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Preface

This volume contains the proceedings of the first three workshops on Uncertainty
Reasoning for the Semantic Web (URSW), held at the International Semantic
Web Conferences (ISWC) in 2005, 2006, and 2007. In addition to revised and
strongly extended versions of selected workshop papers, we have included invited
contributions from leading experts in the field and closely related areas.

With this, the present volume represents the first comprehensive compilation
of state-of-the-art research approaches to uncertainty reasoning in the context
of the Semantic Web, capturing different models of uncertainty and approaches
to deductive as well as inductive reasoning with uncertain formal knowledge.

The World Wide Web community envisions effortless interaction between hu-
mans and computers, seamless interoperability and information exchange among
Web applications, and rapid and accurate identification and invocation of appro-
priate Web services. As work with semantics and services grows more ambitious,
there is increasing appreciation of the need for principled approaches to the for-
mal representation of and reasoning under uncertainty. The term uncertainty
is intended here to encompass a variety of forms of incomplete knowledge, in-
cluding incompleteness, inconclusiveness, vagueness, ambiguity, and others. The
term uncertainty reasoning is meant to denote the full range of methods designed
for representing and reasoning with knowledge when Boolean truth values are
unknown, unknowable, or inapplicable. Commonly applied approaches to uncer-
tainty reasoning include probability theory, Dempster-Shafer theory, fuzzy logic
and possibility theory, and numerous other methodologies.

A few Web-relevant challenges which are addressed by reasoning under un-
certainty include:

Uncertainty of available information: Much information on the World Wide
Web is uncertain. Examples include weather forecasts or gambling odds.
Canonical methods for representing and integrating such information are
necessary for communicating it in a seamless fashion.

Information incompleteness: Information extracted from large information
networks such as the World Wide Web is typically incomplete. The ability
to exploit partial information is very useful for identifying sources of service
or information. For example, that an online service deals with greeting cards
may be evidence that it also sells stationery. It is clear that search effec-
tiveness could be improved by appropriate use of technologies for handling
uncertainty.

Information incorrectness: Web information is also often incorrect or only
partially correct, raising issues related to trust or credibility. Uncertainty
representation and reasoning helps to resolve tension amongst information
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sources having different confidence and trust levels, and can facilitate the
merging of controversial information obtained from multiple sources.

Uncertain ontology mappings: The Semantic Web vision implies that nu-
merous distinct but conceptually overlapping ontologies will co-exist and
interoperate. It is likely that in such scenarios ontology mapping will benefit
from the ability to represent degrees of membership and/or likelihoods of
membership in categories of a target ontology, given information about class
membership in the source ontologies.

Indefinite information about Web services: Dynamic composability of Web
services will require runtime identification of processing and data resources and
resolution of policy objectives. Uncertainty reasoning techniques may be nec-
essary to resolve situations in which existing information is not definitive.

Uncertainty is thus an intrinsic feature of many important tasks on the Web
and the Semantic Web, and a full realization of the World Wide Web as a source
of processable data and services demands formalisms capable of representing
and reasoning under uncertainty. Unfortunately, none of these needs can be ad-
dressed in a principled way by current Web standards. Although it is to some
degree possible to use semantic markup languages such as OWL or RDF(S) to
represent qualitative and quantitative information about uncertainty, there is no
established foundation for doing so, and feasible approaches are severely limited.
Furthermore, there are ancillary issues such as how to balance representational
power vs. simplicity of uncertainty representations, which uncertainty represen-
tation techniques address uses such as the examples listed above, how to ensure
the consistency of representational formalisms and ontologies, etc.

In response to these pressing demands, in recent years several promising ap-
proaches to uncertainty reasoning on the Semantic Web have been proposed. The
present volume covers a representative cross section of these approaches, from
extensions to existing Web-related logics for the representation of uncertainty to
approaches to inductive reasoning under uncertainty on the Web.

In order to reflect the diversity of the presented approaches and to relate
them to their underlying models of uncertainty, the contributions to this volume
are grouped as follows:

Probabilistic and Dempster-Shafer Models

Probability theory provides a mathematically sound representation language and
formal calculus for rational degrees of belief, which gives different agents the
freedom to have different beliefs about a given hypothesis. As this provides a
compelling framework for representing uncertain, imperfect knowledge that can
come from diverse agents, there are many distinct approaches using probability in
the context of the Semantic Web. Classes of probabilistic models covered with the
present volume are Bayesian Networks, probabilistic extensions to Description
and First-Order Logics, and models based on the Dempster-Shafer theory (a
generalization of the classical Bayesian approach).
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Fuzzy and Possibilistic Models

Fuzzy formalisms allow for representing and processing degrees of truth about
vague (or imprecise) pieces of information. In fuzzy description logics and ontology
languages, concept assertions, role assertions, concept inclusions, and role inclu-
sions have a degree of truth rather than a binary truth value. The present volume
presents various approaches which exploit fuzzy logic and possibility theory in the
context of the Semantic Web.

Inductive Reasoning and Machine Learning

Machine learning is supposed to play an increasingly important role in the con-
text of the Semantic Web by providing various tasks such as the learning of
ontologies from incomplete data or the (semi-)automatic annotation of data on
the Web. Results obtained by machine learning approaches are typically uncer-
tain. As a logic-based approach to machine learning, inductive reasoning provides
means for inducing general propositions from observations (example facts). Pa-
pers in this volume exploit the power of inductive reasoning for the purpose of
ontology learning, and project future directions for the use of machine learning
on the Semantic Web.

Hybrid Approaches

This volume segment contains papers which either combine approaches from two
or more of the previous segments, or which do not rely on any specific classical
approach to uncertainty reasoning.

Acknowledgements. We would like to express our gratitude to the authors of this
volume for their contributions and to the workshop participants for inspiring
discussions, as well as to the members of the workshop Program Committees
and the additional reviewers for their reviews and for their overall support.
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Just Add Weights:
Markov Logic for the Semantic Web

Pedro Domingos', Daniel Lowd!, Stanley Kok', Hoifung Poon®,
Matthew Richardson?, and Parag Singla!
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Seattle, WA 98195-2350, U.S.A.
{pedrod,lowd,koks,hoifung,parag}@cs.washington.edu
? Microsoft Research
Redmond, WA 98052
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Abstract. In recent years, it has become increasingly clear that the
vision of the Semantic Web requires uncertain reasoning over rich, first-
order representations. Markov logic brings the power of probabilistic
modeling to first-order logic by attaching weights to logical formulas
and viewing them as templates for features of Markov networks. This
gives natural probabilistic semantics to uncertain or even inconsistent
knowledge bases with minimal engineering effort. Inference algorithms
for Markov logic draw on ideas from satisfiability, Markov chain Monte
Carlo and knowledge-based model construction. Learning algorithms are
based on the conjugate gradient algorithm, pseudo-likelihood and in-
ductive logic programming. Markov logic has been successfully applied
to problems in entity resolution, link prediction, information extraction
and others, and is the basis of the open-source Alchemy system.

1 Introduction

The vision of the Semantic Web is that of a web of information that computers
can understand and reason about, organically built with no central organization
except for a common set of standards [1]. This promises the ability to answer
more complex queries and build more intelligent and effective agents than ever
before. The standard languages that have been introduced so far are generally
special cases of first-order logic, allowing users to define ontologies, express a
rich set of relationships among objects of different types, logical dependencies
between them, etc.

Fulfilling this promise, however, requires more than purely logical represen-
tations and inference algorithms. Most things in the world have some degree
of uncertainty or noise — future events, such as weather and traffic, are un-
predictable; information is unreliable, either from error or deceit; even simple
concepts such as “fruit” and “vegetable” are imprecisely and inconsistently ap-
plied. Any system that hopes to represent varied information about the world

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNATI 5327, pp. 1-25, 2008.
© Springer-Verlag Berlin Heidelberg 2008



2 P. Domingos et al.

must therefore acknowledge the uncertain, inconsist, and untrustworthy nature
of that knowledge.

The Semantic Web project faces additional or exacerbated sources of uncer-
tainty in a number of areas. Matching entities, ontologies and schemas is essential
for linking data from different sources, but is also inherently uncertain. Moreover,
data may contain false or contradictory information. To simply exclude noisy or
untrusted sources is an inadequate solution since even trusted sources may have
some errors and even noisy sources may have useful information to contribute.
A final problem is incomplete information; when information is missing we may
be able to conclude very little with certainty, but it would be a mistake to ignore
the partial evidence entirely.

Markov logic is a simple yet powerful solution to the problem of integrat-
ing logic and uncertainty. Given an existing knowledge base in first-order logic,
Markov logic attaches a weight to each formula. Semantically, weighted formu-
las are viewed as templates for constructing Markov networks. This yields a
well-defined probability distribution in which worlds are more likely when they
satisfy a higher-weight set of ground formulas. Intuitively, the magnitude of the
weight corresponds to the relative strength of its formula; in the infinite-weight
limit, Markov logic reduces to first-order logic. Since Markov logic is a direct
extension of first-order logic, it does not invalidate or conflict with the exist-
ing Semantic Web infrastructure. With Markov logic, Semantic Web languages
can be made probabilistic simply by adding weights to statements, and Semantic
Web inference engines can be extended to perform probabilistic reasoning simply
by passing the proof DAG (directed acylic graph), with weights attached, to a
probabilistic inference system. Weights may be set by hand, inferred from various
sources (e.g., trust networks), or learned automatically from data. We have also
developed algorithms for learning or correcting formulas from data. Markov logic
has already been used to efficiently develop state-of-the-art models for entity res-
olution, ontology induction, information extraction, social networks, collective
classification, and many other problems important to the Semantic Web. All of
our algorithms, as well as sample datasets and applications, are available in the
open-source Alchemy system [16] (alchemy.cs.washington.edu).

In this chapter, we describe the Markov logic representation and give an
overview of current inference and learning algorithms for it. We begin with some
background on first-order logic and Markov networks.

2 First-Order Logic

A first-order knowledge base (KB) is a set of sentences or formulas in first-order
logic [10]. Formulas are constructed using four types of symbols: constants, vari-
ables, functions, and predicates. Constant symbols represent objects in the do-
main of interest (e.g., people: Anna, Bob, Chris, etc.). Variable symbols range
over the objects in the domain. Function symbols (e.g., MotherOf) represent
mappings from tuples of objects to objects. Predicate symbols represent rela-
tions among objects in the domain (e.g., Friends) or attributes of objects (e.g.,
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Smokes). An interpretation specifies which objects, functions and relations in the
domain are represented by which symbols. Variables and constants may be typed,
in which case variables range only over objects of the corresponding type, and
constants can only represent objects of the corresponding type. For example, the
variable x might range over people (e.g., Anna, Bob, etc.), and the constant C
might represent a city (e.g, Seattle, Tokyo, etc.).

A term is any expression representing an object in the domain. It can be a
constant, a variable, or a function applied to a tuple of terms. For example, Anna,
%, and GreatestCommonDivisor(x,y) are terms. An atomic formula or atom is a
predicate symbol applied to a tuple of terms (e.g., Friends(x, Mother0f (Anna))).
Formulas are recursively constructed from atomic formulas using logical connec-
tives and quantifiers. If F} and F5 are formulas, the following are also formulas:
—F) (negation), which is true iff Fy is false; F; A Fy (conjunction), which is
true iff both Fy and Fy are true; Fy V Fy (disjunction), which is true iff Fj or
Fy is true; Fy = F5 (implication), which is true iff Fy is false or Fy is true;
Fy & F5 (equivalence), which is true iff F; and F5 have the same truth value;
Vx Fy (universal quantification), which is true iff Fj is true for every object x
in the domain; and 3x F; (existential quantification), which is true iff F} is true
for at least one object x in the domain. Parentheses may be used to enforce
precedence. A positive literal is an atomic formula; a negative literal is a negated
atomic formula. The formulas in a KB are implicitly conjoined, and thus a KB
can be viewed as a single large formula. A ground term is a term containing no
variables. A ground atom or ground predicate is an atomic formula all of whose
arguments are ground terms. A possible world (along with an interpretation)
assigns a truth value to each possible ground atom.

A formula is satisfiable iff there exists at least one world in which it is true. The
basic inference problem in first-order logic is to determine whether a knowledge
base KB entails a formula F, i.e., if F' is true in all worlds where K B is true
(denoted by KB [= F). This is often done by refutation: K B entails F' iff KBU
—F is unsatisfiable. (Thus, if a KB contains a contradiction, all formulas trivially
follow from it, which makes painstaking knowledge engineering a necessity.) For
automated inference, it is often convenient to convert formulas to a more regular
form, typically clausal form (also known as conjunctive normal form (CNF)). A
KB in clausal form is a conjunction of clauses, a clause being a disjunction of
literals. Every KB in first-order logic can be converted to clausal form using a
mechanical sequence of steps.! Clausal form is used in resolution, a sound and
refutation-complete inference procedure for first-order logic [38].

Inference in first-order logic is only semidecidable. Because of this, knowledge
bases are often constructed using a restricted subset of first-order logic with more
desirable properties. The two subsets most commonly applied to the Semantic
Web are Horn clauses and description logics. Horn clauses are clauses containing
at most one positive literal. The Prolog programming language is based on Horn

! This conversion includes the removal of existential quantifiers by Skolemization,
which is not sound in general. However, in finite domains an existentially quantified
formula can simply be replaced by a disjunction of its groundings.
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Table 1. Example of a first-order knowledge base and MLN. Fr() is short for Friends(),
Sm() for Smokes(), and Ca() for Cancer().

First-Order Logic Clausal Form Weight
“Friends of friends are friends.”

VxVyVz Fr(x,y) AFr(y,z) = Fr(x,z) —Fr(x,y)V —Fr(y,z) VFr(x,z) 0.7
“Friendless people smoke.”

Vx (-(3y Fr(x,y)) = Sm(x)) Fr(x,g(x)) V Sm(x) 2.3
“Smoking causes cancer.”

Vx Sm(x) = Ca(x) —Sm(x) V Ca(x) 1.5
“If two people are friends, then either
both smoke or neither does.” —Fr(x,y) V Sm(x) V —Sn(y), 1.1

VxVy Fr(x,y) = (Sm(x) < Sn(y)) —Fr(x,y) V =Sm(x) V Sm(y) 1.1

clause logic [21]. Prolog programs can be learned from databases by searching
for Horn clauses that (approximately) hold in the data; this is studied in the
field of inductive logic programming (ILP) [18]. Description logics are a decid-
able subset of first-order logic that is the basis of the Web Ontology Language
(OWL) [7].

Table 1 shows a simple KB and its conversion to clausal form. Notice that,
while these formulas may be typically true in the real world, they are not always
true. In most domains it is very difficult to come up with non-trivial formulas
that are always true, and such formulas capture only a fraction of the relevant
knowledge. Thus, despite its expressiveness, pure first-order logic has limited
applicability to practical Al problems. Many ad hoc extensions to address this
have been proposed. In the more limited case of propositional logic, the prob-
lem is well solved by probabilistic graphical models such as Markov networks,
described in the next section. We will later show how to generalize these models
to the first-order case.

3 Markov Networks

A Markov network (also known as Markov random field) is a model for the joint
distribution of a set of variables X = (X1, Xa,..., X,,) € X [30]. It is composed
of an undirected graph G and a set of potential functions ¢y. The graph has a
node for each variable, and the model has a potential function for each clique
in the graph. A potential function is a non-negative real-valued function of the
state of the corresponding clique. The joint distribution represented by a Markov
network is given by

P(x=0) =[] or(ruy) 1)
k

where x;y is the state of the kth clique (i.e., the state of the variables that
appear in that clique). Z, known as the partition function, is given by Z =
> owex Lk @x(x(ry). Markov networks are often conveniently represented as
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log-linear models, with each clique potential replaced by an exponentiated
weighted sum of features of the state, leading to

P(X=zx)= %exp > wili(@) (2)

A feature may be any real-valued function of the state. This chapter will focus on
binary features, f;(z) € {0,1}. In the most direct translation from the potential-
function form (Equation 1), there is one feature corresponding to each possible
state 25y of each clique, with its weight being log ¢y (711} ). This representation is
exponential in the size of the cliques. However, we are free to specify a much smaller
number of features (e.g., logical functions of the state of the clique), allowing for a
more compact representation than the potential-function form, particularly when
large cliques are present. Markov logic will take advantage of this.

Inference in Markov networks is #P-complete [39]. The most widely used
method for approximate inference in Markov networks is Markov chain Monte
Carlo (MCMC) [11], and in particular Gibbs sampling, which proceeds by sam-
pling each variable in turn given its Markov blanket. (The Markov blanket of a
node is the minimal set of nodes that renders it independent of the remaining
network; in a Markov network, this is simply the node’s neighbors in the graph.)
Marginal probabilities are computed by counting over these samples; conditional
probabilities are computed by running the Gibbs sampler with the conditioning
variables clamped to their given values. Another popular method for inference
in Markov networks is belief propagation [52].

Maximum-likelihood or MAP estimates of Markov network weights cannot be
computed in closed form but, because the log-likelihood is a concave function
of the weights, they can be found efficiently (modulo inference) using standard
gradient-based or quasi-Newton optimization methods [28]. Another alternative
is iterative scaling [8]. Features can also be learned from data, for example by
greedily constructing conjunctions of atomic features [8].

4 Markov Logic

A first-order KB can be seen as a set of hard constraints on the set of possible
worlds: if a world violates even one formula, it has zero probability. The basic
idea in Markov logic is to soften these constraints: when a world violates one
formula in the KB it is less probable, but not impossible. The fewer formulas a
world violates, the more probable it is. Each formula has an associated weight
(e.g., see Table 1) that reflects how strong a constraint it is: the higher the weight,
the greater the difference in log probability between a world that satisfies the
formula and one that does not, other things being equal.

Definition 1. [36] A Markov logic network (MLN) L is a set of pairs (F;,w;),
where F; is a formula in first-order logic and w; is a real number. Together with
a finite set of constants C' = {c1,ca,...,¢|c|}, it defines a Markov network My, ¢
(Equations 1 and 2) as follows:
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1. My c contains one binary node for each possible grounding of each atom
appearing in L. The value of the node is 1 if the ground atom is true, and 0
otherwise.

2. My, c contains one feature for each possible grounding of each formula F;
in L. The value of this feature is 1 if the ground formula is true, and 0
otherwise. The weight of the feature is the w; associated with F; in L.

Thus there is an edge between two nodes of My, ¢ iff the corresponding ground
atoms appear together in at least one grounding of one formula in L. For ex-
ample, an MLN containing the formulas Vx Smokes(x) = Cancer(x) (smoking
causes cancer) and VxVy Friends(x,y) = (Smokes(x) < Smokes(y)) (friends
have similar smoking habits) applied to the constants Anna and Bob (or A and
B for short) yields the ground Markov network in Figure 1. Its features include
Smokes(Anna) = Cancer(Anna), etc. Notice that, although the two formulas
above are false as universally quantified logical statements, as weighted features
of an MLN they capture valid statistical regularities, and in fact represent a
standard social network model [47].

An MLN can be viewed as a template for constructing Markov networks. From
Definition 1 and Equations 1 and 2, the probability distribution over possible
worlds x specified by the ground Markov network M7, ¢ is given by

F
P(X=zx)= %exp (Z wmz(m)> (3)
i=1

where F'is the number of formulas in the MLN and n;(x) is the number of true
groundings of F; in x. As formula weights increase, an MLN increasingly resem-
bles a purely logical KB, becoming equivalent to one in the limit of all infinite
weights. When the weights are positive and finite, and all formulas are simul-
taneously satisfiable, the satisfying solutions are the modes of the distribution
represented by the ground Markov network.

Friends(A,B)

o

. Friends(B,B)

Cancer(B)
Friends(B,A)

Fig. 1. Ground Markov network obtained by applying an MLN containing the formulas
Vx Smokes(x) = Cancer(x) and VxVy Friends(x,y) = (Smokes(x) < Smokes(y)) to the
constants Anna(A) and Bob(B)

Friends(A,A)
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Most importantly, Markov logic allows contradictions between formulas, which
it resolves simply by weighing the evidence on both sides. This makes it well
suited for merging multiple KBs. Markov logic also provides a natural and pow-
erful approach to the problem of merging knowledge and data in different rep-
resentations that do not align perfectly, as will be illustrated in the application
section. Both of these tasks are also key to the success of the Semantic Web.

It is interesting to see a simple example of how Markov logic generalizes first-
order logic. Consider an MLN containing the single formula Vx R(x) = S(x)
with weight w, and C' = {A}. This leads to four possible worlds: {—R(A4), —S(4)},
{-R(4),8(A)}, {R(4),—S(A)}, and {R(A),S(A)}. From Equation 3 we obtain that
P({R(A),—S(8)}) = 1/(3e™ + 1) and the probability of each of the other three
worlds is €*/(3e® + 1). (The denominator is the partition function Z; see Sec-
tion 3.) Thus, if w > 0, the effect of the MLN is to make the world that is
inconsistent with Vx R(x) = S(x) less likely than the other three. From the
probabilities above we obtain that P(S(A)|R(A)) = 1/(1 4+ e~*). When w — oo,
P(sS(4)|R(A)) — 1, recovering the logical entailment.

It is easily seen that all discrete probabilistic models expressible as products
of potentials, including Markov networks and Bayesian networks, are expressible
in Markov logic. In particular, many of the models frequently used in Al can be
stated quite concisely as MLNs, and combined and extended simply by adding
the corresponding formulas. Most significantly, Markov logic facilitates the con-
struction of non-i.i.d. models (i.e., models where objects are not independent
and identically distributed).

When working with Markov logic, we typically make three assumptions about
the logical representation: different constants refer to different objects (unique
names), the only objects in the domain are those representable using the con-
stant and function symbols (domain closure), and the value of each function for
each tuple of arguments is always a known constant (known functions). These
assumptions ensure that the number of possible worlds is finite and that the
Markov logic network will give a well-defined probability distribution. These
assumptions are quite reasonable in most practical applications, and greatly
simplify the use of MLNs. After describing how each one can be relaxed, we will
make these assumptions for the remainder of the chapter. See Richardson and
Domingos [36] for further details on the Markov logic representation.

The unique names assumption can be removed by introducing the equality
predicate (Equals(x,y), or x =y for short) and adding the necessary axioms to
the MLN: equality is reflexive, symmetric and transitive; for each unary predicate
P, VxVyx =y = (P(x) & P(y)); and similarly for higher-order predicates and
functions [10]. This allows us to deal with instance and reference uncertainty, as
illustrated in Section 7.1.

We can relax the domain closure assumption by introducing new constants to
represent unknown objects. This works for any domain whose size is bounded.
Markov logic can also be applied to a number of interesting infinite domains,
such as when each node in the resulting infinite Markov network has a finite
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number of neighbors. See Singla and Domingos [43] for details on Markov logic
in infinite domains.

Infinite domains can also be approximated as finite ones. Consider the transi-
tive, anti-symmetric relation Ancestor0f(x,y), meaning “x is an ancestor of y.”
In a logical KB, the rule “Everyone has an ancestor” is only valid in infinite or
empty domains. In Markov logic, the rule can easily be applied to finite domains,
so that worlds are more likely when more objects have an ancestor within the
domain. Therefore, although Markov logic semantics are well-defined for many
infinite domains, a finite approach suffices for most practical applications.

Let Hy, ¢ be the set of all ground terms constructible from the function sym-
bols in L and the constants in L and C' (the “Herbrand universe” of (L, C)). We
can remove the known function assumption by treating each element of Hy, ¢
as an additional constant and applying the same procedure used to remove the
unique names assumption. For example, with a function G(x) and constants A
and B, the MLN will now contain nodes for G(A) = A, G(A) = B, etc. This leads
to an infinite number of new constants, requiring the corresponding extension
of MLNs. However, if we restrict the level of nesting to some maximum, the
resulting MLN is still finite.

5 Inference

Recall that an MLN acts as a template for a Markov network. Therefore, we can
always answer probabilistic queries using standard Markov network inference
methods on the instantiated network. We have extended and adapted several of
these standard methods to take particular advantage of the logical structure in
a Markov logic network, yielding tremendous savings in memory and time. We
describe these algorithms in this section.

For many queries, only a small subset of the instantiated Markov network is
relevant. In such cases, we need not instantiate or even consider the entire MLN.
The proof DAG from a logical inference engine can be used to generate the
set of ground formulas and atoms relevant to a particular query. Together with
the MLN weights, this can be used to generate a sub-network to answers the
probabilistic query. In this way, Markov logic can easily be paired with traditional
logical inference methods. This method, traditionally known as knowledge-based
model construction (KBMC) [27], allows us to potentially reason efficiently over
a very large knowledge base (like the Semantic Web), as long as only a small
fraction of it is relevant to the query. In our descriptions, we will assume that
inference is done over the entire MLLN, but our methods apply to the sub-network
case as well.

5.1 MAP/MPE Inference

In the remainder of this chapter, we assume that the MLN is in function-free
clausal form for convenience, but these methods can be applied to other MLNs
as well. A basic inference task is finding the most probable state of the world
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given some evidence. (This is known as MAP inference in the Markov network
literature, and MPE inference in the Bayesian network literature.) Because of the
form of Equation 3, in Markov logic this reduces to finding the truth assignment
that maximizes the sum of weights of satisfied clauses. This can be done using
any weighted satisfiability solver, and (remarkably) need not be more expensive
than standard logical inference by model checking. (In fact, it can be faster, if
some hard constraints are softened.) We have successfully used MaxWalkSAT,
a weighted variant of the WalkSAT local-search satisfiability solver, which can
solve hard problems with hundreds of thousands of variables in minutes [13].
MaxWalkSAT performs this stochastic search by picking an unsatisfied clause
at random and flipping the truth value of one of the atoms in it. With a cer-
tain probability, the atom is chosen randomly; otherwise, the atom is chosen to
maximize the sum of satisfied clause weights when flipped. This combination of
random and greedy steps allows MaxWalkSAT to avoid getting stuck in local
optima while searching. Pseudocode for MaxWalkSAT is shown in Algorithm 1.
DeltaCost(v) computes the change in the sum of weights of unsatisfied clauses
that results from flipping variable v in the current solution. Uniform(0,1) returns
a uniform deviate from the interval [0, 1].

One problem with this approach is that it requires propositionalizing the
domain (i.e., grounding all atoms and clauses in all possible ways), which con-
sumes memory exponential in the arity of the clauses. We have overcome this
by developing LazySAT, a lazy version of MaxWalkSAT which grounds atoms
and clauses only as needed [42]. This takes advantage of the sparseness of re-
lational domains, where most atoms are false and most clauses are trivially
satisfied. For example, in the domain of scientific research, most groundings of
the atom Author(person,paper) are false, and most groundings of the clause
Author(personl, paper) A Author(person2,paper) = Coauthor(personi,
person2) are satisfied. In LazySAT, the memory cost does not scale with the
number of possible clause groundings, but only with the number of groundings
that are potentially unsatisfied at some point in the search.

Algorithm 2 gives pseudo-code for LazySAT, highlighting the places where
it differs from MaxWalkSAT. LazySAT maintains a set of active atoms and a
set of active clauses. A clause is active if it can be made unsatisfied by flipping
zero or more of its active atoms. (Thus, by definition, an unsatisfied clause is
always active.) An atom is active if it is in the initial set of active atoms, or if
it was flipped at some point in the search. The initial active atoms are all those
appearing in clauses that are unsatisfied if only the atoms in the database are
true, and all others are false. The unsatisfied clauses are obtained by simply going
through each possible grounding of all the first-order clauses and materializing
the groundings that are unsatisfied; search is pruned as soon as the partial
grounding of a clause is satisfied. Given the initial active atoms, the definition
of active clause requires that some clauses become active, and these are found
using a similar process (with the difference that, instead of checking whether a
ground clause is unsatisfied, we check whether it should be active). Each run of
LazySAT is initialized by assigning random truth values to the active atoms. This
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Algorithm 1. MaxWalkS AT (weighted-clauses, maz_flips, maz_tries, target, p)

vars < variables in weighted_clauses
for i — 1 to maz_tries do
soln «— a random truth assignment to vars
cost < sum of weights of unsatisfied clauses in soln
for i — 1 to max_flips do
if cost < target then
return “Success, solution is”, soln
end if
¢ « a randomly chosen unsatisfied clause
if Uniform(0,1) < p then
vy «— a randomly chosen variable from ¢
else
for each variable v in ¢ do
compute DeltaCost(v)
end for
vy < v with lowest DeltaCost(v)
end if
soln < soln with vy flipped
cost «— cost + DeltaCost(vy)
end for
end for
return “Failure, best assignment is”, best soln found

differs from MaxWalkSAT, which assigns random values to all atoms. However,
the LazySAT initialization is a valid MaxWalkSAT initialization, and we have
verified experimentally that the two give very similar results. Given the same
initialization, the two algorithms will produce exactly the same results.

At each step in the search, the variable that is flipped is activated, as are any
clauses that by definition should become active as a result. When evaluating the
effect on cost of flipping a variable v, if v is active then all of the relevant clauses
are already active, and DeltaCost(v) can be computed as in MaxWalkSAT. If v
is inactive, DeltaCost(v) needs to be computed using the knowledge base. This is
done by retrieving from the KB all first-order clauses containing the atom that
v is a grounding of, and grounding each such clause with the constants in v and
all possible groundings of the remaining variables. As before, we prune search as
soon as a partial grounding is satisfied, and add the appropriate multiple of the
clause weight to DeltaCost(v). (A similar process is used to activate clauses.)
While this process is costlier than using pre-grounded clauses, it is amortized
over many tests of active variables. In typical satisfiability problems, a small core
of “problem” clauses is repeatedly tested, and when this is the case LazySAT
will be quite efficient.

At each step, LazySAT flips the same variable that MaxWalkSAT would, and
hence the result of the search is the same. The memory cost of LazySAT is on
the order of the maximum number of clauses active at the end of a run of flips.
(The memory required to store the active atoms is dominated by the memory
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Algorithm 2. LazySAT( weighted_ KB, DB, maz_flips, maz_tries, target, p)

for i — 1 to max_tries do
active_atoms < atoms in clauses not satisfied by DB

active_clauses < clauses activated by active_atoms

soln «— a random truth assignment to active_atoms
cost < sum of weights of unsatisfied clauses in soln
for i — 1 to max_flips do
if cost < target then
return “Success, solution is”, soln
end if
¢ « a randomly chosen unsatisfied clause
if Uniform(0,1) < p then
vy «— a randomly chosen variable from ¢
else
for each variable v in ¢ do
compute DeltaCost(v), using weighted KB if v & active_atoms
end for
vy «— v with lowest DeltaCost(v)
end if
if vy & active_atoms then

add vy to active_atoms

add clauses activated by vy to active_clauses
end if
soln «— soln with vy flipped
cost «— cost + DeltaCost(vy)
end for
end for
return “Failure, best assignment is”, best soln found

required to store the active clauses, since each active atom appears in at least
one active clause.)

Experiments on entity resolution and planning problems show that this can
yield very large memory reductions, and these reductions increase with domain
size [42]. For domains whose full instantiations fit in memory, running time
is comparable; as problems become larger, full instantiation for MaxWalkSAT
becomes impossible.

5.2 Marginal and Conditional Probabilities

Another key inference task is computing the probability that a formula holds,
given an MLN and set of constants, and possibly other formulas as evidence.
By definition, the probability of a formula is the sum of the probabilities of the
worlds where it holds, and computing it by brute force requires time exponential
in the number of possible ground atoms. An approximate but more efficient
alternative is to use Markov chain Monte Carlo (MCMC) inference [11], which
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samples a sequence of states according to their probabilities, and counting the
fraction of sampled states where the formula holds. This can be extended to
conditioning on other formulas by rejecting any state that violates one of them.

For the remainder of the chapter, we focus on the typical case where the evi-
dence is a conjunction of ground atoms. In this scenario, further efficiency can be
gained by applying a generalization of knowledge-based model construction [49)].
This constructs only the minimal subset of the ground network required to answer
the query, and runs MCMC (or any other probabilistic inference method) on it. The
network is constructed by checking if the atoms that the query formula directly de-
pends on are in the evidence. If they are, the construction is complete. Those that
are not are added to the network, and we in turn check the atoms they depend on.
This process is repeated until all relevant atoms have been retrieved. While in the
worst case it yields no savings, in practice it can vastly reduce the time and memory
required for inference. See Richardson and Domingos [36] for details.

One problem with applying MCMC to MLNSs is that it breaks down in the
presence of deterministic or near-deterministic dependencies (as do other prob-
abilistic inference methods, e.g., belief propagation [52]). Deterministic depen-
dencies break up the space of possible worlds into regions that are not reachable
from each other, violating a basic requirement of MCMC. Near-deterministic
dependencies greatly slow down inference, by creating regions of low probability
that are very difficult to traverse. Running multiple chains with random starting
points does not solve this problem, because it does not guarantee that different
regions will be sampled with frequency proportional to their probability, and
there may be a very large number of regions.

We have successfully addressed this problem by combining MCMC with sat-
isfiability testing in the MC-SAT algorithm [32]. MC-SAT is a slice sampling
MCMC algorithm. It uses a combination of satisfiability testing and simulated
annealing to sample from the slice. The advantage of using a satisfiability solver
(WalkSAT) is that it efficiently finds isolated modes in the distribution, and as
a result the Markov chain mixes very rapidly. The slice sampling scheme ensures
that detailed balance is (approximately) preserved.

MC-SAT is orders of magnitude faster than standard MCMC methods such
as Gibbs sampling and simulated tempering, and is applicable to any model that
can be expressed in Markov logic, including many standard models in statisti-
cal physics, vision, natural language processing, social network analysis, spatial
statistics, etc.

Slice sampling [5] is an instance of a widely used approach in MCMC inference
that introduces auxiliary variables to capture the dependencies between observed
variables. For example, to sample from P(X = z) = (1/2)]], ¢r(zry), we
can define P(X =z,U =u) = (1/2) [} Lj0.4,(x(x) (ur), Where ¢ is the kth
potential function, uy is the kth auxiliary variable, Ity p(ux) = 1if a < up <0,
and If, ) (ux) = 0 otherwise. The marginal distribution of X under this joint is
P(X =z), so to sample from the original distribution it suffices to sample from
P(z,u) and ignore the u values. P(uy|z) is uniform in [0, ¢x(2(xy)], and thus
easy to sample from. The main challenge is to sample = given w, which is uniform
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Algorithm 3. MC-SAT(clauses, weights, num_samples)

2 — Satisfy(hard clauses)
for i < 1 to num_samples do
M — 0
for all ¢, € clauses satisfied by 201D do
With probability 1 —e™** add ¢, to M
end for
Sample z® ~ UsaT(nn
end for

among all X that satisfies ¢, (z(ry) > ug for all k. MC-SAT uses SampleSAT [48]
to do this. In each sampling step, MC-SAT takes the set of all ground clauses
satisfied by the current state of the world and constructs a subset, M, that
must be satisfied by the next sampled state of the world. (For the moment we
will assume that all clauses have positive weight.) Specifically, a satisfied ground
clause is included in M with probability 1 —e™", where w is the clause’s weight.
We then take as the next state a uniform sample from the set of states SAT (M)
that satisfy M. (Notice that SAT (M) is never empty, because it always contains
at least the current state.) Algorithm 3 gives pseudo-code for MC-SAT. Uy is the
uniform distribution over set S. At each step, all hard clauses are selected with
probability 1, and thus all sampled states satisfy them. Negative weights are
handled by noting that a clause with weight w < 0 is equivalent to its negation
with weight —w, and a clause’s negation is the conjunction of the negations of
all of its literals. Thus, instead of checking whether the clause is satisfied, we
check whether its negation is satisfied; if it is, with probability 1 — e* we select
all of its negated literals, and with probability e* we select none.

It can be shown that MC-SAT satisfies the MCMC criteria of detailed balance
and ergodicity [32], assuming a perfect uniform sampler. In general, uniform
sampling is #P-hard and SampleSAT [48] only yields approximately uniform
samples. However, experiments show that MC-SAT is still able to produce very
accurate probability estimates, and its performance is not very sensitive to the
parameter setting of SampleSAT.

We have applied the ideas of LazySAT to implement a lazy version of MC-
SAT that avoids grounding unnecessary atoms and clauses. A working version
of this algorithm is present in the open-source Alchemy system [16].

It is also possible to carry out lifted first-order probabilistic inference (akin to
resolution) in Markov logic [3]. These methods speed up inference by reasoning
at the first-order level about groups of indistinguishable objects rather than
propositionalizing the entire domain. This is particularly applicable when the
population size is given but little is known about most individual members.

6 Learning

In this section, we discuss methods for automatically learning weights, refin-
ing formulas, and constructing new formulas from data. Of course, learning is
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but one method for generating an MLN. In a distributed knowledge base such
as the Semantic Web, formulas could come from many different sources and
their weights could be set by the sources themselves or using credibility or trust
propagation (e.g., [35]). When data is available, learning methods allow us to
automatically adjust weights and refine or add formulas to an MLN.

6.1 Generative Weight Learning

MLN weights can be learned generatively by maximizing the likelihood of a
relational database (Equation 3). This relational database consists of one or
more “possible worlds” that form our training examples. Note that we can learn
to generalize from even a single example because the clause weights are shared
across their many respective groundings. This is essential when the training
data is a single network, such as in the Semantic Web. The gradient of the
log-likelihood with respect to the weights is

G 0B Pu(X =) = nif@) = 3 Pu(X =2) ni(a') (4)

where the sum is over all possible databases z’, and P, (X =2') is P(X =1')
computed using the current weight vector w = (w1, ..., w;,...). In other words,
the ith component of the gradient is simply the difference between the number of
true groundings of the ith formula in the data and its expectation according to
the current model. In the generative case, even approximating these expectations
tends to be prohibitively expensive or inaccurate due to the large state space.
Instead, we maximize the pseudo-likelihood of the data, a widely-used alternative
[2]. If z is a possible world (relational database) and z; is the [th ground atom’s
truth value, the pseudo-log-likelihood of = given weights w is

log Py (X =z) = Y _log Py (X;=11|M B, (X)) (5)
=1

where M B, (X)) is the state of X;’s Markov blanket in the data (i.e., the truth
values of the ground atoms it appears in some ground formula with). Computing
the pseudo-likelihood and its gradient does not require inference, and is therefore
much faster. Combined with the L-BFGS optimizer [20], pseudo-likelihood yields
efficient learning of MLN weights even in domains with millions of ground atoms
[36]. However, the pseudo-likelihood parameters may lead to poor results when
long chains of inference are required.

In order to reduce overfitting, we penalize each weight with a Gaussian prior.
We apply this strategy not only to generative learning, but to all of our weight
learning methods, even those embedded within structure learning.

6.2 Discriminative Weight Learning

Discriminative learning is an attractive alternative to pseudo-likelihood. In many
applications, we know a prior: which atoms will be evidence and which ones will
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be queried, and the goal is to correctly predict the latter given the former. If
we partition the ground atoms in the domain into a set of evidence atoms X
and a set of query atoms Y, the conditional likelihood (CLL) of Y given X

is P(yle) = (1/Zz) exp (X ep, wini(2,y)) = (1/Z) exp (Zjecy wjgj(wyy)),
where Fy is the set of all MLN clauses with at least one grounding involving a
query atom, n;(z,y) is the number of true groundings of the ith clause involving
query atoms, Gy is the set of ground clauses in My, ¢ involving query atoms,
and g;(x,y) = 1 if the jth ground clause is true in the data and 0 otherwise.
The gradient of the CLL is

w(ylT) = ni(z,y) ZPw y'le)ni(z,y')
y'

= ni(z,y) = Eu[ni(z, y)] (6)

In the conditional case, we can approximate the expected counts E,[n;(x,y)]
using either the MAP state (i.e., the most probable state of y given x) or by
averaging over several MC-SAT samples. The MAP approximation is inspired
by the voted perceptron algorithm proposed by Collins [4] for discriminatively
laerning hidden Markov models. We can apply a similar algorithm to MLNs using
MaxWalkSAT to find the approximate MAP state, following the approximate
gradient for a fixed number of iterations, and averaging the weights across all it-
erations to combat overfitting [40]. We get the best results, however, by applying
a version of the scaled conjugate gradient algorithm [26]. We use a small number
of MC-SAT samples to approximate the gradient and Hessian matrix, and use
the inverse diagonal hessian as a preconditioner. See Lowd and Domingos [22]
for more details and results.

ow

6.3 Structure Learning

The structure of a Markov logic network is the set of formulas or clauses to
which we attach weights. While this knowledge base is often specified by one or
more experts, such knowledge is not always accurate or complete. In addition
to learning weights for the provided clauses, we can revise or extend the MLN
structure with new clauses learned from data. The inductive logic programming
(ILP) community has developed many methods for learning logical rules from
data. However, since an MLN represents a probability distribution, much better
results are obtained by using an evaluation function based on pseudo-likelihood,
rather than typical ILP ones like accuracy and coverage [14]. Log-likelihood or
conditional log-likelihood are potentially better evaluation functions, but are
vastly more expensive to compute. In experiments on two real-world datasets,
our MLN structure learning algorithm found better MLN rules than the standard
ILP algorithms CLAUDIEN [6], FOIL [34], and Aleph [45], and even a hand-
written knowledge base.

MLN structure learning can start from an empty network or from an existing
KB. Either way, we have found it useful to start by adding all unit clauses
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(single atoms) to the MLN. The weights of these capture (roughly speaking)
the marginal distributions of the atoms, allowing the longer clauses to focus on
modeling atom dependencies. To extend this initial model, we either repeatedly
find the best clause using beam search and add it to the MLN, or add all “good”
clauses of length [ before trying clauses of length [ + 1. Candidate clauses are
formed by adding each predicate (negated or otherwise) to each current clause,
with all possible combinations of variables, subject to the constraint that at least
one variable in the new predicate must appear in the current clause. Hand-coded
clauses are also modified by removing predicates.

Recently, Mihalkova and Mooney [25] introduced BUSL, an alternative, bot-
tom-up structure learning algorithm for Markov logic. Instead of blindly con-
structing candidate clauses one literal at a time, they let the training data guide
and constrain clause construction. First, they use a propositional Markov net-
work structure learner to generate a graph of relationships among atoms. Then
they generate clauses from paths in this graph. In this way, BUSL focuses on
clauses that have support in the training data. In experiments on three datasets,
BUSL evaluated many fewer candidate clauses than our top-down algorithm,
ran more quickly, and learned more accurate models.

We are currently investigating further approaches to learning MLNs, includ-
ing automatically inventing new predicates (or, in statistical terms, discovering
hidden variables) [15].

7 Applications

We have already applied Markov logic to a variety of problems relevant to the
Semantic Web, including link prediction and collective classification, for filling in
missing attributes and relationships; entity resolution, for matching equivalent
entities that have different names; information extraction, for adding structure
to raw or semi-structured text; and other problems [36,40,14,41,32,33]. Even our
simple Friends and Smokers example touches on link prediction, collective clas-
sification, and social network analysis. In this section, we will show in detail
how Markov logic can be used to build state-of-the-art models for entity resolu-
tion and information extraction, and present experimental results on real-world
citation data.

Others have also applied Markov logic in a variety of areas. A system based
on it recently won a competition on information extraction for biology [37].
Cycorp has used it to make parts of the Cyc knowledge base probabilistic [24].
The CALO project is using it to integrate probabilistic learning and inference
across many components [9]. Of particular relevance to the Semantic Web is
the recent work of Wu and Weld [51] on automatically refining the Wikipedia
infobox ontology.

7.1 Entity Resolution

The application to entity resolution illustrates well the power of Markov logic
[41]. Entity resolution is the problem of determining which observations (e.g.,



Just Add Weights: Markov Logic for the Semantic Web 17

database records, noun phrases, video regions, etc.) correspond to the same
real-world objects. This is an important and difficult task even on small, well-
defined, and well-maintained databases. In the Semantic Web, automatically
determining which objects, fields, and types are equivalent becomes much harder
since the data may come from many different sources with varied quality. Manual
annotation does not scale, so automatically determining these relationships is
essential for maintaining connectedness in the Semantic Web.

Entity resolution is typically done by forming a vector of properties for each
pair of observations, using a learned classifier (such as logistic regression) to pre-
dict whether they match, and applying transitive closure. Markov logic yields an
improved solution simply by applying the standard logical approach of removing
the unique names assumption and introducing the equality predicate and its ax-
ioms: equality is reflexive, symmetric and transitive; groundings of a predicate
with equal constants have the same truth values; and constants appearing in a
ground predicate with equal constants are equal. This last axiom is not valid in
logic, but captures a useful statistical tendency. For example, if two papers are
the same, their authors are the same; and if two authors are the same, papers
by them are more likely to be the same. Weights for different instances of these
axioms can be learned from data. Inference over the resulting MLN, with entity
properties and relations as the evidence and equality atoms as the query, nat-
urally combines logistic regression and transitive closure. Most importantly, it
performs collective entity resolution, where resolving one pair of entities helps
to resolve pairs of related entities.

As a concrete example, consider the task of deduplicating a citation database
in which each citation has author, title, and venue fields. We can represent the
domain structure with eight relations: Author(bib, author), Title(bib, title),
and Venue(bib, venue) relate citations to their fields; HasWord(author/title/
venue,word) indicates which words are present in each field; SameAuthor
(author, author), SameTitle(title,title), and SameVenue(venue, venue)
represent field equivalence; and SameBib(bib,bib) represents citation equiva-
lence. The truth values of all relations except for the equivalence relations are
provided as background theory. The objective is to predict the SameBib relation.

We begin with a logistic regression model to predict citation equivalence based
on the words in the fields. This is easily expressed in Markov logic by rules such
as the following:

Title(bl,t1) ATitle(b2,t2) A HasWord(tl, +word)
A HasWord(t2, +word) => SameBib(b1,b2)

The ‘+’ operator here generates a separate rule (and with it, a separate learnable
weight) for each constant of the appropriate type. When given a positive weight,
each of these rules increases the probability that two citations with a particular
title word in common are equivalent. We can construct similar rules for other
fields. Note that we may learn negative weights for some of these rules, just as
logistic regression may learn negative feature weights. Transitive closure consists
of a single rule:
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SameBib(b1,b2) A SameBib(b2, b3) = SameBib(b1,b3)

This model is similar to the standard solution, but has the advantage that the
classifier is learned in the context of the transitive closure operation.

We can construct similar rules to predict the equivalence of two fields as well.
The usefulness of Markov logic is shown further when we link field equivalence
to citation equivalence:

Author(bl,al) A Author(b2,a2) A SameBib(bl,b2) = SameAuthor(al,a2)
Author(bl,al) A Author(b2,a2) A SameAuthor(al,a2) = SameBib(bl,b2)

The above rules state that if two citations are the same, their authors should be
the same, and that citations with the same author are more likely to be the same.
The last rule is not valid in logic, but captures a useful statistical tendency.

Most importantly, the resulting model can now perform collective entity res-
olution, where resolving one pair of entities helps to resolve pairs of related
entities. For example, inferring that a pair of citations are equivalent can pro-
vide evidence that the names AAAI-06 and 21st Natl. Conf. on Al refer to the
same venue, even though they are superficially very different. This equivalence
can then aid in resolving other entities.

Experiments on citation databases like Cora and BibServ.org show that these
methods can greatly improve accuracy, particularly for entity types that are
difficult to resolve in isolation as in the above example [41]. Due to the large
number of words and the high arity of the transitive closure formula, these models
have thousands of weights and ground millions of clauses during learning, even
after using canopies to limit the number of comparisons considered. Learning at
this scale is still reasonably efficient: preconditioned scaled conjugate gradient
with MC-SAT for inference converges within a few hours [22].

7.2 Information Extraction

In this citation example, it was assumed that the fields were manually segmented
in advance. The goal of information extraction is to extract database records
starting from raw text or semi-structured data sources. This has many appli-
cations for the Semantic Web, including using the vast amount of unstructured
information on the Web to bootstrap the Semantic Web. Information extraction
could also be used to segment labeled fields, such as “name,” into more specific
fields, such as “first name,” “last name,” and “title.”

Traditionally, information extraction proceeds by first segmenting each candi-
date record separately, and then merging records that refer to the same entities.
Such a pipeline architecture is adopted by many Al systems in natural language
processing, speech recognition, vision, robotics, etc. Markov logic allows us to
perform the two tasks jointly [33]. This enables us to use the segmentation of
one candidate record to help segment similar ones. For example, resolving a well-
segmented field with a less-clear one can disambiguate the latter’s boundaries.
We will continue with the example of citations, but similar ideas could be applied
to other data sources, such as Web pages or emails.
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The main evidence predicate in the information extraction MLN is Token(t, 1,
c), which is true iff token t appears in the ith position of the cth citation. A token
can be a word, date, number, etc. Punctuation marks are not treated as separate
tokens; rather, the predicate HasPunc(c, i) is true iff a punctuation mark appears
immediately after the ith position in the cth citation. The query predicates are
InField(i,f,c) and SameCitation(c,c’). InField(i,f,c) is true iff the ith
position of the cth citation is part of field £, where £ € {Title, Author, Venue},
and inferring it performs segmentation. SameCitation(c, ¢’) is true iff citations c
and ¢’ represent the same publication, and inferring it performs entity resolution.

Our segmentation model is essentially a hidden Markov model (HMM) with
enhanced ability to detect field boundaries. The observation matrix of the HMM
correlates tokens with fields, and is represented by the simple rule

Token(+t, i,c) = InField(i,+f,c)

If this rule was learned in isolation, the weight of the (¢, f)th instance would be
log(pis/(1—pey)), where pys is the corresponding entry in the HMM observation
matrix. In general, the transition matrix of the HMM is represented by a rule of
the form

InField(i,+£,c) = InField(i + 1,+f’ c)

However, we (and others, e.g., [12]) have found that for segmentation it suffices
to capture the basic regularity that consecutive positions tend to be part of the
same field. Thus we replace £’ by f in the formula above. We also impose the
condition that a position in a citation string can be part of at most one field; it
may be part of none.

The main shortcoming of this model is that it has difficulty pinpointing field
boundaries. Detecting these is key for information extraction, and a number of
approaches use rules designed specifically for this purpose (e.g., [17]). In citation
matching, boundaries are usually marked by punctuation symbols. This can be
incorporated into the MLN by modifying the rule above to

InField(i,+f,c) A “HasPunc(c,i) = InField(i+ 1,+f,c)

The —HasPunc(c, i) precondition prevents propagation of fields across punctu-
ation marks. Because propagation can occur differentially to the left and right,
the MLN also contains the reverse form of the rule. In addition, to account
for commas being weaker separators than other punctuation, the MLN includes
versions of these rules with HasComma() instead of HasPunc().

Finally, the MLN contains rules capturing a variety of knowledge about ci-
tations: the first two positions of a citation are usually in the author field, and
the middle one in the title; initials (e.g., “J.”) tend to appear in either the au-
thor or the venue field; positions preceding the last non-venue initial are usually
not part of the title or venue; and positions after the first venue keyword (e.g.,
“Proceedings”, “Journal”) are usually not part of the author or title.

By combining this segmentation model with our entity resolution model from
before, we can exploit relational information as part of the segmentation pro-
cess. In practice, something a little more sophisticated is necessary to get good



20 P. Domingos et al.

Table 2. CiteSeer entity resolution: cluster recall on each section

Approach Constr.|Face|Reason.|Reinfor.
Fellegi-Sunter 84.3 81.4(71.3 50.6
Lawrence et al. (1999)|89 94 |86 79
Pasula et al. (2002) |93 97 |96 94
Wellner et al. (2004) [95.1  [96.9 [93.7 94.7
Joint MLN 96.0  [97.1]95.1 96.7

results on real data. In Poon and Domingos [33], we define predicates and rules
specifically for passing information between the stages, as opposed to just using
the existing InField() outputs. This leads to a “higher bandwidth” of commu-
nication between segmentation and entity resolution, without letting excessive
segmentation noise through. We also define an additional predicate and modify
rules to better exploit information from similar citations during the segmentation
process. See [33] for further details.

We evaluated this model on the CiteSeer and Cora datasets. For entity resolu-
tion in CiteSeer, we measured cluster recall for comparison with previously pub-
lished results. Cluster recall is the fraction of clusters that are correctly output
by the system after taking transitive closure from pairwise decisions. For entity
resolution in Cora, we measured both cluster recall and pairwise recall /precision.
In both datasets we also compared with a “standard” Fellegi-Sunter model (see
[41]), learned using logistic regression, and with oracle segmentation as the input.

In both datasets, joint inference improved accuracy and our approach out-
performed previous ones. Table 2 shows that our approach outperforms previous
ones on CiteSeer entity resolution. (Results for Lawrence et al. (1999) [19], Pasula
et al. (2002) [29] and Wellner et al. (2004) [50] are taken from the correspond-
ing papers.) This is particularly notable given that the models of [29] and [50]
involved considerably more knowledge engineering than ours, contained more
learnable parameters, and used additional training data.

Table 3 shows that our entity resolution approach easily outperforms Fellegi-
Sunter on Cora, and has very high pairwise recall /precision.

Table 3. Cora entity resolution: pairwise recall/precision and cluster recall

Approach Pairwise Rec./Prec.|Cluster Recall
Fellegi-Sunter|  78.0 / 97.7 62.7
Joint MLN 94.3 / 97.0 78.1

8 The Alchemy System

The inference and learning algorithms described in the previous sections are
publicly available in the open-source Alchemy system [16]. Alchemy makes it
possible to define sophisticated probabilistic models with a few formulas, and
to add probability to a first-order knowledge base by learning weights from a
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Table 4. A comparison of Alchemy, Prolog and BUGS

Aspect Alchemy Prolog BUGS
Representation |First-order logic + Markov nets Horn clauses Bayes nets
Inference Model checking, MCMC Theorem proving MCMC
Learning Parameters and structure No Parameters
Uncertainty  |Yes No Yes
Relational Yes Yes No

relevant database. It can also be used for purely logical or purely statistical
applications, and for teaching AI. From the user’s point of view, Alchemy pro-
vides a full spectrum of AI tools in an easy-to-use, coherent form. From the
researcher’s point of view, Alchemy makes it possible to easily integrate a new
inference or learning algorithm, logical or statistical, with a full complement of
other algorithms that support it or make use of it.

Alchemy can be viewed as a declarative programming language akin to Pro-
log, but with a number of key differences: the underlying inference mechanism
is model checking instead of theorem proving; the full syntax of first-order logic
is allowed, rather than just Horn clauses; and, most importantly, the ability
to handle uncertainty and learn from data is already built in. Table 4 com-
pares Alchemy with Prolog and BUGS [23], one of the most popular toolkits for
Bayesian modeling and inference.

9 Current and Future Research Directions

We are actively researching better learning and inference methods for Markov
logic, as well as extensions of the representation that increase its generality and
power.

Exact methods for learning and inference are usually intractable in Markov
logic, but we would like to see better, more efficient approximations along with
the automatic application of exact methods when feasible.

One method of particular interest is lifted inference. In short, we would like
to reason with clusters of nodes for which we have exactly the same amount
of information. The inspiration is from lifted resolution in first order logic, but
must be extended to handle uncertainty. Prior work on lifted inference such as
[31] and [3] mainly focused on exact inference which can be quite slow. We have
recently extended loopy belief propagation, an approximate inference method for
probabilistic graphical models, to perform lifted inference in Markov logic net-
works [44]. When the amount of evidence is limited, this can speed up inference
by many orders of magnitude.

