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Abstract. Undeniable signatures were proposed to limit the verification
property of ordinary digital signatures. In fact, the verification of such
signatures cannot be attained without the help of the signer, via the
confirmation/denial protocols. Later, the concept was refined to give the
possibility of converting the issued undeniable signatures into ordinary
ones by publishing a universal receipt that turns them publicly verifiable.

In this paper, we present the first generic construction for univer-
sally convertible undeniable signatures from certain weakly secure cryp-
tosystems and any secure digital signature scheme. Next, we give two
specific approaches for building universally convertible undeniable sig-
natures from a large class of pairing-based signatures. These methods
find a nice and practical instantiation with known encryption and sig-
nature schemes. For instance, we achieve the most efficient undeniable
signatures with regard to the signature length and cost, the underlying
assumption and the security model. We believe these constructions could
be an interesting starting point to develop more efficient schemes or give
better security analyses of the existing ones.

Keywords: Undeniable signatures, Pairing-based signatures, Generic
construction.

1 Introduction

Undeniable signatures were originally introduced in 1990 by Chaum and van
Antwerpen [8] to limit the self-authenticating property of digital signatures. In
fact, the verification algorithm in these signatures is replaced by a confirmation
(denial) protocol between the verifier and the signer, in which the verifier learns
the validity (invalidity) of the issued signature without being able to transfer
his conviction to a third person. This cryptographic primitive proved valuable
in many applications where privacy is a big concern, e.g., licensing software.

In 1991, the notion of undeniable signature was boosted by Boyar et al. [3] to
allow the conversion of a selected undeniable signature into an ordinary one by
releasing a piece of information at a later time. The model supported also the
universal conversion achieved by publishing a universal receipt (by the signer)
that transforms all undeniable signatures into publicly verifiable ones.
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1.1 Related Work

Since the introduction of undeniable signatures, a series of proposals sprang up,
covering a variety of different aspects. Pairing-based signatures 1 have received
a lot of attention in these settings. Actually, most such signatures include in
the verification equation a pairing computation between a part of the signature
and some other parameters. Therefore, if we implement the same signature in a
non bilinear group, namely a group where the Decisional Diffie-Hellman prob-
lem (DDH) is intractable, the resulting signature cannot be publicly verifiable.
Hence, the signer must perform a proof of equality/inequality of two discrete log-
arithms with the verifier. Such a duality between pairing-based signatures and
undeniable signatures has been illustrated in the literature by some proposals,
e.g., the BLS signatures [2] whose undeniable variant are the early Chaum and
van Antwerpen [8] signatures or Boneh and Boyen’s signatures [1] which resulted
in Laguillaumie and Vergnaud’s undeniable signatures [12]. All these signatures
inherit the security properties of their underlying digital signatures and have
their invisibility based on a variant of the DDH problem.

Unfortunately, this approach does not give the possibility of converting the
resulting signatures. A tantalizing challenge is to propose a general approach
that constructs undeniable signatures from (a large category of) pairing-based
signatures with the possibility of converting them to ordinary ones.

1.2 Our Contributions

We propose the first generic construction of universally convertible undeniable
signatures from secure digital signatures and some weakly secure cryptosystems.
Our design uses the “encryption of a signature” method 2 and relaxes the security
requirement on the underlying cryptosystem, without compromising the overall
security. As a consequence, we allow malleable cryptosystems in our design which
impacts positively the efficiency of the confirmation/denial protocols.

Next, we give an efficient generic construction of universally convertible un-
deniable signatures. In fact, following the same principle, we shrink the set of
signatures, upon which we build the undeniable signatures, down to a certain
class of pairing-based signatures and we use an appropriate Key Encapsulation
Mechanism. This construction finds a very efficient instantiation and results in
the most efficient universally convertible undeniable signature scheme without
random oracles and whose security rests on standard assumptions.

Finally, we enlarge the set of pairing-based signatures to include most propos-
als that appeared in the literature so far. In this way, the resulting undeniable
signatures inherit the same virtues of the underlying digital signatures and ac-
quire other interesting properties concerning their invisibility.

