

Lecture Notes in Computer Science 5365
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Dipanwita Roy Chowdhury Vincent Rijmen
Abhijit Das (Eds.)

Progress in Cryptology –
INDOCRYPT 2008

9th International Conference on Cryptology in India
Kharagpur, India, December 14-17, 2008
Proceedings

13

Volume Editors

Dipanwita Roy Chowdhury
Abhijit Das
Dept. of Computer Science and Engineering
Indian Institute of Technology, Kharagpur 721 302, India,
E-mail: {drc, abhij@cse.iitkgp.ernet.in}

Vincent Rijmen
K.U. Leuven, ESAT/COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
E-mail: Vincent.Rijmen@esat.kuleuven.be

Library of Congress Control Number: 2008940079

CR Subject Classification (1998): E.3, G.2.1, D.4.6, K.6.5, K.4, F.2.1-2, C.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-89753-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89753-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12572953 06/3180 5 4 3 2 1 0

Message from the General Chairs

The 2008 International Conference on Cryptology in India (INDOCRYPT 2008)
was the ninth event in this series. It was organized by the Department of Com-
puter Science and Engineering, Indian Institute of Technology Kharagpur, in
co-operation with the Cryptology Research Society of India (CRSI). Over the
years, INDOCRYPT has become a leading forum for disseminating the latest re-
search results in cryptology. This year’s conference brought together leading and
eminent researchers worldwide in Kharagpur (India), during December 14–17,
2008, to present and discuss a wide variety of aspects on cryptology and security.

The program of the conference spanned over four days and included, in ad-
dition to a high-quality technical program, two tutorials delivered by the very
best in the field, giving young researchers and students an excellent opportunity
to learn about the latest trends in cryptography and cryptanalysis.

A conference of this magnitude would not have been possible without the hard
and excellent work of all the members of the Organizing Committee. Our special
thanks are due to Dipanwita Roy Chowdhury and Vincent Rijmen (Program
Co-chairs) for coordinating and leading the effort of the Program Committee,
culminating in an excellent technical program. We are grateful to the Tutorial
Chair, Debdeep Mukhopadhyay, for arranging two high-quality tutorial talks by
eminent leaders in the field.

We are indebted to all other members of the Organizing Committee for their
excellent work. Dilip Kumar Nanda (Organizing Chair) along with his team co-
ordinated all the local arrangements with elan. Abhijit Das (Publication Chair)
managed the publication of the conference proceedings through his tireless ef-
forts. We also take this opportunity to acknowledge the contributions of the
Publicity Chair (Soumen Maity) and of the Finance Chair (Raja Datta) to the
success of the conference. No amount of thanks is sufficient for the omnipresent
team of enthusiastic volunteers who did their best for the smooth sailing of the
conference.

Last but not the least, we extend our heartfelt thanks to the authors, the
reviewers, the participants, and the sponsors of the conference, for their vital
contributions to the success of the event.

December 2008 Indranil Sen Gupta
Bimal K. Roy

Message from the Technical Program Chairs

Welcome to the Proceedings of the 9th International Conference on Cryptology,
INDOCRYPT 2008. This annual event started off eight years ago in the year
2000 by the Cryptology Research Society of India and has gradually matured
into one of the topmost international cryptology conferences.

This year we received 111 papers from all over the world. After a rigorous
review process, the Program Committee selected 33 papers out of the 111 sub-
missions. Most of the papers received at least three independent reviews made
by the Program Committee members and also by additional external experts.
The papers along with the reviews were scrutinized by the Program Commit-
tee members during a two-week discussion phase. We would like to thank the
authors of all the papers for submitting their quality research work to the con-
ference. Special thanks go to the Program Committee members and the external
reviewers who gave their precious time in reviewing and selecting the best set of
papers.

We are fortunate to have several eminent researchers as keynote and invited
speakers. The main conference program was preceded by a day of tutorial pre-
sentations. We would like to thank Debdeep Mukhopadhyay, the Tutorial Chair,
for his active initiation and enthusiasm to make the tutorial sessions a success.
We would like to express our thanks to Abhijit Das, the Publication Chair,
who gave his precious time to compile the conference proceedings. Further, we
thank Anirban Sarkar, who helped with the setting up and maintenance of the
conference Web server.

We hope that you will find the INDOCRYPT 2008 proceedings technically
rewarding.

December 2008 Dipanwita Roy Chowdhury
Vincent Rijmen

Organization

General Chairs

Indranil Sen Gupta Indian Institute of Technology, Kharagpur, India
Bimal K. Roy Indian Statistical Institute, Kolkata, India

Program Chairs

Dipanwita Roy Chowdhury Indian Institute of Technology, Kharagpur, India
Vincent Rijmen KU Leuven, Belgium and Graz University of

Technology, Austria

Tutorial Chair

Debdeep Mukhopadhyay Indian Institute of Technology, Kharagpur, India

Publication Chair

Abhijit Das Indian Institute of Technology, Kharagpur, India

Organizing Chair

Dilip K. Nanda Indian Institute of Technology, Kharagpur, India

Publicity Chair

Soumen Maity Indian Institute of Technology, Kharagpur, India

Finance Chair

Raja Datta Indian Institute of Technology, Kharagpur, India

Program Committee

Abhijit Das IIT Kharagpur, India
Alex Biryukov Univ. du Luxembourg, Luxembourg
Alfred Menezes University of Waterloo, Canada
Anne Canteaut INRIA, France
Arjen K. Lenstra EPFL, Switzerland and Alcatel-Lucent Bell

Laboratories, USA
Bimal K. Roy ISI Kolkata, India

X Organization

C. Pandu Rangan IIT Madras, India
C.E. Veni Madhavan IISC Bangalore, India
Çetin Kaya Koç Oregon State University, USA
Chandan Mazumdar Jadavpur University, Kolkata, India
Charanjit S. Jutla IBM T.J. Watson Research Center, USA
Christian Rechberger Graz University of Technology, Austria
Dan Page University of Bristol, UK
Debdeep Mukhopadhyay IIT Kharagpur, India
Dipanwita Roy Chowdhury IIT Kharagpur, India
Helger Lipmaa Cybernetica AS, Estonia
Indranil Sen Gupta IIT Kharagpur, India
Ingrid Verbauwhede ESAT, KU Leuven, Belgium
Jennifer Seberry University of Wollongong, Australia
Joan Daemen ST Microelectronics, Belgium
Josef Pieprzyk Macquarie University, Australia
Jovan Golic Security Innovation, Telecom Italia, Turin, Italy
Keith Martin University of London, UK
Kolin Paul IIT Delhi, India
Matt Robshaw Orange Labs, France
Matthew Parker University of Bergen, Norway
Paulo Barreto University of Sao Paulo, Brazil
Pramod K. Saxena SAG, New Delhi, India
R. Balasubramanium IMSc, Chennai, India
Ramarathnam Venkatesan Microsoft, Redmond, USA
Rei Safavi-Naini University of Wollongong, Australia
Sanjay Barman CAIR, Bangalore, India
Shiho Moriai Sony Computer Entertainment Inc., Japan
Soumen Maity IIT Kharagpur, India
Subhamoy Maitra ISI Kolkata, India
Svetla Nikova KU Leuven, Belgium
Tanja Lange Technische Universiteit Eindhoven,

The Netherlands
Tor Helleseth University of Bergen, Norway
Vincent Rijmen KU Leuven, Belgium and Graz University of

Technology, Austria
Willi Meier FHNW, Switzerland

Additional Referees

Andrey Bogdanov
Angela Piper
Arpita Patra
Arun K. Majumdar
Ashish Choudhary
Avishek Adhikari

Benoit Libert
Berry Schoenmakers
Christophe Clavier
Christian Kraetzer
Florian Mendel
Geong Sen Poh

Goutam Paul
H̊avard Raddum
Jaydeb Bhowmik
Jeff Hoffstein
Jean-Philippe Aumasson
Joonsang Baek

Organization XI

Juraj Sarinay
Kanta Matsuura
Kazue Sako
Kenny Paterson
Kristian Gjøsteen
Lejla Batina
Mahabir Prasad Jhanwar
Marc Stevens
Matrin Gagné
Martin Schläffer
Maura Paterson
Miroslav Knežević
Mridul Nandy
Michael Naehrig

Nathan Keller
Nele Mentens
Nicolas Sendrier
Nicolas Gama
Nick Howgrave-Graham
Noboru Kunihiro
Onur Ozen
Pim Tuyls
Sanjit Chatterjee
Safuat Hamdy
Sébastien Canard
Sebastiaan Faust
Somitra Kumar

Sanadhya

Sourav Mukhopadhyay
Shahram Khazaei
Takashi Satoh
Thomas Popp
Tomislav Nad
Tomoyuki Asano
Toshihiro Ohigashi
Tor Erling Bjørstad
Vipul Goyal
Yannick Seurin
Yong Ki Lee
Yunlei Zhao

Table of Contents

Stream Ciphers

Slid Pairs in Salsa20 and Trivium . 1
Deike Priemuth-Schmid and Alex Biryukov

New Directions in Cryptanalysis of Self-synchronizing Stream
Ciphers . 15

Shahram Khazaei and Willi Meier

Analysis of RC4 and Proposal of Additional Layers for Better Security
Margin . 27

Subhamoy Maitra and Goutam Paul

New Results on the Key Scheduling Algorithm of RC4 40
Mete Akgün, Pınar Kavak, and Hüseyin Demirci

Cryptographic Hash Functions

Two Attacks on RadioGatún . 53
Dmitry Khovratovich

Faster Multicollisions . 67
Jean-Philippe Aumasson

A New Type of 2-Block Collisions in MD5 . 78
Jǐŕı Vábek, Daniel Joščák, Milan Boháček, and Jǐŕı T̊uma

New Collision Attacks against Up to 24-Step SHA-2
(Extended Abstract) . 91

Somitra Kumar Sanadhya and Palash Sarkar

Public-Key Cryptography – I

Secure Hierarchical Identity Based Encryption Scheme in the Standard
Model . 104

Yanli Ren and Dawu Gu

A Fuzzy ID-Based Encryption Efficient When Error Rate Is Low 116
Jun Furukawa, Nuttapong Attrapadung, Ryuichi Sakai, and
Goichiro Hanaoka

Type-Based Proxy Re-encryption and Its Construction 130
Qiang Tang

XIV Table of Contents

Toward a Generic Construction of Universally Convertible Undeniable
Signatures from Pairing-Based Signatures . 145

Laila El Aimani

Security Protocols

Concrete Security for Entity Recognition: The Jane Doe Protocol 158
Stefan Lucks, Erik Zenner, André Weimerskirch, and Dirk Westhoff

Efficient and Strongly Secure Password-Based Server Aided Key
Exchange (Extended Abstract) . 172

Kazuki Yoneyama

Round Efficient Unconditionally Secure Multiparty Computation
Protocol . 185

Arpita Patra, Ashish Choudhary, and C. Pandu Rangan

A New Anonymous Password-Based Authenticated Key Exchange
Protocol . 200

Jing Yang and Zhenfeng Zhang

Group Key Management: From a Non-hierarchical to a Hierarchical
Structure . 213

Sébastien Canard and Amandine Jambert

Hardware Attacks

Scan Based Side Channel Attacks on Stream Ciphers and Their
Counter-Measures . 226

Mukesh Agrawal, Sandip Karmakar, Dhiman Saha, and
Debdeep Mukhopadhyay

Floating Fault Analysis of Trivium . 239
Michal Hojśık and Bohuslav Rudolf

Algebraic Methods in Side-Channel Collision Attacks and Practical
Collision Detection . 251

Andrey Bogdanov, Ilya Kizhvatov, and Andrey Pyshkin

Block Ciphers

New Related-Key Boomerang Attacks on AES . 266
Michael Gorski and Stefan Lucks

New Impossible Differential Attacks on AES . 279
Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim

Table of Contents XV

Reflection Cryptanalysis of Some Ciphers . 294
Orhun Kara

A Differential-Linear Attack on 12-Round Serpent . 308
Orr Dunkelman, Sebastiaan Indesteege, and Nathan Keller

New AES Software Speed Records . 322
Daniel J. Bernstein and Peter Schwabe

Public-Key Cryptography – II

A New Class of Weak Encryption Exponents in RSA 337
Subhamoy Maitra and Santanu Sarkar

Two New Efficient CCA-Secure Online Ciphers: MHCBC and MCBC . . . 350
Mridul Nandi

Cryptographic Hardware

Chai-Tea, Cryptographic Hardware Implementations of xTEA 363
Jens-Peter Kaps

High Speed Compact Elliptic Curve Cryptoprocessor for FPGA
Platforms . 376

Chester Rebeiro and Debdeep Mukhopadhyay

Elliptic Curve Cryptography

More Discriminants with the Brezing-Weng Method 389
Gaetan Bisson and Takakazu Satoh

Another Approach to Pairing Computation in Edwards Coordinates 400
Sorina Ionica and Antoine Joux

Threshold Cryptography

A Verifiable Secret Sharing Scheme Based on the Chinese Remainder
Theorem . 414

Kamer Kaya and Ali Aydın Selçuk

Secure Threshold Multi Authority Attribute Based Encryption without
a Central Authority . 426

Huang Lin, Zhenfu Cao, Xiaohui Liang, and Jun Shao

Author Index . 437

Slid Pairs in Salsa20 and Trivium

Deike Priemuth-Schmid and Alex Biryukov

FSTC, University of Luxembourg
6, rue Richard Coudenhove-Kalergi,

L-1359 Luxembourg
(deike.priemuth-schmid,alex.biryukov)@uni.lu

Abstract. The stream ciphers Salsa20 and Trivium are two of the fi-
nalists of the eSTREAM project which are in the final portfolio of new
promising stream ciphers. In this paper we show that initialization and
key-stream generation of these ciphers is slidable, i.e. one can find distinct
(Key, IV) pairs that produce identical (or closely related) key-streams.
There are 2256 and more then 239 such pairs in Salsa20 and Trivium
respectively. We write out and solve the non-linear equations which de-
scribe such related (Key, IV) pairs. This allows us to sample the space
of such related pairs efficiently as well as detect such pairs in large por-
tions of key-stream very efficiently. We show that Salsa20 does not have
256-bit security if one considers general birthday and related key distin-
guishing and key-recovery attacks.

Keywords: Salsa20, Trivium, eSTREAM, stream ciphers, cryptanalysis.

1 Introduction

In 2005 Bernstein [2] submitted the stream cipher Salsa20 to the eSTREAM-
project [5]. Original Salsa20 has 20 rounds, later 8 and 12 rounds versions were
also proposed. The cipher Salsa20 uses the hash function Salsa20 in a counter
mode. Its 512-bit state is initialized by copying into it 128 or 256-bit key, 64-
bit nonce and counter and 128-bit constant. Previous attacks on Salsa used
differential cryptanalysis exploiting a truncated differential over three or four
rounds. The first attack was presented by Crowley [4] which could break the 5
round version of Salsa20 within claimed 3165 trials. Later a four round differential
was exploited by Fischer et al. [6] to break 6 rounds in 2177 trials and by Tsnunoo
et al. [12] to break 7 rounds in about 2190 trials. The currently best attack by
Aumasson et al. [1] covers 8 round version of Salsa20 with estimated complexity
of 2251.

The stream cipher Trivium was submitted by De Cannière and Preneel [3]
in 2005 to the eSTREAM-project [5]. Trivium has an internal state of 288 bits
and uses an 80-bit key and an 80-bit initial value (IV). The interesting part of
Trivium is the nonlinear update function of degree 2. In [10] Raddum presented
and attacked simplified versions of Trivium called Bivium but the attack on
Trivium had a complexity higher than the exhaustive key search. Bivium was

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 1–14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 D. Priemuth-Schmid and A. Biryukov

completely broken by Maximov and Biryukov [8] and an attack on Trivium with
complexity about 2100 was presented which showed that key-size of Trivium can
not be increased just by loading longer keys into the state. In [9] McDonald et
al. attacked Bivium using SatSolvers. Another approach that gained attention
recently is to reduce the key setup of Trivium as done by Turan and Kara [13]
and Vielhaber [14]. So far no attack faster than exhaustive key search was shown
for Trivium.

In this paper we start with our investigation of Salsa20 followed by a descrip-
tion of the attacks. We show that the following observation holds: suppose that
you are given two black boxes, one with Salsa20 and one with a random map-
ping. The attacker is allowed to chose a relation F for a pair of inputs, after
which a secret initial input x is chosen and a pair (x, F(x)) is encrypted either by
Salsa20 or by a random mapping. We stress that only the relation F is known
to the attacker. The goal of the attacker is given a pair of ciphertexts to tell
whether they were encrypted by Salsa20 or by a random mapping. To make the
life of the attacker more difficult the pair may be hidden in a large collection of
other ciphertexts. It is clear that for a truly random mapping no useful relation
F would exist and moreover there is no way of checking a large list except for
checking all the pairs or doing a birthday attack. On the other hand Salsa20
can be easily distinguished from random in both scenarios if F is a carefully
selected function related to the round-structure of Salsa20. Moreover it is not
only a distinguishing but also a complete key-recovery attack via discovering the
initial state. Our attacks are independent of the number of rounds in Salsa and
thus work for all the 3 versions of Salsa. We also show a general birthday attack
on 256-bit key Salsa20 with complexity 2192 which can be further sped up twice
using sliding observations.

In the second part of this paper we describe our results about Trivium which
show a large related key-class (239 out of 280 keys) which produce identical key-
streams up to a shift. We solve the resulting non-linear sliding equations using
Magma and present several examples of such slid key-IV pairs. The interesting
observation is that for a shift of 111 clocks 24-key-bits do not appear in these
equations and thus for a fixed IV there is a 224 freedom of choice for the key
that may have a sliding property.

2 Slid Pairs in Salsa20

2.1 Brief Description of Salsa20

The Salsa20 encryption function uses the Salsa20 hash function in a counter
mode. The internal state of Salsa20 is a 4× 4 -matrix of 32-bit words. A vector
(y0, y1, y2, y3) of four words is transformed into (z0, z1, z2, z3) by calculating1

z1 = y1 ⊕ ((y0 + y3) ≪ 7) z3 = y3 ⊕ ((z2 + z1) ≪ 13)
z2 = y2 ⊕ ((z1 + y0) ≪ 9) z0 = y0 ⊕ ((z3 + z2) ≪ 18) .

1 In the complete Salsa20 section the symbol “+” denotes the addition modulo 232,
the other two symbols work at the level of the bits with “⊕” as XOR-addition and
“≪” as a shift of bits.

Slid Pairs in Salsa20 and Trivium 3

This nonlinear operation called quarterround is the basic part of the column-
round where it is applied to columns as well as of the rowround to transform
rows. A so called doubleround consists of a columnround followed by a row-
round. The doubleround function of Salsa20 is repeated 10 times. If Y denotes
the matrix a key-stream block is defined by

Z = Y + doubleround10(Y) .

One columnround as well as one rowround has 4 quarterrounds which means 48
word operations in total. Thus the 10 doublerounds of Salsa20 give 960 word
operations and result with the 16 word operations from the feedforward in 976
word operations in total for one encryption.

The cipher takes as input a 256-bit key (k0, . . . , k7), a 64-bit nonce (n0, n1)
and a 64-bit counter (c0, c1). A 128-bit key version of Salsa20 copies the 128-bit
key twice. In this paper we mainly concentrate on the 256-bit key version. The
remaining four words are set to fixed publicly known constants, denoted with
σ0, σ1, σ2 and σ3.

2.2 Slid Pairs

The structure of a doubleround can be rewritten as columnround then a matrix
transposition another columnround followed by a second transposition. We define
F to be a function which consists of a columnround followed by a transposition.
Now the 10 doublerounds can be transferred into 20 times function F . If we have
2 triples (key1, nonce1, counter1) and (key2, nonce2, counter2) so that

F [1st starting state (key1, nonce1, counter1)]
= 2nd starting state (key2, nonce2, counter2)

then this property holds for each point during the round computation and espe-
cially its end. Pay attention that the feedforward at the end of Salsa20 destroys
this property. We call such a pair of a 1st and 2nd starting state a slid pair and
show their relation in Fig. 1.

S Z
X

19×F

Z ′X ′F19×FS′

F

Fig. 1. Relation of a slid pair

In a starting state four words are constants and 12 words can be chosen freely
which leads to a total amount of 2384 possible starting states. If we want that
a starting state after applying function F results in a 2nd starting state we

4 D. Priemuth-Schmid and A. Biryukov

obtain four wordwise equations. This means we can choose eight words of the
1st starting state freely whereas the other four words are determined by the
equations as well as the words for the 2nd starting state. This leads to a total
amount of 2256 possible slid pairs.

For the 128-bit key version no such slid pair exists due to the additional
constrains of four fewer words freedom in the 1st starting state and four more
wordwise equations in the 2nd starting state.

With function F we get two equations S′ = F(S) and X ′ = F(X). The
words for these matrices we denote as

S =

⎛⎜⎜⎝
σ0 k0 k1 k2

k3 σ1 n0 n1

c0 c1 σ2 k4

k5 k6 k7 σ3

⎞⎟⎟⎠ X =

⎛⎜⎜⎝
x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

⎞⎟⎟⎠ Z =

⎛⎜⎜⎝
z0 z1 z2 z3

z4 z5 z6 z7

z8 z9 z10 z11

z12 z13 z14 z15

⎞⎟⎟⎠

S′ =

⎛⎜⎜⎝
σ0 k′

0 k′
1 k′

2

k′
3 σ1 n′

0 n′
1

c′0 c′1 σ2 k′
4

k′
5 k′

6 k′
7 σ3

⎞⎟⎟⎠ X ′ =

⎛⎜⎜⎝
x′

0 x′
1 x′

2 x′
3

x′
4 x′

5 x′
6 x′

7

x′
8 x′

9 x′
10 x′

11

x′
12 x′

13 x′
14 x′

15

⎞⎟⎟⎠ Z′ =

⎛⎜⎜⎝
z′
0 z′

1 z′
2 z′

3

z′
4 z′

5 z′
6 z′

7

z′
8 z′

9 z′
10 z′

11

z′
12 z′

13 z′
14 z′

15

⎞⎟⎟⎠ .

The set up of the system of equations for a whole Salsa20 computation is too
complicated but the equations for the computation of F are very clear. For a
complete description of the equations see the appendix A. The structure of both
systems of equations coming from the relation F is the same especially all the
known variables are at the same place. Due to the eight words freedom we have
in a 1st or 2nd starting state there are some relations in the 12 non-fixed words.
For the 2nd starting state these relations are very clear as they deal only with
words

0 = k′
2 + k′

1, 0 = k′
3 + n′

1, 0 = c′1 + c′0 and 0 = k′
7 + k′

6 , (1)

whereas for the 1st starting state these relations depend on the bits and thus
are more complicated. Sliding by the function F is applicable to any version of
Salsa20/r where r is even. For r odd there would be no transposition at the end
of the round computation, equations are a bit different, though still solvable.

2.3 Sliding State Recovery Attack on the Davies-Meyer Mode

In this subsection we consider a general state-recovery slide attack on a Davies-
Meyer construction. We demonstrate it on an example of Davies-Meyer feedfor-
ward used with the iterative permutation from Salsa20. The feedforward breaks
the sliding property and makes slide attack more complicated to mount. We
consider the following scenario:

1. The oracle chooses a secret 512-bit state S (here we assume that there is no
restriction of 128-bit diagonal constants and the full 512 bits can be chosen
at random).

2. The oracle computes F(S) = S′.

Slid Pairs in Salsa20 and Trivium 5

3. The oracle computes Salsa20(S), Salsa20(S′) and gives them to the attacker.
4. The goal of the attacker is to recover the secret state S.

Due to the weak diffusion of F the attacker can write separate systems of equa-
tions for each column of S. If one combines for one column the quarterround
coming from S′ = F(S) the corresponding quarterround from X ′ = F(X) and
the feedforward one gets a system with 16 equations shown below. We assume
all 16 variables are unknown.

s′1 = s4 ⊕ ((s0 + s12) ≪ 7)
s′2 = s8 ⊕ ((s′1 + s0) ≪ 9)
s′3 = s12 ⊕ ((s′2 + s′1) ≪ 13)
s′0 = s0 ⊕ ((s′3 + s′2) ≪ 18)

x′
1 = x4 ⊕ ((x0 + x12) ≪ 7)

x′
2 = x8 ⊕ ((x′

1 + x0) ≪ 9)
x′

3 = x12 ⊕ ((x′
2 + x′

1) ≪ 13)
x′

0 = x0 ⊕ ((x′
3 + x′

2) ≪ 18)

z0 = x0 + s0 z8 = x8 + s8

z4 = x4 + s4 z12 = x12 + s12

z′
0 = x′

0 + s′0 z′
2 = x′

2 + s′2
z′
1 = x′

1 + s′1 z′
3 = x′

3 + s′3

This system can be reduced to four equations. In the first equation two variables
must be guessed to solve it. In the remaining three equations always two variables
are known either the guessed s-variable or the calculated s′-variable. Thus they
can be solved without guessing any more variables. Depending on which variables
are guessed or known some of the equations can be used to check the guess.

z′
1 =

[
(z4 − s4)⊕

(
[(z0 − s0) + (z12 − s12)] ≪ 7

)]
+

[
s4 ⊕ ((s0 + s12) ≪ 7)

]
z′
2 =

[
(z8 − s8)⊕

(
[(z′

1 − s′1) + (z0 − s0)] ≪ 9
)]

+
[
s8 ⊕ ((s′1 + s0) ≪ 9)

]
z′
3 =

[
(z12 − s12)⊕

(
[(z′

2 − s′2) + (z′
1 − s′1)] ≪ 13

)]
+

[
s12 ⊕ ((s′2 + s′1) ≪ 13)

]
z′
0 =

[
(z0 − s0)⊕

(
[(z′

3 − s′3) + (z′
2 − s′2)] ≪ 18

)]
+

[
s0 ⊕ ((s′3 + s′2) ≪ 18)

]
Therefore the system of equations for one column with complete unknown vari-
ables can be solved by guessing only two variables. With the four guesses of 264

steps each the attacker can completely recover the 512-bit secret state S. This
shows that Salsa20 without the diagonal constants is easily distinguishable from
a random function, for which a similar task would require about 2511 steps.

The addition of the diagonal constants reduces the flexibility of the oracle in
a choice of the initial states to 2256 but the attack works even better:

1. The oracle chooses a starting state S′ with key k′, nonce n′ and counter c′

satisfying equations (1). The attacker does not know this state.
2. The oracle applies F−1(S′) to compute the related key k, nonce n and

counter c.
3. The oracle computes Salsa20(S), Salsa20(S′) and gives them to the attacker.
4. The goal of the attacker is to recover the secret state S.

The knowledge of the diagonal makes the previous attack even faster and allows
the full 384-bit (256-bit entropy) state recovery with complexity of 4·232 because
the known words appear at the same place in the system of equations for the
columns. If in a system of equations for one column two known variables appear
at different places this system is solvable immediately.

If the attacker chooses the nonce and the counter n′, c′ (160-bits of entropy)
then the complexity drops to 2 · 232. Furthermore if nonce and counter n, c are
known (128-bits of entropy left). The state can be recovered immediately (with

6 D. Priemuth-Schmid and A. Biryukov

→→
trans-

position

column

round

σ3 σ3σ3 k′
4k7 k′

7n′
1 k′

6k6k5 k′
2 k′

5

k′
7 k′

4k4 σ2σ2 σ2c′1c1 n′
0c0 c′0k′

1

n1 n′
1k′

6c′1n0 n′
0σ1 σ1 σ1k′

0 k′
3k3

k′
5k2 k′

2k1 k′
1c′0k′

3k0 k′
0σ0 σ0 σ0

Fig. 2. Relation of the 1st and 2nd starting state

or without knowing counter c′ and nonce n′). Figure 2 shows the relation for the
starting states with the known words indicated as grey squares.

Due to the fact that we are able to recover the full internal state this attack
also works as a related key key-recovery attack on Salsa20 because the key is
loaded directly into the internal state. A detailed description how to recover
both keys for a slid pair is given in the extended version [11]. Table 1 shows the
time complexities for the described attacks, memory complexity is negligible.

Table 1. Time complexities for state-recovery attacks

known words of the starting states sliding on Salsa20 random oracle

nothing 266 2511

only diagonal 234 2255

diagonal, nonce and counter n′, c′ 233 2159

diagonal, nonce and counter n, c O(1) 2127

diagonal, nonce and counter n, c and n′, c′ O(1) 263

2.4 A Generalized Related Key Attack on Salsa20

Suppose we are given a (possibly large) list of ciphertexts with the corresponding
nonces and counters and we are told that in this list the slid pair is hidden. The
question is, can we find slid pairs in a large list of ciphertexts efficiently? As we
saw in the previous section, given such slid ciphertext pair it is easy to compute
both keys. The task is made more difficult by the feedforward of Salsa20, which
destroys the sliding relationship. Nevertheless in this section we show that given
a list of ciphertexts of size O(2l) it is possible to detect a slid pair with memory
and time complexity of just O(2l)2. The naive approach which would require to
check for each possible pair the equations from function F will have complexity
O(22l) which is too expensive. Our idea is to reduce the amount of potential
pairs by sorting them by eight precomputed words, so that only elements where
these eight words match have the possibility to yield a slid pair. After decreasing
the number of possible pairs in that way we can check the remaining pairs using
additional constraints coming from the sliding equations.
2 Sorting is done via Bucket sort so we save the logarithmic factor l in complexity.

Slid Pairs in Salsa20 and Trivium 7

For the sorting we use Bucket sort because each word has only 232 possibilities.
The number of words we sort by is equal to the number of runs of Bucket sort.

We have a set M of ciphertexts with corresponding nonces and counters. Each
ciphertext can be either a 1st or a 2nd starting state to regard this the set is
stored twice first under M1 to check for possible 1st starting states and second
under M2 to check for possible 2nd starting states.

Step 1: Sort the first list
For each element in set M1 undo the feedforward for the four words on the diago-
nal and x9 = z9−c1. Then sort M1 by the specified eight words x0, x5, x10, x15, x9
and c1, z1, z13.

Step 2: Sort the second list3

Select only elements of M2 that satisfy equation 0 = c′0 + c′1 since only such an
entry can be a 2nd starting state. For each element undo the feedforward for the
four words on the diagonal and x′

6, . . . , x
′
9 because nonces and counters are known.

Then compute for each element the words marked in bold in the equations

x0 = x′
0 ⊕ ((z′

2 + z′
3) ≪ 18) k′

3 = −n′
1

x5 = x′
5 ⊕ ((z′

4 + n′
1 + x′

7) ≪ 18) x10 = x′
10 ⊕ ((x′

9 + x′
8) ≪ 18)

x15 = x′
15 ⊕ ((z′

13 + z′
14) ≪ 18) x1 = (z′

4 + n′
1)⊕ ((x′

7 + x′
6) ≪ 13)

x9 = x′
6 ⊕ ((x5 + x1) ≪ 7) k0 = k′

3 ⊕ ((n′
1 + n′

0) ≪ 13)
c1 = n′

0 ⊕ ((σ1 + k0) ≪ 7) z1 = x1 + k0

k6 = n′
1 ⊕ ((n′

0 + σ1) ≪ 9) z13 = (k6 + x′
7)⊕ ((x′

6 + x5) ≪ 9) .

During this computation we calculate three key words k0, k6 and k′
3. Sort the

set M2 by the calculated eight words x0, x5, x10, x15, x9 and c1, z1, z13 for the
potential 1st starting states.

Step 3: Check each possible pair
Cross check all the possible pairs that match in the eight words and thus satisfy
the 256-bit filtering. For the conforming pairs we can continue the check, using
the following equations. If a test condition is wrong this pair can not be a slid
pair. For each pair undo for the ciphertext of the 1st starting state the feedfor-
ward for the word x6 = z6−n0. Then compute the bold variables and check the
three conditions below

compute k′
4 = −c′0 + ((n0 ⊕ c′1) ≫ 13) x′

11 = −x′
8 + ((x6 ⊕ x′

9) ≫ 13)
k1 = c′0 ⊕ ((k′

4 + σ2) ≪ 9) x2 = x′
8 ⊕ ((x′

11 + x10) ≪ 9)
k7 = k′

4 ⊕ ((σ2 + n0) ≪ 7) x14 = x′
11 ⊕ ((x10 + x6) ≪ 7)

check z′
11 = x′

11 + k′
4 z2 = x2 + k1 z14 = x14 + k7 .

During this computation we calculate the three key words k1, k7 and k′
4.

3 If the number of rounds of Salsa is odd then such simple sorting would not be possible,
since Salsa equations are easier to solve in reverse direction. In our approach we know
2 words at the input and 3 words at the output of the columnround which is easier
to solve than the opposite (3 words at the input vs. 2 at the output). Nevertheless
the system is still solvable.

8 D. Priemuth-Schmid and A. Biryukov

For the rest of the pairs we have two similar systems of equations to check.
We first solve the following equations

z′
2 = [(z8 − c0)⊕ ((z′

1 − k′
0 + x0) ≪ 9)] + [c0 ⊕ ((k′

0 + σ0) ≪ 9)]
z′
13 = [(z7 − n1)⊕ ((z′

12 − k′
5 + x15) ≪ 9)] + [n1 ⊕ ((k′

5 + σ3) ≪ 9)]

and if there is no solution for k′
0 or k′

5 this pair can not be a slid pair. Otherwise
we use k′

0 as well as k′
5 to compute four more key words while we check two more

conditions in each system

with k′
0 k′

1 = c0 ⊕ ((k′
0 + σ0) ≪ 9) k′

2 = −k′
1

k5 = k′
2 ⊕ ((k′

1 + k′
0) ≪ 13) x′

1 = z′
1 − k′

0

x12 = (z′
3 − k′

2)⊕ ((z′
2 − k′

1 + x′
1) ≪ 13)

k3 = k′
0 ⊕ ((σ0 + k5) ≪ 7) x4 = x′

1 ⊕ ((x0 + x12) ≪ 7)

check z12 = x12 + k5 z4 = x4 + k3

with k′
5 k′

6 = n1 ⊕ ((k′
5 + σ3) ≪ 9) k′

7 = −k′
6

k4 = k′
7 ⊕ ((k′

6 + k′
5) ≪ 13) x′

12 = z′
12 − k′

5

x11 = (z′
14 − k′

7)⊕ ((z′
13 − k′

6 + x′
12) ≪ 13)

k2 = k′
5 ⊕ ((σ3 + k4) ≪ 7) x3 = x′

12 ⊕ ((x15 + x11) ≪ 7)

check z11 = x11 + k4 z3 = x3 + k2 .

For the checking of the potential slid pairs we have nine extra test conditions
while expecting only seven but due to the different arithmetic operations the
dependencies of the equations are not clear. In total we have at least filtering
power of 32× 7 bits. Thus we expect that only the correct slid pairs survive this
check. The remaining pairs are the correct slid pairs for which we completely
know both keys.

Complexity. Assume we are given a list of 2l ciphertexts with corresponding
nonces and counters. Instead of storing the list twice we use two kinds of pointers,
one for the potential 1st starting states and the other one for the potential 2nd

starting states. For the pointers we need l/32× 2l words of memory. The larger
the list of the random states in which our target is hidden – the larger would be
the complexity of the attack. However the time complexity of the attack grows
only linearly with the size of the list. A summary for the complexity of different
lists is given in Table 2 with memory in words and time in Salsa encryptions.

The number of slid pairs is 2256 which gives for a random starting the prob-
ability of 2−128 to be a 1st or a 2nd starting state. Via the birthday paradox we

Table 2. Complexities for different list sizes

list size memory time

2128 28× 2128 2122

2192 32× 2192 2186

2256 36× 2256 2250

Slid Pairs in Salsa20 and Trivium 9

expect in an amount of 2256 random ciphertexts for one slid pair both starting
states. We have described how to search in a big list efficiently for a slid pair
and recover both secret keys.

2.5 Time-Memory Tradeoff Attacks on Salsa

Salsa20 has 2384 possible starting states. We notice that the square root of 2384 is
less than the keyspace size for keys longer than 192-bits. Thus a trivial birthday
attack on 256-bit key Salsa20 would proceed as follows:

In the preprocessing stage a list of randomly chosen starting states together
with their ciphertexts is generated and sorted by the ciphertexts. During the
on-line stage ciphertexts are captured and checked for a match with an entry of
the list. The corresponding key is retrieved from the entry in the list.

Of course due to very high memory complexity this attack can be only viewed
as a certificational weakness. The complexities are summarized in Table 3 where
R stands for a complete run of Salsa20 and M for a matrix of Salsa (16 words).

Table 3. Complexities for the birthday attack

attack state precomp. memory time captured
for 256-bit key size space ciphertexts

chosen nonce and counter 2256 R × 2128 2M × 2128 2128 2128

chosen nonce or counter 2320 R × 2160 2M × 2160 2160 2160

general 2384 R × 2192 2M × 2192 2192 2192

using sliding property 2384 R × 2192 2.5M × 2192 2192 2191

Improved Birthday Using the Sliding Property. We can use the sliding
property to increase the efficiency of the birthday attack twice (which can be
translated into reduction of memory, time or increase of success probability of
the birthday attack).

Salsa20 has 2384 possible starting states in total and the sliding property
reduces the number of possible starting states to 2257 (a slid pair has two starting
states) which gives for a random starting state the probability of 2−127 to be a
starting state for a slid pair (either 1st or 2nd one).