We are also working to develop a general framework for decision-making in
relational domains. This can be accomplished in Markov logic by adding utility
weights to formulas and finding the settings of all action predicates that jointly
maximize expected utility. Decision-making is key to the original Semantic Web
vision, which called for intelligent agents to act on the information they gathered.
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Numerical attributes must be discretized to be used in Markov logic, but we
have recently introduced methods to incorporate continuous random variables
and features [46]. Continuous values could be useful in a variety of Semantic
Web problems, such as incorporating numeric features into similarities for entity
resolution, ontology alignment, or schema matching.

Current work also includes semi-supervised learning, and learning with in-
complete data in general. The large amount of unlabeled data on the Web is an
excellent resource that, properly exploited, could help bootstrap or enrich the
Semantic Web.

10 Conclusion

The Semantic Web must deal with uncertainty from many sources, including
inconsistent knowledge bases, incorrect or untrustworthy information, missing
data, different ontologies and schemas, and more. Markov logic is a simple yet
powerful approach for adding probability to logical representations such as those
already used by the Semantic Web: Given a set of formulas, just add weights. We
have developed a series of learning and inference algorithms for it, and success-
fully applied them in a number of domains. These algorithms are included in the
open-source Alchemy system (available at alchemy.cs.washington.edu). We hope
that Markov logic and its implementation in Alchemy will be of use to Semantic
Web researchers and practitioners who wish to have the full spectrum of logi-
cal and statistical inference and learning techniques at their disposal, without
having to develop every piece themselves.
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Abstract. This chapter overviews work on semantic science. The idea
is that, using rich ontologies, both observational data and theories that
make (probabilistic) predictions on data are published for the purposes
of improving or comparing the theories, and for making predictions in
new cases. This paper concentrates on issues and progress in having
machine accessible scientific theories that can be used in this way. This
paper presents the grand vision, issues that have arisen in building such
systems for the geological domain (minerals exploration and geohazards),
and sketches the formal foundations that underlie this vision. The aim is
to get to the stage where: any new scientific theory can be tested on all
available data; any new data can be used to evaluate all existing theories
that make predictions on that data; and when someone has a new case
they can use the best theories that make predictions on that case.

1 Introduction

The aim of the semantic web (Berners-Lee and Fischetti, 1999; Berners-Lee et al.,
2001) is that the world’s information is available in a machine-understandable
form. This chapter overviews what we call semantic science, the application of
semantic technology and reasoning under uncertainty to the practice of science.
Semantic science requires machine-understandable information of three sorts: on-
tologies to define vocabulary, data about observations of the world, and theories
that make predictions on such data.

Our idea of semantic science is that scientists can publish data and theories
that can inter-operate by virtue of using common ontologies. The theories can
be judged by how well they predict unseen data and can be used for new cases.

An ontology (Smith, 2003b) is a formal specification of the meaning of the
vocabulary used in an information system. Ontologies are needed so that infor-
mation sources can inter-operate at a semantic level.

There has been recent success in publishing scientific data that adheres to on-
tologies (McGuinness et al., 2007). Publishing data with respect to well-defined
ontologies can allow for semantic inter-operation of the data sets. Meaningful
queries can be made against multiple data sets that were collected separately.

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNATI 5327, pp. 2640, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Data repositories include the Community Data Portal (http://cdp.ucar.edu/) and
the Virtual Solar-Terrestrial Observatory (http://vsto.hao.ucar.edu/index.php).

Science operates by making refutable theories (Popper, 1959). These theories!
are judged by their predictions, by their usefulness, and by their elegance or plau-
sibility. Theories make (probabilistic) predictions about new cases. Theories may
require arbitrary computations to make predictions; indeed many real theories
need enormous computational resources. Semantic science aims to provide an in-
frastructure to test theories on data, and to make theories available for new cases.

Theories need to refer to ontologies as they need to inter-operate with data.
Theories specify what data they can make predictions about, and make predic-
tions that can be checked against the relevant data and applied to new cases.
It is the ontologies that allow the inter-operation of the data and the theories.
Theories can be tested against all of the relevant data sets, and data can be used
to discriminate theories.

Given access to the theories, and information about how they perform on the
available data sets, practitioners can use the best theories to make predictions
on new cases. This thus promises to form a new basis for expert systems.

We have been working on two instances of the semantic science framework in
two domains in earth sciences (Smyth et al., 2007), namely minerals exploration
in the MINEMATCH®) system (http://www.georeferenceonline.com/minematch/)
and landslides in the HAZARDMATCH™ system. MineMatch contains about
25,000 descriptions of mineral occurrences (called instances) that are described
at various levels of abstraction and detail using multiple taxonomies, including
the British Geological Survey rock classification scheme (http://www.bgs.ac.uk/
bgsrcs/) and the Micronex taxonomy of minerals (http://micronex.golinfo.com).
We are currently moving to OWL representations of the ontologies. We also
work with more than 100 deposit models (these form the theories about where
to find particular minerals), including those described by the US Geological Sur-
vey (http://minerals.cr.usgs.gov/team/depmod.html) and the British Columbia
Geological Survey (http://www.em.gov.bc.ca/Mining/Geolsurv/MetallicMinerals/
MineralDepositProfiles/). Similarly, HazardMatch uses tens of thousands of spa-
tial instances (polygons) described using standard taxonomies of environmental
modeling such as rock type, geomorphology and geological age. There are cur-
rently about 10 models of different landslide types that are derived from pub-
lished models. We can compare the prediction of the models to known cases and
new cases.

Semantic science allows for a diversity of theories. Each theory will specify
what data it is prepared to make predictions about. Some theories may be com-
peting and some may be complementary. For example, there may be multiple
theories that predict whether a patient has cancer. If they make different predic-
tions in some cases, they can be compared by how well they predict the available
data. There may be other theories that make predictions about the type(s) of

! Theories are often called hypotheses, laws or models depending on how well estab-
lished they are. This distinction is redundant in the semantic science realm where we
can test how well these actually perform on data.
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cancer for patients with cancer. These theories are not applicable for patients
who don’t have cancer. When making predictions, a doctor may use an ensemble
of multiple complementary theories: e.g., one to predict whether the patient has
cancer and another to predict the type of cancer if cancer is present.

Theories can make predictions in different forms. A theory could make, e.g.,
a definitive prediction, a probabilistic prediction, a range prediction, or a quali-
tative prediction. Users can use whatever criteria they like to judge the theories,
and use whichever theory or mix of theories they like. For different evaluation
criteria, there will be ways to judge the theories on the criteria. We anticipate
that probabilistic predictions will be the most useful, as it is probabilities that
one gets from data, and probabilities are what is needed (with utilities) to make
decisions. However, there are many cases where users will be reluctant to use
probabilistic theories (see below). Scientists who wish to judge a theory by ele-
gance or simplicity, as well as fit to data, are free to do so; they can use published
data to determine its accuracy and whatever criteria they like to evaluate ele-
gance or simplicity.

We mean science in the broadest sense. We can imagine having theories about
what apartment someone would like, or theories about what companies will
make the best investments, or theories about diseases and symptoms. Search
engines such as Google are being used for diagnosis (Tang and Ng, 2006). It is
arguably better to be able to specify symptoms unambiguously using an ontology.
Measures such as pagerank (Page et al., 1999) measure popularity. Fortunately,
searches for diagnostic tend to return authoritative sites. Scientists, however,
should be suspicious of popularity and authority as a basis for prediction. We
should base our predictions on the empirical evidence. Building an infrastructure
for this is the aim of semantic science.

Figure 1 shows the relationship between ontologies, data and theories. The
data depends on the world and the ontology. The theories depend on the ontol-
ogy, indirectly on the world (if a human is designing the theory), and directly

] Ontology
Data
Training :
Data | [ *| Theory
New &
Case [—1—» -
Prediction

Fig. 1. Ontologies, Data and Theories in Semantic Science
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on some of the data (as we would expect that the best theories would be based
on as much data as possible). Given a new case, a theory can be used to make
a prediction. The real world is more complicated, as there are many theories,
many ontologies, and lots of data, and they all evolve in time.

This work is complementary to providing services and other tools to scien-
tists, e.g., using the Semantic Grid (De Roure et al., 2005). We expect that the
semantic grid will be important for implementing the ideas in this paper.

This chapter is based on Poole et al. (2008).

2 Background

2.1 Ontologies

In philosophy, ontology is the study of what exists. In AI, ontology (Smith, 2003b)
has come to mean a specification of the meaning of the symbols (or of the data)
in an information system. In particular, an ontology makes a commitment to
what entities and relationships are being modelled, specifies what vocabulary
will be used for the entities and relationships, and gives axioms that restrict the
use of the vocabulary. The axioms have two purposes: to rule out uses of the
terms that are inconsistent with the intended interpretation, and to allow for
inference to derive conclusions that are implicit in the use of the vocabulary.

An ontology can be any specification, formal or informal, of the meaning of the
symbols. This can be in the head of the person who created the data, or can be
stated in some language. Without an ontology, we do not have information, but
just a sequence of bits. The simplest form of an ontology is a database schema
with informal natural language descriptions of the attributes and the constants.
Formal ontologies allow machine understandable specifications.

Anontology writtenin alanguagesuchas OWL (McGuinness and van Harmelen,
2004) specifies individuals, classes and relationships and the vocabulary used to ex-
press them. Sometimes classes and relationships are defined in terms of more prim-
itive classes and relationships, but ultimately they are grounded out into primitive
classes and relationships that are not actually defined. For example, an ontology
could specify that the term “building” will represent buildings. The ontology will
not define a building, but will give some properties that restrict the use of the term.

Ontologies date back to Aristotle (350 B.C.), who defined terms using what
has been called an Aristotelian definition (Berg, 1982; Smith, 2003a). An Aris-
totelian definition of A is of the form “An A is a B such that C”, where B is the
immediate super-class of A and C is a condition that defines how A is special.
Aristotle called the B the genus and C the differentia (Sowa, 2000, p. 4).

To build Aristotelian definitions, we will use what we call the multi-
dimensional design pattern (Alexander et al., 1977), where the differentia in
the Aristotelian definition are built from multiple properties. To define the con-
ditions for a class, we need to think about what properties distinguish this class
from the other subclasses of the super-class. Each of these properties defines a
(local) dimension. The domain of each property is the most general class for
which it makes sense. In the multi-dimensional design pattern, classes are only
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defined in terms of values of properties. The subclass relation can be derived
from this.

There is not a fixed number of dimensions that distinguish all individuals.
Rather, dimensions come into existence at different levels of abstraction. For
example, the dimensions size and weight may appear for physical individuals, but
are not applicable for abstract concepts. “Number of units” may be a dimension
for apartment buildings but may not be applicable for other buildings such as
sewage plants, where other dimensions may be applicable.

This idea is due to Aristotle:

“If genera are different and co-ordinate, their differentiae are themselves
different in kind. Take as an instance the genus ’animal’ and the genus
knowledge’. "With feet’, 'two-footed’, 'winged’, ’aquatic’, are differentiae
of ’animal’; the species of knowledge are not distinguished by the same
differentiae. One species of knowledge does not differ from another in
being 'two-footed’.” (Aristotle, 350 B.C.)

Ezample 1. Geologists define rocks along three major dimensions: genesis (sedi-
mentary, igneous or metamorphic), composition and texture (Gillespie and Styles,
1999). Particular rocks, such as granite and limestone, are defined by particular
values in each dimension (or some subset of the dimensions). Rock taxonomies
built using this approach that commit to splitting rock sub-type based on these di-
mensions in a certain order (usually genesis first, then composition, then texture)
do not conveniently represent the sub-types that occur in real data (Struik et al.,
2002). For example, if the aforementioned order of splitting the taxonomy is used,
there is no convenient single place in the taxonomy for the class of rocks with a
particular texture, independent of its members’ genesis or composition. The multi-
dimensional ontologies seem to be the natural specification, and they also inte-
grate well with probabilities (see Section 4.2).

2.2 Data and Ontologies

Scientists produce lots of data, and science cannot be carried out without data.
By data, we mean information about a domain that is produced from sensing.

In linguistics the Sapir-Whorf Hypothesis (Sapir, 1929; Whorf, 1940), says
essentially that people’s perception and thought are determined by what can
be described in their language. The Sapir-Whorf Hypothesis is controversial in
linguistics, but a stronger version of this hypothesis should be uncontroversial
in information systems:

What is stored and communicated by an information system is con-
strained by the representation and the ontology used by the information
system.

The reason that this should be less controversial is that the representation
and the ontology represent the language of thought or mentalese (Fodor, 1975;
Pinker, 1994), not just the language of communication.
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As an example, suppose the world produces a deterministic sequence of coin
tosses: head, tail, head, tail, head, tail, etc. If the representation and the ontology
does not specify the time of each observation or which is the next coin toss in
the sequence, that information will have been lost in translating the observation
into the internal representation. The best prediction would be to predict heads
with probability of 0.5. As another example, if some data adheres to an ontology
that specifies that a house is a residential building, then, by definition, all of the
observed houses are residential buildings, and so the data cannot refute the fact
that houses are residential buildings.

This hypothesis has a number of implications:

— An ontology mediates how perceptions of the world are stored and commu-
nicated.

— If there is no distinction in the ontology, there will be no distinction in the
data. For example, if an ontology does not have any sub-types of “granite”,
and does not record the information needed to distinguish between types of
granite, the data will not record any sub-types of granite and none can be
discovered.

— Ontologies must come before data. This may be confusing as much work is
done on building ontologies for existing data sets. This activity should be
seen as reconstructing the ontology that was used to create the data set.
Note that this does not imply that finding regularities in data cannot be
used to evolve ontologies; we are claiming that the ontology for each data
set comes logically before that data set. This frequently occurs in research
when a data set may record the output of a sensor where it is unknown
what the senor actually measures (i.e., the meaning of the sensor report is
unknown). The initial ontology will then specify the meaning is just a real
number, perhaps with some range and precision. Later ontologies may give
the output a name.

Some people have argued that uncertainty should be explicitly represented
in an ontology because of the inherent uncertainty in data (Pool et al., 2005;
da Costa et al., 2005; Laskey et al., 2007). While we believe that it is essential
to model the uncertainty in data, we don’t believe actual probability values
should be in the ontology?. The main reason is the ontology is logically prior to
the data, but the models of uncertainty in the data are logically posterior to the
data: it is only by seeing (some of) the data, that we can estimate the uncertainty
(i.e., we want the uncertainty to reflect the posterior distribution after we have
seen some data). Because the probabilities are posterior to the data, they should
change as data comes in, and so should not be part of the stable foundation of
the data that an ontology needs to be. Another way to think about it is that the
ontologies define the vocabulary; they do not make empirical claims. Saying that

2 An ontology will contain the vocabulary to express probability distributions. We
need the vocabulary to express continuous and discrete conditional probability dis-
tributions, e.g., using PR-OWL (da Costa et al., 2005). The ontologies need to be
rich enough to express what scientists want to state in theories.
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a granite is an igneous, felsic, course rock is not an empirical claim, it just defines
what a granite is. Theories make empirical (testable) claims. A specification of
a probability is an empirical claim, even if the probability is theory-based (e.g.,
based on symmetries) and not data-summaries. Thus the probability should
not be in the ontology. Note that our claim that probabilities do not belong in
definitions is an empirical claim, and is not part of the definition of semantic
science.

2.3 Theories

We would argue that theories are best described in terms of probabilities (Polya,
1954) for two main reasons:

— Probabilities summarize the empirical content of data. In particular, we want
predictions that can be evaluated against the empirical evidence, and so can
be optimized with respect to the evidence. Probability distributions optimize
most of the common evaluation criteria, and other predictions (such as the
mean or the mode) can be derived from the probability distribution.

— Probabilities, together with utilities, are what is needed to make decisions.

Like data, theories need to adhere to ontologies. There are a number of reasons:

— Theories make predictions on data that adhere to an ontology. To allow
semantic interoperability between the data and the theories, they should
adhere to a common ontology.

— People should be allowed to disagree about how the world works without
disagreeing about the meaning of the terms. If two people have different
theories, they should first agree on the terminology (for otherwise they would
not know they have a disagreement)—this forms the ontology—and then
they should give their theories. Their theories can then be compared to
determine what their disagreement is. It is by creating these disagreements,
and testing them on data, that science progresses.

Theories can expand the ontology by hypothesizing unobserved objects or prop-
erties (hidden variables) that help explain the observations. By expanding the
ontology, other theories can refer to the theoretical constructs, and they could
appear in data. For example, a theory could postulate that the data is better
explained by having a new form of cancer; other theories could refer to this type
of cancer and this new type of cancer could even be recorded in data. In this
way the theories and the vocabulary can evolve as science advances.

Semantic interoperability can only be achieved by adhering to common on-
tologies. A community needs to agree on an ontology to make sure they use the
same terminology for the same things. However, a community need not, and we
argue should not, agree on the probabilities, as people may have different prior
knowledge and have access to different data, and the probabilities should change
as more data comes in.

To make a prediction, we usually use many theories. Theories that individuals
produce are typically very narrow, only making predictions in very narrow cases.
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The theories that are put together to make a predictions form a theory ensemble.
We judge individual theories by how well they fit into ensembles. An example of
a theory ensemble is “when the speed of the objects involved is less than 70%
of the speed of light, use Newtonian mechanics, otherwise use Einstein’s theory
of relativity”. This ensemble is another theory that may work better than either
of the composite theories in practice. Producing such ensembles is of a different
sort than producing the base theories, and so should be separated. Rather than
dismissing these theories as trivial, they form the basis of prediction for new
cases. Virtually all predictions in complex cases will rely on theory ensembles.

The structure of probabilistic theories does not necessarily follow the structure
of the ontology. For example, an ontology of lung cancer should specify what lung
cancer is, but whether someone will have lung cancer depends on many factors
of the particular case and not just on other parts of ontologies (e.g., whether
they have other cancers and their work history that includes when they worked
in bars that allowed smoking). As another example, the probability that a room
will be used as a living room depends not just on properties of that room, but
on the properties of other rooms in an apartment.

There are major challenges in building probabilistic theories using ontologies
based on languages such as OWL. The main challenge is that OWL sees the
world in terms of individuals, classes and properties, while probability theory
is in terms of random variables. Section 4.2 discusses how to construct random
variables from ontologies.

3 Pragmatic Considerations

The MineMatch and HazardMatch systems we have been developing have mul-
tiple instances that describe entities and their properties at particular locations
on Earth, and models (theories) that make predictions about these locations.
The systems are used in various modes:

— In instance-to-models matching, one instance is compared to multiple mod-
els. Finding the most likely models for the instance can be used to determine
what is the most likely mineral to occur at a location or what types of land-
slides are predicted to occur at a particular place. In both of these cases, the
instance is a place whose description is compared to the models.

— In model-to-instances matching, one model is compared to multiple instances.
This can be used to find the location(s) that are most likely to have landslides
or contain particular minerals.

— In instance-to-instances matching, one instance is compared to multiple in-
stances to find which other instances are most like this instance.

— In model-to-models matching, one model is compared to multiple models to
find which other models are most like this model.

These applications have a number of features that we believe will be shared
by many scientific disciplines:
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— The instances are heterogeneous, described at various levels of abstraction

(using more general or less general terms) and detail (described in terms
of parts and sub-parts or not). Similarly, the models use various levels of
abstraction and detail. Sometimes the distinctions that are in the instance
descriptions are not required by the models, and sometimes the instance
descriptions do not make distinctions that are needed by the models.

— The experts often do not publish probabilities in their models, and are reluc-

tant to have probabilities in the system. There are a number of reasons for
this. First, they may have very few data points for any model, so that the
probabilities will not be based on anything meaningful. Second, the people
who want to make decisions (those who want to decide whether to try to
mine an area profitably, or insurance companies that decide on insurance
premiums) will want to use their own prior probabilities, and may take into
account more information than is used in the system.

— The problem domains are afflicted by combinatorial complexity; there many

possible model combinations, and very large data collections for assessment.
It is difficult to find those few areas that are most likely to contain ore-grade
minerals or be susceptible to landslides, and to provide explanations that
can be used for further analysis.

— The models are “positive”; there are models of where to find a particular

mineral, but people do not publish models of where the mineral is absent.
Similarly for landslides; there are models of where particular types of land-
slides are likely to occur, but not models of where landslides are unlikely to
occur.

— The models are neither covering, disjoint nor independent. Often the models

4

In

are variants of each other. Starting from one model, people produce variants
of that model to suit their own purpose. A model does not include all of
the cases where the phenomenon it is modelling may occur; it only about a
specific context.

Foundations of Probabilistic Theories

this section, we describe the logical and probabilistic foundations for building

theories, and relate them to pragmatic choices that we have used in our fielded
systems.

4.1 Role of Models in Decision Making

The Bayesian view of using models for decision making is that we would like

to

make a probabilistic prediction of z for a new case based on a description

d of that case. Thus we want P(z|d). The role of the models is to provide a
framework for this prediction.

In terms of probabilities, we can use models as intermediaries:

P(zld)= Y P(zlmAd)P(m|d)
meE Models
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where Models is a set of mutually exclusive and covering hypotheses. Thus,
for each model, we need to decide what it predicts, and how likely it is based
on the description, d, of the current case. Typically models are rich enough to
convey the information about the rest of the description, and so we assume
P(z|m A d) = P(z|m).

In Bayesian modelling, we try to determine what features best predict (in
unseen data) the phenomenon of interest, and then build probabilistic models
in terms of these features.

Typically, we do not have P(m|d) which specifies how likely the model is given
the description, but instead have predictions of the model, i.e., P(d|m). These
two quantities are related by Bayes’ theorem:

P(mld) = DML (d;f()d? (m)

That is, we often have causal or consequential knowledge and want to do evidential
reasoning. For example, we model the symptoms of chicken pox with
P(fever|ch_pox) but want P(ch_pozx|fever). These are related by Bayes’ theorem:

P(fever|ch_pox) x P(ch_pox)
P(fever)

P(ch_pox|fever) =

The reason that we want to store causal or consequential knowledge is that it
is more stable to changing contexts. You would expect the symptoms of chicken
pox to be stable; they would be the same whether the patient was at home, in a
school or in a hospital. However, the probability that someone with a fever has
chicken pox would be different in these three contexts, as the prevalence of fever
and chicken pox is different in these three contexts.

This has an impact on how diagnostic a feature is. Suppose fever and spots
are common given chicken pox, e.g., P(fever|ch_pox) = 0.9, P(spots|ch_pox) =
0.9. Suppose fever has many causes and spots has few. Then spots is more diag-
nostic of chicken pox, i.e., P(ch_pox|spots) > P(ch_pox|fever), as P(fever) >
P(spots).

Note also that the probabilities needed for the prediction, namely P(z|m) are
of the same form as P(d|m)—they all specify what the model predicts. Rather
than making a model to be for a particular feature, a model makes predictions
about all of its features.

4.2 Probabilities, Ontologies and Existence

There seems to be a fundamental mismatch between the random variable formal-
ization of probability theory and the formalization of modern ontologies in terms
of individuals, classes and properties. Probabilistic models typically assume we
know what random variables exist at modelling time, but what individuals ex-
ists is often unknown at modelling time. Interestingly, a large body of research
on Bayesian modelling (e.g., Bayesian networks) and modern research into on-
tologies both have their roots in the expert systems of the 1970’s and 1980’s
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(Henrion et al., 1991). Both fields have advanced our understanding of reason-
ing, and part of our research is to bring these together.

We can reconcile these views by having properties of individuals correspond to
random variables. This complicates the probabilistic modelling as the individuals
typically only become known at run-time, and so the random variables are un-
known at modelling time. This has spurred a body of research in first-order proba-
bilistic models or relational probabilistic models (e.g., Poole (1993),
Getoor and Taskar (2007), Kersting and De Raedt (2007), Laskey (2008),
Lukasiewicz (2008)). It is even possible to be unsure about the existence of an
individual, and so unsure about the existence of a random variable (Poole, 2007).

When dealing with probabilities and individuals we need to deal with three
types of uncertainty:

— the probability of existence (Poole, 2007) — the probability that an individ-
ual that fits a description actually exists.

— the probability distribution over the types of an individual. This is compli-
cated when there are complex interrelations between classes that can be the
types of the individuals.

— the probability of property values. Functional properties give a random vari-
able for each individual with a non-zero probability of being in the class that
is the domain of the property. Non-functional properties have a Boolean ran-
dom variable for each value in the range and each individual with a non-zero
probability of being in the domain of the property.

Aristotelian definitions, where a class is defined in terms of its immediate super-
class and differentia, provide a way to reduce the second case to the third case.
The differentia are described in terms of property values with appropriate do-
mains. By having a probability distribution over the values of the properties
(perhaps conditioned on other variable assignments), we can induce a probabil-
ity distribution over the classes. Note that Aristotelian definitions are general:
any class hierarchy can be represented by Aristotelian definitions by introducing
new properties.

For example, a granite can be defined as a rock with the property genesis
having value igneous, property composition having value felsic, and texture is
coarse. By having a probability distribution over the values of genesis, a proba-
bility distribution over the value of composition, and a probability distribution
over the values of texture, we can determine the prior probability that a rock is
a granite.

Note that the probabilistic formulation is complicated by existence prereq-
uisites: only individuals that exist have properties, and only individuals in the
class that is domain of a property can have values for that property.

4.3 Bayesian Modelling Meets Pragmatism

Bayesian modelling of scientific reasoning seems like the appropriate formulation
of the role of theories or models in science. However, the pragmatic considera-
tions discussed above lead us to not adopt it directly, although it remains the gold
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standard. The theories (or models) in our fielded systems are based on quali-
tative probabilistic matching (Smyth and Poole, 2004; Poole and Smyth, 2005;
Lukasiewicz and Schellhase, 2007), with the following properties:

— Rather than using probabilities that experts do not want to give, and can-
not judge the output from, we use qualitative probabilities, using a 5-point
scale (always, usually, sometimes, rarely, never) that is derived from the ter-
minology used in published papers. These qualitative probabilities act like
log-probabilities, where the values add rather than multiply (Pearl, 1989;
Darwiche and Goldszmidt, 1994).

— The models need to be fleshed out for each instance. Models refer to mul-
tiple individuals, but they do not refer to the named individuals in the
instances. Models specify roles that can be filled by the instance individuals.
The predictions of the model for an instance can only be determined given a
role assignment that specifies which instance individuals fill the roles in the
model.

— Rather than averaging over all possibilities and role assignments, we choose
the most likely ones.

— We allow for diverse data about instances and models at multiple levels of
abstraction and detail. We also require prior probabilities of the descriptions;
we do not assume that we can get the probability of a description from the
set of models (as we could if the models were exclusive and covering).

— The explanations for the answers are as important as the answers
themselves.

5 Conclusions

This paper has presented the big picture of what we see as semantic science
as well as the pragmatic considerations that have gone into our fielded systems
that are a first try at realizing our vision. This view of semantic science is
meant to complement other views that provide ontologically-based views of data
(McGuinness et al., 2007) and ontology-based services (De Roure et al., 2005).

There are many challenges in building the semantic science vision, including
how to construct theories, how to determine what theories are useful in making
predictions in a particular case, and in finding the data about which a theory
makes predictions. The growing interest in scientific ontologies, the desire for
scientists (and their funders) to make their data and theories as widely used as
possible, and the desire for users to have the best predictions, indicates that this
semantic science vision should succeed.
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Abstract. Agents need to communicate in order to accomplish tasks
that they are unable to perform alone. Communication requires agents
to share a common ontology, a strong assumption in open environments
where agents from different backgrounds meet briefly, making it impos-
sible to map all the ontologies in advance. An agent, when it receives a
message, needs to compare the foreign terms in the message with all the
terms in its own local ontology, searching for the most similar one. Ho-
wever, the content of a message may be described using an interaction
model: the entities to which the terms refer are correlated with other
entities in the interaction, and they may also have prior probabilities
determined by earlier, similar interactions. Within the context of an in-
teraction it is possible to predict the set of possible entities a received
message may contain, and it is possible to sacrifice recall for efficiency
by comparing the foreign terms only with the most probable local ones.
This allows a novel form of dynamic ontology matching.

1 Introduction

Agents collaborate and communicate to perform tasks that they cannot accom-
plish alone. To communicate means to exchange messages, that convey meanings
encoded into signs for transmission. To understand a message, a receiver should
be able to map the signs in the message to meanings aligned with those intended
by the transmitter.

Therefore agents should agree on the terminology used to describe the domain
of the interaction: for example, if an agent wants to buy a particular product from
a seller, it must be able to specify the properties of the products unambiguously.
Ontologies specify the terminology used to describe a domain [4].

However, a shared ontology can be a strong assumption in an open envi-
ronment, such as a Peer-to-Peer system: agents may come from different back-
grounds, and have different ontologies, designed for their specific needs [13].

In this sort of environment, communication implies translation. The standard
approach is to find mappings between the ontologies, creating a sort of bilingual
dictionary. Many different techniques have been developed for ontology mapping,
but in an open environment it is impossible to know which agents will take part in
the interactions; therefore it is impossible to anticipate which ontologies should
be mapped.

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNAI 5327, pp. 41-51, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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has_brand
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has_sensor_resolution

digital_SLR has_optical_zoom

Fig. 1. Fragment of buyer a; ontology
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Fig. 2. Fragment of seller a; ontology
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Digital_Cameras

Agents have to map ontologies dynamically when needed. Mapping full on-
tologies is a time-consuming task: in the standard process, each term in one
ontology is compared with all the terms in the other ontology, and the most
similar term is the mapping.

However, agents may meet infrequently, for a single interaction on a specific
topic. A full ontology mapping would be a waste of resources: mapping only
“foreign” terms that have appeared in the conversation can be more convenient.

Comparing a foreign term in a message with all the terms in the ontology can
still be costly. Yet, the entities referred by the signs in the message are not ran-
domly chosen: the dialogue has a meaning because entities are related. For exam-
ple, if the conversation is about the purchase of a laptop, entities related to cars
are unlikely to appear. It is reasonable to compare the signs in the message with
entities about laptops, rather than compare with all the entities indiscriminately.

This paper shows how to extract, represent, and use knowledge about the
relations and properties of the entities in an interaction to support dynamic
ontology mapping.

2 Example Scenario

The example scenario is a purchase interaction between the buyer and seller
agents a, and ag. In the dialogue, agent a; asks as about a laptop he needs. The
seller as inquires about properties of the product in order to make an offer.

The two agents do not share the same ontology: the buyer uses the one in
Figure 1 and the seller the one in Figure 2. In the figures the ovals are classes
and the grey boxes are properties. The classes are structured in taxonomies, and
the domains of the properties are shown by grey arrows.
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a((buyer(S),B) ::=

ask(Prd) = a(vendor, S) < want(Prd)
then

a(neg_buy(Prd, S),B).

a(neg buy(Prd,S),B) ::=
ask(Attr) < a(neg_vend, S)
then
inform(Attr,Val) = a(neg_vend, S) < required(Prd, Attr, Val)
or
dontcare(Attr) = a(neg_vend, S)
then
a(neg_buy(Prd, S),B)
or
propose(Prd, Price, Const) <« a(neg_vend, S)
then
accept = a(neg_vend, S) < afford(Prd,Price)
then
( ack < a(neg_vend,S)

or
reject = a(neg_vend, S)
or

sorry <= a(neg_vend, S)

In the interaction, the agent a; initially takes the role of buyer: it first sends a request
to agent as for the product it wants to buy (found satisfying want (Prd)) and then
becomes a negotiating buyer, waiting for a reply.

The agent as receives the request: if it has the product, it selects the attributes the
buyer needs to specify and becomes a negotiating seller; otherwise it says sorry. As a
negotiating seller, as recursively extracts the attributes from the list and asks about
them to ayp, creating a filter with the received information. The buyer agent receives
the request, and if it cares and knows about the value of each attribute (if it can satisfy
required(Prd, Attr, Val)), replies with it, otherwise it sends a dontcare message.
When the list of attributes is empty, as sends an offer using the created filter. The agent
ap accepts the offer if it can afford the price (afford(Prd, Price) must be satisfied)
or rejects it.

Fig.3. LCC dialogue fragment used by the buyer agent

3 Communication

An approach to communication, for which Electronic Institution [11] is an exam-
ple, focuses on the interaction itself, using norms, laws and conventions to define
the expected behaviours of the agents, without specifying their mental state.

As described in [12], norms and conventions form the skeleton for many human
coordinated activities, and they work similarly in agents’ societies: they provide
a template for actions, and simplify the decision-making process, dictating the
course of action to be followed in certain situations.

3.1 Lightweight Coordination Calculus

In this paper, interactions are modelled using the Lightweight Coordination Cal-
culus [7,8], that borrows notions from Electronic Institutions.
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Fig. 4. A sequence diagram representing a protocol run between a; and as

The Lightweight Coordination Calculus (LCC) is an executable specification
language adapted to peer-to-peer workflow and has been used in applications such
as business process enactment [5] and e-science service integration [1]. It is also
used to represent interactions between peers in the OpenKnowledge! project [10].

LCC is based on process calculus: protocols are declarative scripts written in
Prolog and circulated with messages. Agents execute the protocols they receive
by applying rewrite rules to expand the state and find the next move.

It uses roles for agents and constraints on message sending to enforce the social
norms. The basic behaviours are to send (=) or to receive (<) a message. More
complex behaviours are expressed using connectives: then creates sequences, or
creates choices. Common knowledge can be stored in the protocol.

Figure 3 shows and explains the LCC protocol used by the buyer for the
interaction in the example scenario. Figure 4 represents the sequence diagram
of the exchanged messages and of the constraints satisfied during a run of the
protocol for the purchase of a laptop.

3.2 Communication and Contexts

The agents execute the protocols inside a separate “box™: in theory, it is possible
to write a protocol that can be run without requiring any specific knowledge
from the agent. It requires that the constraints are satisfied with the information
available in the common knowledge.

The “box” in which a protocol is run can be compared to the idea of context
described by Giunchiglia: in [3] he defines a context ¢; as “partial” and “ approzi-
mate” theory of the world, represented by the triplet (L;, A;, A;). In the tuple,
L; is the language local to the context, A; is the set of axioms of the context, and
A, is the inference engine local to the context. Moreover, a reasoner can connect
a deduction in one context with a deduction in another using bridge rules.

For the protocol run context ¢, = (L., A,, A,.), the language L, is composed
by all the terms that can be introduced by the agents involved in the interaction
(terms are tagged with their origin: a; introduces ‘Laptop’ satisfying want (Prd),
and therefore Prd is replaced throughout the protocol with the tagged value
‘Laptop’@ayp); the axioms A, are the role clauses together with the axioms in
the common knowledge and A, is the protocol expansion engine.

! http://www.openk.org
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Even though protocols can be autonomous from the agent, they become useful
only if they can exploit the agents’ knowledge, that is if it is possible to bridge
the reasoning between the interaction context ¢, and in the agent’s local context
cq, for example accessing the peer’s database of products in order to query the
availability or the price of a product. This is accomplished using a bridge rule
that connects the constraints in the protocol with the predicates in the agent’s
local knowledge:

cr (Wi, .o, W) (1)
Ca: ka(Y1, ., Vi)

where k), is a formula of a protocol constraint and r, is a formula in the agent’s
local knowledge, that can be satisfied only by using its own language L,.

4 Ontology Mapping

In traditional ontology mapping, the bridges should be valid for any value from
L, and L, in two contexts ¢, and cg:

yWi.W, € LT, av;...Y, € L,. ¢ : I{p(Wl, ceey Wn) — Cj qu(le, ...,Ym) (2)

That is, for any value of Wy,...,W,, in k,, it is possible to find the values for
Y1, ..., Y, so that x, is equivalent to k,. In the example scenario, the mappings
should cover the possible requests from the buyer agent a; for buying any element
in its ontology (see figure 1), such as mobile phones, analog cameras and so on
- even if these interactions never take place.

This is a strong requirement: it implies that it is possible to find a correspon-
ding term in L, for every term in L,, and this may not always be the case. Static
ontology mapping tries to achieve this. An ontology mapping function receives
two ontologies and returns the relations between their entities:
map : O1 X Oy — 2
where (2 contains all the binary relations r (equivalence, similarity, generalisa-
tion, specialisation, etc) between entities in O; and Os.

The existence of inconsistencies in the ontologies undermines the possibility of
satisfying the definition in Expression 2. Mapping systems use various methods

to verify the relations between terms: detailed reviews of these approaches can
be found in [9,6].

5 Dynamic Ontology Mapping: Motivation

As said in the introduction, it is possible to limit the mappings to those needed
to handle the occurring interactions, and there is no need to guarantee complete
equivalence between the languages. Therefore an agent needs to map at the
minimum the terms that appear in &, in order to satisfy s, :

AW € L, Y1..Yy € La. ¢yt bip(Wh, oo, W) At Ba(Yis s Vi) (3)
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This is a much weaker requirement: we need to find the values for Yi,...,Y,, so
that k, is valid for the given instances of W1, ..., W,,. In the example, it means
that only the mappings required for buying the laptop are needed.

Not every grounding of the variables is meaningful: some will make k, more
similar to k, than others. The mapping function:

singlemap : tr,. X Ly — 11,

is the “oracle” used to search the best possible mapping to make the bridge in
Expression 1 meaningful. It does this by comparing ¢7, with all the terms in L,.

The values for the variables W, ..., W,, in &, are introduced by received mes-
sages (for example, the first ask (Attr) in Figure 4 introduces ‘Memory_Ram’@s),
by satisfying constraints (for example, want (P) introduces ‘Laptop’@b) or when
a role is invoked with parameters. Only terms introduced by received messages
can be defined in other ontologies and require mapping.

Suppose an agent receives a message my (..., w;,...), where w; ¢ L, is the
foreign term. The task of the oracle is to find what entity or concept, represented
in the agent’s ontology by the term t,,, was encoded in w; by the transmitter.
Not all the comparisons between w; and terms t; € L, are useful: the aim of
this work is to specify a method for choosing the smallest set I' C L, of terms
to compare with w;, given a probability of finding the matching term t,, € L,.
We assume that t,, exists and that there is a single best match.

Let p(t;) be the probability that the entity represented by t; € L, was used
in W; inside my. The oracle will find ¢,, if ¢, € I" with probability:

ptmel)= therp(tj)

If all terms are equiprobable, then p (¢, € I") will be proportional to |I'|. For ex-
ample, if |L,| = 1000, then p (¢;) = 0.001. Setting |I"| = 800 yields p (t,, € I') =
0.8, and there is no strategy for choosing the elements to add to I'.

Instead, if the probability is distributed unevenly, as described in section 6,
and we keep the most likely terms, discarding the others, we can obtain a hig-
her probability for a smaller I". For example, suppose that p (¢;) is distributed
approximately according to Zipf’s law (an empirical law mainly used in lan-
guage processing that states that the frequency of a word in corpora is inversely
proportional to its rank):

1/k°
p(k;s;N) = ﬁ
where k is the rank of the term, s is a parameter (which we set to 1 to simplify
the example), and N is the number of terms in the vocabulary. The probability
of finding ¢,, becomes:

1Tl 1k
plm € 1) = SN
For |L,| = 1000, then p (¢, € I') = 0.70 for |I'| = 110, and maybe more remar-
kably p (t, € I') = 0.5 for |I'| = 25, as shown in Figure 5.
Therefore, given a probability distribution for the terms, it is possible to trade
off a decrement in the probability of finding the matching term ¢,, in I" with an

important reduction of comparisons made by the oracle.
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Fig. 5. uniform distribution vs Zipf’s distribution of terms in a message

The core issue dealt with by this paper is how to create and assign probabilities
to the entities that can be used in a message myg (..., w;,...). Intuitively, the
type of interaction, the specific topic and the messages already exchanged bind
w; to a set of possible expected entities.

In particular, this paper shows how an interaction model as LCC forms a
framework that enforces relations between the entities: the roles provide a first
filter for them. For example, messages in a buyer role will likely refer to entities
like products, prices, and attributes of the products. Different runs of the same
protocol tend to follow the same path, adding predictability to the interaction.

6 Modelling the Interactions

6.1 Asserting the Possible Values

The solution proposed is a model that stores and updates properties of the
entities used to instantiate each variable W; in different runs of the same protocol.
As seen in Section 3.1, the variables are replaced by values during protocol
execution, and therefore it is not possible to refer to them directly. A variable W;
is a slot A (an argument position) in an LCC node N (that can be a message, a
constraint or a role header) inside a role R, and it is represented as (N, 4),. For
example, the variable Prd appears in (want, 1),, where b means buyer.

In general, the possible values for the slot (N;, A); are modelled by M asserti-
ons, each assigning a probability to the hypothesis that the matching entity for
the slot belongs to a set ¥:

AR = pr (g, 8, € Wc) (4)

J
The probability can be made dependent on the value of another slot. Therefore
the assertion is in the form of a posterior probability: the element ¢ can become a
constraint on the value of another slot. The probability can also be independent
from any other slot: in this case the element ¢ becomes the true constant and
can be omitted.
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Table 1. Mappings for (ask, 1) and (ask,1)_

(3K, 1) i"j;f;;”’ ﬁz‘;;ttazl SLR ‘T"tal‘
has_ brand 4 5 9 | (ask,1) |Total|
has_ cpu 6 0 6 Digital_ Cameras| 40
has_ram 6 0 6 Cell_Phones | 30
has_ hard_ disk 4 0 4 Laptops 20
has_ weight 3 1 4 PC Desktops 10
has_ optical_zoom 0 5 5 Total 100
has_ sensor_ resolution 0 6 6
Total 23 17 40

How Assertions are Obtained. Assertions are created and updated every
time a protocol is executed. Let’s suppose that the agents as and a; have already
used the protocol in different interactions with other agents. The agent a; has
used it 12 times with different vendors: 6 times searching for a laptop, and 6
times seeking a digital camera. In total, a; has received the message ask (Attr)
that inquired about properties of the requested product 40 times. The content
of the slot in the received messages has been mapped to the entities from its
own ontology (see figure 1) with the frequencies in table 1. The seller agent as
has used the protocol 100 times with different buyers, receiving the message
ask(Prd) every time. The content of the slot has been mapped to entities in its
own ontology (see figure 2) with the frequencies in table 1. The frequencies of the
mappings are used to compute the probabilities in the assertions dynamically.

Assertions About Entities. Assertions can simply be about the prior proba-
bility of entities in a slot, disregarding the values of other slots in the protocol
run:

(Ni,a), . _
AT = Pr((Ns,a), € {eqg}) = p;
In the scenario, assertions about (ask, 1) , are:
AP = pr((ask, 1), € {“has_brana”}) = & = 0.225

A,iaSk‘l)nb = Pr ({ask, 1>nb € {“haaisensm'iwaolmwn”}) S % =0.15

More precise assertions can be about the posterior probability of the entity N;
given the values of previous slots N;_g4:

Ni,a)p .
A = Pr (N, 2)g € feg} [(Nimasa)y = e) = p;
In the example scenario, we have:

A§gSk’1>nb = Pr ({ask, 1>nb € {“haaibmnd”} ‘ {wa.nt, 1>b = “Lap/,op”) = % =0.174
Aylldk’l)nb = Pr ({ask, 1>nb S {“haaicpu”} ‘ {want, 1>b = “Laplop”) = 2% 0.260

Assertions About Properties and Relations. Assertions can also be about
ontological relations between the entities in the slot and other entities. The pos-
sible relations depend on the expressivity of the ontology: if it is a simple list of
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allowed terms, it will not be possible to verify any relation; if it is a taxonomy,
subsumption can be found; for a richer ontology, more complex relations such as
domain or range can be found. The assertions about the probabilities of onto-
logical relations are obtained by generating hypotheses about different relations
and counting the frequencies of the proved ones.

The hypotheses can be about an ontological relation between the entity in the
slot and an entity ey in the agent’s ontology:

A= = pp (g, a), € {X[rel (X, ex)}) = p;

In the example scenario, the seller can prove some relations between the entities
in (ask, 1), and other entities in its ontology (see figure 2):

AiaSk’ws = Pr (({ask, 1), € {X|subClass(X, “Computers”)}) = £% = 0.3

The assertions can also regard the relation with another slot in the protocol:

AP = pr (i, a), € {X[rel (X, (N, _a, a))}) = Py

In the example scenario the buyer can prove the relation between (ask, 1), and
(want, 1), in its ontology (see figure 1):

A;;Sk‘1>“b = Pr((ask, 1), € { X|hasDomain (X, (want,1),)}) = 1.0

which means that the domain of the entity in the (ask, 1), in the negotiator
clause is always the content of the first slot in the node want in the buyer role.

Assertion Reliability. Assertions that assign probabilities to entities work
correctly in well known and stationary situations. But interactions can have dif-
ferent content, such as the purchase of a different product, and the probabilities
of entities can change over time (for example, a type of product may go out of
fashion). Assertions about ontological relations can work on new content, but
sometimes they can overfit the actual relations in interactions.

6.2 Using Assertions

When a known protocol about a role R is used and the message my, (..., w;,...)
arrives, the system computes the probability distribution for the terms in (my, i);:
all the assertions relative to the slot are selected and instantiated if needed.

In the example in Figure 4, a; receives the message ask(‘Memory_Ram’@s),
and (want, 1), contains ‘Laptop’@b. Thus, the assertions about (ask, 1) , are:

A§a$k’1>nb = Pr ({ask, 1>nb € {“haaibmnd” ) = 0.225

AéaSk’1>"b = Pr ((ask, 1), € {“has_optical _zoom”}) = 0.125

A;gSk’D“b = Pr ((ask, 1), € {“has_brand” } |[true) = 0.174

A;?k’w"b = Pr ((ask, 1), € {“has_brand”, “has_cpu”, “has_ram” “has_hard _disk”, “has_weight” }) = 1.0

The assertions can be generated using different strategies, and they assign
probabilities to overlapping sets that can have one or more elements. The moti-
vation of the work is to select the most likely entities for a slot in order to reach
a given probability of finding the mapping, and therefore we need to assign to
the terms the probabilities computed with the assertions.
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Fig. 6. Probability distribution for the terms in slot (ask, 1)

This requires two steps. First, probabilities given to sets are uniformly dis-
tributed among the members: according to the principle of indifference, the
probability of mutually exclusive elements in a set should be evenly distributed.
Then, the probability of an entity ¢; is computed by summing all its probabilities
and dividing it by the sum of all the probabilities about the slot:

(N,A)Rr

XA (N,A)pefti}
p(t:) = . ZA(LN,A>RR ) (5)

In the example above, the entities will have the probabilities:

_A1+A10+A20/5__0.22540.17440.2 __
P(has__brand)= p T Em v = =0.2

_ ion)= Ag —0.15 —
P(hasisensm7resolulmn)—m—T—0.O5

The probabilities of terms related to the interactions have higher probabilities
than those of unrelated terms. As shown in Figure 6, using the first four terms
for the set I' of terms to compare with the term ‘Memory_Ram’@s in the received
message yields a probability of finding the mapping in I" greater than 0.8.

7 Conclusion

In this paper we showed an approach for dynamic ontology mapping that exploits
knowledge about interactions to reduce the waste of resources normally employed
to verify unlikely similarities between unrelated terms in different ontologies.

The traditional approaches aim at finding all the possible mappings between
the ontologies, so any possible interaction can occur. As shown in Section 5,
our goal is pragmatic: only the mappings required for the interactions that take
place need to be found. For an agent, this means that only the terms in received
messages and defined in external ontologies will be mapped.

In the standard approach, an ontology mapper oracle compares these “foreign”
terms with all the terms in the agent’s ontology, although most of the compared



Probabilistic Dialogue Models for Dynamic Ontology Mapping 51

terms are not related. However, the terms that appear in messages are not all
equally probable: given the context of the interaction, some will be more likely
than others. The use of protocols allows us to collect consistent information about
the mappings used during an interaction: in Section 6 we show first how to create
and update a probabilistic model of the content of the messages and then how to
use the model to select what are the most likely entities contained in a message,
so that the mapper oracle can focus on them, improving the efficiency. While in
[2] we gave a first evaluation of the framework, we are currently focussing on the
effect that predictions have on the precision and recall of an ontology matcher.
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Abstract. Probabilistic description logic programs are a powerful tool for
knowledge representation in the Semantic Web, which combine description log-
ics, normal programs under the answer set or well-founded semantics, and prob-
abilistic uncertainty. The task of data integration amounts to providing the user
with access to a set of heterogeneous data sources in the same fashion as when
querying a single database, that is, through a global schema, which is a common
representation of all the underlying data sources. In this paper, we make use of
probabilistic description logic programs to model expressive data integration sys-
tems for the Semantic Web, where constraints are expressed both over the data
sources and the global schema. We describe different types of probabilistic data
integration, which aim especially at applications in the Semantic Web.

Keyword: Probabilistic data integration, Semantic Web, probabilistic descrip-
tion logic programs, description logics, normal programs, answer set semantics,
well-founded semantics, probabilistic uncertainty.

1 Introduction

Recent research on knowledge representation has focused especially on the Semantic
Web, which is an extension of the current Web by standards and technologies that help
machines to understand the information on the Web so that they can support richer
discovery, data integration, navigation, and automation of tasks [1]. The nature of the
vast amount of data that are present on the Web is such that most information that we
can retrieve is conflicting, overlapping with other information, or incomplete.

The Semantic Web as it is now consists of hierarchical layers, at different levels
of abstraction; the Ontology layer is the one that had the fastest development lately,
and it adopts the Web Ontology Language (OWL) [2] in different dialects of different
expressiveness, namely, OWL Lite, OWL DL, and OWL Full. Integrating data [3] and
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mapping ontologies onto one another [4] are the major issues in this field. Besides the
ontology layer, further layers such as the Rules, Logic, and Proof layers aim at providing
support for sophisticated reasoning capabilities [5]. In particular, there is a large body
of work on integrating rules and ontologies, which is a key requirement of the layered
architecture of the Semantic Web. Rules can be build on top of ontologies, that is, rules
may use the vocabulary of an ontology; another possible approach is to build ontologies
on top of rules. Both types of integration are realized in recent hybrid integrations of
rules and ontologies, called description logic programs (or dl-programs), which have
the form KB = (L, P), where L is a description logic knowledge base and P is a finite
set of rules involving either queries to L in a loose coupling [6,7] or concepts and roles
from L as unary and binary predicates, respectively, in a tight coupling [8].

In Web search engines, which have to deal with pieces of data that are intrinsi-
cally inconsistent, and which provide uncertain information, statistical methods are
commonly applied. Differently, research on probabilistic approaches to the Semantic
Web is fairly recent. An important recent forum for approaches to uncertainty rea-
soning in the Semantic Web is the annual Workshop on Uncertainty Reasoning for
the Semantic Web (URSW); there also exists a W3C Incubator Group on Uncertainty
Reasoning for the World Wide Web. There are especially probabilistic extensions of
description logics [9,10], of Web ontology languages [11,12] (see also [13]), and of
dl-programs [14,15] (to encode ambiguous information, such as “John is a student
with the probability 0.7 and a teacher with the probability 0.3”, which is very dif-
ferent from vague/fuzzy/imprecise information, such as “John is tall with the degree
of truth 0.7). In particular, probabilistic extensions of the loosely (resp., tightly) cou-
pled dl-programs in [6,7] (resp., [8]) have been proposed in [14] (resp., [15]). Important
related works combine standard answer set programming with probabilities [16] and
positive logic programs with Bayesian networks [17]. The approach of probabilistic
dl-programs [14] is especially promising, since it is extremely expressive and flexible,
and it is able to generalize answer set programming, Bayesian networks, and the inde-
pendent choice logic [18]. In these probabilistic dl-programs, logic is nicely blended
with probability; we indeed show that this allows us to naturally employ dl-programs
in the declarative specification of data integration systems in the Semantic Web. The
techniques found in [19] provide tractable algorithms for reasoning tasks in probabilis-
tic dl-programs; in particular, they provide polynomial data complexity algorithms for
processing queries under a novel semantics, called the fotal well-founded semantics.

Data integration is a general problem that is among the main goals of the Semantic
Web. In a data integration system for the Semantic Web, heterogeneous data sources in
the Semantic Web are presented to the user as a single database, which can be queried
through a common representation of all the stored information. Such a common repre-
sentation is called the global schema, and is usually virtual (that is, rather than being
stored at the global level, the pieces of data reside at the sources). The crucial issues
in data integration are (i) the declarative representation of the relationship between
the sources and the global schema, called mapping, and (ii) the algorithms to answer
queries that are posed over the global schema.

In this paper, we start from the results of [19] about tight query processing in (loosely
coupled) probabilistic dl-programs, and we provide a natural way of employing such
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dl-programs in the integration of data over the Semantic Web. We show different natu-
ral ways of specifying a data integration framework with probabilistic dl-programs, al-
lowing the use of the efficient reasoning service that are available for such dl-programs.
In particular, we show three different ways of specifying a probabilistic mapping with
probabilistic dl-programs:

— modeling trust probabilities: here, we use probabilities to represent different levels
of trust that we have with respect to different data sources;

— modeling error probability: here, probabilities are used to represent the information
that is stored in data sources that have a certain probability of error; such uncer-
tainty is modeled with rules of a probabilistic dl-program, which encode the proper
inference in case of error or in case of non-error; and

— purely probabilistic mappings: this is the case when different pieces of overlapping
information are collected from the data sources, each with an assigned probability.

Furthermore, we show that the flexibility of probabilistic dl-programs allows us to
represent situations where it is necessary to represent a sort of fine-grained probability
defined on single tuples (ground facts) at the data sources. This is a common scenario in
the literature about probabilistic data, with many applications in practice. Our modeling
is possible because, roughly speaking, probabilistic dl-programs define probabilities
on each single ground atom of the Herbrand base of the program. In such scenarios,
probabilistic dl-programs “filter” the probabilities through the mapping, thus giving a
global representation of the source data that takes into account their uncertainty.

Finally, we remark that probabilistic dl-programs are able to deal with cases of data
integration where constraints (expressible with probabilistic dl-rules) are enforced on
the sources and on the global schema. This is particularly useful when integrating
sources that are represented intensionally by a local ontology.

The rest of this paper is organized as follows. In Section 2, we recall the tractable
description logic DL-Lite. Section 3 describes (loosely coupled) dl-programs under the
answer set and the well-founded semantics. In Section 4, we describe (loosely coupled)
probabilistic dl-programs under the answer set and the total well-founded semantics.
Section 5 presents our approach to probabilistic data integration for the Semantic Web
on top of these probabilistic dl-programs. In Section 6, we summarize our main re-
sults and give an outlook on future research.

2 Description Logics

In this section, we recall the syntax and the semantics of DL-Lite, a tractable description
logic especially suited for representing large amounts of data. Intuitively, description
logics model a domain of interest in terms of concepts and roles, which represent classes
of individuals resp. binary relations between classes of individuals. While we restrict
ourselves to DL-Lite here, the approach continues to be valid for the variants of DL-Lite
in [20], since the reasoning algorithms can be easily extended to such variants.

