (Q  DQ))]  
assemble(c(S1; pdq(Q; QC;QP ))) ) fdependent queries(QP;DQ)g;  
assemble(QC);  
assemble(QP );  
[ask(S1; (Q  DQ))]  
assemble(c(conj; co(CQ1;CQ2))) ) assemble(CQ1);  
assemble(CQ2)  
assemble(c(S; cn(Q;C; CQ))) ) assemble(CQ);  
[test(C); tell(S; Q)]  
assemble(c(S; Q)) ) [ask(S; Q)] 

2.4   Travel Agency Example, Writing Capabilities in F-Broker 

The example of this section describes a simplified version of the well-known Virtual 
Travel Agency (VTA) scenario.  Clients can ask VTA for flight information or require 
the booking of selected flights. VTA stores capabilities of airline companies that are 
interested on advertising flights and selling the flight-tickets.  Booking a flight re-
quires payment service and passport verification. The former is done by credit-card 
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financial entities, and the later is done by the police. We specify the capabilities of 
each airline company, credit-card company and the police in the following way: 

% Financial capabilities 

capability(financial_vs,, pay_order(Client_ID,  
Client_Card_Number, Purchase_Order, Cost, Currency,  
PaymentMethod)). 

... 

capability(financial_ms,,  pay_order(...)). 

capability(financial_amex,,  pay_order(...)). 

% Passport control capabilities 

capability(police, has_passport (Client_ID, Nationality)). 

... 

% Airline capabilities 

capability(airline_ib,  check_flight(Origin, Destination,  
DepartureDate, ArrivalDate, NPassengers, Cost, Currency, 
Flight_Number)). 

capability(airline_ib,  book_seats (Origin, Destination,  
DepartureDate, ArrivalDate, NPassengers, Cost, Currency, 
Flight_Number)). 

p_capability(airline_ib, (buy_flight_tickets (Origin,  
Destination, DepartureDate, ArrivalDate, Cost, Currency, 
Flight_Number, Purchase_Order, Client_ID, Nationality,  
Client_Card_Number, Confirmation_Number) :-  

(check_flight(Origin, Destination, DepartureDate,  
ArrivalDate, NPassengers, Cost, Currency, Flight_Number),   
book_seats (Origin, Destination, DepartureDate,  
ArrivalDate, NPassengers, Cost, Currency, 
Flight_Number)), (pay_order(Client_ID,  
Client_Card_Number, Purchase_Order, Cost, Currency,  
PaymentMethod), has_passport (Client_ID, Nationality))). 

capability(airline_aa,  check_flight(...)). 

capability(airline_aa,  book_seats (...)). 

p_capability(airline_aa, (buy_flight_tickets (...))). 

... 

capability(airline_ba,  check_flight(...)). 

capability(airline_ba,  book_seats (...)). 

p_capability(airline_ba, (buy_flight_tickets (...))). 
 

If a potential client would like to buy flight-tickets, the brokerage structure gener-
ated by F-Broker is described next: 

c (airline_ba, pdq (buy_flight_tickets (...),  

c (conj, co (c (airline_ba, check_flight(...)), 

c (airline_ba, book_seats (...))), 
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c (airline_ba, cn ( c (financial_ms, pay_order(...))), 

c (airline_ba, cn ( c (police, has_passport (...))) 

)) 

The assembled message sequences corresponding to the brokerage structure de-
scribed above would have the following form: 

 ask (airline_ba,  check_flight(...)), 

 ask (airline_ba,  book_seats (...)), 

 ask (police,   has_passport (...)), 

 ask (financial_ms,  pay_order(...)), 

 ask (airline_ba,  buy_flight_tickets (...):- 

     pay_order(...)),  

     has_passport (...))) 

3   Quality-Based Service Selection Using Incidence Calculus 

When a service requester (client) submits a goal (service request) to a broker, the 
broker has to find which Web service can fulfil the goal based on the service capabili-
ties that have been stored in the broker's database. It is possible that the broker might 
find several candidates that can provide the service requested. Instead of choosing 
randomly the appropriate Web service, we have developed a simple but apparently 
effective technique for selecting Web services based on evidence of prior perform-
ance. Because brokers coordinate the interactions between service requester and ser-
vice providers, brokers can track successful attempts of satisfying service requests. 
Thus, when a broker has several providers that meet the requirements of a new client's 
goal, the broker can select the Web service with better prior performance (number of 
previous occasions in which the service successfully attempt a service request). 

Inferring the best possible Web service based on previous performance introduces 
a significant degree of uncertainty. To deal with this uncertainty, we use the Incidence 
Calculus [5] for our probabilistic calculations. Thus, F-Broker is able to select the 
Web service that maximises the probability of a successful outcome.  To better under-
stand what Incidence Calculus is and how it can be used in F-Broker, we provide a 
detailed description next in this section. 

3.1   Incidence Calculus   

Bundy [5] demonstrated that purely numeric probabilistic formalism can derive into 
contradictory results during the calculation of an uncertainty measure of complex 
formula. The key result of his analysis is that in general P(A∧B)≠P(A)*P(B). 

Incidence Calculus [5] reviews the notions of probability theory and introduces an 
important novelty: “the probability of a sentence is based on a sample space of ele-
ments. Each element defines a situation in a possible world where a sentence can be 
true or false. The sample space, T, contains an exhaustive and disjoint set of elements 
that for computational reasons should be finite”. 
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The incidence of a sentence A, i(A), is the subset of W in which sentence A is true. 
The dependence or independence of two sentences, A and B, is defined by the amount 
of common points of the result of the intersection between their incidences,  
i(A) � i(B) . 

The axioms of Incidence Calculus [5] associate a set of theoretic function with 
each connective, propositional constant and quantifier of Predicate (Propositional) 
Logic so that the incidence of a complex sentence can be calculated from the inci-
dences of its sub-sentences. The probabilities of composite formulae are computed 
from intersections and unions of the sets of worlds for which the atomic formulae 
hold true. Bundy called the resulting system Predicate (Propositional) Incidence 
Logic [5]: 

i(T)= {}        i(⊥) = {} 

i(A)=  i(A)       i(¬A)  = i(T)\i(A) 

i(A∧B)=  i(A)∩i(B)    i(A∨B) = i(A)∪i(B) 

i(A→B)=  i(¬A∨B) = (i(T)\ i(A))∪i(B) 

Thus, probabilities are calculated in the following way [5]: 

P(T)=  |i(T)|  = 1    P(⊥)=  |i(⊥)| = 0 

P(A)=  |i(A)| / |i(T)|  P(¬A)= 1-|i(A)| / |i(T)| 

P(A∧B) =  |i(A)∩i(B)| / |i(T)| 

P(A∨B) =  (|i(A) ∪i(B)| - |i(A)∩i(B)|) / |i(T)| 

P(A|B) =  |i(A)∩i(B)| / | i(B)| 
 

As an illustration, consider the following set of incidences describing the weather 
of a given week adopted from [5]:  

Suppose there are two propositions, P={rainy, windy} and seven possible worlds, 
T ={sunday, monday, tuesday, wednesday, thursday, friday, saturday}. Suppose that 
each possible world is equally probable (i.e. 1/7), and we learn that rainy is true in 
four possible worlds (friday, saturday, sunday and monday) and windy is true in three 
possible worlds (monday, wednesday and friday). Therefore, we can derivate the 
following incidence sets [5]: 

i(rainy) = {friday, saturday, sunday, monday} 

i(windy)= {monday,wednesday, friday} 

i(windy∧rainy)= {monday, friday} 
 

Moreover, we can calculate their probabilities in the following way: 

P(rainy) = |i(rainy)| / |i(T)|=4/7 

P(windy) = |i(windy)| / |i(T)|=3/7 

P(windy∧rainy)= | i(windy)∩i(rainy)| / |i(T)|=2/7 
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3.2   Travelling Example Revised  

In F-Broker, each time that a service request is received counts as one incidence.  If 
the service request has been successfully attended by selected Web services, the capa-
bilities involved during the creation of the brokerage structure are modified by the 
broker adding one incidence to the associated list of incidences. Initially, the incident 
database is empty, and the broker selects services at random. As more data is col-
lected, a threshold is reached, at which point the broker begins to use the probabilities 
for selecting promising Web services. 

The incidence database is composed of a proposition with all the incidences regis-
tered by the broker and an entrance for each atomic capability with the associated list 
of incidence (one incident for each successful used of the capability). The revised 
version of the virtual travelling agency scenario then is as follows: 

i(all_requests, [1,2,3,...,20]). 

i(capability(airline_aa, check_flight(...)), [2,3,9,10,11]). 

i(capability(airline_ba, check_flight(...)), [1,4,5]). 

i(capability(airline_ib, check_flight(...)), 
[6,7,8,12,13,14,15,16,17,20]). 

... 

In this example, we can observe that the first service has been successfully used in 
five different occasions.  So, we can predict the goodness of the associated service by 
applying Incidence Calculus in the following way: 

P(capability(airline_aa, check_flight(...))) = 
|{2,3,9,10,11}|/|{1, ...,20}| 

We can also observed that for a given request that can be satisfied by any of the 
Web services represented using the capabilities listed above, capabil-

ity(airline_ib, check_flight(...)) is the most promising one.  Further, by 
intersecting various sets of incidences, Incidence Calculus also allows F-Broker to 
compute the possible success of a group of capabilities.  Let us examine the prior 
performance of the Web services associated with the partial capability 
"buy_flight_tickets" of the service provider "airline_ib".  We ran F-
Broker several times and we obtained the following incidence data:   

i(all_requests, [1,2,3,...,20]). 

... 

i(capability(financial_amex,,  pay_order(...)), 
[1,2,3,6,7,8,16,20]). 

i(capability(police, has_passport (...)), 
[1,2,5,6,7,8,10,16,17]). 

... 

i(capability(airline_ib, check_flight(...)), 
[6,7,8,12,13,14,15,16,17,20]). 
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i(capability(airline_ib, book_seats(...)),  

 [6,7,8,16,17,20]). 

p_capability(airline_ib, (buy_flight_tickets (...) :-  
(check_flight(...),   book_seats (...)),  
(pay_order(...), has_passport (...))). 

... 
 
There is no set of incidences associated with the partial capability 

"buy_flight_tickets", because its probability of success is computed using the 
incidences associated with the capabilities "check_flight", "book_seats", 
"pay_order", and "has_passport".  The first two capabilities are associated to 
"airline_ib" and their joint distribution is calculated as the intersection of their 
incidences.  The last two capabilities are dependent upon services other than "air-
line_ib" - their joint probability is conditional on the joint probability of 
"check_flight" and "book_seats".  Thus, the probability of the Web service 
associated with "buy_flight_tickets" can be calculated as follows: 

P(capability(airline_ib, buy_flight_tickets(...))) = 
P(capability(airline_ib, check_flight(...)) ∧  

 capability(airline_ib, book_seats(...))|  

 capability(financial_amex, pay_order(...)) ∧  

 capability(police, has_passport (...))) = 

|{6,7,8,12,13,14,15,16,17,20} ∩ {6,7,8,16,17,20} ∩ 

{1,2,3,6,7,8,16,20} ∩ {1,2,5,6,7,8,10,16,17}| / 
|{1,2,3,6,7,8,16,20} ∩ {1,2,5,6,7,8,10,16,17}| 

Given that probabilities can be calculated from the dependencies established by the 
capability definitions, it is not necessary to modify the broker algorithm described in 
the previous section.  F-Broker will try to "instantiate" first the capabilities with the 
highest number of incidences.  The probability of the final brokerage structure can be 
calculated later, using the information about dependencies between capabilities.  Us-
ing this technique can substantially improve performance over random selection of 
Web services which can individual meet the requirements.  In addition, the use of 
Incidence Calculus does not degrade the performance of F-Broker. 

3.3   Discussion   

F-Broker has been designed for interaction between agents in architectures for which 
it is straightforward to gather data on the success or failure of an agent each time it 
has attempted to satisfy a goal.  In this architecture, the enactment of interactions 
(which is complementary to the specification of agent capabilities) is controlled by 
specifications of the interaction process (analogous to the process model assumed by 
OWL-S).  Each agent that wishes to become involved in an interaction must actively 
subscribe to one of the roles in that interaction; then when all the roles of an interac-
tion are subscribed the corresponding agent group commit to the interaction before 
engaging in it. The fact that F-Broker connects agents through subscription to explicit 
roles and interactions means that it potentially can supply accurate statistics on agent 
performance in enacting capabilities. 
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The incidences gathered by F-Broker are considered independent. We must make 
that assumption because we have no means of knowing whether or not they have 
dependences "behind the scenes", and we are not concerned if they do because all we 
are interested in is whether agents have demonstrated their abilities to offer the capa-
bilities they said they could offer. 

The fact that we associate incidences to each atomic capability, and that we calcu-
late probabilities following the rules defined by the Predicate Incidence Logic [5] 
should not confuse the reader about the nature of Incidence Calculus as a mechanism 
for handling uncertainty.  In the scenario presented above, "counting incidences" is a 
strength, for two reasons: it allows us to use data on success/failure simply; and di-
rectly via Incidence Calculus, it allows us to distinguish incidences which avoids  
the problems in classical probability that stimulated Incidence Calculus in the first 
place [5]. 

An additional element for discussion is the way that we estimate the probability of 
complex capabilities.  For complex capabilities, we derive an estimate of their prob-
ability by performing calculations over "primitive" incidences associated with atomic 
capabilities.  We do not associate incidences directly with complex capabilities be-
cause we cannot know which agents to blame when a complex interaction has failed.  
For instance, if a complex capability, "Y", is defined by "A and B" where "A" and 
"B" are atomic, Incidence Calculus allows us to estimate probabilities for complex 
capabilities in a way that distinguishes the cases where A and B interact (because they 
were in the same incident) from those in which they do not. 

We note here two significant problems that seem to be intrinsic to the technique 
that we presented above: the problem that F-Broker relies on the honest evaluation 
reported by the clients that have sent their goals; and the problem of quickly re-
adapting when the performance of Web services changes. Since individual client 
services are responsible for the assigning of success metrics to goal satisfaction, there 
is scope for clients with unusual criteria or malicious intent to corrupt the database. 
We also note that F-Broker is not able to handle the changes that the environment 
undergoes in specific periods of time. For instance, the provider of a service with a 
large set of incidences (successful provider) might fail temporarily (no service then 
being available). Any request by clients that asks for this service will still be proc-
essed by the broker and the answer will include the service that the provider cannot 
supply. After many requests this could be remedied by another service outperforming 
the record of the unavailable service, but before then, the current broker will choose 
an unavailable service first. 

4   Additional Improvements for F-Broker 

We briefly present in this section two relevant modifications of F-Broker imple-
mented in [16] for improving its ability of dealing with Semantic Web services.  The 
first enhancement allows F-Broker to load many DAML-S Web services.  This func-
tionality is useful for increasing the range of testing data.  The second improvement, 
also implemented in [16], extends the notion of matching in F-Broker which is able to 
find services that partially meet the requirements of a given goal.   
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4.1   Loading DAML-S Services 

To test F-Broker with examples of Semantic Web Services implemented by institu-
tions outside of University of Edinburgh, we developed a new module for loading 
DAML-S Service Profile descriptions.  At the time of this work, DAML-S was the 
most important proposal for describing Semantic Web services, so it was a natural 
choice to focus on DAML-S.  One of the main difficulties was to find a translation 
from DL logical statements into Prolog statements.  

Description Logic Programs (DLP, [11]) is an expressive fragment of the intersec-
tion of Description Logics (DL) [17] and Logic Programs (LP) [14]. An important 
result of the development of this formalism is DLP-fusion, a bidirectional translation 
of premises and inferences from DLP fragment of DL into LP, and vice versa from 
DLP fragment of LP into DL. Our implementation of DLP-Fusion was good enough 
to load slightly adapted versions of DAML-S Service Profile descriptions from 
DAML4, Mindswap5 and Carnegie-Mellon6.  

4.2   Extending the Notion of Matching in F-Broker 

The main motivation behind the use of Incidence Calculus for selecting Web services 
was to facilitate the work of the broker when "exact" matching is not the only notion 
of matching available.  For testing purposes, F-Broker was modified to support plug-
in, subsume, and intersection match.  We implemented a new predicate, match-
ing_notion (Q1, Q2, Nmatch), that evaluates the amount of parameters in 
common between two capabilities, Q1 and Q2, and the predicate returns the kind of 
matching founded.  The broker algorithm presented in previous section was modified 
to accommodate the new developed predicate.  For instance, for a simple capability C 
directly available from Web service K, c(K, C), the brokerage predicate is: 

 

brokerable(Q, c(S,Q,Nmatch)) :- 
    capability(S, Q1), 
    matchingnotion(Q1,Q,Nmatch), 
    Nmatch<>″disjoint″. 
 

Supporting several notions of matching increases the amount of Web services that 
meet (perhaps partially) the requirements for a given goal.  The Incidence Calculus 
was added to help F-Broker during the process of selecting the most promising Web 
services that match the requirements posted by a client. 

5   Related Work 

The use of probabilistic logic in the context of the Semantic Web has not been ex-
plored in detail. Even the inventor of the Semantic Web, Sir Tim Berners-Lee, 
claimed during the dev day lunchtime session at WWW2004 conference7 that the 
Semantic Web stack does not need a representation of uncertainty. The first serious 
attempt to incorporate probabilistic reasoning in the Semantic Web was done with  
                                                           
4 http:// www .daml.org/services/examples.html      
5 http://www.mindswap.org/2002/services/ 
6 http://www. daml.ri.cmu.edu/ont/TaskModeler/TMont-index.html# Request Realtor1 
7 http://esw.w3.org/mt/esw/archives/000055.html  
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P-SHOQ[18].  This work has been recently revised, and as a result, the first imple-
mentation of P-SHOQ has been released. PRONTO [19] is an extension of Pellet [20] 
that enables probabilistic knowledge representation and reasoning in OWL ontolo-
gies.  To the best of our knowledge, the use of Incidence Calculus for improving Web 
service discovering and composition was proposed first in [16]. Later, [21] incorpo-
rates the use of Incidence Calculus in an advance version of F-Broker that includes a 
lightweight coordination calculus (LCC) [22], a method for specifying agent interac-
tion protocols. [21] provides a detailed analysis of performance of the use of Inci-
dence Calculus for selecting web services and proves empirically the benefits of the 
use of Incidence Calculus for Web service discovery. 

6   Conclusions and Future Work 

The use of Incidence Calculus for improving service discovering is an excellent moti-
vating scenario for encouraging the integration of probabilistic logic in Semantic Web 
service technology. Uncertainty is present in functional aspects of Web Services like 
discovery, composition, interoperation, mediation, monitoring and compensation. In 
this paper, we focused only in discovery, and in [16], composition is also studied. 

Incidence Calculus was an excellent choice because its simplicity, rigor and compati-
bility with other classical logic formalisms. F-Broker provides an excellent test platform 
for the evaluation of Incidence Calculus in semantic web services. Although simple, F-
Broker provides all basic functionality of a broker and allows the composition of web 
services capabilities and the execution of services based on an elementary vocabulary 
inspired in KQML. The code is compact and new extensions can be easily included. F-
Broker assumes a service choreography architecture in which agent success/failure in 
interactions can accurately be recorded.  An example of this sort of architecture has been 
developed by the OpenKnowledge project (www.openk.org).  The Openknowledge 
kernel system (downloadable and available open source) allows peers on an arbitrarily 
large peer-to-peer network to interact with one another without any pre-established 
global agreements or knowledge of who to interact with or how interactions will proceed.  
This provides a concrete example of the sort of architecture assumed by F-Broker. 

Future work will concentrate in the migration of the test platform to more realistic 
scenarios and the evaluation of other probabilistic logic formalism that combines 
logic programming with description logics. 
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Abstract. In the (Semantic) Web, the existence or producibility of cer-
tain, consensually agreed or authoritative knowledge cannot be assumed,
and criteria to judge the trustability and reputation of knowledge sources
may not be given. These issues give rise to formalizations of web informa-
tion which factor in heterogeneous and possibly inconsistent assertions
and intentions, and make such heterogeneity explicit and manageable
for reasoning mechanisms. Such approaches can provide valuable meta-
knowledge in contemporary application fields, like open or distributed
ontologies, social software, ranking and recommender systems, and do-
mains with a high amount of controversies, such as politics and culture.

As an approach to this, we introduce a lean formalism for the Se-
mantic Web which allows for the explicit representation of controversial
individual and group opinions and goals by means of so-called social con-
texts, and optionally for the probabilistic belief merging of uncertain or
conflicting statements.

Doing so, our approach generalizes concepts such as provenance anno-
tation and voting in the context of ontologies and other kinds of Semantic
Web knowledge.

Keywords: Semantic Web, OWL, Knowledge Integration, Context
Logic, Voting, Provenance Annotation.

1 Introduction

Information found in open environments like the web can usually not be treated
as objective, certain knowledge directly, and also not as truthful beliefs (due to
the mental opaqueness of the autonomous information sources). Only a few ap-
proaches to the semantic modeling of what could be called subjective opinions,
ostensible beliefs or “public assertions”, which are neither truthful beliefs nor
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objective knowledge, exist so far [11,12]. In contrast, most prevalent formal ap-
proaches to knowledge representation and reasoning for the Web handle logical
inconsistencies and information source controversies mostly as something which
should be avoided or filtered.

Against that, we argue that making (meta-)knowledge about the social, het-
erogeneous and controversial nature of web information explicit can be extremely
useful - e.g., in order to gain a picture of the opinion landscape in controversial
domains such as politics, for subsequent decision making and conflict resolution,
for the acquisition and ranking of information from multiple, possibly dissent
sources, and not at last for tasks like the learning whom (not) to trust. Such
knowledge is especially crucial in domains with a strong viewpoint competition
and difficult or impossible consensus finding like politics, product assessment
and culture, and in current and forthcoming Semantic Web applications which
support explicitly or implicitly people interaction, like (semantic) blogging, dis-
cussion forums, collaborative tagging and folksonomies, and in social computing
in general. Approaching this issue, this work presents a lean approach to the
formal representation of semantical heterogeneity by means of social contexts
and the probabilistic weighting and fusion of inconsistent opinions.

The remainder of this paper is structured as follows: the following section
defines the two most important concepts underlying our approach, namely social
contexts and social ontologies. Section 3 introduces a formal, C-OWL based
framework for the modeling of social contexts, and Section 4 shows how the
formerly presented formal framework can be extended in order to allow for the
fusion and probabilistic weighting of competing statements. Section 5 concludes
with a discussion of related works.

2 Integration of Divergent Viewpoints and Intentions
Using Social Contexts

In the following, we describe the main concepts underlying our approach. First
we introduce a so-called social ontology of social entities and structures. This
ontology is then used to obtain a certain type of logical contexts (called social
contexts) which allow for the modularization of (ordinary) ontologies w.r.t. the
addressee-dependent propositional attitudes of actors or organizations towards
the axioms and facts in these ontologies.

A more in-depth exploration of these concepts can be found in [22].

2.1 Social Ontologies

Technically, our approach is based on implementing an interrelationship of a so-
cial ontology for the description of social concepts and individuals (like persons,
agents and organizations, and maybe their relationships) on the one hand, and
a set of possibly controversial or uncertain statements (opinions) on the other
hand. Instances of the social ontology represent the knowledge sources which
contribute these opinions. Special terms which are assembled using names from
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the social ontology then identify social contexts for the contextualization and
optionally the fusion of semantically heterogeneous statements. The social on-
tology can thus be seen as a meta-ontology which is used to provide elements
which are used to annotate facts and axioms of other ontologies (the ontologies
which contains the opinions). The contextualization itself (independent of the
social ontology) corresponds to the context-driven partitioning of a knowledge
space, analogously to the approach presented in [2,4].

There is no canonical social ontology to be used with our approach. Basi-
cally any ontology could be used as long as it provides concepts, roles and in-
stances for the modeling of the interacting agents and social groups, such as
“Author”, “Publisher” or “Reader”, or, most basic, “Actor”. We believe that
information sources shall be seen as active, autonomous and - most important -
communicating (i.e., social) actors, as well as the recipients of the information.
A mere conceptualization of the (Semantic) Web as a kind of huge distributed
document or knowledge base containing passive information fragments would be
highly inadequate [23]. We see the Semantic Web rather as a place where actively
pursued opinions and intentions will either compete against or strengthen each
other interactively [24]. This viewpoint is independent from the concrete ways
such interaction is technically performed (directly or indirectly, synchronously
or asynchronously...).

The following example ontology fragment will do for the purpose of this work:

Definition 1: Social ontology SO (example)

Actor(person1), Actor(person2), Actor(person3)
...
Communication(com1), Communication(com2), Communication(com3),
Communication(com4)
...
Source(com1, person2), Addressee(com1, person3)
Source(com2, person1), Addressee(com2, person2)
...
Content(com1, “a reified statement ′′)

DegreeOfCertainty(com1, 0.75)
DegreeOfCertainty(com7, 0)
..
SocialGroup(group1), SocialGroup(group2)
...
hasMember(group1, person1), hasMember(group2, person1)
Actor(group1)
...
Actor(organization1)
...
Source(com4, group1), Addressee(com4, organization1)
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...
CA(assertion), CA(publicBelief ), CA(publicIntention)
Attitude(com1, publicBelief ), Attitude(com2, assertion),
Attitude(com3, publicIntention)
...
Aggregation(fusedPublicBelief )

At this, Actor is the category of the participating actors, whereby these can
be any kind of information sources or addressees, like persons, organizations,
documents, web services, as well as the holder of a so-called public intention or
goal (cf. below). Communication is the category of elementary communication
acts, described by the properties Source, Addressee, Attitude and Content (the
uttered statement or intention). A full-fledged approach would add further prop-
erties such as a time-stamp, but for many applications it will not be required to
make SO explicit at all.

Information sources and addresses can be the roles of any kind of actors, not
only individual persons. E.g., a social group or an organization such as a company
can also act as a source. Social groups are modeled extensionally as sets, whereas
organizations are legal entities. At this, it is very important to see that in our
framework, opinions and public intentions uttered by a certain group or organi-
zation can be modeled fully independently from the opinions and intentions of its
members and subgroups. I.e., a social group as a whole could exhibit opinion p,
whereas each individual group member exhibits ¬p simultaneously. Of course, in
reality the opinions of group members influence the opinion of the group, by way
of judgment aggregation [27]. But we think that no single particular way of group
opinion settlement should be statically fixed. Instead, we will later introduce a
special aggregation operator (informally denoted as fusedPublicBelief in SO) in
order to model the quasi-democratic emergence of group opinions from individual
opinions. But again, this is only one possibility: likewise, our framework allows to,
e.g., model the case that a group always communicates the opinions of some dedi-
cated opinion leader (dictatorship). It is also not necessarily the case that a social
group as a whole forms a single actor at all.

At a first glance, it might seem that on the Semantic Web, the addressee
of information is always the general public and thus a fine grained modeling
of communication addressees would not be required. This is untrue at least for
two reasons: firstly, Semantic Web technologies are also useful in environments
where the set of recipients of some information is limited, such as in closed
web communities. Secondly, even if some information is in principle visible to
everybody, it is nevertheless usually targeted at some specific audience (although
it might be difficult to obtain this kind of meta knowledge).

In this work we support the modeling of three public propositional attitudes:
assertion, publicBelief , and publicIntention, all subsumed in the ontology under
CA (“Communication Attitude”).

assertion means that a certain statement is ostensibly believed and that the
speaker (author) has the ostensible intention to make the addressee(-s) adopt the
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same attitude towards the respective statement also (e.g., “This product is the
best-buy!”). This corresponds more or less to the communication act semantics
which we have introduced in [11,5,12], and to Grice’s conceptualization of speech
acts as communications of intentions. publicBelief means here more or less the
same as assertion, but in distinction from the latter publicBelief is a passive
stance and does not necessarily comprise the person’s intention to make the
addressees approve the respective statement but merely that a person agrees with
some statement (but note that it is not possible to communicate an information
p without the implicit assertion that p is indeed an information...). We could
likewise have called publicBelief belief instead, but avoid the latter in order to
be able to distinguish between mental (truthful) beliefs and opinions.

Both publicBelief and assertions are sometimes called “opinions” in this
work. The pragmatic status of publicBelief , being a kind of “weak assertion”, is
somewhat unclear and mainly introduced for compatibility reasons w.r.t. [13],
and we believe that assertion is sufficient to model most cases of information
dissemination on the (Semantic) Web.

publicIntention finally is the communication attitude of ostensibly intending
that a statement shall become true (i.e., an intention or goal of the actor to
change the world appropriately). The attitude of requesting something from
another actor is a subtype of publicIntention. As a simplification, we consider
the attitude of denial as identical with the positive attitude towards the negation
of the denied statement. This would perhaps be too simple for the modeling of
inter-human dialogs, but should do in the context of the less dynamic information
exchange on the web. These attitudes should be sufficient to represent most
information, publishing and desiring acts on the internet.

assertion, publicBelief and publicIntention are no propositional attitudes
in the usual mentalistic sense but public propositional attitudes, as they do not
need to correspond to any sincere (i.e., mental) beliefs or intentions of the actors.
Instead, they are possibly insincere communication or social attitudes - stances
taken on statements in the course of social interaction. As a consequence, they
can not be treated like their mental counterparts. E.g., an actor might hold the
opinion φ towards addressee one and at the same time ¬φ informing addressee
two (while believing neither φ nor ¬φ privately). As another example, opinions
could even be bought, in contrast to sincere beliefs: it is known that opinions
uttered in, e.g., web blogs have sometimes been payed for by advertising agencies.
Even more, all information on the web is “just” opinion, simply due to the
absence of a commonly accepted truth assessment authority.

fusedPublicBelief will be described later. It is used in place of communication
attitudes, but it actually stands for the merging of opinions by some observer.

2.2 Social Contexts

Contexts (aka microtheories) have been widely used in AI since the early nineties,
originally intended by McCarthy as a replacement of modal logic. [1,2] propose
a context operator ist(context, statement) which denotes that statement is true
(“ist”) within context. Building upon general approaches to contexts (specifically
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[2,4]), and earlier works on social reification [24], we will use the notation of “con-
text” to express formally that certain statements are being publicly asserted (in-
formed about, ostensibly intended to become true, denied...) on the web by some
information-Source(s), optionally facing some specific Addressee(s). The latter
implies that our use of the term “public” optionally comprises “limited publics”
in form of closed social groups also. Thus, such social contexts model the social se-
mantics of the contextualized information. Here, the term “social semantics” has
a twofold meaning itself: firstly, it refers to the pragmatic effects of the commu-
nicative function information publication on the web has - essentially, our con-
texts correspond to kinds of speech acts which express the particular attitudes
web authors have towards statements. Although “propositional attitude” is tra-
ditionally a psychological concept, we use this term here for attitudes reported
communicatively.

Secondly, the semantics is social in the sense that a fusion context can denote
the meaning of a certain statement ascribed by multiple actors using some ag-
gregation rule, e.g., the degree of truth assigned via consensus finding or voting,
or other kinds of social choice among statements [27].

Defined as conceptualizations of domains, formal ontologies are usually asso-
ciated with consensual and relatively stable and abstract knowledge. Contexts in
contrast provide a powerful concept underlying approaches which aim at coping
with the distributiveness and heterogeneity of environments by means of local-
izing information. This dichotomy of ontologies on the one hand and contexts
on the other has been recognized already, but only since recently, the synergies
of both concepts are being systematically explored.

Social contexts are special contexts which are used for the social contextualiza-
tion of statements, i.e., their purpose is to express the social (= communicative)
meaning of statements in a scenario like the web, with multiple synchronously or
asynchronously communicating information providers and addressees. The ma-
jor task now is thus to define a type of logical context which allows to model the
communicated attitudes associated with information on the web.

The idea is to use parts of the descriptions of individual elementary commu-
nications as defined in SO as identifiers of contexts. That is, we maintain two
ontologies: first SO, and second a dynamic context ontology, with context iden-
tifiers created from certain instances of SO. But for some applications, it will be
sufficient to actually create and maintain only the latter ontology, whereas SO
is given only implicitly in form of the context identifiers.

Definition 2: Social contexts

A social context is defined as a pair (id, c), with id being either a term which
identifies communications in SO, or a fusion context identifier as specified below.
c is the set of mutually consistent description logic statements (see the follow-
ing section) which corresponds to the set of contents {c : Content(comi, c)}
of all communications comi which share the respective partial description id.
id is called the context identifier. A “partial description” of a communication
means the description of the communication in terms of the properties Source,
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Addressee and Attitude. I.e., it comprises all role assertions for this communi-
cation, excluding those for the role Content (which flows into c instead). Thus,
social contextualization essentially puts statements into the same context iff the
communications which contain these statement as their content share the same
properties speaker, hearer, and attitude. In some sense, this “un-reifies” the rei-
fied statements within SO in order to obtain contextualized logical statements,
and reifies other parts of SO in order to obtain context identifiers.

We use the following syntax for (non-fusion) context identifiers:

attitude
source−→addresse

This term is obtained from a SO fragment

Source(com, source), Addressee(com, addressee), Attitude(com, attitude)

for a certain com with Communication(com). We also allow for context iden-
tifiers with sets of actors in place of the source and/or the addressee (curly
brackets omitted):

attitude
source1,...,sourcen−→addresse1,...,addresseen

But note that social groups like source1, ..., sourcen can still only occur in the
source role in (non-fusion) context identifiers if they act as a group as a source
or a addressee.

As an abbreviation, we define attitude
source1,...,sourcen

=attitude
source1,...,sourcen−→Actor, with

Actor being the extension of Actor in SO. I.e., the communication is here ad-
dressed to the group of all potential addressees like it is the case with information
found on an ordinary public web page. If the sources, addressees and the atti-
tude are unspecified, for both sources and addressees the extension of Actor is
assumed, and publicBelief as the attitude.

At this, it is important to see that - like in real life - a certain source can hold
mutually inconsistent attitudes even towards different members or subgroups of
Actor at the same time (but not towards the same addressee).

Fusion context identifiers will be used later in order to merge possibly in-
consistent opinions uttered by multiple sources which do not necessarily form a
social group with role Source. The syntax of fusion context identifiers is

fusedPublicBelief
source1,...,sourcen−→addressee.

or in case addressee is a social group alternatively:

fusedPublicBelief
source1,...,sourcen−→addresse1,...,addresseen

.

A question in this regard is how the information required in order to create
social contexts (i.e., information source, addressee(-s), attitude) can be obtained.
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Basically, the answer is analogous to the answer to the question where other Se-
mantic Web data such as RDF or OWL documents shall come from: they need
to be manually created or automatically generated. Other somewhat applicable
analogies are the process of quotation, referencing, the provision of named graphs
[20] and provenance annotation (but note that named graphs and all kinds of
annotation are significantly weaker concepts compared to logical contexts). For
example, authors could provide social contexts with their own statements on the
web. Other knowledge workers or ontology creators could use social contexts in
order to integrate statements provided by different people. As long as the authors
of these statements are known (or at least URIs), at least the most simple kinds
of social context identifiers can be easily generated. In contrast to techniques
such as ontology mapping or trust assessment, social contextualization, if seen
as a technical approach to quotation, is a simpler means to create correct and
mutually consistent statements from inconsistent or dubious source statements
(but of course it might require the recursive application of social contextualiza-
tion...). Although social contexts only “wrap” the general problem of limited
trustability on the web, they can be useful in order to integrate information
on the fly, especially if no trust information is available. This functionality is
shared with RDF reification, but the use of the long established context logic
and its Semantic Web versions such as C-OWL appears to be a cleaner and
better researched approach.

3 A Description Logic with Support for Social Contexts

We introduce now a formal language based on C-OWL [4] for the representation
of ontologies with social contexts.

We settle on the SHOIN (D) description logic (over data types D), because
ontology entailment in the current quasi-standard OWL DL can be reduced to
SHOIN (D) knowledge base satisfiability [16]. Since we don’t make use of any
special features of this specific description language, our approach could triv-
ially be adapted to any other description language or OWL variant, RDF(S),
rule languages, or first-order logic.

Definition 3: SHOIN (D)-ontologies

The context-free grammar of SHOIN (D) concepts C is as follows. Please find
detailed information about the syntax and semantics of SHOIN (D) in [16,17].

C → A|¬C|C1 � C2|C1 � C2|∃R.C|∀R.C
| ≥ nS| ≤ nS|{a1, ..., an}| ≥ nT | ≤ nT |∃T1, ..., Tn.D|∀T1, ..., Tn.D

D → d|{c1, ..., cn}.

At this, C denote concepts, A denote atomic concepts, R denote abstract roles
or inverse roles of abstract roles (R−), S denote abstract simple roles [16], the
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Ti denote concrete roles, d denotes a concrete domain predicate, and the ai / ci

denote abstract / concrete individuals.
A SHOIN (D)− ontology (or knowledge base) is then a finite, non-empty set

of TBox axioms and ABox axioms (“facts”) C1 � C2 (inclusion of concepts),
Trans(R) (transitivity), R1 � R2, T1 � T2 (role inclusion for abstract respec-
tively concrete roles), C(a) (concept assertion), R(a, b) (role assertion), a = b
(equality of individuals), and a �= b (inequality of individuals). Concept equality
can be expressed via mutual inclusion, i.e., C1 � C2, C2 � C1. Spelling out the
semantics of SHOIN (D) is not required within the scope of this work, it can
be found in [16].

Definition 4: SOC-OWL

Introducing ontologies and at the same time description logic knowledge bases
with social contexts, we define SOC-OWL (Social-Context-OWL or simply “So-
cial OWL”) similarly to C-OWL [4]. While the syntax of SOC-OWL can be seen
as a defined subset of the syntax of C-OWL, and SOC-OWL essentially shares
with C-OWL the interpretation of concepts, individuals and roles, SOC-OWL
satisfiability is constrained by meta-axioms (cf. 3.2) which go beyond C-OWL
and put SOC-OWL somewhat close to BDI-style modal logics [11].

Essentially, SOC-OWL adds a kind of “S-Box” (“social box”, i.e., social con-
texts) to a formal ontology language. In contrast to the mere annotation of
axioms or facts with provenance information or other meta data, these contexts
provide separate (but bridgeable) spheres of reasoning.

In the next section, the language P-SOC-OWL will be introduced, which also
allows for uncertainty reasoning.

A SOC-OWL ontology parameterized with a social ontology SO is a finite,
non-empty set O = {(id, s) : id ∈ Id, s ∈ AF} ∪ AF i ∪ B, with AF being
the set of all SHOIN (D) TBox and ABox axioms, AF i being such axioms
but with concepts, individuals and roles directly indexed with social contexts
(i.e., AF i = {(idi, Ch) � (idj , Ck), (idi, ah) = (idj , ak), ... : idi, idj ∈ Id}), and
B being a set of bridge rules (see 3.1). A social context within O is a pair
(id, {s : (id, s) ∈ O}).

Id is the set of all social context identifiers according to the social ontology
SO (cf. Definition 1). The s within (id, s) are called inner statements which are
said to “be true (or intended in case of publicIntention) within the respective
context”.

Examples (with multiple facts/axioms per row and (id, a) written as id a):

InfluentialPainter(FrankFrazetta) InfluentialPainter � Painter
assertion
tina−→tim,tomInnovativeArtist(FrankFrazetta)
assertion
tim,tom−→tina(¬InnovativeArtist)(FrankFrazetta)
assertion
tim,tom−→tinaTrashArtist(FrankFrazetta)
assertion
tom (¬InnovativeArtist)(FrankFrazetta)
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ControversialWikipediaArticle � WikipediaArticle
NeutralWikipediaArticle �WikipediaArticle
assertion
tina WikipediaArticle � NeutralWikipediaArticle
ControversialWikipediaArticle(ArticleAboutFrankFrazetta)
assertion
tim,tom−→tina(¬NeutralWikipediaArticle)(ArticleAboutFrankFrazetta)

This SOC-OWL ontology (modeling as a whole a sort of neutral point of view,
like taken by an ideal Wikipedia article) expresses that the information sources
Tim and Tom hold the opinion towards Tina that the painter Frank Frazetta is
not an innovative artist but a trash artist, while Tina does allegedly believe that
the opposite is true. But there is consensus of the whole group that Frazetta
is an influential painter. Furthermore, Tina believes that all Wikipedia articles
present a neutral point of view.

Notice that without explicit further constraints, bridge rules or meta-axioms,
different social contexts are logically fully separated. Also, using only the above
ontology it could not be inferred that publicBelief

tina−→tim InfluentialPainter
(FrankFrazetta), because InfluentialPainter (FrankFrazetta) as an abbreviation
of

publicBelief
tina,tim,tom−→tina,tim,tomInfluentialPainter(FrankFrazetta)

in the example above is uttered/addressed exactly by/to the social group of
all participants and not by/to any subgroup or individual. Consensus is always
bound to a concrete social group and does not necessarily propagate to social
subgroups. This principle allows to model the realistic case that someone con-
forms with some group opinion, but states some inconsistent opinion towards
other groups (even a subgroup of the former group). Of course the co-presence
of two or more inconsistent inner statements which indicate that a certain actor
is insincere (as it would be the case with assertion

tina−→tim(¬C)(x) and assertion
tina−→tomC(x)

were contained within the same SOC-OWL ontology, which would be perfectly
legal) could usually not be acquired directly from the web, since such actors
would likely exhibit inconsistent opinions using different nicknames. Instead,
some social reasoning or social data mining techniques would be required to
obtain such SOC-OWL knowledge.

Obviously, each SOC-OWL statement (contextId, statement) corresponds to
the “classic” [1,2] context logic statement ist(context, statement). But unfor-
tunately, this “real” ist operator could not simply be made a first-class citi-
zen of our language (which would allow for the nesting of context expressions),
at least not without the need for a considerably more complicated semantics.
As a further serious restriction compared to real context logic, it is not pos-
sible to relate contextualized statements freely with logical connectives like in
ist(c1, sx) ∨ ist(c2, sy)→ ist(c1, sz).

Instead of these features, we allow for bridge rules and meta-axioms in order
to interrelate social contexts.
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The core idea underlying the following semantics of SOC-OWL is to group
the axioms according to their social contexts, and to give each context its own
interpretation function and domain within the model-based semantics, corre-
sponding to the approach presented in [4]. In addition, we will provide meta-
axioms (constraints) and bridge rules in order to state the relationships among
the various communication attitudes (somewhat similarly to modal logic ax-
iom schemes such as the well-known KD45 axioms of modal belief logic), and
to allow for the interrelation of different attitudes, even across different con-
texts. E.g., we would like to express that a communication attitude such as
assertion
tina−→tim,tom(¬TrashArtist)(FrankFrazetta) implies (intuitively)
publicIntention
tina (publicBelief

tim,tom−→tina(¬TrashArtist)(FrankFrazetta)), i.e., that Tina not
only expresses her ostensible beliefs, but also ostensibly intends that others adopt
her opinion.

Definition 5: Interpretation of SOC-OWL

A SOC-OWL interpretation is a pair (I, {ei,j}i,j∈Id) with I = {Iid} being a set of
local interpretations Iid, with each Iid = 〈!Iid , (.)Iid〉, id ∈ Id. ei,j ⊆ !Ii ×!Ij

is a relation of two local domains !Iid (ei,j is required for the definition of
bridge rules in B (Definition 4) as explained later in 3.1). (.)Iid maps individuals,
concepts and roles to elements (respectively subsets or the products thereof) of
the domain !Iid .

To make use of this interpretation, contextualized statements of SOC-OWL
impose a grouping of the concepts, roles and individuals within the inner state-
ments into sets Cid, Rid and cid [4]. This is done in order to “localize” the names
of concepts, individuals and roles, i.e., to attach to them the respective local in-
terpretation function Iid corresponding to the social context denoted by id ∈ Id:
concretely, the sets Cid, Rid and cid are defined inductively by assigning the
concepts, individuals and role names appearing within the statement part of
each SOC-OWL axiom/fact (contextId, statement) to the respective set Cid, cid

or Rid. With this, the interpretation of concepts, individuals etc. is as follows:

CIid = any subset of !Iid for C ∈ Cid

(C1 � C2)Iid = CIid
1 ∩ CIid

2 for C1, C2 ∈ Cid

(C1 � C2)Iid = CIid
1 ∪ CIid

2 for C1, C2 ∈ Cid

(¬C)Iid = !Iid \ CIid for C ∈ Cid

(∃R.C)Iid = {x ∈ !Iid : ∃y : (x, y) ∈ RIid ∧ y ∈ CIid for C ∈ Cid, R ∈ Rid

(∀R.C)Iid = {x ∈ !Iid : ∀y : (x, y) ∈ RIid → y ∈ CIid for C ∈ Cid, R ∈ Rid

cIid = any element of !Iid , for c ∈ cid

(Interpretation of concrete roles T analogously)

Satisfiability and Decidability

Given a SOC-OWL interpretation I, I is said to satisfy a (contextualized) state-
ment φ (I |= φ) if there exists an id ∈ Id such that Iid |= φ, with Iid ∈ I. A
SOC-OWL ontology is then said to be “satisfied” if I satisfies each statement
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within the ontology (or statement set) and the ontology observes the meta-
axioms listed below.

Iid |= (id, C1 � C2) iff CIid
1 ⊆ CIid

2 , Iid |= (id, R1 � R2) iff RIid
1 ⊆ RIid

2 ,
Iid |= (id, C(a)) iff aIid ∈ CIid etc., i.e., as in the semantics of SHOIN (D), but
with socially indexed interpretations.

With this configuration, the inherited semantics and decidability of
SHOIN (D) remain unaffected in SOC-OWL “within” each context, since the
new interpretation function simply decomposes the domain and the set of con-
cepts etc. into local “interpretation modules” corresponding to the contexts.

3.1 Bridge Rules and Cross-Context Mappings

According to Definition 4, a SOC-OWL ontology can optionally comprise bridge
rules [4] B and various stronger relationships AF i among classes, individuals and
roles from different contexts. As an example, consider(contexti, x) ≡

−→(contextj , y)
in B, with x, y being concepts, individuals or roles.

Informally, such a bridge rule states that the x and y denote corresponding
elements even though they belong to different contexts contexti, contextj .

With, e.g., (assertion
tina ,FrankFrazetta) ≡

−→(assertion
tim,tom ,FrankFrazetta) the interpre-

tations of the “two Frank Frazettas” would abstractly refer to the same object.
Analogously, �

−→ and ⊥
−→ state that the first concept is more specific than the

second, or that both concepts are disjoint, respectively. These relationships are
given by the relation ei,j (Definition 5).

Formally: I |= (contexti, x) ≡
−→(contextj , y) iff ei,j(xIi ) = yIj ) (resp. ei,j(xIi)

⊆ yIj and ei,j(xIi) ∩ yIj = ∅).
Please find details (which are out of the scope of this work) and analogously

defined further bridge rules in [4]. Also, reasoning in the presence of bridge rules
follows that with C-OWL.

A much stronger kind of relationship is stated by the syntax constructs where
a concept, individual or role is directly indexed with a social context, as, e.g., in
(contexti, x) = (contextj , y), with x, y being concepts, individuals or roles.

Formally: I |= (contexti, x) = (contextj , y) iff xIi = yIj (analogously for �
etc).

3.2 Meta-axioms

We state now some constraints, which will later be extended w.r.t. a different
formal language with meta-axiom (PMA5). All so-called meta-axioms are in fact
either entailment rules (which could not be formulated using SOC-OWL axiom
schemes because the language is not expressive enough), or they put constraints
regarding its integrity on an ontology which is sliced into social contexts. Al-
though a practical reasoner could possibly take advantage of the latter kind
of meta axioms (since these exclude certain constellations such as inconsistent
contexts), they don’t demand special reasoning procedures.
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Actively asserting an opinion implies in our framework the intention of the
source that the addressee(-s) adopt the asserted statement. With nested social
contexts, we could formalize this using assertion

s1,...,sn−→a1,...,am
ϕ →

(publicIntention
s1,...,sn−→a1,...,am

(publicBelief
a1,...,am−→s1,...,sn

ϕ). But this “strong” and problematic nest-
ing is not possible in our language.

The next meta-axiom simply demands that assertions include the attitude of
informing the addressee:

(MA1) assertion
s1,...,sn−→a1,...,am

ϕ → publicBelief
s1,...,sn−→a1,...,am

ϕ

In this work, we do not provide a full meta-theory corresponding to the
KD(45) axioms of (e.g.) modal Belief-Desire-Intention logics (but see [5,11]).
Instead, we only demand that the inner statements of each context are mutually
consistent (basic rationality):

(MA2) Each set a of statements such that for a specific context all
(context, ai), ai ∈ a are axioms of the same SOC-OWL ontology, is satisfiable
(ensuring the consistency of one’s opinions).

Furthermore, we demand - in accordance with many BDI-style logics - that
the approval/assertion contexts of a certain actor on the one hand and his inten-
tion context on the other do not overlap addressing the same set of addressees,
i.e., an actor does not (ostensibly) intent what he (ostensibly) believes to be the
case already:

(MA3) For each a such that (publicIntention
s1,...,sn−→a1,...,an

, a) is part of an SOC-OWL on-
tology o, no axiom/fact (publicBelief

s1,...,sn−→a1,...,an
, b), b " a, is part of o (analogously for

assertions).

The following constraints are not demanded, but could be helpful in applica-
tion domains were mutual opinion consistency of subgroups is desired (we use∧

to abbreviate a set of SOC-OWL statements).

(MAx1) (attitude
s1,...,sn−→a1,...,an

ϕ) ↔ ∧s∈2{s1,...,sn}−{∅}
attitude
s−→a1,...,an

ϕ

(MAx2) (attitude
s1,...,sn−→a1,...,an

ϕ) ↔ ∧a∈2{a1,...,an}−{∅}
attitude
s1,...,sn−→aϕ

But we can safely aggregate seemingly consented information in a separated fu-
sion context:

(MA4)
∧

s∈{s1,...,sn} (IpublicBelief
s−→a1,...,an

|= ϕ) → (IfusedPublicBelief
s1,...,sn−→a1,...,an

|= ϕ) (analogously
for assertions). In general, such group opinions induce a ranking of multiple
statements with the respective rank corresponding to the size of the biggest
group which supports the statement (this can be used, e.g., for a majority voting
on mutually inconsistent statements).
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4 Social Rating and Social Aggregation of Subjective
Assertions

Building upon social contexts, the following extension of the previously pre-
sented logical framework is optional. It makes use of uncertainty reasoning and
techniques from belief merging. They allow for i) the representation of gradual
strengths of uncertain opinions held by individuals (corresponding to subjective
probabilities) and social groups, and ii) the probabilistic fusion of semantically
heterogeneous opinions held by different actors (basically by means of voting).

This feature is also useful in case traditional techniques to ontology integra-
tion fail, e.g., if the resulting merged ontology shall be accepted by all sources,
but a consensus about the merging with traditional techniques to ontology map-
ping and alignment could not be found, or if the complexity of a high amount
of heterogeneous information needs to be reduced by means of stochastic gener-
alization. Probabilistic fusion is furthermore helpful in case statements shall be
socially ranked, i.e., put in an order according to the amount of their respective
social acceptance. In contrast to heuristical or surfer-behavior-related ways of
information ranking or “knowledge ranking” such as those accomplished by most
web search engines, the following approach is based on semantic opinion pooling
[15].

In [10], the probabilistic extension P−SHOQ(D) of the SHOQ(D) descrip-
tion logic has been introduced. SHOQ(D) is very similar to SHOIN (D) and
thus OWL DL, but does not have inverse roles, and is not restricted to unqual-
ified number restrictions [16]. [10] shows that reasoning with P−SHOQ(D) is
- maybe surprisingly - decidable. Instead of P−SHOQ(D), other probabilistic
approaches to Semantic Web and ontology languages could likely also be used as
a basis for our approach, e.g., [7]. P−SHOQ(D) is now used to define a proba-
bilistic variant of SOC-OWL.

Definition 6: P-SOC-OWL

A P-SOC-OWL ontology is defined to be a finite subset of {([pl, pu], id, ai)} ∪
{(id, ai)} ∪ {ai} ∪AF i ∪B, with pl, pu ∈ [0, 1], id ∈ Id, ai ∈ AF , AF being the
set of all well-formed SHOQ(D) ontology axioms, and B and AF i as in the
previous section.

The syntax of SHOQ(D) can be obtained from that of SHOIN (D) by ex-
cluding inverse roles.

The [pl, pu] are probability intervals. Non-interval probabilities p are syntac-
tical abbreviations of [p, p]. If a probability is omitted, 1 is assumed.

Definition 7: Semantics of P-SOC-OWL

The semantics of a P-SOC-OWL ontology is given as a family of P −SHOQ(D)
interpretations, each interpretation corresponding to a certain social context.

Formally, a P-SOC-OWL interpretation is a pair (PI , {ei,j}i,j∈Id) with PI =
{(PI id, μid) : id ∈ Id} being a set of local probabilistic interpretations (each
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denoted as Prid), each corresponding to a probabilistic interpretation of P −
SHOQ(D) and a social context with identifier id.

μid : ΔIid → [0, 1] is a subjective probability function, and the ΔIid are the
domains. The relation ei,j (required to state bridge rules) is defined analogously
to SOC-OWL. When restricted to a certain context (using the respective in-
terpretation), reasoning in P-SOC-OWL remains decidable, since “within” this
context, no bridge rules or meta-axioms need to be observed and thus P-SOC-
OWL behaves in this case just like P−SHOQ(D).Individualistically assigned
probabilities are constrained by the axioms of probability.

Example:

[0.5, 0.8]: assertion
tim,tom−→tinaTrashArtist(FrankFrazetta)

0.7: assertion
tina InnovativeArtist(FrankFrazetta)

0.9: assertion
tim InnovativeArtist(FrankFrazetta)

This P-SOC-OWL ontology expresses inter alia that Tim and Tom (as a group,
but not necessarily separately) hold the opinion that with some probability in
[0.5, 0.8], Frank Frazetta is a trash artist, while Tina does (publicly) believe he is
an innovative artist with strength 0.7, and Tim believes so with strength 0.9 (i.e.,
his private opinion disagrees with the public group opinion of him and Tom).

In order to allow for a consistent fusion of opinions, we demand the following
fusion meta-axiom, which effectively states how the probabilities of social fusion
contexts are calculated. A social fusion context is a social context with more
than one opinion source and a probability which pools the probabilities which
subsets of the group assign to the respective statement. This allows to specify
group opinions even if group members or subgroups do knowingly not agree with
respect to this assertion. In this regard, we propose two versions of interpretation
rules:

(PMA5’) (
∧

si∈{s1,...,sn}(PrpublicBelief
si−→addressees

|= ϕ[pi, pi])) → (PrpublicBelief
s1,...,sn−→addressees

|=
ϕ[p, p])with p = poolpoolingType((p1, ..., pn), extraKnowledge). At this, Prid |=
ϕ[l, u] attests ϕ a probability within [l, u] in context id, and extraKnowledge is
any knowledge the pooling function might utilize in addition to the pi (see below
for examples). (Analogously for the attitude assertion.)

A problem with (PMA5’) is that it can lead to unsatisfiability (due to in-
consistencies) in case the derived probability p is different than a probability
assigned explicitly by this group of people - a group of agents is free to assign
any truth value or probability to any statement, using any social choice pro-
cedure. A simple workaround is to use a new kind of context with aggregating
“attitude” fusedPublicBelief , which is actually no speaker attitude of course, but
a belief merging operator used by the observer who fuses opinions.

Another possibility would be to introduce some kind of defeasible logic or
priority reasoning which gives priority to explicitly assigned probabilities.
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(PMA5) (
∧

si∈{s1,...,sn}(PrpublicBelief
si−→addressees

|= ϕ[pi, pi])) → (PrfusedPublicBelief
s1,...,sn−→addressees

|=
ϕ[p, p]) (remainder as PMA5’).

As for poolpoolingType, there are several possibilities: in the most simple case
of “democratic” Bayesian aggregation given the absence of any opinion leader
or so-called “supra-Bayesian” [15], we define poolavg((p1, ..., pn), ∅) =

∑
pi

n
, i.e.,

poolavg averages over heterogeneous opinions. Using this aggregation operator,
we could infer the following:

0.8: fusedPublicBelief
tina,tim InnovativeArtist(FrankFrazetta).

Social aggregation operators are traditionally studied in the field of Bayesian
belief aggregation [15,3].

The most common fusion operator extends poolavg with expert weights (e.g.,
stemming from factors such as the opinion holder’s trustability or reputation, or
social power degrees of the information sources):

poolLinOP ((p1, ..., pn), (weight1, ..., weightn)) =
∑

weightipi, with
∑

weighti
=

1. Also quite often, a geometric mean is used:
poolLogOP ((p1, ..., pn), (weight1, ..., weightn)) = κ

∏n
i=1 pweighti

i (κ for normal-
ization).

It is noteworthy that the operators given above do not deal with the problem
of ignorance directly (e.g., by taking into account the evidence the information
sources have obtained, as in Dempster-Shafer theory). But such ignorance could
be modeled using the weighti of poolLinOP and poolLogOP , and possibly using
probability intervals instead of single probabilities. In case opinions with proba-
bility intervals [pl

i, p
u
i ] shall be fused, the described fusion operators need to be

accordingly applied to the interval boundaries.
One application of such rating in form of aggregated or individual probabili-

ties is to take the probabilities (respectively, the mean values of the bounds for
each interval) in order to impose an order (ranking) of the axioms of an ontology
(TBox as well as ABox), so that inner statements can be directly ranked regard
their degree of assumed social acceptance. The following is an example for how
such a top-k list of socially preferred statements looks like.

0.8: fusedPublicBelief
voters statement1 (highest social rating)

[0.5, 0.8]: fusedPublicBelief
voters statement2

...
0.2: fusedPublicBelief

voters statement3 (lowest social rating)

Again, such a ranking can also be easily used to transform inconsistent ordi-
nary ontologies into consistent ontologies by a voting on the statements of the
inconsistent ontology: in case there are inner statements which are mutually in-
consistent, a ranking can be used to obtain a consistent ordinary (i.e., OWL DL)
ontology by removing from each smallest inconsistent subset of inner statements
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the statements with the lowest rating until all remaining elements of each subset
are mutually consistent.

What could also be generated quite easily are rankings w.r.t. of the degrees of
certainty assigned to the same statement by different voters or groups of voters:

0.8: publicBelief
actor1

statement1
[0.5, 0.8]: publicBelief

group3
statement1

0.4: fusedPublicBelief
actor1,actor4

statement1
...
0.1: publicBelief

actor2
statement1

5 Related Works and Conclusion

The goal of this work is to provide a social semantics of possibly contradictory
assertions on the web, i.e., to state their amount of social support, their com-
municative emergence and dissemination, and the consensus or dissent they give
rise to. Doing so, we settle on the “opinion level” where neither true beliefs are
visible (due to the mental opaqueness of the information sources) nor criteria for
the selection of useful knowledge or semantic mappings from/among heteroge-
nous information exist initially. This is both in contrast to the traditional aim of
information integration and evolution for the determination of some consistent,
reliable “truth” obtained from contributions of multiple sources as in traditional
multiagent belief representation and revision (e.g., [21] - although this direction
has still much in common with ours) and approaches to ontology alignment,
merging and mapping.

Apart from the research field of knowledge and belief integration, the storage
of heterogeneous information from multiple sources also has some tradition in
the fields of data warehousing and federated databases, and view-generation for
distributed and enterprise database systems [9], whereby such approaches do not
take a social or communication-oriented perspective. Opinions are treated in the
area of the (non-semantic) web (e.g., opinion mining in natural language doc-
uments) and in (informal) knowledge management (e.g., KnowCat [14]). The
assignment of provenance information is mostly based on tagging and pun-
ning techniques, or makes use of the semantically problematic reification facility
found in RDF. Meta knowledge modeling and reification techniques for the pur-
pose of adding certain “slots” for provenance and statement identification data,
and other useful meta information to Semantic Web languages can be found in
[20,25,25]. These approaches, with named graphs [20] being currently the most
popular representative, leave the original semantics of the underlying language
more or less untouched and “merely” annotate traditional language constructs
with some optional meta-information. In contrast, our approach aims at a truly
social semantics and language.

[6] provides an approach to the grouping of RDF statements using con-
texts (including contexts for provenance and speech act performatives). Another
related approach focusing on contexts including contexts for the aggregation of
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RDF graphs, was presented in [2], and [4] provides a general formal account
of contexts for OWL ontologies. Independently from web-related approaches,
contexts have been widely used for the modeling of distributed knowledge and
federated databases, see, e.g., [18,19].

To further explore and work out the new “social” perspective on uncertain
information on the web modeled using contexts certainly constitutes a long-
term scientific and practical endeavor of considerable complexity, with this work
hopefully being a useful starting point.

Acknowledgements. This work was partially funded by the German National
Research Foundation DFG (Br609/13-1, research project “Open Ontologies and
Open Knowledge Bases”) and by the Spanish National Plan of R+D, project
no. TSI2005-08225-C07-06.
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Abstract. Automated ontology population using information extrac-
tion algorithms can produce inconsistent knowledge bases. Confidence
values assigned by the extraction algorithms may serve as evidence in
helping to repair inconsistencies. The Dempster-Shafer theory of evidence
is a formalism, which allows appropriate interpretation of extractors’
confidence values. This chapter presents an algorithm for translating the
subontologies containing conflicts into belief propagation networks and
repairing conflicts based on the Dempster-Shafer plausibility.

1 Introduction

The task of ontology population considers creation of concept and property as-
sertions for a given ontological schema. One of the approaches for ontology pop-
ulation considers using automatic information extraction algorithms to annotate
natural language data already available on the Web [1,2,3]. Automatic informa-
tion extraction algorithms do not produce 100% correct output, which may lead
to inconsistency of the whole knowledge base produced in this way. Errors can be
introduced by human editors. Also information extracted from different sources
can be genuinely contradictory. Finally, when information from different sources
is fused together the identity problem has to be resolved: identical individuals
referring to the same real-world entities must be linked or merged. Automatic
matching algorithms produce further errors, which lead to knowledge base incon-
sistencies. So when performing knowledge fusion (integration of semantic data
from different sources) it is important to resolve such inconsistencies automat-
ically or provide the user with a ranking of conflicting options estimating how
likely each statement is to be wrong. Extraction algorithms can often estimate
the reliability of their output by attaching confidence values to produced state-
ments [4]. Uncertain reasoning using these confidence values can help to evaluate
the plausibility of statements and rank the conflicting options. Most of the on-
going research in the field of applying uncertain reasoning to the Semantic Web
focuses on fuzzy logic and probabilistic approaches. Fuzzy logic was designed to
deal with representation of vagueness and imprecision. This interpretation is not
relevant for the problem occurring during population of crisp OWL knowledge
bases, where we need to assess the likelihood for a statement to be true or false.
The probabilistic approach is more appropriate for dealing with such problems.

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNAI 5327, pp. 143–160, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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However, as stated in [5], axioms of probability theory are implied by seven
properties of belief measures. One of them is completeness, which states that “a
degree of belief can be assigned to any well-defined proposition”. However, this
property cannot be ensured when dealing with confidence degrees assigned by
extractors, because they do not always carry information about the probability
of a statement being false. The Dempster-Shafer theory of evidence [6] presents
a formalism that helps to overcome this problem. It allows belief measurements
to be assigned to sets of propositions, thus specifying explicitly degrees of igno-
rance. In this paper, we describe an algorithm for resolving conflicts using the
Dempster-Shafer belief propagation approach.

The paper is organized as follows: in the section 2 we discuss approaches to
inconsistency resolution and uncertainty management. Section 3 briefly outlines
the basics of the Dempster-Shafer uncertainty representation. Section 4 presents
our algorithm of inconsistency resolution using belief propagation. Section 5
describes the results obtained in our experiments with a test dataset. Finally,
section 6 summarizes our contribution and discusses proposed directions for the
future work.

2 Related Work

There are several studies dealing with inconsistency handling in OWL ontolo-
gies, among others [7] and [8]. The general algorithm for the task of repairing
inconsistent ontologies consists of two steps:

– Ontology diagnosis: finding sets of axioms, which contribute to inconsistency;
– Repairing inconsistencies: changing/removing the axioms most likely to be

erroneous.

Choosing the axioms for change and removal is a non-trivial task. Existing algo-
rithms working with crisp ontologies (e.g., [8]) utilize such criteria as syntactic
relevance (how often each entity is referenced in the ontology), impact (the influ-
ence of removal of the axiom on the ontology should be minimized) and prove-
nance (reliability of the source of the axiom). The last criterion is especially
interesting for the automatic ontology population scenario since extraction al-
gorithms do not extract information with 100% accuracy. A study described in
[9] specifies an algorithm which utilizes the confidence value assigned by the
extraction algorithm. The strategy employed by the authors was to order the
axioms according to their confidence and add them incrementally, starting from
the most certain one. If adding the axiom led to inconsistency of the ontology
then a minimal inconsistent subontology was determined and the axiom with
the lowest confidence was removed from it. A disadvantage of such a technique
is that it does not take into account the impact of an axiom: e.g., when an axiom
violates several restrictions, it does not increase its chances to be removed. Also
it does not consider the influence of redundancy: if the same statement was ex-
tracted from several sources, this should increase its reliability. Using uncertain
reasoning would provide a more sound approach to rank potentially erroneous
statements and resolve inconsistencies.
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In the Semantic Web domain the studies on uncertain reasoning are mostly
focused on two formalisms: probability theory and fuzzy logic. Existing imple-
mentations of fuzzy description logic [10,11] are based on the notion of fuzzy
set representing a vague concept. The uncertainty value in this context denotes
a membership function μF (x) which specifies the degree to which an object x
belongs to a fuzzy class F . Probabilistic adaptations of OWL-DL include Bayes
OWL[12] and PR-OWL [13]. However, as we discuss below, both of these for-
malisms do not fully reflect the properties of the problems we are dealing with
in the fusion scenario.

In [5] a framework for choosing an appropriate uncertainty handling formalism
was presented. The framework is based on the following seven properties of belief
measurements:

1. Clarity: Propositions should be well-defined.
2. Scalar continuity: A single real number is both necessary and sufficient for

representing a degree of belief.
3. Completeness: A degree of belief can be assigned to any well-defined propo-

sition.
4. Context dependency: The belief assigned to a proposition can depend on the

belief in other propositions.
5. Hypothetical conditioning: There exists some function that allows the belief

in a conjunction of propositions to be calculated from the belief in one propo-
sition and the belief in the other proposition given that the first proposition
is true.

6. Complementarity: The belief in the negation of a proposition is a monoton-
ically decreasing function of the belief in the proposition itself.

7. Consistency: There will be equal belief in propositions that have the same
truth value.

It was proven that accepting all seven properties logically necessitates the axioms
of probability theory. Alternative formalisms allow weakening of some properties.
Fuzzy logic deals with the case when the clarity property does not hold, i.e., when
concepts and relations are vague. Such an interpretation differs from the one
we are dealing with in the fusion scenario, where the ontology TBox contains
crisp concepts and properties. Confidence value attached to a type assertion
ClassA(Individual1) denotes a degree of belief that the statement is true in the
real world rather than the degree of inclusion of the entity Individual1 into a
fuzzy concept ClassA. This makes fuzzy interpretation inappropriate for our
case.

Probabilistic interpretation of the extraction algorithm’s confidence may lead
to a potential problem. If we interpret the confidence value c attached to a
statement returned by an extraction algorithm as a Bayesian probability value
p, we, at the same time, introduce a belief that the statement is false with a
probability 1 − p. However, the confidence of an extraction algorithm reflects
only the belief that the document supports the statement and does not itself
reflect the probability of a statement being false in the real world. Also while
statistical extraction algorithms [14] are able to assign a degree of probability to
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each extracted statement, rule-based algorithms [15,16] can only assign the same
confidence value to all statements extracted by the same rule based on the rule’s
performance on some evaluation set. Any extraction produced by a rule with a
low confidence value in this case will serve as a negative evidence rather than
simply lack of evidence. This issue becomes more important if the reliability of
sources is included in the analysis: it is hard to assign the conditional probability
of a statement being false given that the document supports it. It means that
the completeness property does not always hold.

The Dempster-Shafer theory of evidence [6] allows weakening of the complete-
ness property. Belief can be assigned to sets of alternative options rather than
only to atomic elements. In the case of binary logic, it means that the degree
of ignorance can be explicitly represented by assigning a non-zero belief to the
set {true;false}. On the other hand, it still allows the Bayesian interpretation
of confidence to be used, when it is appropriate (in this case the belief assigned
to the set {true;false} is set to 0). This paper presents an algorithm for re-
solving inconsistencies by translating the inconsistency-preserving subset of an
ontology into the Dempster-Shafer belief network and choosing the axioms to
remove based on their plausibility. We are not aware of other studies adapting
the Dempster-Shafer approach to the Semantic Web domain.

Alternative approaches to uncertainty representation, which were not applied
so far to ontological modelling, include probability intervals [17] and higher-order
probability [18]. However, the first of these approaches uses min and max opera-
tors for aggregation, which makes it hard to represent cumulative evidence, and
the second focuses on resolving different kinds of problems (namely expressing
probability estimations of other probability estimations). There are also other
approaches to belief fusion in the Semantic Web (e.g., [19] and [20]). These stud-
ies deal with social issues of representing trust and provenance in a distributed
knowledge base and focus on the problem of establishing the certainty of state-
ments asserted by other people. These approaches, however, do not focus on
resolving the inconsistencies and just deal with direct conflicts (i.e., statement
A is true vs statement A is false). They do not take into account ontological
inference and mutual influence of statements in the knowledge base. In this way,
they can be considered complementary to ours.

3 The Dempster-Shafer Belief Theory

Dempster-Shafer theory of evidence differs from the Bayesian probability the-
ory as it allows assigning beliefs not only to atomic elements but to sets of
elements as well. The base of the Dempster’s belief distribution is the frame of
discernment (Ω) - an exhaustive set of mutually exclusive alternatives. A belief
distribution function (also called mass function or belief potential) m(A) repre-
sents the influence of a piece of evidence on subsets of Ω and has the following
constraints:

– m($) = 0 and
–
∑

A⊆Ω m(A) = 1
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m(A) defines the amount of belief assigned to the subset A. When m(A) > 0, A
is referred to as a focal element. If each focal element A contains only a single
element, the mass function is reduced to be a probability distribution. Mass also
can be assigned to the whole set of Ω. This represents the uncertainty of the
piece of evidence about which of the elements in Ω is true. In our case each mass
function is defined on a set of variables D = {x1, ..., xn} called the domain of m.
Each variable is boolean and represents an assertion in the knowledge base. For
a single variable we can get degree of support Sup(x) = m({true}) and degree
of plausibility Pl(x) = m({true}) + m({true; false}). Plausibility specifies how
likely it is that the statement is false. Based on plausibility it is possible to select
from a set of statements the one to be removed.

4 Description of the Algorithm

Our algorithm consists of four steps:

1. Inconsistency detection.
At this stage a subontology is selected containing all axioms contributing to
an inconsistency.

2. Constructing a belief network.
At this stage the subontology found at the previous step is translated into
a belief network.

3. Assigning mass distributions.
At this stage mass distribution functions are assigned to nodes.

4. Belief propagation.
At this stage uncertainties are propagated through the network and the
confidence degrees of ABox statements are updated.

4.1 Illustrating Example

In order to illustrate our algorithm, we use an example from the banking do-
main. Supposedly, we have an ontology describing credit card applications, which
defines two disjoint classes of applicants: reliable and risky. In order to be reli-
able, an applicant has to have UK citizenship and evidence that (s)he was never
bankrupt in the past. For example, the TBox contains the following axioms:

T1: RiskyApplicant � CreditCardApplicant
T2: ReliableApplicant� CreditCardApplicant
T3: RiskyApplicant � ¬ ReliableApplicant
T4: ReliableApplicant≡ ∃ wasBankrupt.False�∃ hasCitizenship.UK
T5: � �≤ 1 wasBankrupt (wasBankrupt is functional)
The ABox contains the following axioms (with attached confidence values):
A1: RiskyApplicant(Ind1): 0.7
A2: wasBankrupt(Ind1, False): 0.6
A3: hasCitizenship(Ind1, UK): 0.4
A4: wasBankrupt(Ind1, True): 0.5
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As given, the ontology is inconsistent: the individual Ind1 is forced to belong to
both classes RiskyApplicant and ReliableApplicant, which are disjoint, and the
functional property wasBankrupt has two different values. If we choose to remove
the axioms with the lowest confidence values, it will require removing A3 and
A4. However, inconsistency can also be repaired by removing a single statement
A2. The fact that A2 leads to the violation of two ontological constraints should
increase the likelihood it is wrong.

4.2 Inconsistency Detection

The task of the inconsistency detection step is to retrieve all minimal inconsistent
subontologies (MISO) of the ontology and combine them. As defined in [7], an
ontology O′ is a minimal inconsistent subontology of an ontology O, if O′ ⊆ O
and O′ is inconsistent and for all O′′ such that O′′ ⊂ O′ ⊆ O, O′′ is consistent.
OWL reasoner Pellet [8] is able to return the MISO for the first encountered
inconsistency in the ontology. To calculate all MISO O′

1, ..., O
′
n in the ontology

we employ Reiter’s hitting set tree algorithm [21]. The algorithm is an adaptation
of the breadth-first tree search aimed at finding all diagnoses: sets of statements
which, if removed, transfer the knowledge base into a consistent one. Each edge
in the tree represents an axiom potentially included into diagnosis. Each node
represents a MISO returned by the reasoner if all axioms contained in the path
from the root of the tree to the node are deleted. The algorithm provides a
guidance for building and pruning of the tree, which optimizes the diagnosis
process. After all conflict sets were identified, the next step involves constructing
belief networks from each set. If for two subontologies O′

i ∩O′
j �= $ then these

two subontologies are replaced with O′ = O′
i ∪O′

j .
For our illustrating example, the conflict detection algorithm is able to identify

two conflict sets in this ontology: the first, consisting of {T3, T4, A1, A2, A3}
(individual Ind1 belongs to two disjoint classes), and the second {T5, A2, A4}
(individual Ind1 has two instantiations of a functional property). The statement
A2 belongs to both sets and therefore the sets are merged.

4.3 Constructing Belief Networks

The networks for propagation of Dempster-Shafer belief functions (also called
valuation networks) were described in [22]. By definition, the valuation network
is an undirected graph represented as a 5-tuple: {Ψ, {ΩX}X∈Ψ , {τ1, ..., τn}, ↓,⊗},
where Ψ is a set of variables, {ΩX}X∈Ψ is a collection of state spaces, {τ1, ..., τn}
is a collection of valuations (belief potentials of nodes), ↓ is a marginalization
operator and ⊗ is a combination operator. In our case Ψ consists of ABox asser-
tions, every {ΩX}X∈Ψ = {0; 1} and {τ1, ..., τn} are created using rules described
below. The operators are used for propagation of beliefs and are described in the
following subsections. The network contains two kinds of nodes: variable nodes
corresponding to explicit or inferred ABox assertions and valuation nodes repre-
senting TBox axioms. Variable nodes contain only one variable, while valuation
nodes contain several variables.
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Translation of an inconsistent subontology into a belief propagation network
is performed using a set of rules (Table 1). Each rule translates a specific OWL-
DL construct into a set of network nodes and links between them. Rules 1 and 2
directly translate each ABox statement into a variable node. Other rules process
TBox axioms and create two kinds of nodes: one valuation node to represent the
TBox axiom and one or more variable nodes to represent inferred statements.
Such rules only fire if the network already contains variable nodes for ABox
axioms, which are necessary to make the inference. For example, a rule processing
the class equivalence axiom (Rule 4) is interpreted as the following:

“If there is a node N1 representing the type assertion I ∈ X and an
owl:equivalentClass axiom X ≡ Y , then:

– Create a node N2 representing the assertion I ∈ Y ;
– Create a node N3 representing the axiom X � Y ;
– Create links between N1 and N3 and between N3 and N2.”

A particularly interesting case is the representation of the owl:sameAs axiom.
In the fusion scenario this axiom represents both a schema-level rule allowing
inferencing new statements and a data-level assertion, which has its own confi-
dence (e.g., produced by a matching algorithm). Thus, each owl:sameAs axiom
in the knowledge base triggers creation of both variable and valuation nodes. If
a rule requires creating a node, which already exists in the network, then the
existing node is used.