During the preprocessing stage we generate a sample of 2192 2nd starting states
by using equation (1) from section 2.2 and choose the remaining eight words at
random. We compute the corresponding ciphertexts for these states as well as
the eight specified words for the corresponding 1st starting states mentioned
in section 2.4 Step 2. We use two kinds of pointers to sort this generated list
by the ciphertexts for the 2nd starting states and by the eight words for the
corresponding 1st starting state. We capture ciphertext from the key-stream
where we also know the nonce and the counter. The amount of 2191 captured
ciphertexts contains about either 264 1st starting states or 264 2nd starting states.
We check if the ciphertext is a correct one for a 2nd starting state from our list
(direct birthday) or is matching the eight words for a 1st starting state for one

10 D. Priemuth-Schmid and A. Biryukov

of the states from our collection (then proceed as described in section 2.4 Step 3
to check the remaining eight words) (indirect birthday). In both cases we learn
the key for this ciphertext.

3 Slid Pairs for Trivium

3.1 Brief Description of Trivium

The designers introduced the stream cipher Trivium with a state size of 288 bits.
This internal state can be split into three registers. The first register which we
call A has length 93, the second one called B has length 84 and the last register
named C has 111 bits. The internal state is denoted in the following way

A: (s1, s2, . . . , s93) B: (s94, s95, . . . , s177) C: (s178, s279, . . . , s288) .

Update and Key-Stream Production. The nonlinear update function of
degree 2 uses 15 bits of the internal state to compute three new bits each for
one register and the key-stream bit zi is calculated by adding only 6 of these 15
bits together. In the following pseudo-code all computations are over GF(2).

1. t1 ←− s66 + s93 5. t1 ←− t1 + s91 · s92 + s171

2. t2 ←− s162 + s177 6. t2 ←− t2 + s175 · s176 + s264

3. t3 ←− s243 + s288 7. t3 ←− t3 + s286 · s287 + s69

4. zi ←− t1 + t2 + t3

8. A: (s1, s2, ..., s93) ←− (t3, s1, . . . , s92)
9. B: (s94, s95, . . . , s177) ←− (t1, s94, . . . , s176)
10. C: (s178, s279, . . . , s288) ←− (t2, s178, . . . , s287)

Key and IV Setup. In register A the 80-bit key is loaded and in register B the
80-bit IV. All remaining positions in the three registers are set to zero except
for the last three bits in register C which are set to one

A: (s1, s2, ..., s93) ←− (K80, . . . , K1, 0, . . . , 0)
B: (s94, s95, . . . , s177) ←− (IV80, . . . , IV1, 0, . . . , 0)
C: (s178, s279, . . . , s288) ←− (0, . . . , 0, 1, 1, 1) .

In this paper we refer to this state with key, IV and 128 fixed positions as starting
state. After the registers are initialized in the described way the cipher is clocked
4× 288 times using the update function without producing any key-stream bits.
This will finish the key setup. Now each following clock will produce a key-stream
bit.

3.2 Slid Pairs

We start with the observation made by Jin Hong on the eSTREAM forum [7],
that it is possible to produce sliding states in Trivium. We searched for pairs

Slid Pairs in Salsa20 and Trivium 11

of key and IV which produce another starting state after a few clocks. If we
have a key and IV pair (K1, IV1) which produce another starting state with
a key and IV (K2, IV2), the created key-stream by (K2, IV2) will be the same
as the one created by (K1, IV1) except for a shift of some bits. The number
of shifted bits is equal the number of clocks needed to get from the 1st to the
2nd starting state. We call such a pair of two key and IV pairs a slid pair and
denote this with [(K1, IV1), (K2, IV2), c] whereas c stands for the number of
clocks-shifts.

Due to the special structure of the third register with 108 zeros and the last
three ones the first possibility of a 2nd starting state to occur is after 111 clocks.
Each following clock gives the chance for a 2nd starting state. Two examples for
slid pairs written in hexadecimal numbers are given below. The bits for keys and
IVs are ordered from 1 to 80 but in the key and IV setup they are used the other
way around.

[(K1, IV1), (K2, IV2), 111]

K1 : 70011000001E00000000

IV1 : AF9D635BCEF9AE376CF7

key-stream4: 2E7338CB404272ABEE3F7BEC2F8D

55E27536D29AFFFF15DFDFD711AECC78D13D7B61 . . .

K2 : 780000001DA2000003C1

IV2 : 1DF35CF6D4FFF4E3A6C0

key-stream: 55E27536D29AFFFF15DFDFD711AECC78D13D7B61 . . .

[(K3, IV3), (K4, IV4), 112]

K3 : 02065B9C001730000000

IV3: 609FC141828705160A3C

key-stream: A48BCA9143685F03DE646F83AB52

88BC9542798983349A959503E63BBF29C4755DE6 . . .

K4 : B98000003E96E70005CE

IV4 : 2B7C1483BC476A62E4CB

key-stream: 88BC9542798983349A959503E63BBF29C4755DE6 . . .

3.3 Systems of Equations

We describe the 2nd starting state as polynomial equations in the 80 key and
80 IV variables of the 1st pair. The 128 fixed positions in a starting state yield
a system of equations with 160 variables and 128 equations. We have more
variables than equations which gives us freedom in 32 variables. To solve these
systems we tried the F4 algorithm implemented in the computer algebra system
Magma to get a Gröbner basis and the solutions for (K1, IV1) but gave up after
c = 115 because of the long computation time. A more brute force approach
guessing a part of the variables, check this guess and print the solution which
4 The shift is c = 111 which means the first 111 bits are a prefix. When rewriting

these prefix from hexadecimal to binary numbers the leading zero must be omitted
because 111 is not a multiple of 4.

12 D. Priemuth-Schmid and A. Biryukov

Table 4. Some facts for the systems of equations

clock-shift c 111 112 113 114 115 116 . . . 124

variables in equations 136 137 138 139 140 141 . . . 149
last key bits not in the equation 24 23 22 21 20 19 . . . 11
a priori given bits 16 15 14 13 13 13 . . . 13
computing time magma (days) 2.5 2.5 10 32.5 64 - - -
guess bits for magma5 0 4 6 8 10 - - -

we implemented for each individual c worked much better. To get the 2nd key
and IV one can use the systems of equations which describe the key and IV in
the 2nd starting state just inserting the known values of the 1st key and IV pair
or simply clock Trivium c times starting from (K1, IV1) to get (K2, IV2).

Some Facts about these Systems. The system of equations for the first
instance which appears after 111 clocks contains only 136 variables because the
last 24 bits of the key do not occur in this system. Furthermore 16 bits are given
a priori due to the 13 zeros in register A and 3 ones in register C. The degree
of the monomials in the equations raised from 1 to 3. Due to the missing of
the 24 key bits in the equations these bits can be chosen arbitrarily. This leads
us to 224 different keys for one IV in the 1st key and IV pair of a slid pair.
Table 4 collects some facts for the systems which we solved with our brute force
approach. We found that we have some times slightly less but most times slightly
more solutions that we would have expected. This is described in detail in [11].

Each clock-shift yields in another but related system of equations and the
higher the clock-shift the more complicated the system of equations will be. Due
to the length of register C which defines the occurrence of a 2nd starting state
we have at least 111 clock-shifts. Thus we have minimum 111 × 232 ≈ 239 slid
pairs, just within a shift of 221 bits of each other. There are much more slid
pairs for longer shifts, but the equations would be much more complicated.

Nonexistence of Special Slid Pairs. We searched for slid pairs with ad-
ditional constraints. The first type applies when the keys in both key and IV
pairs are the same for any clock-shift c: ([(K, IV1), (K, IV2)], c) and the sec-
ond type applies when both times the same IV is used for any clock-shift c:
([(K1, IV), (K2, IV)], c). In both cases the fixed 2nd key or IV leads to 80 ad-
ditional equations which account for the occurrence of all 80-bit of key or IV
resulting in overdefined systems with 208 equations and 160 variables. For both
types the systems are not likely to be solvable for any reasonably small amount
of shift. As a result of the 48 extra equations the chance for such system to have
a solution is about 2−48. We computed that for the first 31 instances (clock-shifts
111 up to 142) these systems have no solution.

5 We guessed these bits to get a solution from Magma in a reasonable amount of time.

Slid Pairs in Salsa20 and Trivium 13

4 Conclusion

In this paper we have described sliding properties of Salsa20 and Trivium which
lead to distinguishing, key recovery and related-key attacks on these ciphers. We
also show that Salsa20 does not offer 256-bit security due to a simple birthday
attack on its 384-bit state. Since the likelihood of falling in our related key
classes by chance is relatively low (2256 out of 2384 for Salsa20, 239 out of 280

for Trivium) these attacks do not threaten most of the real-life usage of these
ciphers. However designer of protocols which would use these primitives should
be definitely aware of these non-randomness properties, which can be exploited
in certain scenarios.

References

1. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New Features
of Latin Dances: Analysis of Salsa, ChaCha and Rumba. In: Nyberg, K. (ed.) FSE
2008. LNCS, vol. 5086. Springer, Heidelberg (2008), Full version as IACR eprint,
http://eprint.iacr.org/2007/472

2. Bernstein, D.J.: Salsa20. eSTREAM, Report 2005/025 (2005)
3. De Cannière, C., Preneel, B.: TRIVIUM - a stream cipher construction inspired

by block cipher design principles. eSTREAM, Report 2005/030 (2005)
4. Crowley, P.: Truncated differential cryptanalysis of five rounds of Salsa20. In: SASC

2006 - Stream Ciphers Revisited (2006)
5. eSTREAM: The ECRYPT Stream Cipher Project,

http://www.ecrypt.eu.org/stream/

6. Fischer, S., Meier, W., Berbain, C., Biasse, J.-F., Robshaw, M.J.B.: Non-
randomness in eSTREAM Candidates Salsa20 and TSC-4. In: Barua, R., Lange, T.
(eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 2–16. Springer, Heidelberg (2006)

7. Hong, J.: Discussion Forum. certain pairs of key-IV pairs for Trivium, created
(September 13, 2005),
http://www.ecrypt.eu.org/stream/phorum/read.php?1,152

8. Maximov, A., Biryukov, A.: Two Trivial Attacks on Trivium. In: SASC 2007 - The
State of the Art of Stream Ciphers (2007)

9. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniSat.
eSTREAM, Report 2007/040 (2007)

10. Raddum, H.: Cryptanalytic Results on TRIVIUM. eSTREAM, Report 2006/039
(2006)

11. Priemuth-Schmid, D., Biryukov, A.: Slid Pairs in Salsa20 and Trivium. Cryptology
ePrint Archive, Report 2008/405 (2008), http://eprint.iacr.org/2008/405

12. Tsunoo, Y., Saito, T., Kubo, H., Suzaki, T., Nakashima, H.: Differential Crypt-
analysis of Salsa20/8. In: SASC 2007 - The State of the Art of Stream Ciphers
(2007)

13. Turan, M.S., Kara, O.: Linear Approximations for 2-round Trivium. In: SASC 2007
- The State of the Art of Stream Ciphers (2007)

14. Vielhaber, M.: Breaking ONE.Fivium by AIDA an Algebraic IV Differential At-
tack. Cryptology ePrint Archive, Report 2007/413 (2007),
http://eprint.iacr.org/2007/413

http://eprint.iacr.org/2007/472
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/phorum/read.php?1,152
http://eprint.iacr.org/2008/405
http://eprint.iacr.org/2007/413

14 D. Priemuth-Schmid and A. Biryukov

A Salsa20 System of Equations for a Slid Pair

Word equations given by the equations S′ = F(S) and X ′ = F(X).

1. k′
0 = k3 ⊕ ((σ0 + k5) ≪ 7)

2. k′
1 = c0 ⊕ ((k′

0 + σ0) ≪ 9)
3. k′

2 = k5 ⊕ ((k′
1 + k′

0) ≪ 13)
4. σ0 = σ0 ⊕ ((k′

2 + k′
1) ≪ 18)

5. n′
0 = c1 ⊕ ((σ1 + k0) ≪ 7)

6. n′
1 = k6 ⊕ ((n′

0 + σ1) ≪ 9)
7. k′

3 = k0 ⊕ ((n′
1 + n′

0) ≪ 13)
8. σ1 = σ1 ⊕ ((k′

3 + n′
1) ≪ 18)

9. k′
4 = k7 ⊕ ((σ2 + n0) ≪ 7)

10. c′0 = k1 ⊕ ((k′
4 + σ2) ≪ 9)

11. c′1 = n0 ⊕ ((c′0 + k′
4) ≪ 13)

12. σ2 = σ2 ⊕ ((c′1 + c′0) ≪ 18)

13. k′
5 = k2 ⊕ ((σ3 + k4) ≪ 7)

14. k′
6 = n1 ⊕ ((k′

5 + σ3) ≪ 9)
15. k′

7 = k4 ⊕ ((k′
6 + k′

5) ≪ 13)
16. σ3 = σ3 ⊕ ((k′

7 + k′
6) ≪ 18)

17. x′
1 = x4 ⊕ ((x0 + x12) ≪ 7)

18. x′
2 = x8 ⊕ ((x′

1 + x0) ≪ 9)
19. x′

3 = x12 ⊕ ((x′
2 + x′

1) ≪ 13)
20. x′

0 = x0 ⊕ ((x′
3 + x′

2) ≪ 18)

21. x′
6 = x9 ⊕ ((x5 + x1) ≪ 7)

22. x′
7 = x13 ⊕ ((x′

6 + x5) ≪ 9)
23. x′

4 = x1 ⊕ ((x′
7 + x′

6) ≪ 13)
24. x′

5 = x5 ⊕ ((x′
4 + x′

7) ≪ 18)

25. x′
11 = x14 ⊕ ((x10 + x6) ≪ 7)

26. x′
8 = x2 ⊕ ((x′

11 + x10) ≪ 9)
27. x′

9 = x6 ⊕ ((x′
8 + x′

11) ≪ 13)
28. x′

10 = x10 ⊕ ((x′
9 + x′

8) ≪ 18)

29. x′
12 = x3 ⊕ ((x15 + x11) ≪ 7)

30. x′
13 = x7 ⊕ ((x′

12 + x15) ≪ 9)
31. x′

14 = x11 ⊕ ((x′
13 + x′

12) ≪ 13)
32. x′

15 = x15 ⊕ ((x′
14 + x′

13) ≪ 18)

Word equations given by the feedforward for the key-stream words of the 1st

and 2nd starting state.

33. z0 = x0 + σ0

34. z1 = x1 + k0

35. z2 = x2 + k1

36. z3 = x3 + k2

37. z4 = x4 + k3

38. z5 = x5 + σ1

39. z6 = x6 + n0

40. z7 = x7 + n1

41. z8 = x8 + c0

42. z9 = x9 + c1

43. z10 = x10 + σ2

44. z11 = x11 + k4

45. z12 = x12 + k5

46. z13 = x13 + k6

47. z14 = x14 + k7

48. z15 = x15 + σ3

49. z′

0 = x′

0 + σ0

50. z′

1 = x′

1 + k′

0

51. z′

2 = x′

2 + k′

1

52. z′

3 = x′

3 + k′

2

53. z′

4 = x′

4 + k′

3

54. z′

5 = x′

5 + σ1

55. z′

6 = x′

6 + n′

0

56. z′

7 = x′

7 + n′

1

57. z′

8 = x′

8 + c′0
58. z′

9 = x′

9 + c′1
59. z′

10 = x′

10 + σ2

60. z′

11 = x′

11 + k′

4

61. z′

12 = x′

12 + k′

5

62. z′

13 = x′

13 + k′

6

63. z′

14 = x′

14 + k′

7

64. z′

15 = x′

15 + σ3

New Directions in Cryptanalysis of
Self-Synchronizing Stream Ciphers

Shahram Khazaei1 and Willi Meier2

1 EPFL, Lausanne, Switzerland
2 FHNW, Windisch, Switzerland

Abstract. In cryptology we commonly face the problem of finding an unknown
key K from the output of an easily computable keyed function F (C, K) where
the attacker has the power to choose the public variable C. In this work we focus
on self-synchronizing stream ciphers. First we show how to model these primi-
tives in the above-mentioned general problem by relating appropriate functions F

to the underlying ciphers. Then we apply the recently proposed framework pre-
sented at AfricaCrypt’08 by Fischer et. al. for dealing with this kind of problems
to the proposed T-function based self-synchronizing stream cipher by Klimov and
Shamir at FSE’05 and show how to deduce some non-trivial information about
the key. We also open a new window for answering a crucial question raised by
Fischer et. al. regarding the problem of finding weak IV bits which is essential
for their attack.

Keywords: Self-synchronizing Stream Ciphers, T-functions, Key Recovery.

1 Introduction

The area of stream cipher design and analysis has made a lot of progress recently, mostly
spurred by the eStream [6] project. It is a common belief that designing elegant strong
synchronizing stream ciphers is possible, however, it is harder to come up with suitable
designs for self-synchronizing ones. Despite numerous works on self-synchronizing
stream ciphers in the literature, there is not yet a good understanding of their design
and cryptanalytic methods. Many self-synchronizing stream ciphers have shown not
to withstand cryptanalytic attacks and have been broken shortly after they have been
proposed. In this work we show how to model a self-synchronizing stream cipher by a
family of keyed functions F (C, K). The input parameter C, called the public variable,
can be controlled by the attacker while the input K is an unknown parameter to her
called the extended key; it is a combination of the actual key used in the cipher and
the unknown internal state of the cipher. The goal of the attacker would be to recover
K or to get some information about it. The problem of finding the unknown key K,
when access is given to the output of the function F (C, K) for every C of the attacker’s
choice, is a very common problem encountered in cryptography. In general, when the
keyed function F looks like a random function, the best way to solve the problem is
to exhaust the key space. However, if F is far from being a random function there
might be more efficient methods. Recently, Fischer et. al. [7] developed a method to
recover the key faster than by exhaustive search in case F does not properly mix its

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 15–26, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 S. Khazaei and W. Meier

input bits. The idea is to first identify some bits from C referred to as weak public
variable bits and then to consider the coefficient of a monomial involving these weak
bits in the algebraic normal form of F . If this coefficient does not depend on all the
unknown bits of K, or it weakly depends on some of them, it can be exploited in an
attack. Having modeled the self-synchronizing stream ciphers as the above-mentioned
general problem, we consider the T-function based self-synchronizing stream cipher
proposed by Klimov and Shamir [8] and use the framework from [7] to deduce some
information about the key bits through some striking relations. Finding the weak public
variable bits was raised as a crucial open question in [7] which was done mostly by
random search there. In the second part of our work we try to shed some light in this
direction in a more systematic way. The recently proposed cube attack by Dinur and
Shamir [4], which has a strong connection to [7] and the present work, also includes
some systematic procedure to find weak public variable bits.

The rest of the paper is organized as follows. In section 2 we review the method
from [7] and try to make the connection between [4] and [7] clearer. In section 3 we
describe the self-synchronizing stream ciphers and explain how to derive keyed func-
tions F (C, K) which suit the framework from [7]. Section 4 covers the description of
the Klimov-Shamir T-function based self-synchronizing stream cipher along with its
reduced word-size versions which will later be attacked in section 5 and 6. Section 6
also includes our new direction of finding weak bits in a systematic way.

2 An Approach for Key Recovery on a Keyed Function

Notations. We use B = {0, 1} for the binary field with two elements. A general m-
bit vector in Bm is denoted by C = (c1, c2, . . . , cm). By making a partition of C into
U ∈ Bl and W ∈ Bm−l, we mean dividing the variables set {c1, c2, . . . , cm} into
two disjoint subsets {u1, ..., ul} and {w1, ..., wm−l} and setting U = (u1, . . . , ul) and
W = (w1, . . . , wm−l). However, whenever we write (U ; W) we mean the original
vector C. For example U = (c2, c4) and W = (c1, c3, c5) is a partition for the vector
C = (c1, c3, c4, c5) and (U ; W) is equal to C and not to (c2, c4, c1, c3, c5). We also use
the notation U = C \W and W = C \ U . A vector of size zero is denoted by ∅.

In this section we review the framework from [7] which was inspired by results
from [1, 5, 11]. Let F : Bm × Bn → B be a keyed Boolean function which maps the
m-bit public variable C and the n-bit secret variable K into the output bit z = F (C, K).
An oracle chooses a key K uniformly at random over Bn and returns z = F (C, K)
to an adversary for any chosen C ∈ Bm of adversary’s choice. The oracle chooses
the key K only once and keeps it fixed and unknown to the adversary. The goal of the
adversary is to recover K by dealing with the oracle assuming that he has also the power
to evaluate F for all inputs, i.e. all secret and public variables. To this end, the adversary
can try all possble 2n keys and filter the wrong ones by asking enough queries from the
oracle. Intuitively each oracle query reveals one bit of information about the secret key
if F mixes its input bits well enough to be treated as a random Boolean function with
n + m input bits. Therefore, assuming log2 n � m, then n key bits can be recovered
by sending O(n) queries to the oracle. More precisely if the adversary asks the oracle
n + β queries for some integer β � 0, then the probability that only the unknown

New Directions in Cryptanalysis 17

chosen key by the oracle (i.e. the correct candidate) satisfies these queries while all the
remaining 2n − 1 keys fail to satisfy all the queries is (1− 2−(n+β))2

n−1 ≈ 1− e−2−β

(for β = 10 it is about 1−10−3). The required time complexity isO(n2n). However, if
F extremely deviates from being treated as a random function, the secret key bits may
not be determined uniquely. It is easy to argue that F divides Bn into J equivalence
classes K1, K2, . . . ,KJ for some J ≤ 2n, see Lemma 1 from [7]. Two keys K′ and
K′′ belong to the same equivalence class iff F (C, K′) = F (C, K′′) for all C ∈ Bm. Let
ni denotes the number of keys which belong to the equivalence class Ki. Note that we
have

∑J
i=1 ni = 2n. A random key lies in the equivalence class Ki with probability

ni/2n in which case (n − log2 ni) bits of information can be achieved about the key.
The adversary on average can get

∑J
i=1(n − log2 ni) ni

2n bits of information about the
n key bits by asking enough queries. It is difficult to estimate the minimum number of
needed queries due to the statistical dependency between them. It highly depends on
the structure of F but we guess that O(n) queries suffice again. However, in case where
F does not properly mix its input bits, there might be faster methods than exhaustive
search for key recovery. We are interested in faster methods of recovering the unknown
secret key in this case.

If one derives a weaker keyed function Γ (W, K) : Bm−l × Bn → B from F
which depends on the same key and a part of the public variables, the adversary-
oracle interaction can still go on through Γ this time. The idea of [7] is to derive
such functions from the algebraic expansion of F by making a partition of the m-
bit public variable C into C = (U ; W) with l-bit vector U and (m − l)-bit vector
W . Let F (C, K) =

∑
α Γα(W, K)Uα where Uα = uα1

1 uα2
2 . . . uαl

l for the multi-
index α = (α1, . . . , αl). In other words, Γα(W, K) is the coefficient of Uα in the
algebraic expansion of F . For every α ∈ Bl, the function Γα(W, K) can serve as a
function Γ derived from F . The function corresponding to α = (1, . . . , 1) is the co-
efficient of the maximum degree monomial. Previous works [5, 7] suggest that this
function is usually more useful. We also only focus on the maximum degree monomial
coefficient. Hence we drop the subscript α and write Γ (W, K) instead of Γα(W, K)
for α = (1, . . . , 1). Inspired by the terminology of [4] we refer to U as cube vector
and to Γ (W, K) as superpoly corresponding to cube vector U . Thanks to the relation
Γ (W, K) =

⊕
U∈Bl F ((U ; W), K), the adversary can still evaluate the superpoly for

any W of his choice and for the same chosen key K by the oracle. This demands that
the adversary sends 2l queries to the oracle for each evaluation of Γ .

In order to have an effective attack we need to have a weak superpoly function.
In [7] several conditions were discussed under which the superpoly can be considered
as a weak function and potentially lead to an attack. Refer to [4] for more scenarios and
generalizations. In this paper we look for cube vectors U such that their superpoly does
not depend on a large number of key bits. We refer to those key bits which Γ (W, K)
does not depend on as neutral key bits. This is a special case of the third scenario in [7]
where probabilistic neutral bits were used instead. If the superpoly effectively depends
on tk ≤ n key bits and tw ≤ m − l public key bits, assuming these tk + tw bits are
mixed reasonably well, the involved tk secret bits can be recovered in time tk2l+tk by
sending O(tk2l) queries to the oracle. However, if the superpoly extremely deviates
from being treated as a random function, as we already argued, it may even happen

18 S. Khazaei and W. Meier

that the tk key bits can not be determined uniquely. In this case one has to look at
the corresponding equivalence classes to see how much information one can achieve
about the involved tk key bits. In sections 5 and 6 we will provide some examples by
considering Klimov-Shamir’s self-synchronizing stream cipher.

2.1 Connection with Previous Works

The attack is closely related to differential [2, 9] and integral [10, 3] kind of attacks,
and the recent cube attack [4]. For l = 0 we have U = ∅ and W = C and hence
Γ = F , that is we are analyzing the original function. For l = 1 let’s take U = (ci) and
W = C \ (ci) for some 1 ≤ i ≤ m. In this case we are considering a variant of (trun-
cated) differential cryptanalysis, that is we have Γ (W, K) = F (C, K)⊕F (C⊕∆C, K)
where ∆C is an m-bit vector which is zero in all bit positions except the i-th one.
For bigger l, this approach can be seen as an adaptive kind of higher order differential
cryptanalysis. A more precise relation between the framework in [7] and (higher order)
differential cryptanalysis seems to be as follows: The superpoly Γ (W, K), which com-
putes the coefficient of the maximum degree monomial, is computed as the sum of all
outputs F (C, K) where C = (U ; W) has a fixed part W and U varies over all possible
values. This is what is also done in (higher order) differential cryptanalysis. However,
in applications of the framework in [7], the values for W are often chosen adaptively.
By adaptively we mean that a stronger deviation from randomness is observed for some
specific choices for W (e.g. low weight W ’s) or even a specific value for W (e.g. W =
0). Whereas in most applications of (higher order) differential cryptanalysis, specific in-
put values are of no favour. The recently proposed cube attack by Dinur and Shamir [4]
still lies in the second scenario (condition) proposed in [7], having had been inspired by
the earlier work by Vielhaber [12]. In [7] the public variable C was the Initial Vector
of a stream cipher and the cube variables were called weak IV bits whenever the de-
rived function Γ turned out to be weak enough to mount an attack. This concept can
be adapted according to each context depending on the public variable (weak cipher-
text bits, weak plaintext bits, weak message bits, etc). In general the terminology weak
public variables can be used. On the whole, it is not easy to find week public variables.
While [4] uses a more systematic procedure, [7] uses random search over cube vectors.
In section 6, we will also take kind of systematic method. Another point which is worth
mentioning is that cube attack [4] nicely works with complexity O(n2d−1) if F is a
random function of degree d in its m + n input bits. In this case the superpoly corre-
sponding to any cube vector of size d − 1 is weak, since it is a random linear function
in key bits and remaining public variables.

3 Self-Synchronizing Stream Ciphers

A self-synchronizing stream cipher is built on an output filter O : K × S → M and a
self-synchronizing state update function (see Definition 1) U : M×K×S →M, where
S, K and M are the cipher state space, key space and plaintext space. We suppose that
the ciphertext space is the same as that of the plaintext. Let K ∈ K be the secret key,
and {Si}∞i=0, {pi}∞i=0 and {ci}∞i=0 denote the sequences of cipher state, plaintext and
ciphertext respectively. The initial state is computed through the initialization procedure

New Directions in Cryptanalysis 19

as S0 = I(K, IV) from the secret key K and a public initial value IV . The ciphertext
(in an additive stream cipher) is then computed according to the following relations:

ci = pi ⊕O(K, Si), (1)

Si+1 = U(ci, K, Si). (2)

Definition 1. [8] (SSF) Let {ci}∞i=0 and {ĉi}∞i=0 be two input sequences, let S0 and
Ŝ0 be two initial states, and let K be a common key. Assume that the function U is used
to update the state based on the current input and the key: Si+1 = U(ci, K, Si) and
Ŝi+1 = U(ĉi, K, Ŝi). The function U is called a self-synchronizing function (SSF) if
equality of any r consecutive inputs implies the equality of the next state, where r is
some integer, i.e.:

ci = ĉi, . . . , ci+r−1 = ĉi+r−1 ⇒ Si+r = Ŝi+r. (3)

Definition 2. The ”resynchronization memory” of a function U , assuming it is a SSF,
is the least positive value of r such that Eq. 3 holds.

3.1 Attack Models on Self-Synchronizing Stream Ciphers

There are two kinds of attack on synchronizing stream ciphers: distinguishing attacks
and key recovery attacks1. The strongest scenario in which these attacks can be applied
is a known-keystream attack model or a chosen-IV-known-keystream attack if the cipher
uses an IV for initialization. It is not very clear how applying distinguishing attacks
make sense for self-synchronizing stream ciphers. However, in the strongest scenario,
one considers key recovery attacks in a chosen-ciphertext attack model or in a chosen-
IV-chosen-ciphertext attack if the cipher uses an IV for initialization.

In this paper we only focus on chosen-ciphertext attacks. Our goal as an attacker is
to efficiently recover the unknown key K by sending to the decryption oracle chosen ci-
phertexts of our choice. More precisely, we consider the family of functions {Hi : Mi×
K×S →M|i = 1, 2, . . . r}, where r is the resynchronization memory of the cipher and
Hi(c1, . . . , ci, K, S) = O(K,Gi(c1, . . . , ci, K, S)), where Gi : Mi × K × S → S is
recursively defined as Gi+1(c1, . . . , ci, ci+1, K, S) = U(ci+1, K,Gi(c1, . . . , ci, K, S))
with initial condition G1 = U .

Note that due to the self-synchronizing property of the cipher Hr(c1, . . . , cr, K, S)
is actually independent of the last argument S, however, all other r−1 functions depend
on their last input. The internal state of the cipher is unknown at each step of operation
of the cipher but because of the self-synchronizing property of the cipher it only depends
on the last r ciphertext inputs and the key. We take advantage of this property and force
the cipher to get stuck in a fixed but unknown state S� by sending the decryption oracle
ciphertexts with some fixed prefix (c�

−r+1, . . . , c
�
−1) of our choice. Having forced the

cipher to fall in the unknown fixed state S�, we can evaluate any of the functions Hi,
i = 1, 2, . . . , r, at any point (c1, . . . , ci, K, S�) for any input (c1, . . . , ci) of our choice

1 One could also think of state recovery attack in cases in which the synchronizing stream cipher
is built based on a finite state machine and the internal state does not easily reveal the key.

20 S. Khazaei and W. Meier

by dealing with the decryption oracle. To be clearer let z = Hi(c1, . . . , ci, K, S�). In
order to compute z for an arbitrary (c1, . . . , ci), we choose an arbitrary c�

i+1 ∈ M
and ask the decryption oracle for (p−r+1, . . . , p−1, p0, . . . , pi+1)– the decrypted plain-
text corresponding to the ciphertext (c�

−r+1, . . . , c
�
0, c1, . . . , ci, c

�
i+1). We then set z =

pi+1 ⊕ c�
i+1.

To make notations simpler, we merge the unknown values K and S� in one unknown
variable K = (K, S�) ∈ K × S, called extended unknown key. We then use the sim-
plified notation Fi(C, K) = Hi(c1, . . . , ci, K, S�) : Mi × (K × S) → M where
C = (c1, . . . , ci).

4 Description of the Klimov-Shamir T-Function Based
Self-Synchronizing Stream Cipher

Shamir and Klimov [8] used the so-called multiword T-functions for a general method-
ology to construct a variety of cryptographic primitives. No fully specified schemes
were given, but in the case of self-synchronizing stream ciphers, a concrete example
construction was outlined. This section recalls its design. Let ≪, +, ×, ⊕ and ∨
respectively denote left rotation, addition modulo 264, multiplication modulo 264, bit-
wise XOR and bit-wise OR operations on 64-bit integers. The proposed design works
with 64-bit words and has a 3-word internal state S = (s0, s1, s2)T . A 5-word key
K = (k0, k1, k2, k3, k4) is used to define the output filter and the state update function
as follows:

O(K, S) =
(
(s0 ⊕ s2 ⊕ k3) ≪ 32

)
×

(
((s1 ⊕ k4) ≪ 32) ∨ 1

)
, (4)

and

U
(
c, K, S

)
=

⎛⎜⎝
(
((s′1 ⊕ s′2) ∨ 1)⊕ k0

)2(
((s′2 ⊕ s′0) ∨ 1)⊕ k1

)2(
((s′0 ⊕ s′1) ∨ 1)⊕ k2

)2

⎞⎟⎠ , (5)

where

s′0 = s0 ⊕ c
s′1 = s1 − (c ≪ 21)
s′2 = s2 ⊕ (c ≪ 43).

(6)

Generalized Versions. We also consider generalized versions of this cipher which use
ω-bit words (ω even and typically ω = 8, 16, 32 or 64). For ω-bit version the number
of rotations in the output filter, Eq. 4, is ω

2 and those of the state update function, Eq. 6,
are �ω

3 � and � 2ω
3 �, �x� being the closest integer to x.

It can be shown [8] that the update function U is actually a SSF whose resynchro-
nization memory is limited to ω steps and hence the resulting stream cipher is self-
synchronizing indeed. Our analysis of the cipher for ω = 8, 16, 32 and 64 shows that
it resynchronizes after r = ω−1 steps (using ω(ω−1) input bits). It is an open question
if this holds in general.

New Directions in Cryptanalysis 21

Remark 1. In [8] the notation (k0, k1, k2, kO, k′
O) is used for the key instead of the

more standard notation (k0, k1, k2, k3, k4). The authors possibly meant to use a 3-word
key (k0, k1, k2) by deriving the other two key words (kO and k′

O in their notations
corresponding to k3 and k4 in ours) from first three key words. However, they do not
specify how this must be done if they meant so. Also they did not introduce an ini-
tialization procedure for their cipher. In any case, we attack a more general situation
where the cipher uses a 5-word secret key K = (k0, k1, k2, k3, k4) in chosen-ciphertext
attack scenario. Moreover, for the 64-bit version the authors mentioned ”the best attack
we are aware of this particular example [64-bit version] requiresO(296) time”, without
mentioning the attack.

5 Analysis of the Klimov-Shamir T-Function Based
Self-Synchronizing Stream Cipher

Let ω (ω = 8, 16, 32 or 64) denote the word size and r = ω−1 be the resynchronization
memory of the ω-bit version of the Klimov-Shamir self-synchronizing stream cipher.
Let B = {0, 1} and Bω denote the binary field and the set of ω-bit words respectively.
Following the general model of analysis of self-synchronizing stream ciphers in sec-
tion 3.1, we focus on the family of functionsFi(C, K) : Bi

ω×B8
ω → Bω, i = 1, 2, . . . , r

where C = (c1, . . . , ci) and K = (K, S�) = (k0, k1, k2, k3, k4, s
�
0, s

�
1, s

�
2). We also look

at a word b as an ω-bit vector b = (b0, . . . , bω−1), b0 being its LSB and bω−1 its MSB.
Therefore any vector A = (a0, a1, ..., ap−1) ∈ Bp

ω could be also treated as a vec-
tor in Bp×ω where the (iω + j)-th bit of A is ai,j , the j-th LSB of the word ai, for
i = 0, 1, . . . , p−1 and j = 0, 1, . . . , ω−1 (we start numbering the bits of vectors from
zero).

Now, for any i = 1, . . . , r and j = 0, . . . , ω − 1 we consider the family of Boolean
functionsFi,j : Biω×B8ω → B which maps the iω-bit input C and the 8ω-bit extended
key K into the j-th LSB of the word Fi(C, K). Any of these keyed functions can be
put into the framework from [7] explained in section 2. The next step is to consider a
partitioning C = (U ; W) with l-bit segment U and (iω − l)-bit segment W to derive
the (hopefully weaker) functions Γ U

i,j : Biω−l × B8ω → B where Γ U
i,j is the superpoly

in Fi,j corresponding to the cube vector U . Whenever there is no ambiguity we drop
the superscript or the subscripts. We may also use Γ U

i,j [ω] in some cases to emphasize
the word-size. We are now ready to give our simulation results.

Note: Instead of giving giving the variables of cube vector U we give the bit num-
bers. For example for ω = 16, the set {0, 18, 31, 32} stands for the cube vector U =
(c1,0, c2,2, c2,15, c3,0).

Example 1. For all possible common word sizes (ω = 8, 16, 32 or 64) we have been
able to find some i, j and U such that Γ is independent of W and only depends on three
key bits k0,0, k1,0 and k2,0. Table 1 shows some of these quite striking relations. We

also found relations Γ
{3}
1,0 [8] = 1 + k2,0 and Γ

{6,7,8,9,10}
1,0 [16] = 1 + k0,0 involving only

one key bit. For ω = 64, the three relations in Table 1 give 1.75 bits of information
about (k0,0, k1,0, k2,0).

22 S. Khazaei and W. Meier

Table 1. Simple relations on three key bits (k0,0, k1,0, k2,0)

ω i j U Γ U
i,j [ω]

8 2 0 {2} 1 + k0,0k1,0 + k0,0k2,0 + k1,0k2,0

16 3 0 {5} 1 + k0,0k1,0 + k2,0 + k0,0k1,0k2,0

16 3 0 {10} 1 + k0,0 + k1,0k2,0 + k0,0k1,0k2,0

32 5 0 {11} 1 + k0,0k1,0 + k2,0 + k0,0k1,0k2,0

32 16 0 {96, 97, 98} 1 + k0,0 + k2,0 + k0,0k2,0

64 11 0 {21} 1 + k0,0k1,0 + k2,0 + k0,0k1,0k2,0

64 11 0 {42} 1 + k0,0 + k1,0k2,0 + k0,0k1,0k2,0

64 12 0 {20} 1 + k0,0k1,0 + k0,0k2,0 + k1,0k2,0

A more detailed analysis of the functions Γ U
i,j [ω](W, K) for different values of i, j and

U reveals that many of these functions depend on only few bits of their (iω − l)-bit
and 8ω-bit arguments. Let tw and tk respectively denote the number of bits of W and
K which Γ effectively depends on. In addition let t′k out of tk bits come from K and
the remaining ts = tk − t′k bits from S� (remember K = (K, S�)). Table 2 shows these
values for some of these functions.