2.1 Syntax

We first define concepts and axioms and then knowledge bases and conjunctive queries
in DL-Lite. We assume pairwise disjoint sets A, R, and I of atomic concepts, abstract
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roles, and individuals, respectively. We use R~ to denote the set of all inverses R~ of
roles R € R. A basic concept B is either an atomic concept A € A or an exists restric-
tion 3R, where R € RUR ™. An axiom is either (1) a concept inclusion axiom B C ¢,
where B is a basic concept, and ¢ is either a basic concept B or its negation =B,
or (2) a functionality axiom (funct R), where R€e RUR™, or (3) a concept mem-
bership axiom B(a), where B is a basic concept and a €I, or (4) a role membership
axiom R(a, c), where R € R and a, c € 1. A (description logic) knowledge base L is a
finite set of axioms. A conjunctive query over L is of the form Q(x) = Jy (conj(x,y)),
where x and y are tuples of distinct variables, and conj(x,y) is a conjunction of as-
sertions B(z) and R(z1, 22), where B and R are basic concepts and roles from R,
respectively, and z, z1, and 2z are individuals from I or variables in x or y.

Example 1. A university database may use a description logic knowledge base L to
characterize students and exams. For example, suppose that (1) every bachelor student is
a student, (2) every master student is a student, (3) professors are not students, (4) only
students give exams and only exams are given, and (5) john is a student, mary is a
master student, java is an exam, and john has given it. These relationships are encoded
by the following axioms in L:

(1) bachelor_student T student; (2) master_student T student;
(3) professor C —student; (4) given C student; Igiven ' T ezam;

(5) student(john); master_student(mary); exam(java); given(john,java) .

2.2 Semantics

The semantics of DL-Lite is defined as usual in first-order logics. An interpretation
T =(A%,-T) consists of a nonempty domain A% and a mapping -Z that assigns to
each A € A a subset of AZ, to each o €1 an element of AZ (such that o, = 09 implies
o # oZ; that is, we make the unique name assumption), and to each R € R a subset of
AT x AT, We extend -Z to all concepts and roles, and we define the satisfaction of an
axiom F'in Z, denoted Z |= F', as usual. A tuple c of individuals from I is an answer for
a conjunctive query Q(x) =3y (conj(x,y)) to a description logic knowledge base L
iff for every Z = (A%, .T) that satisfies all F' € L, there exists a tuple o of elements
from AZ such that all assertions in congj(c, o) are satisfied in Z. In DL-Lite, computing
all such answers is possible in polynomial time in the data complexity.

3 Description Logic Programs

We adopt the (loosely coupled) description logic programs (or dl-programs) of [6,7],
which consist of a description logic knowledge base L and a generalized normal pro-
gram P, which may contain queries to L (called dl-queries) in rule bodies. We re-
mark that these dl-programs can also be extended by queries to other formalisms, such
as RDF theories. We now first define the syntax of dl-programs and then their answer
set and their well-founded semantics. Note that in contrast to [6,7], we assume here
that dl-queries may be conjunctive queries to L.
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3.1 Syntax

We assume a function-free first-order vocabulary ¢ with finite nonempty sets of con-
stant and predicate symbols @, and &, respectively, and a set of variables X. We as-
sume that (i) P, is a subset of I (since the constants in ¢, may occur in concept and
role assertions of dl-queries) and that (ii) @ and A (resp., R) have no unary (resp., bi-
nary) predicate symbols in common (and thus dl-queries are the only interface between
L and P). A term is a constant symbol from ¢ or a variable from X. If p is a predicate
symbol of arity k£ >0 from &, and t1, . .., t) are terms, then p(t1, ..., %) is an atom.
A literal is an atom a or a default-negated atom not a. A (normal) rule r is of the form

a<—by,..., bk, notbgy1,...,notby, (1)

where a, b1, ..., b, are atoms and m > k > 0. We call a the head of r, denoted H (r),
while the conjunction by, ..., bk, not byy1, ..., not b, is the body of r; its positive
(resp., negative) partis by, . . ., by, (resp., not by41, . . ., not b,,). We define B(r) as the
union of BT (r)={by,...,bx} and B~ (r) = {bg+1,-..,bm}. A (normal) program P
is a finite set of normal rules. We say P is positive iff it is “not”-free.

A dl-query Q(t) is a conjunctive query. A dl-atom has the form DL[S; W py, ...,
S W pm; Q(t)], where each S; is a concept or role, p; is a unary resp. binary predicate
symbol, Q(t) is a dl-query, and m > 0. We call p1, . . ., py, its input predicate symbols.
Intuitively, W increases .S; by the extension of p;. A (normal) dl-rule r is of the form (1),
where any b € B(r) may be a dl-atom. A (normal) dl-program KB = (L, P) consists of
a description logic knowledge base L and a finite set of dl-rules P. We say KB = (L, P)
is positive iff P is positive. Ground terms, atoms, literals, etc., are defined as usual. We
denote by ground(P) the set of all ground instances of dl-rules in P relative to ..

Example 2. A dl-program KB = (L, P) is given by L as in Example 1 and P consisting
of the following dl-rules, which express that (1) the relation of propaedeutics enjoys the
transitive property, (2) if a student has given an exam, then he/she has given all exams
that are propaedeutic to it, (3) if two students have a given exam in common, then
they have given the same exam, and (4) uniz is propaedeutic for java, and java is
propaedeutic for programming_languages:

(1
(2
(3
(4

propaedeutic(X,Z) — propaedeutic(X,Y), propaedeutic(Y, Z) ;
given_prop(X,Z) «— DL|[given(X,Y)], propaedeutic(Z,Y);
given_same_exam (X,Y) «— DL[given W given_prop; 3Z(given(X, Z)A\given(Y, Z))];

T O —

propaedeutic(uniz, java); propaedeutic(java, programming_languages) .

3.2 Answer Set Semantics

The Herbrand base HB ¢ is the set of all ground atoms constructed from constant and
predicate symbols in @. An interpretation I is any I C HBg. We say I is a model of
a € HBg under a description logic knowledge base L, denoted I =y, a, iff a € I. We
say I is a model of a ground dl-atom a = DL[S1 Wp1, ..., SpmWpm; Q(c)] under L, de-
noted I =1, a, iff LU~ A;(I) = Q(c), where A;(I) ={Si(e) | pi(e)€I}. We say [
is a model of a ground dl-rule r iff I\=; H(r) whenever I|=1,B(r), thatis, I = a
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forall a € BT (r) and I 1, a for all a € B~ (r). We say [ is a model of a dl-program
KB=(L, P), denoted I = KB, iff I |=1, r for all r € ground(P).

Like ordinary positive programs, each positive dl-program KB has a unique least
model, denoted M kg, which naturally characterizes its semantics. The answer set se-
mantics of general dl-programs is then defined by a reduction to the least model se-
mantics of positive ones, using a reduct that generalizes the ordinary Gelfond-Lifschitz
reduct [21] and removes all default-negated atoms in dl-rules: For dl-programs KB =
(L, P), the di-reduct of P relative to L and an interpretation I C HBg, denoted Pi,
is the set of all dl-rules obtained from ground(P) by (i) deleting each dl-rule r such
that I =1, a for some a € B~ (r), and (ii) deleting from each remaining dl-rule r the
negative body. An answer set of KB is an interpretation I C HBg such that I is the
unique least model of (L, Pi) A dl-program is consistent iff it has an answer set.

The answer set semantics of dl-programs has several nice features. In particular,
for dl-programs KB = (L, P) without dl-atoms, it coincides with the ordinary answer
set semantics of P. Answer sets of a general dl-program KB are also minimal mod-
els of KB. Furthermore, positive and locally stratified dl-programs have exactly one
answer set, which coincides with their canonical minimal model.

3.3 Well-Founded Semantics

Rather than associating with every dl-program a (possibly empty) set of two-valued
interpretations, the well-founded semantics associates with every dl-program a unique
three-valued interpretation.

A classical literal is either an atom a or its negation —a. For sets S C HBg, we
define =S ={-a|a € S}. We define Litg = HBy U—~HBg. A set of ground classical
literals S C Litg is consistent iff {a, ~a} € S for all a € HBg. A three-valued interpre-
tation is any consistent I C Litg. We define the well-founded semantics of dl-programs
KB = (L, P) via a generalization of the operator v2 for ordinary normal programs.
We define the operator yxp as follows. For every I C HBg, we define yxp(I) as
the least model of the positive dl-program KB’ = (L, P}). The operator yxp is anti-
monotonic, and thus the operator %5 (defined by v%5 (1) =vxp5 (ks (1)), for every
I C HBg) is monotonic and has a least and a greatest fixpoint, denoted Ifp(v%5) and
gfp(v%5 ), respectively. Then, the well-founded semantics of the dl-program KB, de-
noted WFS(KB), is defined as Ifp(v%5) U ~(HBs — gfo(Y%5))-

As an important property, the well-founded semantics for dl-programs approximates
their answer set semantics. That is, for all consistent dl-programs KB and ¢ € Litg,
it holds that £ € WFS(KB) iff ¢ is true in every answer set of KB.

4 Probabilistic Description Logic Programs

We now recall the (loosely coupled) probabilistic dl-programs from [14]. We first define
the syntax of probabilistic dl-programs and then their answer set semantics. Informally,
they consist of a dl-program (L, P) and a probability distribution u over a set of total
choices B. Every total choice B along with the dl-program (L, P) then defines a set of
Herbrand interpretations of which the probabilities sum up to p(B).
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4.1 Syntax

We now define the syntax of probabilistic dl-programs and queries addressed to them.
We first define choice spaces and probabilities on choice spaces.

A choice space C is a set of pairwise disjoint and nonempty sets A C HBg. Any
A € C is called an alternative of C, and any element a € A is called an atomic choice
of C. Intuitively, every alternative A € C represents a random variable and every atomic
choice a € A one of its possible values. A fotal choice of C is a set B C HBg such
that |[B N A|=1 for all A€ C (and thus |B|=|C|). Intuitively, every total choice B
of C represents an assignment of values to all the random variables. A probability
on a choice space C' is a probability function on the set of all total choices of C. Intu-
itively, every probability y is a probability distribution over the set of all variable as-
signments. Since C and all its alternatives are finite, y can be defined by (i) a mapping
p: JUC—10,1]suchthaty" . 4 pu(a)=1forall AcC, and (ii) u(B) = Ileppu(b)
for all total choices B of C' Intuitively, (i) defines a probability over the values of each
random variable of C, and (ii) assumes independence between the random variables.

A probabilistic dl-program KB = (L, P,C, i) consists of a dl-program (L, P), a
choice space C such that (i) | JC C HBg and (ii) no atomic choice in C' coincides with
the head of any r € ground(P), and a probability 1 on C. Intuitively, since the total
choices of C select subsets of P, and  is a probability distribution on the total choices
of C, every probabilistic dl-program is the compact encoding of a probability distri-
bution on a finite set of normal dl-programs. Observe here that P is fully general and
not necessarily stratified or acyclic. An event o is any Boolean combination of atoms
(that is, constructed from atoms via the Boolean operators “A” and “—"). A conditional
event is of the form 3|a, where « and 3 are events. A probabilistic query has the form
3(B|a)[r, s], where 3|« is a conditional event, and r and s are variables.

Example 3. Consider KB = (L, P,C, ), where L and P are as in Examples 1 and 2,
respectively, except that the following two (probabilistic) rules are added to P:

friends(X,Y) «— given_same_ezam(X,Y'), DL[master_student (X)],
DL[master _student(Y)], choicem ;

friends(X,Y) «— gien_same_ezam(X,Y), DL[bachelor_student(X)],
DL[bachelor _student(Y')], choicey, .

Let C' = {{ choice,, not_choicen, }, { choicey, not_choicey } }, and let the probability
on C be given by p: choice,,, not_choice,,, choicey, not_choice, — 0.9, 0.1, 0.7,
0.3. Here, the new rules express that if two master (resp., bachelor) students have given
the same exam, then there is a probability of 0.9 (resp., 0.7) that they are friends. Note
that probabilistic facts can be encoded by rules with only atomic choices in their body.
Our wondering about the entailed tight interval for the probability that john and bill are
friends can then be expressed by the probabilistic query 3(friends(john, bill))[R, S].

4.2 Answer Set Semantics

We now define a probabilistic answer set semantics of probabilistic dl-programs, and
the notions of consistency and tight answers.
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Given a probabilistic dl-program KB = (L, P, C, u), a probabilistic interpretation
Pr is a probability function on the set of all  C HBg. We say Pr is an answer set of
KB iff (i) every interpretation I C HBg with Pr(I) >0 is an answer set of (L, P U
{p < | p€ B}) for some total choice B of C, and (ii) Pr(/\ .5 p) = u(B) for every
total choice B of C. Informally, Pr is an answer set of KB = (L, P, C, ) iff (i) every
interpretation I C HBg of positive probability under Pr is an answer set of the dl-
program (L, P) under some total choice B of C, and (ii) Pr coincides with p on the
total choices B of C. We say KB is consistent iff it has an answer set Pr.

Given a ground event «, the probability of « in a probabilistic interpretation Pr, de-
noted Pr(«), is the sum of all Pr(I) such that I C HBg and I |= «. We say (8]a)[l, u],
where « and 3 are ground events, and [, u € [0, 1], is a tight consequence of a consistent
probabilistic dl-program KB under the answer set semantics iff [ (resp., u) is the infi-
mum (resp., supremum) of Pr(aA3) / Pr(a) subject to all answer sets Pr of KB with
Pr(a)) > 0. Note that this infimum (resp., supremum) is naturally defined as 1 (resp.,
0) iff no such Pr exists. The tight answer for a probabilistic query Q =3(8|a)[r, $]
to KB under the answer set semantics is the set of all ground substitutions 6 (for
the variables in @) such that (3|a)[r, s]6 is a tight consequence of KB under the an-
swer set semantics. For ease of presentation, since the tight answers for probabilistic
queries @ = 3(B|a)[r, s] with non-ground B|a can be reduced to the tight answers for
probabilistic queries @ = 3(3|a)|[r, s] with ground (3|a, we consider only the latter type
of probabilistic queries in the following.

4.3 Total Well-Founded Semantics

We now recall the total well-founded semantics for probabilistic dl-programs, which
is defined for all probabilistic dl-programs (as opposed to the answer set semantics,
which is only defined for consistent probabilistic dl-programs) and for all probabilistic
queries to probabilistic dl-programs (as opposed to the previous well-founded semantics
of [14], which is only defined for a very limited class of probabilistic queries).

More precisely, given a probabilistic dl-program KB = (L, P,C, i) and a proba-
bilistic query @ = 3(5|a)[r, s] with ground 3|, the tight answer 6 for Q to KB under
the previous well-founded semantics of [14] exists iff both ground events o A 3 and
« are defined in every S = WFS(L, PU{p < | p € B}) such that B is a total choice
of C. Here, a ground event ¢ is defined in S iff either I |= ¢ for every interpretation
IDSNHBg, or I~ ¢ for every interpretation [ O SN HBg. If « is false in every
WES(L,P U {p < |p€ B}) such that B is a total choice of C, then the tight an-
swer is defined as 6 = {r/1, s/0}; otherwise, the tight answer (if it exists) is defined
as 0 ={r/%, s/}, where u (resp., v) is the sum of all ;(B) such that (i) B is a total
choice of C and (ii) o A B (resp., @) is true in WES (L, PU{p — | p € B}).

We define the total well-founded semantics for probabilistic dI-programs as follows.

Definition 1 (Total Well-Founded Semantics). Let KB = (L, P,C, i) be a proba-
bilistic dl-program, and let @ = 3(5|a)[r, s] be a probabilistic query with ground 3|a.
Let a (resp., b~) be the sum of all (B) such that (i) B is a total choice of C and (ii)
aAf is true (resp., false) in WFS(L, PU{p < |p € B}). Let ¢ (resp., d~) be the sum
of all (B) such that (i) B is a total choice of C' and (ii)) aA—g is true (resp., false) in



60 A. Cali and T. Lukasiewicz

WES(L, PU{p «—|p€eB}). Letb=1-b" and d=1—d . Then, the tight answer 0
Sor Q to KB under the total well-founded semantics (TWFS(KB)) is defined by

{r/1, s/0} ifb=0and d=0;
{r/0, s/0} ifb=0and d#0; )
) {r/1, s/1} ifb£0and d=0;

{r/otar s/ Wbc } otherwise.

We finally report some results from [19] on the complexity of tight query processing
in probabilistic dl-programs under the total well-founded semantics.

Tight query processing in probabilistic dl-programs KB = (L, P, C, i1) in DL-Lite
(where L is in DL-Lite) under TWFS(KB) can be done in polynomial time in the
data complexity. This result follows from the facts that (a) computing the well-founded
semantics of a normal dl-program and (b) conjunctive query processing in DL-Lite can
both be done in polynomial time in the data complexity. Here, |C| is bounded by a
constant, since C' and p define the probabilistic information of P, which is fixed as a
part of the program in P, while the ordinary facts in P are the variable input. Computing
tight answers is EXP-complete in the combined complexity.

5 Probabilistic Data Integration

Integrating data from different sources is a crucial issue in the Semantic Web. In this
section, we show how probabilistic dl-programs can be employed as a formalism for
data integration in the Semantic Web. We first give some general definitions.

A data integration system (in its most general form) [22] I = (G, S, M) consists
of (i) a global (or mediated) schema G, which represents the domain of interest of
the system, (ii) a source schema S, which represents the data sources that take part
in the system, and (iii) a mapping M, which establishes a relation between the source
schema and the global schema. Here, G is purely virtual, while the data are stored in .S.
The mapping M can be specified in different ways, which is a crucial aspect in a data
integration system. In particular, when every data structure in G is defined through a
view over S, the mapping is said to be GAV (global-as-view), while when very data
structure in S is defined through a view over G the mapping is LAV (local-as-view).
A mixed approach, called GLAV [23,24], associates views over G to views over S.

5.1 Modeling Data Integration Systems

In our framework, we assume that the global schema G, the source schema S, and the
mapping M are each encoded by a probabilistic dl-program. More formally, we par-
tition the vocabulary @ into the sets ¢, g, and P.: (i) the symbols in P are of
arity at least 1 and represent the global predicates, (ii) the symbols in @ ¢ are of arity
at least 1 and represent source predicates, and (iii) the symbols in @, are constants.
Let A and R be disjoint denumerable sets of atomic concepts and abstract roles,
respectively, for the global schema, and let Ag and Rg (disjoint from Ag and Rg)
be similar sets for the source schema. We also assume a denumerable set of individ-
uals I that is disjoint from the set of all concepts and roles and a superset of .. A
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probabilistic data integration system PI = (KB g, KBg, KB)s) consists of a prob-
abilistic dl-program KB = (Lg, P, Cg, i) for the global schema, a probabilistic
dl-program KB gs=(Lg,Ps,Cs, uus) for the source schema, and a probabilistic dl-pro-
gram KB s = (0, Pas, Cas, puas) for the mapping:

— KBg (resp., KBg) is defined over the predicates, constants, concepts, roles, and
individuals of the global (resp., source) schema, and it encodes ontological, rule-
based, and probabilistic relationships in the global (resp., source) schema.

— KBy is defined over the predicates, constants, concepts, roles, and individuals of
the global and the source schema, and it encodes a probabilistic mapping between
the predicates, concepts, and roles of the source and those of the global schema.

Our probabilistic dl-rules permit a specification of the mapping that can freely use
global and source predicates together in rules, thus having a formalism that generalizes
LAV and GAV in some way. Moreover, with a simple technicality, we are able to partly
model GLAV systems. In GLAV data integration systems, the mapping is specified by
means of rules of the form ¢ « ¢, where v is a conjunction of atoms of G and ¢
is a conjunction of atoms of S. We introduce an auxiliary atom « that contains all the
variables of ¢; moreover, let ¢ = 51 A ... A By,. We model the GLAV mapping rule
with the following rules:

81—«

Bm —
Ck<—90

What our framework does not allow is having rules that are unsafe, that is, having
existentially-quantified variables in the head.

Note also that correct and tight answers to probabilistic queries on the global schema
are formally defined relative to the probabilistic dl-program KB = (L, P, C, 1), where
L=LgULg, P=PgUPsUPy, C=CegUCsUCyp, and p=pug - ps - -
Informally, KB is the result of merging KBg, KBg, and KB ;. In a similar way,
the probabilistic dl-program KBg of the source schema S can be defined by merging
the probabilistic dl-programs KBg,, ..., KBg, of n > 1 source schemas 51, ..., S,.

The fact that the mapping is probabilistic allows for a high flexibility in the treat-
ment of the uncertainty that is present when pieces of data come from heterogeneous
sources whose informative content may be inconsistent and/or redundant relative to the
global schema G, which in general incorporates constraints. Some different types of
probabilistic mappings that can be modeled in our framework are summarized below.

5.2 Types of Probabilistic Mappings

In addition to expressing probabilistic knowledge about the global schema and about
the source schema, the probabilities in probabilistic dl-programs can especially be used
for specifying the probabilistic mapping in the data integration process. We distinguish
three different types of probabilistic mappings, depending on whether the probabilities
are used as trust, error, or mapping probabilities.
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The simplest way of probabilistically integrating several data sources is to weigh
each data source with a trust probability (which all sum up to 1). This is especially
useful when several redundant data sources are to be integrated. In such a case, pieces
of data from different data sources may easily be inconsistent with each other.

Example 4. Suppose that we want to obtain a weather forecast for a certain place by
integrating the potentially different weather forecasts of several weather forecast insti-
tutes. For ease of presentation, suppose that we only have three weather forecast insti-
tutes A, B, and C. In general, one trusts certain weather forecast institutes more than
others. In our case, we suppose that our trust in the institutes A, B, and C' is expressed
by the trust probabilities 0.6, 0.3, and 0.1, respectively. That is, we trust most in A,
medium in B, and less in C'. In general, the different institutes do not use the same data
structure to represent their weather forecast data. For example, institute A may use a
single relation forecast(place, date, weather, temperature, wind) to store all the data,
while B may have one relation forecast_place(date, weather, temperature, wind) for
each place, and C' may use several different relations forecast_weather (place, date,
weather), forecast _temperature(place, date, temperature), and forecast_wind
(place, date, wind). Suppose the global schema G has the relation
forecast_rome_global(date, weather, temperature, wind), which may e.g. be posted
on the web by the tourist information of Rome. The probabilistic mapping of the source
schemas of A, B, and C' to the global schema G can then be specified by the following
KBM = (@, PM, CM, [I,M)I

Py = {forecast_rome_global (D, W, T, M) «— forecast(rome, D, W, T, M), insta;
forecast_rome_global (D, W, T, M) « forecast_rome(D, W, T, M), instg;
forecast_rome_global(D, W, T, M) « forecast_weather(rome, D, W),

forecast _temperature (rome, D, T, forecast_wind(rome, D, M), instc};
Cn = {{insta, instp,instc}};

un :oinsta, insts, instc — 0.6, 0.3, 0.1.

The mapping assertions state that the first, second, and third rule above hold with the
probabilities 0.6, 0.3, and 0.1, respectively. This is motivated by the fact that three
institutes may generally provide conflicting weather forecasts, and our trust in the insti-
tutes A, B, and C are given by the trust probabilities 0.6, 0.3, and 0.1, respectively.

A more complex way of probabilistically integrating several data sources is to associate
each data source (or each derivation) with an error probability.

Example 5. Suppose that we want to integrate the data provided by the different sen-
sors in a sensor network. For example, suppose that we have a sensor network measur-
ing the concentration of ozone in several different positions of a certain town, which
may e.g. be the basis for the common hall to reduce or forbid individual traffic. Sup-
pose that each sensor 7 € {1,...,n} with n > 1 is associated with its position through
sensor (i, position) and provides its measurement data in a single relation reading;
(date, time, type, result). Each such reading may be erroneous with the probability e;.
That is, any tuple returned (resp., not returned) by a sensor i € {1, ..., n} may not hold
(resp., may hold) with probability e;. Suppose that the global schema contains a single
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relation reading(position, date, time, type, result). Then, the probabilistic mapping
of the source schemas of the sensors i € {1,...,n} to the global schema G can be
specified by the following probabilistic dl-program KBy = (0, Par, Cir, piar):

Py = {auz;(P,D,T, K, R) — reading,(D,T, K, R), sensor(i, P)|i€{1,...,n}} U
{reading(P,D, T, K, R) <« auz;(P,D,T, K, R), not_error; |i€{l,...,n}} U
{reading(P,D, T, K, R) < not auz;(P,D,T, K, R), error; |i€{1,...,n}};

Cwn = {{error;, not_error; } |[i€{1,...,n}};

Un : o errori, not_errori, ..., errory, not_errory, +— ei, l—ei, ..., en, l—en .

Note that if there are two sensors j and k for the same position, and they both return
the same tuple as a reading, then this reading is correct with the probability 1 — e ey
(since it may be erroneous with the probability e;e). Note also that this modeling
assumes that the errors of the sensors are independent from each other, which can
be achieved by eventually unifying atomic choices. For example, if the sensor j de-
pends on the sensor k, then j is erroneous when k is erroneous, and thus the atomic
choices {error;, not_error;} and {errory, not_errory} are merged into the new ato-
mic choice { error;errory, not_error;errory, not_error;not_errory}.

When integrating several data sources, it may be the case that the relationships be-
tween the source schema and the global schema are purely probabilistic.

Example 6. Suppose that we want to integrate the schemas of two libraries, and that
the global schema contains the predicate symbol logic_programming, while the source
schemas contain only the concepts rule-based_systems resp. deductive_databases in
their ontologies. These three concepts are overlapping to some extent, but they do
not exactly coincide. For example, a randomly chosen book from rule-based_systems
(resp., deductive_databases) may belong to the area logic_programming with the prob-
ability 0.7 (resp., 0.8). The probabilistic mapping from the source schemas to the global
schema can then be expressed by the following KBy = (0, Prr, Cir, poar):

Prr = {logic_programming(X) < DL[rule-based_systems(X)], choicey ;
logic_programming(X) < DL[deductive_databases(X)], choicez} ;
Cwm = {{choice1, not_choice1 }, { choices, not_choices }};

un : choicer, not_choicer, choicea, not_choicea — 0.7, 0.3, 0.8, 0.2.

5.3 Deterministic Mappings on Probabilistic Data

Finally, we briefly describe an approach to use probabilistic dl-programs to model prob-
abilistic data, such as those in [25].

Example 7. Suppose that the weather in Oxford can be sunny, cloudy, or rainy with
probabilities 0.2, 0.45, and 0.35, respectively, and similar probabilities are assigned
for other cities. This setting is analogous to the ‘“classical” one of probabilistic data,
where there is a probability distribution over ground facts. In such a case, the choice
space is C' = {{weather (ozford, sunny), weather(oxford, cloudy), weather(ozford,
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rainy)}, ...}, and the probability is u: weather(ozford, sunny), weather(oxford,
cloudy), weather (ozford, rainy) — 0.2,0.4,0.3. A mapping rule such as

candidate_destination (L) «— weather (L, sunny)

can now express the fact that a destination is a candidate for a day-trip if it has sunny
weather. While the mapping is purely deterministic, the probability distributions on the
sets of atomic choices of the choice space enforce, by virtue of the mapping, a proba-
bility distribution on the ground facts of the global schema. Our framework is able to
capture this situation, providing a framework for query answering over uncertain data.

6 Conclusion

We have considered tractable probabilistic dl-programs for the Semantic Web, which
combine tractable description logics, normal programs under the answer set and the
well-founded semantics, and probabilities. Based on the results of [19], we have intro-
duced a framework to model and represent data integration systems for the Semantic
Web, which are capable of taking into account uncertainty in the mappings and the
data sources. We have shown that probabilistic dl-programs are capable of modeling
probabilistic mappings, and also data where for each tuple a probability is defined.

Our future research will focus on considering more expressive forms of rules, and in
particular rules that have existentially quantified variables in the head, similarly to tuple-
generating dependencies in database theory. Furthermore, we plan to develop top-k
query techniques for the presented framework, which is especially important in the
case of integrating large sets of data in the Semantic Web.
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Abstract. Using mappings between ontologies is a common way of approaching
the semantic heterogeneity problem on the Semantic Web. To fit into the land-
scape of Semantic Web languages, a suitable logic-based representation formal-
ism for mappings is needed, which allows to reason with ontologies and mappings
in an integrated manner, and to deal with uncertainty and inconsistencies in auto-
matically created mappings. We analyze the requirements for such a formalism,
and propose to use frameworks that integrate description logic ontologies with
probabilistic rules. We compare two such frameworks and show the advantages
of using the probabilistic extensions of their deterministic counterparts. The two
frameworks that we compare are tightly coupled probabilistic dl-programs, which
tightly combine the description logics behind OWL DL resp. OWL Lite, disjunc-
tive logic programs under the answer set semantics, and Bayesian probabilities,
on the one hand, and generalized Bayesian dl-programs, which tightly combine
the DLP-fragment of OWL Lite with Datalog (without negation and equality)
based on the semantics of Bayesian networks, on the other hand.
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1 Introduction

The problem of aligning heterogeneous ontologies via semantic mappings has been
identified as one of the major challenges of Semantic Web technologies. In order to ad-
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dress this problem, a number of languages for representing semantic relations between
elements in different ontologies as a basis for reasoning and query answering across
multiple ontologies have been proposed [1]. In the presence of real world ontologies,
it is unrealistic to assume that mappings between ontologies are created manually by
domain experts, since existing ontologies (e.g., in the area of medicine) contain thou-
sands of concepts and hundreds of relations. Recently, a number of heuristic methods
for matching elements from different ontologies have been proposed that support the
creation of mappings between different languages by suggesting candidate mappings
(e.g., [2]). These methods rely on linguistic and structural criteria. The resulting map-
ping either contains a fair amount of errors or only covers a small part of the ontologies
involved [3,4]. To leverage the weaknesses of the individual methods, it is common
practice to combine the results of a number of matching components or even the results
of different matching systems to achieve a better coverage of the problem [2].

This means that automatically created mappings often contain uncertain hypotheses
and errors that need to be dealt with, as briefly summarized as follows:

— mapping hypotheses are often oversimplifying, since most matchers only support
very simple semantic relations (mostly equivalence between individual elements);

— there may be conflicts between different hypotheses for semantic relations from
different matching components and often even from the same matcher;

— semantic relations are only given with a degree of confidence in their correctness.

If we want to use the resulting mapping, we have to find a way to deal with these
uncertainties and errors in a suitable way. We argue that the most suitable way of dealing
with uncertainties in mappings is to provide means to explicitly represent uncertainties
in the target language that encodes the mappings. In this paper, we address the problem
of designing a mapping representation language that is capable of representing the kinds
of uncertainty mentioned above. We propose two approaches to such a language, which
are based on an integration of ontologies and rules under probabilistic uncertainty, and
compare them regarding the necessary representation requirements.

We choose rules for the representation of mappings, because they are an intuitive
means for this task. Thinking in if-then statements (e.g., if an instance belongs to a
certain concept in ontology O1, then it belongs to a certain concept in ontology O3) is
very straight-forward and easily comprehensible also to people with few background in
logics. Furthermore, reasoning with rules has the advantage that instance retrieval can
generally be performed more efficiently than with description logics. Another advantage
of rule languages is that they allow to formulate meta-modeling statements while with
description logics this is generally not possible. In this way, the distinction between
concepts and their instances is flattened, that is, instances can also be concepts at the
same time and vice versa [5]. As we want to use a rule language for the representation
of mappings, we need a language that provides a tight integration of a rule language
and a description logic on the formal level.

There is a large body of work on rules for the Semantic Web and on integrating on-
tologies and rules for the Semantic Web; see especially [6] and [7], respectively, for an
overview. Here, we consider two frameworks, namely, (i) tightly coupled dl-programs
[8], which integrate the description logics behind OWL DL resp. OWL Lite and disjunc-
tive logic programs under the answer set semantics, and (ii) generalized dl-programs,
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which are an integration of the DLP-fragment of description logics [9] and Datalog. For
both formalisms, we provide a formal representation and show how mappings can be
represented in these frameworks. Note that both formalisms are decidable and allow the
arbitrary usage of description logic concepts and roles in the rules component.

Other works explore formalisms for uncertainty reasoning in the Semantic Web (an
important recent forum for approaches to uncertainty in the Semantic Web is the annual
Workshop on Uncertainty Reasoning for the Semantic Web (URSW); there also exists a
W3C Incubator Group on Uncertainty Reasoning for the World Wide Web). There are
especially probabilistic extensions of description logics [10], Web ontology languages
[11,12], and description logic programs [13] (to encode ambiguous information, such
as “John is a student with the probability 0.7 and a teacher with the probability 0.3”,
which is very different from vague/fuzzy information, such as “John is tall with the
degree of truth 0.7””). However, to our knowledge, none of these formalisms have been
used for representing uncertain mappings. We provide probabilistic extensions of the
above-mentioned tightly coupled dl-programs and generalized dl-programs, which are
based on general Bayesian probabilities and Bayesian networks [14], respectively.

The main contributions of this paper can be briefly summarized as follows.

— We show how tightly coupled dI-programs can be used for representing and reason-
ing with ontologies and deterministic mappings between ontologies. We introduce
tightly coupled probabilistic dl-programs, and show how they can be used for rep-
resenting and reasoning with ontologies and uncertain mappings between them.

— We introduce generalized dl-programs and generalized Bayesian dl-programs, and
show how they can be used for representing and reasoning with ontologies and
deterministic and uncertain mappings between ontologies, respectively.

— We give a detailed comparison of the features of the two deterministic and the two
probabilistic formalisms with respect to representing and reasoning with ontologies
and deterministic resp. uncertain ontology mappings in the Semantic Web.

The rest of this paper is structured as follows. In Section 2, we define the require-
ments that a formal language has to fulfill for representing mappings between ontolo-
gies in the Semantic Web. In Section 3, we recall the description logics behind OWL DL
and OWL Lite as well as the DLP-fragment [9]. We also provide an example scenario
consisting of two ontologies. In Section 4, we present tightly coupled dl-programs and
generalized dl-programs, and show how they can be used for representing determinis-
tic mappings between ontologies. In Section 5, we present tightly coupled probabilistic
dl-programs and generalized Bayesian dl-programs. We also provide an example sce-
nario, and show how uncertain mappings can be represented in both formalisms and
how reasoning can be performed. We finally conclude with Section 6, where we discuss
the representation features of both formalisms and give an outlook on future research.

2 Representation Requirements

The problem of ontology matching can be defined as follows [2]. Ontologies are theo-
ries encoded in a certain language L. In this work, we assume that ontologies are en-
coded in OWL DL, OWL Lite, or the DLP-fragment of OWL Lite. For each ontology O
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in language L, we denote by Q(O) the matchable elements of the ontology O. Given
two ontologies O and O’, the task of matching is now to determine correspondences
between the matchable elements in the two ontologies. In general, correspondences
are 5-tuples (id, e, e, r,n) such that

id is a unique identifier for referring to the correspondence;

e € Q(O0) and €’ € Q(O’) are matchable elements from the two ontologies;
r € R is a semantic relation;

n is a degree of confidence in the correctness of the correspondence.

In this paper, we only consider semantic relations » which can be interpreted as an
implication. We consider two formal languages for representing and combining corre-
spondences that are produced by different matching components or systems. From the
above general description of automatically generated correspondences between ontolo-
gies, we can derive a number of requirements for such a formal language for represent-
ing the results of multiple matchers as well as the contained uncertainties:

— Tight integration of mapping and ontology language: The semantics of the lan-
guage used to represent the correspondences between elements in different ontolo-
gies has to be tightly integrated with the semantics of the ontology language used
(here OWL). This is important if we want to use the correspondences to reason
across different ontologies in a semantically coherent way. This also means that the
interpretation of the mapped elements depends on the definitions in the ontologies.
Failing this requirement comes along with not that nice semantic properties.

— Support for mappings refinement: The language should be expressive enough to
allow the user to refine oversimplifying correspondences from the matching system.
This is important to be able to provide a precise account of the true semantic relation
between elements in the mapped ontologies. In particular, this requires the ability
to describe correspondences that include several elements from the two ontologies.

— Support for repairing inconsistencies: Inconsistent mappings are a major problem
for the combined use of ontologies because they can cause inconsistencies in the
mapped ontologies, which can make logical reasoning impossible, since everything
can be derived from an inconsistent ontology. The mapping language should be able
to represent and reason about inconsistent mappings in an approximate fashion.

— Representation and combination of confidence: The confidence values provided
by matching systems is an important indicator for the uncertainty to be taken into
account. The mapping language should be able to use these confidence values when
reasoning with mappings. In particular, it should be able to represent the confidence
in a mapping rule and to combine confidence values on a sound formal basis.

— Decidability and efficiency of instance reasoning: An important use of ontology
mappings is the exchange of data across different ontologies. In particular, we nor-
mally want to be able to ask queries using the vocabulary of one ontology and
receive answers that do not only consist of instances of this ontology but also of
ontologies connected through ontology mappings. To support this, query answering
in the combined formalism consisting of ontology language and mapping language
has to be decidable. Furthermore, to be able to handle large amounts of data in the
Semantic Web, there should be efficient algorithms for answering queries.
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In the following, we consider two different logic formalisms and investigate their
ability to fulfill the above representation requirements.

3 Representing Ontologies

In this section, we first recall the two expressive description logics SHOZN (D) and
SHIF (D) as well as the DLP-fragment of SHZF (D). We then illustrate along an
example scenario how they are used to represent ontologies.

3.1 The Description Logics SHOZN (D) and SHZF (D)

The description logics SHOZN (D) and SHZF(D) are important in the Semantic
Web, since they stand behind the Web ontology languages OWL DL and OWL Lite
[15], respectively. Intuitively, description logics model a domain of interest in terms of
concepts and roles, which represent classes of individuals and binary relations between
classes of individuals, respectively. A description logic knowledge base encodes espe-
cially subset relationships between concepts and between roles, and the membership of
individuals to concepts and of pairs of individuals to roles.

Syntax. We first describe the syntax of SHOZN (D). We assume a set of elementary
datatypes and a set of data values. A datatype is either an elementary datatype or a set of
data values (datatype oneOf). A datatype theory D = (AP, -P) consists of a datatype
domain AP and a mapping - that assigns to each elementary datatype a subset of AP
and to each data value an element of AP. The mapping -P is extended to all datatypes
by {vi,...}P ={vP,...}. Let A, R4, Rp, and I be pairwise disjoint (denumerable)
sets of atomic concepts, abstract roles, datatype roles, and individuals, respectively.
We denote by R the set of inverses R~ of all RE R 4.

A role is any element of R4 UR; URp. Concepts are inductively defined as fol-
lows. Every ¢ € A is a concept, and if 01,...,0, €L, then {01,...,0,} is a concept
(oneOf). If ¢, ¢1, and ¢o are concepts and if Re R4 UR,, then also (¢; M ¢2),
(¢1U¢2), and —¢ are concepts (conjunction, disjunction, and negation, respectively), as
well as AR.¢, VR.¢, >2n R, and <nR (existential, value, atleast, and atmost restriction,
respectively) for an integer n > 0. If D is a datatype and U € R p, then 3U.D, VU.D,
>nU, and <nU are concepts (datatype existential, value, atleast, and atmost restric-
tion, respectively) for an integer n > 0. We write T and L to abbreviate the concepts
¢ U —¢ and ¢ M —¢, respectively, and we eliminate parentheses as usual.

An axiom has one of the following forms: (1) ¢ E (concept inclusion axiom),
where ¢ and v are concepts; (2) RC S (role inclusion axiom), where either R, S €
R4 UR} or R, S €Rp; (3) Trans(R) (transitivity axiom), where R € R 4; (4) ¢(a)
(concept membership axiom), where ¢ is a concept and a € I; (5) R(a,b) (resp., U(a,
v)) (role membership axiom), where R € R4 (resp., U ¢ Rp) and a,be I (resp.,a €1
and v is a data value); and (6) a =0 (resp., a # b) (equality (resp., inequality) axiom),
where a,b €1 Axioms of the form (1)—(3) (resp., (4) and (5)) are also called TBox
(resp., ABox) axioms. A (description logic) knowledge base L is a finite set of axioms.
For decidability, number restrictions in L are restricted to simple abstract roles [16].

The syntax of SHZF (D) is as the above syntax of SHOZN (D), but without the
oneOf constructor and with the atleast and atmost constructors limited to 0 and 1.



Rule-Based Approaches for Representing Probabilistic Ontology Mappings 71

Semantics. An interpretation T = (AZ,-T) relative to a datatype theory D = (AP, .P)
consists of a nonempty (abstract) domain A* disjoint from AP, and a mapping -Z that
assigns to each atomic concept ¢ € A a subset of AZ, to each individual o €I an ele-
ment of AZ, to each abstract role R € R 4 a subset of A7 x AZ, and to each datatype
role U € Rp a subset of A7 x AP, We extend - to all concepts and roles, and we
define the satisfaction of an axiom F' in an interpretation Z = (A%, -Z), denoted Z |= F,
as usual [15]. We say Z satisfies the axiom F, or Z is a model of F, iff T |=F. We
say Z satisfies a knowledge base L, or Z is a model of L, denoted 7 |= L, iff 7 = F for
all F'e L. We say L is satisfiable iff L has a model. An axiom F' is a logical conse-
quence of L, denoted L |= F, iff every model of L satisfies F.

3.2 The DLP-Fragment of SHZF (D)

The description logic programming fragment (or DLP-fragment) of SHZF (D) [9] lies
in the expressive intersection of description logics and logic programs. Hence, it is pos-
sible to translate an ontology in the DLP-fragment into a logic program and vice versa
without loss of declarative semantics. This process, that is, the bidirectional translation
from the description logic syntax to the logic programming syntax and vice versa, has
been called DLP-fusion [9]. It provides a basis for achieving interoperability.

We now describe the restrictions that are imposed on SHZF to obtain the DLP-
fragment. First, negation, equality, inequality, the atleast constructor, and the atmost
constructor are disallowed. Note that some combinations of the atleast and the atmost
constructors in SHZF can be modeled by other constructors. Another restriction on
SHZF is based on a distinction between the body ¢ and the head 1 of concept in-
clusion axioms ¢ C v: the head is constructed from atomic concepts via conjunctions
and value restrictions, while the body is constructed from atomic concepts via conjunc-
tions, disjunctions, and existential restrictions. In addition, one allows concept inclusion
axioms T CVR.1), where R€ R4 UR;, and v is a head concept. Furthermore, one al-
lows only concept membership axioms (a), where v is a head concept.

Although the DLP-fragment has a restricted expressivity, it has several advantages.
In particular, a large amount of existing ontologies lie within the DLP-fragment. More-
over, reasoning in the DLP-fragment is not only decidable, but also has a much lower
complexity than reasoning in SHZF (D) and SHOZN (D) in theory and practice.

3.3 Example Scenario

We consider a retrieval scenario where two different peers provide information about
publications based on two different bibliographic ontologies O; and Os.

Ontology O1: (1) technical reports have topics as keywords and persons as authors;
(2) publications are not technical reports; (3) every book is a publication; (4) every
article is a publication; (5) every collection is a publication; (6) a publication is either a
book or an article or a collection; (7) books are not articles; (8) books are not collections;
(9) articles are not collections; (10) publications have topics as keywords and authors
as publications. These relationships are expressed by the following TBox axioms:
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(1) Technical_Report C Ykeyword. Topic MY author.Person;

(2) Publication T —Technical _Report;

(3) Book T Publication; (4) Article C Publication; (5) Collection T Publication;
(6) Publication T Book U Article LI Collection; (7) Book T —Article;

(8) Book C —Collection; (9) Article C —Collection;

(10) Publication C Vkeyword. Topic M Yauthor.Person.

Note that the ontology O] obtained from O; by removing the axioms (2) and (6)—(9)
lies in the DLP-fragment. The ABox shown below belongs to Oy and O}:

Book(b1); (12) Article(a1); (13) Collection(c1); (14) Technical_Report(ti1);
keyword (b1, artificial _intelligence); keyword (a1, artificial _intelligence);
keyword (c1, software_engineering); keyword (t1, artificial -intelligence);

(11
(15
(16
(17) author (b1, John); author (a1, Paul); author (b, Michael); author(t1, Peter).

—_ T —

Ontology O5: (1) every paper is a publication; (2) every proceedings is a publication;
(3) papers are not proceedings; (4) the role includes relates proceedings with papers;
(5) proceedings include at least 5 different entities (that is, papers); (6) publications
are not publishers; (7) publications are not persons; (8) publications are not subjects;
(9) persons are not subjects; (10) persons are not publishers; (11) the role published by
relates publications with publishers; (12) the role about relates publications with sub-
jects; (13) the role author relates publications with persons. These relationships are
expressed by the following TBox axioms:

) Paper T Publication; (2) Proceedings T Publication; (3) Paper T —Proceedings;
) T C Vincludes. Paper; T C Vincludes™*.Proceedings;

) Proceedings C> 5 includes;

) Publication T —Publisher; (7) Publication T —Person;

) Publication T —Subject; (9) Person T —Subject; (10) Person T —Publisher;

1) T C Vpublished_by.Publisher; T T Vpublished_by~*.Publication;

2) T C Vabout.Subject; T C Yabout ~*. Publication;

3) T C Vauthor.Person; T C Y author—*. Publication.

Note again that the ontology O obtained from Os by removing the axioms (3) and
(5)—(10) lies in the DLP-fragment. The ABox shown below belongs to O, and O%:

4) includes(procy, p1);

) about(p1, artificial _intelligence), about(p2, artificial_intelligence);
) author(p1, Mary), author (p2, Elizabeth);

) published _by(p1, Springer); published_by(proc,, Springer);

)

(1
(1
(1
(1
(18) paper(p2).

5
6
7
8

Since the above two ontologies describe overlapping domains, a user may want to query
the information represented by both of them in an integrated manner. For example, a
user may be looking for all technical reports in both ontologies, or a user may be inter-
ested in all publications about artificial intelligence in both ontologies. In the following,
we investigate two formal information integration frameworks that allow dealing with
ontologies and with mappings encoded in a probabilistic rule language at the same time.
At first, however, in Section 4, we look at their deterministic variants.
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4 Representing Deterministic Ontology Mappings

The integration task is stated as follows. Let O = O; U O5 be the union of two on-
tologies O and Oz with overlapping domains. Let Oy, O3, and O be encoded in the
description logics L1, Lo, and L = Ly U L1, respectively. Let the logic program P rep-
resent a set of deterministic mappings. How can we then reason with O and P such
that queries reflect the integrated knowledge? In the following, we present two formal
frameworks that aim at integrating description logic ontologies with mapping rules.
For this purpose, we assume a first-order vocabulary @ with finite nonempty sets
of constant and predicate symbols, but no function symbols. We use @, to denote the
set of all constant symbols in ¢. We also assume a set of data values V (relative to a
datatype theory D = (AD, -D)) and pairwise disjoint (denumerable) sets A, R4, Rp,
and I of atomic concepts, abstract roles, datatype roles, and individuals, respectively, as
in Section 3. We assume that (i) @, is a subset of IUV, and that (ii) ¢ and A (resp.,
R 4 UR p) may have unary (resp., binary) predicate symbols in common. Let X be a
set of variables. A ferm is either a variable from X or a constant symbol from &é. An
atom is of the form p(t1,...,t,), where p is a predicate symbol of arity n > 0 from @,
and tq,...,t, are terms. Such an atom is ground iff ¢, . . ., t,, are constant symbols.

4.1 Tightly Coupled DL-Programs

We now recall the fightly coupled approach to disjunctive description logic programs
(or tightly coupled dl-programs) KB = (L, P) under the answer set semantics from [8],
where KB consists of a description logic knowledge base L and a disjunctive logic pro-
gram P. Their semantics is defined in a modular way as in [7], but it allows for a much
tighter integration of L and P. Note that we do not assume any structural separation be-
tween the vocabularies of L and P. The main idea behind the semantics is to interpret
P relative to Herbrand interpretations that are compatible with L, while L is interpreted
relative to general first-order interpretations. Thus, we modularly combine the standard
semantics of logic programs and of description logics, which allows for building on
the standard techniques and results of both areas. As another advantage, the novel dl-
programs are decidable, even when their components of logic programs and description
logic knowledge bases are both very expressive. See especially [8] for further details on
the novel approach to dl-programs and for a comparison to related works.

Syntax. A literal l is an atom p or a default-negated atom not p. A disjunctive rule (or
simply rule) r is an expression of the form

a1V --Vag < B1,...,0n,not Bnt1,...,n0t Bntm , (nH
where a1, ...,0k,01,.. ., Ontm are atoms and k,m,n>0. We call a1 V --- V ay,
the head of r, while the conjunction 31, ..., By, not Bpt1, - - ., N0t Byt is its body.

We define H(r) ={au,...,ax}and B(r)= B*(r)UB™~ (r), where BT (r) = {04, ...,
Brn} and B~ (1) ={Bn+1,-- - Bnt+m}- A disjunctive program P is a finite set of dis-
junctive rules of the form (1). We say P is positive iff m = 0 for all disjunctive rules (1)
in P. We say P is a normal program iff k < 1 for all disjunctive rules (1) in P.
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A tightly coupled disjunctive description logic program (or simply tightly coupled
dl-program) KB = (L, P) consists of a description logic knowledge base L and a dis-
junctive program P. It is positive (resp., normal) iff P is positive (resp., normal).

Semantics. We now define the answer set semantics of tightly coupled dl-programs
as a generalization of the answer set semantics of ordinary disjunctive logic programs.
In the sequel, let KB = (L, P) be a tightly coupled dl-program.

A ground instance of a rule r € P is obtained from r by replacing every variable
that occurs in r by a constant symbol from @.. We denote by ground(P) the set of all
ground instances of rules in P. The Herbrand base relative to @, denoted HB ¢, is the
set of all ground atoms constructed with constant and predicate symbols from @. We
use DLg to denote the set of all ground atoms in HB ¢ that are constructed from atomic
concepts in A, abstract roles in R 4, and datatype roles in R p.

An interpretation I is any subset of HBg. Informally, every such I represents the
Herbrand interpretation in which all @ € I (resp., a € HBg — I) are true (resp., false).
We say an interpretation I is a model of a description logic knowledge base L, de-
noted I =L, iff LUI U {—a|a€ HBg — I} is satisfiable. We say I is a model of a
ground atom a € HB g, or I satisfies a, denoted I |=a, iff a € I. We say I is a model of
a ground rule r, denoted I =, iff I = « for some « € H(r) whenever I = B(r), that
is, [ =3 forall 3€ Bt (r) and I [~ (3 for all 3€ B~ (r). We say I is a model of a set
of rules P iff I =r for every r € ground(P). We say I is a model of a tightly coupled
dl-program KB = (L, P), denoted I |= KB, iff I is a model of both L and P.

We now define the answer set semantics of tightly coupled dl-programs by general-
izing the ordinary answer set semantics of disjunctive logic programs. We generalize
the definition via the FLP-reduct [17] (which coincides with the answer set seman-
tics defined via the Gelfond-Lifschitz reduct [18]). Given a dl-program KB = (L, P),
the FLP-reduct of KB relative to an interpretation I C HB g, denoted KB’ , 18 the dlI-
program (L, P!), where P! is the set of all r € ground(P) such that I = B(r). An
interpretation I C HBg is an answer set of KB iff I is a minimal model of KB,
A dl-program KB 1is consistent (resp., inconsistent) iff it has an (resp., no)
answer set.

We finally define the notions of cautious (resp., brave) reasoning from tightly cou-
pled dl-programs under the answer set semantics as follows. A ground atom a € HB
is a cautious (resp., brave) consequence of a tightly coupled dl-program KB under the
answer set semantics iff every (resp., some) answer set of KB satisfies a.

4.2 Generalized DL-Programs

We next present generalized description logic programs (or generalized dl-programs),
which informally generalize the DLP-fragment of SHZF (D) by Datalog rules.

Syntax. A generalized description logic program (or generalized dl-program) KB =
(L, P) consists of a knowledge base L in the DLP-fragment of SHZF (D) and a logic
program P in Datalog (without negation), which consist of a set of rules r of the form

h<_ﬁ17"'7/3’m7 (2)
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where h, 31, ..., By are atoms and m > 0. We call the atom A (resp., the conjunction
B1, ..., Bm) the head (resp., body) of r. Note that all the variables in r are implicitly
universally quantified. We say r is a fact iff = 0 and h is ground.

Semantics. We interpret generalized dl-programs as Datalog programs, via the trans-
lation of L into its Datalog equivalent (as L lies in the intersection of SHZF (D) and
Datalog). Due to the absence of negation, this also corresponds to the semantics of
first-order logics. Note that when L is translated into Datalog, we only obtain 2-ary
predicates and the variable graph of the body of each rule is connected and acyclic.

4.3 Example Scenario Cont’d

We now compare the two formalisms above regarding the representation requirements
stated in Section 2. For this purpose, we first show how tightly coupled and generalized
dl-programs KB = (L, P) can be used for representing (possibly inconsistent) map-
pings (without confidence values) between two ontologies. Intuitively, L encodes the
union of the two ontologies, while P encodes the mappings between the ontologies.
Tightly coupled and generalized dl-programs KB = (L, P) naturally represent two
heterogeneous ontologies O, and O, and mappings between O, and O as follows. The
description logic knowledge base L is the union of two independent description logic
knowledge bases L; and Lo, which encode the ontologies O and Os, respectively.
Here, we assume that Ly and Lo have signatures A;, R4 1, Rp,1, I1 and Ao, Ry o,
R p,2, I, respectively, such that Aj N A, = @, Rai1NRao= 0, RpiNRpa= 0,
and I; N I, = 0. Note that this can easily be achieved for any pair of ontologies by a
suitable renaming, e.g., as done below by using the prefix *O;:’. A mapping between
elements e; and e; from L and Lo, respectively, is then represented by a simple rule
e2(x) «—ei(x)in P, wheree; e AfUR41URp 1, e2€ AoUR4 2URp 2, and x is
a suitable variable vector. Informally, such a rule encodes that every instance of (the
concept or role) e in Oy is also an instance of (the concept or role) e in Os. Note that
demanding the signatures of L, and Lo to be disjoint guarantees that the set of rules
that represents ontology mappings is stratified as long as there are no cyclic mappings.
The simple mappings above are the kind of mappings usually found by common
matching tools. Both tightly coupled and generalized dl-programs allow to represent
such simple mappings. Examples of such mapping rules found by a specific typical
matcher m between the ontologies in our example scenario are the following ones:

(1) O1 : Publication(z) «— Oz : Publication(z);
(2) O1 : Article(z) « Oz : Paper(x);

(3) O1 : Technical_Report(x) «— O2 : Paper(z);
(4) Oy : Person(z) < O3 : Person(x);

(5) O1 : Book(z) <« O3 : Proceedings(x);

(6) O1 : Collection(x) < Oz : Proceedings(z);
(7) O1 : keyword(x,y) «— Oz : about(x,y);

(8) O1 : author(y,z) « Oz : author(z,y).

These mappings are very simple Horn rules without negation and with only one body
atom. They can be expressed with both tightly coupled and generalized dI-programs.
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These simple mappings can be refined, e.g., if we want to add in the mapping rule (7)
that only those tuples in the relation “about” are allowed to be mapped to the relation
“keyword” that have a subject which is also a topic in Os. In this way, the integration
does not consider relations where topics are involved that do not occur in O;:

(9) O1 : keyword(x,y) < Oz : about(x,y) A Oz : Subject(y) A O1 : Topic(y).

Such refinements are possible in both tightly coupled and generalized dI-programs.