1 See Section 2 for definitions of pairings, bilinear groups, etc...
2 This method has been successfully used in a number of primitives such as designated

confirmer signatures [5]. It consists in generating a signature on the message to be
signed, then encrypting it. The validity or invalidity of the resulting signature are
checked via concurrent proofs of knowledge.
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2 Preliminaries

2.1 Bilinear Maps

Definition 1. Let (G, +) and (H,×) 3 be groups of prime order d. Let P be a
generator of G. G is called a bilinear group if there exists a map e : G×G → H,
with the following properties:

1. bilinearity: for all (P, Q) ∈ G2 and a, b ∈ Zd, e(aP, bQ) = e(P, Q)ab,
2. efficient computability for any input pair, and
3. non-degeneracy: e(P, P ) �= 1H.

2.2 Digital Signatures

A signature scheme Σ comprises three algorithms, keygen, sign, and verify:

– keygen is a probabilistic key generation algorithm which returns pairs of
private and public keys (sk, pk) depending on the security parameter k,

– sign is a signing algorithm which takes on input a private key sk and a
plaintext m and returns a signature σ, and

– verify is a deterministic algorithm which takes on input a public key pk, a
signature σ and outputs 1 if the signature is valid and 0 otherwise.

Definition 2. A signature scheme is said to be (t, ε, qs)-EUF-CMA secure if
no adversary A, operating in time t and issuing at most qs queries, wins the
following game with probability greater than ε, where the probability is taken
over all the random choices:
Setup. A is given the public parameters of the given signature scheme.
Queries. A queries the challenger for signatures on at most qs messages.
Output. A outputs a pair (m, σ) and wins the game if m has not been queried
before and verifypk(m, σ) = 1.

2.3 Public-Key Encryption Schemes

An asymmetric encryption scheme comprises the following algorithms:

– keygen is a probabilistic key generation algorithm which returns pairs of
private and public keys (sk, pk) depending on the security parameter k,

– encrypt is a probabilistic encryption algorithm which takes on input a public
key pk and a plaintext m, and returns a ciphertext c, and

– decrypt is a deterministic decryption algorithm which takes on input a secret
key sk and a ciphertext c, and returns the corresponding plaintext m or ⊥.

A cryptosystem provides indistinguishability (IND) if it is difficult to distinguish
pairs of ciphertexts based on the messages they encrypt. In case the adversary
against the scheme has access to a decryption oracle, the scheme is said to be
indistinguishable under chosen ciphertext attacks (IND-CCA), otherwise it is
indistinguishable under chosen plaintext attacks (IND-CPA). Formal definitions
can be found in [4].
3 In the rest of the document, the group G is denoted additively whereas the group H

is denoted multiplicatively.
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2.4 Key Encapsulation Mechanisms (KEM)

A KEM is a tuple of algorithms K = (keygen, encap, decap) where

– keygen probabilistically generates a key pair (sk, pk),
– encap, or the encapsulation algorithm which, on input a random nonce r and

the public key pk, generates a session key denoted k and its encapsulation
c, and

– decap, or the decapsulation algorithm. Given the private key sk and the
element c, this algorithm computes the decapsulation k of c, or returns ⊥ if
c is invalid.

Definition 3. A KEM is said to be (t, ε)-IND-CPA secure if no adversary A,
operating in time t, wins the following game with probability greater than ε:

– Phase 1. A gets the parameters of the KEM from his challenger.
– Challenge. The challenger computes a given encapsulation c�, then picks

uniformly at random a bit b from {0, 1}. If b = 1, then he sets k� to k1 where
k1 = decap(c�). Otherwise, he sets k� to a uniformly chosen string from the
session keys space. The challenge is (c�, k�).

– Phase 2. A outputs a bit b′ (representing his guess of k� being the decap-
sulation of c�) and wins the game if b = b′. We define A’s advantage as
Adv(A) = |Pr[b = b′] − 1

2 |, where the probability is taken over the random
choices of the adversary A and the challenger.