Having in mind what we mentioned in section 2 and being too optimistic, we give
the following proposition.

Table 2. Effective number of bits of each argument which Γ depends on. Note that the functions
having the same number of effective bits do not necessarily have the same involved variables.

ω i j U tk tw t′k ts comment
8 1 0 ∅ 20 8 9 11
16 1 0 ∅ 40 16 17 23
32 1 0 ∅ 80 32 33 47
64 1 0 ∅ 160 64 65 95
8 1 0 {1} 9 5 3 6
16 1 0 {u} 18 11 6 12 8 ≤ u ≤ 10
32 1 0 {u} 42 23 14 28 16 ≤ u ≤ 20
64 1 0 {u} 90 51 30 60 32 ≤ u ≤ 42
8 3 0 {8} 4 6 4 0
8 3 0 {18} 5 7 5 0
16 7 0 {16} 17 58 17 0
16 7 0 {34} 16 52 16 0
16 7 0 {33, 34} 12 33 12 0
16 7 0 {38, 39} 12 30 12 0
32 15 0 {32} 41 293 41 0
32 15 0 {66} 40 279 40 0
32 15 0 {76, 77} 36 231 36 0
64 31 0 {64} 89 1274 89 0
64 31 0 {130} 88 1243 88 0
64 31 0 {129, 130} 84 1158 84 0
64 31 0 {150, 151} 84 1155 84 0

New Directions in Cryptanalysis 23

Proposition 1. If a function Γ U
i,j is random-looking enough, recovering the tk unknown

bits of the extended key takes expected time i× tk × 2l+tk .

The unity of time is processing one ciphertext word of the underlined self-synchronizing
stream cipher. The factors 2l and i come from the following facts: computing Γ from
Fi needs 2l evaluations of Fi (remember Γ U

i,j(W, K) =
⊕

U∈Bl Fi,j((U ; W), K)) and
computing Fi needs i iterations of the cipher.

Even if the ideal condition of Proposition 1 is not satisfied, the only thing which is
not guaranteed is that the tk involved unknown bits are uniquely determined. Yet some
information about them can be achieved. Refer to the note in section 2 regarding the
equivalence classes.

Example 2. Take the relation Γ
{18}
3,0 [8](W, K) from Table 2. This particular function

depends on tk = 5 bits (k0,0, k0,1, k1,0, k2,0, k2,1) of the key and on tw = 7 bits
(c1,4, c1,5, c1,6, c2,0, c2,1, c2,5, c2,6) of the ciphertext. The ANF of this function is:

Γ
{18}
3,0 [8] = 1 + k0,0k0,1 + k0,0k0,1k2,0 + k2,0k2,1 + k0,0c1,4+

k0,0k2,0c1,4 + k0,0k1,0c1,5 + k0,0k1,0k2,0c1,5+
k0,0c1,6 + k0,0k2,0c1,6 + k2,0c2,0 + k0,0k2,0c2,0+
k2,0c2,1 + c2,0c2,1 + k0,0c2,0c2,1 + k2,0c2,0c2,1+
k0,0k2,0c2,0c2,1 + k1,0k2,0c2,5 + k2,0c2,6.

(7)

This equation can be seen as a system of 2tw = 128 equations versus tk = 5 unknowns.
Our analysis of this function shows that only 48 of the equations are independent which
on average can give 3.5 bits of information about the five unknown bits (2 bits of infor-
mation for 25% of the keys and 4 bits for the remaining 75% of the keys).

Example 3. Take the relation Γ
{33,34}
7,0 [16](W, K) from Table 2. This particular function

depends on tk = 12 key bits and on tw = 33 ciphertext bits. Our analysis of this
function shows that on average about 2.41 bits of information about the 12 key bits can
be achieved (10 bits of information for 12.5% of the keys, 3 bits for 25% of the keys
and 0.67 bits about the remaining 62.5% of the keys).

Example 4. Take the relation Γ
{38,39}
7,0 [16](W, K) from Table 2. This particular function

depends on tk = 12 key bits and on tw = 30 ciphertext bits. Our analysis of this
function shows that on average about 1.94 bits of information about the 12 key bits can
be achieved (10 bits of information for 12.5% of the keys, 3 bits for another 12.5% of
the keys and 0.42 bits for the remaining 75% of the keys).

Example 5. Take the relation Γ
{34}
7,0 [16](W, K) from Table 2. This particular function

depends on tk = 16 key bits and on tw = 52 ciphertext bits. Our analysis of this
function shows that on average about 5.625 bits of information about the 16 key bits
can be achieved (13 bits of information for 25% of the keys, 11 bits for 12.5% of the
keys, 4 bits for another 12.5% of the keys, and 1 bit for the remaining 50% of the keys).

For larger values of i we expect Γ to fit better the ideal situation of Proposition 1. There-
fore, we give the following claim about the security of the 64-bit version of Klimov-
Shamir’s proposal.

24 S. Khazaei and W. Meier

Ta
bl

e
3.

F
in

di
ng

w
ea

k
ci

ph
er

te
xt

bi
ts

in
a

sy
st

em
at

ic
w

ay
(f

or
Γ

1
,0

[6
4]

)

U
K

W
t k

t w
t′ k

t s
T

im
e

{4
1}

{0
−

19
,
21
−

30
,
38

4
−

41
4,

44
9
−

46
7,

46
9
−

47
8}
{0
−

9,
22
−

40
,
42
−

63
}9

0
51

30
60

29
7
.5

{9
,
41
}

{0
−

19
,
21
−

29
,
38

4
−

41
3,

44
9
−

46
7,

46
9
−

47
7}
{0
−

8,
22
−

40
,
42
−

63
}8

7
50

29
58

29
5
.4

{8
,
9,

41
}

{0
−

19
,
21
−

28
,
38

4
−

41
2,

44
9
−

46
7,

46
9
−

47
6}
{0
−

7,
22
−

40
,
42
−

63
}8

4
49

28
56

29
3
.4

{7
−

9,
41
}
{0
−

19
,
21
−

27
,
38

4
−

41
1,

44
9
−

46
7,

46
9
−

47
5}
{0
−

6,
22
−

40
,
42
−

63
}8

1
48

27
54

29
1
.3

{6
−

9,
41
}
{0
−

19
,
21
−

26
,
38

4
−

41
0,

44
9
−

46
7,

46
9
−

47
4}
{0
−

5,
22
−

40
,
42
−

63
}7

8
47

26
52

28
9
.3

. . .
. . .

{1
−

9,
41
}

{0
−

19
,
21

,
38

4
−

40
5,

44
9
−

46
7,

46
9}

{0
,
22
−

40
,
42
−

63
}

63
42

21
42

27
9
.0

{1
−

9,
40

,
41
}

{0
−

18
,
21

,
38

4
−

40
5,

44
9
−

46
6,

46
9}

{0
,
22
−

39
,
42
−

63
}

61
41

20
41

27
7
.9

{1
−

9,
39
−

41
}

{0
−

17
,
21

,
38

4
−

40
5,

44
9
−

46
5,

46
9}

{0
,
22
−

38
,
42
−

63
}

59
40

19
40

27
6
.9

. . .
. . .

{1
−

9,
34
−

41
}

{0
−

12
,
21

,
38

4
−

40
5,

44
9
−

46
0,

46
9}

{0
,
22
−

33
,
42
−

63
}

49
35

14
35

27
1
.7

{1
−

9,
33
−

41
}

{0
−

11
,
21

,
38

4
−

40
5,

44
9
−

45
9,

46
9}

{0
,
22
−

32
,
42
−

63
}

47
34

13
34

27
0
.5

{1
−

9,
32
−

41
}

{0
−

10
,
21

,
38

4
−

40
5,

44
9
−

45
8,

46
9}

{0
,
22
−

31
,
42
−

63
}

45
33

12
33

26
9
.5

New Directions in Cryptanalysis 25

Proposition 2. We expect each of the functions Γ
{129,130}
31,0 [64] and Γ

{150,151}
31,0 [64] to

reveal a large amount of information about the corresponding tk = 84 involved key
bits for a non-negligible fraction of the keys. The required computational time is 31 ×
84× 22+84 ≈ 292.8.

In [7] the bits of the set U were called weak IV bits. With the same terminology, here
we call them weak ciphertext bits. How to find these weak bits was raised as an open
question in [7]. In the next section we present a systematic procedure to find weak
ciphertext bits, with the consequence of improving Proposition 2.

6 Towards a Systematic Approach to Find Weak Ciphertext Bits

The idea is to start with a set U and extend it gradually. At each step we examine all the
ciphertext bits which Γ U depends on, to choose an extended U for the next step which
results in a Γ which depends on the least number of key bits. Table 3 shows our simula-
tion results by starting from function Γ

{41}
1,0 [64] from Table 2 which effectively depends

on tk = 90 extended key bits and tw = 51 ciphertext bits. Similar to Proposition 2, one
expects each of the functions Γ U

1,0[64] in Table 3 to reveal a large amount of information
about the corresponding tk involved extended key bits (including t′k effective key bits)
for a non-negligible fraction of the keys in time tk2l+tk , as indicated in the last col-
umn. In particular by starting from the function in the bottom of Table 3, (the promised
large amount of information about) the involved t′k = 12 key bits and ts = 33 internal
state bits can be gained in time 269.5 (for a non-negligible fraction of the keys). Notice,
that once we have the correct value for the unknown extended key for some function in
Table 3, those of the previous function can be recovered by little effort. Therefore we
present the following proposition.

Proposition 3. We expect that by starting from Γ
{1−9,32−41}
1,0 [64] and going backwards

to Γ
{41}
1,0 [64] as indicated in Table 3, a large amount of information about the involved

tk = 90 unknown bits (including t′k = 30 effective key bits) is revealed for a non-
negligible fraction of the keys in time 269.5 .

Remark 2. By combining the results of different functions Γ one can get better results.
Finding an optimal combination demands patience and detailed examination of different
Γ ’s. We make this statement clearer by an example as follows. Detailed analysis of
Γ

{129,130}
31,0 [64] and Γ

{150,151}
31,0 [64] shows that the key bits which they depend on are

{0−27, 64−90, 128−156} and {0−28, 64−90, 128−155}, respectively. These two
functions have respectively 27 and 28 bits in common with the 30 key bits {0−19, 21−
30} involved in Γ

{41}
1,0 [64]. They also include the key bits {0, 32, 64} for which 1.75

information can be easily gained according to Ex. 1. Taking it altogether it can be said
that a large amount of information about the 88 key bits {0−30, 32, 64−90, 128−156}
can be achieved in time 269.5 with a non-negligible probability.

7 Conclusion

In this work we proposed a new analysis method for self-synchronizing stream ciphers
which was applied to Klimov-Shamir’s example of a construction of a T-function based

26 S. Khazaei and W. Meier

self-synchronizing stream cipher. We did not fully break this proposal but the strong key
leakage demonstrated by our results makes us believe a total break is not out of reach.
In future design of self-synchronizing stream ciphers one has to take into account and
counter potential key leakage.

Acknowledgement. We would like to thank Martijn Stam for his helpful editorial com-
ments.

References

1. Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New Features of Latin
Dances: Analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 470–488. Springer, Heidelberg (2008)

2. Biham, E., Shamir, E.: Differential Cryptanalysis of DES-like Cryptosystems. In: Menezes,
A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg
(1991)

3. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher Square. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

4. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. Cryptology ePrint
Archive, Report 385 (2008)

5. Englund, H., Johansson, T., Turan, M.S.: A Framework for Chosen IV Statistical Analysis of
Stream Ciphers. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS,
vol. 4859, pp. 268–281. Springer, Heidelberg (2007)

6. eSTREAM - The ECRYPT Stream Cipher Project,
http://www.ecrypt.eu.org/stream

7. Fischer, S., Khazaei, S., Meier, W.: Chosen IV Statistical Analysis for Key Recovery Attacks
on Stream Ciphers. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 236–
245. Springer, Heidelberg (2008)

8. Klimov, A., Shamir, A.: New Applications of T-Functions in Block Ciphers and Hash Func-
tions. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 18–31. Springer,
Heidelberg (2005)

9. Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.) FSE 1994.
LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

10. Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE
2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

11. O’Neil, S.: Algebraic Structure Defectoscopy. Cryptology ePrint Archive, Report 2007/378
(2007), http://www.defectoscopy.com

12. Vielhaber, M.: Breaking ONE.FIVIUM by AIDA an Algebraic IV Differential Attack. Cryp-
tology ePrint Archive, Report 2007/413

http://www.ecrypt.eu.org/stream
http://www.defectoscopy.com

Analysis of RC4 and Proposal of Additional
Layers for Better Security Margin

Subhamoy Maitra1 and Goutam Paul2

1 Applied Statistics Unit, Indian Statistical Institute,
Kolkata 700 108, India
subho@isical.ac.in

2 Department of Computer Science and Engineering,
Jadavpur University, Kolkata 700 032, India

goutam paul@cse.jdvu.ac.in

Abstract. In this paper, the RC4 Key Scheduling Algorithm (KSA) is
theoretically studied to reveal non-uniformity in the expected number of
times each value of the permutation is touched by the indices i, j. Based
on our analysis and the results available in the literature regarding the
existing weaknesses of RC4, few additional layers over the RC4 KSA
and RC4 Pseudo-Random Generation Algorithm (PRGA) are proposed.
Analysis of the modified cipher (we call it RC4+) shows that this new
strategy avoids existing weaknesses of RC4.

Keywords: Bias, Cryptography, Keystream, KSA, PRGA, RC4, Secret
Key, Stream Cipher.

1 Introduction and Motivation

RC4 is one of the most popular and efficient stream ciphers. The data struc-
ture of RC4 consists of an array S of size N (typically, 256), which contains a
permutation of the integers {0, . . . , N − 1}, two indices i (deterministic) and j
(pseudo-random) and a secret key array K. Given a secret key key of l bytes
(typically 5 to 32), the array K of size N is such that K[y] = key[y mod l] for
any y, 0 ≤ y ≤ N − 1.

There are two components of the cipher: the Key Scheduling Algorithm (KSA)
that turns an identity permutation into a random-looking permutation and the
Pseudo-Random Generation Algorithm (PRGA) that generates keystream bytes
which get XOR-ed with the plaintext bytes to generate ciphertext bytes. All
additions in both the KSA and the PRGA are additions modulo N .

KSA

Initialization:
For i = 0, . . . , N − 1

S[i] = i;
j = 0;

Scrambling:
For i = 0, . . . , N − 1

j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

PRGA

Initialization:
i = j = 0;

Keystream Generation Loop:
i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 27–39, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

28 S. Maitra and G. Paul

The literature on RC4 cryptanalysis is quite rich. There have been several
works on the reconstruction of the permutation looking at the keystream output
bytes [10,31,19]. Of these, the latest one [19] achieves a complexity of 2241, ren-
dering RC4 insecure with key length beyond 30 bytes. Further, knowing the per-
mutation, it is also possible to get certain information on the secret key [23,2,1].

Apart from these, there exist several other works [5,22,13,14,15,16,26,27] on
the weaknesses of the RC4 PRGA. However, all of these exploit the initial
keystream bytes only. According to [20], if some amount of initial keystream
bytes are thrown away, then RC4 is quite safe to use. Moreover, it is argued
in [13,25] that many biases in the PRGA are due to the propagation of the
biases in the KSA via Glimpse Theorem [8,15]. These biases in the keystream
would disappear, if one could remove the corresponding biases in the permuta-
tion during the KSA.

In this paper, we discuss several weaknesses of RC4 and suggest remedies to
overcome them. During last few years, there have been efforts, e.g., VMPC [35],
RC4A [27], RC4(n, m) [6] etc. on the modification of RC4 towards further im-
provement and there also exist distinguishing attacks on them [18,32,33]. This
shows that there is significant interest in the cryptographic community for anal-
ysis and design of RC4 and its modifications. However, in all of these ciphers,
the design is modified to a great extent relative to RC4. We keep the RC4 struc-
ture as it is and add a few more operations to strengthen the cipher. Thus, we
attempt to exploit the good points of RC4 and then provide some additional
features for a better security margin.

One may argue that concentrating on the eSTREAM candidates [3] is more
practical than modifying RC4. However, the eSTREAM candidates have com-
plicated structure in general and they work on word (32 bit) oriented manner.
Our goal is to keep the simple structure of RC4 and add a few steps to it to
have a byte oriented stream cipher with further strength. The existing litera-
ture on RC4 reveals that in spite of having a very simple description, the cipher
possesses nice combinatorial structures in the shuffle-exchange paradigm. Our
design retains this elegant property of RC4 and at the same time removes the
existing weaknesses.

2 Movement Frequency of Permutation Values

Before we go into the technicalities, let us introduce a few notations. We denote
the initial identity permutation by S0 and the permutation at the end of the r-th
round of the KSA by Sr, 1 ≤ r ≤ N . Note that r = y+1, when the deterministic
index i takes the value y, 0 ≤ y ≤ N − 1. Thus, the permutation after the KSA
will be denoted by SN . By jr, we denote the value of the index j after it is

updated in round r. Also, let fy = y(y+1)
2 +

y∑
x=0

K[x], that would be referred

frequently in the subsequent discussions.
We observe that many values in the permutation are touched once with a very

high probability by the indices i, j during the KSA.

Analysis of RC4 and Proposal of Additional Layers 29

Theorem 1. The probability that a value v in the permutation is touched exactly
once during the KSA by the indices i, j, is given by 2v

N ·(N−1
N)N−1, 0 ≤ v ≤ N−1.

Proof. Initially, v is located at index v in the permutation. It is touched exactly
once in one of the following two ways.

1. v is not touched by any of {j1, j2, . . . , jv} in the first v rounds. In round v+1,
when i becomes v, the value v at index v is moved to the left by jv+1 due
to the swap and remains there until the end of KSA. Thus, the probability
contribution of this part is (N−1

N)v · v
N · (N−1

N)N−v−1 = v
N · (N−1

N)N−1.
2. For some t, 1 ≤ t ≤ v, it is not touched by any of {j1, j2, . . . , jt−1}; then it is

touched for the first time by jt = v in round t and hence is moved to index
t−1; and it is not touched by any one of the subsequent (N−t) many j values.

The probability contribution of this part is
v∑

t=1

(N−1
N)t−1 · 1

N · (N−1
N)N−t =

v
N · (N−1

N)N−1.

Adding the above two contributions, we get the result.
�

Using similar arguments one could compute the probability that a value is
touched exactly twice, thrice and in general x times, during the KSA. However,
the computation would be tedious and complicated for x > 1. A more natural
measure of this asymmetric behaviour would be the expected number of times
each value in the permutation is touched during the KSA. This is computed in
the next theorem.

Theorem 2. The expected number of times a value v in the permutation is
touched by the indices i, j during the KSA is given by Ev = 1+(2N−v

N) · (N−1
N)v,

0 ≤ v ≤ N − 1.

Proof. Let xv,y = 1, if the value v is touched by the indices i, j in round y +1 of
the KSA (i.e., when i = y); otherwise, let xv,y = 0, 0 ≤ v ≤ N−1, 0 ≤ y ≤ N−1.
Then the number of times v is touched by i, j during the KSA is given by

Xv =
N−1∑
y=0

xv,y . In any round y+1, any value v is touched by j with a probability

1
N . To this, we need to add the probability of v being touched by i, in order to
find P (xv,y = 1). Now, v is touched by the index i in round y + 1, iff Sy[y] = v.
We consider three possible ways in which Sy[y] can become v.

1. Case y < v. Initially, the value v was situated in index v. In order for v to
move from index v to index y < v, either v has to be touched by i and y has
to be touched by j, or vice versa, during the first y rounds. But this is not
possible, giving P (Sy[y] = v) = 0.

2. Case y = v. We would have Sv[v] = v, if v is not touched by any of
{j1, j2, . . . , jv} in the first v rounds, the probability of which is (N−1

N)v.
3. Case y > v. Once Sv[v] = v, the swap in the next round moves the value

v to a random location jv+1, giving P (Sv+1[y] = v) = (N−1
N)v · 1

N . For all

30 S. Maitra and G. Paul

y > v, until y is touched by the deterministic index i, i.e., until round y + 1,
v will remain randomly distributed. Hence, for all y > v, P (Sy[y] = v) =
P (Sv+1[y] = v) = 1

N (N−1
N)v.

Noting that E(xv,y) = P (xv,y = 1) = 1
N +P (Sy[y] = v), we have Ev = E(Xv) =

N−1∑
y=0

E(xv,y) = 1 +
v−1∑
y=0

P (Sy[y] = v) + P (Sv[v] = v) +
N−1∑

y=v+1

P (Sy[y] = v) =

1 + (2N−v
N) · (N−1

N)v (adding the three-part contributions).
�

We find that Ev decreases from 3.0 to 1.37, as v increases from 0 to 255. To
demonstrate how close the experimental values of the expectations match with
our theoretical values, we perform 100 million runs the KSA, with random key
of 16 bytes in each run. The experimental results correspond to the theoretical
formula, as summarised in the first two rows of Table 1 in Section 3.3.

In [24,1], it is shown that the probabilities P (jy+1 = S−1
N [y]) increase with

increasing y. This is connected to the above decreasing pattern in the expec-
tations. In the first half of the KSA, i.e., when y is small, the values v = S[y]
are thrown more to the right with high probability by the index jy+1 due to
the swap and hence are touched again either by the deterministic index i or by
the pseudo-random index j in the subsequent rounds. On the other hand, in the
second half of the KSA, i.e., when y ≥ 128, the values v = S[y] are thrown more
to the left by the index jy+1 due to the swap and hence are never touched by i
in the subsequent rounds, and may be touched by j with a small probability.

Towards designing a key scheduling algorithm in shuffle-exchange paradigm,
it is important that each value in the permutation is touched (and therefore
moved with probability almost one) sufficient number of times. In such a case, it
will be harder to guess the values of j for which a permutation byte is swapped.
In RC4 KSA, there are many permutation bytes which are swapped only once
with a high probability, leading to information leakage from SN regarding the
secret key bytes. We keep this in mind while designing the modified KSA in the
next section.

3 Removing the Weaknesses of KSA

In this section, we first look into what are the existing weaknesses of the RC4
KSA, followed by suggestions to remove them. We propose a new version of the
KSA and study its security issues.

3.1 Existing Weaknesses

Many works have explored the RC4 KSA and discovered its different weaknesses.
Here we present an overview of these results.

(1) In [28], it was empirically shown that the probabilities P (SN [y] = fy)
decrease from 0.37 for y = 0 to 0.006 for y = 48 (with N = 256) and beyond
that settle down to 0.0039 (≈ 1

256). Later, in [23], explicit formula for these

Analysis of RC4 and Proposal of Additional Layers 31

probabilities for all y ∈ [0, . . . , N − 1] were theoretically derived. This result was
further used in [23,2,1] to recover the secret key from the final permutation SN

after the KSA.
(2) In RC4 KSA, the update rule is j = (j+S[i]+K[i]). The work [23] showed

that for a certain class of update functions which update j as a function of “the
permutation S and j in the previous round” and “the secret key K”, it is always
possible to construct explicit functions of the key bytes which the permutation
at every stage of the KSA will be biased to.

(3) It has been shown in [13] that the bytes SN [y], SN [SN [y]], SN [SN [SN [y]]],
and so on, are biased to fy. In particular, they showed that P (SN [SN [y]] = fy)
decreases from 0.137 for y = 0 to 0.018 for y = 31 and then slowly settles down
to 0.0039 (beyond y = 48).

(4) Analysis in [24,1] shows that inverse permutations S−1
N [y], S−1

N [S−1
N [y]],

and so on are biased to jy+1, and in turn, to fy.
(5) It was shown for the first time in [17, Chapter 6] and later investigated

further in [20,25] that each permutation byte after the KSA is significantly biased
(either positive or negative) towards many values in the range 0, . . . , N − 1. For
each y, 0 ≤ y ≤ N−2, P (SN [y] = v) is maximum at v = y+1 and this maximum
probability ranges approximately between 1

N (1 + 1
3) and 1

N (1 + 1
5) for different

values of y, with N = 256.
(6) The work [4] showed for the first time that RC4 can be attacked when

used in the IV mode (e.g. WEP [11]). Subsequently, there have been series of
improvements [15,9,30,34] in this direction, exploiting the propagation of weak
key patterns to the keystream output bytes.

3.2 Proposal for KSA+ : A Revised KSA

In this section, we present a modified design (called KSA+) that removes the
weaknesses of RC4 KSA discussed in Section 3.1. The evaluation for such a
design is presented in Section 3.3. In this case, we will name the permutation
after the KSA+ as SN+ .

We propose a three-layer key scheduling followed by the initialization. The
initialization and basic scrambling in the first layer are the same as the original
RC4 KSA.

Initialization

For i = 0, . . . , N − 1
S[i] = i;

j = 0;

Layer 1: Basic Scrambling

For i = 0, . . . , N − 1
j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

In the second layer, we scramble the permutation further using IV’s. According
to [7], for stream ciphers using IV’s, if the IV is shorter than the key, then the
algorithm may be vulnerable against the Time Memory Trade-Off attack. Thus,
in this effort, we choose the IV size as the same as the secret key length. The
deterministic index i moves first from the middle down to the left end and then
from the middle upto the right end. In our scheme, an l-byte IV, denoted by an
array iv[0, . . . , l−1], is used from index N

2 −1 down to N
2 − l during the left-ward

movement and the same IV is repeated from index N
2 up to N

2 + l − 1 during

32 S. Maitra and G. Paul

the right-ward movement. Here, we assume that N is even, which is usually the
case in standard RC4. For ease of description, we use an array IV of length N
with IV [y] = 0 for those indices which are not used with IV’s.

For N = 256 and l = 16, this gives a placement of 16 × 2 = 32 many bytes
in the middle of the IV array spanning from index 112 to 143. This is to note
that repeating the IV bytes will create a dependency so that one cannot choose
all the 32 bytes freely to find some weakness in the system as one byte at the
left corresponds to one byte at the right (when viewed symmetrically from the
middle of an N -byte array). Further, in two different directions, the key bytes
are added with the IV bytes in an opposite order. Apart from the 2l many
operations involving the IV , the rest of N − 2l many operations are without the
involvement of IV in Layer 2. This helps in covering the IV values and chosen
IV kind of attacks will be hard to mount.

Layer 2: Scrambling with IV

For i = N
2
− 1 down to 0

j = (j + S[i]) ⊕ (K[i] + IV [i]);
Swap(S[i], S[j]);

For i = N
2

, . . . , N − 1
j = (j + S[i]) ⊕ (K[i] + IV [i]);
Swap(S[i], S[j]);

Layer 3: Zigzag Scrambling

For y = 0, . . . , N − 1
If y ≡ 0 mod 2 then i = y

2
;

Else i = N − y+1
2

;
j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

In the third and final layer, we perform more scrambling in a zig-zag fashion,
where the deterministic index i takes values in the following order: 0, 255, 1, 254,
2, 253, . . ., 125, 130, 126, 129, 127, 128. In general, if y varies from 0 to N − 1
in steps of 1, then i = y

2 or N − y+1
2 depending on y is even or odd respectively.

Introducing more scrambling steps definitely increases the cost of the cipher.
The running time of the KSA+ is around three times that of RC4 KSA, because
there are three similar scrambling layers instead of one, each having N iterations.
As the key scheduling is run only once, this will not affect the performance of
the cipher much.

3.3 Analysis of KSA+ with Respect to RC4 KSA

In this section, we discuss how the new design avoids many weaknesses of the
original RC4 KSA. We performed extensive experiments to verify that KSA+ is
indeed free from the weaknesses of the RC4 KSA. In all our experiments that
are presented in this section, we use null IV, i.e., iv[y] = 0 for all y. We could
not find any weakness with such null IV as well as with randomly chosen IV’s.

Removal of Secret Key Correlation with the Permutation Bytes: Let
us first discuss on Layer 2 of the KSA+. The deterministic index i is moved
from the middle to the left end so that the values in the first quarter of the
permutation, which were biased to linear combination of the secret key bytes,
are swapped. This helps in removing the biases in the initial values of Item (1)
described in Section 3.1. This is followed by a similar operation in the second
half of the permutation to get rid of the biases of the inverse permutation as

Analysis of RC4 and Proposal of Additional Layers 33

described in Item (4). Next, the XOR operation helps further to wipe out these
biases. The biases considering the nested indexing mentioned in Item (3) and
Item (4) arise due to the biases of direct indexing. So, the removal of the biases
at the direct indices of SN and S−1

N gets rid of those at the nested indices also.
The bias of Item (2), which is a generalization of the bias of Item (1), origi-

nates from the incremental update of j which helps to form a recursive equation
involving the key bytes. In the new design, the bit-by-bit XOR operation as well
as the zig-zag scrambling in Layer 3 prevents in forming such recursive equations
connecting the key bytes and the permutation bytes.

We could not find any correlation between SN+ [y] (also SN+ [SN+ [y]],
SN+ [SN+ [SN+ [y]]], . . .) with fy. We believe that with our design, it is not possi-
ble to get correlation of the permutation bytes with any function combining the
secret key bytes.

In Section 2, the relation between the biases of the inverse permutation and
the movement frequency of the permutation values has been discussed in detail.
The following experimental results show that, such weaknesses of RC4 KSA are
absent in our design. Averaging over 100 million runs of KSA+ with 16 bytes
key in each run, we find that as v increases from 0 to 255, Ev decreases from
4.99 to 3.31 after the end of Layer 2 and from 6.99 to 5.31 after the end of
Layer 3. Table 1 shows the individual as well as the incremental effect of each of
Layer 2 and Layer 3, when they act upon the identity permutation S0 and the
permutation SN obtained after Layer 1. The data illustrate that the effect of
Layer 2 or Layer 3 over identity permutation S0 is similar as Layer 1. However,
after Layer 1 is over (when we have somewhat random permutation SN coming
out of RC4 KSA), each of Layer 2 and Layer 3 individually enforces each value
in the permutation to be touched uniformly (approximately twice) when the
average is considered over many runs.

Table 1. Average, Standard Deviation, Maximum and Minimum of the expectations
Ev over all v between 0 and 255. Here Lr means Layer r, r = 1, 2, 3.

avg sd max min

RC4 KSA (KSA+ L1)
Theory 2.0025 0.4664 3.0000 1.3700
Experiment 2.0000 0.4655 2.9959 1.3686

KSA+ L2 (Experiment)
L2 on S0 2.0000 0.4658 2.9965 1.3683
L2 on SN 2.0000 0.0231 2.0401 1.9418
L1 + L2 4.0000 0.4716 4.9962 3.3103

KSA+ L3 (Experiment)
L3 on S0 2.0000 0.4660 3.0000 1.3676
L3 on SN 2.0000 0.0006 2.0016 1.9988
L1 + L2 + L3 6.0000 0.4715 6.9962 5.3116

Uniform values of the expectations can be achieved easily with normal RC4,
by keeping a count of how many times each element is touched and performing
additional swaps involving the elements that have been touched less number of
times. However, this will require additional space and time. In normal RC4, many
permutation elements are touched only once (especially those towards the right
end of the permutation), leaking information on j in the inverse permutation.
Our target is to prevent this by increasing the number of times each element is
touched, without keeping any additional space such as a counter. The data in
Table 1 show that this purpose is served using our strategy.

34 S. Maitra and G. Paul

How Random is SN+ : Now we present experimental evidences to show how
the biases of Item (5) in RC4 KSA are removed. We compare the probabilities
P (S[u] = v) for 0 ≤ u, v ≤ 255 from standard KSA and our KSA+. All the
experiments are performed with 100 million runs, each with a randomly chosen
secret key of length 16 bytes and null IV.

Experimental results show that there exists some non-uniformities after Layer
2, which is completely removed after Layer 3. The maximum and minimum values
of the probabilities as well as the standard deviations summarised in Table 2
elaborate this fact further.

Table 2. Average, Standard Deviation, Maximum and Minimum of the Probabilities
P (S[u] = v) over all u and v between 0 and 255. Note that 1

N
= 0.003906 for N = 256.

avg sd max min

RC4 KSA Theory [25, Theorem 1] 0.003901 0.000445 0.005325 0.002878
Experiment 0.003906 0.000448 0.005347 0.002444

KSA+ (Experiment)
After Layer 2 0.003906 0.000023 0.003983 0.003803
After Layer 3 0.003906 0.000006 0.003934 0.003879

In [17, Page 67], it was mentioned that the RC4 KSA need to be executed
approximately 6 times in order to get rid of these biases. Whereas, in our case,
we need to run KSA effectively 3 times.

On Introducing the IV’s: The IV-mode attacks, mentioned in Item (6) of
Section 3.1, succeed because in the original RC4, IV’s are either prepended or
appended with the secret key. As the Layer 2 shows, in KSA+, we use the IV’s in
the middle and also the corresponding key bytes are added in the updation of j.
In Layer 2, 2l many operations involve IV values, but N−2l many operations do
not. Moreover, after the use of IV, we perform a third layer of zig-zag scrambling
where no use of IV is made. This almost eliminates the possibility of chosen IV
attack once the key scheduling is complete.

SSL protocol bypasses the WEP attack [4] by generating the encryption keys
used for RC4 by hashing (using both MD5 and SHA-1) the secret key and the
IV together, so that different sessions have unrelated keys [29]. Since our KSA+

is believed to be free from the IV-weaknesses, it can be used without employing
hashing. Thus, the cost of hashing can be utilized in the extra operations in
Layer 2 and Layer 3. This conforms to our design motivation to keep the basic
structure of RC4 KSA and still avoid the weaknesses.

On Retaining the Standard KSA in Layer 1: One may argue that Layer
1 is not necessary and Layer 2, 3 would have taken care of all the existing
weaknesses of RC4. While this may be true, these two layers, when operated on
identity permutation, might introduce some new weaknesses not yet known. It is
a fact that RC4 KSA has some weaknesses, but it also reduces the key correlation
with the permutation bytes and other biases at least to some extent compared
to the beginning of the KSA. In the process, it randomizes the permutation to
a certain extent. The structure of RC4 KSA is simple and elegant and easy to
analyze. We first let this KSA run over the identity permutation, so that we
can target the exact biases that are to be removed in the subsequent layers. In

Analysis of RC4 and Proposal of Additional Layers 35

summary, we wanted to keep the good features of RC4 KSA, and remove only
the bad ones.

We evaluated the performance of our new design using the eSTREAM testing
framework [3]. The C-implementation of the testing framework was installed
in a machine with Intel(R) Pentium(R) 4 CPU, 2.8 GHz Processor Clock, 512
MB DDR RAM on Ubuntu 7.10 (Linux 2.6.22-15-generic) OS. A benchmark
implementation of RC4 is available within the test suite. We implemented our
modified RC4, which we call RC4+, that incorporates both KSA+ and PRGA+,
maintaining the API compliance of the suite. Test vectors were generated in the
NESSIE [21] format.

Tests with 16 bytes secret key and null IV using the gcc default O3-ual-ofp
compiler report 16944.70 cycles/setup for RC4 KSA and 49823.69 cycles/setup
for the KSA+ of RC4+. Thus, we can claim that the running time of our KSA+

is approximately 49823.69
16944.70 = 2.94 times than that of the RC4 KSA.

4 PRGA+: Modifications to RC4 PRGA

There are a number of important works related to the analysis of the RC4 PRGA.
The main directions of cryptanalysis in this area are

(1) finding correlations between the keystream output bytes and the secret
key [28,22,13] and key recovery in the IV mode [4,15,9,30,34] (these exploit the
weaknesses of both the KSA and the PRGA),

(2) recovering the RC4 permutation from the keystream output bytes [10,31,19]
and

(3) identifying distinguishers [14,27,16].
In Section 3.2, we proposed KSA+ in such a manner that one cannot get

secret key correlations from the permutation bytes. This guarantees that the
keystream output bytes, which are some combination of the permutation bytes,
cannot have any correlation with the secret key. As argued in Section 3.3, IV’s
are used in such a way, that they cannot be easily exploited to mount an attack.
So we target the other two weaknesses, enlisted in Item (2) and (3) above, in
our design of PRGA+.

For any byte b, bn
R (respectively bn

L) denotes the byte after right (respectively
left) shifting b by n bits. For r ≥ 1, we denote the permutation, the indices i, j
and the keystream output byte after round r of the PRGA (or PRGA+) by SG

r ,
iGr , jG

r and zr respectively.
The main idea behind this design of PRGA+ is masking the output byte such

that it is not directly coming out from any permutation byte. Two bytes from
the permutation are added modulo 256 (a nonlinear operation) and then the
outcome is XOR-ed with a third byte (for masking non-uniformity). Introducing
additional S[t′], S[t′′], over the existing S[t] in RC4, makes the running time of
PRGA+ more than that of RC4 PRGA. Note that the evolution of the permu-
tation S in PRGA+ stays exactly the same as in RC4 PRGA. We introduce a
constant value 0xAA (equivalent to 10101010 in binary) in t′, as without this, if

36 S. Maitra and G. Paul

jG becomes 0 in rounds 256, 512, . . . (i.e., when iG = 0), then t and t′ in such a
round become equal with probability 1, giving an internal bias.