We next consider the mapping rules (2) and (3). In Oq, there is an axiom that declares
Publication and Technical_Report as being disjoint and another axiom that declares Ar-
ticle as being a subclass of Publication. Thus, these two rules produce an inconsistency,
because a concept of Oy is mapped to two disjoint concepts of O; at the same time.
In [19], a method for detecting such inconsistent mappings is presented which can be
used for this purpose. There are different approaches for resolving this inconsistency.
The most straightforward one is to drop mappings until no inconsistency is present
anymore. Peng and Xu [20] have proposed a more suitable method for dealing with
inconsistencies in terms of a relaxation of the mappings. In particular, they propose to
replace a number of conflicting mappings by a single mapping that includes a disjunc-
tion of the conflicting concepts. In this example, we would replace the two mapping
rules (2) and (3) by the following one:

(10) Os : Article(zx) V O : Technical_Report(x) < Oa : Paper(z).

This new mapping rule resolves the inconsistency and can be represented in tightly cou-
pled dl-programs, but not in generalized dI-programs. More specifically, for a particular
paper p in the ontology Os, it imposes the existence of two partial answer sets

{Oy : Article(p), Oz : Paper(p)};
{Oy : Technical_Report(p), Oz : Paper(p)}.

None of these answer sets is invalidated by the disjointness constraints imposed by
the ontology O,. However, we can only deduce Os : Paper(p) cautiously, the other
atoms can be deduced bravely. More generally, with such rules, instances that are only
available in the ontology O5 cannot be classified with certainty.

We can solve this issue by refining the rules again and make use of nonmonotonic
negation which again can be used only in the framework of tightly coupled dl-programs
and not in the framework of generalized dl-programs. In particular, we can extend the
body of the original mappings with the following additional requirement:

O1 : Article(x) < Oa : Paper(z) A Oz : published_by(z,y);
O1 : Technical_Report(x) «— Oz : Paper(x) A not Oz : published_by(z,y).

This refinement of the mapping rules resolves the inconsistency and also provides a
more correct mapping because background information has been added. A drawback of
this approach is the fact that it requires manual post-processing of mappings because
the additional background information is not obvious. In the next section, we present
a probabilistic extension of tightly coupled dl-programs that allows us to directly use
confidence estimations of matching engines to resolve inconsistencies and to combine
the results of different matchers.



Rule-Based Approaches for Representing Probabilistic Ontology Mappings 77

With both tightly coupled and generalized dl-programs, it is possible to refine map-
pings positively by adding constraints by means of additional conjuncts in the body.
With tightly coupled dl-programs, it is additionally possible to refine mappings by ad-
ditional nonmonotonic negated conjuncts in the body. Another refinement possibility
supported by tightly coupled dl-programs, but not by generalized dl-programs is relax-
ing the antecedent of the rule by means of additional disjuncts in the head.

5 Representing Probabilistic Ontology Mappings

In this section, we present probabilistic extensions of tightly coupled and generalized
dl-programs, called tightly coupled probabilistic dl-programs and generalized Bayesian
dl-programs, respectively. Intuitively, they extend the rule component of tightly coupled
and generalized dl-programs by Bayesian probabilities.

5.1 Tightly Coupled Probabilistic DL-Programs

We now present a tightly coupled approach to probabilistic disjunctive description logic
programs (or tightly coupled probabilistic dl-programs) under the answer set semantics.
Differently from [13] (in addition to being a tightly coupled approach), the probabilistic
dl-programs here also allow for disjunctions in rule heads. Similarly to the probabilis-
tic dl-programs in [13], they are defined as a combination of dl-programs with Poole’s
ICL [21], but using the tightly coupled disjunctive dl-programs of [8] (see Section 4.1),
rather than the loosely coupled dl-programs of [7]. The ICL is based on ordinary acyclic
logic programs P under different “choices”, where every choice along with P produces
a first-order model, and one then obtains a probability distribution over the set of all
first-order models by placing a probability distribution over the different choices. We
use the tightly coupled disjunctive dl-programs under the answer set semantics of [8],
instead of ordinary acyclic logic programs under their canonical semantics (which co-
incides with their answer set semantics).

Syntax. We now define the syntax of tightly coupled probabilistic dl-programs and
queries to them. We first introduce choice spaces and probabilities on choice spaces.

A choice space C'is a set of pairwise disjoint and nonempty sets AC HBs — DLs.
Any A € C is an alternative of C and any element a € A an atomic choice of C'. Intu-
itively, every alternative A € C represents a random variable and every atomic choice
a € A one of its possible values. A fotal choice of C' is a set BC HBg — DLg such
that |[B N A|=1 for all A€ C (and thus |B|=|C/). Intuitively, every total choice B
of C represents an assignment of values to all the random variables. A probability
on a choice space C' is a probability function on the set of all total choices of C'. Intu-
itively, every probability x is a probability distribution over the set of all variable as-
signments. Since C' and all its alternatives are finite, i can be defined by (i) a mapping
p: UC —10,1] such that . , u(a)=1for all AeC, and (i) u(B) = Ilpeppu(b)
for all total choices B of C'. Intuitively, (i) defines a probability over the values of each
random variable of C, and (ii) assumes independence between the random variables.

A tightly coupled probabilistic disjunctive description logic program (or tightly cou-
pled probabilistic dl-program) KB = (L, P,C,pu) consists of a tightly coupled
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dl-program (L, P), a choice space C' such that no atomic choice in C' coincides with
the head of any rule in ground(P), and a probability 4 on C. Intuitively, since the total
choices of C select subsets of P, and y is a probability distribution on the total choices
of C, every probabilistic dl-program is the compact representation of a probability dis-
tribution on a finite set of disjunctive dl-programs. Observe here that P is fully general
and not necessarily stratified or acyclic. We say KB is normal iff P is normal. A prob-
abilistic query to KB has the form 3(cy () V - - - V ¢p(x))[r, s], where @, r, s is a tuple
of variables, n > 1, and each ¢;(«) is a conjunction of atoms constructed from pred-
icate and constant symbols in ¢ and variables in «. Note that the above probabilistic
queries can also be easily extended to conditional expressions as in [13].

Semantics. We now define an answer set semantics of probabilistic dl-programs, and
we introduce the notions of consistency, consequence, tight consequence, and correct
and tight answers for queries to tightly coupled probabilistic dl-programs.

Given a tightly coupled probabilistic dl-program KB = (L, P, C, 1), a probabilistic
interpretation Pr is a probability function on the set of all ] C HB4. We say Pr is an
answer set of KB iff (i) every I C HBg with Pr(I) >0 is an answer set of (L, P U
{p < | p€ B}) for some total choice B of C, and (ii) Pr(A,cpP)= >_1c up,. BCI
Pr(I) = p(B) for every total choice B of C. Informally, Pr is an answer set of KB =
(L, P,C, ) iff (i) every I C HBg4 of positive probability under Pr is an answer set of
the dl-program (L, P) under some total choice B of C, and (ii) Pr coincides with x on
the total choices B of C. We say KB is consistent iff it has an answer set Pr.

We define the notions of consequence and tight consequence as follows. Given a
probabilistic query 3(q(x))][r, s], the probability of ¢(x) in a probabilistic interpreta-
tion Pr under a variable assignment o, denoted Pr,(q(x)) is defined as the sum of all
Pr(I) such that I C HBg and I =, q(x). We say (q(x))[l, u] (where I, u € [0,1]) is a
consequence of KB, denoted KB| (q(x))[l, u], iff Pr,(q(x)) € [I, u] for every answer
set Pr of KB and every variable assignment 0. We say (q(x))[l, u] (where I, u € [0, 1])
is a tight consequence of KB, denoted KB |~ 1., (q(x))[l, ul, iff I (resp., u) is the in-
fimum (resp., supremum) of Pr,(q(x)) subject to all answer sets Pr of KB and all o.
A correct (resp., tight) answer to a probabilistic query 3(g(x))[r, s] is a ground substi-
tution @ (for the variables x, r, s) such that (¢(x))[r, s] 8 is a consequence (resp., tight
consequence) of KB.

Example Scenario Cont’d. We now show how tightly coupled probabilistic dl-pro-
grams KB = (L, P, C, u) can be used for representing (possibly inconsistent) mappings
with confidence values between two ontologies. Here, (i) L is the union of two descrip-
tion logic knowledge bases .1 and L, encoding two ontologies O; and O-, respectively,
and (ii) P, C, and s encode the mappings between the two ontologies O; and Oz, where
confidence values are encoded as error probabilities to combine mappings produced by
different matchers, and inconsistencies are resolved via trust probabilities (in addition
to using disjunctions and nonmonotonic negations in P).

More concretely, we interpret the confidence value as an error probability and state
that the probability that a mapping introduces an error is 1 —p. Conversely, the probabil-
ity that a mapping correctly describes the semantic relation between elements of the dif-
ferent ontologies is 1 — (1 — p) = p. This means that we can use the
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confidence value p as a probability for the correctness of a mapping. The indirect for-
mulation is chosen, because it allows us to combine the results of different matchers in
a meaningful way. In particular, if we assume that the error probabilities of two match-
ers are independent, we can calculate the joint error probability of two matchers that
have found the same mapping rule as (1 — p1) - (1 — p2). This means that we can
get a new probability for the correctness of the rule found by two matchers which is
1—(1—p1)- (1 —p2). This way of calculating the joint probability meets the intuition
that a mapping is more likely to be correct if it has been discovered by more than one
matcher because 1 — (1 —p1) - (1 —p2) 2 prand1 — (1 —p1) - (1 — p2) = pa.

In addition, when merging inconsistent results of different matching systems, we
weigh each matching system and its result with a (user-defined) trust probability, which
describes our confidence in its quality. All these trust probabilities sum up to 1. For
example, the trust probabilities of the matching systems m, ma, and m3z may be 0.6,
0.3, and 0.1, respectively. That is, we trust most in m1, medium in me, and less in ms.

We illustrate this approach along our example scenario. The following rules in P
encode the mappings that have been produced by two matchers m; and mo:

) O1 : Publication(z) « Oz : Publication(x),m1,1;
O1 : Article(x) < Oa : Paper(z), m1,2;

O1 : Technical_Report(z) < Oz : Paper(x), ma,1;
O1 : Person(x) < Oz : Person(z),m1,3;

O1 : Person(x) < O2 : Person(z), ma,2;

O1 : Book(x) < Oz : Proceedings(z), ma,3;

O1 : keyword (z,y) < Oz : about(xz,y), m1,4;

O1 : author(y,x) < O2 : author(z,y), m2,4.

1
2
3
4 1:)7
5 m)?
6
7
8

/—\/\/—\/—\/\/—\/—\A
NN AN AN AN AN

More concretely, every rule contains a conjunct m; ;, identifying with 7 and j the match-
ing system that has created it and the mapping, respectively. Thus, mappings (1), (2),
(4), and (7) have been found by m, while mappings (3), (5), (6), and (8) have been
found by m,. These additional conjuncts m; ; are atomic choices of the choice space C;
and link probabilities (which are specified in the probability x; on the choice space C;)
to the rules. The two choice spaces C and C> of the matchers are

Cr = {{ma,i, not - ma i} |i € {1,2,3,4}}, C2 = {{maj, not m2;}|j € {1,2,3,4}}.

They come along with the probabilities 11 and pe on C; and Cs, respectively, which
assign the corresponding confidence value p to each atomic choice m; ; and the comple-
ment 1 — p to the atomic choice not_m; ; (and the same holds for mo_; and not_ms ;).
For example, we have p11(m11) = 0.9 and p1(not-mq 1) = 0.1. Because the proba-
bility value of each atomic choice is determined by the probability value of the other
atomic choice in an alternative, we restrict the presentation of the probability to only
one element of each alternative: p1 (mq,2) = 0.62, 11 (m1,3) = 0.73, u1(mq 4) = 0.84.
ug(mgvl) = 094, ug(mgg) = 096, /Lg(ng) = 072, and IUQ(?TLQA) = 0.93.

The benefits of this explicit treatment of uncertainty becomes clear when we now try
to merge the mappings of m; with the mappings of ms. Note that the mappings (2) and
(3) produce an inconsistency, since the same concept of the source ontology Os (here,
Oy : Paper) is mapped to two disjoint concepts of the target ontology O;. Note also
that the mappings (4) and (5) are identical and found by each of the matchers.



80 A. Cali et al.

Directly merging these two mappings as they are is not a good idea for two reasons.
First, by adding mappings (2) and (3), we encounter an inconsistency problem as men-
tioned above. Therefore, rules (2) and (3) cannot contribute to a model of the knowledge
base. Second, a simple merge does not account for the fact that the mappings (4) and (5)
are identical and have been found by both matchers, and should thus be strengthened.
Here, the mapping rule has the same status as any other rule in the mapping and each
instance of Os : Person has two probabilities at the same time.

Suppose we associate with m; and my the trust probabilities 0.55 and 0.45, respec-
tively. Based on the interpretation of confidence values as error probabilities, and on
the use of trust probabilities when resolving inconsistencies between rules, we can now
define a merged mapping set, which consists of the mappings (1), (4), (5), (6), (7), and
(8) from above and the following two rules instead of (2) and (3):

(2") Oy : Article(x) < Os : Paper(z), m1,2, sel_mi 2;
(3") O1 : Technical_Report(z) < O2 : Paper(zx),ma,1, sel - ma,1.

The choice space C' and the probability ;. on C are obtained from C; U Cs and p1 - o
(which is the product of 11 and po, that is, (g1 - p2)(B1UBs2) = p1(B1) - ua(Ba)
for all total choices B; of C; and By of Cs), respectively, by adding the alternative
{sel_m1 2, sel_mgo 1} and the probabilities p(sel_m1 o) =0.55 and p(sel_mq 1) = 0.45
for resolving the inconsistency between the first two rules.

It is not difficult to verify that, due to the independent combination of alternatives,
the last two rules encode that the rule Oy : Person(z) < Oz : Person(z) holds with
the probability 1 — (1 — p(m1,3)) - (1 — p(me,2)) =0.9892, as desired. Informally, any
randomly chosen instance of Person of the ontology O3 is also an instance of Person
of the ontology O, with the probability 0.9892. In contrast, if the mapping rule would
have been discovered only by m (resp., mz), such an instance of Person of Os would
be an instance of Person of O; with the probability 0.73 (resp., 0.96).

A probabilistic query @) asking for the probability that a specific publication pub
in the ontology O is an instance of the concept Article of the ontology O; is given
by @ =3(Article(pub))[R, S]. The tight answer 6 to Q is given by § ={R/0,.5/0},
if pub is not an instance of the concept Paper in the ontology Os (since there is no
mapping rule that maps another concept than Paper to the concept Article). If pub
is an instance of the concept Paper, however, then the tight answer to () is given
by 6 ={R/0.341,.5/0.341} (as u(m1,2) - p(sel-my 2) = 0.62-0.55 = 0.341). Infor-
mally, pub belongs to the concept Article with the probabilities 0 resp. 0.341.

5.2 Generalized Bayesian DL-Programs

In [22], we have proposed Bayesian dl-programs for information integration and re-
trieval. We now define generalized Bayesian dl-programs, which extend Bayesian dl-
programs to the generalized dl-programs presented in Section 4.2. More concretely,
the logic programming component is extended to full Datalog (without equality and
negation). That is, the predicates are allowed to be of a higher arity than 2 and the de-
pendency graph of the rules does not need to be connected and fully acyclic anymore.
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Syntax. A generalized Bayesian dl-programis a4-tuple KB = (L, P, i, Comb), where
(i) (L, P) is a generalized dl-program, (ii) 1+ associates with eachrule r: h < by,...,b,
in ground(P) and every truth valuation v: {b1,...,b,} — {false, true} of the body
atoms of r a probability function p(r,v) over all truth valuations w: {h} — {false,
true} of the head atom of r, and (iii) Comb is a combining rule, which defines how
rules r € ground(P) with the same head atom can be combined to obtain a single rule.

Semantics. Each generalized Bayesian dl-program KB = (L, P, u, Comb) encodes the
structure of a Bayesian network BN and provides a complete specification of its condi-
tional probability distributions. We now describe the translation from KB to BN.

We first translate (L, P) into its Datalog equivalent DE. We say a ground atom a is
active iff it belongs to the canonical model of DE. We say r € ground(DE) is active
iff all its atoms are active. Every active ground atom then corresponds to a node in BN,
and the dependencies between the active ground atoms that are encoded in the active
rules r € ground(DE) correspond to the parent relationships in BN. For this reason,
we also implicitly assume that the set of all active rules in ground(DFE) is acyclic.

The function p is the conditional probability density of each of the random variables
that are represented by the direct influence relationship between ground atoms encoded
by the active rules in ground(P). In terms of a Bayesian network, each of these func-
tions is translated to links connecting the node representing the possible instantiations
of the head with the nodes representing the instantiations of the different atoms in the
body. Note that rules with empty bodies are facts for which the a-priori probability den-
sity is given in the same way. Note also that the function y is implicitly extended to
all active ground instances of rules r: h < b1,...,b, in the Datalog equivalent of L,
by assuming that u(r,v): h,—=h — 1,0 iff v(b;) =true for all i€ {1,...,n}. If an
active ground atom h can be deduced by only one active rule r € ground(DFE), then
its conditional probabilities are given by the distributions attached via y to this rule. If,
however, we have at least two active rules r € ground(DE) with the same head h, then
the conditional probabilities of h need to consider all these rules. For this purpose, the
combining rule Comb generates a joint conditional distribution from the individual ones
of the involved rules. More concretely, Comb maps a finite set of conditional probabil-
ity densities {p(h|a;,1,...,ain;)|m>i>1,n;>0}, m >1, to the conditional prob-
ability density p(h|b1,...,b,) with {b1,...,b,} = U™, {ai1,...,a;n,}. Different
combining rules are allowed. The simplest combining rule is the maximum of the con-
ditional probability densities, which we use in the following, as it fulfills our purposes.
More sophisticated ways of combining rules are, e.g., variations of noisy-or.

Example Scenario Cont’d. We now show how we can use generalized Bayesian dI-
programs KB = (L, P, i, Comb) for reasoning with ontologies and uncertain mappings
between them. Here, (i) L is the union of two description logic knowledge bases L; and
L4 encoding two ontologies O; and O, respectively, and (ii) P, u, and Comb represent
the mappings between the two ontologies O; and O,. Note that i associates with the
mapping rules in P conditional probability distributions, and C'omb is the combination
rule, which in our example simply corresponds to the maximum, as mentioned above.

We illustrate this approach along our example scenario. The following rules in P
(including the conditional probability distributions via p) encode the mappings be-
tween O] and Oj that have been found by a matcher m:
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(1) O1 : Publication(x) 0202 O5 : Publication(z);
(2) O1 : Article(x) 0202 05 : Paper(z);

(3) O : Person(zx) 0202 05 : Person(:r);

(4) O1 : Collection(zx) 002 0o : Proceedings(x);
(5) O1 : keyword(z,y) 070 2) 05 : about(zx,y);

(6) O1 : author(y, ) ©7.02) 05 : author(z,y).

Here, we use an intuitive graphical representation of P and p. This is possible because
the rules contain only one head atom and one body atom: we write only the probabilities
p1 and po for the true head atom given the true resp. false body atom. The probabilities
of the false head atom given the true resp. false body atom are then 1 — p; resp. 1 — pa.
For example, the mapping (1) says that (i) each publication in O} is also a publication
in O} with the probability 0.9, and (ii) each non-publication in O} (that is, each element
of = Publication) in O} is a publication in O} with the probability 0.2.

In order to reason with the ontologies and the mappings, the ontologies need to be
translated into their logic programming syntax. The translation is shown below:

Translation of Of:

(1a) Topic(y) < Technical_Report(x) A keyword(z,vy);

(1) Person(y) « Technical_Report(x) A author(x,y);

(3)  Publication(x) < Book(z); (4) Publication(z) <« Article(x);
(5)  Publication(x) < Collection(x);

(10a) Topic(y) < Publication(z) A keyword (z,y);

(10b) Person(y) < Publication(x) A author(z,y).

Translation of O):

(1)  Publication(z) < Paper(z); (2) Publication(x) < Proceedings(x);
(4a) Paper(y) < includes(x,y); (4b) Proceedings(x) «— includes(x,y);
(11a) Publisher(y) < published -by(x,y); (11b) Publication(x) « published_by(z,y);
(12a) Subject(y) < about(z,y); (12b) Publication(x) «— about(x,y);

(13a) Person(y) < author(z,y); (13b) Publication(x) «— author(z,y).

As described above, for every ground instance of such a rule, the probability of the head
atom being true is 1, if all the body atoms are also true, and 0, otherwise.

The processing of queries posed to a generalized Bayesian dl-program KB consists
of two steps of a so-called knowledge-based model construction. If we consider KB
without probability densities attached, then we obtain a logic program KB’, called the
corresponding logic program of KB. In the first step, the least Herbrand model M
of KB’ is deduced by means of logic programming. The Bayesian network that corre-
sponds to KB is then created by means of the ground atoms in M.

The construction of the Bayesian network BN for KB is briefly described as follows:
for each fact f of KB, a node in BN is created, and the probability density of f is
attached to the node. For each ground instance r of a rule that has been used for properly
deriving the (ground) head atom h, there are then two possibilities:
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Fig. 1. The Bayesian network for the example scenario

— a node that corresponds to h does not exist in BN: Then, such a node is created
and for each body atom of the rule r, an arc from the corresponding node in BN
(which already exist in BN, since each time a ground rule r can derive a new head
atom, the body atoms are already in M) to the newly created node is created. The
probability density of this rule in KB is attached to this node.

— anode that corresponds to h exists in BN: Then, for each body atom in 7, which has
a corresponding node in BN, but no arc from this node to the node that corresponds
to h, such an arc is created. Afterwards, the combining rule is applied to the prob-
ability density of r and the node corresponding to k. Thus, the node corresponding
to h is equipped with a probability density which considers the probability densities
of r and the rules that already have derived the same head atom h.

The resulting Bayesian network BN can be used for answering any probabilistic
query, which is an expression of the form ? — Q1, ..., Q,|E1, . . ., E,, with atoms Q;
and E;. Such an expression asks for the probability of the conditional event @1, .. .,
Qn|E1, ..., Enp,thatis, the probability that the );’s are true given that the F;’s are true.
We distinguish between ground and non-ground queries. In the latter case, it is asked for
the probability of each valid grounding of the query. Such queries are processed by first
computing all valid groundings and then asking for the probability of each grounding in
the corresponding Bayesian network. Non-ground queries can be used for information
retrieval where the probabilities are used for ranking.

Fig. 1 shows the Bayesian network for the example scenario. The subgraph in the
upper part of the figure encodes O) and the mappings to O}, while the lower part of
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the figure encodes O}. Note that there is only one already existing node in O] that
participates in a couple of mappings. This node is O} : Topic(artificial _intelligence).
For example, consider the probabilistic query Q(x) = ?— Of: Publication(x),
01 : keyword(z, artificial_intelligence). We then obtain the instances Q(a1), Q(b1),
Q(p1), and Q(p2). Since a1 and by stem from O, they belong for sure to O} : Publica-
tion and Of : Ikeyword .{ artificial_intelligence}. Hence, they are delivered with the
probability 1, while p; and po are delivered with the probabilities 0.4731 and 0.7470,
respectively. We see here very nicely how we can rank answers to queries.

6 Conclusion

In this work, we have presented two rule-based approaches for representing uncertain
mappings based on probabilistic concepts. The approaches discussed are tightly coupled
probabilistic dl-programs, on the one hand, and generalized Bayesian dl-programs, on
the other hand. Both approaches have been designed to represent probabilistic mappings
between description logic ontologies, but differ with respect to the kinds of ontologies
and mappings supported. We have discussed both approaches in terms of (i) the kinds of
ontologies supported, (ii) how rule-based mappings and ontologies are linked, (iii) how
rule-based mappings are extended with a probabilistic semantics, and (iv) the reasoning
methods supported by the languages. We now turn back to the requirements for mapping
languages that have been defined earlier and summarize the characteristics of the two
approaches with respect to these requirements.

— Tight integration of mapping and ontology language: Both approaches support the
tight integration of rules and ontologies in the sense that concepts and relations
from ontologies can occur in the head as well as the body of rules, which can there-
fore be used to represent mappings between different ontologies. But this tight in-
tegration is achieved in different ways. As for generalized Bayesian dl-programs,
the integration is achieved by restricting the expressiveness of the ontologies to the
DLP-fragment of SHZF (D). This enables us to translate the overall model into
a Datalog model with a corresponding semantics. Tightly coupled probabilistic dl-
programs do not limit the expressive power of the ontologies. The integration is
achieved in terms of a novel semantics, which consists of a general first-order se-
mantics of the ontological part and a Herbrand semantics of the rules part. From
a representational point of view, this is a big advantage, since it allows us to con-
nect arbitrary OWL ontologies using this framework. This advantage comes at the
price of a new semantics, which is not immediately supported by existing tools and
systems (but can be easily implemented on top of existing tools and systems).

— Support for mappings refinement and repairing inconsistencies: This second re-
quirement is concerned with the expressiveness of the rule language for represent-
ing mappings. As mentioned above, the expressiveness of generalized Bayesian
dl-programs is restricted to plain Datalog. That is, mappings can only state a rela-
tion between conjunctions of concepts and relations in the source ontology to one
concept or one relation in the target ontology. This approach provides limited pos-
sibilities for refining mappings. As discussed in the paper, however, refinement is
primarily needed to deal with inconsistencies. As the language does not support
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negation, inconsistencies cannot occur anyway, significantly reducing the need for
refinement support. This is different for the case of tightly coupled probabilistic
dl-programs. Here, we allow full negation in the ontologies and non-monotonic
negation in rule bodies. This means that mappings can introduce inconsistency in
the model which we have to deal with in order to be able to get a meaningful prob-
ability distribution for the overall model. As we have shown in Section 4.3, the rule
language supports the resolution of inconsistencies using refinement of the body or
generalization of the head of mapping rules. As we have shown in Section 5, in-
consistencies can also be resolved probabilistically in tightly coupled probabilistic
dl-programs. In any case, however, there is a need for mechanisms for detecting
inconsistencies and determining their cause, which is a difficult problem in itself.
— Representation and combination of confidence: Both approaches explicitly address
the problem of representing and combining confidence values in the framework of
probability. The concrete model used, however, is rather different for the two ap-
proaches. Generalized Bayesian dl-programs are based on a complete definition of
the probability distribution and require the confidence to be expressed in terms of
a complete probability distribution over the terms in a mapping rule: we need the
probability for the truth of the head given all combinations of truth values for the
body. While for simple mapping rules, such as those normally produced by auto-
matic matching systems, this is not too much of a problem, and the corresponding
probabilities can be determined either manually or by appropriate statistical estima-
tions. In the presence of complex rules with many terms in the rule body, the num-
ber of probabilities needed grows exponentially, making it much harder to acquire
the corresponding knowledge. Tightly coupled probabilistic dl-programs address
this problem by allowing an incomplete specification of the probability distribu-
tion. As a result, we only have to specify one probability for each mapping rule,
directly showing its confidence. This also means, however, that in such a more gen-
eral modeling, the probability of statements in the overall model may often only be
determined up to an interval which contains the true probability. Using a suitable
definition of the choice space, the approach also allows to express a general confi-
dence in a source that provides mapping information. This is a clear advantage in
practical settings where we might want to combine the results of different matching
systems. In summary, generalized Bayesian dl-programs are suitable for situations
where only simple mappings have to be represented, and there is no need to dis-
tinguish between different sources of information. In more complex situations, the
model used by tightly coupled probabilistic dl-programs is the more suitable one.
— Decidability and efficiency of instance reasoning: The different choices that the
compared approaches make with respect to the expressive power of the logical for-
malism, on the one hand, and the probabilistic model, on the other hand, has of
course a strong influence on the efficiency of reasoning in these formalisms. For
both approaches, the problem of probabilistic query answering, which is central in
the context of probabilistic mapping representation is decidable and corresponding
methods for computing answers have been described. When it comes to efficiency,
however, there are differences. Generalized Bayesian dl-programs have been de-
signed for efficient query processing, not only from a theoretical, but also from
a technical point. They allow the use of the most efficient technologies currently
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available. In contrast to that, tightly coupled probabilistic dl-programs in their full
generality have been designed to maximize expressiveness of the logical as well as
the probabilistic model. The advantages of this choice have already been discussed
in the preceding paragraphs. With respect to reasoning, this does not only mean that
reasoning in general is very expensive in this framework, but also that we cannot
directly rely on existing optimized systems. However, there are also data-tractable
special cases of tightly coupled probabilistic dl-programs [23].

We conclude that the two approaches compared in this paper represent two extremes
with respect to trading off representation and reasoning. Both approaches are useful
in certain situations. In cases where we are concerned with rather weak ontologies,
e.g., plain taxonomies, RDF Schemas, or thesauri, the simpler approach will often be
sufficient for representing ontologies and mappings between them, and we can benefit
from the better immediate computational properties. In other cases, where expressive
ontologies have to be connected by complex mappings, the simple approach will not be
sufficient anymore. Here, we have to revert to the more expressive approach.

An important topic for future research is the exploration of the space between these
two extreme approaches, and to try to find more balanced trade-offs between expres-
siveness and efficiency that address the needs of real problems as directly as possible.
Some first steps in this direction have been done by the identification of tractable subsets
of tightly coupled probabilistic dl-programs [23]. Corresponding work will benefit from
work on combining description logics with expressive rule languages that is currently
being done in connection with the development of the OWL 2.0 standard.
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Abstract. This paper addresses a major weakness of current technologies for
the Semantic Web, namely the lack of a principled means to represent and rea-
son about uncertainty. This not only hinders the realization of the original vi-
sion for the Semantic Web, but also creates a barrier to the development of new,
powerful features for general knowledge applications that require proper treat-
ment of uncertain phenomena. We present PR-OWL, a probabilistic extension
to the OWL web ontology language that allows legacy ontologies to interoper-
ate with newly developed probabilistic ontologies. PR-OWL moves beyond the
current limitations of deterministic classical logic to a full first-order probabilis-
tic logic. By providing a principled means of modeling uncertainty in
ontologies, PR-OWL can be seen as a supporting tool for many applications
that can benefit from probabilistic inference within an ontology language, thus
representing an important step toward the W3C’s vision for the Semantic Web.
In order to fully present the concepts behind PR-OWL, we also cover Multi-
Entity Bayesian Networks (MEBN), the Bayesian first-order logic supporting
the language, and UnBBayes-MEBN, an open source GUI and reasoner that
implements PR-OWL concepts. Finally, a use case of PR-OWL probabilistic
ontologies is illustrated here in order to provide a grasp of the potential of the
framework.

1 A Deterministic View of a Probabilistic World

Uncertainty is ubiquitous. If the Semantic Web vision [1] is to be realized, a sound
and principled means of representing and reasoning with uncertainty will be required.
Our broad objective is to address this need by developing a Bayesian framework for
probabilistic ontologies and plausible reasoning services. As an initial step toward our
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objective, we introduce PR-OWL, a probabilistic extension to the Web ontology lan-
guage OWL.

Current generation Semantic Web technology is based on classical logic, and lacks
adequate support for plausible reasoning. For example, OWL, a W3C Recommenda-
tion [2], has no built-in support for probabilistic information and reasoning. This is
understandable, given that OWL is rooted in web language predecessors (i.e. XML,
RDF) and traditional knowledge representation formalisms (e.g.. Description Logics
[3]). This historical background somewhat explains the lack of support for uncertainty
in OWL. Nevertheless, it is a serious limitation for a language intended for environ-
ments where one cannot simply ignore incomplete information.

A similar historical progression occurred in Artificial Intelligence (AI). From its
inception, Al has struggled with how to cope with incomplete information. Although
probability theory was initially neglected due to tractability concerns, graphical prob-
ability languages changed things dramatically [4]. Probabilistic languages have
evolved from propositional to full first-order expressivity (e.g., [5, 6]), and have be-
come the technology of choice for reasoning under uncertainty in an open world [7].
Clearly, the Semantic Web will pose similar uncertainty-related issues as those faced
by Al Thus, just as Al has moved from a deterministic paradigm to embrace prob-
ability, a similar path appears promising for ontology engineering.

This path is not yet being followed. The lack of support for representing and rea-
soning with uncertain, incomplete information seriously limits the ability of current
Semantic Web technologies to meet the requirements of the Semantic Web. Our work
is an initial step toward changing this situation. We aim to establish a framework that
enables full support for uncertainty in the field of ontology engineering and, as a
consequence, for the Semantic Web. In this work, we focus on extending OWL so it
can represent uncertainty in a principled way.

In Section 2 we present related work on the subject. Then, we start Section 3 with
an example illustrating the limitations of BNs in terms of expressiveness and how
those are addressed in MEBN logic. Section 4 conveys the definition of a probabilis-
tic ontology used in this work. In Section 5, we present the PR-OWL probabilistic
ontology language, its main concepts, and an overview of its structure. PR-OWL is
implemented in UnBBayes-MEBN, a Java-Based, open source system that is briefly
explained in Section 6. In order to provide a general idea of the potential use for the
PR-OWL/MEBN framework, Section 7 discusses how the SOA model can benefit
from the expressivity and flexibility of a probabilistic ontology system.

2 Related Research

One of the main reasons why Semantic Web research is still focused on deterministic
approaches has been the limited expressivity of traditional probabilistic languages.
There is a current line of research focused on extending OWL so it can represent
probabilistic information contained in a Bayesian Network (e.g. [8, 9]). The approach
involves augmenting OWL semantics to allow probabilistic information to be repre-
sented via additional markups. The result would be a probabilistic annotated ontology
that could then be translated to a Bayesian network (BN). Such a translation would be
based on a set of translation rules that would rely on the probabilistic information
attached to individual concepts and properties within the annotated ontology. BNs
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provide an elegant mathematical structure for modeling complex relationships among
hypotheses while keeping a relatively simple visualization of these relationships. Yet,
the limited attribute-value representation of BNs makes them unsuitable for problems
requiring greater expressive power.

Another popular option for representing uncertainty in OWL has been to focus on
OWL-DL, a decidable subset of OWL that is based on Description Logics [3]. De-
scription Logics are a family of knowledge representation formalisms that represent
the knowledge of an application domain (the “world”) by first defining the relevant
concepts of the domain (its terminology), and then using these concepts to specify
properties of objects and individuals occurring in the domain (the world description).

Description logics are highly effective and efficient for the classification and sub-
sumption problems they were designed to address. However, their ability to represent
and reason about other commonly occurring kinds of knowledge is limited. One re-
strictive aspect of DL languages is their limited ability to represent constraints on the
instances that can participate in a relationship. As an example, suppose we want to
express that for a carnivore to be a threat to another carnivore in a specific type of
situation it is mandatory that the two individuals of class Carnivore involved in the
situation are not the same. Making sure the two carnivores are different in a specific
situation is only possible in DL if we actually create/specify the tangible individuals
involved in that situation. Indeed, stating that two “fillers” (i.e. the actual individuals
of class Carnivore that will “fill the spaces” of concept carnivore in our statement) are
not equal without specifying their respective values would require constructs such as
negation and equality role-value-maps, which cannot be expressed in description
logic. While equality role-value-maps provide useful means to specify structural
properties of concepts, their inclusion makes the logic undecidable [10].

Although the above approaches are promising where applicable, a definitive solu-
tion for the Semantic Web requires a general-purpose formalism that gives ontology
designers a range of options to balance tractability against expressiveness.

Pool and Aiken [11] developed an OWL-based interface for the relational probabil-
istic toolset Quiddity*Suite, developed by IET, Inc. Their constructs provide a very
expressive method for representing uncertainty in OWL ontologies. Their work is
similar in spirit to ours, but is specialized to the Quiddity*Suite toolset. We focus on
the more general problem of enabling probabilistic ontologies for the SW. We employ
Multi-Entity Bayesian Networks (MEBN) as our underlying logical basis, thus pro-
viding full first-order expressiveness.

3 Multi-entity Bayesian Networks

The acknowledged standard for logically coherent reasoning under uncertainty is
probability theory. Probability theory provides a principled representation of uncer-
tainty, a logic for combining prior knowledge with observations, and a learning theory
for refining the ontology as evidence accrues.

Bayesian networks provide an elegant framework for implementing probability
theory, but as we explained in the previous section, the limited expressiveness of their
attribute-value representation limit their applicability, excluding many real-world
problems relevant to the SW. To understand this limitation, consider a relational data-
base in which some entries are uncertain. A BN can represent only probabilities for a
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single table, and treats the rows of the table independently of each other. For exam-
ple, in a logistics control system, the “Truck” table might include information such as
type, capacity, current delivery schedule, geographical position, and whether it is
suitable and available for a given delivery. Assuming such a system being used to
track possible deliverers within a 100-kilometer range of the depot area, a BN might
represent the probability of a given truck being an optimal delivery option as a func-
tion of its availability given the traffic along major local routes and its suitability for
the upcoming weather (e.g. preparation for snow conditions). If a truck is currently
within the predefined range, the BN of Figure 1 could estimate the probability of this
truck of being an optimal deliverer given the abovementioned variables.

Fig. 1. One Delivery Truck Scenario

However, this BN cannot represent relational information such as the increase in
the probability of being an optimal deliverer for all trucks that are within the 100-km
range. To incorporate this kind of knowledge in a coherent manner, we need to com-
bine relational knowledge (e.g., trucks that are within the same predefined area) with
attribute-value knowledge (e.g., heavy traffic and bad weather conditions decrease the
probability of being an optimal deliverer for trucks farther from the base and for those
not prepared for inclement weather).
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Fig. 2. One Delivery Truck Scenario

Figures 2 and 3 show that as the number of trucks within the 100-km range
changes, one must build different BNs. Since this number is variable, multiple BNs
must be constructed for each specific case.

MEBN logic [5, 6], which is the logical basis for PR-OWL, combines Bayesian
probability theory with classical First Order Logic to overcome BNs’ limitations in
expressiveness. Probabilistic knowledge is expressed as a set of MEBN fragments
(MFrags) organized into MEBN Theories. An MFrag is a knowledge structure that



92 P.C.G. da Costa, K.B. Laskey, and K.J. Laskey

Truck : : Truck
Truck A I I
- Truck B

Schedule I |

“Trudh I | Traok B

Position | | Paosition
| |
| |

Truck A Beliway Truck B Truck B
I Availabili Tramc Availabili Type I
| |
| Truck A Truck A Truck B Truck B |
| Capacity Suitability Suitability Capamly I
L™ ey ) oy oa\ =T s ST |

Opnmal
Delwerer
R et I e M T
| Truck C Truck D Truck D
| Capacity Suitability Capacity
|
I
Truck C | | Truok D
\ .ﬂwaslablhty | | Availability
| |
Truck C | | Truck D
\ Pasition : ]| Pasition ’
I [}
| I

Truck \\ f/ Truck
G = " Schedule Schedule - e D

Fig. 3. Delivery Scenario with Four Trucks

represents probabilistic knowledge about a collection of related hypotheses. Hypothe-
ses in an MFrag may be context (must be satisfied for the probability definitions to
apply), input (probabilities are defined in other MFrags), or resident (probabilities
defined in the MFrag itself). An MFrag can be instantiated to create as many instances
of the hypotheses as needed (e.g., an instance of all the “Truck X nodes” created for
each Truck within the predefined range). Instances of different MFrags may be com-
bined to form complex probability models for specific situations. An MTheory is a
collection of MFrags that satisfies consistency constraints ensuring the existence of a
unique joint probability distribution over instances of the hypotheses in its MFrags.

MEBN inference begins when a query is posed to assess the degree of belief in a tar-
get random variable given a set of evidence random variables. We start with a genera-
tive MTheory, add a set of finding MFrags representing problem-specific information,
and specify the target nodes for our query. The first step in MEBN inference is to con-
struct a situation-specific Bayesian network (SSBN), which is a Bayesian network con-
structed by creating and combining instances of the MFrags in the generative MTheory.
When each MFrag is instantiated, instances of its random variables are created to repre-
sent known background information, observed evidence, and queries of interest to the
decision maker. If there are any random variables with undefined distributions, then the
algorithm proceeds by instantiating their respective home MFrags. The process of re-
trieving and instantiating MFrags continues until there are no remaining random vari-
ables having either undefined distributions or unknown values. An SSBN may contain
any number of instances of each MFrag, depending on the number of entities and their
interrelationships. Next, a standard Bayesian network inference algorithm is applied.
Finally, the answer to the query is obtained by inspecting the posterior probabilities of
the target nodes. For the Delivery Truck example, the MTheory depicted in Figure 4
could be used for building each of the BNs in the previous figures as well as BNs for
any number of Trucks within the predefined range.
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To draw generalizations about individuals related in various ways, we need first-
order expressive power. Description logics are attractive because they provide limited
first-order expressivity, yet certain categories of reasoning problem, such as classifi-
cation and subsumption, are decidable. The ontology language P-SHOQ(D) [12] ex-
tends the description logic SHOQ(D) to represent probabilistic information.

We have chosen to base PR-OWL on MEBN logic because of its expressiveness:
MEBN can express a probability distribution over models of any finitely axiomatizable
first-order theory. As a consequence, there are no guarantees that exact reasoning with a
PR-OWL ontology will be efficient or even decidable. On the other hand, a future ob-
jective is to identify restricted sub-languages of PR-OWL specialized to classes of prob-
lems for which efficient exact or approximate reasoning algorithms exist. There has
been a great deal of research on classes of problems for which efficient probabilistic
algorithms exist (e.g., Naive Bayes classification, in which features are modeled as
conditionally independent given an object’s class). This research can inform the devel-
opment of restrictions on MEBN theories that lead to efficient inference on particular
kinds of problem. It is our view that a general-purpose language for the Semantic Web
should be as expressive as possible, while providing a means for ontology engineers to
stay within a tractable subset of the language when warranted by the application.

4 Probabilistic Ontologies

The usual workaround for representing probabilities in deterministic languages like
OWL is to show probability information as annotations. This means that numerical
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information is stored as text strings. Because this solution does not convey the struc-
tural features of a probabilistic domain theory, it is no more than a palliative. This is
no minor shortcoming. Researchers have stressed the importance of structural infor-
mation in probabilistic models (see [13]). For instance, Shafer ([14], pages 5-9) stated
that probability is more about structure than it is about numbers.

A major concept behind PR-OWL is that of probabilistic ontologies. Probabilistic
ontologies go beyond simply annotating standard ontologies with probabilities, pro-
viding a logically sound formalism to express all relevant uncertainties about the
entities and relationships that exist in a domain. This not only provides a consistent
representation of uncertain knowledge that can be reused by different probabilistic
systems, but also allows applications to perform plausible reasoning with that knowl-
edge. PR-OWL uses the following definition of a probabilistic ontology [15]:

Definition 1. A probabilistic ontology is an explicit, formal knowledge representation that
expresses knowledge about a domain of application. This includes:
la) Types of entities that exists in the domain;
1b) Properties of those entities;
1c) Relationships among entities;
1d) Processes and events that happen with those entities;
le) Statistical regularities that characterize the domain;
1f) Inconclusive, ambiguous, incomplete, unreliable, and dis-
sonant knowledge;
1g) Uncertainty about all the above forms of knowledge;
where the term entity refers to any concept (real of fictitious,
concrete or abstract) that can be described and reasoned about

within the domain of application.

Probabilistic Ontologies provide a principled, structured and sharable way to compre-
hensively describe knowledge about a domain and the uncertainty regarding that
knowledge. They also expand the possibilities of standard ontologies by introducing
the requirement of a proper representation of the statistical regularities and the uncer-
tain evidence about entities in a domain of application. Ideally, the representation is in
a format that can be read and processed by a computer.

5 PR-OWL

PR-OWL is an extension that enables OWL ontologies to represent complex Bayesian
probabilistic models in a way that is flexible enough to be used by diverse Bayesian
probabilistic tools based on different probabilistic technologies. That level of flexibil-
ity can only be achieved using the underlying semantics of first-order Bayesian logic,
which is not a part of the standard OWL semantics and abstract syntax. Therefore, it
seems clear that PR-OWL can only be realized via extending the semantics and ab-
stract syntax of OWL. However, in order to make use of those extensions, it is neces-
sary to develop new tools supporting the extended syntax and implied semantics of
each extension. Such an effort would require commitment from diverse developers
and workgroups, which falls outside our present scope.

Therefore, in this initial work our intention is to create an upper ontology to guide
the development of probabilistic ontologies. Daconta et al. define an upper ontology
as a set of integrated ontologies that characterizes a set of basic commonsense
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knowledge notions [16]. In its current form, PR-OWL is an upper ontology of basic
notions related to representing uncertainty in a principled way using OWL syntax. If
PR-OWL were to become a W3C Recommendation, this collection of notions would
be formally incorporated into the OWL language as a set of constructs that can be
employed to build probabilistic ontologies.

The PR-OWL upper ontology for probabilistic systems consists of a set of classes,
subclasses and properties that collectively form a framework for building probabilistic
ontologies. The first step toward building a probabilistic ontology in compliance with
our definition is to import into any OWL editor an OWL file containing the PR-OWL
classes, subclasses, and properties.

From our definition, it is clear that nothing prevents a probabilistic ontology from
being “partially probabilistic”. That is, a knowledge engineer can choose the concepts
he/she wants to include in the “probabilistic part” of the ontology, while writing the
other concepts in standard OWL. In this case, the “probabilistic part” refers to the
concepts written using PR-OWL definitions and that collectively form a complete or
partial MTheory. There is no need for all the concepts in a probabilistic ontology to
be probabilistic, but at least some have to form a valid complete or partial MTheory.
Of course, only the concepts that are part of the MTheory will be subject to the advan-
tages of the probabilistic ontology over a deterministic one.

The subtlety here is that legacy OWL ontologies can be upgraded to probabilistic
ontologies only with respect to concepts for which the modeler wants to have
uncertainty represented in a principled manner, make plausible inferences from that
uncertain evidence, or to learn its parameters from incoming data via Bayesian learn-
ing. While the first two are direct consequences of using a probabilistic knowledge
representation, the latter is a specific advantage of the Bayesian paradigm, where
learning falls into the same conceptual framework as knowledge representation.

The ability to perform probabilistic reasoning with incomplete or uncertain informa-
tion conveyed through an ontology is a major advantage of PR-OWL. However, it
should be noted that in some cases solving a probabilistic query might be intractable or
even undecidable. In fact, providing the means to ensure decidability was the reason
why the W3C defined three different version of the OWL language. While OWL Full is
more expressive, it enables an ontology to represent knowledge that can lead to unde-
cidable queries. OWL-DL imposes some restrictions to OWL in order to eliminate these
cases. Similarly, restrictions of PR-OWL could be developed that limit expressivity to
avoid undecidable queries or guarantee tractability. Possible restrictions to be consid-
ered for an eventual PR-OWL Lite include (i) constraining the language to classes of
problems for which tractable exact or approximate algorithms exist; (ii) restrict the
representation of the conditional probability tables (CPT) to express a tractable and
expressive subset of first-order logic; and/or (iii) to employ a standard semantic web
language syntax to represent the CPTs (e.g. RDF). As an initial step, we chose to focus
on the most expressive version of PR-OWL, which does not have expressivity restric-
tions and provides the ability to represent CPTs in multiple formats.

An overview of the general concepts involved in the definition of an MTheory in
PR-OWL is depicted in Figure 5. In this diagram, the ovals represent general classes;
and arrows represent major relationships between classes. A probabilistic ontology
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Includes
(hasMFrag)
Is built from
(hasNode)

Has states Is defined by Probability
(hasPossibleValues) (hasProbDist) Distribution
Fig. 5. Overview of a PR-OWL MTheory Concepts

must have at least one individual of class MTheory, which is a label linking a group
of MFrags that collectively form a valid MTheory. In actual PR-OWL syntax, that
link is expressed via the object property hasMFrag (which is the inverse of object
property isMFragln).

Individuals of class MFrag are comprised of nodes, which can be resident, input, or
context nodes (not shown in the picture). Each individual of class Node is a random
variable and thus has a mutually exclusive and collectively exhaustive set of possible
states. In PR-OWL, the object property hasPossibleValues links each node with its
possible states, which are individuals of class Entity. Finally, random variables (rep-
resented by the class Nodes in PR-OWL) have unconditional or conditional probabil-
ity distributions, which are represented by class Probability Distribution and linked to
its respective nodes via the object property hasProbDist.

The scheme in Figure 5 is intended to present just a general view and thus fails to
show many of the intricacies of an actual PR-OWL representation of an MTheory.
Figure 6 shows an expanded version conveying the main elements in Figure 5, their
subclasses, the secondary elements that are needed for representing an MTheory and
the reified relationships that were necessary for expressing the complex structure of a
Bayesian probabilistic model using OWL syntax.

Reification of relationships in PR-OWL is necessary because of the fact that prop-
erties in OWL are binary relations (i.e. link two individuals or an individual and a
value), while many of the relations in a probabilistic model include more than one
individual (i.e. N-ary relations). The use of reification for representing N-ary relations
on the Semantic Web is covered by a working draft from the W3C’s Semantic Web
Best Practices Working Group [17].

Although the scheme in Figure 6 shows all the elements needed to represent a
complete MTheory, it is clear that any attempt at a complete description would
render the diagram cluttered and incomprehensible. A complete account of the
classes, properties and the code of PR-OWL that define an upper ontology for prob-
abilistic systems is given in [15]. These definitions can be used to represent any
MTheory.

In its current stage, PR-OWL contains only the basic elements needed to represent
any MTheory. Such a representation could be used by a Bayesian tool (acting as a
probabilistic ontology reasoner) to perform inferences to answer queries and/or to
learn from newly incoming evidence via Bayesian learning.
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6 UnBBayes-MEBN

Building MFrags and all its elements into a PO is a difficult, tedious and error prone
process that demands deep knowledge of PR-OWL’s syntax, semantics and data
structure. Creating a PO without a PR-OWL software tool would be very difficult. An
ordinary OWL ontology can be built using a graphical ontology editor such as
Protégé. To add probability information, PR-OWL definitions can be imported into
Protégé (from http://www.pr-owl.org/pr-owl.owl), making the task of building a PO a
bit easier because it is not necessary to remember all information and OWL tags that
should be inserted. However, the input of information is not intuitive and the user has
to know many technical terms as hasPossibleValues, isNodeFrom, hasParents, etc
(Figures 7 and 8).

UnBBayes-MEBN [18] is a PR-OWL GUI and reasoner that addresses all the
above issues. It provides a GUI designed to allow building a PO in an intuitive way,
enforcing the consistency of an MTheory without the requirement of deep knowledge
of the PR-OWL specification.

As an example of the process of creating an MFrag, a click on the “R” icon and
another click anywhere in the editing panel will create a resident node, as shown in
Figure 9. After that, clicking on the “+” button allows the user to fill a name and to
add the states of the node. All the remaining tasks required by PR-OWL syntax (e.g.
filling the terms as isResidentNodeln, etc.) are automatically performed by
UnBBayes. Figure 10 shows how UnBBayes allows a more adequate and better visu-
alization of the MTheory and MFrags being created, as well as their nodes. In short, it
is not difficult to perceive the advantages of building POs with the GUI implemented
in UnBBayes.



98 P.C.G. da Costa, K.B. Laskey, and K.J. Laskey

INDIVIDUAL EDITOR S ARRT
il: @ |Z_ZoneMD ({instance of pr-owi:Domain_Res)

-

JFem (3 nnotatiol |
|
Property Yalue | Lang||

rdfs.comment ZoneMD(z, 1) assesses the value of the magnetic disturbance in
Zone *2° at the current TimeStep “t*
This value is influenced by the MD in the prestous TimeStep
{tprevy, the fact of whether there is or there is not a starship in
cloak mode nearty, and the nature of the space zone in which
the starship is located,
The input node t=1TD is used 1o "anchor” the time recursion

Dr=OWENASVErticalPes - 3 freowkhasParsnt. ¥ & p-owtisinnerTen §
& Z_ZoneMature |
& Z_CloakMode _input
Z_TequalT O_input
pr-owkhasArgumn & Q < :Z.ZnneMD_lnpul
@ Z_ZoneMD_1.2
@ Z_ZoneMD_2.2 1

pr-owthasPossinl ® ¥ € prowkisNodeFro 1
& ZMD_Medium & Zone_MFrag |
& ZMD_High
& ZMD_Low

RS

pr-owkhasComt
|
pr=owkhasProbDi 0 ﬁ <+ pr-owkisParentOf 4

& Z_ZoneMD_decl_Quiddity

Fig. 7. Node ZoneMD specification with Protégé

/I Individual: http://www.pr-owl.org/pr-owl.owl#ZoneMD

ClassAssertion(ZoneMD Domain_Res)
ObjectPropertyAssertion(hasArgument ZoneMD ZoneMD_1)
ObjectPropertyAssertion(hasArgument ZoneMD ZoneMD_2)
ObjectPropertyAssertion(hasinputinstance ZoneMD 1X6)
ObjectPropertyAssertion(hasParent ZoneMD ZoneNature)
ObjectPropertyAssertion(hasParent ZoneMD IX6)
ObjectPropertyAssertion(hasParent ZoneMD IX5)
ObjectPropertyAssertion(hasParent ZoneMD ZoneMD)
ObjectPropertyAssertion(hasPossibleValues ZoneMD Medium)
ObjectPropertyAssertion(hasPossibleValues ZoneMD High)
ObjectPropertyAssertion(hasPossibleValues ZoneMD Low)
ObjectPropertyAssertion(hasProbDist ZoneMD ZoneMD_Table)
ObjectPropertyAssertion(isParentOf ZoneMD ZoneMD)
ObjectPropertyAssertion(isResidentNodeln ZoneMD Zone_MFrag)

Fig. 8. Node ZoneMD specification in OWL syntax (Manchester)

Implementing a complex logic such as MEBN while focusing on the usability re-
quirements of an (probabilistic) ontology editor requires making trade-offs between
performance, decidability, expressivity, and ease of use. In other words, the complex-
ity of the logic and the fact that it is still in development imply that any implementa-
tion has to include alternative algorithms and optimizations to make a working,
feasible tool. UnBBayes-MEBN is no exception to this rule, and many of the design
decisions were based on the above-cited constraints.

Probabilistic ontologies in UnBBayes-MEBN are saved in the PR-OWL format,
which is an extension of OWL format. UnBBayes-MEBN uses the Java open source
Protégé application programming interface (API) for importing and saving OWL
files. UnBBayes-MEBN provides support for MEBN input/output operations using
the Protégé-OWL editor, which is based on the class JenaOWLModel. Protégé uses
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the Jena API for various tasks, in particular for parsing OWL/RDF files. Since the
structure and algorithms behind UnBBayes-MEBN are outside of the scope of this

Chapter, the interested reader should refer to [19, 20] for more information.

7 The Role of Probabilistic Ontologies in SOA

Service Oriented Architecture (SOA) has become the leading approach for accessing
and using distributed resources developed by independent entities and working with
independently developed vocabularies and associated semantics. The advent of SOA
marks a transformation from a mostly data-driven Web, with little interaction between
requesters and providers of information, into an environment in which information
and other resources are accessed and used in a much more dynamic, interactive, and

unpredictable fashion.
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The supporting technology for the SOA model is composed of XML-based stan-
dards and protocols focused on providing a shared understanding of the available
services. Currently, accepted standards for developing solutions based on Web Ser-
vices (the most prevalent implementation of SOA) include SOAP, a message structure
used for exchanging XML serializations of content and message handling instructions
in a decentralized, distributed environment [21], and the Web Services Description
Language (WSDL), which represents messages exchanged when invoking a Web
Service [22]. However, these XML-based structures do not have the ability to explic-
itly formalize the underlying semantics of a given Web Service description, rendering
them insufficient to ensure a common understanding of the described Web Service.
As pointed out by Paolucci et al. [23], two identical XML descriptions may have
different meanings depending on who uses them and when. Different providers and
consumers will have perspectives aligned with their respective domains; thus, a com-
mon understanding of a given Web Service can be reached only at the semantic level,
where the different perspectives and knowledge can be matched.