The Hybrid Encryption Paradigm. It consists in combining KEMs with
secure secret key encryption algorithms or Data Encapsulation Mechanisms
(DEMs) to build encryption schemes. In fact, one can fix a session key k using
the KEM, then uses it to encrypt a message using an efficient DEM. Decryp-
tion is achieved by first recovering the key from the encapsulation (part of the
ciphertext) then applying the DEM decryption algorithm. It can be shown that
one can obtain an IND-CPA cryptosystem from an IND-CPA KEM combined
with a DEM indistinguishable under a one time attack (IND-OT). We refer to
[11] for the necessary and sufficient conditions on KEMs and DEMs in order to
obtain a certain level of security for the resulting hybrid encryption scheme.

3 Universally Convertible Undeniable Signatures
(UCUS)

3.1 Definition

Setup. On input the security parameter k, outputs the public parameters.
Key Generation. Generates probabilistically a key pair (sk, pk).
Signature. On input the public parameters, the private key sk and a message

m, outputs an undeniable signature μ.
Verification. This is an algorithm run by the signer to check the validity of

an undeniable signature μ issued on m, using his private key sk.
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Confirmation/Denial Protocol. These are interactive protocols between a
prover and a verifier. Their common input consists of the public parameters
of the scheme, the signature μ and the message m in question. The prover,
that is the signer, uses his private key sk to convince the verifier of the
validity (invalidity) of the signature μ on m.

Universal Conversion. Releases a universal receipt, using sk, that makes all
undeniable signatures universally verifiable.

Universal Verification. On input a signature, a message, a receipt and the
public key pk, outputs 1 if the signature is valid and 0 otherwise.

3.2 Security Model

In addition to the completeness, soundness and non-transferability of the proofs
inherent to the confirmation/denial protocols, a convertible undeniable signature
scheme requires two further properties, that are unforgeability and invisibility.

Unforgeability. The natural security requirement that a universally convert-
ible signature scheme should fulfill is the existential unforgeability against a
chosen message attack (EUF-CMA). It is defined through the following game.

– Setup. The adversary A is given the public parameters of the scheme in
addition to the universal receipt.

– Queries. A queries the signing oracle adaptively on at most qs messages.
Note that there will be no need to query the confirmation/denial oracles
since A has the universal receipt at his disposal.

– Output. At the end, A outputs a pair consisting of a message m, that has
not been queried before, and a string μ. A wins the game if μ is a valid
undeniable signature on m.

We say that a universally convertible undeniable signature scheme is (t, ε, qs)-
EUF-CMA secure if there is no adversary, operating in time t, that wins the
above game with probability greater than ε.

Invisibility. Invisibility against a chosen message attack (INV-CMA) is defined
through the following game between an attacker A and his challenger R.

– A gets the parameters of the scheme from R.
– Phase 1. A adaptively query the signing and confirmation/denial oracles.
– Challenge. Eventually, A outputs a message m� that has not been queried

before to the signing oracle and requests a challenge signature μ�. R picks
a bit b ∈R {0, 1}. If b = 1, then μ� is generated as usual using the signing
oracle, otherwise it is chosen uniformly at random from the signatures space.

– Phase 2. A can adaptively query the previous oracles with the exception of
not querying m� to the signing oracle or (m�, μ�) to the verification oracles.

– Output. A outputs a bit b′ representing his guess on μ� being a valid
signature on m�. He wins the game if b = b′. We define A’s advantage as
Adv(A) = |Pr[b = b′] − 1

2 |.
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We say that a convertible undeniable signature scheme is (t, ε, qs, qv)-INV-CMA
secure if no adversary operating in time t, issuing qs queries to the signing
oracle and qv queries to the confirmation/denial oracles wins the above game
with advantage greater than ε.

4 A Systematic Approach for UCUS from Some
Cryptosystems and Digital Signatures

4.1 Design Principle

We use the “encryption of a signature” method. Thus, we first generate a digital
signature on the message to be signed, then encrypt the resulting signature
using a suitable cryptosystem obtained from the hybrid encryption paradigm.
Confirmation or denial of the resulting signatures exist by virtue of Goldreich et
al.’s result [10]. In fact, the verification and decryption algorithms in a signature
scheme and a cryptosystem respectively define an NP (co-NP) language for which
there exists a zero knowledge proof system.