RC4 PRGA

Initialization:
i = j = 0;

Keystream Generation Loop:
i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

PRGA+

Initialization:
i = j = 0;

Keystream Generation Loop:
i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
t′ = (S[i3R ⊕ j5

L] + S[i5L ⊕ j3
R]) ⊕ 0xAA;

t′′ = j + S[j];
Output z = (S[t] + S[t′])⊕ S[t′′];

Resisting Permutation Recovery Attacks: The basic idea of cryptanalysis
in [19] is as follows. Corresponding to a window of w+1 keystream output bytes,
one may assume that all the j’s are known, i.e., jG

r , jG
r+1, . . . , j

G
r+w are known.

Thus w many SG
r [iGr] will be available from jG

r+1−jG
r . Then w many equations of

the form SG−1

r [zr] = SG
r [iGr]+SG

r [jG
r] will be found where each equation contains

only two unknowns. The idea of [10] (having complexity around 2779 to 2797)
actually considered four unknowns jG, SG[iG], SG[jG], SG−1

[z].
Our design does not allow the strategy of [19] as SG[SG[iG] + SG[jG]] is

not exposed directly, but it is masked by several other quantities. To form the
equations as given in [19], one first needs to guess SG[t], SG[t′], SG[t′′] and looking
at the value of z, there is no other option than to go for all the possible choices.
The same permutation structure of S in RC4+ can be similarly exploited to get
the good patterns [19, Section 3], but introducing additional t′, t′′, we ensure the
non-detectability of such a pattern in the keystream and thus the idea of [19,
Section 4] will not work.

Information on permutation bytes is also leaked in the keystream via the
Glimpse Main Theorem [8,15], which states that during any PRGA round,
P (S[j] = i − z) = P (S[i] = j − z) ≈ 2

N . The assumption i = S[i] + S[j] holds
with a probability 1

N , leading to the bias P (S[j] = i− z) = 1
N ·1+(1− 1

N) · 1
N =

2
N − 1

N2 ≈ 2
N . To obtain such biases in PRGA+, one need to have more assump-

tions of the above form. Thus, Glimpse like biases of PRGA+, if at all exist,
would be much weaker.

Resisting Distinguishing Attacks: In [14], it was proved that P (z2 = 0) = 2
N

instead of the uniformly random case of 1
N . This originates from the fact that

when SN [2] = 0 and SN [1] �= 2 after the KSA, the second keystream output
byte z2 takes the value 0. Based on this, they showed a distinguishing attack
and a ciphertext-only attack in broadcast mode. We avoid this kind of situation
in our design. As a passing remark, we like to present an experimental result.
Hundred million secret keys of length 16 byte are generated and 1024 rounds
of PRGA are executed for each such key. The empirical evidences indicate that
P (zr = v) = 1

N , 1 ≤ r ≤ 1024, 0 ≤ v ≤ N − 1.

Analysis of RC4 and Proposal of Additional Layers 37

In the work [27], it was observed that P (z1 = z2) = 1
N − 1

N2 , which leads
to a distinguishing attack. Even after extensive experimentation, we could not
observe such bias in the keystream output bytes of PRGA+. The same experi-
ment described above supported that P (zr = zr+1) is uniformly distributed for
1 ≤ r ≤ 1023.

In [16], it has been shown that getting strings of pattern ABTAB (A, B are
bytes and T is a string of bytes of small length G, say G ≤ 16) are more probable
in RC4 keystream than in random stream. In uniformly random keystream, the
probability of getting such pattern irrespective of the length of T is 1

N2 . It has
been shown in [16, Theorem 1] that for RC4, the probability of such an event

is 1
N2 (1 + e

−4−8G
N

N), which is above 1
N2 , but less than 1

N2 + 1
N3 . This result is

based on the fact that the permutation values in locations that affect the swaps
and the selection of output bytes in both pairs of rounds that are G-round
apart, remain unchanged with high probability during the intermediate rounds.
The permutation in PRGA+ evolves in the same way as RC4 PRGA, but the
keystream output generation in PRGA+ is different, which does not allow the
pattern AB to propagate down the keystream with higher probability for smaller
interval lengths (G). In [16], 216 keystreams of size 224 each were used to observe
these biases effectively. The simulation on PRGA+ reveals that it is free from
these biases.

We now present the software performance analysis of PRGA+ using the
same specifications as described at the end of Section 3.3. The stream en-
cryption speed for RC4 and RC4+ turned out to be 14.39 cycles/byte and
24.51 cycles/byte respectively. Thus, we can claim that the running time of
one round of our PRGA+ is approximately 24.51

14.39 = 1.70 times than that of RC4
PRGA.

5 Conclusion

Though RC4 can be stated in less than ten lines, newer weaknesses are being
discovered every now and then even after twenty years of its discovery. This
raises the need for a new design of a stream cipher, which would be as simple
as the description of RC4, yet devoid of the existing weaknesses of RC4. This is
the target of this paper. We present a three-layer architecture of the scrambling
phase after the initialization, which removes many weaknesses of the KSA. We
also add a few extra steps in the PRGA to strengthen the cipher. Experimental
results also support our claim. An extended version of this paper is available in
IACR Eprint Server [12], that contains some relevant graphs which could not fit
here due to space constraints.

Even after our arguments and empirical evidences, the security claim of RC4+

is a conjecture, as is the case with many of the existing stream ciphers. We could
not observe any immediate weakness of the new design and the cipher is subject
to further analysis.

38 S. Maitra and G. Paul

References

1. Akgun, M., Kavak, P., Demirci, H.: New Results on the Key Scheduling Algorithm
of RC4. In: Indocrypt 2008 (2008)

2. Biham, E., Carmeli, Y.: Efficient Reconstruction of RC4 Keys from Internal States.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 270–288. Springer, Heidelberg
(2008)

3. eSTREAM, the ECRYPT Stream Cipher Project (last accessed on July 18, 2008),
http://www.ecrypt.eu.org/stream

4. Fluhrer, S.R., Mantin, I., Shamir, A.: Weaknesses in the Key Scheduling Algorithm
of RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp.
1–24. Springer, Heidelberg (2001)

5. Golic, J.: Linear statistical weakness of alleged RC4 keystream generator. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 226–238. Springer, Heidelberg
(1997)

6. Gong, G., Gupta, K.C., Hell, M., Nawaz, Y.: Towards a General RC4-Like
Keystream Generator. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS,
vol. 3822, pp. 162–174. Springer, Heidelberg (2005)

7. Hong, J., Sarkar, P.: New Applications of Time Memory Data Tradeoffs. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 353–372. Springer, Heidelberg
(2005)

8. Jenkins, R.J.: ISAAC and RC4 (1996) (last accessed on July 18, 2008),
http://burtleburtle.net/bob/rand/isaac.html

9. Klein, A.: Attacks on the RC4 stream cipher. Designs, Codes and Cryptogra-
phy 48(3), 269–286 (2008)

10. Knudsen, L.R., Meier, W., Preneel, B., Rijmen, V., Verdoolaege, S.: Analysis Meth-
ods for (Alleged) RCA. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 327–341. Springer, Heidelberg (1998)

11. LAN/MAN Standard Committee. Wireless LAN medium access control (MAC)
and physical layer (PHY) specifications, 1999 edition. IEEE standard 802.11 (1999)

12. Maitra, S., Paul, G.: Analysis of RC4 and Proposal of Additional Layers for Bet-
ter Security Margin (Full Version). IACR Eprint Server, eprint.iacr.org, number
2008/396, September 19 (2008)

13. Maitra, S., Paul, G.: New Form of Permutation Bias and Secret Key Leakage in
Keystream Bytes of RC4. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
253–269. Springer, Heidelberg (2008)

14. Mantin, I., Shamir, A.: A Practical Attack on Broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)

15. Mantin, I.: A Practical Attack on the Fixed RC4 in the WEP Mode. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 395–411. Springer, Heidelberg
(2005)

16. Mantin, I.: Predicting and Distinguishing Attacks on RC4 Keystream Generator.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491–506. Springer,
Heidelberg (2005)

17. Mantin, I.: Analysis of the stream cipher RC4. Master’s Thesis, The Weizmann
Institute of Science, Israel (2001)

18. Maximov, A.: Two Linear Distinguishing Attacks on VMPC and RC4A and Weak-
ness of RC4 Family of Stream Ciphers. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 342–358. Springer, Heidelberg (2005)

http://www.ecrypt.eu.org/stream
http://burtleburtle.net/bob/rand/isaac.html

Analysis of RC4 and Proposal of Additional Layers 39

19. Maximov, A., Khovratovich, D.: New State Recovery Attack on RC4. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 297–316. Springer, Heidelberg (2008)

20. Mironov, I. (Not So) Random Shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002)

21. New European Schemes for Signatures, Integrity, and Encryption (last accessed on
September 19, 2008), https://www.cosic.esat.kuleuven.be/nessie

22. Paul, G., Rathi, S., Maitra, S.: On Non-negligible Bias of the First Output Byte
of RC4 towards the First Three Bytes of the Secret Key. In: Proceedings of the
International Workshop on Coding and Cryptography (WCC) 2007, pp. 285–294
(2007); Extended version available at Designs, Codes and Cryptography 49, 1-3
(December 2008)

23. Paul, G., Maitra, S.: Permutation after RC4 Key Scheduling Reveals the Secret
Key. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp.
360–377. Springer, Heidelberg (2007)

24. Paul, G., Maitra, S.: RC4 State Information at Any Stage Reveals the Secret Key.
IACR Eprint Server, eprint.iacr.org, number 2007/208 (June 1, 2007); This is an
extended version of [23]

25. Paul, G., Maitra, S., Srivastava, R.: On Non-randomness of the Permutation After
RC4 Key Scheduling. In: Boztaş, S., Lu, H.-F(F.) (eds.) AAECC 2007. LNCS,
vol. 4851, pp. 100–109. Springer, Heidelberg (2007)

26. Paul, S., Preneel, B.: Analysis of Non-fortuitous Predictive States of the RC4
Keystream Generator. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003.
LNCS, vol. 2904, pp. 52–67. Springer, Heidelberg (2003)

27. Paul, S., Preneel, B.: A New Weakness in the RC4 Keystream Generator and an
Approach to Improve the Security of the Cipher. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 245–259. Springer, Heidelberg (2004)

28. A. Roos. A class of weak keys in the RC4 stream cipher. Two posts in
sci.crypt, message-id 43u1eh$1j3@hermes.is.co.za and 44ebge$llf@hermes.is.co.za
(1995) (last accessed on July 18, 2008), http://groups.google.com/group/
sci.crypt.research/msg/078aa9249d76eacc?dmode=source

29. RSA Lab Report. RSA Security Response to Weaknesses in Key Scheduling Algo-
rithm of RC4 (last accessed on July 18, 2008),
http://www.rsa.com/rsalabs/node.asp?id=2009

30. Tews, E., Weinmann, R.P., Pyshkin, A.: Breaking 104 bit WEP in less than 60
seconds. IACR Eprint Server, eprint.iacr.org, number 2007/120 (April 1, 2007)
(last accessed on July 18, 2008)

31. Tomasevic, V., Bojanic, S., Nieto-Taladriz, O.: Finding an internal state of RC4
stream cipher. Information Sciences 177, 1715–1727 (2007)

32. Tsunoo, Y., Saito, T., Kubo, H., Shigeri, M., Suzaki, T., Kawabata, T.: The Most
Efficient Distinguishing Attack on VMPC and RC4A. In: SKEW 2005 (last ac-
cessed on July 18, 2008), http://www.ecrypt.eu.org/stream/papers.html

33. Tsunoo, Y., Saito, T., Kubo, H., Suzaki, T.: A Distinguishing Attack on a Fast
Software-Implemented RC4-Like Stream Cipher. IEEE Transactions on Informa-
tion Theory 53(9), 3250–3255 (2007)

34. Vaudenay, S., Vuagnoux, M.: Passive-Only Key Recovery Attacks on RC4. In:
Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 344–359.
Springer, Heidelberg (2007)

35. Zoltak, B.: VMPC One-Way Function and Stream Cipher. In: Roy, B., Meier, W.
(eds.) FSE 2004. LNCS, vol. 3017, pp. 210–225. Springer, Heidelberg (2004)

https://www.cosic.esat.kuleuven.be/nessie
http://groups.google.com/group/sci.crypt.research/msg/078aa9249d76eacc?dmode=source
http://groups.google.com/group/sci.crypt.research/msg/078aa9249d76eacc?dmode=source
http://www.rsa.com/rsalabs/node.asp?id=2009
http://www.ecrypt.eu.org/stream/papers.html

New Results on the Key Scheduling Algorithm
of RC4

Mete Akgün, Pınar Kavak , and Hüseyin Demirci

Tübitak UEKAE, 41470 Gebze, Kocaeli, Turkey
{makgun,pinar,huseyind}@uekae.tubitak.gov.tr

Abstract. A new bias is detected in the key scheduling algorithm of
RC4 and a novel framework that advantageously combines this new bias
with the existing ones is proposed. Using the new bias, a different algo-
rithm is proposed to retrieve the RC4 key given the state table. The new
method not only improves the success probability but also provides a
more efficient way of calculation in comparison with the previous meth-
ods for any key size. The efficiency of the algorithm is demonstrated
experimentally. If the key length is 40 bits, the secret key is retrieved
with a 99% success rate in 0.007 seconds. The success probability for
retrieving the 128 bit RC4 key is also increased significantly. 128-bit key
can be retrieved with 3% success rate in 185 seconds and 7.45% success
rate in 1572 seconds on a 2.67GHz Intel CPU.

Keywords: RC4, Stream Cipher, Cryptanalysis, Key Scheduling Algo-
rithm, State Table.

1 Introduction

RC4 is one of the most famous stream ciphers which was designed by Ron Rivest.
It is introduced in 1987 but the algorithm is kept secret until its description is
anonymously published on the Cypherpunks mailing list [1] in 1994.

After its first release, RC4 stream cipher became very popular especially in
software. In the past twenty years it is mostly used in some popular protocols
such as SSL (Secure Socket Layer) and TLS (Transport Layer Security) to pro-
tect internet traffic and some others such as WEP (Wired Equivalent Privacy)
and WPA (Wi-Fi Protected Access) to secure wireless networks.

Attacks on RC4 are generally majored in two groups. First group is based on
the weaknesses of the PRGA. Second group is based on the weaknesses of the
KSA. Additionally, many works try to exploit the special weaknesses existing in
the usage of IV (Initial Value).

Our study focuses on analyzing the KSA. In this paper, we present a more
efficient algorithm to derive the secret key from a given internal state. Analyzing
the KSA has direct consequences in WEP attacks like in [9], [22] and [23]. The
algorithm basicly depends on the newly discovered bias in the KSA. Although,
the new bias seems symmetrically similar to the previously known biases in terms
of structure, it provides an independent piece of information about the internal

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 40–52, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

New Results on the Key Scheduling Algorithm of RC4 41

states of the KSA. We propose a very efficient simple algorithm which com-
bines the Roos’ observation [21] and the equations derived in [19], the difference
equations in [2] and our new bias advantageously.

This paper is organized as follows: In Section 2, we describe the RC4 algo-
rithm. In Section 3, we present the existing work on RC4. In Section 4, we de-
scribe the basic assumptions and equations of the attacks presented in [19] and [2]
which use the bias of the first bytes of the initial permutation. In Section 5, we
give the description of our new bias on the KSA and related distributions some of
which are already known. In Section 6, we explain the key recovering algorithm.
In Section 7, we discuss our results along with a comparison with the previous
studies. In Section 8, we summarize the work done.

Recently, we have been aware of other two studies on the key retrieval problem
from the state table. The first study [13] has many common points with this work.
The second group has considered a bit-by-bit key recovery approach [8].

2 The RC4 Stream Cipher

The internal state table of RC4 S consists of a permutation of N possible words
where N = 2n. Two n-bit index pointers i and j are used to randomize the
state table. The pseudo-random variable j is secret but i is public and its value
at any stage of the stream generation is generally known. The running key
values are also produced with an address variable formed with the help of i
and j.

RC4 consists of two algorithms; KSA (Key Scheduling Algorithm) and PRGA
(Pseudo Random Generation Algorithm). KSA initializes the internal state table
S with the encryption key K.

The KSA and PRGA are given below. All additions in the algorithms are
performed modulo N .

Key Scheduling Algorithm Pseudo Random Generation Algorithm

for i = 0 to 2n−1 i← 0
S[i]← i j ← 0
endfor loop
j ← 0 i← i + 1
for i = 0 to 2n−1 j ← j + S[i]
j ← j + S[i] + K[i mod l] swap(S[i], S[j])
swap(S[i], S[j]) t← S[i] + S[j]
endfor output S[t]

endloop

In most of the applications, RC4 uses the parameters n = 8 and l = 16. Hence
the table S consists of N = 256 elements. In this paper, we also assume these
values unless explicitly stated otherwise.

42 M. Akgün, P. Kavak, and H. Demirci

3 Previous Work on RC4

Finney in [3], observed a group of states that RC4 can never enter. These states
satisfy the property j = i+1 and S[i+1] = 1. If RC4 was not designed carefully,
one of every 216 keys would fall into a cycle of length 255 · 256.

Golic showed that RC4 can be distinguished from other keystream generators
by using the linear statistical weakness of RC4 [6].

Knudsen et al. showed the intrinsic properties of RC4 which are independent
of the key scheduling and the key size [10]. They have developed a backtracking
algorithm in which the initial state table S is guessed given a small part of the
running key stream.

Fluhrer and McGrew described a method which explicitly computes digraph
probabilities [5]. This method can be used to distinguish 8-bit RC4 from a ran-
dom sequence. Parts of the internal state table can also be determined with this
method.

Grosul and Wallach showed that a pair of keys produce running key streams
that are very similar in the first 256 bytes when the key size is same with the
table size [7].

Mironov proposed an idealized model of RC4 and analyzed it applying the
theory of random shuffles [18]. At the end of his analysis, he found a conservative
estimate (512 bytes of the running key) that should be discarded for safety.

Mantin’s thesis [14] is a valuable resource on RC4 up to its date of writing.
Then, Mantin and Shamir described a major statistical weakness in RC4 caused
by the first and second bytes of the running key [16].

Fluhrer, Mantin and Shamir showed that RC4 is completely insecure in a
common mode of operation which is used in Wired Equivalent Privacy Protocol,
in which a fixed secret key is concatenated with known IV modifiers [4]. With
these observations, practical attacks were designed and applied on the WEP
protocol. Vaudenay and Vuagnoux, described a passive only attack that improves
the key recovery process on WEP by the weaknesses they observed in KSA of
RC4 [23]. Tews, R.P. Weinmann and Pyshkin demonstrate a new attack on 104
bit WEP [22].

Pudovkina found the number of keys of the RC4 cipher generating initial
permutations with the same cycle structure [20]. It is found that the distribution
of the initial permutations is not uniform.

Mantin described a new distinguishing attack using the bias in the digraph
distribution of the cipher [15]. By this bias, one can predict the next bit or byte
of the running key if 245 or 250 output words are known respectively.

Maitra and Paul have observed that the initial bytes of the permutation after
the KSA are biased with some linear combination of the key bytes. This leads
to a bias in some key stream bytes [11], [12].

Paul and Maitra, discovered the secret key from the initial state table using
biases in the first entries of the table [19]. They create some equations by using
the first entries of the initial state table. These equations have significant prob-
ability. They guess some of the bytes of the secret key and they obtain the rest
of the key by using these equations. Existence of many correct equations lead

New Results on the Key Scheduling Algorithm of RC4 43

to the success of their algorithm. Carmeli and Biham presented an algorithm to
retrieve the secret key if the internal state table is given [2]. Their study depends
on the equations in [19]. They also propose additional equations by considering
the differences of the existing equations. They declare that they increased the
success rate by filtering and correcting some of the equations and also using the
new ones. Combining all these equations into a statistical algorithm lead them
obtain better results than [19].

Recently Maximov and Khovratovich proposed an attack which recovers some
special internal states of the RC4 from the keystream [17].

We started our study by depending on the biases given in [19] and [2] and by
using some of the equations described in [19] and [2]. We observed a different
bias and by using this bias we created new equations that lead us to obtain
higher success rate than [2].

4 Notations and Basic Assumptions

4.1 Notations

The Sr and jr denote the values of the state table S and the index value j after
r iterations of the KSA respectively. j0 is the initial value of j and jN is the last
value of j at the end of the KSA. S0 is the identity permutation and SN is the
initial permutation. S is used to denote the initial permutation instead of SN .

We denote the number of key bytes by l.
K[a...b] denotes the sum of the key bytes in the range a, a + 1, ..., b.

By a variable address(t), we mean the index i such that S[i] = t when the
KSA has finished.
e[a] means the event a. The events are described in Section 5.
nc denotes the number of candidates, which have the highest weight among a
larger group.

4.2 Previous Biases of the KSA

A bias of a linear combination of the secret key bytes is first discovered by Roos
in 1995 [21]. This bias is described in Theorem 1. He has given the probability
of the bias experimentally and has observed that it has significant probability in
the first 40− 50 entries of the state table.

Theorem 1. The most likely value for S[i] at the end of the KSA is

S[i] = K[0...i] +
i(i + 1)

2
mod N. (1)

Paul and Maitra, in [19] has expressed this bias theoretically. The formula is
given in Theorem 2.

Theorem 2. Assume that during the KSA the index j takes its values uniformly
at random from 0, 1, ..., N − 1. Then,

P (S[i] = K[0...i] +
i(i + 1)

2
) ≥ (

N − i

N
).(

N − 1
N

)
i(i+1)

2 +N +
1
N

. (2)

44 M. Akgün, P. Kavak, and H. Demirci

The underlying assumptions of Theorem 2 are the following:

1. Sr[r] = r for r ∈ {0, ..., i}, i.e. S[r] is not swapped until the r-th iteration.
2. Si[ji+1] = ji+1.
3. jr �= i for r ∈ {i + 1, ..., N − 1}.

Assuming that the first event occurs, only the key bytes and some constant
values are needed to calculate the ji+1 value.

ji+1 =
i∑

r=0

(K[r] + Sr[r]) =
i∑

r=0

(K[r] + r) = K[0...i] +
i(i + 1)

2
.

Assuming that the second event occurs, Si+1[i] = ji+1 holds after i+1th iteration
of the KSA. Assuming that the third event occurs, the index j does not point
to S[i] again, so S[i] is not swapped again once more until the end of the KSA.
If all of the events occur then (1) holds

SN [i] = Si+1[i] = ji+1 =
i∑

r=0

(K[r] + Sr[r]) = K[0...i] +
i(i + 1)

2
.

Finally, Biham and Carmeli have generalized the assumptions in [2] as follows:

1. Sr[r] = r for r ∈ {i1+1, ..., i2}, i.e. S[r] is not swapped until the r-th iteration.
2. Si1 [ji1+1] = ji1+1 and Si2 [ji2+1] = ji2+1.
3. jr �= i1 for r ∈ {i1 + 1, ..., N − 1} and jr �= i2 for r ∈ {i2 + 1, ..., N − 1}.

Under these assumptions, they get

SN [i2]− SN [i1] = K[i1 + 1...i2] +
i2(i2 + 1)

2
− i1(i1 + 1)

2
.

They have considered the differences of the state elements. Theorem 3 gives the
bias of these differences.

Theorem 3. Assume that during the KSA the index j takes its values uniformly
at random from 0, 1, ..., N − 1 and let 0 ≤ i1 < i2 < N . Let Ci = S[i]− i(i+1)

2 .
Then,

P ((Ci2 − Ci1) = K[i1 + 1...i2]) ≥

[(1− i2
N

)2(1 − i2 − i1 + 2
N

)i1(1− 2
N

)N−i2−1
i2−i1−1∏

r=0

(1 − r + 2
N

)] + 1/N. (3)

In this way, they have more equations to consider. The difference bias works still
after the 50th entry, and their probabilities are much higher. The authors have
also suggested assigning a weight to the key candidates, and methods to filter
wrong equations and adjust the weights. As a result, their success probabilities
of retrieving the key are much higher than [19].

The proofs of theorems use the occurance probability of the underlying events
and can be shown by induction.

New Results on the Key Scheduling Algorithm of RC4 45

5 Useful Distributions of the KSA

In this section we present the statistical properties of the KSA which will be
helpful in our algorithm.

Definition 1. After the KSA, if ji = S[i], we call this as event 1 has occured
for index i, and denote event 1 by e[1].

If the following assumptions hold, event 1 occurs.

1. jr �= ji for r ∈ {0, ..., i− 1}, i.e. S[ji] is not swapped until the i-th iteration.
2. ji > i, i.e S[i] is swapped with a greater index.
3. jr �= i for r ∈ {i+1, ..., N−1}, i.e. S[i] is not swapped after the i-th iteration.

The following theorem for the probability of e[1] exists in Section 2 of [19] in a
more generalized framework.

Theorem 4

P (S[i] = ji) ≥ (1− 1
N

)i(1− i− 1
N

)(1− 1
N

)N−i−1 +
1
N

. (4)

This property investigates the information obtained from S[i] as in Theorem 2
and 3. But it is related with a single entry of the table, not with a sequence
sum. Therefore, it gives information for only the j value, not the key itself. In
Section 6, we will exploit this property to obtain information of the key bytes.

The probability of e[1] is still high after the 50th entry.

Table 1. The Probabilities Given by Theorem 4

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Prob. .371 .369 .368 .366 .365 .363 .362 .360 .359 .358 .356 .355 .353 .352 .350 .349

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Prob. .348 .346 .345 .343 .342 .340 .339 .337 .336 .335 .333 .332 .330 .329 .327 .326

5.1 New Bias

In this section, we propose a new property of the KSA which seems similar to
the observation in [2] in a symmetric structure. Instead of their consideration
of S[i]’s, we have also exploited the information from the j values, i.e. j =
address(S[i])’s. It is interesting that they form their bias by only considering
one of the swapped variables. This approach provides us an independent bias.
The new bias is more significant for the address of latter indexes, in contrast
with the previous properties.

Definition 2. After the KSA, if ji = address(i), we call this as event 2 has
occured for index i, and denote event 2 by e[2].

e[2] occurs under the following assumptions:

46 M. Akgün, P. Kavak, and H. Demirci

1. Si[i] = i, i.e. S[i] is not swapped until the i-th iteration.
2. ji ≤ i.
3. jr �= ji for r ∈ {i1 + 1, ..., N − 1}.

If these conditions hold, Si[i] is swapped with Si[j], and then Si[j] is not swapped
with another value till the end of KSA. Therefore, we have address(i) = ji. The
probability distribution of this event is the following:

Theorem 5

P (address[i] = ji) ≥ (1− 1
N

)i(
i

N
)(1− 1

N
)(N−i−1) +

1
N

= (1− 1
N

)N−1(
i

N
)+

1
N

.

The probabilities of e[2] are higher for the greater index values.

Table 2. The Probabilities Given by Theorem 5

i 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
Prob. .326 .327 .329 .330 .332 .333 .335 .336 .337 .339 .340 .342 .343 .345 .346 .348

i 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
Prob. .349 .350 .352 .353 .355 .356 .358 .359 .360 .362 .363 .365 .366 .368 .369 .371

We can generalize this procedure by analyzing the differences as in [2]. We
explain the information satisfied by the differences with an example.

Example 1. Assume that the following events happened during KSA:

1. S250[250] = 250, S251[251] = 251,
2. At step 250, we swap [250] with S250[j250]. Therefore S250[j250] = 250. As-

sume that this entry does not change in the later steps.
3. At step 251, we swap S251[251] with S251[j251]. Therefore S251[j251] = 251.

Assume that this entry does not change in the later steps.

If the above assumptions hold, then we have,
address(251) = j251 and address(250) = j250. Therefore,

address(j251)− address(j250) = j251 − j250 = (S[251] + K[11]) mod 256

depends only on K[11]. Considering the addresses of the values 251 and 250, we
gather information about one byte of the key.

This method can be generalized as below:

1. Sr[r] = r for r ∈ {i1, ..., i2}, i.e. S[r] is not swapped until the r-th iteration.
2. ji1 ≤ i1 and ji2 ≤ i2.
3. jr �= ji1 for r ∈ {i1 + 1, ..., N − 1} and jr �= ji2 for r ∈ {i2 + 1, ..., N − 1}.

If the first event occurs, then the index j is affected in iterations i1 through i2
only by the key bytes and constant values. The second event ensures that the
index i and the third event ensures that the index j does not point to S[ji1] and
S[ji2] in later iterations. Therefore, S[ji1] = i1 and S[ji2] = i2 remains the same
after the KSA. The probability distribution of this bias is given in Theorem 6.

New Results on the Key Scheduling Algorithm of RC4 47

Theorem 6. Assume that during the KSA the index j takes its values uniformly
at random from {0, 1, ..., N − 1}, and let 0 ≤ i1 < i2 < N. Then,

P (address(i2)− address(i1) = K[i1 + 1...i2] + (i1 + 1) + (i1 + 2) + ... + i2) ≥

(
N − (i2 − i1 + 1)

N
)i1

i2−i1∏
r=1

(1− r

N
)×(

i1 + 1
N

)(
i2 + 1

N
)×(

N − 1
N

)2N−i1−i2−2. (5)

The solutions of equations from Theorem 3 and Theorem 6 can be used to get
the encryption key. But instead, we suggest to analyze the journey of j values
during the KSA with the help of Theorems 4 and 5.

5.2 More Distributions

Theorems 4 and 5 motivate to consider the probabilities of the following events.
Definition 3 and Definition 5 are previously analyzed in [11]. These events have
non trivial probabilities to distinguish the j sequence from random.

Definition 3. After the KSA, if ji = S[S[i]], we call this as event 3 has occured
for index i, and denote event 3 by e[3].

Definition 4. After the KSA, if ji = address(address(i)), we call this as event
4 has occured for index i, and denote event 4 by e[4].

Similarly, we may define the following events:

Definition 5. After the KSA, if ji = S[S[S[i]]], we call this as event 5 has
occured for index i, and denote event 5 by e[5].

Definition 6. After the KSA, if ji = address(address(address(i))), we call
this as event 6, and denote event 6 by e[6].

We have observed that continuing further after e[6] does not produce helpful bias.
Now we have 6 events for guessing j values produced during KSA. In Section 6,
we will use them to retrieve information about the key bytes.

6 The Key Recovering Algorithm

In our algorithm, first we get a unique suggestion by using some key guessing
methods which hold with a probability for all of the key bytes, but we consider a
portion of this group as correct. From the unique suggestion, we assign m bytes
of the key with some probabilities. However we do not know exactly which m
bytes are correct. Therefore, we have to try C(n, m) number of combinations to
match the correct one. After the assignment of partial key bytes, the remaining
bytes are updated according to the update mechanism. The pseudo code of the
algorithm is given in Section 6.4.

48 M. Akgün, P. Kavak, and H. Demirci

6.1 Key Guessing Methods

This section explains the scenarios which are beneficial for us to guess the j
values during the KSA. The KSA produces 256 pseudo-random j values. If we
have the information of successive j and S[i] values, we can get the related key
bytes. Our assumption is that one of the events have occured for the successive
j values and S[i] = i for the second entry. Since ji = ji−1 + S[i] + K[i mod l] in
KSA, one byte of key information is obtained.

The j values can be guessed by the 6 events in Section 5.

1. e[1]: j = S[i] (The event of Theorem 4.)
2. e[2]: j = address(i) (The event of Theorem 5.)
3. e[3]: j = S[S[i]].
4. e[4]: j = address(address(i)).
5. e[5]: j = S[S[S[i]]].
6. e[6]: j = address(address(address(i))).

These 6 events confirm 6 candidates for the j value at each step of the KSA.
Then, for two successive values ji and ji+1, we obtain 36 combinations. For
instance, the event e[11] means both ji and ji+1 satisfy event 1 above, and the
event e[41] denotes that ji satisfies event 4 and ji+1 satisfies event 1. Additionally,
we assume that Si[i] = i is satisfied. In this way, we get 36 candidates for one
key byte. Since the key is repeated (N/l) times during KSA, we get (N/l) ×
36 possible values for each key byte. Since these events occur with different
probabilities in different parts of the table, the candidates which are below a
previously determined threshold value are eliminated.

For each index value, these probabilities are assigned as weights for the can-
didates. A candidate value can be observed more than once with different prob-
abilities for the same key byte. Total weight of such candidates are calculated in
a way that uses their frequency and also the sum of their individual weights.

6.2 Initial Key Guessing

The first 16-byte candidate that has the maximum weight is assigned as the key
bytes. We do not trust all bytes of the selected candidate but generally assume
that arbitrary m-bytes of it are true with some probability. Then, we are left
with C(l, m) possible combinations that should be tried to find the matching
key bytes.

For the 16-byte key this method provides m = 4, 8 and 12 bytes of the key
with probabilities 0.91, 0.65 and 0.06 respectively. Using only this information,
the full 16-byte key can be guessed with 0.0001 probability in 0.0063 seconds on
2.67GHz CPU with 2GB RAM. We can use this information to provide a lower
bound for the success probability of the algorithm for greater complexities. For
instance, if the 8 bytes are obtained correctly by this approach, and the remaining
8 bytes are searched, then the full key can be obtained with 0.65 probability with
a complexity of C(16, 8)× 28×8 ≈ 278 key trials.

New Results on the Key Scheduling Algorithm of RC4 49

6.3 The Update Mechanism

In [2], the authors have used an iterative process for reviewing and updating
the weights. We use a similar structure with a special technique to increase the
success probability of obtaining new key bytes from the already known ones.

The longer sequence sums considered in Theorem 3 provide information on
more bytes, but have less probability to occur. For our algorithm, we have de-
cided to consider the sums in groups of 4 bytes as the optimal sequence length
parameter. We have already guessed some of the bytes in the 4-byte group from
the selected combination elements. In addition to these known bytes, the sum
informations in the 4-byte sequence are also used. By this way the unknown
bytes of this group are determined using the method given in [2]. This method
increases the number of candidates, but the weights of the correct ones also
increase.

We can explain this with the following example.

Example 2. Assume that there are 36 × 16 candidates for each of K[0], K[1],
K[2], K[3] and the values of K[0] and K[2] are fixed in the selected combination.
We can use the following equations to find the possible K[1] values:

1. K[1] = K[0...1]−K[0].
2. K[1] = K[1...2]−K[2].
3. K[1] = K[0...2]−K[0]−K[2].

After obtaining new candidates for K[1], we can fix its value by trying the
possible candidates through a selected depth. Then, we need to find possible
K[3] values by using the following equations:

1. K[3] = K[2...3]−K[2].
2. K[3] = K[1...3]−K[1]−K[2].
3. K[3] = K[0...3]−K[0]−K[1]−K[2].

From the new candidates, the same procedure is applied to decide on the value
of K[3]. After fixing the value of K[3] the updating process is finished for this
4-byte group. The same method is applied for the remaining 4-byte groups of
the key and a total guess is made for all key bytes.

6.4 The Algorithm

In this section, we will discuss our key retrieval algorithm given the initial state
table. This algorithm is based on the observations described in the previous
sections. This algorithm utilizes the observations in [19] and [2] with the new
ones in a novel framework.

The below algorithm is designed for fixed m and nc values. We can increase the
success probability of retrieving the key by using different (m, nc) pairs. In this
case, we have to consider the (mi, nci) pairs which have no trivial intersection.
The total time complexity of this attack is the sum of individual complexities
of the algorithm for each (mi, nci) pair. Since there is no way to avoid the
intersection between the pairs, the gained success probability is less than the
sum of individual success probabilities. The results of this approach for 12 and
16− byte key are given in Table 3.

50 M. Akgün, P. Kavak, and H. Demirci

KEY RETRIEVAL ALGORITHM(S)

1. Compute all Ci values for i and obtain all suggestions for sum such as
K[0...l] = Cl+1 − C1.

2. Among the suggestions select the one with the highest weight as sum value.
3. Reduce all Ci’s in which i > l to suggestions for sequences in which i < l.
4. Choose the parameter m. For all m-byte combinations of l do:

– 4.1 Fix the specific bytes of the key that are declared to be true in the selected
combination(described in Section 6.2).
– 4.2 For the remaining l−m bytes, choose the parameter nc, number of candidates.
– 4.3 For each 4-byte group do:
– – 4.3.1 Start the update process which chooses the first nc candidates that have
been sorted according to the weights for the unknown key bytes(described in Sec-
tion 6.3).
– 4.4 Try all combinations of resulting candidates obtained for 4-byte groups.
Return the correct key when it is found.

5. Return fail.

The first three lines are from [2].

Table 3. Experimental Results of the Key Retrieval Algorithm

l m nc PSuccess T[sec] # of Trials PSuccess of [2], [19] T[sec] [2] T[sec] [19]∗

2 128 .998 0.011 224.3

5 3 256 .998 0.008 219.3 .8640 0.02 366
6 6 .254 3.959 225.36

8 8 .239 1.808 220.95 .0124 3.04 100
32 .431 48.939 228.95 .0212 7.43 1000

12 m∗∗
i nc∗∗i .506 54.390 230.78

10 8 .034 185 230.96

16 12 16 .020 16.7 226.82 .0005 278 500
m∗∗∗

i nc∗∗∗i .0745 1572 235.91

f fl =# of key bytes, m =# of selected bytes, nc =selection depth.
*Rough estimation of [2] about [19] to achieve the same success with them.
**(mi, nci) = {(4, 6), (5, 7), (6, 8), (7, 10), (8, 16), (9, 32), (10, 128)}.
***(mi, nci) = {(6, 4), (7, 5), (8, 6), (9, 7), (10, 8), (11, 10), (12, 22), (13, 64), (14, 256)}.