Applying the rules described above to our illustrating example (rules 1, 2, 5,
6, 7, 10, 21) will result in the following network (Fig. 1).

Fig. 1. Belief network example (Exp1= ∃ wasBankrupt.False�∃ hasCitizenship.UK,
Exp2=∃ hasCitizenship.UK, Exp3=∃ wasBankrupt.False)
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Table 1. Belief network construction rules

N Pre-conditions Nodes to create Links to create
1 I ∈ X N1 : I ∈ X

2 R(I1, I2) N2 : R(I1, I2)
3 I1 = I2 N3 : I1 = I2 (variable)
4 N1 : I ∈ X, X � Y N2 : I ∈ Y , N3 : X � Y (N1,N3),(N3,N2)
5 N1 : I ∈ X, X ≡ Y N2 : I ∈ Y , N3 : X ≡ Y (N1,N3),(N3,N2)
6 N1 : I ∈ X, X � ¬Y N2 : I ∈ Y , N3 : X � ¬Y (N1,N3),(N3,N2)

7 N1 : I ∈ X, X � Y
N2 : I ∈ X � Y , N3 : X � Y , (N1,N3),(N4,N3),
N4 : I ∈ Y (N3,N2)

8 N1 : I ∈ X, X � Y
N2 : I ∈ X � Y , N3 : X � Y , (N1,N3),(N4,N3),
N4 : I ∈ Y (N3,N2)

9 N1 : I ∈ X, ¬X N2 : I ∈ ¬X, N3 : ¬X (N1,N3),(N3,N2)

10
� �≤ 1R, N1 : R(I, o1),

N3 : � �≤ 1R (N1,N3),(N2,N3)
N2 : R(I, o2)

11
� �≤ 1R−, N1 : R(I2, I1), N3 : � �≤ 1R− (N1,N3),(N2,N3)
N2 : R(I3, I1)

12 R ≡ R−, N1 : R(I1, I2) N2 : R ≡ R−, N3 : R(I2, I1) (N1,N2),(N2,N3)
13 R ≡ Q, N1 : R(I1, I2) N2 : R ≡ Q,N3 : Q(I1, I2) (N1,N2),(N2,N3)
14 R � Q,N1 : R(I1, I2) N2 : R � Q, N3 : Q(I1, I2) (N1,N2),(N2,N3)
15 R ≡ Q−,N1 : R(I1, I2) N2 : R ≡ Q−, N3 : Q(I2, I1) (N1,N2),(N2,N3)

16
Trans(R), N1 : R(I1, I2),

N3 : Trans(R), N4 : R(I1, I3)
(N1,N3),(N2,N3),

N2 : R(I2, I3) (N3,N4)

17
≤ 1.R, N1 : R(I1, o1),

N3 :≤ 1.R, N4 : I ∈≤ 1.R
(N1,N3),(N2,N3),

N2 : R(I1, o2) (N3,N4)

18
≥ 1.R, N1 : R(I1, o1),

N3 :≥ 1.R, N4 : I ∈≥ 1.R (N1,N3),(N2,N3)N2 : R(I1, o2)

19
= 1.R, N1 : R(I1, o1),

N3 : I ∈= 1.R (N1,N3),(N2,N3)N2 : R(I1, o2)

20
∀R.X, N1 : R(I1, I2),

N3 : ∀R.X, N4 : I1 ∈ ∀R.X
(N1,N3),(N2,N3),

N2 : I2 ∈ X (N3,N4)

21 ∃R.X, N1 : R(I1, I2), N3 : ∃R.X, N4 : I1 ∈ ∃R.X
(N1,N3),(N2,N3),

N2 : I2 ∈ X (N3,N4)

22 ∃R.� � X, N1 : R(I1, I2), N3 : ∃R.� � X (N1,N3),(N2,N3)
N2 : I1 ∈ X

23 � � ∀R.X, N1 : R(I1, I2), N3 : � � ∀R.X (N1,N3),(N2,N3)
N2 : I2 ∈ X

24 N1 : I1 = I2 (variable), N3 : I1 = I2 (valuation), (N1,N3),(N2,N3),
N2 : I2 ∈ X N4 : I1 ∈ X (N3, N4)

25 N1 : I1 = I2 (variable), N3 : I1 = I2 (valuation), (N1,N3),(N2,N3),
N2 : R(I2, o1) N4 : R(I1, o1) (N3, N4)

4.4 Assigning Mass Distributions

After the nodes were combined into the network, the next step is to assign
the mass distribution functions to the nodes. There are two kinds of variable
nodes: (i) nodes representing statements supported by the evidence and (ii) nodes
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representing inferred statements. Initial mass distribution for the nodes of the
first type is assigned based on their extracted confidence. If a statement was ex-
tracted with a confidence degree c, it is assigned the following mass distribution:
m(True) = c, m(True; False) = 1− c. It is possible that the same statement is
extracted from several sources. In this case, multiple pieces of evidence have to
be combined using Dempster’s rule of combination.

Nodes created artificially during network construction are only used for prop-
agation of beliefs from their neighbours and do not contain their own mass as-
signment. Valuation nodes specify the TBox axioms and are used to propagate
beliefs through the network. For the crisp OWL ontologies only mass assign-
ments of 0 and 1 are possible. The principle for assigning masses is to assign
the mass of 1 to the set of all combinations of variable sets allowed by the cor-
responding axiom. Table 2 shows the mass assignment functions for OWL-DL
T-Box axioms 1.

In our example, we assign distributions based on the extractor’s confidence
values to the variable nodes representing extracted statements: A1:(m(1)=0.7,
m({0;1})=0.3), A2: (m(1)=0.6, m({0;1})=0.4), A3: (m(1)=0.4, m({0;1})=0.6),
A4: (m(1)=0.5, m({0;1})=0.5). The valuation nodes obtain their distributions
according to the rules specified in the Table 2: T3 (rule 3), T4 (rules 2, 4, 18)
and T5 (rule 7).

4.5 Belief Propagation

The axioms for belief propagation were formulated in [23]. The basic operators
for belief potentials are marginalization ↓ and combination ⊗. Marginalization
takes a mass distribution function m on domain D and produces a new mass
distribution on domain C ⊆ D.

m↓C(X) =
∑

Y ↓C=X

m(Y )

For instance, if we have the function m defined on domain {x, y} as m({0; 0}) =
0.2, m({0; 1}) = 0.35, m({1; 0}) = 0.3, m({1; 1}) = 0.15 and we want to find
a marginalization on domain {y}, we will get m(0) = 0.2 + 0.3 = 0.5 and
m(1) = 0.35 + 0.15 = 0.5. The combination operator is represented by the
Dempster’s rule of combination:

m1 ⊗m2(X) =

∑
X1∩X2=X m1(X1)m2(X2)

1−∑X1∩X2=� m1(X1)m2(X2)

Belief propagation is performed by passing messages between nodes according
to the following rules:

1 For nodes allowing multiple operands (e.g., intersection or cardinality) only the case
of two operands is given. If the node allows more than two children, then number
of variables and the distribution function is adjusted to represent the restriction
correctly.
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Table 2. Belief distribution functions for valuation nodes

N Node type Variables Mass distribution
1 X � Y I ∈ X, I ∈ Y m({0;0}, {0;1}, {1;1})=1
2 X ≡ Y I ∈ X, I ∈ Y m({0;0},{1;1})=1
3 X � ¬Y I ∈ X, I ∈ Y m({0;0},{0;1},{1;0})=1
4 X � Y I ∈ X, I ∈ Y , I ∈ X � Y m({0;0;0},{0;1;0},{1;0;0},{1;1;1})=1
5 X � Y I ∈ X, I ∈ Y , I ∈ X � Y m({0;0;0},{0;1;1},{1;0;1},{1;1;1})=1
6 ¬X I ∈ X, I ∈ ¬X m({0;1},{1;0})=1
7 � �≤ 1R R(I, o1), R(I, o2) m({0;0},{0;1},{1;0})=1
8 � �≤ 1R− R(I2, I1), R(I3, I1) m({0;0},{0;1},{1;0})=1
9 R ≡ R− R(I1, I2), R(I2, I1) m({0;0},{1;1})=1
10 R ≡ Q R(I1, I2), Q(I1, I2) m({0;0},{1;1})=1
11 R � Q R(I1, I2), Q(I1, I2) m({0;0},{0;1},{1;1})=1
12 R ≡ Q− R(I1, I2), Q(I2, I1) m({0;0},{1;1})=1

13 Trans(R) R(I1, I2), R(I2, I3), R(I1, I3)
m({0;0;0},{0;0;1},{0;1;0},{0;1;1},
{1;0;0},{1;0;1},{1;1;1})=1

14 ≤ 1.R R(I1, o1), R(I1, o2), I1 ∈≤ 1.R m({0;0;1},{0;1;1},{1;0;1},{1;1;0})=1
15 ≥ 1.R R(I1, o1), R(I1, o2), I1 ∈≥ 1.R m({0;0;0},{0;1;1},{1;0;1},{1;1;1})=1
16 = 1.R R(I1, o1), R(I1, o2), I1 ∈= 1.R m({0;0;0},{0;1;1},{1;0;1},{1;1;0})=1
17 ∀R.X R(I1, I2), I2 ∈ X, I1 ∈ ∀R.X m({0;0;1},{0;1;1},{1;0;0},{1;1;1})=1
18 ∃R.X R(I1, I2), I2 ∈ X, I1 ∈ ∃R.X m({0;0;1},{0;1;1},{1;0;0},{1;1;1})=1
19 ∃R.� � X R(I1, I2), I1 ∈ X m({0;0}, {0;1}, {1;1})=1
20 � � ∀R.X R(I1, I2), I2 ∈ X m({0;0}, {0;1}, {1;1})=1

21 I1 = I2 I1 = I2, I2 ∈ X, I1 ∈ X
m({0;0;0}, {0;0;1}, {0;1;0}, {0;1;1},
{1;0;0}, {1;1;1})=1

22 I1 = I2 I1 = I2, R(I2, o1), R(I1, o1)
m({0;0;0}, {0;0;1}, {0;1;0}, {0;1;1},
{1;0;0}, {1;1;1})=1

1. Each node sends a message to its inward neighbour (towards the root of the
tree). If μA→B is a message from A to B, N(A) is a set of neigbours of A
and the potential of A is mA, then the message is specified as a combination
of messages from all neighbours except B and the potential of A:

μA→B = (⊗{μX→A|X ∈ (N(A)− {B})⊗mA})↓A∩B

2. After a node A has received a message from all its neighbors, it combines all
messages with its own potential and reports the result as its marginal.

As the message-passing algorithm assumes that the graph is a tree, it is neces-
sary to eliminate loops. All valuation nodes constituting the loop are replaced
by a single node with the mass distribution equal to the combination of mass
distributions of its constituents. The marginals obtained after propagation for
the nodes corresponding to initial ABox assertions will reflect updated mass dis-
tributions. After the propagation we can remove the statement with the lowest
plausibility from each of the MISO found at the diagnosis stage.

Calculating the beliefs for our example gives the following Dempster-Shafer
plausibility values for ABox statements: Pl(A1)=0.94, Pl(A2)=0.58, Pl(A3)=0.8,
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Pl(A4)=0.65. In order to make the ontology consistent it is sufficient to remove
from both conflict sets an axiom with the lowest plausibility value (A2). In this
example, we can see how the results using Dempster-Shafer belief propagation
differ from the Bayesian interpretation. Bayesian probabilities, in this case, are
calculated in the same way as Dempster-Shafer support values. If we use con-
fidence values as probabilities and propagate them using the same valuation
network we will obtain the results: P(A1)=0.66, P(A2)=0.35, P(A3)=0.32 and
P(A4)=0.33. In this scenario, we would remove A3 and A4 because of the neg-
ative belief bias. Also we can see that all three statements A2, A3 and A4 will
be considered wrong in such a scenario (resulting probability is less than 0.5).
The Dempster-Shafer approach provides more flexibility by making it possible to
reason about both support (“harsh” queries) and plausibility (“lenient” queries).

5 Evaluation

In order to test the approach we performed experiments with publicly avail-
able datasets describing the domain of scientific citations. Our datasets were
structured according to the SWETO-DBLP ontology2 (Fig. 2), and contained in-
stances of two types: opus:Article (journal articles) and opus: Article in
Proceedings (conference and workshop papers).

Fig. 2. Class hierarchy in the SWETO-DBLP ontology

We used two kinds of restrictions: classes opus:Article and opus:Article in
Proceedings were disjoint and the property opus:year (the year of publication)
was functional. Three different datasets were used:

2 http://lsdis.cs.uga.edu/projects/semdis/swetodblp/august2007/
opus august2007.rdf
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1. AKT EPrints archive3. This is a small dataset containing information about
papers produced within the AKT research project.

2. Rexa dataset. This dataset was extracted from the Rexa search server4 con-
structed in the University of Massachusets using automatic IE algorithms.

3. SWETO DBLP dataset. A well-known publicly available dataset listing pub-
lications from the computer science domain.

We know that the AKT EPrints archive was created by the authors themselves,
who entered the data about their publications manually. The Rexa dataset was
extracted using automatic IE algorithms (the authors reported extraction accu-
racy of 0.97 and coreferencing accuracy “in the 90s”5.) However, sometimes the
information was incorrectly reported in the sources (e.g., when it was extracted
from a citation in a third-party publication), which lowers the actual quality of
the data. The DBLP dataset was primarily constructed using the data reported
in the proceedings and journal contents, which makes it a more reliable source.

5.1 Experimental Setup and Results

We performed the a priori mass assignment in the following way. First, we ranked
the datasources according to our confidence in their quality (DBLP>Rexa>
EPrints). As a rough clue to rank the sources by their quality we used the
coreference quality of the papers’ authors. We considered the case when the same
author was referred to in the same dataset using different labels as an error and
calculated the percentage of correct individuals (for EPrints this percentage was
0.46, for Rexa 0.63 and for DBLP 0.93). Then, we treated the class assignments
as more reliable than datatype property assignments because the IE algorithms
used by Rexa and the HTML wrappers sometimes made errors by assigning
the wrong property (e.g., venue instead of year) or by assigning the borders of
the value incorrectly (e.g., dropping part of the paper’s title). Finally, for the
Rexa dataset we had additional information: each paper record had a number of
citations indicating the number of sources referring to the paper. We estimated
the dependency between the reliability of records and the number of citations
by randomly selecting a subset of paper records and manually counting the
number of “spurious” records, which contained some obvious error (e.g., like
assigning the name of the conference as paper title). We randomly selected 400
records for each value of the hasCitations property from 0 to 5 and counted the
number of spurious records. If the total number of papers for some interval was
lower than 400, then we selected all available records in the interval. Based on
these reliability assignments, we adjusted the reliability of datatype property
assignments for the Rexa dataset. This led us to assign belief masses to the
statements from each source as shown in the Table 3. Of course, such confidence
estimation was subjective, but we cannot expect it to be precise in most real-life
scenarios, unless the complete gold standard data is available in advance.
3 http://eprints.aktors.org/
4 http://www.rexa.info/
5 http://www.rexa.info/faq
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Table 3. Initial belief mass assignment

Dataset Class assertions Datatype assertions
DBLP 0.99 0.95

Rexa 0.95
0.81 (<2 citations)
0.855 (>2 citations)

EPrints 0.9 0.85

Table 4. Evaluation results

No
Matching Total Matching Conflicts

Accuracy
Matching

algorithm clusters precision found precision
(before) (after)

EPrints/Rexa
1 Jaro-Winkler 88 0.95 9 0.61 0.97
2 L2 Jaro-Winkler 96 0.88 13 0.73 0.92
3 Jaro-Winkler (mutated dataset) 88 0.95 55 0.92 0.95

EPrints/DBLP
4 Jaro-Winkler 122 0.92 12 0.83 0.99
5 L2 Jaro-Winkler 217 0.39 110 0.9 0.84
6 Jaro-Winkler (mutated dataset) 122 0.92 84 0.91 0.92

Rexa/DBLP
7 Jaro-Winkler 305 0.9 21 0.73 0.94
8 L2 Jaro-Winkler 425 0.55 149 0.87 0.82
9 Jaro-Winkler (mutated dataset) 305 0.9 213 0.94 0.9

We ran matching algorithms determining identical individuals for each pair
of datasets. Their results were evaluated using precision/recall measures. To
each owl:sameAs statement produced by a matching algorithm we assigned a
support belief mass based on the precision of the algorithm (Table 4, column 4).
We made tests with two kinds of string similarity algorithms[24]: Jaro-Winkler
similarity directly applied to the papers’ titles (rows 1, 4 and 7) and L2 Jaro-
Winkler similarity, when both compared values are tokenized, each pair of tokens
is compared using the standard Jaro-Winkler measure and the maximal total
score is selected. The L2 measure can catch the cases when part of the label is
missing (e.g., only the last part of a paper title was recognized), which slightly
increases the recall, but its precision is usually significantly lower (rows 2, 5, 8).

Finally, in order to test the algorithm in a situation where the quality of one
of the data sources is low, we had to introduce noise into our datasets. We did
it in the following way: for one of the datasets in the pair (the smaller one,
EPrints or Rexa depending on the case) we randomly mutated 40% of rdf:type
assertions (changing from Article to Article in Proceedings and vice versa) and
opus:year assertions (by + or -1). The support belief mass of all statements in the
dataset was proportionally reduced: the values in the rows 2 and 3 in the Table
3 were multiplied by 0.6. We measured the quality of inconsistency resolution
by comparing the resulting ranking produced after the belief propagation with
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the “correct” conflict resolution. A conflict was considered correctly resolved if
the genuinely incorrect statements got the lowest belief after propagation. In
cases when a conflict set contained several incorrect statements and only some
of them were correctly recognized, we assigned a reduced score to such a conflict
(e.g., 0.33 if only one statement out of three was properly recognized as wrong).
Incorrect statements, which received low support, but were plausible, counted
as 0.5 of a correct answer. The results we obtained are given in the Table 4. The
clusters shown in the third column are sets of mapped individuals. Each cluster
represents a group of up to 3 individuals mutually linked by an owl:sameAs
relation.

5.2 Discussion and Examples

Since in our use case the conflicts occurred because of incorrect data, apply-
ing high-precision matching algorithms to the original datasets resulted in very
small numbers of conflicts. Thus, the results obtained in such experiments (rows
1, 2, 4, 7) only illustrate common cases rather then provide reliable quantitative
evaluation. As was expected, the algorithm’s performance was better in “trivial”
cases when the wrong statement had a priori support significantly lower than
the statements, with which it was in conflict. This was the most frequent pat-
tern in the experiments with a low-precision matching algorithms (rows 5, 8)
and artificially distorted datasets (rows 3, 6, 9). In more complex cases, if the
conflict set contained a correct statement with a lower support than the actual
wrong statement, the algorithm was still able to resolve the conflict correctly if
additional evidence was available. One typical cause of such a conflict was the
situation when the same authors first presented a paper in a conference and
after that published its extended version in a journal. For instance, a belief net-
work built for such a case is shown in the Fig. 3a. While each conflict separately
would be resolved by removing the assertions related to Ind2 (In Proc(Ind2)
and year(Ind2, 2005) in the Fig. 3a), cumulative evidence allowed the algorithm
to recognize the actual incorrect sameAs link (Ind1=Ind2 ). A similar situation
occurred when one instance (Ind1 ) was considered similar to two others (Ind2
and Ind3 ), but only one of the sameAs links (e.g., Ind1=Ind2 ) led to the incon-
sistency (e.g., disjoint axiom violation). In that case the existence of the correct
sameAs link (Ind1=Ind3 ) increased the support of the corresponding class as-
sertion and again caused the wrong link (Ind1=Ind2 ) to be removed. As would
be expected, in cases when the wrong statement was considered a priori more re-
liable than the conflicting ones and the evidence was not sufficient, the algorithm
made a mistake. For instance, the conflict in Fig. 3a was resolved wrongly when
the dataset containing Ind2 was artificially distorted. Although the statements
involved in the conflict were not affected, the initial support of the Ind2 asser-
tions was significantly lower (0.51 instead of 0.9), which was insufficient to break
the link. The capabilities of the Dempster-Shafer representation were important
in cases when the a priori support of some statements was low. For instance, us-
ing L2 Jaro-Winkler similarity for the EPrints/DBLP datasets achieved a very
low precision (0.39). In such cases the plausibility allows us to distinguish the
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Fig. 3. Examples of belief networks constructed during the experimental testing. The
numbers show the support before propagation and support and plausibility after prop-
agation. a) Incorrect sameAs mapping violates two restrictions. b) Influence of the
Dempster-Shafer plausibility: correct sameAs relation has low support but high plau-
sibility because it does not contribute to inconsistency.

cases when a statement is considered unreliable because of insufficient evidence
from the cases when there is sufficient evidence against it. For instance, Fig. 3b
shows such a case. A record in the EPrints dataset describing a conference paper
was linked to two different papers in the DBLP dataset. One of the links was
wrong. After belief propagation the support values of both links were still below
0.5. However, the evidence against the wrong link was significantly stronger, so
its plausibility was low (0.02) while the plausibility of the correct link remained
high (0.99).

6 Conclusion and Future Work

In this paper, we described how the Dempster-Shafer theory of evidence can be
used for dealing with ABox-level inconsistencies produced by inaccurate infor-
mation extraction and human errors and reported the experiments we performed
with publicly available datasets. The experiments have shown that in the ma-
jority of cases the algorithm was able to resolve inconsistencies that occurred
when fusing data from several sources. Belief networks allowed related pieces
of evidence to be utilized and the Dempster-Shafer mass distribution allowed
more fine-grained ranking of statements than the probabilistic representation.
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However, a feature of the belief propagation algorithm was its sensitivity to the
initial mass distribution: a small initial difference between the belief masses of
conflicting statements significantly increased after the beliefs were propagated.
This can be a limitation in cases when initial mass distribution significantly
differs from the actual distribution (especially if the ranking is wrong).

At the moment we are working on the extension of the framework in order to
improve corefencing quality by propagating positive evidence as well as negative.
As the most interesting direction for the future work we consider potential appli-
cation of the algorithm to the multi-ontology environment. Often the datasets
to be fused are structured according to different ontologies. Automatic ontol-
ogy schema-matching algorithms such as those reported in [25] also can intro-
duce errors. The restrictions, which can cause inconsistencies, are required to be
correctly translated between the ontologies. Resolving such issues is a research
challenge. Finally, it would be interesting to investigate whether the capabilities
of the Dempster-Shafer uncertainty representation (e.g., explicit representation
of ignorance) can be utilized for knowledge modelling at the TBox level. In [26]
it was shown that the Dempster-Shafer approach may lead to problems when
it is used to represent uncertainty of inferencing rules (i.e., TBox-level) rather
than just of pieces of evidence (ABox assertions). These problems occur if the
ontology contains contradictory pieces of knowledge, and are caused by the fact
that the Dempster-Shafer approach does not distinguish pieces of evidence re-
garding specific individuals from generic rules applicable to all individuals. It
will be interesting to investigate whether these problems can be avoided when
modelling description logic axioms.
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Abstract. Clinical Practice Guidelines (CPGs) play an important role
in improving quality of care and patient outcomes. Although several
machine-readable representations of practice guidelines have been im-
plemented with semantic web technologies, there is no implementation
to represent uncertainty in activity graphs in clinical practice guidelines.
In this paper, we explore a Bayesian Network(BN) approach for repre-
senting the uncertainty in CPGs based on ontologies. Using this repre-
sentation, we can evaluate the effect of an activity on the whole clinical
process, which can help doctors judge the risk of uncertainty for other
activities when making a decision. A variable elimination algorithm is
applied to implement the BN inference and a validation of an aspirin
therapy scenario for diabetic patients is proposed.

1 Introduction

Clinical Practice Guidelines (CPGs) play an important role in improving qual-
ity of care and patient outcomes; therefore, the task of clinical guideline-sharing
across different medical institutions is a prerequisite to many EMR (Electronic
Medical Record) applications including medical data retrieval [18], medical
knowledge management [7], and clinical decision support systems (CDSSs) [13].
To facilitate clinical guideline-sharing, GLIF (GuideLine Interchange Format)
and SAGE (Standards-based Sharable Active Guideline Environment) have been
the focus of extensive research [12]. GLIF is a semantic web based standard for
representing clinical guidelines [15] and SAGE is an interoperable guideline exe-
cution engine, which encodes the content of the clinical guideline to an ontology
representation, and executes the ontology through the functions of a CIS (clinical
information system) [17].

Most previous approaches using GLIF and SAGE are designed to proceed
from one step to the next only if there is no uncertain data in the former step
[13]. However, this expectation is unrealistic in practice. For example, a guide-
line, which requires risk factors for heart disease to be assessed, needs to proceed
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even when the information about this item is uncertain. In the clinical process,
uncertain data can be (1) data stemming from unreliable sources (e.g., a pa-
tient can not remember the results of his/her last glucose test); (2) data not
obtainable (e.g., no historical data on familial diabetes); and (3) data not yet
collected (e.g., levels of serum glucose today) [14]. If data represented in CPGs
is uncertain, the activities that handle these uncertain data become uncertain as
well. For instance, in CDSS systems, when using the diabetes clinical guideline,
it is necessary to obtain a family history to evaluate the risk of insulin therapy.
However, in real hospital environments, clinicians cannot easily obtain all the
necessary data for their health care activities. Based on these issues, the goal
of this paper is to construct an approach to represent the uncertainty in CPGs
and help doctors judge the risk of these uncertainties in the clinical process. Un-
certainty in CPGs means that the activity graphs composing the CPGs contain
uncertain activities.

As a model for uncertainty, Bayesian Networks (BNs) occupy a prominent
position in many medical decision making processes and statistical inference
[11,3,2]. However, there have been few reports applying BNs to the representation
of uncertainty in CPGs. Therefore, to address this issue, we propose an ontology-
based representation of uncertainty in CPGs by using BNs.

In this paper, we first introduce BNs, then we describe the use of BNs for the
medical domain, and review previous work on applying semantic web technology
to model CPGs in section 2; Section 3 elaborates the mechanism of encoding
uncertainty into a CPG ontology; Section 4 describes a scenario validation based
on BN inference; Section 5 discusses the conclusions and future work.

2 Background and Related Work

2.1 Bayesian Network

There are several models that are used to represent uncertainty, such as fuzzy-
logic and BNs. Generally, a BN of n variables consists of a DAG (Directed Acyclic
Graph) of n nodes and a number of arcs. Nodes Xi in a DAG correspond to
random variables, and directed arcs between two nodes represent direct causal
or influential relations from one variable to the other. The uncertainty of the
causal relationship is represented locally by the CPT (Conditional Probability
Table). P (Xi|pa(Xi)) associated with each node Xi, where pa(Xi) is the parent
set of Xi. Under the conditional independence assumption, the joint probability
distribution of X = (X1, X2, ..., Xn) can be factored out as a product of the CPTs
in the network, namely, the chain rule of BN: P (X) =

∏
i P (Xi|pa(Xi)). With

the joint probability distribution, BNs theoretically support any probabilistic
inference in the joint space. Besides the probabilistic reasoning provided by BNs
themselves, we are attracted to BNs in this work for the structural similarity
between the DAG of a BN and activity graphs of CPGs: both of them are directed
graphs, and direct correspondence exists between many nodes and arcs in the
two graphs. Moreover, BNs can be utilized to represent the uncertainty visually,
to provide inference effectively and to facilitate human understanding of CPGs.
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Motivated by these advantages, we apply BNs to represent the uncertainty in
CPGs.

Considering the advantages of BNs, we apply BNs to represent the uncertainty
in CPGs.

2.2 Bayesian Networks for the Medical Domain

Because BNs occupy a prominent position as a model for uncertainty in decision
making and statistical inference, they have been applied to many medical deci-
sion support systems [11,3,2]. Atoui [3] adopted a decision making solution based
on a BN that he trained to predict the risk of cardiovascular events (infarction,
stroke, or cardiovascular death) based on a set of demographic and clinical data.
Aronsky [2] presented a BN for the diagnosis of community-acquired pneumonia
and he showed that BNs are an appropriate method for detecting pneumonia pa-
tients with high accuracy. With respect to clinical guidelines, Mani [11] proposed
BNs for the induction of decision tables and generated a guideline based on these
tables. However, although these methods focus on predicting some features or
risk of disease using BN inference, there has been no implementation to repre-
sent the uncertainty in activity graphs in CPGs. These methods do not provide
the probabilities of target activities based on uncertainty reasoning, which is the
focus of our approach.

2.3 Semantic Web for Clinical Practice Guidelines

A representational form of clinical guideline knowledge, which promotes com-
pleteness and minimizes inconsistency and redundancy, is essential if we want
to implement and share guidelines for computer-based applications. Semantic
Web technology offers such sharable and manageable methodology for model-
ing CPGs. GLIF [15] and SAGE [17] are two good examples. For creation and
maintenance of implementable clinical guideline specifications, an architecture
is presented in [8]. This architecture includes components such as a rules en-
gine, an OWL-based classification engine and a data repository storing patient
data. Moreover, approaches for modeling clinical guidelines are discussed and
they show that guideline maintenance is tractable when a CPG is represented in
an ontology. Here, we apply an ontology to represent the uncertainty in CPGs
because it is more extensible and maintainable than other methods such as re-
lational databases.

3 Encoding Uncertainty into a CPG Ontology

Figure 1 depicts the overall procedure of the proposed method. Firstly, the orig-
inal CPG is encoded into an ontology model that contains uncertainty features
using BNs. For this, we propose a formal model of a CPG Ontology to represent
uncertainty and an algorithm to construct the CPTs (Conditional Probability
Tables) of the BN. The CPG ontology can be shared and utilized in different
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Fig. 1. The framework

clinical information systems. Then, when a user provides his/her observed evi-
dence in the clinical process, the BN inference engine will load the CPG ontology
as a BN and mark the nodes that are observed by the user in the BN. Based on
the observed evidence, the BN inference engine can reason out the probabilities
of target activities asked by the user. Given the reasoning results, the user can
judge the risk of unobserved activities and make a further decision.

3.1 Clinical Practice Guideline Ontology

CPGs typically include multiple recommendation sets represented as an activity
graph that show the recommended activities during a clinical process [4]. An
activity graph describes the relationship between activities in the recommenda-
tion set as a process model. In this article, we use a single recommendation set
in the SAGE diabetes CPG [1], which is an activity graph of aspirin therapy for
diabetic patients, to illustrate how we represent the uncertainty in CPGs based
on the ontology (Fig. 2). Typically, an activity graph contains three kinds of ac-
tivities: context activities, decision activities, and action activities. Each activity
graph segment within a guideline begins with a context activity node that serves
as a control point in guideline execution by specifying the clinical context for
that segment. A decision activity node in the SAGE guideline model represents
clinical decision logic by listing alternatives (typically subsequent action activity
nodes), and specifying the criteria that need to be met to reach those nodes. An
action activity node encapsulates a set of work items that must be performed
by either a computer system or persons.

To represent activities in CPGs, we create the activity class that represents
all the nodes in an activity graph as shown in Figure 3. Because there are three
kinds of activities, we construct an action class, a context class, and a decision
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Fig. 2. Clinical practice guideline of aspirin therapy for diabetic patients(ASA means
aspirin therapy)

class as sub classes of the activity class in the ontology. In CPGs, activities may
include internal conditions that restrict their execution. For example, for the
decision activity “Yes;check for ASA(aspirin therapy) contraindications” (Fig.
2), there are many internal conditions to make sure the ASA contraindications
will be checked correctly, such as checking family history, checking for the hyper-
tensive disorder, etc. We encode these activity internal conditions as an activity
condition classes in the ontology (Fig. 3).

A CPG Ontology with uncertainty features is defined as follows:

Definition 1. (CPG Ontology) CPG Ontology O := {C, I, Ps, cinst}, with an
activity class set C, an activity instance set I, a property set Ps, and an activity
class instantiation function cinst : C → 2I.

Fig. 3. Classes representation for clinical practice guideline
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In CPG ontology, the activity instance set I represents the set of real activities
that belong to corresponding activity classes. The property set Ps is proposed
to represent the different attributes of activities in order to encode the features
of the BN into ontology. The property set Ps is defined as follows:

Definition 2. (Properties for uncertainty representation) Property Set Ps :=
{cause, hasCondition, hasState, isObserved, hasPriorProValue,
hasCondiProValue}, has a property function cause : I → I, a property function
hasCondition : I → I, a property function hasState : I → Boolean, a property
function isObserved: I → Boolean, a property function hasPriorProV alue:
I → Float, and a property function hasCondiProV alue: I → Float.

In CPGs, if the criteria associated with an activity node are satisfied, it will
be successfully executed, which will cause the execution of subsequent nodes
in the activity graph. Therefore, the relationship between activities is defined
as a cause relationship. For example, in Figure 2, the context activity “Patient
21 years or older” causes the decision activity “Check for Aspirin therapy”.
To represent this relationship in the ontology, we construct the property cause
whose domain and range both are the activity class and the activity condition
class. The hasCondition property is proposed as an inverse property of the cause
property, which describes the “parent” activities of an activity that cause its
execution. For example, the decision activity “Check for aspirin therapy” has
the property hasCondition with value “Patient 21 years or older” activity that
causes its execution. With the hasCondition property, users can easily figure
out all of the conditions that cause the execution of any activity. The cause
property plays the role of “directed arc” and all the activity instances play the
role of “node” in the DAGs of BNs. Another property, the hasState property,
which has a boolean value range, is denoted as the state of the activity instance;
the isObserved property shows if the activity instances have been observed or
not.

Prior probability and conditional probability are two important features that
represent the uncertainty level of nodes in BNs. To encode prior probability
and conditional probability of activity instances into the ontology respectively,
hasPriorProValue property and hasCondiProValue property are employed. Let
A, B be the instances of the activity class representing two concrete activities.
We interpret P (A = a) as the prior probability that a value a is a state of
instance A and P (B = b|A = a) as the conditional probability that when A
has state a, B has state b. For example, when A is activity “Patient 21 years
or older”, B is activity “Check for Aspirin therapy”, P (A = true) = 0.5 can be
expressed in the ontology as follows:

<Context rdf:ID="Patient_21_yo_or_older">
<hasPriorProValue
rdf:datatype="http://www.w3.org/2001/XMLSchema#float"
>0.5</hasPriorProValue>
<hasState
rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</hasState>
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<cause rdf:resource="#Check_for_Aspirin_therapy"/>
</Context>

The conditional probability P (B = true|A = true) = 1.0 can be expressed
in the ontology as follows:
<Decision rdf:ID="Check_for_Aspirin_therapy">

<hasCondition>
<Context rdf:ID="Patient_21_yo_or_older">
<hasState rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</hasState>
</Context>

</hasCondition>
<hasState rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</hasState>
<hasCondiProValue rdf:datatype="http://www.w3.org/2001/XMLSchema#float"
>1.0</hasCondiProValue>
<cause rdf:resource="#Check_fo_age_older_than_40"/>

</Decision>

3.2 Construction of Conditional Probability Tables

In this section, we introduce an algorithm used to construct the CPTs of nodes
in BNs. After creating the properties to represent the uncertainty in the on-
tology, the CPTs must be constructed for BNs, because BN inference is based
on the CPTs of each node in the BNs. Because of the features of CPGs, we
initialize the CPTs based on noisy OR-gate model. To demonstrate this idea
more clearly, we use a subsect of clinical practice guideline of primary care clinic
visit in SAGE diabetes CPGS as an example (Fig. 4). This example includes
two context activities, “physician accesses the patient record” and “physician
accesses the patient record”, and four action activities and five action activities,
“aspirin therapy”, “Retrieve diabetes lab data items and calculate items due”,
“Out-of-goal notifications via inbox”, “Check today’s bp and issue appropriate
alerts”, and “Retrieve consult-related information and calculate items due”. For
simplicity, let P1 stand for “physician accesses the patient record”, P2 stand for
“physician accesses the patient record”, A stand for “aspirin therapy”, R stand
for “Retrieve diabetes lab data items and calculate items due”, O stand for
“Out-of-goal notifications via inbox”, C stand for “Check today’s bp and issue
appropriate alerts”, and E stand for “Retrieve consult-related information and
calculate items due”.

First, we assign prior probabilities to activities, i.e, the activities have prior
probabilities when they have no “parents” in the BN. In our example, the activity
is P1. Since every activity in our example has two states, true and false, 0.5 is
assign to P1 as the prior probabilities (Fig. 4). Second, when an activity causes a
set of activities, each activity in the set is true if and only if the causing activity
is true. In the example, activities A, R, C, and E have state true if and only if
P1’s state is true. Similarly, activity O has state true if and only if R’s state is
true. The conditional probabilities of activities A, R, C, E, and O are shown in
Figure 4. Third, when an activity is caused by a set of activities, the activity



168 H.-T. Zheng, B.-Y. Kang, and H.-G. Kim

Fig. 4. Some activities in clinical practice guideline of primary care clinic visit

has state true if and only if one activity in the set of activities has state true. In
the example, activity P2 has state true if and only if one of activities A, O, C,
and R has state true. The conditional probability of activity P2 is P (P2|A) = 1,
P (P2|O) = 1, P (P2|C) = 1, and P (P2|E) = 1 (Fig. 4).

After initializing the CPTs of the BN, we update the conditional probabilities
based on clinical cases. If a population of patients with similar characteristics
conducts a sequence of activities, the conditional probabilities are updated based
on the prior records. The records correspond to how many patients conduct an
activity after they finish the causing activity. For example, in Figure 4, if ten
patients conduct activity R and seven of them conduct activity O consequently,
the conditional probability P (O|R) is updated as 0.7.

Finally, we encoded the BNs into ontologies that represent the uncertainty in
CPGs, namely, representing with ontologies the activity graphs containing un-
certain activities. When a BN inference engine loads this ontology, the ontology
will be converted into a BN. The instances of the activity class and the activity
condition class are translated into the nodes of the BN. The conditional proba-
bility tables of nodes are also converted from the properties of those instances
in the CPG ontology accordingly. In the BN, an arc is drawn between nodes if
the corresponding two activity instances are related by the cause property, the
direction originating from the activity instance that has the cause property.

4 A Scenario Validation Based on Bayesian Network
Inference

We apply the variable elimination algorithm [9,5] to perform BN inference. To
verify the feasibility of our approach, a scenario of aspirin therapy for a diabetic
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patient is proposed. Based on this scenario, we applied our ontology-based BN
approach to represent the uncertainty in CPGs and carried out BN inference
based on this BN.

4.1 Bayesian Network Inference

There are many algorithms that manipulate BNs to produce posterior values
[16,10]. The variable elimination algorithm [9,5] and the bucket elimination al-
gorithm [6] are focused on algebraic operations. Since algebraic schemes like
variable and bucket elimination compute marginal probability values for a given
set of variables that is suitable for inference on observed evidence, we apply the
variable elimination algorithm to implement the BN inference on the uncertainty
of CPGs.

We assume all random variables have a finite number of possible values. The
set of variables are denoted in bold; for instance, X. The set of all variables
that belong to X but do not belong to Y is indicated by X\Y. The expression∑

X f(X,Y) indicates the sum of the function f(X,Y) is taken for all variables
in X. Denoted by P (X) is the probability density of X: P (x) is the probability
measure of the event {X = x}. Denoted by P (X |Y ) is the probability density
of X conditional on values of Y .

The semantics of the BN model are determined by the Markov condition:
Every variable is independent of its non-descendants and non-parents given its
parents. This condition leads to a unique joint probability density:

P (X) =
∏

i

(P (Xi|pa(Xi))). (1)

where pa(Xi) is denoted as the parent set of Xi.
Given a BN, the event E denotes the observed evidence in the network. De-

noted by XE is the set of observed variables. Inferences with BNs usually involve
the calculation of the posterior marginal for a set of query variables Xq. The
posterior of Xq given E is:

P (Xq|E) =
P (Xq, E)

P (E)
=

∑
X\{Xq,XE} P (X)∑

X\XE
P (X)

(2)

The variable elimination algorithm can be described as follows:

1. Generate an ordering for the N requisite, non-observed, non-query variables.
2. Place all network densities in a pool of densities.
3. For i from 1 to N:

(a) Create a data structure Bi, called a bucket, containing the variable, called
the bucket variable; all densities that contain the bucket variable are called
the bucket densities.
(b) Multiply the densities in Bi. Store the resulting unnormalized density in
Bi; the density is called Bi’s cluster.
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(c) Take the sum of Xi from Bi’s cluster. Store the resulting unnormalized
density in Bi’s; the density is called Bi’s separator.
(d) Place the bucket separator in the density pool.

4. At the end of the process, collect the densities that contain the query variables
in a bucket Bq. Multiply the densities in Bq together and normalize the
result.

The detail of variable elimination algorithm can be found in [9,5].

4.2 A Validation of an Aspirin Therapy Scenario for Diabetic
Patients

We demonstrate the validity of our approach by applying an experiment to the
CPG of aspirin therapy for diabetic patients (Fig. 2). Let us consider a scenario:

Scenario 1. A user(medical student, nurse or physician etc. ) is trying to apply
aspirin therapy for a diabetic patient using the diabetes CPG. When he/she tries
to check the aspirin risk factors, he/she can get some observed evidence, such as
observations of hypertensive disorder, tobacco user finding, hyperlipidemia, and
myocardial infarction. In this case, the user wants to evaluate target activities
that he is concerned about in this CPG. In this way, he/she hopes the results can
help him understand the effect of the observed evidence on the target activities
during the whole clinical process.

In the scenario, the CPG of aspirin therapy for diabetic patients is used. Since
there are some uncertain activities in the activity graph in this CPG, we can
apply our ontology-based BN approach to represent this uncertainty. Details
are described in Section 3. As a result, figure 5 shows the ontology-based BN
representing the uncertainty in the CPG of aspirin therapy for diabetic patients.

After loading the ontology-based BN, the BN inference engine can process the
uncertainty inference when the user provides his/her observed evidence, such
as observations of hypertensive disorder, tobacco user findings, hyperlipidemia,
and myocardial infarctions in this scenario (Fig. 5). If the user queries the target
activities, the BN inference engine will output the probability of their successful
execution.

For example, after the user has obtained the observed evidence of some aspirin
risk factors, he/she wants to know the probability of activity “No ASA (aspirin
therapy) contraindications; recommend ASA” to help him/her to judge whether
or not his/her observations of aspirin risk factors are adequate. In the BN in-
ference engine, since the activity instance “presence of problem hypertensive
disorder” is observed, its property isObserved is set as true and the property
hasState is set as false. Similarly, the activities instances “presence of prob-
lem myocardial infarction”, “presence of tobacco user finding”, and “presence of
problem hyperlipidemia” are also set in the same manner. After initializing the
CPTs in this BN, Equation 2 (Section 4.1) is applied to calculate the probability
of activity instance “No ASA contraindications; recommend ASA” :

P (Xq|E) =
P (Xq, E)

P (E)
=

∑
X\{Xq,XE} P (X)∑

X\XE
P (X)

= 0.775



An Ontology-Based BN Approach for Representing Uncertainty in CPGs 171

Fig. 5. An ontology-based Bayesian network of aspirin therapy for diabetic patients
derived from figure 2 (blue nodes are the observed ones)

where Xq ={“No ASA contraindications; recommend ASA”}, and E={“presence
of problem hypertensive disorder” = false,“presence of problem myocardial in-
farction” = false, “presence of tobacco user finding” = false, “presence of prob-
lem hyperlipidemia”= false }.

In another case, when the user wants to get the degree of uncertainty for the
activity instance “presence of problem coagulation factor deficiency syndrome”,
he/she can query this target activity instance based on the observed evidence
E. Through BN inference, we can obtain:

P (Xq|E) =
P (Xq, E)

P (E)
= 0.6425

where Xq={“presence of problem coagulation factor deficiency syndrome”} and
E is the same as the above case.

The results in the two cases show high probabilities for the target activities,
which suggest the user can make a decision to go ahead based on the observed
evidence. When we consulted ten medical experts with this scenario, eight of
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them agreed with these results. We believe that the experimental results that
the majority of medical experts agree with show the feasibility of our approach.

5 Conclusion and Future Work

In this paper, we contributed an ontology-based BN approach to represent the
uncertainty in CPGs. With this uncertainty representation in ontology, comput-
ers can: (1) calculate the uncertainty of target activities in CPGs; (2) remind
users of missing important data or event items, which should be observed in
the clinical process; (3) simulate the clinical process under uncertain situations,
which can be applied to e-learning systems in medical schools.

In the future, we are planning to combine our approach with a real CIS envi-
ronment and apply uncertain clinical data to our application. A more compre-
hensive evaluation based on real clinical data should also be carried out.
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Abstract. Fuzzy Description Logics are a family of logics which allow
the representation of (and the reasoning with) structured knowledge af-
fected by imprecision and vagueness. They were born to overcome the
limitations of classical Description Logics when dealing with such kind of
knowledge, but they bring out some new challenges, requiring an appro-
priate fuzzy language to be agreed and needing practical and highly opti-
mized implementations of the reasoning algorithms. In the current paper
we face these problems by presenting a reasoning preserving procedure
to obtain a crisp representation for a fuzzy extension of the Description
Logic SHOIN , which makes possible to reuse a crisp representation lan-
guage as well as currently available reasoners, which have demonstrated
a very good performance in practice. As additional contributions, we de-
fine the syntax and semantics of a novel fuzzy version of the nominal
construct and allow to reason within fuzzy general concept inclusions.

1 Introduction

Ontologies [1] are a core element in the layered architecture of the Semantic
Web [2]. Description Logics (DLs for short) [3] are a family of logics for rep-
resenting structured knowledge. The name of each logic is composed by some
labels which identify the constructs of the logic. DLs have been proved to be
very useful as ontology languages [4].

As it has been widely pointed out, classical ontologies and DLs are not ap-
propriate to handle imprecise and vague knowledge and since imprecision and
vagueness are inherent to a lot of real-world application domains, there is a need
for the Semantic Web to provide means to manage them. A well studied solution
is to extend DLs with fuzzy sets theory [5], producing fuzzy DLs [6].

Nowadays, the World Wide Web Consortium (W3C) standard for ontology
representation is OWL Web Ontology Language [7], a language comprising three
sublanguages of increasing expressive power: OWL Lite, OWL DL and OWL
Full, being OWL DL the most used level and nearly equivalent to the DL
SHOIN (D) [8].

In order to deal with uncertain knowledge, OWL may be extended to a fuzzy
DL-based language e.g. FuzzyOWL [9], with the drawback that the large number
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of resources available (e.g. editors, reasoners or ontologies to be imported) should
be adapted. Furthermore, reasoning within expressive DLs has a very high worst-
case complexity (e.g. NExpTime in SHOIN ) and, consequently, there exists a
significant gap between the design of a decision procedure and the achievement
of a practical implementation [10]. Actually, some of the OWL DL reasoners
used in practice do not support full SHOIN (D). For instance, Racer [11] does
not support nominals.

Regarding fuzzy DLs, there does not exist any implemented reasoner for
fuzzy SHOIN . A reasoner for fuzzy SHIF(D) has been recently developed
(fuzzyDL [12]), but its efficiency is still to be investigated. Moreover, the experi-
ence with crisp DLs ([10]) induces us to think that developing highly optimized
implementations will be a hard task where ad-hoc mechanisms should be used
for every particular fuzzy DL.

An alternative way to obtain fuzzy ontologies facing these two problems is to
represent fuzzy DLs using crisp DLs and to reduce reasoning within fuzzy DLs
to reasoning within crisp DLs [13,14,15,16]. This way it would be possible to
translate them automatically into a crisp ontology language (e.g. OWL) and to
use currently available reasoners (e.g. Pellet [17]).

On the other hand, current fuzzy DLs still present some limitations which we
think that should be overcome. Some works on fuzzy DLs deal with nominals
(named individuals) but they choose not to fuzzify the nominal construct arguing
that a fuzzy singleton set does not represent any real concept world [18,9]. Hence,
only crisp concepts can be defined extensively, as nominals either have to fully
belong to them or not. Besides, the most used semantics for general concept
inclusions (GCIs) is based on the Zadeh’s set inclusion (a fuzzy set C is included
in a fuzzy set D iff ∀x, μC(x) ≤ μD(x)) and hence, it becomes a yes-no question.
Although fuzzy GCIs, which allow to restrict the value of a GCI, have been
proposed [18], current reasoning algorithms do not allow them.

Our work provides the following contributions. Firstly, we propose a differ-
ent definition of fuzzy SHOIN , including a fuzzy nominal construct and fuzzy
GCIs. Secondly, we reduce reasoning in fKDSHOIN to reasoning in SHOIN ,
extending [13]. To the very best of our knowledge, this is the first reasoning
algorithm dealing with such kind of fuzzy GCIs.

The present paper is organized as follows. The following section reviews some
background on DLs and fuzzy logic. Next, in Section 3 we describe our fuzzy
extension of SHOIN . We have not considered (for the moment) fuzzy datatypes
since OWL does not allow to define customised datatypes. Then, Section 4 shows
how to reduce it into crisp SHOIN . Finally, in Section 5 we set out some
conclusions and ideas for future work.

2 Preliminaries

This section recalls some basic notions on DLs (defining the DL which will be
treated along this paper, SHOIN ) and fuzzy set theory. The confident reader
may choose to skip this part and pass directly to Section 3.
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2.1 The Description Logic SHOIN
Syntax. SHOIN assumes three alphabets of symbols, for concepts, roles and
individuals. The concepts of the language (denoted C or D) can be built induc-
tively from atomic concepts (A), roles (R), top concept �, bottom concept ⊥,
named individuals (oi) and simple roles (S)1 according to the following syntax
rule (where n,m are natural numbers, n ≥ 0,m > 0):

C,D → A | (atomic concept)
� | (top concept)
⊥ | (bottom concept)

C �D | (concept conjunction)
C �D | (concept disjunction)
¬C | (concept negation)

∀R.C | (universal quantification)
∃R.C | (full existential quantification)

{o1, . . . , om} | (nominals)
(≥ n S) | (at-least unqualified number restriction)
(≤ n S) (at-most unqualified number restriction)

If RA is an atomic role, complex roles are built using this syntax rule:

R→ RA | (atomic role)
R− (inverse role)

A Knowledge Base (KB) comprises two parts: the intensional knowledge, i.e.
general knowledge about the application domain (a Terminological Box or TBox
T and a Role Box or RBox R), and the extensional knowledge, i.e. particular
knowledge about some specific situation (an Assertional Box or ABox A with
statements about individuals).

An ABox consists of a finite set of assertions about individuals (denoted a
and b), which can be one of the following types:

– Concept assertions a : C (meaning that a is an instance of C).
– Role assertion (a, b) : R ((a, b) is an instance of R).
– Individual assertion a �= b (a and b are different individuals).
– Individual assertion a = b (a and b refer to the same individual).

A TBox consists of a finite set of terminological axioms about concepts, of
the following types:

– General concept inclusions (GCI) C � D (C is more specific than D), where
general means that they can refer to any concept of the language.

– Concept definitions C ≡ D (C and D are equivalent), or abbreviation of the
pair of axioms C � D and D � C.

1 A simple role is a role with no transitive sub-roles. A role R is a sub-role of R′ if
R �∗R′, where �∗ is the reflexive-transitive closure of the inclusion relation �, which
will be defined below.
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A RBox consists of a finite set of role axioms of the following types:

– role inclusions of the form R � R′ (R is more specific than R′),
– role definitions R ≡ R′, a short hand for both R � R′ and R′ � R,
– transitive role axioms trans(R) (R is transitive).

Semantics. An interpretation I is a pair (ΔI , ·I) consisting of a non empty set
ΔI (the interpretation domain) and an interpretation function ·I mapping every
individual onto an element of ΔI , every atomic concept A onto a set AI ⊆ ΔI

and every atomic role R onto a binary relation RI ⊆ ΔI ×ΔI .
The interpretation is extended to complex concepts by the following inductive

definitions (where �X denotes the cardinality of the set X):

�I = ΔI

⊥I = ∅
(C �D)I = CI ∩DI

(C �D)I = CI ∪DI

(¬C)I = ΔI \ CI

(∀R.C)I = {x | ∀y, (x, y) /∈ RI or y ∈ CI}
(∃R.C)I = {x | ∃y, (x, y) ∈ RI and y ∈ CI}

{o1, . . . , om}I = {oI1 , . . . , oIm}
(≥ n S)I = {x | �{y | (x, y) ∈ SI} ≥ n}
(≤ n S)I = {x | �{y | (x, y) ∈ SI} ≤ n}

(R−)I = {(y, x) ∈ ΔI ×ΔI |(x, y) ∈ RI}

An interpretation I satisfies (is a model of):

– An assertion a : C iff aI ∈ CI .
– An assertion (a, b) : R iff (a, b)I ∈ RI .
– An assertion 〈a �= b〉 iff aI �= bI .
– An assertion 〈a = b〉 iff aI = bI .
– A GCI C � D iff CI ⊆ DI .
– A concept definition C ≡ D iff CI = DI .
– A role inclusion R � R′ iff RI ⊆ R′I .
– A role definition R ≡ R′ iff RI = R′I .
– A transitive role axiom trans(R) iff (R)I is transitive.
– An ABox A (resp. a TBox T , a RBox R) iff I satisfies each element in A

(resp. T , R).
– A KB K = 〈A, T ,R〉 iff it satisfies all A, T and R.

A DL not only stores axioms and assertions, but also offers some reasoning
services, such as KB satisfiability, concept satisfiability, subsumption or instance
checking. However, if a DL is closed under negation, then all the basic reasoning
services are reducible to KB satisfiability [19].

2.2 Fuzzy Set Theory

Fuzzy set theory and fuzzy logic were proposed by L. Zadeh [5] to manage
imprecise and vague knowledge. While in classical set theory elements either
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belong to a set or not, in fuzzy set theory elements can belong to a set to some
degree. More formally, let X be a set of elements called the reference set. A fuzzy
subset A of X is defined by a membership function μA(x), or simply A(x), which
assigns any x ∈ X to a value in the interval of real numbers between 0 and 1. As
in the classical case, 0 means no-membership and 1 full membership, but now a
value between 0 and 1 represents the extent to which x can be considered as an
element of X . If the reference set is finite (X = {x1, . . . , xn}), the membership
function can be expressed using the notation A = {μA(x1)/x1, . . . μA(xn)/xn}.

For every α ∈ [0, 1], the α-cut of a fuzzy set A is defined as the (crisp) set
such that its elements belong to A with degree at least α, i.e. {x | μA(x) ≥ α}.
Similarly, the strict α-cut is defined as {x | μA(x) > α}.

All crisp set operations are extended to fuzzy sets. The intersection, union,
complement and implication set operations are performed by a t-norm function
⊗, a t-conorm function ⊕, a negation function * and an implication function
⇒, respectively. For a complete definition of these functions as well as their
properties, we refer the reader to [20,21].

There are commonly two types of fuzzy implications used. The first class is
S-implications, which are defined by the operation α ⇒ β = (*α) ⊕ β and can
be seen as a fuzzy extension of the crisp proposition a→ b = ¬a∨ b. The second
class is R-implications (residuum-based implications), which are defined as α⇒
β = sup{γ ∈ [0, 1] | (α⊗ γ) ≤ β} and can be used to define a fuzzy complement
as *a = a ⇒ 0. They always verify that α ⇒ β = 1 iff α ≤ β. Product and
Gödel implications are R-implications, the implication of the Zadeh family which
is called Kleene-Dienes (KD) is an S-implication and the �Lukasiewicz implication
belongs to both types.

A fuzzy implication specifies a family of fuzzy operators. If it is an S-
implication this notation also specifies the fuzzy complement and t-conorm, while
if it is an R-implication then we also know the t-norm and the fuzzy complement.
The missing operators are usually defined using duality of the t-norms and the
t-conorms. Table 1 shows the most important families of fuzzy operators: Zadeh,
�Lukasiewicz, Gödel and Product.

Table 1. Popular families of fuzzy operators

Family t-norm α ⊗ β t-conorm α ⊕ β negation �α implication α ⇒ β

Zadeh min{α, β} max{α, β} 1 − α max{1 − α, β}
�Lukasiewicz max{α + β − 1, 0} min{α + β, 1} 1 − α min{1 − α + β, 1}
Gödel min{α, β} max{α, β}

{
1, α = 0
0, α > 0

{
1 α ≤ β
β, α > β

Product α · β α + β − α · β

{
1, α = 0
0, α > 0

{
1 α ≤ β
β/α, α > β

3 Fuzzy SHOIN
In this section we define fuzzy SHOIN , which extends SHOIN to the fuzzy
case by letting (i) concepts denote fuzzy sets of individuals and (ii) roles denote
fuzzy binary relations between individuals.
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Syntax. Our logic is similar to [18,9], adding fuzzy nominals and fuzzy GCIs.
Fuzzy SHOIN assumes three alphabets of symbols, for concepts, roles and

individuals. The complex concepts (denoted C or D) can be built inductively
from atomic concepts (A), roles (R), top concept �, bottom concept ⊥, named
individuals (oi) and simple roles (S) according to the following syntax rule (where
n,m are natural numbers, n ≥ 0,m > 0, αi ∈ [0, 1]):

C,D → A | � | ⊥ | C �D | C �D | ¬C | ∀R.C | ∃R.C |
{α1/o1, . . . , αm/om} | ≥ m S | ≤ n S

Note that the only difference is the presence of fuzzy nominals.
If RA is an atomic role, complex roles are built using this syntax rule:

R→ RA | R−

We do not impose unique name assumption, i.e. two nominals might refer to
the same individual.

A fuzzy Knowledge Base (fKB) comprises two parts: the intensional knowl-
edge, i.e. general knowledge about the application domain (a fuzzy Terminolog-
ical Box or TBox T and a fuzzy Role Box or RBox R), and the extensional
knowledge, i.e. particular knowledge about some specific situation (a fuzzy As-
sertional Box or ABox A with statements about individuals).

A fuzzy ABox A consists of a finite set of fuzzy assertions, which can be indi-
vidual assertions or constraints on the truth value of a concept or role assertion.
An individual assertion is either an inequality of individuals 〈a �= b〉 or an equal-
ity of individuals 〈a = b〉 (they are necessary since we do not impose unique
name assumption). Note that individual assertions are considered to be crisp,
since the equality and inequality of individuals has always been considered crisp
in the fuzzy DL literature [18].

A constraint on the truth value of a concept or role assertion is an expression
of the form 〈Ψ ≥ α〉, 〈Ψ > β〉, 〈Φ ≤ β〉, 〈Φ < α〉, where Ψ is an assertion of
the form a : C or (a, b) : R, Φ is an assertion of the form a : C, α ∈ (0, 1] and
β ∈ [0, 1). Note that fuzzy assertions of the form 〈(a, b) : R ≤ β〉, 〈(a, b) : R < α〉
are not allowed. In fact, as we will see in Section 4, if these role assertions were
allowed we would need some additional role constructs (role conjunction, role
disjunction, bottom role and top role) which are not allowed in crisp SHOIN .

A fuzzy TBox T consists of a finite set of fuzzy terminological axioms. A fuzzy
terminological axiom is either a fuzzy GCI or a concept definition. A fuzzy GCI
constrains the truth value of a GCI i.e. it is an expression of the form 〈Ω ≥ α〉,
〈Ω > β〉, 〈Ω ≤ β〉 or 〈Ω < α〉, where Ω is a GCI of the form C � D, α ∈ (0, 1]
and β ∈ [0, 1). We think that concept definitions should not be fuzzified, so
C ≡ D is an abbreviation of the pair of axioms 〈C � D ≥ 1〉 and 〈D � C ≥ 1〉.

A fuzzy RBox R consists of a finite set of fuzzy role axioms. A fuzzy role
axiom is either a fuzzy role inclusion R � R′, a fuzzy role definition R ≡ R′ (a
short hand for both R � R′ and R′ � R) or a transitive role axiom trans(R).

Semantics. A fuzzy interpretation I is a pair (ΔI , ·I) consisting of a non empty
set ΔI (the interpretation domain) and a fuzzy interpretation function·I
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mapping every individual onto an element of ΔI , every concept C onto a func-
tion CI : ΔI → [0, 1] and every role R onto a function RI : ΔI ×ΔI → [0, 1].
CI (resp. RI) is interpreted as the membership degree function of the fuzzy
concept C (resp. fuzzy rol R) w.r.t. I. CI(a) (resp. RI(a, b)) gives us the degree
of being the individual a an element of the fuzzy concept C (resp. the degree
of being (a, b) an element of the fuzzy role R) under the fuzzy interpretation I.
The fuzzy interpretation function is extended to complex concepts and roles as:

�I(x) = 1
⊥I(x) = 0

(C �D)I(x) = CI(x)⊗DI(x)
(C �D)I(x) = CI(x)⊕DI(x)

(¬C)I(x) = *CI(x)
(∀R.C)I(x) = infy∈ΔI{RI(x, y) ⇒ CI(y)}
(∃R.C)I(x) = supy∈ΔI{RI(x, y)⊗ CI(y)}

{α1/o1, . . . , αm/om}(x) = supi | x=oI
i
αi

(≥ m S)I(x) = supy1,...,ym∈ΔI ⊗m
i=1S

I(x, yi)
⊗

(⊗j<k{yj �= yk})
(≤ n S)I(x) = infy1,...,yn+1∈ΔI ⊗n+1

i=1 S
I(x, yi)⇒ (⊕j<k{yj = yk})

(R−)I(x, y) = RI(y, x)

We will shortly justify our decision of fuzzifying the nominal construct by
showing an example.

Example 1. Suppose we want to represent the concept of country where German
is a widely spoken language. Previous approaches allow to represent a fuzzy
disjunction of nominals C ≡ {germany} � {austria} � {switzerland}. Since
the semantics of the nominal construct is crisp ({oi}I(x) = 1 if x = oIi or 0
otherwise), it forces switzerland to fully belong to the concept or not, despite
of German-speaking community of Switzerland represents only about two thirds
of the total population of the country. On the contrary, following our approach
we are able to define C ≡ {1/germany, 1/austria, 0.67/switzerland}.

Let us comment the semantics of the fuzzy nominals {α1/o1, . . . , αm/om}I(x)
= supi | x=oI

i
αi. Since we are not imposing unique name assumption, it is pos-

sible that x = oIi for more than one oi. Then, we take the supremum over the
membership degrees αi associated to these named individuals oi. In the previous
example, if x can be interpreted as germany and switzerland, we take the supre-
mum (maximum) over 1 and 0.67. And, of course, if ∀i ∈ {1, . . . ,m}, x �= oIi ,
then {α1/o1, . . . , αm/om}I(x) = sup ∅ = 0.

Note that previous approaches consider nominals to be crisp singletons argu-
ing that they do not represent real-life concepts [18,9]. In these approaches it is
possible to represent a fuzzy disjunction of crisp singletons. However, we con-
sider fuzzy nominals as proper fuzzy sets, which do represent real-life concepts.
It is easy to see that our definition generalizes the previous definition for the
nominal construct, as {o1} � · · · � {om} is equivalent to {1/o1, . . . , 1/om}.
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A fuzzy interpretation I satisfies (is a model of):

– A fuzzy assertion 〈a : C ≥ α〉 iff CI(aI) ≥ α. Similar definitions can be
given for > β, ≤ β and < α.

– A fuzzy assertion 〈(a, b) : R ≥ α〉 iff RI(aI , bI) ≥ α. Similar definitions can
be given for > β, ≤ β and < α.

– An assertion 〈a �= b〉 iff aI �= bI (resp. 〈a = b〉 iff aI = bI).
– A fuzzy GCI 〈C � D ≥ α〉 iff infx∈ΔI{CI(x) ⇒ DI(x)} ≥ α. Similar

definitions can be given for > β, ≤ β and < α.
– A concept definition C ≡ D iff CI = DI .
– A role inclusion axiom R � R′ iff iff ∀x, y ∈ ΔI , RI(x, y) ≤ (R′)I(x, y).
– A role definition axiom R ≡ R′ iff RI = R′I .
– An axiom trans(R) iff ∀x, y ∈ ΔI , RI(x, y) ≥ supz∈ΔI RI(x, z)⊗RI(z, y).
– A fKB 〈A, T ,R〉 iff it satisfies each element in A, T and R.

The definition of fuzzy GCIs allows concept subsumption to hold to a certain
degree in [0, 1]. This does not hold for role inclusion axioms, which leads to
a certain asymmetry in the expressivity. While this is not too elegant, it is
a restriction imposed by the choice of the implication function, which would
require the subjacent DL to have negated roles and role disjunction. However,
for a higher practical utility, we have preferred to restrict ourselves to SHOIN ,
closer to the DL underlying OWL DL.

Similarly as in the crisp case, in fuzzy DLs most reasoning services are re-
ducible to fKB satisfiability [22], so here in after we will only consider this task.

Some logical properties. The following lemma shows that our definition of fuzzy
SHOIN is a sound extension of crisp SHOIN :

Lemma 1. Fuzzy interpretations coincide with crisp interpretations if we re-
strict to the membership degrees of 0 and 1 [9].

Here in after we will concentrate on fKDSHOIN , restricting ourselves to the
Zadeh family of fuzzy operators. For instance, in the semantics of the at-least
unqualified number restriction, ⊗i<j{yi �= yj} means that there must exist n
distinct elements of the domain. The choice of the t-norm and the t-conorm will
be justified in Section 4.

On the other hand, in fuzzy DLs it is very common to use the KD implication
in the semantics of universal quantification, so for the sake of coherence we have
chosen to use it in the semantics of fuzzy GCIs as well.

Similarly as in [23], fKDSHOIN allows some sort of modus ponens over
concepts and roles, even with the new semantics of fuzzy GCIs:

Lemma 2. For α, β, γ ∈ [0, 1], � ∈ {≥, >} and α +� 1−β (+≥ = >,+> = ≥),
the following properties are verified:

(i) 〈a : C � α〉 and 〈C � D � β〉 imply 〈a : D � β〉.
(ii) 〈(a, b) : R � γ〉 and 〈R � R′〉 imply 〈(a, b) : R′ � γ〉.
(iii) 〈(a, b) : R � α〉 and 〈a : ∀R.C � β〉 imply 〈b : C � β〉.
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Unfortunately, the use of the KD implication in the semantics of fuzzy GCIs
brings about two counter-intuitive effects. Firstly, a concept does not fully sub-
sume itself i.e. C � C ⇒ infa∈ΔI max{1− CI(a), CI(a)} ≥ 0.5. Secondly, crisp
concept subsumption forces fuzzy concepts to be crisp i.e. 〈C � D ≥ 1〉 ⇒
infa∈ΔI max{1−CI(a), DI(a)} ≥ 1 which is true iff for each element of the do-
main DI(a) = 1 or 1 − CI(a) ≥ 1 ⇒ CI(a) = 0. These problems point out the
need of further investigation involving alternative fuzzy operators. For example,
using an R-implication would fix the first problem; while using �Lukasiewicz or
Gödel implication would fix the second one.

4 A Crisp Representation for Fuzzy SHOIN
In this section we show how to reduce a fKDSHOIN fKB into a crisp Knowledge
Base (KB). The procedure preserves reasoning, so existing SHOIN reasoners
could be applied to the resulting KB. [13] presents a reasoning preserving trans-
formation for fKDALCH into crisp ALCH: firstly, some new atomic concepts
and roles are defined, then some new axioms are added to preserve the semantics
of the fKB and finally the ABox, the TBox and the RBox are mapped separately.
Our reduction extends this work to fKDSHOIN . A slight difference is that our
mapping of the TBox can introduce some new assertions about new individuals
(not appearing in the initial fKB).

New Elements. Let AfK and RfK be the set of atomic concepts and atomic
roles occurring in a fKB fK = 〈A, T ,R〉. In [13] it is shown that the set of the
degrees which must be considered for any reasoning task is defined as NfK =
XfK ∪ {1− α | α ∈ XfK}, where XfK is defined as follows:

XfK = {0, 0.5, 1} ∪ {α | 〈Ψ ≥ α〉 ∈ A} ∪ {β | 〈Ψ > β〉 ∈ A}
∪ {1− β | 〈Φ ≤ β〉 ∈ A} ∪ {1− α | 〈Φ < α〉 ∈ A}
∪ {α | 〈Ω ≥ α〉 ∈ T } ∪ {β | 〈Ω > β〉 ∈ T }
∪ {1− β | 〈Ω ≤ β〉 ∈ T } ∪ {1− α | 〈Ω < α〉 ∈ T }

This also holds in fKDSHOIN , because the fuzzy operators do not intro-
duce new degrees, but note that it is no longer true when other fuzzy operators
are considered. For example, the combination of the degrees 0.5 and 0.3 using
product t-norm introduces the new degree 0.5 · 0.3 = 0.15. In that case, the
process may calculate all possible degrees in [0, 1] with a given precision, but
further investigation is required. Without loss of generality, it can be assumed
that NfK = {γ1, . . . , γ|NfK |} and γi < γi+1, 1 ≤ i ≤ |NfK | − 1.

Now, for each α, β ∈ NfK , α ∈ (0, 1], β ∈ [0, 1), for each relation ≥, >,≤
, <, for each A ∈ AfK and for each R ∈ RfK , four new atomic concepts
A≥α,A>β ,A≤β ,A<α and two new atomic roles R≥α, R>β are introduced. A≥α

represents the crisp set of individuals which are instance of A with degree higher
or equal than α i.e the α-cut of A. The other new elements are defined in a
similar way. Neither A<0,A>1, R>1 are considered (they are always empty sets)
nor A≤1,A≥0, R≥0 (they are always equivalent to the top concept).
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The semantics of these newly introduced atomic concepts and roles is pre-
served by some terminological and role axioms. For each 1 ≤ i ≤ |NfK | − 1, for
each 2 ≤ j ≤ |NfK |, for each A ∈ AfK and for each R ∈ RfK , T (NfK) is the
smallest terminology containing the following axioms:

A≥γi+1 � A>γi A>γi � A≥γi

A<γj � A≤γj A≤γi � A<γi+1

A≥γj �A<γj � ⊥ A>γi �A≤γi � ⊥
� � A≥γj �A<γj � � A>γi �A≤γi

Similarly, R(NfK) is the smallest terminology containing these two axioms:

R≥γi+1 � R>γi R>γi � R≥γi

It is easy to see that allowing expressions of the type 〈(a, b) : R ≤ β〉, 〈(a, b) :
R < α〉 would need additional role constructs (role conjunction, role disjunction,
bottom role and top role) which are not part of SHOIN .

Mapping the ABox. Let ρ be a mapping, inductively defined on the structure
of concepts and roles as shown in Table 2. For instance, given a fuzzy concept
C, ρ(C,≥ α) is a crisp set containing all the elements which belong to C with a
degree greater or equal than α (the other cases are similar).

Fuzzy assertions are mapped into SHOIN assertions using a mapping σ. Let
γ ∈ NfK , �∈ {≥, <,≤, >},� ∈ {≥, <}, σ(A) = {σ(Φ) | Φ ∈ A}, where σ(Φ) is
defined as in the following table:

σ(〈a : C � γ〉) = {a : ρ(C, � γ)}
σ(〈(a, b) : R � γ〉) = {(a, b) : ρ(R,�γ)}

σ(〈a �= b〉) = {a �= b}
σ(〈a = b〉) = {a = b}

Example 2. Let us consider the reduction of an assertion of the form 〈a : ∀R.C ≥
α〉. If it is satisfied, there exists a fuzzy interpretation I such that infy∈ΔI

max{1−RI(aI , y), CI(y)} ≥ α. For an arbitrary y, RI(aI , y) ≤ 1−α or CI(y) ≥
α must hold. Hence, if RI(aI , y) ≤ 1−α is not satisfied (i.e., RI(aI , y) > 1−α),
then we deduce that CI(y) ≥ α, which is the semantics of the crisp assertion
a : ∀ρ(R,> 1− α).ρ(C,≥ α).

Mapping the TBox. fKDSHOIN fuzzy terminological axioms to either (crisp)
terminological axioms (for the cases ≥ or >) or assertions (for the cases ≤ and
<). In the former case, we redefine κ(fK, T ) as κ(fK, T ) =

⋃
Ω∈T κ(Ω), where

Ω = {〈C � D{≥, >}γ〉} and κ(Ω) is defined as:

κ(〈C � D ≥ α〉) = {ρ(C,> 1− α) � ρ(D,≥ α)}
κ(〈C � D > β〉) = {ρ(C,≥ 1− β) � ρ(D,> β)}
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Table 2. Mapping ρ

x y ρ(x, y)
A ≥ γ A≥γ if γ 
= 0, � otherwise
A > γ A>γ , if γ 
= 1, ⊥ otherwise
A ≤ γ A≤γ if γ 
= 0, � otherwise
A < γ A<γ , if γ 
= 1, ⊥ otherwise
R ≥ γ R≥γ if γ 
= 0, � otherwise
R > γ R>γ , if γ 
= 1, ⊥ otherwise
� ≥ γ �
� > γ � if γ 
= 1, ⊥ otherwise
� ≤ γ � if γ = 1, ⊥ otherwise
� < γ ⊥
⊥ ≥ γ � if γ = 0, ⊥ otherwise
⊥ > γ ⊥
⊥ ≤ γ �
⊥ < γ � if γ 
= 0, ⊥ otherwise

C � D {≥, >} γ ρ(C, {≥, >} γ) � ρ(D, {≥, >} γ)
C � D {≤, <} γ ρ(C, {≤, <} γ) � ρ(D, {≤, <} γ)
C � D {≥, >} γ ρ(C, {≥, >} γ) � ρ(D, {≥, >} γ)
C � D {≤, <} γ ρ(C, {≤, <} γ � ρ(D, {≤, <} γ)

¬C {≥, >} γ ρ(C, {≤, <} 1 − γ)
¬C {≤, <} γ ρ(C, {≥, >} 1 − γ)

∃R.C {≥, >} γ ∃ρ(R, {≥, >} γ).ρ(C, {≥, >} γ)
∃R.C {≤, <} γ ∀ρ(R, {>, ≥} γ).ρ(C, {≤, <} γ)
∀R.C {≥, >} γ ∀ρ(R,{>, ≥} 1 − γ).ρ(C, {≥, >} γ)
∀R.C {≤, <} γ ∃ρ(R,{≥, >} 1 − γ).ρ(C, {≤, <} γ)

{{α1/o1, . . . , αm/om}} �� γ {oi | αi �� γ, 1 ≤ i ≤ m}
≥ m S {≥, >} γ ≥ m ρ(S, {≥, >} γ)
≥ m S {≤, <} γ ≤ m−1 ρ(S, {>, ≥} γ)
≤ n S {≥, >} γ ≤ n ρ(S, {>, ≥} 1 − γ)
≤ n S {≤, <} γ ≥ n+1 ρ(S, {≥, >} 1 − γ)
R− �� γ ρ(R,�� γ)−

Example 3. Consider the reduction of a GCI 〈C � D ≥ α〉. If it is satisfied,
infx∈ΔI CI(x) ⇒ DI(x) ≥ α. As this is true for the infimum, an arbitrary x ∈
ΔI must satisfy CI(x) ⇒ DI(x) ≥ α. From the semantics of the KD implication,
this is true if max{1 − CI(x), DI(x)} ≥ α, which is true if 1 − CI(x) ≥ α ≡
CI(x) ≤ 1−α or DI(x) ≥ α. Hence, if CI(x) > 1−α we deduce that DI(x) ≥ α,
which is the semantics of the crisp GCI ρ(C,> 1− α) � ρ(D,≥ α).

In the latter case, new assertions are necessary since negated terminological
axioms are not part of crisp SHOIN . A new function A(T ) adds these new
assertions to the ABox. A(T ) =

⋃
Ξ∈T A(Ξ), where Ξ = {〈C � D{≤, <}γ〉}

and A(Ξ) is defined as follows (where x is a new individual):

A(〈C � D ≤ β〉) = {x : ρ(C,≥ 1− β) � ρ(D,≤ β)}
A(〈C � D < α〉) = {x : ρ(C,> 1− α) � ρ(D,< α)}
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Example 4. Consider a GCI 〈C � D ≤ β〉. If it is satisfied, infx∈ΔI CI(x) ⇒
DI(x) ≤ β. As this is true for the infimum, there exists some x ∈ ΔI which
satisfies CI(x) ⇒ DI(x) ≤ β. This is true if max{1−CI(x), DI(x)} ≤ β, which
is true if 1 − CI(x) ≤ β ≡ CI(x) ≥ 1 − β and DI(x) ≤ β. Hence, for a new
individual x, the crisp assertion x : ρ(C,≥ 1− β) � ρ(D,≤ β) holds.