Not surprisingly, the need for semantic-aware resource descriptions is widely rec-
ognized, and is being addressed by work focused on enabling Web Service providers
to describe the properties and capabilities of their Web Services in unambiguous,
computer-interpretable form (e.g. OWL-S [24], WSMO [25], SWSL [26], and
SAWSDL [27]).

This section argues that progress on both SW and SOA is hampered by the lack of
support for uncertainty in common ontology formalisms. We postulate that probabilis-
tic ontologies can fill a key gap in semantic matching technology, thus facilitating
widespread usage of Web Services for efficient resource sharing in open and distrib-
uted environments.

7.1 Uncertainty Present in SOA

In order to envision the applicability of POs in SOAs, it is necessary to first under-
stand what kind of uncertainties might be present in a service-oriented environment.
As defined in the SOA reference model [28], SOA is a paradigm for bringing together
needs and capabilities to address those needs. It requires establishing an execution
context (EC), which is an alignment of all technical and policy-related aspects, in-
cluding vocabularies, protocols, licensing, quality of service (QoS), etc. Much of this
specific information is contained in or linked to the service description and/or the
description of underlying capabilities. Considering the complexity involved, many
forms of uncertainty can be present within a given execution context. For example,
uncertainty may arise in the description content (e.g. information is annotated with its
source, but there is no way to verify whether the identity of the source is correct), in
the way information is captured as part of a description (e.g. information is annotated
with its source, but there is no indication of whether it is raw data or what processing
has been applied), or in the applicability of information to current need (e.g., informa-
tion on recording equipment does not indicate whether the recorded data fall within a
reasonable range for the recording conditions). An ontology that represents statistical
information can enable a reasoner to draw inferences about the missing information.
For example, consider a report that a device has recorded an ambient temperature of 5
degrees Celsius at Rio de Janeiro's Tom Jobin International Airport (GIG) on 23
January. This is a highly unlikely, but not impossible, temperature reading for January
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near Rio. Statistical information about climate, sensor reliability, and data recording
error rates, if represented in the relevant domain ontologies, could be used to draw
inferences about the about the likely temperature at GIG on 23 January and could
appropriately account for the possibility of various kinds of error. If a Web service
was used to access the temperature, a service description that included or referenced a
representation of such uncertainties would enable decisions that could improve the
effective and appropriate use of the available capabilities. Such an uncertainty feature
is not incorporated in current Web Service specifications.

A typical Web Services scenario is often described in terms of the publish-find-
bind triangle: (1) a service provider publishes a service description, (2) a consumer
searches a service registry for a service satisfying his criteria, analyzes the returned
information (or link to information) on the message structure to be exchanged and the
address to exchange it, and (3) interacts with the service to retrieve the resources
needed. In this triangle, there are implicit, unspoken challenges for which a principled
representation of uncertainty is needed. For example:

* The service provider, typically playing the role of description publisher, has
to choose a vocabulary with which to describe the service (or some other re-
source related to the service), thus setting the properties by which to describe
that class of item. Service providers attempt to define the “right” set and
structure of properties that make visible what they wish to highlight as dis-
criminators for those looking for services. The consumer, on the other hand,
has her own criteria to satisfy but must know and understand the semantics
of the service provider vocabulary because these are the properties used to
describe the generic service class and its instances. The consumer must un-
derstand and use this vocabulary or there must be a known and accessible
mapping between the properties used for description and those more natu-
rally used by the consumer as search categories. There are many opportuni-
ties for uncertainty about intended meanings of the service class properties,
the use of those properties to describe service instances, and the relationship
to consumer search criteria.

e The publisher uses the chosen property vocabulary as the basis to describe
and register instances of that class. This means that the publisher associates
values with the properties and registers the instance. But what is the vocabu-
lary for the values? All parties may agree that something has the property
color and on the meaning of that property, but if the publisher uses only pri-
mary colors and the subscriber’s search criterion asks for the color pink, the
latter will never find a match for items the first had catalogued. How does a
client’s requested value relate to a provider’s published values? Do they
agree on the vocabulary? Do they agree on the mechanism to mediate vo-
cabulary mismatches?

e The publisher chooses a property vocabulary and creates instance
descriptions by associating values. One can infer the properties the publisher
considers important by which properties s/he chooses to populate, assuming
values are not necessarily assigned for all possible properties. But what of
the consumer’s priorities when assigning search criteria? If the consumer as-
signs relative importance, how does the search engine trade off among dif-
ferent combinations of matches across the consumer’s search criteria, and
how are missing attribute values handled?
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7.2 Uncertainty and Semantic Mapping

Figure 11 uses the example of a Delivery Control System to illustrate the semantic
mapping challenges that are implicit in the above description. In the diagram, the De-
livery Company (a service provider) has built a local vocabulary (Vocab a) based on a
vocabulary available for Delivery and Shipping services (Vocab 0). The type of a truck
in Vocab 0 is defined as Property P and was copied unmodified from Vocab 6 to Vo-
cab o as property P1. User A, who is interested in the Delivery service, also based his
vocabulary (Vocab ) on Vocab 0 and has copied P with no changes to his own P2.

Semantic
Mapping
% Uséer i
User B VQcﬂb
'Tp3

Fig. 11. Challenges of Synchronizing Vocabularies for the Publish-Find-Bind Exchange

Now given information about the Delivery Company and User A, how likely is that
the same string (say “large container”) in each vocabulary still refers to the same
concept (and probably as meant by Vocab 0)?To address this question, it is necessary
to keep track of characteristics such as the overall similarities of the concepts in the
vocabularies, the origins of each concept, and other characteristics related to the prob-
lem context. A domain independent PR-OWL ontology would keep track of these
characteristics, and thus be able to infer the likelihood that concepts with the same
name have the same meaning.

In a more complex development of the situation depicted in Figure 11, assume Vo-
cab o exists as a vocabulary for Logistics. User B, who wants to use the Delivery
service based on Vocab a, has its own system based on the Logistics Vocab o, and so
has developed a mapping from the Vocab o to Vocab c. In Vocab o, the type of a
truck is indicated by property P3. Two other Users, C and D, have their own systems
based on the Logistics Vocab o, but are also customers of User A. To communicate
with User A, Users C and D have each built mappings from User A system’s Vocab 3
to their respective system’s use of Vocab c. With three different mappings linking
two ontologies that were based on the same upper ontology to a fourth ontology (the
Logistics ontology), what is the likelihood that each of them has the same intended
meaning for the truck type, and that it matches the intended meaning of the original
upper ontology’s property P? If we wish to infer mappings between Vocab o and
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Vocab 3 and have User B’s mapping from Vocab a to Vocab G, is the mapping of
User C or of User D from Vocab B to Vocab ¢ more likely to reflect the needs in
mapping between Vocab o and Vocab B, or does an appropriate combination of the
User C and the User D mappings provide an optimum result? Again, a domain inde-
pendent PR-OWL ontology can be used to keep track of such mappings, considering
parameters such as the expertise of each user to help grading the likelihood of each
mapping to be closer to the original and more aligned with the eventual need.

7.3 Uncertainty and Service Composition

Beyond publish-find-bind for a single service, the vision is to provide services at the
appropriate granularity, combining atomic services into more complex tasks. For
example, suppose a supplier needs to find the dimensions and weight limits for cargo
containers for future shipments of items it produces. In today’s integration paradigm,
the supplier would need to query specific shipping agents directly, and might need to
develop special-purpose software interfaces to support interactions with individual
shipping agents. In the envisioned architecture, the supplier would invoke a service
that (i) searches a UDDI registry for shipping agents; (ii) queries each for its respec-
tive restrictions; (iii) compares with the supplier’s requirements; and (iv) selects a
shipper that meets the requirements.

This simple scenario does not include other actions that must be included in such a
transaction. For example, security will be needed to authenticate the supplier to the
shipping agent and the shipping agent to the supplier. Other actions may be required
to establish that each party is authorized to engage in business with the other. The
interaction itself may require a guaranteed level of service that would fall into the
realm of reliable messaging to guarantee delivery. Additionally, the response from
the shipping agent could optionally include video showing details of container pack-
ing and handling, and these would not be appropriate to send if the supplier is using a
low bandwidth communications link.

Security, reliable messaging, and results dissemination are examples of general-
purpose services that could be combined with services for specific business functions,
thus freeing the business service from the need to create and maintain all supporting
services. All of these services will have associated service descriptions so that some-
one composing a robust service combination can identify the appropriate services and
the process by which these will work together to provide the higher-level functional-
ity. That said, what are the uncertainties in identifying the correct services and com-
bining these to form a consistent package? Is uncertainty even a relevant concept, or
is it a black-and-white issue of whether the pieces fit or not? When trying to decide
among several services that appear to satisfy aspects of the same needed function,
does the ability to reason under uncertainty come into play in identifying the compo-
nent services to use and how to combine these?

The above questions do not have simple, universally valid answers. Undoubtedly,
there will be problems for which deterministic implementations of SOA elements will
suffice to build viable solutions. Nevertheless, there are issues that cannot be satisfac-
torily solved without a principled representation of uncertainty. Probabilistic ontology
languages such as PR-OWL can fulfill this requirement.
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7.4 Ontology Federation to Support SOA

Providing a detailed account of how to use PO languages to build standards for SOA
elements, or even examples of (say) service descriptions with probabilistic elements
would require detailed explanation that goes beyond the limits of this paper. Thus, as
a means to explore another possible use of POs in a SOA environment, we now pre-
sent a possible framework using a federation of ontologies (common and probabilis-
tic) for tackling the problem of semantic mapping among concepts used in Web
Services (WS) descriptions within a WS repository.

Figure 12 shows a simplified scheme for SOA using probabilistic semantic map-
ping. As a means to illustrate this scheme, we will devise fictitious examples involv-
ing Web Service providers within the geospatial reasoning domain. In this scheme, a
service consumer or provider that conveys semantic information (ontology that it
abides to, metadata about its requests, parameters, etc.) is called a SOA node Level 1,
whereas a SOA node that has no semantic awareness is called a SOA node Level 0.
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Fig. 12. Probabilistic Semantic Mapping for Web Services

In our first use case, S1 needs to generate a travel plan and requests a service for
assessing the possibility of flooding in a given region due to recent heavy rains. Being
a Level 1 client, S1 sends its request with embedded data about the ontology it refer-
ences and other semantic information regarding its request (e.g. coordinate system
used, expected QoS, etc.). The WS repository, which itself uses an ontology, finds S4,
another Level 1 client using the same ontology as S1. This ontology is the PR-OWL
ontology “OntB”, which represents a probabilistic model of the geospatial domain
and has the ability to perform a probabilistic assessment of the requested information.
In this case, the request was probabilistic, but the uncertainty involved was related to
the service itself (a probabilistic query on a uncertainty-laden domain), and not to the
service exchanging process. In other words, the exchange was completed using the
logical reasoner alone, since there was a perfect matching in terms of ontologies (both
S1 and S4 abide to the same PR-OWL ontology) and the parameters of the requested
service, and thus no probabilistic mapping was necessary. (Yet, note that S1’s query
made use of OntB’s ability to represent uncertainty about the geospatial domain.)
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In a variation of the previous case, let’s suppose that no perfect match between the
request and the available providers is found. In this case, the probabilistic reasoner
accesses the WS repository to search for the most suitable service given the parame-
ters of S1°s request. During that process, it analyses the mapping ontologies related to
“OntB” (the ontology referenced by S1) and the domain ontologies related to the
services it deemed promising to fit S1’s request. In the end, an ordered list of possible
providers is built, and the best possible answers will be returned to S1. This simple
example shows that there might be many combinations of the use of logical and prob-
abilistic reasoners and ontologies to match the needs of a specific request.

8 Conclusion

This paper describes Probabilistic Ontologies as an initial step towards a coherent,
comprehensive probabilistic framework for the Semantic Web. It also demonstrates
how the use of such a framework can bring Semantic Web power to bear on the dis-
covery and use of Web Services in a service oriented environment. In order to better
convey the framework, we provided an explanation of the major concepts behind it,
such as MEBN logic, probabilistic ontologies, and the PR-OWL language, and lay the
groundwork for a more comprehensive effort focused on representing uncertainty in
the Semantic Web.

A PR-OWL ontology editor that facilitates the creation of probabilistic ontologies
built on MFrags and MTheories was also presented. It automates many of the steps in
the ontology building, greatly facilitating the process of writing probabilistic ontolo-
gies. The automation includes defining MFrags to represent sets of related hypothe-
ses, consistency checking and other tasks that demand unnecessary awareness of the
inner workings of the present solution.

Finally, we discussed various aspects of SOA that would be enhanced by a means
to represent and reason over uncertainty. We provided examples that demonstrate the
benefits of probabilistic ontologies to enable semantic negotiation among independ-
ently developed but related vocabularies and to assist in composing complex solutions
from services providing elementary functionality.
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Abstract. Although Semantic Web service discovery has been extensively stud-
ied in the literature ([1], [2], [3] and [4]), we are far from achieving an effective,
complete and automated discovery process. Using the Incidence Calculus [5], a
truth-functional probabilistic calculus, and a lightweight brokering mechanism
[6], this article explores the suitability of integrating probabilistic reasoning in
Semantic Web services environments. We show how the combination of relaxa-
tion of the matching process and evaluation of Web service capabilities based
on previous performances of Web service providers enables new possibilities in
service discovery.

Keywords: Web services, Semantic Web services, discovery, broker, F-X, ca-
pability, probability, Incidence Calculus.

1 Introduction

Middleware is the "glue" that facilitates and manages the interaction between applica-
tions across heterogeneous computing platforms. Web services is a middleware infra-
structure that provides descriptions of certain capabilities of an application (software
component) and allow its remote execution using Internet protocols. To reduce man-
ual efforts during the location, combination and use of Web services, machine proc-
essable semantics has been added to them creating Semantic Web services [7].

Web service discovery ([1], [8], [2] and [3]) is the act of locating Web services that
meet certain functional criteria. Service requesters (clients) usually specify their
wishes using a goal (a functional description of objectives that clients want to achieve
using Web services). Service providers publish Web services capabilities (functional
descriptions of a Web service) on Matchmakers and/or Brokers (service registry).
Brokers like Matchmakers [9] are intermediate systems between clients and service
providers that store web service capabilities and interfaces (description of how the
functionality of the Web service is achieved), and locate Web services which capabili-
ties match client’s goals. Brokers also manage the interaction between clients and
selected web services.

An exact match between a goal and a required Web service can be sometimes dif-
ficult to get. So, the relaxation of the matching conditions has been suggested to
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improve Web service discovery [3]. Roughly speaking, the relaxation of the match-
ing process between a goal and web services capabilities has been based on the fol-
lowing set of matching notions [4]: (i) exact-match, a goal and matched Web service
capabilities are the same; (ii) plug-in-match, a goal is subsumed by matched Web
service capabilities; (iii) subsume-match, matched Web service capabilities are sub-
sumed by a goal; (iv) intersection-match, a goal and matched Web service capabilities
have some elements in common; and (v) disjoint-match, a goal and matched Web
service capabilities does not follow any of the previous definitions. Although match-
ing notions relax the selection of target web services, in a future scenario in which
thousands of services can potentially fulfil (or partially fulfil) the objectives described
in a goal, a fine-grained classification of matching notions may be necessary for im-
proving the degree of automation of the discovery process. One possible approach is
to identify a degree of matching inside of each matching notion; other possibility,
described in this paper, is to introduce an extra parameter that qualified a selected
collection of Web services. Thus, if we found one thousand web services that follow
an intersection-match pattern, we can filter which are the most promising web ser-
vices for the goal requested based on a selected parameter. To do this, it would be
useful to have a mechanism that collects valuable information about chosen Web
services. Brokers can be a good choice for keeping a record of the quality of Web
services, because brokers can analyze which Web services have been frequently
available and which ones have been successfully used during a client request.

Identifying the "most promising" (or the "best possible") Web services based on
their quality introduces a significant degree of uncertainty that requires a specific
formalism to handle it. The Incidence Calculus [5] is a truth-functional probabilistic
calculus in which the probabilities of composite formulae are computed from intersec-
tions and unions of the sets of worlds for which the atomic formulae hold true. Inci-
dence Calculus can be easily integrated with other logic formalisms like propositional
logic and logic programs that provide the foundations of Semantic Web services
frameworks (e.g. OWL-S', WSMO? and Meteor-SS).

For testing purposes, we have used F-X [6], a modular formal knowledge man-
agement system developed at University of Edinburgh that includes a broker called F-
Broker. The language used in F-Broker for describing Semantic Web services have
common roots with WSMO (both follows the main principles of UPML [10]), and
can deal with WSMO/OWL-S ontologies and Web services that fall into DLP frag-
ment [11]. We will show in this paper how we have extended F-Broker to deal with
relaxed matching notions, how this new version of F-Broker can filter Semantic Web
services based on their quality, and how Incidence Calculus can be nicely integrated
to deal with the uncertainty that quality measurements introduced.

The paper is structured as follows: section 2 introduces process F-X system. In sec-
tion 3 is explained how we enhanced F-Broker using Incidence Calculus. Section 4
provides a short review of other improvements for F-Broker. Related work on prob-
abilistic logic in the Semantic Web is described in section 5. Finally, conclusions and
future work are included in section 6.

! http://www.daml.org/services/owl-s/
2 http://www.wsmo.org/
3 http://1sdis.cs.uga.edu/projects/meteor-s/



110 F. Martin-Recuerda and D. Robertson

2 F-X, a Formal Management System

The F-X system [6] aims to provide a general modular and extendable architecture
for formal management systems, spanning the entire knowledge management lifecy-
cle (knowledge acquisition, transformation and publication). The F-X prototype (see
figure 1) includes six different components: F-Comp (component representation lan-
guage), F-Broker (broker component), F-Bus (communication component), F-Env
(component for ontological envelope checker), F-Life (lifecycle manager component),
and F-Pub (knowledge publication component). The design goal of F-Comp is to
provide a simple language with a reduced set of primitives, but rich enough to de-
scribe all aspects of the design and interaction (communication) of any distributed
collection of components capable of expressing knowledge in some form. F-Broker
is the automated broker mechanism that stores the capabilities of knowledge
components (i.e. problem-solving methods or Semantic Web services), identifies the
assemblies of knowledge components appropriate for a given task, and manages (co-
ordinates) interactions of selected knowledge components. F-Comp and F-Broker
have been designed for describing and coordinating problem-solving methods and
Semantic Web services [12]. Thus, F-X has become a vehicle for testing several as-
pects in the design and implementation of Semantic Web services. The interaction
between knowledge components is handled by F-Bus, a compact communication
system for knowledge components. F-Bus follows main principles of Linda commu-
nication style in which knowledge components publish and read in an asynchronous
manner tuples (currently Prolog facts) in a tuple-space. F-Life is another component
of F-X that defines an abstract calculus for modelling lifecycles of knowledge acqui-
sition, transformation and publishing. F-Life provides tool support for building more
specialized forms of lifecycles and for analyzing existing lifecycles. F-Env provides a
compact meta-interpretation mechanism for ontological constraint checking. Finally,
F-Pub includes tool support for synthesis of Web pages and Web sites from formally
expressed knowledge.

Ontological Envelope Checker

Lifecycle Manager
(F-Life)
(F-Env)
Brokering System —
(F-Broker) Publication System
(F-Pub)

Communication infrastructure Component Language
(F-Bus) (F-Comp)

Fig. 1. F-X Architecture [6]
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After this brief overview of F-X (more information in [6]), we will present in more
detail two components (F-Comp and F-Broker) that are relevant to understand our
work on service discovery using Incidence Calculus.

2.1 F-Comp, Component Representation Language

Inspired by previous work on coordination of distributed agents [13] and efforts on
the Unified Problem-Solving Method (UPML [10]), F-Comp is a language that can
represent ontologies, domain descriptions, problem-solving methods, and bridges, but
unlike UPML, it is not able to represent tasks (although it can be possible to reintro-
duce if it is needed). An ontology definition in F-Comp specifies its signature (set of
terms may be constraining which syntactic structures) and its axioms (set of formal
definitions of each term of the signature). To characterize the domain knowledge
available to solve certain problems, F-Comp includes domain definitions. The es-
sential components of the domain description are: the name of the ontologies used;
the properties of the knowledge expressed in the domain model; and the domain
knowledge itself. A key element of F-Comp is a problem-solving method. It defines
the reasoning process used to solve a concrete problem. The essential components of
a problem-solving method are: the name of the ontology it uses; the capabilities which
it provides; and the problem-solving mechanism delivering these capabilities. [12]
reformulates the F-Comp form for problem-solving method into a close form of the
DAML-S service profile and specification that is not compatible with the original F-
Comp. Thus, using F-Comp we can model simple Semantic Web service capabilities
that can be tested by F-Broker. Knowledge components might be specified using
different ontologies. A bridge (also called correspondence) defines a translation
between terms of different ontologies. The essential components of a bridge are: the
name of the ontology being translated from; the name of the ontology being translated
to; the renamings and mappings describing the translation; and the constraints apply-
ing to translated terms. For simplicity, task descriptions (similar to the notion of goal
in Semantic Web services) are not supported by F-Comp. Essentially, task descrip-
tions are problem-solving methods which do not commit to a specific method, and in
F-X only existing problem-solving methods can advertise their capabilities.

2.2 Describing Capabilities Using F-Comp

The capability language included in F-Comp was designed to describe key informa-
tion which can be obtained from a knowledge component without stipulating how is
derived. F-Comp capability language is defined following horn clause notation [14].
The intuition behind the use of horn clauses for capabilities is that we have four re-
forms of capability, C, each of which is implemented within the expression cap (K,
C) , denoting that the agent named K can deliver capability, C in at least one instance
or, if not, will signal failure. Valid options for C are [6]:

— A unit goal of the form P (A , .., A ) , where P is a predicate name and A,,..., A_
are its arguments.

— A conjunctive goal of the form (C1A..ACm) , where each C, is a unit goal or a
set expression.
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— A set expression of the form setof (X,C, S) , where C is either a unit goal or
a conjunctive goal; X is a tuple of variables appearing in C; and S is a set of in-
stances of those tuples which satisfy C.

— A conditional goal of the form C_«C_, where C_ is a unit goal which the agent,
K, will attempt to satisfy (but will not guarantee to satisfy) if the condition, C_, is
satisfied. C, is either a unit goal or a conjunctive goal.

In addition, the capability language of F-Comp is able to describe partial capabili-
ties which are capabilities that require additional information from another knowledge
component, mediated by the broker. A partial capability is defined by the expression
p_cap(K; C; E), which is identical to our original capability description but with
an additional argument, E, containing the capability required from another knowledge
component.

As we mentioned above, there is a version of F-Comp that provides a slightly dif-
ferent version of the capability description language, closer to DAML-S service pro-
file. A detailed description of this revised version of F-Comp can be found in [12].

2.3 F-Broker, a Brokering Mechanism

The purpose of a broker is to find, for a given task (goal) posed by a client, the ways
in which knowledge components (i.e. problem-solving method, agent or Semantic
Web services) which have advertised their capabilities might be contacted in order to
satisfy that task. F-Broker requires that each knowledge component advertises first its
capabilities simply by sending each capability to F-Broker. For the given task, the
broker constructs from its capability descriptions its internal description, which is
called "brokerage structure" [6] of how the task might be complete based on those
capabilities. It then translates its brokerage structure into a sequence of communica-
tion acts (performative statements in KQML [15]) describing the messages which it
thinks should enable the task to be satisfied by requesting appropriate knowledge
components to discharge their capabilities. In the final stage, the performative infor-
mation generated by the broker is used to establish an appropriate flow of messages
between the selected knowledge components in order to complete the task requested.

The brokering mechanism can be divided in three different elements: a formal way
of representing brokerage structures; a method for constructing brokerage structures;
and an algorithm for translating brokerage structures into message sequences.

A brokerable structure in F-Broker has the form c (K, C), where K is the name of
the knowledge component which should be able to deliver the capability and C is a
description of the sources of the capability. C can be in any of the following
forms [6]:

— A capability available directly from K.

— Atermof the form ¢ (K, dg(Q,QC) ), where Q is a capability obtainable from
K conditional on its other capabilities and QC describes how these capabilities are
obtained.

— Aterm of the form ¢ (K, pdg(Q,QC,QP) ), where Q is a capability obtainable
from K conditional on its other capabilities and on capabilities external to K, and
QC and QP describe how these internal and external capabilities (respectively) are
obtained.
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_ A term of the form ¢ (conj, co(CQ1,CQ2)), where CQ1 and CQ2 are two
capability structures which must jointly be satisfied.

— Atermof the formc (K, cn(Q, G, c(K1,0Q01))), where K1 is the name of
an agent different from K which allows capability structure Q to be delivered in
combination with capability structure Q1 provided that the bridge constraints
given by G are satisfiable.

We can now describe a method for constructing brokerage structures of the form
given above using the capability and bridge definitions which reside in the brokering
system. Notice that this does not involve any additional interaction with the individual
knowledge components (the computation can be done entirely within the broker). We
describe the algorithm below as a logic program because this is compact, precise and
declarative but the mechanism itself could be implemented in a procedural language.
The algorithm proceeds by cases corresponding to each of the forms of brokerage
structure given above. The dq structure is obtained from a conditional cap definition;
the pdqg structure from a p_cap definition; the co structure from two capability
structures; and the cn structure via bridge. In all cases where we introduce a new
capability into our structure we must demonstrate that it too is obtainable from our
definitions — hence the recursive use of broker in the algorithm. For partial capabili-
ties (pdq structures) we need the same form of brokering but with the constraint that
the external capability required by the agent comes from some other source. The easy
way to describe this is simply to replicate the broker algorithm but with an additional
argument (Kn in e broker below) that records the original agent name and prevents it
being used to satisfy the external capability goal. The full definition of our broker is
then as follows [6]:

% Capabilities of K % External capabilities of K
broker (Q,c(K,Q)) e_broker (Q, Kn, c(K,Q))
«cap (K, Q). «cap(K,Q) A not(K=Kn).
broker (Q, c(K, dg(Q,QC))) e_broker (Q, Kn, c(K, dg(Q,QC)))
—cap (K, (Q«C)) A —cap (K, (Q«C)) A not(K=Kn) A
broker (C,QC) . broker (C,QC) .
broker (Q, c(K1l,pda(Q,QC,QP))) e_broker (Q, Kn, c(K1,
«p_cap(Kl, (Q«C), P) A pda (Q,QC,QP)))
broker (C,QC) A <p_cap(Kl, (QeC), P) A
e _broker (P,K1,QP) . not (K1=Kn) A broker(C,QC) A
broker ((Q1,Q02), c(conj, e_broker (P,K1,QP) .
co (CQL,CQ2))) e_broker ((Q1,Q2), Kn, c(conj,
«broker (Q1,CQ1) A co(CQl, CQ2)))
broker (02, CQ2) . <—e_broker (Q1l,Kn,CQl) A
broker (Q2, c(K2, cn(Q2, G, e_broker (Q2,Kn, CQ2) .
c(K1,BQ)))) e_broker (Q2, Kn, c(Kn, cn(Q2, G,
«—corr (K1,01,K2,02,G) A c(KL,BQ))))
Broker (Ql, c(K1,BQ)). «corr (K1,Q1,Kn,Q2,G) A

broker (Q1, c(K1,BQ)).

The brokerage structures and the brokering method described above do not prescribe
the sequence in which it should be transmitted messages to their knowledge components
which F-Broker is coordinating. How F-Broker establishes an appropriate sequence of
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messages depends of the conventions being used for message passing. F-Broker can
support several message passing conventions (similarly to DAML-S/OWL-S and
WSMO that provide several groundings including WSDL/SOAP grounding). Following
previous work on KQML [15] (Knowledge Query and Manipulation Language is a
language and protocol for communication among software agents and knowledge-based
systems), F-Broker includes a simple version of KQML which uses three communication
acts ("performatives" in the terminology of KQML) that are transmitted sequentially [6]:

~ ask(K; C) denoting that we are asking the agent named K to discharge the
competence C. We must obtain a response to this message with an instance
for C before proceeding with the rest of the sequence.

~ tell(K; C) denoting that we are informing the agent named K that a
competence which it required externally can be discharged by a
correspondence to another agent. We must obtain a response from K
indicating that it accepts the information before proceeding with the rest of
the sequence.

~ test(G) denoting that whatever system is sending the messages should
attempt to satisfy the constraint, G, before sending any further messages in
the sequence.

We now need an algorithm for translating the brokerage structures of the previous
section into message sequences which conform to our message passing conventions.
We describe this below in the style of a Definite Clause Grammar (DCG) the
grammar is used to generate the sequence of terminal symbols, corresponding to
performatives, by unpacking the brokerage structure. We assume in the definitions
below that the DCG rules are mutually exclusive, so there is only one possible rule for
each form of brokerage subterm. It is readily implemented in Prolog but could be
implemented in other languages [6]:

assemble(c(S; dg(Q; QC))) ) fdependent queries (QC;DQ)g;
assemble (QC) ;

[ask(S; (Q DQ))]

assemble(c(S1l; pdg(Q; QC;QP ))) ) fdependent queries (QP;DQ)g;
assemble (QC) ;

assemble (QP ) ;

[ask(S1; (Q DQ))]

assemble(c(conj; co(CQl;CQ2))) ) assemble(CQl);
assemble (CQ2)

assemble(c(S; cn(Q;C; CQ))) ) assemble(CQ);

[test(C); tell(S; Q)]

assemble(c(S; Q)) ) [ask(S; Q)]

2.4 Travel Agency Example, Writing Capabilities in F-Broker

The example of this section describes a simplified version of the well-known Virtual
Travel Agency (VTA) scenario. Clients can ask VTA for flight information or require
the booking of selected flights. VTA stores capabilities of airline companies that are
interested on advertising flights and selling the flight-tickets. Booking a flight re-
quires payment service and passport verification. The former is done by credit-card
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financial entities, and the later is done by the police. We specify the capabilities of
each airline company, credit-card company and the police in the following way:

% Financial capabilities

capability(financial_vs,, pay_order (Client_1ID,
Client_Card_Number, Purchase_Order, Cost, Currency,
PaymentMethod) ) .

capability (financial_ms, , pay order(...)).

capability (financial_amex, , pay order(...)).

% Passport control capabilities

capability(police, has_passport (Client_ID, Nationality)).
% Airline capabilities

capability (airline_ib, check_flight (Origin, Destination,
DepartureDate, ArrivalDate, NPassengers, Cost, Currency,
Flight_Number)) .

capability(airline_ib, book _seats (Origin, Destination,
DepartureDate, ArrivalDate, NPassengers, Cost, Currency,
Flight_Number)) .

p_capability(airline_ib, (buy_£flight_tickets (Origin,
Destination, DepartureDate, ArrivalDate, Cost, Currency,
Flight_Number, Purchase_Order, Client_ID, Nationality,
Client_Card_Number, Confirmation_Number) :-
(check_ f£flight (Origin, Destination, DepartureDate,
ArrivalDate, NPassengers, Cost, Currency, Flight_Number),
book_seats (Origin, Destination, DepartureDate,
ArrivalDate, NPassengers, Cost, Currency,
Flight_Number)), (pay_order (Client_ID,
Client_Card_Number, Purchase_Order, Cost, Currency,
PaymentMethod), has_passport (Client_ID, Nationality))).

capability(airline_aa, check_flight(...)).
capability(airline_aa, book _seats (...)).

p_capability(airline_aa, (buy_ £flight_tickets (...))).

capability (airline_ba, check_flight(...)).
capability(airline_ba, book _seats (...)).
p_capability(airline_ba, (buy_ £flight_tickets (...))).
If a potential client would like to buy flight-tickets, the brokerage structure gener-
ated by F-Broker is described next:
¢ (airline_ba, pdg (buy flight tickets (...),
c (conj, co (¢ (airline_ba, check_flight(...)),

¢ (airline_ba, book_seats (...))),
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¢ (airline_ba, cn ( ¢ (financial_ms, pay order(...))),
c (airline_ba, cn ( ¢ (police, has_passport (...)))
))

The assembled message sequences corresponding to the brokerage structure de-
scribed above would have the following form:

ask (airline_ba, check_flight(...)),

ask (airline_ba, book_seats (...)),

ask (police, has_passport (...)),

ask (financial_ms, pay order(...)),

ask (airline_ba, buy flight tickets (...):-
pay order(...)),
has_passport (...)))

3 Quality-Based Service Selection Using Incidence Calculus

When a service requester (client) submits a goal (service request) to a broker, the
broker has to find which Web service can fulfil the goal based on the service capabili-
ties that have been stored in the broker's database. It is possible that the broker might
find several candidates that can provide the service requested. Instead of choosing
randomly the appropriate Web service, we have developed a simple but apparently
effective technique for selecting Web services based on evidence of prior perform-
ance. Because brokers coordinate the interactions between service requester and ser-
vice providers, brokers can track successful attempts of satisfying service requests.
Thus, when a broker has several providers that meet the requirements of a new client's
goal, the broker can select the Web service with better prior performance (number of
previous occasions in which the service successfully attempt a service request).

Inferring the best possible Web service based on previous performance introduces
a significant degree of uncertainty. To deal with this uncertainty, we use the Incidence
Calculus [5] for our probabilistic calculations. Thus, F-Broker is able to select the
Web service that maximises the probability of a successful outcome. To better under-
stand what Incidence Calculus is and how it can be used in F-Broker, we provide a
detailed description next in this section.

3.1 Incidence Calculus

Bundy [5] demonstrated that purely numeric probabilistic formalism can derive into
contradictory results during the calculation of an uncertainty measure of complex
formula. The key result of his analysis is that in general P (AAB) #P (A) *P (B).

Incidence Calculus [5] reviews the notions of probability theory and introduces an
important novelty: “the probability of a sentence is based on a sample space of ele-
ments. Each element defines a situation in a possible world where a sentence can be
true or false. The sample space, T, contains an exhaustive and disjoint set of elements
that for computational reasons should be finite”.
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The incidence of a sentence A, i(A), is the subset of W in which sentence A is true.
The dependence or independence of two sentences, A and B, is defined by the amount
of common points of the result of the intersection between their incidences,
i(A) Ni(B) .

The axioms of Incidence Calculus [5] associate a set of theoretic function with
each connective, propositional constant and quantifier of Predicate (Propositional)
Logic so that the incidence of a complex sentence can be calculated from the inci-
dences of its sub-sentences. The probabilities of composite formulae are computed
from intersections and unions of the sets of worlds for which the atomic formulae
hold true. Bundy called the resulting system Predicate (Propositional) Incidence
Logic [5]:

i(T)= {3 i)y = {

i(a)= i(a) i(=a) = i(M\i(a)
i(AAB) = i(A)Ni(B) i(AVB) = 1i(A)Ui(B)
i(A-B)= i(=AVB) = (1(T)\ 1i(Aa))ui(B)

Thus, probabilities are calculated in the following way [5]:

P(T)= [1(M] =1 P(L)= |i(L)| =0

P(A)= [1(a)] /7 [1(T)| P(—a)= 1-]i@a)| / |[1(T)]
P(AAB) = |i(A)ni(B)]| / |i(T)]

P(AVB) = (]i(a) ui(B)| - [i@)ni®B)|) /7 |i(T)]

P(A|B) = |i(A)ni(B)]| / | i(B)|

As an illustration, consider the following set of incidences describing the weather
of a given week adopted from [5]:

Suppose there are two propositions, P={rainy, windy} and seven possible worlds,
T ={sunday, monday, tuesday, wednesday, thursday, friday, saturday}. Suppose that
each possible world is equally probable (i.e. 1/7), and we learn that rainy is true in
four possible worlds (friday, saturday, sunday and monday) and windy is true in three
possible worlds (monday, wednesday and friday). Therefore, we can derivate the
following incidence sets [5]:

i(rainy) = {friday, saturday, sunday, monday}
i(windy)= {monday,wednesday, friday}
i (windyArainy)= {monday, friday}

Moreover, we can calculate their probabilities in the following way:
P(rainy) = |i(rainy)| / |1(T)|=4/7
P(windy) = |i(windy)| / |i(T)|=3/7

P(windyarainy)= | i(windy)ni(rainy)| / |i(T)|=2/7
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3.2 Travelling Example Revised

In F-Broker, each time that a service request is received counts as one incidence. If
the service request has been successfully attended by selected Web services, the capa-
bilities involved during the creation of the brokerage structure are modified by the
broker adding one incidence to the associated list of incidences. Initially, the incident
database is empty, and the broker selects services at random. As more data is col-
lected, a threshold is reached, at which point the broker begins to use the probabilities
for selecting promising Web services.

The incidence database is composed of a proposition with all the incidences regis-
tered by the broker and an entrance for each atomic capability with the associated list
of incidence (one incident for each successful used of the capability). The revised
version of the virtual travelling agency scenario then is as follows:

i(all_requests, [1,2,3,...,20]).
i(capability(airline_aa, check_ f£flight(...)), [2,3,9,10,11]).
i(capability(airline_ba, check_flight(...)), [1,4,5]).

i(capability(airline_ib, check_£flight(...)),
[6,7,8,12,13,14,15,16,17,20]) .

e oo

In this example, we can observe that the first service has been successfully used in
five different occasions. So, we can predict the goodness of the associated service by
applying Incidence Calculus in the following way:

P(capability(airline_aa, check flight(...))) =
[{2,3,9,10,11}|/|{1, ...,20}]|

We can also observed that for a given request that can be satisfied by any of the
Web services represented using the capabilities listed above, capabil-
ity (airline_ib, check_f£flight(...)) is the most promising one. Further, by
intersecting various sets of incidences, Incidence Calculus also allows F-Broker to
compute the possible success of a group of capabilities. Let us examine the prior
performance of the Web services associated with the partial capability
"buy_flight_tickets" of the service provider "airline_ib". We ran F-
Broker several times and we obtained the following incidence data:

i(all_requests, [1,2,3,...,20]).

i(capability(financial_amex,, pay order(...)),
[1,2,3,6,7,8,16,201]) .

i(capability(police, has_passport (...)),
[1,2,5,6,7,8,10,16,171]) .

i(capability(airline_ib, check_£flight(...)),
[6,7,8,12,13,14,15,16,17,20]) .
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i(capability(airline_ib, book_seats(...)),
[6,7,8,16,17,201) .

p_capability(airline_ib, (buy_£flight_tickets (...) :-
(check_flight(...), book_seats (...)),
(pay_order(...), has_passport (...))).

There is no set of incidences associated with the partial -capability
"buy_flight_tickets", because its probability of success is computed using the
incidences associated with the capabilities "check_flight", "book_seats",
"pay_order", and "has_passport". The first two capabilities are associated to
"airline_ib" and their joint distribution is calculated as the intersection of their
incidences. The last two capabilities are dependent upon services other than "air-
line_ib" - their joint probability is conditional on the joint probability of
"check_flight" and "book_seats". Thus, the probability of the Web service
associated with "buy_flight_tickets" can be calculated as follows:

P(capability(airline_ib, buy flight_tickets(...))) =
P(capability(airline_ib, check flight(...)) A

capability(airline_ib, book_seats(...)) |
capability (financial_amex, pay order(...)) A

capability(police, has_passport (...))) =

| t6.7.8,12,13,14,15,16,17,20} N {6,7,8,16,17,20} N
{1,2,3,6,7,8,16,20} N {1,2,5,6,7,8,10,16,17}| /
|{1,2.3,6,7,8,16,20} N {1,2,5,6,7,8,10,16,17} |

Given that probabilities can be calculated from the dependencies established by the
capability definitions, it is not necessary to modify the broker algorithm described in
the previous section. F-Broker will try to "instantiate" first the capabilities with the
highest number of incidences. The probability of the final brokerage structure can be
calculated later, using the information about dependencies between capabilities. Us-
ing this technique can substantially improve performance over random selection of
Web services which can individual meet the requirements. In addition, the use of
Incidence Calculus does not degrade the performance of F-Broker.

3.3 Discussion

F-Broker has been designed for interaction between agents in architectures for which
it is straightforward to gather data on the success or failure of an agent each time it
has attempted to satisfy a goal. In this architecture, the enactment of interactions
(which is complementary to the specification of agent capabilities) is controlled by
specifications of the interaction process (analogous to the process model assumed by
OWL-S). Each agent that wishes to become involved in an interaction must actively
subscribe to one of the roles in that interaction; then when all the roles of an interac-
tion are subscribed the corresponding agent group commit to the interaction before
engaging in it. The fact that F-Broker connects agents through subscription to explicit
roles and interactions means that it potentially can supply accurate statistics on agent
performance in enacting capabilities.
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The incidences gathered by F-Broker are considered independent. We must make
that assumption because we have no means of knowing whether or not they have
dependences "behind the scenes", and we are not concerned if they do because all we
are interested in is whether agents have demonstrated their abilities to offer the capa-
bilities they said they could offer.

The fact that we associate incidences to each atomic capability, and that we calcu-
late probabilities following the rules defined by the Predicate Incidence Logic [5]
should not confuse the reader about the nature of Incidence Calculus as a mechanism
for handling uncertainty. In the scenario presented above, "counting incidences" is a
strength, for two reasons: it allows us to use data on success/failure simply; and di-
rectly via Incidence Calculus, it allows us to distinguish incidences which avoids
the problems in classical probability that stimulated Incidence Calculus in the first
place [5].

An additional element for discussion is the way that we estimate the probability of
complex capabilities. For complex capabilities, we derive an estimate of their prob-
ability by performing calculations over "primitive" incidences associated with atomic
capabilities. We do not associate incidences directly with complex capabilities be-
cause we cannot know which agents to blame when a complex interaction has failed.
For instance, if a complex capability, "Y", is defined by "A and B" where "A" and
"B" are atomic, Incidence Calculus allows us to estimate probabilities for complex
capabilities in a way that distinguishes the cases where A and B interact (because they
were in the same incident) from those in which they do not.

We note here two significant problems that seem to be intrinsic to the technique
that we presented above: the problem that F-Broker relies on the honest evaluation
reported by the clients that have sent their goals; and the problem of quickly re-
adapting when the performance of Web services changes. Since individual client
services are responsible for the assigning of success metrics to goal satisfaction, there
is scope for clients with unusual criteria or malicious intent to corrupt the database.
We also note that F-Broker is not able to handle the changes that the environment
undergoes in specific periods of time. For instance, the provider of a service with a
large set of incidences (successful provider) might fail temporarily (no service then
being available). Any request by clients that asks for this service will still be proc-
essed by the broker and the answer will include the service that the provider cannot
supply. After many requests this could be remedied by another service outperforming
the record of the unavailable service, but before then, the current broker will choose
an unavailable service first.

4 Additional Improvements for F-Broker

We briefly present in this section two relevant modifications of F-Broker imple-
mented in [16] for improving its ability of dealing with Semantic Web services. The
first enhancement allows F-Broker to load many DAML-S Web services. This func-
tionality is useful for increasing the range of testing data. The second improvement,
also implemented in [16], extends the notion of matching in F-Broker which is able to
find services that partially meet the requirements of a given goal.
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4.1 Loading DAML-S Services

To test F-Broker with examples of Semantic Web Services implemented by institu-
tions outside of University of Edinburgh, we developed a new module for loading
DAML-S Service Profile descriptions. At the time of this work, DAML-S was the
most important proposal for describing Semantic Web services, so it was a natural
choice to focus on DAML-S. One of the main difficulties was to find a translation
from DL logical statements into Prolog statements.

Description Logic Programs (DLP, [11]) is an expressive fragment of the intersec-
tion of Description Logics (DL) [17] and Logic Programs (LP) [14]. An important
result of the development of this formalism is DLP-fusion, a bidirectional translation
of premises and inferences from DLP fragment of DL into LP, and vice versa from
DLP fragment of LP into DL. Our implementation of DLP-Fusion was good enough
to load slightly adapted versions of DAML-S Service Profile descriptions from
DAML*, Mindswap’ and Carnegie—Mellonﬁ.

4.2 Extending the Notion of Matching in F-Broker

The main motivation behind the use of Incidence Calculus for selecting Web services
was to facilitate the work of the broker when "exact" matching is not the only notion
of matching available. For testing purposes, F-Broker was modified to support plug-
in, subsume, and intersection match. We implemented a new predicate, match-
ing_notion (Q1, Q2, Nmatch), that evaluates the amount of parameters in
common between two capabilities, Q1 and Q2, and the predicate returns the kind of
matching founded. The broker algorithm presented in previous section was modified
to accommodate the new developed predicate. For instance, for a simple capability C
directly available from Web service K, ¢ (K, C), the brokerage predicate is:

brokerable(Q, c(S,Q,Nmatch)) :-
capability (s, 0Q1),
matchingnotion(Q1l,Q,Nmatch),
Nmatch<>"disjoint”.

Supporting several notions of matching increases the amount of Web services that
meet (perhaps partially) the requirements for a given goal. The Incidence Calculus
was added to help F-Broker during the process of selecting the most promising Web
services that match the requirements posted by a client.

5 Related Work

The use of probabilistic logic in the context of the Semantic Web has not been ex-
plored in detail. Even the inventor of the Semantic Web, Sir Tim Berners-Lee,
claimed during the dev day lunchtime session at WWW2004 conference’ that the
Semantic Web stack does not need a representation of uncertainty. The first serious
attempt to incorporate probabilistic reasoning in the Semantic Web was done with

* http:// www .daml.org/services/examples.html

> http://www.mindswap.org/2002/services/

® http://www. daml.ri.cmu.edu/ont/TaskModeler/TMont-index.html# Request Realtor]
7 http://esw.w3.org/mt/esw/archives/000055.html
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P-SHOQ[18]. This work has been recently revised, and as a result, the first imple-
mentation of P-SHOQ has been released. PRONTO [19] is an extension of Pellet [20]
that enables probabilistic knowledge representation and reasoning in OWL ontolo-
gies. To the best of our knowledge, the use of Incidence Calculus for improving Web
service discovering and composition was proposed first in [16]. Later, [21] incorpo-
rates the use of Incidence Calculus in an advance version of F-Broker that includes a
lightweight coordination calculus (LCC) [22], a method for specifying agent interac-
tion protocols. [21] provides a detailed analysis of performance of the use of Inci-
dence Calculus for selecting web services and proves empirically the benefits of the
use of Incidence Calculus for Web service discovery.

6 Conclusions and Future Work

The use of Incidence Calculus for improving service discovering is an excellent moti-
vating scenario for encouraging the integration of probabilistic logic in Semantic Web
service technology. Uncertainty is present in functional aspects of Web Services like
discovery, composition, interoperation, mediation, monitoring and compensation. In
this paper, we focused only in discovery, and in [16], composition is also studied.

Incidence Calculus was an excellent choice because its simplicity, rigor and compati-
bility with other classical logic formalisms. F-Broker provides an excellent test platform
for the evaluation of Incidence Calculus in semantic web services. Although simple, F-
Broker provides all basic functionality of a broker and allows the composition of web
services capabilities and the execution of services based on an elementary vocabulary
inspired in KQML. The code is compact and new extensions can be easily included. F-
Broker assumes a service choreography architecture in which agent success/failure in
interactions can accurately be recorded. An example of this sort of architecture has been
developed by the OpenKnowledge project (www.openk.org). The Openknowledge
kernel system (downloadable and available open source) allows peers on an arbitrarily
large peer-to-peer network to interact with one another without any pre-established
global agreements or knowledge of who to interact with or how interactions will proceed.
This provides a concrete example of the sort of architecture assumed by F-Broker.

Future work will concentrate in the migration of the test platform to more realistic
scenarios and the evaluation of other probabilistic logic formalism that combines
logic programming with description logics.
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Abstract. In the (Semantic) Web, the existence or producibility of cer-
tain, consensually agreed or authoritative knowledge cannot be assumed,
and criteria to judge the trustability and reputation of knowledge sources
may not be given. These issues give rise to formalizations of web informa-
tion which factor in heterogeneous and possibly inconsistent assertions
and intentions, and make such heterogeneity ezplicit and manageable
for reasoning mechanisms. Such approaches can provide valuable meta-
knowledge in contemporary application fields, like open or distributed
ontologies, social software, ranking and recommender systems, and do-
mains with a high amount of controversies, such as politics and culture.

As an approach to this, we introduce a lean formalism for the Se-
mantic Web which allows for the explicit representation of controversial
individual and group opinions and goals by means of so-called social con-
texts, and optionally for the probabilistic belief merging of uncertain or
conflicting statements.

Doing so, our approach generalizes concepts such as provenance anno-
tation and voting in the context of ontologies and other kinds of Semantic
Web knowledge.

Keywords: Semantic Web, OWL, Knowledge Integration, Context
Logic, Voting, Provenance Annotation.

1 Introduction

Information found in open environments like the web can usually not be treated
as objective, certain knowledge directly, and also not as truthful beliefs (due to
the mental opaqueness of the autonomous information sources). Only a few ap-
proaches to the semantic modeling of what could be called subjective opinions,
ostensible beliefs or “public assertions”, which are neither truthful beliefs nor
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objective knowledge, exist so far [11,12]. In contrast, most prevalent formal ap-
proaches to knowledge representation and reasoning for the Web handle logical
inconsistencies and information source controversies mostly as something which
should be avoided or filtered.

Against that, we argue that making (meta-)knowledge about the social, het-
erogeneous and controversial nature of web information explicit can be extremely
useful - e.g., in order to gain a picture of the opinion landscape in controversial
domains such as politics, for subsequent decision making and conflict resolution,
for the acquisition and ranking of information from multiple, possibly dissent
sources, and not at last for tasks like the learning whom (not) to trust. Such
knowledge is especially crucial in domains with a strong viewpoint competition
and difficult or impossible consensus finding like politics, product assessment
and culture, and in current and forthcoming Semantic Web applications which
support explicitly or implicitly people interaction, like (semantic) blogging, dis-
cussion forums, collaborative tagging and folksonomies, and in social computing
in general. Approaching this issue, this work presents a lean approach to the
formal representation of semantical heterogeneity by means of social contexts
and the probabilistic weighting and fusion of inconsistent opinions.

The remainder of this paper is structured as follows: the following section
defines the two most important concepts underlying our approach, namely social
contexts and social ontologies. Section 3 introduces a formal, C-OWL based
framework for the modeling of social contexts, and Section 4 shows how the
formerly presented formal framework can be extended in order to allow for the
fusion and probabilistic weighting of competing statements. Section 5 concludes
with a discussion of related works.

2 Integration of Divergent Viewpoints and Intentions
Using Social Contexts

In the following, we describe the main concepts underlying our approach. First
we introduce a so-called social ontology of social entities and structures. This
ontology is then used to obtain a certain type of logical contexts (called social
contexts) which allow for the modularization of (ordinary) ontologies w.r.t. the
addressee-dependent propositional attitudes of actors or organizations towards
the axioms and facts in these ontologies.

A more in-depth exploration of these concepts can be found in [22].

2.1 Social Ontologies

Technically, our approach is based on implementing an interrelationship of a so-
cial ontology for the description of social concepts and individuals (like persons,
agents and organizations, and maybe their relationships) on the one hand, and
a set of possibly controversial or uncertain statements (opinions) on the other
hand. Instances of the social ontology represent the knowledge sources which
contribute these opinions. Special terms which are assembled using names from
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the social ontology then identify social contexts for the contextualization and
optionally the fusion of semantically heterogeneous statements. The social on-
tology can thus be seen as a meta-ontology which is used to provide elements
which are used to annotate facts and axioms of other ontologies (the ontologies
which contains the opinions). The contextualization itself (independent of the
social ontology) corresponds to the context-driven partitioning of a knowledge
space, analogously to the approach presented in [2,4].

There is no canonical social ontology to be used with our approach. Basi-
cally any ontology could be used as long as it provides concepts, roles and in-
stances for the modeling of the interacting agents and social groups, such as
“Author”, “Publisher” or “Reader”, or, most basic, “Actor”. We believe that
information sources shall be seen as active, autonomous and - most important -
communicating (i.e., social) actors, as well as the recipients of the information.
A mere conceptualization of the (Semantic) Web as a kind of huge distributed
document or knowledge base containing passive information fragments would be
highly inadequate [23]. We see the Semantic Web rather as a place where actively
pursued opinions and intentions will either compete against or strengthen each
other interactively [24]. This viewpoint is independent from the concrete ways
such interaction is technically performed (directly or indirectly, synchronously
or asynchronously...).

The following example ontology fragment will do for the purpose of this work:

Definition 1: Social ontology SO (example)
Actor(persony), Actor(persons ), Actor(persons)

Communication(com; ), Communication(coms), Communication(coms),
Communication(comy)

Source(comy, personsy), Addressee(comy , persons)
Source(coms, persony ), Addressee(coms, persons)

Content(comy, “a_reified_statement”)

DegreeOfCertainty(comy,0.75)
DegreeOfCertainty(comsz,0)

Social Group(groupy), Social Group(groups)

hasMember(groupy, personi ), hasMember(groups, persony )
Actor(group,)

Actor(organization,)

Source(comy, groupy), Addressee(comy, organizationy )
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CA(assertion), C A(publicBelief ), C A(publicIntention)
Attitude(comy, publicBelief ), Attitude(coms, assertion),
Attitude(coms, publicIntention)

Aggregation(fusedPublicBelief)

At this, Actor is the category of the participating actors, whereby these can
be any kind of information sources or addressees, like persons, organizations,
documents, web services, as well as the holder of a so-called public intention or
goal (cf. below). Communication is the category of elementary communication
acts, described by the properties Source, Addressee, Attitude and Content (the
uttered statement or intention). A full-fledged approach would add further prop-
erties such as a time-stamp, but for many applications it will not be required to
make SO explicit at all.

Information sources and addresses can be the roles of any kind of actors, not
only individual persons. E.g., a social group or an organization such as a company
can also act as a source. Social groups are modeled extensionally as sets, whereas
organizations are legal entities. At this, it is very important to see that in our
framework, opinions and public intentions uttered by a certain group or organi-
zation can be modeled fully independently from the opinions and intentions of its
members and subgroups. I.e., a social group as a whole could exhibit opinion p,
whereas each individual group member exhibits —p simultaneously. Of course, in
reality the opinions of group members influence the opinion of the group, by way
of judgment aggregation [27]. But we think that no single particular way of group
opinion settlement should be statically fixed. Instead, we will later introduce a
special aggregation operator (informally denoted as fusedPublicBelief in SO) in
order to model the quasi-democratic emergence of group opinions from individual
opinions. But again, this is only one possibility: likewise, our framework allows to,
e.g., model the case that a group always communicates the opinions of some dedi-
cated opinion leader (dictatorship). It is also not necessarily the case that a social
group as a whole forms a single actor at all.

At a first glance, it might seem that on the Semantic Web, the addressee
of information is always the general public and thus a fine grained modeling
of communication addressees would not be required. This is untrue at least for
two reasons: firstly, Semantic Web technologies are also useful in environments
where the set of recipients of some information is limited, such as in closed
web communities. Secondly, even if some information is in principle visible to
everybody, it is nevertheless usually targeted at some specific audience (although
it might be difficult to obtain this kind of meta knowledge).