7 Experimental Results

Table 3 compares our results with previous studies [19] and [2]. We cannot ex-
ecute the previous algorithms under exactly the same conditions with our al-
gorithm, since we do not have the source code of these algorithms. We have
run the algorithm on 2.67GHz Intel CPU with 2GB RAM. The success proba-
bilites are derived from 10000 randomly generated key-state table pairs. Time
complexity estimates are empirical. For each chosen l, m and nc values, we try
C(l, m) ∗ (nc)(l−m) number of key candidates, but the time cost of each candi-
date varies with respect to the location of the fixed bytes in the combination
and the depth of the trial. For short key sizes such as 5 or 8 bytes, our algorithm

New Results on the Key Scheduling Algorithm of RC4 51

almost retrieves more than 90 percent success in seconds. For longer key sizes,
our success probabilities are about 10-50 times better in the same computation
time. The results indicate the effectiveness in terms of both the time complexity
and success probability.

8 Conclusions

We presented our new observations on the Key Scheduling Algorithm (KSA) of
RC4 which point out the structural weaknesses of it. We showed the theoreti-
cal distribution of our newly detected bias which is structurally symmetric but
independent from the previous studies. We described a framework which uses
a simple and efficient algorithm to retrieve the RC4 secret key, given the inter-
nal state table. The new observations on the KSA of RC4 significantly increase
the success rate of the attack compared to the previous studies. We exploited
the Roos’ observation [21], its theoretical proof [19] and the difference equations
of [2] in addition to the events of our new observations. This work shows that
the KSA of RC4 is not perfect, because it leaks information about the secret key
if the initial state table is known. It is an open question whether these observa-
tions can be used for attacking Pseudo Random Generation Algorithm (PRGA)
or improving the attacks on the Wired Equivalent Privacy (WEP) protocol.

References

1. Anonymous, RC4 Source Code, CypherPunks mailing list, September 9 (1994),
http://cypherpunks.venona.com/date/1994/09/msg00304.html

2. Biham, E., Carmeli, Y.: Efficient Reconstruction of RC4 Keys from Internal States.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 270–288. Springer, Heidelberg
(2008)

3. Finney, H.: An RC4 Cycle That Can‘t Happen, sci.crypt posting (September 1994)
4. Fluhrer, S.R., Mantin, I., Shamir, A.: Weaknesses in the Key Scheduling Algorithm

of RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp.
1–24. Springer, Heidelberg (2001)

5. Fluhrer, S.R., McGrew, D.A.: Statistical Analysis of the Alleged RC4 Keystream
Generator. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 19–30. Springer,
Heidelberg (2001)

6. Golic, J.D.: Linear Statistical Weakness of Alleged RC4 Keystream Generator.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 226–238. Springer,
Heidelberg (1997)

7. Grosul, A.L., Wallach, D.S.: A Related-Key Cryptanalysis of RC4, Technical
Report-00-358, Department of Computer Science, Rice University (October 2000)

8. Khazaei, S., Meier, W.: On Reconstruction of RC4 Keys from Internal States
9. Klein, A.: Attacks on the RC4 Stream Cipher, February 27 (2006),

http://cage.ugent.be/klein/RC4

10. Knudsen, L.R., Meier, W., Prenel, B., Rijmen, V., Verdoolaege, S.: Analysis Meth-
ods for (Alleged) RC4. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 327–341. Springer, Heidelberg (1998)

http://cypherpunks.venona.com/date/1994/09/msg00304.html
http://cage.ugent.be/klein/RC4

52 M. Akgün, P. Kavak, and H. Demirci

11. Maitra, S., Paul, G.: New Form of Permutation Bias and Secret Key Leakage in
Keystream Bytes of RC4. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
253–269. Springer, Heidelberg (2008)

12. Maitra, S., Paul, G.: New Form of Permutation Bias and Secret Key Leakage in
Key Stream Bytes of RC4, http://eprint.iacr.org/2007/261.pdf

13. Maitra, S.: Personal Communication
14. Mantin, I.: Analysis of the Stream Cipher RC4, M. Sc. Thesis, The Weizmann

Institute of Science, Israel (2001),
http://www.wisdom.weizmann.ac.il/∼itsik/RC4/Papers/Mantin1.zip

15. Mantin, I.: Predicting and Distinguishing Attacks on RC4 Keystream Generator.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491–506. Springer,
Heidelberg (2005)

16. Mantin, I., Shamir, A.: A Practical Attack on Broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)

17. Maximov, A., Khovratovich, D.: New State Recovery Attack on RC4. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 297–316. Springer, Heidelberg (2008)

18. Mironov, I.: (Not So) Random Shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002)

19. Paul, G., Maitra, S.: RC4 State Information at Any Stage Reveals the Secret Key.
In: Proceedings of SAC 2007 (2007), http://eprint.iacr.org/2007/208.pdf

20. Pudovkina, M.: The Number of Initial States of the RC4 Cipher with the Same
Cycle Structure, Cryptology ePrint Archive, 2002-171, IACR 2002 (2002)

21. Roos, A.: A Class of Weak Keys in the RC4 Stream Cipher, Two posts in sci.crypt
(1995), http://marcel.wanda.ch/Archive/WeakKeys

22. Tews, E., Weinmann, R.P., Pyshkin, A.: Breaking 104 Bit WEP in Less than 60
Seconds (2007), http://eprint.iacr.org/2007/120.pdf

23. Vaudenay, S., Vuagnoux, M.: Passive-Only Key Recovery Attacks on RC4. In:
Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876. Springer,
Heidelberg (2007)

24. Wagner, D.: Weak Keys in RC4, sci.crypt posting (September 1995)

http://eprint.iacr.org/2007/261.pdf
http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/Mantin1.zip
http://eprint.iacr.org/2007/208.pdf
http://marcel.wanda.ch/Archive/WeakKeys
http://eprint.iacr.org/2007/120.pdf

Two Attacks on RadioGatún

Dmitry Khovratovich

University of Luxembourg
dmitry.khovratovich@uni.lu

Abstract. We investigate the security of the hash function design called
RadioGatún in a recently proposed framework of sponge functions. We
show that previously introduced symmetric trails can hardly be used
to construct collisions and to find a second preimage efficiently. As a
generalization of truncated differentials, trails with linear and non-linear
restrictions on differences are proposed. We use these trails to find semi-
free-start collisions and second preimages with the meet-in-the middle
approach and the complexity in the gap between claimed security level
and the birthday bound. We also provide some observations on lower
bounds on the complexity of our methods with respect to the length of
the trail used. This is the best attack on RadioGatún.

Keywords: hash functions, cryptanalysis, sponge.

RadioGatún [1], the subject of this paper, is a design of hash functions pro-
posed by Bertoni et al. at the Second Cryptographic Hash Workshop in 2006.
Though having been presented as a so called iterative mangling function it ac-
tually fits the sponge framework later proposed by the same authors [2,3]. The
hash functions Panama [6] and Grindahl [10] also have much common with
RadioGatún and the sponge framework.

The sponge is an iterative construction, which is an alternative to the Merkle-
Damg̊ard design. The latter approach consists of the iterated application of the
compression function, which gets a message block as the input and assumed to be
collision-resistant. The sponge construction operates on smaller message blocks
and a round function. After a message is fully processed the sponge generates
output of infinite length by just consecutively applying the round function and
taking a block in an internal state as a new output block.

Bertoni et al. proved [2] that such a construction is resistant against collision
and (second-)preimage attacks of complexity lower than the birthday bound as-
suming that the round function is a randomly chosen permutation which prop-
erties are not exploited by an adversary. However, this assumption is not the
case for concrete sponge-based hash functions so the designers claim a reduced
security level (see the next section for careful explanation).

RadioGatún is actually a family of hash functions with the size lw of the
building block — word — as a parameter. Although the internal state of the
hash function is rather big (58 words), the performance is quite impressive.
For example, RadioGatún with lw = 32, which is claimed to be as secure as

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 53–66, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

54 D. Khovratovich

SHA-256, is twice faster [1]. This makes RadioGatún a very promising design
in view of the NIST hash function competition [8].

This paper presents two attacks on RadioGatún: semi-free-start (or chosen
IV) collision search and the second preimage search. The outline of the paper is
as follows. First we describe the RadioGatún hash function and discuss on the
claimed security level: why it is much lower than an intuitive bound with respect
to the size of the internal state. In Section 2 we investigate the differential-
based collision attacks on RadioGatún using the notion of differential trail. We
show that previously introduced symmetric trails [1] do not provide attacks with
reasonable complexity. We introduce trails with truncated differentials of linear
form, which are extremely suitable for RadioGatún due to its slow diffusion.

Then we present collision and second-preimage attacks based on the trails
discussed above. Both attacks use the invertibility of the round function and
the abscence of the message scheduling in order to apply the meet-in-the mid-
dle approach. Collisions are found in the chosen IV framework though a bit
slower second-preimage attack can be also converted to the collision search. The
complexities of both attacks are in the gap between the claimed security level
and the bound given by the birthday paradox. We also provide some theoretical
observations on the lower bound on the complexities of the attacks which can
be maintained with the truncated differential trails and the meet-in-the-middle
approach.

1 RadioGatún

Description. RadioGatún operates on words of some integer length lw. The
parameter is fixed for a concrete hash function, and we denote by RadioGatún-
lw the corresponding hash function. An internal state of RadioGatún consists
of two substates also called belt (B) and mill (A) of size 39 words and 19 words,
respectively. The round function treats them differently. The belt is updated by
a simple linear transformation and fed with 12 words of the mill and with 3
words of the message block in a linear way. The mill is fed with 3 words of the
belt and 3 words of the message block in a linear way and afterwards is updated
by a nonlinear function. The resulting round function is invertible (see Fig. 1).

There is no message scheduling in RadioGatún. First a message to be hashed
is appropriately padded and then it is divided by 3-word blocks, which are used
only once. The iteration starts with the state full of 0s. One step consists of the
message injection and the application of the round function. After the message
is fully processed RadioGatún iterates with 16 blank rounds (without any
injections) and generates output of infinite length by just consecutively applying
the round function and taking a 2-word block in the internal state1 as a new
output block.

We denote the injected block by M . Following this notation, the round func-
tion of RadioGatún transforms a state S = (A, B) to a new state S′ = (A′, B′):

1 More precisely, the second and the third words of the mill.

Two Attacks on RadioGatún 55

· · ·
· · ·

. . .Mill function

Mill Belt

Message
block

Mill2Belt

Belt2Mill

Fig. 1. One round of RadioGatún

– B
Message injection (M) and shift←−−−−−−−−−−−−−−−−−−−− B;

– A
Message injection (M)←−−−−−−−−−−−−−− A;

– B′ Mill2Belt feedforward (A)←−−−−−−−−−−−−−−−− B;
– A

Mill function←−−−−−−−− A;

– A′ Belt2Mill feedforward (B′)←−−−−−−−−−−−−−−−−− A.

Only the Mill function is non-linear. Due to space limits a full description is
skipped, so we refer to the original paper [1].

Security. The output of RadioGatún can be considered as a pseudorandom
generator, which generates 2 words per step. The designers assume that each
application will choose its own length of the hash digest. While for short l-
bit outputs the complexity of collision search can be estimated as 2l/2 Radio-
Gatún calls, this is evidently not for longer ones. As a result, a common security
level should have been defined thus providing an upper bound on the complexity
of a particular attack.

In the original paper the notion of capacity was introduced. The capacity of
the ideal iterative mangling function is the size of internal state minus the size
of the message block to be injected. However, since the RadioGatún round
function is not ideal, the security level of RadioGatún was indicated by a
smaller capacity of 19lw. This implicitly means that both collision and second-
preimage attacks are slower than 29.5lw though it was not clearly stated. The best
non-trivial attack found by the designers requires 246lw hash function calls and is
substantially slower than the birthday attack, which requires about 227.5lw hash
queries2. Now the designers explicitly claim a security level of 29.5lw operations
for both the attacks [9] thus following so called flat sponge claim [2]. So we
conclude that there is a big gap between the birthday bound with respect to the
internal state and the security level. Any attack in this gap, though not breaking
2 The internal state contain 58 words, but a 3-word flexibility is provided by the

injection of a message block not used before. See also Sec. 3.

56 D. Khovratovich

the security level, could be nevertheless interesting because it should point out
weaknesses in the internal transformations.

2 Trails

In order to build a collision we consider so called differential trails [1,5,7], or
simply trails. A trail is a pair of [hash function] iterations with restrictions on
internal variables. Such restrictions may be imposed on the differences between
variables or the values of particular variables.

This paper is partly inspired by the attack on Grindahl [12]. In this section
some notions from that paper are used (control words, degrees of freedom) so
we kindly ask the reader to familiarize with it.

2.1 Symmetric Trails and Trails with Fixed Differences

If a design operates on words of arbitrary length (like RadioGatún) then one
may consider so-called symmetric trails that deal with word differences of form
000 . . .0 and 111 . . .1. In the original paper on RadioGatún [1] and in the attack
on Panama [5] symmetric trails were discussed. Such trails are in some sense
independent of the word length. However, their probabilities seem to drastically
decrease as lw grows.

Indeed, authors of [1] found a symmetric trail for the RadioGatún with 1-bit
words such that a collision search following this trail would require about 246

operations while the birthday bound is 227.5. This observation made authors to
claim that corresponding symmetric trail for RadioGatún-lw (RadioGatún
with lw-bit words) would imply 246lw as the complexity of the collision search.

However, the following observation make us to disagree with this generaliza-
tion. Given a trail with fixed (non-truncated) values of differences (not only
symmetric ones) an adversary actually knows the input and output differences
(∆in, ∆out) of the nonlinear function χ, the part of the Mill function. The pair
〈∆in, ∆out〉 impose a set of conditions on input and output values. The number
of conditions imposed on the input value is the Hamming weight of the input
difference plus the number of 001-patterns3 in the difference [5]4.

Let us estimate the average number of conditions. The average Hamming
weight of the 19lw bit word is 9.5lw, the average number of 001-patterns is
17/8lw. Thus we have about 11.5lw conditions on the bits of the mill in each
round. If there were no injection to the mill, only two rounds would give enough
conditions to completely determine the value of the mill. However, 6lw bits are
injected to the mill from the belt (3lw) and the message (3lw) thus compensating
6lw conditions so we have about 5.5lw bit conditions per round. As a result, one
can define the values of the mill given only about 4 rounds of a trail. However,

3 The word 001︸︷︷︸0000 001︸︷︷︸ 001︸︷︷︸000 contains three 001-patterns.
4 Full description of function χ and its properties may be found in Daemen’s PhD

thesis [4, p. 126].

Two Attacks on RadioGatún 57

since a full collision trail covers at least 6 rounds, with high probability no
message pair fits a given trail.

We can reformulate this result as an informal conjecture.

Conjecture 1. Either a differential trail with fixed values of differences has prob-
ability 0 or any 4 consecutive rounds of the trail completely define the message
pair.

A counterargument may be that one might find a trail with low Hamming weight
of the input difference. However, such a difference is likely to expand to an
average one due to diffusion properties in the Mill function. So far there is no
example of such low-weight trails.

We conclude that symmetric trails and trails with fixed differences seem to
be insufficient to evaluate the security of RadioGatún.

2.2 Truncated Differentials and Linear Space of Differences

The key idea is to consider truncated differentials of linear form and exploit
the linearity of transformations in the belt. We take a linear subspace R ⊆ Zlw

2
of dimension r. Let us also consider the first round such that the difference is
injected by the message block. Let these injected differences belong to R.

If the Mill function provided an ideal diffusion then the probability that the
difference in any word of the mill after applying the Mill function belongs to
R would be about 2r−lw . However, words 0, 3, 6, 10, 11, 14 and 18 of the mill
are not affected by the message injection, so there will be zero difference in
them after the first round. Thus 8 of the 12 mill words that are feedforwarded
to the belt are affected by the message injection. The difference in them is not
randomly distributed but one can find R such that the R-difference appears with
probability 2r−lw . The inverse of the Mill function provides the diffusion close
to uniform.

An example of R for RadioGatún-8 might be the following space: R =
{b7b6 . . . b1b0

∣∣ b7 = b6 = b5 = 0}. Let A and A′ be random mills such that
A[16] ⊕ A′[16], A[17] ⊕ A′[17], and A[18] ⊕ A′[18] belong to R. Apply the Mill
function to both mills and compute the difference ∆A = {∆0, ∆1, . . . , ∆18}. We
made 1000 experiments and observed that the probability that ∆i ∈ R is close
to 1/8 = 125/1000 (see Table 1).

Table 1. Distribution of differences in the output of the Mill function

i 1 2 4 5 7 8 9 12 13 15 16 17
#{∆i ∈ R} 145 134 116 141 115 122 109 134 132 138 129 106

Thus we assume that 8 words enter the Mill2Belt feedforward with the differ-
ence from R with probability5 28(r−lw). One of these differences is added to the
5 We assume the independency of the separate events, which seems to be the case for

non-trivial R and quite big (> 7) n.

58 D. Khovratovich

difference imposed by the message injection. Since any linear space is closed un-
der addition, all 10 non-zero differences (8 from the mill and 2 from the message
injection) in the belt belong to R (see also Table 2, round 1).

Now we describe how this idea can be used in attacks.

3 Collision Search

In this section we show how to find a state S and the two different messages m
and m′ that convert S to the same state. Following the notation from [2] there
exist two paths p �= q from one state to another one. This is usually called semi-
free-start collision attack [11]. In other words, we build a collision for messages
with a chosen IV. Although the IV is fixed to 0 in RadioGatún, the IV that
we get in the attack can be any intermediate internal state, which makes the
attack interesting.

First we describe a simplified version of the attack, and then introduce several
tricks, which lead to a full attack. We apply the meet-in-the-middle approach,
because the initial state can be arbitrarily chosen, there is no message schedule,
and the round function is invertible. As a result, we can start with a final state
and step back.

We start from a set of arbitrary chosen pairs of identical states. We vary
injected message blocks during 5 rounds and difference in them and thus get set
S1 of pairs. 5 rounds are required to fill 38 of 39 belt words with differences. The
sixth message injection fills the last belt word. We also start from another set of
arbitrary chosen pairs of identical states and step backwards for 4 rounds varying
message blocks and difference in them as well. As a result, we get set S2 of pairs.
If a pair belongs to both sets then we obtain a collision. The complexity of this
approach is about 258lw hash function queries. This process is briefly illustrated
in Figure 2.

· · ·

· · ·

Birthday space

the birthday space:
Point in

mills are equal,
belt differences are equal

5 rounds

4 rounds

Pair of states

Fig. 2. Outline of the meet-in-the-middle collision search

Two Attacks on RadioGatún 59

Table 2. Full trail. Words with differences after the round function is applied.

Round Words with differences
Mill Belt

1 1, 2, 4, 5, 7, 8, 9,
12, 13, 15, 16, 17

[1,0], [1,1], [1,2]

2 All [1,0], [1,1], [1,2], [2,0], [2,1], [2,2], [4,2], [5,1], [7,2], [8,1],
[9,0], [12,0]

3 All [0,0], [1,0], [1,1], [1,2], [2,0], [2,1], [2,2], [3,0], [3,1], [3,2],
[4,2], [5,1], [5,2], [6,0], [6,1], [7,2], [8,1], [8,2], [9,0], [9,1],
[10,0], [10,2], [11,1], [12,0]

4 All All except [0,1], [0,2], [6,0], [9,0]
5 All All except [0,2]
6 All All
7 All All except [1,2], [2,1], [3,0], [4,2], [5,1], [6,0], [7,2], [8,1],

[9,0], [10,2]
8 All [0,0], [0,1] ,[0,2], [1,1], [2,0], [3,2], [4,1], [5,0], [6,2], [7,1],

[8,0], [9,2], [10,1], [11,0], [12,0], [12,1], [12,2]
9 12–18 [0,0], [0,1], [0,2]

Due to space limitations we can not provide here a full graphical represen-
tation of the resulting differential trail. However, it can be fully determined by
the words with differences after each round. Providing that each message block
has difference in all three words we derive the trail described in Table 2. The
trail covers 9.5 rounds (after the 10th message injection all the words have zero
difference).

In order to compare this approach with the birthday attack we introduce the
notion of the birthday space. Assume that in order to get a collision we need to
obtain two states that fit a particular relation (in the simplest case — two equal
states). Then each class of equivalency is a point in the birthday space. The
complexity of an attack that uses a birthday paradox is thus the square root of
the size of the birthday space. If an adversary seeks an internal collision using the
birthday paradox, the coincidence of all the words is not necessary. Since there is
no message scheduling, and each message block can be chosen independently, it
is enough to obtain two states colliding in all words not affected by the message
injection and in three more words, which are the sums of words affected by the
corresponding message words. Thus we have the birthday space of dimension
55lw, and the complexity of the birthday attack is 227.5lw , which is smaller than
our naive meet-in-the-middle attack, where the dimension of the birthday space
is 2 ∗ 19lw + 2 ∗ 39lw = 116lw.

Next we show that pairs may not completely coincide. First we relax restric-
tions on the belt and show that the equality of the difference in the belt is
enough.

Proposition 1. The belt-to-mill feedforward in n ≤ 13 consecutive rounds can
be considered as injection of n independently chosen 3-word blocks.

60 D. Khovratovich

Mill

Belt

round

belt2mill
feedforward

· · ·

· · ·

Fig. 3. Scheme of the belt recovery

Proof. Indeed, one can recover the belt from any n ≤ 13 3-word blocks without
contradiction. This can be proved by the following observation. Let us derive the
values of the belt words consecutively while iterating one round after another.
At each step we derive 3 more known words and use the known message and mill
values to carry out the known values to the next step. Due to slow rotation new
values cover consecutive columns in the belt. This process is briefly illustrated
in Figure 3.

Formally, denote the belt in the beginning of the trail by B and in the end by
B′. It is easy to see that belt words are not mixed with each other, only message
and mill words are added. Thus B′[i, j] = B[i−n, j]+ f(i, j) where n is the trail
length and f is a function of the message and the mills. The belt words that are
feedforwarded to the mill are derived from distinct B words. Thus giving any set
of feedforward blocks, the mill values and message blocks one can recover the
original B without contradiction.

Let us return to the 9-round trail. If a state from S1 and a state from S2 coincide
in the mill and in the difference in the belt then the corresponding parts of the
trail can be combined into one trail. At the same time, 27 words of the initial
belt are recovered. The other 12 words can be assigned randomly. The dimension
of the birthday space is 2 ∗ 19lw + 39lw = 77lw so the complexity of the second
version of the attack is about 238.5lw .

Linear Truncated Differentials. In order to reduce the birthday space we impose
restrictions on the differences that are fed to the belt. We choose integer r ≤
lw (the exact value of r will be defined later) and a linear space R ⊂ Zlw

2 of
dimension r that fits the assumptions of uniformity (see section 2.2). In order
to obtain a desired difference we vary the injected messages. We choose the first
message block in the pair randomly thus having 3lw degrees of freedom (see
also [12]). The second message should have the R-difference with the first one
so we have 3r more degrees of freedom. Thus the probability that we find the
words to be injected such that a given pair pass through the next round with
R-restriction is 28r−8lw+3r+3lw = 211r−5lw (if this value exceeds 1 then we just
obtain more pairs).

The latter value can be also considered as a multiplier c such that if N pairs
enter the round then c · N pairs with R-difference can be obtained from them
after one iteration.

Two Attacks on RadioGatún 61

We need 5 rounds and one more message injection to fill the 39 words of the
belt (we use the trail presented in Table 2) with R-differences. Let (A, B) denote
the internal state as a pair of the mill and the belt in the beginning of sixth round.
We also require that the 12 words of A that are feeded to the belt in the sixth
round should also have R-difference (this is arranged by the message injection in
rounds 4 and 5). To sum up, we need 56 R-difference words in the mills during
five rounds while the freedom provided by injections is 5∗(3r+3lw) = 15r+15lw.
Additionally, we randomly choose the words that are feedforwarded from the belt
(see Proposition 1) in rounds 1-4 thus having 12lw more degrees of freedom. As
a result, if we start with 2n1 pairs then 2n1+15r+27lw+56r−56lw = 2n1+71r−29lw

pairs pass through five rounds.
Now we consider the second part of the trail and proceed back from the aero-

difference state. Only 3 message injections are needed to fill the belt with R-
differences. However, the difference in the mill would coincide with the difference
in the 12 words of the belt. We add one more round. Thus 48 words with R-
difference should be obtained during the process. The multiplier is

24∗(12r−12lw+3r+3lw+3lw) = 260r−24lw .

Finally, let us calculate the dimension of the birthday space. Recall that we need
that pairs should coincide in the value of the mill, in the difference of the mill,
and in the difference of the belt. The dimension of the resulting birthday space is
19lw+(12r+7lw)+39r = 51r+26lw. However, we have not used the freedom that
is provided by the message injection in round 6 and the bell-to-mill feedforward
in round 5 yet. This freedom allows us to further relax the restriction on the
coincidence of pairs: we do not care of values of the mill in 6 words and of 3
word differences. Finally, the resulting birthday space is of dimension 20lw +48r.

Now we compute r such that the number of pairs throughout the attack is
minimal. Let us denote by 2n1 and 2n2 the number of pairs that we start with
from the first round and from the last round, respectively. Then the number of
pairs and the complexity of the attack6 is bounded by max(2n1 , 2n1+71r−29lw , 2n2 ,
2n2+60r−24lw). The second requirement is that the number of pairs in the middle
round should be enough to perform the birthday attack: (n1 +71r−29lw)+(n2 +
60r − 24lw) = 20lw + 48r. The best solution is provided by the r equal to 0.4lw.
This implies the equation n1 + n2 = 39.8lw. The resulting complexity is 219.9lw .

Relaxation. Further we note that several words in the belt are updated by the
mill words twice during the first 5 rounds. Since we need R-difference only in
the middle state, arbitrary difference can be injected at the first time and later
converted to the R-difference. As before, we expect the probability of getting
an R-difference as 2r−lw . After this relaxation we have no restrictions on the
difference in the message injection in the first round (the idea is illustrated in
Figure 4). Furthermore, we have no restrictions on the mill difference in the first
round. The only difference that should be maintained by the first injection is
the difference in 3 mill words after round 2.
6 We assume that the search for appropriate message blocks and belt words is of neg-

ligible cost and can be maintained with a lookup table.

62 D. Khovratovich

R

*

*

*

*

R

*

— R-difference

— arbitrary difference

R

R

R

R R

Before relaxation After relaxation

Fig. 4. Idea of the relaxation

Following this approach we obtain
probability 248r−6lw for a random pair
to come out of the first part of the trail.
The probability for the second part of
the trail (reverse process) is 248r−12lw .
However, the number of pairs is no
longer a monotonic function of the
round number, so we adjust the value
of r in order to keep the number of
considered pairs minimal during the
attack. The resulting complexity is
about 218lw hash function queries with
r = 4/13lw and the birthday space
of dimension 48r + 20lw ≈ 34lw. The
number of pairs after every round is
given in Table 3.

Strengthening. The fact that the number of pairs is not a monotonic function
of the round number means that degrees of freedom are not properly used. Here
we notice that after relaxation most words with R-differences are not added to
each other so we can omit the restriction on linearity. One may consider a group
of differences (instead of a linear space) of arbitrary size between 1 and 2lw .

In order to flatten the function of the number of pairs we consider particular
words in the mill and strengthen the restriction on differences in them taking
another space R for a particular word. As a result, we deal with several different
R’s, each with its own size.

The benefit is given as follows. Suppose we work with a two-round trail. The
number of pairs is N before the first round, 2lN (l > 0) before the second round,
and N after the second round. Then the the overall complexity is bigger than
both the initial and end values and is equal to 2lN . If we follow the idea of
strengthening and add l more conditions on the difference after the first round
(and in the end) then the number of pairs is reduced to N after the first round
and to N

2l in the middle. The dimension of the middle space is also decreased by

Table 3. The complexity of the collision search after the relaxation (r = 4/13lw)

Round
Degrees of
freedom

Words to
control

Number of
pairs (log2)

0 - - 12.5lw
1 6lw 3 14.5lw

2 9lw 10 16.6lw
3 9lw 11 18lw
4 9lw 13 18lw

5 9lw 13 18lw

Round
Deg. of
freedom

Words to
control

N-r of
pairs

10 - - 13.8lw
9 9lw 10 15.9lw
8 9lw 10 18lw

7 9lw 13 18lw
6 9lw 15 16lw

Two Attacks on RadioGatún 63

l. In order to maintain the birthday attack we must increase the initial number
of pairs from N to N2l/2. The complexity of the attack is thus reduced to N2l/2.

Theoretical lower bound. One may ask the question what the smallest complexity
is that we can achieve following the ideas of linear differences, relaxation and
strengthening. Let us recall that the dimension of the middle space without
restrictions on differences is 77lw. If we impose P linear restrictions on differences
then the dimension will be 77lw − P . On the other hand, we have 51lw degrees
of freedom (provided by 6 message blocks and belt2mill feedforward blocks) to
compensate the restrictions. Thus the multiplier of the first part of the trail is
251lw−P . The lowest complexity is achieved if the multiplier is equal to 1, so we
obtain P = 51lw and the dimension of the middle space is 26lw. The number of
pairs required by the birthday attack is 213lw which is the lower bound.

4 Second Preimage Search

· · ·

· · ·
· · ·

· · ·

· · ·

Original
iteration

R-difference

· · ·

· · ·
· · ·

Collision search

Initial
state

Middle
round

Fig. 5. Outline of the second preimage
search

The idea of the second-preimage attack is
similar to a simple collision one. While we
looked for collisions with arbitrary pairs,
in the second-preimage attack the first el-
ement of every pair is fixed and is equal
to the original internal state. We pull a
number of states through the iteration
process from both ends and look for the
coincidence in the middle round. We vary
injected messages in order to obtain R-
differences in the middle round. The trail
is similar to that is given in Table 2,
but the zero differences are now arbitrary
differences.

Let us consider 10 rounds of the hash
iteration to which we want to find a sec-
ond preimage (called below the original
iteration). Where these rounds should be
located will be discussed later. Denote the
internal states of the original iteration in
the beginning of 11 consecutive rounds:
I0, I1, . . . , I10. Suppose we also have N1
states (the exact value will be also defined
later) that are resulted from iteration of
the original zero state with some random
message. Then we consider N1 differences
between these states and the state I0 as the first difference in the 10-round trail,
which is obtained from the trail in Table 2 by adding one more round in the be-
ginning and replacing zero differences with arbitrary differences. Next for each

64 D. Khovratovich

of N1 states we look for the 6-block messages that provide an R-difference state
in the middle round (a state that has an R-difference in every word with the
state I6). As a result, we obtain a set S1 of internal states. See also Figure 5 as
an illustration.

Similarly, suppose we have N2 states that are resulted from reverse iteration
of the last internal state of the original iteration. We treat them in the similar
way and look for the 4-block messages that provide an R-difference state in the
middle round. Thus we obtain a set S2 of internal states. Then we look for a
state that is presented in both sets. Such a state implies a parallel iteration,
which gives the same hash value.

Now let us estimate what are N1, N2 and the complexity of the attack. The
injection in round 0 controls 4 mill words in the end of round 1 such that the
resulting difference belong to R. The injections in rounds 1-4 control 12 words
and the last one control 8 words. Thus the probability that a state can be pulled
to the middle state with R-differences is 2(4+12∗4+8)(r−lw)+3∗6r = 278r−60lw . The
same idea holds for reverse steps. We start with N2 states and the proportion
24∗(12r−12lw+3r) = 260r−48lw of them comes out of the iteration.

The dimension of the birthday space in the beginning of 6-th round is 7lw+51r
(12 words of the mill and all the words of the belt must have R-difference, and
the other 7 mill words may have arbitrary difference). Given 3r more degrees of
freedom from the message injection in round 6 we derive that 23.5lw+24r internal
states are required to perform the birthday attack.

The optimal complexity is given by the r = 0.8lw that converts the multiplier
260r−48lw to one. Thus we derive

N1 = 23.5lw+24r+60lw−78r = 220.3lw ; N2 = 23.5lw+24r+48lw−60r = 222.7lw .

If we follow the method of relaxation and strengthening as described in Section 3
then the complexity about 220lw could be achieved. This is actually the lower
bound for these meet-in the middle attacks with 10-round trails, which can be
checked following the method in Section 3.

5 Implementation of Attacks

Though optimal r might be non-integer, we can take concrete values just to
check whether our approach works in real life. Due to high complexity of the
attack even with small number bits in a word we can not perform the attack
as a whole but we tested the RadioGatún round function on different spaces
R and encountered good distribution of differences in the output (see Table 1),
especially in reverse steps. We also checked that values in the belt words and
message blocks to be injected can be chosen such that the desired differences
appear in the output of the non-linear function. Thus we substantiated the main
assumptions made throughout the description of the attack.

One may also argue that RadioGatún with reduced number of words in the
belt and in the mill may be considered as an easier object for the attack. How-
ever, the reduced round function and its inverse do not provide good differential

Two Attacks on RadioGatún 65

Table 4. Summary of attacks on RadioGatún

Attack Type Complexity Origin
Symmetric trails 246lw [1]

Birthday 227.5lw -
Collisions R-difference 219.9lw This paper

After relaxation 218lw This paper
Birthday 227.5lw -

Second preimage search R-differences 222.7lw This paper
After relaxation ∼ 220lw This paper∗

∗ – hypothetical.

characteristics (close to random) anymore. We checked this for the internal state
that is reduced threefold. This (non-uniformity) is also the case with small lw
(the number of bits in a word), which makes our attack inefficient.

We also note that the attack becomes trivial for RadioGatún-1 since there
are only two options for R, and both of them give high complexity.

6 Conclusions

We investigated the security of RadioGatún using differential trails with lin-
ear restrictions on differences. We applied the meet-in-the-middle approach and
managed to reduce the complexity with help of new tricks such as relaxation and
strengthening. We showed how to find semi-free-start collisions with complexity
about 218lw hash function calls and the second preimage with about 222.7lw calls
(with a possible improvement up to 220lw). We also provided theoretical lower
bounds on the complexity of the attack which follow the same approach.

The main weakness of the RadioGatún round function that we exploited
is plenty of linear operations and slow diffusion in the belt. We suppose that a
compromiss between adding more non-linearity in the primitive transformations
and the speed might be found so the design could be seriously strengthened and
the security level could be increased (say, up to 216lw). As a result, a smaller
versions (in terms of lw) could be used as a 256/384/512-bit hash function.

Regarding RadioGatún itself, though our attacks do not break the claimed
security level (29.5lw), they are faster than the birthday attack and the attack
that might be carried out from Grindahl [12]. Thus we conclude that Radio-
Gatún is still resistant against differential-based collision search though this
resistance is now provided only by a substantially low security level.

Acknowledgements

The author greatly thanks Alex Biryukov, Ivica Nikolic, Stefan Lucks, Joan
Daemen and the RadioGatún team, and the anonymous reviewers for their
valuable and helpful comments. The author is supported by PRP “Security &
Trust” grant of the University of Luxembourg.

66 D. Khovratovich

References

1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Radiogatun, a belt-and-mill
hash function. In: NIST Cryptographic Hash Workshop (2006)

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In:
ECRYPT Hash Workshop (2007), http://sponge.noekeon.org/

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiabil-
ity of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

4. Daemen, J.: Cipher and hash function design strategies based on linear and differ-
ential cryptanalysis. PhD thesis, K.U.Leuven (March 1995)

5. Daemen, J., Van Assche, G.: Producing collisions for panama, instantaneously.
In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 1–18. Springer, Heidelberg
(2007)

6. Daemen, J., Clapp, C.S.K.: Fast hashing and stream encryption with PANAMA.
In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 60–74. Springer, Heidelberg
(1998)

7. Daemen, J., Rijmen, V.: The Design of Rijndael. AES — the Advanced Encryption
Standard. Springer, Heidelberg (2002)

8. Cryptographic Hash Project,
http://csrc.nist.gov/groups/ST/hash/index.html

9. http://radiogatun.noekeon.org/

10. Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The Grindahl hash functions. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 39–57. Springer, Heidelberg
(2007)

11. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

12. Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 551–567. Springer, Heidelberg (2007)

http://sponge.noekeon.org/
http://csrc.nist.gov/groups/ST/hash/index.html
http://radiogatun.noekeon.org/

Faster Multicollisions�

Jean-Philippe Aumasson

FHNW, Windisch, Switzerland

Abstract. Joux’s multicollision attack is one of the most striking re-
sults on hash functions and also one of the simplest: it computes a k-
collision on iterated hashes in time �log2 k	·2n/2, whereas k!1/k ·2n(k−1)/k

was thought to be optimal. Kelsey and Schneier improved this to 3 ·
2n/2 if storage 2n/2 is available and if the compression functions admits
easily found fixed-points. This paper presents a simple technique that
reduces this cost to 2n/2 and negligible memory, when the IV can be
chosen by the attacker. Additional benefits are shorter messages than
the Kelsey/Schneier attack and cost-optimality.

Keywords: hash function, collision.

1 Introduction

Cryptographic hash functions are key ingredients in numerous schemes like
public-key encryption, digital signatures, message-authentication codes, or mul-
tiparty functionalities. The last past years the focus on hash functions has dra-
matically increased, because of new attacks on the compression algorithm of
MD5 and SHA-1 and on their high-level structure, e.g. multicollision attacks.
We introduce these attacks below.