Mapping the RBox. Role axioms are reduced using a function κ(fK,R) =⋃
Ω∈R κ(fK,Ω), where κ(fK,Ω) is defined as:

κ(fK,R � R′) =
⋃

γ∈NfK ,�∈{≥,>}{ρ(R,�γ) � ρ(R′,�γ)}
κ(fK, trans(R)) =

⋃
γ∈NfK ,�∈{≥,>}{trans(ρ(R,�γ))}

Discussion. A fKB fK = 〈A, T ,R〉 is reduced into a KB K(fK) = 〈σ(A) ∪
A(T ), T (NfK) ∪ κ(fK, T ), R(NfK) ∪ κ(fK,R)〉. The following important the-
orem shows that the reduction to a crisp DL preserves reasoning:

Theorem 1. A fKDSHOIN fKB fK is satisfiable iff K(fK) is satisfiable.

The complexity of our procedure is quadratic: the ABox is linear while the TBox
and the RBox are quadratic. It is interesting to note that, while [13] reduces a
fuzzy terminological axiom into a set of crisp terminological axioms, our se-
mantics for fuzzy GCIs allows to reduce each axiom into either an axiom or an
assertion. This reduction in the size of the TBox (although it is still quadratic)
is very interesting since reasoning with GCIs is a source of computational com-
plexity [24].

Example 5. To illustrate the reduction, let us present an example concerning
interchange of medical knowledge. A known issue in health-care support is that
consensus in the used vocabulary is required to achieve understanding among
different physicians and systems. Medical taxonomies are an effort in this direc-
tion, as they provide a well-defined catalogue of codes to label diseases univocally.
Two examples are ICD (for general medicine) and DSM-IV (for mental disor-
ders), which identify prototypical clinical medical profiles with a name and a
code. Medical taxonomies have been developed to be essentially crisp, so they
can be transcribed almost directly to OWL. However, vagueness could be in-
troduced at different levels of the taxonomy so that richer semantics would be
represented:

– In order to associate diagnostic codes to patient electronic records, fuzzy as-
sertions would be useful, allowing the knowledge base to contain statements
such as “Patient001’s Serotonin Level is quite low” or “Patient001’s disease
is likely to be an Obsessive-Compulsive Disorder”.

– In the current version of DSM-IV, “Substance-Induced Anxiety Disorder”
is defined only as a specialization of “Substance-Related Disorder”. Using a
fuzzy GCI, we may say that a concept subsumes another to some degree,
being possible to assert that a “Substance-Induced Anxiety Disorder can be
partially considered a Substance-Related Disorder”, as well as an “Anxiety
Disorder”.



186 F. Bobillo, M. Delgado, and J. Gómez-Romero

Hence, assume a fuzzy fKB representing the following knowledge:

– 〈patient001 : ∃hasSerotoninLevel.HighLevel ≤ 0.25〉
– 〈patient001 : ∃hasDisease.ObsessiveCompulsiveDisorder ≥ 0.75〉
– 〈SubstanceInducedAnxietyDisorder � AnxietyDisorder ≥ 0.75〉

Firstly, we compute the number of degrees of truth to be considered: XfK =
{0, 0.5, 1, 0.75}, so NfK = {0, 0.25, 0.5, 0.75, 1}.

Next, we create some new elements and some axioms preserving their seman-
tics. The new axioms in R(NfK), due to the new atomic concepts are:

HighLevel≥1 � HighLevel>0.75, AnxietyDisorder≥1 � AnxietyDisorder>0.75,
HighLevel>0.75 � HighLevel≥0.75, AnxietyDisorder>0.75 � AnxietyDisorder≥0.75,
HighLevel≥0.75 � HighLevel>0.5, AnxietyDisorder≥0.75 � AnxietyDisorder>0.5,
HighLevel>0.5 � HighLevel≥0.5, AnxietyDisorder>0.5 � AnxietyDisorder≥0.5,
HighLevel≥0.5 � HighLevel>0.25, AnxietyDisorder≥0.5 � AnxietyDisorder>0.25,
HighLevel>0.25 � HighLevel≥0.25, AnxietyDisorder>0.25 � AnxietyDisorder≥0.25,
HighLevel≥0.25 � HighLevel>0 AnxietyDisorder≥0.25 � AnxietyDisorder>0

(and analogously for ObsessiveCompulsiveDisorder and SubstanceInduced
AnxietyDisorder).

Similarly , R(NfK) contains the following axioms:

hasSerotoninLevel≥1 � hasSerotoninLevel>0.75, hasDisease≥1 � hasDisease>0.75,
hasSerotoninLevel>0.75 � hasSerotoninLevel≥0.75, hasDisease>0.75 � hasDisease≥0.75,
hasSerotoninLevel≥0.75 � hasSerotoninLevel>0.5, hasDisease≥0.75 � hasDisease>0.5,
hasSerotoninLevel>0.5 � hasSerotoninLevel≥0.5, hasDisease>0.5 � hasDisease≥0.5,
hasSerotoninLevel≥0.5 � hasSerotoninLevel>0.25, hasDisease≥0.5 � hasDisease>0.25,
hasSerotoninLevel>0.25 � hasSerotoninLevel≥0.25, hasDisease>0.25 � hasDisease≥0.25,
hasSerotoninLevel≥0.25 � hasSerotoninLevel>0 hasDisease≥0.25 � hasDisease>0

Finally, we map the axioms in the fKB:

– κ(〈patient001 : ∃hasSerotoninLevel.HighLevel ≤ 0.25〉) =
patient001 : ∀hasSerotoninLevel>0.25.HighLevel≤0.25

– κ(〈patient001 : ∃hasDisease.ObsessiveCompulsiveDisorder ≥ 0.75〉) =
patient001 : ∃hasDisease≥0.75.ObsessiveCompulsiveDisorder≥0.75

– κ(〈SubstanceInducedAnxietyDisorder � AnxietyDisorder) ≥ 0.75) =
SubstanceInducedAnxietyDisorder>0.25 � AnxietyDisorder≥0.75

5 Conclusions and Future Work

This paper has presented an alternative approach to achieve fuzzy ontologies,
reusing currently existing crisp ontology languages and reasoners. In particu-
lar, after having presented a sound fuzzy extension of SHOIN including fuzzy
nominals (enabling to define fuzzy sets extensively) and fuzzy GCIs (allowing
to constrain the truth value of a GCI), we have presented a reasoning preserv-
ing procedure (quadratic in complexity) to reduce a fKDSHOIN fKB into a
crisp one. The semantics of fuzzy GCIs reduces the size of the resulting TBox
w.r.t. [13], but imposes some counter-intuitive effects.
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The main direction for future work is to perform an empirical evaluation
in order to validate the theoretical results. From a theoretical point view, we
are considering different fuzzy operators to avoid the counter-intuitive effects
of the KD implication. We also plan to include a crisp representation for fuzzy
datatypes. Since OWL does not currently allow to define customised datatypes,
it seems interesting to consider OWL Eu [25], a promising extension of OWL
supporting them. Another interesting direction for future research is to consider
the more expressive DL SROIQ [26] (providing some additional role constructs
such as disjoint roles and negated role assertions) and which is the subjacent DL
of OWL 1.1 [27], an extension of OWL which has been recently proposed. The
additional expressivity would allow to overcome the asymmetry in the definitions
of fuzzy concept and role inclusion axioms.
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Abstract. Classical ontologies are not suitable to represent imprecise nor
uncertain pieces of information. Fuzzy Description Logics were born to
manage the former type of knowledge, but they require an appropriate
fuzzy language to be agreed and an important number of available
resources to be adapted. This paper faces these problems by presenting a
reasoning preserving procedure to obtain a crisp representation for a fuzzy
extension of the logic SROIQ which uses Gödel implication in the seman-
tics of fuzzy concept and role subsumption.This reduction allows crisp rep-
resentation languages as well as currently available reasoners to be reused.
Our procedure is optimized with respect to the related work, since it re-
duces the size of the resulting knowledge base, and is implemented in De-

Lorean, the first reasoner that supports fuzzy OWL DL.

1 Introduction

Description Logics (DLs for short) [1] are a family of logics for representing
structured knowledge. Each logic is denoted by using a string of capital letters
which identify the constructors of the logic and therefore its complexity. DLs have
proved to be very useful as ontology languages. For instance, SROIQ(D) [2] is
the subjacent DL of OWL 1.1 [3], a recent extension of the standard language
OWL which is its most likely immediate successor.

Nevertheless, it has been widely pointed out that classical ontologies are not
appropriate to deal with imprecise and vague knowledge, which is inherent to
several real-world domains. Since fuzzy logic is a suitable formalism to handle
these types of knowledge, several fuzzy extensions of DLs can be found in the
literature (see [4] for an overview).

Defining a fuzzy DL brings about that crisp standard languages are no longer
appropriate, new fuzzy languages need to be used, and hence the large number
of resources available need to be adapted to the new framework, requiring an
important effort. An additional problem is that reasoning within (crisp) expres-
sive DLs has a very high worst-case complexity (e.g. NExpTime in SHOIN )
and, consequently, there exists a significant gap between the design of a decision
procedure and the achievement of a practical implementation [5].

An alternative is to represent fuzzy DLs using crisp DLs and to reduce reason-
ing within fuzzy DLs to reasoning within crisp ones. This has several advantages:

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNAI 5327, pp. 189–206, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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– There is no need to agree on a new standard fuzzy language, but every
developer could use its own language expressing fuzzy SROIQ, as long as
he implements the reduction that we describe.

– We can continue using standard languages with a lot of resources available.
Although it would be desirable to assist the user in tasks such as fuzzy ontol-
ogy editing, reducing the fuzzy ontology into a crisp one or fuzzy querying,
once the reduction is performed, we may use the resources available for the
crisp language.

– We may continue using existing crisp reasoners. We do not claim that reason-
ing will be more efficient, but this approach offers a workaround to support
early reasoning in future fuzzy languages. In fact, nowadays there is no rea-
soner fully supporting a fuzzy extension of OWL 1.1.

Under this approach an immediate practical application of fuzzy ontologies is
feasible, because of its tight relation with already existing languages and tools
which have proved their validity.

Although there has been a relatively significant amount of works in extending
DLs with fuzzy set theory ( [4] is a good survey), the representation of them by
using crisp description logics has not received such attention. The first efforts in
this direction are due to U. Straccia, who considered fuzzy ALCH [6] and fuzzy
ALC with truth values taken from an uncertainty lattice [7]. F. Bobillo et al. ex-
tended Straccia’s work to SHOIN , including fuzzy nominals and fuzzy General
Concept Inclusions (GCIs) with a semantics given by Kleene-Dienes implica-
tion [8]. Finally, G. Stoilos et al. extended this work to a subset of SROIN [9].

The contributions of this work can be summarized as follows:

– We provide a full representation of fuzzy SROIQ, differently from [9] which
do not show how to reduce qualified cardinality restrictions, local reflex-
ivity concepts in expressions of the form ρ(∃S.Self,�γ) nor negative role
assertions.

– [6,9] force GCIs and Role Inclusion Axioms (RIAs) to be either true or false,
but we will allow them to be verified up to some degree by using Gödel
implication in the semantics.

– We improve one of their starting points (the reduction presented in [6]) by
reducing the number of new atomic elements and their corresponding axioms.

– We show how to optimize some important cases of GCIs, as well as irreflexive
role axioms.

– We present DeLorean, our implementation of the reduction and the first
implemented reasoner supporting fuzzy SHOIN .

The remainder is organized as follows. Section 2 recalls some preliminaries on
fuzzy set theory. Then, Section 3 describes a fuzzy extension of SROIQ and dis-
cusses some logical properties. Section 4 depicts a reduction into crisp SROIQ,
whereas Section 5 presents our implementation of the procedure. Finally, in Sec-
tion 6 we set out some conclusions and ideas for future work.
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2 Fuzzy Set Theory

Fuzzy set theory and fuzzy logic were proposed by L. Zadeh [10] to manage
imprecise and vague knowledge. While in classical set theory elements either
belong to a set or not, in fuzzy set theory elements can belong to a set to
some degree. More formally, let X be a set of elements called the reference
set. A fuzzy subset A of X is defined by a membership function μA(x), or
simply A(x), which assigns any x ∈ X to a value in the interval of real numbers
between 0 and 1. As in the classical case, 0 means no-membership and 1 full
membership, but now a value between 0 and 1 represents the extent to which
x can be considered as an element of X . If the reference set is finite (X =
{x1, . . . , xn}), the membership function can be expressed using the notation
A = {μA(x1)/x1, . . . μA(xn)/xn}.

For every α ∈ [0, 1], the α-cut of a fuzzy set A is defined as the (crisp) set
such that its elements belong to A with degree at least α, i.e. {x | μA(x) ≥ α}.
Similarly, the strict α-cut is defined as {x | μA(x) > α}.

All crisp set operations are extended to fuzzy sets. The intersection, union,
complement and implication set operations are performed by a t-norm function
⊗, a t-conorm function ⊕, a negation function * and an implication function
⇒, respectively. For a complete definition of these functions as well as their
properties, we refer the reader to [11,12].

Two types of fuzzy implications are commonly used. The first class is S-
implications, which extend the crisp proposition a → b = ¬a ∨ b to the fuzzy
case and are defined by the operation α ⇒ β = (*α) ⊕ β. The second class is
R-implications (residuum-based implications), which are defined as α ⇒ β =
sup{γ ∈ [0, 1] | (α ⊗ γ) ≤ β} and can be used to define a fuzzy complement as
*a = a ⇒ 0. They always verify that α⇒ β = 1 iff α ≤ β. Product and Gödel
implications are R-implications, the implication of the Zadeh family, which is
called Kleene-Dienes (KD), is an S-implication and the �Lukasiewicz implication
belongs to both types.

A fuzzy implication specifies a family of fuzzy operators. If it is an S-
implication this notation also specifies the fuzzy complement and t-conorm, while
if it is an R-implication then we also know the t-norm and the fuzzy complement.
The missing operators are usually defined by using duality of the t-norms and
the t-conorms. Table 1 shows the most important families of fuzzy operators:
Zadeh, �Lukasiewicz, Gödel and Product.

Table 1. Popular families of fuzzy operators

Family t-norm α ⊗ β t-conorm α ⊕ β negation �α implication α ⇒ β

Zadeh min{α, β} max{α, β} 1 − α max{1 − α, β}
�Lukasiewicz max{α + β − 1, 0} min{α + β, 1} 1 − α min{1 − α + β, 1}
Gödel min{α, β} max{α, β}

{
1, α = 0
0, α > 0

{
1 α ≤ β
β, α > β

Product α · β α + β − α · β

{
1, α = 0
0, α > 0

{
1 α ≤ β
β/α, α > β
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3 Fuzzy SROIQ
In this section we define fSROIQ, which extend SROIQ to the fuzzy case by
letting (i) concepts denote fuzzy sets of individuals and (ii) roles denote fuzzy
binary relations. Axioms are also extended to the fuzzy case and some of them
hold to a degree.

The following definition extends [13,9] with fuzzy nominals [8] and the use of
Gödel implication in the semantics of GCIs and RIAs.

In the rest of the paper we will assume � ∈ {≥, <,≤, >}, α ∈ (0, 1], β ∈ [0, 1)
and γ ∈ [0, 1]. The symmetric �− and the negation ¬ � of an operator � are
defined as:

� �− ¬ �
≥ ≤ <
> < ≤
≤ ≥ >
< > ≥

Syntax. fSROIQ assumes three alphabets of symbols, for concepts, roles and
individuals.

Complex roles (denoted R) are built from atomic roles (RA) and the universal
role (U) as follows:

R→ RA | (atomic role)
R− | (inverse role)
U (universal role)

Let n,m be natural numbers (n ≥ 0,m > 0). The concepts (denoted C or D)
of the language can be built inductively from atomic concepts (A), top concept
�, bottom concept ⊥, named individuals (oi), simple roles (S, which will be
defined below), as follows:

C,D → A | (atomic concept)
� | (top concept)
⊥ | (bottom concept)

C �D | (concept conjunction)
C �D | (concept disjunction)
¬C | (concept negation)

∀R.C | (universal quantification)
∃R.C | (existential quantification)

{α1/o1, . . . , αm/om} | (fuzzy nominals)
(≥ m S.C) | (at-least qualified number restriction)
(≤ n S.C) | (at-most qualified number restriction)
∃S.Self (local reflexivity)

The only difference with the syntax of the crisp case are fuzzy nominals [8].
A fuzzy Knowledge Base (fKB) comprises a fuzzy ABox A , a fuzzy Termi-

nological Box (TBox) T and a fuzzy RBox R.
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An ABox consists of a finite set of fuzzy assertions about individuals:

– concept assertions 〈a :C ≥ α〉, 〈a :C > β〉, 〈a :C ≤ β〉 or 〈a :C < α〉, meaning
that individual a is an instance of C with some degree,

– role assertions 〈(a, b) :R ≥ α〉, 〈(a, b) :R > β〉, 〈(a, b) :R ≤ β〉 or 〈(a, b) :R <
α〉, meaning that (a, b) is an instance of R with some degree,

– inequality assertions 〈a �= b〉,
– equality assertions 〈a = b〉.

A fuzzy TBox consists of fuzzy GCIs, which constrain the truth value of a GCI
i.e., they are expressions of the form 〈Ω ≥ α〉 or 〈Ω > β〉, where Ω = C � D.

Let w be a role chain (a finite string of roles not including the universal role
U). An RBox consists of a finite set of role axioms:

– fuzzy role inclusion axioms (fuzzy RIAs) 〈w � R ≥ α〉 or 〈w � R > β〉 for a
role chain w = R1R2 . . . Rn (meaning that the role chain w is more specific
than R to some degree),

– transitive role axioms trans(R),
– disjoint role axioms dis(S1, S2),
– reflexive role axioms ref(R),
– irreflexive role axioms irr(S),
– symmetric role axioms sym(R),
– asymmetric role axioms asy(S).

A fuzzy axiom is positive (denoted 〈τ � α〉) if it is of the form 〈τ ≥ α〉 or
〈τ > β〉, and negative (denoted 〈τ � α〉) if it is of the form 〈τ ≤ β〉 or 〈τ < α〉.
〈τ = α〉 is equivalent to the pair of axioms 〈τ ≥ α〉 and 〈τ ≤ α〉. Of course, if
the degree is omitted τ is interpreted as 〈τ ≥ 1〉.

A strict partial order ≺ on a set A is an irreflexive and transitive relation on
A. A strict partial order ≺ on the set of roles is called a regular order if it also
satisfies R1 ≺ R2 ⇔ R−

2 ≺ R1, for all roles R1 and R2.
As in the crisp case, role axioms cannot contain U and every RIA should be

≺-regular for a regular order ≺. A RIA 〈w � R�γ〉 is ≺-regular if R = RA and:

– w = RR, or
– w = R−, or
– w = S1 . . . Sn and Si ≺ R for all i = 1, . . . , n, or
– w = RS1 . . . Sn and Si ≺ R for all i = 1, . . . , n, or
– w = S1 . . . SnR and Si ≺ R for all i = 1, . . . , n.

Simple roles are defined as follows:

– RA is simple if does not occur on the right side of a RIA,
– R− is simple if R is,
– if R occurs on the right side of a RIA, R is simple if, for each 〈w � R � γ〉,
w = S for a simple role S.

Notice that negative GCIs or RIAs are not allowed, because they correspond
to negated GCIs and RIAs respectively, which are not part of crisp SROIQ.
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Semantics. A fuzzy interpretation I is a pair (ΔI , ·I), where ΔI is a non empty
set (the interpretation domain) and ·I a fuzzy interpretation function mapping:

– every individual a onto an element aI of ΔI ,
– every concept C onto a function CI : ΔI → [0, 1],
– every role R onto a function RI : ΔI ×ΔI → [0, 1],

CI (resp. RI) denotes the membership function of the fuzzy concept C (resp.
fuzzy role R) w.r.t. I. CI(x) (resp. RI(x, y)) gives us the degree of being the
individual x an element of the fuzzy concept C (resp. the degree of being (x, y) an
element of the fuzzy role R) under the fuzzy interpretation I. We do not impose
unique name assumption, i.e., two nominals might refer to the same individual.

Given a t-norm ⊗, a t-conorm ⊕, a negation function * and an implication
function ⇒, the fuzzy interpretation function is extended to complex concepts
and roles as follows:

�I(x) = 1
⊥I(x) = 0

(C �D)I(x) = CI(x)⊗DI(x)
(C �D)I(x) = CI(x)⊕DI(x)

(¬C)I(x) = *CI(x)
(∀R.C)I(x) = infy∈ΔI{RI(x, y) ⇒ CI(y)}
(∃R.C)I(x) = supy∈ΔI{RI(x, y)⊗ CI(y)}

{α1/o1, . . . , αm/om}I(x) = supi | x=oI
i
αi

(≥ m S.C)I(x) = supy1,...,ym∈ΔI [(⊗n
i=1{SI(x, yi)⊗ CI(yi)})

⊗
(⊗j<k{yj �= yk})]

(≤ n S.C)I(x) = infy1,...,yn+1∈ΔI [(⊗n+1
i=1 {SI(x, yi)⊗ CI(yi)}) ⇒ (⊕j<k{yj = yk})]

(∃S.Self)I(x) = SI(x, x)
(R−)I(x, y) = RI(y, x)

UI(x, y) = 1

A fuzzy interpretation I satisfies (is a model of):

– 〈a :C � γ〉 iff CI(aI) � γ,
– 〈(a, b) :R � γ〉 iff RI(aI , bI) � γ,
– 〈a �= b〉 iff aI �= bI ,
– 〈a = b〉 iff aI = bI ,
– 〈C � D � γ〉 iff infx∈ΔI{CI(x) ⇒ DI(x)} � γ,
– 〈R1 . . . Rn � R � γ〉 iff supx1...xn+1∈ΔI

⊗
[RI

1 (x1, x2), . . . , RI
n(xn, xn+1)] ⇒

RI(x1, xn+1) � γ,
– trans(R) iff ∀x, y ∈ ΔI , RI(x, y) ≥ supz∈ΔI RI(x, z)⊗RI(z, y),
– dis(S1, S2) iff ∀x, y ∈ ΔI , SI

1 (x, y) = 0 or SI
2 (x, y) = 0,

– ref(R) iff ∀x ∈ ΔI , RI(x, x) = 1,
– irr(S) iff ∀x ∈ ΔI , SI(x, x) = 0,
– sym(R) iff ∀x, y ∈ ΔI , RI(x, y) = RI(y, x),
– asy(S) iff ∀x, y ∈ ΔI , if SI(x, y) > 0 then SI(y, x) = 0,
– a fKB iff it satisfies each element in A, T and R.

Notice that individual assertions are considered to be crisp, since the equality
and inequality of individuals has always been considered crisp in the fuzzy DL
literature [13,14].

In the rest of the paper we will only consider fKB satisfiability, since (as in
the crisp case) most inference problems can be reduced to it [15].
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Some logical properties. It can be easily shown that fSROIQ is a sound ex-
tension of crisp SROIQ, because fuzzy interpretations coincide with crisp in-
terpretations if we restrict the membership degrees to {0, 1}.

In the fuzzy DLs literature, the notation fiDL has been proposed [16], where i
is the fuzzy implication function considered. Here in after we will concentrate on
fKDSROIQ, restricting ourselves to the Zadeh family: minimum t-norm, max-
imum t-conorm, �Lukasiewicz negation and KD implication, with the exception
of GCIs and RIAs, where we will consider Gödel implication. This choice comes
from the fact that KD implication specifies a t-norm, a t-conorm and a negation
which make possible the reduction to a crisp KB, as we will see in Section 4
(other fuzzy operators are not suitable for a similar reduction).

However, the use of KD implication in the semantics of GCIs and RIAs brings
about two counter-intuitive effects: (i) in general concepts (and roles) do not fully
subsume themselves and (ii) crisp subsumption (holding to degree 1) forces some
fuzzy concepts and roles to be interpreted as crisp [8].

Another common semantics which could be considered is the one based on
Zadeh’s set inclusion (C � D iff ∀x ∈ ΔI , CI(x) ≤ DI(x)) as in [15,17], but it
forces the axioms to be either true or false. For example, under this semantics
it is not possible that concept Hotel subsumes concept Inn with degree 0.5.

Gödel implication solves the afore-mentioned problems and is suitable for a
classical representation as we will see in Section 4. Moreover, for GCIs of the
form 〈C � D ≥ 1〉, the semantics is equivalent to that of Zadeh’s set inclusion.

Although in general Gödel implication provides better logical properties than
KD, the latter allows for instance reasoning with modus tolens, since C � D ≡
¬D � ¬C. In the rest of this paper we will allow these two implication functions
in the semantics of the GCIs and RIAs of our language. We will write � to
denote the use of the Gödel implication in the semantics, and �KD to denote
the use of the KD implication. Our approach is similar to [18], which proposes
a representation language allowing three types of subsumption.

It would be possible to transform concept expressions into a semantically
equivalent Negation Normal Form (NNF), which is obtained by pushing in the
usual manner negation in front of atomic concepts, fuzzy nominals and local
reflexivity concepts.

Irreflexive, transitive and symmetric role axioms are syntactic sugar for every
R-implication (and consequently it can be assumed that they do not appear in
fKBs) due to the following equivalences:

– irr(S) ≡ 〈� � ¬∃S.Self ≥ 1〉,
– trans(R) ≡ 〈RR � R ≥ 1〉,
– sym(R) ≡ 〈R � R− ≥ 1〉.

4 An Optimized Crisp Representation for Fuzzy SROIQ
In this section we show how to reduce a fKDSROIQ fKB into a crisp KB,
similarly as in [6,8,9]. The procedure preserves reasoning, in such a way that
existing SROIQ reasoners could be applied to the resulting KB.
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Our reduction is optimized with respect to related work, in the sense that the
number of generated axioms, and hence the size of the resulting crisp KB, is
smaller here. The reduction is optimized but not necessarily optimal, since other
optimizations could still be possible.

The basic idea is to create some new crisp concepts and roles, representing
the α-cuts of the fuzzy concepts and relations, and to rely on them. Next, some
new axioms are added to preserve their semantics and finally every axiom in the
ABox, the TBox and the RBox is represented, independently from other axioms,
using these new crisp elements.

4.1 Adding (an Optimized Number of) New Elements

Let AfK and RfK be the set of atomic concepts and atomic roles occurring in
a fKB fK = 〈fKA, fKT , fKR〉. In [6] it is shown that the set of the degrees
which must be considered for any reasoning task is defined as NfK = XfK∪{1−
α | α ∈ XfK}, where XfK = {0, 0.5, 1} ∪ {γ | 〈τ � γ〉 ∈ fK}. This also holds
in fKDSROIQ, because the fuzzy operators do not introduce new degrees,
but note that it is no longer true when other fuzzy operators are considered.
For example, the combination of the degrees 0.5 and 0.3 using product t-norm
introduces the new degree 0.5 · 0.3 = 0.15. Without loss of generality, it can be
assumed that NfK = {γ1, . . . , γ|NfK |} and γi < γi+1, 1 ≤ i ≤ |NfK | − 1. It is
easy to see that γ1 = 0 and γ|NfK | = 1.

Example 1. In order to illustrate the reduction process, we will consider through-
out this section a simple fuzzy KB fK, including the fuzzy relation isCloseTo.
Closeness between individuals is usually a matter of degree, so we can expect
this relation to appear for instance in Semantic Web ontologies dealing with
geographical information. Assume that fK = {〈sym(isCloseTo)〉, 〈(h1, h2) :
isCloseTo ≤ 0.75〉}. Firstly, the symmetric role axiom 〈sym(isCloseTo)〉 is rep-
resented using a fuzzy RIA, so fK = {〈isCloseTo � isCloseTo− ≥ 1〉, 〈(h1, h2) :
isCloseTo ≤ 0.75〉}. Now, XfK = {0, 0.5, 1} ∪ {0.75}, so the set of degrees of
truth which has to be considered is NfK = {0, 0.25, 0.5, 0.75, 1}.
Now, for each α, β ∈ NfK with α ∈ (0, 1] and β ∈ [0, 1), for each A ∈ AfK

and for each RA ∈ RfK , two new atomic concepts A≥α,A>β and two new
atomic rolesR≥α, R>β are introduced.A≥α represents the crisp set of individuals
which are instance of A with degree higher or equal than α i.e. the α-cut of
A. The other new elements are defined in a similar way. The atomic elements
A>1, R>1,A≥0 and R≥0 are not considered because they are not necessary, due
to the restrictions on the allowed degree of the axioms in the fKB (e.g. we do
not allow GCIs of the form C � D ≥ 0).

The semantics of these newly introduced atomic concepts and roles is pre-
served by some terminological and role axioms. For each 1 ≤ i ≤ |NfK | − 1, 2 ≤
j ≤ |NfK | − 1 and for each A ∈ AfK , T (NfK) is the smallest terminology
containing these two axioms:

A≥γi+1 � A>γi ,A>γj � A≥γj
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Similarly, for each RA ∈ RfK , R(NfK) contains these axioms:

R≥γi+1 � R>γi , R>γi � R≥γi

Example 2. Consider the fKB defined in Example 1. Fuzzy atomic role isCloseTo
introduces some new atomic concepts roles (isCloseTo≥1, isCloseTo>0.75, isClo-
seTo≥0.75, isCloseTo>0.5, isCloseTo≥0.5, isCloseTo>0.25, isCloseTo≥0.25, isClo
- seTo>0), as well as some axioms preserving their semantics:

isCloseTo≥1 � isCloseTo>0.75, isCloseTo>0.75 � isCloseTo≥0.75,
isCloseTo≥0.75 � isCloseTo>0.5, isCloseTo>0.5 � isCloseTo≥0.5,
isCloseTo≥0.5 � isCloseTo>0.25, isCloseTo>0.25 � isCloseTo≥0.25,
isCloseTo≥0.25 � isCloseTo>0

4.2 Mapping Fuzzy Concepts, Roles and Axioms

Concept and role expressions are reduced using mapping ρ, as shown in the first
part of Table 2. For instance, given a fuzzy concept C, ρ(C,≥ α) is a crisp set
containing all the elements which belong to C with a degree greater or equal
than α (the other cases are similar).

Example 3. The 0.4 cut of the fuzzy concept ∀R.(C � (≤ 1 R.¬D)) is com-
puted as ρ(∀R.(C � (≤ 1 R.¬D)),≥ 0.4) = ∀ρ(R,> 0.6).ρ(C � (≤ 1 R.¬D),≥
0.4) = ∀R>0.6.ρ(C,≥ 0.4) � ρ(≤ 1 R.¬D,≥ 0.4) = ∀R>0.6.C≥0.4 � (≤ 1 ρ(R,>
0.6).ρ(¬D,> 0.6) = ∀R>0.6.C≥0.4 � (≤ 1 R>0.6.ρ(D,< 0.4) = ∀R>0.6.C≥0.4 � (≤
1 R>0.6.¬D≥0.4).

In order to finish the reduction, we map the axioms in the ABox, TBox and
RBox. Axioms are reduced as in the second part of Table 2, where σ maps fuzzy
axioms into crisp assertions and κ maps fuzzy TBox (resp. RBox) axioms into
crisp TBox (resp. RBox) axioms. Recall that we are assuming that irreflexive,
transitive and symmetric role axioms do not appear in the RBox.

Our reduction of a fuzzy GCI 〈C � D ≥ 1〉 is equivalent to the reduction of a
GCI under a semantics based on Zadeh’s set inclusion proposed in [6], although
it introduces some unnecessary axioms: C≥0 � D≥0 and C>1 � D>1.

Observe that the reduction preserves simplicity of the roles and regularity of
the RIAs. Note also that due to the restrictions in the definition of the fKB,
some expressions cannot appear during the process:

– ρ(R,�γ) and ρ(U,�γ) can only appear in a (crisp) negated role assertion.
– ρ(A,≥ 0), ρ(A, > 1), ρ(A,≤ 1) and ρ(A, < 0) cannot appear due to the

existing restrictions on the degree of the axioms in the fKB. The same also
holds for �, ⊥ and RA.

Example 4. The reduction of the axioms in the fKB defined in Example 1 is as
follows:

– σ(〈(h1, h2) : isCloseTo ≤ 0.75〉) = (h1, h2) :¬isCloseTo>0.75.
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Table 2. Mapping of concept and role expressions, and reduction of the axioms

Fuzzy concepts

ρ(�, �γ) �
ρ(�, �γ) ⊥
ρ(⊥, �γ) ⊥
ρ(⊥, �γ) �
ρ(A, �γ) A�γ

ρ(A, �γ) ¬A¬�γ

ρ(¬C, �� γ) ρ(C, ��− 1 − γ)
ρ(C � D, �γ) ρ(C, �γ) � ρ(D, �γ)
ρ(C � D, �γ) ρ(C, �γ) � ρ(D, �γ)
ρ(C � D, �γ) ρ(C, �γ) � ρ(D, �γ)
ρ(C � D, �γ) ρ(C, �γ) � ρ(D, �γ)
ρ(∃R.C, �γ) ∃ρ(R, �γ).ρ(C, �γ)
ρ(∃R.C, �γ) ∀ρ(R, ¬� γ).ρ(C, �γ)

ρ(∀R.C, {≥, >}γ) ∀ρ(R, {>, ≥}1 − γ).ρ(C, {≥, >}γ)
ρ(∀R.C, �γ) ∃ρ(R, �−1 − γ).ρ(C, �γ)

ρ({α1/o1, . . . , αm/om}, �� γ) {oi | αi �� γ, 1 ≤ i ≤ m}
ρ(≥ m S.C, �γ) ≥ m ρ(S, �γ).ρ(C, �γ)
ρ(≥ m S.C, �γ) ≤ m−1 ρ(S, ¬ � γ).ρ(C, ¬ � γ)

ρ(≤ n S.C, {≥, >} γ) ≤ n ρ(S, {>, ≥} 1 − γ).ρ(C, {>, ≥} 1 − γ)
ρ(≤ n S.C, �γ) ≥ n+1 ρ(S, �− 1 − γ).ρ(C, �− 1 − γ)
ρ(∃S.Self, �γ) ∃ρ(S, �γ).Self
ρ(∃S.Self, �γ) ¬∃ρ(S, ¬ � γ).Self

Fuzzy roles

ρ(RA, �γ) RA�γ

ρ(RA, �γ) ¬RA¬�γ

ρ(R−, �� γ) ρ(R, �� γ)−

ρ(U, �γ) U
ρ(U, �γ) ¬U

Axioms

σ(〈a :C �� γ〉) {a :ρ(C, �� γ)}
σ(〈(a, b) :R �� γ〉) {(a, b) :ρ(R, �� γ)}

σ(〈a 
= b〉) {a 
= b}
σ(〈a = b〉) {a = b}

κ(C � D ≥ α)
⋃

γ∈NfK\{0} | γ≤α{ρ(C, ≥ γ) � ρ(D, ≥ γ)}⋃
γ∈NfK | γ<α{ρ(C, > γ) � ρ(D, > γ)}

κ(C � D > β) κ(C � D ≥ β) ∪ {ρ(C, > β) � ρ(D, > β)}
κ(C �KD D ≥ α) {ρ(C, > 1 − α) � ρ(D, ≥ α) }
κ(C �KD D > β) {ρ(C, ≥ 1 − β) � ρ(D, > β) }

κ(〈R1 . . . Rn � R ≥ α〉) ⋃
γ∈NfK\{0} | γ≤α{ρ(R1, ≥ γ) . . . ρ(Rn, ≥ γ) � ρ(R, ≥ γ)}⋃
γ∈NfK | γ<α{ρ(R1, > γ) . . . ρ(Rn, > γ) � ρ(R, > γ)}

κ(〈R1 . . . Rn � R > β〉) κ(〈R1 . . . Rn � R ≥ β〉) ∪
{ρ(R1, > β) . . . ρ(Rn, > β) � ρ(R, > β)}

κ(〈R1 . . . Rn �KD R ≥ α〉) {ρ(R1, > 1 − α) . . . ρ(Rn, > 1 − α) � ρ(R, ≥ α)}
κ(〈R1 . . . Rn �KD R > β〉) {ρ(R1, ≥ 1 − β) . . . ρ(Rn, ≥ 1 − β) � ρ(R, > β)}

κ(dis(S1, S2)) {dis(ρ(S1, > 0), ρ(S2, > 0))}
κ(ref(R)) {ref(ρ(R, ≥ 1))}
κ(asy(S)) {asy(ρ(S, > 0)}
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– κ(〈isCloseTo � isCloseTo− ≥ 1〉) is reduced into these axioms:

isCloseTo>0 � isCloseTo−>0, isCloseTo≥0.25 � isCloseTo−≥0.25,
isCloseTo>0.25 � isCloseTo−>0.25, isCloseTo≥0.5 � isCloseTo−≥0.5,
isCloseTo>0.5 � isCloseTo−>0.5, isCloseTo≥0.75 � isCloseTo−≥0.75,
isCloseTo>0.75 � isCloseTo−>0.75, isCloseTo≥1 � isCloseTo−≥1

4.3 Properties of the Reduction

Summing up, a fKB fK = 〈fKA, fKT , fKR〉 is reduced into a KB K(fK) =
〈σ(fKA), T (NfK) ∪ κ(fK, fKT ), R(NfK) ∪ κ(fK, fKR)〉.

The following theorem shows that the reduction preserves reasoning:

Theorem 1. A fKDSROIQ fKB fK is satisfiable iff K(fK) is satisfiable.

Complexity. It is easy to see that every fuzzy concept expression of depth k
generates a crisp concept expression of depth k. Most of the axioms of the fuzzy
KB generate one axiom in the crisp KB, but some of them (fuzzy GCIs and
RIAs if Gödel implication is used in the semantics) generate several (at most
2 · (|NK| − 1)) axioms in the crisp KB.
|K(fK)| is O(|fK|2) i.e. the resulting KB is quadratic in size. The ABox is

actually linear while the TBox and the RBox are both quadratic:

– |NfK | is linearly bounded by |fKA|+ |fKT |+ |fKR|.
– |σ(fKA)| = |fKA|.
– |T (NfK)| = (2 · (|NfK | − 1)− 1) · |AfK |.
– |κ(fK, T )| ≤ 2 · (|NfK | − 1) · |T |.
– |R(NfK)| = (2 · (|NfK | − 1)− 1) · |RfK |.
– |κ(fK,R)| ≤ 2 · (|NfK | − 1) · |R|.

The resulting KB is quadratic because it depends on the number of relevant
degrees |NfK |. An immediate solution to obtain a KB which is linear in com-
plexity is to fix the number of degrees which can appear in the knowledge base.
From a practical point of view, in most of the applications it is sufficient to
consider a small number of degrees, e.g. {0, 0.25, 0.5, 0.75, 1}.

Reusing the reduction. An interesting property of the procedure is that the
reduction of an ontology can be reused when adding new axioms. In fact, for
every new axiom τ , the reduction procedure generates only one new axiom or a
(linear in size) set of axioms if τ does not introduce new atomic concepts nor new
atomic roles and, in case τ is a fuzzy axiom, if it does not introduce a new degree
of truth. Formally, given a fuzzy ontology fK and an axiom τ , the reduction of
the extension of fK with τ , denoted K(fK ∪ τ) is equivalent to K(fK)∪K(τ).
Hence, this property is very useful when it is necessary to add a new axiom to an
ontology in order to perform some reasoning task e.g. in ontology classification.

If τ introduces a new atomic concept, T (NfK) needs to be recomputed. If τ
introduces a new atomic role, R(NfK) needs to be recomputed. If τ is a fuzzy
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axiom that introduces a new degree of truth, XfK changes. As a consequence,
NfK may change. If NfK changes, we need to recompute: (i) T (NfK), (ii)
R(NfK), (iii) the reduction of every fuzzy GCI in fK, and (iv) the reduction
of every fuzzy RIA in fK.

4.4 Some Optimizations

Optimizing the number of new elements and axioms. Previous works use two more
atomic concepts A≤β ,A<α and some additional axioms (2 ≤ k ≤ |NfK |) [6,8]:

A<γk
� A≤γk

, A≤γi � A<γi+1

A≥γk
�A<γk

� ⊥, A>γi �A≤γi � ⊥
� � A≥γk

�A<γk
, � � A>γi �A≤γi

However, we use ¬A>γk
rather than A≤γk

and ¬A≥γk
instead of A<γk

, since
the six axioms above follow immediately from the semantics of the crisp concepts
as Proposition 1 shows:

Proposition 1. If A≥γi+1 � A>γi and A>γk
� A≥γk

hold, then the followings
axioms are verified:

(1) ¬A≥γk
� ¬A>γk

(2) ¬A>γi � ¬A≥γi+1

(3) A≥γk
� ¬A≥γk

� ⊥ (4) A>γi � ¬A>γi � ⊥
(5) � � A≥γk

� ¬A≥γk
(6) � � A>γi � ¬A>γi

Proof. (1) and (2) derive from the fact that in crisp DLs A � B ≡ ¬B � ¬A.
(3) and (4) come from the law of contradiction A � ¬A � ⊥, while (5) and (6)
derive from the law of excluded middle � � A � ¬A. ��
As a minor comment, those works also introduce unnecessarily a couple of ele-
ments A≥0 and R≥0, as well as the axioms A>0 � A≥0, R>0 � R≥0 [6,8].

Optimizing GCI reductions. GCI reductions can be optimized in several partic-
ular cases:

– 〈C � � � γ〉 and 〈⊥ � D � γ〉 are tautologies, so their reductions are
unnecessary in the resulting KB.

– κ(� � D � γ) = � � ρ(D, � γ). Note that this kind of axiom appears in
role range axioms (C is the range of R iff � � ∀R.C holds with degree 1)
and role domain axioms (C is the domain of R iff � � ∀R−.C holds with
degree 1).

– κ(C � ⊥ � γ) = ρ(C,> 0) � ⊥. This appears when two concepts are
disjoint i.e. C and D are disjoint iff C �D � ⊥ holds with degree 1.

Another optimization involving GCIs follows from the following observation. If
the resulting TBox contains A � B, A � C and B � C, then A � C is unneces-
sary, since {A � B,B � C} |= A � C. This is very useful in concept definitions
involving the nominal constructor. For example, the reduction of the axiom

κ(C�{1/o1, 0.5/o2})={C>0� {o1, o2}, C≥0.5�{o1, o2}, C>0.5�{o1}, C≥1�{o1}}
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can be optimized as follows:

κ(C � {1/o1, 0.5/o2}) = {C>0 � {o1, o2}, C>0.5 � {o1}}

since the two unnecessary axioms trivially hold:

{C≥0.5 � C>0, C>0 � {o1, o2}} |= C≥0.5 � {o1, o2}
{C≥1 � C>0.5, C>0.5 � {o1}} |= C≥1 � {o1}

Optimizing irreflexive role axioms. For the sake of clarity, we are assuming in
this paper that irreflexive role axioms do not appear in the RBox. Currently, an
irreflexive role axiom is replaced with an equivalent RIA, which produces the
following reduction (which is the same to the reduction of irreflexive role axioms
proposed in [9])

κ(irr(R)) =
⋃

γ∈N fK\{0}
irr(ρ(R,≥ γ))

⋃
γ∈N fK

irr(ρ(R,> γ))

However, this reduction could be optimized to κ(irr(R)) = irr(ρ(R,> 0)).
Proposition 2 shows that the other axioms follow immediately.

Proposition 2. If R1 � R2 and irr(R2), then it holds that irr(R1).

Proof. Assume that (x, y) ∈ RI
1 . Since R1 � R2 is satisfied, then (x, y) ∈ RI

2 .
Since irr(R2), then it holds that (y, x) �∈ RI

2 . But the role inclusion implies
that (y, x) �∈ RI

1 . For every pair of individuals, we have shown that (x, y) ∈ RI
1

implies (y, x) �∈ RI
1 . Hence, irr(R1) holds. ��

Allowing Crisp Concepts and Roles. It is easy to see that the complexity of the
crisp representation is caused by fuzzy concepts and roles. Fortunately, in real
applications not all concepts and roles will be fuzzy. Another optimization would
be allowing to specify that a concept is crisp. For instance, suppose that A is a
fuzzy concept. Then, we need NfK − 1 concepts of the form A≥α and another
NfK − 1 concepts of the form A>β to represent it, as well as 2 · (|NfK | − 1)− 1
axioms to preserve their semantics. On the other hand, if A is declared to be
crisp, we just need one concept to represent it and no new axioms. The case for
fuzzy roles is exactly the same.

5 Implementation: DeLorean

Our prototype implementation of the reduction process is called DeLorean

(DEscription LOgic REasoner with vAgueNess). It has been developed in Java
with Jena API1, the parser generator JavaCC2, and using DIG 1.1 interface [19]
to communicate with crisp DL reasoners. Since DIG interface does not yet sup-
port full SROIQ, currently the logic supported is fKDSHOIN (OWL DL).
1 http://jena.sourceforge.net/
2 https://javacc.dev.java.net
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Fig. 1. Architecture of DeLorean reasoner

Figure 1 illustrates the architecture of the system.

– The Parser reads an input file with a fuzzy ontology and translates it into an
internal representation. As we have remarked in the Introduction, we could
use any language to encode the fuzzy ontology, as long as the Parser can
understand the representation and the reduction is properly implemented;
consequently we will not get into details of our particular choice. For the
moment, we do not allow to define crisp concepts and roles.

– In the next step, the Reduction module implements the procedure described
in Section 4, building a Jena model from which an OWL file with an equiv-
alent crisp ontology is created.

– Finally, the Inference module tests this ontology for consistency, using any
crisp reasoner through the DIG interface.

– The User interface allows the user to introduce the inputs and shows the
result of the reasoning and the elapsed time. (see Figure 2 for a screenshot).

We have carried out some experiments in order to evaluate our approach in
terms of reasoning, that is, in order to check that the results of the reasoning
tasks over the crisp ontology were the expected. The aim of this section is not to
perform a full benchmark, which could be the topic of a forthcoming work. Nev-
ertheless, we will show some performance examples to show that our approach
is feasible and the increment of time for small ontologies when using a limited
number of degrees of truth is acceptable. In any case, optimizations are crucial.

We considered the Koala ontology3, a sample ALCON (D) ontology with 20
named classes, 15 anonymous classes, 4 object properties, 1 datatype property
(which we have omitted) and 6 individuals. Regarding the axioms, it contains 6
concept assertions and 35 GCIs (15 proper GCIs, 5 concept equivalences which
can be seen as 10 GCIs, 1 disjoint concept axiom, 4 domain axioms and 4 range
axioms and 1 functional axiom).

We obtained a fuzzy version by extending its axioms with random (lower
bound) degrees belonging to a variable set NfK . For the moment, we have
assumed that all of the fuzzy concepts and roles are fuzzy. Furthermore, in fuzzy
GCIs and RIAs we always assume Gödel implication in the semantics (which
introduces more axioms than Kleene-Dienes implication).

Then, we computed an equivalent crisp ontology in ALCHON (D) (since the
reduction introduces role inclusion axioms). The resulting ontology has 6 concept
3 http://http://protege.cim3.net/file/pub/ontologies/koala/koala.owl
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Fig. 2. User interface of DeLorean reasoner

assertions, (2 · (|NfK | − 1) − 1) · 4 RIAs and at least (2 · (|NfK | − 1) − 1) · 20
GCIs (added to keep the semantics of the new crisp elements). It also contains
other GCIs added in the reduction of the original fuzzy GCIs. The number of
axioms of this type depends on NfK but also on the lower bound degree of every
particular fuzzy GCI.

Once we obtained the crisp representation, reasoning was performed by using
Pellet reasoner [20] through the DIG interface. Table 3 shows the influence
of the number of degrees on the reduction time and on the time that requires
a classification test over the resulting crisp ontology (the times are shown in
seconds), together with some statistics about the resulting crisp ontology (the
number of atomic concepts, atomic roles, concept assertions, GCIs and RIAs).

Table 3. Influence of the number of degrees in the performance of DeLorean

Number of degrees crisp 3 5 7 9 11 21

Reduction time - 0.062 0.079 0.125 0.141 0.172 0.312
Classification time 0.188 0.39 0.437 0.485 0.531 0.578 0.859

Atomic concepts 20 80 160 240 320 400 800
Atomic roles 4 16 32 48 64 80 160
Concept assertions 6 6 6 6 6 6 6
GCIs 35 152 318 484 650 816 1646
RIAs 0 12 28 44 60 76 156
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Note that the result of the experimentation is different to that in a preliminary
version of this paper [21], because we have optimized a little bit our reasoner.
It can be observed that the increment in the reasoning time when the fuzzy
ontology contains a small number of degrees can be assumed. In the current
implementation of DeLorean, the reduction time may be considered still high
because it is just a prototype, but as already discussed in the previous section,
the reduction can be reused and hence needs to be computed just once. It is
interesting to mention that another implementation of the reduction has shown
that the idea of the reduction fits well to reasoning with large fuzzy ABoxes [22].

6 Conclusions and Future Work

In this paper we have shown how to reduce a fuzzy extension of SROIQwith fuzzy
GCIs and RIAs (under a novel semantics using Gödel implication) into SROIQ.
We have enhanced previous works by reducing the number of new elements and
axioms. We have also presented DeLorean, our implementation of this reduction
procedure which is, to the very best of our knowledge, the first reasoner supporting
fuzzy SHOIN (and hence and eventually fuzzy OWL DL). The very preliminary
experimentation shows that our approach is feasible in practice when the num-
ber of truth degrees is small, even for our non-optimized prototype. This work
means an important step towards the possibility of dealing with imprecise and
vague knowledge in DLs, since it relies on existing languages and tools.

Future work could include the possibility of defining some concepts and roles
to be interpreted as crisp, and the comparison of DeLorean with other fuzzy
DL reasoners (for instance fuzzyDL [23]), although they support different lan-
guages and features and, as far as we know, there does not exist any significant
fuzzy knowledge base; the only one that we are aware of is a fuzzy extension
of LUBM [24], but it is also a non expressive ontology (in fuzzy DL Lite). The
reasoner is currently being extended to fuzzy SROIQ (and hence OWL 1.1) by
using technologies other than Jena and DIG 1.1.
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Abstract. We focus on replacing human processing web resources by
automated processing. On an experimental system we identify uncer-
tainty issues making this process difficult for automated processing and
try to minimize human intervention. In particular we focus on uncer-
tainty issues in a Web content mining system and a user preference min-
ing system. We conclude with possible future development heading to an
extension of OWL with uncertainty features.

Keyword: Uncertain reasoning, World Wide Web, web content mining,
user profile mining.

1 Introduction

The amount of data accessible on Web is a great challenge for web search systems.
Efficient utilization of these data (and information or knowledge hidden in them)
can be a competitive advantage both for companies and individuals. Hence Web
search systems form a part of different systems ranging from marketing systems,
competitors and/or price tracking systems to private decision support systems.
The main vision of Semantic web (see T. Berners-Lee, J. Hendler, O. Lassila.
in [3]) is to automate some web search activities that a human is able to do
personally. Using this automation of human search should speed up the search,
access a wider range of resources and when necessary to soften our search criteria
and optimize.

We quote the Uncertainty Reasoning for the World Wide Web (URW3) In-
cubator Group charter [23]: . . . As work with semantics and services (on the
Web) grows more ambitious, there is increasing appreciation of the need for
principled approaches to representing and reasoning under uncertainty. In this
Charter, the term ”uncertainty” is intended to encompass a variety of forms
of incomplete knowledge, including incompleteness, inconclusiveness, vagueness,
ambiguity, and others. The term ”uncertainty reasoning” is meant to denote the
full range of methods designed for representing and reasoning with knowledge
when Boolean truth values are unknown, unknowable, or inapplicable. Com-
monly applied approaches to uncertainty reasoning include probability theory,

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNAI 5327, pp. 207–223, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Schema of an automated process connecting Web and User

Dempster-Shafer theory, fuzzy logic, and numerous other methodologies.” In this
paper we are using term “uncertainty” in this wider (generic) understanding and
we would like to contribute to these efforts (for related discussion see [24]).

In this paper we concentrate especially to issues connected with replacing
human abilities on the web by software. From this point of view, some sorts of
uncertainty are not “human-to-machine-web” specific, like faulty sensors, input
errors, data recorded statistically, medical diagnosis, weather prediction, gam-
bling etc. These are difficult for human alone and also outside the web.

According to H. R. Turtle and W. B. Croft [18], uncertainty in information
retrieval can be found especially in three areas: Firstly, there is the problem of
the representation, annotation of a resource (service) and difficulties arise also
when attempting to represent the degree to which a resource is relevant to the
task. The second problem is the representation of the kind of information the
user needs to retrieve or the action which he needs to perform (this is especially
difficult since it typically changes during the session). Thirdly, it is necessary to
match user needs to resource concepts. By our opinion, these areas of uncertainty
apply also to our case, when replacing human activities on the web by software.
Specific tasks connected to these three problems are depicted in Figure 1 and
we will discuss them in this paper.

Our goal is to discuss uncertainty issues based on a system integrating the
whole chain of tools from the Web to the user. The uncertainty problem here
appears as a problem of two inductive procedures. Two types of data mining
appearing in these systems will be discussed here. One is Web content mining
and second is user profile (preference) mining. Middleware will do the matching
part and query evaluation optimization.

1.1 Motivating Example

In this motivating example, assume users that are looking for a hotel in a certain
region. Suppose that the amount of data about the accommodation possibilities
is huge and they are distributed over several sites. Furthermore, the users have
different preferences which are soft and difficult to express in a standard query
language.

From the middleware point of view, there is no chance to evaluate user’s
query over all data. Therefore we have decided to use Fagin threshold algorithm
[10], which can find best (top-k) answers without looking to all object. This
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algorithm works under following assumptions. First, we have approach to objects
(in our case hotels) in different list ordered by user particular attribute ordering,
equipped by a numerical score ranging from 0 to 1, e. g. f1(x) = cheap(x),
f2(x) = close(x). . . Second, we have a combination function computing total
fuzzy preference value of an object based on preference values of attributes, e. g.
(3 · cheap(x) + close(x)/4).

In practical application we have to consider different users with possible dif-
ferent attribute ordering f1

u, f2
u and combination function @u. These represent

the overall user preference @u(fu
1 , f

u
2 ) and the profile for this task. For user pro-

file mining part there is a task to find these particular attribute orderings and
the combination function (using ranking a sample of hotels).

On the web side of our system, very often information of vendors, companies
or advertisement are presented using Web pages in structured layout containing
data records. These serve for company presentation and mainly are assumed to
be visited by a potential customer personally. Structured data objects are a very
important type of information on the Web for systems dealing with competitor
tracking, market intelligence or tracking of pricing information from sources like
vendors.

We need to bring these data to our middleware. Due to the size of Web, the
bottleneck is the degree of automation of data extraction. We have to balance the
tradeoff between degree of automation of Web data extraction also from unvisited
pages (usually with lower precision) and the amount of user (administrator) work,
needed to train data extractor for special type of pages (increasing precision).

First restriction we make is we consider Web pages containing several struc-
tured data records. This is usually the case of Web pages of companies and ven-
dors containing information on products and services and, in our case, hotels.
Main problem is to extract data and especially attribute values to middleware.

Although we use a system which has modules in experimental implementation,
we do not present this system here. Our main contributions are

– Identification of some uncertainty issues in web content mining system ex-
tracting attribute values from structured pages with several records

– Identification of some uncertainty issues in user profile model and use profile
mining method

– Discussion of coupling of these systems via a middleware based on Fagin
threshold algorithm like storage and querying. We point to uncertainty issues
by inserting (UNC) in the appropriate place in the text.

2 Uncertainty in Web Content Mining

In this section we describe our experience with a system for information ex-
traction from certain types of web pages and try to point out places where
uncertainty occurred.

Using our motivation as a running example, imagine a user looking for a
hotel in a certain location. A relevant page for a user searching for hotels can
look similarly to that on Figure 2. The first goal for our middleware system
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Fig. 2. A typical Web page containing several regions

is to automatically extract relevant data from various information sources and
put them in a structured form (typically filling the attribute values of object
instances), thus allowing the core components to perform either top-k search or
other suitable object search methods.

Since most of the relevant data are presented on the web in the form of HTML
pages, they are a suitable target for methods which operate on the semistruc-
tured input data. There are multiple existing approaches, which are generally
semiautomatic – i. e. Lixto [1], Stalker [16] or that of Kushmerick et al. [15].
While these systems are reliable and can be used to cover pages for which the
system was trained, pages that dynamically change not only the content, but
also the structure, can require user’s attention or even the repetition of training
process. In cases when we have to collect data from a large number of structurally
varying pages, these methods are not applicable or would require a substantial
amount of effort.

Our solution is to concentrate on pages with several repeating records and
search for similarities. There are many ways how to search for similar records in
source tree (and also tree representations). System IEPAD [4] uses the Patricia
tree (radix tree) representation and produces sometimes a bigger number of
potential extraction rules choice of the right rule can be sometimes a problem
and needs human intervention). This system is outperformed by the MDR system
[5] which uses the HTML tree structure for search of repeating node sequences
with same father. Nevertheless MDR (so IEPAD too) is searching for objects
of interest in the whole web document. This is time consuming and as we have
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experienced, it surprisingly decreases precision. Moreover mentioned systems do
not extract attribute values from data records.

It is clear that looking for attribute values depends on the domain. There are
papers describing usage of ontologies for attribute value extraction [5]. These
systems do not consider data records extraction.

In this paper we consider a system as a sequence of both data record extraction
and attribute value selection, with possibility of ontology starting almost from
scratch (e.g. user search key words).

The system will be described in several phases.

2.1 Data Regions Extraction

Identification of Data Regions is the first phase of our information extraction
process. In the beginning we assume that data records, which are similar to each
other, form a larger unit – a data region. Moreover, we expect that a data region
contains at least two records.

At first, we build a Document Object Model (DOM) representation of the in-
put document by using a JRex DOM parser (which besides other things resolves
problems with invalid or malformed HTML). Besides the DOM tree we build an
auxiliary data structure which simplifies the typical operations on this tree (like
retrieving a subtree etc.). Searching for data regions starts with the pruning of
the input tree, which reduces the complexity of the search process and improves
the efficiency. It is obvious, that the desired data occur solely in the text nodes
and therefore it is sufficient to consider only those subtrees which contain at
least one text node. We perform a ”colorization” of nodes. White nodes do not
contain any text nodes in their subtrees. Grey-colored ones do not contain any
text-nodes in their child nodes, but they can occur in the lower layers. Black
nodes have a high probability of text-node occurence under their corresponding
subtrees. The actual color is determined by the total text length in the subtree,
corresponding HTML tag (since some HTML nodes by definition cannot contain
children and therefore are implicitly white-colored) and the depth of the node
in the DOM tree.

It is evident that only the gray and black-colored trees can contain the data re-
gions. This can be an observation that leads us to the first uncertainty (UNC1)
and a corresponding coefficient

unc1 =

{ 0 for white notes
1 for gray nodes
2 for black nodes

which can be used to annotate the extracted information, in support of (auto-
mated) agent usage of our sources.

To further reduce the search space, we have experimentally deduced that the
fifth layer of the DOM tree is the suitable place to start the search.

The actual search algorithm is based on the breadth-first traversal of the DOM
tree. For each non-white node we test, whether there is a repeating sequence of
similar subtrees rooted on the nodes from the current layer. At first, we compare
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the subtrees rooted in the consecutive node (in the Figure 4: node 2 and 6, then
node 6 and 10 etc.). Then we compare the consecutive node pairs (e. g. a union of
subtrees from nodes 2 and 6 with a union of subtrees from nodes 10 and 12 etc.)

The similarity (UNC2) is determined according to the Levenshtein edit dis-
tance. We map the node names (i. e. HTML tags) to the letters of alphabet.
Each subtree is mapped to a substring, which serves as a base for the compar-
ison. The computed edit distance is normalized by the average length of both
subtrees. Moreover, we have experimentally found the suitable threshold for the
similarity equal to 0.2.

This gives another uncertainty coefficient

unc2(0.2) = (p, r)

assigning precision and recall of detecting similar subtrees using this threshold.
The similar subtrees represent a candidate for the data region. However, we

seek to find the largest possible data region. It means that we search for the
node combination that covers the largest number of nodes. The breadth-first
algorithm ensures that once a data region is discovered, it is not necessary to
further examine its subnodes. It should be noted, that the algorithm can possibly
find the data regions with data records out of scope of our particluar domain.
Such regions will be resolved in the Attribute Identification phase.

The aforementioned pruning process serves yet another purpose. For example
the data region can be represented by the repetition of elements TABLE, #text
and BR. Since the last tag is only in the role of separator, it does not appear in
the last record, which will be then incorrectly omitted.

2.2 Identification of Data Records

In the previous phase we have identified one or more data regions, where each of
them contains multiple data records (represented by repeating node sequences).
Each data record can be represented in two ways:

– A data region contains data records which are correspond to the contiguous
HTML elements. Each data record then forms a proper subtree. This is an
optimal case.

function BFSfindDR(LevelNodes) {
NextLevelNodes = ∅;
for each Node in LevelNodes do {

if weight(Node) == 2 {
regions := identDataRegions(normalized(Node.children));
NextLevelNodes := NextLevelNodes ∪ (Node.Children not in regions)

} else if weight(Node) == 1 {
NextLevelNodes := NextLevelNodes ∪ Node.children

}
}
if NextLevelNodes �= ∅ return regions ∪ BFDfindDR(LevelNodes)
else return regions

}

Fig. 3. Pseudocode of Data Record Identification Phase
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Fig. 4. A Sample DOM Model (left), a pruned DOM model with node pairs comparison
(top right) and a pruned DOM model with node triples comparisons

– A data region contains data records which correspond to the HTML elements
scattered among multiple subtrees (albeit forming a visually contiguous re-
gion). (UNC3)

The latter kind of regions can be resolved by two approaches. We can either
syntactically analyse the data, tags and tables and estimate the number of data
regions. Then we can try to pair up the individual data in the records. Alter-
natively we can postpone this solution to the Attribute Identification phase,
where we use an ontology to match the attribute values to the corresponding
objects.

2.3 Attribute Values Extraction from Master Page

In this phase we process the actual data records and parse them for the at-
tribute values of the relevant objects (UNC4). The basic idea is based on the
traversal of the tree in the depth-first approach (to ensure the consistent or-
der of the attributes), and the tokenization of the text nodes by the various
separators.

The tokenized nodes are then matched against the extraction ontology, which
determines the structure of data records, cardinality of attribute values etc.
Generally, it allows us to specify the attribute name, regular expression patterns
used for extraction, typical keywords associated with attribute, an enumeration
of all attribute values (applicable in the case of attributes with fixed number of
values) and maximum and minimum length of attribute.

It is natural that more elaborated ontology (more properties, detailed regular
expressions, exact attribute labels) increases the success rate. Nondiscovered
attributes can be found in the next phase, which deals with the extraction from
the detail pages.
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function findAttributes(page1, page2) {
source1 = normalize(page1)
dom1 = getDomTree(page1)
source2 = normalize(page2)
dom2 = getDomTree(page2)
listOfDifferenceSpots = diff(source1, source2)
listOfDifferenceSpots = listOfDifferenceSpots ∪ annotatedElements(dom1) ∪ annotatedElements(dom2)
for each differenceSpot in listOfDifferenceSpots {

element1 = findElementById(dom1)
element2 = findElementById(dom1)
attributeValue = applyOntology(extractText(element2))
storeValue(attributeValue)
annotateSpot(page1, element1)
annotateSpot(page1, element2)

}
}

Fig. 5. Pseudocode of Detail Pages Data Extraction

If there is a known number k of object attributes, we can determine the
uncertainty coefficient as

unc4 =
n

k
,

where n is the number of discovered attributes.

2.4 Attribute Value Extraction from Detail Pages

The previous phase deals with attribute values extraction (UNC4). Inputs are
single data records from the original page and extraction ontology, which con-
tains and represents human effort inserted into our system. This ontology gen-
erally consists of multiple regular expressions, typical values, value intervals etc.
which correspond to particular attributes.

As a complement to the master page extraction, we can easily discover the
links to the detail pages (i. e. pages which contain information about a single

Fig. 6. A sample of difference spots
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hotel), which usually contain the additional or better structured data. Moreover,
a set of detail pages from a single site usually comes from a single template
preprocessed by a template engine [26]. This template (invisible to us) can be
seen as a skeleton of HTML page with variables which are on the server-side
replaced with actual values. Comparing two detail pages by the diff algorithm
[27] can yield the places of difference, which occur on three general occasions:

– structural differences between DOM subtrees. Corresponds to the situation
when one subtree does not occur in the opposite part (typically when one
product contains attribute, which does not occur in another one or to the
redundant data on the page),

– the differences between HTML attributes – this represents differences be-
tween HTML attributes or their values. This kind of differences is of a lesser
importances, since they contain only the hidden data (not displayed to the
user)

– the differences between text nodes, which represents different values in
HTML tag values.

By comparing a large number of web pages, we can discover the attribute
values, which can be further refined by extraction ontology. The general overview
of an algorithm is as follows:

1. retrieve a pair of two web pages and build their DOM trees.
2. normalize their HTML source trees and prepare them for the source code

comparison
3. perform a diff algorithm comparison on the two normalized sources, retriev-

ing a candidate difference spots. Categorize each difference spot into one
of aforementioned three categories and if appropriate, retrieve the attribute
values from the text nodes under the different nodes (UNC4).

4. retroactively annotate the input document with difference spot occurence
metadata and statistics.

5. go to step 1.

The retroactive annotations prevents the obvious situation in which the attribute
value is missed due to equal values on the particular place (a usual example is an
input set of hotels from the same city. The same attribute value means skipped
difference spot. However, annotated element can be seen as a forced difference
spot which can cover such situation.)

The retroactive annotations are generated automatically. However, to improve
and bootstrap the extraction process, one could manually preannotate a few web
pages in a simple user interface.

Both value extraction approaches correspond to the epistemic uncertainty
nature defined in the [24]. The extraction ontology imposes rather strict criteria
on the required attribute and there in the cases in which the attribute was not
extracted at all due to the limited knowledge of the tool. This is also the case
of the source-comparing approach, in which the attribute could be incorrectly
misspoted or there could be an data which do not correspond to any of the
attributes.
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Table 1. Optimal values for efficient extraction

Domain K s lmin lmax

Notebooks 1 0.1 800 100
Cars 1 0.2 300 80
Hotels 2 0.3 800 200

However, on the test data, we have reached a very high soundness / correct-
ness, which was above 95%. In case of structured data we have experienced the
only encountered misdiscovered data regions were those which contained nondo-
main data. However, as we have said, these data were eliminated in the Attribute
Identication phase.

Moreover, we have experimentally found the optimal values for the most
efficient extraction in the first two phases (see Table 1) in additional two do-
mains. These values represent Levenshtein similarity (s), minimum and maxi-
mum length of attribute value text (lmin and lmax) and the maximum number
of nodes used in the repeating sequences search (K).

When taking another review of the information extraction phases, we have
identified possible sources of uncertainty in web information extraction and pos-
sible uncertainty coeficients unc1, unc2, unc 3 and unc4. They can be used to
annotate the extracted information, withour prescribing how a potential user of
these informations will use them.

3 Middleware

3.1 Semantic Web Infrastructure

User preference mining is done locally and assumes the extracted data are stored
in middleware. Extracted data have to be modeled on an OWA (Open World
Assumption) model, and hence the traditional database models are not appro-
priate. Yet we are compatible with a semantic web infrastructure described
in [20]. The storage is based on the ideas of Data Pile described in [2] in
which a typical schema of record resembles a RDF statement with some state-
ments about this statement (although the reification is not necessary in our
case).

Resource Attribute Value Extracted From Extracted By Using Ontology
Hotel1 Price V1 URL1.html Tool1 O1

Hotel1 Distance D1 URL1.html Tool1 O1

If a value of an attribute is missing, in our middleware system it means a
missing record (thus implementing OWA). Note that we have records without
any uncertainty degree attached, but this can be evaluated additionally the ap-
plications working on the data (e. g. it can be known that Tool1 is highly reliable
on extracting price, but less on distance).
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To know what we are looking for and which attribute values to extract we need
to know user interests. For middleware we moreover need to know the ordering
of particular attributes and the combination function.

3.2 Using User Profiles

Another possibility is to create several user profiles, based on previous expe-
riences with users coming to the web page. These profiles may be created as
clusters of users or manually by an expert in the field (a hotel-keeper in our
example). Manual creation is more suitable because we will know more details
about user, but it is often impossible. Independent of the way profiles are cre-
ated, we have ratings of objects associated with each profile, thus knowing the
best and worst objects.

Suppose we have a set of user profiles P1, . . . ,Pk and we know the ideal hotel
for each profile. We propose computing the distance di of user profile M1 from
each profile Pi in following way:

di =

∑
j=1,...,n |Rating(User1, oj)− Rating(Pi, oj)|

n
(1)

Equation (1) represents the average difference between the user’s rating of an
object oj and profile’s Pi’s rating. The ideal hotel for the user can be computed as
an average of ideal hotels for each profile Pi, weighted by the inverse of distance
di (see (2)). The average is computed on attributes of hotels. Formally,

IdealHotel(User1) =

∑
i=1,...,k IdealHotel(Pi)/di∑

i=1,...,k 1/di
(2)

Then, IdealHotel(User1) is the weighted centroid of profiles’ best hotels. We
can use this approach also for computing ideal values of attribute values:

IdealPrice(User1) =

∑
i=1,...,k IdealPrice(Pi)/di∑

i=1,...,k 1/di
(3)

An example of data, user profiles’ best hotel and user’s best hotel is on
Figure 7. User1 is clearly closest to Profile 3.

Fig. 7. Positions of best hotels for the user profiles and for the user
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After the computation of the ideal hotel for the user, we will use it for comput-
ing ratings of remaining hotels. Disadvantage of this method is that one cannot
use the Fagin threshold algorithm.

4 Uncertainty in User Preference Mining

In our meaning, user preferences are expressed in form of classification rules,
where the values of attributes are assigned with grades corresponding to order-
ings of the domains of these attributes. The higher the grade the more appro-
priate (preferable) the value of an attribute is for the given user. This form of
grading corresponds to truth values well-known in fuzzy community and thus
the orderings correspond to fuzzy functions.

The combination function can be represented by a fuzzy aggregation function
(see [10]). Fuzzy aggregation functions are monotone function of n variables
ranging through the unit interval [0, 1] of real numbers (in practical applications
we use only a finite part of it).

Main assumption of our learning user preferences is that we have a (relatively
small) sample of objects (hotels) evaluated by user (see smileys on the Figure
2). From this sample evaluation we would like to learn his/her preferences. The
point is to use this learned user preference to retrieve top-k objects from a much
bigger amount of data. Moreover, using user sample evaluation, we do not have to
deal with the problem of matching the query language and document language.
This rating is a form of QBE – query by example.

4.1 Learning Local Preferences

In [7] and [8] we have described several techniques of learning user’s preferences
of particular attributes (UNC5) represented by fuzzy functions f1, f2. . . on
attribute domains. These techniques use regression methods. A problem occurs
here. There can be potentially big number of hotels of one sort (e.g. cheap
ones) but to detect user preference (cheap, medium or expensive) should not be
influenced by the number of such hotels. Regression typically counts number of
objects. We have introduced a special technique of discretization to get true user
local preference (for details see [7] and [8]). We face the problem of outliers, here.
Since, users often evaluate just a few objects, local preferences are learned from
a small dataset. Thus, outliers have big impact to the final result of learning.
The precision of local preference learning (e.g. regression) can be computed by
a method, similar to the standard deviation, as follows:

σ =

√√√√ 1
n

n∑
i=1

(f(xi)− u(xi))
2 (4)

where n is the number of objects we learn local preferences from, f(xi) is the
learned user’s local preference for an attribute value xi of an object i and u(xi)
is the real user’s local preference for an attribute value xi of an object i.
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This measure serves also as uncertainty level for (UNC5). It expresses how
much the fuzzy function comply to user preferences.

We can simply put
unc5 = σ

More complex case is in following section, where uncertainty for whole global
preferences is studied. Similarly, other methods to computing the precision of
local preference learning can be proposed.

Another approach not using regression is the following. The view of the whole
domain of attribute price is in Figure 8. We can see that with increasing price,
the rating is decreasing. This can be formalized (details are out of the scope of
this paper) and we have experimented also with this possibility. These methods
also gives local preference in the form of a fuzzy function (here small, cheap. . . )
and hence are usable for Fagin Threshold algorithm.

4.2 Learning Combination Function

Second assumption of the Fagin’s model [10] is to have a combination function
@, which combines the particular attribute preference degrees f1, f2. . . (local
preferences) to a overall score – @(f1, f2 . . .) – according to which the top-k
answers will be computed.

There are several ways to learn (UNC6) the combination functions and sev-
eral models. It is an instance of classification trees with monotonicity constraints
(see [17], more references to ordinal classification are presented).

We learn the aggregation function by the method of Inductive Generalized
Annotated Programming (IGAP) described in [13,14], nevertheless implemented
only a fragment of IGAP method. The result of IGAP is a set of Generalized
Annotated Program rules in which the combination function has a form of a
function annotating the head of the rule – here the quality of hotel:

User1 hotel(H) good in degree at least @(f1(x), f1(y), . . .)
IF User1 hotel price(x) good in degree at least f1(x)

AND
User1 hotel distance(y) good in degree at least f2(y)

Note that these are rules of generalized annotated programs.

Fig. 8. Ratings for whole attribute domain
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As stated in previous section, we have to learn global preferences from a small
dataset. Thus, the learned rules have smaller prediction ability as if these are
learned from the biggest dataset (training set). On the other hand, since, we learn
global preferences using local preferences, the accuracy of rules strongly depends
on the precision of learned local prefernces. Experiments show, that if local prefer-
nces are learned correctly, IGAP learns rules with good prediction ability.

Our approach to measuring of the precision of our method to global preference
learning is based on the following idea: Since, global preferences are used in the
process of searching top-k objects, we are interested mainly in more precise
global preferences for higher grades of classification. Thus higher precision for
higher grades of classification is preferable.

We can express the precision of our method to global preference learning as
follows:

P =

n∑
i=2

i · Ai

n∑
i=2

i
(5)

where i represents grades of classification (except the lowest grade, which global
preferences are not learned for) and Ai is the accuracy of an ILP system ALEPH
used in IGAP for the hypothesis learned for the grade i.

Moreover, we have to deal with a so called not-consistent user. When global
preferences cannot be computed from the rated objects, the reason is often hid-
den in user’s rating (mistake in rating, randomly rating user, etc.). The measure
P may be interpreted as uncertainty level for (UNC6). The accuracy Ai is the
main source of uncertainty; it expresses how well the rules correspond with the
real user preferences. P can be also interpreted as user consistency – if the user
decides based on the attribute values consistently, P is much lower than if the
user is largely inconsistent. This occurs when the significance of decision for the
user is low.

Again, we can simply put

unc6 = P

5 The Implementation and Experiments

Our Web content mining system has a modular implementation which allows addi-
tional modules to be incorporated (e. g. querying with preference-based querying).
Communication between modules is based on the traditional Observer/Listener
design pattern. All modules, which require communication with other ones, have
to implement a Listener interface. All listeners are bound to the central Bus, which
manages the communication between them. Each listener can specify a range of
broadcasted and received events, which will be supported by it.

We proposed and implemented the middleware system for performing top-k
queries over RDF data. As a Java library, our system can be used either on the
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server side, for example in a Web service, or on the client side. In both cases, it
gathers information from local or Web data sources and combines them into one
ordered list. To avoid reordering each time a user comes with different ordering,
we have designed a general method using B+ trees to simulate arbitrary fuzzy
ordering of a domain [6]. There are several implemented classes for standard
user scoring functions, and TA and NRA algorithms. Detailed description of
experiments is out of the scope of this paper. We can conclude that experiments
have shown this solution is viable.

6 Conclusions and Future Work

Using an experimental implementation, in this paper we have identified several
uncertainty challenges, when

(UNC1) identifying HTML nodes with relevant information in the sub-tree,
(UNC2) tuning similarity measures for discovery of similar tag subtrees,
(UNC3) identifying single data records in the HTML source,
(UNC4) extracting attribute values
(UNC5) learning user’s preferences of particular attributes
(UNC6) learn the user preference combination function.