In this work we support the modeling of three public propositional attitudes:
assertion, publicBelief , and publicIntention, all subsumed in the ontology under
CA (“Communication Attitude”).

assertion means that a certain statement is ostensibly believed and that the
speaker (author) has the ostensible intention to make the addressee(-s) adopt the
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same attitude towards the respective statement also (e.g., “This product is the
best-buy!”). This corresponds more or less to the communication act semantics
which we have introduced in [11,5,12], and to Grice’s conceptualization of speech
acts as communications of intentions. publicBelief means here more or less the
same as assertion, but in distinction from the latter publicBelief is a passive
stance and does not necessarily comprise the person’s intention to make the
addressees approve the respective statement but merely that a person agrees with
some statement (but note that it is not possible to communicate an information
p without the implicit assertion that p is indeed an information...). We could
likewise have called publicBelief belief instead, but avoid the latter in order to
be able to distinguish between mental (truthful) beliefs and opinions.

Both publicBelief and assertions are sometimes called “opinions” in this
work. The pragmatic status of publicBelief , being a kind of “weak assertion”, is
somewhat unclear and mainly introduced for compatibility reasons w.r.t. [13],
and we believe that assertion is sufficient to model most cases of information
dissemination on the (Semantic) Web.

publicIntention finally is the communication attitude of ostensibly intending
that a statement shall become true (i.e., an intention or goal of the actor to
change the world appropriately). The attitude of requesting something from
another actor is a subtype of publicIntention. As a simplification, we consider
the attitude of denial as identical with the positive attitude towards the negation
of the denied statement. This would perhaps be too simple for the modeling of
inter-human dialogs, but should do in the context of the less dynamic information
exchange on the web. These attitudes should be sufficient to represent most
information, publishing and desiring acts on the internet.

assertion, publicBelief and publicIntention are no propositional attitudes
in the usual mentalistic sense but public propositional attitudes, as they do not
need to correspond to any sincere (i.e., mental) beliefs or intentions of the actors.
Instead, they are possibly insincere communication or social attitudes - stances
taken on statements in the course of social interaction. As a consequence, they
can not be treated like their mental counterparts. E.g., an actor might hold the
opinion ¢ towards addressee one and at the same time —¢ informing addressee
two (while believing neither ¢ nor —¢ privately). As another example, opinions
could even be bought, in contrast to sincere beliefs: it is known that opinions
uttered in, e.g., web blogs have sometimes been payed for by advertising agencies.
Even more, all information on the web is “just” opinion, simply due to the
absence of a commonly accepted truth assessment authority.

fusedPublicBelief will be described later. It is used in place of communication
attitudes, but it actually stands for the merging of opinions by some observer.

2.2 Social Contexts

Contexts (aka microtheories) have been widely used in Al since the early nineties,
originally intended by McCarthy as a replacement of modal logic. [1,2] propose
a context operator ist(context, statement) which denotes that statement is true
(“ist”) within context. Building upon general approaches to contexts (specifically
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[2,4]), and earlier works on social reification [24], we will use the notation of “con-
text” to express formally that certain statements are being publicly asserted (in-
formed about, ostensibly intended to become true, denied...) on the web by some
information-Source(s), optionally facing some specific Addressee(s). The latter
implies that our use of the term “public” optionally comprises “limited publics”
in form of closed social groups also. Thus, such social contexts model the social se-
mantics of the contextualized information. Here, the term “social semantics” has
a twofold meaning itself: firstly, it refers to the pragmatic effects of the commu-
nicative function information publication on the web has - essentially, our con-
texts correspond to kinds of speech acts which express the particular attitudes
web authors have towards statements. Although “propositional attitude” is tra-
ditionally a psychological concept, we use this term here for attitudes reported
communicatively.

Secondly, the semantics is social in the sense that a fusion context can denote
the meaning of a certain statement ascribed by multiple actors using some ag-
gregation rule, e.g., the degree of truth assigned via consensus finding or voting,
or other kinds of social choice among statements [27].

Defined as conceptualizations of domains, formal ontologies are usually asso-
ciated with consensual and relatively stable and abstract knowledge. Contexts in
contrast provide a powerful concept underlying approaches which aim at coping
with the distributiveness and heterogeneity of environments by means of local-
izing information. This dichotomy of ontologies on the one hand and contexts
on the other has been recognized already, but only since recently, the synergies
of both concepts are being systematically explored.

Social contexts are special contexts which are used for the social contextualiza-
tion of statements, i.e., their purpose is to express the social (= communicative)
meaning of statements in a scenario like the web, with multiple synchronously or
asynchronously communicating information providers and addressees. The ma-
jor task now is thus to define a type of logical context which allows to model the
communicated attitudes associated with information on the web.

The idea is to use parts of the descriptions of individual elementary commu-
nications as defined in SO as identifiers of contexts. That is, we maintain two
ontologies: first SO, and second a dynamic context ontology, with context iden-
tifiers created from certain instances of SO. But for some applications, it will be
sufficient to actually create and maintain only the latter ontology, whereas SO
is given only implicitly in form of the context identifiers.

Definition 2: Social contexts

A social context is defined as a pair (id, ¢), with id being either a term which
identifies communications in SO, or a fusion context identifier as specified below.
¢ is the set of mutually consistent description logic statements (see the follow-
ing section) which corresponds to the set of contents {c¢ : Content(com;,c)}
of all communications com; which share the respective partial description id.
id is called the context identifier. A “partial description” of a communication
means the description of the communication in terms of the properties Source,
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Addressee and Attitude. le., it comprises all role assertions for this communi-
cation, excluding those for the role Content (which flows into ¢ instead). Thus,
social contextualization essentially puts statements into the same context iff the
communications which contain these statement as their content share the same
properties speaker, hearer, and attitude. In some sense, this “un-reifies” the rei-
fied statements within SO in order to obtain contextualized logical statements,
and reifies other parts of SO in order to obtain context identifiers.

We use the following syntax for (non-fusion) context identifiers:

attitude
source—addresse

This term is obtained from a SO fragment
Source(com, source), Addressee(com, addressee), Attitude(com, attitude)

for a certain com with Communication(com). We also allow for context iden-
tifiers with sets of actors in place of the source and/or the addressee (curly
brackets omitted):

attitude
sourceq,...,sourcen, —addressei,...,addresseen,

But note that social groups like sourceq, ..., source, can still only occur in the
source role in (non-fusion) context identifiers if they act as a group as a source
or a addressee.

AS an abbrevjation’ we deﬁne gzﬁf‘gedle,,sourcen :Z(t)zzf‘gedle,,sourcen —Actor» With
Actor being the extension of Actor in SO. l.e., the communication is here ad-
dressed to the group of all potential addressees like it is the case with information
found on an ordinary public web page. If the sources, addressees and the atti-
tude are unspecified, for both sources and addressees the extension of Actor is
assumed, and publicBelief as the attitude.

At this, it is important to see that - like in real life - a certain source can hold
mutually inconsistent attitudes even towards different members or subgroups of
Actor at the same time (but not towards the same addressee).

Fusion context identifiers will be used later in order to merge possibly in-
consistent opinions uttered by multiple sources which do not necessarily form a
social group with role Source. The syntax of fusion context identifiers is

fusedPublicBelief
sourceq,...,source, —addressee*

or in case addressee is a social group alternatively:

fusedPublicBelief
sourceq,...,sourcen, —addressei,...,addresseey "

A question in this regard is how the information required in order to create
social contexts (i.e., information source, addressee(-s), attitude) can be obtained.
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Basically, the answer is analogous to the answer to the question where other Se-
mantic Web data such as RDF or OWL documents shall come from: they need
to be manually created or automatically generated. Other somewhat applicable
analogies are the process of quotation, referencing, the provision of named graphs
[20] and provenance annotation (but note that named graphs and all kinds of
annotation are significantly weaker concepts compared to logical contexts). For
example, authors could provide social contexts with their own statements on the
web. Other knowledge workers or ontology creators could use social contexts in
order to integrate statements provided by different people. As long as the authors
of these statements are known (or at least URIs), at least the most simple kinds
of social context identifiers can be easily generated. In contrast to techniques
such as ontology mapping or trust assessment, social contextualization, if seen
as a technical approach to quotation, is a simpler means to create correct and
mutually consistent statements from inconsistent or dubious source statements
(but of course it might require the recursive application of social contextualiza-
tion...). Although social contexts only “wrap” the general problem of limited
trustability on the web, they can be useful in order to integrate information
on the fly, especially if no trust information is available. This functionality is
shared with RDF reification, but the use of the long established context logic
and its Semantic Web versions such as C-OWL appears to be a cleaner and
better researched approach.

3 A Description Logic with Support for Social Contexts

We introduce now a formal language based on C-OWL [4] for the representation
of ontologies with social contexts.

We settle on the SHOZN (D) description logic (over data types D), because
ontology entailment in the current quasi-standard OWL DL can be reduced to
SHOIN (D) knowledge base satisfiability [16]. Since we don’t make use of any
special features of this specific description language, our approach could triv-
ially be adapted to any other description language or OWL variant, RDF(S),
rule languages, or first-order logic.

Definition 3: SHOZN (D)-ontologies

The context-free grammar of SHOZN (D) concepts C' is as follows. Please find
detailed information about the syntax and semantics of SHOZN (D) in [16,17].

C — A|-C|C; N Cs|Cy U Co|3R.CIVR.C
| >nS| <nSHa1,...,an}| > nT| < nT|3T, ..., T,,.D|VTY, ..., T,,.D
D — d|{c1,...;cn e

At this, C denote concepts, A denote atomic concepts, R denote abstract roles
or inverse roles of abstract roles (R™), S denote abstract simple roles [16], the
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T; denote concrete roles, d denotes a concrete domain predicate, and the a; / ¢;
denote abstract / concrete individuals.

A SHOZN (D) — ontology (or knowledge base) is then a finite, non-empty set
of TBox axioms and ABox axioms (“facts”) C1 T Cj (inclusion of concepts),
Trans(R) (transitivity), R1 T Rg, T1 T Tb (role inclusion for abstract respec-
tively concrete roles), C(a) (concept assertion), R(a,b) (role assertion), a = b
(equality of individuals), and a # b (inequality of individuals). Concept equality
can be expressed via mutual inclusion, i.e., C; C Cs, Cy C C1. Spelling out the
semantics of SHOZN (D) is not required within the scope of this work, it can
be found in [16].

Definition 4: SOC-OWL

Introducing ontologies and at the same time description logic knowledge bases
with social contexts, we define SOC-OWL (Social-Context-OWL or simply “So-
cial OWL”) similarly to C-OWL [4]. While the syntax of SOC-OWL can be seen
as a defined subset of the syntax of C-OWL, and SOC-OWL essentially shares
with C-OWL the interpretation of concepts, individuals and roles, SOC-OWL
satisfiability is constrained by meta-axioms (cf. 3.2) which go beyond C-OWL
and put SOC-OWL somewhat close to BDI-style modal logics [11].

Essentially, SOC-OWL adds a kind of “S-Box” (“social box”, i.e., social con-
texts) to a formal ontology language. In contrast to the mere annotation of
axioms or facts with provenance information or other meta data, these contexts
provide separate (but bridgeable) spheres of reasoning.

In the next section, the language P-SOC-OWL will be introduced, which also
allows for uncertainty reasoning.

A SOC-OWL ontology parameterized with a social ontology SO is a finite,
non-empty set O = {(id,s) : id € Id,s € AF} U AF" U B, with AF being
the set of all SHOIN (D) TBox and ABox axioms, AF? being such axioms
but with concepts, individuals and roles directly indexed with social contexts
(i.e., AF? = {(id;, Cp) E (idj7C;c), (id;,ap) = (idj7ak)7... sidg,id; € Id}), and
B being a set of bridge rules (see 3.1). A social context within O is a pair
(id,{s : (id, s) € O}).

1d is the set of all social context identifiers according to the social ontology
SO (cf. Definition 1). The s within (id, s) are called inner statements which are
said to “be true (or intended in case of publicIntention) within the respective
context”.

Examples (with multiple facts/axioms per row and (id, a) written as id a):

InfluentialPainter (FrankFrazetta) InfluentialPainter C Painter
?ﬁ;ﬁ?gmioml nnovative Artist( FrankFrazetta)
faseriion  ina(—Innovative Artist)( FrankFrazetta)

assertion TrashArtist( FrankFrazetta)

tim,tom—tina

assertion ( Inpovative Artist)( FrankFrazetta)
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ControversialWikipediaArticle C WikipediaArticle
NeutralWikipediaArticle C WikipediaArticle
assertion |}/ jkipedia Article T NeutralWikipediaArticle
ControversialWikipediaArticle( ArticleAboutFrankFrazetta)

pascrtion ina (" NeutralWikipediaArticle)(ArticleAbout FrankFrazetta)

This SOC-OWL ontology (modeling as a whole a sort of neutral point of view,
like taken by an ideal Wikipedia article) expresses that the information sources
Tim and Tom hold the opinion towards Tina that the painter Frank Frazetta is
not an innovative artist but a trash artist, while Tina does allegedly believe that
the opposite is true. But there is consensus of the whole group that Frazetta
is an influential painter. Furthermore, Tina believes that all Wikipedia articles
present a neutral point of view.

Notice that without explicit further constraints, bridge rules or meta-axioms,
different social contexts are logically fully separated. Also, using only the above
ontology it could not be inferred that PUPeBelel mfentialPainter
(FrankFrazetta), because InfluentialPainter(FrankFrazetta) as an abbreviation
of

fﬁlbéfffnfffjig,tim’tim)wmInﬂuentialPainter(ankazetta)
in the example above is uttered/addressed ezactly by/to the social group of
all participants and not by/to any subgroup or individual. Consensus is always
bound to a concrete social group and does not necessarily propagate to social
subgroups. This principle allows to model the realistic case that someone con-
forms with some group opinion, but states some inconsistent opinion towards
other groups (even a subgroup of the former group). Of course the co-presence
of two or more inconsistent inner statements which indicate that a certain actor
is insincere (as it would be the case with ¢ssertion (~(C')(x) and gssertion  O(z)
were contained within the same SOC-OWL ontology, which would be perfectly
legal) could usually not be acquired directly from the web, since such actors
would likely exhibit inconsistent opinions using different nicknames. Instead,
some social reasoning or social data mining techniques would be required to
obtain such SOC-OWL knowledge.

Obviously, each SOC-OWL statement (contextld, statement) corresponds to
the “classic” [1,2] context logic statement ist(context, statement). But unfor-
tunately, this “real” ist operator could not simply be made a first-class citi-
zen of our language (which would allow for the nesting of context expressions),
at least not without the need for a considerably more complicated semantics.
As a further serious restriction compared to real context logic, it is not pos-
sible to relate contextualized statements freely with logical connectives like in
ist(c1, Sg) V ist(ca, sy) — ist(ct, sz).

Instead of these features, we allow for bridge rules and meta-axioms in order
to interrelate social contexts.
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The core idea underlying the following semantics of SOC-OWL is to group
the axioms according to their social contexts, and to give each context its own
interpretation function and domain within the model-based semantics, corre-
sponding to the approach presented in [4]. In addition, we will provide meta-
axioms (constraints) and bridge rules in order to state the relationships among
the various communication attitudes (somewhat similarly to modal logic ax-
iom schemes such as the well-known KD45 axioms of modal belief logic), and
to allow for the interrelation of different attitudes, even across different con-
texts. E.g., we would like to express that a communication attitude such as
assertion (—TrashArtist)(FrankFrazetta) implies (intuitively)

tina—tim,tom

publiclntention (f;;ﬁfi@fjﬂtim (= TrashArtist)( FrankFrazetta)), i.e., that Tina not
only expresses her ostensible beliefs, but also ostensibly intends that others adopt

her opinion.

Definition 5: Interpretation of SOC-OWL

A SOC-OWL interpretation is a pair (I, {e; j }i jera) with I = {I;4} being a set of
local interpretations I;q, with each I;y = (Alid ()ha) id € Id. eij C AT x Al
is a relation of two local domains Alid (e; ; is required for the definition of
bridge rules in B (Definition 4) as explained later in 3.1). (.)%i maps individuals,
concepts and roles to elements (respectively subsets or the products thereof) of
the domain Afid.

To make use of this interpretation, contextualized statements of SOC-OWL
impose a grouping of the concepts, roles and individuals within the inner state-
ments into sets Cyq, Riq and ¢;q [4]. This is done in order to “localize” the names
of concepts, individuals and roles, i.e., to attach to them the respective local in-
terpretation function I;4 corresponding to the social context denoted by id € Id:
concretely, the sets Cyq, R;q and c¢;q are defined inductively by assigning the
concepts, individuals and role names appearing within the statement part of
each SOC-OWL axiom/fact (contextsq, statement) to the respective set Cyq, Cig
or R;y. With this, the interpretation of concepts, individuals etc. is as follows:

Clia = any subset of Ali¢ for C € Cjy

(C1 M Co)lie = Clia 0 CLid for C1,Cy € Cig

(Cl [ CQ)Iid = Clid U CQM for C1,C5 € Cyiy

(~C)lie = Alia\ Clid for C € Cy

(AR.C)ha = {z € Alie 1 Jy : (x,y) € Rlia Ay € Clid for C € Cig, R € Rig
(VR.C)a = {z € Alie . Wy @ (2,y) € R4 — y € Clid for C € Cig, R € Rig
clie. = any element of Al for ¢ € ciy

(Interpretation of concrete roles T analogously)

Satisfiability and Decidability

Given a SOC-OWL interpretation I, I is said to satisfy a (contextualized) state-
ment ¢ (I = ¢) if there exists an id € Id such that I;y = ¢, with I,y € I. A
SOC-OWL ontology is then said to be “satisfied” if I satisfies each statement
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within the ontology (or statement set) and the ontology observes the meta-
axioms listed below.

La = (id,Cy © Cy) iff Clie € ¢l Iy \= (id, Ry T Ry) iff Rl C Rl
Lg E (id,C(a)) iff alie € Clid etc., i.e., as in the semantics of SHOZN (D), but
with socially indexed interpretations.

With this configuration, the inherited semantics and decidability of
SHOZIN (D) remain unaffected in SOC-OWL “within” each context, since the
new interpretation function simply decomposes the domain and the set of con-
cepts etc. into local “interpretation modules” corresponding to the contexts.

3.1 Bridge Rules and Cross-Context Mappings

According to Definition 4, a SOC-OWL ontology can optionally comprise bridge
rules [4] B and various stronger relationships AF" among classes, individuals and
roles from different contexts. As an example, consider(context;, ) =, (context;, y)
in B, with x, y being concepts, individuals or roles.

Informally, such a bridge rule states that the z and y denote corresponding
elements even though they belong to different contexts context;, context;.

With, e.g., (555", FrankFrazetta) = (554%™, FrankFrazetta) the interpre-
tations of the “two Frank Frazettas” would abstractly refer to the same object.
Analogously, & | and + | state that the first concept is more specific than the
second, or that both concepts are disjoint, respectively. These relationships are
given by the relation e; ; (Definition 5).

Formally: I = (context;, z) =, (context;,y) iff e; j(x1i) = yli) (vesp. e; ;(z!)
Cyli and e; ;(zf) Nyl = 0).

Please find details (which are out of the scope of this work) and analogously
defined further bridge rules in [4]. Also, reasoning in the presence of bridge rules
follows that with C-OWL.

A much stronger kind of relationship is stated by the syntax constructs where
a concept, individual or role is directly indexed with a social context, as, e.g., in
(context;, x) = (context;,y), with z,y being concepts, individuals or roles.

Formally: I |= (context;, ) = (context;,y) iff /i = y% (analogously for C
etc).

3.2 Meta-axioms

We state now some constraints, which will later be extended w.r.t. a different
formal language with meta-axiom (PMAS). All so-called meta-axioms are in fact
either entailment rules (which could not be formulated using SOC-OWL axiom
schemes because the language is not expressive enough), or they put constraints
regarding its integrity on an ontology which is sliced into social contexts. Al-
though a practical reasoner could possibly take advantage of the latter kind
of meta axioms (since these exclude certain constellations such as inconsistent
contexts), they don’t demand special reasoning procedures.
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Actively asserting an opinion implies in our framework the intention of the
source that the addressee(-s) adopt the asserted statement. With nested social

o : : 3 assertion
contexts, we could formalize this wusing ¢ o —
publicIntention publicBelief te Ya 9 : _
(e mienion L (Bresend s #)- But this “strong” and problematic nest

ing is not possible in our language.
The next meta-axiom simply demands that assertions include the attitude of
informing the addressee:

(MAI) gfi?igﬁ?&alyn,anlw - gf‘f')'ljifftelﬁ’falw'wa7ngo

In this work, we do not provide a full meta-theory corresponding to the
KD(45) axioms of (e.g.) modal Belief-Desire-Intention logics (but see [5,11]).
Instead, we only demand that the inner statements of each context are mutually
consistent (basic rationality):

(MA2) Each set a of statements such that for a specific context all
(context,a;),a; € a are axioms of the same SOC-OWL ontology, is satisfiable
(ensuring the consistency of one’s opinions).

Furthermore, we demand - in accordance with many BDI-style logics - that
the approval /assertion contexts of a certain actor on the one hand and his inten-
tion context on the other do not overlap addressing the same set of addressees,
i.e., an actor does not (ostensibly) intent what he (ostensibly) believes to be the
case already:

(MA3) For each a such that (PublicIntention =4y i part of an SOC-OWL on-

1y:0038n——0Q1,...,an

publicBelief b), b a, is part of o (analogously for

8150098 —01,...,An

tology o, no axiom/fact (
assertions).

The following constraints are not demanded, but could be helpful in applica-
tion domains were mutual opinion consistency of subgroups is desired (we use
/\ to abbreviate a set of SOC-OWL statements).

attitude attitude
(MAXI) (sl,...,s7lﬁ>a1,...,an 90) A /\562{81""’&"’}7{@} S——0Q1,...,an 90

attitude attitude
(MAXQ) (sl,...,s7lﬁ>a1,...,an<p) - /\GEQ{al """ a”}*{@} 51""75n4’ag0

But we can safely aggregate seemingly consented information in a separated fu-
sion context:

(MA4) Ase{sl,...,sn} (Igul)zicff{zaf . ': (p) — (I?,s{zdPublic_Brzlz{;;‘

1s--r8m —

E ¢) (analogously
for assertions). In general, such group opinions induce a ranking of multiple
statements with the respective rank corresponding to the size of the biggest
group which supports the statement (this can be used, e.g., for a majority voting
on mutually inconsistent statements).

na
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4 Social Rating and Social Aggregation of Subjective
Assertions

Building upon social contexts, the following extension of the previously pre-
sented logical framework is optional. It makes use of uncertainty reasoning and
techniques from belief merging. They allow for i) the representation of gradual
strengths of uncertain opinions held by individuals (corresponding to subjective
probabilities) and social groups, and ii) the probabilistic fusion of semantically
heterogeneous opinions held by different actors (basically by means of voting).

This feature is also useful in case traditional techniques to ontology integra-
tion fail, e.g., if the resulting merged ontology shall be accepted by all sources,
but a consensus about the merging with traditional techniques to ontology map-
ping and alignment could not be found, or if the complexity of a high amount
of heterogeneous information needs to be reduced by means of stochastic gener-
alization. Probabilistic fusion is furthermore helpful in case statements shall be
socially ranked, i.e., put in an order according to the amount of their respective
social acceptance. In contrast to heuristical or surfer-behavior-related ways of
information ranking or “knowledge ranking” such as those accomplished by most
web search engines, the following approach is based on semantic opinion pooling
[15].

In [10], the probabilistic extension P—SHOQ(D) of the SHOQ(D) descrip-
tion logic has been introduced. SHOQ(D) is very similar to SHOZN (D) and
thus OWL DL, but does not have inverse roles, and is not restricted to unqual-
ified number restrictions [16]. [10] shows that reasoning with P—SHOQ(D) is
- maybe surprisingly - decidable. Instead of P—SHOQ(D), other probabilistic
approaches to Semantic Web and ontology languages could likely also be used as
a basis for our approach, e.g., [7]. P—SHOQ(D) is now used to define a proba-
bilistic variant of SOC-OWL.

Definition 6: P-SOC-OWL

A P-SOC-OWL ontology is defined to be a finite subset of {([pi, pu],id, a;)} U
{(id,a;)} U {a;} U AF* U B, with p;, p, € [0,1],id € Id,a; € AF, AF being the
set of all well-formed SHOQ(D) ontology axioms, and B and AF'® as in the
previous section.

The syntax of SHOQ(D) can be obtained from that of SHOZN (D) by ex-
cluding inverse roles.

The [p;, pu] are probability intervals. Non-interval probabilities p are syntac-
tical abbreviations of [p, p]. If a probability is omitted, 1 is assumed.

Definition 7: Semantics of P-SOC-OWL

The semantics of a P-SOC-OWL ontology is given as a family of P —SHOQ(D)

interpretations, each interpretation corresponding to a certain social context.
Formally, a P-SOC-OWL interpretation is a pair (PI,{e; ;}i jera) with PI =

{(PIg, piq) : id € Id} being a set of local probabilistic interpretations (each
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denoted as Pr;q), each corresponding to a probabilistic interpretation of P —
SHOQ(D) and a social context with identifier id.

pia » Afie — [0,1] is a subjective probability function, and the Al are the
domains. The relation e; ; (required to state bridge rules) is defined analogously
to SOC-OWL. When restricted to a certain context (using the respective in-
terpretation), reasoning in P-SOC-OWL remains decidable, since “within” this
context, no bridge rules or meta-axioms need to be observed and thus P-SOC-
OWL behaves in this case just like P—SHOQ(D).Individualistically assigned
probabilities are constrained by the axioms of probability.

Example:

[0.5,0.8]: gesertion .. TrashArtist(FrankFrazetta)

0.7: ¢asertion Innovative Artist( FrankFrazetta)
0.9: gssertion [npovative Artist( FrankFrazetta)

This P-SOC-OWL ontology expresses inter alia that Tim and Tom (as a group,
but not necessarily separately) hold the opinion that with some probability in
[0.5,0.8], Frank Frazetta is a trash artist, while Tina does (publicly) believe he is
an innovative artist with strength 0.7, and Tim believes so with strength 0.9 (i.e.,
his private opinion disagrees with the public group opinion of him and Tom).

In order to allow for a consistent fusion of opinions, we demand the following
fusion meta-axiom, which effectively states how the probabilities of social fusion
contexts are calculated. A social fusion context is a social context with more
than one opinion source and a probability which pools the probabilities which
subsets of the group assign to the respective statement. This allows to specify
group opinions even if group members or subgroups do knowingly not agree with
respect to this assertion. In this regard, we propose two versions of interpretation
rules:

(PMA5’) (/\siE{S1 ,...,Sn} (PTpu,hh,cB{zh,ef ': (p[pi 5 pl])) — (PTpu,hh,cB(chf
s1

s;——addressees reooysp ——addressees

©[p, p))with p = poolPoolingTvee ((p, ... p,), extraKnowledge). At this, Pryy =
©l[l,u] attests ¢ a probability within [I,u] in context id, and extraKnowledge is
any knowledge the pooling function might utilize in addition to the p; (see below
for examples). (Analogously for the attitude assertion.)

A problem with (PMAJ5’) is that it can lead to unsatisfiability (due to in-
consistencies) in case the derived probability p is different than a probability
assigned explicitly by this group of people - a group of agents is free to assign
any truth value or probability to any statement, using any social choice pro-
cedure. A simple workaround is to use a new kind of context with aggregating
“attitude” fusedPublicBelief , which is actually no speaker attitude of course, but
a belief merging operator used by the observer who fuses opinions.

Another possibility would be to introduce some kind of defeasible logic or
priority reasoning which gives priority to explicitly assigned probabilities.
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(PMA5) (/\Sie{sl"""s”}(Przif’ﬂB;Z;Z‘essees ): go[p“pl])) - (PTQTT.(]’.}.J?‘:)ZFij{idTessees

¢[p,p]) (remainder as PMAY’).

As for poolPoolindTyre there are several possibilities: in the most simple case
of “democratic” Bayesian aggregation given the absence of any opinion leader

> pi

or so-called “supra-Bayesian” [15], we define pool®*9((p1, ..., pn),0) = ==, i.e.,
pool®9 averages over heterogeneous opinions. Using this aggregation operator,
we could infer the following:

0.8: {;ﬁfjﬁ blieBelicf Innovative Artist( FrankFrazetta).
Social aggregation operators are traditionally studied in the field of Bayesian
belief aggregation [15,3].
The most common fusion operator extends pool®¥9 with expert weights (e.g.,
stemming from factors such as the opinion holder’s trustability or reputation, or
social power degrees of the information sources):

poolmOP ((py, ..., pn), (weighty, ..., weight,)) = 3 weight;p;, with Zweighti =
1. Also quite often, a geometric mean is used: '

poolL°99F ((py, ..., py), (weighty, ..., weighty,)) = k[[1—, p;”ezghti (k for normal-
ization).

It is noteworthy that the operators given above do not deal with the problem
of ignorance directly (e.g., by taking into account the evidence the information
sources have obtained, as in Dempster-Shafer theory). But such ignorance could
be modeled using the weight; of pool”OF and pool™°9°F  and possibly using
probability intervals instead of single probabilities. In case opinions with proba-
bility intervals [p!, p] shall be fused, the described fusion operators need to be
accordingly applied to the interval boundaries.

One application of such rating in form of aggregated or individual probabili-
ties is to take the probabilities (respectively, the mean values of the bounds for
each interval) in order to impose an order (ranking) of the axioms of an ontology
(TBox as well as ABox), so that inner statements can be directly ranked regard
their degree of assumed social acceptance. The following is an example for how
such a top-k list of socially preferred statements looks like.

0.8; fusedPublicBelief ¢4q1ement, (highest social rating)

[0.5,0.8]: fusedPublicBelicl gyt ement,

02 fusedPublicBelief

voters statements (lowest social rating)

Again, such a ranking can also be easily used to transform inconsistent ordi-
nary ontologies into consistent ontologies by a voting on the statements of the
inconsistent ontology: in case there are inner statements which are mutually in-
consistent, a ranking can be used to obtain a consistent ordinary (i.e., OWL DL)
ontology by removing from each smallest inconsistent subset of inner statements
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the statements with the lowest rating until all remaining elements of each subset
are mutually consistent.

What could also be generated quite easily are rankings w.r.t. of the degrees of
certainty assigned to the same statement by different voters or groups of voters:
0.8: g;”ji“fe“ef statement,
[0.5,0.8]: bublicBelicf satement,

0.4: fusedPublicBelief

actory,actory Statementl

' blicBeli
0.1: B2, 07e “l statement,

5 Related Works and Conclusion

The goal of this work is to provide a social semantics of possibly contradictory
assertions on the web, i.e., to state their amount of social support, their com-
municative emergence and dissemination, and the consensus or dissent they give
rise to. Doing so, we settle on the “opinion level” where neither true beliefs are
visible (due to the mental opaqueness of the information sources) nor criteria for
the selection of useful knowledge or semantic mappings from/among heteroge-
nous information exist initially. This is both in contrast to the traditional aim of
information integration and evolution for the determination of some consistent,
reliable “truth” obtained from contributions of multiple sources as in traditional
multiagent belief representation and revision (e.g., [21] - although this direction
has still much in common with ours) and approaches to ontology alignment,
merging and mapping.

Apart from the research field of knowledge and belief integration, the storage
of heterogeneous information from multiple sources also has some tradition in
the fields of data warehousing and federated databases, and view-generation for
distributed and enterprise database systems [9], whereby such approaches do not
take a social or communication-oriented perspective. Opinions are treated in the
area of the (non-semantic) web (e.g., opinion mining in natural language doc-
uments) and in (informal) knowledge management (e.g., KnowCat [14]). The
assignment of provenance information is mostly based on tagging and pun-
ning techniques, or makes use of the semantically problematic reification facility
found in RDF. Meta knowledge modeling and reification techniques for the pur-
pose of adding certain “slots” for provenance and statement identification data,
and other useful meta information to Semantic Web languages can be found in
[20,25,25]. These approaches, with named graphs [20] being currently the most
popular representative, leave the original semantics of the underlying language
more or less untouched and “merely” annotate traditional language constructs
with some optional meta-information. In contrast, our approach aims at a truly
social semantics and language.

[6] provides an approach to the grouping of RDF statements using con-
texts (including contexts for provenance and speech act performatives). Another
related approach focusing on contexts including contexts for the aggregation of
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RDF graphs, was presented in [2], and [4] provides a general formal account
of contexts for OWL ontologies. Independently from web-related approaches,
contexts have been widely used for the modeling of distributed knowledge and
federated databases, see, e.g., [18,19].

To further explore and work out the new “social” perspective on uncertain
information on the web modeled using contexts certainly constitutes a long-
term scientific and practical endeavor of considerable complexity, with this work
hopefully being a useful starting point.
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Abstract. Automated ontology population using information extrac-
tion algorithms can produce inconsistent knowledge bases. Confidence
values assigned by the extraction algorithms may serve as evidence in
helping to repair inconsistencies. The Dempster-Shafer theory of evidence
is a formalism, which allows appropriate interpretation of extractors’
confidence values. This chapter presents an algorithm for translating the
subontologies containing conflicts into belief propagation networks and
repairing conflicts based on the Dempster-Shafer plausibility.

1 Introduction

The task of ontology population considers creation of concept and property as-
sertions for a given ontological schema. One of the approaches for ontology pop-
ulation considers using automatic information extraction algorithms to annotate
natural language data already available on the Web [1,2,3]. Automatic informa-
tion extraction algorithms do not produce 100% correct output, which may lead
to inconsistency of the whole knowledge base produced in this way. Errors can be
introduced by human editors. Also information extracted from different sources
can be genuinely contradictory. Finally, when information from different sources
is fused together the identity problem has to be resolved: identical individuals
referring to the same real-world entities must be linked or merged. Automatic
matching algorithms produce further errors, which lead to knowledge base incon-
sistencies. So when performing knowledge fusion (integration of semantic data
from different sources) it is important to resolve such inconsistencies automat-
ically or provide the user with a ranking of conflicting options estimating how
likely each statement is to be wrong. Extraction algorithms can often estimate
the reliability of their output by attaching confidence values to produced state-
ments [4]. Uncertain reasoning using these confidence values can help to evaluate
the plausibility of statements and rank the conflicting options. Most of the on-
going research in the field of applying uncertain reasoning to the Semantic Web
focuses on fuzzy logic and probabilistic approaches. Fuzzy logic was designed to
deal with representation of vagueness and imprecision. This interpretation is not
relevant for the problem occurring during population of crisp OWL knowledge
bases, where we need to assess the likelihood for a statement to be true or false.
The probabilistic approach is more appropriate for dealing with such problems.
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However, as stated in [5], axioms of probability theory are implied by seven
properties of belief measures. One of them is completeness, which states that “a
degree of belief can be assigned to any well-defined proposition”. However, this
property cannot be ensured when dealing with confidence degrees assigned by
extractors, because they do not always carry information about the probability
of a statement being false. The Dempster-Shafer theory of evidence [6] presents
a formalism that helps to overcome this problem. It allows belief measurements
to be assigned to sets of propositions, thus specifying explicitly degrees of igno-
rance. In this paper, we describe an algorithm for resolving conflicts using the
Dempster-Shafer belief propagation approach.

The paper is organized as follows: in the section 2 we discuss approaches to
inconsistency resolution and uncertainty management. Section 3 briefly outlines
the basics of the Dempster-Shafer uncertainty representation. Section 4 presents
our algorithm of inconsistency resolution using belief propagation. Section 5
describes the results obtained in our experiments with a test dataset. Finally,
section 6 summarizes our contribution and discusses proposed directions for the
future work.

2 Related Work

There are several studies dealing with inconsistency handling in OWL ontolo-
gies, among others [7] and [8]. The general algorithm for the task of repairing
inconsistent ontologies consists of two steps:

— Ontology diagnosis: finding sets of axioms, which contribute to inconsistency;
— Repairing inconsistencies: changing/removing the axioms most likely to be
erroneous.

Choosing the axioms for change and removal is a non-trivial task. Existing algo-
rithms working with crisp ontologies (e.g., [8]) utilize such criteria as syntactic
relevance (how often each entity is referenced in the ontology), impact (the influ-
ence of removal of the axiom on the ontology should be minimized) and prove-
nance (reliability of the source of the axiom). The last criterion is especially
interesting for the automatic ontology population scenario since extraction al-
gorithms do not extract information with 100% accuracy. A study described in
[9] specifies an algorithm which utilizes the confidence value assigned by the
extraction algorithm. The strategy employed by the authors was to order the
axioms according to their confidence and add them incrementally, starting from
the most certain one. If adding the axiom led to inconsistency of the ontology
then a minimal inconsistent subontology was determined and the axiom with
the lowest confidence was removed from it. A disadvantage of such a technique
is that it does not take into account the impact of an axiom: e.g., when an axiom
violates several restrictions, it does not increase its chances to be removed. Also
it does not consider the influence of redundancy: if the same statement was ex-
tracted from several sources, this should increase its reliability. Using uncertain
reasoning would provide a more sound approach to rank potentially erroneous
statements and resolve inconsistencies.
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In the Semantic Web domain the studies on uncertain reasoning are mostly
focused on two formalisms: probability theory and fuzzy logic. Existing imple-
mentations of fuzzy description logic [10,11] are based on the notion of fuzzy
set representing a vague concept. The uncertainty value in this context denotes
a membership function pp(x) which specifies the degree to which an object x
belongs to a fuzzy class F'. Probabilistic adaptations of OWL-DL include Bayes
OWL[12] and PR-OWL [13]. However, as we discuss below, both of these for-
malisms do not fully reflect the properties of the problems we are dealing with
in the fusion scenario.

In [5] a framework for choosing an appropriate uncertainty handling formalism
was presented. The framework is based on the following seven properties of belief
measurements:

1. Clarity: Propositions should be well-defined.

2. Scalar continuity: A single real number is both necessary and sufficient for
representing a degree of belief.

3. Completeness: A degree of belief can be assigned to any well-defined propo-
sition.

4. Context dependency: The belief assigned to a proposition can depend on the
belief in other propositions.

5. Hypothetical conditioning: There exists some function that allows the belief
in a conjunction of propositions to be calculated from the belief in one propo-
sition and the belief in the other proposition given that the first proposition
is true.

6. Complementarity: The belief in the negation of a proposition is a monoton-
ically decreasing function of the belief in the proposition itself.

7. Consistency: There will be equal belief in propositions that have the same
truth value.

It was proven that accepting all seven properties logically necessitates the axioms
of probability theory. Alternative formalisms allow weakening of some properties.
Fuzzy logic deals with the case when the clarity property does not hold, i.e., when
concepts and relations are vague. Such an interpretation differs from the one
we are dealing with in the fusion scenario, where the ontology TBox contains
crisp concepts and properties. Confidence value attached to a type assertion
ClassA (Individuall) denotes a degree of belief that the statement is true in the
real world rather than the degree of inclusion of the entity Individuall into a
fuzzy concept ClassA. This makes fuzzy interpretation inappropriate for our
case.

Probabilistic interpretation of the extraction algorithm’s confidence may lead
to a potential problem. If we interpret the confidence value ¢ attached to a
statement returned by an extraction algorithm as a Bayesian probability value
p, we, at the same time, introduce a belief that the statement is false with a
probability 1 — p. However, the confidence of an extraction algorithm reflects
only the belief that the document supports the statement and does not itself
reflect the probability of a statement being false in the real world. Also while
statistical extraction algorithms [14] are able to assign a degree of probability to
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each extracted statement, rule-based algorithms [15,16] can only assign the same
confidence value to all statements extracted by the same rule based on the rule’s
performance on some evaluation set. Any extraction produced by a rule with a
low confidence value in this case will serve as a negative evidence rather than
simply lack of evidence. This issue becomes more important if the reliability of
sources is included in the analysis: it is hard to assign the conditional probability
of a statement being false given that the document supports it. It means that
the completeness property does not always hold.

The Dempster-Shafer theory of evidence [6] allows weakening of the complete-
ness property. Belief can be assigned to sets of alternative options rather than
only to atomic elements. In the case of binary logic, it means that the degree
of ignorance can be explicitly represented by assigning a non-zero belief to the
set {true;false}. On the other hand, it still allows the Bayesian interpretation
of confidence to be used, when it is appropriate (in this case the belief assigned
to the set {true;false} is set to 0). This paper presents an algorithm for re-
solving inconsistencies by translating the inconsistency-preserving subset of an
ontology into the Dempster-Shafer belief network and choosing the axioms to
remove based on their plausibility. We are not aware of other studies adapting
the Dempster-Shafer approach to the Semantic Web domain.

Alternative approaches to uncertainty representation, which were not applied
so far to ontological modelling, include probability intervals [17] and higher-order
probability [18]. However, the first of these approaches uses min and max opera-
tors for aggregation, which makes it hard to represent cumulative evidence, and
the second focuses on resolving different kinds of problems (namely expressing
probability estimations of other probability estimations). There are also other
approaches to belief fusion in the Semantic Web (e.g., [19] and [20]). These stud-
ies deal with social issues of representing trust and provenance in a distributed
knowledge base and focus on the problem of establishing the certainty of state-
ments asserted by other people. These approaches, however, do not focus on
resolving the inconsistencies and just deal with direct conflicts (i.e., statement
A is true vs statement A is false). They do not take into account ontological
inference and mutual influence of statements in the knowledge base. In this way,
they can be considered complementary to ours.

3 The Dempster-Shafer Belief Theory

Dempster-Shafer theory of evidence differs from the Bayesian probability the-
ory as it allows assigning beliefs not only to atomic elements but to sets of
elements as well. The base of the Dempster’s belief distribution is the frame of
discernment ({2) - an exhaustive set of mutually exclusive alternatives. A belief
distribution function (also called mass function or belief potential) m(A) repre-
sents the influence of a piece of evidence on subsets of {2 and has the following
constraints:

— m(®) =0 and
- ZAgz m(A) =1
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m(A) defines the amount of belief assigned to the subset A. When m(A) > 0, A
is referred to as a focal element. If each focal element A contains only a single
element, the mass function is reduced to be a probability distribution. Mass also
can be assigned to the whole set of (2. This represents the uncertainty of the
piece of evidence about which of the elements in {2 is true. In our case each mass
function is defined on a set of variables D = {z1, ...,z } called the domain of m.
Each variable is boolean and represents an assertion in the knowledge base. For
a single variable we can get degree of support Sup(x) = m({true}) and degree
of plausibility Pl(z) = m({true}) + m({true; false}). Plausibility specifies how
likely it is that the statement is false. Based on plausibility it is possible to select
from a set of statements the one to be removed.

4 Description of the Algorithm

Our algorithm consists of four steps:

1. Inconsistency detection.
At this stage a subontology is selected containing all axioms contributing to
an inconsistency.

2. Constructing a belief network.
At this stage the subontology found at the previous step is translated into
a belief network.

3. Assigning mass distributions.
At this stage mass distribution functions are assigned to nodes.

4. Belief propagation.
At this stage uncertainties are propagated through the network and the
confidence degrees of ABox statements are updated.

4.1 Illustrating Example

In order to illustrate our algorithm, we use an example from the banking do-
main. Supposedly, we have an ontology describing credit card applications, which
defines two disjoint classes of applicants: reliable and risky. In order to be reli-
able, an applicant has to have UK citizenship and evidence that (s)he was never
bankrupt in the past. For example, the TBox contains the following axioms:

T1: RiskyApplicant T CreditCardApplicant

T2: ReliableApplicantC Credit CardApplicant

T3: RiskyApplicant T — Reliable Applicant

T4: ReliableApplicant= 3 wasBankrupt. FalseN3 hasCitizenship. UK

T5: T C< 1 wasBankrupt (wasBankrupt is functional)

The ABox contains the following axioms (with attached confidence values):
A1: RiskyApplicant(Ind1): 0.7

A2: wasBankrupt(Indl, False): 0.6

A3: hasCitizenship(Ind1, UK): 0.4

A4: wasBankrupt(Ind1, True): 0.5
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As given, the ontology is inconsistent: the individual Ind! is forced to belong to
both classes RiskyApplicant and ReliableApplicant, which are disjoint, and the
functional property wasBankrupt has two different values. If we choose to remove
the axioms with the lowest confidence values, it will require removing A3 and
A4. However, inconsistency can also be repaired by removing a single statement
A2. The fact that A2 leads to the violation of two ontological constraints should
increase the likelihood it is wrong.

4.2 Inconsistency Detection

The task of the inconsistency detection step is to retrieve all minimal inconsistent
subontologies (MISO) of the ontology and combine them. As defined in [7], an
ontology O’ is a minimal inconsistent subontology of an ontology O, if O’ C O
and O’ is inconsistent and for all O” such that O” Cc O’ C O, O” is consistent.
OWL reasoner Pellet [8] is able to return the MISO for the first encountered
inconsistency in the ontology. To calculate all MISO 0’4, ..., O’,, in the ontology
we employ Reiter’s hitting set tree algorithm [21]. The algorithm is an adaptation
of the breadth-first tree search aimed at finding all diagnoses: sets of statements
which, if removed, transfer the knowledge base into a consistent one. Each edge
in the tree represents an axiom potentially included into diagnosis. Each node
represents a MISO returned by the reasoner if all axioms contained in the path
from the root of the tree to the node are deleted. The algorithm provides a
guidance for building and pruning of the tree, which optimizes the diagnosis
process. After all conflict sets were identified, the next step involves constructing
belief networks from each set. If for two subontologies O’; N O’; # @ then these
two subontologies are replaced with O' = O'; U 0';.

For our illustrating example, the conflict detection algorithm is able to identify
two conflict sets in this ontology: the first, consisting of {T3, T4, Al, A2, A3}
(individual Ind! belongs to two disjoint classes), and the second {T5, A2, A4}
(individual Ind1 has two instantiations of a functional property). The statement
A2 belongs to both sets and therefore the sets are merged.

4.3 Constructing Belief Networks

The networks for propagation of Dempster-Shafer belief functions (also called
valuation networks) were described in [22]. By definition, the valuation network
is an undirected graph represented as a 5-tuple: {¥, {2x}xcw, {71, ..., T}, |, ®},
where ¥ is a set of variables, {{2x} xcw is a collection of state spaces, {71, ..., 7o}
is a collection of valuations (belief potentials of nodes), | is a marginalization
operator and ® is a combination operator. In our case ¥ consists of ABox asser-
tions, every {2x} xew = {0;1} and {7, ..., 7, } are created using rules described
below. The operators are used for propagation of beliefs and are described in the
following subsections. The network contains two kinds of nodes: variable nodes
corresponding to explicit or inferred ABox assertions and valuation nodes repre-
senting TBox axioms. Variable nodes contain only one variable, while valuation
nodes contain several variables.
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Translation of an inconsistent subontology into a belief propagation network
is performed using a set of rules (Table 1). Each rule translates a specific OWL-
DL construct into a set of network nodes and links between them. Rules 1 and 2
directly translate each ABox statement into a variable node. Other rules process
TBox axioms and create two kinds of nodes: one valuation node to represent the
TBox axiom and one or more variable nodes to represent inferred statements.
Such rules only fire if the network already contains variable nodes for ABox
axioms, which are necessary to make the inference. For example, a rule processing
the class equivalence axiom (Rule 4) is interpreted as the following:

“If there is a node Nj representing the type assertion I € X and an
owl:equivalentClass axiom X =Y, then:

— Create a node N, representing the assertion I € Y
— Create a node N3 representing the axiom X C Y
— Create links between N, and N3 and between N3 and Ns.”

A particularly interesting case is the representation of the owl:sameAs axiom.
In the fusion scenario this axiom represents both a schema-level rule allowing
inferencing new statements and a data-level assertion, which has its own confi-
dence (e.g., produced by a matching algorithm). Thus, each owl:sameAs axiom
in the knowledge base triggers creation of both variable and valuation nodes. If
a rule requires creating a node, which already exists in the network, then the
existing node is used.

Applying the rules described above to our illustrating example (rules 1, 2, 5,
6, 7, 10, 21) will result in the following network (Fig. 1).

(RiskyApplicant——ReliableApplicant)

[ RiskyApplicant(ind1) | (ReliableApplicant(ind1)
c=0.7

(ReliableApplicant=Exp1 |

Ind1 =Exp1

Exp3 [ Functional{wasBankrupt) ]

[ hasCitizenship(Ind1,UK) } [ wasBankrupt(Ind1,False) ][ was Bankrupt(Ind1,True) ]
C=0.4 C=0.6 C=0.5

Fig. 1. Belief network example (Ezpl= 3 wasBankrupt.FalseN3 hasCitizenship. UK,
Ezp2=3 hasCitizenship. UK, Exp8=3 wasBankrupt.False)
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Table 1. Belief network construction rules

N [Pre-conditions Nodes to create Links to create

1 |IeX Ni:1eX

2 |R(I1, L) Ny : R(I1, I2)

3 11 = 12 N3 : Il = IQ (variable)

4 N1:I€X,XEY NQZIEY, NJXEY (N1,N3),(N3,N2)

5 N1:I€X,XEY NQZIEY, N3: X=Y (Nl,Ng),(Ng,Nz)

6 N1:I€X,XE—\Y NQZIGY, N3 : X C Y (Nl,Ng),(Ng,Nz)

. N2 :leX HY, Nd ¢ X |_|Y, (N1,N3),(N4,N3),

7IN:TeX, XNY Noiley (Ns o)

. N2 :leX UY, Nd ¢ X |_|Y, (N1,N3),(N4,N3),

8§ INi:TeX, XUy NoTcy (Ns N2

9 N1 I]EX, -X N2 ZIE‘\X, N5 X (N1,N3),(N3,N2)
TLC<1R, N1 :R(I,01),

7 3 C<

10 Nz : R(I,02) N3 : TE<ZI1R (N1,N3),(N2,N3)

11 T ES 1R7, N1 : R(IQ,I1), Nd : T ES 1R~ (N1,N3),(N2,N5)
NQ : R(L;,I1)

12RER7,N1 ZR(Il,IQ) N2 ZRER77N3 IR(IQ,]1) (N1,N2),(N2,N3)

13|R = Q, N1: R(Il,fz) N2 R= Q,Ng : Q(Il,fz) (Nl,Nz),(NQ,NS)

14REQ,N1 ZR(I1,IQ) N2 ZREQ, Nd ZQ(I1,]2) (N1,N2),(N2,N3)
15REQ7,N1 ZR(I1,IQ) N2 ZREQi, N5 ZQ(IQ,]1) (N1,N2),(N2,N3)
Trans(R), N1 : R(Il,fz), . . (Nl,Ns),(NQ,Ng),

16 NQ . R(IQ,Ig) N3 . Trans(R), N4 : R(Il,I:;) (N37N4)
< LR, N1 : R(I1,01), (N1,Ns),(N2,N3),

17 N3 :<1.R,Ns:1e<1R
No : R(I1,02) 3% L, N4 L €S (N3,Na)
> 1.R, N1 : R(I,01)

18 ) T N3 :>1.R, Ny:1€>1.R N1,N3),(N2,N:
Na  R(I1, 00) 3:> LR, Ny:1€> (N1,N3),(N2,Ns)
=1.R, N1 : R(I1,01)

19 ) T N3:Ie=1R N1,N3),(N2,N:
No : R(Il,OQ) 3 € ( 1, 3)7( 2, 3)
VR.X, N1 : R(Ih, I2), _ , (N1,N3),(N2,Ns),

2ON2:IQEX N3 :VR.X, Nys: I e VR.X (N3, N4)

JR.X, N: : R(I1, I2), . ] (N1,Ns),(N2,N3),

21 No:lye X N3 :3dR.X, Ns: I € JR.X (N3, Ny)
ARTCX, Ni:R(I, Ia), |, . ,

2y e x N3 :3RTC X (N1,N3),(N2,N3)
TLCVRX, Ni: R(I, Ia), |, . , ,

BN L X N3 : TEVR.X (N1,N3),(N2,N3)

24 N1 : 11 = 12 (variable), N3 : Il = IQ (Valuation), (Nl,Ns),(NQ,Ng),
No: I e X Ny: I € X (N37N4)

25 N1 : 11 = 12 (variable), N3 : Il = IQ (Valuation), (Nl,Ns),(NQ,Ng),
NQ : R(IQ,Ol) N4 : R(I1,01) (Nd, N4)

4.4 Assigning Mass Distributions

After the nodes were combined into the network, the next step is to assign
the mass distribution functions to the nodes. There are two kinds of variable
nodes: (i) nodes representing statements supported by the evidence and (ii) nodes
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representing inferred statements. Initial mass distribution for the nodes of the
first type is assigned based on their extracted confidence. If a statement was ex-
tracted with a confidence degree c, it is assigned the following mass distribution:
m(True) = ¢, m(True; False) = 1 — c. It is possible that the same statement is
extracted from several sources. In this case, multiple pieces of evidence have to
be combined using Dempster’s rule of combination.

Nodes created artificially during network construction are only used for prop-
agation of beliefs from their neighbours and do not contain their own mass as-
signment. Valuation nodes specify the TBox axioms and are used to propagate
beliefs through the network. For the crisp OWL ontologies only mass assign-
ments of 0 and 1 are possible. The principle for assigning masses is to assign
the mass of 1 to the set of all combinations of variable sets allowed by the cor-
responding axiom. Table 2 shows the mass assignment functions for OWL-DL
T-Box axioms .

In our example, we assign distributions based on the extractor’s confidence
values to the variable nodes representing extracted statements: Al:(m(1)=0.7,
m({0;1})=0.3), A2: (m(1)=0.6, m({0;1})=0.4), A3: (m(1)=0.4, m({0;1})=0.6),
A4: (m(1)=0.5, m({0;1})=0.5). The valuation nodes obtain their distributions
according to the rules specified in the Table 2: T3 (rule 3), T4 (rules 2, 4, 18)
and T5 (rule 7).

4.5 Belief Propagation

The axioms for belief propagation were formulated in [23]. The basic operators
for belief potentials are marginalization | and combination ®. Marginalization
takes a mass distribution function m on domain D and produces a new mass
distribution on domain C C D.