This method has been in use for some time ago. For instance, Camenisch
and Michels [5] used it for designated confirmer signatures. One of the main
differences between the two proposals dwells in the security assumption on the
cryptosystem. We actually require only IND-CPA secure KEMs (thus IND-CPA
cryptosystems), as we do not allow individual conversions of the undeniable sig-
natures, versus IND-CCA cryptosystems. The consequences of this are twofold.
First, we require a weak security notion on the cryptosystem without compromis-
ing the overall security. This gives many and simpler choices for the cryptosys-
tem to be used. Second, we allow malleable cryptosystems in our construction,
which impacts positively the confirmation/denial protocols efficiency. In fact,
cryptosystems with homomorphic properties possess efficient decryption proofs
of knowledge, i.e, one can prove efficiently the knowledge of the plaintext corre-
sponding to a given ciphertext. Such schemes are not ruled out from our design.

4.2 Proposed Construction

Let Σ be a digital signature scheme given by Σ.keygen which generates a key
pair (private key = Σ.sk, public key= Σ.pk), Σ.sign and Σ.verify.

Let furthermore Γ be a cryptosystem obtained using the hybrid encryption
paradigm and described by Γ.keygen (that generates the pair (private key =
Γ.sk, public key= Γ.pk)), Γ.encrypt and Γ.decrypt. Note that the encapsulation
of the key used to encrypt a given string is always contained in the ciphertext.

We assume for simplicity that the space of signatures produced by Σ is the
same as the space of messages encrypted by Γ .

Let m ∈ {0, 1}� be a message, we propose the following scheme:

Setup. Invoke Γ.setup and Σ.setup.
Key Generation. Invoke Σ.keygen and Γ.keygen to generate Σ.sk, Σ.pk Γ.sk

and Γ.pk. Set the public key to (Σ.pk, Γ.pk) and the private key to (Σ.sk,
Γ.sk).
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Signature. First compute an encapsulation c together with its decapsulation
k using Γ.pk. Then compute a (digital) signature σ = Σ.signΣ.sk(m‖c) on
m‖c. Finally encrypt the resulting signature under Γ.pk (using k). Output
μ = Γ.encryptΓ.pk(σ). Note that c is part of μ.

Verification (By the Signer.) To check the validity of an undeniable signa-
ture μ (that comprises the encapsulation c), issued on a certain message m,
the signer first computes σ = Γ.decryptΓ.sk(μ), then calls Σ.verify on σ and
m‖c using Σ.pk. μ is valid if and only if the output of the latter item is 1.

Confirmation/Denial Protocol. To confirm (deny) a purported signature
μ (containing the encapsulation c) on a certain message m, the signer first
computes σ = Γ.decryptΓ.sk(μ), then invokes the algorithm Σ.verify on σ
and m‖c. According to the result, the signer issues a proof of knowledge of
the decryption of μ that passes (does not pass) the verification algorithm
Σ.verify.

Universal Conversion. Release Γ.sk.

4.3 Security Analysis and Efficiency Considerations

We first note that the properties of completeness, soundness and non-
transferability of the confirmation/denial protocols are met by our construction
as a direct consequence of the zero-knowledge proofs of knowledge. In the sequel,
we prove that the construction resists existential forgeries and that signatures
are invisible.

Theorem 1. Our generic construction is (t, ε, qs)-EUF-CMA secure if the un-
derlying digital signature scheme is (t, ε, qs)-EUF-CMA secure.

Proof. Let A be an attacker that (t, ε, qs)-EUF-CMA breaks the existential un-
forgeability of our construction. We will construct an adversary R that (t, ε, qs)-
EUF-CMA breaks the underlying digital signature scheme:

Key generation. R gets the parameters of the signature scheme in question
from his challenger. Then he chooses an appropriate cryptosystem Γ (ob-
tained from the encryption of a signature paradigm) with parameters Γ.pk,
Γ.sk, Γ.encrypt and Γ.decrypt. R fixes the above parameters as a setting for
the undeniable signatures A is trying to attack.

Signature queries. For a signature query on a message m, R will first compute
an encapsulation c together with its decapsulation k (using Γ.pk). Then he
will request his challenger for a digital signature σ on m‖c. Finally, he will
encrypt σ under Γ.pk (using k) and output the result to A.