It is evident, that there can be found relations between certain uncertainties
– for example unc4 strongly influences unc5 because when attribute values are
determined wrong, the fuzzy function will also be wrong.

When unc5 is high, unc6 will be also high. High uncertainty about ordering
of attribute domains will produce high uncertainty of their aggregation. Thanks
to the degrees of uncx we can quantify the overall degree of uncertainty and find
where the process is mostly wrong. Corrections and parameter tuning will be
applied at these places.

We have also experimented with some candidate solutions, which should en-
able annotation of resources by our uncertainty coefficients. However, we do
not propose particular syntax for annotation. Moreover, it remains a prob-
lem, how should these be reflected in OWLU, a possible uncertainty model-
ing extension of OWL supporting machine processing of web task which is
easy for humans. One can imagine an extension of OWL to OWLU where
owl:oneOf extends to owlU:typicallyOneOf and rdfs:subClassOf extends to
owlU:typicallySubClassOf. In our experiments we have used such flexible im-
plementation when extracting attribute values.

Models and methods used in these experiments are compatible with our fuzzy
fEL@ description logic [19]. In this description logic only concepts are allowed
to be fuzzy, roles remain crisp. Description logic fEL@ can be embedded into
two valued description logic with concrete domains and hence it is compatible
with possible extension of OWL.

Acknowledgement. This work was supported in part by Czech projects 1ET
100300517 and 1ET 100300419 and Slovak projects VEGA 1/3129/06 and NA-
ZOU.
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Abstract. The use of hierarchical taxonomies to organise information
(or sets of objects) is a common approach for the semantic web and
elsewhere, and is based on progressively finer granulations of objects.
In many cases, seemingly crisp granulation disguises the fact that cat-
egories are based on loosely defined concepts that are better modelled
by allowing graded membership. A related problem arises when differ-
ent taxonomies are used, with different structures, as the integration
process may also lead to fuzzy categories. Care is needed when informa-
tion systems use fuzzy sets to model graded membership in categories
- the fuzzy sets are not disjunctive possibility distributions, but must
be interpreted conjunctively. We clarify this distinction and show how
an extended mass assignment framework can be used to extract rela-
tions between fuzzy categories. These relations are association rules and
are useful when integrating multiple information sources categorised ac-
cording to different hierarchies. Our association rules do not suffer from
problems associated with use of fuzzy cardinalities. Experimental results
on discovering association rules in film databases and terrorism incident
databases are demonstrated.

Keywords: Fuzzy, granules, association rules, hierarchies, mass assign-
ments, semantic web, iPHI.

1 Introduction

The Semantic Web [1] provides general data and knowledge representation for-
mats (e.g. RDF [2], OWL [3]) for integration and combination of data drawn
from diverse sources, enabling these data to be shared and reused across appli-
cation, enterprise and community boundaries. Ontologies play an essential role
in achieving this vision and have become the target of extensive research over
the last decade though there are still several major issues to be addressed.

Information granularity is considered as a key issue of knowledge representa-
tion in ontological structures [4]. Ontologies use taxonomies to define classes of
objects and relations among them, enabling us to express a large number of re-
lations among entities by assigning properties to classes and allowing subclasses
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to inherit such properties. The use of taxonomic hierarchies to organise infor-
mation and sets of objects into manageable chunks (granules) is widespread [5].
Granules were informally defined by Zadeh [6] as a way of decomposing a whole
into parts, generally in a hierarchical way. We can regard a hierarchical cate-
gorisation as a series of progressively finer granulations, allowing us to represent
problems at the appropriate level of granularity.

The idea of a taxonomy serves as an organisational principle for libraries,
for document repositories, for corporate structure, for the grouping of species
and very many other applications. It is therefore no surprise to note that the
semantic web adopts hierarchical taxonomies as a fundamental structure, using
the subClassOf construct. Although in principle the idea of a taxonomic hier-
archy is crisply defined, in practice there is often a degree of arbitrariness in its
definition. For example, we might divide the countries of the world by continent
at the top level of a taxonomic hierarchy. However, continents do not have crisp
definitions - Europe contains some definite members (e.g. France, Germany) but
at the Eastern and South-Eastern border, the question of which countries be-
long / do not belong is less clear. Iceland is generally included in Europe despite
being physically closer to Greenland (part of North America). Thus although
the word “Europe” denotes a set of countries (i.e. it is a granule) and can be
used as the basis for communication between humans, it does not have an un-
ambiguous definition in terms of the elements that belong to the set. Different
“authorities” adopt different definitions - the set of countries eligible to enter
European football competitions differs from the set of countries eligible to enter
the Eurovision song contest, for example.

Of course, mathematical and some legal taxonomic structures are generally
very precisely defined - in axiomatic geometry, the class of polyhedra further
subdivides into triangles, quadrilaterals, etc and triangles may be subdivided
into equilateral, isosceles etc. Such definitions admit no uncertainty. Most infor-
mation systems model the world in some way, and need to represent categories
which correspond to the loosely defined classes used by humans in natural lan-
guage. For example, a company may wish to divide adults into customers and
non-customers, and then sub-divide these into high-value customers, dissatisfied
customers, potential customers, etc. Such categories are not necessarily distinct
(i.e. they may be a covering rather than a partition) but more importantly, mem-
bership in these categories is graded - customer X may be highly dissatisfied
and about to find a new supplier whilst customer Y is only mildly dissatisfied.
We argue that most hierarchical taxonomies involve graded or loosely defined
categories, but the nature of computerised information systems means that a
more-or-less arbitrary decision has to be made on borderline cases, giving the
taxonomy the appearance of a crisp, well-defined hierarchy. This may not be a
problem as long as a rigorous and consistent criterion for membership is used
(e.g. a dissatisfied customer is defined as one who has made at least two calls
complaining about service), but the lack of subjectivity in a definition is rare.
The use of graded membership (fuzziness) in categories enhances their expressive
power and usefulness.
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The Semantic Web vision implies that conceptually overlapping ontologies
will co-exist and interoperate [1]. In the real world, it is impossible to converge
to a single unambiguous ontology that is acceptable to all knowledge engineers
[7]. Ontologies vary in the level of detail and in the nature of their logical spec-
ification. In such a scenario the interoperability between ontologies will benefit
from the ability to represent degrees of membership categories of target ontology,
given information about its class membership in the source ontology.

For example, the category of “vintage wine” has a different (but objective)
definition, depending on the country of origin. To a purist, vintage wines are
made from grapes harvested in a single year - however, the European Union
allows up to 5% of the grapes to be harvested in a different year, the USA allows
15% in some cases and 5% in others, while other countries such as Chile and
South Africa may allow up to 25%. Thus even taking a simple (crisp) granulation
of wines into vintage and non-vintage categories can lead to problems if we try
to integrate different sources.

In this paper we describe a new method for calculating association rules to find
correspondences between fuzzy granules in different hierarchies (with the same
underlying universe). Knowing that a category in one taxonomy is identical,
almost identical to, completely different from a category in another taxonomy is
an important step in combining multiple taxonomies. We discuss the semantics
of fuzzy sets when used to describe granules, and introduce a mass assignment-
based method to rank association rules and show that the new method gives more
satisfactory results than approaches based on fuzzy cardinalities. Ongoing work
is focused on comparison of this approach to others (e.g. on ontology merging
benchmarks), and with application to merging classified directory content.

2 Background

This work take place in the context of the iPHI system (intelligent Personal Hier-
archies for Information) [8] which aims to combine and integrate multiple sources
of information and to configure access to the information based on an individu-
als personal categories. We assume here that the underlying entities (instances)
that are being categorised are known unambiguously - when integrating multi-
ple sources, this is often not the case. We have outlined SOFT (the Structured
Object Fusion Toolkit) elsewhere [9] as one solution to this problem.

2.1 Fuzzy Sets in Information Systems

Many authors (e.g. [10]) have proposed the use of fuzzy sets to model uncertain
values in databases and other knowledge based applications . The standard in-
terpretation of a fuzzy set in this context is as a possibility distribution [11,12]
- that is to say it represents a single valued attribute that is not known ex-
actly. For example we might use the fuzzy set tall to represent the height of
a specific person or low to represent the value shown on a dice. The fuzzy
sets tall and low admit a range of values, to a greater or lesser degree; the
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actual value is taken from the range. Knowing that a dice value val is even
restricts the possible values to val = 2 XOR val = 4 XOR val = 6 (where
XOR is an exclusive or). If a fuzzy set on the same universe is defined as
low = {1/1, 2/1, 3/0.4}1 then knowing the value val is low restricts the possible
values to val = 1 XOR val = 2 XOR val = 3 with corresponding memberships.

The conjunctive interpretation of a fuzzy set occurs when the attribute can
have multiple values. For example, a person may be able to speak several lan-
guages; we could model this as a fuzzy set of languages, where membership would
depend on the degree of fluency. This is formally a relation rather than a function
on the underlying sets. If we write speaks(John, {Spanish/1,Portugese/0.8})
it is not clear whether this means John speaks Spanish AND Portugese or John
speaks Spanish OR Portugese. Our position is to make a distinction between
the conjunctive interpretation - modelled by a fuzzy relation - and the disjunc-
tive interpretation - modelled by a possibility distribution. To emphasise the
distinction, we use the notation

F (a) = {x/μ(x)|x ∈ U}

to denote a single valued attribute F of some object a (i.e. a possibility distrib-
ution over a universe U) and

R(a) = [x/χ(x)|x ∈ U ]

to denote a multi-valued attribute (relation). Granules represent the latter case,
since we have multiple values that satisfy the predicate to a greater or lesser
degree.

2.2 Association Rules

In creating association rules within transaction databases (e.g. [13], see also [14]
for a clear overview), the standard approach is to consider a table in which
columns correspond to items and each row is a transaction. A column contains
1 if the item was bought, and 0 otherwise. The aim of association rule mining
is to determine whether or not there are links between two disjoint subsets of
items - for example, do customers generally buy biscuits and cheese when beer,
lager and wine are bought?

Let X denote the set of items, so that any transaction can be represented
as tr ⊆ X and we have a multiset T r of transactions. We must also specify
two non-overlapping subsets of X , s and t. An association rule is of the form
S ⇒ T where S (respectively T ) is the set of transactions containing the items
s (respectively t). The rule is interpreted as stating that when the items in s
appear in a transaction, it is likely that the items in t will also appear i.e. it is
not an implication in the formal logical sense.

Most authors use two measures to assess the significance of association rules,
although these measures can be misleading in some circumstances. The support
1 The notation 3/0.4 indicates that the element 3 has membership 0.4 in the fuzzy

set.
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of a rule is the fraction of transactions in which both s and t appear, and the
confidence of a rule is an estimate (based on the samples) of the conditional
probability of T given S

Support(S, T ) = |S ∩ T |

and

Conf(S, T ) =
|S ∩ T |
|S|

where we operate on multisets rather than sets. Typically a threshold is chosen
for the support, so that only frequently occurring sets of items s and t are
considered; a second threshold filters out rules of low confidence.

Various approaches to fuzzifying association rules have been proposed e.g.
[14,15,16]. The standard extension to the fuzzy case is to treat the (multi-)
sets S, T as fuzzy and find the intersection and cardinality using a t-norm and
sigma-count respectively.

Conf(S, T ) =

∑
x∈X

μS∩T (x)

∑
x∈X

μS(x)

Clearly any fuzzy generalisation must reduce to the crisp case when member-
ships are restricted to {0, 1}.

As pointed out by [14], using min and the sigma count for cardinality can be
unsatisfactory because it does not distinguish between several tuples with low
memberships and few tuples with high memberships - for example, given

S = [x1/1, x2/0.01, x3/0.01, ..., x1000/0.01]

and
T = [x1/0.01, x2/1, x3/0.01, ..., x1000/0.01]

leads to

Conf(S, T ) =
1000× 0.01

1 + 999× 0.01
≈ 0.91

which is extremely high for two almost disjoint sets (this example originally
appeared in [17]). Using a fuzzy cardinality (i.e. a fuzzy set over the possible
cardinality values) is also potentially problematic since the result is a possibility
distribution over rational numbers, and the extension principle [18] gives a wider
bound than it should, due to neglect of interactions between the numerator and
denominator in this expression. For example, given

S = [x1/1, x2/0.8]

T = [x1/1, x2/0.4]
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the fuzzy cardinalities are |S ∩ T | = {1/1, 2/0.4} , |S| = {1/1, 2/0.8} leading to
a confidence of {0.5/0.4, 1/1, 2/0.8} which is clearly incorrect.

One approach to the problem is given in [19] where the fuzzy association rule
is interpreted as a quantified sentence. The confidence of the fuzzy association
rule S ⇒ T in the set of fuzzy transactions T is the evaluation of quantified
sentence “Q of ΓS are ΓT ” where Γ refers to the (fuzzy) transactions containing
S (respectively T ) and Q refers to a quantifier. The confidence value in the above
example is 0.01 by modelling the quantified sentence using fuzzy level sets.

In this paper, we propose the use of mass assignment theory in calculating
the support and confidence of association rules between fuzzy categories.

The fuzziness in our approach arises because we allow partial membership
in categories - for example, instead of looking for an association between bis-
cuits and beer, we might look for an association between alcoholic drinks and
snack foods. It is important to note that we are dealing with conjunctive fuzzy
sets (monadic fuzzy relations) here. Mass assignment theory is normally applied
to fuzzy sets representing possibility distributions and the operation of finding
the conditional probability of one fuzzy sets given another is known as seman-
tic unification [20]. This rests on the underlying assumption of a single valued
attribute - a different approach is required to find the conditional probability
when we are dealing with set-valued attributes.

2.3 Mass Assignments

A mass assignment [22] (see also [23]) is a distribution over a power set, represent-
ing disjunctive uncertainty about a value. For a universe U , m is defined as

m : P (U) → [0, 1]∑
X⊆U

m(X) = 1 (1)

The mass assignment mA is related to a fuzzy set (possibility distribution) A
as follows.

Let μA be the membership function of A with range

Range(μA) = {μ1
A, μ

2
A, μ

3
A, ..., μ

m
A }

such that
μ1

A > μ2
A > ... > μm

A

and Ai (also known as the focal elements) be the alpha-cuts 2 at these values

Ai = {x|μA(x) ≥ μi
A}

2 An alpha cut is a crisp set containing all elements with membership greater than or
equal to the specified value of alpha. For details, see any introductory text on fuzzy
sets e.g. Fuzzy Sets, Information and Uncertainty, Klir and Folger, Prentice Hall,
1988.
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Then
mA(Ai) = μi

A − μi+1
A

Given a fuzzy set A, the corresponding mass assignment can be written as

M(A) = {Ai : mA(Ai)|Ai ⊆ A} (2)

where conventionally only the focal elements (non-zero masses) are listed in
the mass assignment. The mass assignment represents a family of probability
distributions on U , with the restrictions

p : U → [0, 1]∑
x∈U

p(x) = 1

m({x}) ≤ p(x) ≤
∑
x∈X

m(X) (3)

For example, if X = {a, b, c, d} and A is the fuzzy set defined as

A = {a/1, b/0.8, c/0.3, d/0.2}

then
M(A) = {{a} : 0.2, {a, b} : 0.5, {a, b, c} : 0.1, {a, b, c, d} : 0.2}

In the example above, p(a) = 0.4, p(b) = 0.3, p(c) = 0.1, p(d) = 0.2 is a
possible distribution, obtained by allocating the mass of 0.5 on the set {a, b} to
a (0.2) and b (0.3), and so on. We can also give a mass assignment definition of
the cardinality of a fuzzy set as a distribution over integers

p(|A| = n) =
∑

Ai⊆A
|Ai|=n

mA(Ai)

where 0 ≤ n ≤ |U |.
In the example above, p(|A| = 1) = 0.2, p(|A| = 2) = 0.5, etc. Clearly in

this framework, the cardinality of a fuzzy set can be left as a distribution over
integer values, or an expected value can be produced from this distribution in
the usual way. A similar definition of fuzzy cardinality was proposed by [24], also
motivated by the problem of fuzzy association rules.

Baldwin introduced the least prejudiced distribution (LPD) which is a specific
distribution satisfying (3) above but also obeying

LPDA(x) =
∑

x∈Ai

m(Ai)
|Ai|

(4)

where |A| indicates the cardinality of the set A and the summation is over all
focal elements containing x.
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Informally, wherever mass is associated with a non-singleton focal element,
it is shared equally between the members of the set. Clearly a least prejudiced
distribution is a restriction of the original assignment.

The steps from LPD to mass assignment and then to fuzzy set can be reversed,
so that we can derive a unique fuzzy set for any frequency distribution on a
finite universe, by assuming the relative frequencies are the least prejudiced
distribution (proof in [25]).

If the relative frequencies are written

LA = {LA(x1), LA(x2), ..., LA(xn)}

such that
LA(x1) > LA(x2) > ... > LA(xn)

then we can define

Ai = {x|x ∈ U ∧ LA(x) ≥ LA(xi)}

and the fuzzy set memberships are given by

μA(xi) = |Ai| × LA(xi) +
n∑

j=i+1

(|Aj | − |Aj−1|)× LA(xj)

3 Mass-Based Granular Association Analysis

3.1 Fuzzy Relations and Mass Assignments

A relation is a conjunctive set of ordered n-tuples i.e. it represents a conjunction
of n ground clauses. For example, if U is the set of dice scores then we could
define a predicate differBy4or5 on U × U as the set of pairs

[(1, 6), (1, 5), (2, 6), (5, 1), (6, 1), (6, 2)]

This is a conjunctive set in that each pair satisfies the predicate. In a similar
way, a fuzzy relation represents a set of n-tuples that satisfy a predicate to a
specified degree. Thus differByLargeAmount could be represented by

[(1, 6)/1, (1, 5)/0.6, (2, 6)/0.6, (5, 1)/0.6, (6, 1)/1, (6, 2)/0.6]

3.2 Granular Association Analysis

Zadeh [6] pointed out that information granulation is inspired by the ways in
which humans granulate information and reason with it. The core of information
granulation is that information can be processed on different levels of abstrac-
tion in which data objects are organised into meaning granules 3 so as to convey
a perception of information itself. Thus, it is necessary to study the criteria for
3 We interpret granules as conjunctive fuzzy sets in this paper.
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Table 1. Database of Sales Employees

name sales salary

a 100 1,000

b 80 400

c 50 800

d 20 700

deciding how “a clump of points (objects) are drawn together by indistinguisha-
bility, similarity, proximity or functionality [6]”. The formation of granules can
also be interpreted from the point view of concept formation. In the logic theory
[28], the intension of a concept consists of all properties that are valid for all
those objects to which the concept applies. Similarly, the granule applies certain
measure criteria/function to select common features of all the entities belonging
to itself.

We consider two granules, represented as monadic fuzzy relations S and T
on the same domain, and wish to calculate the degree of association between
them. For example, consider a database of sales employees, salaries and sales
figures. We can categorise employees according to whether their salaries are
high, medium or low and also according to whether their sales figures are good,
moderate or poor. A mining task might be to find out whether the good sales
figures are achieved by the highly paid employees. For example, given the Table
1, according to our subjective perception, we might define the monadic fuzzy
relations,

S = goodSales = [a/1, b/0.8, c/0.5, d/0.2]

and
T = highSalary = [a/1, b/0.4, c/0.8, d/0.7]

These represent sets of values (1-tuples) that all satisfy the related predicate
to a degree. The confidence in an association rule can be calculated as follows:

For a source granule

S = [x1/χS(x1), x2/χS(x2), ..., x|S|/χS(x|S|)]

and a target granule

T = [x1/χT (x1), x2/χT (x2), ..., x|T |/χT (x|T |)]

we can define the corresponding mass assignments as follows. Let the set of
distinct memberships in S be,

{χ(1)
S ,χ

(2)
S , ...,χ

(nS)
S }

where
χ

(1)
S > χ

(2)
S > ... > χ

(nS)
S
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and
nS ≤ |S|

Let
S1 = {[x|χS(x) = χ

(1)
S ]}

Si = {[x|χS(x) ≥ χ
(i)
S ]} ∪ Si−1

where 1 < i ≤ nS .
Then the mass assignment corresponding to S is

{Si : mS(Si)}, 1 ≤ i ≤ nX

where
mS(Sk) = χ

(k)
S − χ

(k+1)
S (χ(i)

S = 0 if i > nS)

For example, the source granule

S = [a/1, b/0.8, c/0.5, d/0.2]

Table 2. Maximum Confidence

0.2 0.1 0.3 0.4
[a] [a] [ac] [a] [ac] [acd] [a] [ac] [acd] [abcd]

0.2 [a] 0.2

0.3 [a] 0.1
[ab] 0.2

0.3
[a] 0.3
[ab]
[abc]

0.2
[a] 0.2
[ab]
[abc]
[abcd]

Conf(S → T ) =
0.2 × 1 + 0.1 × 1 + 0.2 × 2 + 0.3 × 1 + 0.2 × 1
0.2 × 1 + 0.1 × 1 + 0.2 × 2 + 0.3 × 1 + 0.2 × 1

= 1

it has the corresponding mass assignment
MS = {{[a]} : 0.2, {[a], [a, b]} : 0.3, {[a], [a, b], [a, b, c]} : 0.3, {[a], [a, b], [a, b, c], [a, b, c, d]} : 0.2}

The mass assignment corresponds to a distribution on the power set of re-
lations, and we can define the least prejudiced distribution in the same way as
for the standard mass assignment. In the example above, we get the LPD of the
source granule as a distribution on granules (monadic relations)

LPDS = {[a] : 0.5, [a, b] : 0.3, [a, b, c] : 0.15, [a, b, c, d] : 0.05}
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We can now calculate the confidence in the association between the granules
S and T using mass assignment theory. In general, this will be an interval as we
are free to move mass (consistently) between elements of each Si and Tj [21].

For two mass assignments,

MS = {{Spi} : mS(Si)}, 1 ≤ pi ≤ i ≤ nS

and
MT = {{Tqj} : mT (Ti)}, 1 ≤ qj ≤ j ≤ nT

the composite mass assignment is

MC = MS

⊕
MT = {X : mC(X)}

where mC is the composite mass allocation function C(i, j, Spi , Tqj ) subject to

nT∑
j=1

∑
1≤qj≤j
1≤pi≤i

C(i, j, Spi , Tqj ) = mS(Si)

nS∑
i=1

∑
1≤qj≤j
1≤pi≤i

C(i, j, Spi , Tqj ) = mT (Ti)

By this it follows Equation (5)

Conf(S → T ) =

nS∑
i=1

nT∑
j=1

∑
1≤qj≤j
1≤pi≤i

C(i, j, Spi , Tqj )× |Spi ∩ Tqj |

nS∑
i=1

nT∑
j=1

∑
1≤qj≤j
1≤pi≤i

C(i, j, Spi , Tqj )× |Spi |
(5)

This can be visualised using a mass tableau (see [22]). Each row (column) rep-
resents a focal element of the mass assignment, and is split into sub-rows (sub-
columns). The mass associated with a row (column) is shown at the far left
(top) and can be distributed amongst the sub-rows (sub-columns). For example
consider the granules

S = [a/1, b/0.8, c/0.5, d/0.2]

and
T = [a/1, b/0.4, c/0.8, d/0.7]

The rule confidence is given by equation (5).
Clearly the mass can be allocated in many ways, subject to the column con-

straints and it is not always straightforward to find the minimum and maximum
confidences arising from different composite mass allocations. Two extreme ex-
amples are shown in Table 2 and Table 3. The head row represents the mass
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Table 3. Minimum Confidence

0.2 0.1 0.3 0.4
[a] [a] [ac] [a] [ac] [acd] [a] [ac] [acd] [abcd]

0.2 [a] 0.2

0.3
[a]
[ab] 0.1 0.2

0.3
[a]
[ab]
[abc] 0.3

0.2 [a]
[ab]
[abc]
[abcd] 0.2

Conf(S → T ) =
0.2 × 1 + 0.1 × 1 + 0.2 × 1 + 0.3 × 1 + 0.2 × 1
0.2 × 1 + 0.1 × 2 + 0.2 × 2 + 0.3 × 3 + 0.2 × 4

= 0.4

distribution of T and the first column represents the mass distribution of S. The
confidence in the association rule between the two granules lies in the interval
[0.4, 1]. In general there can be considerable computation involved in finding the
maximum and minimum confidences for a rule. When ranking association rules
it is preferable to have a single figure for confidence, rather than an interval that
can lead to ambiguity in the ordering.

We can redistribute the mass according to the least prejudiced distribution i.e.
split the mass in each row (column) equally between its sub-rows (sub-columns)
and taking the product as the mass in each cell. In this case, the calculation
is simplified by (a) combining rows (columns) with the same label and (b) re-
ordering the summations. This enables us to calculate association confidences
with roughly O(n) complexity, rather than O(n4) where n is the number of focal
elements in the source granule S. We get the confidence as,

ConfLPD(S, T ) =

nS∑
i=1

nT∑
j=1

LPDS(Si)× LPDT (Tj)× |Si ∩ Tj|

nS∑
i=1

LPDS(Si)× |Si|
(6)

(although the numerator in this expression is written as a double summation,
it can be calculated in O(n) time by stepping through the cells on the leading
diagonal, due to the nested structure of the sets). If we choose the least prejudiced
distribution and re-arrange sub-rows into single rows with the same label (also
columns) we obtain the following intersections in Table 4.
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Table 4. LPD Table

[a]:0.45 [ac]:0.25 [acd]:0.2 [abcd]:0.1
[a]:0.5 [a] [a] [a] [a]
[ab]:0.3 [a] [a] [a] [ab]

[abc]:0.15 [a] [ac] [ac] [abc]
[abcd]:0.05 [a] [ac] [acd] [abcd]

ConfLPD(S,T ) = (0.5 × (0.45 + 0.25 + 0.2 + 0.1) × 1

+0.3 × (0.45 + 0.25 + 0.2) × 1 + 0.3 × 0.1 × 2

+0.15 × 0.45 × 1 + 0.15 × (0.25 + 0.2) × 2 + 0.15 × 0.1 × 3

+0.05 × 0.45 × 1 + 0.05 × 0.25 × 2 + 0.05 × 0.2 × 3 + 0.05 × 0.1 × 4)/1.75

= 0.67

This method gives a confidence of 0.67 - lying in the interval shown in Table 2
and Table 3. Using the least prejudiced distribution (LPD) allows us to replace
the calculation in Equation (5) with straightforward calculations of the expected
values of the cardinality of the source set and the intersection.

The example above gives a similar result to the cardinality-based method, but
this is not always the case. For example if given,

S = [x1/1, x2/0.01, x3/0.01, ..., x1000/0.01]

and
T = [x1/0.01, x2/1, x3/0.01, ..., x1000/0.01]

then a fuzzy cardinality based approach gives a confidence 10
10.99 ≈ 0.91 whereas

we get a value of approximately 10−5. Clearly this is a far more reasonable
answer, as there are no elements with strong membership in both granules.

4 Experimental Results

4.1 Film Genre

We have carried out tests on the approach by finding associations between movie
genres from different online sources. The two online movie databases IMDB (http:
//www.imdb.com) and Rotten Tomatoes (http://www.rottentomatoes.com)
have been used in previous work [26] to test instance matching methods. We have
used the SOFT [9] method to establish correspondence between the (roughly) 95,
000 movies in the databases. Within these two sources, movies are assigned to one
or more genres and our task is to find strong associations between genres. In prin-
ciple one would expect genres to be at different granularity (e.g. comedy could be
sub-divided into slapstick, satire, situation comedy, etc). At this stage, there is no
benchmark for comparison but the results are intuitively reasonable as shown in
Table 5.
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Table 5. Movie Genres Association Analysis

IMDB Genre Tomato Genre Association Value

Thriller Suspense 0.351

Drama 0.35

Horror/Suspense 0.326

War Drama 0.531

Action 0.47

Horror 0.319

Adult Non-explicit 0.53

Beauty/Fashion 0.375

Education/General Interest 0.318

4.2 Terrorism Databases Analysis

We have carried out tests on the Worldwide Incidents Tracking System (WITS)
and MIPT Terrorism Knowledge Base (TKB) data 4. 15,900 incidents between
January 2005 and January 2006 are analysed. We construct three granules mod-
elling civilian casualties - high casualty, medium casualty and low casualty -
according to the selection criteria shown in the Figure 1. We also construct the
weapon granules, such as Vehicle bomb, Explosive and etc., by identifying prede-
fined keywords. Fuzzy grammar [27] has been used to identify the weapons from
the text fragments. The results are shown in Table 6. As we can see, “High casu-
alty” has tight association with “Explosive” and “Vehicle bomb” while “Medium
casualty” is normally connected with “Firearm”.
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Fig. 1. Casualty Granules

4 WITS data is available at http://wits.nctc.gov/Export.do. TKB ceased operation
on 31st March 2008 and is now part of Global Terrorism Database (GTD) at
http://www.start.umd.edu/data/gtd/
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Table 6. Terrorism Data Association Analysis (I)

Casualty Weapons Association Value

High Casualty Explosive 0.304

Vehicle bomb 0.303

Firearm 0.18

Medium Casualty Firearm 0.316

Explosive 0.224

Vehicle bomb 0.165

Moreover, we also construct geography granules for the regions such as near
Iraq and south asia mainland in which the partial membership of a country
depends on the degree of political/military connection with a certain region.
For example, Iran has the second largest membership in the “near Iraq” granule
while “Afghanistan” holds the largest membership in the “south asia mainland”
granule. Perpetrators can be modelled through a similar way to that of the
products. The result is shown in Table 7. The confidence values are low because
most of the perpetrators responsible for the attacks are “unknown” in the data
sets.

Table 7. Terrorism Data Association Analysis (II)

Region Perpetrators Association Value

South Asia Mainland Secular Political 0.311

Near Israel Islamic Extremists (Sunni) 0.277

Near Iran Islamic Extremists (Sunni) 0.093

Table 8. Terrorism Data Association Analysis (III)

Perpetrators Weapons Association Value

Islamic Extremist (Sunni) Firearm 0.333

Vehicle bomb 0.164

Explosive 0.151

Missile/Rocket 0.148

Islamic Extremist (Shia) Firearm 0.793

Missile/Rocket 0.103

Secular Political/Anarchist Firearm 0.312

Explosive 0.215
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Table 9. Supermarket Transaction Database

Association Rule Mass-Based Conf. QS Conf. Mass-Based Pos. QS Pos.

< P, L >→< SF, H > 0.639 0.744 1 1

< P, M >→< SF, M > 0.248 0.444 2 2

< P, M >→< SF, H > 0.195 0.317 3 3

< P, M >→< SF, L > 0.139 0.179 4 5

< P, L >→< SF, M > 0.093 0.258 5 4

Table 10. Fuzzy Text Transactions based on Harry Potter Book

Association Rule Mass-Based Conf. QS Conf.

Dumbledore → Harry 0.753 0.808

Hermione → Ron 0.292 0.683

Harry → Question 0.07 0.140

Harry → Ron 0.178 0.338

Harry → Hermione 0.137 0.265

It is also interesting to identify the association between a specific group and
the weapons. Though most of the perpetrators are classified as “Unknown”, we
focus on finding the strong association rules when the perpetrators are identified.
The results are shown in Table 8. The example shows that the method can handle
reasonable scale problems, and that results presented are intuitively reasonable
but (in common with all association rules) not objectively verifiable.

4.3 Comparative Study

Since the quantified sentence (QS) approach [19] is using a similar multiset
method, we also compare our mass-based association rules mining to QS on
two datasets kindly supplied by Jose Maria Serrano Chica5. The first dataset
contains 1,458 items from the supermarket transaction database. The price (P)
and sales figures (SF) are respectively evaluated by three granules; High (H),
Medium (M) and Low (L). The comparison result is show in Table 9. The result
from mass-based association analysis is almost consistent with the quantified
sentence approach except that quantified sentence approach ranks the rule <
P, L >→< SF,M > higher than the rule< P,M >→< SF, L >.

The second dataset contains 3,234 terms extracted by Chica [private commu-
nication] from parts of the Harry Potter series of books and is modelled as a fuzzy
text transaction database according to [29]. Let us consider TD = {d1, ..., dn} as
the set of transactions from the collection of documents D, and I = {t1, ..., tm}
5 Datasets are supplied in the private communication.



240 T.P. Martin, Y. Shen, and B. Azvine

Fig. 2. Fuzzy Transactions of “<P, L>” (Price is Low) and “<SF, M>” (Sales Figure
is Medium)

Fig. 3. Fuzzy Transactions of “Hermione” and “Ron”

Fig. 4. Fuzzy Transactions of “Harry” and “Question”

as the text items obtained from all the representation documents di ∈ D with
their membership to the transaction expressed by Wi = {wi1, ..., wim}, where wij

is obtained from a weight function such as frequency weighting scheme and the
TF-IDF weighting scheme [29]. The fuzzy association rule terms → termt shall
be interpreted as “This means that the appearance of terms in a document sug-
gests the appearance of termt”. The experimental results from both mass-based
association analysis and quantified sentence approach are shown in Table 10.

However, we argue that mass-based association analysis gives more reasonable
values in cases of low overlap. Take the rule < P, L >→< SF,M > for
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example. The QS approach gives its confidence value 0.258. From Figure 2, we
can see there are significant areas where the two fuzzy sets hardly overlap. The
confidence value 0.093 from mass-based association method is more reasonable.
Another result arising from low overlap is given in Figure 3. Although most of the
items in the fuzzy set of “Hermione” have the membership lower than 0.6, the QS
gives the confidence value 0.683 to the rule Hermione → Ron. Similar issue can
also be found in Figure 4, where QS gives the confidence value 0.140 to the rule
Harry → Question. However, there is no strong association between “Harry”
and “Question” as the latter has a low membership across the whole range. Thus
the association value 0.07 from the mass-based association method is better to
describe this weak association.

5 Summary

We have described a new method for generating association rules between gran-
ules in different information hierarchies. These rules enable us to find related
categories without leading to spurious relations suggested by association rules
based on fuzzy cardinalities. Results were presented for discovery of links between
film genres and terrorism incident databases in different classification hierarchies,
giving intuitively reasonable associations. The new method is currently under-
going further tests, looking at benchmark instance-matching problems, finding
associations between music genres and finding links between categories in differ-
ent classified business directories.
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Abstract. Semantic Web languages cannot currently represent vague
or uncertain information. However, their crisp model-theoretic seman-
tics can be extended to represent uncertainty in much the same way
first-order logic was extended to fuzzy logic. We show how the inter-
pretation of an RDF graph (or an RDF Schema ontology) can be a
matter of values, addressing a common problem in real-life knowledge
management. While unmodified RDF triples can be interpreted accord-
ing to the new semantics, an extended syntax is needed in order to store
fuzzy membership values within the statements. We give conditions an
extended interpretation must meet to be a model of an extended graph.
Reasoning in the resulting fuzzy languages can be implemented by cur-
rent inferencers with minimal adaptations.

Keywords: Fuzzy Logic, Knowledge Representation, Semantic Web,
RDF, RDF Schema.

1 Knowledge Representation on the Web

The Semantic Web is an extension of the current web in which information
is given well-defined meaning[1] by the use of knowledge representation (KR)
languages.

The KR languages used (RDF, RDF Schema and OWL) have the character-
istics that make them useful on the web[2]:

– the elements of the domain are represented by URIs;
– there is no global coherence requirement, as local sources can make assertions

independently without affecting each other’s expressiveness.

Those languages have the ability to describe, albeit not formally, much more
than their semantics can express. Their model theory captures only a formal
notion of meaning, given by inference rules; the exact ‘meaning’ of a statement
can depend on many factors, not all accessible to machine processing [3].

This feature can be exploited also to represent information from fields that re-
quire knowledge representation paradigms other than the FOL-like RDF Model
Theory or the expressive Description Logics used by OWL. Amongst those
paradigms there is fuzzy logic, to represent vague or ambiguous knowledge.

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNAI 5327, pp. 244–261, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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There is an extensive literature on fuzzy semantics for OWL. OWL is a
standard semantic web language [4] based on description logics [5]. The origi-
nal idea of generalizing term subsumption languages (ancestors of description
logics) is from Yen [6]; Straccia defined a fuzzy version of the DL ALC [7]
and then of the expressive logic SHOIN (D) [8]. This allowed the definition
of fuzzy OWL by Stoilo et. al. [9]. Other works on fuzzy description logics
are [10,11,12,13,14,15,16,17,18].

RDF is the basic semantic web language, with a non-standard model the-
ory defined in [3]. The idea of a fuzzy extension of RDF model theory is from
Mazzieri [19]. This paper is a revision and extension of the fuzzy RDF model
theory as presented in [20]. A comparable approach is Annotated RDF by Udrea
et. al. [21]; their approach is swallower (only a limited subset of RDF Schema is
extended) but broader (annotation can be from any partially ordered set, fuzzy
annotation is one of the possible scenarios).

Next sections are structured as follows. Section 2 is a summary of RDF and
RDF Schema syntax and semantics. In Section 3 we define an extended interpre-
tation for RDF graphs, an extended syntax and an interpretation for extended
graphs. Section 4 defines an interpretation for fuzzy RDF Schema ontology lan-
guage, with emphasis on some subtleties in the interpretation of language terms
involving set inclusion. A proof-of-concept implementation of the extended syntax
and semantics within an RDF/RDF Schema inferencer is described in Section 5.

2 RDF Model Theory

This is a short summary of RDF syntax and semantics, to make the paper self-
contained. Normative references are [22] and [3].

2.1 Syntax

An RDF graph is a set of RDF triples (or statements). A triple consists of a
subject, a predicate and an object. Subjects and objects are called nodes and
can be a literal, an URI reference [23] or a blank node (a unique node with no
name). Predicates are URI references.

2.2 Simple Interpretation

An interpretation assign meaning to a set of names in a vocabulary. An inter-
pretation is “simple” if it does not assign special meanings to any particular
set of names. A simple interpretation I of a vocabulary V defines an non empty
set IR of resources, a set IP of properties, a mapping IEXT from IP to IR×IR,
a mapping IS from URI references in V to IR ∪ IP, a mapping IL from typed
literals in V into IR, and a distinguished subset LV of IR containing the literal
values.

Properties, unlike first-order predicates, are not relations, but elements of the
domain, which have an extension IEXT, which in turn is a relation on couples
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of elements. The trick of distinguishing a property as a domain element from its
relational extension allows a property to occur in its own extension.

2.3 Denotations for Ground Graphs

A graph with no blank nodes is called ground. Truth or falsity of a ground RDF
graph in an interpretation is given recursively from its syntactic constituents by
a set of rules: literals correspond to themselves, typed literals are mapped by IL,
URI references are mapped by IS. A ground triple is true if the subject s, the
predicate p and the object o are in the vocabulary V of I, the interpretation of
the property I(p) is in IP, and the couple 〈I(s), I(o)〉 is in IEXT(I(p)), otherwise
is false. A ground graph is false (given an interpretation) if some triple of the
graph is false, otherwise is true. Interpretations for which the graph is true are
called models.

Blank nodes are interpreted as existential variables. A non-ground graph is
true, given an interpretation I, if there is a mapping from blank nodes to IR for
which the graph is true, otherwise is false.

2.4 Entailment

The key idea for RDF reasoning is entailment : a set of graphs S entails graph G
if every model of every member of S is also a model of G.

Section 2 of RDF Semantics [3] shows many lemmas that apply to simple
interpretations.

Lemma 1 (Empty Graph). The empty set of triples is entailed by any graph,
and does not entail any graph except itself.

A subgraph of a graph is a subset of the triples of the graph.

Lemma 2 (Subgraph). A graph entails all its subgraphs.

A graph obtained by a graph G replacing some of its blank nodes with literals,
blank nodes and URI references is an instance of G.

Lemma 3 (Instance). A graph is entailed by any of its instances.

The merge of graphs is different from a simple union since blank nodes are
existentially quantified in the scope of a single graph.

Lemma 4 (Merging). The merge of a set S of RDF graphs is entailed by S,
and entails every member of S.

Lemma 5 (Interpolation). S entails a graph E if and only if a subgraph of S
is an instance of E.

An instance of a graph is proper if a blank node has been replaced by a name or
two blank nodes have been mapped in the same node. A lean graph is a graph
with no instance which is a proper subgraph of the graph.
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Lemma 6 (Anonymity). Suppose E is a lean graph and E’ is a proper instance
of E. Then E does not entail E’.

Lemma 7 (Monotonicity). Suppose S is a subgraph of S’ and S entails E.
Then S’ entails E.

Lemma 8 (Compactness). If S entails E and E is a finite graph, then some
finite subset S’ of S entails E.

Proofs for the lemmas are in [3]. Proofs of interpolation, anonymity, monotonicity
and compactness lemma need a way to build a model of a graph using lexical
items in the graph itself, the so called Herbrand interpretation [24].

2.5 RDF Interpretation

RDF-interpretations give particular meaning to URI references in the RDF vo-
cabulary, made of URI in the rdf: namespace1. An RDF interpretation must
satisfy all the axiomatic triples in Table 1 and the following extra conditions:

– x ∈ IP if and only if 〈x, I(rdf : Property))〉 ∈ IEXT (I(rdf : type))
– If "xxx"^^rdf:XMLLiteral is in V and xxx is a well-typed XML literal

string, then
• IL("xxx"^^rdf:XMLLiteral) is the XML value of xxx;
• IL("xxx"^^rdf:XMLLiteral) ∈ LV ;
• 〈IL("xxx"^^rdf:XMLLiteral), I(rdf : XMLLiteral)〉
∈ IEXT (I(rdf : type))

– If "xxx"^^rdf:XMLLiteral is in V and xxx is an ill-typed XML literal string,
then
• IL("xxx"^^rdf:XMLLiteral) /∈ LV ;
• 〈IL("xxx"^^rdf:XMLLiteral), I(rdf : XMLLiteral)〉

/∈ IEXT (I(rdf : type))

Table 1. RDF axiomatic triples

rdf:type rdf:type rdf:Property .
rdf:subject rdf:type rdf:Property .
rdf:predicate rdf:type rdf:Property .
rdf:object rdf:type rdf:Property .
rdf:first rdf:type rdf:Property .
rdf:rest rdf:type rdf:Property .
rdf:value rdf:type rdf:Property .
rdf:_1 rdf:type rdf:Property .
rdf:_2 rdf:type rdf:Property .

. . .
rdf:nil rdf:type rdf:List .

A consequence of the first condition is that, in RDF, IP is a subset of IR.

1 http://www.w3.org/1999/02/22-rdf-syntax-ns#
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2.6 RDF Schema Interpretation

RDF Schema has a larger vocabulary then RDF, composed of URIs in the rdfs:
namespace2. The semantics is conveniently expressed in terms of classes: a class
is a resource with a class extension ICEXT, which is a subset of IR. As a con-
sequence of this definition, a class can have itself as a member. The relation
between a class and a class member is given using the RDF vocabulary property
rdf:type, and the set of all classes is IC.

An RDF Schema interpretation is an RDF interpretation which satisfies RDFS
axiomatic triples of Table 2 and the following conditions:

– x ∈ ICEXT (y) if and only if 〈x, y〉 ∈ IEXT (I(rdf : type))
• IC = ICEXT (I(rdfs : Class))
• IR = ICEXT (I(rdfs : Resource))
• IL = ICEXT (I(rdfs : Literal))

– If 〈x, y〉 ∈ IEXT (I(rdfs : domain)) and 〈u, v〉 ∈ IEXT (x)
then u ∈ ICEXT (y)

– If 〈x, y〉 ∈ IEXT (I(rdfs : range)) and 〈u, v〉 ∈ IEXT (x)
then v ∈ ICEXT (y)

– IEXT (I(rdfs : subPropertyOf)) is transitive and reflexive on IP
– If 〈x, y〉 ∈ IEXT (rdfs : subPropertyOf) then x, y ∈ IP and IEXT (x) ⊆

IEXT (y)
– If x ∈ IC then 〈x, I(rdfs : Resource)〉 ∈ IEXT (I(rdfs : subClassOf))
– If 〈x, y〉 ∈ IEXT (I(rdfs : subClassOf)) then x, y ∈ IC and ICEXT (x) ⊆

ICEXT (y)
– IEXT (I(rdfs:subClassOf)) is transitive and reflexive on IC
– If x ∈ ICEXT (I(rdfs : ContainerMembershipProperty))

then 〈x, I(rdfs : member)〉 ∈ IEXT (I(rdfs : subPropertyOf))
– If x ∈ ICEXT (I(rdfs : Datatype))

then 〈x, I(rdfs : Literal)〉 ∈ IEXT (I(rdfs : subClassOf))

3 Fuzzy RDF

In this section we will introduce fuzzy RDF as follows. In 3.1 and 3.2 we will
first show how a a fuzzy interpretation can be given to plain RDF graphs. Then,
after introducing a syntax for fuzzy graphs in 3.3, we give an interpretation for
them in 3.4, 3.5, and 3.6.

3.1 Simple Fuzzy Interpretation

The intuitive meaning of a statement is that a relation, given by the property,
holds between the subject and the object. An uncertainty on a statement must
thus be reflected by an uncertainty on the subsistence of the relation between
subject and object.
2 http://www.w3.org/2000/01/rdf-schema#
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Table 2. RDF axiomatic statements

rdf:type rdfs:domain rdfs:Resource .
rdfs:domain rdfs:domain rdf:Property .
rdfs:range rdfs:domain rdf:Property .
rdfs:subPropertyOf rdfs:domain rdf:Property .
rdfs:subClassOf rdfs:domain rdfs:Class .
rdf:subject rdfs:domain rdf:Statement .
rdf:predicate rdfs:domain rdf:Statement .
rdf:object rdfs:domain rdf:Statement .
rdfs:member rdfs:domain rdfs:Resource .
rdf:first rdfs:domain rdf:List .
rdf:rest rdfs:domain rdf:List .
rdfs:seeAlso rdfs:domain rdfs:Resource .
rdfs:isDefinedBy rdfs:domain rdfs:Resource .
rdfs:comment rdfs:domain rdfs:Resource .
rdfs:label rdfs:domain rdfs:Resource .
rdf:value rdfs:domain rdfs:Resource .
rdf:type rdfs:range rdfs:Class .

rdfs:domain rdfs:range rdfs:Class .
rdfs:range rdfs:range rdfs:Class .
rdfs:subPropertyOf rdfs:range rdf:Property .
rdfs:subClassOf rdfs:range rdfs:Class .
rdf:subject rdfs:range rdfs:Resource .
rdf:predicate rdfs:range rdfs:Resource .
rdf:object rdfs:range rdfs:Resource .
rdfs:member rdfs:range rdfs:Resource .
rdf:first rdfs:range rdfs:Resource .
rdf:rest rdfs:range rdf:List .
rdfs:seeAlso rdfs:range rdfs:Resource .
rdfs:isDefinedBy rdfs:range rdfs:Resource .
rdfs:comment rdfs:range rdfs:Literal .
rdfs:label rdfs:range rdfs:Literal .
rdf:value rdfs:range rdfs:Resource .
rdf:Alt rdfs:subClassOf rdfs:Container .

rdf:Bag rdfs:subClassOf rdfs:Container .
rdf:Seq rdfs:subClassOf rdfs:Container .
rdfs:ContainerMembershipProperty rdfs:subClassOf rdf:Property .
rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso .

rdf:XMLLiteral rdf:type rdfs:Datatype .

rdf:XMLLiteral rdfs:subClassOf rdfs:Literal .
rdfs:Datatype rdfs:subClassOf rdfs:Class .
rdf:_1 rdf:type rdfs:ContainerMembershipProperty .

rdf:_1 rdfs:domain rdfs:Resource .
rdf:_1 rdfs:range rdfs:Resource .
rdf:_2 rdf:type rdfs:ContainerMembershipProperty .
rdf:_2 rdfs:domain rdfs:Resource .
rdf:_2 rdfs:range rdfs:Resource .

. . .

Starting from RDF syntax and model theory, a new theory is developed with
the aim to make the minimal amount of changes needed; in the following, the
emphasis will be on the part where it branches from RDF semantics.

In fuzzy RDF model theory, a couple 〈subject, object〉 has a membership de-
gree to the extension of the predicate. Membership degrees will be taken, without
loosing generality, as real numbers in the interval [0, 1]. Thus, the extension is
not an ordinary set of couples anymore, but a fuzzy set of couples.

We have chosen not to make the mapping between vocabulary items and
domain elements fuzzy. Instead, the membership of a resource to the domain is
fuzzy. This is a step which poses some theoretical problems, in particular when
we have to deal with properties in simple interpretations. In RDF interpretations,
the property domain IP is a subset of the resource domain IR, so in fuzzy RDF
interpretations would be enough to make IP a fuzzy subset of IR; in simple
interpretations, however, there is no formal relation between IP and IR, so
when the mapping IS from URI references to IR ∪ IP becomes fuzzy we need
a further device. The chosen solution is to define a domain IDP for properties,
so that IP is a fuzzy subset of IDP , and to modify the definition of IS to a
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mapping from URI references in V to IR ∪ IDP . RDF interpretations will not
need IDP , as IP can be shown to be a fuzzy subset of IR. The membership
degree of a resource to IP is intuitively related to the use of the resource as a
property; this would be clearer later.

Definition 1 (simple interpretation)
A simple fuzzy interpretation If of a vocabulary V is defined by:

1. A non-empty set IR of resources, called the domain or universe of If .
2. A set IDP , called the property domain of If .
3. A fuzzy subset IP of IDP , called the set of properties of If .
4. A fuzzy mapping IEXT from property domain IDP to the powerset of IR×

IR, i.e. the set of pairs 〈x, y〉 with x, y ∈ IR.
5. A mapping IS from URI references in V to IR ∪ IDP .
6. A mapping IL from typed literals in V to IR.
7. A distinguished subset LV ⊆ IR, called the set of literal values, which con-

tains all the plain literals of V .

3.2 Fuzzy Denotations for Ground Graphs

The truth of a ground triple in fuzzy RDF is given by a value. The degree of
satisfaction for a statement s p o. is the degree of membership of the couple,
formed by the interpretation of the subject and the interpretation of the object,
to the extension of the interpretation of the predicate.

We will use the abbreviated Zadeh’s notation A(x) = n, instead of μA(x) = n,
to state that the membership degree of the element x to the set A is equal to
n [25].

Denotation of ground graph from syntactic constituents is the same as in 2.3;
only the condition of truth and falsity of a ground statement in the interpretation
is affected. Truth values for statement under a fuzzy interpretation is given as
follows:

Definition 2 (Semantic conditions for ground graphs). If E is a ground
triple s p o., and s, p and o are in the vocabulary V of a fuzzy interpretation If ,
then If (E) = min{IP (If (p)), IEXT (If (p))(〈If (s), If (o)〉)}, otherwise If (E) =
0.

If E is a ground RDF graph, than If (E) = minE′∈E{If (E′)}.

From the given definition of denotation of a statement follows that a resource
p used as a property in some statement must belong to set of properties with a
degree IP(p) greater then or equal each statement’s value.

The truth of a graph is defined as the minimum of statements’ truth values.
This, as every semantics based on minima with respect of a population, can give
unreasonable results when a single statements has atypically low truth value. For
example, given an interpretation If , if there is a statement E′ with interpretation
much smaller than the interpretation of every other statement in the graph, the
interpretation of the entire graph E is the same as the interpretation of E′.
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This behavior reflects the fact that a chain (of inferences) is only as strong as
its weakest link; or, as in classical philosophical logic, pejorem semper sequitur
conclusio partem (the conclusion follows always from the weaker part). A se-
mantics based on minima of function cannot be avoided in fuzzy logic, as any
other t-norm would give values smaller then or equal to min3.

3.3 Syntax for Fuzzy Graphs

So far we have seen how a plain graph can be given a fuzzy interpretation.
However, it is not clear how membership values must be chosen, or at least how
membership values can be given or represented.

To represent uncertainty at the triple level, the RDF syntax must be extended
to add to the triple 〈subject, predicate, object〉 the membership value. This is
not an extension from a 3-elements tuple to a 4-elements tuple as it may seem at
a first glance; the added element has a syntactic nature different from the others:
it is not an element of the domain of the discourse, but a property related to the
formalism used by the language to represent uncertainty and vagueness.

To show the extended syntax we will modify the N-Triples [29] concrete syn-
tax, a line-based, plain text format for encoding an RDF graph, used to show
RDF test cases. in the original for a statement is s p o., where s, p and o
are respectively the subject, the predicate and the object of the statement. Our
extended syntax add an optional prefix n:, where n is a decimal number repre-
senting the fuzzy truth-value of the triple. The use of decimal numbers instead
of real numbers is only a limitation of the syntax and does not undermine the
discussion. Modifications to N-Triples’ EBNF are given in Table 3.

Table 3. Modification to N-Triples EBNF for Fuzzy N-Triples. Definitions of white
space (ws), comment, end-of-line characters (eoln), subject, predicate and object are
unchanged from [29] and not shown here.

fuzzyNtripleDoc ::= line*
line ::= ws* ( comment | statement )? eoln
statement ::= (value ‘:’ ws+)? subject ws+ predicate ws+ object ws* ‘.’ ws*
value ::= 1 | 0.[0–9]+

The term triple, used in the EBNF for N-Triple, is replaced with the more
generic term statement. Triple and statement are often used in semantic web lit-
erature as synonyms, but we prefer to use the latter to avoid confusion between a

3 For any other operator � such that

x � 1 = 1 � x = x and

x1 � y1 ≤ x2 � y2 if x1 ≤ x2 and y1 ≤ y2 (monotonicity)

it can be easily shown that x � y ≤ min{x, y}. See [26] or any introductive text in
fuzzy logic, such as [27] or [28].
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plain RDF statement (made actually of three parts) and a fuzzy RDF statement
(that, although still a triple semantically, is made up of four elements).

The fuzzy value is defined as optional. This way, the syntax is backward-
compatible; the intended semantics is that a statement with the form s p o.
is equivalent to the statement 1: s p o.. With such a (syntactic only) default,
and the defined semantics, we could take an inference engine implementing fuzzy
RDF, let it parse plain RDF statements, and get the same results of a conven-
tional RDF inference engine. Furthermore, as it would be clear in the description
of fuzzy RDF inference rules (section 5), even the complexity of the computation
would be of the same order.

We will not give an abstract syntax, as in [22], nor a RDF/XML based syntax,
as in [30]. All “physical” data (i.e., data transmitted between host or processes)
is supposed to be encoded using plain RDF reified statements4. The extended
syntax is to be used only to write examples and test cases.

3.4 Denotations for Fuzzy Ground Graphs

Denotation for statements and graphs, in the case of fuzzy graphs, is modified
as follows:

Definition 3 (Semantic conditions for ground graphs). If E is a ground
triple s p o., and s, p and o are in the vocabulary V of a fuzzy interpretation I,
then I(E) ≤ min{IP (I(p)), IEXT (I(p))(〈I(s), I(o)〉)}, otherwise I(E) = 0.

If E is a ground RDF graph, than I(E) = minE′∈E{I(E′)}.

Given this denotation, a statement n: s p o. intuitively corresponds to a re-
striction on interpretations imposing that membership of p to IP must be at
least n, and membership of 〈s, o〉 to IEXT (p) must be at least n5

4 To encode a fuzzy statements in pain RDF, the value is given to the reification of
the statement by a property. Let’s call fuzzyValue the property denoting the fuzzy
membership value of a statement. The encoding of n: s p o. would be:

:xxx rdf:type rdf:Statement .
:xxx rdf:subject s .
:xxx rdf:predicate p .
:xxx rdf:object o .
:xxx fuzzyValue n .

In the example, :xxx is a blank node and n a placeholder for a typed literal with
a numerical value.

5 In fact, an alternative (maybe clearer syntax) for statement n: s p o. would be

s p o ≥ n .

At this point, why not introduce also the opposite statements, with the ≤ instead of
≥? However, the resulting mixing of semantic conditions would introduce a problem
usually non relevant in plain RDF: consistency. While every RDF graph has at least a
simple interpretation that is a model (the Herbrand interpretation), a graph made by
the statements s p o ≥ n1 . and s p o ≤ n2 ., with n1 > n2, would have no models..
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Property 1. A graph where the same statement appears more than once, with
different values, is equivalent to a graph where the statement appears only once,
with a value equal to the maximum of the membership degrees.

3.5 Simple Entailment among Fuzzy Graphs

The definition of simple entailment between RDF graphs is not affected. A set S
of RDF graphs (simply) entails a graph E if every interpretation which satisfies
every member of S also satisfies E.

Property 2. If a set S of fuzzy RDF graphs entails a statement n: s p o., then
S entails any statement n’: s p o. with n′ ≤ n.

Definition 4. If S is a set of fuzzy RDF graphs and E is the plain statement
s p o., the minimum value of E (with respect to S) is the minimum value n
such that S entails n: s p o..

Property 3. If E is the plain statement s p o. and n is the minumum value
E with respect to a set S of fuzzy RDF graphs, then S entails any statement
n’: s p o. with n′ ≤ n.

Lemmas that apply to simple interpretation (§3.5) retain their validity within
fuzzy RDF Model Theory. Even the proofs from appendix A of [3], with minimal
syntactical adjustments, are the same.

Regarding the empty graph lemma, it is still valid is we keep the same defi-
nition of empty graph as in plain RDF:

Definition 5. An empty fuzzy graph is a graph containing no statements.

An empty fuzzy graph can not be defined as a graph with no not-zero-valued
statements. Statements such as 0: s p o. cannot be ignored, as the semantic
requirements that s, p and o must belong to the graph’s vocabulary still apply.

Proofs of interpolation, anonymity, monotonicity and compactness lemma
need to build an Herbrand interpretation. The fuzzy version of the Herbrand
interpretation can be defined as in Def. 6.

Definition 6. Given a nonempty fuzzy graph G, the (simple) fuzzy Herbrand
interpretation of G, written Herb(G), is the interpretation defined as follows.

– LVHerb(G) is the set of all plain literals in G;
– IRHerb(G) is the set of all names and blank nodes which occur in subject or

object position of statements in G;
– IDPHerb(G) is the set of URI references which occur in the property position

of statements in G;
– IPHerb(G)(p) is the maximum of n for all statements in which p occur in

property position;
– IEXTHerb(G)(〈s, o〉) is the maximum n for all the statements n: s p o. in

G
– ISHerb(G) and ILHerb(G) are both identity mappings on the appropriate parts

of the vocabulary of G.
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3.6 Fuzzy RDF Interpretation

A fuzzy RDF interpretation must satisfy all the RDF axiomatic triples in Table 1
and the following conditions:

Definition 7 (Fuzzy RDF Semantic Conditions)

– IP (x) = IEXT (I(rdf : type))(〈x, I(rdf : Property))
– If "xxx"^^rdf:XMLLiteral is in V and xxx is a well-typed XML literal

string, then
• IL("xxx"^^rdf:XMLLiteral) is the XML value of xxx;
• IL("xxx"^^rdf:XMLLiteral) ∈ LV ;
• IEXT (I(rdf : type))(〈IL("xxx"^^rdf:XMLLiteral),

I(rdf : XMLLiteral)〉) = 1
– If "xxx"^^rdf:XMLLiteral is in V and xxx is an ill-typed XML literal

string, then
• IL( "xxx"^^rdf:XMLLiteral) /∈ LV ;
• IEXT (I(rdf : type))(〈IL("xxx"^^rdf:XMLLiteral),

I(rdf : XMLLiteral)〉) = 0

As the first RDF semantic condition has the consequence that IP must be a
subset of IR, there is no more need of IDP , and IP can be directly defined as a
fuzzy subset of IR. Membership to class rdf:Property is defined as equivalent
to membership to IP .

The second and third conditions amounts to seeing the well-formedness of an
XML Literal as crisp truth-valued. As the algorithm to classify an XML literal
as well-formed or not is deterministic, the classification is crisp.

By definition, axiomatic triples have a unit truth value. Given the (syn-
tactic) convention that a triple s p o. is equivalent to the fuzzy statement
1: s p o., the set of fuzzy RDF axiomatic statements is the same as plain RDF
(Table 1).

4 Fuzzy RDF Schema

The path from RDF Schema to fuzzy RDF Schema follows the same guidelines of
the previous section: the main concern is the choice of the characteristic function
to soften in order to capture a fuzzy semantic.

While in RDF the main construct is the extension, the RDF Schema semantics
is stated in terms of classes [3].

As a class is a resource with a class extension, ICEXT , which represents a
set of domain element, the definition of class relies on the definition of exten-
sion. If an extension is a set of couples, and a fuzzy extension is a fuzzy set
of couples, fuzzy class extensions in RDF Schema are fuzzy sets of domain’s
elements.
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4.1 RDF Schema Interpretation

An RDF Schema interpretation defines the domains for resources (IR), literals
(IL) and literal values (LV ) in terms of fuzzy classes, i.e. fuzzy subdomains of IR.

After showing the semantic conditions, we will try to explain the more prob-
lematic definitions (domains and ranges in §4.3, subproperties and subclasses in
§4.4) in terms of a definition of inclusion grade between fuzzy subsets (§4.2).

A fuzzy RDF Schema interpretation is a fuzzy RDF interpretation which
satisfies RDFS axiomatic triples of Table 2 and the following conditions:

Definition 8 (RDFS semantic conditions)

– ICEXT (y)(x) = IEXT (I(rdf : type))(〈x, y〉)
• IC = ICEXT (I(rdfs : Class))
• IR = ICEXT (I(rdfs : Resource))
• IL = ICEXT (I(rdfs : Literal))

– infa∈IRmin{1, 1 − maxb∈IRIEXT (x)(〈a, b〉) + ICEXT (y)(a)} ≥
IEXT (I(rdfs : domain))(〈x, y〉)

– infb∈IRmin{1, 1 − maxa∈IRIEXT (x)(〈a, b〉) + ICEXT (y)(b)} ≥
IEXT (I(rdfs : range))(〈x, y〉)

– IEXT (I(rdfs : subPropertyOf)) is transitive and reflexive on IP
– If IEXT (rdfs : subPropertyOf)(〈x, y〉) = n, then IP (x) ≥ n, IP (y) ≥ n,

infa, b∈IR min{1, 1 − IEXT (x)(〈a, b〉) + IEXT (y)(〈a, b〉)} ≥ n
– IEXT (I(rdfs : subClassOf))(〈x, I(rdfs : Resource)〉) = IC(x)
– If IEXT (rdfs : subClassOf)(〈x, y〉) = n, then IC(x) ≥ n, IC(y) ≥ n,

infa∈IRmin(1, 1 − ICEXT (x)(a) + ICEXT (y)(a)} ≥ n.
– IEXT (I(rdfs:subClassOf)) is transitive and reflexive on IC
– IEXT (I(rdfs : subPropertyOf))(〈x, I(rdfs : member)〉) =

ICEXT (I(rdfs : ContainerMembershipProperty))(x)
– ICEXT (I(rdfs : Datatype))(x) =

IEXT (I(rdfs : subClassOf))(〈x, I(rdfs : Literal)〉)

As for fuzzy RDF, given the syntactic default, the set of fuzzy RDF Schema
axiomatic statements is the same as plain RDF Schema (Table 2).

4.2 Inclusion Grades

To define the semantics of some RDF Schema vocabulary terms (domain and
range, subClassOf and subPropertyOf), we need a relation of set inclusion
between fuzzy sets that takes into account also the degree of the relation of
inclusion itself. This relation must be transitive and reflexive.

Zadeh’s definition of fuzzy subset [31]6 (A ⊆ B ⇐⇒ ∀x ∈ X A(x) ≤ B(x))
is transitive and reflexive, but it is a rigid definition: either the set A is a subset of
B, or not. What we need is instead a weaker fuzzy subset relation; a relation that
reduces to the Zadeh’s one when the inclusion is certain. It must also maintain
the reflexivity and transitivity properties.
6 Again, we use the abbreviation A(x) for the membership function μA(x).
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Dubois and Prade [32] define weak inclusion �α as

A �α B ⇐⇒ x ∈ (A ∪B)α ∀x ∈ X ,

where α is a parameter and (·)α is the α-cut7. However, this relation is transitive
only for α > 1

2 .
Other definitions of weak inclusion make use of inclusion grades. An inclusion

grade I(A, B) is a scalar measure of the inclusion of the set A in the set B.
In general, A ⊆α B iff I(A, B) ≥ α, where ⊆α denote a weak inclusion with
inclusion grade α.

We have chosen to use the inclusion grade defined in [32] as:

I(A, B) = infx∈X(A | − | B)(x)

where inf is the infimum and | − | is the bounded difference8.
When A ⊆ B, I(A, B) = 1 [32]. This inclusion grade could also be written as

I(A, B) = infx∈X(1−max(0, A(x)−B(x))) = infx∈Xmin(1, (1−A(x)+B(x)));
in this form corresponds to Lukasiewicz implication operator, a base operator
around whom other generalized implication operators are built [34].

It could be interesting to ask how much this definition differs from the con-
dition for classical fuzzy subsets, i.e. A(x) ≤ B(x). If A ⊆ B, then I(A, B) = 1
and the inclusion holds for any grade.

Let’s call d(x) the difference d(x) = A(x)−B(x), so that 1−A(x) + B(x) =
1− d(x). A requirement that inclusion grade between A and B must be at least
n could be written as

infx∈Xmin{1, 1− d(x)} ≥ n .

But n ≤ 1, so the maximum value of d(x) for which this condition holds is equal
to 1 − n. Finally, if n is the required inclusion, 1 − n can represent the lack of
inclusion, and we can conclude that the maximum allowable difference between
A(x) and B(x) is equal to the lack of inclusion allowed between A and B.

4.3 Domains and Ranges

In non-fuzzy RDF Schema, if a resource u is used as subject for a statement
whose property is x, then u must belong to the domain of x. This condition could
be stated in term of sets. First, we can define dom(p) (the “actual” domain) as
the set of resources used as subject for some statement whose property is p:

dom(p) = {s : 〈s, o〉 ∈ IEXT (p) for some o ∈ IR}

Thus the condition for domains is that the “actual” domain is a subset of the
stated domain: if p has domain y, then dom(p) ⊆ ICEXT (y).

7 The α-cut Aα of A is the set of all elements with a membership value to A greater
than α, with α ∈ (0, 1] Aα = {x|A(x) ≥ α}.

8 ∀x ∈ X, (A | − | B)(x) = max(0, A(x) − B(x)) [33].
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In fuzzy set theory, the definition of domain for a fuzzy relation R on X × Y
is dom(R)(x) = supyR(x, y) [32], i.e. the least upper bound of R(x, y) for all y.
We can thus define the fuzzy set of resources used as subject for some statement
whose property is p:

dom(p)(s) = max
o∈IR

{IEXT (p)(〈s, o〉)}

In fuzzy RDF Schema a simple condition such as dom(p) ⊆ ICEXT (y), i.e. the
actual domain required to be fuzzy subset of the stated domain, is not enough.
We have to deal both with a fuzzy notion of domain, and with a fuzzy assignment
of a domain to a property. The resulting condition is the combination of the two
requirements, using the aforementioned notion of inclusion grade.

The semantic condition for domains can thus be read as:

The inclusion grade of the domain of x into y must be greater then or
equal to the membership of 〈x, y〉 into IEXT (I(rdfs : domain)).

The condition for ranges is completely analogous. The “actual” range ran(p)
is the set of resources used as object for some statement whose property is p:

ran(p) = {o : 〈s, o〉 ∈ IEXT (p) for some s ∈ IR}

Given this definition, the semantic condition for ranges can be read as:

The inclusion grade of the range of x into y must be greater then or equal
to the membership of 〈x, y〉 into IEXT (I(rdfs : domain)).

4.4 Subproperties and Subclasses

To define the semantics of subPropertyOf and subClassOf we use again the
previously defined inclusion grade between fuzzy sets. The condition on sub-
properties corresponds to:

The inclusion grade of property x into property y must be greater then or
equal to the membership of 〈x, y〉 into IEXT (I(rdfs : subPropertyOf)).

Subproperties and subclasses and are fully analogous concepts in RDFS: the
inclusion is between extensions for the former, between class extensions for the
latter. The condition on subclasses is:

The inclusion grade of class x into class y must be greater then or equal
to the membership of 〈x, y〉 into IEXT (I(rdfs : subClassOf)).

5 Fuzzy RDF Entailment Rules

RDF model theory specification [3] suggests a set of entailment rules for RDF
and RDF Schema. All the entailment rules are of the same form: add a statement
to a graph when it contains triples conforming to a pattern. The rules are valid
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Table 4. Fuzzy RDF inference rules

# antecedents consequent
1 iii: xxx aaa yyy iii: aaa rdf:type rdf:Property
2.1 iii: xxx aaa yyy kkk: xxx rdf:type zzz

jjj: aaa rdfs:domain zzz where kkk = min(iii, jjj)
2.2 iii: aaa rdfs:domain zzz kkk: xxx rdf:type zzz

jjj: xxx aaa yyy where kkk = min(iii, jjj)
3.1 iii: xxx aaa uuu kkk: uuu rdf:type zzz

jjj: aaa rdfs:range zzz where kkk = min(iii, jjj)
3.2 iii: aaa rdfs:range zzz kkk: uuu rdf:type zzz

jjj: xxx aaa uuu where kkk=min(iii, jjj)
4a iii: xxx aaa yyy jjj: xxx rdf:type rdfs:Resource
4b iii: xxx aaa uuu iii: uuu rdf:type rdfs:Resource
5a.1 iii: aaa rdfs:subPropertyOf bbb kkk: aaa rdfs:subPropertyOf ccc

jjj: bbb rdfs:subPropertyOf ccc where kkk=min(iii, jjj)
5a.2 iii: bbb rdfs:subPropertyOf ccc kkk: aaa rdfs:subPropertyOf ccc

jjj: aaa rdfs:subPropertyOf bbb where kkk=min(iii, jjj)
5b iii: xxx rdf:type rdf:Property iii: xxx rdfs:subPropertyOf xxx

reflexivity of rdfs:subPropertyOf
6.1 iii: xxx aaa yyy kkk: xxx bbb yyy

jjj: aaa rdfs:subPropertyOf bbb where kkk=min(iii, jjj)
6.2 iii: aaa rdfs:subPropertyOf bbb kkk: xxx bbb yyy

jjj: xxx aaa yyy where kkk=min(iii, jjj)
7a iii: xxx rdf:type rdfs:Class iii: xxx rdfs:subClassOf rdfs:Resource
7b iii: xxx rdf:type rdfs:Class iii: xxx rdfs:subClassOf xxx

reflexivity of rdfs:subClassOf
8.1 iii: xxx rdfs:subClassOf yyy kkk: xxx rdfs:subClassOf zzz

jjj: yyy rdfs:subClassOf zzz where kkk=min(iii, jjj)
8.2 iii: yyy rdfs:subClassOf zzz kkk: xxx rdfs:subClassOf zzz

jjj: xxx rdfs:subClassOf yyy where kkk=min(iii, jjj)
9.1 iii: xxx rdfs:subClassOf yyy kkk: aaa rdf:type yyy

jjj: aaa rdf:type xxx where kkk=min(iii, jjj)
9.2 iii: aaa rdf:type xxx kkk: aaa rdf:type yyy

jjj: xxx rdfs:subClassOf yyy where kkk=min(iii, jjj)
10 iii: xxx rdf:type iii: xxx rdfs:subPropertyOf rdfs:member

rdfs:ContainerMembershipProperty
11 iii: xxx rdf:type rdfs:Datatype jjj: xxx rdfs:subClassOf rdfs:Literal
X1 iii: xxx rdf:_* yyy jjj: rdf:_* rdf:type rdfs:ContainerMembershipProperty

This is an extra rule for list membership
properties (_1, _2, _3, ...). The RDF MT
does not specify a production for this.

in the sense that a graph entails any larger graph obtained adding statements
according to such rules.

Each rule has only one or two antecedent statements and derives only one
new inferred statement; either P  R or P, Q  R. Given the way fuzzy RDF
semantics is defined, the corresponding inference rules for fuzzy RDF are analo-
gous; only the fuzzy truth values of inferred statements must be computed. The
simplest possible choice that respect the semantics is:

– With rules as P  Q, having only one antecedent, the membership value of
the inferred consequent Q is taken to be the same of the antecedent P .

– With rules as P, Q  R, the truth value of the inferred consequent R is the
minimum between the membership values of P and Q.

Such inference patterns gives maximal membership values: the starting graph
would entail any statement with the same consequent and a membership value
lesser than or equal than the one given by the rules.
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The resulting inference rules for RDF/RDFS are shown in Table 4.
The rules table is derived from the rules used by the Sesame[35] forward-

chaining inferencer. Sesame is a generic architecture for storing and querying
RDF and RDF Schema, that makes use of a forward-chaining inferencer to com-
pute and store the closure of its knowledge base whenever a transaction adds
data to the repository[36]. A simple proof-of-concept fuzzy RDF storage and in-
ference tool was obtained modifying Sesame inferencer, making it compute the
correct membership values for the inferred statements. The underlying state-
ments storage was also extended to save statements’ membership values.

As the number of required steps is the same, and additional computations
amount at most to a single comparison of membership values, complexity of
reasoning in fuzzy RDF as the same complexity order then reasoning in plain
RDF.

There is no known proof that an inference engine implementing the rules in
Table 4 would be complete. In fact, there is no such proof for plain RDF/S
inference rules either.
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report). In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp.
167–181. Springer, Heidelberg (2005)

9. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: Fuzzy OWL: Uncer-
tainty and the semantic web. In: Proc. of the Int. Workshop of OWL: Experiences
and Directions, Galway, Ireland (2005)



260 M. Mazzieri and A.F. Dragoni

10. Tresp, C.B., Molitor, R.: A description logic for vague knowledge. In: Proc. of the
13th European Conf. on Artificial Intelligence (ECAI’98), pp. 361–365. J. Wiley
and Sons, Chichester (1998)

11. Sánchez, D., Tettamanzi, A.: Generalizing quantification in fuzzy description logics.
Computational Intelligence, Theory and Applications, 397–411 (2005)

12. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: A fuzzy description
logic for multimedia knowledge representation. In: Int. Workshop on Multimedia
and the Semantic Web (2005)
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Abstract. The last couple of years it is widely acknowledged that un-
certainty and fuzzy extensions to ontology languages, like Description
Logics (DLs) and OWL, could play a significant role in the improvement
of many Semantic Web (SW) applications. Many of the tasks of SW like
trust, matching, merging, ranking usually involve confidence or truth
degrees that one requires to represent and reason about. Fuzzy DLs are
able to represent vague concepts such as a “Tall” person, a “Hot” place,
a “MiddleAged” person, a “near” destination and many more. In the
current paper we present a fuzzy extension to the DL SHIN . First, we
present the semantics while latter a detailed reasoning algorithm that de-
cides most of the key inference tasks of fuzzy-SHIN . Finally, we briefly
present the fuzzy reasoning system FiRE, which implements the pro-
posed algorithm and two use case scenarios where we have applied fuzzy
DLs through FiRE.

1 Introduction

The last decade a significant amount of research has been focused in the devel-
opment of the Semantic Web [1]. Semantic Web actually consists of an extension
of the current Web where information, that lies in databases, web pages, etc.,
would be semantically accessible, enabling complex tasks to be performed in an
(semi)automatic way. For example, Semantic Web agents would be able to ac-
complish tasks like a holiday organization, a doctor appointment, the retrieval
of images depicting specific events etc. in a semantic and (semi)automatic way.
In order to accomplish this goal it is widely recognized that information on the
web should be structured in a machine understandable way, by using knowledge
representation languages and forming ontologies [1]. For those reasons W3C1 has
standardized a number of ontology (knowledge representation) languages for the
Web. One of the most important and expressive ones is OWL [2]. The logical
underpinnings of OWL consist of very expressive Description Logics [3] and more
precisely, the OWL DL species of OWL is equivalent to SHOIN (D+), while
OWL Lite is equivalent to SHIF(D+).
1 http://www.w3.org/

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNAI 5327, pp. 262–281, 2008.
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Although, Description Logics are relatively expressive, they are based on two-
valued (Boolean) logics, which consider everything either true or false, thus they
are unable to represent truth degrees, which are important in representing vague
(fuzzy) knowledge. For example, they are unable to correctly represent concepts
like a “tall” man, a “fast” car, a “blue” sky and many more. Moreover, many Se-
mantic Web applications, like knowledge based information retrieval and ontology
matching [4], also involve degrees of equivalence or similarity, which are important
to represent and reason about. For those reasons fuzzy Description Logics [5, 6]
and fuzzy OWL [7] have been proposed as languages capable of representing and
reasoning with vague knowledge in the Semantic Web. With fuzzy DLs one usu-
ally is able to provide the same schema information as classical (crisp) DLs. For
example, one can still define the concept of a MiddleAged person as someone that
is either in his/her Forties or Fifties with the following axiom:

MiddleAged ≡ Forties � Fifties

On the other hand, one is able to state that John is in his fifties to a degree at
least 0.6 (since he is 46 years old) by writing (john : Fifties) ≥ 0.6, while he is also
tall to a degree at least 0.8 (since he is 190cm), writing (john : Tall) ≥ 0.8. Apart
from representing fuzzy knowledge one should be able to also reason about, and
for example infer that John is middle aged to a degree at least 0.8.