Yie=X

For instance, if we have the function m defined on domain {z,y} as m({0;0}) =
0.2, m({0;1}) = 0.35, m({1;0}) = 0.3, m({1;1}) = 0.15 and we want to find
a marginalization on domain {y}, we will get m(0) = 0.2 + 0.3 = 0.5 and
m(1l) = 0.35 4 0.15 = 0.5. The combination operator is represented by the
Dempster’s rule of combination:

ZXlﬁXZ:X my(X1)ma(Xa)
1- ZXsz:@ m1(X1)mz(Xa)

Belief propagation is performed by passing messages between nodes according
to the following rules:

my ®177,2(X) =

! For nodes allowing multiple operands (e.g., intersection or cardinality) only the case
of two operands is given. If the node allows more than two children, then number
of variables and the distribution function is adjusted to represent the restriction
correctly.
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Table 2. Belief distribution functions for valuation nodes
N |Node type |Variables Mass distribution
I1|[XCY J|leX,Iey m({0;0}, {0;1}, {L;1})=
2| X=Y IeX, IeYy m({0;0},{1;1})=
3|IXCY |[[eX, Tey m({0;0},{0;1},{1;0})=1
1|XnYy |IeX,IeY,IlexXny m({0;0;0},{0;1;0},{1;0;0},{1;1;1})=1
51 XUY ITeX, IeY, IeXUY m({0;0;0},{0;1;1},{1;0;1},{1;1;1})=1
6 =X ITeX, Ie-X m({0;1},{1;0})=
7 |TCE<L1R |R(I,01), R(1,02) m({0;0},{0;1},{1;0})=
8 |TC< 1R |R(I2, 1), R(I3,I1) m({0;0},{0;1},{1;0})=1
9 |R=R" R(I1,I2), R(I2, Ih) m({0;0},{1;1})=1
0R=Q [R5, 1), QI T2) m({0,0} {13 1)=
HREQ  |R(1 L), QI o) m({0:0}{0:1 L, {L TP =1
2IR=Q™  |R(I1,I2), QU2 I1) m({0;0}{1;1})=1
13|Trans(R) |R(I1, I2), R(Is, I3), R(I1, I3) E(’é?ég’({]}i’éol’(}]’g’fﬁ’)o}’{ﬂ’l’l}’
4<1.R R(I1,01), R(I1,02), I €< LR|m({0;0;1},{0;1;1},{1;0;1},{1;1;0})=1
15> LR |R(I,01), R(I1,02), I1 €> LR|m({0;0:0},{0;1;1} {1;0;1} {L;1;1})=1
16|= L.R R(I1,01), R(I1,02), 1 €= L.R|m({0;0;0},{0;1;1},{1;0;1},{1;1;0})=1
17|VR.X R(I1, 15), I € X, I, € VRX |m({0;0;1},{0;1;1},{1;0;0} {1;1;1})=1
18[3R.X R(I, I2), I € X, I € IR.X |m({0;0;1},{0;1;1},{1;0; o} (L;L1))=1
19|3R.TC X |R([1,I2), 1 € X m({0;0}, {0;1}, {1;1})=1
20T CVYR.X |R(I1, 1), I € X m({0;0}, {0;1}, {L;1})=
20 =L |h=5L LeX LeX I{ﬁ(éﬂo?o%’liol(}))lz} {0:1:0}, {0151},
22\, = I» I, = Iz, R(I2,01), R(I1,01) E%%?io%ii?l’(})slz}’ {0510}, {0::1,

1. Each node sends a message to its inward neighbour (towards the root of the
tree). If u4—F is a message from A to B, N(A) is a set of neigbours of A
and the potential of A is m 4, then the message is specified as a combination
of messages from all neighbours except B and the potential of A:

A—B
I

= (& X € (N(4) -

{B}) @ ma})t """

2. After a node A has received a message from all its neighbors, it combines all
messages with its own potential and reports the result as its marginal.

As the message-passing algorithm assumes that the graph is a tree, it is neces-
sary to eliminate loops. All valuation nodes constituting the loop are replaced
by a single node with the mass distribution equal to the combination of mass
distributions of its constituents. The marginals obtained after propagation for
the nodes corresponding to initial ABox assertions will reflect updated mass dis-
tributions. After the propagation we can remove the statement with the lowest
plausibility from each of the MISO found at the diagnosis stage.

Calculating the beliefs for our example gives the following Dempster-Shafer
plausibility values for ABox statements: P1(A1)=0.94, P1(A2)=0.58, P1(A3)=
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P1(A4)=0.65. In order to make the ontology consistent it is sufficient to remove
from both conflict sets an axiom with the lowest plausibility value (A2). In this
example, we can see how the results using Dempster-Shafer belief propagation
differ from the Bayesian interpretation. Bayesian probabilities, in this case, are
calculated in the same way as Dempster-Shafer support values. If we use con-
fidence values as probabilities and propagate them using the same valuation
network we will obtain the results: P(A1)=0.66, P(A2)=0.35, P(A3)=0.32 and
P(A4)=0.33. In this scenario, we would remove A3 and A4 because of the neg-
ative belief bias. Also we can see that all three statements A2, A3 and A4 will
be considered wrong in such a scenario (resulting probability is less than 0.5).
The Dempster-Shafer approach provides more flexibility by making it possible to
reason about both support (“harsh” queries) and plausibility (“lenient” queries).

5 Evaluation

In order to test the approach we performed experiments with publicly avail-
able datasets describing the domain of scientific citations. Our datasets were
structured according to the SWETO-DBLP ontology? (Fig. 2), and contained in-
stances of two types: opus:Article (journal articles) and opus: Article_in_
Proceedings (conference and workshop papers).

owl:Thing

Functional

foaf.Person foaf:Document

sweto:Publication ...
= label

[ swetoArticle } [ sweto:Article_in_Proceedings }

i, o
s

journal_name . T 7 book_title

volume disjoint

Fig. 2. Class hierarchy in the SWETO-DBLP ontology

We used two kinds of restrictions: classes opus:Article and opus:Article_in_
Proceedings were disjoint and the property opus:year (the year of publication)
was functional. Three different datasets were used:

2 http://lsdis.cs.uga.edu/projects/semdis/swetodblp /august2007/
opus_august2007.rdf
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1. AKT EPrints archive?. This is a small dataset containing information about
papers produced within the AKT research project.

2. Rexa dataset. This dataset was extracted from the Rexa search server* con-
structed in the University of Massachusets using automatic IE algorithms.

3. SWETO DBLP dataset. A well-known publicly available dataset listing pub-
lications from the computer science domain.

We know that the AKT EPrints archive was created by the authors themselves,
who entered the data about their publications manually. The Rexa dataset was
extracted using automatic IE algorithms (the authors reported extraction accu-
racy of 0.97 and coreferencing accuracy “in the 90s”5.) However, sometimes the
information was incorrectly reported in the sources (e.g., when it was extracted
from a citation in a third-party publication), which lowers the actual quality of
the data. The DBLP dataset was primarily constructed using the data reported
in the proceedings and journal contents, which makes it a more reliable source.

5.1 Experimental Setup and Results

We performed the a priori mass assignment in the following way. First, we ranked
the datasources according to our confidence in their quality (DBLP>Rexa>
EPrints). As a rough clue to rank the sources by their quality we used the
coreference quality of the papers’ authors. We considered the case when the same
author was referred to in the same dataset using different labels as an error and
calculated the percentage of correct individuals (for EPrints this percentage was
0.46, for Rexa 0.63 and for DBLP 0.93). Then, we treated the class assignments
as more reliable than datatype property assignments because the IE algorithms
used by Rexa and the HTML wrappers sometimes made errors by assigning
the wrong property (e.g., venue instead of year) or by assigning the borders of
the value incorrectly (e.g., dropping part of the paper’s title). Finally, for the
Rexa dataset we had additional information: each paper record had a number of
citations indicating the number of sources referring to the paper. We estimated
the dependency between the reliability of records and the number of citations
by randomly selecting a subset of paper records and manually counting the
number of “spurious” records, which contained some obvious error (e.g., like
assigning the name of the conference as paper title). We randomly selected 400
records for each value of the hasCitations property from 0 to 5 and counted the
number of spurious records. If the total number of papers for some interval was
lower than 400, then we selected all available records in the interval. Based on
these reliability assignments, we adjusted the reliability of datatype property
assignments for the Rexa dataset. This led us to assign belief masses to the
statements from each source as shown in the Table 3. Of course, such confidence
estimation was subjective, but we cannot expect it to be precise in most real-life
scenarios, unless the complete gold standard data is available in advance.

3 http://eprints.aktors.org/
4 http://www.rexa.info/
® http://www.rexa.info/faq
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Table 3. Initial belief mass assignment

Dataset|Class assertions|Datatype assertions
DBLP |0.99 0.95

0.81 (<2 citations)
0.855 (>2 citations)
EPrints|0.9 0.85

Rexa ]0.95

Table 4. Evaluation results

Matching Total |Matching|Conflicts Matching

No|algorithm clusters|precision |found |Accuracy|precision

(before) (after)

EPrints/Rexa

1 |Jaro-Winkler 88 0.95 9 0.61 0.97
L2 Jaro-Winkler 96 0.88 13 0.73 0.92

3 |Jaro-Winkler (mutated dataset)|88 0.95 55 0.92 0.95
EPrints/DBLP

4 |Jaro-Winkler 122 0.92 12 0.83 0.99

5 |L2 Jaro-Winkler 217 0.39 110 0.9 0.84

6 |Jaro-Winkler (mutated dataset)|122 0.92 84 0.91 0.92
Rexa/DBLP

7 |Jaro-Winkler 305 0.9 21 0.73 0.94

8 |L2 Jaro-Winkler 425 0.55 149 0.87 0.82

9 |Jaro-Winkler (mutated dataset)|305 0.9 213 0.94 0.9

We ran matching algorithms determining identical individuals for each pair
of datasets. Their results were evaluated using precision/recall measures. To
each owl:sameAs statement produced by a matching algorithm we assigned a
support belief mass based on the precision of the algorithm (Table 4, column 4).
We made tests with two kinds of string similarity algorithms|[24]: Jaro-Winkler
similarity directly applied to the papers’ titles (rows 1, 4 and 7) and L2 Jaro-
Winkler similarity, when both compared values are tokenized, each pair of tokens
is compared using the standard Jaro-Winkler measure and the maximal total
score is selected. The L2 measure can catch the cases when part of the label is
missing (e.g., only the last part of a paper title was recognized), which slightly
increases the recall, but its precision is usually significantly lower (rows 2, 5, 8).

Finally, in order to test the algorithm in a situation where the quality of one
of the data sources is low, we had to introduce noise into our datasets. We did
it in the following way: for one of the datasets in the pair (the smaller one,
EPrints or Rexa depending on the case) we randomly mutated 40% of rdf:type
assertions (changing from Article to Article_in_Proceedings and vice versa) and
opus:year assertions (by + or -1). The support belief mass of all statements in the
dataset was proportionally reduced: the values in the rows 2 and 3 in the Table
3 were multiplied by 0.6. We measured the quality of inconsistency resolution
by comparing the resulting ranking produced after the belief propagation with
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the “correct” conflict resolution. A conflict was considered correctly resolved if
the genuinely incorrect statements got the lowest belief after propagation. In
cases when a conflict set contained several incorrect statements and only some
of them were correctly recognized, we assigned a reduced score to such a conflict
(e.g., 0.33 if only one statement out of three was properly recognized as wrong).
Incorrect statements, which received low support, but were plausible, counted
as 0.5 of a correct answer. The results we obtained are given in the Table 4. The
clusters shown in the third column are sets of mapped individuals. Each cluster
represents a group of up to 3 individuals mutually linked by an owl:sameAs
relation.

5.2 Discussion and Examples

Since in our use case the conflicts occurred because of incorrect data, apply-
ing high-precision matching algorithms to the original datasets resulted in very
small numbers of conflicts. Thus, the results obtained in such experiments (rows
1, 2, 4, 7) only illustrate common cases rather then provide reliable quantitative
evaluation. As was expected, the algorithm’s performance was better in “trivial”
cases when the wrong statement had a priori support significantly lower than
the statements, with which it was in conflict. This was the most frequent pat-
tern in the experiments with a low-precision matching algorithms (rows 5, 8)
and artificially distorted datasets (rows 3, 6, 9). In more complex cases, if the
conflict set contained a correct statement with a lower support than the actual
wrong statement, the algorithm was still able to resolve the conflict correctly if
additional evidence was available. One typical cause of such a conflict was the
situation when the same authors first presented a paper in a conference and
after that published its extended version in a journal. For instance, a belief net-
work built for such a case is shown in the Fig. 3a. While each conflict separately
would be resolved by removing the assertions related to Ind2 (In_Proc(Ind2)
and year(Ind2, 2005) in the Fig. 3a), cumulative evidence allowed the algorithm
to recognize the actual incorrect sameds link (Ind1=Ind2). A similar situation
occurred when one instance (Ind!) was considered similar to two others (Ind2
and Ind3), but only one of the sameAs links (e.g., Ind1=Ind2) led to the incon-
sistency (e.g., disjoint axiom violation). In that case the existence of the correct
sameAs link (Ind1=Ind3) increased the support of the corresponding class as-
sertion and again caused the wrong link (Indf=Ind2) to be removed. As would
be expected, in cases when the wrong statement was considered a priori more re-
liable than the conflicting ones and the evidence was not sufficient, the algorithm
made a mistake. For instance, the conflict in Fig. 3a was resolved wrongly when
the dataset containing Ind2 was artificially distorted. Although the statements
involved in the conflict were not affected, the initial support of the Ind2 asser-
tions was significantly lower (0.51 instead of 0.9), which was insufficient to break
the link. The capabilities of the Dempster-Shafer representation were important
in cases when the a priori support of some statements was low. For instance, us-
ing L2 Jaro-Winkler similarity for the EPrints/DBLP datasets achieved a very
low precision (0.39). In such cases the plausibility allows us to distinguish the
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2 [ Functonsesn
[ [

[ Adiclegndt) ] [ inProcgnd) ] [ year(nd1, 2005 | [ year(ndi,2006) |

0.99/(0.97:0.98) | | 0.95/(0.91;0.96)
( indi=ing2 | | Indi=ing2 |
[ [ [ [
(in_Procgnaz) | [ indi=indz | [ year(nd2, 2005 |
0.9/(0.74;0.82) 0.92/(0.2;0.21) 0.85/(0.72;0.85)
b) [ Functional(year) ]
[ [
[ inProcindt)y ] [ Aricle(ndl) | ( year(ind1,2003) | [ year(ndi, 2002) |
0.9/(0.93.0.99) | | 0.85/(0.9;0.993)
[ ndtslndz ] [ indi=hdz |
\ | | [
[ Avicle(nd2) ) [ indi=ine2 ] [ year(ind2, 2003) |
0.99/(0.99;0.999) 0.39/(0.01;0.02) 0.95/(0.95;0.998)

Ind1=Ind3 Ind1=Ind3
 hdi=lnds |

Ind1=Ind3

inProc(Ind3) 0.39/(0.39;0.99) year(Ind1, 2002)

0.99/(0.99;0.899) 0.95/{0.97;0.998)

Fig. 3. Examples of belief networks constructed during the experimental testing. The
numbers show the support before propagation and support and plausibility after prop-
agation. a) Incorrect sameAs mapping violates two restrictions. b) Influence of the
Dempster-Shafer plausibility: correct sameAs relation has low support but high plau-
sibility because it does not contribute to inconsistency.

cases when a statement is considered unreliable because of insufficient evidence
from the cases when there is sufficient evidence against it. For instance, Fig. 3b
shows such a case. A record in the EPrints dataset describing a conference paper
was linked to two different papers in the DBLP dataset. One of the links was
wrong. After belief propagation the support values of both links were still below
0.5. However, the evidence against the wrong link was significantly stronger, so
its plausibility was low (0.02) while the plausibility of the correct link remained
high (0.99).

6 Conclusion and Future Work

In this paper, we described how the Dempster-Shafer theory of evidence can be
used for dealing with ABox-level inconsistencies produced by inaccurate infor-
mation extraction and human errors and reported the experiments we performed
with publicly available datasets. The experiments have shown that in the ma-
jority of cases the algorithm was able to resolve inconsistencies that occurred
when fusing data from several sources. Belief networks allowed related pieces
of evidence to be utilized and the Dempster-Shafer mass distribution allowed
more fine-grained ranking of statements than the probabilistic representation.
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However, a feature of the belief propagation algorithm was its sensitivity to the
initial mass distribution: a small initial difference between the belief masses of
conflicting statements significantly increased after the beliefs were propagated.
This can be a limitation in cases when initial mass distribution significantly
differs from the actual distribution (especially if the ranking is wrong).

At the moment we are working on the extension of the framework in order to
improve corefencing quality by propagating positive evidence as well as negative.
As the most interesting direction for the future work we consider potential appli-
cation of the algorithm to the multi-ontology environment. Often the datasets
to be fused are structured according to different ontologies. Automatic ontol-
ogy schema-matching algorithms such as those reported in [25] also can intro-
duce errors. The restrictions, which can cause inconsistencies, are required to be
correctly translated between the ontologies. Resolving such issues is a research
challenge. Finally, it would be interesting to investigate whether the capabilities
of the Dempster-Shafer uncertainty representation (e.g., explicit representation
of ignorance) can be utilized for knowledge modelling at the TBox level. In [26]
it was shown that the Dempster-Shafer approach may lead to problems when
it is used to represent uncertainty of inferencing rules (i.e., TBox-level) rather
than just of pieces of evidence (ABox assertions). These problems occur if the
ontology contains contradictory pieces of knowledge, and are caused by the fact
that the Dempster-Shafer approach does not distinguish pieces of evidence re-
garding specific individuals from generic rules applicable to all individuals. It
will be interesting to investigate whether these problems can be avoided when
modelling description logic axioms.
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Abstract. Clinical Practice Guidelines (CPGs) play an important role
in improving quality of care and patient outcomes. Although several
machine-readable representations of practice guidelines have been im-
plemented with semantic web technologies, there is no implementation
to represent uncertainty in activity graphs in clinical practice guidelines.
In this paper, we explore a Bayesian Network(BN) approach for repre-
senting the uncertainty in CPGs based on ontologies. Using this repre-
sentation, we can evaluate the effect of an activity on the whole clinical
process, which can help doctors judge the risk of uncertainty for other
activities when making a decision. A variable elimination algorithm is
applied to implement the BN inference and a validation of an aspirin
therapy scenario for diabetic patients is proposed.

1 Introduction

Clinical Practice Guidelines (CPGs) play an important role in improving qual-
ity of care and patient outcomes; therefore, the task of clinical guideline-sharing
across different medical institutions is a prerequisite to many EMR (Electronic
Medical Record) applications including medical data retrieval [18], medical
knowledge management [7], and clinical decision support systems (CDSSs) [13].
To facilitate clinical guideline-sharing, GLIF (GuideLine Interchange Format)
and SAGE (Standards-based Sharable Active Guideline Environment) have been
the focus of extensive research [12]. GLIF is a semantic web based standard for
representing clinical guidelines [15] and SAGE is an interoperable guideline exe-
cution engine, which encodes the content of the clinical guideline to an ontology
representation, and executes the ontology through the functions of a CIS (clinical
information system) [17].

Most previous approaches using GLIF and SAGE are designed to proceed
from one step to the next only if there is no uncertain data in the former step
[13]. However, this expectation is unrealistic in practice. For example, a guide-
line, which requires risk factors for heart disease to be assessed, needs to proceed

* Corresponding author.

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNAI 5327, pp. 161-173, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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even when the information about this item is uncertain. In the clinical process,
uncertain data can be (1) data stemming from unreliable sources (e.g., a pa-
tient can not remember the results of his/her last glucose test); (2) data not
obtainable (e.g., no historical data on familial diabetes); and (3) data not yet
collected (e.g., levels of serum glucose today) [14]. If data represented in CPGs
is uncertain, the activities that handle these uncertain data become uncertain as
well. For instance, in CDSS systems, when using the diabetes clinical guideline,
it is necessary to obtain a family history to evaluate the risk of insulin therapy.
However, in real hospital environments, clinicians cannot easily obtain all the
necessary data for their health care activities. Based on these issues, the goal
of this paper is to construct an approach to represent the uncertainty in CPGs
and help doctors judge the risk of these uncertainties in the clinical process. Un-
certainty in CPGs means that the activity graphs composing the CPGs contain
uncertain activities.

As a model for uncertainty, Bayesian Networks (BNs) occupy a prominent
position in many medical decision making processes and statistical inference
[11,3,2]. However, there have been few reports applying BNs to the representation
of uncertainty in CPGs. Therefore, to address this issue, we propose an ontology-
based representation of uncertainty in CPGs by using BNs.

In this paper, we first introduce BNs, then we describe the use of BNs for the
medical domain, and review previous work on applying semantic web technology
to model CPGs in section 2; Section 3 elaborates the mechanism of encoding
uncertainty into a CPG ontology; Section 4 describes a scenario validation based
on BN inference; Section 5 discusses the conclusions and future work.

2 Background and Related Work

2.1 Bayesian Network

There are several models that are used to represent uncertainty, such as fuzzy-
logic and BNs. Generally, a BN of n variables consists of a DAG (Directed Acyclic
Graph) of n nodes and a number of arcs. Nodes X; in a DAG correspond to
random variables, and directed arcs between two nodes represent direct causal
or influential relations from one variable to the other. The uncertainty of the
causal relationship is represented locally by the CPT (Conditional Probability
Table). P(X;|pa(X;)) associated with each node X;, where pa(X;) is the parent
set of X;. Under the conditional independence assumption, the joint probability
distribution of X = (X7, Xo, ..., X,,) can be factored out as a product of the CPTs
in the network, namely, the chain rule of BN: P(X) = [[, P(X;|pa(X;)). With
the joint probability distribution, BNs theoretically support any probabilistic
inference in the joint space. Besides the probabilistic reasoning provided by BNs
themselves, we are attracted to BNs in this work for the structural similarity
between the DAG of a BN and activity graphs of CPGs: both of them are directed
graphs, and direct correspondence exists between many nodes and arcs in the
two graphs. Moreover, BNs can be utilized to represent the uncertainty visually,
to provide inference effectively and to facilitate human understanding of CPGs.
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Motivated by these advantages, we apply BNs to represent the uncertainty in
CPGs.

Considering the advantages of BNs, we apply BNs to represent the uncertainty
in CPGs.

2.2 Bayesian Networks for the Medical Domain

Because BNs occupy a prominent position as a model for uncertainty in decision
making and statistical inference, they have been applied to many medical deci-
sion support systems [11,3,2]. Atoui [3] adopted a decision making solution based
on a BN that he trained to predict the risk of cardiovascular events (infarction,
stroke, or cardiovascular death) based on a set of demographic and clinical data.
Aronsky [2] presented a BN for the diagnosis of community-acquired pneumonia
and he showed that BNs are an appropriate method for detecting pneumonia pa-
tients with high accuracy. With respect to clinical guidelines, Mani [11] proposed
BNs for the induction of decision tables and generated a guideline based on these
tables. However, although these methods focus on predicting some features or
risk of disease using BN inference, there has been no implementation to repre-
sent the uncertainty in activity graphs in CPGs. These methods do not provide
the probabilities of target activities based on uncertainty reasoning, which is the
focus of our approach.

2.3 Semantic Web for Clinical Practice Guidelines

A representational form of clinical guideline knowledge, which promotes com-
pleteness and minimizes inconsistency and redundancy, is essential if we want
to implement and share guidelines for computer-based applications. Semantic
Web technology offers such sharable and manageable methodology for model-
ing CPGs. GLIF [15] and SAGE [17] are two good examples. For creation and
maintenance of implementable clinical guideline specifications, an architecture
is presented in [8]. This architecture includes components such as a rules en-
gine, an OWL-based classification engine and a data repository storing patient
data. Moreover, approaches for modeling clinical guidelines are discussed and
they show that guideline maintenance is tractable when a CPG is represented in
an ontology. Here, we apply an ontology to represent the uncertainty in CPGs
because it is more extensible and maintainable than other methods such as re-
lational databases.

3 Encoding Uncertainty into a CPG Ontology

Figure 1 depicts the overall procedure of the proposed method. Firstly, the orig-
inal CPG is encoded into an ontology model that contains uncertainty features
using BNs. For this, we propose a formal model of a CPG Ontology to represent
uncertainty and an algorithm to construct the CPTs (Conditional Probability
Tables) of the BN. The CPG ontology can be shared and utilized in different
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clinical information systems. Then, when a user provides his/her observed evi-
dence in the clinical process, the BN inference engine will load the CPG ontology
as a BN and mark the nodes that are observed by the user in the BN. Based on
the observed evidence, the BN inference engine can reason out the probabilities
of target activities asked by the user. Given the reasoning results, the user can
judge the risk of unobserved activities and make a further decision.

3.1 Clinical Practice Guideline Ontology

CPGs typically include multiple recommendation sets represented as an activity
graph that show the recommended activities during a clinical process [4]. An
activity graph describes the relationship between activities in the recommenda-
tion set as a process model. In this article, we use a single recommendation set
in the SAGE diabetes CPG [1], which is an activity graph of aspirin therapy for
diabetic patients, to illustrate how we represent the uncertainty in CPGs based
on the ontology (Fig. 2). Typically, an activity graph contains three kinds of ac-
tivities: context activities, decision activities, and action activities. Each activity
graph segment within a guideline begins with a context activity node that serves
as a control point in guideline execution by specifying the clinical context for
that segment. A decision activity node in the SAGE guideline model represents
clinical decision logic by listing alternatives (typically subsequent action activity
nodes), and specifying the criteria that need to be met to reach those nodes. An
action activity node encapsulates a set of work items that must be performed
by either a computer system or persons.

To represent activities in CPGs, we create the activity class that represents
all the nodes in an activity graph as shown in Figure 3. Because there are three
kinds of activities, we construct an action class, a context class, and a decision
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Fig. 2. Clinical practice guideline of aspirin therapy for diabetic patients(ASA means
aspirin therapy)

class as sub classes of the activity class in the ontology. In CPGs, activities may
include internal conditions that restrict their execution. For example, for the
decision activity “Yes;check for ASA(aspirin therapy) contraindications” (Fig.
2), there are many internal conditions to make sure the ASA contraindications
will be checked correctly, such as checking family history, checking for the hyper-
tensive disorder, etc. We encode these activity internal conditions as an activity
condition classes in the ontology (Fig. 3).
A CPG Ontology with uncertainty features is defined as follows:

Definition 1. (CPG Ontology) CPG Ontology O := {C, I, Ps,cinst}, with an
activity class set C, an activity instance set I, a property set Ps, and an activity
class instantiation function cinst : C — 27,

owl: Thing
v @ Activity
v @ Action
Q Message_action
O Matity
ﬁ Recommand_VMROrder
. Recommend_OrderSet
@ Subguideline
@ context
¥ 0 Decision
@ Atternative_Choice
ﬁ Decision_Map
v @ Activity_Cendition
@ Action_Condition
@ Context_Condition
w ) Decision_Condition
@ Strict_rule_in
@ Strict_rule_out

Fig. 3. Classes representation for clinical practice guideline
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In CPG ontology, the activity instance set I represents the set of real activities
that belong to corresponding activity classes. The property set Ps is proposed
to represent the different attributes of activities in order to encode the features
of the BN into ontology. The property set Ps is defined as follows:

Definition 2. (Properties for uncertainty representation) Property Set Ps :=
{cause, hasCondition, hasState, isObserved, hasPriorProValue,
hasCondiProValue}, has a property function cause : I — I, a property function
hasCondition : I — I, a property function hasState : I — Boolean, a property
function isObserved: I — Boolean, a property function hasPrior ProV alue:
I — Float, and a property function hasCondiProValue: I — Float.

In CPGs, if the criteria associated with an activity node are satisfied, it will
be successfully executed, which will cause the execution of subsequent nodes
in the activity graph. Therefore, the relationship between activities is defined
as a cause relationship. For example, in Figure 2, the context activity “Patient
21 years or older” causes the decision activity “Check for Aspirin therapy”.
To represent this relationship in the ontology, we construct the property cause
whose domain and range both are the activity class and the activity condition
class. The hasCondition property is proposed as an inverse property of the cause
property, which describes the “parent” activities of an activity that cause its
execution. For example, the decision activity “Check for aspirin therapy” has
the property hasCondition with value “Patient 21 years or older” activity that
causes its execution. With the hasCondition property, users can easily figure
out all of the conditions that cause the execution of any activity. The cause
property plays the role of “directed arc” and all the activity instances play the
role of “node” in the DAGs of BNs. Another property, the hasState property,
which has a boolean value range, is denoted as the state of the activity instance;
the isObserved property shows if the activity instances have been observed or
not.

Prior probability and conditional probability are two important features that
represent the uncertainty level of nodes in BNs. To encode prior probability
and conditional probability of activity instances into the ontology respectively,
hasPriorProValue property and hasCondiProValue property are employed. Let
A, B be the instances of the activity class representing two concrete activities.
We interpret P(A = a) as the prior probability that a value a is a state of
instance A and P(B = bJA = a) as the conditional probability that when A
has state a, B has state b. For example, when A is activity “Patient 21 years
or older”, B is activity “Check for Aspirin therapy”, P(A = true) = 0.5 can be
expressed in the ontology as follows:

<Context rdf:ID="Patient_21_yo_or_older">
<hasPriorProValue
rdf :datatype="http://www.w3.0rg/2001/XMLSchema#float"
>0.5</hasPriorProValue>
<hasState
rdf :datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</hasState>
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<cause rdf:resource="#Check_for_Aspirin_therapy"/>
</Context>
The conditional probability P(B = true|A = true) = 1.0 can be expressed
in the ontology as follows:
<Decision rdf:ID="Check_for_Aspirin_therapy">
<hasCondition>
<Context rdf:ID="Patient_21_yo_or_older">
<hasState rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</hasState>
</Context>
</hasCondition>
<hasState rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</hasState>
<hasCondiProValue rdf:datatype="http://www.w3.org/2001/XMLSchema#float"
>1.0</hasCondiProValue>
<cause rdf:resource="#Check_fo_age_older_than_40"/>
</Decision>

3.2 Construction of Conditional Probability Tables

In this section, we introduce an algorithm used to construct the CPTs of nodes
in BNs. After creating the properties to represent the uncertainty in the on-
tology, the CPTs must be constructed for BNs, because BN inference is based
on the CPTs of each node in the BNs. Because of the features of CPGs, we
initialize the CPTs based on noisy OR-gate model. To demonstrate this idea
more clearly, we use a subsect of clinical practice guideline of primary care clinic
visit in SAGE diabetes CPGS as an example (Fig. 4). This example includes
two context activities, “physician accesses the patient record” and “physician
accesses the patient record”, and four action activities and five action activities,
“aspirin therapy”, “Retrieve diabetes lab data items and calculate items due”,
“Out-of-goal notifications via inbox”, “Check today’s bp and issue appropriate
alerts”, and “Retrieve consult-related information and calculate items due”. For
simplicity, let P, stand for “physician accesses the patient record”, P, stand for
“physician accesses the patient record”, A stand for “aspirin therapy”, R stand
for “Retrieve diabetes lab data items and calculate items due”, O stand for
“Out-of-goal notifications via inbox”, C' stand for “Check today’s bp and issue
appropriate alerts”, and F stand for “Retrieve consult-related information and
calculate items due”.

First, we assign prior probabilities to activities, i.e, the activities have prior
probabilities when they have no “parents” in the BN. In our example, the activity
is P;. Since every activity in our example has two states, true and false, 0.5 is
assign to P as the prior probabilities (Fig. 4). Second, when an activity causes a
set of activities, each activity in the set is true if and only if the causing activity
is true. In the example, activities A, R, C, and E have state true if and only if
P,’s state is true. Similarly, activity O has state true if and only if R’s state is
true. The conditional probabilities of activities A, R, C, E, and O are shown in
Figure 4. Third, when an activity is caused by a set of activities, the activity
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Fig. 4. Some activities in clinical practice guideline of primary care clinic visit

has state true if and only if one activity in the set of activities has state true. In
the example, activity P, has state true if and only if one of activities A, O, C,
and R has state true. The conditional probability of activity P, is P(P2|A) =1,
P(P2|0) =1, P(P2|C) =1, and P(P2|E) =1 (Fig. 4).

After initializing the CPTs of the BN, we update the conditional probabilities
based on clinical cases. If a population of patients with similar characteristics
conducts a sequence of activities, the conditional probabilities are updated based
on the prior records. The records correspond to how many patients conduct an
activity after they finish the causing activity. For example, in Figure 4, if ten
patients conduct activity R and seven of them conduct activity O consequently,
the conditional probability P(O|R) is updated as 0.7.

Finally, we encoded the BNs into ontologies that represent the uncertainty in
CPGs, namely, representing with ontologies the activity graphs containing un-
certain activities. When a BN inference engine loads this ontology, the ontology
will be converted into a BN. The instances of the activity class and the activity
condition class are translated into the nodes of the BN. The conditional proba-
bility tables of nodes are also converted from the properties of those instances
in the CPG ontology accordingly. In the BN, an arc is drawn between nodes if
the corresponding two activity instances are related by the cause property, the
direction originating from the activity instance that has the cause property.

4 A Scenario Validation Based on Bayesian Network
Inference

We apply the variable elimination algorithm [9,5] to perform BN inference. To
verify the feasibility of our approach, a scenario of aspirin therapy for a diabetic
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patient is proposed. Based on this scenario, we applied our ontology-based BN
approach to represent the uncertainty in CPGs and carried out BN inference
based on this BN.

4.1 Bayesian Network Inference

There are many algorithms that manipulate BNs to produce posterior values
[16,10]. The variable elimination algorithm [9,5] and the bucket elimination al-
gorithm [6] are focused on algebraic operations. Since algebraic schemes like
variable and bucket elimination compute marginal probability values for a given
set of variables that is suitable for inference on observed evidence, we apply the
variable elimination algorithm to implement the BN inference on the uncertainty
of CPGs.

We assume all random variables have a finite number of possible values. The
set of variables are denoted in bold; for instance, X. The set of all variables
that belong to X but do not belong to Y is indicated by X\Y. The expression
> x f(X,Y) indicates the sum of the function f(X,Y) is taken for all variables
in X. Denoted by P(X) is the probability density of X: P(x) is the probability
measure of the event {X = z}. Denoted by P(X|Y) is the probability density
of X conditional on values of Y.

The semantics of the BN model are determined by the Markov condition:
Every variable is independent of its non-descendants and non-parents given its
parents. This condition leads to a unique joint probability density:

P(X) = [[(P(Xilpa(xX))) 1)

where pa(X;) is denoted as the parent set of X;.

Given a BN, the event E denotes the observed evidence in the network. De-
noted by X is the set of observed variables. Inferences with BNs usually involve
the calculation of the posterior marginal for a set of query variables X,. The
posterior of X, given E is:

P(Xy,BE)  2X\X, X P(X)
P(E) —  Yx\x,PX)

The variable elimination algorithm can be described as follows:

P(X,|E) =

2)

1. Generate an ordering for the N requisite, non-observed, non-query variables.
2. Place all network densities in a pool of densities.
3. For i from 1 to N:
(a) Create a data structure B;, called a bucket, containing the variable, called
the bucket variable; all densities that contain the bucket variable are called
the bucket densities.
(b) Multiply the densities in B;. Store the resulting unnormalized density in
B;; the density is called B;’s cluster.
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(¢) Take the sum of X; from B;’s cluster. Store the resulting unnormalized
density in B;’s; the density is called B;’s separator.
(d) Place the bucket separator in the density pool.

4. At the end of the process, collect the densities that contain the query variables
in a bucket B;. Multiply the densities in B, together and normalize the
result.

The detail of variable elimination algorithm can be found in [9,5].

4.2 A Validation of an Aspirin Therapy Scenario for Diabetic
Patients

We demonstrate the validity of our approach by applying an experiment to the
CPG of aspirin therapy for diabetic patients (Fig. 2). Let us consider a scenario:

Scenario 1. A user(medical student, nurse or physician etc. ) is trying to apply
aspirin therapy for a diabetic patient using the diabetes CPG. When he/she tries
to check the aspirin risk factors, he/she can get some observed evidence, such as
observations of hypertensive disorder, tobacco user finding, hyperlipidemia, and
myocardial infarction. In this case, the user wants to evaluate target activities
that he is concerned about in this CPG. In this way, he/she hopes the results can
help him understand the effect of the observed evidence on the target activities
during the whole clinical process.

In the scenario, the CPG of aspirin therapy for diabetic patients is used. Since
there are some uncertain activities in the activity graph in this CPG, we can
apply our ontology-based BN approach to represent this uncertainty. Details
are described in Section 3. As a result, figure 5 shows the ontology-based BN
representing the uncertainty in the CPG of aspirin therapy for diabetic patients.

After loading the ontology-based BN, the BN inference engine can process the
uncertainty inference when the user provides his/her observed evidence, such
as observations of hypertensive disorder, tobacco user findings, hyperlipidemia,
and myocardial infarctions in this scenario (Fig. 5). If the user queries the target
activities, the BN inference engine will output the probability of their successful
execution.

For example, after the user has obtained the observed evidence of some aspirin
risk factors, he/she wants to know the probability of activity “No ASA (aspirin
therapy) contraindications; recommend ASA” to help him/her to judge whether
or not his/her observations of aspirin risk factors are adequate. In the BN in-
ference engine, since the activity instance “presence of problem hypertensive
disorder” is observed, its property isObserved is set as true and the property
hasState is set as false. Similarly, the activities instances “presence of prob-
lem myocardial infarction”, “presence of tobacco user finding”, and “presence of
problem hyperlipidemia” are also set in the same manner. After initializing the
CPTs in this BN, Equation 2 (Section 4.1) is applied to calculate the probability
of activity instance “No ASA contraindications; recommend ASA” :

P(Xy,BE)  2X\X, Xz P(X)
P(E) —  Yx\X,PX)

P(X,|E) = = 0.775
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Fig.5. An ontology-based Bayesian network of aspirin therapy for diabetic patients
derived from figure 2 (blue nodes are the observed ones)

where X, ={“No ASA contraindications; recommend ASA” }, and E={ “presence
of problem hypertensive disorder” = false,“presence of problem myocardial in-
farction” = false, “presence of tobacco user finding” = false, “presence of prob-
lem hyperlipidemia”= false }.

In another case, when the user wants to get the degree of uncertainty for the
activity instance “presence of problem coagulation factor deficiency syndrome”,
he/she can query this target activity instance based on the observed evidence
E. Through BN inference, we can obtain:

P(Xy, E)

= 0.6425
where X ,={“presence of problem coagulation factor deficiency syndrome”} and
FE is the same as the above case.

The results in the two cases show high probabilities for the target activities,
which suggest the user can make a decision to go ahead based on the observed
evidence. When we consulted ten medical experts with this scenario, eight of
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them agreed with these results. We believe that the experimental results that
the majority of medical experts agree with show the feasibility of our approach.

5 Conclusion and Future Work

In this paper, we contributed an ontology-based BN approach to represent the
uncertainty in CPGs. With this uncertainty representation in ontology, comput-
ers can: (1) calculate the uncertainty of target activities in CPGs; (2) remind
users of missing important data or event items, which should be observed in
the clinical process; (3) simulate the clinical process under uncertain situations,
which can be applied to e-learning systems in medical schools.

In the future, we are planning to combine our approach with a real CIS envi-
ronment and apply uncertain clinical data to our application. A more compre-
hensive evaluation based on real clinical data should also be carried out.
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Abstract. Fuzzy Description Logics are a family of logics which allow
the representation of (and the reasoning with) structured knowledge af-
fected by imprecision and vagueness. They were born to overcome the
limitations of classical Description Logics when dealing with such kind of
knowledge, but they bring out some new challenges, requiring an appro-
priate fuzzy language to be agreed and needing practical and highly opti-
mized implementations of the reasoning algorithms. In the current paper
we face these problems by presenting a reasoning preserving procedure
to obtain a crisp representation for a fuzzy extension of the Description
Logic SHOZN , which makes possible to reuse a crisp representation lan-
guage as well as currently available reasoners, which have demonstrated
a very good performance in practice. As additional contributions, we de-
fine the syntax and semantics of a novel fuzzy version of the nominal
construct and allow to reason within fuzzy general concept inclusions.

1 Introduction

Ontologies [1] are a core element in the layered architecture of the Semantic
Web [2]. Description Logics (DLs for short) [3] are a family of logics for rep-
resenting structured knowledge. The name of each logic is composed by some
labels which identify the constructs of the logic. DLs have been proved to be
very useful as ontology languages [4].

As it has been widely pointed out, classical ontologies and DLs are not ap-
propriate to handle imprecise and vague knowledge and since imprecision and
vagueness are inherent to a lot of real-world application domains, there is a need
for the Semantic Web to provide means to manage them. A well studied solution
is to extend DLs with fuzzy sets theory [5], producing fuzzy DLs [6].

Nowadays, the World Wide Web Consortium (W3C) standard for ontology
representation is OWL Web Ontology Language [7], a language comprising three
sublanguages of increasing expressive power: OWL Lite, OWL DL and OWL
Full, being OWL DL the most used level and nearly equivalent to the DL
SHOIN (D) [8].

In order to deal with uncertain knowledge, OWL may be extended to a fuzzy
DL-based language e.g. FuzzyOWL [9], with the drawback that the large number

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNAI 5327, pp. 174-188, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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of resources available (e.g. editors, reasoners or ontologies to be imported) should
be adapted. Furthermore, reasoning within expressive DLs has a very high worst-
case complexity (e.g. NEXPTIME in SHOZN) and, consequently, there exists a
significant gap between the design of a decision procedure and the achievement
of a practical implementation [10]. Actually, some of the OWL DL reasoners
used in practice do not support full SHOZN (D). For instance, Racer [11] does
not support nominals.

Regarding fuzzy DLs, there does not exist any implemented reasoner for
fuzzy SHOZIN. A reasoner for fuzzy SHZJF (D) has been recently developed
(fuzzyDL [12]), but its efficiency is still to be investigated. Moreover, the experi-
ence with crisp DLs ([10]) induces us to think that developing highly optimized
implementations will be a hard task where ad-hoc mechanisms should be used
for every particular fuzzy DL.

An alternative way to obtain fuzzy ontologies facing these two problems is to
represent fuzzy DLs using crisp DLs and to reduce reasoning within fuzzy DLs
to reasoning within crisp DLs [13,14,15,16]. This way it would be possible to
translate them automatically into a crisp ontology language (e.g. OWL) and to
use currently available reasoners (e.g. Pellet [17]).

On the other hand, current fuzzy DLs still present some limitations which we
think that should be overcome. Some works on fuzzy DLs deal with nominals
(named individuals) but they choose not to fuzzify the nominal construct arguing
that a fuzzy singleton set does not represent any real concept world [18,9]. Hence,
only crisp concepts can be defined extensively, as nominals either have to fully
belong to them or not. Besides, the most used semantics for general concept
inclusions (GCIs) is based on the Zadeh’s set inclusion (a fuzzy set C' is included
in a fuzzy set D iff Vz, uc(x) < pp(x)) and hence, it becomes a yes-no question.
Although fuzzy GClIs, which allow to restrict the value of a GCI, have been
proposed [18], current reasoning algorithms do not allow them.

Our work provides the following contributions. Firstly, we propose a differ-
ent definition of fuzzy SHOZN, including a fuzzy nominal construct and fuzzy
GCIs. Secondly, we reduce reasoning in fx pSHOIN to reasoning in SHOZN,
extending [13]. To the very best of our knowledge, this is the first reasoning
algorithm dealing with such kind of fuzzy GCls.

The present paper is organized as follows. The following section reviews some
background on DLs and fuzzy logic. Next, in Section 3 we describe our fuzzy
extension of SHOZN. We have not considered (for the moment) fuzzy datatypes
since OWL does not allow to define customised datatypes. Then, Section 4 shows
how to reduce it into crisp SHOIN. Finally, in Section 5 we set out some
conclusions and ideas for future work.

2 Preliminaries

This section recalls some basic notions on DLs (defining the DL which will be
treated along this paper, SHOIN') and fuzzy set theory. The confident reader
may choose to skip this part and pass directly to Section 3.
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2.1 The Description Logic SHOIN

Syntaz. SHOIN assumes three alphabets of symbols, for concepts, roles and
individuals. The concepts of the language (denoted C or D) can be built induc-
tively from atomic concepts (A), roles (R), top concept T, bottom concept L,
named individuals (0;) and simple roles (S)! according to the following syntax
rule (where n, m are natural numbers, n > 0, m > 0):

C,D— A | (atomic concept)

T | (top concept)

L | (bottom concept)
C' M D | (concept conjunction)
C U D | (concept disjunction)

—C' | (concept negation)
VR.C' | (universal quantification)
JR.C'| (full existential quantification)
{01,...,0m} | (nominals)
| (

(> n S) | (at-least unqualified number restriction)
(€£nS) (at-most unqualified number restriction)

If R4 is an atomic role, complex roles are built using this syntax rule:

R — R4 | (atomic role)
R~ (inverse role)

A Knowledge Base (KB) comprises two parts: the intensional knowledge, i.e.
general knowledge about the application domain (a Terminological Box or TBox
7 and a Role Box or RBox R), and the extensional knowledge, i.e. particular
knowledge about some specific situation (an Assertional Box or ABox A with
statements about individuals).

An ABoz consists of a finite set of assertions about individuals (denoted a
and b), which can be one of the following types:

— Concept assertions a : C' (meaning that @ is an instance of C).

— Role assertion (a,b) : R ((a,b) is an instance of R).

— Individual assertion a # b (a and b are different individuals).

— Individual assertion a = b (a and b refer to the same individual).

A TBozx consists of a finite set of terminological axioms about concepts, of
the following types:

— General concept inclusions (GCI) C C D (C is more specific than D), where
general means that they can refer to any concept of the language.

— Concept definitions C' = D (C and D are equivalent), or abbreviation of the
pair of axioms C C D and D C C.

1A simple role is a role with no transitive sub-roles. A role R is a sub-role of R’ if
R &R’, where & is the reflexive-transitive closure of the inclusion relation T, which
will be defined below.
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A RBoz consists of a finite set of role axioms of the following types:

— role inclusions of the form R C R’ (R is more specific than R’),

— role definitions R = R/, a short hand for both RC R’ and R’ C R,

— transitive role axioms trans(R) (R is transitive).
Semantics. An interpretation Z is a pair (AZ,-Z) consisting of a non empty set
A7 (the interpretation domain) and an interpretation function - mapping every
individual onto an element of AZ, every atomic concept A onto a set AT C AT
and every atomic role R onto a binary relation R C A% x AZ,

The interpretation is extended to complex concepts by the following inductive

definitions (where X denotes the cardinality of the set X):

T_ AT
1r=9
(cnD)yf=c*tnD?
(CuD)y:t =ctuD*
(-C)T = AT\ 7
(VR.C)E = {z | Vy, (z,y) ¢ RT or y € CT}
{ (EIR.C}?I = }xz| Ty, (mﬁ;}) € R and y € C*}
01, om}t ={of,... 0%
(>n S ={z|t{y|(z,y) € ST} > n}
(<n S ={z|t{y|(z,y) € ST} <n}
(R™)* = {(y,x) € AT x A¥|(x,y) € R"}

An interpretation Z satisfies (is a model of):

— An assertion a : C iff af € CT.

— An assertion (a,b) : R iff (a,b)% € RZ.

— An assertion (a # b) iff aZ # bZ.

— An assertion (a = b) iff a7 = bZ.

- AGCICCDiff C* C D%

— A concept definition C = D iff 0% = D*

— A role inclusion R C R’ iff RT C R'Z.

— A role definition R = R’ iff R = R"Z.

— A transitive role axiom trans(R) iff (R)7 is transitive.

— An ABox A (resp. a TBox 7, a RBox R) iff 7 satisfies each element in A
(vesp. T, R).

— AKB K = (A, 7T,R) iff it satisfies all A, 7 and R.

A DL not only stores axioms and assertions, but also offers some reasoning
services, such as KB satisfiability, concept satisfiability, subsumption or instance
checking. However, if a DL is closed under negation, then all the basic reasoning
services are reducible to KB satisfiability [19].

2.2 Fuzzy Set Theory

Fuzzy set theory and fuzzy logic were proposed by L. Zadeh [5] to manage
imprecise and vague knowledge. While in classical set theory elements either
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belong to a set or not, in fuzzy set theory elements can belong to a set to some
degree. More formally, let X be a set of elements called the reference set. A fuzzy
subset A of X is defined by a membership function p4(z), or simply A(z), which
assigns any = € X to a value in the interval of real numbers between 0 and 1. As
in the classical case, 0 means no-membership and 1 full membership, but now a
value between 0 and 1 represents the extent to which x can be considered as an
element of X. If the reference set is finite (X = {z1,...,z,}), the membership
function can be expressed using the notation A = {pa(z1)/x1, ... pa(zn)/zn}.

For every a € [0,1], the a-cut of a fuzzy set A is defined as the (crisp) set
such that its elements belong to A with degree at least a, i.e. {z | ua(z) > a}.
Similarly, the strict a-cut is defined as {x | pa(z) > a}.

All crisp set operations are extended to fuzzy sets. The intersection, union,
complement and implication set operations are performed by a t-norm function
®, a t-conorm function @, a negation function © and an implication function
=, respectively. For a complete definition of these functions as well as their
properties, we refer the reader to [20,21].

There are commonly two types of fuzzy implications used. The first class is
S-implications, which are defined by the operation o = 5 = (Sa) @ § and can
be seen as a fuzzy extension of the crisp proposition ¢ — b = —a V b. The second
class is R-implications (residuum-based implications), which are defined as o =
B =sup{y €[0,1] | (¢ ®~) < B} and can be used to define a fuzzy complement
as ©a = a = 0. They always verify that « = § = 1 iff a < . Product and
Godel implications are R-implications, the implication of the Zadeh family which
is called Kleene-Dienes (KD) is an S-implication and the Lukasiewicz implication
belongs to both types.

A fuzzy implication specifies a family of fuzzy operators. If it is an S-
implication this notation also specifies the fuzzy complement and t-conorm, while
if it is an R-implication then we also know the t-norm and the fuzzy complement.
The missing operators are usually defined using duality of the t-norms and the
t-conorms. Table 1 shows the most important families of fuzzy operators: Zadeh,
Lukasiewicz, Gédel and Product.

Table 1. Popular families of fuzzy operators

|Fami1y |t—n0rm a® |t—c0n0rm a® B|negati0n ®a|implicati0n a = ﬁ|
Zadeh min{a, 8} max{a, B} 1—a max{1l — «a, 3}
Lukasiewicz|max{a + 8 — 1,0}|min{a + 38,1} [1 —« min{l —a + 3,1}
. . 1, a=0 1 a<p
Godel min{e, 8} max{«a, B} { 0 a>0 { 8. a>8
1,a=0 1 a<p
Product a- B a+pB—a- {0,a>0 {ﬁ/a,a>ﬁ

3 Fuzzy SHOIN

In this section we define fuzzy SHOZN, which extends SHOZN to the fuzzy
case by letting (i) concepts denote fuzzy sets of individuals and (%) roles denote
fuzzy binary relations between individuals.
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Syntaz. Our logic is similar to [18,9], adding fuzzy nominals and fuzzy GClIs.

Fuzzy SHOZN assumes three alphabets of symbols, for concepts, roles and
individuals. The complex concepts (denoted C' or D) can be built inductively
from atomic concepts (A), roles (R), top concept T, bottom concept L, named
individuals (0;) and simple roles (S) according to the following syntax rule (where
n, m are natural numbers, n > 0,m > 0, o; € [0,1]):

C,D—A|T|L|CND|CUD|~C|VR.C|3R.C|
{ai1/o01,...;am/om} | >2m S| <nS

Note that the only difference is the presence of fuzzy nominals.
If R4 is an atomic role, complex roles are built using this syntax rule:

R—Ru|R™

We do not impose unique name assumption, i.e. two nominals might refer to
the same individual.

A fuzzy Knowledge Base (fKB) comprises two parts: the intensional knowl-
edge, i.e. general knowledge about the application domain (a fuzzy Terminolog-
ical Box or TBox 7 and a fuzzy Role Box or RBox R), and the extensional
knowledge, i.e. particular knowledge about some specific situation (a fuzzy As-
sertional Box or ABox A with statements about individuals).

A fuzzy ABox A consists of a finite set of fuzzy assertions, which can be indi-
vidual assertions or constraints on the truth value of a concept or role assertion.
An individual assertion is either an inequality of individuals (a # b) or an equal-
ity of individuals (a = b) (they are necessary since we do not impose unique
name assumption). Note that individual assertions are considered to be crisp,
since the equality and inequality of individuals has always been considered crisp
in the fuzzy DL literature [18].

A constraint on the truth value of a concept or role assertion is an expression
of the form (¥ > a), (¥ > B3), (P < ), (? < a), where ¥ is an assertion of
the form a : C or (a,b) : R, @ is an assertion of the form a : C, o € (0, 1] and
3 € [0,1). Note that fuzzy assertions of the form ((a,b) : R < §),{(a,d) : R < «)
are not allowed. In fact, as we will see in Section 4, if these role assertions were
allowed we would need some additional role constructs (role conjunction, role
disjunction, bottom role and top role) which are not allowed in crisp SHOZN..

A fuzzy TBox T consists of a finite set of fuzzy terminological axioms. A fuzzy
terminological axiom is either a fuzzy GCI or a concept definition. A fuzzy GCI
constrains the truth value of a GCI i.e. it is an expression of the form (2 > a),
(2> 0), (2<p) or (2 < ), where 2 is a GCI of the form C C D, a € (0, 1]
and # € [0,1). We think that concept definitions should not be fuzzified, so
C = D is an abbreviation of the pair of axioms (C C D > 1) and (DC C > 1).

A fuzzy RBox R consists of a finite set of fuzzy role axioms. A fuzzy role
axiom is either a fuzzy role inclusion R C R/, a fuzzy role definition R = R’ (a
short hand for both R C R’ and R’ C R) or a transitive role axiom trans(R).

Semantics. A fuzzy interpretation Z is a pair (AZ,-Z) consisting of a non empty
set AT (the interpretation domain) and a fuzzy interpretation function-?
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mapping every individual onto an element of A%, every concept C onto a func-
tion CT : AT — [0,1] and every role R onto a function RZ : AT x AT — [0,1].
CT (resp. R?) is interpreted as the membership degree function of the fuzzy
concept C' (resp. fuzzy rol R) w.r.t. Z. C%(a) (resp. R%(a,b)) gives us the degree
of being the individual a an element of the fuzzy concept C' (resp. the degree
of being (a,b) an element of the fuzzy role R) under the fuzzy interpretation Z.
The fuzzy interpretation function is extended to complex concepts and roles as:

TH(z) =1
1%(x) =0
(CN D) (z) = C*(z) ® D*(z)
(Cu D) (z) = C*(z) ® D*(z)
(~C)*(z) = ©C*(x)
(VR.C)X(w) = inf e a2 {R* (w,y) = CZ(y)}
(3R.C)* (z) = supye az {R* (2, y) ® C* (y)}
{an /o1, ... cum/om}(z) = sup; | ,—or
(=m S (x) =sup,, . car O, ST (2, y:) Q(®;<{y; # yr})
(< n S (x) =infy, ., ear @ S (@,9:) = (@<n{y; = v})
(R™)*(w,y) = R (y,7)

We will shortly justify our decision of fuzzifying the nominal construct by
showing an example.

Example 1. Suppose we want to represent the concept of country where German
is a widely spoken language. Previous approaches allow to represent a fuzzy
disjunction of nominals C' = {germany} U {austria} U {switzerland}. Since
the semantics of the nominal construct is crisp ({0;}Z(z) = 1if x = of or 0
otherwise), it forces switzerland to fully belong to the concept or not, despite
of German-speaking community of Switzerland represents only about two thirds
of the total population of the country. On the contrary, following our approach
we are able to define C = {1/germany, 1/austria,0.67/switzerland}.

Let us comment the semantics of the fuzzy nominals {1 /01, ..., /0m}E (7)
= sup; 7 a;. Since we are not imposing unique name assumption, it is pos-

| z=o0]

sible that z = oiI for more than one o;. Then, we take the supremum over the
membership degrees a; associated to these named individuals o;. In the previous
example, if x can be interpreted as germany and switzerland, we take the supre-
mum (maximum) over 1 and 0.67. And, of course, if Vi € {1,...,m},z # of,
then {a1/o1,...,am/om}(z) =supl = 0.