Final Output. Once A outputs his forgery μ� on m�. R will decrypt the
signature to obtain σ�. If μ� is valid then by definition σ� is valid too. R will
output σ� as a forgery on the message (m�‖c�) where c� is the encapsulation
of the key that was used to encrypt σ�. In fact the probability that m�‖c�

has been queried by R on a query mi‖ci (mi �= m�) is negligeable since ci is
obtained by R from a random process (the encapsulation algorithm).
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Note that there will be no need to simulate the confirmation/denial oracles since
A has the universal receipt Γ.sk allowing the verification of the signatures. ��
Theorem 2. Our proposed construction is (t, ε, qs, qv)-INV-CMA secure if it is
(t, ε′, qs)-EUF-CMA secure and the KEM used in the underlying cryptosystem is
(t + qsqv, ε · (1 − ε′)qv )-IND-CPA secure.

Proof. Let A be an attacker that (t, ε, qs, qv)-INV-CMA breaks our undeniable
signatures, assumed to be (t, ε′, qs)-EUF-CMA secure. We will construct an al-
gorithm R that (t + qsqv, ε · (1 − ε′)qv )-IND-CPA breaks the underlying KEM:

Phase 1
Key Generation. R gets the parameters of the KEM K from his challenger.

Then he chooses an appropriate IND-OT secure DEM together with a sig-
nature scheme Σ.

Signature Queries. For a signature query on m. R first fixes a session key k
together with its decapsulation c using K.pk. Then he computes a (digital)
signature σ on m‖c using Σ.sk. Finally, he encrypts the produced signa-
ture (using k) and outputs the result to A. R will maintain a list L of the
queries he got (messages), the corresponding digital signatures and finally
the signatures he issued.

Verification (Confirmation/Denial) Queries. For a signature μ on m, R
will look up the list L. If a record having as first component the message m
and third component μ appears in the list, then R will execute the confir-
mation protocol, otherwise, he will run the denial protocol. This simulation
differs from the real one when the signature μ is valid and has not been
obtained from a signature query. Thus, μ will correspond to a valid exis-
tential forgery of the undeniable signature scheme in question4. Hence, the
probability that this scenario does not happen is at least (1 − ε′)qv because
the undeniable signature scheme is (t, ε′, qs)-EUF-CMA secure by assump-
tion. Finally, R can issue such proofs of knowledge, without knowing the
private key of K, using the rewinding technique because the protocols are
zero knowledge, thus simulatable.

Challenge. Eventually, A outputs a challenging message m�. R will use his
challenge (c�, k�) to compute a digital signature using Σ.sk on m�‖c�. Then
he encrypts the resulting signature using k� and outputs the result μ� to A.
Therefore μ� is either a valid signature on m� or a random element from the
(undeniable) signatures space (k� is random according to 2.4 and the DEM is
IND-OT), which conforms to the game rules defined in 3.2.

Phase 2 A will continue issuing queries to the signing, confirmation and denial
oracles and R can answer as previously.
4 This is the reason for generating a signature on the message in question concatenated

with the encapsulation. In fact, valid signatures can only be obtained from the
signing oracle (under the assumption that the scheme is EUF-CMA secure) even if
the underlying cryptosystem offers the possibility of generating a different ciphertext
for the same message (e.g., ElGamal [9]).
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Final Output
When A outputs his answer b ∈ {0, 1}, R will forward this answer to his own
challenger. Therefore R will (t + qsqv, ε · (1 − ε′)qv )-IND-CPA break Γ . ��

5 Construction of UCUS from Certain Pairing-Based
Signatures Using KEMs

In the generic construction proposed in 4, the confirmation/denial protocols
involve proofs of knowledge of the decryption of the undeniable signature and
that this decryption is a digital signature on some known data. Therefore, one
needs to consider a set of cryptosystems and signatures for which such proofs
could be performed efficiently. One solution to achieve this is to consider the
following class of signatures (KEMs).

5.1 Defining the Class C1 of Signatures and K of KEMs

Definition 4. C1 is the set of pairing-based signatures such that:

1. The considered pairing e is from G × G to H.
2. The signature σ on a message m is written as σ = (S, σ̄) such that

(a) σ̄ = σ\S reveals no information about m nor about (sk, pk) the key pair
related to the given signature scheme.