In the current paper we report on some recent results obtained about rea-
soning in very expressive fuzzy Description Logics and more precisely about
reasoning with the fuzzy DL fKD-SHIN [6,8,9,10]. First, we present a tableaux
reasoning algorithm for fKD-SHIN . Then, we report on an implementation of
the algorithm which gave rise to the FiRE fuzzy DL system and consists of an
extension of the tool presented in [8]. FiRE provides a graphical user interface
that can be used to load and reason with fuzzy DL ontologies. Furthermore,
FiRE is able to store a fuzzy knowledge into a triple store and query about it
using very expressive fuzzy conjunctive queries [11]. The rest of the paper is
organized as follows. Section 2 presents the syntax and semantics of the fuzzy
extension of SHIN . Then, in Section 3 we provide all the technical details for a
reasoning algorithm that decides most of the inference problems of fuzzy-SHIN .
Subsequently, Section 4 provides a brief presentation of the FiRE system. Then,
Section 5 presents two Use Case scenarios where we have applied FiRE and we
discuss its potentials and future directions. Finally, Section 6 provides a discus-
sion about state-of-the-art work in fuzzy DLs, while it also presents a list of
important open problems related to the area of fuzzy Description Logics.

2 Syntax and Semantics of f-SHIN
In this section we introduce the DL f-SHIN . As usual we have an alphabet of
distinct concept names (C), role names (R) and individual names (I). f-SHIN -
roles and f-SHIN -concepts are defined as follows:
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Definition 1. Let RN ∈ R be a role name, R an f-SHIN -role. f-SHIN -roles
are defined by the abstract syntax: R ::= RN | R−. The inverse relation of
roles is symmetric, and to avoid considering roles such as R−−, we define a
function Inv, which returns the inverse of a role, more precisely Inv(R) := RN−

if R = RN and Inv(R) := RN if R = RN−.
The set of f-SHIN -concepts is the smallest set such that:

1. every concept name CN ∈ C is an f-SHIN -concept,
2. if C and D are f-SHIN -concepts and R is an f-SHIN -role, then (C �D),

(C �D), (¬C), (∀R.C) and (∃R.C) are also f-SHIN -concepts,
3. if R is a simple2 f-SHIN -role and p ∈ N, then (≥ pR) and (≤ pR) are also

f-SHIN -concepts.

Although the definition of SHIN -concepts and roles is the same with the
one of fuzzy-SHIN -concepts and roles the semantics of f-SHIN are signifi-
cantly extended. This is because semantically we have to provide a fuzzy mean-
ing/interpretation to the building blocks of our language, like concepts, roles
and constructors. For that reason the semantics of fuzzy DLs are defined with
the help of fuzzy interpretations [5]. A fuzzy interpretation is a pair I = (ΔI , ·I)
where the domain ΔI is a non-empty set of objects and ·I is a fuzzy interpreta-
tion function, which maps:

1. an individual name a ∈ I to an element aI ∈ ΔI ,
2. a concept name A ∈ C to a membership function AI : ΔI → [0, 1],

3. a role name RN ∈ R to a membership function RI : ΔI ×ΔI → [0, 1].

Intuitively, an object (pair of objects) can now belong to a fuzzy concept (role)
to any degree between 0 and 1. For example, HotPlaceI(AthensI) = 0.7, means
that AthensI is a hot place to a degree equal to 0.7. Additionally, a fuzzy inter-
pretation function can be extended in order to provide semantics to any complex
f-SHIN -concept and role by using the operators of fuzzy set theory. More pre-
cisely, in the current setting we use the Lukasiewicz negation (c(a) = 1−a), Gödel
conjunction (min(a, b)) and disjunction (max(a, b)) and the Kleene-Dienes fuzzy
implication (max(1− a, b)). Then, since C �D represents a disjunction (union)
between concepts C and D we can use max and provide the semantic function
for disjunction: (C �D)I(a) = u(CI(a), DI(a)). The complete set of semantics
for f-SHIN -concepts and roles is depicted in Table 1. We remark that due to
the operators we use we call our language fKD-SHIN .

An fKD-SHIN TBox T is a finite set of terminological axioms. Let C and D
be two fKD-SHIN -concepts. Axioms of the form C � D are called fuzzy concept
inclusion axioms or fuzzy concept subsumptions or simply subsumptions, while
axioms of the form C ≡ D are called fuzzy concept equivalence axioms. A fuzzy
interpretation I satisfies an axiom C � D if ∀a ∈ ΔI , CI(a) ≤ DI(a) while it
satisfies an axiom C ≡ D if CI(a) = DI(a). Finally, a fuzzy interpretation I
2 A role is called simple if it is neither transitive nor has any transitive sub-roles.
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Table 1. Semantics of fKD-SHIN -concepts and fKD-SHIN -roles

Constructor Syntax Semantics
top � �I(a) = 1
bottom ⊥ ⊥I(a) = 0
general negation ¬C (¬C)I(a) = 1 − CI(a)
conjunction C 	 D (C 	 D)I(a) = min(CI(a), DI(a))
disjunction C 
 D (C 
 D)I(a) = max(CI(a), DI(a))
exists restriction ∃R.C (∃R.C)I(a) = supb∈ΔI {min(RI(a, b), CI(b))}
value restriction ∀R.C (∀R.C)I(a) = infb∈ΔI {max(1 − RI(a, b), CI(b))}
at-most restriction ≤ pR (≤ pR)I(a) = inf

b1,...,bp+1∈ΔI

p+1
max
i=1

{1 − RI(a, bi)}

at-least restriction ≥ pR (≥ pR)I(a) = sup
b1,...,bp∈ΔI

p

min
i=1

{RI(a, bi)}
inverse roles R− (R−)I(b, a) = RI(a, b)

satisfies an fKD-SHIN TBox T if it satisfies every axiom in T . Then we say
that I is a model of T .

An fKD-SHIN RBox R is a finite set of fuzzy role axioms. Axioms of the
form Trans(R) are called fuzzy transitive role axioms, while axioms of the form
R � S are called fuzzy role inclusion axioms. A fuzzy interpretation I satisfies
an axiom Trans(R) if ∀a, c ∈ ΔI , RI(a, c) ≥ supb∈ΔI{min(RI(a, b), RI(b, c))}
while it satisfies R � S if ∀〈a, b〉 ∈ ΔI × ΔI , RI(a, b) ≤ SI(a, b). Finally,
I satisfies an fKD-SHIN RBox if it satisfies every axiom in R. In that case
we say that I is a model of R. A set of fuzzy role inclusion axioms defines
a role hierarchy Rh. Additionally, we note that the semantics of role inclu-
sion axioms imply that if R � S, then also Inv(R) � Inv(S), like in the
classical case.

An fKD-SHIN ABox A is a finite set of fuzzy assertions [5] of the form
(a : C)��n or ((a, b) : R)��n, where �� stands for ≥, >,≤ and <, and n ∈ [0, 1] or
of the form a � .= b. Intuitively, a fuzzy assertion of the form (a : C) ≥ n means
that the membership degree of the individual a to the concept C is at least equal
to n. We call assertions defined using inequalities ≥, > positive, while those using
≤, < negative. Formally, given a fuzzy interpretation I,

I satisfies (a : C) ≥ n if CI(aI) ≥ n,
I satisfies (a : C) ≤ n if CI(aI) ≤ n,

I satisfies ((a, b) : R) ≥ n if RI(aI , bI) ≥ n,
I satisfies ((a, b) : R) ≤ n if RI(aI , bI) ≤ n,

I satisfies a � .= b if aI �= bI .

The satisfiability of fuzzy assertions with >, < is defined analogously. Observe
that, we can also simulate assertions of the form (a : C) = n by considering two
assertions of the form (a : C) ≥ n and (a : C) ≤ n. A fuzzy interpretation I
satisfies an fKD-SHIN ABox A iff it satisfies all fuzzy assertions in A; in this
case, we say that I is a model of A.
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Without loss of generality, we assume that no negative assertions exist. Neg-
ative assertions of the form (a : C) ≤ n and (a : C) < n can be transformed into
their positive inequality normal form (PINF), by applying a fuzzy complement
in both sides getting, (a : ¬C) ≥ 1−n and (a : ¬C) > 1−n (similarly with role
assertions), respectively. Furthermore, we assume that a fuzzy ABox has been
normalized [12], i.e. fuzzy assertions of the form (a : C) > n are replaced by
assertions of the form (a : C) ≥ n + ε, where ε is a small number converging
to 0. Please note that in a normalized fuzzy KB with only positive inequalities
degrees range over [+ε, 1 + ε]. Also note that a fuzzy ABox is consistent iff the
normalized one is [13]. For a fuzzy ABox we define the set of relative degrees as

NA = {0, 0.5, 1} ∪ {1− n, n | (a : C ≥ n) ∈ A or ((a, b) : R) ≥ n ∈ A}

An fKD-SHIN knowledge base (KB) is defined as Σ = 〈T ,R,A〉. An inter-
pretation I satisfies an fKD-SHIN knowledge base Σ if it satisfies every axiom
in T , R and A. In that case I is called a model of Σ.

Now we define the inference services of fKD-SHIN .

– KB Satisfiability: An fKD-SHIN knowledge base Σ = 〈T ,R,A〉 is satis-
fiable (unsatisfiable) iff there exists (does not exist) a fuzzy interpretation I
which satisfies all axioms in Σ.

– Concepts n-satisfiabilty: An fKD-SHIN -concept C is n-satisfiable w.r.t.
Σ iff there exists a model I of Σ in which there exists some a ∈ ΔI such
that CI(a) = n, and n ∈ (0, 1].

– Concept Subsumption: A fuzzy concept C is subsumed by D w.r.t. Σ iff
in every model I of Σ we have that ∀d ∈ ΔI , CI(d) ≤ DI(d).

– ABox Consistency: An fKD-SHIN A is consistent (inconsistent) w.r.t.
a TBox T and an RBox R if there exists (does not exist) a model I of T
and R which satisfies every assertion in A.

– Entailment: Given a concept or role axiom or a fuzzy assertion, Ψ , we say
that Σ entails Ψ , writing Σ |= Ψ iff every model I of Σ satisfies Ψ .

– Greater Lower Bound (glb): The greatest lower bound of an assertion Φ
w.r.t. Σ is defined as,

glb(Σ, Φ) = sup{n | Σ |= Φ ≥ n}, where sup ∅ = 0.

As we note glb, actually consists of a set of entailment tests.
The problems of concept n-satisfiability, subsumption and entailment w.r.t.

a knowledge base Σ can be reduced to the problem of knowledge base satis-
fiability Σ [5, 6]. Here, the reductions are slightly modified due to PINF and
normalization. More precisely, a concept C is n-satisfiable w.r.t. T and R iff
{(a : C) ≥ n} is consistent w.r.t. T and R. Moreover, for Σ = 〈T ,R,A〉, and
a PINF assertion φ ≥ n, where φ is a classical SHIN assertion, Σ |= φ ≥ n iff
Σ = 〈T ,R,A ∪ {¬φ ≥ 1 − n + ε}〉 is unsatisfiable. Furthermore, Σ |= C � D
iff 〈T ,R,A ∪ {(a : C) ≥ n, (a : ¬D) ≥ 1 − n + ε}〉 is unsatisfiable, for both
n ∈ {n1, n2}, n1 ∈ (0, 0.5] and n2 ∈ (0.5, 1].
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3 Reasoning with fKD-SHIN
In the previous section we show that all inference problems of fuzzy DLs, can be
reduced to the problem of knowledge base satisfiability. Consequently, we have
to construct an algorithm that decides such a reasoning problem. Our method
will be based on tableaux algorithms.

Without loss of generality, we assume all concepts C occurring in assertions
to be in their negation normal form (NNF) [3], denoted by ∼ C; i.e., negations
occur in front of concept names only. An fKD-SHIN -concept can be transformed
into an equivalent one in NNF by pushing negations inwards making use of the
De Morgan laws and the dualities between ∃ and ∀, and between concepts ≥
and ≤.

Definition 2. For every concept D we inductively define the set of sub-concepts
of (sub(D)) as,

sub(A) = {A} for every atomic concept A ∈ C,
sub(C �D) = {C �D} ∪ {sub(C)} ∪ {sub(D)},
sub(C �D) = {C �D} ∪ {sub(C)} ∪ {sub(D)},
sub(∃R.C) = {∃R.C} ∪ {sub(C)},
sub(∀R.C) = {∀R.C} ∪ {sub(C)},
sub(≥ nR) = {≥ nR}
sub(≤ nR) = {≤ nR}

Definition 3. For a fuzzy concept D and an RBox R we define cl(D,R) as the
smallest set of fKD-SI-concept which satisfies the following:

– D ∈ cl(D,R),
– cl(D,R) is closed under sub-concepts of D and ∼ D, and
– if ∀R.C ∈ cl(D,R) and Trans(P ) with P �* R, then ∀P.C ∈ cl(D,R)

Finally we define cl(A,R) = ∪
(a:D)≥n∈A

cl(D,R).

When R is clear from the context we simply write cl(A).

Definition 4. If Σ = 〈T ,R,A〉 is an fKD-SHIN knowledge base, RA is the set
of roles occurring in Σ together with their inverses, IA is the set of individuals
in A, a fuzzy tableau T for Σ is defined to be a quadruple (S, L, E, V) such that:
S is a set of elements, L : S× cl(A) → [0, 1] maps each element and concept to
the membership degree of that element to the concept, E : RA × S × S → [0, 1]
maps each role of RA and pair of elements to the membership degree of the pair
to the role, and V : IA → S maps individuals occurring in A to elements of S.
For all s, t ∈ S, C, E ∈ cl(A), n ∈ [0, 1] and R ∈ RA, T satisfies:

1. L(s,⊥) = 0 and L(s,�) = 1 for all s ∈ S,
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2. If L(s,¬A) = n, then L(s, A) = 1− n,
3. If E(¬R, 〈s, t〉) = n, then E(R, 〈s, t〉) = 1− n,
4. If L(s, C � E) ≥ n, then L(s, C) ≥ n and L(s, E) ≥ n,
5. If L(s, C � E) ≥ n, then L(s, C) ≥ n or L(s, E) ≥ n,
6. If L(s, ∀R.C) ≥ n, then either E(¬R, 〈s, t〉) ≥ n or L(t, C) ≥ n,
7. If L(s, ∃R.C) ≥ n, then there exists t ∈ S such that E(R, 〈s, t〉) ≥ n and
L(t, C) ≥ n,

8. If L(s, ∀R.C) ≥ n, then either E(¬P, 〈s, t〉) ≥ n, for P �* R with Trans(P ) or
L(t, ∀P.C) ≥ n,

9. E(R, 〈s, t〉) ≥ n iff E(Inv(R), 〈t, s〉) ≥ n,
10. If E(R, 〈s, t〉) ≥ n and R �* S, then E(S, 〈s, t〉) ≥ n,
11. If L(s,≥ pR) ≥ n, then �RT (s,≥, n) ≥ p,
12. If L(s,≤ pR) ≥ n, then �RT (s,≥, 1− n + ε) ≤ p,
13. If C � D ∈ T , then either L(s, C) ≥ 1− n + ε or L(s, D) ≥ n, for all s ∈ S

and n ∈ NA,
14. If (a : C) ≥ n ∈ A, then L(V(a), C) ≥ n,
15. If ((a, b) : R) ≥ n ∈ A, then E(R, 〈V(a),V(b)〉) ≥ n,
16. If a � .= b ∈ A, then V(a) �= V(b).

where � denotes the cardinality of a set, RT (s,≥, n) = {t ∈ S | E(R, 〈s, t〉) ≥ n}
returns the set of elements t ∈ S that participate in R with some element s with
a degree, greater or equal or greater than a given degree n.

Lemma 1. An fKD-SHIN knowledge base Σ is satisfiable iff there exists a
fuzzy tableau for Σ.

For a detailed proof of the above lemma as well as the intuition behind the
properties of Definition 3 the reader is referred to [6] and [12].

The above lemma establishes a connection between the satisfiability of a
knowledge base (existence of a model) and the existence of a fuzzy tableaux
for Σ. Thus, it suggests that in order to decide the key inference problems of
fKD-SHIN we have to develop an algorithm that given an fKD-SHIN KB Σ
it constructs a fuzzy tableau for Σ.

3.1 The Tableaux Algorithm

In order to decide knowledge base satisfiability a procedure that constructs a
fuzzy tableau for an fKD-SHIN knowledge base has to be determined. In the
current section we will provide the technical details for such an algorithm.

Definition 5. A completion-forest F for an fKD-SHIN knowledge base is a
collection of trees whose distinguished roots are arbitrarily connected by edges.
Each node x is labelled with a set L(x) = {〈C,≥, n〉}, where C ∈ cl(A) and
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n ∈ [+ε, 1 + ε]. Each edge 〈x, y〉 is labelled with a set L(〈x, y〉) = {〈R,≥, n〉},
where S := R | ¬R, and R ∈ RA is a (possibly inverse) role occurring in A.

If nodes x and y are connected by an edge 〈x, y〉 with 〈P,≥, n〉 ∈ L(〈x, y〉), and
P �* R, then y is called an R≥n-successor of x and x is called an R≥n-predecessor
of y. If y is an R≥n-successor or an Inv(R)≥n-predecessor of x, then y is called
an R≥n-neighbour of x. Let y be an R>n-neighbour of x. Then, the edge 〈x, y〉
is conjugated with triples 〈¬R,≥, m〉 if n + m ≥ 1. Similarly, we can extend
it to the case of R≥n-neighbours. As usual, ancestor is the transitive closure of
predecessor.

For two roles P , R, a node x in F , an inequality ≥ and a membership degree
n ∈ [0, 1] we define: RF

C (x,≥, n) = {y | y is an R≥n′-neighbour of x, and 〈x, y〉
is conjugated with 〈¬R,≥, n〉}.

A node x is blocked iff it is not a root node and it is either directly or indirectly
blocked. A node x is directly blocked iff none of its ancestors is blocked, and it
has ancestors x′, y and y′ such that:

1. y is not a root node,
2. x is a successor of x′ and y a successor of y′,
3. L(x) = L(y) and L(x′) = L(y′) and,
4. L(〈x′, x〉) = L(〈y′, y〉).

In this case we say that y blocks x. A node y is indirectly blocked iff one of its
ancestors is blocked, or it is a successor of a node x and L(〈x, y〉) = ∅.

For a node x, L(x) is said to contain a clash if it contains one of the following:

– two conjugated pairs of triples,
– one of 〈⊥,≥, n〉, with n > 0 or 〈C,≥, 1 + ε〉, or
– some triple 〈≤ pR,≥, n〉 and x has p + 1 R≥ni-neighbours y0, . . . , yp, 〈x, yi〉

is conjugated with 〈¬R,≥, n〉 and yi �= yj, ni, n ∈ [0, 1], for all 0 ≤ i < j ≤ p

Moreover, for an edge 〈x, y〉, L(〈x, y〉) is said to contain a clash if (i) it contains
two conjugated triples, or (ii) it contains the triple 〈R,≥, 1+ε〉, or (iii) L(〈x, y〉)∪
{〈Inv(R),≥, n〉 | 〈R,≥, n〉 ∈ L(〈y, x〉)}, where x, y are root nodes, contains two
conjugated triples.

For an fKD-SHIN knowledge base, the algorithm initialises a forest F to
contain

i. a root node xai , for each individual ai ∈ IA occurring in the ABox A, labelled
with L(xai ) such that: L(xai) = {〈C,≥, n〉 | (ai : C) ≥ n ∈ A},

ii. an edge 〈xai , xaj 〉, for each assertion ((ai, aj) : R) ≥ n ∈ A, labelled with
L(〈xai , xaj 〉) such that: L(〈xai , xaj 〉) = {〈R,≥, n〉 | 〈R,≥, n〉 ∈ A},

iii. the relation � .= as xai �
.= xaj if ai � .= aj ∈ A and the relation .= to be empty.

Finally, the algorithm expands R by adding role inclusion axioms Inv(P ) �
Inv(R), for all P � R ∈ R and by adding Trans(Inv(R)) for all Trans(R) ∈ R.
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Table 2. Expansion rules for fKD-SHIN

Rule Description
	 if 1. 〈C1 	 C2, ≥, n〉 ∈ L(x), x is not indirectly blocked, and

2. {〈C1, ≥, n〉, 〈C2, ≥, n〉} �⊆ L(x)
then L(x) → L(x) ∪ {〈C1, ≥, n〉, 〈C2, ≥, n〉}


 if 1. 〈C1 
 C2, ≥, n〉 ∈ L(x), x is not indirectly blocked, and
2. {〈C1, ≥, n〉, 〈C2, ≥, n〉} ∩ L(x) = ∅

then L(x) → L(x) ∪ {C} for some C ∈ {〈C1, ≥, n〉, 〈C2, ≥, n〉}
∃ if 1. 〈∃R.C, ≥, n〉 ∈ L(x), x is not blocked, and

2. x has some R≥n-neighbour y with 〈C, ≥, n〉 ∈ L(y)
then create a new node y with L(〈x, y〉) = {〈R, ≥, n〉}, L(y) = {〈C, ≥, n〉}

∀ if 1. 〈∀R.C, ≥, n〉 ∈ L(x), x is not indirectly blocked,
2. x has an R≥′n′ -neighbour y with 〈C, ≥, n〉 �∈ L(y) and
3. 〈x, y〉 conjugates with 〈¬R, ≥, n〉

then L(y) → L(y) ∪ {〈C, ≥, n〉}
∀+ if 1. 〈∀S.C, ≥, n〉 ∈ L(x), x is not indirectly blocked,

2. there exists some role R, with Trans(R) and R �* S,
3. x has an R≥′n′ -neighbour y with 〈∀R.C, ≥, n〉 �∈ L(y), and
4. 〈x, y〉 conjugates with 〈¬R, ≥, n〉

then L(y) → L(y) ∪ {〈∀R.C, ≥, n〉}
≥ if 1. 〈≥ pR, ≥, n〉 ∈ L(x), x is not blocked,

2. there are no p R≥,n-neighbours y1, . . . , yp of x
with yi �= yj for 1 ≤ i < j ≤ p

then create p new nodes y1, . . . , yp, with L(〈x, yi〉) = {〈R, ≥, n〉} and
yi �= yj for 1 ≤ i < j ≤ p

≤ if 1. 〈≤ pR, ≥, n〉 ∈ L(x), x is not indirectly blocked,
2. �RF

C (x, ≥, n) > p, there are two of them y, z, with no y � .= z and
3. y is neither a root node nor an ancestor of z

then 1. L(z) → L(z) ∪ L(y) and
2. if z is an ancestor of x
then L(〈z, x〉) −→ L(〈z, x〉) ∪ Inv(L(〈x, y〉))
else L(〈x, z〉) −→ L(〈x, z〉) ∪ L(〈x, y〉)
3. L(〈x, y〉) −→ ∅ and set u � .= z for all u with u � .= y

≤r if 1. 〈≤ pR, ≥, n〉 ∈ L(x),
2. �RF

C (x, ≥, n) > p, there are two of them y, z, both root nodes, with no y � .= z and
then 1. L(z) → L(z) ∪ L(y) and

2. For all edges 〈y, w〉:
i. if the edge 〈z, w〉 does not exist, create it with L(〈z, w〉) = ∅
ii. L(〈z, w〉) −→ L(〈z, w〉) ∪ L(〈y, w〉)

3. For all edges 〈w, y〉:
i. if the edge 〈w, z〉 does not exist, create it with L(〈w, z〉) = ∅
ii. L(〈w, z〉) −→ L(〈w, z〉) ∪ L(〈w, y〉)

4. Set L(y) = ∅ and remove all edges to/from y
5. Set u � .= z for all u with u � .= y and set y

.= z

� if 1. C � D ∈ T , x is not indirectly blocked, and
2. {〈¬C, ≥, 1 − n + ε〉, 〈D, ≥, n〉} ∩ L(x) = ∅ for n ∈ NA

then L(x) → L(x) ∪ {E} for some E ∈ {〈¬C, ≤, 1 − n + ε〉, 〈D, ≥, n〉}
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F is then expanded by repeatedly applying the completion rules from Table 2.
The completion-forest is complete when, for some node x, L(x) contains a clash,
or none of the completion rules is applicable. The algorithm stops when a clash
occurs; it answers ‘Σ is satisfiable’ iff the completion rules can be applied in
such a way that they yield a complete and clash-free completion-forest, and ‘Σ
is unsatisfiable’ otherwise.

Lemma 2. Let Σ be an fKD-SHIN knowledge base. Then

1. when started for Σ the tableaux algorithm terminates
2. Σ has a fuzzy tableau if and only if the expansion rules can be applied to Σ

such that they yield a complete and clash-free completion forest.

Finally, we conclude this section with an illustrative example that shows how
the tableaux algorithm works.

Example 1. Consider the knowledge base Σ = 〈T ,R,A〉 where:

T = {Arm � ∃isPartOf.Body, Body � ∃isPartOf.Human}
R = {Trans(isPartOf)}
A = {((o1, o2) : isPartOf) ≥ 0.8, ((o2, o3) : isPartOf) ≥ 0.9,

(o2 : Body) ≥ 0.85, (o1 : Arm) ≥ 0.75}

Now we want to use our reasoning algorithm to see if

Σ |= (o3 : ∃Inv(isPartOf).Body � ∃Inv(isPartOf).Arm) < 0.75.

First we transform this negative assertion into its equivalent PINF form and
then into its NNF form having finally the assertion (o3 : ∀Inv(isPartOf).¬Body�
∀Inv(isPartOf).¬Arm) > 0.25. Subsequently, entailment checking is reduced to
consistency of A′ = A ∪ {(o3 : ∀Inv(isPartOf).¬Body � ∀Inv(isPartOf).¬Arm) >
0.25}, w.r.t. R and T . According to Definition 5 the algorithm initializes a
completion-forest to contain the following triples:

(1) 〈isPartOf,≥, 0.8〉 ∈ L(〈xo1 , xo2〉)
(2) 〈isPartOf,≥, 0.9〉 ∈ L(〈xo2 , xo3〉)
(3) 〈Body,≥, 0.85〉 ∈ L(xo2)
(4) 〈Arm,≥, 0.75〉 ∈ L(xo1)
(5) 〈∀isPartOf−.¬Body � ∀isPartOf−.¬Arm, >, 0.25〉 ∈ L(xo3)

Furthermore, the algorithm expands R by adding the axiom Trans(isPartOf−).
Subsequently, by applying expansion rules from Table 2 we have the following
steps:

(6) 〈∀isPartOf−.¬Body, >, 0.25〉 ∈ L(xo3)|〈∀isPartOf−.¬Arm, >, 0.25〉∈L(xo3) �

Hence at this point we have two possible completion forests. For the first one we
have:
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(61) 〈∀isPartOf−.¬Body, >, 0.25〉 ∈ L(xo3)
(71) 〈¬Body, >, 0.25〉 ∈ L(xo2) ∀ : (61), (2)
(81) clash (71) and (3)

while for the second possible completion-forest we have:

(62) 〈∀isPartOf−.¬Arm, >, 0.25〉 ∈ L(xo3)
(72) 〈¬Arm, >, 0.25〉 ∈ L(xo2) ∀ : (62), (2)
(82) 〈∀isPartOf−.Arm, <, 0.75〉 ∈ L(xo2) ∀+ : (62), (2)
(92) 〈¬Arm, >, 0.25〉 ∈ L(xo1) ∀ : (82), (1)
(102) clash (92) and (4)

Thus, since all possible expansions result to a clash, A′ is inconsistent and the
knowledge base entails the fuzzy assertion.

4 FiRE: A Prototype fKD-SHIN Reasoning System

FiRE is a JAVA implementation of a fuzzy DL reasoning engine for vague knowl-
edge. Currently it implements the tableaux reasoning algorithm for fKD-SHIN
we presented in the previous section. Apart from the fKD-SHIN reasoner, FiRE
is also able to serialize a fuzzy KB into RDF triples and store it in the Sesame
RDF triple store [14]. Then it is able to query Sesame using very expressive fuzzy
conjunctive query languages [11]. In this section the graphical user interface, the
syntax and the inference services of FiRE are briefly introduced.

4.1 FiRE Interface

FiRE can be found at http://www.image.ece.ntua.gr/∼nsimou/FiRE
together with installation instructions and examples. Figure 1 depicts the main
GUI of FiRE. Its user interface consists of the editor panel, the inference ser-
vices panel and the output panel. The user can create or edit an existing fuzzy
knowledge base using the editor panel. The inference services panel allows the
user to make different kinds of queries to the knowledge base (entailment, sub-
sumption and glb) and also to query a Sesame repository using fuzzy conjunctive
queries [11]. Finally, the output panel consists of four different tabs, each one dis-
playing information depending on the user operation, like a trace of the tableaux
expansion, possible syntax errors of the KB, classification of the KB (computing
the subsumption hierarchy), and more.

4.2 FiRE Syntax

The current version of FiRE is using the Knowledge Representation System
Specification (KRSS) proposal3. Since as we show in the previous sections we

3 http://dl.kr.org/krss-spec.ps
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Fig. 1. The FiRE user interface: the editor panel (upper left), the inference services
panel (upper right) and the output panel (bottom)

impose no syntactic changes to concept and role axioms, a user is capable of
specifying concept and roles axioms using the standard KRSS syntax. So for
example, one can define the concept MiddleAged with the following axiom:

(complete MiddleAged (or Forties Fifties))

using the keywords complete for specifying equivalence (≡) and or for spec-
ifying disjunction (�). Similarly we can specify subsumption axioms using the
keyword implies or role axioms using the keywords transitive, parent and in-
verse for transitive role axioms, role inclusion axioms or specifying the inverse
of a role, respectively.

On the other hand individual axioms (assertion) of KRSS need to be extended
in order to capture confidence degrees. More precisely, fuzzy concept and role
assertions are specified by using the following patterns:

(instance ind Concept ineqType n)
(related ind1 ind2 Role ineqType n)

where ineqType is one of “>=”, “>”, “<=”, “<”, “=”, and n ∈ (0, 1] is a
degree. Thus, in the first syntax we use the keyword instance to declare a fuzzy
assertion between an individual and a concept with some inequality type and
degree n; similarly with role assertions and keyword related.
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Example 2. The syntax of the assertions alice : Female, (paul : (Tall � Thin) ≥
0.8) and ((frank, paul) : has− friend) ≥ 0.7 are shown below in FiRE syntax.

(instance alice Female)
(instance paul (and Tall Thin) > 0.8)
(related frank paul has-friend >= 0.7)

4.3 Inference Services

FiRE offers all the fuzzy DL inference services we introduced in Section 2 plus
a global glb service and answering conjunctive queries over RDF repositories,
described below. More precisely, it allows to check ABox consistency. If the
ABox is consistent w.r.t. to a TBox and an RBox, FiRE provides the user with
a sample model of the knowledge base in the Model tab of the output panel. If
the ABox is not consistent then a “not satisfiable” message is reported in
the tableaux tab.

Then, FiRE offers a number of specialized tabs in the inference services panel
that implement many services. More precisely, it offers an Entailment inference
tab that allows users to ask for the entailment of fuzzy assertions. The syntax
for such queries is the same as the syntax of specifying concept assertions. For
example, in order to check whether Σ |= (a : C) ≥ n the user should enter
the statement instance a C >= n in the entailment tab. On the other hand
subsumption queries are specified in the Subsumption inference tab. Their syntax
is of the following form (concept1) (concept2) where concept1 and concept2
are fKD-SHIN -concepts.

Subsequently, FiRE offers for computing the glb of an individual to a concept
w.r.t. a knowledge base Σ. Glb queries are evaluated by FiRE performing entail-
ment queries for all the degrees contained in the ABox, using the binary search
algorithm in order to reduce the entailment tests. The syntax of glb queries is of
the form individual (concept) where concept can be an fKD-SHIN -concept.
Besides glb queries, FiRE offers for computing the global glb of a knowledge base.
More precisely, it computes the glb of all the individuals in the ABox with all
the defined concepts of the TBox. Roughly speaking, this process materializes
(almost) all the relevant implied knowledge that is entailed by the knowledge
base, i.e. the one that involves the defined concepts.

Finally, besides the standard inference services of fuzzy DLs, FiRE also of-
fers the Queries inference tab, which can be used in order to issue expressive
fuzzy conjunctive queries over a Sesame repository. More precisely, the user
can issue conjunctive threshold queries (CTQs) or generalized fuzzy conjunc-
tive queries (GFCQs), like fuzzy threshold queries, fuzzy aggregation queries and
fuzzy weighted t-norm queries, as these have been defined and implemented for
fuzzy-DL-Lite in [11]. An example GFCQ is the following:

x <- Goodlooking(x):0.6 ^ has-hairLength(x,y):1 ^ Long(y):0.8

asking for all x that are good looking and have long hair. We see that in such
queries the user is capable of also specifying weights in query atoms.
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(a) (b)

Fig. 2. Input image (left) and its segmentation (right)

5 Two Usage Scenarios

In the current Section we will present two application scenarios where we have
tested FiRE and its potentials.

5.1 Multimedia Analysis and Scene Interpretation

One of the main research problems in multimedia analysis is how one could
extract and represent all the underlying information and knowledge that exist
within an image or a video. For example, an image could depict an event, a
landscape, people, etc. that need to be represented in order for end-users to be
able to query about them. Manual annotation is obviously very difficult and ex-
pensive hence (semi)automatic ways are explored. First, we apply image analysis
algorithms, which are based on color, texture and shape criteria to group pixels
and create segments which (possibly) depict an object. Subsequently, we apply
a recognition system which ideally would be able to assign a semantic label to
each region. Generally, this task is very difficult since moving from low-level fea-
tures to high-level semantic descriptions, like complex objects is far from trivial.
For those reasons proposals for knowledge-based multimedia analysis have been
proposed [15, 16]. Using DLs one can provide definitions of high-level concepts
and events that might exist in an image or video in order to assist the process
of recognition. For example, we could have the following DL axioms:

Leaves ≡ GreenColored
Tree ≡ BrownColored � ∃isConnected.Leaves

MuddyRoad ≡ BrownColored � CoarseTextured

Image analysis is generally a process that involves a huge amount of uncertain
and vague knowledge, hence we would prefer to use extended frameworks like
fuzzy DLs as the underlying logical framework. Consider for example Figure 2(a)
which shows a sample input image, while Figure 2(b) shows its segmentation. We
see that the algorithm has identified several regions in the image for which we
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Table 3. Semantic labelling

Region Extracted Concept Degree Inferred Concept Degree
region1 GreenColored 0.80 Leaves 0.80
region2 LightGreenColored 0.78 Grass 0.78
region3 LightGreenColored 0.71 Grass 0.71

region4
BrownColored 0.69

MuddyRoad 0.69
CoarseTextured 0.80

region5
CoarseTextured 0.30

ClayRoad 0.30
LightBrownColored 0.85

region6
BrownColored 0.67

MuddyRoad 0.67
CoarseTextured 0.80

region7
LightGrayColored 0.72

TarRoad 0.70
SmoothTextured 0.70

can extract their MPEG-7 visual descriptors.4 These are numerical values which
provide information about the texture, shape and color of a region. Obviously,
these values are very low-level and provide no semantic information. Neverthe-
less, one could use them in order to move from low-level descriptions to more
high-level ones. For example, if reg1’s green component in the RGB color model
was equal to 243, we can be based on a mapping (fuzzy partition) function [17]
and deduce that reg1 is GreenColored to a degree at least 0.8. On the other hand
another region with a green component of 200 could be GreenColored to a degree
0.77. Similarly, we can extract additional fuzzy assertions using other MPEG-7
descriptors, like texture or shape. For example, in the leftmost part of Table 3
we see some fuzzy assertions extracted for a specific region and a concept, using
MPEG-7 descriptors. Subsequently, we can use FiRE’s global glb service in or-
der to extract all the implied knowledge for the specific image [18]. The inferred
assertions are depicted in the rightmost part of Table 3. We see that fuzzy DL
reasoning can be used to provide more sophisticated labelling, but please note
that these are still some very preliminary results and the current example is by
no means complete.

5.2 Knowledge Based Information Retrieval and Recommendation

FiRE has been applied in an industrial strength Use Case scenario from a Greek
National project. In this Use Case scenario we consider a production company,
which has a knowledge base that consists of videos and images about persons
(which usually are actors or models). This company wants to publish its con-
tent on the (Semantic) Web so as other advertisement or production compa-
nies can use this knowledge base to look for persons to be employed for ad-
vertisements (casting). Each entry in the knowledge base contains a photo or
a video, and some specific information like body and face characteristics, age
or profession-like characteristic. A user can query the knowledge base providing

4 http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
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information like the name, the height, the type of the hair, the body, age range,
and more.

Usually casting people want to query such a knowledge base using some high
level concepts like “Thirties”, “MiddleAged”, “Teen”, “Kid”, “Slim”, “Tall”,
“StudentLooking”, “TeacherLooking” and more, which can be used in commer-
cials of respective context. Obviously, most of these concepts are vague (fuzzy)
as for example the concepts of middle aged or tall persons cannot be precisely
defined. In order to tackle the above Use Case scenario we have followed the
next steps [18]:

1. Database (DB) fuzzification: First, we fuzzify fields of the database, in order
to provide symbolic information from the existing numerical one. For exam-
ple, the “age” field provides very low level information which can be used in
order to define (fuzzy) concepts, like “Teen”, “Twenties”, “Thirties”, “Old”
etc. These concepts are defined as functions (fuzzy sets) that map the age
value of a person a to the membership degree of a to them. Thus, we can
crate fuzzy assertions. For example, the DB has that john180 is 34 years
old, thus the function of “Thirties” tells us that john180 : Thirties ≥ 0.6.

2. Ontology construction: Using the above concepts, together with additional
ones of our domain, we can construct an ontology for human actors (models)
focusing on appearance, that is important for casting tasks. For example, we
can define the concept of student looking, tall child and scientist as:

StudentLooking � Kid � Teen
TallChild � Child � (Short � Normal Height)
Scientist � Male � Classic � (50s � 60s)�

Serious � ∃has-eyeCondition.Glasses

using already defined concepts. Please note that if we hadn’t created the
fuzzy concepts Kid, Teen, Child, Short and Normal Height in step 1, which ini-
tially did not exist in the database, we would not be able to define the
above concepts. Similarly, we can define more concepts, like GrandParent,
FishermanLooking and more.

3. Extracting implied knowledge: The ontology together with the fuzzy asser-
tions that are produced by step 1, due to fuzzification, as well as the crisp
assertions that exist in the database (e.g. john180 is a Male, Latin, etc.) is
loaded into FiRE. Then we compute the global glb of the knowledge base
in order to extract implied knowledge. Subsequently, knowledge is serialized
and stored into Sesame.

4. Querying the KB: Finally, end-users can issue very expressive fuzzy con-
junctive queries over Sesame through the FiRE platform in order to retrieve
actors. For example, for a TV commercial for hair dyes one might want to
retrieve all female models, that are in their twenties, have long, good qual-
ity hair and nice eyes, or for an MP3 player commercial one might want a
student looking model.
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6 Discussion and Open Problems

It has been widely approved that fuzzy DLs could play an important role in
the Semantic Web by serving as a mathematical framework for knowledge rep-
resentation and reasoning in applications that face vague knowledge, like image
analysis and understanding [19], ontology searching [11], semantic portals [20]
multimedia retrieval [21] and negotiation [22]. But still the full potential of fuzzy
DLs has not been exhaustively explored, since they could be used in a wealth
of tasks and applications in order to enhance automation and handle degrees of
confidence, membership and truth that emerge by matching, retrieval, recom-
mendation, negotiation or recognition systems.

After the first ideas about extending classical two-valued Description Logics
with fuzzy Set Theory, by Yen in [23], Tresp and Molitor [24] and Straccia [5],
there has been an increasing research effort on fuzzy Description Logics. The last
couple of years research is focused on providing reasoning support for very ex-
pressive fuzzy DLs, in order to support reasoning in a full fuzzy extension of the
OWL web ontology language. Towards this direction, recently Stoilos et. al. [6]
presented a reasoning algorithm for the fuzzy DLs fKD-SI and fKD-SHIN ,
while also in another work Stoilos et. al. [12] presented an algorithm for rea-
soning with General Concept Inclusion axioms, which was an open problem in
fuzzy DLs. Interestingly, these results gave rise to the FiRE fuzzy DL systems,
presented in section 4 (also a preliminary version was reported in [8]). Further-
more, the study of reasoning algorithms for fuzzy DLs that use other norm
operation is also beginning to flourish, although still most results are focused on
rather basic DLs like ALC. More precisely, Straccia [25] presented an algorithm
for fL-ALC(D), and recently Bobillo and Straccia [26] a reasoning algorithm
for fP -ALCf (D) (ALC with functional role axioms). Also these algorithms are
supported by the fuzzyDL system [27].

On the other hand, a recent trend in DL research is mainly focused in studying
efficient and scalable (tractable) Description Logics, compared to the Nexptime-
complete OWL DL. Following this trend Straccia proposed a fuzzy extension of
DL-Lite [28]. DL-Lite [29] is an interesting lightweight ontology language, since it
can answer conjunctive queries in a very efficient way, by using existing database
technologies. Later Pan et al. [11] proposed some very expressive extensions
to the conjunctive queries of f-DL-Lite. The algorithms for these queries were
implemented in the system ONTOSEARCH25 and evaluation showed that these
can still be answered in a very efficient way. Other interesting tractable DLs
are those of the EL family, like EL+ [30], which provide efficient algorithms for
classifying big terminologies. Recently, Stoilos et. al. [31] presented an algorithm
for fG-EL+ which classifies terminologies that also use fuzzy subsumption [25].
An overview of the field of fuzzy Description Logics can also be found in [32].

As we see from the above, regarding the theoretical side, fuzzy DLs have
been studied relatively enough and their logical and mathematical properties are
beginning to get quite understood. Another important side is the development

5 http://dipper.csd.abdn.ac.uk/OntoSearch/
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of tools and systems that would provide a flexible and efficient way to build and
manage fuzzy knowledge. Although this aspect has not been explored much yet,
there are again some first works towards this direction. We have reported about
one such work in the current paper, and more precisely the FiRE system, which
consists of (i) a beta fuzzy DL reasoner for fKD-SHIN , (ii) a GUI for editing
and creating fuzzy KBs using the KRSS format and (iii) a module that provides
persistent storage of large amounts of fuzzy knowledge bases in the RDF triple
store Sesame and implements very expressive fuzzy conjunctive queries [11] over
it, by extending Sesame’s SeRQL query.

Still there is plenty of way to go until we can provide adequate support for
fuzzy knowledge engineering and management. First, no support for parsing
RDF/XML files that contain fuzzy assertions (as these have been described
in [7]) exists. Moreover, there is currently no evidence about the scalability of
the existing expressive fuzzy DL reasoning systems. In other words optimization
techniques need to be investigated; some preliminary investigations have been
carried out in [33] but still no evaluation or fuzzy DL system has been reported.
Most important of all, besides the very basic manual support provided by current
systems, there are currently no available graphical tools for assisting end users
to (semi) automatically create fuzzy knowledge bases from raw numerical data.
All these issues are very important in order for fuzzy DL technologies to be more
widely adoptable in the Semantic Web.
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Abstract. In this paper we explore some of the opportunities and chal-
lenges for machine learning on the Semantic Web. The Semantic Web
provides standardized formats for the representation of both data and
ontological background knowledge. Semantic Web standards are used to
describe meta data but also have great potential as a general data for-
mat for data communication and data integration. Within a broad range
of possible applications machine learning will play an increasingly im-
portant role: Machine learning solutions have been developed to support
the management of ontologies, for the semi-automatic annotation of un-
structured data, and to integrate semantic information into web mining.
Machine learning will increasingly be employed to analyze distributed
data sources described in Semantic Web formats and to support approx-
imate Semantic Web reasoning and querying. In this paper we discuss
existing and future applications of machine learning on the Semantic
Web with a strong focus on learning algorithms that are suitable for the
relational character of the Semantic Web’s data structure. We discuss
some of the particular aspects of learning that we expect will be of rele-
vance for the Semantic Web such as scalability, missing and contradicting
data, and the potential to integrate ontological background knowledge.
In addition we review some of the work on the learning of ontologies and
on the population of ontologies, mostly in the context of textual data.

1 Introduction

The world wide web (WWW) represents an ever increasing source of informa-
tion. Until now the WWW is mostly accessible to humans via search engines and
browsers whereas computers only have a very rudimentary understanding of web
content. The vision behind the Semantic Web (SW) is that computers should
also be able to understand and exploit information offered on the web [1]. In
the near future, a web representation might contain human-readable parts and
sections made available in SW-formats to be accessible for automated process-
ing. The SW is based on two concepts. First, a formal ontology provides domain
specific background information that is shared by several parties: It provides a
common vocabulary for a given domain and describes object classes, predicate
classes and their interdependencies, as well as additional background informa-
tion formalized in logical statements. Second, web information is annotated by
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statements readable and interpretable by machines via the common ontological
background knowledge.

One of the prime SW applications will be context/user sensitive information
retrieval where the result will still be in textual or multimedia format, to be
interpreted by a human. But this information will be much more specific to the
user’s needs, since data can be integrated from multiple sites and smart informa-
tion filters can be applied. Thus a search engine becomes more of an agent who
knows the user, who has a deep understanding of the information request, who
knows what to find where on the web and who presents the requested informa-
tion in an appropriate user-friendly form. An immediate benefit from semantic
annotation will be that annotated web pages might obtain a higher search rank
since the match between query and page content can be evaluated with high
confidence. In a second group of applications, the items to be searched for are
not human readable texts or multimedia data but are machine readable informa-
tion about an item or a web service. Semantic web services are of great interest
both for academia and industry [2,3]. Service requests and service offerings can
be formulated precisely based on SW standards and can be understood as pre-
cisely by semantic search engines and web applications. In the third family of
applications the SW becomes the web of data. SW technologies will form the in-
frastructure for a standardized representation of information and for information
exchange. Biomedicine is a forerunner here with almost 1000 databases publicly
available today. If the data were published under a common SW ontological
format, all this information would be accessible for querying and for analysis.
As the WWW brought the knowledge of the world to our finger tips, the SW
will bring the data of the world to our applications. Finally, in a fourth family
of applications, SW technologies are being used in advanced expert systems to
model complex industrial domains [4].

Reasoning plays an important role on the SW: Based on ontological back-
ground knowledge and the set of asserted statements, logical reasoning can derive
new statements. But logical reasoning has its limitations. First, logical reasoning
does not easily scale up to the size of the web as required by many applications;
projects like the EU FP 7 Large-Scale Integrating Project LarKC are under way
to address this issue [5]. Second, uncertain information is not suitable for logical
reasoning. The representation of uncertain information on the SW and reasoning
with uncertainty on the SW have only recently been addressed [6]. Third, logical
reasoning is completely based on axiomatic prior knowledge and does not exploit
regularities in the data that have not been formulated as ontological background
knowledge. In contrast, and as it has been demonstrated in many application
areas, successful solutions can often be achieved by induction, i.e., by learning
from data. The analysis of the potential of machine learning for the SW is the
topic of this contribution.

The most immediate application of machine learning is SW mining, enhancing
traditional web mining applications. Web content mining, web structure mining,
web usage mining and the learning of ranking functions for retrieval will all ben-
efit from the additional information available on the SW [7]. In another group of
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applications, machine learning serves the SW by supporting ontology construc-
tion and management, ontology evaluation, ontology refinement, ontology evolu-
tion, as well as the mapping, merging and alignment of ontologies [8,9,10,11,12].
Mostly these tasks are addressed on the basis of unstructured or semi-structured
textual data. After all, most current web pages contain textual information; but
other types of input data will become increasingly important, as well [13]. Alter-
natively, researchers are concerned with learning of data already in SW formats.
As already mentioned, the current trend is that an increasing amount of infor-
mation is made available in SW formats and machine learning and data mining
will be the basis for the analysis of the combined data sources. A particular as-
pect here is the learning of logical constraints that can then be formulated in the
language of the employed ontology [14,15,16,17]. One can also contemplate that
future ontologies should be extended to be able to represent learned informa-
tion that cannot easily be formulated with current standards, e.g., represent the
input-output mapping represented in probabilistic classifiers. The trained sta-
tistical models can then be used to estimate the probability that statements are
true, which are neither explicitly asserted in the database nor can be proven to
be true (or false) based on logical reasoning. Since the conclusions drawn from
machine learning are typically probabilistic, this uncertainty needs to be rep-
resented [6,18,5]. Consequently, querying can include learned statements, e.g., :
Find all female persons that live in the southeastern US, are older than 21 years,
own a house and are likely to own a sailboat where the last information, i.e., the
likelihood of owning a sailboat, was learned from data. Finally, in applications
where the raw data is unstructured, machine learning can support the population
of ontologies, i.e., the mapping of unstructured data to SW statements. Most
work here concerns the population from textual data although the annotation
of semi-structured data and multimedia data. e.g. images and video, is of great
relevance as well. A goal here is to describe multimedia content semantically for
fast content-based reasoning and retrieval.

In this paper we analyze algorithms from machine learning that are suitable
for SW applications. First and foremost, SW data describe relationships between
objects. Consequently, suitable learning approaches should be able to handel the
relational character of the data. By far the majority of machine learning deals
with non-relational feature-based representations (also referred to as proposi-
tional representation or attribute-value representation). Only recently statistical
relational learning (SRL) is finding increasing interest in the ML community [19].
In Section 3 we present a novel discussion on feature-based learning in the SW
and in Section 4 we relate this discussion to learning algorithms from inductive
logic programming (ILP). In Section 5 we discuss matrix decomposition ap-
proaches and in Section 6 we present relational graphical models that are based
on a joint probabilistic model of a relational domain. We discuss the machine
learning approaches with respect to their applicability in a SW context, i.e.,
their scalability to the expected large size of the SW, their ability to integrate
ontological background knowledge, their ability to handle the varying quality
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and reliability of data1 and finally, their ability to deal with missing and contra-
dictory data. In Section 7 we add a discussion on ontology learning and ontology
population based on textual data. Ontology learning and ontology population
are the most developed aspects of machine learning on the SW. In Section 8 we
report first experiments based on the FOAF data set and in Section 9 we present
conclusions. We will start the remaining part of the paper with an introduction
into the SW as proposed by the W3C.

2 Components of the SW Languages

The World Wide Web Consortium (W3C) [21] is the main international stan-
dards organization for the WWW and develops recommendations for the SW.
We will discuss here the main SW standards, i.e., RDF, RDFS and OWL [22,23].
RDF is useful for making statements about instances, RDFS defines schema and
subclass hierarchies, and OWL can be used to formulate additional background
knowledge. Very elegantly, the statements in RDF, RDFS and OWL can all be
represented as one combined directed graph (Figure 1). A common semantics
is based on the fact that some of the language components of RDFS and OWL
have predefined domain-independent interpretations.

2.1 RDF: A Data Model for the SW

The recommended data model for the SW is the resource description framework
(RDF). It has been developed to represent information about resources on the
WWW (e.g., meta data/annotations), but might as well be used to describe other
structured data, e.g., data from legacy systems. A resource stands for an object
that can be uniquely identified via a uniform resource identifier, URI, which is
sometimes referred to as a bar code for objects on the SW. The basic statement
is a triple of the form (subject, property, property value) or, equivalently, (sub-
ject, predicate, object). For example (Eric, type, Person), (Eric, fullName, Eric
Miller) indicates that Eric is of the concept (or class) Person and that Eric’s
full name is Eric Miller. A triple can graphically be described as a directed arc,
labeled by the property (predicate) and pointing from the subject node to the
property value node. The subject of a statement is always a URI, the property
value is either also a URI or a literal (e.g., String, Boolean, Float). In the first
case, one denotes the property as object property and a statement as an object-
to-object statement. In the latter case one speaks of a datatype property and
of an object-to-literal statement. A complete database (triple store) can then
be displayed as a directed graph, a semantic net (Figure 1). One might think
of a triple as a tuple of a binary relation property(subject, property values). A
triple can only encode a binary relation involving the subject and the property
value. Higher order relations are encoded using blank nodes. Consider the origi-
nally ternary relation transaction(User, Item, Rating). The blank node might be

1 Trust learning is an emerging field [20].
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us: Philadelphia 

taubz: me taubz: my_appartment

taubz: my_computer taubz: my_bed

ex: is_in

ex: owns

ex: hasex: owns ex: has

ex: is_next_to

Fig. 1. An RDF-graph fragment. Redrawn from [24].

TransactionId with triples (binary relations): (TransactionId, userRole, User),
(TransactionId, transactionObject, Item) and (TransactionId, evaluation, Rat-
ing). A blank node is treated as a regular resource with an identifier, only that
it might be invisible from outside the file. Blank nodes are also helpful for defin-
ing containers such as bags (unordered container), sequences (ordered container)
and collections (lists).

Each resource is associated with one or several concepts (i.e., classes) via the
type-property. A concept can be interpreted as a property value in a type-of-
statement. Conversely, one can think of a concept as representing all instances
belonging to that concept. Concepts are defined in the RDF Vocabulary De-
scription Language, also called RDF-Schema or RDFS. Both RDF and RDFS
form a joint RDF/RDFS graph. In addition to defining all concepts, the RDFS
also contains certain properties that have a predefined meaning, implementing
specific constraints and entailment rules. First, there is the subclass property. If
an instance is of type Concept1 and Concept1 is a subclass of Concept2, then
the instance can be inferred to be also of type Concept2. Subclass relations
are essential for generalization in reasoning and learning. Each property has a
representation (node) in RDFS as well. A property can be a subproperty of an-
other property. For example, the property brotherOf might be a subproperty of
relatedTo. Thus if A is a brother of B one can infer that A is relatedTo B.

A property can have a domain respectively range constraint: (marry, domain,
Person) and (marry, range, Person) states that if two resources are married then
they must belong to the concept Person. Interestingly, RDF/RDFS statements
cannot lead to contradictions in RDF/RDFS, one reason being that negation is
missing. The same remains true for some less expressive ontologies.

2.2 Ontologies

Ontologies build on RDF/RDFS and add expressiveness. W3C developed stan-
dards for the web ontology language OWL, which comes in three dialects or
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profiles: the most expressive is OWL Full, which is a true superset of RDFS.
A full inference procedure for OWL Full is not implementable with simple rule
engines [23]. Some applications requiring OWL Full might build an application-
specific reasoner instead of using a general one. OWL DL (description language)
is included in OWL Full and OWL Lite is included in OWL DL. Both OWL DL
and OWL Lite are decidable but are not true supersets of RDFS.

In OWL one can state that classes are equivalent or disjoint and that proper-
ties respectively instances are identical or different. The behavior of properties
can be classified as being symmetric, transitive, functional or inverse functional,
. . . (e.g., teaches is the inverse of isTaughtby). In RDFS concepts are simply
named. OWL allows the user to construct classes by enumerating their con-
tent (explicitly stating its members), through forming intersections, unions and
complements of classes. Also classes can be defined via property restrictions. For
example, the constraints that (1) first-year courses must be taught by professors,
(2) mathematics courses are taught by David Billington, (3) all academic staff
members must at least teach one undergraduate course, can all be expressed in
OWL using the constructs allValuesFrom (∀), hasValue, and someValuesfrom
(∃). Furthermore, cardinality constraints can be formulated (e.g., a course must
be taught by someone, a department must have at least ten and at most 30
members) (Examples from [22]). Very attractive is that both instances and on-
tologies can be joined by simply joining the graphs: in fact the only real thing
is the graph [23].

In some data rich applications ontologies will have no relevance beyond the
definition of classes and properties. Conversely, in some domains, such as bioin-
formatics, medical informatics and some industrial applications [4], sophisticated
ontologies have already been developed [23].

2.3 Reasoning

An ontology formulates logical statements, which can be used for analyzing data
consistency and for deriving new implicit statements concerning instances and
concepts. Total materialization denotes the calculation of all implicit triples at
loading time, which might be preferred if query response time is critical [25].
Note, that total materialization is only feasible in some restricted ontologies.

2.4 Rules

RuleML (Rule Markup Language) is a rule language formulated in XML and is
based on datalog, a function-free fragment of Horn clausal logic. RuleML allows
the formulation of if-then-type rules. Both RuleML and OWL DL are different
subsets of first-order logic (FOL). SWRL (Semantic Web Rule Language) is a
proposal for a Semantic Web rules-language, combining sublanguages of OWL
(OWL DL and Lite) with those of the Rule Markup Language (Unary/Binary
Datalog). Datalog clauses are important for modeling background knowledge
in cases where DL might be inappropriate, for example in many industrial
applications.



288 V. Tresp et al.

2.5 Querying

The recommended RDF-query language for the SW is SPARQL (SPARQL Pro-
tocol and RDF Query Language). The SPARQL syntax is similar to SQL. A
search pattern is a directed graph with variable nodes (i.e., a graph pattern).
The result is is either in the form of a list of variable bindings or in the form of
an RDF-graph.

3 Feature-Based Statistical Learning on the SW

3.1 Feature-Based Statistical Learning

Based on a long tradition, statistical learning has developed a large number of
powerful analytical tools and it is highly desirable to make these tools available
for the SW. Figure 2 (top) shows the main steps that are performed in statistical
learning, analyzing, as example, students in a university. First, a statistical unit
is defined, which is the entity that is the source of the variables or features of
interest [26,27,28]. The goal is to generalize from observations on a few units to
a statistical assembly of units. Typically a statistical unit is an object of a given
type, here a student. In general one is not interested in all statistical units but
only in a particular subset, i.e., the population. The population might be defined
in various ways, for example it might concern all students in a particular country
or, alternatively, all female students at a particular university.

In a statistical analysis only a subset of the population is available for inves-
tigation, i.e. a sample. Statistical inference is dependent on the details of the
sampling process; the sampling process essentially defines the random experi-
ment and, as a stationary process, allows the generalization from the sample to
the population. In a simple random sample each unit is selected independently.
Naturally, sometimes more complex sampling schemes are used, such as stratified
random sampling, cluster sampling, and systematic sampling.

The quantities of interest of the statistical investigation are the features (or
variables) that are derived from the statistical units. In the example, features are
a student’s IQ and a student’s age. In the next step the data matrix is formed
where each row corresponds to a statistical unit and each column corresponds to
a feature. Finally, an appropriate statistical model is employed for modeling the
data, i.e., the analysis of the features and the relationships between the features,
and the final result is analyzed by the user. Naturally, all of this is typically an
iterative process, e.g., based on a first analysis new features might be added and
the statistical model might be modified.

In a supervised statistical analysis one partitions the features in explanatory
variables (a.k.a. independent variables, predictor variables, regressors, controlled
variables, input variables) and dependent variables (a.k.a response variables,
the regressands, the responding variables, the explained variables, or the out-
come/output variables). Note that it is often a design choice if one either defines
a population based on the state of a variable or if one uses that variable as
an independent variable. Consider a binary variable male/female. One choice
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Fig. 2. Top: Standard machine learning. Bottom: Machine learning applied to the SW.

might be to partition the population into males and females and learn separate
models for each population. Another option is to simply use gender as an in-
dependent variable and consider a joint population of males and females. The
second choice is for example more appropriate if the sample is small. Hierarchi-
cal Bayesian modeling is a compromise in which statistical inference in different
populations is coupled.

3.2 Feature-Based Statistical Learning on the SW

The main steps for statistical learning on the SW are displayed in Figure 2
(bottom). The first new aspect is that the statistical analysis is based on the
world as it is represented on the SW and that all quantities of interest, i.e.,
statistical unit, population, sample and features, are defined in context of the
SW.2 As before, a statistical unit might be defined to be an object of a given
type, e.g., a student. More generally a statistical unit might be composed of
several objects that have a particular relationship to each other. In Figure 2, as
an example, a statistical unit might be a composed entity consisting of a student
and a class that the student attends, i.e., a registration.

A population might now be defined by a SW query that produces a table
whose tuples (i.e., variable bindings) correspond to the objects that identify a

2 Technically one needs to be aware that the generation of a sample with the help of a
search engine or a crawler might introduce a bias, for example, if snowball sampling
is employed.
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statistical unit. In the example in Figure 2 we might define a query to generate
a population table with objects student and class; a tuple then stands for the
statement that a student registered in a particular class. Sampling, as before,
selects a proper random subset of the population. A particular aspect of SW
data is the dominance of relationships between objects. Thus, features that are
calculated for a statistical unit might reflect this relationship structure.

Technically, one first generates a data matrix. The number of rows in the data
matrix is identical to the number of tuples in the sample table, i.e., the number
of statistical units in the sample. A statistical unit is a primary key for the table.
The data matrix has a fixed number of columns corresponding to the number of
features, which are derived for each unit. All matrix entries are initialized to be
N/A (not available or missing) and will (partially) be replaced by feature values
as described in the following two steps.

Next, database views3 are generated that contain as attributes the objects in a
statistical unit (respectively a subset of those objects) plus additional attributes.
In Figure 2, the first view contains the student’s ID and the student’s IQ, the
second view contains the class ID and the class difficulty and the third view
contains the student ID, the class ID and the grade the student obtained in a
class. Note that views can be generated from rather complex queries.

In the next step, relational features are calculated based on these views. In
the simplest case each statistical unit is represented exactly in one tuple in each
view and features are calculated based on the tuple attributes. The situation
becomes more complex if a statistical unit is not represented in a view or if
it is represented more than once. In the first case, i.e., a statistical unit is not
represented in a view, one either enters zero or another default entry (e.g., the
number of a person’s children is zero) or one does not overwrite the corresponding
N/A entry in the data matrix (e.g., when a student’s IQ is unknown). In the
second case, i.e., a statistical unit is represented in more than one tuple in a
particular view —in the example if a student attended a class twice and got
two grades— some form of aggregation can be applied (number-of, average,
max, min, etc.). In domains like the SW, many-to-many relations often play a
significant role and can lead to a large number of sparse features: The number of
items a customer has acquired is typically still very small if compared to the total
number of items. In the case that object IDs are used as features, the learning
algorithm needs to be able to handle the potentially high-dimensional sparse
data. Technically, it might be possible to execute the described steps, i.e., the
generation of the sample, the views and the data matrix, in one SQL/SPARQL
operation.

Finally, the statistical model can be applied beyond the sample to the pop-
ulation. It is important to note that we have a well-defined statistical problem
as long as we restrict the analysis to the world in as much it is represented in
the SW. Of course the SW can grow (and shrink) such that online learning and
transfer learning might become applicable. To what degree the statistical model

3 A view is a stored query accessible as virtual table composed of the result set of a
query. Alternatively, one could also work with a temporary or persistent table.
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can be generalized to the real world needs to be analyzed carefully since some-
times the SW data are generated by multiple parties for their own reasons and
not for the purpose of a statistical analysis.

3.3 Search for the Best Features

So far it was assumed that the user would be able to define the features of in-
terest. In particular in supervised learning one is often interested to automate
the selection of the best input features. Popescul and Ungar [29] describe a rela-
tional learning approach based on a greedy search for optimal relational features
derived from SQL queries (see also [30]). Features are dynamically generated
by a refinement style search over SQL queries including aggregation, statistical
operators, groupings, richer join conditions and argmax based queries. The fea-
tures are used to predict the target relation using logistic regression. Additional
features are generated by clustering, which leads to new “invented” attributes.
The authors obtain good results on citation prediction and document classifica-
tion. It is straightforward to implement a similar search procedure on SW data.
Note that the automatic generation of candidate features is certainly attractive;
on the other hand the computational burden is quite large; feature definition
based on the experimenters insight and some pruning might be adequate in
many applications.

3.4 Discussion

Statistical learning on the SW, as presented, is highly scalable since the deter-
mining factor is the number of statistical units in the sample, which basically is
independent of the size of the SW. One needs to be aware that sampling with the
help of a search engine or a crawler might introduce a bias. The queries, which
need to be executed for the calculation of the features, can be executed efficiently
with current technology [25]. Ontologicalbackgroundknowledge can be integrated
in different ways. First, one might perform complete or partial materialization,
which would derive statements from reasoning prior to training. Recall that total
materialization is only feasible with less expressive ontologies. Second, since the
ontology is part of the RDF-graph, features can be defined including ontological
concepts of a statistical units, respecting the subclass restrictions. This has effec-
tively been employed in [31]. It is conceivable that the trained statistical models
could be added to an extended “probabilistic” ontology, indicated by the arrow
at the bottom of Figure 2. In addition, the statistical models derive probabilistic
statements about the truth values of triples. For example, if —based on a trained
model— it can be derived that a person has a high IQ, this information could be
added to the SW [6]. An option is a weighted RDF-triple, the weight reflecting
the likelihood that the statement is true. Moreover, if it was found that particular
features generated during learning are valuable, one could define corresponding
statements and add those to the SW as “invented predicates”. The same is true
for the latent variables introduced in a cluster analysis or in a principle compo-
nent analysis (PCA). We should emphasize again that statistical inference strictly
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speaking is only applicable within the experimental setting of a particular statis-
tical unit, population and sampling approach. Thus if a statistical model allows
the conclusion that statement X is true with 90% probability, this is only valid in a
particular statistical context. Experiments have shown, for example, that predic-
tive performance can depend to some degree on the object selected as statistical
unit. An interesting aspect is that the results from a number of statistical models
could be combined in a committee machine [32].

Feature generation is nontrivial and might exploit prior knowledge that is par-
tially available in the domain ontology. For example it is relevant that a person
only has exactly one age, exactly one mother, but zero or more children. In fact
it would be desirable that the ontological information could be exploited in a
way such that the statistical framework is automatically constructed requiring
a minimum of additional domain background knowledge from the user. A prob-
lem with less expressive ontologies might be that one cannot express negation.
Consider the example of gene-gene interactions where the literature primarily
reports positive results, i.e., positive evidence for gene-gene interactions. Evi-
dence that two genes do not interact would be important to report but might
be difficult to represent in less expressive ontologies.

Maybe the most important issue in SW learning concerns missing or incom-
plete data. We can make a closed-world assumption and postulate that the world
only exists in as much as it is represented in the SW: besides the statements that
are known to be true or can be derived to be true, all statements are assumed
false. Naturally, in many cases we are really interested to perform inference in
the real world and it is more appropriate to assume that the truth values of
some statements are unknown. Here we should distinguish, first, the case that
statistical units are missing and, second, the case that due to missing informa-
tion features cannot be calculated or features are biased. The first case is not a
problem if statistical units are missing at random, e.g., if some of the students
at a university are unknown. The situation is more complex if the fact that a
statistical unit is missing is dependent on features of interest, e.g., if only smart
students are in the data base. Then the missing data mechanism should be in-
cluded in the statistical model. For the second case consider that the age of a
person’s father is an important feature that is not available: Either the age of a
person’s father might be unknown or a person father’s ID might be unknown.
Another example is that if the number of transactions is an important feature,
the feature might be biased if not all transactions are recorded. If a closed-
world assumption is not appropriate, one could deal with missing features using
the appropriate procedures known from statistics [33]. Again, the missing data
mechanism should be included in the statistical model. Also note that ontologi-
cal information can be quite relevant for dealing with missing data. For example
if we know that a person has brown eye color we know that all other statements
about eye color must be false, since a person has only one eye color. Note that
there are statistical models that can easily deal with missing data such as naive
Bayes, many nearest neighbor methods, or kernel smoothers.
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Naturally there are cases where simple missing data models are not appropri-
ate, since missing data can render the independent sample assumption invalid.
Consider objects of type Person and the properties friendOf and income and
age. Furthermore assume that from the age of a person and from the income of
a person’s friends we can predict the income of a person with some certainty.
If all features are available, then training an appropriate classifier is straight-
forward. If in training and testing the income of a person and of a person’s
friends are partially unknown, we have the situation that the income predic-
tion for one person depends on the income prediction of the person’s friends.
The situation, where for the prediction of features of a statistical unit (here a
person’s income) the same features of linked statistical units are required, is
typical for data defined on networks. In the analysis of social networks, this
situation is referred to as a collective classification problem and a mechanism
is added to propagate information using, e.g., Gibbs sampling, relaxation la-
beling, iterative classification or loopy belief propagation. Recent overviews are
presented in [34,35]. One of the first papers demonstrating the benefits of col-
lective classification in social networks is [36] and some important contribu-
tions are described in [37,38,39,40]. It is likely that collective classification will
also concern SW applications. Interestingly, many social networks have been
shown to exhibit homophily, which means that objects with similar attributes
(e.g., persons with similar income) are linked (e.g., are friends). In networks
exhibiting homophily, simple propagation models, for example based on Gaus-
sian random field models employed in semi-supervised learning [41], give very
competitive results. Collective classification is highly related to the relational
graphical model approaches described in Section 6, in particular dependency
networks [42,43]. Note, that in collective classification, features for different
statistical units are not independent and a statistical analysis becomes more
involved. Also recall, that we assumed previously that statistical units were
selected randomly from the population. In contrast, in collective classification
problems the statistical units (for both training and test) would typically be
defined by the complete RDF-graph or a connected RDF-subgraph (compare
Section 6).

4 Inductive Logic Programming

Inductive logic programming (ILP) encompasses a number of approaches that
attempt to learn logical clauses4 In the view of the discussion in the last sec-
tion, ILP uses logical (binary) features derived from logical expressions, typically

4 A (logical) literal is either an atomic sentence or a negated atomic sentence. A
clause is a disjunction of literals: l1 ∨ l2 . . . ∨ ln. In a definite clause exactly one
literal is positive. A definite clause can be written as an implication (if-then rule):
(¬l1 ∧¬l2 ∧ . . .∧¬ln−1) ⇒ ln where ln was assumed to be the positive literal. To the
left of the implication sign is the rule body and ln is the rule head. A Horn clause
has at most one positive literal. A function-free definite clause is a datalog clause.
A program clause can contain negative literals in the body.
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conjunctions of (negated) atoms. Recent extensions on probabilistic ILP have
also address uncertain domains.

4.1 ILP Overview

This section is on “strong” ILP, which covers the majority of ILP approaches
and is concerned with the classification of statistical units and on predicate def-
inition5. Strong ILP performs modeling in relational domains that is somewhat
related to the approach discussed in the previous section. Let’s consider FOIL
(First Order Inductive Learner) as a typical representative [44]. The outcome of
FOIL is a set of definite clauses (a particular if-then rule) with the same head
(then-part).

Here is an example (modified from [45]). Let the statistical unit be a customer
with ID CID. VC = 1, indicates that someone is a valuable customer, GC = 1
indicates that someone owns a golden credit card and SB = 1 indicates that
someone would buy a sailboat. The first rule that FOIL might have learned is
that a person is interested in buying a sailboat if this person owns a gold card.
The second rule indicates that a person would buy a sailboat if this person is
older than 30 and has at least once made a credit card purchase of more than
100 EURO:

sailBoat(CID, SB = 1)← customer(CID,GC = 1) (1)
sailBoat(CID, SB = 1)← customer(CID, Age)

∧ purchase(CID, PID, Value, PM)
∧ PM = credit-card ∧ Value > 100 ∧ Age > 30.

In rule learning FOIL uses a covering paradigm. Thus the first rule is derived
to correctly predict as many positive examples as possible (covering) with a
minimum number of false positives. Subsequent rules then try to cover the re-
maining positive examples. The head of a rule (then-part) is a predicate and
the body (the if-part) is a product of (negated) atoms containing constants and
variables.6 Naturally, there are many variants of FOIL. FOIL uses a top down
search strategy for refining the rule bodies, PROGOL [46] a bottom up strategy
and GOLEM [47] a combined strategy. Furthermore, FOIL uses a conjunction of
atoms and negated atoms in the body, whereas other approaches use PROLOG
constructs. The community typically discusses the different approaches in terms
of language bias (which rules can the language express), search bias (which rules
can be found) and validation bias (when does validation tell me to stop refining
a rule). An advantage of ILP is that also non-grounded background knowledge
can be taken into account (typically in form of a set of definite clauses that
might be part of an ontology).

5 A predicate definition is a set of program clauses with the same predicate symbol in
their heads.

6 FOIL learning is called learning from entailment in ILP terminology.
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In view of the discussion in the last section, the statistical unit corresponds
to a customer, and FOIL introduces a binary target feature (1) for the target
predicate sailBoat(CID, SB). The second feature (2) is one if the customer owns
a golden credit card and zero otherwise. Then a view is generated with attribute
CID. A CID is entered in that view each time the person has made a credit
card purchase of more then 100 EURO, but only if that person is older than 30
years. The third feature (3) is binary and is equal to one if the CID is present
in the view at least once and zero otherwise. FOIL then applies a very simple
combination rule: if feature (2) or feature (3) is equal to one for a customer, then
the target feature (1) is true.

4.2 Propositionalization, Upgrading and Lifting

ILP approaches like FOIL can be decomposed into the generation of binary
features (based on the rule bodies) and a logical combination, which in case
of FOIL is quite simple. As stated before, ILP approaches contain a complex
search strategy for defining optimal rule bodies. If, in contrast, the generation
of the rule bodies is performed as a preprocessing step, the process is referred to
as propositionalization [48]. Instead of using the simple FOIL combination rule,
other feature-based learners are often used. It has been proven that in some
special cases, propositionalization is inefficient [49]. Still, propositionalization
has produced excellent results. The binary features are often collected through
simple joins of all possible attributes. An early approach to propositionalization
is LINUS [50].

The inverse process to propositionalization is called upgrading (or lifting) [51]
and turns a propositional feature-based learner into an ILP learner. The main
differences to propositionalization is that the optimization of the features is
guided by the improvement of the performance of the overall system. It turns
out that many strong ILP systems can be interpreted as upgraded propositional
learners: FOIL is an upgrade of the propositional rule-induction program CN2
and PROGOL can be viewed as upgrading the AQ approach to rule induc-
tion. Additional upgraded systems are Inductive Classification Logic (ICL [52])
that uses classification rules, TILDE [53] and S-CART that use classification
trees, and RIBL [54] that uses nearest neighbor classifiers. nFOIL [55] combines
FOIL with a naive Bayes (NB) classifier by changing the scoring function and
by introducing probabilistic covering. nFoil was able to outperform FOIL and
propositionalized NB on standard ILP problems. kFoil [56] is another variant
that derives kernels from FOIL-based features.

4.3 Discussion

ILP algorithms can easily be applied to the SW if we identify atoms with basic
statements. ILP fits well into the basically deterministic framework of the SW. In
many ways, statistical SW learning as presented in Section 3 is related to ILP’s
propositionalization; the main difference is the principled statistical framework
of the former. Thus most of the discussion on scalability in Section 3 carries over
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to ILP’s propositionalization. When ILP’s complex search strategy for defining
optimal rule bodies is applied, training time increases but is still proportional to
the number of samples. An interesting new aspect is that ILP produces definite
clauses that can be integrated, maybe with some restrictions, into the Seman-
tic Web Rule Language. ILP approaches that consider learning with description
logic (and clauses) are described, for example, in [57,58,14,15,16,17]. An empir-
ical study can be found in [59].