Consider an arbitrary function f : {0, 1}n × {0, 1}m �→ {0, 1}n. A classic
construction [24,25] defines the iterated hash of f as the function

hH0(M1 . . .M�):
for i = 1, . . . , � do

Hi ← f(Hi−1, Mi)
return H�

where H0 is called the initial value (IV), and f the compression function.
Damg̊ard and Merkle [7,18] independently proved in 1989 that h is collision-
resistant if f is collision-resistant when the bitlength of the message is appended
at its end (a technique referred as MD-strengthening). This technique also pre-
vents the fixed-point attack—a folklore multicollision attack—whose basic idea
is that if M satisfies f(H0, M) = H0, then hH0(M . . .M) = H0.

The problem we will focus on is how quickly one can compute k distinct mes-
sages mapping by hH0 to the same value, when MD-strengthening is applied (call
� Article previously accepted to SECRYPT 2008, but withdrawn by the author because

unable to attend the conference. This author was supported by the Swiss National
Science Foundation under project no. 113329.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 67–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

68 J.-P. Aumasson

this a k-collision). An extension of the birthday attack computes k-collisions1

within about k!1/k · 2n(k−1)/k calls to f , which was believed to be the optimal
until the technique of [10] that requires only �log2 k� · 2n/2 f -calls. Kelsey and
Schneier subsequently reduced this cost to 3 · 2n/2 [12], provided that storage
2n/2 is available, and that f admits easily found fixed-points. Though seldom
cited, this technique is more powerful than Joux’s in the sense that the cost of
finding a k-multicollision is independent of k, yet a drawback is the length of
the colliding messages, significantly larger.

1.1 Contribution

This paper reviews the previous techniques for computing k-collisions, and
presents a novel method whose main features are

– a cost independent of the number of colliding messages k (with 2n/2 trials)
– short colliding messages (with �log2 k� blocks)
– negligible storage requirements

Limitations of the attack are the need for easily found fixed-points, and the
IV chosen by the attacker. This means that the IV used for the multicollisions
cannot be set to a predefined value, which corresponds to the model called “semi-
free-start collisions” in [14], “collision with different IV” in [21], and “collision
(random IV)” in [17]. Within this model, our technique is optimal, because k-
collisions become as expensive as collisions.

The practical impact of this attack is limited, because it does not break
the complexity barrier 2n/2. However, in terms of price/performance ratio (or
“value” [21, §2.5.1]) it outperforms all the previous attacks, since for the same
price as a collision, one gets k-collisions.

1.2 Related Work

Multicollisions received a steady amount of attention since Joux’s attack: [19,9]
generalized them to constructions where a message block can be used multiple
times; [30] revisited the birthday attack for multicollision; dedicated multicolli-
sion attacks were found for MD2 [13] and MD4 and HAVAL [31]. Finally, [11]
used multicollisions for the “Nostradamus attack”.

1.3 Notations

Let f : {0, 1}n × {0, 1}m �→ {0, 1}n be the compression function of the iterated
hash hH0 , for an arbitrary H0, where MD-strengthening is applied. If f admits
easily found fixed-points, write FPf : {0, 1}m �→ {0, 1}n a function such that for
all M , FPf (M) is a fixed-point for f , i.e. f(FPf (M), M) = FPf (M).

Then, fix a unit of time (e.g. an integer addition, a call to f , a MIPS-year,
etc.), and a unit of space (e.g. a bit, a 32-bit word, a n-bit chaining value, a

1 Plural is used because from any k-collision we can derive many other k-collisions, by
appending the same arbitrary data at the end of colliding messages.

Faster Multicollisions 69

128Gb hard drive, etc.), and write the cost of computing f as Tf time units
and Sf space units (resp. TFP and SFP for FPf); we assume these costs input-
independent; we disregard the extra cost of auxiliary operations and memory
accesses (though of certain practical relevance); we also disregard the constant
factor caused by “memoryless” birthday attacks [29,23].

Note that our goal is to find (the description of) many messages with same
digest, not to effectively construct them. Hence, the time cost of finding a k-
collision is not lower-bounded by k (e.g. k steps of a Turing machine), neither
are the space requirements.

2 Joux Multicollisions

This method computes 2k-collisions for k times the cost of finding a single col-
lision: Assuming m < n, first compute a colliding pair (M1, M

′
1), i.e. such that

f(H0, M1) = f(H0, M
′
1) = H1, then compute a second colliding pair (M2, M

′
2)

such that f(H1, M2) = f(H1, M
′
2) = H2, and so on until (Mk, M ′

k) with Hk−1
as IV. Hence, for a symbol X ∈ {M, M ′}, any of the 2k messages of the form
X1 . . .Xk has intermediate hash values H1, . . . , Hk, and 2k-collisions can be de-
rived from these 2k messages by appending extra blocks with correct padding.
The cost of the operations above is time k · 2n/2 ·Tf , and negligible space.

H0

H0

H0

H0 M ′
1

M1

M ′
1

M1

H1

H1

M2

M ′
2

H2

����

����

����

��������

����

Fig. 1. Illustration of Joux’s method for k = 2: first a collision f(H0, M1) =
f(H0, M

′
1) = H1 is computed, then a second collision f(H1, M2) = f(H1, M

′
2) = H2 is

found; the 4 colliding messages are M1M2, M1M
′
2, M ′

1M2, and M ′
1M

′
2

Fig. 1 gives an intuitive presentation of the attack; computing a 2k-collision
can be seen as the bottom-up construction of a binary tree, where each collision
increases by one the tree depth. Note that a chosen IV does not help the attacker.

3 Kelsey/Schneier Multicollisions

As an aside in their paper on second-preimages, Kelsey and Schneier reported
a method for computing k-collisions when f admits fixed-points [12, §5.1]; an
advantage over Joux’s attack is that the cost no longer depends on k. Here we
will detail this result, which benefited of only a few informal lines in [12], and is
seldom refered in literature.

70 J.-P. Aumasson

3.1 Fixed-Points

A fixed-point for a compression function f is a pair (H, M) such that f(H, M) =
H . For a random f finding a fixed-point requires about 2n trials, by brute force
search. Because it does not represent a security threat per se, neither it helps to
find preimages or collisions, that property has not been perceived as an undesir-
able attribute: in 1993, Preneel, Govaerts and Vandewalle considered that “this
attack is not very dangerous” [22], and according to Schneier in 1996, this “is
not really worth worrying about” [28, p.448]; the HAC is more prudent, writing
“Such attacks are of concern if it can be arranged that the chaining variable has
a value for which a fixed point is known” [17, §9.102.(iii)].

The typical example is the Davies-Meyer construction for blockcipher-based
compression functions, which sets f(H, M) = EM (H)⊕H . Hence, for any M a
fixed point is (E−1

M (0), M):

EM (E−1
M (0))⊕ E−1

M (0) = 0⊕ E−1
M (0) = H.

Therefore, each message block M has a unique H that gives f(H, M) = H and
that is trivial to compute2.

Note that the functions MD4/5 and SHA-0/1/2 all implicitly follow a Davies-
Meyer scheme (where integer addition replaces XOR). More generally, an it-
erated hash may admit fixed-points for a sequences of compressions rather
than a single compression—e.g. for two compressions, defining f ′(H, M, M ′) =
f(f(H, M), M ′). Generic multicollision attacks apply as well to this type of func-
tion, up to a redefinition of f and m.

3.2 Basic Strategy

We first consider the simplest case, i.e. when any IV is allowed. Recall the fixed-
point attack mentioned in §1, which exploits a fixed-point f(H, M) = H to
build the multicollision hH(M) = hH(MM) = hH(MMM . . . M) = H . MD-
strengthening protects against this attack, since it forces the last blocks of the
messages to be distinct. The idea behind Kelsey/Schneier multicollisions is to
bypass MD-strengthening using a second fixed-point. This fixed-point will be
used to adjust the length of all messages to a similar value, to get the same
padding data in all messages. Fig. 2 illustrates this attack: fix n > 2; if the first
fixed-point is repeated k times, then the second fixed-point is repeated n − k
times to have n blocks in total. The last block imposed by MD-strengthening
will thus be the same for all messages. The second fixed-point is integrated via
a meet-in-the-middle technique (MITM) that goes as follows:

1. Compute a list L1:

(M1, f(H0, M1)), . . . , (M2n/2, f(H0, M2n/2)).

2. Compute a list L2:

(M ′
1, FP(M ′

1)), . . . , (M
′
2n/2, FP(M2n/2)).

2 Similar fixed-points can be found for the constructions numbered 5 to 12 in [22].

Faster Multicollisions 71

H0 � H0 . . . H0
� Hj � Hj Hj

� Hn

H0 � H0 H0
� Hj � Hj . . . Hj

� Hn

Fig. 2. Schematic view of the Kelsey/Schneier multicollision attack, for an IV chosen
by the attacker: a first fixed-point allows to expand the message, while a second one
adjust the lengths to a similar value

3. Look for a collision on the second pair element (Mi, Hj) ∈ L1, (M ′
j , Hj) ∈ L2.

4. Construct colliding messages of the form Mi . . . MiM
′
j . . .M ′

j , such that the
length of the whole message is kept constant.

The attack runs in time 2n/2 · Tf + 2n/2 · TFP, and needs storage Sf + SFP +
2n/2 · S(n+m), with S(n+m) the space used to store a (n + m)-bit string. These
values are independent of the size of the multicollision. The length of messages
is addressed later.

When the IV is restricted to a specific value, the first fixed-point has to be in-
troduced with another MITM; time cost grows to 2 · 2n/2 ·Tf + 2n/2 ·TFP, and
storage is similar (the second MITM reuses the space allocated for the first one).

3.3 Multiple Fixed-Points and Message Length

In the above attack, a k-collision contains messages of about k blocks. In com-
parison, Joux’s method produces messages of �log2 k� blocks. This gap can be
reduced by using more than two fixed-points: Assume that K > 2 fixed-points
are integrated in the message. The attack now runs in time (K − 1)(2n/2 ·Tf +
2n/2 ·TFP), counting (K − 1) MITM’s, for a chosen IV. Also suppose a limit of
� blocks per message (e.g. a maximum number of blocks allowed by a design,
typically 264), with � > 2K.

Given the limit �, how large can be a multicollision in terms of K? The number
of constructible colliding messages is equal to the number of compositions of
� having at most K non-null summands3. The number we are looking for is
C�,K =

∑K−1
i=0

(
�
i

)
(summing over the number of separators), so we will get a

C�,K-collision.
For example, consider SHA-256, which admits fixed-points: with K = 8 one

finds 257-collisions in time about 14 ·2128, with 1024-block messages; in compari-
son Joux’s method computes 257-collisions in time about 57 · 2128, with 57-block
messages, and if we fix the message length to 1024 it finds 21024-collisions, in
time about 1024 · 2128. This stresses that a small number of fixed-points leads
to much longer messages. Performance becomes similar for the two attacks (in
terms of time cost, message length, and k) when K = ��/2�.
3 A composition (or ordered partition) of a number is a way of writing it as an ordered

sum of positive integers. For example, 3 admits four compositions: 3, 2 + 1, 1 + 2,
1 + 1 + 1.

72 J.-P. Aumasson

4 Faster Multicollisions

This section presents a method applicable when the compression function admits
easily found fixed-points (like MD5, SHA-1, SHA-256), and when the IV can be
chosen by the attacker. Despite its relative simplicity it has not mentioned in
the literature, as far as we know.

4.1 Description

The key idea of the attack is that of fixed-point collision, i.e. a collision for the
function FPf ; since FPf outputs n-bit this costs time TFP ·2n/2 and space SFP. A
fixed-point collision is a pair (M, M ′) such that FPf (M) = FPf (M ′) = H0, and
thus f(H0, M) = f(H0, M

′) = H0. The distribution of H0 (as a random variable)
depends on f and FPf ; e.g. for Davies-Meyer schemes based on a pseudoranom
permutation (PRP), this will be uniform.

Once found a fixed-point collision (M, M ′), a 2k-collision can be constructed
by considering all the k-block sequences in the set {M, M ′}k followed by an
arbitrary sequence of blocks M� with convenient padding. For example, a 4-
collision will be

H0
M→ H0

M→ H0
M�

→ H

H0
M→ H0

M ′
→ H0

M�

→ H

H0
M ′
→ H0

M→ H0
M�

→ H

H0
M ′
→ H0

M ′
→ H0

M�

→ H

The sole significant computation is for finding a fixed-point collision, hence the
whole attack costs time TFP · 2n/2 and memory SFP (with negligible overhead).
For instance, for a Davies-Meyer function computing FPf has the same cost as
computing f , thus time cost is Tf · 2n/2. Observe that the attack requires no
call to the compression function itself, but just to the derived function FPf .

H0

H0

H0

H0
M ′

1

M1

M ′
1

M1

H0

H0

M1

M ′
1

H0

����

����

����

��������

����

Fig. 3. Illustration of our technique for k = 2: a fixed-point collision f(H0, M1) =
f(H0, M

′
1) = H0 is computed, then the four colliding messages are M1M1, M1M

′
1,

M ′
1M1, and M ′

1M
′
1. Contrary to Joux’s attack, H0 is here chosen by the attacker.

Faster Multicollisions 73

If computing fixed-points is nontrivial but easier than expected, this attack
becomes more efficient than Joux’s as soon as k > TFP/Tf (for computing
2k-collisions).

4.2 Finding Fixed-Point Collisions

For a PRP-based Davies-Meyer compression function, the cost of finding a fixed-
point collision (i.e. FPf (M) = FPf (M ′)) equals the cost of finding a collision
(i.e. f(H0, M) = f(H0, M

′)); indeed in both cases the function is essentially
one query to the PRP, thus the same refined birthday-based methods can be
used [29,23].

This suggests that for Davies-Meyer functions (like MD5, SHA-1, SHA-256)
finding a fixed-point collision is cost-equivalent to finding a collision: indeed the
goal is now to find (M, M ′) such that E−1

M (0) = E−1
M ′ (0), while classical collisions

need EM (H) = EM ′ (H). Therefore, if E is a PRP then finding a fixed-point
collision with fixed IV is exactly as hard a finding a collision.

For hash functions that don’t have obvious fixed-points, finding a fixed-point
collision is at least as hard as finding a collision. Contrary to Davies-Meyer
schemes, the ability to find fixed-IV collisions does not directly allow to find
fixed-point collisions.

The statements above cover other blockcipher-based schemes that allow the
easy finding of fixed-points (cf. the 8 schemes in [22]). We conjecture that known
techniques for finding collisions on MD5 and SHA-1 can be adapted to find fixed-
point collisions within similar complexity.

4.3 Distinct-Length Multicollisions

The attacks of Joux and Kelsey/Schneier find colliding messages of same length.
A variant of our technique allows to find sets of messages that collide and do
not all have the same block length. The idea is to find a fixed-point collision
f(H, M) = f(H, M ′) = H such that M and M ′ contain valid padding bits,
that is, are of the form . . . 10 . . . 0‖�. The chosen message bitlength � should
be different for M and M ′, and be consistent with the number of zeros added.
Finding a fixed-point collision with these restrictions is not more expensive than
in the general case as soon as at least n/2 bits in the message blocks are not
padding bits.

Once a pair (M, M ′) with the above conditions is found, we can directly
describe multicollisions. Suppose for example that M = . . . 10 . . .0‖� and M ′ =
. . . 10 . . .0‖�′, where � encodes the length of a 2-block message, and �′ encodes the
length of a 3-block message. Then the messages M‖M , M ′‖M , M‖M‖M ′,. . . ,
M ′‖M ′‖M ′ all have the same hash value by hH , and have suitable message
length encoding.

4.4 Comparison to Joux and Kelsey/Schneier

Compared to Joux’s technique, ours has the advantage of a cost independent
of k; optimality of the algorithm follows (with respect to the assumption that

74 J.-P. Aumasson

a single collision costs at least 2n/2 f -calls). Compared to Kelsey/Schneier, our
technique benefits of short messages (�log2 k� for a k-collision), and no storage
requirement. However, our attack is limited by the chosen IV, which makes it
irrelevant for many applications of hash functions.

Consider for example an attacker with 2130 · Tf power to attack SHA-256:
with Joux’s technique he finds 4-collisions, with Kelsey/Schneier’s he finds k-
collisions with k-block messages if memory 2128 ·S(768) is available, and with our
method he finds k-collisions of length �log2 k� for 4 different IV’s, for any k.

4.5 Application to Concatenated Hash Functions

Let the hash function H(M) = hH0(M)‖h′
H′

0
(M), where h is an iterated hash

whose compression function f admits fixed-points, and h′ and ideal hash func-
tion (in practice, h and h′ might be the same function, and use different IV’s).
Suppose further that both hash to n-bit digests.

A basic birthday attack finds collisions on H within 2n calls to h, and as many
to h′; Joux reduced this cost to n/2 · 2n/2 ·Tf + 2n/2 ·Th′ . Our multicollision
technique applies similarly, if the IV of h can be chosen by the attacker: first
compute a 2n/2-collision for h, in time 2n/2 ·TFP, then look for a collision on h′

among these messages, in time 2n/2 ·Th′ . Assuming Th′ = Tf , we get an overall
cost 2n/2+1 ·Tf , instead of (n+1) ·2n/2 ·Tf with Joux’s technique. Our method
is almost optimal, since it almost reaches the cost of computing a collision on h
or h′ (up to a factor 2).

4.6 Countermeasures

The foremost question is “do we really need countermeasures?” A pragmatic
answer would be negative, arguing that the barrier 2n/2 remains intact thus the
security level is not reduced; however, from a price/performance perspective,
security is clearly damaged. So if cheap countermeasures exist there seems to be
really few reasons to ignore them.

The first obvious measure against our attacks and Kelsey/Schneier’s is to
avoid easy-to-find fixed-points. For example by using one of the four blockcipher-
based constructions in [22] that have no fixed-points. Another choice is to
“dither” the hash function, i.e. adding a stage-dependent input to the compres-
sion function, cf. [2,26,6,12,1,4]). For example by adding a counter to the input
of f , such that Hi = f(Hi−1, Mi, i). Dithering however doesn’t protect against
Joux’s method, since this computes a new collision for every dither value.

Joux’s attack can be prevented by a technique like the “wide-pipe” and
“double-pipe” of [15] or the similar chop-MD [6] construction, which enlarge
the chain values compared to the hash value. This trick also makes our at-
tack unapplicable, because it increases the cost of finding fixed-point collisions.
Kelsey/Schneier attacks are applicable when fixed-points are easily found.

Another construction proposed in [16] prevents from all multicollision attacks
presented here, including ours. Generally, our attack will work for some hash
construction when both Joux’s and Kelsey/Schneier do, hence won’t work when
at least one does not apply.

Faster Multicollisions 75

A construction published in Dean’s thesis [8, §5.6.3, credited to Lipton] con-
sists in hashing M as M̃‖M̃ , with M̃ the padded message, to simulate a “variable
IV”. This prevents all nontrivial multicollision attacks, but is unreasonably in-
efficient.

5 Conclusions

We presented a multicollision attack applicable to iterated hashes when the
IV can be chosen by the attacker, and when fixed-points for the compression
function are easy to find. This can be seen as a variant of Joux’s attack when
some restrictions are put on the hash function (Joux’s attack works for any IV
and doesn’t need fixed-points).

Our attack leaves open two related issues:

1. Can we find other generic attacks on iterated hashes that exploit easily-found
fixed-points?

2. How to find fixed-point collisions for dedicated hash functions?

Current known generic attacks using fixed-points are those of Dean for second-
preimages [8, 5.3.1], Kelsey/Schneier for multicollision [12], and ours in this
paper. Fixed-point collisions are likely to be found using similar techniques as
collisions, for blockcipher-based functions. Positive results to those two issues
would lead to new generic attacks (finding collisions or preimages) and new
dedicated attacks (finding fixed-points).

Acknowledgements

I wish to thank the referees of ICALP 2008 for many helpful comments, and
John Kelsey for suggesting the attack of §4.3.

References

1. Andreeva, E., Bouillaguet, C., Fouque, P.-A., Hoch, J.J., Kelsey, J., Shamir, A.,
Zimmer, S.: Second preimage attacks on dithered hash functions. In: Smart, N.P.
(ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 270–288. Springer, Heidelberg
(2008)

2. Aumasson, J.-P., Phan, R.C.-W.: How (not) to efficiently dither blockcipher-based
hash functions? In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023,
pp. 308–324. Springer, Heidelberg (2008)

3. Biham, E., Dunkelman, O.: A framework for iterative hash functions - HAIFA. In:
Second NIST Cryptographic Hash Workshop (2006)

4. Biham, E., Dunkelman, O.: A framework for iterative hash functions - HAIFA.
Cryptology ePrint Archive, Report 2007/278 (2007); Extended version of [3]

5. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
6. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How

to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

76 J.-P. Aumasson

7. Damg̊ard, I.: A design principle for hash functions. In: Brassard [5], pp. 416–427
8. Dean, R.D.: Formal Aspects of Mobile Code Security. PhD thesis, Princeton Uni-

versity (1999)
9. Hoch, J., Shamir, A.: Breaking the ICE - finding multicollisions in iterated concate-

nated and expanded (ICE) hash functions. In: Robshaw, M.J.B. (ed.) FSE 2006.
LNCS, vol. 4047, pp. 179–194. Springer, Heidelberg (2006)

10. Joux, A.: Multicollisions in iterated hash functions. application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

11. Kelsey, J., Kohno, T.: Herding hash functions and the Nostradamus attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

12. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

13. Knudsen, L.R., Mathiassen, J.E.: Preimage and collision attacks on MD2. In:
Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 255–267.
Springer, Heidelberg (2005)

14. Lai, X., Massey, J.: Hash functions based on block ciphers. In: Rueppel, R.A. (ed.)
EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

15. Lucks, S.: Design principles for iterated hash functions. Cryptology ePrint Archive,
Report 2004/253 (2004)

16. Maurer, U.M., Tessaro, S.: Domain extension of public random functions: Beyond
the birthday barrier. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
187–204. Springer, Heidelberg (2007)

17. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

18. Merkle, R.: One way hash functions and DES. In: Brassard [5], pp. 428–446
19. Nandi, M., Stinson, D.: Multicollision attacks on generalized hash functions. Cryp-

tology ePrint Archive, Report 2004/330 (2004); Later published in [20]
20. Nandi, M., Stinson, D.: Multicollision attacks on a class of hash functions. IEEE

Transactions on Information Theory 53, 759–767 (2007)
21. Preneel, B.: Analysis and Design of Cryptographic Hash Functions. PhD thesis,

Katholieke Universiteit Leuven (1993)
22. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:

A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

23. Quisquater, J.-J., Delescaille, J.-P.: How easy is collision search? Application to
DES (extended summary). In: Quisquater, J.-J., Vandewalle, J. (eds.) EURO-
CRYPT 1989. LNCS, vol. 434, pp. 429–434. Springer, Heidelberg (1990)

24. Rabin, M.: Digitalized signatures. In: Lipton, R., DeMillo, R. (eds.) Foundations
of Secure Computation, pp. 155–166. Academic Press, London (1978)

25. Rabin, M.: Digitalized signatures and public-key functions as intractable as factor-
ization. Technical Report MIT/LCS/TR-212, MIT (1979)

26. Rivest, R.: Abelian square-free dithering for iterated hash functions. In: ECRYPT
Conference on Hash Functions (2005); Also presented in [27]

27. Rivest, R.: Abelian square-free dithering for iterated hash functions. In: First NIST
Cryptographic Hash Workshop (2005)

28. Schneier, B.: Applied Cryptography, 2nd edn. John Wiley & Sons, Chichester
(1996)

Faster Multicollisions 77

29. Sedgewick, R., Szymanski, T.G., Chi-Chih Yao, A.: The complexity of finding
cycles in periodic functions. SIAM Journal of Computing 11(2), 376–390 (1982)

30. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multi-
collisions. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 29–40.
Springer, Heidelberg (2006)

31. Yu, H., Wang, X.: Multi-collision attack on the compression functions of MD4 and
3-pass HAVAL. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp.
206–226. Springer, Heidelberg (2007)

A New Type of 2-Block Collisions in MD5�

Jǐŕı Vábek1, Daniel Joščák1,2, Milan Boháček1, and Jǐŕı Tůma1

1 Charles University in Prague,
Department of Algebra,

Sokolovská 83, 186 75 Prague 8, Czech Republic
2 S.ICZ a.s., Hvězdova 1689/2a, Praha 4

jiri.vabek@centrum.cz, daniel.joscak@i.cz, milan.bohacek@gmail.com,

tuma@karlin.mff.cuni.cz

Abstract. We present a new type of 2-block collisions for MD5. The
colliding messages differ in words m2, m9, m12 in both blocks. The dif-
ferential paths for the collisions were generated by our implementation
of Stevens algorithm [11]. The actual colliding messages were found by
a version of Klima’s algorithm involving tunnels [3].

Keywords: MD5, differential paths, collisions, Stevens algorithm.

1 Introduction

At rump session of Crypto 2004 X. Wang presented two pairs of colliding mes-
sages for MD5 [17]. A more detailed description of the method for constructing
colliding pairs of messages was given in the paper [18] presented at Eurocrypt
2005. Each colliding pair consisted of messages of the same length 1024 bits, i.e.
two blocks (M1||M2) and (M ′

1||M ′
2). Their modular differences were:

δM1 = M ′
1 −M1 = (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0, +215, 0, 0, 231, 0)

δM2 = M ′
2 −M2 = −δM1

= (0, 0, 0, 0, 231, 0, 0, 0, 0, 0, 0,−215, 0, 0, 231, 0)

The most important part of [18] was the so called differential path for each
block. The differential path says how modular differences and xor of registers
Qt, Q

′
t evolve during the calculation of the MD5 compression function applied

to M1, M
′
1 and M2, M

′
2 resp. However, the paper [18] gives no information about

how the differential paths were found.
Since then, many improvements of the collision search algorithm based on

the differential paths of Wang et al. have been published. Two most important
developments were the multi-block message modification (already mentioned in
[18]) and tunneling [3].These methods decreased the time required for finding
a pair of colliding messages to less than one minute on a PC. The theoretical

� The first two authors were supported by GAUK number 301-10/257689 and the
fourth author was supported by MSM0021620839.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 78–90, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A New Type of 2-Block Collisions in MD5 79

complexity was estimated [2] to 227 calculations of the MD5 compression function
for Klima’s algorithm [3] and 229 calculations for Stevens’ algorithm [12].

A new type of collisions - the so called chosen prefix collisions were published
in [11]. In case of chosen prefix collisions one starts with different initial vectors
IVand IV′ with modular difference δIV = IV − IV′ = (0, x, x, x) and constructs
messages M, M ′ such that MD5(IV, M) = MD5(IV′, M ′). The number of blocks
of M and M ′ equals the weight of x i.e. the minimal number of non-zero co-
efficients in any binary signed digit representation (BSDR) of x. The authors
used chosen prefix collisions to construct colliding X.509 certificates. A major
development of [11] is an algorithm for an automated construction of differential
paths.

Another paper to mention in this context is the paper [16] by Yajima et
al. The authors point out that there might be colliding pairs of messages with
other differences than those of Wang et al. However their estimates of time
required for finding colliding pairs with these differences were too high even if
the corresponding differential paths were known.

Recently Sasaki et al. [10] made another progress in the study of MD5 colli-
sions. They constructed a differential path that allowed them to find two message
blocks M1, M

′
1 with modular differences

δM1 = M ′
1 −M1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +231, 0, 0, 0, 0)

such that MD5(IV, M1) − MD5(IV, M ′
1) = (231, 231, 231, 231). Then they mod-

ify the algorithms of [1] to construct efficiently a message block M2 such that
MD5(IV, M1||M2) = MD5(IV, M ′

1||M2). This is then applied to recover the first
31 letters of the client password used in the APOP. It was significant improve-
ment of the result from [4] and [9], where Wang’s et al. collisions enabled recovery
of the first three characters of the password.

In this paper we present a new type of 2-block collisions for MD5. We choose
one of the differences of messages suggested in [16] and construct the corre-
sponding colliding message pair. In our case the colliding messages (M1||M2)
and (M ′

1||M ′
2) have differences

δM1 = M ′
1 −M1 = (0, 0, 231, 0, 0, 0, 0, 0, 0, +227, 0, 0, 231, 0, 0, 0)

δM2 = M ′
2 −M2 = −δM1

= (0, 0, 231, 0, 0, 0, 0, 0, 0,−227, 0, 0, 231, 0, 0, 0)

We use our own implementation of Stevens differential path searching algorithm
(the original implementation has not been published yet) to construct differential
paths. We also give some details of our implementation in section 4. As for the
algorithm finding colliding messages satisfying a given differential path we also
use our own implementation of Klima’s algorithm [3]. We do not provide any
details since the algorithm based on tunnels is described well in e.g. [3], [13].

Recently Xie et al. announced in [19] a different type of two block colliding
messages with differences

80 J. Vábek et al.

δM1 = M ′
1 −M1 = (0, 0, 0, 0, 0, 0, +28, 0, 0, 231, 0, 0, 0, 0, 0, 231)

δM2 = M ′
2 −M2 = −δM1

= (0, 0, 0, 0, 0, 0,−28, 0, 0, 231, 0, 0, 0, 0, 0, 231)

Their collisions also belong among the collisions forecasted in [16], the case
t = 43, see section 3.

2 Preliminaries

We follow description and notation from [13]. MD5 can be described as follows:

1. Pad the message with the 1-bit, then as many 0 bits until the resulting length
equals 448 mod 512, and the bitlength of the original message expressed as
a 64-bit integer. The total bitlength of the padded message is then multiple
of 512.

2. Divide the padded message into N consecutive 512-bit blocks M1, M2, . . . ,
MN .

3. Go through N + 1 states IVi, for 0 ≤ i ≤ N , called the intermediate
hash values. Each intermediate hash value IVi consists of four 32-bit words
ai, bi, ci, di. For i = 0 these are initialized to fixed public values: (a0, b0, c0, d0)
= (0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476) and for i = 1, 2, . . . ,
N intermediate hash value IVi is computed using the MD5 compression
function described below: IVi = H(IVi−1, Mi).

4. The resulting hash value is the last intermediate hash value IVN .

2.1 MD5 Compression Function

The input for the compression function H(IV, M) is an intermediate hash value
IV = (a, b, c, d) of length 128bits and a 512-bit message block M. There are
64 steps, each step uses a modular addition, a left rotation, and a non-linear
function. Depending on the step t, addition constants Ct and rotation constants
st (all defined in standard [6]) are used.

The non-linear function ft is defined by

ft =

⎧⎪⎪⎨⎪⎪⎩
F (x, y, z) = (x ∧ y) ∨ (¬x ∧ z), for 0 ≤ t ≤ 15,
G(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z), for 16 ≤ t ≤ 31,
H(x, y, z) = x⊕ y ⊕ z, for 32 ≤ t ≤ 47,
I(x, y, z) = y ⊕ (x ∧ ¬z), for 48 ≤ t ≤ 63,

The message block M is divided into 16 consecutive 32-bit words m0, m1, . . . , m15
and expanded to 64 words Wt, for 0 ≤ t < 64, of 32 bits each:

Wt =

⎧⎪⎪⎨⎪⎪⎩
mt, for 0 ≤ t ≤ 15,
m1+5t mod 16, for 16 ≤ t ≤ 31,
m5+3t mod 16, for 32 ≤ t ≤ 47,
m7t mod 16, for 48 ≤ t ≤ 63,

A New Type of 2-Block Collisions in MD5 81

For 0 ≤ t < 64 the compression function algorithm maintains a working register
with 4 state words Qt, Qt−1, Qt−2, Qt−3. These are initialized as (Q0, Q−1, Q−2,
Q−3) = (b, c, d, a) and, for 0 ≤ t < 64 in succession, updated as follows:

Ft = ft(Qt, Qt−1, Qt−2),
Tt = Ft + Qt−3 + Ct + Wt,

Rt = RL(Tt, st),
Qt+1 = Qt + Rt.

After all steps are computed, the resulting state words are added to the inter-
mediate hash value and returned as output: H(IV, M) = (a + Q61, b + Q64, c +
Q63, d + Q62).

2.2 Differential Paths

A differential path for compression function H is a precise description of the
propagation of differences through the 64 steps caused by δIV and δM

δFt = ft(Q′
t, Q

′
t−1, Q

′
t−2)− ft(Qt, Qt−1, Qt−2);

δTt = δFt + δQt−3 + δWt;
δRt = RL(T ′

t , Ct)−RL(Tt, Ct);
δQt+1 = δQt + δRt.

We use notation of bitconditions (also taken from [13]) on (Qt, Q
′
t) to describe

differential paths, where a single bitcondition specifies directly or indirectly the
values of the bits Qt[i] and Q′

t[i].
A binary signed digit representation (BSDR) of a word X is a sequence Y =

(ki)31i=0, often simply denoted as Y = (ki), of 32 digits ki ∈ {−1, 0, +1} for
0 ≤ i ≤ 31, where

X ≡
31∑

i=0

ki2i mod 232.

A particularly useful BSDR of a word X which always exists is the Non-
Adjacent Form (NAF), where no two non-zero ki’s are adjacent. The NAF is not
unique since we work modulo 232 (making k31 = −1 equivalent to k31 = +1),
however we will enforce uniqueness of the NAF by choosing k31 ∈ {0, +1}.
Among the BSDRs of a word, the NAF has minimal weight (see e.g. [14]).

Table 1. Differential bitconditions

qt[i] condition on (Qt[i], Q′
t[i]) ki

· Qt[i] = Q′
t[i] 0

+ Qt[i] = 0, Q′
t[i] = 1 +1

− Qt[i] = 1, Q′
t[i] = 0 −1

82 J. Vábek et al.

Table 2. Boolean function bitconditions

qt[i] condition on (Qt[i], Q′
t[i]) direct/indirect direction

0 Qt[i] = Q′
t[i] = 0 direct

1 Qt[i] = Q′
t[i] = 1 direct

ˆ Qt[i] = Q′
t[i] = Qt−1[i] indirect backward

v Qt[i] = Q′
t[i] = Qt+1[i] indirect forward

! Qt[i] = Q′
t[i] = ¬Qt−1[i] indirect backward

y Qt[i] = Q′
t[i] = ¬Qt+1[i] indirect forward

m Qt[i] = Q′
t[i] = Qt−2[i] indirect backward

w Qt[i] = Q′
t[i] = Qt+2[i] indirect forward

Qt[i] = Q′
t[i] = ¬Qt−2[i] indirect backward

h Qt[i] = Q′
t[i] = ¬Qt+2[i] indirect forward

? Qt[i] = Q′
t[i] ∧ (Qt[i] = 1 ∨Qt−2[i] = 0) indirect backward

q Qt[i] = Q′
t[i] ∧ (Qt+2[i] = 1 ∨Qt[i] = 0) indirect forward

3 New 2-Block Collisions in MD5

The collisions of Wang et al. [18] make use of a weakness in the message expansion
of MD5, in particular in its interplay with the non-linear function in the third
round (steps t = 32, . . . , 47). This weakness appears for all t = 32, . . . , 44, not
only fot t = 34 used in [18]. This had been observed already by Yajima et al.
in [16]. They conjectured that any t = 32, . . . , 44 might possible lead to 2-block
collisions with similar characteristics.

More specifically there are 13 triplets of possible differences in messages

dt =(δWt, δWt+1, δWt+3)=(δm(5+3i) mod 16, δm(8+3i) mod 16, δm(14+3i) mod 16),

where i = t − 32, for which one can hope to construct 2-block collision similar
to those ones by Wang et al. They are summarized in Table 3.

We believe this pattern must had been already known to Wang et al, because
they had chosen for their collisions the triplet defined by t = 34 which requires
the smallest number of conditions in rounds 2–4 to have manageable computa-
tional complexity. An obvious strategy for choosing the t and the corresponding
triplet of differences to have a differential path with manageable computational
complexity is to obey the following conflicting requirements:

Table 3. Generalized Wang type differentials

step δQt δFt δWt δTt δRt st

t 0 0 ±231−st ±231−st ·231

t + 1 ·231 ·231 ·231 0 0
t + 2 ·231 0 0 0 0
t + 3 ·231 ·231 ·231 0 0

A New Type of 2-Block Collisions in MD5 83

1. Choose the triplet dt such that the differences in messages appear in the sec-
ond round as soon as possible, in particular the difference in δm5+3i mod 16.

2. Choose the triplet dt such that the difference in δm5+3i mod 16 appears in
the fourth round as late as possible.

However, to find colliding messages with the forecasted differences requires to
find a differential path including a partial collision after two rounds, the pre-
scribed differences in the third round and their consequences in the rest of round
3 and in round 4. This is what Wang et al. did in [18]. Yajima et al. in [16] con-
structed a partial differential path for steps 17, . . . , 64 in the case of differences
d44, and estimated the number of conditions in rounds 2 to 4 for their partial
differential path. They presented a table comparing the number of conditions in
rounds 2 to 4 for the differential path for the first block of Wang et al. for the
differences d34, and the partial differential path they proposed for the differences
d44.

Table 4. Number of conditions in rounds 2 to 4 for the first block

round Wang: d34 Yajima: d44 ours: d44

2 15 52 50
3 0 0 0
4 20 17 16

In this paper we present full differential paths for both blocks for the dif-
ferences d44 and examples of the 2-block colliding messages with these differ-
ences. We constructed the full differential paths using our own implementation
of Stevens algorithm described in [11] and [13]. The differential path for the first
block we constructed differs in the second round from the partial path proposed
by Yajima et al. In table 4 we also present the number of conditions on Qt with-
out the conditions on Tt for our differential path for the first block. The numbers
taken from the paper by Yajima et al. are also the numbers of conditions on Qt

without the conditions on Tt that were completely missing in the paper by Wang
et al. [18].