(b) S ∈ G and the verification equation of the signature is of the form:
e(S, P ) = f(σ̄, m, PP ).

where P is a known generator of the group G (set as a public parameter of
the scheme), f is a public function, m is the message in question and PP
are the known public parameters of the signature scheme

The definition above may seem too restrictive but it already captures two very
important pairing-based signatures, namely BLS [2] (where the message-key-
independent part is the empty string) and Waters’ [14] signatures.

Definition 5. K is the set of KEMs such that:

1. The KEM is implemented in a bilinear group G where the considered pairing
e is from G × G to a group H.

2. P is a known generator of the group G.
3. The session keys space K is the same as the group G.
4. Let k ∈ G be an element and c a given encapsulation. On common input

e(k, P ) and c:
– If k is the decapsulation of c, then there exists an efficient zero-knowledge

proof C of this assertion, using the private key of the KEM,
– otherwise, there exists an efficient zero-knowledge proof D of k not being

the decapsulation of c (using also the private key of the KEM ).
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A KEM in the Class K:

– setup. Consider a bilinear group G, with prime order d, generated by P .
– keygen. Generate two values x1, x2 ∈ Z

×
d and compute X1 = x1P and X2 =

x2P . Set the private key to sk = (x1, x2) and the public key to pk = (X1, X2).
– encap. On input a nonce (a, b) ∈R Z2

d and pk, generate the session key
k = (a + b)P and its encapsulation c = (aX1, bX2).

– decap. Given sk and c = (aX1, bX2), compute k as k = x−1
1 aX1 + x−1

2 bX2.

This KEM is IND-CPA secure assuming the intractability of the Decision Linear
Problem.

Definition 6. Decision Linear Problem (DLP). Given U, V, H, aU, bV,
cH ∈ G, output 1 if a + b = c mod (#G) and 0 otherwise.

The traditional DDH problem (corresponding to b = 0) can be reduced to DLP.
In fact, DLP is believed to be hard even in bilinear groups where DDH is easy.

Fact 1 The KEM described above is in the class K.

Proof. – X1 is a generator of G.
– The proof C (D) consists of the proof of equality (inequality) of the discrete

logarithm of X2 in base P and of e(bX2, X1) in base e(k, X1)e(aX1, P )−1.
We refer to [7] ([6]) for the proof of equality (inequality) of two discrete
logarithms. ��

5.2 Construction

Following the notations in 5.1 we consider an EUF-CMA digital signature scheme
Σ ∈ C1 and an IND-CPA secure KEM K ∈ K, where the considered groups G

and H , and the generator P are the same for both Σ and K. We assume that the
proofs C and D are known to the signer. A universally convertible undeniable
signature, on a given message m, can be obtained by first invoking K to fix a key
k and its encapsulation c, then generating a digital signature σ = (S, σ̄) on m‖c.
The result is μ = (μ1, μ2, μ3) = (c, S + k, σ̄) 5. Confirmation or denial of such a
signature are achieved via the proofs C or D respectively, on the common input
m, μ1 and e(μ2, P )f(μ3, m‖c, PP )−1. In fact, if k = K.decap(μ1) and e(k, P ) =
e(μ2, P )f(μ3, m‖c, PP )−1, then the signer issues C (using the private key of the
KEM). Otherwise, if k = K.decap(μ1) and e(k, P ) �= e(μ2, P )f(μ3, m‖c, PP )−1,
he issues the proof D. Finally, the universal conversion is done by releasing K.sk.