5 Learning with Relational Matrices

Another representation of a basic statement (RDF-triple) is a matrix entry.
Consider the triple (User, buys, Item). Recall that a standard relational repre-
sentation would be the table buys with attributes User and Item. A relational
adjacency matrix on the other hand has as many rows as there are users and as
many columns as there are items and as many matrix entries as there are possibly
true statements. A matrix entry is equal to one if the item was actually bought
by a user and is equal to zero otherwise. Thus SW data can be represented as a
set of matrices where the name of the matrix is the property of the relation under
consideration. Matrix decomposition/reconstruction methods, e.g., the principle
component analysis (PCA) and other more scalable approaches have been very
successful in the prediction of unknown matrix entries [60]. Lippert et al. [61]
have shown how several matrices can be decomposed/reconstructed jointly and
have shown that this increases predictive performance if compared to single
matrix decompositions. By filling in the unknown entries via matrix decomposi-
tion/reconstruction, the approach has an inherent way of dealing with data that
is missing at random. Care must be taken if missing at random is not justified.
In [61], one type of statement concerns gene-gene interactions where only positive
statements are known. Reconstructed matrix entries can, as before, be entered
into the SW, e.g., as weighted triples. Scalability of this approach has not been
studied in depth but the decomposition scales approximately proportional to the
number of known matrix entries. Note that the approach performs a prediction
for all unknown statements in one global decomposition/reconstruction step. In
contrast, the previous approaches would learn separate models for each statisti-
cal unit under consideration. Other approaches, which learn with the relational
adjacency matrix, are described in [62] and [63].

6 Relational Graphical Models

The approaches described in Sections 3 and 4 aim at describing the statisti-
cal, respectively logical, dependencies between features derived from SW data.
In contrast the matrix decomposition approach in the last section and the re-
lational graphical models (RGMs) in this section predict the truth values of
all basis statements (RDF-triples) in the SW. Unlike the matrix decomposition
techniques in the last section, the RGMs are probabilistic models and statements
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are represented by random variables. RGMs can be thought of as upgraded ver-
sions of regular graphical models, e.g., Bayesian networks, Markov networks,
dependency networks and latent variable models. RGMs have been developed
in the context of frame-based logical representations, relational data models,
plate models, entity-relationship models and first-order logic. Here, we attempt
to relate the basic ideas of the different approaches to the SW framework.

6.1 Possible World Models on the SW

Consider all constants in the SW (i.e., all objects and literal values) and all
statements that can possibly be true 7. Now one introduces a binary random
variable U for each possibly true statement (grounded atom), where U = 1 if
the corresponding statement is true and U = 0 otherwise. In a graphical model,
U would be identified with a node. These nodes should not be confused with the
nodes in the RFD-graph, which represent URIs; rather U stands for a potential
link in the RDF-graph. We can reduce the number of random variables if type
constraints are available and if the truth value of some statements are assumed
known in each world under consideration (e.g., if object-to-object statements are
all assumed known, as in the basic PRM model in Subsection 6.2). If statements
are mutually exclusive, e.g., the different blood types of a person, one might
integrate several statements into one random variable using, e.g., multi-state
multinomial variables or continuous variables (to encode, e.g., a person’s height).
An assignment of truth values to all random variables defines a possible world8.
RGMs assign a probability distribution to each world in the form P (U = u).9

The approaches differ in how these probabilities are defined and mapped to
random variables, and how they are learned.

6.2 Directed RGMs

The probability distribution in a directed RGM, i.e., relational Bayesian model,
can be written as

P (U = u) =
∏

U∈U

P (U |par(U)).

U is represented as a node in a Bayesian network and arcs are pointing from
all parent nodes par(U) to the node U . One now partitions all elements of U
into node-classes. Each U belongs to exactly one node-class. The key property
of all U in the same node-class is that their local distributions are identical,
which means that P (U |par(U)) is the same for all nodes within a node-class
and can be described by a truth-table or more complex representations such
as decision trees. For example, all nodes representing the IQ-values of students

7 We only consider a function-free case.
8 RGM modeling would be termed learning from interpretation in ILP terminology.
9 Our discussion includes the case that we are only interested in a conditional distri-

bution of the form P (U = u|V = v), as in conditional random fields [64].
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in a university might form a node class, all nodes representing the difficulties
of university courses might form a node class, and the nodes representing the
grades of students in courses might form a node-class. Care must be taken,
that no directed loops are introduced in the Bayesian network in modeling or
structural learning.

Probabilistic Relational Models (PRMs): PRMs were one of the first
published RGMs and found great interest in the statistical machine learning
community [65,19]. PRMs combine a frame-based logical representation with
probabilistic semantics based on directed graphical models. The nodes in a PRM
model the probability distribution of object attributes whereas the relationships
between objects are assumed known. Naturally, this assumption simplifies the
model greatly. In context of the SW object attributes would primarily corre-
spond to object-to-literal statements. In subsequent papers PRMs have been
extended to also consider the case that relationships between objects (in context
of the SW these would roughly be the object-to-object statements) are unknown,
which is called structural uncertainty in the PRM framework [19]. The simpler
case, where one of the objects in a statement is known, but the partner ob-
ject is unknown, is referred to as reference uncertainty. In reference uncertainty
the number of potentially true statements is assumed known, which means that
only as many random nodes need to be introduced. The second form of struc-
tural uncertainty is referred to as existence uncertainty, where binary random
variables are introduced representing the truth values of relationships between
objects.

For some PRMs, regularities in the PRM structure can be exploited (en-
capsulation) and exact inference is possible. Large PRMs require approximate
inference; commonly, loopy belief propagation is being used. Learning in PRMs
is likelihood based or based on empirical Bayesian learning. Structural learning
typically uses a greedy search strategy, where one needs to guarantee that the
ground Bayesian network does not contain directed loops.

More Directed RGMs: A Bayesian logic program is defined as a set of
Bayesian clauses [66]. A Bayesian clause specifies the conditional probability
distribution of a random variable given its parents on a template level, i.e.
in a node-class. A special feature is that, for a given random variable, sev-
eral such conditional probability distributions might be given. As an example,
bt(X) | mc(X) and bt(X) | pc(X) specify the probability distribution for blood
type given the two different dispositions mc(X) and pc(X). The truth value for
bt(X) | mc(X), pc(X) can then be calculated based on various combination rules
(e.g., noisy-or). In a Bayesian logic program, for each clause there is one condi-
tional probability distribution and for each Bayesian predicate (i.e., node-class)
there is one combination rule. Relational Bayesian networks [67] are related to
Bayesian logic programs and use probability formulae for specifying conditional
probabilities. Relational dependency networks [42] also belong to the family of di-
rected RGMs and learn the dependency of a node given its Markov blanket using
decision trees.
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6.3 Undirected RGMs

The probability distribution of an undirected graphical model or Markov network
can be written as

P (U = u) =
1
Z

∏
k

gk(uk)

where gk(.) is a potential function, uk is the state of the k-th clique and Z is
the partition function normalizing the distribution. One often prefers a more
convenient log-linear representation of the form

P (U = u) =
1
Z

exp
∑

k

wkfk(uk)

where the feature functions fk can be any real-valued function and where wi ∈ R.
We will discuss two major approaches that use this representation: Markov

logic networks and relational Markov models.

Markov Logic Networks (MLN): Let Fi be a formula of first-order and let
wi ∈ R be a weight attached to each formula. Then a MLN L is defined as a set of
pairs (Fi, wi) [68] [69]. One introduces a binary node for each possible grounding
of each predicate appearing in L (i.e., in context of the SW we would introduce a
node for each possible statement), given a set of constants c1, . . . , c|C|. The state
of the node is equal to 1 if the ground atom/statement is true, and 0 otherwise
(for an N-ary predicate there are |C|N such nodes). A grounding of a formula is
an assignment of constants to the variables in the formula (considering formulas
that are universally quantified). If a formula contains N variables, then there
are |C|N such assignments. The nodes in the Markov network ML,C are the
grounded predicates. In addition the MLN contains one feature for each possible
grounding of each formula Fi in L. The value of this feature is 1 if the ground
formula is true, and 0 otherwise. wi is the weight associated with Fi in L. A
Markov network ML,C is a grounded Markov logic network of L with

P (U = u) =
1
Z

exp

(∑
i

wini(u)

)

where ni(u) is the number of formula groundings that are true for Fi. MLN
makes the unique names assumption, the domain closure assumption and the
known function assumption, but all these assumptions can be relaxed.

A MLN puts weights on formulas: the larger the weight, the higher is the
confidence that a formula is true. When all weights are equal and become infinite,
one strictly enforces the formulas and all worlds that agree with the formulas
have the same probability.

The simplest form of inference concerns the prediction of the truth value
of a grounded predicate given the truth values of other grounded predicates
(conjunction of predicates) for which the authors present an efficient algorithm.
In the first phase, the minimal subset of the ground Markov network is returned
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that is required to calculate the conditional probability. It is essential that this
subset is small since in the worst case, inference could involve alle nodes. In the
second phase Gibbs sampling in this reduced network is used.

Learning consists of estimating the wi. In learning, MLN makes a closed-
world assumption and employs a pseudo-likelihood cost function, which is the
product of the probabilities of each node given its Markov blanket. Optimization
is performed using a limited memory BFGS algorithm.

Finally, there is the issue of structural learning, which, in this context, defines
the employed first order formulae. Some formulae are typically defined by a do-
main expert a priori. Additional formulae can be learned by directly optimizing
the pseudo-likelihood cost function or by using ILP algorithms. For the latter,
the authors use CLAUDIAN [70], which can learn arbitrary first-order clauses
(not just Horn clauses, as many other ILP approaches).

Relational Markov Networks (RMNs): RMNs generalize many concepts
of PRMs to undirected RGMs [40]. RMNs use conjunctive database queries as
clique templates. By default, RMNs define a feature function for each possible
state of a clique, making them exponential in clique size. RMNs are mostly
trained discriminately. In contrast to MLN, RMNs, as PRMs, do not make a
closed-world assumption during learning.

6.4 Latent Class RGMs

The infinite hidden relational model (IHRM) [71] presented here is a directed
RGM (i.e., a relational Bayesian model) with latent variables.10 The IHRM is
formed as follows. First, we partition all objects into classes K1, ...K|K|, using,
for example, ontological class information. For each object in each class, we
introduce a statement (Object, hasHiddenState, H). If Object belongs to class
Ki, then H ∈ {1, . . . , NKi}, i.e., the number of states of H is class dependent.
As before, we introduce a random variable or node U for each grounded atom,
respectively potentially true basic statement. Let ZObject denote the random
variables that involve Object and H . ZObject is a latent variable or latent node
since the true state of H is unknown. ZObject = j stand for the statement that
(Object, hasHiddenState, j).

We now define a Bayesian network where the nodes ZObject have no parents
and the parents of the nodes for all other statement are the latent variables of
the objects appearing in the statement. In other words, if U stands for the fact
that (Object1, property,Object2) is true, then there are arcs from ZObject1 and
ZObject2 to U . The object-classes of the objects in a statement together with the
property define a node-class for U . If the property value is a literal, then the
only parent of U is ZObject1 .

In the IHRM we let the number of states in each latent node to be infinite and
use the formalism of Dirichlet process mixture models. In inference, only a small
number of the infinite states are occupied, leading to a clustering solution where

10 Kemp et al. [72] presented an almost identical model independently.
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the number of states in the latent variables NCi is automatically determined
during inference.

Since the dependency structure in the ground Bayesian network is local, one
might get the impression that only local information influences prediction. This
is not true, since in the ground Bayesian network, common children U with evi-
dence lead to interactions between the parent latent variables. Thus information
can propagate in the network of latent variables. Training is based on various
forms of Gibbs sampling (e.g., the Chinese restaurant process) or mean field ap-
proximations. Training only needs to consider random variables U corresponding
to statements that received evidence, e.g., statements that are either known to
be true or known not to be true; random variables that correspond to statements
with an unknown truth value (i.e., without evidence) can completely be ignored.

The IHRM has a number of key advantages. First, no structural learning is re-
quired, since the directed arcs in the ground Bayesian network are directly given
by the structure of the SW graph. Second, the IHRM model can be thought of
as an infinite relational mixture model, realizing hierarchical Bayesian model-
ing. Third, the mixture model allows a cluster analysis providing insight into the
relational domain.

The IHRM has been applied to recommender systems, for gene function pre-
diction and to develop medical recommender systems. The IHRM was the first
relational model applied to trust learning [20]. In [31] it was shown how onto-
logical class information can be integrated into the IHRM.

6.5 Discussion

RGMs have been developed in the context of frame-based logical representations,
relational data models, plate models, entity-relationship models and first-order
logic but the main ideas can easily be adapted to the SW data model. One
can distinguish two cases. In the first case, an RGM learns a joint probabilistic
model over the complete SW or a segment of the SW. This might be the most
elegant approach since there is only one (SW-) world and the dependencies
between the variables are truthfully modeled, as discussed in Subsection 3.4.
The draw back is that the computational requirements scale with the number of
statements whose truth value is known or even the number of all potentially true
statements. More appropriate for large-scale applications might be the second
case where one applies the sampling approach as described in Section 3. As an
example consider that the statistical unit is a student. A data point would then
not correspond to a set of features but to a local subgraph that is anchored at the
statistical unit, e.g., the student. As before sampling would make the training
time essentially independent of SW-size. Ontological background knowledge can
be integrated as discussed in Section 3. First, one can employ complete or partial
materialization, which would derive statements from reasoning prior to training.
Second, an ontological subgraph can be included in the subgraph of a statistical
unit [31]. Also note that the MLN might be particularly suitable to exploit
ontological background information: ontologies can formulate some of the first-
order formulas that are the basis for the features in the MLN. PRMs have been
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extended to learn class hierarchies (PRM-CH), which can be a basis for ontology
learning.

The RGM approaches typically make an open world assumption.11 The cor-
responding random variables are assumed missing at random such that the ap-
proaches have an inherent mechanism to deal with missing data. If missing at
random is not justified, then more complex missing data models need to be ap-
plied. As before, based on the estimated probabilities, weighted RDF-triples can
be generated and added to the SW.

7 Unstructured Data and the SW

The realization of the SW heavily depends on (1) available ontologies and (2)
the annotation of unstructured data with ontology-based meta data. Manual
ontology development and manual annotation are two well known SW bottle-
necks. Thus learning-based approaches for both tasks are finding increasing in-
terest [2,9]. In this section, we will concentrate on two important tasks, namely
ontology learning and semantic annotation (for a compilation of current work
on ontology learning and population see, e.g., [73]). A particulary important
source of information for these tasks is unstructured or semi-structured tex-
tual data. Note that there is a close relationship between textual data and SW
data. Textual data describes, first, ontological concepts and relationships be-
tween concepts (e.g., a text might contain the sentence: We all know that cats
are mammals) and, second, instances and relationships between instances (e.g.,
a document might inform us that: Marry is married to Jack). However, the in-
put data for ontology learning and semantic annotation will not be limited to
textual data; especially once the SW will be realized to a greater extent, other
types of input data will become increasingly important. Learning ontologies from
e.g., XML-DTDs, UML diagrams, database schemata or even raw RDF-graphs
is also of great interest [74], but is out of scope here. The outline of this section
is as follows: first, we consider the case, where a text corpus of interest is given
and the task is to infer a prototype ontology. Second, given a text corpus and
an ontology, we want to infer instances of the concepts and their relations.

7.1 Learning Ontologies from Text

Ontology learning, in general, consists of several subtasks. This includes the
identification of terms, synonyms, polysems, concepts, concept hierarchies, prop-
erties, property hierarchies, domain and range constraints and class definitions.
These tasks can be illustrated as the so-called ontology learning layer cake [74].
Different approaches differ mainly in the way a concept is defined and one dis-
tinguishes between formal ontologies, terminological ontologies and prototype-
based ontologies [75]. In prototype-based ontologies, concepts are represented by
collections of prototypical instances, which are arranged hierarchically in sub-
clusters. An example would be the concept disease, which is defined by a set
11 There are some exceptions, e.g., MLN make a closed-world assumption in training.
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of diseases. Since prototype-based ontologies are defined by instances, they lack
definitions and axiomatic grounding. In contrast, typical examples for termino-
logical ontologies are WordNet and the Medical Subject Headings (MeSH12).
Terminological ontologies are described by concept labels and both nouns and
verbs are organized into hierarchies, defined by hypernym or subclass relation-
ships. For example a disease is defined in WordNet as an impairment of health or
a condition of abnormal functioning. Terminological ontologies typically also lack
axiomatic grounding. A formal ontology such as OWL, in contrast, is seen as a
conceptualization, whose categories are distinguished by axioms and definitions
[76]. Most of the state-of-the-art approaches focus on learning prototype-based
ontologies. Work on learning terminological or formal ontologies is still quite
rare. Here, the big challenge is to deal with uncertain and often even contra-
dicting extracted knowledge, introduced during the ontology learning process.
This is addressed in [77], which presents a system that is able to transform a
terminological ontology to a consistent formal OWL-DL ontology.

Prototype ontologies are often learned based on some type of hierarchical
clustering techniques such as single-link, complete-link or average-link clustering.
According to Harris’ distributional hypothesis [78], semantic similarity between
words can be assessed via the syntactic context, which they are sharing in a
corpus. Thus most approaches base the semantic relatedness between words on
some distributional similarity between the words. Usually, a vector-space model
is used as input and the linguistic context of a term is described by, e.g., syntactic
dependencies, which the term establishes in a corpus [79] The input vector for
a term to be clustered can be, e.g., composed of syntactic expressions such as
prepositional phrases following a verb or adjective modifiers. See [80] for an
illustrative example for assessing the semantic similarity of terms. Hierarchical
clustering, in its classical form, distinguishes between agglomerative (bottom-
up) and divisive (top-down) clustering, whereas the agglomerative form is most
commonly used due to its computational efficiency. Somewhat different from
hierarchical clustering is the divisive bi-section-Kmeans algorithm, which yielded
competitive results for document clustering [81] and has been applied to the task
of learning concept hierarchies as well [82,83]. Another variant is the the Formal
Concept Analysis (FCA) [84]. FCA is closely related to bi-clustering and tries
to build a lattice of so-called formal concepts from a vector space model. FCA
thereby makes use of order theory and analyzes the covariance between objects
and their features. The reader is referred to [84] for more information.

Recently, [74] set up a benchmark to compare the above mentioned clustering
techniques for learning concept hierarchies. While each of the methods had its
own benefits, FCA performed better in terms of recall and precision. All the
methods just mentioned, face the problem of not being able to appropriately label
the resulting clusters, i.e., to determine the name of the concept. To overcome
this limitation and to guide the clustering process, [85] either use hyponyms
extracted from WordNet or use Hearst patterns [86] derived either from the
corpus under investigation or from the WWW.

12 http://www.nlm.nih.gov/mesh/
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Another type of technique for learning prototype ontologies, comes from the
topic modeling community, an active research area of machine learning [87,9].
Topic models are generative models based upon the idea that a document is
made of a mixture of topics, where a topic is represented by a distribution over
words. Powerful techniques such as Latent Semantic Analysis (LSA) [88], Prob-
abilistic Latent Semantic Analysis (PLSA) [89] or Latent Dirichlet Allocation
(LDA) [90] have been proposed for the automated extraction of useful informa-
tion from large document collections. Applications include document annotation,
query answering, document summarization, automatic topic extraction as well
as trend analysis. Generative statistical models such as the ones mentioned, have
been proven effective in addressing these problems. In general, the following ad-
vantages of topic models are highlighted in the context of document modeling:
First, topics can be extracted in a complete unsupervised fashion, requiring no
initial labeling of the topics. Second, the resulting representation of topics for
a document collection is interpretable and last but not least, each document is
usually expressed by a mixture of topics, thus capturing the topic combinations
that arise in documents [89,90,91]. When applying topic modeling techniques in
an ontology learning setting, a topic is referred to as concept. To satisfy the hier-
archical structure of prototype ontologies, [87] extends the PLSA method to an
hierarchical version, where super concepts are introduced. While yielding already
impressive results with this kind of techniques, [87] concentrates on learning pro-
totype ontologies, where no labeling of the concept is needed. Furthermore, the
hierarchy of the ontology is assumed to be known a priori. Learning the hierar-
chical order in topic models is an area of growing interest. Here, [92] introduced
hierarchical LDA, which models the setup of the tree-structure of the topics as a
Chinese Restaurant Process (CRP). As a consequence, the hierarchy is not fixed
a priori, instead it is a part of the learning process. To overcome the limitation
of unlabeled topics or concepts, [93] tries to automatically infer an appropriate
label for multinomial topic models. [9] discusses ontology learning based on topic
models in context of the SW.

Ontology Merging, Alignment and Evolution: In many cases no dominant
ontology will exist, which leads to the problem that several ontologies need to
be merged and aligned. In [11] these tasks have been addressed with the support
of machine learning. Another aspect is that an ontology is not a rigid and fixed
construct — ontologies will evolve with time. Thus, the structure of an ontology
will change and new concepts will be needed to be inserted into an existing
ontology. This leads to another task, where machine learning can play a role in
ontology engineering: ontology refinement and ontology evolution. This task is
usually treated as classification task [76]. The reader is referred to [76,10] for
more information.

7.2 Semantic Annotation

Besides ontological support, a second prerequisite to put the SW into practice, is
the availability of machine-readable meta data. Producing human readable text
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from SW data is simple since an RDF triple can easily be formulated as a textual
statement. However, even though the statement won’t be powerfully eloquent,
it will still serve its purpose. The inverse is much more difficult, i.e., the gen-
eration of triples from textual data. This process is called semantic annotation,
knowledge markup or meta data generation [94]. Hereby, we are following the
notion of semantic annotation as linguistic annotations (such as named entities,
semantic classes, etc.) as well as user annotations like tags (see the ECIR 2008
workshop on ‘Exploiting Semantic Annotations in Information Retrieval’13).

The Information Extraction (IE) community provides a number of approaches
for these tasks. IE is traditionally defined as the process of filling the fields and
records of a database from unstructured text and is seen as precursor to data
mining [95]. Usually, the fields are filled with named entities (i.e., Named En-
tity Recognition (NER)), such as persons, locations or organizations. IE first
populates a database from unstructured text and data mining then aims to
find patterns. IE is, dependent on the task, made up of five subtasks: segmen-
tation, classification, finding associations and last but not least normalization
and deduplication [95]. Segmentation refers to the identification of text phrases,
which describe entities of interest. Classification is the assignment to predefined
types of entities, while finding associations is the identification of relations be-
tween the entities (i.e., relation extraction). Normalization and deduplication
describe the task of merging different text descriptions with the same meaning
(e.g., mapping entities to URIs).

NER is an active field of research and several evaluation conferences such as
the Message Understanding Conference (MUC-6)[96], the Conference on Com-
putational Natural Language Learning (CoNLL-2003) [97] and in the biomedical
domain, the Critical Assessments of Information Extraction systems in Biology
(BioCreAtIvE I+II14) [98] have attracted a lot of interest. While in MUC-6
the focus was NER for persons, locations, organizations in an English newswire
domain, CoNLL-2003 focused on language-independent NER. BioCreAtIvE fo-
cused on the recognition of biomedical entities, in this case gene and protein
mentions. The methods proposed for NER vary, in general, in their degree of
reliance on dictionaries, and their different emphasis on statistical or rule-based
approaches. Numerous machine learning techniques have been applied to NER
tasks such as Support Vector Machines [99], Hidden Markov Models [100], Max-
imum Entropy Markov Models [101] and Conditional Random Fields [64].

An F-measure in the mid-90s can now be achieved for extracting persons,
organizations and locations in the newswire domain [95]. For extracting gene
and protein mentions, however, the F-measure lies currently in the mid- to high
80s (see the BioCreAtIvE II conference for details). So NER can provide high
accuracy solutions for the SW, but typically only for a small number of classes,
mostly because of a limited amount of labeled training data. However, when
populating an existing ontology, there will often be the need to be able to extract
hundreds of classes of entities. Thus, systems which are able to scale to a large

13 http://www.yr-bcn.es/dokuwiki/doku.php?id=ecir08 entity workshop proposal
14 http://biocreative.sourceforge.net/biocreative 2.html
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number of classes on a large amount of unlabeled data are needed. Also flexible
and domain-independent recognition of entities is an important and active field
of research. State-of-the-art approaches try to extract hundreds of entity classes
in an unsupervised fashion [102], but so far with a fairly low accuracy. Promising
areas, which could help to overcome current limitations of supervised IE systems,
are semi-supervised learning [103,104] as well as active learning [105].

The same entities can have different textual representation (e.g., ‘Clark Kent’,
‘Kent Clark’ and ‘Mr. Clark’ refer to the same person). Normalization is the pro-
cess of standardizing the textual expressions. This task is usually also referred to
as entity resolution, co-reference resolution or normalization and deduplication.
The Stanford Entity Resolution Framework (SERF), e.g., has the goal to provide
a framework for generic entity resolution [106]. Other techniques for entity resolu-
tion employ relational clustering [107] as well as probabilistic topic models [108].

Another important task is the identification of relations between instances of
concepts (i.e., the association finding stage in the traditional IE workflow). Up
to now, most of research on text information extraction has focused on tagging
named entities. The Automatic Content Extraction (ACE) program provides
annotation benchmark sets for the challenging task of relation extraction. At
ACE, this task is called Relation Detection and Characterization (RDC). A
representative system using an SVM with a rich set of features, reports results
for Relation Detection (74.7% F-measure) and 68.0% F-measure for the RDC
task [109]. Co-occurrence based relation extraction is a simple, effective and
popular method [110], but usually suffers of a lower recall, since entities can
co-occur for many other reasons. Other methods are kernel-based [111] or rule-
based [112]. Recently, [113] propose a new method that treats relation extraction
as sequential labeling task. They extend Conditional Random Fields (CRFs)
towards the extraction of semantic relations. Hereby, they focus on the extraction
of relations between genes and diseases (five types of relations) as well as between
disease and treatment entities (eight types of relations). The work applies the
authors’ method to a biomedical textual database and provides the resulting
network of genes and diseases in a machine-readable RDF graph. Thereby, gene
and disease entities are normalized to Bio2RDF15 URIs.

8 First Experiments in the Analysis of FOAF-Data

The purpose of the FOAF (Friend of a Friend) project [114] is to create a web
of machine-readable pages describing people, the relationships between people
and people’s activities and interests, using W3C’s RDF technology. The FOAF
ontology is defined using RDFS/OWL and is formally specified in the FOAF
Vocabulary Specification 0.91 [115]. In our study we employed the IHRM model
as described in Section 6. The trained IHRM can, for instance, recommend new
friendships, the affiliations of persons, and their interests and projects. Further-
more one might want to predict attributes of certain persons, like their gender

15 http://bio2rdf.org/
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or age. Finally, by interpreting the clustering results of the IHRM one can an-
swer typical questions from social network analysis concerning the relationships
between members of the FOAF social system.

In general FOAF data is either uploaded by each person individually or gen-
erated automatically from user profiles of community websites like Tribe.net,
LiveJournal.com or my.opera.com. The resulting network of linked FOAF-files
can be gathered using a FOAF harvester, a so called “scutter”. Some scutter
dumps are readily available for download, e.g., in one large rdf/xml-file or stored
in a relational database.

Even though this use case only covers a very basic statistical inference problem
on the SW, there still are major challenges to meet. First, there are characteris-
tics of the FOAF-data that need special consideration: For instance, the actual
data is extremely sparse. With more than 100000 users, there are far more po-
tential links as actual links between persons.

Another typical characteristic of friendship data is that the topology of the
knows-RDF-graph consists of a few barely connected star graphs, corresponding
to a few active network users with a long list of friends as the ”center” of the
stars and the mass of users that don’t specify their friends. Second, there are
prevalent challenges of SW data in general that can also be observed in a FOAF
analysis. For instance, there is a variety of additional untested and potentially
conflicting ontologies specified by users. If this information is ignored by only
considering data consistent with the FOAF ontology, most of the information
specified by users is ignored. This also applies to the almost arbitrary use of lit-
erals by users. For instance the relation interest with range Document defined in
the FOAF-schema is in reality mostly used with a literal instead. Consequently,
this results in a loss of semantic information. To still make use of this informa-
tion one would, e.g., need to use automated semantic annotation as described
in Section 7. Another preprocessing step that needs to be considered in practice
is the materialization of triples, which can be inferred deductively. For example
there might be an instance of the relation holdsAccount with domain Person
in the data, which is not given in the schema. However, from the ontology it
can be inferred that Person is a subClassOf Agent which in turn has a prop-
erty holdsAccount. As stated before, total materialization is only feasible in less
expressive ontologies.

Considering these issues, it becomes clear that there are not only theoretical
but also a large number of interesting practical challenges for learning on the SW.

9 Conclusions

Data in Semantic Web formats will bring many new opportunities and chal-
lenges to machine learning. Machine learning complements ontological back-
ground knowledge by exploiting regularities in the data while being robust
against some of the inherent problems with Semantic Web data such as contra-
dicting information and non-stationarity. A general issue with machine learning
is that the problem of missing information needs to be carefully addressed in
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learning, in particular if either the selection of statistical units or the probability
that a feature is missing depend on the features of interest, which is common in
many-to-many relations.

We began with a section on feature-based statistical learning on the Semantic
Web. This procedure is widely applicable, scales well with the size of the Se-
mantic Web and provides a promising general purpose learning approach. The
greatest challenge here is that most feature-based statistical learning approaches
have no inherent way of dealing with missing data requiring additional missing
data models. A common situation in social network data is that features in linked
objects are mutually dependent and need to be modeled jointly. One can expect
that this will also often occur in SW data and SW learning will benefit from
ongoing research in social network modeling.

We then presented the main approaches in inductive logic programming. In-
ductive logic programming has the potential to learn deterministic constraints
that can be integrated into the employed ontology. We presented a discussion on
learning with relational matrices, which is quite attractive if multiple many-to-
many relations are of interest, as in recommendation systems. We then studied
relational graphical models. Although these approaches were originally defined
in various frameworks, e.g., frame-based logical representation, relational data
models, plate models, entity-relationship models and first-order logic, they can
easily be modified to be applicable in context of the Semantic Web. Relational
graphical models are capable of learning a global probabilistic Semantic Web
model and inherently can deal with missing data. Scalability to the size of the
Semantic Web might be a problem for RGMs and we discussed subgraph sam-
pling as a possible solution. All approaches have means to include ontological
background knowledge by complete or partial materialization. In addition, the
ontological RDF-graph can be incorporated in learning and ontological features
can be derived and exploited. Ontologically supported machine learning is an
active area of research. It is conceivable that in future ontological standards,
the developed statistical models could become in integral part of the ontology.
Also, we have discussed that most presented approaches can be used to produce
statements that are weighted by their probability value derived from machine
learning, complementing statements that are derived form logical reasoning. An
interesting opportunity is to include weighted triples in Semantic Web queries.

We reported about initial work on learning ontologies from textual data and
on the semantic annotation of unstructured data. So far, this concerns the most
advanced work in Semantic Web learning covering ontology construction and
management, ontology evaluation, ontology refinement, ontology evolution, as
well as the mapping, merging and alignment of ontologies. In addition there is
growing work on Semantic Web mining extending the capabilities of standard
web mining, although most of this work needs to wait for the Semantic Web to
be realized on a large scale.

In summary, machine learning has the potential to realize a number of exciting
applications on the Semantic Web and can complement axiomatic inference by
exploiting regularities in the data.
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30. Karalič, A., Bratko, I.: First order regression. Machine Learning 26(2-3) (1997)
31. Reckow, S., Tresp, V.: Integrating ontological prior knowledge into relational

learning. Technical report, Siemens (2007)
32. Tresp, V.: Committee machines. In: Hu, Y.H., Hwang, J.N. (eds.) Handbook for

Neural Network Signal Processing. CRC Press, Boca Raton (2001)
33. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 2nd edn.

Wiley, Chichester (2002)
34. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Col-

lective classification in network data. AI Magazine (Special Issue on AI and Net-
works), forthcoming (forthcoming, 2008)

35. Macskassy, S., Provost, F.: Classification in networked data: a toolkit and a uni-
variate case study. Machine Learning (2007)

36. Chakrabarti, S., Dom, B., Indyk, P.: Enhanced hypertext categorization using
hyperlinks. In: SIGMOD (1998)

37. Neville, J., Jensen, D.: Iterative classification in relational data. In: AAAI (2000)
38. Lu, Q., Getoor, L.: Link-based classification. In: ICML (2003)
39. Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilistic models of

link structure. journal of machine learning research. Journal of Machine Learning
Research (2002)

40. Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for rela-
tional data. In: Uncertainty in Artificial Intelligence, UAI (2002)

41. Zhu, X.: Semi-supervised learning literature survey. Technical report, Technical
Report 1530, Department of Computer Sciences, University of Wisconsin (2005)

42. Neville, J., Jensen, D.: Dependency networks for relational data. In: ICDM 2004:
Proceedings of the Fourth IEEE International Conference on Data Mining (2004)

43. Neville, J., Jensen, D.: Relational dependency networks. Journal of Machine
Learning Research (2007)

44. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5(3)
(1990)



Towards Machine Learning on the Semantic Web 311
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Abstract. A logical formalism to support the insertion of uncertain
concepts in formal ontologies is presented. It is based on the search of
extensions by means of two automated reasoning systems (ARS), and it
is driven by what we call cognitive entropy.

1 Introduction

The challenge of data management with logical trust arose from the statement
of the Semantic Web (SW). An important problem is the need for extending or
revising ontologies. Such task is, from the point of view of companies, dangerous
and expensive: since every change in ontology would affect the overall knowledge
of the organization. It is also hard to be automated, because some criteria for
revision cannot be fully formalized. Despite its importance, the tools designed
to facilitate the syntactic extension or ontological mapping do not analyze, in
general, their effect on the (automated) reasoning.

Our aim is to design tools for extending ontologies in a semi-automated way,
that is one of the problems present in several methods for cleaning data in the
SW, when it implies ontological revision (see e.g. [1] [3]). The method is based
on the preservation by extensions of the notion of ontology robustness, see [8].
lattice categoricity, (described in sect. 3), is going to be applied in a special case:
the change is induced by the user, who has detected the (cognitive) necessity of
adding a notion. That is, a vague concept which comprises a set of elements with
features roughly shaped by the existing concepts. In Ontological Engineering,
careful consideration should be paid to the accurate classification of objects: the
notion becomes a concept when its behavior is constrained by new axioms that
relate it to the initial concepts. This scenario emphasizes the current need for
an explanation of the reasoning behind cleaning programs. That is, a formalized
explanation of the decisions made by systems. Note that such explanations are
necessary for the desirable design of logical algorithms to be used by general-
purpose cleaning agents [4]. It is evident that the task will need not only specific
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automated reasoning systems (ARSs) for SW, but also those for general purpose.
The reason is that some tasks are not directly related to reasoning services for
the SW [2] [17] [8]. Thus, we use ARSs for first order logic theories, in favor of one
reaches major generality. Among the challenges the problem raises in a dynamic
setting as the SW, there are three of them which are specially interesting from
the point of view of automated reasoning. They seem to obstruct the design of
a fully formalised methodology [4] from classical database field:

– We can not suppose the database to be stable (because new facts could be
added in the future).

– Usually, the specification of an ontology is syntactically complex, so it is very
likely that classical axiomatization of database theory becomes inconsistent,
even if ontology itself is consistent.

– It is possible that the database does not contain facts about the whole rela-
tions of the language.

However, some limitations can be solved by weakening the requirements imposed
in both database and ontological reasoning [8] [2].

The method proposed is based on the assistance of two ARS, McCune’s OT-
TER and MACE4 (http://www-unix-mcs.anl.gov). The first one, OTTER, is
an automated theorem prover (ATP) based on resolution and support set strat-
egy. The program allows great autonomy: its auto2 mode suffices to find almost
every automated proof that have been required. The second one, MACE4, is
an automatic model finder sharing formula syntax with OTTER. It is based on
Davis-Putnam-Loveland-Longemann’s procedure to decide satisfiability. It has
been useful for analyzing the models of the involved theories.

Finally, it would be good to add some information about MACE4. Despite it
has not been formally verified to work correctly, once the result by MACE4 is de-
termined, it is not difficult to certify that the models it gives are correct. It is nec-
essary to use OTTER to prove that the list of models is exhaustive. Thus, MACE4
has been used as an automatic assistant to induce new results and investigate the
effect of diverse axiomatizations, which must be certified later.

2 Logic-Based Ontological Extensions

Once the need for revision is accepted, the task can be seen, up to some extent
-and specially when one designs her/his own logical theory-, from two points of
view. The first one considers it like a task similar to belief revision, analyzing
it by classic methods of AI. Nevertheless, the effort can be expensive, because
it must study once again the impact of revision on the foundational features of
the source ontology. The second one has a foundational character. The evolution
of ontology should obey ground principles which are accepted on this matter.
For example, preserving some sort of backward compatibility, if it is possible
(extracted from [15]):

– The ontology should be able to extend other ontologies with new terms and
definitions.
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– The revision of an ontology should not change the well-formedness of re-
sources that commit themselves to an earlier version of the ontology.

However, such principles are more adequate if the source ontology is robust,
in the following sense [4]: An ontology is robust if its core is clear, stable (except
for extensions); if every model of its core exhibits similar properties w.r.t. the
core language, and if it is capable of admitting (minor) changes made out of the
core without committing core consistency. By core we understand a portion of
ontology that we consider as a sound theory with well known properties, and
which is accepted as the best for the concepts involved. We can consider two
kinds of extensions:

– Extension by definition. It produces conservative extensions. If definitions
are not provided for the new elements, conservation can fail.

– Ontological insertion: Essentially new (nondefinable) concepts/relations are
inserted. The task is to design good axioms to specify the new ones from
core theory.

An interesting case occurs in the task of ATP-aided cleaning of logic databases.
The bottom-up change generation in ontologies -due to the analysis of track
interaction among the Knowledge Base, the ATP and the user- induces ontolo-
gical revision. It can simulate new elements in ontology to be inserted (such as
Skolem noise [2]). We analyze here a slightly different problem, which appears
when the user is the person who decides to insert a new concept by collecting a
set of data.

The extension by definition is the basis of definitional methodologies for build-
ing formal ontologies. It is based on the following principles [7]:

1. Ontologies should be based upon a small number of primitive concepts.
2. These primitives should be given definite model theoretic semantics.
3. Axioms should only be given for the primitive concepts.
4. Categorical axiom sets should be sought.
5. The remaining vocabulary of the ontology (which may be very large), should

be introduced purely by means of definitions.

In this paper, the first three principles are assumed. The fourth one will be
replaced by lattice categoricity. Categoricity is a strong requirement that can be
hard to achieve and to preserve. Even when it is achieved, the resultant the-
ory may be unmanageable (even undecidable) or unintuitive. This phenomenon
might suggest that we restrict the analysis of completeness to coherent parts of
the theory. However, it is not a local notion: since minor changes commit the
categoricity and it is expensive to repeat the logical analysis.

With respect to the last principle, starting with a basic theory, it seems hard to
define a new concept/relationship. It is better to consider it only as the starting
point to build an ontology, thinking thus that we are in early steps of the process,
where ontological insertions are necessary.

Finally (although it is not the topic of this paper), we would like to add
that an ontological insertion should be supported by a good theory about its
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relationship with the original ontology. It should as well be supported by a nice
way of expanding a representative class of models of the source theory to the
new one. This class of models must contain the intended models (those that the
ontology designer wants to represent). It can be required an interpretation of
the new elements which should be formalised, and a re-interpretation of the
older ones, which must be compatible with basic original principles.

3 Lattice Categorical Theories

In order to solve in practice the several logical problems that ontological inser-
tion raises we will analyze the categoricity of the structure of the concepts of
the ontology. We are going to take into account compatibility which has been
previously mentioned, and we will try to obtain definitions of the concepts in-
serted in the new ontology. We will also analyze categoricity of structure of
concepts of ontology. For the sake of clarity, we suppose that the set of concepts
has a lattice structure. Actually, this is not a constraint: there are methods to
extract ontologies from data which produce such structure (such as the Formal
Concepts Analysis [14]) and, in general, the ontology is easy to be extended by
definition, verifying lattice structure. Although we think about Description Log-
ics [5] as ontological language (the logical basis for ontology languages as OWL,
see http://www.w3.org/TR/owl-features/), the definitions are useful for full
first order logic (FOL), so we give the definitions in FOL language.

On the one hand, a lattice categorical theory is the one that proves the lat-
tice structure of its basic relationships. This notion is weaker than categoricity or
completeness. On the other hand, lattice categoricity is a reasonable requirement:
the theory must certify the basic relationships among the primitive concepts. In
[8] we argued that completeness can be replaced by lattice categoricity to facil-
itate the design of feasible methods for extending ontologies. Let us summarize
these ideas.

Given a fixed FOL language, let C = {C1, . . . , Cn} be a (finite) set of concept
symbols, let T be a theory (in the general case, definable concepts in T can
be considered). Given M a model of T , M |= T , we consider the structure
L(M, C), in the language LC = {�,⊥,≤} ∪ {c1, . . . , cn}, whose universe are the
interpretations in M of the concepts (interpreting ci as CM

i ), � is M , ⊥ is ∅ and
≤ is the subset relation. We assume from now on that L(M, C) is requested to
have a lattice structure for every theory we consider. This requirement simplifies
the examples.

The relationship between L(M, C) and the model M itself is based in two facts.
The first one, the lattice L can be characterized by a finite set of equations EL,
plus a set of formulas ΘC categorizing the lattice under completion, that is, ΘC
includes the domain closure axiom, the unique names axioms and, additionally,
the axioms of lattice theory. Thus, every model M of E∪ΘC is finite. The second
one, there exists a natural translation Π of these LC-equations into formulas in
the FOL language so that if E is a set of equations characterizing L(M, C) (so
L(M, C) |= E), then M |= Π(E).
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Definition 1. Let E be a LC-theory. We say that E is a lattice skeleton (l.s.)
for a theory T if E verifies that

– There is M |= T such that L(M, C) |= E ∪ΘC , and
– E ∪ΘC has an unique model (modulo isomorphism).

Every consistent theory has a lattice skeleton [8]. Roughly speaking, the existence
of essentially different lattice skeletons makes difficult to reason with the ontology
while the existence of only one would make it easy.

Definition 2. T is called a lattice categorical (l.c.) theory if whatever pair
of lattice skeletons for T are equivalent modulo ΘC.

Note that if T is l.c. and E is a l.s. of T , then T  Π(E). Note also that every
consistent theory T has an extension T ′ which is lattice categorical: it suffices
to consider a model M |= T , and then to find a set E of equations such that
ΘC ∪ E has L(M, C) as only model. The theory T ∪Π(E) (and any consistent
extension of it) is l.c.

Finally, we can give a formalization of robust ontological extension, based in
the categorical extension of the ontology:

Definition 3. Given two pairs (T1, E1), (T2, E2) we will say that (T2, E2) is a
lattice categorical extension of (T1, E1) with respect to the sets of concepts
C1 and C2 respectively, if C1 ⊆ C2 and L(T2, C2) is an E1-conservative extension
of L(T1, C1).

For reasoning with the lattice of concepts it suffices to work with a lattice skele-
ton, so, to simplify, we suppose throughout that T is the self l.s.

3.1 Cognitive Support

Once formalized the notion of lattice categorical extension, we need to design
several functions to advise how to select the best l.c. extension.

Assume that T is a theory, and L is the lattice defined by C in some M |= T .
From the point of view of ontology designer, such a model M is the intended
model that the ontology attempts to represent. Suppose that Δ = {h1, . . . hn}
is the set of facts on C, and the user wants to classify some elements that occur
in Δ by means of a new concept. We can suppose, to simplify the notation, that
every fact explicit in T belongs to Δ. Let U(Δ) be the universe determined by
Δ; that is, {a : ∃ C ∈ C [C(a) ∈ Δ]}.

Given C ∈ C in Δ, we consider

|C|Δ := |{a : C(a) ∈ Δ}| and |C|ΔT := |{a ∈ U(Δ) : T ∪Δ |= C(a)}|.

Definition 4. The cognitive support of C with respect to Δ, T and L, is

supL
T,Δ(C) :=

|{a ∈ U(Δ) : ∃i[Ci ≤L C ∧ T ∪Δ |= Ci(a)]}|
|U(Δ)|
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This support estimates the number of facts on the concept C entailed by T ,
normalized by the size of the universe U(Δ). Because of the computational com-
plexity of logical reasoning, it can be hard in general to compute it: we need
to seek, by logical entailment, the cone of concepts defined by C. However, this
computation is trivial for lattice categorical theories:

Proposition 1. If T is lattice categorical, then supL
T,Δ(C) =

|C|ΔT
|U(Δ)|

The proposition holds because if Ci ≤L C, then T |= Ci � C. Thus, if T ∪Δ |=
Ci(a), then T ∪Δ |= C(a).

From now on, we suppose that Δ is compounded by facts on atoms of the
lattice of concepts (that is, about the most specific concepts). Note, also, that if
T is l.c., then L is unique, and we will thus omit the superscript L in that case.

Corollary 1. If J = {C1, . . . , Cn} is a Jointly Exhaustive and Pairwise Dis-
joint (JEPD) set of concepts in L, then supT,Δ(.) is a probability measure.

Proof. It is easily seen that
∑

C∈J supL
T,Δ(C) = 1.

The cognitive entropy of J is CH(J ) = −
∑
C∈J

supT,Δ(C) log supT,Δ(C).

3.2 Entropy of Ontological Extensions

Suppose that the user decides that a set {a1, . . . , ak} ⊆ U(Δ) induces a new
concept D (provisionally, a notion). Such a notion might not be fully represented
by those elements. Also, it is possible that some of them do not belong to the new
concept, because of noise in the data. It might also be the case that the concept
is constrained by a set Σ of axioms introduced by the user. Furthermore it is also
possible that T ∪Σ is not l. c., that is, this theory does not prove the intended
lattice induced by C ∪ {D}. MACE4 provides the collection {L1, . . . , Lm} of the
lattices induced by the models of T ∪ Σ. Let Ti be a lattice skeleton for Li

(i = 1, . . . , m).
Now, we focus our attention on a concrete level of the Ontology, where we

intend to insert the new concept. The level will be a JEPD J = {C1, . . . , Ck} of
the lattice L verifying that if the new concept D contains some of them,

J Li

�D = {Ci ∈ J : Ci ≤Li D} �= ∅

then Ji = (J \ J Li

�D) ∪ {D} is a JEPD in Li. Since Ti is a l.c. extension of T ,
the support of D is easy to achieve:

Theorem 1. In above conditions, supTi,Δ(D) =
∑

C∈JLi
�D

supL
T,Δ(Ci)

To estimate the conditional entropy of the new extension, we consider a nat-
ural definition of conditional support:

supTi,T,Δ(C′|C) :=
|{a ∈ U(Δ) : T ∪Δ |= C(a) ∧ Ti ∪Δ |= C′(a)}|

|C|ΔT
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This support allows to estimate the amount of new information produced by
the extension by standard methods; through the conditional entropy associated
to the two probability measures. The conditional cognitive entropy is :

CH(J ||Ji) = −
∑

C′ ∈ J
C ∈ Ji

supTi,Δ(C′|C) log supTi,Δ(C′|C)

This sum can be simplified (assuming 0 log 0 = 0): if C = C′ or C, C′ ∈ J , then

supTi,T,Δ(C′|C) log supTi,T,Δ(C′|C) = 0

and the following property holds:

Proposition 2. In above conditions, supTi,T,Δ(C′|C) =
|C′|ΔT
|C|ΔTi

This entropy is similar to Kullback-Leibler distance or relative entropy (see [16]),
but using the entailment to classify the elements. It is known that it is minor
than the initial entropy. In [13] similar entropies are used, but based on proba-
bilistic assignation. Finally, in order to estimate what is the best extension for
our purposes, it is necessary to compute the The Shannon’s diversity index
for each Li. This index normalizes the amount of information produced by the
extension, and is defined as

IH(Ji) =
CH(J ||Ji)

log |Ji|
The interpretation of the index is as follows: if we select Li with minimum

IH(Ji), the new information produced by the new concept is minor. This option
is the cautious one: the reparation of the source ontology is light and we do not
expect big changes in the representation of the intended model. If we select Li

with an upper IH(J), the change of the information is more relevant; we select
such an extension if we regard as robust the specification of the concept given
by Σ together with the facts. In general, we have to chose the l.c. extension with
minor index. Intuitively, in this way we do not change too much the information
of the initial ontology.

4 An Example

We would like to show a short example in the field of Qualitative Spatial Reason-
ing (QSR). Region Connection Calculus (RCC) [12] is a well-known mereotopo-
logical approach to QSR, that we can consider to be a robust ontology. For
RCC, the spatial entities are non-empty regular sets. The primary relation be-
tween them is connection, C(x, y), with intended meaning: “the topological clo-
sures of x and y intersect”. The basic axioms of RCC are A1 := ∀x[C(x, x)]
and A2 := ∀x, y[C(x, y) → C(y, x)] jointly with a set of definitions on the main
spatial relations (fig. 1), and other axioms not used here (see [12]).
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DC(x, y) ↔ ¬C(x, y) (x is disconnected from y)
P (x, y) ↔ ∀z[C(z, x) → C(z, y)] (x is part of y)
PP (x, y) ↔ P (x, y) ∧ ¬P (y, x) (x is proper part of y)
EQ(x, y) ↔ P (x, y) ∧ P (y, x) (x is identical to y)
O(x, y) ↔ ∃z[P (z, x) ∧ P (z, y)] (x overlaps y)
DR(x, y) ↔ ¬O(x, y) (x is discrete from y)
PO(x, y) ↔ O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x) (x partially overlaps y)
EC(x, y) ↔ C(x, y) ∧ ¬O(x, y) (x is externally connected to y)
TPP (x, y) ↔ PP (x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)] (x is a tangential prop. part of y)
NTPP (x, y) ↔ PP (x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)] (x is a non-tang. prop. part of y)

Fig. 1. Axioms of RCC

We have proved (by using MACE4 and OTTER) that the set of formulas E
given in the figure 2 categorises under completion the lattice of the RCC-spatial
relationships (given in fig. 3). The set of binary relations formed by the eight
(JEPD) relations given in figure 3 is denoted by RCC8. If this set is thought to
be a calculus, all possible unions of the basic relations are also used. Another
interesting calculus is RCC5, based on {DR, PO, PP, PP i, EQ}.

� ≡ C 
 DR PO � ¬P 	 ¬Pi 	 ¬DR DR ≡ EC 
 DC
NTPP � ¬TPP 	 ¬Pi 	 ¬DR C ≡ O 
 EC TPP � ¬Pi 	 ¬DR

O ≡ PO 
 P 
 Pi EQ � ¬PPi 	 ¬DR Pi ≡ EQ 
 PPi
TPPi � ¬NTPPi 	 ¬DR P ≡ EQ 
 PP NTPPi � ¬DR

PPi ≡ TPPi 
 NTPPi EC � ¬DC PP ≡ TPP 
 NTPP

Fig. 2. A skeleton for RCC

Suppose that if we insert a new spatial uncertain relation D expressing “x and
y have a isometric overlapping relation”; that is, D covers partial overlapping PO
and extensional equality EQ relationships. That is, proper part is not possible
between isometric objects. This is suggested by the study of spatial relationships
among identical objects (e.g. the 2-D spatial configuration of a set of coins).
Thus, we consider that the new relation D satisfies

RCC ∪ {∀x∀y(PO(x, y) → D(x, y)), ∀x∀y(EQ(x, y) → D(x, y))}

or, in terms of skeleton, E ∪ {PO � D, EQ � D}. MACE4 produces seven l.c.
extensions (classified according to their lattices in fig. 4). All these extensions
can be mereotopologically interpreted [11]. Suppose that the set that motivates
the extension is:

Δ :=

⎧⎨
⎩

PO(m1, m2) EQ(m2, m3) EQ(m3, m4) PO(m1, m3) DC(m4, m6)
DC(m3, m5) PO(m5, m1) NTPP (c1, m3) EC(c2, m1) TPP (c2, c5)
DC(c1, c2) TPPi(c5, c2) NTPP (m2, c4) DC(m1, c3) TPP (c1, c3)

In this case, |U(Δ)| = 15, and the basic JEPD is the set J = {PO, PP, EQ, PPi,
EC, DC}. In each Li, Ji is a JEPD, so we can assign conditional entropy and



Using Cognitive Entropy to Manage Uncertain Concepts 323

C DR

O

P Pi

PP

PO EQ

PPi

EC DCNTPPiTPPiTPPNTPP
1 2 3 4 5 6 7 8

9 10

1211

13

14 15

16

0

a

b

a b a b a b a b

a b
b

a
a

b

TPPi(a,b) NTPP(a,b) NTPPi(a,b) EQ(a,b)

DC(a,b) EC(a,b) PO(a,b) TPP(a,b)

Fig. 3. The lattice of spatial relations of RCC (left) and he relations of RCC8 (right)

Shannon’s diversity index to each extension.Thus, T2 ≡ E+∪{D ≡ PO�EQ} is
the selected l.c. extension because it has the minimum Shannon’s index. On the
other hand, the user’s notion might be inconsistent. For instance, if the user’s
proposal for Σ′ is {PO � D, EQ � D, P � D, D � O}, then there is not any
l.c. extension, a fact that we have certified using MACE4 and OTTER.

5 Data-Driven Ontology Revision: Deficient Data Layout

In above sections, we have formalized the insertion of a concept that will remain
well defined once the appropriate extension is selected. In that case, the compu-
tation of entropies is easier than the entropies defined in this section. Now, we
aim to extend the ontology in a provisional way because the deficient classifica-
tion of data induces the insertion of subconcepts for refining the classification
of individuals which initially were misclassified1. In this case the new concepts
will fall in the bottom level. Therefore, we aim to extend JL, the JEPD set of
concepts which are the atoms of the lattice L(T, C).

The following definition formalizes the notion of insertion of a concept with
certain degree of imprecision as subconcept of a given concept C. It has to be
determined whether there is a l.c. extension of the ontology with an (atomic)
subconcept μC of C. Intuitively, the meaning of μC(a) is “the concept a falls
in the concept C, but we do not know any more specific information about a”.
Formally,

Definition 5. Let (T, E0) be a l.c. core and C ∈ C. We say that the ontology
admits an undefinition at C (T �w C) if there is a l.c. extension of T , (T ′, E′),
such that

1. T ′ is l.c. with respect to C ∪ {μC}, (where μC /∈ C).
2. {μC} is an atom in the lattice L′ = L(T, C ∪ {μC}).
3. There is not C′ such that μC <L′

C′ <L′
C.

1 This approach is inspired in the study presented at Eurocast 2007 [9].
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Fig. 4. The seven l.c. extensions by insertion. The grey box denotes the new relation.

Note that, in above conditions, JL[μC] := JL ∪ {μC} is a JEPD set for L′ (see
fig. 5, left). This requirement represents, in fact, that we have not any additional
information about μC. For example, in figure 5 right, the relation μC(a, b) means
“the regions a and b are connected, but it is unknown if they overlap or they are
externally connected”.

The notation T |=μ C(a) means T |= C(a) and, for all D <L C, T �|= D(a).
In other words, C(a) is the most specific knowledge on a entiled from T . It is
easy to see that
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Fig. 5. The ontology (RCC, E) admits an undefinition in the concept C (connection)
(right)

Proposition 3. Whatever two extensions by undefinition at C of T have equiv-
alent lattice skeletons modulo completion.

Such a skeleton of the extension is denoted by E[μC]. We can also consider the
iteration of this kind of extensions, namely E[μC1, . . . , μCk].

Corollary 2. E[{μC : C ∈ C ∧ T �w C}] is unique (modulo database
completion axioms).

5.1 Inserting Provisional Spatial Relationships in RCC

As we have already commented, the JEPD set named RCC8 is the representation
of a precise classification for RCC. In order to build the adequate extension, we
compute first the list of extensions obtained by inserting only one relation.

Theorem 2. There are exactly eight extensions by undefinition of the lattice of
RCC by insertion of a new relation D such that RCC8 ∪ {D} is a JEPD set.

Such new relations can be mereotopologically interpreted [11]. A proof of this
result appears at [11]. The lattices of extensions are detailed at [8]. For example,
the lattice depicted in fig. 5 (right) has a skeleton E[μC].

The next step consists in deciding which is the best l.c. extension to clas-
sify data. Suppose that Δ = {h1, . . . hn} is the set of facts. Assume that the
user believes that the set of misclassified elements is I = {a1, . . . ,ak} ⊆ U(Δ)
(according with user’s ontology). In this case, the problem is not due to a new
concept, because the user has not decided yet an insertion. Such elements are
not falling on atomic concepts (T �|= C(a) for any C ∈ JL), because the user has
not an specific definition of them, that is, he has got only unprecise information
(as, instances of upper concepts).

It is easy to provide an extension by undefinition with complete classification
of data. For each ai ∈ I, let Ci ∈ C such that T |=μ Ci(ai). Any extension by
undefinition at the set {Ci : i = 1, . . . k} classifies every element of U(Δ) with
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a concept of the JEPD set JT ′ := J ∪ {μC1, . . . , μCk}. Note also, that if we do
not require Ci is the most specific one, the extension is not unique.

Definition 6. Let T ′ be an extension by undefinition of T defined as in 5. The
support of μC is defined as

suppT ′,Δ(μC) =
|{a ∈ U(Δ) : a ∈ I ∧ T ∪Δ |=μ C(a)}|

|U(Δ)|

That is, the support of μC uses the number of elements for such that T proves
they belong to C. In this way suppT ′,Δ is also a probability measure on JT ′ .
Note that this computation is equivalent to consider the support with respect to
the theory T ′∪{μC(a) : T ∪Δ |=μ C(a)}. To simplify, we consider throughout
that T ′ is that theory.

Theorem 3. The extension above defined exhibits the maximum cognitive en-
tropy among every possible extension by undefinition classifying U(Δ).

Sketch of proof: If T ′′ is other extension, then some ai of I are classified with
respect to a concept which is not the most specific one. Thus the result follows
by the convexity of the function p log p.

A l.c. extension by undefinition with maximum entropy gives little information
on new concepts. This option is a cautious solution to the problem, because
strong requirements for the new concepts are not been imposed.

Fig. 6. Map of United States
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5.2 A Motivating Example

In order to understand the problem and its solution, let us suppose that a Ge-
ographical Information System (GIS) launches agents for finding, in the SW,
information about several geographical objects in United States (see fig. 6).
Suppose that the set Δ found by information agents is:

Overlap(W est, Mount Elbert)
PartOf(Mount Elbert, Colorado)
PartOf(Colorado, W est)
ProperPartOf(Miami, F lorida)
Overlaps(W est, Colorado)
Overlaps(Basin of P latte River, Nebraska)
Discrete(Colorado, Basin of Missouri River)
Overlaps(East, Miami)
PartialOverlaps(Basin of Missouri River, W est)
ProperPart(East, Colorado)
PartOf(Miami, F lorida)
ProperPartInverse(F lorida, Miami)
TangentialProperPart(Mount Elbert, Great P lains)
Discrete(W est, Georgia)
Part(East, Georgia)

Note that several facts do not provide the most specific spatial relation that
it might be expressed with RCC ontology. That is the case of the fact Overlaps
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Fig. 7. Classification of data according to E[μPP, μP, μPPi, μO, μDR]
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(Basin of P latte River, Nebraska). Both regions are overlapping, however
there is no information about what level of overlapping relates these regions.

Since the GIS deals with concepts representing underspecified spatial relations
such as Overlaps, PartOf, ..., it is hard to classify individual regions in an
accurate way. They would be classify to work within a set of specific spatial-
relations/concepts, a jointly exhaustive set of pairwise disjoint concepts to get
the exhaustive intended classification.

The problem can be stated as follows: Given a set Δ of facts with respect to
an ontology O, where most of specific information on some individuals can not
entailed, to design a provisional robust extension of O to provisionally classify
these concepts.

The extension of RCC for the running example will be a combination of some
of the eight extensions. We are interested on finding an extension by undefinition
of RCC that classifies the data and exhibits the highest entropy. According to
data of the example, and th. 3, the selected extension has skeleton (see fig.
7): E[μPP, μP, μPPi, μO, μDR]. This l.c. extension reaches (by above theorem)
maximum entropy, its value is 1.566. For example, E[μP, μPPi, μO, μDR], shows
entropy 1.326.

6 Closing Remarks

A formalization of data integration with unprecise information for the Seman-
tic Web has been investigated. It presents a method to insert new concepts
in an ontology with backward compatibility and preserving a weak form of
completeness.

Although it is usual to study entropy for associating data to concepts in On-
tology Learning, it is not usual to consider the provability from ontology like
a factor, as we do. However, we think, that it will be a key issue in the SW.
There are other approaches, but they deal with probabilistic objects. J. Cal-
met and A. Daemi also use entropy in order to revise or compare ontologies
[10] [13]. This is based on the self taxonomy defined by the concepts but prov-
ability from specification is not regarded. Conditional entropy has already been
considered in the similar task of Abductive Reasoning for learning qualitative
relationships/concepts (usually in probabilistic terms, see e.g. [6]). The main
difference between this approach and ours is that we work with probability mass
distribution of provable facts from ontological specifications.

Finally, it should be noted that only some distributions of data will induce
the user to decide an ontological insertion. Therefore, although once the distri-
bution of data is determined, the method is fully formalized, the soundness of
the extensions still depends on human decisions.

Future research lines are addressed, in the medium term, to implement the
cognitive entropy into a representation of ontologies system as a tool to as-
sist the extension of ontologies. In a long term, we will establish a theory,
a formal theory in computational logic, to classify lattice categorical
extensions.
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M.A., David Navarro-Maŕın, J.: Towards a Practical Argumentative Reasoning
with Qualitative Spatial Databases. In: Chung, P.W.H., Hinde, C.J., Ali, M. (eds.)
IEA/AIE 2003. LNCS (LNAI), vol. 2718, pp. 789–798. Springer, Heidelberg (2003)
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Abstract. This work presents a method founded in instance-based learning for
inductive (memory-based) reasoning on ABoxes. The method, which exploits a
semantic dissimilarity measure between concepts and instances, can be employed
both to answer class membership queries and to predict new assertions that may
be not logically entailed by the knowledge base. These tasks may be the baseline
for other inductive methods for ontology construction and evolution. In a prelim-
inary experimentation, we show that the method is sound and it is actually able
to induce new assertions that might be acquired in the knowledge base.

1 Introduction and Motivation

Most of the research on formal ontologies has been focused on methods based on de-
ductive reasoning. However, important tasks, most of the times manually performed,
such as ontology construction, ontology revision, ontology population and evolution
could be likely supported by new generation of knowledge-based systems by exploiting
inductive methods. In this paper, we investigate on the application of instance-based
inductive learning methods to the standard ontological representation with the goal of
making instance retrieval and ontology population tasks (semi-)automatic.

Currently, in order to support these tasks and to overcome the inherent complexity
of classic logic-based inference, other forms of reasoning are being investigated, both
deductive, such as non-monotonic, paraconsistent [23], approximate reasoning (see the
discussion in [24]), case-based reasoning [15] and inductive-analogical forms such as
inductive generalization [10] and specialization [18].

However, all these approaches require scalable and efficient reasoning. From this
viewpoint, instance-based inductive methods [17] are particularly well suited. Indeed,
they are known to be both very efficient and fault-tolerant compared to the classic logic-
based methods. Indeed, differently from the deductive approach where a set of logic
rules are applied to general axioms to infer conclusions of no greater generality than the
premises, the inductive approach is applied to very specific facts/examples and produces
conclusions that generalize/explain the premises and predicts new facts. Moreover, the
presence of faults does not determine the failure of the reasoning process, since many
other examples constitutes the basic from which the knowledge is generalized. Being
this approach fault-tolerant, it can be suitably applied to shared knowledge bases com-
ing from distributed sources and for this reason often characterized by the presence of
noise, that is always a danger in any deductive and inductive process.

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNAI 5327, pp. 330–347, 2008.
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Instance-based algorithms have been mainly applied to attribute-value (also called
feature-vector) representations to solve tasks such as classification, clustering, and case-
based reasoning. Most of these algorithms are based on a notion of similarity or dissim-
ilarity between the examples from which the learning task is performed. Upgrading
these algorithms for working on multi-relational representations [17], specifically on
the concept languages used in the Semantic Web (SW) and founded in Description
Logics (DLs) [1] (see Sect. 2), requires novel similarity and/or dissimilarity measures1

that are suitable for such First Order Logic fragments. However, as pointed out in [7],
most of these measures focus on the similarity of atomic concepts within hierarchies
or simple ontologies based on a few relations. Thus, the application of instance-based
learning algorithms to SW representations requires to investigate the definition of sim-
ilarity measures in more complex languages.

It has been observed that, adopting richer representations, the structural properties
have less and less impact in assessing semantic similarity. Hence, the vision of simi-
larity based only on the structural comparison of the representations (trees or graphs),
such as in [9, 27], may fall short since it is not able to capture the concept semantics.
In order to overcome this problem, we propose some dissimilarity measures for non
trivial DL languages, based on the comparison of the concept semantics conveyed by
the ABox assertions [11, 13]. These measures elicit the underlying semantics by query-
ing the knowledge base for assessing the concept extensions, estimated through their
retrieval [1] (as also hinted in [4]). Besides, the overall similarity is also influenced by
the concepts that are related through role restrictions. Such measures can be applied to
assess the dissimilarity between concepts and/or between individuals.

By combining an instance-based (analogical) approach with a similarity measure,
this work intends to demonstrate the applicability of inductive reasoning to the ontolog-
ical representation2. Specifically, an instance-based framework is proposed consisting
in a classification procedure based on a lazy learning approach, namely a relational form
of the k-Nearest Neighbor (k-NN) procedure [26]. Exploiting a dissimilarity measure,
it can inductively derive (by analogy) both consistent consequences from the knowledge
base (KB) and also new assertions which were not previously logically derivable.

The adaptation of the k-NN procedure to the context of DLs could not be straight-
forward. A theoretical problem is posed by the Open World Assumption (OWA) that is
generally made in the target context, differently from data mining settings where the
Closed World Assumption (CWA) is the standard. Besides, in the standard k-NN multi-
class setting, different classes are generally assumed to be disjoint, which is not typical
in a Semantic Web context where an individual can belong to more than one concept.

The semantic dissimilarity measures and the modified classification method have
been implemented and some preliminary experimental results with real ontologies have
been presented (Sect. 5). A reasoning procedure like this may be employed for an-
swering class membership queries through analogical rather than deductive reasoning
which, as discussed above, may be more robust with respect to noise and is likely to

1 Since, given a dissimilarity measure it is always possible to obtain a similarity measure and
vice-versa [6], in the sequel we will generally talk about similarity measures except when the
distinction is necessary.

2 This work is an extension of the paper [14].
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suggest new knowledge (which was not logically derivable). Furthermore, it can be
used for making semi-automatic the time-consuming ontology population task. Indeed,
as we show in the experimentation, the newly induced assertions are quite accurate
(commission errors, i.e. predicting a concept erroneously, were rarely observed). They
can be utilized as recommendations to the knowledge engineer that has only to val-
idate them rather than manually write them. In turn, the outcomes of the procedure
may also trigger other related tasks such as induction (revision) of (faulty) knowledge
bases.

The paper is organized as follows. In the next section, the representation language
is briefly presented. Two concept dissimilarity measures are recalled (see Sect. 3) and
exploited in a modified version of the k-NN classification procedure (see Sect. 4). The
results of a preliminary experimental evaluation of the method are shown in Sect. 5
while possible developments of the work are examined in Sect. 6.

2 Representation and Logic Inference

Description Logics [1] are a family of logic languages with different expressive power,
depending from the constructors that are allowed for building complex concept descrip-
tions. We focus on ALC logic [28], since it comprises most of the constructors that are
usually adopted for giving the ontological representation of a certain domain; moreover
ALC logic is considered a good compromise between expressive power and computa-
tional complexity required by the inference operators.

In DLs, concept descriptions are defined in terms of a set NC of primitive concept
names and a set NR of primitive roles. The semantics of the concept descriptions is
defined by an interpretation I = (ΔI , ·I), where ΔI is a non-empty set representing
the domain of the interpretation, and ·I is the interpretation function that maps each
A ∈ NC to a set AI ⊆ ΔI and each R ∈ NR to RI ⊆ ΔI ×ΔI . The top concept �
is interpreted as the whole domain ΔI , while the bottom concept ⊥ corresponds to ∅.
Complex descriptions can be built in ALC using the following constructors: full nega-
tion, denoted¬C, given any concept description C, it amounts to ΔI \CI ; conjunction
of concepts, denoted with C1 � C2, yields an extension CI

1 ∩ CI
2 ; concept disjunction,

denoted with C1 �C2, yields CI
1 ∪CI

2 ; existential role restriction, denoted with ∃R.C,
and interpreted as the set {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ RI ∧ y ∈ CI}; value restric-
tion, denoted with ∀R.C, whose extension is {x ∈ ΔI | ∀y ∈ ΔI : (x, y) ∈ RI →
y ∈ CI}.

A knowledge base K = 〈T ,A〉 contains a TBox T and an ABox A. T is a set of
concept definitions3 C ≡ D, meaning CI = DI , where C is atomic (the concept name)
and D is an arbitrarily complex description defined as above. A contains assertions on
the world state, e.g. C(a) and R(a, b), meaning that aI ∈ CI and (aI , bI) ∈ RI .

In this context the most common inference is the subsumption between concepts:

Definition 2.1 (subsumption). Given two concept descriptions C and D, C subsumes
D, denoted by D � C, iff for every interpretation I it holds that DI ⊆ CI . When
D � C and C � D then they are equivalent, denoted with C ≡ D.

3 The cases of general axioms or cyclic definitions [1] will be not considered here.
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Semantically equivalent (yet syntactically different) descriptions can be given for the
same concept. Nevertheless, equivalent concepts can be reduced to a normal form by
means of rewriting rules that preserve their equivalence [1]:

Definition 2.2 (normal form). A concept description D is in ALC normal form iff
D = ⊥ or D = � or if D = D1 � · · · �Dn (∀i = 1, . . . , n, Di �≡ ⊥) and

Di =
�

A∈prim(Di)

A �
�

R∈NR

⎡
⎣∀R.valR(Di) �

�
E∈exR(Di)

∃R.E

⎤
⎦

– prim(Di) is the set of (negated) primitive concepts occurring at the top level of Di;
– valR(Di) is the conjunction Ci

1 � · · · �Ci
n in the value restriction of role R, if any

(otherwise valR(Di) = �);
– exR(Di) is the set of concepts in the existential restrictions on R.

and ∀R ∈ NR ∀E ∈ exR(Di) ∪ {valR(Di)} E is in normal form.
L will denote the set of concepts in normal form (L = ALC/≡).

It is worthwhile to note in the normal form that there is a conjunction of universal re-
striction on varying of the role R and a conjunction of existential restriction on varying
of the role and on varying of the filler in the same role. This is because while it is pos-
sible to write ∀R.C � ∀R.D = ∀R.(C �D) it is not possible to write the same for the
existential restriction due to the open world assumption (see [8] for more details).

The instance checking is the reasoning procedure that decides if an individual is an
instance of a concept or not [16, 1]. Another inference for reasoning with individuals
requires finding the concepts to which an individual belongs to, especially the most
specific one (w.r.t. the subsumption relationship):

Definition 2.3 (most specific concept). Given an ABox A and an individual a, the
most specific concept of a w.r.t. A is the concept C, denoted MSCA(a), s.t. A |= C(a)
and for any other concept D such that A |= D(a), it holds that C � D.

In a language endowed with existential (or numeric) restrictions, such as ALC, the
exact MSC may not be always expressed with a finite description [1], yet it may be
approximated [10, 2].

The Least Common Subsumer is the inference operator that, given a set of concept
descriptions, return the most specific concept (w.r.t. the subsumption relationship) that
is able to subsumes all concept descriptions:

Definition 2.4 (Least Common Subsumer). Let L be a description logic. A concept
description E of L is the least common subsumer (LCS) of the concept descriptions
C1, · · · , Cn in L (LCS(C1, · · · , Cn) for short) iff it satisfies:

1. Ci � E for all i = 1, · · · , n and
2. E is the least L-concept description satisfying (1), i.e. if E′ is an L-concept de-

scription satisfying Ci � E′ for all i = 1, · · · , n, then E � E′.

Depending on the DL language, the LCS needs not always exist. If it exists, it is unique
up to equivalence. In ALC logic, the LCS always exists [3, 1] and (as for every DL
allowing for concept disjunction) it is given by the disjunction of the concepts.
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3 Dissimilarity Measures in Description Logics

We recall two definition of dissimilarity measures for ALC descriptions expressed in
normal form [11, 13]. These measures are based on both the structure and the semantics
of the concept descriptions.

3.1 Overlap Dissimilarity Measure

The first measure is derived from a measure of the overlap between concepts that is
obtained by exploiting the notion of canonical interpretation, namely the interpretation
function that adopts the set of individuals in the ABox as domain and the identity as
interpretation function [1]. The dissimilarity measure is formally defined as follows:

Definition 3.1 (overlap function). Let I be the canonical interpretation of the ABox
A. The overlap function f : L × L �→ R+ defined for ALC normal form concept
descriptions C, D ∈ L, with C =

⊔n
i=1 Ci and D =

⊔m
j=1 Dj is formalized as:

disjunctive level:

f(C, D) := f�(C, D) =

⎧⎨
⎩
∞ C ≡ D
0 C �D ≡ ⊥
maxi,jf	(Ci, Dj) otherwise

conjunctive level:

f	(Ci, Dj) := fP (prim(Ci), prim(Dj)) + λ(f∀(Ci, Dj) + f∃(Ci, Dj))

with λ ∈ [0, 1].
primitive concepts:

fP (P1, P2) :=
|R(P1) ∪R(P2)|

|(R(P1) ∪R(P2)) \ (R(P1) ∩R(P2))|

where R(P ) =
⋂

A∈P AI and fP (P1, P2) =∞ when R(P1) = R(P2).
value restrictions:

f∀(Ci, Dj) :=
∑

R∈NR

f�(valR(Ci), valR(Dj))

existential restrictions:

f∃(Ci, Dj) :=
∑

R∈NR

N∑
k=1

max
p=1,...,M

f�(Ck
i , Dp

j )

where Ck
i ∈ exR(Ci) and Dp

j ∈ exR(Dj) and we suppose w.l.o.g. that N = |exR(Ci)|≥
|exR(Dj)| = M , otherwise the indices N and M as well as Ci and Dj are to be
exchanged in the formula above.
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The function f represents a measure of the overlap between two descriptions expressed
in ALC normal form. It measures the similarity of the input concepts on the ground
of the similarity between their extensions (approximated with the retrieval) and on the
ground of the similarity of the concepts reached by the role restrictions. The function
is recursively defined, beginning from the top level of the descriptions (a disjunctive
level) up to the bottom level represented by (conjunctions of) primitive concepts.

Overlap at the disjunctive level is treated as the maximum overlap between the dis-
junctive forms of the input concepts. At conjunctive levels, instead of simply consider-
ing the similarity like in Tversky’s measure [29] (as we do for prim’s), that could turn
out to be null in case of disjoint retrieval sets for the input concepts, we distinguish the
overlaps between the prims and those between the concepts in the scope of the vari-
ous role restrictions4; the contribution of the overlap of concepts reached through role
restrictions can be penalized by tweaking the parameter λ. The measure for primitive
concepts resembles Tversky’s measure and it represents a semantic baseline since it
depends on the semantics of the knowledge base, as conveyed by the ABox assertions.
This is in line with to the ideas in [4, 7], where semantics is elicited as a probability
distribution over the domain of the interpretation.

As for the role restrictions overlap, for the universal restrictions we simply add the
overlap measures varying the role, while for the existential restrictions the measure
is trickier: borrowing the idea of the existential mappings we consider, per role, all
possible matches between the concepts in the scope of existential restrictions, then we
consider the maximal sum of overlaps resulting from all the matches.

Now, it is possible to derive a dissimilarity measure based on f as follows:

Definition 3.2 (overlap dissimilarity measure). The overlap dissimilarity measure is
a function d : L × L �→ [0, 1] such that, given two concept descriptions C, D ∈ L,
C =

⊔n
i=1 Ci and D =

⊔m
j=1 Dj:

d(C, D) :=

⎧⎨
⎩

1 if f(C, D) = 0
0 if f(C, D) = ∞
1

f(C,D) otherwise

Function d simply measures the level of dissimilarity between two concepts as the in-
verse of the overlap function f . Particularly, if f(C, D) = 0, i.e. there is no overlap
between the considered concepts, then d must indicate that the two concepts are totally
different, indeed d(C, D) = 1, the maximum value of its range. If f(C, D) = ∞ this
means that the two concepts are totally overlapped and consequently d(C, D) = 0 that
means that the two concept are indistinguishable, indeed d assumes the minimum value
of its range. If the considered concepts have a partial overlap then their dissimilarity is
inversely proportional to their overlap, since in this case f(C, D) > 1 and consequently
0 < d(C, D) < 1.