The differential paths we constructed and the corresponding colliding mes-
sages are presented in appendix A. The actual colliding messages were found
by an algorithm involving Klima’s tunnels which is similar to the near-collision
block searching algorithm presented by Stevens in [13].

4 On Our Implementation of Stevens Algorithm

In this section, we discuss the details of our implementation of Stevens algorithm
for generating differential paths. This algorithm can be divided into two main
parts

– extending partial differential paths,
– connecting partial differential paths.

84 J. Vábek et al.

We use the following terminology for partial differential paths. An upper path
is a partial differential path generated forward from an IV, a lower path is a
partial differential path generated backward from the registers 64, . . . , 61. Note
that our terminology differs from the one used by Stevens in [11].

4.1 Extending Partial Differential Paths

We provide more information on backward generation of lower paths. We start
with a partial differential path for steps 63, . . . , 31. This path is kept fixed
through out the whole run of the algorithm. We constructed it by hand in the
simplest possible way. This lower path is presented in table 5.

Table 5. Partial lower differential path with δ

t δQt δFt δWt δTt δRt st

28 ·231

29 0
30 0
31 0 0 ·231 0 0 20

32–43 0 0 0 0 0
44 0 0 ±227 ±227 ·231 4
45 ·231 ·231 ·231 0 0 11
46 ·231 0 0 0 0 16
47 ·231 ·231 ·231 0 0 23

48-51 ·231 ·231 0 0 0
52 ·231 0 ·231 0 0 6

53-61 ·231 ·231 0 0 0
62 ·231 0 ·231 0 0 15
63 ·231 ·231 ±227 ±227 ±216 21
64 ±216 - - - -

The Stevens algorithm for extending differential paths uses 3 basic choices at
each step t.

1. A choice of a BSDR of δQt.
2. A choice of δFt[i] for i = 0, . . . , 31. This choice determines a BSDR of δFt.
3. A choice of a BSDR of δTt (in the case of generating upper paths forward)

or δRt (in the case of generating lower paths backward).

To limit the number of possible choices of BSDR’s for δQt we use the following
4 basic parameters

(a) max nbr is the maximal number of BSDR’s of δQt,
(b) max dif is the the maximal difference between the weight of a BSDR of δQ

and the weight of its NAF,
(c) max len is the maximal length of carry propagation,
(d) max prp is the maximal number of carry propagations.

A New Type of 2-Block Collisions in MD5 85

To choose a BSDR of δQt within the limits specified by the parameters one
can use different approaches. One possibility is to generate randomly a BSDR
satisfying the parameters and then to continue to the next choice. Another pos-
sibility is to generate all BSDR’s satisfying all four parameters and then either
to choose randomly from all generated possibilities or deterministically in some
prescribed order.

Stevens mentions in his thesis that he sets up max dif = 2 and then he chooses
δQt randomly among all BSDR’s satisfying this condition. The advantage of this
approach is speed.

In our implementation we have selected the other approach and generate all
BSDR’s satisfying all four parameters. Then we choose a particular BSDR de-
terministically. Our approach gives us information about the number of possible
choices of BSDR’s and therefore it provides us with some information about the
tree of all possible extensions of partial differential paths.

To generate all BSDR’s of δQt (within the limits set up by the four parame-
ters) exactly once we developed our own algorithm. The details of the algorithm
and a proof of its correctness will be presented in another paper.

The second choice is to pick δFt[i], for i = 0, . . . 31, and therefore BSDR of δFt.
In what follows we use notations and definitions of sets Uabc, Vabc and Wabc,g

from subsection 5.5.2 of [11]. This choice depends on the precomputed values
of the functions FC(t, abc, g) and BC(t, abc, g), where a = qt[i], b = qt[i − 1],
c = qt[i− 2] are bitconditions, and g ∈ {0, 1,−1}.

There are again two different approaches to choose δFt[i] (that is a BSDR of
δFt). One possibility is to choose δFt[i]’s randomly from the set Vabc provided
|Vabc| > 1. This is the approach used by Marc Stevens in his thesis [13]. This
leads to random selection of BSDR’s of δFt. Our approach is to limit the number
of possible choices for a BSDR of δFt by a parameter max dF and, if |Vabc| > 1,
we choose δFt[i] ∈ Vabc in the prescribed order 0, 1, -1. We proceed from i = 0
to i = 31.

The third choice is to pick a BSDR of δRt. Depending on the choice of BSDR
of δRt there are at most four possibilities for δTt. Stevens describes in his thesis
how he chooses the most probable one. In our implementation we choose either
the NAF of δRt or the BSDR that differs from the NAF of δRt in the sign at
the leading bit.

The algorithm for generating upper paths forward differs from the one for
generating lower paths backward in inessential details.

4.2 Connecting Partial Differential Paths

We generate partial upper differential paths forward up to step 12 (the last com-
puted value is δQ13) and partial lower differential paths backward up to step 17
(the last computed value is δQ14). The choice of the bounds is the same as in [13].

We have implemented the algorithm for connecting differential paths de-
scribed in [11] without any modifications. It should be noted however that the
output of the algorithm depends on the order of some steps in the algorithm and
on the data structures used to keep the intermediate results.

86 J. Vábek et al.

Table 6. The parameters for partial lower paths

t max dif max len max prp max nbr max dF max con
15 - - - - - 67
16 - - - - - 60
17 2 2 2 10 1000 51
18 2 2 2 10 1000 41
19 2 2 2 10 1000 39
20 2 2 2 10 1000 35
21 2 2 2 10 1000 24
22 2 2 2 10 1000 20
23 2 2 2 10 1000 18
24 2 2 2 10 1000 11

30-25 2 1 2 10 1000 10

We supplement the connecting algorithm with the check if the rotation of δTt,
t = 11, . . . , 15, leads to the correct δRt selected in the extending parts of the
algorithm. We try all possibilities for free bits in registers Q11, . . . , Q16 and when
there exists the possibility providing correct rotation of δTt, we fix free bits and
continue with the collision generating part of algorithm.

The connecting algorithm seems to have surprisingly high success rate. Stevens
in a test run of his improved connecting algorithm successfully connected 52 pairs
of upper and lower paths out of 2.5 · 105 × 5 · 105 attempted pairs.

In our implementation the ratio of successfully connected pairs appears to be
very sensitive on the choice of parameters for generating partial differential paths,
especially the parameter max dF. The distribution of the number of successfully
connected pairs in different runs of our implementation was rather irregular, but
on average we constructed about 126 full differential paths out of 8 · 104× 2 · 105

pairs of upper and lower paths for the first block and 4 full differential paths
for the second block. However, without it no reasonable estimate of the success
rate of the connecting partial differential path algorithm can be made and the
number of test runs is not high enough to make any reasonable conclusions. In
any case, this observed phenomenon calls for deeper theoretical investigation.

4.3 Choosing Parameters

The number of generated partial differential paths in a given time appears to be
extremely sensitive on the choice of the parameters.

We present in table 6 the parameters we used for generating lower paths
in each step. The parameter max con for step t denotes the total number of
conditions from the start of generation of partial paths to step t. We used the
same parameters for both blocks.

The strategy for generating lower paths was to set the parameters in such a
way that the following goals were achieved.

A New Type of 2-Block Collisions in MD5 87

– The number of possible lower paths generated using chosen parameters is
sufficient for the next (connecting) part of the algorithm (from about 5 · 104

to 2.5 · 105).
– The time needed to generate sufficient number of possible lower paths using

chosen parameters is feasible (less than 1 day on single PC).
– The number of conditions in steps 17, . . . , 30 is as small as possible.
– In particular, the number of conditions in steps 2, . . . , 30 is as small as pos-

sible.

Setting the parameters is not straightforward and the values were obtained after
some experimentation. There might be better choices and a theoretical under-
standing for an automated choice of the parameters is needed.

The strategy for the generating upper paths was not formulated in such detail.
The goal was to limit the number of conditions in steps 0, . . . , 12 in such a way that
the sufficient number of upper differential paths was generated in few hours. The
total number of conditions is 80 for the first block and 180 for the second block.

5 Conclusion

We presented a new type of 2-block MD5 collisions. We found them using our
implementation of Stevens algorithm. The implementation can be used to con-
struct differential paths for other types of differences in messages stated in [16],
i.e. to construct target or 2-block collisions in MD5.

Acknowledgment

The authors thank Marc Stevens for providing them the details and running
times of some parts of his algorithm.

References

1. den Boer, B., Bosselaers, A.: Collisions for the Compression Function MD5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994)

2. Joščák, D.: Finding Collisions in Cryptographic Hash Functions Master’s thesis,
Charles University in Prague (2006),
http://cryptography.hyperlink.cz/2006/diplomka.pdf

3. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute, Cryptol-
ogy ePrint Archive: Report 105/2006, http://eprint.iacr.org/2006/105

4. Leurent, G.: Message Freedom in MD4 and MD5 Collisions: Application to APOP.
In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 320–339. Springer, Heidel-
berg (2007)

5. Liang, J., Lai, X.: Improved collision attack on hash function MD5, Cryptology
ePrint Archive: Report 425/2005, http://eprint.iacr.org/2005/425

6. Rivest, R.: The MD5 Message-Digest Algorithm, Request for Comments: 1321
(April 1992), http://rfc.net/rfc1321.html

http://cryptography.hyperlink.cz/2006/diplomka.pdf
http://eprint.iacr.org/2006/105
http://eprint.iacr.org/2005/425
http://rfc.net/rfc1321.html

88 J. Vábek et al.

7. Sasaki, Y., Naito, Y., Kunihiro, N., Ohta, K.: Improved Collision Attack on MD5,
Cryptology ePrint Archive: Report 400/2005, http://eprint.iacr.org/2005/400

8. Sasaki, Y., Naito, Y., Yajima, J., Shimoyama, T., Kunihiro, N., Ohta, K.: How to
Construct Sufficient Condition in Searching Collisions of MD5, Cryptology ePrint
Archive: Report 074/2006, http://eprint.iacr.org/2006/074

9. Sasaki, Y., Yamamoto, G., Aoki, K.: Practical Password Recovery on an MD5
Challenge and Response, Cryptology ePrint Archive: Report 101/2007,
http://eprint.iacr.org/2007/101

10. Sasaki, Y., Wang, L., Ohta, K., Kunihiro, N.: Security of MD5 Challenge and
Response: Extension of APOP Password Recovery Attack. In: Malkin, T.G. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 1–18. Springer, Heidelberg (2008)

11. Stevens, M., Lenstra, A., de Weger, B.: Chosen-prefix collisions for MD5 and col-
liding X.509 certificates for different identities. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)

12. Stevens, M.: Fast Collision Attack on MD5, Cryptology ePrint Archive, Report
2006/104 (2006), http://eprint.iacr.org/

13. Stevens, M.: On Collisions for MD5, Master’s thesis, Eidhoven University of Tech-
nology (2007)

14. Muir, J.A., Stinson, D.R.: Minimality and other properties of the width-w nonad-
jacent form. Mathematics of Computation 75, 369–384 (2006)

15. Yajima, J., Shimoyama, T.: Wangs sufficient conditions of MD5 are not sufficient,
Cryptology ePrint Archive: Report 263/2005, http://eprint.iacr.org/2005/263

16. Yajima, J., Shimoyama, T., Sasaki, Y., Naito, Y., Kunihiro, N., Ohta, K.: How to
construct a differential path of MD5 for collision search. In: SCIS 2006 (2006)

17. Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for Hash Functions MD4, MD5,
HAVAL-128 and RIPEMD. Cryptology ePrint Archive, Report 2004/199 (2004),
http://eprint.iacr.org/2004/199

18. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

19. Xie, T., Feng, D., Liu, F.: A New Collision Differential For MD5 With Its Full
Differential Path, Cryptology ePrint Archive, Report 2008/230 (2008),
http://eprint.iacr.org/2008/230

http://eprint.iacr.org/2005/400
http://eprint.iacr.org/2006/074
http://eprint.iacr.org/2007/101
http://eprint.iacr.org/
http://eprint.iacr.org/2005/263
http://eprint.iacr.org/2004/199
http://eprint.iacr.org/2008/230

A New Type of 2-Block Collisions in MD5 89

A Differential Paths and Collision Example

Table 7. Differential path for the first and second blocks without tunnels, registers -3
to 30

first block second block
-3

-2 +.......1

-1 +.......1

0 +.......+

1v +.......v+v.

21 +.......1+ v.....1.

3+ +....... v.....+. 1.....+.

4 ...v....+ +v.v.... 1.....+1 ..v..... +.....+.

5 ...1....+v.. +1.1..v. +...v.+. ..1..... +...v.+.

6 ...+....+ v....1.. .-.-..1. +.v.1.+. .v+...v. +...1.+.

7 ...+...v+ 1..v.+.. 1-.-.v+v -v..+v+v .0+..v.. +.v.+.+.

8 .0.+...0+ .v...v.v +..1.+.. .1.-v.+0 +1+.+0+. v+.v.0+v -v.v+v+v

9 .1.+..1+v..+1.1 +..+.-.. .+.-1+.+ 1-0..-.- 1-1..+0. -1+11.+.

10 .+.-.v0+11.+ .+...+0- .vv+.-.. .1..-10- 1-1.1+10 -00+.-1+ .+0+1+.-

11 v+0-0.+1 10v1+0v. v1v0.+1+ 1..+000. y-.1-1.- 11-.1-11 -1-0.-00 0+++-010

12 .11+1++1 0100++11 0-110++0 0--0111. 00v.-1v+ 0++0-101 010-v11- 11101000

13 +1+-+0-- -+--11-1 ++--1+1- +11+---. ++0..+.+ -00100+- --++.++1 --0++-+.

14 1++0+-11 +--1+--- --++++-- 0+01000. +1+.1--+ +-0+++++ +10+-101 0+.+-01.

15 11+10+11 11+01010 01011v11 -1.0110. y1-..-11 00-000+0 +000010+ 0-.1+10.

16 .11.10.. -11.0100 -100+.10 01..0... ..1..110 +0111011 +..1-..- .0.01...

17 ..^..^.. ..0...1.+..1 1+..-... ..^..^.. ..0...1. 1...-..0 .-..+...

18 ^.....+. ^...-..-0... ^.....-. 0...+..+0...

190.. ..-...0.0... .^..+...0.. ..+...0.0... .^..-...

201.. ..-...1.-..^1.. ..+...1.+..^

21 0....-.. ..+...1.^... 0....+.. ..-...1.^...

22 1....0.. ..0...-.^... 1....0.. ..0...+.^...

23 +....0.. ..1..... +....0.. ..1.....

24 0....1..^. 1....1..^.

25 -....+.. +....-..

26 -....... -.......

27 +....^.. +....^..

28 +....... +.......

29 0....... 0.......

30 !....... !.......

90 J. Vábek et al.

Table 8. Differential path for both blocks, registers 31 to 64. I, J, K ∈ {0, 1}, I �= K

31-45

46 I.......

47 J.......

48 I.......

49 J.......

50 I.......

51 J.......

52 K.......

53 J.......

54 K.......

55 J.......

56 K.......

57 J.......

58 K.......

59 J.......

60 K.......

61 J.......

62 I.......

63 J.......

64

Table 9. Collision

IV 0x67452301 0x10325476 0x98badcfe 0xefcdab89

M1 0xCE7E83CA 0xCADE345E 0xB81D83A5 0x562EDF19

0xB93C9D41 0xF9C4E244 0x5B9B832F 0xE16D2FE5

0x4B286759 0xF9FE0301 0xA912EF12 0x95A85769

0x18ADF66C 0x8B1AD802 0x291B44AB 0x732AF6A2

N1 0xCE7E83CA 0xCADE345E 0x381D83A5 0x562EDF19

0xB93C9D41 0xF9C4E244 0x5B9B832F 0xE16D2FE5

0x4B286759 0x01FE0301 0xA912EF12 0x95A85769

0x98ADF66C 0x8B1AD802 0x291B44AB 0x732AF6A2

IV1 0xFADBF815 0x1B73566D 0x6BCF3C99 0x5D6E2DFF

IV′
1 0x7ADBF815 0x9B73566D 0xEBCF3C99 0xDD6F2DFF

IV1 ⊕ IV′
1 0x80000000 0x80000000 0x80000000 0x80010000

M2 0x6A9B0D7D 0x9AAEEDA9 0x62255628 0xB6A85040

0xC7E08FD1 0x077E530A 0xDEDD6809 0xD20A7D80

0x55DFBE93 0x78571C29 0xC13D746C 0x062792C8

0x45A152CE 0x69727500 0x351EC8F7 0xCFFFAF73

N2 0x6A9B0D7D 0x9AAEEDA9 0xE2255628 0xB6A85040

0xC7E08FD1 0x077E530A 0xDEDD6809 0xD20A7D80

0x55DFBE93 0x70571C29 0xC13D746C 0x062792C8

0xC5A152CE 0x69727500 0x351EC8F7 0xCFFFAF73

IV2 = IV′
2 0xA5A29F9F 0xBC622670 0x54E1D520 0xE6FA818E

New Collision Attacks against Up to 24-Step
SHA-2

(Extended Abstract)

Somitra Kumar Sanadhya� and Palash Sarkar

Applied Statistics Unit, Indian Statistical Institute,
203, B.T. Road, Kolkata 700108, India

somitra r@isical.ac.in, palash@isical.ac.in

Abstract. In this work, we provide new and improved attacks against
22, 23 and 24-step SHA-2 family using a local collision given by Sanad-
hya and Sarkar (SS) at ACISP ’08. The success probability of our 22-step
attack is 1 for both SHA-256 and SHA-512. The computational efforts
for the 23-step and 24-step SHA-256 attacks are respectively 211.5 and
228.5 calls to the corresponding step reduced SHA-256. The correspond-
ing values for the 23 and 24-step SHA-512 attack are respectively 216.5

and 232.5 calls. Using a look-up table having 232 (resp. 264) entries the
computational effort for finding 24-step SHA-256 (resp. SHA-512) col-
lisions can be reduced to 215.5 (resp. 222.5) calls. We exhibit colliding
message pairs for 22, 23 and 24-step SHA-256 and SHA-512. This is the
first time that a colliding message pair for 24-step SHA-512 is provided.
The previous work on 23 and 24-step SHA-2 attacks is due to Indesteege
et al. and utilizes the local collision presented by Nikolić and Biryukov
(NB) at FSE ’08. The reported computational efforts are 218 and 228.5

for 23 and 24-step SHA-256 respectively and 243.9 and 253 for 23 and
24-step SHA-512. The previous 23 and 24-step attacks first constructed
a pseudo-collision and later converted it into a collision for the reduced
round SHA-2 family. We show that this two step procedure is unneces-
sary. Although these attacks improve upon the existing reduced round
SHA-2 attacks, they do not threaten the security of the full SHA-2 family.

Keywords: Cryptanalysis, SHA-2 hash family, reduced round attacks.

1 Introduction

Cryptanalysis of SHA-2 family has recently gained momentum due to the impor-
tant work of Nikolić and Biryukov [6]. Prior work on finding collisions for step re-
duced SHA-256 was done in [4,5] and [8]. These earlier works used local collisions
valid for the XOR linearized version of SHA-256 from [2] and [7]. On the other
hand, the work [6] used a local collision which is valid for the actual SHA-256.

The authors in [6] developed techniques to handle nonlinear functions and
the message expansion of SHA-2 to obtain collisions for up to 21-step SHA-
256. The 21-step attack of [6] succeeded with probability 2−19. Using similar
� This author is supported by the Ministry of Information Technology, Govt. of India.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 91–103, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

92 S.K. Sanadhya and P. Sarkar

techniques, but utilizing a different local collision, [11] showed an attack against
20-step SHA-2 which succeeds with probability one and an attack against 21-
step SHA-256 which succeeds with probability 2−15. Further work [9] developed
collision attacks against 21-step SHA-2 family which succeeds with probability
one. Very recently, Indesteege et al. [3] have developed attacks against 23 and
24 step SHA-2 family. They utilize the local collision from [6] in these attacks.

Our Contributions. Our contributions in terms of the number of steps at-
tacked and the success probability of these attacks are as follows.

– We describe the first deterministic attack against 22-step SHA-256 and SHA-
512.

– We describe new attacks against 23 and 24-step SHA-256 and SHA-512.
• The complexity of the 23-step attack for both SHA-256 and SHA-512 is

improved in comparison to the existing 23-step attacks of [3].
• The complexity of 24-step SHA-512 attack is improved in comparison to

the existing attack of [3]. In fact, improving the complexity to 232.5 from
the earlier reported 253 allows us to provide the first message pair which
collides for 24-step SHA-512.

Table 1. Summary of results against reduced SHA-2 family. Effort is expressed as
either the probability of success or as the number of calls to the respective reduced
round hash function.

Work Hash Function Steps Effort Local Collision Attack Example
Prob. Calls utilized Type provided

[4,5] SHA-256 18 ∗ GH [2] Linear yes
[8] SHA-256 18 ∗∗ SS5 [7] ” yes
[6] SHA-256 20 1

3
NB [6] Non-linear yes

21 2−19 ” ” yes
[11] SHA-256/512 18,20 1 1 SS [11] ” yes

SHA-256 21 2−15 ” ” yes
[9] SHA-256/512 21 1 1 ” ” yes
[3] SHA-256 23 218 NB [6] ” yes

24 228.5 ” ” yes
SHA-512 23 243.9 ” ” yes

24 253 ” ” no

This work SHA-256/SHA-512 22 1 1 SS [11] ” yes
SHA-256 23 211.5 ” ” yes

24 228.5 ” ” yes
24 215.5 † ” ” no

SHA-512 23 216.5 ” ” yes
24 232.5 ” ” yes

24 222.5 ‡ ” ” no
∗ It is mentioned in [4,5] that the effort is 20 but no details are provided.
∗∗ Effort is given as running a C-program for about 30–40 minutes on a standard PC.
† A table containing 232 entries, each entry of size 8 bytes, is required.
‡ A table containing 264 entries, each entry of size 16 bytes, is required.

New Collision Attacks against Up to 24-Step SHA-2 93

• Using a table lookup, the complexity of the 24-step SHA-256 attack
is improved in comparison to the existing 24-step attack of [3]. The
table contains 232 entries with each entry of size 8 bytes. Similary, the
complexity of the 24-step SHA-512 attack is also improved using a table
lookup. For this case, the table lookup has 264 entries each entry of 16
bytes.

• Examples of Colliding message pairs are provided for 22, 23 and 24-step
SHA-256 and SHA-512.

Our contributions to the methodology of the attacks are as follows.

– We use a different local collision for our 22, 23 and 24-step attacks. The
earlier work [3] uses the local collision from [6] while we use a local collision
from [11].

– The work in [3] describes 23 and 24-step collisions as a two-part procedure–
first obtain a pseudo-collision and then convert it into a collision. In con-
trast, our analysis is direct and shows that such a two-part description is
unnecessary.

– Details of a required “guess-then-determine algorithm” to solve a non-linear
equation arising in the 24-step attack are provided in this work. A suggestion
for a similar algorithm is given in [3] but no details are provided. There are
two algorithms– one for SHA-256 and the other for SHA-512.

A summary of results on collision attacks against reduced SHA-2 family is given
in Table 1.

2 Preliminaries

In this paper we use the following notation:

– Message words: Wi ∈ {0, 1}n, W ′
i ∈ {0, 1}n; n is 32 for SHA-256 and 64 for

SHA-512.
– Colliding message pair:{W0, W1, W2, . . . W15} & {W ′

0, W ′
1, W ′

2, . . . W ′
15}.

– Expanded message pair:{W0, W1, W2,. . . Wr−1} & {W ′
0, W ′

1, W ′
2,. . . W ′

r−1}.
The number of steps r is 64 for SHA-256 and 80 for SHA-512.

– The internal registers for the two messages at step i: REGi = {ai, . . . , hi}
and REG′

i = {a′
i, . . . , h

′
i}.

– ROTRk(x): Right rotation of an n-bit string x by k bits.
– SHRk(x): Right shift of an n-bit string x by k bits.
– ⊕: bitwise XOR; +,−: addition and subtraction modulo 2n.
– δX = X ′ −X where X is an n-bit quantity.
– δΣ1(x) = Σ1(e′i)−Σ1(ei) = Σ1(ei + x)−Σ1(ei).
– δΣ0(x) = Σ0(a′

i)−Σ0(ai) = Σ0(ai + x)−Σ0(ai).
– δf i

MAJ (x, y, z) = fMAJ(ai + x, bi + y, ci + z)− fMAJ (ai, bi, ci).
– δf i

IF (x, y, z) = fIF (ei + x, fi + y, gi + z)− fIF (ei, fi, gi).

94 S.K. Sanadhya and P. Sarkar

2.1 SHA-2 Hash Family

Eight registers are used in the evaluation of SHA-2. In Step i, the 8 registers are
updated from (ai−1, bi−1, ci−1, di−1, ei−1, fi−1, gi−1, hi−1) to (ai, bi, ci, di, ei,
fi, gi, hi). For more details, see [1].

By the form of the step update function, we have the following relation.

Cross Dependence Equation (CDE)

ei = ai + ai−4 −Σ0(ai−1)− fMAJ(ai−1, ai−2, ai−3). (1)

Later, we make extensive use of this relation. Note that a special case of this
equation was first utilized in §6.1 of [11]. The equation in the form above was
used in [9]. This equation can be used to show that the SHA-2 state update can
be rewritten in terms of only one state variable. This fact was later observed
in [3] independently.

Table 2. The 9-step Sanadhya-Sarkar local collision [11] used in the present work. Our
deterministic 22-step attack and the probabilistic 23 and 24-step attacks use unequal
message word differences to achieve the same differential path.

Step δWi Register differences
I II δai δbi δci δdi δei δfi δgi δhi

i− 1 0 0 0 0 0 0 0 0 0 0
i 1 1 1 0 0 0 1 0 0 0

i + 1 −1 δWi+1 0 1 0 0 −1 1 0 0
i + 2 δWi+2 0 0 0 1 0 −1 −1 1 0
i + 3 δWi+3 δWi+3 0 0 0 1 0 −1 −1 1
i + 4 0 0 0 0 0 0 1 0 −1 −1
i + 5 0 0 0 0 0 0 0 1 0 −1
i + 6 0 0 0 0 0 0 0 0 1 0
i + 7 δWi+7 0 0 0 0 0 0 0 0 1
i + 8 −1 −1 0 0 0 0 0 0 0 0

3 Nonlinear Local Collision for SHA-2

We use two variations of a 9-step non-linear local collision for our attacks. This
local collision was given recently by Sanadhya and Sarkar [11]. This local collision
starts by introducing a perturbation message difference of 1 in the first message
word. Next eight message words are chosen suitably to obtain the desired differ-
ential path. Table 2 shows the local collision used. The message word differences
are different for the two variations of the local collision. Columns headed I and
II under δWi in Table 2 show the message word differences for the first and the
second variations of the local collision respectively.

In the local collision, the registers (ai−1, . . . , hi−1) and Wi are inputs to Step
i of the hash evaluation and this step outputs the registers (ai, . . . , hi).

New Collision Attacks against Up to 24-Step SHA-2 95

4 The Deterministic 22-Step SHA-2 Attack

In [6], a single local collision spanning from Step 6 to Step 14 is used and a 21-step
collision for SHA-256 is obtained probabilistically. We use a similar method for
our attack but this time we use the local collision of Table 2 spanning from Step
7 to Step 15. Message words are given by Column (II). The SHA-2 design has
freedom of message words W0 to W15. Since the local collision spans this range
only, we can deterministically satisfy all the required conditions. The message
words after Step 16 are generated by message expansion. The local collision is
chosen in such a way that the message expansion produces no difference in words
Wi and W ′

i for i ∈ {16, 17, . . .21}. This results in a deterministic 22-step attack.
We explain this fact below.

First of all, note that the local collision starts from Step 7. It can be seen
from the structure of the local collision that δW7 = 1 and δW9 = δW11 =
δW12 = δW13 = δW14 = 0. In addition, δW15 is −1. Messages outside the span
of the local collision are taken to have zero differentials. Therefore δWi = 0 for
i ∈ {0, 1, 2, 3, 4, 5, 6}. Consider the first 6 steps of message expansion for SHA-2
next.

W16 = σ1(W14) + W9 + σ0(W1) + W0,
W17 = σ1(W15) + W10 + σ0(W2) + W1,

W18 = σ1(W16) + W11 + σ0(W3) + W2,
W19 = σ1(W17) + W12 + σ0(W4) + W3,

W20 = σ1(W18) + W13 + σ0(W5) + W4,
W21 = σ1(W19) + W14 + σ0(W6) + W5.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2)

Terms which may have non-zero differentials in the above equations are un-
derlined. To obtain 22-step collisions in SHA-2, it is sufficient to ensure that
δ{σ1(W15) + W10} = 0 so that δW17 = 0. This also ensures that next 4 steps
of the message expansion do not produce any difference, and we have a 22-step
collision. By using the local collision described earlier, it is possible to determin-
istically satisfy the condition δ{σ1(W15)+W10} = 0. Further details are available
in [10].

5 A General Idea for Obtaining 23 and 24-Step SHA-2
Collisions

Obtaining deterministic collisions up to 22 steps did not require the (single) local
collision to extend beyond step 15. For obtaining collisions for more number of
steps, we will need to start the local collision at Step 8 (or farther) and hence
the local collision will end at Step 16 (or farther). This will require us to analyze
the message expansion more carefully.

For obtaining collisions up to 22 steps, we also needed to consider message
expansion. But, following Nikolić and Biryukov, we ensured that there were

96 S.K. Sanadhya and P. Sarkar

no differences in message words from Step 16 onwards. However, now that we
consider the local collision to end at Step 16 (or farther), this will necessarily
mean that one or more δWi (for i ≥ 16) will be non-zero. This will require a
modification of the Nikolić-Biryukov strategy. Instead of requiring δWi = 0 for
i ≥ 16, we will require δWi = 0 for a few i’s after the local collision ends. So,
supposing that the local collision ends at Step 16 and we want a 23-step collision,
then δW16 is necessarily −1 and we will require δW17 = · · · = δW22 = 0.

5.1 Satisfying Conditions on the Differential Path

Conditions on δWi+2, δWi+3 and δWi+4 shown in Table 2 give rise to the fol-
lowing conditions on the values of λ, γ and µ.

δWi+2 = δ1 = −1−Σ1(µ− 1) + Σ1(µ)− fIF (µ− 1, 0, γ + 1)
+fIF (µ,−1, γ + 1)

δWi+3 = δ2 = −Σ1(λ− 1) + Σ1(λ)− fIF (λ− 1, µ− 1, 0)
+fIF (λ, µ,−1)

1 = −fIF (λ− 1, λ− 1, µ− 1) + fIF (λ − 1, λ, µ).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3)

Similar equations for the Nikolić-Biryukov differential path have been reported
in [3] and a method for solving them has been discussed. The method to solve
these equation is different for SHA-256 and for SHA-512. We discuss the exact
details about solving them later. In describing our attacks on the SHA-2 family,
we assume that some solutions to these equations have been obtained. These
solutions are required to obtain colliding message pairs for the hash functions.

6 23-Step SHA-2 Collisions

We show that by suitably placing a local collision of the type described in Col-
umn (I) of Table 2 and using proper values for α, γ and µ, it is possible to obtain
23-step collisions for SHA-2.

6.1 Case i = 8

The local collision is started at i = 8 and ends at i = 16. Setting β = α, u = 0
and δ1 = 0, we need to choose a suitable value for δ2 which is the value of
δWi+3 = δW11. For this case, we let δ = δ2.

Since the local collision ends at Step 16, it necessarily follows that δW16 = −1.
Consequently, we need to consider δW18 to ensure that it is zero. Since the
collision starts at i = 8, all δWj for 0 ≤ j ≤ 7 are zero. Consequently, we can
write δW18 = δσ1(W16) + δW11, where δσ1(W16) = σ1(W16 − 1)− σ1(W16). So,
for δW18 to be zero, we need δW11 = −δσ1(W16), so that δW11 should be one of
the values which occur in the distribution of σ1(W)− σ1(W − 1) for some W .

Obtaining proper values for the constants only ensures that the local collision
holds from Steps i to i+ 8 as expected. It does not, however, guarantee that the
reduced round collision holds. In the present case, we need to have δW18 to be

New Collision Attacks against Up to 24-Step SHA-2 97

Table 3. Values of a and e register for the δW s given by Column (I) of Table 2 to
hold. We have β = α and using CDE, λ = β + α−Σ0(β)− fMAJ (β,−1, α) = −Σ0(α).
The value of u is either 0 or 1. Thus, the independent quantities are α, γ and µ.

index i− 2 i− 1 i i + 1 i + 2 i + 3 i + 4 i + 5 i + 6
a α α −1 β β

e γ γ + 1 −1 µ λ λ− 1 −1 −1 −1− u

zero. This will happen only if W16 takes a value such that σ1(W16−1)−σ1(W16)
is equal to −δ. This can be ensured probabilistically in the following manner.
Let the frequency of δ used in the attack be freqδ. This means that trying
approximately freqδ possible random choices of W0 and W1, we expect a proper
value of W16 and hence, a 23-step collision for SHA-2. We discuss the cases of
SHA-256 and SHA-512 separately later.

Since i = 8, from Table 3, we see that a6 to a10 get defined and e6 to e14
get defined. Using CDE, the values of e9 down to e6 is set by fixing values of a5
down to a2. In other words, the values of a2 to a10 are fixed. Now, consider

e14 = Σ1(e13) + fIF (e13, e12, e11) + a10 + e10 + K14 + W14.

Note that in this equation all values other than W14 have already been fixed.
So, W14 and hence σ1(W14) is also fixed. Now, from the update function of the
a register, we can write

W9 = a9 −Σ0(a8)− fMAJ (a8, a7, a6)−Σ1(e8)− fIF (e8, e7, e6)− e5 −K9.

On the right hand side, all quantities other than e5 have fixed values. Using
CDE,

e5 = a5 + a1 −Σ0(a4)− fMAJ(a4, a3, a2).

Again in the right hand side, all quantities other than a1 have fixed values. So,
we can write W9 = C − a1, where C is a fixed value. (This relation has already
been observed in [3].)

Now,

a1 = Σ0(a0) + fMAJ(a0, b0, c0) + Σ1(e0) + fIF (e0, f0, g0) + h0 + K1 + W1

where a0 and e0 depend on W0 whereas b0, c0, f0, g0 and h0 depend only on IV
and hence are constants. Thus, we can write a1 = Φ(W0) + W1, where

Φ(W0) = Σ0(a0) + fMAJ(a0, b0, c0) + Σ1(e0) + fIF (e0, f0, g0) + h0 + K1.

We write Φ(W0) to emphasize that this depends only on W0. At this point, we
can write

W16 = σ1(W14) + W9 + σ0(W1) + W0

= σ1(W14) + C − Φ(W0)−W1 + σ0(W1) + W0

= D − Φ(W0)−W1 + σ0(W1) + W0.

98 S.K. Sanadhya and P. Sarkar

Estimate of Computation Effort. Let there be freqδ values of W16 for which
σ(W16 − 1) − σ(W16) equals δ. So, we have to solve this equation for W0 and
W1 such that W16 is one of these freqδ possible values. The simplest way to
do this is to try out random choices of W0 and W1 until W16 takes one of the
desired values. On an average, success is obtained after freqδ trials. Each trial
corresponds to about a single step of SHA-2 computation. So, the total cost of
finding suitable W0 and W1 is about freqδ

24.5 tries of 23-step SHA-2 computations.
For each such solution (W0, W1) and an arbitrary choice of W15 we obtain

a 23-step collision for SHA-2. Note that after W0 and W1 has been obtained
everything else is deterministic, i.e., no random tries are required. The task of
obtaining a suitable W0 and W1 can be viewed as a pre-computation of the
type required to find the values of α, γ and µ. Then, the actual task of finding
collisions becomes deterministic.

6.2 Relation to the 23-Step Collision from [3]

The NB local collision has been used in [3]. The local collision was placed from
Step 9 to Step 17. In comparison, we have shown that the SS local collision gives
rise to two kinds of 23-step collision. The first one is obtained by placing the
local collision from Steps 8 to 16, and the second one is obtained by placing the
local collision from Steps 9 to 17.

The description of the attack in [3] is quite complicated. First they consider
a 23-step pseudo-collision which is next converted into 23-step collision. This
two-step procedure is unnecessary. Our analysis allows us to directly describe
the attacks.

7 24-Step Collisions

The local collision described in Column (I) of Table 2 is placed from Step i = 10
to Step i + 8 = 18 with u = 1. The values of δ1, δ2 as well as suitable values of
α, γ and µ need to be chosen.

Since, the collision ends at Step 18 and u = 1, we will have δW17 = 1 and
δW18 = −1. As a result, to ensure δW19 = δW20 = 0, we need to have δ1 =
δW12 = −(σ1(W17 +1)−σ1(W17)) and δ2 = δW13 = −(σ1(W18− 1)−σ1(W18)).
Based on the differential behaviour of σ1 described in [10], we should try to
choose δ1 and δ2 such that freq−δ1

and freqδ2
are as high as possible. (Here −δ1

denotes −δ1 mod 2n, where n is the word size 32 or 64.) But, at the same time,
the chosen δ1 and δ2 must be such that (3) are satisfied.