Note that previous approaches consider nominals to be crisp singletons argu-
ing that they do not represent real-life concepts [18,9]. In these approaches it is
possible to represent a fuzzy disjunction of crisp singletons. However, we con-
sider fuzzy nominals as proper fuzzy sets, which do represent real-life concepts.
It is easy to see that our definition generalizes the previous definition for the
nominal construct, as {01} U--- U {on} is equivalent to {1/01,...,1/0m}.
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A fuzzy interpretation 7 satisfies (is a model of):

— A fuzzy assertion {a : C > a) iff C%(a) > «. Similar definitions can be
given for > 3, < f and < a.

— A fuzzy assertion ((a,b) : R > a) iff RZ(a%,b?) > . Similar definitions can
be given for > §, < 8 and < a.

— An assertion (a # b) iff aZ # b (resp. (a = b) iff a = b7).

— A fuzzy GCI (C C D > «) iff inf,eaz{C%(z) = D*(x)} > a. Similar
definitions can be given for > 3, < # and < «.

— A concept definition C' = D iff C* = DZ.

— A role inclusion axiom R C R’ iff iff Va,y € AT, R (z,y) < (R')%(z,y).

— A role definition axiom R = R’ iff R = R'Z.

— An axiom trans(R) iff Vz,y € AT, R (z,y) > sup,caz RE(,2) ® RE(z,y).

— A fKB (A, 7,R) iff it satisfies each element in A, 7 and R.

The definition of fuzzy GCIs allows concept subsumption to hold to a certain
degree in [0,1]. This does not hold for role inclusion axioms, which leads to
a certain asymmetry in the expressivity. While this is not too elegant, it is
a restriction imposed by the choice of the implication function, which would
require the subjacent DL to have negated roles and role disjunction. However,
for a higher practical utility, we have preferred to restrict ourselves to SHOZN,
closer to the DL underlying OWL DL.

Similarly as in the crisp case, in fuzzy DLs most reasoning services are re-
ducible to fKB satisfiability [22], so here in after we will only consider this task.

Some logical properties. The following lemma shows that our definition of fuzzy
SHOZN is a sound extension of crisp SHOZN:

Lemma 1. Fuzzy interpretations coincide with crisp interpretations if we re-
strict to the membership degrees of 0 and 1 [9].

Here in after we will concentrate on fxpSHOIN, restricting ourselves to the
Zadeh family of fuzzy operators. For instance, in the semantics of the at-least
unqualified number restriction, ®;<;{y; # y;} means that there must exist n
distinct elements of the domain. The choice of the t-norm and the t-conorm will
be justified in Section 4.

On the other hand, in fuzzy DLs it is very common to use the KD implication
in the semantics of universal quantification, so for the sake of coherence we have
chosen to use it in the semantics of fuzzy GCls as well.

Similarly as in [23], fxkpSHOZN allows some sort of modus ponens over
concepts and roles, even with the new semantics of fuzzy GCls:

Lemma 2. Fora,B,7€[0,1],> € {>>}anda 4 1-0 (+> = >, +> = >),
the following properties are verified:

(i) {a:C>«a) and (CC D> g) imply {a: D> 3).

(it) {(a,b) : R>~) and (R T R') imply {(a,b) : R' > ~).
(iii) {(a,b): R>a) and {(a:VR.C > () imply (b: C > ().
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Unfortunately, the use of the KD implication in the semantics of fuzzy GCIs
brings about two counter-intuitive effects. Firstly, a concept does not fully sub-
sume itself i.e. C C C = inf,car max{1 — C%(a), C%(a)} > 0.5. Secondly, crisp
concept subsumption forces fuzzy concepts to be crisp i.e. (C T D > 1) =
inf,c oz max{1 — C%(a), D¥(a)} > 1 which is true iff for each element of the do-
main DZ(a) =1 or 1 — C%(a) > 1 = C%(a) = 0. These problems point out the
need of further investigation involving alternative fuzzy operators. For example,
using an R-implication would fix the first problem; while using Lukasiewicz or
Godel implication would fix the second one.

4 A Crisp Representation for Fuzzy SHOZIN

In this section we show how to reduce a fx pSHOZIN fKB into a crisp Knowledge
Base (KB). The procedure preserves reasoning, so existing SHOZN reasoners
could be applied to the resulting KB. [13] presents a reasoning preserving trans-
formation for fxp ALCH into crisp ALCH: firstly, some new atomic concepts
and roles are defined, then some new axioms are added to preserve the semantics
of the fKB and finally the ABox, the TBox and the RBox are mapped separately.
Our reduction extends this work to fxpSHOIN . A slight difference is that our
mapping of the TBox can introduce some new assertions about new individuals
(not appearing in the initial fKB).

New Elements. Let ATX and RfE be the set of atomic concepts and atomic
roles occurring in a fKB fK = (A, 7,R). In [13] it is shown that the set of the
degrees which must be considered for any reasoning task is defined as N7X =
XK U{l—a|ae XK}, where XX is defined as follows:

XTE ={0,05,1}U{a| (¥ >a)c AJU{B| (W >p3) e A}
U{l-pgl{@<BecAtu{l—a| (P <a)ec A}
U{a| (R2>a) e TIUL{B[ (2> 5) €T}
U{l-p1R<p)eTtu{l—a|{2<a)eT}

This also holds in fxpSHOZIN, because the fuzzy operators do not intro-
duce new degrees, but note that it is no longer true when other fuzzy operators
are considered. For example, the combination of the degrees 0.5 and 0.3 using
product t-norm introduces the new degree 0.5 - 0.3 = 0.15. In that case, the
process may calculate all possible degrees in [0, 1] with a given precision, but
further investigation is required. Without loss of generality, it can be assumed
that N/& = {v, -y} and v < i, 1 <6 < INTE| — 1.

Now, for each a,3 € N/K o € (0,1],8 € [0,1), for each relation >, >, <
,<, for each A € A/K and for each R € R/X, four new atomic concepts
A>q,Asp, A<, Acq and two new atomic roles R>,, R~ are introduced. A>q
represents the crisp set of individuals which are instance of A with degree higher
or equal than « i.e the a-cut of A. The other new elements are defined in a
similar way. Neither A.o, A>1, R~1 are considered (they are always empty sets)
nor A<y, A>o, R>o (they are always equivalent to the top concept).
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The semantics of these newly introduced atomic concepts and roles is pre-
served by some terminological and role axioms. For each 1 <1 < |[NfK| -1, for
each 2 < j < |[N/K|, for each A € A’ and for each R € R'X T(N/K) is the
smallest terminology containing the following axioms:

AZ%‘H - A>7i A>%‘ C AZ%
Acry; E Ay, A<y E A<,
AZ’YJ' r A<’Yj CLl Asy MA<y, E L
TEAsy, Udey, TLE Asy UAgy,

Similarly, R(N/¥) is the smallest terminology containing these two axioms:
Roqipn E Ry Ry £ R>y,

Tt is easy to see that allowing expressions of the type {((a,b) : R < 3),{(a,b) :
R < ) would need additional role constructs (role conjunction, role disjunction,
bottom role and top role) which are not part of SHOZN.

Mapping the ABox. Let p be a mapping, inductively defined on the structure
of concepts and roles as shown in Table 2. For instance, given a fuzzy concept
C, p(C,> «) is a crisp set containing all the elements which belong to C with a
degree greater or equal than « (the other cases are similar).

Fuzzy assertions are mapped into SHOZN assertions using a mapping o. Let
v € N'E e {>,<,<, >}, > € {>,<},0(A) = {0(®) | & € A}, where o(P) is
defined as in the following table:

o({a: Crav))={a:p(C,pav)}
o({(a,;b) : R>)) = {(a,b) : p(R,>7)}
o((a # b)) = {a # b}
o((a=1b)) = {a =10}

Ezample 2. Let us consider the reduction of an assertion of the form {(a : VR.C' >
a). If it is satisfied, there exists a fuzzy interpretation Z such that inf,cz
max{1—RZ%(a?,y),C%(y)} > a. For an arbitrary y, RZ (a®,y) < 1—a or C%(y) >
a must hold. Hence, if RZ (aZ,y) < 1 —a is not satisfied (i.e., RZ(aZ,y) > 1 —a),
then we deduce that CZ(y) > «, which is the semantics of the crisp assertion
a:Vp(R,>1—a).p(C,> a).

Mapping the TBoz. fxpSHOIN fuzzy terminological axioms to either (crisp)
terminological axioms (for the cases > or >) or assertions (for the cases < and
<). In the former case, we redefine x(fK,T) as 6(fK,T) = Uger £(£2), where
2 ={(CCD{>,>}y)} and k(£2) is defined as:
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Table 2. Mapping p

x y p(,y)

A >y As. if v #0, T otherwise

A >y As,, if v # 1, L otherwise

A <~ A<, if v # 0, T otherwise

A <7 Ao, if v # 1, L otherwise

R >y R>. if v # 0, T otherwise

R >y R~., if v # 1, L otherwise

T > T

T >y T if v # 1, L otherwise

T <~ T if v =1, L otherwise

T <y L

1 >y T if v =0, L otherwise

1 >y L

1 <~ T

L <7 T if v # 0, L otherwise
¢nb {=, >} p(CAZ >} y)Np(DA{=,>} )
¢nb {<,<ha| pCAS, <3y UpDAS, <} )
¢ubD {=, >} p(C A= >} ) Up(DA{=,>}7)
¢ub {<. <] p(C A<, <3 yMp(D{<,<} )

-C {27>}7 p(c’{§7<}1_7)

-C {§7<}7 p(c’{27>}1_7)
IR.C {=.>}y] IR A=, >} )0(C{=,>} )
Ir.C {<, <} Yo(R,{>, >} 7).p(C{<, <} v)
VR.C {Z, >} y|Vo(R,{>,>2} 1 —7).p(C,{=,>}v)
VR.C {<, <33R {=,>} 1 —79).p(C{<, <} )

{{a1/o1,...;am/om}}| >y {oi | s x1y,1 <i<m}

>mS {=>}~ =>mp(S,{=,>})
>mS {<, <}y <m=1p(S,{>,>} )
<nS {=.,>}y <np(S{>2=}1-7)
<nS (<, <}y >nt1p5,{>,>11—7)

R™ >y p(R,>17)~

Ezample 3. Consider the reduction of a GCI (C T D > «). If it is satisfied,
inf,c oz C%(z) = D%(x) > a. As this is true for the infimum, an arbitrary = €
AT must satisfy CZ (z) = D¥(x) > a. From the semantics of the KD implication,
this is true if max{1 — C%(x), D¥(z)} > «, which is true if 1 — C%(z) > a =
CT(x) < 1—aor D¥(z) > a. Hence, if C*(x) > 1—a we deduce that D (z) > a,

which is the semantics of the crisp GCI p(C,> 1 — a) C p(D, > «).

In the latter case, new assertions are necessary since negated terminological
axioms are not part of crisp SHOZN. A new function A(7) adds these new
assertions to the ABox. A(T) = Uzcs A(E), where £ = {(C T D{<,<}v)}

and A(Z) is defined as follows (where z is a new individual):

A(CED<pB)) ={z:p(C,21-p)Np(D,< B)}
A(CCED<a)={z:p(C;,>1—a)Np(D,< a)}




A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and GCIs 185

Ezample 4. Consider a GCI (C C D < B). If it is satisfied, inf,c oz CF(x) =
DI(z) < (. As this is true for the infimum, there exists some x € A which
satisfies CZ () = D*(x) < (3. This is true if max{1— C%(z), D¥(x)} < 3, which
is true if 1 — C%(x) < 8= C*(x) > 1— B and D%(z) < (. Hence, for a new
individual z, the crisp assertion z : p(C,> 1 — ) M p(D, < ) holds.

Mapping the RBoz. Role axioms are reduced using a function k(fK,R) =
Uper ©(fK, £2), where k(fK, £2) is defined as:

K‘(va R E R/) = UyENfK,De{Z’>}{p(Ra [>’Y) E ,O(R/, \>’Y)}
K(fK, trans(R)) = U enrx pegs, > {trans(p(R,>7))}

Discussion. A fKB fK = (A, 7,R) is reduced into a KB K(fK) = (o(A) U
A(T), T(N'EYUk(fK,T), RIN'E) U k(fK,R)). The following important the-
orem shows that the reduction to a crisp DL preserves reasoning;:

Theorem 1. A fxpSHOIN fKB fK is satisfiable iff K(fK) is satisfiable.

The complexity of our procedure is quadratic: the ABox is linear while the TBox
and the RBox are quadratic. It is interesting to note that, while [13] reduces a
fuzzy terminological axiom into a set of crisp terminological axioms, our se-
mantics for fuzzy GClIs allows to reduce each axiom into either an axiom or an
assertion. This reduction in the size of the TBox (although it is still quadratic)
is very interesting since reasoning with GClIs is a source of computational com-
plexity [24].

Ezxample 5. To illustrate the reduction, let us present an example concerning
interchange of medical knowledge. A known issue in health-care support is that
consensus in the used vocabulary is required to achieve understanding among
different physicians and systems. Medical taxonomies are an effort in this direc-
tion, as they provide a well-defined catalogue of codes to label diseases univocally.
Two examples are ICD (for general medicine) and DSM-IV (for mental disor-
ders), which identify prototypical clinical medical profiles with a name and a
code. Medical taxonomies have been developed to be essentially crisp, so they
can be transcribed almost directly to OWL. However, vagueness could be in-
troduced at different levels of the taxonomy so that richer semantics would be
represented:

— In order to associate diagnostic codes to patient electronic records, fuzzy as-
sertions would be useful, allowing the knowledge base to contain statements
such as “Patient001’s Serotonin Level is quite low” or “Patient001’s disease
is likely to be an Obsessive-Compulsive Disorder”.

— In the current version of DSM-IV, “Substance-Induced Anxiety Disorder”
is defined only as a specialization of “Substance-Related Disorder”. Using a
fuzzy GCI, we may say that a concept subsumes another to some degree,
being possible to assert that a “Substance-Induced Anxiety Disorder can be
partially considered a Substance-Related Disorder”, as well as an “Anxiety
Disorder”.
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Hence, assume a fuzzy fKB representing the following knowledge:

— (patient001 : ShasSerotoninLevel. HighLevel < 0.25)
— (patient001 : hasDisease.ObsessiveCompulsiveDisorder > 0.75)
— (SubstanceInduced Anxiety Disorder T AnxietyDisorder > 0.75)

Firstly, we compute the number of degrees of truth to be considered: XX =
{0,0.5,1,0.75}, so N¥X = {0,0.25,0.5,0.75, 1}.

Next, we create some new elements and some axioms preserving their seman-
tics. The new axioms in R(N/¥), due to the new atomic concepts are:

HighLevel>1 C HighLevelso.7s, AnzietyDisorders1 C AnzietyDisorderso.7s,
HighLevelso.7s T HighLevel>q.75, AnxietyDisorderso.7s © AnzietyDisorders>g.7s,
HighLevel>o.75 C HighLevelso.5, AnzietyDisorderso.7s C AnxietyDisorderso.s,
HighLevelso.s C HighLevel>os, AnzietyDisorderso.s C AnxietyDisorderso.s,
HighLevel>o.5 T HighLevelso.25, AnxietyDisorderso.s C AnzietyDisorderso.2s,
HighLevelso.25 C HighLevel>o.25, AnzietyDisorderso.2s C AnxietyDisorderso.2s,
HighLevel>o.25 C HighLevelso AnzietyDisorderso.25 C AnzietyDisorderso

(and analogously for ObsessiveCompulsiveDisorder and Substancelnduced
AnzietyDisorder).
Similarly , R(N/¥) contains the following axioms:

hasSerotoninLevel>1 C hasSerotoninLevelso.75, hasDisease>1 T hasDiseaseo.7s,
hasSerotoninLevel~o.75 C hasSerotoninLevel>¢.75, hasDiseaseso.7s C hasDiseasexo.7s,
hasSerotoninLevel>o.75s C hasSerotoninLevelso.s, hasDisease>o.75 C hasDiseaseso.s,
hasSerotoninLevelo.5 T hasSerotoninLevel>o.s, hasDiseaseso.s C hasDiseasexo.s,
hasSerotoninLevel>o.5 C hasSerotoninLevelso.25, hasDisease>os5 T hasDiseaseso.25,
hasSerotoninLevelso.25 C hasSerotoninLevel>q.25, hasDiseaseso.25 C hasDisease>o.25,
hasSerotoninLevel>o.25 T hasSerotoninLevelsg hasDisease>o.25 T hasDiseasexq

Finally, we map the axioms in the fKB:

— k((patient001 : JhasSerotoninLevel. HighLevel < 0.25)) =
patient001 : VhasSerotoninLevelsg os. HighLevel<g 25

— k({patient001 : ShasDisease.ObsessiveCompulsive Disorder > 0.75)) =
patient001 : JhasDiseasesq.75.ObsessiveCompulsiveDisordersg.7s

— k((SubstanceInduced AnzietyDisorder T AnzietyDisorder) > 0.75) =
SubstancelnducedAnzietyDisordersg.o5 C AnzietyDisorderso.7s

5 Conclusions and Future Work

This paper has presented an alternative approach to achieve fuzzy ontologies,
reusing currently existing crisp ontology languages and reasoners. In particu-
lar, after having presented a sound fuzzy extension of SHOZN including fuzzy
nominals (enabling to define fuzzy sets extensively) and fuzzy GCIs (allowing
to constrain the truth value of a GCI), we have presented a reasoning preserv-
ing procedure (quadratic in complexity) to reduce a fxpSHOIN fKB into a
crisp one. The semantics of fuzzy GCIs reduces the size of the resulting TBox
w.r.t. [13], but imposes some counter-intuitive effects.
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The main direction for future work is to perform an empirical evaluation
in order to validate the theoretical results. From a theoretical point view, we
are considering different fuzzy operators to avoid the counter-intuitive effects
of the KD implication. We also plan to include a crisp representation for fuzzy
datatypes. Since OWL does not currently allow to define customised datatypes,
it seems interesting to consider OWL Eu [25], a promising extension of OWL
supporting them. Another interesting direction for future research is to consider
the more expressive DL SROZQ [26] (providing some additional role constructs
such as disjoint roles and negated role assertions) and which is the subjacent DL
of OWL 1.1 [27], an extension of OWL which has been recently proposed. The
additional expressivity would allow to overcome the asymmetry in the definitions
of fuzzy concept and role inclusion axioms.
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Abstract. Classical ontologies are not suitable to represent imprecise nor
uncertain pieces of information. Fuzzy Description Logics were born to
manage the former type of knowledge, but they require an appropriate
fuzzy language to be agreed and an important number of available
resources to be adapted. This paper faces these problems by presenting a
reasoning preserving procedure to obtain a crisp representation for a fuzzy
extension of the logic SROZQ which uses Godel implication in the seman-
tics of fuzzy concept and role subsumption. This reduction allows crisp rep-
resentation languages as well as currently available reasoners to be reused.
Our procedure is optimized with respect to the related work, since it re-
duces the size of the resulting knowledge base, and is implemented in DE-
LOREAN, the first reasoner that supports fuzzy OWL DL.

1 Introduction

Description Logics (DLs for short) [1] are a family of logics for representing
structured knowledge. Each logic is denoted by using a string of capital letters
which identify the constructors of the logic and therefore its complexity. DLs have
proved to be very useful as ontology languages. For instance, SROZQ(D) [2] is
the subjacent DL of OWL 1.1 [3], a recent extension of the standard language
OWL which is its most likely immediate successor.

Nevertheless, it has been widely pointed out that classical ontologies are not
appropriate to deal with imprecise and vague knowledge, which is inherent to
several real-world domains. Since fuzzy logic is a suitable formalism to handle
these types of knowledge, several fuzzy extensions of DLs can be found in the
literature (see [4] for an overview).

Defining a fuzzy DL brings about that crisp standard languages are no longer
appropriate, new fuzzy languages need to be used, and hence the large number
of resources available need to be adapted to the new framework, requiring an
important effort. An additional problem is that reasoning within (crisp) expres-
sive DLs has a very high worst-case complexity (e.g. NEXPTIME in SHOZN)
and, consequently, there exists a significant gap between the design of a decision
procedure and the achievement of a practical implementation [5].

An alternative is to represent fuzzy DLs using crisp DLs and to reduce reason-
ing within fuzzy DLs to reasoning within crisp ones. This has several advantages:

P.C.G. da Costa et al. (Eds.): URSW 2005-2007, LNAI 5327, pp. 189-206, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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— There is no need to agree on a new standard fuzzy language, but every
developer could use its own language expressing fuzzy SROZQ, as long as
he implements the reduction that we describe.

— We can continue using standard languages with a lot of resources available.
Although it would be desirable to assist the user in tasks such as fuzzy ontol-
ogy editing, reducing the fuzzy ontology into a crisp one or fuzzy querying,
once the reduction is performed, we may use the resources available for the
crisp language.

— We may continue using existing crisp reasoners. We do not claim that reason-
ing will be more efficient, but this approach offers a workaround to support
early reasoning in future fuzzy languages. In fact, nowadays there is no rea-
soner fully supporting a fuzzy extension of OWL 1.1.

Under this approach an immediate practical application of fuzzy ontologies is
feasible, because of its tight relation with already existing languages and tools
which have proved their validity.

Although there has been a relatively significant amount of works in extending
DLs with fuzzy set theory ( [4] is a good survey), the representation of them by
using crisp description logics has not received such attention. The first efforts in
this direction are due to U. Straccia, who considered fuzzy ALCH [6] and fuzzy
ALC with truth values taken from an uncertainty lattice [7]. F. Bobillo et al. ex-
tended Straccia’s work to SHOZN, including fuzzy nominals and fuzzy General
Concept Inclusions (GCIs) with a semantics given by Kleene-Dienes implica-
tion [8]. Finally, G. Stoilos et al. extended this work to a subset of SROZN [9].

The contributions of this work can be summarized as follows:

— We provide a full representation of fuzzy SROZQ, differently from [9] which
do not show how to reduce qualified cardinality restrictions, local reflex-
ivity concepts in expressions of the form p(3S5.Self, <y) nor negative role
assertions.

— [6,9] force GCIs and Role Inclusion Axioms (RIAs) to be either true or false,
but we will allow them to be verified up to some degree by using Godel
implication in the semantics.

— We improve one of their starting points (the reduction presented in [6]) by
reducing the number of new atomic elements and their corresponding axioms.

— We show how to optimize some important cases of GCIs, as well as irreflexive
role axioms.

— We present DELOREAN, our implementation of the reduction and the first
implemented reasoner supporting fuzzy SHOIN .

The remainder is organized as follows. Section 2 recalls some preliminaries on
fuzzy set theory. Then, Section 3 describes a fuzzy extension of SROZQ and dis-
cusses some logical properties. Section 4 depicts a reduction into crisp SROZQ,
whereas Section 5 presents our implementation of the procedure. Finally, in Sec-
tion 6 we set out some conclusions and ideas for future work.
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2 Fuzzy Set Theory

Fuzzy set theory and fuzzy logic were proposed by L. Zadeh [10] to manage
imprecise and vague knowledge. While in classical set theory elements either
belong to a set or not, in fuzzy set theory elements can belong to a set to
some degree. More formally, let X be a set of elements called the reference
set. A fuzzy subset A of X is defined by a membership function pa(x), or
simply A(z), which assigns any « € X to a value in the interval of real numbers
between 0 and 1. As in the classical case, 0 means no-membership and 1 full
membership, but now a value between 0 and 1 represents the extent to which
x can be considered as an element of X. If the reference set is finite (X =
{z1,...,2,}), the membership function can be expressed using the notation
A= {pa(w)) /s, . . pa(wa) [0}

For every a € [0,1], the a-cut of a fuzzy set A is defined as the (crisp) set
such that its elements belong to A with degree at least a, i.e. {z | pa(z) > a}.
Similarly, the strict a-cut is defined as {z | pa(z) > a}.

All crisp set operations are extended to fuzzy sets. The intersection, union,
complement and implication set operations are performed by a t-norm function
®, a t-conorm function &, a negation function & and an implication function
=, respectively. For a complete definition of these functions as well as their
properties, we refer the reader to [11,12].

Two types of fuzzy implications are commonly used. The first class is S-
implications, which extend the crisp proposition a — b = —a V b to the fuzzy
case and are defined by the operation a = § = (©a) @ 8. The second class is
R-implications (residuum-based implications), which are defined as o = § =
sup{y € [0,1] | (¢ ® v) < S} and can be used to define a fuzzy complement as
©a = a = 0. They always verify that « = § =1 iff a < . Product and Godel
implications are R-implications, the implication of the Zadeh family, which is
called Kleene-Dienes (KD), is an S-implication and the Lukasiewicz implication
belongs to both types.

A fuzzy implication specifies a family of fuzzy operators. If it is an S-
implication this notation also specifies the fuzzy complement and t-conorm, while
if it is an R-implication then we also know the t-norm and the fuzzy complement.
The missing operators are usually defined by using duality of the t-norms and
the t-conorms. Table 1 shows the most important families of fuzzy operators:
Zadeh, Lukasiewicz, G6del and Product.

Table 1. Popular families of fuzzy operators

[Family [t-norm o ® 3 [t-conorm o @ B|negation Salimplication o = §]
Zadeh min{a, B} max{a, B} 1—a max{l — «a, 8}
Lukasiewicz|max{a + 8 — 1,0} |min{a + 8,1} |1 — « min{l —a + 3,1}
. . 1, a=0 1 a<
Godel min{a, 8} max{a, B} { 0 a>0 {ﬂ, as g
1,a=0 1 a<lp
Product a-p a+pB—a-3 {O,a>0 {/6/04704>/8
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3 Fuzzy SROIQ

In this section we define fSROZQ, which extend SROZQ to the fuzzy case by
letting (i) concepts denote fuzzy sets of individuals and (%) roles denote fuzzy
binary relations. Axioms are also extended to the fuzzy case and some of them
hold to a degree.

The following definition extends [13,9] with fuzzy nominals [8] and the use of
Godel implication in the semantics of GCIs and RIAs.

In the rest of the paper we will assume < € {>, <, <, >} a € (0,1], 3 € [0,1)
and v € [0,1]. The symmetric <~ and the negation — <t of an operator > are
defined as:

X

NIN V IVIX
VIV A IAIX
IV VIAN A

Syntax. fSROZQ assumes three alphabets of symbols, for concepts, roles and
individuals.
Complex roles (denoted R) are built from atomic roles (R4) and the universal
role (U) as follows:
R — R4 | (atomic role)
R~ | (inverse role)
U  (universal role)

Let n, m be natural numbers (n > 0, m > 0). The concepts (denoted C or D)
of the language can be built inductively from atomic concepts (A), top concept
T, bottom concept L, named individuals (o;), simple roles (S, which will be
defined below), as follows:

C,D — A | (atomic concept)
T | (top concept)
L | (bottom concept)
C' M D | (concept conjunction)
C' U D | (concept disjunction)
—C' | (concept negation)
VR.C' | (universal quantification)
JR.C' | (existential quantification)
{a1/01,...,am/om} | (fuzzy nominals)
(> m S.C) | (at-least qualified number restriction)
(<n S.C) | (at-most qualified number restriction)
35.Self (local reflexivity)

The only difference with the syntax of the crisp case are fuzzy nominals [8].
A fuzzy Knowledge Base (fKB) comprises a fuzzy ABox A , a fuzzy Termi-
nological Box (TBox) 7 and a fuzzy RBox R.
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An ABox consists of a finite set of fuzzy assertions about individuals:

— concept assertions (a:C > a),(a:C > ), (a:C < () or (a:C < &), meaning
that individual a is an instance of C' with some degree,

— role assertions {(a,b):R > «), {(a,b):R > (), {((a,b): R < ) or {(a,b):R <
«), meaning that (a,b) is an instance of R with some degree,

— inequality assertions {(a # b),

— equality assertions (a = b).

A fuzzy TBox consists of fuzzy GClIs, which constrain the truth value of a GCI
i.e., they are expressions of the form (£2 > «) or (£2 > (), where 2 =C C D.

Let w be a role chain (a finite string of roles not including the universal role
U). An RBox counsists of a finite set of role axioms:

— fuzzy role inclusion azioms (fuzzy RIAs) (w C R > a) or (w C R > f) for a
role chain w = Ry Rz ... R, (meaning that the role chain w is more specific
than R to some degree),

— transitive role axioms trans(R),

— disjoint role azioms dis(S1, S2),

— reflexive role azioms ref(R),

— drreflexive role axioms irr(S),

— symmetric role axioms sym(R),

— asymmetric role axioms asy(S).

A fuzzy axiom is positive (denoted (7 > a)) if it is of the form (r > «) or
(t > ), and negative (denoted (T < «)) if it is of the form (7 < () or (17 < a).
(T = ) is equivalent to the pair of axioms (7 > «) and (7 < «). Of course, if
the degree is omitted 7 is interpreted as (7 > 1).

A strict partial order < on a set A is an irreflexive and transitive relation on
A. A strict partial order < on the set of roles is called a regular order if it also
satisfies Ry < Ry & R, < Ry, for all roles Ry and Rs.

As in the crisp case, role axioms cannot contain U and every RIA should be
<-regular for a regular order <. A RTIA (w C R1>7) is <-reqular if R = R4 and:

— w=RR, or

—w=R",or

—w=_51...5, and S; < Rforalli=1,...,n, or
—w=RS;...5,and S; < Rforalli=1,...,n, or
—w=25...S,Rand S; < Rforalli=1,...,n.

Simple roles are defined as follows:

— R, is simple if does not occur on the right side of a RIA,

— R~ is simple if R is,

— if R occurs on the right side of a RIA, R is simple if, for each (w C R > ~),
w = S for a simple role S.

Notice that negative GCIs or RIAs are not allowed, because they correspond
to negated GCIs and RIAs respectively, which are not part of crisp SROZQ.
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Semantics. A fuzzy interpretation Z is a pair (AZ,-Z), where A is a non empty
set (the interpretation domain) and -Z a fuzzy interpretation function mapping:

— every individual a onto an element a? of AT,
— every concept C onto a function C7 : AT — [0, 1],
— every role R onto a function RZ : AT x AT — [0, 1],

C7? (resp. R?) denotes the membership function of the fuzzy concept C' (resp.
fuzzy role R) w.r.t. Z. C%(x) (resp. RZ(z,y)) gives us the degree of being the
individual « an element of the fuzzy concept C' (resp. the degree of being (x, y) an
element of the fuzzy role R) under the fuzzy interpretation Z. We do not impose
unique name assumption, i.e., two nominals might refer to the same individual.

Given a t-norm ®, a t-conorm @, a negation function © and an implication
function =, the fuzzy interpretation function is extended to complex concepts
and roles as follows:

o
(C”D)z( ) = C%(z) ® D*(x)
(CuD)*(z) = C*(x) ® D*(x)
(=C)* (z) = ©C*(x)
(VR.C)* (2) = infye az{RT (z,y) = CT(y)}
o/ (EI;Z C})\;Egy% = SUp,c Az {RT(z,y) ® C%(y)}
a1/01, ... /o } (T) = SUD; | 4oz
(>m S.C)%(x) =supy, ., ear (@7 {57 (2,5:) @ CT(y:)}) @(®j<k{y; # yx})]
(<nS8.C) (x) =inf,, yn+16A1[( QIS (, 1) ® CF(ya)}) = (Bj<r{y; = vk })]
(38.Self)*(z) = SI(z )
(R~ )I(J«“v y) = R¥(y,x)
('177 ):

A fuzzy interpretation Z satisfies (is a model of):

— (:C w7 iff OF(a%) a7,
= ((a,b): Rpay) iff R (a®,b%)pa,
— {a #b) iff o # bZ,
— {a = b) iff a = b,
(0T D) iff inf e pr {CT(2) = DT()} 7,
- <R R, C R> ’Y> iff Supxl...xn+16AI ®[R;1Z(I1,I2), B R%(axn,xn+1)] =

R (21, 2p41) >,
— trans(R) iff Vo,y € AT, R%(z,y) > sup,caz R (2, 2) ® RE(2,y),
— dis(S1, S2) iff Var Y € AI St(z,y) = 0or SZ(x,y) =0,
— ref(R) iff Vo € AI,RI(JU x)=1
— irr(S) iff Vo € AT, ST (x,2) =0,
— sym(R) iff Va,y € AT, R* (z,y) = R*(y, x),
— asy(S) iff Yo,y € AT, if ST (x,y) > 0 then S%(y,z) = 0,
a fKB iff it satisfies each element in A, 7 and R.

9

Notice that individual assertions are considered to be crisp, since the equality
and inequality of individuals has always been considered crisp in the fuzzy DL
literature [13,14].

In the rest of the paper we will only consider fKB satisfiability, since (as in
the crisp case) most inference problems can be reduced to it [15].
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Some logical properties. It can be easily shown that fSROZQ is a sound ex-
tension of crisp SROZQ, because fuzzy interpretations coincide with crisp in-
terpretations if we restrict the membership degrees to {0,1}.

In the fuzzy DLs literature, the notation f; DL has been proposed [16], where ¢
is the fuzzy implication function considered. Here in after we will concentrate on
frDSROIQ, restricting ourselves to the Zadeh family: minimum t-norm, max-
imum t-conorm, Lukasiewicz negation and KD implication, with the exception
of GCIs and RIAs, where we will consider Gédel implication. This choice comes
from the fact that KD implication specifies a t-norm, a t-conorm and a negation
which make possible the reduction to a crisp KB, as we will see in Section 4
(other fuzzy operators are not suitable for a similar reduction).

However, the use of KD implication in the semantics of GCIs and RIAs brings
about two counter-intuitive effects: (i) in general concepts (and roles) do not fully
subsume themselves and (i) crisp subsumption (holding to degree 1) forces some
fuzzy concepts and roles to be interpreted as crisp [8].

Another common semantics which could be considered is the one based on
Zadeh’s set inclusion (C' C D iff Vo € AT, C%(x) < D*(z)) as in [15,17], but it
forces the axioms to be either true or false. For example, under this semantics
it is not possible that concept Hotel subsumes concept Inmn with degree 0.5.

Godel implication solves the afore-mentioned problems and is suitable for a
classical representation as we will see in Section 4. Moreover, for GCIs of the
form (C'C D > 1), the semantics is equivalent to that of Zadeh’s set inclusion.

Although in general Godel implication provides better logical properties than
KD, the latter allows for instance reasoning with modus tolens, since C C D =
=D C =C. In the rest of this paper we will allow these two implication functions
in the semantics of the GCIs and RIAs of our language. We will write C to
denote the use of the Godel implication in the semantics, and Cxp to denote
the use of the KD implication. Our approach is similar to [18], which proposes
a representation language allowing three types of subsumption.

It would be possible to transform concept expressions into a semantically
equivalent Negation Normal Form (NNF), which is obtained by pushing in the
usual manner negation in front of atomic concepts, fuzzy nominals and local
reflexivity concepts.

Irreflexive, transitive and symmetric role axioms are syntactic sugar for every
R-implication (and consequently it can be assumed that they do not appear in
fKBs) due to the following equivalences:

— irr(S) = (T C =3S5.Self > 1),
— trans(R) = (RRC R > 1),
—sym(R)=(RC R~ >1).

4 An Optimized Crisp Representation for Fuzzy SROZQ

In this section we show how to reduce a fxpSROZQ fKB into a crisp KB,
similarly as in [6,8,9]. The procedure preserves reasoning, in such a way that
existing SROZQ reasoners could be applied to the resulting KB.
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Our reduction is optimized with respect to related work, in the sense that the
number of generated axioms, and hence the size of the resulting crisp KB, is
smaller here. The reduction is optimized but not necessarily optimal, since other
optimizations could still be possible.

The basic idea is to create some new crisp concepts and roles, representing
the a-cuts of the fuzzy concepts and relations, and to rely on them. Next, some
new axioms are added to preserve their semantics and finally every axiom in the
ABox, the TBox and the RBox is represented, independently from other axioms,
using these new crisp elements.

4.1 Adding (an Optimized Number of) New Elements

Let A/K and R/K be the set of atomic concepts and atomic roles occurring in
afKB fK = (fKa, fKr, fKg). In [6] it is shown that the set of the degrees
which must be considered for any reasoning task is defined as N/X = XK y{1—
alae XK} where XK = {0,0.5,1} U {y | (r 1 v) € fK}. This also holds
in fxkpSROZQ, because the fuzzy operators do not introduce new degrees,
but note that it is no longer true when other fuzzy operators are considered.
For example, the combination of the degrees 0.5 and 0.3 using product t-norm
introduces the new degree 0.5 - 0.3 = 0.15. Without loss of generality, it can be
assumed that N/K = {v, e} and oy < g, 1 <0 < INFE| — 1. Tt is
easy to see that y1 = 0 and v ysx| = 1.

Ezample 1. In order to illustrate the reduction process, we will consider through-
out this section a simple fuzzy KB fK, including the fuzzy relation isCloseT o.
Closeness between individuals is usually a matter of degree, so we can expect
this relation to appear for instance in Semantic Web ontologies dealing with
geographical information. Assume that fK = {(sym(isCloseT0)),{(h1,hs2) :
isCloseTo < 0.75) }. Firstly, the symmetric role axiom (sym(isCloseT0)) is rep-
resented using a fuzzy RIA, so fK = {(isCloseTo C isCloseTo~ > 1), {(h1, h2):
isCloseTo < 0.75)}. Now, X/E = {0,0.5,1} U {0.75}, so the set of degrees of
truth which has to be considered is NFX = {0,0.25,0.5,0.75,1}.

Now, for each «a, 3 € N/K with a € (0,1] and 8 € [0,1), for each A € ASK
and for each Ry € R'X two new atomic concepts As,, Asp and two new
atomic roles R>q, R~ are introduced. A, represents the crisp set of individuals
which are instance of A with degree higher or equal than « i.e. the a-cut of
A. The other new elements are defined in a similar way. The atomic elements
As1, R-1,A>o and R>( are not considered because they are not necessary, due
to the restrictions on the allowed degree of the axioms in the fKB (e.g. we do
not allow GCIs of the form C' T D > 0).

The semantics of these newly introduced atomic concepts and roles is pre-
served by some terminological and role axioms. For each 1 <i < [N/X|—1,2 <
j < |N7E| =1 and for each A € A’K T(N/EK) is the smallest terminology
containing these two axioms:

Az B Asqyy Asyy E Ay,
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Similarly, for each Ry € R'%, R(N/K) contains these axioms:
R>yi01 E Ronyy Roqy E Ry,

Ezxample 2. Consider the fKB defined in Example 1. Fuzzy atomic role isCloseT o
introduces some new atomic concepts roles (isCloseT 0>1,isCloseT 0x.75, 1sClo-
s€T0>0.75,15Cl0seT'0.5,15Cl0s€T 0> 5,15CloseT 0%¢.25, 1sCloseT 0> 25, 1sClo
- seT0~(), as well as some axioms preserving their semantics:

isCloseTo>1 T isCloseT 0~¢.75, 15CloseT0x9.75 T isCloseT 0> 75,
i5sCloseT 0>.75 C 1sCloseT 0.5, 1sCloseT 0595 T isCloseT'0>¢.5,
isCloseT 0.5 C isCloseT0x0.25, 15CloseT 050,25 T isCloseT 0> 25,
isCloseT 0>(.25 C isCloseT 0x¢

4.2 Mapping Fuzzy Concepts, Roles and Axioms

Concept and role expressions are reduced using mapping p, as shown in the first
part of Table 2. For instance, given a fuzzy concept C, p(C,> «) is a crisp set
containing all the elements which belong to C' with a degree greater or equal
than « (the other cases are similar).

Ezample 3. The 0.4 cut of the fuzzy concept VR.(C' U (< 1 R.—D)) is com-
puted as p(VR.(C U (< 1 R.=D)),> 0.4) = Yp(R,> 0.6).p(C LU (< 1 R.=D),>
04) = VR>0,6.p(C, > 04) [ p(§ 1 R—-D,> 04) = VR>0,6.020,4 [ (S 1 p(R, >
06)p(—'D, > 06) = VR>0,6.020,4 [ (§ 1 R>0,6.p(D, < 04) = VR>0,6.020,4 [ (§
1 R-0.6.7D>0.4)-

In order to finish the reduction, we map the axioms in the ABox, TBox and
RBox. Axioms are reduced as in the second part of Table 2, where o maps fuzzy
axioms into crisp assertions and x maps fuzzy TBox (resp. RBox) axioms into
crisp TBox (resp. RBox) axioms. Recall that we are assuming that irreflexive,
transitive and symmetric role axioms do not appear in the RBox.

Our reduction of a fuzzy GCI (C' C D > 1) is equivalent to the reduction of a
GCI under a semantics based on Zadeh’s set inclusion proposed in [6], although
it introduces some unnecessary axioms: C>g C D>q and Cs1 E Dy,

Observe that the reduction preserves simplicity of the roles and regularity of
the RIAs. Note also that due to the restrictions in the definition of the fKB,
some expressions cannot appear during the process:

— p(R, <) and p(U, <1y) can only appear in a (crisp) negated role assertion.

— p(A,> 0),p(4,> 1),p(A, < 1) and p(A,< 0) cannot appear due to the
existing restrictions on the degree of the axioms in the fKB. The same also
holds for T, L and R4.

Ezxample 4. The reduction of the axioms in the fKB defined in Example 1 is as
follows:

— o(((h1, ha):isCloseTo < 0.75)) = (hq, ha): isCloseT 0>¢.75.
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Table 2. Mapping of concept and role expressions, and reduction of the axioms

Fuzzy concepts

p(3S.Sel f, >
p(3S.Sel f, <y

3p(S, 7). Sel f
=3p(S,~ <1 v).Self

p(T,>v) | T
p(T,<y) | L
p(L,>7) | L
pll,<y) | T
p(A,>7) | Apy
p(A7 Q’Y) “Aﬁ<1"/
p(=C;xy) | p(Cix” 1—7)
p(CTID,By) | p(C,>v) N p(D,>7)
p(CND,<y) | p(C,<y)Up(D, <v)
p(CUD,>y) | p(C,>v)Up(D,>y)
p(CUD,<y) | p(C,<y)MNp(D, <v)
p(AR.C,>v) | Fp(R,>7).p(C,>7)
p(AR.C,<y) | Yp(R,~<7).p(C, <)
p(VR.C,{=,>}y) | Vo(R,{>, 2} —7).p(C,{=,>})
p(VR.C,<v) | Fp(R, <"1 —7).p(C, <)
p({al/olz'"7am/0m}7b<]7) {Oi|ai|><]’7’1§i§m}
p(=m S.C,>y) | >m p(S,>7).p(C,>7)
p(>mS8.C,<ay) | <m=1p(8,~< 7).p(C,= < )
p(En S.CH{>,>}y) | <np(S{>>}1-7).p(C,{>>}1-17)
p(En S.C,<y) | >ntlp(S,<4” 1—9).p(C,<” 1—1)
)
)

Fuzzy roles
p(RA7 D'Y) Rap~
p(Ra, <) “Ra-qy
p(R™,>7) | p(R,>7)”
p(U,>v) | U
p(U,<vy) | U
Axioms
o({a:C>ay)) | {a:p(C,av)}
o({(a,b): Re<y)) | {(a,b):p(R,>a7)}
o((a£8) | {aZb)
o{fa=b)) | {a=0b}
KCED>a) | Uenrjop | 4<aip(Cr=7) Ep(D,>7)}

U ensx | 4<alp(C>7) E p(D,> )}

K(CED2>B)U{p(C,>p) Cp(D,>pB)}

{p(C,>1—-0a)Ep(D,>0) }

U'yeNfK\{O} [ y<alp(B1, 2 7). p(Rn, 2 7) E p(R, > 7)}
Usensx | yealp(Br,> 7). p(Ba, > ) E p(R,> 7)}

#((Ri...RnCR> ) U
{p(R1,> B) ... p(Rn,> B) C p(R,> B)}

k({(R1...Rn, Ckp R > a)) {p(Ri,>1—a)...p(Rn,>1—a) C p(R,> a)}
E(Ri... Rn Exp B> B)) | {p(R1,21—=0)...p(Rn,>1—0) E p(R,> B)}
k(dis(S1,52)) {dis(p(S1,> 0), p(S2,> 0))}
H(Tef(Rgi {ref(p(R,> 1))}

fasy(p(S,> 0)}
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— k({isCloseTo C isCloseTo~ > 1)) is reduced into these axioms:

isCloseT 0% E isCloseT o], i5CloseT 0x0.25 E isCloseT 03, o,
15CloseT'050.25 C isCloseT 0 o5, 15Closel0>0.5 C isCloseTo, .,
isCloseT 005 C isCloseTo o5, 15CloseT0>0.75 C isC’loseTogo_%,
i5sCloseT'050.75 C isCloseT 0 75, 1sCloselo>1 C isCloseT o,

4.3 Properties of the Reduction

Summing up, a fKB fK = (fKa, fKr, fKg) is reduced into a KB K(fK) =
(0(fKa), T(NT®) UK(fK, fET), RINTF) UK(fK, fKR)).
The following theorem shows that the reduction preserves reasoning:

Theorem 1. A fxpSROIQ fKB fK is satisfiable iff K(fK) is satisfiable.

Complezity. Tt is easy to see that every fuzzy concept expression of depth k
generates a crisp concept expression of depth k. Most of the axioms of the fuzzy
KB generate one axiom in the crisp KB, but some of them (fuzzy GCIs and
RIAs if Godel implication is used in the semantics) generate several (at most
2. (JN*| — 1)) axioms in the crisp KB.

IK(fK)| is O(|fK|?) i.e. the resulting KB is quadratic in size. The ABox is
actually linear while the TBox and the RBox are both quadratic:

— |N/E] is linearly bounded by |fKa| + |fKr| + |fKRr|.
= lo(fKa)l = [fKal.

= [T(NTF)| = (2- (\NfK\—l)—l) |ATK].
= [s(fK, T)| <2 (INTF[ 1)

— |[R(NTE)| = (2 (INFE| —1) - ) | R
- [s(fE,R) <2 (INTF| = 1) - |R].

The resulting KB is quadratic because it depends on the number of relevant
degrees |N¥X|. An immediate solution to obtain a KB which is linear in com-
plexity is to fix the number of degrees which can appear in the knowledge base.
From a practical point of view, in most of the applications it is sufficient to
consider a small number of degrees, e.g. {0,0.25,0.5,0.75,1}.

Reusing the reduction. An interesting property of the procedure is that the
reduction of an ontology can be reused when adding new axioms. In fact, for
every new axiom 7, the reduction procedure generates only one new axiom or a
(linear in size) set of axioms if 7 does not introduce new atomic concepts nor new
atomic roles and, in case T is a fuzzy axiom, if it does not introduce a new degree
of truth. Formally, given a fuzzy ontology fK and an axiom 7, the reduction of
the extension of fK with 7, denoted K(fK UT) is equivalent to KC(fK)UK(7).
Hence, this property is very useful when it is necessary to add a new axiom to an
ontology in order to perform some reasoning task e.g. in ontology classification.

If 7 introduces a new atomic concept, T(N¥%) needs to be recomputed. If 7
introduces a new atomic role, R(N/X) needs to be recomputed. If 7 is a fuzzy
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axiom that introduces a new degree of truth, X/X changes. As a consequence,
N7X may change. If N/X changes, we need to recompute: (i) T(N/X), (i)
R(N'E), (iii) the reduction of every fuzzy GCI in fK, and (iv) the reduction
of every fuzzy RIA in fK.

4.4 Some Optimizations

Optimizing the number of new elements and axioms. Previous works use two more
atomic concepts A<g, A<, and some additional axioms (2 < k < |[N/K]) [6,8]:

Ay EAcyy, A<y E A<,
A>y, MA<y, E L, Asy, MA<y, EL
TE Axy, UAcy,, TE Asy, UAgy,

However, we use ~As~, rather than A<,, and -A>,, instead of A, , since
the six axioms above follow immediately from the semantics of the crisp concepts
as Proposition 1 shows:

Proposition 1. If A>.,., E As,, and A, E A, hold, then the followings
axioms are verified:

(1) ~Azy, E2Asy, (2) 2Asqy E 2A>q,,
(3) Ay M2 A>y, EL (4) Asy,M-AS, L
(5) TE Asqy UnAsy, (6) TE Asy, UnAs,,

Proof. (1) and (2) derive from the fact that in crisp DLs AC B = =B C —A.
(3) and (4) come from the law of contradiction A —A C L, while (5) and (6)
derive from the law of excluded middle T C A Ll —A. O

As a minor comment, those works also introduce unnecessarily a couple of ele-
ments A>o and R>o, as well as the axioms As¢ C A>g, R>o C R>¢ [6,8].

Optimizing GCI reductions. GCI reductions can be optimized in several partic-
ular cases:

—(CCTuwxn)yand (L C D avy) are tautologies, so their reductions are
unnecessary in the resulting KB.

— k(TEDx~) =T ELE p(D,> ). Note that this kind of axiom appears in
role range axioms (C' is the range of R iff T C VR.C holds with degree 1)
and role domain axioms (C' is the domain of R iff T C VR™.C holds with
degree 1).

- k(C C L ) = p(C,> 0) C L. This appears when two concepts are
disjoint i.e. C and D are disjoint iff C' M D C L holds with degree 1.

Another optimization involving GCIs follows from the following observation. If
the resulting TBox contains A C B, AC C and B C C, then A C C is unneces-
sary, since {A C B,BC C} = A C C. This is very useful in concept definitions
involving the nominal constructor. For example, the reduction of the axiom

kK(CT{1/01,0.5/02}) ={Cs0C {01,02}, C>0.5C{01,02}, Cs0.5 E{o1}, C>1 E{o1} }
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can be optimized as follows:
k(C' E{1/01,0.5/02}) = {C>0 E {01,02},C50.5 E {o1}}

since the two unnecessary axioms trivially hold:

{C>0.5 C C50,C50 C {01,02}} = C>0.5 C {01,092}
{C>1 C C505,C505 C{o1}} EC>1C{o1}

Optimizing irreflexive role axioms. For the sake of clarity, we are assuming in
this paper that irreflexive role axioms do not appear in the RBox. Currently, an
irreflexive role axiom is replaced with an equivalent RIA, which produces the
following reduction (which is the same to the reduction of irreflexive role axioms
proposed in [9])

@) = | irre®=) | iR > 7))

YENTH\{0} YENTHE

However, this reduction could be optimized to s(irr(R)) = irr(p(R,> 0)).
Proposition 2 shows that the other axioms follow immediately.

Proposition 2. If Ry C Ry and irr(R2), then it holds that irr(Ry).

Proof. Assume that (z,y) € RY. Since Ry C Ry is satisfied, then (z,y) € RE%.
Since irr(Rz), then it holds that (y,z) ¢ RZ. But the role inclusion implies
that (y,z) ¢ R¥. For every pair of individuals, we have shown that (z,y) € RY
implies (y,z) ¢ RE. Hence, irr(R;) holds. O

Allowing Crisp Concepts and Roles. Tt is easy to see that the complexity of the
crisp representation is caused by fuzzy concepts and roles. Fortunately, in real
applications not all concepts and roles will be fuzzy. Another optimization would
be allowing to specify that a concept is crisp. For instance, suppose that A is a
fuzzy concept. Then, we need N/X — 1 concepts of the form As, and another
N/E —1 concepts of the form A~ s to represent it, as well as 2+ (|[N/K| —1) -1
axioms to preserve their semantics. On the other hand, if A is declared to be
crisp, we just need one concept to represent it and no new axioms. The case for

fuzzy roles is exactly the same.

5 Implementation: DeLorean

Our prototype implementation of the reduction process is called DELOREAN
(DEscription LOgic REasoner with vAgueNess). It has been developed in Java
with Jena API!, the parser generator JavaCC?, and using DIG 1.1 interface [19]
to communicate with crisp DL reasoners. Since DIG interface does not yet sup-
port full SROZQ, currently the logic supported is fx pSHOIN (OWL DL).

! http://jena.sourceforge.net/
2 https://javacc.dev. java.net
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Fig. 1. Architecture of DELOREAN reasoner
Figure 1 illustrates the architecture of the system.

— The Parser reads an input file with a fuzzy ontology and translates it into an
internal representation. As we have remarked in the Introduction, we could
use any language to encode the fuzzy ontology, as long as the Parser can
understand the representation and the reduction is properly implemented;
consequently we will not get into details of our particular choice. For the
moment, we do not allow to define crisp concepts and roles.

— In the next step, the Reduction module implements the procedure described
in Section 4, building a Jena model from which an OWL file with an equiv-
alent crisp ontology is created.

— Finally, the Inference module tests this ontology for consistency, using any
crisp reasoner through the DIG interface.

— The User interface allows the user to introduce the inputs and shows the
result of the reasoning and the elapsed time. (see Figure 2 for a screenshot).

We have carried out some experiments in order to evaluate our approach in
terms of reasoning, that is, in order to check that the results of the reasoning
tasks over the crisp ontology were the expected. The aim of this section is not to
perform a full benchmark, which could be the topic of a forthcoming work. Nev-
ertheless, we will show some performance examples to show that our approach
is feasible and the increment of time for small ontologies when using a limited
number of degrees of truth is acceptable. In any case, optimizations are crucial.

We considered the Koala ontology?®, a sample ALCON (D) ontology with 20
named classes, 15 anonymous classes, 4 object properties, 1 datatype property
(which we have omitted) and 6 individuals. Regarding the axioms, it contains 6
concept assertions and 35 GCIs (15 proper GCls, 5 concept equivalences which
can be seen as 10 GCls, 1 disjoint concept axiom, 4 domain axioms and 4 range
axioms and 1 functional axiom).

We obtained a fuzzy version by extending its axioms with random (lower
bound) degrees belonging to a variable set N/X. For the moment, we have
assumed that all of the fuzzy concepts and roles are fuzzy. Furthermore, in fuzzy
GClIs and RIAs we always assume Godel implication in the semantics (which
introduces more axioms than Kleene-Dienes implication).

Then, we computed an equivalent crisp ontology in ALCHON (D) (since the
reduction introduces role inclusion axioms). The resulting ontology has 6 concept

3 http://http://protege.cim3.net/file/pub/ontologies/koala/koala.owl
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%% DelLorean -

Parameters
DIG |http:I.flocthost:8081 |

Fuzzy ontology |c:‘texample.b<l |
Output ontol |c:‘texamp|e.0wl | Examine
Output

Eeginning reduction...

Computing relevant degrees... KB with 9 degrees.
Creating new GCls..
Creating new RIAs...
Mapping ABox...
Mapping TEoOx...
Mapping RBox...
Reduction time: 0.313 seconds.
Feasoning time: 6.391 seconds. KB is consistent.
Total time: 6.704 seconds.

Fig. 2. User interface of DELOREAN reasoner

assertions, (2 (JN/5| —1) — 1) -4 RIAs and at least (2 (|[N/K|-1)—1)-20
GClIs (added to keep the semantics of the new crisp elements). It also contains
other GCIs added in the reduction of the original fuzzy GCIs. The number of
axioms of this type depends on NfX but also on the lower bound degree of every
particular fuzzy GCI.

Once we obtained the crisp representation, reasoning was performed by using
PELLET reasoner [20] through the DIG interface. Table 3 shows the influence
of the number of degrees on the reduction time and on the time that requires
a classification test over the resulting crisp ontology (the times are shown in
seconds), together with some statistics about the resulting crisp ontology (the
number of atomic concepts, atomic roles, concept assertions, GCIs and RIAs).

Table 3. Influence of the number of degrees in the performance of DELOREAN

|Number0fdegrees|crisp| 3 | 5 | 7 | 9 | 11 | 21 |