An example is reported to clarify the usage of the dissimilarity measure:

4 We tried also other solutions, such as considering minima or products of the three overlap
measures, yet experimentally this did not yield a better performance whereas the computation
time was increased. For practical reasons, the maximal measure ∞ has been replaced with
large numbers depending on the cardinality of the set of individuals in the ABox: |Ind(A)|.
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Example 3.1. Let be C and D two concepts in ALC normal form and defined as fol-
lows:
C ≡ A2 � ∃R.B1 � ∀T.(∀Q.(A4 �B5)) �A1
D ≡ A1 �B2 � ∃R.A3 � ∃R.B2 � ∀S.B3 � ∀T.(B6 �B4) �B2
where Ai and Bj are all primitive concepts.

Now we calculate the amount of dissimilarity among the two concepts C and D;
first, it is necessary to compute f(C, D). Known that neither C nor D are semantically
equivalent nor are inconsistent, the value of f is estimated as in the third case of its
definition. Let us denote with C1 := A2 � ∃R.B1 � ∀T.(∀Q.(A4 � B5)) and with
D1 := A1 �B2 � ∃R.A3 � ∃R.B2 � ∀S.B3 � ∀T.(B6 �B4). The computation of f is
as follows

f(C, D) = max{ f	(C1, D1), f	(C1, B2),
f	(A1, D1), f	(A1, B2) }

For brevity, we consider the computation of f	(C1, D1). f	 is computed as the sum of
fP , f∀, f∃ i.e., respectively, f applied to primitive concepts, f applied to concepts in
the universal restrictions, f applied to concepts in the existential restrictions.

Suppose that (A2)I �= (A1 �B2)I . Then:

fP (C1, D1) = fP (prim(C1), prim(D1))
= fP (A2, A1 �B2)

=
|I|

|I \ ((A2)I ∩ (A1 �B2)I)|

where I := (A2)I ∪ (A1 �B2)I

In order to calculate f∀ it is necessary to note that there are two roles at the same
level: T and S; so the summation over the different roles is made by two terms. Besides,
the role S is only in D1 and not in C1, consequently valR(C1) = �. Thus in this case
we have:

f∀(C1, D1) =
∑

R∈NR

f�(valR(C1), valR(D1)) =

= f�(valT(C1), valT(D1)) + f�(valS(C1), valS(D1)) =
= f�(∀Q.(A4 �B5), B6 �B4) + f�(�, B3)

The computation of f�(∀Q.(A4�B5), B6�B4) and f�(�, B3) is the same reported
above.

Now, by the definition of f∃, it is necessary to note that here is only a single one role
R, so the first summation collapses in a single element. Then N and M , that are the
number of conjunctive descriptions with existential restrictions w.r.t. the same role (S),
are respectively N = 2 and M = 1, so we would have to find the max in a singleton,
that can be simplified. So in this case we have:

f∃(C1, D1) =
2∑

k=1

f�(exR(C1), exR(Dk
1 )) = f�(B1, A3) + f�(B1, B2)

Also in this case, the computation of f� is the same reported above.
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In order to determine the dissimilarity value of C and D it is necessary to apply the
same operations to the others elements in order to define the max value. After that the
dissimilarity value is immediately defined as the inverse of the obtained max

3.2 A Dissimilarity Measure Based on Information Content

As discussed in [27], a measure of concept (dis)similarity can be derived from the notion
of Information Content (IC) that, in turn, depends on the probability of an individual
to belong to a certain concept. Now, differently from other works, which assume that a
probability distribution for the concepts in an ontology is known, we derive it from the
knowledge base, from the distribution that can be estimated therein [4, 7].

In order to approximate this probability for a certain concept C, we recur to its
extension w.r.t. the considered ABox in a fixed interpretation. Namely, we chose the
canonical interpretation IA, which is the one adopting the set of individuals mentioned
in the ABox as its domain and the identity as its interpretation function [1]. Now, given
a concept C its probability is estimated by:

pr(C) = |CIA |/|ΔIA |

Finally, we can compute the information content of a concept, employing this probability:

IC(C) = − log pr(C)

A measure of the concept dissimilarity is now formally defined [13]:

Definition 3.3 (IC dissimilarity). Let A be an ABox with canonical interpretation I.
The information content dissimilarity measure is a function g : L × L �→ R+ defined
recursively for any two normal form concept descriptions C, D ∈ L, with C =

⊔n
i=1 Ci

and D =
⊔m

j=1 Dj

disjunctive level:

g(C, D) := g�(C, D) =

⎧⎪⎪⎨
⎪⎪⎩

0 if C ≡ D
∞ if C �D = ⊥

min g	(Ci, Dj)
1 ≤ i ≤ n
1 ≤ j ≤ m

otherwise

conjunctive level:

g	(Ci, Dj) := gP (prim(Ci), prim(Dj)) + λ(g∀(Ci, Dj) + g∃(Ci, Dj))

with λ ∈ [0, 1].
primitive concepts:

gP (Pi, Pj) :=

⎧⎨
⎩

∞ if Pi � Pj ≡ ⊥

IC(Pi	Pj)+1
IC(LCS(Pi,Pj))+1 otherwise
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value restrictions:

g∀(Ci, Dj) :=
∑

R∈NR

g�(valR(Ci), valR(Dj))

existential restrictions:

g∃(Ci, Dj) :=
∑

R∈NR

N∑
k=1

min
p=1,...,M

g�(Ck
i , Dp

j )

where Ck
i ∈ exR(Ci) and Dp

j ∈ exR(Dj) and we suppose w.l.o.g. that N = |exR(Ci)|≥
|exR(Dj)| = M , otherwise the indices N and M are to be exchanged in the formula
above.

The function g represents a measure of the dissimilarity between two descriptions ex-
pressed in ALC normal form. It is defined recursively beginning from the top level of
the descriptions (a disjunctive level) up to the bottom level represented by (conjunctions
of) primitive concepts.

Now g has values in [0,∞]. It may be useful to derive a normalized dissimilarity
measure as shown in the following.

Definition 3.4 (normalized IC dissimilarity). LetA be an ABox with canonical inter-
pretation I. The normalized information content dissimilarity measure is the function
d : L × L �→ [0, 1], such that given the concept descriptions in ALC normal form
C =

⊔n
i=1 Ci and D =

⊔m
j=1 Dj , let

d(C, D) :=

⎧⎨
⎩

0 if g(C, D) = 0
1 if g(C, D) = ∞
1− 1

g(C,D) otherwise

3.3 Measuring the Dissimilarity between Individuals

The notion of Most Specific Concept is commonly exploited for lifting individuals to
the concept level.

Definition 3.5 (most specific concept). Given an ABox A and an individual a, the
most specific concept of a w.r.t. A is the concept C, denoted MSCA(a), such that A |=
C(a) and for any other concept D such that A |= D(a), it holds that C � D.

In case of cyclic ABoxes expressed in a DL with existential restrictions the MSC may
not be expressed by a finite description [1], yet it may be often approximated.

On performing experiments related to another similarity measure exclusively based
on concept extensions [12], we noticed that, recurring to the MSC for lifting individuals
to the concept level, just falls short: indeed the MSCs may be too specific and unable
to include other (similar) individuals in their extensions. By comparing descriptions
reduced to the normal form we have given a more structural definition of dissimilar-
ity. However, since MSCs are computed from the same ABox assertions, reflecting the
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current knowledge state, this guarantees that structurally similar representations will be
obtained for semantically similar concepts.

Let us recall that, given the ABox, it is possible to calculate the most specific concept
of an individual a w.r.t. the ABox, MSC(a) or at least its approximation MSCk(a) up to
a certain description depth k. In some cases these are equivalent concepts but in general
we have that MSCk(a) � MSC(a).

Given two individuals a and b in the ABox, we consider MSCk(a) and MSCk(b)
(supposed in normal form). Now, in order to assess the dissimilarity between the indi-
viduals, d measure can be applied to these descriptions:

d(a, b) := d(MSCk(a), MSCk(b))

This may turn out to be handy in several tasks, namely both in inductive reasoning
(construction, repairing of knowledge bases) and in information retrieval.

3.4 Discussion

We proved in [11, 13] that these measures are really dissimilarity measures according
to the formal definition [5], considering that their input (what is actually compared) is
equivalence classes in L, i.e. ALC concept descriptions with the same normal form.

As previously mentioned, we have also attempted slightly different measure defi-
nitions (e.g. considering minima or products at the conjunctive level that sound more
intuitive) which experimentally did not prove more effective than the simple (additive)
definition given above.

The computational complexity of the measures depends on the complexity of the re-
quired reasoning services for computing the concepts retrieval. Namely both subsump-
tion and instance-checking are P-space for the ALC logic[16], yet such inference can
be computed once and preliminarily, before the measures are computed for the method
we will present in the following.

Obviously when computing the dissimilarity measures for cases involving individu-
als, the extra cost of computing MSCs (or their approximations) has to be added.

Nevertheless, in practical applications, these computations may be efficiently car-
ried out exploiting the statistics that are maintained by the DBMSs query optimizers.
Besides, the counts that are necessary for computing the concept extensions could be
estimated by means of the probability distribution over the domain.

4 A Nearest Neighbor Classification Procedure in Description
Logics

We briefly review the basics of the k-Nearest Neighbor method (k-NN) and propose
how to exploit the classification procedure for inductive reasoning. In this lazy approach
to learning, a notion of distance (or dissimilarity) measure for the instance space is
employed to classify a new instance.

Let xq be the instance that requires a classification. Using a dissimilarity measure, the
set of k nearest pre-classified instances is selected. The objective is to learn a discrete-
valued target function h : IS �→ V from a space of instances IS to a set of values
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V = {v1, . . . , vs}. In its simplest setting, the k-NN algorithm approximates h for new
instances xq on the ground of the value that h assumes in the neighborhood of xq , i.e.
the k closest instances to xq in terms of a dissimilarity measure. Precisely, it is assigned
according to the value which is voted by the majority of instances in the neighborhood.
The the classification function ĥ can be formally defined as:

ĥ(xq) := argmax
v∈V

k∑
i=1

δ(v, h(xi))

where δ is a function that returns 1 in case of matching arguments and 0 otherwise.
Note that the function ĥ is only extensionally defined, that is the k-NN method does
not return an intensional classification model (e.g. a function or a concept definition), it
merely gives an answer for new query instances to be classified.

This simple formulation does not take into account the similarity among instances,
except when selecting the instances to be included in the neighborhood. Therefore a
modified setting is generally adopted, weighting the vote on the grounds of the similar-
ity of the training instances w.r.t. the test example:

ĥ(xq) := argmax
v∈V

k∑
i=1

wiδ(v, h(xi)) (1)

where, usually, wi = 1/d(xi, xq) or wi = 1/d(xi, xq)2.
This method is generally employed to classify vectors of features in some n-

dimensional instance space (e.g. often IS = Rn). For the best of our knowledge,
there are no existing works able to apply the NN approach to DL representations. In
the following, we adapt the k-NN algorithm to such rich representation language.

Preliminarily, it should be observed that a strong assumption of the classical feature
vector representation setting is that it can be employed to assign a value (e.g. a class)
to a query instance among a set of values which can be regarded as a set of pairwise
disjoint concepts/classes. This is an assumption that cannot be always valid. In this case,
indeed, an individual could be an instance of more than one concept.

Let us consider a new value set V = {C1, . . . , Cs} of concepts Cj that may be
assigned to a query instance xq . If they were to be considered as disjoint (like in the
standard machine learning setting), the decision procedure would adopt the hypothesis
function defined in Eq. (1), with the query instance assigned the single concept voted
by the weighted majority of instances in the neighborhood.

In the general case considered in this paper, when the disjointness of the classes can-
not be assumed (unless explicitly stated in the TBox), one can adopt another answering
procedure, decomposing the multi-class problem into smaller binary classification prob-
lems (one per concept). Therefore, a simple binary value set (V = {−1, +1}) is to be
employed. Then, for each single concept (say Cj), a hypothesis ĥj is computed on the
fly during the classification phase:

ĥj(xq) := argmax
v∈V

k∑
i=1

δ(v, hj(xi))
d(xq, xi)2

∀j ∈ {1, . . . , s} (2)
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where each function hj , simply indicates the occurrence (+1) or absence (−1) of the
corresponding assertion in the ABox for the k training instances xi: Cj(xi) ∈ A. Al-
ternately5, hj may return +1 when Cj(xi) is logically entailed by the knowledge base
K, and −1 otherwise.

The problem with non-explicitly disjoint concepts is also related to the Closed World
Assumption usually made in the context of Information Retrieval and Machine Learn-
ing. That is the reason for adapting the standard setting to cope both with the case of
non-disjoint concepts and with the OWA which is commonly made in the Semantic
Web context. To deal with the OWA, the absence of information on whether a certain
instance x belongs to the extension of concept Cj should not be interpreted negatively;
rather, it should count as neutral information. Thus, one can still adopt the decision
procedure in Eq. (2), however another value set has to be adopted for the hj’s, namely
V = {−1, 0, +1}, where the three values denote, respectively, positive occurrence,
absence and negative occurrence (positive for the concept negation). Formally:

hj(x) =

⎧⎨
⎩

+1 Cj(x) ∈ A
0 Cj(x) �∈ A ∧ ¬Cj(x) �∈ A
−1 ¬Cj(x) ∈ A

Again, a more complex procedure may be devised by simply substituting the notion
of occurrence (absence) of assertions in (from) the ABox with one based on logic en-
tailment (denoted with ) from the knowledge base, i.e. K  Cj(x), K � Cj(x) nor
K � ¬Cj(x) andK  ¬Cj(x), respectively. Although this may help reaching the preci-
sion of deductive reasoning, it is also much more computationally expensive, since the
simple lookup in the ABox must be replaced with instance checking.

From a computational viewpoint this procedure could be implemented to provide
an answer even more efficiently than with a standard deductive reasoner. Indeed, once
the retrieval of the primitive concepts is computed, the dissimilarity measures can be
easily computed by means of a dynamic programming algorithm. Besides, the various
measures could be maintained in an ad hoc data structure which would allow for an
efficient retrieval of the nearest neighbors, such as the kD-trees or ball trees [30]

5 Experiments

5.1 Experimental Setting

In order to assess the validity of the presented method with the dissimilarity measures
proposed in Sect. 3, we have applied it to the instance classification problem, with four
different ontologies represented in OWL: FSM, SURFACE-WATER-MODEL from the
Protégé library6, the FINANCIAL ontology7 employed as a testbed for the PELLET rea-
soner and a small FAMILY ontology written in our lab. Although they are represented

5 For the sake of simplicity and efficiency, this case will not be considered in the following.
6 See the webpage:
http://protege.stanford.edu/plugins/owl/owl-library

7 See the webpage: http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
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in languages that are different fromALC, we simply discarded these details when con-
structing the MSC approximations in order to be able to apply the presented measures.

FAMILY is an ALCF ontology describing kinship relationships. It is made up of 14
concepts (both primitive and defined and some of them declared to be disjoint), 5 ob-
ject properties, 39 distinct individual names. Most of the individuals are asserted to be
instances of more than one concept, and are involved in more than one role assertions.
This ontology has been written to have a small yet more complex case w.r.t. the follow-
ing ones. Indeed, while the other ontologies are more regular, i.e. only some concepts
are employed in the assertions (the others are defined only intensionally), in the FAM-
ILY ontology every concept has at least one instance asserted. The same happens for the
assertions on roles; particularly, there are some cases where role assertions constitute a
chain from an individual to another, by means of other intermediate assertions.

The FSM ontology describes the domain of finite state machines using the SOF(D)
language. It is made up of 20 (both primitive and defined) concepts (some of them
are explicitly declared to be disjoint), 10 object properties, 7 datatype properties, 37
distinct individual names. About half of the individuals are asserted as instances of a
single concept and are not involved in any role assertion (object property).

SURFACE-WATER-MODEL is an ALCOF(D) ontology describing the domain of
the surface water and the water quality models. It is based on the Surface-water Models
Information Clearinghouse (SMIC) of the USGS. Namely, it is an ontology of numeri-
cal models for surface water flow and water quality simulation. The application domain
of these models comprises lakes, oceans, estuaries etc.. These models are classified
based on their availability, application domain, dimensions, partial differential equa-
tion solver, and characteristics types. It is made up of 19 concepts (both primitive and
defined) without any specification about disjointness, 9 object properties, 115 distinct
individual names; each of them is an instance of a single class and only some of them
are involved in object properties.

FINANCIAL is an ALCIF ontology that describes the domain of eBanking. It is
made up of 60 (both primitive and defined) concepts (some of them are declared to
be disjoint), 17 object properties, and no datatype property. It contains 17941 distinct
individual names. From the original ABox, we randomly extracted assertions for 652
individuals.

The classification method was applied to all the individuals in each ontology; namely,
the individuals were checked to assess if they were instances of the concepts in the
ontology through the analogical method. The performance was evaluated comparing its
responses to those returned by a standard reasoner8 as a baseline. Specifically, for each
individual in the ontology, the MSC is computed and enlisted in the set of training (or
test) examples. Each example is classified applying the adapted k-NN method presented
in the previous section. As a value of k we chose

√
|Ind(A)|, as advised in the instance-

based learning literature [22].
The experiment has been repeated twice adopting the leave-one-out cross validation

procedure with both the dissimilarity measures defined in Sect. 3. For each concept in
the ontology, we measured the following parameters for the evaluation:

8 We employed PELLET: http://pellet.owldl.com
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Table 1. Average results of the experiments with the method employing the measure based on
overlap

Match Commission Omission Induction
Rate Rate Rate Rate

FAMILY .654±.174 .000±.000 .231±.173 .115±.107
FSM .974±.044 .026±.044 .000±.000 .000±.000

S.-W.-M. .820±.241 .000±.000 .064±.111 .116±.246
FINANCIAL .807±.091 .024±.076 .000±.001 .169±.076

– match rate: number of cases of individuals that got exactly the same classification
by both classifiers and the standard reasoner w.r.t. the overall number of individuals;

– omission error rate: amount of unlabeled individuals (our method could not deter-
mine whether it was an instance or not) while they were classified as instances of
the considered concepts;

– commission error rate: amount of individuals (analogically) labeled as instances of
a concept, while they (logically) belong to the negation of that concept or vice-versa

– induction rate: amount of individuals that were found to belong to a concept or its
negation, while this information is not logically derivable from the knowledge base

We report the average rates obtained over all the concepts in each ontology and also
their standard deviation.

5.2 Experiments Employing the Overlap Measure

By looking at Tab. 1 reporting the experimental outcomes with the dissimilarity mea-
sure based on the overlap (see Def. 3.2), preliminarily it is important to note that, for
every ontology, the commission error was quite low. This means that the classifier did
not make critical mistakes i.e. cases when an individual is deemed as an instance of a
concept while it really is an instance of another disjoint concept.

In particular, by looking at the outcomes related to the FAMILY ontology, it can be
observed that the match rate is the lowest while the highest omission error rate was
reported. This may be due to two facts: 1) very few individuals were available w.r.t.
the number of concepts9; 2) a sparse data situation is dominant in this ontology, namely
instances are irregularly spread over the concepts, that is, some individuals are instances
of most of the concepts in the ontology while other individuals are instances of a very
few concepts. Hence, the computed MSC approximations also resulted very different
one from another, thus reducing the possibility of significantly matching similar MSCs.
Nevertheless, as mentioned above, it is important to note that the algorithm did not
make any commission error and it is able to infer new knowledge (11%).

As regards the FSM ontology, we have observed the maximum match rate with re-
spect to the classification given by the logic reasoner. Moreover, differently from the
other ontologies, both the omission error rate and the induction rate were null. A very
limited percentage of incorrect classification cases was observed. These outcomes were

9 Instance-based methods make an intensive use of the information about the individuals and
improve their performance with the increase of the number of instances considered.
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Table 2. Average results of the experiments with the method employing the measure based on
information content

Match Commission Omission Induction
Rate Rate Rate Rate

FAMILY .608±.230 .000±.000 .330±.216 .062±.217
FSM .899±.178 .096±.179 .000±.000 .005±.024

S.-W.-M. .820±.241 .000±.000 .064±.111 .116±.246
FINANCIAL .807±.091 .024±.076 .000±.001 .169±.046

probably due to the fact that individuals in this ontology are quite regularly divided by
the assertions on concepts and roles, so the computed MSCs are all very similar to each
other and consequently, the amount of information they convey is very low. A choice of
a lower number k of neighbors could probably help committing those residual errors.

For the same reasons, also for the SURFACE-WATER-MODEL ontology a quite high
rate of matching classifications was reported (yet less then the previous ontology);
moreover, some cases of omission error (6%) were observed. The induction rate was
about 12%. Hence, for this ontology our classifier almost always assigned individuals
to the correct concepts and, in some cases, it could also induce new assertions. Since
this rate represents assertions that were not logically deducible from the ontology and
yet they were inferred inductively by the analogical classifier, these figures would be a
positive outcome (provided this knowledge were deemed as correct by an expert). Par-
ticularly, in this case the increase of the induction rate has been due to the presence of
assertions of mutual disjointness for some of the concepts.

Results are no different also for the case of the experiments with FINANCIAL on-
tology that largely exceeds the others in terms of number of concepts and individuals.
The observed match rate is again above the 80% and the rest of the cases are com-
prised in the induction rate (17%), leaving a limited margin to residual errors. Actually,
performing a 10-fold cross validation we obtained almost the same results.

Looking at Tab. 1, it is possible to assert that, generally, the classifications results
improve with the increasing of the available individuals in the considered ontologies.
This corroborates a fact about the NN learners, that is their reaching better and better
performance in the limit, as long as new training instances become available. Hence,
the quite high registered match rate is very significant, since it has been obtained by the
use of rather small ontologies that makes harder the classification task.

However, since inductive conclusions are less certain than the deductive ones, the
best usage of the presented classifier is, in our opinion, as additional layer on top of
a standard deductive reasoner in order to enriching the results of the instance retrieval
and query answering tasks.

5.3 Experiments with the Information Content Measure

The average results obtained by adopting the procedure with the measure based on
information content (see Def. 3.4) are reported in Table 2.

By analyzing this table it is possible to note that no sensible variation was observed
in the classifications performed using the first dissimilarity measure. This is opposite
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to the theory (not experimentally proved) presented in [7] for which (dis-)similarity
measures based on the notion of Information Content should ensure a higher accuracy in
determining the (dis-)similarity values between objects w.r.t. other existing approaches
such as the structural comparison and the feature matching.

Particularly, with both measures the method correctly classified all the individuals,
without commission errors. The reason is that, in most of the cases, the individuals of
these ontologies are instances of one concept only and they are involved in a few roles
(object properties). Some of the figures are slightly lower than those observed in the
other experiment: this is confirmed by a higher variability.

Surprisingly, the results on the larger ontologies (S.-W.-M. and FINANCIAL) per-
fectly match those obtained with the other measure which is probably due to the fact
that we used a leave-one-out cross-validation mode which yielded a high value for the
number k of training instances for the neighborhood and it is well known that the NN
procedure becomes more and more precise as more instances can be considered. The
price to be paid was a longer computation time.

6 Conclusions and Future Work

In this work we have coupled with a method for inductive inference on ABoxes with two
concept dissimilarity measures. The method classifies individuals w.r.t. a query concept
in analogy with the instantiation of the majority of neighbor training individuals. As
experimentally shown, it is able to induce assertions that are not logically derivable; as
such, it can be naturally exploited for predicting/suggesting missing information about
individuals, thus enabling a sort of inductive instance retrieval and query answering. An
increase in the classification accuracy was observed when instances are numerous and
homogeneously spread w.r.t. the concepts in the KB. To further improve the accuracy
of the method, the employed dissimilarity measures could be refined by introducing a
tweaking weighting factor that decreases the impact of the dissimilarity between nested
sub-concepts in the descriptions on the determination of the overall value.

The presented method could be extended from several point of views. One of this
is to make possible its application to DL languages more expressive than ALC. In or-
der to do this, similarity or dissimilarity measures able to cope with higher expressive
power languages need to be defined. Lately, we have defined a similarity measure for
ALN [20] logic. Moving from this result and the measures presented above, a natural
extension may concern the definition of (dis-)similarity measures forALCN language.

Another extension may concern the classifications results. Currently the classifica-
tion algorithm is able to assess if an individual is instance of a certain concept, if it is
instance of the negated concept or if there are no information for classifying the individ-
ual. A useful extension could be to return the degree of confidence of the classification
results. This additional information may be helpful for the knowledge engineer that
has to validate the induced assertions. Such an extension could be realized by the use
of a different (yet still computationally tractable) answering procedures grounded on
statistical inference (non-parametric tests based on ranked distances) methods.

Furthermore, the rationale of the presented method can be exploited for realizing an
inductive classifier grounded on kernel methods that are efficient learning algorithms



346 C. d’Amato, N. Fanizzi, and F. Esposito

which are able to work in high dimensional feature space. This algorithms are based on
the use of kernel functions that are another means to express a notion of similarity is some
unknown feature space. On the ground of this idea, we are working at the definition of
kernel functions on DLs representations [19, 21], thus allowing the exploitation of kernel
methods efficiency (e.g. the support vector machines) in a multi-relational setting.
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[2] Baader, F., Küsters, R.: Non-standard inferences in description logics: The story so far. In:
Gabbay, D., Goncharov, S.S., Zakharyaschev, M. (eds.) Mathematical Problems from Ap-
plied Logic. New Logics for the XXIst Century. International Mathematical Series, vol. 4.
Kluwer/Plenum Publishers (2005)
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Abstract. We propose semantic distance measures based on the crite-
rion of approximate discernibility and on evidence combination. In the
presence of incomplete knowledge, the distance functions measure the
degree of belief in the discernibility of two individuals by combining es-
timates of basic probability masses related to a set of discriminating
features. We also suggest ways to extend this distance for comparing in-
dividuals to concepts and concepts to other concepts. Integrated within
a k-Nearest Neighbor algorithm, the measures have been experimentally
tested on a task of inductive concept retrieval demonstrating the effec-
tiveness of their application.

1 Introduction

In the context of reasoning in the Semantic Web, a growing interest is being
committed to alternative inductive procedures extending the scope of the meth-
ods that can be applied to concept representations. Most of these methods are
based on a notion of similarity; some examples are: case-based reasoning [6],
retrieval [4], conceptual clustering [10] and ontology matching [9]. However this
notion is not easily captured in a definition, especially in presence of uncertainty
into the data. Moreover, as pointed out in the seminal paper [3] concerning
similarity in Description Logics (DL), most of the existing measures focus on
the similarity between atomic concepts within simple hierarchies. Alternative
approaches for computing concept similarity are based on related notions of
feature similarity or information content.

Very few works [4] focused on assessing similarity between individuals asserted
in DL knowledge bases. Moreover, they are still partly based on structural cri-
teria which also determine the main weakness of the measures proposed, that is,
they are hardly scalable to complex languages since the constructors of a specific
DL language (specifically ALC logic) are considered.

The ability to assess individual (dis-)similarities can be very important for
several tasks such as ontology matching and ontology learning, but also for
applying new inductive methods (besides of the usual deductive one) to the
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ontological representation. Indeed, these methods can be useful for managing
the inherent uncertainty that characterizes the distributed knowledge of the
Semantic Web context.

In the perspective of crafting inductive methods for the aforementioned tasks,
the need for a definition of a semantic similarity measure for individuals arises.
We devised a new family of dissimilarity measures for semantically annotated
resources, which can overcome the aforementioned limitations of the structural
approach [11]. Our measures are mainly based on Minkowski’s measures for Eu-
clidean spaces [21] induced by means of a method developed in the context of
relational machine learning [17]. We extend the idea with a notion of discerni-
bility borrowed from rough sets theory [16] that aims at the formal definition of
vague sets (concepts) by means of their approximations. Hence, in this paper,
we propose dissimilarity measures based on semantic discernibility and on ev-
idence combination [19, 8, 18]. Namely, the measures are based on the degree
of discernibility of the input individuals with respect to a set of features (in
the following committee of features), which are represented by concept descrip-
tions expressed in the concept language of choice. For the best of our knowl-
edge, these are the only dissimilarity measures that do not rely on a particular
DL language, consequently they can be directly applied to expressive ontology
languages.

We also propose a way to extend the presented dissimilarity measures to the
case of assessing concept similarity by means of the notion of medoid [14] that
is the most centrally located individual in a concept extension computed by the
use of a given metric.

Experimentally, it may be shown that the measures that use large committee
of features (e.g. including all primitive and defined concepts) can be sufficiently
accurate (i.e. properly discriminating) when employed for classification tasks
even though the committee of features employed were not the optimal one or
if the concepts therein were partially redundant. Nevertheless, this has led us
to investigate on a method to optimize the committee of features that serve as
dimensions for the computation of the measure. To this purpose, the employ-
ment of genetic programming and randomized search procedures was considered.
Finally, we opted an optimization procedure based on simulated annealing [7],
that is a randomized approach which can overcome the problem of the local
minima, i.e. finding a good solution with respect to the fitness function that is
not globally optimal.

The remainder of the paper is organized as follows. In Sect. 2, we recall the
basics of approximate semantic distance measures for individuals in a DL knowl-
edge base. Hence, in Sect. 3, we extend the measures with a more principled
treatment of uncertainty based on evidence combination. Integrated within a k-
Nearest Neighbor algorithm (see Sect. 4), the measures have been experimentally
tested on a task of inductive concept retrieval, demonstrating the effectiveness
of their application. In Sect. 5, conclusions discuss the applicability of these
measures in further works.
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2 Semantic Distance Measures

Since our method is not intended for a particular representation, in the following
we assume that resources, concepts and their relationships may be defined in
terms of a generic representation that may be mapped to some DL language
with the standard model-theoretic semantics (see the handbook [1] for a thorough
reference).

In this context, a knowledge base K = 〈T ,A〉 contains a TBox T and an ABox
A. T is a set of concept definitions. A contains assertions concerning the world
state. The set of the individuals (resources) occurring in A will be denoted with
Ind(A). Each individual can be assumed to be identified by its own URI. The
unique names assumption on such individuals can be also made.

As regards the inference services, our procedure requires performing instance-
checking1 and the related service of retrieval2, which will be used for the ap-
proximations.

2.1 A Simple Semantic Metric for Individuals

Aiming at distance-based tasks such as clustering or similarity search and follow-
ing ideas borrowed from metric learning in clausal spaces [17], we have developed
a new family of dissimilarity measures with a definition that totally depends on
semantic aspects of the individuals in the knowledge base [11].

Indeed, for our purposes, we needed functions to measure the (dis)similarity of
individuals. However individuals do not have a syntactic (or algebraic) structure
that can be compared. In order to exploit the semantics of individuals of an
ontological knowledge base, we propose a family of dissimilarity measures that is
based on the intuition that, on a semantic level, similar individuals should behave
similarly with respect to the same concepts. On the ground of this intuition, we
compare the individual semantics along a number of dimensions represented
by a set of concept descriptions (henceforth also referred to as committee of
features). Particularly, the rationale of the measures is to compare individuals
on the grounds of their behavior w.r.t. a given set of concept descriptions, say F =
{F1, F2, . . . , Fk}, which stands as a group of discriminating features expressed
in the language taken into account.

We begin with defining the behavior of an individual with respect to a certain
concept in terms of projecting it in this dimension:

Definition 2.1 (projection function). Given a concept Fi ∈ F, the related
projection function

πi : Ind(A) �→ {0,
1
2
, 1}

1 Instance checking is the inference procedure which assesses if an individual is instance
of a considered concept or not.

2 Instance retrieval is the inference procedure that, given a concept, returns all the
individuals that are instances of the considered concept.
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is defined:
∀a ∈ Ind(A)

πi(a) :=

⎧⎨
⎩

1 K |= Fi(a)
0 K |= ¬Fi(a)

1/2 otherwise

The case of πi(a) = 1/2 corresponds to the case when a reasoner cannot give
the truth value for a certain membership query. This is due to the Open World
Assumption normally made in this context. Hence, as in the classic probabilistic
models, uncertainty is coped with by considering a uniform distribution over the
possible cases.

Now the discernibility function related to the committee concepts that are
used for comparing individuals through the projection functions is defined:

Definition 2.2 (discernibility function). Given a feature concept Fi ∈ F,
the related discernibility function

δi : Ind(A) × Ind(A) �→ [0, 1]

is defined as follows:
∀(a, b) ∈ Ind(A) × Ind(A)

δi(a, b) = |πi(a)− πi(b)|

Finally, awhole family of distance functions for individuals inspired toMinkowski’s
metrics Lp [21] can be defined as follows [11]:

Definition 2.3 (dissimilarity measures). Let K = 〈T ,A〉 be a knowledge
base. Given a set of concept descriptions F = {F1, F2, . . . , Fk}, a family of dis-
similarity measures {dF

p}p∈IN, contains functions

dF
p : Ind(A)× Ind(A) �→ [0, 1]

defined
∀(a, b) ∈ Ind(A) × Ind(A):

dF
p(a, b) :=

Lp(πi(a), πi(b))
|F| =

1
k

p

√√√√ k∑
i=1

δi(a, b)p

Note that k depends on F and the effect of the factor 1/k is just to normalize
the norms with respect to the number of features that are involved. Since the
defined function depends from the choice of F, the definition above formalize a
family of dissimilarity functions rather than a unique one. Moreover, due to the
dependency of the measure from F, the comparison of the dissimilarity values
computed across different feature committees may not be meaningful. For in-
stance, larger committees are likely to decrease the dissimilarity values because
of the normalizing factor; furthermore these values are affected also by the degree
of redundancy of the features employed.
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2.2 Example

Let us consider a knowledge base in a DL language made up of a TBox:
T = { Female ≡ ¬Male,

Parent ≡ ∃hasChild.Being � ∀hasChild.Being,
Father ≡ Male � Parent,
FatherWithoutSons ≡ Father � ∀hasChild.Female

}
and of an ABox:
A = { Being(ZEUS), Being(APOLLO), Being(HERCULES), Being(HERA),

Male(ZEUS), Male(APOLLO), Male(HERCULES),
Parent(ZEUS), Parent(APOLLO),¬Father(HERA),
God(ZEUS), God(APOLLO), God(HERA),¬God(HERCULES),
hasChild(ZEUS, APOLLO), hasChild(HERA, APOLLO),
hasChild(ZEUS, HERCULES),

}
Suppose F = {F1, F2, F3, F4} = {Male, God, Parent, FatherWithoutSons}. Let us
compute the distances (with p = 1):
dF
1(ZEUS, HERA) = (|1− 0|+ |1− 1|+ |1− 1|+ |0− 0|) /4 = 1/4

dF
1(HERA, APOLLO) = (|0− 1|+ |1− 1|+ |1− 1|+ |0− 1/2|) /4 = 3/8

dF
1(APOLLO, HERCULES)=(|1− 1|+ |1− 0|+ |1− 1/2|+ |1/2− 1/2|) /4=3/8

dF
1(HERCULES, ZEUS) = (|1− 1|+ |0− 1|+ |1/2− 1|+ |1/2− 0|) /4 = 1/2

dF
1(HERA, HERCULES) = (|0− 1|+ |1− 0|+ |1− 1/2|+ |0− 1/2|) /4 = 3/4

dF
1(APOLLO, ZEUS) = (|1− 1|+ |1− 1|+ |1− 1|+ |1/2− 0|) /4 = 1/8

2.3 Discussion

In the following we prove that these dissimilarity functions have the standard
properties for semi-distances [11]:
Proposition 2.1 (semi-distance). Let dp be the dissimilarity function defined
above, let F a fixed feature set and p > 0. dp is a semi-distance, that is for all
a, b, c ∈ Ind(A), dp satisfies the following formal properties:
1. dF

p(a, b) ≥ 0 and dF
p(a, b) = 0 if a = b

2. dF
p(a, b) = dF

p(b, a)
3. dF

p(a, c) ≤ dF
p(a, b) + dF

p(b, c)
Proof. 1. and 2. are trivial. As for 3., note that

(dp(a, c))p =
1

mp

m∑
i=1

| πi(a)− πi(c) |p=

=
1

mp

m∑
i=1

| πi(a)− πi(b) + πi(b)− πi(c) |p

≤ 1
mp

m∑
i=1

| πi(a)− πi(b) |p +
1

mp

m∑
i=1

| πi(b)− πi(c) |p

≤ (dp(a, b))p + (dp(b, c))p ≤ (dp(a, b) + dp(b, c))p

then the property follows for the monotonicity of the power function.
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This measure is not a distance since it does not hold that a = b if dF
p(a, b) = 0.

This is the case of indiscernible individuals with respect to the given committee
of features F. However, if the unique names assumption were made then one may
define a supplementary dimension for the committee (a sort of meta-feature F0)
based on equality, such that:
∀(a, b) ∈ Ind(A) × Ind(A)

δ0(a, b) :=
{

0 a = b
1 a �= b

and then

dF
p(a, b) :=

1
k + 1

p

√√√√ k∑
i=0

δi(a, b)p

The resulting measures are distance measures.
Compared to other proposed dissimilarity measures [3, 4], the presented func-

tions do not depend on the constructors of a specific language, rather they re-
quire only (retrieval or) instance-checking for computing the projections through
class-membership queries to the knowledge base.

The complexity of measuring the dissimilarity of two individuals depends on
the complexity of such inferences (see [1], Ch. 3). Note also that the projec-
tions that determine the measure can be computed (or derived from statistics
maintained on the knowledge base) before the actual distance application, thus
determining a speed-up in the computation of the measure. This is very impor-
tant for algorithms that massively use this distance, such as all instance-based
methods.

So far we made the assumption that F may represent a sufficient number
of (possibly redundant) features that are able to discriminate really different
individuals. The choice of the concepts to be included – feature selection – may
be crucial. Therefore, we have devised specific optimization algorithms founded
in randomized search which are able to find optimal choices of discriminating
concept committees [11, 10].

The fitness function to be optimized is based on the discernibility factor [16]
of the committee. Given the whole set of individuals Ind(A) (or just a hold-
out sample to be used to induce an optimal measure) HS ⊆ Ind(A) the fitness
function to be maximized is:

discernibility(F,HS ) :=
∑

(a,b)∈HS2

k∑
i=1

δi(a, b)

However, the results obtained so far with knowledge bases drawn from on-
tology libraries [10, 12] show that (a selection) of the (primitive and defined)
concepts is often sufficient to induce satisfactory dissimilarity measures.
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3 Dissimilarity Measures Based on Uncertainty

The measure defined in the previous section deals with uncertainty in a uniform
way: in particular, the degree of discernibility of two individuals is null when they
have the same behavior with respect to the same feature, even in the presence of
total uncertainty of class-membership for both. When uncertainty regards only
one projection, then they are considered partially (possibly) similar.

We would like to make this uncertainty more explicit3. One way to deal with
uncertainty would be considering intervals rather than numbers in [0,1] as a
measure of dissimilarity. This is similar to the case of imprecise probabilities [20].

In order to extend the measure, we propose an epistemic definition based on
rules for combining evidence [8, 18]. The ultimate aim is to assess the distance
between two individuals as a combination of the evidence that they differ based
on some selected features (as in the previous section).

The distance measure that is to be defined is again based on the degree of belief
of discernibility of individuals with respect to such features. To this purpose the
probability masses of the basic events (class-membership) have to be assessed.
However, in this case we will not treat uncertainty in the classic probabilistic
way (uniform probability). Rather, we intend to take into account uncertainty
in the computation.

The new dissimilarity measure will be derived as a combination of the degree
of belief in the discernibility of the individuals with respect to each single feature.
Before introducing the combination rule (that will have the measure as a spe-
cialization), the basic probability assignments have to be considered, especially
for the cases when instance-checking is not able to provide a certain answer.

As in previous works [4], we may estimate the concept extensions recurring to
their retrieval [1], i.e. the individuals of the ABox that can be proved to belong
to a concept. Thus, in case of uncertainty, the basic probabilities masses for each
feature concept can be approximated4 in the following way:
∀i ∈ {1, . . . , k}

mi(K |= Fi(a)) ≈ |retrieval(Fi,K)|/|Ind(A)|
mi(K |= ¬Fi(a)) ≈ |retrieval(¬Fi,K)|/|Ind(A)|

mi(K |= Fi(a) ∨ K |= ¬Fi(a)) ≈ 1−mi(K |= Fi(a))−mi(K |= ¬Fi(a))

where the retrieval(·, ·) operator returns the individuals which can be proven to
be members of the argument concept in the context of the current knowledge
base [1]. The rationale is that the larger the (estimated) extension the more
likely is for individuals to belong to the concept. This rationale can be easily un-
derstood thinking about a simple ontology describing the kinship relationships.
Supposing that, in this ontology, the concepts Human, Male, Female, Man and
3 We are referring to a notion of epistemic (rather than aleatory) probability [18],

which seems more suitable for our purposes. See Shafer’s introductory chapter in [19]
on this distinction.

4 In case of a certain answer received from the reasoner, the probability mass amounts
to 0 or 1.
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Woman are introduced, it is highly probable that an individual in the ontology
(or a new individual) is instance of the concept Human. Hence, the approxi-
mated probability masses become more precise as more information (namely
more instances) is acquired.

As in the previous section, we define a discernibility function related to a fixed
concept which measures the amount of evidence that two input individuals may
be separated by that concept:

Definition 3.1 (discernibility function). Given a feature concept Fi ∈ F,
the related discernibility function

δi : Ind(A) × Ind(A) �→ [0, 1]

is defined as follows:
∀(a, b) ∈ Ind(A) × Ind(A)

δi(a, b) :=

⎧⎪⎪⎨
⎪⎪⎩

mi(K |= ¬Fi(b)) if K |= Fi(a)
mi(K |= Fi(b)) else if K |= ¬Fi(a)
δi(b, a) else if K|=Fi(b) ∨ K|=¬Fi(b)
2 ·mi(K |= Fi(a)) ·mi(K |= ¬Fi(b)) otherwise

The extreme values {0, 1} are returned when the answers from the instance-
checking service are certain for both individuals. If the first individual is an
instance of the i-th feature (respectively, its complement) then the discernibility
depends on the belief of class-membership to the complement concept of the
other individual. Otherwise, if there is uncertainty for the former individual but
not for the latter, the function changes its perspective, swapping the roles of the
two individuals. Finally, in case there were uncertainty for both individuals, the
discernibility is computed as the chance that they may belong one to the feature
concept and one to its complement,

The combined degree of belief in the case of discernible individuals, assessed
using the mixing combination rule [15, 18], can give a measure of the semantic
distance between them.

Definition 3.2 (weighted average measure). Given an ABox A, a dissim-
ilarity measure for the individuals in A

dF
avg : Ind(A)× Ind(A) �→ [0, 1]

is defined as follows:
∀(a, b) ∈ Ind(A) × Ind(A)

dF
avg(a, b) :=

k∑
i=1

wiδi(a, b)

The choices for the weights are various. The most straightforward one is, of
course, considering uniform weights: wi = 1/k. Another one is

wi =
ui

u
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where

ui =
1

|Ind(A) \ retrieval(Fk,K)| and u =
k∑

i=1

ui

It is easy to see that this can be considered as a generalization of the measure
defined in the previous section (for p = 1).

3.1 Discussion

It can be proved that function has the standard properties for semi-distances:

Proposition 3.1 (semi-distance). For a fixed choice of weights {wi}k
i=1, func-

tion dF
avg is a semi-distance.

This proposition can be easily proved, by analogy with the proof of Prop. 2.1.
The underlying idea for the measure is to combine the belief of the dissimi-

larity of the two input individuals provided by several sources, that are related
to the feature concepts. In the original framework for evidence composition the
various sources are supposed to be independent, which is generally unlikely to
hold. Yet, from a practical viewpoint, overlooking this property for the sake of
simplicity may still lead to effective methods, as the Näıve Bayes approach in
Machine Learning demonstrates.

It could also be criticized that the subsumption hierarchy has not been ex-
plicitly involved. However, this may be actually yielded as a side-effect of the
possible partial redundancy of the various concepts, which has an impact on
their extensions and thus on the related projection function. A tradeoff is to be
made between the number of features employed and the computational effort
required for computing the related projection functions, since with the increas-
ing of the feature in the committee, a higher number of instance checking has to
computed.

The discriminating power of each feature concept can be weighted in terms of
information and entropy measures. The weights should reflect the impact of the
single feature concept with respect to the overall dissimilarity. As mentioned,
this can be determined by the quantity of information conveyed by a feature,
which can be measured as its entropy. Namely, the degree of information yielded
by each of these features can be estimated as follows:

Hi(a, b) = −
∑
A⊆Θ

mi(A) log(mi(A))

where 2Θ, w.r.t. the frame of discernment5 [19, 18] Θ = {D, D}. then, the sum∑
(a,b)∈HS

Hi(a, b)

5 Here D stands for the case of discernible individuals w.r.t. Fi, D for the opposite case,
and some probability mass may be assigned also to the uncertain case represented
by {D, D}.
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provides a measure of the utility of the discernibility function related to each
feature which can be used in randomized optimization algorithms.

Alternatively, the extension of a feature Fi with respect to the whole domain
of objects may be quantified as PF = |F I

i |/|ΔI | (w.r.t. the canonical interpreta-
tion I). This can be roughly approximated with: PFi = |retrieval(Fi)|/|Ind(A)|.
Hence, considering also the probability P¬Fi related to its negation and that
related to the unclassified individuals (w.r.t. Fi), denoted PU , we may give an
entropic measure for the feature:

H(Fi) = − (PFi log(PFi) + P¬Fi log(P¬Fi) + PU log(PU )) .

These measures may be normalized for providing a good set of weights for the
distance measures.

3.2 Extensions

Following the rationale of the average link criterion used in agglomerative clus-
tering [14], the measures can be extended to the case of concepts, by recurring
to the notion of medoids.

The medoid of a group of individuals is the individual that has the highest sim-
ilarity with respect to the others. Formally. given a group G = {a1, a2, . . . , an},
the medoid is defined:

medoid(G) = argmin
a∈G

n∑
j=1

d(a, aj)

Now, given two concepts C1, C2, we can consider the two corresponding groups
of individuals obtained by retrieval Ri = {a ∈ Ind(A) | K |= Ci(a)}, and their
respectively medoids mi = medoid(Ri) for i = 1, 2 with respect to a given
measure dF

p (for some p > 0 and committee F). Then the function for concepts
can be defined as follows:

dF
p(C1, C2) := dF

p(m1, m2)

Similarly, if the distance of an individual a to a concept C has to be assessed,
one could consider the nearest (respectively farthest) individual in the concept
extension or its medoid. Let m = medoid(retrieval(C)) with respect to a given
measure dF

p. Then the measure for this case can be defined as follows:

dF
p(a, C) := dF

p(a, m)

Of course these approximate measures become more and more precise as the
knowledge base is populated with an increasing number of individuals.

4 Experimentation

A k-Nearest Neighbor classification procedure exploiting the metrics proposed in
the previous sections has been tested at solving a number of retrieval
problems [5].
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In its simplest setting, a k-NN algorithm approximates a hypothesis function
hQ for classifying a query individual x0 with respect to a query concept Q on the
grounds of the value that hQ is known to assume for the training instances in its
neighborhood NN(x0), i.e. the k closest instances to x0 in terms of a similarity
measure. Precisely, the value is decided by means of a weighted majority voting
procedure: it is simply the most voted value by the instances in NN(x0) weighted
by the similarity of the neighbor individual.

The answer of the estimated hypothesis function for the query individual is:

ĥQ(x0) := argmax
v∈V

k∑
i=1

wiδ(v, hQ(xi)) (1)

where δ returns 1 in case of matching arguments and 0 otherwise, and, given a
dissimilarity measure d, the weights are determined by wi = 1/d(xi, x0).

The task can be cast as follows: given a query concept Q, determine the
membership of an instance x0 through the voting procedure (Eq. 1) where V =
{−1, 0, +1} and the hypothesis function values for the training instances are
determined by the entailment of the corresponding assertion from the knowledge
base, as follows:

hQ(x) =

⎧⎨
⎩

+1 K |= Q(x)
−1 K |= ¬Q(x)

0 otherwise
It should be noted that the inductive inference made by the procedure above

is not guaranteed to be deductively valid. Indeed, inductive inference naturally
yields a certain degree of uncertainty. In order to measure the likelihood of
the decision made by the procedure (individual x0 belongs to the query concept
denoted by value v maximizing the argmax argument in Eq. 1), given the nearest
training individuals in NN(x0, k) = {x1, . . . , xk}, the quantity that determined
the decision should be normalized by dividing it by the sum of such arguments
over the (three) possible values:

l(class(x0) = v|NN(x0, k)) =
∑k

i=1 wi · δ(v, hQ(xi))∑
v′∈V

∑k
i=1 wi · δ(v′, hQ(xi))

(2)

Hence the likelihood of the assertion Q(x0) corresponds to l(class(x0) =
1|NN(x0, k)). By adding the likelihood l(class(x0) = 0|NN(x0, k)) we may ob-
tain a suggested upper bound for the likelihood of the membership assertion.

4.1 Experimental Setting

A number of ontologies for different domains represented in OWL was selected,
namely: Surface-Water-Model (SWM), NewTestamentNames (NTN)
from the Protégé library6, the Semantic Web Service Discovery dataset7

6 http://protege.stanford.edu/plugins/owl/owl-library
7 https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Projects/xmedia/
dl-tree.htm



Approximate Measures of Semantic Dissimilarity under Uncertainty 359

Table 1. Facts concerning the ontologies employed in the experiments

Ontology DL language #concepts #object prop. #data prop. #individuals
SWM ALCOF(D) 19 9 1 115

BioPAX ALCHF(D) 28 19 30 323
LUBM ALR+HI(D) 43 7 25 555

NTN SHIF(D) 47 27 8 676
SWSD ALCH 258 25 0 732

Financial ALCIF 60 17 0 1000

(SWSD), the University0.0 ontology generated by the Lehigh University Bench-
mark8 (LUBM), the BioPax glycolysis ontology9 (BioPax) and the Financial

ontology10. Tab. 1 summarizes details concerning these ontologies; specifically
the number of concepts, object properties, data type properties and individuals.

For each ontology, 20 queries were randomly generated by composition (con-
junction and/or disjunction) of (2 through 8) primitive and defined concepts in
each knowledge base. Query concepts were constructed so that each one offered
both positive and negative instances among the ABox individuals. The perfor-
mance of the inductive method was evaluated by comparing its responses to
those returned by a standard reasoner11 as a baseline.

Experimentally, it was observed that large training sets make the distance
measures (and consequently the NN procedure) very accurate. In order to make
the problems more difficult, we selected limited training sets (TS) that amount
to only 4% of the individuals occurring in each ontology. Then the parameter
k was set to log(|TS|) depending on the number of individuals in the training
set. Again, we found experimentally that much smaller values could be chosen,
resulting in the same classification.

The simpler distances (dF
1) were employed from the original family (uni-

form weights) and entropic family (weighted on the feature entropy), using all
the concepts in the knowledge base for determining the set F with no further
optimization.

4.2 Results

Standard measures. Initially the standard measures precision, recall, F1-
measure were employed to evaluate the system performance, especially when
selecting the positive instances (individuals that should belong to the query
concept). The outcomes are reported in Tab. 2. For each knowledge base, we
report the average values obtained over the 20 random queries as well as their
standard deviation and minimum-maximum ranges of values.

8 http://swat.cse.lehigh.edu/projects/lubm
9 http://www.biopax.org/Downloads/Level1v1.4/biopax-example-ecocyc-
glycolysis.owl

10 http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
11 We employed Pellet v. 1.5.1. See http://pellet.owldl.com
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Table 2. Experimental results in terms of standard measures: averages ± standard
deviations and [min,max] intervals

Original Measure

precision recall F-measure

SWM
89.1 ± 27.3 84.4 ± 30.6 78.7 ± 30.6
[16.3;100.0] [11.1;100.0] [20.0;100.0]

BioPax
99.2 ± 1.9 97.3 ± 11.3 97,8 ± 7.4
[93.8;100.0] [50.0;100.0] [66.7;100.0]

LUBM
100.0 ± 0.0 71.7 ± 38.4 76.2 ± 34.4
[100.0;100.0] [9.1;100.0] [16.7;100.0]

NTN
98.8 ± 3.0 62.6 ± 42.8 66.9 ± 37.7
[86.9;100.0] [4.3;100.0] [8.2;100.0]

SWSD
74.7 ± 37.2 43.4 ± 35.5 54.9 ± 34.7
[8.0;100.0] [2.2;100.0] [4.3;100.0]

Financial
99.6 ± 1.3 94.8 ± 15.3 97.1 ± 10.2
[94.3;100.0] [50.0;100.0] [66.7;100.0]

Entropic Measure

precision recall F-measure

SWM
99.0 ± 4.3 75.8 ± 36.7 79.5 ± 30.8
[80.6;100.0] [11.1;100.0] [20.0;100.0]

BioPax
99.9 ± 0.4 97.3 ± 11.3 98,2 ± 7.4
[98.2;100.0] [50.0;100.0] [66.7;100.0]

LUBM
100.0 ± 0.0 81.6 ± 32.8 85.0 ± 28.4
[100.0;100.0] [11.1;100.0] [20.0;100.0]

NTN
97.0 ± 5.8 40.1 ± 41.3 45.1 ± 35.4
[76.4;100.0] [4.3;100.0] [8.2;97.2]

SWSD
94.1 ± 18.0 38.4 ± 37.9 46.5 ± 35.0
[40.0;100.0] [2.4;100.0] [4.5;100.0]

Financial
99.8 ± 0.3 95.0 ± 15.4 96.6 ± 10.2
[98.7;100.0] [50.0;100.0] [66.7;100.0]

As an overall consideration we may observe that generally the outcomes ob-
tained adopting the extended measure improve on those with the other one and
appear also more stable (with some exceptions). Besides, it is possible to note
that precision and recall values are generally quite good for all ontologies except
for SWSD, where especially recall is significantly lower. This ontology turned
out to be more difficult (also in terms of precision) for two reasons: 1) a very
limited number of individuals per concept was available; 2) the number of differ-
ent concepts is larger with respect to the other knowledge bases. For the other
ontologies, values are much higher, as testified also by the F-measure values. The
results in terms of precision are also more stable than those for recall, as proved
by the limited variance observed, whereas single queries happened to turn out
quite difficult as regards the correctness of the answer.

The reason for precision being generally higher is probably due to the Open
World Assumption (OWA). Indeed, in many cases it was observed that the NN
procedure deemed some individuals as relevant for the query issued while the DL
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reasoner was not able to assess this relevance, namely was not able to give any
reply. This different behavior of the two approaches was computed as a mistake
by the metric mentioned above, while it may likely turn out to be a correct
inference of the NN procedure when judged by a human agent.

Because of these problems in the evaluation with the standard indices, es-
pecially due to the cases on unknown answers from the reference system (the
reasoner) we thought to make this case more explicit by measuring both the rate
of inductively classified individuals and the nature of the mistakes.

Alternative measures. Due to the OWA, cases were observed when, it could
not be (deductively) ascertained whether a resource was relevant or not for a
given query. Hence, we introduced the following indices for a further evaluation:

– match rate: number of individuals that got exactly the same classification
(v ∈ V ) by both the inductive and the deductive classifier with respect to
the overall number of individuals (v vs. v);

– omission error rate: number of individuals for which inductive method could
not determine whether they were relevant to the query or not while they were
actually relevant according to the reasoner (0 vs. ±1);

– commission error rate: number of individuals (analogically) found to be rel-
evant to the query concept, while they (logically) belong to its negation or
vice-versa (+1 vs. −1 or −1 vs. +1);

– induction rate: number of individuals found to be relevant to the query
concept or to its negation, while either case is not logically derivable from
the knowledge base (±1 vs. 0);

Tab. 3 reports the outcomes in terms of these indices. Preliminarily, it is
important to note that, in each experiment, the commission error was quite low
or absent. This means that the inductive search procedure is quite accurate,
namely it did not make critical mistakes attributing an individual to a concept
that is disjoint with the right one. Also the omission error rate was generally
quite low, yet more frequent than the previous type of error.

The usage of all concepts for the set F of dF
1 made the measure quite accurate,

which is the reason why the procedure resulted quite conservative as regards
inducing new assertions. In many cases, it matched rather faithfully the reasoner
decisions. From the retrieval point of view, the cases of induction are interesting
because they suggest new assertions which cannot be logically derived by using
a deductive reasoner yet they might be used to complete a knowledge base
[2, 5], e.g. after being validated by an ontology engineer. For each candidate new
assertion, Eq. 2 may be employed to assess the likelihood and hence decide on
its inclusion (see next section).

If we compare these outcomes with those reported in other works on instance
retrieval and inductive classification [4], where the highest average match rate
observed was around 80%, we find a significant increase of the performance due
to the accuracy of the new measure. Also the elapsed time (not reported here)
was much less because of the different dissimilarity measure: once the values for
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Table 3. Results with alternative indices: averages ± standard deviations and
[min,max] intervals

Original Measure

match commission omission induction

SWM
93.3 ± 10.3 0.0 ± 0.0 2.5 ± 4.4 4.2 ± 10.5
[68.7;100.0] [0.0;0.0] [0.0;16.5] [0.0;31.3]

BioPax
99.9 ± 0.2 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0
[99.4;100.0] [0.0;0.06] [0.0;0.0] [0.0;0.0]

LUBM
99.2 ± 0.8 0.0 ± 0.0 0.8 ± 0.8 0.0 ± 0.0
[98.0;100.0] [0.0;0.0] [0.0;0.2] [0.0;0.0]

NTN
98.6 ± 1.5 0.0 ± 0.1 0.8 ± 1.1 0.6 ± 1.4
[93.9;100.0] [0.0;0.4] [0.0;3.7] [0.0;6.1]

SWSD
97.5 ± 3.7 0.0 ± 0.0 1.8 ± 2.6 0.8 ± 1.5
[84.6;100.0] [0.0;0.0] [0.0;9.7] [0.0;5.7]

Financial
99.5 ± 0.8 0.3 ± 0.7 0.0 ± 0.0 0.2 ± 0.2
[97.3;100.0] [0.0;2.4] [0.0;0.0] [0.0;0.6]

Entropic Measure

match commission omission induction

SWM
97.5 ± 3.2 0.0 ± 0.0 2.2 ± 3.1 0.3 ± 1.2
[89.6;100.0] [0.0;0.0] [0.0;10.4] [0.0;5.2]

BioPax
99.9 ± 0.2 0.1 ± 0.2 0.0 ± 0.0 0.0 ± 0.0
[99.4;100.0] [0.0;0.06] [0.0;0.0] [0.0;0.0]

LUBM
99.5 ± 0.7 0.0 ± 0.0 0.5 ± 0.7 0.0 ± 0.0
[98.2;100.0] [0.0;0.0] [0.0;1.8] [0.0;0.0]

NTN
97.5 ± 1.9 0.6 ± 0.7 1.3 ± 1.4 0.6 ± 1.7
[91.3;99.3] [0.0;1.6] [0.0;4.9] [0.0;7.1]

SWSD
98.0 ± 3.0 0.0 ± 0.0 1.9 ± 2.9 0.1 ± 0.2
[88.3;100.0] [0.0;0.0] [0.0;11.3] [0.0;0.5]

Financial
99.7 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.2
[99.4;100.0] [0.0;0.1] [0.0;0.0] [0.0;0.6]

the projection functions are pre-computed, the efficiency of the classification,
which depends on the computation of the dissimilarity, was also improved.

As mentioned, we also found that a lower value for the parameter k can be
considered still ensuring quite high correct classification results. This yielded
also that the likelihood of the inferences made (see Eq. 2) turned out quite high.

5 Concluding Remarks

We have proposed the definition of dissimilarity measures over spaces of individ-
uals in a knowledge base. The measures are not language-dependent, differently
from other previous proposals [4], yet they are parameterized on a committee of
concepts. Optimal committees can be found via randomized search methods [11].
Besides, we have extended the measures to cope with cases of uncertainty by
means of a simple evidence combination method.
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One of the advantages of the measures is that their computation can be very effi-
cient in cases when statistics (on class-membership) are maintained by the KBMS
[13]. As previously mentioned, the subsumption relationships among concepts in
the committee is not explicitly exploited in the measure for making the relative dis-
tances more accurate. The extension to the case of concept distance may also be
improved. Hence, scalability should be guaranteed as far as a good committee has
been found and does not change also because of the locality properties observed
for instances in several domains (e.g. social or biological networks).

A refinement of the committee may become necessary only when a degradation
of the discernibility factor is detected due to the availability of somewhat new indi-
viduals. This may involve further tasks such as novelty or concept drift detection.

5.1 Applications

The measures have been integrated in an instance-based learning system im-
plementing a nearest-neighbor learning algorithm: an experimentation on per-
forming semantic-based retrieval proved the effectiveness of the new measures,
compared to the outcomes obtained adopting other measures [4]. It is worthwhile
to mention that results where not particularly affected by feature selection: often
using the very concepts defined in the knowledge base provides good committees
which are able to discern among the different individuals [12].

We are also exploiting the implementation of these measures for performing
conceptual clustering [14], where (a hierarchy of) clusters is created by grouping
instances on the grounds of their similarity, possibly triggering the induction of
new emerging concepts [10].

5.2 Extensions

The measure may have a wide range of application of distance-based methods to
knowledge bases. For example, logic approaches to ontology matching [9] may be
backed up by the usage of our measures, especially when concepts to be matched
across different terminologies are known to share a common set of individuals.
Ontology matching could be a phase in a larger process aimed at data integration.
Moreover metrics could also support a process of (semi-)automated classification
of new data also as a first step towards ontology evolution.

Another problem that could be tackled by means of dissimilaritymeasures could
be the ranking of the answers provided by a matchmaking algorithm based on the
similaritybetween theconcept representing thequeryandthe retrieved individuals.
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Abstract. Ontology learning aims at generating domain ontologies from various
kinds of resources by applying natural language processing and machine learning
techniques. It is inherent to the ontology learning process that the acquired on-
tologies represent uncertain and possibly contradicting knowledge. From a log-
ical perspective, the learned ontologies are potentially inconsistent knowledge
bases, that as such do not allow for meaningful reasoning. In this paper, we
present an approach to generating consistent OWL ontologies from automatically
generated or enriched ontology models, which takes into account the uncertainty
of the acquired knowledge. We illustrate and evaluate the application of our ap-
proach with two experiments in the scenarios of consistent evolution of learned
ontologies and enrichment of ontologies with disjointness axioms.

1 Introduction

Ontology Learning aims at generating domain ontologies from a given collection of
resources by applying natural language processing and machine learning techniques.
Due to an increasing demand for efficient support in knowledge acquisition, a number
of tools for automatic or semi-automatic ontology learning have been developed during
the last decade. Common to all of them is the need for handling the uncertainty that
is inherent to any kind of knowledge acquisition process. Moreover, ontology-based
applications have to face the challenge of reasoning with large amounts of imperfect
information resulting from automatic ontology acquisition systems.

According to [25], such imperfection can be due to imprecision, inconsistency or un-
certainty. Imprecision and inconsistency are properties of the information itself. Either
more than one world (in the case of ambiguous, vague or approximate information) or
no world (if contradictory conclusions can be derived from the information) is com-
patible with the given information. Uncertainty means that an agent, i.e. a computer
or a human, has only partial knowledge about the truth value of a given piece of in-
formation. One can distinguish between objective and subjective uncertainty. Whereas
objective uncertainty relates to randomness referring to the propensity or disposition of
something to be true, subjective uncertainty depends on an agent’s opinion about the
truth value of information. In particular, the agent can consider information as unreli-
able or irrelevant.

In ontology learning, (subjective) uncertainty is the most prominent form of imper-
fection. This is due to the fact that the results of the different algorithms have to be
considered as unreliable or irrelevant due to imprecision and errors introduced during
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the ontology generation process. There exist different approaches to the representa-
tion of uncertainty: Uncertainty can, for instance, be represented as part of the learned
ontologies, e.g., using probabilistic extensions to the target knowledge representation
formalism [7,9], or at a meta-level as application-specific information associated with
the learned structures [34].

In our approach to ontology learning we target the Web Ontology Language OWL,
which is today the standard for representing ontologies on the web. With its ground-
ing in description logics, reasoning with OWL ontologies is very well understood
and efficient reasoning algorithms have been devised. Because of the uncertain and
thus potentially contradicting information, the learned ontologies typically are highly
inconsistent and thus do not allow for meaningful reasoning. Even approaches to the
acquisition of very simple axioms such as subsumption between atomic classes can
provoke inconsistencies if they are used for the enrichment of an existing ontology.

In order to deal with this problem, we suggest the following approach: We apply
ontology learning algorithms to generate ontologies, which also contain information
about uncertainty in the form of annotations to ontology elements and axioms. These
annotations capture the confidence about the correctness or relevance of the acquired
knowledge. In doing so, we apply the techniques of consistent ontology evolution to en-
sure that the learned ontologies are kept consistent as the ontology learning procedures
generate changes to the ontology over time. The process of consistent ontology evolu-
tion makes use of the confidence annotations to produce an ontology that is (1) con-
sistent and (2) “most likely to be correct”, or certain. We illustrate and evaluate the
application of our approach by means of two application scenarios.

Scenario 1: Consistent Evolution of Learned Ontologies We apply our approach to
incrementally learn an ontology from scratch based a corpus of text documents in a
digital library. Intelligent search over document corpora in digital libraries is an appli-
cation scenario that shows the immediate benefit of the ability to reason over ontologies
automatically learned from text. While search in digital libraries nowadays is restricted
to structured queries against the bibliographic metadata (author, title, etc.) and to un-
structured keyword-based queries over the full text documents, complex queries that
involve reasoning over the knowledge present in the documents are not possible. On-
tology learning enables obtaining the required formal representations of the knowledge
available in the corpus to be able to support such advanced types of search. This appli-
cation scenario is the subject of a case study within the digital library of BT (British
Telecom) as part of the SEKT1 project. One of the key elements of the case study is to
automatically learn ontologies to enhance search and finally be able to support queries
of the kind “Find knowledge management applications that support Peer-to-Peer knowl-
edge sharing.” To validate the work presented in this paper, we performed experiments
with data from the BT Digital Library.

Scenario 2: Enriching Ontologies with Disjointness Axioms In the second scenario, we
target the enrichment of an existing ontology with disjointness axioms to make the on-
tology more precise. As shown in [28], semantically rich primitives such as disjointness
of concepts can be used for effective semantic clarification in ontologies and thus enable

1 http://www.sekt-project.com
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drawing more meaningful conclusions. We apply the enrichment process to the EKAW
ontology – an ontology covering the domain of conference organization – with disjoint-
ness axioms automatically generated by an ontology learning tool. We show how our
approach of handling uncertainty and inconsistency in the learning process indeed leads
to an improvement of quality with respect to a gold standard.

Overview of the paper. The rest of the paper is organized as follows. In Section 2 we re-
capitulate the foundations of the OWL ontology language, query answering with OWL
ontologies and the role of logical inconsistencies. Section 3 introduces a set of com-
plementary approaches to ontology learning and enrichment, that we applied within the
subsequently described experiments. It is followed by a detailed discussion of our meth-
ods for handling inconsistencies in learned ontologies (cf. Section 4). The experimental
evaluation of these methods is presented in Section 5. In Section 6, we give an overview
of related work before concluding with Section 7.

2 Reasoning with OWL

Traditionally, a number of different knowledge representation paradigms have
competed to provide languages for representing ontologies, including most notably de-
scription logics and frame logics. With the advent of the Web Ontology Language OWL,
developed by the Web Ontology Working Group and recommended by the World Wide
Web Consortium (W3C), a standard for the representation of ontologies has been cre-
ated. Adhering to this standard, we base our work on the OWL language (in particular
OWL DL, as discussed below) and describe the developed formalisms in its terms.

2.1 OWL as a Description Logic

The OWL ontology language is based on description logics, a family of class-based
knowledge representation formalisms. In description logics, the important notions of
a domain are described by means of concept descriptions that are built from concepts
(also referred to as classes), roles (also called properties or relations), denoting rela-
tionships between things, and individuals (or instances). It is now possible to state facts
about the domain in the form of axioms. Terminological axioms (also referred to as
T -Box axioms) make statements about how concepts or roles are related to each other,
assertional axioms (sometimes called facts or A-Box axioms) make statements about
the properties of individuals.

We here informally introduce the language constructs of SHOIN , the description
logic underlying OWL DL. For the correspondence between our notation and various
OWL DL syntaxes, see [17]. In the description logic SHOIN , we can build complex
classes from atomic ones using the following constructors:

– C � D (intersection), denoting the concept of individuals that belong to both C
and D,

– C �D (union), denoting the concept of individuals that belong to either C or D,
– ¬C (complement), denoting the concept of individuals that do not belong to C,
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– ∀R.C (universal restriction), denoting the concept of individuals that are related
via the role R only with individuals belonging to the concept C,

– ∃R.C (existential restriction), denoting the concept of individuals that are related
via the role R with some individual belonging to the concept C,

– ≥ n R, ≤ n R (qualified number restriction), denoting the concept of individuals
that are related with at least (at most) n individuals via the role R.

– {c1, . . . , cn} (enumeration), denoting the concept of individuals explicitly
enumerated.

Based on these class descriptions, axioms of the following types can be formed:

– concept inclusion axioms C � D, stating that the concept C is a subconcept of the
concept D,

– transitivity axioms Trans(R), stating that the role R is transitive,
– role inclusion axioms R � S stating that the role R is a subrole of the role S,
– concept assertions C(a) stating that the individual a is in the extension of the con-

cept C,
– role assertions R(a, b) stating that the individuals a, b are in the extension of the

role R,
– individual (in)equalities a ≈ b, and a �≈ b, respectively, stating that a and b denote

the same (different) individuals.

With the constructs above, we can make complex statements, e.g., expressing that
two concepts are disjoint using the axiom A � ¬B. This axioms literally states that A
is a subconcept of the complement of B, which intuitively means that there must not be
any overlap in the extensions of A and B.

In the design of description logics, emphasis is put on retaining decidability of key
reasoning problems and the provision of sound and complete reasoning algorithms. As
the name suggests, description logics are logics, i.e. they have well-defined semantics.
Typically, the semantics of a description logic is specified via model theoretic semantics,
which explicates the relationship between the language syntax and the models of a
domain using interpretations.

An interpretation consists of a domain of interpretation (essentially, a set) and an
interpretation function which maps from individuals, concepts and roles to elements,
subsets and binary relations on the domain of interpretation, respectively. A description
logic knowledge base consists of a set of axioms which act as constraints on the inter-
pretations. The meaning of a knowledge base derives from features and relationships
that are common in all possible interpretations. An interpretation is said to satisfy a
knowledge base, if it satisfies each axiom in the knowledge base. Such an interpretation
is called a model of the knowledge base. If the relationship specified by some axiom
(which may not be part of the knowledge base) holds in all models of a knowledge
base, the axiom is said to be entailed by the knowledge base. Checking consistency
and entailment are two standard reasoning tasks for description logics. Other standard
reasoning tasks include computing the concept hierarchy and answering conjunctive
queries.
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2.2 Approaches to Dealing with Inconsistencies

Generally, inconsistencies refer to logical contradictions in an ontology. In the descrip-
tion logics community, different notions of inconsistency have been defined and used.
In the classical definition, i.e. using first-order logic interpretations, a knowledge base
is said to be inconsistent, if it has no models (satisfying interpretations). Incoherence
of a knowledge base is defined as the existence of unsatisfiable concepts, i.e. concepts
that have an empty extension in all models of the knowledge base. These unsatisfiable
concepts are also referred to as incoherent concepts.

Logical contradictions hamper the effective use of an ontology. For example, the
standard entailment as defined above is explosive, i.e. an inconsistent ontology has all
axioms as consequences. Formally, if an ontology O is inconsistent, then for all axioms
α we have O |= α. In other words, query answers for inconsistent ontologies are com-
pletely meaningless, since for all queries the query answer will be true. To deal with
the issue of potential inconsistencies in ontologies, we can choose from a number of
alternative approaches [13]:

Consistent Ontology Evolution is the process of managing ontology changes by preserv-
ing the consistency of the ontology with respect to a given notion of consistency. The con-
sistency of an ontology is defined in terms of consistency conditions, or invariants that
must be satisfied by the ontology. The approach of consistent ontology evolution imposes
certain requirements with respect to its applicability. For example, it requires that the on-
tology is consistent in the first place and that changes to the ontology can be controlled. In
certain application scenarios, these requirements may not hold, and consequently, other
means for dealing with inconsistencies in changing ontologies may be required.

Repairing Inconsistencies involves a process of diagnosis and repair: first the cause (or
a set of potential causes) of the inconsistency needs to be determined, which can sub-
sequently be repaired. Unlike the approach of consistent ontology evolution, repairing
inconsistencies does not require to start with a consistent ontology and is thus adequate
if the ontology is already inconsistent in the first place.

Reasoning with Inconsistent Ontologies does not try to avoid or repair the inconsis-
tency (as in the previous two approaches), but simply tries to “live with it” by trying to
return meaningful answers to queries, even though the ontology is inconsistent. In some
cases, consistency cannot be guaranteed at all and inconsistencies cannot be repaired,
but still one wants to derive meaningful answers when reasoning.

While in principle all the above alternatives may be applicable to deal, in this article
we illustrate how ontology learning can be combined with the approach of consistent
ontology evolution to guarantee that the learned ontologies are kept consistent as the
ontology learning procedures generate changes to the ontology over time.

3 Ontology Learning

The automatic acquisition of ontological elements from lexical or logical resources,
most commonly referred to as ontology learning, seems a promising way to facilitate
the tedious task of ontology engineering. In the following, we describe two comple-
mentary ontology learning approaches. Section 3.1 gives an overview of Text2Onto,
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a framework developed to support the generation of ontologies from scratch. A spe-
cialized approach to the automatic enrichment of ontologies by disjointness axioms is
presented in Section 3.2. Both approaches generate sets of axioms associated with un-
certainty values and causing a fairly large number of inconsistencies or incoherences.
An approach to handling and resolving these kinds of logical contradictions will be
presented in the following Section 4.

3.1 Learning Ontologies from Text

We believe that linguistic evidence with respect to an ontology can be appropriately
measured by ontology learning techniques which try to capture the ontological com-
mitment in human language. Since ontology learning algorithms such as implemented
in Text2Onto [5] consider the relation of individual ontology elements with the data
the ontology has been engineered from, they allow to assess how well the ontology
reflects the underlying corpus of data. This is especially relevant for an application sce-
nario as introduced in Section 1, which involves question answering in the context of
a digital library. In the following, we give a brief overview of the algorithms provided
by Text2Onto for acquiring various kinds of ontology elements. Each of these algo-
rithms aims to deliver evidence such as term occurrence statistics or lexical relation-
ships present in WordNet from which we compute confidence or relevance values. For
further details with regards to the architecture and the internal ontology representation
model of Text2Onto, please refer to our original paper [5].

Algorithms. We now describe for each kind of ontology element supported by
Text2Onto the algorithms that we used for our experiments. In particular, we give an in-
tuition of how Text2Onto calculates the confidence and relevance ratings for the learned
ontology elements. An overview of the primitives that can be acquired by Text2Onto is
given by Table 1.

Concepts and Instances. The extraction of concepts and instances is based on a sta-
tistical approach to the identification of domain-relevant noun phrases. Different term
weighting measures are used to compute the relevance of each term with respect to the
corpus: Relative Term Frequency (RTF), TFIDF, Entropy and the C-value/NC-value
method [20]. A distinction between terms denoting concepts and those referring to in-
stances is made based on the syntactical categories of the head nouns – common or
proper nouns, respectively.

Subconcept-of Relations. In order to learn subconcept-of relations, we have
implemented a variety of different algorithms exploiting the hypernym structure of
WordNet [11], matching Hearst patterns [16] in the corpus as well as in the WWW
and applying linguistic heuristics mentioned in [35]. The respective confidence values
are computed, e.g., based on the frequency of matched patterns, and finally combined
through combination strategies as described in [4].

Instance-of Relations. In order to assign instances or named entities appearing in the
corpus to a concept in the ontology, Text2Onto relies on a similarity-based approach
extracting context vectors for instances and concepts from the text collection. Each
instance is then assigned to those concepts whose vectors are most similar to its own
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one [6], with the respective similarities being interpreted as a confidence values. In
addition, we also implemented a pattern-matching algorithm similar to the one used for
discovering part-of relations.