Unforgeability of such a construction is easily guaranteed by virtue of
Theorem 1. As far as invisibility is concerned, we can base it directly on the
underlying KEM. In fact, since σ̄ does not reveal any information about the
signing/verifying key (of the digital signature scheme) nor about the message in
question, an attacker A capable of deciding on the validity of a given undeni-
able signature must definitely use information leaked by the encryption of the
remaining part of the signature, that is (c, k + S). Due to page limitation, the
complete proofs will be given in the full version of the paper.
5 The DEM encryption algorithm consists in adding the key to the message, whereas

the decryption is the addition of the key inverse (in G) to the ciphertext.
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Theorem 3. Let A be a (t, ε, qs)-EUF-CMA adversary against the above con-
struction. Then, there exists a (t, ε, qs)-EUF-CMA adversary against the under-
lying digital signature scheme. ��
Theorem 4. Our proposed construction is (t, ε, qs, qv)-INV-CMA secure if it is
(t, ε′, qs)-EUF-CMA secure and the underlying KEM is (t + qsqv, ε.(1 − ε′)qv)-
IND-CPA secure. ��

Instantiation of our framework with Waters’ signatures [14] and the KEM de-
scribed above results in a very efficient universally convertible undeniable signa-
ture scheme. In fact, the best scheme that was proposed so far [15] achieves the
same security features (standard model and the same underlying standard as-
sumptions), and thought it presents the additional quality of selective conversion,
it has a longer signature and a higher signature generation and verification cost
(approximately a multiplicative parameter k) and a higher key generation and
universal conversion cost (a multiplicative parameter 2n/k), where k is a public
parameter to be optimized and n is the length of the message to be signed.

6 Toward a Generic Construction of UCUS from
Pairing-Based Signatures

In this section, we give the first generic construction of universally convertible
undeniable signatures from a large class of pairing-based signatures, denoted C2,
and from any IND-CPA cryptosystem whose decryption is efficiently verifiable.

6.1 Generic Construction

Definition 7. C2 is the same set of signatures defined in Definition 4 with the
exception of the verification equation being of the form e(S, E) = f(σ̄, m, PP ),
where E ∈ G is not necessarily a fixed generator of G.

It is clear that this class of signatures captures a large category of pairing-based
signatures. In fact, almost all (pairing-based) signatures [2,1,16,14], that have
been proposed so far, involve a pairing computation in the verification equation,
between the key-message-dependent part of the signature and other entities.
Note that the key-message-independent part in [2,16] is the empty string.

Proposed Construction. Let Σ ∈ C2 be an EUF-CMA signature from C2

and Γ be an efficient decryption verifiable IND-CPA cryptosystem. Let further
d denote the group order of G and p a suitable integer such that Γ is IND-CPA
secure in Zp (the message space of Γ is included in Zp). Note that p > d due the
contrast of key sizes between finite-field (or ring) and elliptic-curve cryptography.

We devise a universally convertible undeniable signature scheme as follows.
First, we choose r ∈R Zp then encrypt it under Γ to result in s =Γ.encryptΓ.pk(r).
Then, generate a digital signature (S, σ̄) on the message to be signed m concate-
nated with s. The signature consists of the triple μ = (s, rS = (r mod d)S, σ̄).
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To confirm (deny) a signature μ = (s, rS, σ̄), the signer decrypts s then proves
the equality (inequality) of the decryption of s and the discrete logarithm of
e(rS, E) in base f(σ̄, m‖s, PP ). Finally, the universal conversion is achieved by
releasing Γ.sk.

Theorem 5. Let A be a (t, ε, qs)-EUF-CMA adversary against the above con-
struction. Then, there exists a (t, ε, qs)-EUF-CMA adversary against the under-
lying digital signature scheme. ��
Theorem 6. Our proposed construction is (t, ε, qs, qv)-INV-CMA secure if it is
(t, ε′, qs)-EUF-CMA secure and the underlying cryptosystem is (t + qsqv, ε.(1 −
ε′)qv)-IND-CPA secure. ��

Efficient realizations using this technique could be obtained by combining Wa-
ters’ signatures [14] with an IND-CPA cryptosystem such as ElGamal [9] or
Paillier [13].

7 Conclusion

In this paper, we proposed a construction for universally convertible undeniable
signatures from secure digital signatures and some weakly secure cryptosystems.
Next, we designed two efficient generic constructions for undeniable signatures
from a large class of pairing-based signatures. These constructions found prac-
tical instantiations with some known signatures and cryptosystems. It might be
good to analyze the security of the existing undeniable signature schemes or
propose efficient ones using this technique. Finally, one is tempted to extend
this approach to other “opaque” signatures such as directed signatures, or com-
bine it with the techniques using commitment schemes in order to get better
constructions.
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