General Relations. To learn general relations, Text2Onto employs a shallow pars-
ing strategy to extract subcategorization frames (e.g. hit(subj,obj,pp(with)),
transitive verb and prepositional complement) enriched with information about the fre-
quency of the terms appearing as arguments [23]. These subcategorization frames are
mapped to relations such as hit(person,thing) and hit with(person,object). The
confidence is estimated on the basis of the frequency of the subcategorization frame
as well as of the frequency with which a certain term appears at the argument position.

Disjointness. For the extraction of disjointness axioms Text2Onto uses a simple
heuristic based on lexico-syntactic patterns. Given an enumeration of noun phrases
NP1, NP2, ...(and|or)NPn we conclude that the concepts C1, C2, ...Ck denoted by
these noun phrases are pairwise disjoint, where the confidence for the disjointness of
two concepts is obtained from the number of evidences found for their disjointness in
relation to the total number of evidences for the disjointness of these concepts with
other concepts.

Text2Onto’s approach to the acquisition of disjointness axioms (see Section 3.1) is
completely unsupervised, hence computationally cheap, but lacks the precision of a
more specialized method for learning disjointness. In the following Section 3.2, we
therefore introduce a supervised, classification-based approach particularly developed
to support the enrichment of ontologies (e.g. automatically acquired by Text2Onto) with
disjointness axioms.

3.2 Learning Disjointness Axioms

Our approach to enriching learned or manually engineered ontologies by disjointness
axioms relies on a machine learning classifier that determines disjointness of any two

Table 1. Ontology elements learned by Text2Onto

Learned Element Explanation OWL

concept A concept C. C
Example: man, person

instance An instance a. a
Example: John, Mary

subconcept-of Concept inheritance. C1 � C2

Example: subconcept-of(man,person)
instance-of Concept instantiation. C(a)

Example: instance-of(John,person).
relation A relation R between C1 and C2. C1 � ∀R.C2

Example: love(person,person)
relation A relation R between C1 and C2. � � ∀R.C2

Example: drive(person,car) � � ∀R−1.C1

disjointness Disjointness of concepts C1 and C2. C1 � ¬C2

Example: disjointness(man,woman)
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classes. The classifier is trained based on a “Gold Standard” of manually created
disjointness axioms, i.e. pairs of classes each of which is associated with a label
– “disjoint” or “not disjoint” – and a vector of feature values. As in our earlier
experiments [36], we used a variety of lexical and logical features, which we believe
to provide a solid basis for learning disjointness. These features are used to build an
overall classification model on whose basis the classifier can predict disjointness for
previously unseen pairs of classes. The classification probabilities generated, e.g., by a
Naive Bayes approach are thereby interpreted as confidence values indicating the relia-
bility of the predicted labels.

In the following, we briefly describe the set of methods, which we used for extracting
the values of the classification features. All of the methods introduced in the following
are implemented within the open-source tool LeDA2 (Learning Disjointness Axioms).

Logical Features

Taxonomic Overlap. In description logics, two classes are disjoint iff their “taxonomic
overlap”, i.e. the set of common individuals must be empty. Note that the individuals
of a class do not necessarily have to be explicitly named in the ontology. Hence, the
taxonomic overlap of two classes is considered not empty as long as there could be
common individuals within the domain that is modeled by the ontology. Following these
considerations, we developed several methods to assess the actual or possible overlap
of two extensions. Both of the following formulas are based on the Jaccard similarity
coefficient [19]. C denotes the set of all the atomic classes in the ontology, while I
refers to the set of named individuals.

foverlapi(c1, c2) =
|{i ∈ I|c1(i) ∧ c2(i)}|
|{i ∈ I|c1(i) ∨ c2(i)}|

foverlapc(c1, c2)=
|{c ∈ C|c � c1 � c2}|
|{c ∈ C|c � c1 � c2}|

These two features are complemented by fsub, that represents a particular case of
taxonomic overlap, while at the same time capturing negative information such as class
complements or already existing disjointness contained in the ontology. The value of
fsub for any pair of classes c1 and c2 is 1 for c1 � c2 ∨ c2 � c1, 0 for c1 � ¬c2 and
undefined otherwise.

Semantic Distance. The semantic distance between two classes c1 and c2 is the mini-
mum length of a path consisting of subsumption relationships between atomic classes
that connects c1 and c2 (as defined in [36]).

Object Properties. This feature encodes the semantic relatedness of two classes, c1 and
c2, based on the number of object properties they share. More precisely, we divided the
number of properties p with p(c1, c2) or p(c2, c1) by the number of all properties whose
domain subsumes c1 whereas their range subsumes c2 or vice-versa. This measure can
be seen as a variant of the Jaccard similarity coefficient with object properties consid-
ered as undirected edges.

2 http://ontoware.org/projects/leda/
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Lexical Features

Label Similarity. The semantic similarity of two classes is in many cases reflected by
their labels – especially, in case their labels share a common prefix or postfix. This is
because the right-most constituent of an English noun phrase can be assumed to be the
lexical head, that determines the syntactic category and usually indicates the semantic
type of the noun phrase. A common prefix, on the other hand, often represents a nominal
or attribute adjunct which describes some semantic characteristics of the noun phrase
referent. In order to compute the lexical similarity of the two class labels, we therefore
used three different similarity measures: Levenshtein, QGrams and Jaro-Winkler.

WordNet Similarity. In order to compute the lexical similarity of two classes (their la-
bels, to be precise), we applied two variants of a WordNet-based similarity measure by
Patwardhan and Pedersen [27].3 This similarity measure computes the cosine similarity
between vector-based representations of the glosses, that are associated with the two
synsets.4 We omitted any sort of word sense disambiguation at this point, assuming that
every class label refers to the most frequently used synset it is contained in.

Features based on Learned Ontology. As an additional source of background knowledge
about the classes in our input ontology we used an automatically acquired corpus of
Wikipedia articles. By querying Wikipedia for each class label we obtained an initial
set of articles some of which were disambiguation pages. We followed all content links
and applied a simple word sense disambiguation method in order to obtain the most
relevant article for each class: For each class label we considered the article to be most
relevant, which had, relative to its length, the highest “terminological overlap” with all
of the labels used in the ontology. The resulting corpus of Wikipedia articles was fed
into Text2Onto (cf. Section 3.1) to generate an additional background ontology for each
of the original ontologies in our data set, consisting of classes, individuals, subsumption
and class membership axioms.

Based on this newly acquired background knowledge, we defined the following fea-
tures: subsumption, taxonomic overlap of subclasses and individuals – all of these are
defined as their counterparts described above – as well as document-based lexical con-
text similiarity, which we computed by comparing the Wikipedia article associated with
the two classes. This type of similarity is in line with Harris’ distributional hypothe-
sis [15] claiming that two words are semantically similar to the extent to which they
share syntactic contexts.

3.3 Uncertainty in Ontology Learning

Considering the outcome of an ontology learning process, no matter if it aims to gen-
erate lightweight or more expressive ontologies, subjective uncertainty clearly is the
most prominent form of imperfection. This uncertainty may arise, e.g., from impreci-
sion of input data and background knowledge, or the inaccuracy of ontology learning

3 http://www.d.umn.edu/∼tpederse/similarity.html
4 In WordNet, a synset is a set of (almost) synonymous words, roughly corresponding to a class

or concept in an ontology. A gloss is a textual description of a synset’s meaning, that most
often also contains usage examples.
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methods, which leads to incorrect interpretations of the input data. In any case, an ap-
propriate treatment of both imprecision and uncertainty can have a significant impact on
the overall quality and usefulness of a learned ontology as explained in the following.

– Handling uncertainties in the first hand and representing them at the level of inter-
mediate ontology learning results prevents the propagation of errors introduced by
crisp modeling decisions.

– Moreover, uncertainty values may help to integrate the acquired knowledge, in par-
ticular if multiple methods are used to accomplish identical or overlapping ontology
learning tasks.

– Uncertainty values facilitate the inspection and revision of learned ontologies by
allowing the user to focus on those parts of the ontology which are considered the
least reliable.

– For some applications, e.g., in the domains of medicine or e-government, informa-
tion about the reliability of acquired knowledge is crucial for reasons of health or
security.

– An explicit representation of uncertainty can support the process of handling logical
inconsistencies in learned ontologies (cf. Section 4).

There are two principal approaches to modeling uncertainty: as part of the learned
ontologies, e.g., using probabilistic extensions to the target knowledge representation
formalism, or at a meta-level as application-specific information associated with the
learned structures. In any case, certainty (or confidence) values are a kind of self-
assessment of ontology learning methods and as such not always correlated with a
human rating. However, they are important means to support both, global and local
evaluation of the ontology – no matter, if this evaluation is performed automatically or
by a human expert.

In our work, we follow the second approach to representing uncertainty: In order
to capture provence and certainty information about ontology elements in the learning
process, we use our framework described in [33] for representing metalevel informa-
tion. This framework is based on the observation that domain and metalevel information
have distinct universes of discourse. We store the metalevel statements in the domain
ontology using axiom annotations—ontology statements that are akin to comments in a
programming language and that do not affect the semantics of the domain information.
We give semantics to this information by translating the metalevel statements from the
domain ontology into a metaview—an ontology that explicitly talks about the facts in
the domain ontology.

In the context of ontology learning, we use the annotations to model the certainty
of the system about the correctness of a particular ontology element. In particular, we
use a special annotation property confidence to indicate how confident the system is
about the correctness of an ontology element. The confidences are calculated based on
different kinds of evidences provided by the ontology learning algorithms that indicate
the correctness and the relevance of ontology elements for the domain in question. They
can be considered as a corpus-based support for ontology elements.

Confidence annotations can change if new evidence is detected by the ontology learn-
ing algorithms, which increases, for example, the certainty of the system about the
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correctness or relevance of a particular modeling primitive. Inconsistencies in the ontol-
ogy which might result from these changes must be resolved as described in Section 4.

4 Handling Inconsistencies in Learned Ontologies

One of the major problems of learning ontologies is the potential introduction of in-
consistencies. These inconsistencies are a consequence of the fact that in any ontology
learning process the acquired ontologies represent imperfect information. Ignoring the
fact that learned ontologies contain uncertain and thus potentially contradicting infor-
mation would result in highly inconsistent ontologies, which do not allow meaningful
reasoning. In the following we show how inconsistencies can be dealt with in the pro-
cess of ontology learning. In particular, we show how the concept of consistent ontology
evolution can be applied in the context of ontology learning. The goal of this consistent
ontology evolution process is to obtain an ontology that is (1) consistent (to allow mean-
ingful reasoning), and (2) captures the most certain information while disregarding the
potentially erroneous information.

Logical consistency addresses the question whether the ontology is “semantically
correct”, i.e. does not contain contradicting information. We say logical consistency
is satisfied for an ontology O if O is satisfiable, i.e. if O has a model. Please note
that because of the monotonicity of the considered logic, an ontology can only become
logically inconsistent by adding axioms: If a set of axioms is satisfiable, it will still be
satisfiable when any axiom is deleted. Therefore, we only need to check the consistency
for ontology change operations that add axioms to the ontology. Effectively, if O∪{α}
is inconsistent, in order to keep the resulting ontology consistent some of the axioms in
the ontology O have to be removed or altered.

As we have already discussed in Section 2.2, the most adequate approach to dealing
with inconsistencies in ontology learning is by realizing a consistent evolution of the
ontology. The goal of consistent ontology evolution is the resolution of a given ontology
change in a systematic manner by ensuring the consistency of the whole ontology. It is
realized in two steps:

1. Inconsistency Localization: This step is responsible for checking the consistency
of an ontology with the respect to the ontology consistency definition. Its goal is to
find “parts” of the ontology that do not meet consistency conditions;

2. Change Generation: This step is responsible for ensuring the consistency of the
ontology by generating additional changes to resolve detected inconsistencies.

The first step essentially is a diagnosis process. There are different approaches how
to perform the diagnosis step [12]. A typical way to diagnose an inconsistent ontology
is to identify a minimal inconsistent subontology, i.e. a minimal set of contradicting
axioms. Formally, we call an ontology O′ a minimal inconsistent subontology of O,
if O′ ⊆ O and O′ is inconsistent and for all O′′ with O′′ ⊂ O′, O′′ is consistent.
Intuitively, this definition states that the removal of any axiom from O′ will result in
a consistent ontology. A simple way of finding a minimal inconsistent subontology is
as follows: We start with one candidate ontology containing initially only the axiom
that was added to the ontology as part of the change operation. As long as we have
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not found an inconsistent subontology, we create new candidate ontologies by adding
axioms (one at a time) that are in some way connected with the axioms in the candidate
ontology. One simple, but useful notion of connectedness is structural connectedness:
We say that axioms are structurally connected if they refer to shared ontology entities.
Once the minimal inconsistent ontology is found, it is by definition sufficient to remove
any of the axioms to resolve the inconsistency.

While the removal of any of the axioms from a minimal inconsistent subontology
will resolve the inconsistency, the important question of course is deciding which axiom
to remove. This problem of only removing dispensable axioms requires some semantic
selection functions capturing the relevance of particular axioms. These semantic selec-
tion functions can for example exploit information about the confidence in the axioms
that allows us to remove “less correct” axioms. In the resolution of the changes we may
decide to remove the axioms that have the lowest confidence, i.e. those axioms that are
most likely incorrect. We are thus able to incrementally evolve an ontology that is (1)
consistent and (2) captures the information with the highest confidence. For details of
such a process and evaluation results, we refer the reader to [14].

Based on the discussions above, we can now outline an algorithm (cf. Algorithm 1)
to ensure the consistent evolution of a learned ontology.

Algorithm 1. Algorithm for consistent ontology learning
Require: A consistent ontology O
Require: A set of ontology changes OC
1: for all α ∈ OC, confidence(α) ≥ t do
2: O := O ∪ {α}
3: while O is inconsistent do
4: O′ := minimal inconsistent subontology(O, α)
5: α− := α
6: for all α′ ∈ O′ do
7: if confidence(α′) ≤ confidence(α) then
8: α− := α′

9: end if
10: end for
11: O := O \ {α−}
12: end while
13: end for

Starting with some consistent ontology O, we incrementally add all axioms gener-
ated by the ontology learning process – contained in the set of ontology changes OC –
whose confidence is equal to or greater than a given threshold t. If adding the axioms
leads to an inconsistent ontology, we localize the inconsistency by identifying a min-
imal inconsistent subontology. Within this minimal inconsistent subontology we then
identify the axiom that is most uncertain, i.e. has the lowest confidence value. This
axiom will be removed from the ontology, thus resolving the inconsistency. It may be
possible that one added axiom introduced multiple inconsistencies. For this case, the
above inconsistency resolution has to be applied iteratively.
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Besides the general notion of confidence used above, we may rely on various other
information to obtain a ranking of the axioms for the resolution of inconsistencies. This
information can, for example, be contextual information about provenance that may
indicate the reliability of the results depending on the trustworthiness and quality of the
learning resources. Other alternatives are based on measuring and ranking how much
a particular axioms contributes to logical contradictions in the ontology. The intuition
here is to minimize the changes needed by first removing axioms that are causing the
most inconsistencies, as for example proposed by [21].

5 Evaluation and Experimental Results

In what follows, we describe the experimental evaluation of our approach to consistent
ontology evolution as introduced in the previous Section 4. We thereby focus on two
different evaluation scenarios: In Section 5.1 we consider the common task of ontol-
ogy learning from scratch. We specifically look at the relationship between particular
degrees of uncertainty and inconsistency, as well as different kinds of logical inconsis-
tencies. Section 5.2 describes the application of our approach to inconsistency handling
in the context of ontology enrichment. We add automatically created disjointness ax-
ioms to an ontology and analyze the impact the of inconsistency diagnosis and repair
on the accuracy of these axioms.

5.1 Consistent Evolution of Learned Ontologies

We applied the ontology learning framework Text2Onto (see Section 3.1) to a corpus
of 1,700 abstracts of the BT Digital Library,5 all of them taken from documents about
knowledge management. The learned ontology consists of 938 concepts and 125 in-
stances. For the concepts, 406 subconcept-of relations as well as 2,322 disjoint-concepts
relations were identified, while 143 instance-of relations could be obtained for the
extracted instances.6 All these ontology entities and axioms were annotated with confi-
dence values as described in Section 3.3.

We then started our experimental evaluation by studying the impact of an uncertainty
threshold on the consistency of the ontology. The results listed by Table 2 show the con-
nection between the level of uncertainty and inconsistency introduced: With an increas-
ing threshold for the certainty, the number of encountered inconsistencies decreases.

A low threshold t results in more uncertain information being allowed in the tar-
get ontology. As a result, the chances for inconsistencies increase. How to choose the
“right” threshold t for the transformation process will very much depend on the ap-
plication scenario, as it essentially means finding a trade-off between the amount of
information learned and the confidence in the correctness of the learned information.

In the following, we will discuss typical types of inconsistencies and present
examples of such inconsistencies that were detected and resolved. The first type of
inconsistency involves unsatisfiable concepts (often called incoherent concepts) in the

5 http://www.btplc.com
6 Note that we allowed for multiple classifications of each instance.
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Table 2. Influence of certainty threshold t on transformation process

Threshold t # of Inconsistencies # of Axioms in Result

0.1 40 1706
0.2 8 705
0.4 3 389
0.8 0 197

T -Box of the ontology. This can for example happen if two concepts are identified to
be disjoint, but at the same time these concepts are in a subconcept-relation (either ex-
plicitly asserted or inferred). Interestingly, this type of inconsistency often occurred for
pairs of concepts whose correct relationship is hard to identify even for a domain expert,
as the following example shows:

Example 1. The relationship between the concepts Data, Information, and Knowledge
is a very subtle (often philosophical) one, for which one will encounter different defi-
nitions depending on the context. The (inconsistent) definitions learned from our data
set stated that Data is a subconcept of both Information and Knowledge, while
Information and Knowledge are disjoint concepts:

Axiom t Confidence
Data � Information 1.0
Data � Knowledge 1.0
Information � ¬Knowledge 0.7

The inconsistency was resolved by removing the disjointness axiom, as its confi-
dence value was the lowest.

The second type of inconsistencies involvesA-Box assertions. Here, typically instances
were asserted to be instances of two concepts that were identified to be disjoint. We
again present an example:

Example 2. Here KaV iDo was identified to be both an instance of Application and a
Tool (based on the abstract of [32]), however, Application and Tool were learned to
be disjoint concepts:

Axiom t Confidence
Application(kavido) 0.46
Tool(kavido) 0.46
Tool � ¬Application 0.3

This inconsistency was again resolved by removing the disjointness axiom.

Other types of inconsistencies involving, for example, domain and range restrictions
were not considered in our current experiments, thus being left for future work. Nev-
ertheless, this evaluation showed that inconsistency is an important issue in ontology
learning.
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5.2 Enriching Ontologies with Disjointness Axioms

For the second part of our experimental evaluation, we enriched EKAW, one of the
OntoFarm7 ontologies, with disjointness axioms automatically created by LeDA (cf.
Section 3.2. The EKAW ontology covers the domain of conference organization, con-
taining 77 concepts like publications, researchers, conferences, etc. We enriched the
original EKAW ontology (without disjointness axioms) with three complete sets of dis-
jointness axioms each of them automatically generated by a machine learning classifier
as described in Section 3.2. These classifiers (we used the Weka implementation of
Naive Bayes in all of our experiments) had previously been trained on CMT, CRS and
SIGKDD – three other ontologies in our gold standard and fully equipped with manu-
ally created disjointness.

Table 3. Results of debugging learned disjointness axioms

Test Training Axioms Acc Accbase Accdebug Unsatisfiable Removed
Concepts Axioms

EKAW CMT 2,659 0.925 0.851 0.934 27 20
EKAW CRS 2,712 0.892 0.851 0.933 130 89
EKAW SIGKDD 2,418 0.904 0.851 0.941 43 20

When adding the learned disjointness axioms to the ontology, we applied the method
of consistent ontology evolution (cf. Section 4). Table 3 shows the results for the en-
riched ontologies, including the number of unsatisfiable concepts identified and the
number of axioms that had to be removed in order to maintain consistency. The ta-
ble also shows that the accuracy of the resulting disjointness axioms (Accdebug) in
the ontology obtained by the consistent ontology evolution is significantly better than
the accuracy of the entire set of disjointness axioms (Acc). It increased, e.g., from
90.4% to 94.1% in the case training was performed on SIGKDD. The majority baseline
(Accbase), however, is beaten by both the (Acc) and Accdebug .

As in our previous experiments [36], we chose a majority baseline for accuracy
(Accbase), which is defined as the number of examples in the majority class (e.g. “not
disjoint”) divided by the overall number of examples. The majority baseline represents
the performance level that would be achieved by a naı̈ve classifier that labels all enti-
ties in the test set with the majority class, i.e. “disjoint” for all ontologies in our data
set. This simple, yet efficient strategy is hard to beat, especially for data sets that are
relatively unbalanced and biased towards one of the target classes.

Example. The variant of EKAW that was generated after previous training on CRS
contains 130 unsatisfiable concepts, among them Contributed Talk. The following
Table 4 shows the three diagnoses (minimal sets of conflicting axioms) we obtained
for this concept as well as associated confidence values, i.e. probabilities generated
by our NaiveBayes classifier. Please note that only the learned disjointness axioms are
annotated with confidence values and are considered as candidates for removal in the
repair process.

7 http://nb.vse.cz/∼svatek/ontofarm.html
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Table 4. Example for unsatisfiable concept

Axiom t Confidence
Abstract � ¬Camera Ready Paper 0.9999992
presentationOfPaper ≡ paperPresentedAs−1 –
� � paperPresentedAs−1.(Abstract 
 Paper) –
Camera Ready Paper � ¬Paper 0.9996211
Contributed Talk � ∃presentationOfPaper.Camera Ready Paper –
Camera Ready Paper � Paper –
Camera Ready Paper � ¬Paper 0.9996211
Contributed Talk � ∃presentationOfPaper.Camera Ready Paper –
Abstract � ¬Camera Ready Paper 0.9999992
� � ∃presentationOfPaper.(Abstract 
 Paper) –
Camera Ready Paper � ¬Paper 0.9996211
Contributed Talk � ∃presentationOfPaper.Camera Ready Paper –

In order to resolve these incoherences, we removed the following axiom from the
ontology: Camera Ready Paper � ¬Paper. Note that all decisions upon the axioms
to be removed were made based on their confidence values, our algorithm removed this
axiom due to its comparatively lower probability of 0.9996211. This decision seems
plausible as every camera ready paper should naturally be a paper.

6 Related Work

Since building an ontology for large amounts of data is a difficult and time consuming
task a number of ontology learning frameworks such as TextToOnto [24], the ASIUM
system [10], the Mo’k Workbench [2], OntoLearn [35] or OntoLT [3] have been devel-
oped in order to support the user in constructing ontologies from a given set of textual
data. So far, very few of these frameworks, with the notable exception of TextToOnto’s
successor, Text2Onto (cf. Section 3.1), for example, explicitly address the problem of
uncertainty. But the problem of dealing with uncertainty in taxonomy induction and
the acquisition of lexical knowledge has been dealt with in various publications (see
e.g. [30]). Moreover, several researchers have already tackled the issue of integrat-
ing and reasoning with probabilities in knowledge representation formalisms. Ding and
Peng [8] for example present a probabilistic extension of the Ontology Language OWL
which relies on Bayesian Networks for reasoning. Other researchers have integrated
probabilities into first-order logic [1] or description logics [22]. Fuzzy extensions of
OWL have been proposed, e.g., in [31].

The approach to dealing with inconsistencies presented in this work is based on the
idea of using consistent ontology evolution in order to be able to perform meaningful
reasoning. A very related approach is that of diagnosis and repair of inconsistencies. The
problem of diagnosing inconsistent ontologies has received increased attention, which
is a prerequisite for a successful repair. For example, Schlobach and colleagues [29]
propose a diagnosis based on identifying MIPS (Minimal Incoherence Preserving Sub-
T -Boxes) and MUPS (Minimal Unsatisfiability Preserving Sub-T -Boxes), which are
used to generate explanations for unsatisfiable concepts. A similar approach is also taken
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by the Pellet reasoner within the SWOOP ontology editor [26,21], which offers a de-
bugging mode in which explanations of inconsistencies are provided as a result of the
reasoning process. After performing the diagnosis, the important question is how the
inconsistency should be resolved, i.e. which axioms should be removed. For this prob-
lem [21] proposes a number of different ways to rank axioms. The confidence values
used in our approach could in principle be used for such a ranking.

Another related approach is that of reasoning with inconsistent ontologies. A typical
technique is the selection of a consistent subontology for a given query, which yields a
consistent query answer (cf. [18]). Also here the question is how to select the right sub-
ontology. While current techniques often rely on syntactic selection functions, it would
again be possible to rely on the confidence annotations to guide the selection function.

7 Conclusion and Future Work

Ontology learning is a promising technique for automated knowledge acquisition. How-
ever, uncertainty and inconsistency are issues that need to be dealt with in order to en-
able meaningful reasoning over the learned ontologies. While the challenge of dealing
with inconsistencies is a general one for expressive ontologies, it is especially impor-
tant in the context of ontology learning. This is essentially because all ontology learning
approaches generate knowledge that is afflicted with various forms of imperfection. To
address this problem, we described a way to represent uncertainty resulting from ontol-
ogy learning methods and proposed an approach to handling inconsistency in learned
ontologies. In our approach, ontology learning is combined with consistent ontology
evolution, in order to ensure that the learned ontologies are kept consistent as the ontol-
ogy learning procedures generate changes to the ontology over time. Our experiments
with both learned and enriched ontologies show the feasibility and usefulness of the
approach. The results confirm the intuition that the less certain the generated knowl-
edge is, the more logical contradictions are produced and need to be resolved. At the
same time, exploiting the uncertainty information in the evolution process considerably
improves the quality of the resulting ontologies.

As future work, we intend to rely on various other forms of contextual information
– such as information about trust and provenance – in order to obtain a ranking of the
axioms for the resolution of inconsistencies. In addition, we plan to investigate ways to
feed back information about logical inconsistencies into the ontology learning process,
e.g., to improve an existing classification model. An approach as described in Sec-
tion 3.2, for instance, could benefit from such information, in that multiple iterations of
learning and debugging would improve the quality of the acquired disjointness axioms.
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vol. 3513, pp. 227–238. Springer, Heidelberg (2005)

6. Cimiano, P., Völker, J.: Towards large-scale, open-domain and ontology-based named entity
classification. In: Proceedings of the International Conference on Recent Advances in Natural
Language Processing (RANLP 2005) (September 2005)

7. da Costa, P.C.G., Laskey, K.B.: PR-OWL: A framework for probabilistic ontologies. In: Pro-
ceedings of the International Conference on Formal Ontology in Information Systems (2006)

8. Ding, Z., Peng, Y.: A probabilistic extension to ontology language OWL. In: Proceedings of
the 37th Hawaii International Conference on System Sciences (2004)

9. Ding, Z., Peng, Y., Pan, R.: BayesOWL: Uncertainty Modeling in Semantic Web Ontologies.
Studies in Fuzziness and Soft Computing, p. 27. Springer, Heidelberg (2005)

10. Faure, D., Nedellec, C.: A corpus-based conceptual clustering method for verb frames and
ontology. In: Proceedings of the LREC Workshop on Adapting lexical and corpus resources
to sublanguages and applications (1998)

11. Fellbaum, C.: WordNet, an electronic lexical database. MIT Press, Cambridge (1998)
12. Haase, P., Qi, G.: An analysis of approaches to resolving inconsistencies in dl-based ontolo-

gies. In: Proceedings of International Workshop on Ontology Dynamics (IWOD 2007) (June
2007)

13. Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for han-
dling inconsistency in changing ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–367. Springer, Heidelberg (2005)

14. Haase, P., Völker, J.: Ontology learning and reasoning – dealing with uncertainty and incon-
sistency. In: da Costa, P.C.G., Laskey, K.B., Laskey, K.J., Pool, M. (eds.) Proceedings of the
Workshop on Uncertainty Reasoning for the Semantic Web (URSW), pp. 45–55 (November
2005)

15. Harris, Z.: Distributional structure. In: Katz, J.J. (ed.) The Philosophy of Linguistics, New
York, pp. 26–47. Oxford University Press, Oxford (1985)

16. Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings
of the 14th International Conference on Computational Linguistics, pp. 539–545 (1992)

17. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL Entailment to Description Logic Satisfi-
ability. Journal of Web Semantics 1(4) (2004)

18. Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies. In: Pro-
ceedings of IJCAI 2005 (August 2005)

19. Jaccard, P.: The distribution of flora in the alpine zone 11, 37–50 (1912)
20. Tsuji, J., Frantzi, K., Ananiadou, S.: The c-value/nc-value method of automatic recognition

for multi -word terms. In: Proceedings of the ECDL, pp. 585–604 (1998)
21. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C.: Repairing unsatisfiable concepts in owl on-

tologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 170–184.
Springer, Heidelberg (2006)

22. Koller, D., Levy, A., Pfeffer, A.: P-classic: A tractable probabilistic description logic. In:
Proceedings of AAAI 1997, pp. 390–397 (1997)

23. Maedche, A., Staab, S.: Discovering conceptual relations from text. In: Horn, W. (ed.) Pro-
ceedings of the 14th ECAI 2000 (2000)

24. Maedche, A., Staab, S.: Ontology learning. In: Staab, S., Studer, R. (eds.) Handbook on
Ontologies, pp. 173–189. Springer, Heidelberg (2004)



384 P. Haase and J. Völker

25. Motro, A., Smets, P.: Uncertainty Management In Information Systems. Springer, Heidelberg
(1997)

26. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proceedings of the 14th
international conference on World Wide Web, WWW 2005, Chiba, Japan, May 10-14, 2005,
pp. 633–640 (2005)

27. Patwardhan, S., Banerjee, S., Pedersen, T.: Using measures of semantic relatedness for word
sense disambiguation. In: Proceedings of the Fourth International Conference on Intelligent
Text Processing and Computational Linguistics, pp. 241–257 (February 2003)

28. Schlobach, S.: Debugging and semantic clarification by pinpointing. In: Gómez-Pérez, A.,
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Abstract. We present a reasoning procedure for ontologies with un-
certainty described in Description Logic (DL) which include General
TBoxes, i.e., include cycles and General Concept Inclusions (GCIs). For
this, we consider the description language ALCU , in which uncertainty
parameters are associated with ABoxes and TBoxes, and which allows
General TBoxes. Using this language as a basis, we then present a tableau
algorithm which encodes the semantics of the input knowledge base as
a set of assertions and linear and/or nonlinear arithmetic constraints on
certainty variables. By tuning the uncertainty parameters in the knowl-
edge base, different notions of uncertainty can be modeled and reasoned
with, within the same framework. Our reasoning procedure is determin-
istic, and hence avoids possible empirical intractability in standard DL
with General TBoxes. We further illustrate the need for blocking when
reasoning with General TBoxes in the context of ALCU .

1 Introduction

Over the last few years, a number of ontology languages have been developed to
help make Web resources more machine-interpretable by giving Web resources
a well-defined meaning. Among these languages, the OWL Web Ontology Lan-
guage [26] is the most recent W3C Recommendation. One of its species, OWL
DL, is named because of its correspondence with Description Logics (DLs) [1].

The family of DLs is mostly a subset of first-order logic (FOL) that is consid-
ered to be attractive because it keeps a good compromise between the expressive
power and the computational tractability [1]. The standard DLs, such as the
one that OWL DL is based on, focus on the classical logic, which is more suit-
able to describe concepts that are crisp and well-defined in nature. However, in
real-world applications, uncertainty is everywhere. In the context of this paper,
uncertainty refers to a form of deficiency or imperfection in the information for
which the truth of such information is not established definitely [15]. The need
to model and reason with uncertainty in DLs has been found in many different
Semantic Web contexts, such as Semantic Web services, multimedia annotation,
and bioinformatics. For example, in an online medical diagnosis system, one

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNAI 5327, pp. 385–402, 2008.
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might want to express that the certainty of an obese person having a parent
who is obese lies between 0.7 and 1, and John is an obese person with a degree
between 0.8 and 1. Such knowledge cannot be expressed nor be reasoned with
the standard DLs.

Over the last decade, a number of frameworks have been proposed which ex-
tend the standard DLs with uncertainty [5,6,7,13,14,19,20,21,22,23,24,25]. Some
of them deal with only vagueness while others deal with only probabilistic knowl-
edge. Since different applications may require to model different notions of un-
certainty, and there may be situations in which one needs to model different
notions of uncertainty within the same application, we are interested in devel-
oping a framework such that different forms of uncertainty knowledge can be
represented and reasoned with, in a generic way.

In this paper, we propose a reasoning procedure for uncertainty knowledge
bases with General TBoxes by taking a generic approach. As in the standard
description languages, a General TBox augments the expressive power of the lan-
guage by allowing cycles and General Concept Inclusions (GCIs) in the TBox,
which in turn allows statements such as domain and range restrictions to be
expressed. The proposed reasoning procedure is based on the DL ALCU , which
extends the standard DL ALC with uncertainty. Inspired by the approach of the
parametric framework [16] which incorporates uncertainty in the standard logic
programming and deductive databases, the interesting feature of our approach is
that, by tuning the uncertainty parameters that are associated with the axioms
and assertions in the ALCU knowledge bases, different notions of uncertainty
can be modeled and reasoned with, using a single reasoning procedure. In addi-
tion, since the proposed reasoning procedure is deterministic, it avoids possible
empirical intractability in standard DL reasoning when dealing with General
TBoxes.

This paper is an extension of our previous work as follows. In [8], we presented
a generic framework for representing DLs with uncertainty. That work was fur-
ther extended in [10] with a core reasoning procedure. A reasoning procedure
for dealing with acyclic uncertainty knowledge bases was presented in [9]. In this
paper, we further extend [9] by presenting a reasoning procedure that supports
uncertainty knowledge bases with General TBoxes.

The rest of this paper is organized as follows. We next review the standard
DL ALC and related work. Section 3 presents the DL ALCU and the proposed
tableau reasoning algorithm. A detailed example is provided in Section 4 to
illustrate the need for blocking when reasoning with ALCU knowledge bases
which contain General TBoxes. Concluding remarks together with future works
are discussed in Section 5.

2 Background and Related Work

In this section, we first review the standard DL language ALC, which is the basis
for ALCU , a generic DL language we proposed which unifies DL frameworks with
uncertainty. We will also review related work in this context.
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Fig. 1. The ALC Framework

2.1 Overview of the DL ALC
Description logics form a family of knowledge representation languages that can
be used to represent the knowledge of an application domain using concept
descriptions and have logic-based semantics [1,3]. The DL fragment on which
we focus in this paper is called ALC, which corresponds to the propositional
multi-modal logic K(m) [18]. As shown in Fig. 1, the ALC framework consists
of three main components – the description language, the knowledge base, and
the reasoning procedure.

1. ALC Description Language: Every description language has elementary de-
scriptions which include atomic concepts (unary predicates) and atomic roles
(binary predicates). Complex descriptions can then be built inductively from
concept constructors. The description language ALC consists of a set of lan-
guage constructors that are of practical interest. Specifically, let R be a role
name, the syntax of a concept description (denoted C or D) in ALC is de-
scribed as follows, where the name of each rule is given in parenthesis.

C, D → A (Atomic Concept) |
¬C (Concept Negation) |
C �D (Concept Conjunction) |
C �D (Concept Disjunction) |
∃R.C (Role Exists Restriction) |
∀R.C (Role Value Restriction)

For example, let Person be an atomic concept and hasParent be a role.
Then ∀hasParent .Person is a concept description. We use � as a synonym
for A � ¬A, and ⊥ as a synonym for A � ¬A.

The semantics of the description language is defined using the notion of
interpretation. An interpretation I is a pair I = (ΔI , ·I), where ΔI is a
non-empty domain of the interpretation, and ·I is an interpretation function
that maps each atomic concept A to a set AI ⊆ ΔI , each atomic role R to
a binary relation RI ⊆ ΔI ×ΔI , and each individual name a to an element
a ∈ ΔI . The interpretations of concept descriptions are shown below:
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(¬C)I = ΔI\CI

(C �D)I = CI ∩DI

(C �D)I = CI ∪DI

(∃R.C)I = {a ∈ ΔI | ∃b ∈ ΔI : (a, b) ∈ RI ∧ b ∈ CI}
(∀R.C)I = {a ∈ ΔI | ∀b ∈ ΔI : (a, b) ∈ RI → b ∈ CI}

2. ALC Knowledge Base: The knowledge base is composed of a Terminological
Box (TBox) and an Assertional Box (ABox). A TBox T is a set of statements
about how concepts in an application domain are related to each other. Let
C and D be concept descriptions. The TBox is a finite, possibly empty, set of
terminological axioms that could be a combination of concept inclusions of
the form 〈C � D〉 (that is, C is subsumed by D) and concept equations of the
form 〈C ≡ D〉 (that is, C is equivalent to D). A General Concept Inclusion
(GCI) is a special kind of concept inclusion where the left hand side of the
axiom is not restricted to be a concept name but can be an arbitrary concept
description. An interpretation I satisfies 〈C � D〉 if CI ⊆ DI , and it satisfies
〈C ≡ D〉 if CI = DI . An interpretation I satisfies a TBox T iff I satisfies
every axiom in T .

An ABox is a set of statements that describe a specific state of affairs in
an application domain, with respect to some individuals, in terms of concepts
and roles. Let a and b be individuals, C be a concept, R be a role, and let “:”
denote “is an instance of”. An ABox includes of a set of assertions that could
be a combination of concept assertions of the form 〈a : C〉 and role assertions
of the form 〈(a, b) : R〉. An interpretation I satisfies 〈a : C〉 if aI ∈ CI , and
it satisfies 〈(a, b) : R〉 if (aI , bI) ∈ RI . An interpretation I satisfies an ABox
A, iff it satisfies every assertion in A with respect to a TBox T .

An interpretation I satisfies (or is a model of) a knowledge base
Σ = 〈T ,A〉 (denoted I |= Σ), iff it satisfies both components of Σ. The
knowledge base Σ is consistent if there exists an interpretation I that sat-
isfies Σ. We say that Σ is inconsistent otherwise.

3. ALC Reasoning Procedure: Most DL systems use tableau-based reasoning
procedure (called tableau algorithm) to provide reasoning services [1]. The
main reasoning services include (i) the consistency problem which checks if
the ABox is consistent with respect to the TBox, (ii) the entailment problem
which checks if an assertion is entailed by a knowledge base, (iii) the concept
satisfiability problem which checks if a concept is satisfiable with respect to
a TBox, and (iv) the subsumption problem which checks if a concept is
subsumed by another concept with respect to a TBox. All these reasoning
services can be reduced to the consistency problem [1]. The tableau algo-
rithm can be used to check consistency of the knowledge base Σ. It tries
to construct a model by iteratively applying a set of so-called completion
rules in arbitrary order. Each completion rule application adds one or more
additional inferred assertions to the ABox to make it explicit the knowledge
that was previously present implicitly. The algorithm terminates when no
further completion rule is applicable. If one could arrive a completion that
contains no contradiction (also known as clash), then the knowledge base is
consistent. Otherwise, the knowledge base is inconsistent.
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2.2 Related Work

Incorporating uncertainty reasoning in DL frameworks has been the topic of nu-
merous research for more than a decade [5,6,7,13,14,19,20,21,22,23,24,25]. Some
research extended the tableau-based reasoning procedure used in standard DLs,
some transformed the uncertainty knowledge bases into standard DL knowl-
edge bases, while others employed completely different reasoning procedures such
as the inference algorithm developed for Bayesian networks. A survey of these
frameworks can be found in Chapter 6 of [1] and in [12].

Although General TBoxes were supported in [4,5,19,20,24], there are some ma-
jor differences between these works and the one we present in this paper. Unlike
our reasoning procedure which encode the semantics of the knowledge base as un-
certainty constraints, the one proposed in [4] transforms the fuzzy knowledge bases
into standard knowledge bases. On the other hand, the reasoning procedure pre-
sented in [19,20] deal with the certainty values directly within the tableau algo-
rithm. Finally, although constraint-based reasoningprocedureswere alsoproposed
in [5,24], the main difference between these two and ours is that, while our approach
is to develop one reasoning procedure for dealing with uncertainty with different
mathematical foundations, these works mainly considered one form. Specifically,
[5] supports only product t-norm, and [24] supports only Lukasiewicz semantics.

3 A Reasoning Procedure for ALCU Knowledge Bases
with General TBoxes

In this section, we present a reasoning procedure for ALCU knowledge bases
with General TBoxes. For this, we first introduce the DL ALCU , which extends
the standard DL ALC with uncertainty, by presenting the syntax and semantics
of its description language and knowledge base. We then present the proposed
ALCU reasoning procedure. After that, we illustrate through an example the
various extended components of the ALCU framework.

3.1 The Description Language ALCU

The description language refers to the language used for building concepts. The
syntax of the ALCU description language is identical to that of the standard
ALC, while the corresponding semantics is extended with uncertainty.

In order to model different notions of uncertainty, we assume that the certainty
values form a complete lattice L = 〈V ,!〉, where V is the certainty domain, and
! is the partial order on V . Also, ≺, #, $, and = are used with their obvious
meanings. We use l to denote the least element in V , t for the greatest element
in V , ⊕ for the join operator (the least upper bound) in L, and ⊗ for the meet
operator (the greatest lower bound). We also assume that there is only one
underlying certainty lattice for the entire knowledge base.

The semantics of the description language is based on the notion of an in-
terpretation. An interpretation I is defined as a pair (ΔI , ·I), where ΔI is the
domain and ·I is an interpretation function that maps each



390 V. Haarslev, H.-I. Pai, and N. Shiri

Table 1. Syntax and Semantics of the Description Language ALCU

Name Syntax Semantics (a ∈ ΔI)
Top Concept � �I(a) = t

Bottom Concept ⊥ ⊥I(a) = l

Concept Negation ¬C (¬C)I(a) =∼CI(a)
Concept Conjunction C 	 D (C 	 D)I(a) = fc(CI(a), DI(a))
Concept Disjunction C 
 D (C 
 D)I(a) = fd(CI(a), DI(a))
Role Exists Restriction ∃R.C (∃R.C)I(a) = ⊕b∈ΔI {fc(RI(a, b), CI(b))}
Role Value Restriction ∀R.C (∀R.C)I(a) = ⊗b∈ΔI {fd(∼RI(a, b), CI(b))}

– atomic concept A into a certainty function CFC , where CFC : ΔI → V
– atomic role R into a certainty function CFR, where CFR : ΔI ×ΔI → V
– individual name a to an element a ∈ ΔI

where V is the certainty domain. For example, let John be an individual name
and Obese be an atomic concept. Then, ObeseI(JohnI) gives the certainty that
John is an instance of the concept Obese. The syntax and semantics of the
description language ALCU are summarized in Table 1.

The interpretation of the top concept� is the greatest element in the certainty
domain V , that is, �I(a) = t, for all a ∈ ΔI . For instance, the interpretation of
� is 1 (or true) in the standard logic with V = {0, 1}, as well as in other logics
with V = [0, 1]. Similarly, the interpretation of the bottom concept ⊥ is the
least element in the certainty domain V , that is, ⊥I(a) = l, for all a ∈ ΔI . For
example, this corresponds to 0 (or false) in the standard logic with V = {0, 1},
as well as in other logics with V = [0, 1].

The semantics of the concept negation ¬C is defined as (¬C)I(a) =∼CI(a),
for all a ∈ ΔI . The symbol ∼ denotes the negation function, where ∼: V → V
must satisfy the following properties:

– Boundary Conditions: ∼ l = t and ∼ t = l.
– Double Negation: ∼(∼α) = α, for all α ∈ V .

For example, a common interpretation of ¬C is 1− CI(a).
In addition, fc and fd in Table 1 denote the conjunction and disjunction

functions, respectively, both of which we refer as the combination functions.
They are used to specify how one should interpret a given description language.
A combination function f is a binary function from V × V to V . This function
combines a pair of certainty values into one. A combination function must satisfy
some properties as listed in Table 2 [16].

A conjunction function fc is a combination function that satisfies properties
P1, P2, P5, P6, P7, and P8 as described in Table 2. The monotonicity property
asserts that increasing the certainties of the arguments in f improves the cer-
tainty that f returns. The bounded value and boundary condition properties are
included so that the interpretation of the certainty values makes sense. The com-
mutativity property allows reordering of the arguments of f , say for optimization
purposes. Finally, the associativity of f ensures that different evaluation orders of
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Table 2. Combination Function Properties

ID Property Name Property Definition
P1 Monotonicity f(α1, α2) � f(β1, β2) if αi � βi, for i = 1, 2
P2 Bounded Above f(α1, α2) � αi, for i = 1, 2
P3 Bounded Below f(α1, α2) � αi, for i = 1, 2
P4 Boundary Condition (Above) ∀α ∈ V, f(α, l) = α and f(α, t) = t

P5 Boundary Condition (Below) ∀α ∈ V, f(α, t) = α and f(α, l) = l

P6 Continuity f is continuous w.r.t. each of its arguments
P7 Commutativity ∀α, β ∈ V , f(α, β) = f(β, α)
P8 Associativity ∀α, β, δ ∈ V , f(α,f(β, δ))= f(f(α, β), δ)

concept conjunctions will not yield different results. Some common conjunction
functions are the well-known minimum function and the algebraic product.

A disjunction function fd is a combination function that satisfies properties
P1, P3, P4, P6, P7, and P8 as described in Table 2. These properties are en-
forced for similar reasons as in the conjunction case. Some common disjunction
functions are the maximum and the probability independent functions.

In Table 1, the semantics of the Role Exists Restriction ∃R.C is defined as
(∃R.C)I(a) = ⊕b∈ΔI{fc(RI(a, b), CI(b))}, for all a ∈ ΔI . The intuition here is
that ∃R.C is viewed as the open first order formula ∃b. R(a, b) ∧ C(b), where ∃
is viewed as a disjunction over certainty values associated with R(a, b) ∧ C(b).
Specifically, the semantics of R(a, b) ∧ C(b) is captured using the conjunction
function fc(RI(a, b), CI(b)), and ∃b is captured using the join operator in the
certainty lattice ⊕b∈ΔI .

Similarly, the semantics of the Role Value Restriction ∀R.C is defined as
(∀R.C)I(a) = ⊗b∈ΔI{fd(∼RI(a, b), CI(b))}, for all a ∈ ΔI . The intuition here
is that ∀R.C is viewed as the open first order formula ∀b. R(a, b) → C(b), where
R(a, b) → C(b) is equivalent to ¬R(a, b) ∨C(b), and ∀ is viewed as a conjunction
over certainty values associated with the implication R(a, b) → C(b). To be more
precise, the semantics of R(a, b) → C(b) is captured using the disjunction and
the negation functions as fd(∼RI(a, b), CI(b)), and ∀b is captured using the
meet operator in the certainty lattice ⊗b∈ΔI .

We say a concept is in negation normal form (NNF) if the negation operator
appears only in front of concept names. The following two inter-constructor
properties allow the transformation of concept descriptions into NNFs.

– De Morgan’s Rule: ¬(C �D) ≡ ¬C � ¬D and ¬(C �D) ≡ ¬C � ¬D.
– Negating Quantifiers Rule: ¬∃R.C ≡ ∀R.¬C and ¬∀R.C ≡ ∃R.¬C.

3.2 ALCU Knowledge Base

The knowledge base Σ in the ALCU framework is a pair 〈T ,A〉, where T is
a TBox and A is an ABox. An interpretation I satisfies (or is a model of)
Σ (denoted I |= Σ), if and only if it satisfies both T and A. The knowledge
base Σ is consistent if there exists an interpretation I that satisfies Σ, and is
inconsistent otherwise.
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ALCU TBox. An ALCU TBox T consists of a set of terminological axioms
defining how concepts are related to each other. Each axiom is associated with
a certainty value as well as a conjunction function and a disjunction function
which are used to interpret the concept descriptions in the axiom. Specifically, an
ALCU TBox consists of axioms that could be a combination of GCIs of the form
〈C � D | α, fc, fd〉 and concept equations of the form 〈C ≡ D | α, fc, fd〉, where
C and D are concept descriptions, α ∈ V is the certainty that the axiom holds,
fc is the conjunction function used as the semantics of concept conjunction and
part of the role exists restriction, and fd is the disjunction function used as the
semantics of concept disjunction and part of the role value restriction. In case
the choice of the combination function in the current axiom is immaterial, “−”
is used as a place holder. The concept equation 〈C ≡ D | α, fc, fd〉 is equivalent
to the two concept inclusions 〈C � D | α, fc, fd〉 and 〈D � C | α, fc, fd〉.

For example, the axiom 〈Rich � ((∃owns.ExpensiveCar � ∃owns.Airplane)
�Golfer ) | [0.8, 1], min, max〉 states that the concept Rich is subsumed by own-
ing expensive car or owning an airplane, and being a golfer. The certainty of this
axiom is at least 0.8, with all the concept conjunctions interpreted using min
function, and all the concept disjunctions interpreted using max.

In order to transform an axiom of the form 〈C � D | α, fc, fd〉 into its nor-
mal form, 〈� � ¬C �D | α, fc, fd〉, the semantics of the concept subsumption
is restricted to be fd(∼CI(a), DI(a)), for all a ∈ ΔI , where ∼CI(a) captures
the semantics of ¬C, and fd captures the semantics of � in ¬C �D. Hence, an
interpretation I satisfies 〈C � D | α, fc, fd〉 if fd(∼CI(a), DI(a)) = α, for all
a ∈ ΔI .

ALCU ABox. An ALCU ABox A consists of a set of assertions, each of which
is associated with a certainty value and a pair of combination functions used to
interpret the concept description(s) in the assertion. Specifically, these assertions
could include concept assertions of the form 〈a : C | α, fc, fd〉 and role assertions
of the form 〈(a, b) : R | α,−,−〉, where a and b are individuals, C is a concept,
R is a role, α ∈ V , fc is the conjunction function, fd is the disjunction function,
and − denotes that the corresponding combination function is not applicable.

For instance, the assertion “Mary is either tall or thin, and smart with proba-
bility between 0.6 and 0.8” can be expressed as 〈Mary : (Tall � Thin) � Smart |
[0.6, 0.8],×, ind〉. Here, the concept conjunction is interpreted using the algebraic
product (×), and the disjunction function is interpreted using the probability
independent function (ind). Note that, since reasoning with probability often
requires extra information/knowledge about the events and facts in the world,
we are investigating ways to model knowledge base with more general proba-
bility theory, such as positive/negative correlation, ignorance, and conditional
independence.

In terms of the semantics of the assertions, an interpretation I satisfies 〈a : C |
α, fc, fd〉 if CI(aI) = α, and I satisfies 〈(a, b) : R | α,−,−〉 if RI(aI , bI) = α.

There are two types of individuals that could be in an ABox - defined individ-
uals and generated individuals, defined as follows. We also introduce the notion
of predecessor and ancestor in Definition 2.
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Definition 1. (Defined/Generated Individual) Let I be the set of all individuals
in an ABox. We call individuals whose names explicitly appear in the input
ABox “defined individuals” (ID), and those generated by the reasoning procedure
“generated individuals” (IG).

Definition 2. (Predecessor/Ancestor) An individual a is a “predecessor” of an
individual b (or b is a R-successor of a) if the ABox A contains the asser-
tion 〈(a, b) : R | α,−,−〉. An individual a is an “ancestor” of b if it is either
a predecessor of b or there exists a chain of assertions 〈(a, b1) : R1 | α1,−,−〉,
〈(b1, b2) : R2 | α2,−,−〉,..., 〈(bk, b) : Rk+1 | αk+1,−,−〉 in A.

Note 1. Since each axiom/assertion in the ALCU knowledge base is associated
with a pair of combination functions, different notions of uncertainty (such as
fuzzy and simple probability) can be modeled within the same knowledge base,
if desired by the user.

3.3 ALCU Reasoning Procedure

Let Σ = 〈T ,A〉 be an ALCU knowledge base. Fig. 2 gives an overview of the
ALCU tableau reasoning procedure. The rectangles represent data or knowledge
bases, the arrows show the data flow, and the gray rounded boxes show where
data processing is performed.

In what follows, we present the ALCU tableau algorithm in detail. We first
introduce the reasoning services offered, and then present the pre-processing
phase and the completion rules.

ALCU Reasoning Services. The ALCU reasoning services include the con-
sistency, the entailment, and the subsumption problems as described below.

Consistency Problem: To check if an ALCU knowledge base Σ = 〈T ,A〉 is
consistent, we first apply the pre-processing steps (see Section 3.3) to obtain the
initial extended ABox, AE

0 . In addition, the constraints set C0 is initialized to
the empty set {}. We then apply the completion rules (see Section 3.3) to de-
rive implicit knowledge from explicit ones. Through the application of each rule,
we add any assertions that are derived to the extended ABox AE

i . In addition,
constraints which denote the semantics of the assertions are added to the con-
straints set Cj , in the form of linear or nonlinear inequations. The completion
rules are applied in arbitrary order as long possible, until either AE

i contains
a clash or no further rule could be applied to AE

i . If AE
i contains a clash, the

knowledge base is inconsistent. Otherwise, the system of inequations in Cj is fed
into the constraint solver to check its solvability. If the system of inequations is
unsolvable, the knowledge base is inconsistent. Otherwise, the knowledge base
is consistent.

Entailment Problem: Given anALCU knowledge base Σ, the entailment prob-
lem determines the degree to which an assertion X is true. Like in standard DLs,
the entailment problem can be reduced to the consistency problem. That is, let
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Fig. 2. Reasoning Procedure for ALCU

X be an assertion of the form 〈a : C | xa:C , fc, fd〉. The degree that Σ entails X
is the degree of xa:C such that Σ ∪ {〈a : ¬C, xa:¬C〉〈fc, fd〉} is consistent.

Subsumption Problem: Let Σ = 〈T ,A〉 be an ALCU knowledge base, and
〈C � D | xCD, fc, fd〉 be the subsumption relationship to be checked. The
subsumption problem determines the degree to which C is subsumed by D
with respect to the TBox T . Like in standard DLs, this problem can be re-
duced to the consistency problem by finding the degree of xa:¬C�D such that
Σ ∪ {〈a : C � ¬D | xa:C	¬D, fc, fd〉} is consistent, where a is a new, generated
individual name.
As in standard DLs, the model being constructed by theALCU tableau algorithm
can be thought of as a forest.

Definition 3. (Forest, Node Label, Node Constraint, Edge Label) A “forest”
is a collection of trees, with nodes corresponding to individuals, edges corre-
sponding to relationships/roles between individuals, and root nodes correspond-
ing to individuals present in the initial extended ABox. Each node is associated
with a “node label”, L(individual), to show the concept assertions associated
with a particular individual, as well as a “node constraint”, C(individual), for
the corresponding constraints. Unlike in the standard DL where each element
in the node label is a concept, each element in our node label is a quadruple,
〈Concept, Certainty, fc, fd〉. Finally, unlike in the standard DL where each edge
is labeled with a role name, each edge in our case is associated with an “edge
label”, L(〈individual1, individual2〉) which consists of a pair of elements 〈Role,
Certainty〉. In case the certainty is a variable, “−” is used as a place holder.

Pre-processing Phase. The ALCU tableau algorithm starts by applying the
following pre-processing steps, which maintains the equivalence of the result with
the original knowledge base.

1. Replace each axiom of the form 〈C ≡ D | α, fc, fd〉 with the following two
axioms: 〈C � D | α, fc, fd〉 and 〈D � C | α, fc, fd〉.
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2. Transform every axiom in the TBox into its normal form. That is, replace
each axiom of the form 〈C � D | α, fc, fd〉 with 〈� � ¬C �D | α, fc, fd〉.

3. Transform every concept (the TBox and the ABox) into its NNF. Let C and
D be concepts, and R be a role. The NNF can be obtained by applying the
following rules:
– ¬¬(C) ≡ C
– ¬(C �D) ≡ ¬C � ¬D
– ¬(C �D) ≡ ¬C � ¬D
– ¬∃R.C ≡ ∀R.¬C
– ¬∀R.C ≡ ∃R.¬C

4. Augment the ABox A with respect to the TBox T . That is, for each indi-
vidual a in A and each axiom 〈� � ¬C �D | α, fc, fd〉 in T , we add to A,
the assertion 〈a : ¬C �D | α, fc, fd〉.

We call the resulting ABox after the pre-processing phase the initial extended
ABox, denoted by AE

0 .

ALCU Completion Rules. Let T be a TBox obtained after the pre-processing
phase, AE

0 be the initial extended ABox, and C0 be the initial constraints set.
Also, let α and β be certainty values, and Γ be either a certainty value in
the certainty domain or the variable xX denoting the certainty of assertion X .
The ALCU completion rules are listed in Fig. 3. Since the application of the
completion rules may lead to nontermination (see Section 4 for an example), we
introduce the notion of blocking to handle this situation.

Definition 4. (Blocking) Let a, b ∈ IG be generated individuals in the extended
ABox AE

i , AE
i (a) and AE

i (b) be all the concept assertions for a and b in AE
i . An

individual b is blocked by some ancestor a (or a is the blocking individual for b)
if AE

i (b) ⊆ AE
i (a).

The purpose of the Clash Triggers is to detect possible inconsistencies in the
knowledge base. For example, suppose the certainty domain is V = C[0, 1],
i.e., the set of closed subintervals [α, β] in [0, 1] where α ! β. If a knowledge
base contains both assertions 〈John : Tall | [0, 0.2],−,−〉 and 〈John : Tall | [0.7,
1],−,−〉, then the third clash trigger will detect this as an inconsistency.

The Concept Assertion and Role Assertion rules simply add the certainty
value of each atomic concept/role assertion and its negation to the constraints
set Cj . For example, suppose we have the assertion 〈John : Tall | [0.6, 1],−,−〉
in the extended ABox. If the certainty domain is V = C[0, 1] and if the negation
function is ∼(x) = t− x, where t is the top certainty in the lattice, then we
add the constraints (xJohn:Tall = [0.6, 1]) and (xJohn:¬Tall = [0, 0.4]) to the set
of constraints Cj.

The intuition behind the Negation Rule is that, if we know an assertion
has a certainty value Γ , then the certainty of its negation can be obtained by
applying the negation function to Γ . For example, suppose the certainty do-
main is V = [0, 1], and the negation function is defined as ∼(x) = 1− x. If we
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Clash Triggers: then AEi+1 = AEi ∪ {〈a : Ψ | xa:Ψ ,−,−〉}

〈a : ⊥ | α,−,−〉 ∈ AEi , with α � l else if Ψ is not atomic and 〈a : Ψ | xa:Ψ , fc, fd〉 /∈ AEi
〈a : � | α,−,−〉 ∈ AEi , with α ≺ t then AEi+1 = AEi ∪ {〈a : Ψ | xa:Ψ , fc, fd〉}

{〈a : A | α,−,−〉, 〈a : A | β,−,−〉} ⊆ AEi , if (fd(xa:C, xa:D) = Γ ) /∈ Cj ,
with ⊗(α, β) = l then Cj+1 = Cj ∪ {(fd(xa:C, xa:D) = Γ )}

{〈(a, b) : R | α,−,−〉, 〈(a, b) : R | β,−,−〉} ⊆ AEi ,
with ⊗(α, β) = l Role Exists Restriction Rule:

if 〈a : ∃R.C | Γ, fc, fd〉 ∈ A
E
i and a is not blocked

Concept Assertion Rule: then if � individual b such that
if 〈a : A | Γ,−,−〉 ∈ AEi (fc(x(a,b):R, xb:C) = xa:∃R.C) ∈ Cj
then if (xa:A = Γ ) /∈ Cj and Γ is not a variable then let b be a new individual

then Cj+1 = Cj ∪ {(xa:A = Γ )} AEi+1 = AEi ∪ {〈(a, b) : R | x(a,b):R,−,−〉}

if (xa:¬A =∼Γ) /∈ Cj if C is atomic

then Cj+1 = Cj ∪ {(xa:¬A =∼Γ)} then AEi+1 = AEi ∪ {〈b : C | xb:C,−,−〉}

else AEi+1 = AEi ∪ {〈b : C | xb:C, fc, fd〉}

Role Assertion Rule: Cj+1 = Cj ∪ {(fc(x(a,b):R, xb:C ) = xa:∃R.C)}

if 〈(a, b) : R | Γ,−,−〉 ∈ AEi for each axiom 〈� � ¬C �D | α, fc, fd〉 in T

then if (x(a,b):R = Γ ) /∈ Cj and Γ is not a variable AEi+1 = AEi ∪ {〈b : ¬C �D | α, fc, fd〉}

then Cj+1 = Cj ∪ {(x(a,b):R = Γ )} if Γ is not the variable xa:∃R.C

if (x¬(a,b):R =∼Γ ) /∈ Cj then if (xa:∃R.C = Γ ′) ∈ Cj
then Cj+1 = Cj ∪ {(x¬(a,b):R =∼Γ)} then if Γ �= Γ ′ and Γ is not an element in Γ ′

then Cj+1 = Cj \ {(xa:∃R.C = Γ ′)}
Negation Rule: ∪{(xa:∃R.C = ⊕(Γ, Γ ′))}
if 〈a : ¬A | Γ,−,−〉 ∈ AEi else Cj+1 = Cj ∪ {(xa:∃R.C = Γ )}

then if 〈a : A |∼Γ,−,−〉 /∈ AEi
then AEi+1 = AEi ∪ {〈a : A |∼Γ,−,−〉} Role Value Restriction Rule:

if {〈a : ∀R.C | Γ, fc, fd〉, 〈(a, b) : R | Γ ′,−,−〉} ⊆ AEi
Conjunction Rule: then if C is atomic and 〈b : C | xb:C,−,−〉 /∈ AEi
if 〈a : C �D | Γ, fc, fd〉 ∈ A

E
i then AEi+1 = AEi ∪ {〈b : C | xb:C,−,−〉}

then for each Ψ ∈ {C,D} else if C is not atomic and 〈b : C | xb:C, fc, fd〉 /∈ AEi
if Ψ is atomic and 〈a : Ψ | xa:Ψ ,−,−〉 /∈ AEi then AEi+1 = AEi ∪ {〈b : C | xb:C, fc, fd〉}

then AEi+1 = AEi ∪ {〈a : Ψ | xa:Ψ ,−,−〉} if (fd(x¬(a,b):R, xb:c) = xa:∀R.C ) /∈ Cj

else if Ψ is not atomic and 〈a : Ψ | xa:Ψ, fc, fd〉 /∈ AEi then Cj+1 = Cj ∪ {(fd(x¬(a,b):R, xb:c) = xa:∀R.C)}

then AEi+1 = AEi ∪ {〈a : Ψ | xa:Ψ , fc, fd〉} if Γ is not the variable xa:∀R.C
if (fc(xa:C, xa:D) = Γ ) /∈ Cj , then if (xa:∀R.C = Γ ′′) ∈ Cj
then Cj+1 = Cj ∪ {(fc(xa:C, xa:D) = Γ )} then if Γ �= Γ ′′ and Γ is not an element in Γ ′′

then Cj+1 = Cj \ {(xa:∀R.C = Γ ′′)}
Disjunction Rule: ∪{(xa:∀R.C = ⊗(Γ, Γ ′′))}
if 〈a : C �D | Γ, fc, fd〉 ∈ A

E
i else Cj+1 = Cj ∪ {(xa:∀R.C = Γ )}

then for each Ψ ∈ {C,D}

if Ψ is atomic and 〈a : Ψ | xa:Ψ ,−,−〉 /∈ AEi

Fig. 3. Completion Rules for ALCU

have the assertion 〈John : ¬Tall | 0.8,−,−〉 in the ABox, we could also infer
〈John : Tall | 0.2,−,−〉, which is added to the extended ABox.

The Conjunction and Disjunction rules capture the semantics of concept con-
junction (resp. disjunction) by applying the conjunction (resp. disjunction) func-
tion to the interpretations of a : C and a : D. An interesting thing to note is that,
in the standard DL, the Disjunction Rule is non-deterministic, since it can be ap-
plied in different ways to the same ABox. However, the ALCU disjunction rule is
deterministic. This is because the semantics of the concept disjunction is encoded
in the disjunction function in the form of a constraint. For example, suppose the
extended ABox includes the assertion 〈Mary : Tall �Thin | 0.8,min,max 〉, then
we infer that 〈Mary : Tall | xMary:Tall ,−,−〉 and 〈Mary : Thin | xMary :Thin ,−,
−〉. Moreover, the constraint max (xMary:Tall , xMary :Thin) = 0.8 must be satisfied,
which means that either xMary:Tall = 0.8, or xMary:Thin = 0.8, or xMary:Tall =
xMary:Thin = 0.8.
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Note 2. Like in standard DLs, our tableau algorithm treats each axiom in T
as a meta constraint. That is, for each individual a in A and each axiom
〈C � D | α, fc, fd〉 in T , we add 〈a : ¬C �D | α, fc, fd〉 to A. This results in
a large number of assertions with concept disjunction be added to A. In stan-
dard DLs, this would dramatically extend the search space and is the main
cause for empirical intractability, since the disjunction rule in standard DLs is
non-deterministic. Therefore, optimization technique like lazy unfolding was in-
troduced in [2]. However, since the disjunction rule in ALCU is deterministic,
large number of assertions with concept disjunction does not cause problems in
our context.

The Role Exists Restriction and Role Value Restriction rules have a similar
structure, although they have different semantics. The intuition behind the Role
Exists Restriction Rule is that, if we know that an individual a is in ∃R.C, there
must exist at least one individual, say b, such that a is related to b through the
relationship R, and b is in the concept C. If no such individual b exists in the
extended ABox, then we create such a new individual, and assert that this indi-
vidual satisfies all the axioms in the TBox. As usual, the semantics of the Role
Exists Restriction is encoded as constraints. On the other hand, the intuition
behind the Role Value Restriction Rule is that, if we know that an individual a
is in ∀R.C, and if there is an individual b such that a is related to b through the
relationship R, then b must be in the concept C. The semantics of the Role Value
Restriction is also encoded as constraints. For example, suppose the assertion
〈Tom : ∃hasDisease.Diabetes | [0.4, 0.6],min,max 〉 is in the extended ABox and
the axiom 〈� � ¬Obese � ∃hasDisease.Diabetes | [0.7, 1],×, ind〉 is in the TBox.
Assume also that the ABox originally does not contain any individual b such that
Tom is related to b through the role hasDisease, and b is in the concept Diabetes .
Then, we could infer 〈(Tom , d1) : hasDisease | x(Tom,d1):hasDisease ,−,−〉 and 〈d1
: Diabetes | xd1:Diabetes ,−,−〉, where d1 is a new individual. In addition, since d1
must satisfy the axioms in the TBox, the assertion 〈d1 : ¬Obese � ∃hasDisease.
Diabetes | [0.7, 1],×, ind〉 is added to the extended ABox. Finally, the constraints
(min(x(Tom,d1):hasDisease , xd1:Diabetes) = xTom:∃hasDisease.Diabetes) as well as (x
Tom:∃hasDisease.Diabetes = [0.4, 0.6]) must be satisfied.

The correctness of the ALCU tableau algorithm can be established by showing
that it is sound, complete, and it terminates, as shown in [17].

4 An Illustrative Example

To illustrate the ALCU tableau algorithm and the need for blocking, let us
consider a cyclic fuzzy knowledge base Σ = 〈T ,A〉, where:
T = {〈ObesePerson � ∃hasParent .ObesePerson | [0.7, 1],min,max〉}
A = {〈John : ObesePerson | [0.8, 1],−,−〉}

Note that the fuzzy knowledge bases can be expressed in ALCU by setting the
certainty lattice as L = 〈V ,!〉, where V = C[0, 1] is the set of closed subintervals
[α, β] in [0, 1] such that α ! β. We also set the meet operator in the lattice as
inf (infimum), the join operator as sup (supremum), and the negation function
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as ∼(x) = t− x, where t = [1, 1] is the greatest value in the certainty lattice.
Finally, the conjunction function is set to min, and the disjunction function is
set to max .

To find out if Σ is consistent, we first apply the pre-processing steps. For this,
we transform the axiom into its normal form:

T = {〈� � (¬ObesePerson � ∃hasParent .ObesePerson | [0.7, 1],min,max〉}

We then augment the ABox with respect to the TBox. That is, for each
individual a in the ABox (in this case, we have only John) and for each ax-
iom of the form 〈� � ¬C �D | α, fc, fd〉 in the TBox, we add an assertion
〈a : ¬C �D | α, fc, fd〉 to the ABox. Hence, in this step, we add the following
assertion to the ABox:

〈John : (¬ObesePerson � ∃hasParent .ObesePerson | [0.7, 1],min,max 〉}

Now, we can initialize the extended ABox to be:

AE
0 = {〈John : ObesePerson | [0.8, 1],−,−〉,

〈John : (¬ObesePerson � ∃hasParent .ObesePerson | [0.7, 1],min,max 〉}

and the constraints set to be C0 = {}.
Once the pre-processing phase is over, we are ready to apply the completion

rules. The first assertion is 〈John : ObesePerson | [0.8, 1],−,−〉. Since
ObesePerson is an atomic concept, we apply the Concept Assertion Rule, which
yields:

C1 = C0 ∪ {(xJohn:ObesePerson = [0.8, 1])}
C2 = C1 ∪ {(xJohn :¬ObesePerson = t− xJohn:ObesePerson)}, where t is the greatest

element in the lattice, [1, 1].

The other assertion in AE
0 is 〈John : (¬ObesePerson � ∃hasParent .ObesePerson

| [0.7, 1],min,max 〉}. Since this assertion includes a concept disjunction, the Dis-
junction Rule applies. This yields:

AE
1 = AE

0 ∪ {〈John : ¬ObesePerson | xJohn :¬ObesePerson ,−,−〉}
AE

2 = AE
1 ∪ {〈John : ∃hasParent .ObesePerson | xJohn:∃hasParent.ObesePerson ,

min ,max〉}
C3 = C2 ∪ {(max (xJohn :¬ObesePerson , xJohn:∃hasParent.ObesePerson) = [0.7, 1])}

The assertion 〈John : ¬ObesePerson | xJohn :¬ObesePerson ,−,−〉 in AE
1 triggers

the Negation Rule, which yields:

AE
3 = AE

2 ∪ {〈John : ObesePerson | xJohn:ObesePerson ,−,−〉}

The application of the Concept Assertion Rule to the assertion 〈John : Obese
Person | xJohn:ObesePerson ,−,−〉 in AE

3 does not derive any new assertion nor
constraint. Next, we apply the Role Exists Restriction Rule to the assertion in
AE

2 , and obtain:

AE
4 = AE

3 ∪ {〈(John, ind1 ) : hasParent | x(John,ind1 ):hasParent ,−,−〉}
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AE
5 = AE

4 ∪ {〈ind1 : ObesePerson | xind1 :ObesePerson ,−,−〉}
C4 = C3 ∪ {(min(x(John,ind1 ):hasParent , xind1 :ObesePerson ) = xJohn:∃hasParent.

ObesePerson)}
AE

6 = AE
5 ∪ {〈ind1 : (¬ObesePerson � ∃hasParent .ObesePerson | [0.7, 1],min,

max 〉}

The application of the Role Assertion Rule to the assertion in AE
4 yields:

C5 = C4 ∪ {(x(John,ind1 ):¬hasParent = t− x(John,ind1 ):hasParent )}

After applying the Concept Assertion Rule to the assertion 〈ind1 : ObesePerson |
xind1 :ObesePerson ,−,−〉} in AE

5 , we obtain:

C6 = C5 ∪ {(xind1 :¬ObesePerson = t− xind1 :ObesePerson )}

The assertion in AE
6 triggers the Disjunction Rule, which yields:

AE
7 = AE

6 ∪ {〈ind1 : ¬ObesePerson | xind1 :¬ObesePerson ,−,−〉}
AE

8 = AE
7 ∪ {〈ind1 : ∃hasParent .ObesePerson | xind1 :∃hasParent.ObesePerson ,

min ,max〉}
C7 = C6 ∪ {(max (xind1 :¬ObesePerson , xind1 :∃hasParent.ObesePerson) = [0.7, 1])}

Next, the application of the Negation Rule to the assertion in AE
7 yields:

AE
9 = AE

8 ∪ {〈ind1 : ObesePerson | xind1 :ObesePerson ,−,−〉}

We then apply the Concept Assertion Rule to the assertion in AE
9 , and obtain:

C8 = C7 ∪ {(xind1 :¬ObesePerson = t− xind1 :ObesePerson )}

The application of the Role Exists Restriction Rule to the assertion in AE
8 yields:

AE
10 = AE

9 ∪ {〈(ind1 , ind2 ) : hasParent | x(ind1 ,ind2 ):hasParent ,−,−〉}
AE

11 = AE
10 ∪ {〈ind2 : ObesePerson | xind2 :ObesePerson ,−,−〉}

C9 = C8 ∪ {(min(x(ind1 ,ind2 ):hasParent , xind2 :ObesePerson ) = xind1 :∃hasParent.

ObesePerson)}
AE

12 = AE
11 ∪ {〈ind2 : (¬ObesePerson � ∃hasParent .ObesePerson | [0.7, 1],min,

max 〉}

Next, the Role Assertion Rule is applied to the assertion in AE
10 yields:

C10 = C9 ∪ {(x(ind1 ,ind2 ):¬hasParent = t− x(ind1 ,ind2 ):hasParent )}

After applying the Concept Assertion Rule to the assertion in AE
11, we obtain:

C11 = C10 ∪ {(xind2 :¬ObesePerson = t− xind2 :ObesePerson )}

The assertion in AE
12 triggers the Disjunction Rule, which yields:

AE
13 = AE

12 ∪ {〈ind2 : ¬ObesePerson | xind2 :¬ObesePerson ,−,−〉}
AE

14 = AE
13 ∪ {〈ind2 : ∃hasParent .ObesePerson | xind2 :∃hasParent.ObesePerson ,

min ,max〉}
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C12 = C11 ∪ {(max (xind2 :¬ObesePerson , xind2 :∃hasParent.ObesePerson ) = [0.7, 1])}

Next, the application of the Negation Rule to the assertion in AE
13 yields:

AE
15 = AE

14 ∪ {〈ind2 : ObesePerson | xind2 :ObesePerson ,−,−〉}
We then apply the Concept Assertion Rule to the assertion in AE

15, and obtain:

C13 = C12 ∪ {(xind2 :¬ObesePerson = t− xind2 :ObesePerson )}
Next, consider the assertion in AE

14. Since ind1 is an ancestor of ind2 and
L(ind2) ⊆ L(ind1), individual ind2 is blocked. Therefore, we will not continue
applying the Role Exists Restriction Rule to the assertion in AE

14, and the com-
pletion rule application terminates at this point. Note that without blocking, the
tableau algorithm would never terminate since new individual will be generated
for each application of the Role Exists Restriction Rule.

Since there is no more rule applicable, the set of constraints in C13 is fed into
the constraint solver to check its solvability. Since the constraints are solvable,
the knowledge base is consistent.

5 Conclusion and Future Work

In this paper, we presented a tableau reasoning procedure for the DL ALCU

that is capable of handling General TBoxes. The proposed tableau algorithm
derives a set of assertions as well as linear/nonlinear constraints that encode the
semantics of the knowledge base. The advantage of this approach is that it makes
the design of the ALCU tableau algorithm generic and uniform for computing
different semantics. That is, by simply tuning the uncertainty parameters that
are associated with the axioms and assertions in the knowledge base, different
notions of uncertainty can be modeled and reasoned with, using a single reason-
ing procedure. In addition, the proposed reasoning procedure can handle large
number of concept disjunctions caused by the introduction of General TBoxes
without blowing up the search space because our Disjunction Rule is determin-
istic. We also illustrated through a detailed example the need for blocking in
order to ensure termination of the reasoning procedure when General TBoxes
are present.

The optimization aspect of theALCU reasoning procedure is beyond the scope
of this paper. However, a preliminary study in this regard can be found in [11].
As future work, we plan to extend ALCU to support a more expressive por-
tion of DL (e.g., SHOIN , which the popular Web ontology language OWL DL
[26] is based on) so that constructors such as number restrictions and transitive
properties can be supported. It is also promising to extend the syntax of the de-
scription language to support other forms of uncertainty, such as the conditional
probability. These additional expressivity would give us more power to handle
real-world applications.
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