Now we consider Table 3. This table tells us what the values of the different a
and e-registers need to be. Since messages up to W15 are free, we can set values
for a and e registers up to Step 15. But, we see that e16 = −1 − u = −2. This
can be achieved by setting W16 to

W16 = e16 −Σ1(e15)− fIF (e15, e14, e13)− a12 − e12 −K16. (4)

Since we want e16 = −2 and all other values on the right hand side are constants,
we have that W16 is a constant value. On the other hand, W16 is defined by

New Collision Attacks against Up to 24-Step SHA-2 99

message recursion. So, we have to ensure that W16 takes the correct value. In
addition, we need to ensure that W17 and W18 take values such that σ1(W17 +
1)− σ1(W17) = −δ1 and σ1(W18 − 1)− σ1(W18) = −δ2.

Since i = 10, from Table 3, we see that a8 to a12 have to be set to fixed
values and e8 to e16 have to be set to fixed values. Using CDE, the values of e11
down to e8 are determined by a7 to a4. So, the values of a0 to a3 are free and
correspondingly the choices of words W0 to W3 are free.

We have already seen that W16 is a fixed value. Note that

W14 = e14 −Σ1(e13)− fIF (e13, e12, e11)− a10 − e10 −K14
W15 = e15 −Σ1(e14)− fIF (e14, e13, e12)− a11 − e11 −K15.

}
(5)

Since for both equations, all the quantities on the right hand side are fixed values,
so are W14 and W15.

Using CDE twice, we can write

W9 = −W1 + C4 + fMAJ (a4, a3, a2)− Φ0
W10 = −W2 + C5 + fMAJ (a5, a4, a3)− Φ1
W11 = −W3 + C6 + fMAJ (a6, a5, a4)− Φ2

⎫⎬⎭ (6)

where

Ci = ei+5 −Σ1(ei+4)− fIF (ei+4, ei+3, ei+2)− 2ai+1 −Ki+5
+Σ0(ai),

Φi = Σ0(ai) + fMAJ (ai, bi, ci) + Σ1(ei) + fIF (ei, fi, gi) + hi+
Ki+1.

⎫⎪⎪⎬⎪⎪⎭ (7)

Using the expressions for W9, W10 and W11 we obtain the following expressions
for W16, W17 and W18.

W16 = σ1(W14) + C4 −W1 + fMAJ (a4, a3, a2)− Φ0 + σ0(W1)
+W0

W17 = σ1(W15) + C5 −W2 + fMAJ (a5, a4, a3)− Φ1 + σ0(W2)
+W1

W18 = σ1(W16) + C6 −W3 + fMAJ (a6, a5, a4)− Φ2 + σ0(W3)
+W2.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(8)

We need to ensure that W16 has the desired value given by (4) and that W17
and W18 take values which lead to desired values for δσ1(W17) and δσ1(W18) as
explained above.

The only free quantities are W0 to W3 which determine a0 to a3. The value
of C4 depends on e8, e7 and e6, where e8 has a fixed value and e7 and e6 are in
turn determined using CDE by a3 and a2. Similarly, C5 is determined by e9, e8
and e7; where e9, e8 have fixed values and e7 is determined using a3. The value
of C6 on the other hand is fixed. Coming to the Φ values, Φ0 is determined only
by W0; Φ1 determined by W0 and W1; and Φ2 determined by W0, W1 and W2.
Let

D = W16 − (σ1(W14) + C4 + fMAJ (a4, a3, a2)− Φ0 + W0). (9)

100 S.K. Sanadhya and P. Sarkar

If we fix W0 and a3, a2, then the value of D gets fixed and we need to find W1
such that the following equation holds.

D = −W1 + σ0(W1). (10)

A guess-then-determine algorithm can be used to solve this equation. This al-
gorithm will be different for SHA-256 and for SHA-512 since the σ0 function
is different for the two. The guess-then-determine algorithms for both SHA-256
and SHA-512 are described in [10].

Solving (10) Using Table Look-Up. An alternative approach would be to
use a pre-computed table. For each of the 2n possible W1s (n is the word size
32 or 64), prepare a table of entries (W1,−W1 + σ0(W1)) sorted on the second
column. Then all solutions (if there are any) for (10) can be found by a simple
look-up into the table using D. The table would have 2n entries and if a proper
index structure is used, then the look-up can be done very fast. We have not
implemented this method.

Given a1, b1, . . . , h1 and a2 the value of W2 gets uniquely defined; similarly,
given a2, b2, . . . , h2 and a3, the value of W3 gets uniquely defined. The equations
are the following.

W2 = a2 − (Σ0(a1) + fMAJ(a1, b1, c1) + h1 + Σ1(e1)
+fIF (e1, f1, g1) + K2)

W3 = a3 − (Σ0(a2) + fMAJ(a2, b2, c2) + h2 + Σ1(e2)
+fIF (e2, f2, g2) + K3)

⎫⎪⎪⎬⎪⎪⎭ (11)

The strategy for determining suitable W0, . . . , W3 is the following.

1. Make random choices for W0 and a2, a3.
2. Run SHA-2 with W0 and determine Φ0.
3. From a3 and a2 determine e7 and e6 using CDE.
4. Determine C4 using (7) and then D using (9).
5. Solve (10) for W1 using the guess-then-determine algorithm.
6. Run SHA-2 with W1 to define a1, . . . , h1.
7. Determine Φ1 using (7) and then W2 using (11).
8. Run SHA-2 with W2 to define a2, . . . , h2.
9. Determine Φ2 using (7) and then W3 using (11).
10. Compute W17 and W18 using (8).
11. If σ1(W17 + 1)− σ1(W17) = −δ1 and σ1(W18 − 1)− σ1(W18) = δ2,

then return W0, W1, W2 and W3.

The values of W0, W1, W2 and W3 returned by this procedure ensure that the
local collision ends properly at Step 18 and that δWj = 0 for j = 19, . . . , 23.
This provides a 24-step collision.

Estimate of Computation Effort. Let Step 5 involve a computation of g
operations, where each operation is much faster than a single step of SHA-2;
by our assessment the time for each operation is around 2−4 times the cost of

New Collision Attacks against Up to 24-Step SHA-2 101

a single step of SHA-2. Thus, the time for Step 5 is about g
24 single SHA-2

steps. Further, let the success probability of the guess-then-determine attack be
p. Then Step 5 needs to be repeated roughly 1

p times to obtain a solution.
By the choice of δ1, the equality σ1(W17 + 1)− σ1(W17) = −δ1 holds roughly

with probability
freqδ1
2n while by the choice of δ2 the equality σ1(W18 − 1) −

σ1(W18) = δ2 holds roughly with probability
freqδ2

2n and we obtain success in

Step 11 with roughly
freqδ1

×freqδ2
22n probability. So, the entire procedure needs to

be carried out around 22n

freqδ1
×freqδ2

times to obtain a collision.

The guess-then-determine step takes about g/24 single SHA-2 steps. The time
for executing the entire procedure once is about (g

24 +3) single SHA-2 steps which
is about 2−4.5 × (g

24 + 3) 24-step SHA-2 computations. Since the entire process
needs to be repeated many times for obtaining success, the number of 24-step
SHA-2 computations till success is obtained is about (22n

freqδ1
×freqδ2

) × (2−4.5 ×
(g
24 + 3)× 1

p).
If (10) is solved using a table look-up, then the cost estimate changes quite

a lot. The cost of Step 5 reduces to about a single SHA-2 step so that the
overall cost reduces to about (22n

freqδ1
×freqδ2

) × (2−4.5 × 3 × 1
p) 24-step SHA-2

computations. The trade-off is that we need to use a look-up table having 2n

entries.

8 Exhibiting Colliding Message Pairs

The description in the previous sections provide an outline of how to obtain
colliding message pairs. To actually find collisions, a lot more details are required.
Due to lack of space, we are unable to provide these details here. (The reader
may refer to [10] for further details.) Here we simply provide examples of actual
collisions that we have found. These are given in Tables 4 to 10.

Table 4. Colliding message pair for 22-step SHA-512 with standard IV

W1 0-3 0000000000000000 0000000000000000 c2bc8e9a85e2eb5a 6d623c5d5a2a1442

4-7 cd38e6dee1458de7 acb73305cddb1207 148f31a512bbade5 ecd66ba86d4ab7e9

8-11 92aafb1e9cfa1fcb 533c19b80a7c8968 e3ce7a41b11b4d75 aef3823c2a004b20

12-15 8d41a28b0d847692 7f214e01c4e96950 0000000000000000 0000000000000000

W2 0-3 0000000000000000 0000000000000000 c2bc8e9a85e2eb5a 6d623c5d5a2a1442

4-7 cd38e6dee1458de7 acb73305cddb1207 148f31a512bbade5 ecd66ba86d4ab7ea

8-11 90668fd7ec6718ee 533c19b80a7c8968 dfce7a41b11b4d76 aef3823c2a004b20

12-15 8d41a28b0d847692 7f214e01c4e96950 0000000000000000 ffffffffffffffff

Table 5. Colliding message pair for 22-step SHA-256 with standard IV

W1 0-7 00000000 00000000 0be293bf 99c539c9 1c672194 99b6a58a 5bf1d0ae 0a9a18d3

8-15 0c18cf1c 329b3e6e dc4e7a43 ab33823f 8d41a28d 7f214e03 00000000 00000000

W2 0-7 00000000 00000000 0be293bf 99c539c9 1c672194 99b6a58a 5bf1d0ae 0a9a18d4

8-15 07d56809 329b3e6e dc0e7a44 ab33823f 8d41a28d 7f214e03 00000000 ffffffff

102 S.K. Sanadhya and P. Sarkar

Table 6. Colliding message pair for 23-step SHA-256 with standard IV. These messages
utilize a single local collision starting at Step i = 8.

W1 0-7 122060e3 000f813f d92d3fc6 ea4a475f fb0c6581 dc4558c4 d86428b4 6e2ca576

8-15 c8d597bf 6372d4c2 ddbd721c 79d654c4 f0064002 a894b7b6 91b7628e 3224db20

W2 0-7 122060e3 000f813f d92d3fc6 ea4a475f fb0c6581 dc4558c4 d86428b4 6e2ca576

8-15 c8d597c0 6372d4c1 ddbd721c 78d6b4c5 f0064002 a894b7b6 91b7628e 3224db20

Table 7. Colliding message pair for 23-step SHA-256 with standard IV. These messages
utilize a single local collision starting at Step i = 9.

W1 0-7 c201bef2 14cc32c9 3b80da44 d8212037 8987161d a790cb4a 53b8d726 89e9a288

8-15 3edd76e0 05f41ddc 9ebc0fc3 e099698a 2eaec58f e7060b78 95d7030d 6bf777c0

W2 0-7 c201bef2 14cc32c9 3b80da44 d8212037 8987161d a790cb4a 53b8d726 89e9a288

8-15 3edd76e0 05f41ddd 9ebc0fc2 e099c98a 2daf2590 e7060b78 95d7030d 6bf777c0

Table 8. Colliding message pair for 24-step SHA-256 with standard IV. These messages
utilize a single local collision starting at Step i = 10.

W1 0-7 657adf63 06c066d7 90f0b709 95a3e1d1 c3017f24 fad6c2bf dff43685 6abff0da

8-15 e6cfc63f de8fb4c1 c20ca05b f74815cc c2e789d9 208e7105 cc08b6cf 70171840

W2 0-7 657adf63 06c066d7 90f0b709 95a3e1d1 c3017f24 fad6c2bf dff43685 6abff0da

8-15 e6cfc63f de8fb4c1 c20ca05c f74815cb c2e7e9d9 1f8ed106 cc08b6cf 70171840

Table 9. Colliding message pair for 23-step SHA-512 with standard IV. These messages
utilize a single local collision starting at Step i = 8.

W1 0-3 b9fa6fc4729ca55c 8718310e1b3590e1 1d3d530cb075b721 99166b30ecbdd705

4-7 27ed55b66c090b62 754b2163ff6feec5 6685f40fd8ab08f8 590c1c0522f6fdfd

8-11 b947bb4013b688c1 d9d72ca8ab1cac04 69d0e120220d4edc 30a2e93aeef24e3f

12-15 84e76299718478b9 f11ae711647763e5 d621d2687946e862 0ee57069123ecc8b

W2 0-3 b9fa6fc4729ca55c 8718310e1b3590e1 1d3d530cb075b721 99166b30ecbdd705

4-7 27ed55b66c090b62 754b2163ff6feec5 6685f40fd8ab08f8 590c1c0522f6fdfd

8-11 b947bb4013b688c2 d9d72ca8ab1cac03 69d0e120220d4edc 30a3493aeef25076

12-15 84e76299718478b9 f11ae711647763e5 d621d2687946e862 0ee57069123ecc8b

Table 10. Colliding message pair for 24-step SHA-512 with standard IV. These mes-
sages utilize a single local collision starting at Step i = 10.

W1 0-3 dedb689cfc766965 c7b8e064ff720f7c c136883560348c9c 3747df7d0cf47678

4-7 855e17555cfedc5f 88566babccaa63e9 5dda9777938b73cd b17b00574a4e4216

8-11 86f3ff48fd12ea19 cd15c6f8d6da38ce 5e2c6b7b0411e70b 36ed67e93a794e66

12-15 1b65e96b02767821 04d0950089db6c68 5bc9b9673e38eff3 b05d879ad024d3fa

W2 0-3 dedb689cfc766965 c7b8e064ff720f7c c136883560348c9c 3747df7d0cf47678

4-7 855e17555cfedc5f 88566babccaa63e9 5dda9777938b73cd b17b00574a4e4216

8-11 86f3ff48fd12ea19 cd15c6f8d6da38ce 5e2c6b7b0411e70c 36ed67e93a794e65

12-15 1b66096b02767829 04d0f50089db6e9f 5bc9b9673e38eff3 b05d879ad024d3fa

Note

The submitted version of the paper contained much more details than is provided
in the current version. Due to page-limit restrictions on the published version
of the paper, we are unable to provide such details, which to a certain extent
may affect the readability of the paper. A longer and more detailed version is
available at [10].

New Collision Attacks against Up to 24-Step SHA-2 103

References

1. Secure Hash Standard. Federal Information Processing Standard Publication 180-
2. U.S. Department of Commerce, National Institute of Standards and Tech-
nology (NIST) (2002), http://csrc.nist.gov/publications/fips/fips180-2/

fips180-2withchangenotice.pdf

2. Gilbert, H., Handschuh, H.: Security Analysis of SHA-256 and Sisters. In: Matsui,
M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 175–193. Springer,
Heidelberg (2004)

3. Indesteege, S., Mendel, F., Preneel, B., Rechberger, C.: Collisions and other Non-
Random Properties for Step-Reduced SHA-256. Cryptology eprint Archive (April
2008); Selected Areas in Cryptography (accepted, 2008),
http://eprint.iacr.org/2008/131

4. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of Step-Reduced
SHA-256. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 126–143.
Springer, Heidelberg (2006)

5. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of Step-Reduced
SHA-256. Cryptology eprint Archive (March 2008),
http://eprint.iacr.org/2008/130

6. Nikolić, I., Biryukov, A.: Collisions for Step-Reduced SHA-256. In: Nyberg, K.
(ed.) FSE 2008. LNCS, vol. 5086, pp. 1–16. Springer, Heidelberg (2008)

7. Sanadhya, S.K., Sarkar, P.: New Local Collisions for the SHA-2 Hash Family. In:
Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 193–205. Springer,
Heidelberg (2007)

8. Sanadhya, S.K., Sarkar, P.: Attacking Reduced Round SHA-256. In: Bellovin, S.,
Gennaro, R. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 130–143. Springer, Heidelberg
(2008)

9. Sanadhya, S.K., Sarkar, P.: Deterministic Constructions of 21-Step Collisions for
the SHA-2 Hash Family. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.)
ISC 2008. LNCS, vol. 5222. Springer, Heidelberg (2008)

10. Sanadhya, S.K., Sarkar, P.: New Collision attacks Against Up To 24-step SHA-2.
Cryptology eprint Archive (September 2008), http://eprint.iacr.org/2008/270

11. Sanadhya, S.K., Sarkar, P.: Non-Linear Reduced Round Attacks Against SHA-
2 Hash family. In: Mu, Y., Susilo, W. (eds.) ACISP 2008. LNCS, vol. 5107, pp.
254–266. Springer, Heidelberg (2008)

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://eprint.iacr.org/2008/131
http://eprint.iacr.org/2008/130
http://eprint.iacr.org/2008/270

Secure Hierarchical Identity Based Encryption
Scheme in the Standard Model

Yanli Ren and Dawu Gu

Dept. of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

Abstract. An identity based cryptosystem is a public key cryptosys-
tem where the public key can be represented as an arbitrary string.
Hierarchical identity based cryptography is a generalization of identity
based encryption that mirrors an organizational hierarchy. It allows a
root private key generator to distribute the workload by delegating pri-
vate key generation and identity authentication to lower-level private key
generators. Most of hierarchical identity based encryption schemes are
provably secure in the random oracles or weak models without random
oracles such as selective-ID model.

Currently, there is no hierarchical identity based encryption scheme
that is fully CCA2 secure in the standard model, with short public
parameters and a tight reduction. In this paper, we first propose a hier-
archical identity based encryption scheme that is fully secure in the stan-
dard model. And it achieves IND-ID-CCA2 security based on the decision
q-TBDHE problem. The ciphertext size is independent of the level of the
hierarchy. Moreover, our scheme has short public parameters, high effi-
ciency and a tight reduction simultaneously.

1 Introduction

An identity based (ID-based) cryptosystem [1] is a public key cryptosystem
where the public key can be represented as an arbitrary string such as an email
address. The user’s private key is generated by a trusted authority, called a
Private Key Generator (PKG), which applies its master key to issue private
keys to identities that request them. For an Identity Based Encryption (IBE)
scheme, Alice can securely encrypt a message to Bob using an unambiguous
name of him, such as email address, as the public key. ID-based cryptosystems
can simplify key management procedure compared to CA-based systems, so it
can be an alternative way for CA-based public key systems in some occasions,
especially when efficient key management and moderate security are required.

Shamir proposed the notion of IBE in 1984 as a way to simplify public key
and certificate management. Many ID-based schemes have been proposed after
that, but practical ID-based encryption schemes were not found until the work
of Boneh and Franklin [6] in 2001. Their IBE scheme was based on groups with
efficiently computable bilinear maps, but it is only provably secure in the random
oracle model. It has been shown that when random oracles are instantiated with

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 104–115, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Secure Hierarchical IBE Scheme in the Standard Model 105

concrete hash functions, the resulting scheme may not be secure [7][13]. Canetti,
Halevi, and Katz [14] suggested a weaker security notion for IBE, known as
selective identity(selective-ID) security, relative to which they were able to build
an inefficient but secure IBE scheme without using random oracles. Boneh and
Boyen [8] presented two very efficient IBE systems (“BB1” and “BB2”) with
selective-ID security proofs, also without random oracles. The same authors [7]
then proposed a coding-theoretic extension to their “BB1” scheme that allowed
them to prove security for the full notion of adaptive identity(adaptive-ID)
security without random oracles, but the construction was impractical. Waters
[2] then proposed a much simpler extension to ”BB1” also with an adaptive-ID
security proof without random oracles; its efficiency was further improved in two
independent papers, [17] and [10]. Almost all of the IBE systems since Boneh-
Franklin follow the “common strategy” for proving security; consequently, they
suffer from long parameters (when security is proven in the standard model)
and lossy reductions (in the standard model or the random oracle model). Until
2006, there is no IBE system that is fully secure without random oracles, yet
has short public parameters, or has a tight security reduction. Given this state
of affairs, several papers [5,8,2] have encouraged work on the open problem of
tight security; Waters [2] posed the open problem regarding compact public
parameters. So Gentry [3] proposed an IBE scheme that is fully secure in the
standard model with short public parameters and a tight security reduction,
where the ciphertext does not leak the identity of the recipient. His scheme
is simple and efficient, and his proof technique differs substantially from the
“common strategy” described above.

Although having a single PKG would completely eliminate online lookup, it
is undesirable for a large network because the PKG has a burdensome job. Not
only is private key generation computationally expensive, but also the PKG
must verify proofs of identity and establish secure channels to transmit private
keys. Hierarchical ID-based cryptography was first proposed in [4] and [11] in
2002. It allows a root PKG to distribute the workload by delegating private
key generation and identity authentication to lower-level PKGs. In an HIBE
scheme, a root PKG needs only generate private keys for domain-level PKGs,
who in turn generate private keys for users in their domains in the next level.
Authentication and private key transmission can be done locally. To encrypt
a message to Bob, Alice needs only obtain the public parameters of Bob’s root
PKG (and Bob’s identifying information); there are no “lower-level parameters”.
Another advantage of HIBE schemes is damage control: disclosure of a domain
PKG’s secret does not compromise the secrets of higher-level PKGs.

The first construction for HIBE is due to Gentry and Silverberg [4] where se-
curity is based on the Bilinear Diffie-Hellman (BDH) assumption in the random
oracle model. A subsequent construction due to Boneh and Boyen gives an efficient
selective-ID secure HIBE based on BDH without random oracles [7]. In both con-
structions, the length of ciphertexts and private keys, as well as the time needed
for decryption and encryption, grows linearly in the depth of the hierarchy. Then
Boneh, Boyen and Goh [9] present an HIBE system where the ciphertext size as

106 Y. Ren and D. Gu

well as the decryption cost are independent of the hierarchy depth. And they prove
that the scheme is selective-ID secure in the standard model. Though the schemes
that are selective-ID secure are also fully secure as long as one hashes the identity
prior to using it, the reduction is not tight. Then Chatterjee and Sarkar [16] pro-
posed an HIBE scheme that are fully secure in the standard model, but the size of
public parameters and the ciphertext are dependent of the level of the hierarchy.
In 2006, Man Ho Au constructed a constant size HIBE scheme that is fully se-
cure in the standard model [12]. However, the scheme is only valid for a user with
identity ID = (ID1, ID2, . . . , IDi), i ≥ 2 and it is not secure when i = 2. More-
over, the scheme is only CPA secure in the standard model though an adaptive
CCA-secure l-level hierarchical identity based encryption (HIBE) scheme Π can
be constructed from a CPA-secure l + 1-level HIBE scheme Π ′ and a strong one-
time signature scheme Sig. In fact, most HIBE scheme achieves CCA2 security
using this technique showed by Canetti et al.[15].

Our Contributions. In Gentry’s IBE scheme, they proposed an open problem,
that is to construct a hierarchical IBE system that has a tight reduction based
on a reasonable assumption. Currently, there is no HIBE scheme that is fully
CCA2 secure in the standard model, with short public parameters and a tight
reduction. In this paper, we propose an HIBE scheme that is fully CCA2 secure
in the standard model. The ciphertext size is independent of the level of the
hierarchy. Moreover, our scheme has short public parameters, high efficiency
and a tight reduction simultaneously.

2 Definitions

2.1 Bilinear Map

Let p be a large prime number, G1, G2 are two groups of order p, and g is
a generator of G1. e : G1 × G1 → G2 is a bilinear map, which satisfies the
following properties [2]:

(1)Bilinearity: For all u, v ∈ G1 and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
(2)Non-degeneracy: e(g, g) �= 1.
(3)Computability: There exists an efficient algorithm to compute e(u, v),
∀u, v ∈ G1.

2.2 Complexity Assumptions

The security of our scheme is based on a complexity assumption that we call the
decisional truncated bilinear Diffie-Hellman exponent assumption(TBDHE).

First, we recall the decisional version of q-BDHE problem [9], which is as
follows: Given a vector of 2q + 2 elements

(g′, g, gα, gα2
, . . . , gαq

, gαq+2
, . . . , gα2q

, Z) ∈ G2q+1
1 ×G2

to decide whether Z = e(g, g′)αq+1
.

Secure Hierarchical IBE Scheme in the Standard Model 107

Since the tuple does not have the term gαq+1
, the bilinear map does not seem

to help decide whether Z = e(g, g′)αq+1
. Instead, we can use a truncated version

of the q-BDHE problem, in which the terms (gαq+2
, . . . , gα2q

) are omitted from
the input vector. We call it the q-TBDHE problem for convenience. Clearly, the
decision q-TBDHE problem is hard if the decision q-BDHE problem is hard.

In the scheme of [3], the author define the q-ABDHE problem as follows:
Given a vector of q + 4 elements

(g′, g′α
q+2

, g, gα, gα2
, . . . , gαq

, Z) ∈ Gq+3
1 ×G2

to decide whether Z = e(g, g′)αq+1
.

Obviously, the q-ABDHE problem can be solved once the q-TBDHE problem
is solved whereas not. So we can say that the TBDHE problem is at least as
difficult as the ABDHE problem.

An algorithm A that outputs w ∈ {0, 1} has advantage ε in solving the decision
q-TBDHE if

|Pr[A(g′, g, gα, . . . , gαq

, e(g′, g)αq+1
) = 0]

−Pr[A(g′, g, gα, . . . , gαq

, Z) = 0]| ≥ ε,

where the probability is over the random choice of generators g, g′ ∈ G1, α ∈
Z∗

p , Z ∈ G2, and the random bits consumed by A. We refer to the distribution
on the left as PTBDHE and the distribution on the right as RTBDHE .

We say that the decision (t, ε, q)-TBDHE assumption holds in G1, G2 if no
t-time algorithm has advantage at least ε in solving the decision q-TBDHE
problem in G1, G2.

2.3 Secure Models

IND-ID-CCA2: HIBE security (IND-ID-CCA2) [9] is defined by the following
game between an adversary A and a challenger B.

Setup. The challenger B runs the Setup algorithm and gives A the resulting
system parameters params, keeping the master key to itself.

Phase 1. A adaptively issues queries q1, . . . , qm where query qi is one of the
following:

Key generation query< IDi >. B responds by running algorithm KeyGen to
generate the private key di corresponding to the public key IDi and sends di

to A.
Decryption query< IDi, ci >. B responds by running algorithm KeyGen to

generate the private key di corresponding to IDi. It then runs algorithm Decrypt
to decrypt the ciphertext ci using the private key di and sends the resulting
plaintext to A.

Challenge. A outputs an identity ID∗ and two equal length plaintexts m0, m1
on which it wishes to be challenged. The only restriction is that A did not

108 Y. Ren and D. Gu

previously issue a key generation query for ID∗ or a prefix of ID∗. B picks a ran-
dom bit w ∈ {0, 1} and sends c∗ to A, where c∗ = Encrypt(params, ID∗, mw).

Phase 2. A issues additional queries qm+1, . . . , qn, where qi is one of:
Key generation query < IDi >. where IDi �= ID∗ and IDi is not a prefix of

ID∗.
Decryption query ci �= c∗ for ID∗ or any prefix of ID∗. In both cases, B

responds as in Phase 1. These queries may be adaptive.

Guess. Finally, the adversary outputs a guess w′ ∈ {0, 1} and wins if w = w′.
We call an adversary A in the above game an IND-ID-CCA2 adversary. The

advantage of A is defined as |Pr[w′ = w]− 1
2 |.

Definition 1. An HIBE system is (t, ε, qk, qd) IND-ID-CCA2 secure if all t-time
IND-ID-CCA2 adversaries making at most qk key generation queries and at most
qd decryption queries have advantage at most ε in winning the above game.

3 Hierarchical Identity Based Encryption Scheme

3.1 Set Up

Let G1, G2 be defined as above, and g is a generator of G1. g1 = gα, where α ∈ Z∗
p

is a random number. e : G1×G1 → G2 is a bilinear map, and l is the maximum
number of levels in the HIBE. h : G2

1×G3
2 −→ Z∗

p , H : G2
1×G5

2 −→ Z∗
p are hash

functions randomly chosen from a family of universal one-way hash functions.
The PKG randomly chooses g2, g3, hi ∈ G1(i = 0, 1, . . . , l), and f(x) = ax + b,
where a, b ∈ Z∗

p . If g2 = g−a
3 or h0 = g−b

3 , choose another f(x) again. The public
parameters are (g, g1, g2, g3, f(x), h, H, h0, . . . , hl), α is the private key of PKG.

3.2 Key Generation

To a user U with identity ID = (ID1, ID2, . . . , IDi) ∈ (Z∗
p)i, the PKG randomly

chooses r−1,i, r0,i ∈ Z∗
p , and computes

d0,i = (h0g
r−1,i

2 g
f(r−1,i)
3)α(

∏i
k=1 hlh

IDk

k)r0,i ,
d−1,i = r−1,i, d1,i = gr0,i , di+1,i = h

r0,i

i+1, . . . , dl,i = h
r0,i

l ,

so the private key of U is d = (d0,i, d−1,i, d1,i, di+1,i, . . . , dl,i).
If h0g

r−1,i

2 g
f(r−1,i)
3 = 1, randomly choose r−1,i again.

The private key can also be generated by its parent (ID1, ID2, . . . , IDi−1)
having the secret key (d0,i−1, d−1,i−1, d1,i−1, di,i−1, . . . , dl,i−1). It computes:

d0,i = d0,i−1 · dl,i−1 · dIDi

i,i−1 · (
∏i

k=1 hlh
IDk

k)t, d−1,i = d−1,i−1,

d1,i = d1,i−1 · gt, dk,i = dk,i−1 · ht
k(k = i + 1, . . . , l), where r0,i = r0,i−1 + t.

Secure Hierarchical IBE Scheme in the Standard Model 109

3.3 Encryption

To encrypt a message m ∈ G2, randomly choose s ∈ Z∗
p , and compute

c1 = (
∏i

k=1 hlh
IDk

k)s, c2 = gs, c3 = e(g1, g2)s, c4 = e(g1, g3)s,
c5 = m · e(g1, h0)s+γ , β = H(c1, c2, c3, c4, c5, m, m · e(g1, h0)s),

where γ = h(c1, c2, c3, c4, e(g1, h0)s).
The ciphertext of message m is c = (c1, c2, c3, c4, c5, β).
Notice that encryption does not require any pairing computations once

e(g1, h0), e(g1, g2), e(g1, g3) have been pre-computed.

3.4 Decryption

The recipient first decrypts e(c2,d0,i)

c
f(d−1,i)
4 ·cd−1,i

3 e(c1,d1,i)
= e(g1, h0)s, and

γ = h(c1, c2, c3, c4, e(g1, h0)s), c5/e(g1, h0)γ = R, R/e(g1, h0)s = m.

Then he computes β′ = H(c1, c2, c3, c4, c5, m, R) and verifies whether β′ = β. If
the equation holds, the ciphertext is valid. Otherwise, the recipient returns an
error message.

4 Analysis of the HIBE Scheme

4.1 Indistinguishability of the Ciphertext

Theorem 1. Assume that the (t′, ε′, q)-TBDHE assumption holds in G1, G2,
then the HIBE scheme is (t, ε, qk, qd) IND-ID-CCA2 secure for t = t′ − O(texp ·
lq) − O(tpair · q), ε = ε′ + 1/(p − 1), qk + qd ≤ q − 1, where texp, tpair are the
average time required to exponentiate and pairing in G1, G2 respectively.

Proof. Assume A is an IND-ID-CCA2 adversary described as above. We con-
struct an algorithm B that solves the q-TBDHE problem as follows. At the
outset of the game, B is given a vector (g′, g, gα, . . . , gαq

, Z) ∈ Gq+2
1 ×G2 to

decide whether Z = e(g′, g)αq+1
.

Set Up. B randomly chooses f1(x), f2(x), f3(x) ∈ (Z∗
p)[x] of degree q, where

f1(x) =
∑q

i=0 aix
i, f2(x) =

∑q
i=0 bix

i, f3(x) =
∑q

i=0 cix
i.

Let g1 = gα, h0 = gf1(α), g2 = gf2(α), g3 = gf3(α), f(x) = − bq

cq
x − aq

cq
, hi =

gui(i = 1, 2, . . . , l), ui ∈ Z∗
p is a random number. If g2 = g

bq/cq

3 or h0 = g
aq/cq

3 ,
randomly choose f1(x), f2(x), f3(x) again. Then B sends the public parameters
(g, g1, g2, g3, f(x), h0, h1, . . . , hl) to A. Observe that from the viewpoint of the
adversary, the distribution of these public parameters is identical to the real
construction since f1(x), f2(x), f3(x), ui are randomly chosen.

Phase 1. Key generation query.
A sends identity ID = (ID1, ID2, . . . , IDi) to B. If ID = α, B uses α to solve
the q-TBDHE problem immediately. Else, B randomly chooses r−1,i, r0,i ∈ Z∗

p ,
and computes

110 Y. Ren and D. Gu

d0,i = (g
∑ q−1

i=0 (ai+r−1,ibi+f(r−1,i)ci)αi+1
) · (

∏i
k=1 hlh

IDk

k)r0,i ,
d−1,i = r−1,i, d1,i = gr0,i , di+1,i = gui+1r0,i , . . . , dl,i = gulr0,i .

So dID = (d0,i, d−1,i, d1,i, di+1,i, . . . , dl,i). If h0g
r−1,i

2 g
f(r−1,i)
3 = 1, randomly

choose r−1,i again.
It is a valid private key, because
f(r−1,i) = − bq

cq
r−1,i − aq

cq
, and aq + r−1,ibq + f(r−1,i)cq = 0,

g
∑q−1

i=0 (ai+r−1,ibi+f(r−1,i)ci)αi+1
= g

∑q
i=0(ai+r−1,ibi+f(r−1,i)ci)αi+1

= (gf1(α) · gr−1,if2(α) · gf(r−1,i)f3(α))α

= (h0g
d−1,i

2 g
f(d−1,i)
3)α,

d0,i = (h0g
d−1,i

2 g
f(d−1,i)
3)α · (

∏i
k=1 hlh

IDk

k)r0,i .

Therefore, dID is randomly distributed because of the randomness of r−1,i, r0,i.
Decryption query. A sends (ID, c) to B.
B first executes the key generation query to identity ID as above, then de-

crypts and verifies c with the private key of identity ID according to the decryp-
tion process. If c can pass the verification, B sends A the plaintext; otherwise,
B returns an error message.

Challenge. A sends (ID∗, m0, m1) to B, where ID∗ or its prefix have never
been queried the private key in phase 1.

B randomly chooses mw, w ∈ {0, 1}, and computes

c∗1 =
∏i

k=1(g
′)ul+ukID∗

k , c∗3 = Zbq · e(g′, g)
∑ q−1

i=0 biα
i+1

,
c∗2 = g′, c∗4 = Zcq · e(g′, g)

∑q−1
i=0 ciα

i+1
,

c∗5 = mw · e(c∗2 ,d0,i∗)

(c∗4)
f(d∗−1,i

)
(c∗3)

d∗−1,ie(d1,i∗ ,c∗1)
· e(g1, h0)γ∗

,

β∗ = H(c∗1, c
∗
2, c

∗
3, c

∗
4, c

∗
5, mw, mw · e(c∗2 ,d0,i∗)

(c∗4)
f(d∗−1,i

)
(c∗3)

d∗−1,i e(d1,i∗ ,c∗1)
,

where γ∗ = h(c∗1, c
∗
2, c

∗
3, c

∗
4,

e(c∗2 ,d0,i∗)

(c∗4)
f(d∗−1,i

)
(c∗3)

d∗−1,i e(d1,i∗ ,c∗1)
), and

d0,i∗ , d−1,i∗ , d1,i∗ are the elements of a private key of ID∗.
(Remark: For any private key of ID∗,

e(c∗2 ,d0,i∗)

(c∗4)
f(d∗−1,i

)
(c∗3)

d∗−1,ie(d1,i∗ ,c∗1)
= Zaq · e(g′, g)

∑ q−1
i=0 aiα

i+1
.

Therefore, B cannot decide whether Z = e(g′, g)αq+1
even if he can generate

multiple random decryption keys for ID∗.)
Then B sends c∗ to A, where c∗ = (c∗1, c

∗
2, c

∗
3, c

∗
4, c

∗
5, β

∗).
let s∗ = loggg

′, c∗ is a valid ciphertext for mw under the randomness of s∗.
Since loggg

′ is uniformly random, s∗ is uniformly random, and so c∗ is a valid,
appropriately-distributed challenge to A.

Phase 2. A issues additional queries as phase 1.

Secure Hierarchical IBE Scheme in the Standard Model 111

Key generation query < IDi >, where IDi �= ID∗ and IDi is not a prefix of
ID∗.

Decryption query ci �= c∗ for ID∗ or any prefix of ID∗. In both cases, B
responds as in Phase 1. These queries may be adaptive.

Guess. A submits a guess w′ ∈ {0, 1}. If w′ = w, B outputs 0 (indicating that
Z = e(g′, g)αq+1

); otherwise, it outputs 1.

Probability Analysis
Lemma 1. When Z is sampled according to PTBDHE , the joint distribution of
A’s view and the bit w is indistinguishable from that in the actual construction,
except with probability 1/(p− 1).

Proof. When B’s input is sampled from PTBDHE , B’s simulation appears
perfect to A if A makes only key generation queries. B’s simulation still appears
perfect if A makes decryption queries only on identities for which it queries
the private key, since B’s responses give A no additional information. Further-
more, querying well-formed ciphertexts to the decryption oracle does not help
A distinguish between the simulation and the actual construction, since, by the
correctness of Decrypt, well-formed ciphertexts will be accepted in either case.
Finally, querying a non-well-formed ciphertext for ID does not help A distin-
guish, since this cihertext will fail the “decrypt” check under every valid private
key for ID. Thus, the lemma follows from the following two claims.

Claim 1 Assuming the adversary does not find a collision in h, H , then the
decryption oracle, in the simulation and in the actual construction, rejects all
invalid ciphertexts under identities or their prefix not queried by A.

Proof. Let log(·) denote the logarithms to the base g, and an invalid ciphertext
c = (c1, c2, c3, c4, c5, β) associated with an identity ID for

c1 = (
∏i

k=1 hlh
IDk

k)s1 , c2 = gs2 , c3 = e(g1, g2)s3 ,
c4 = e(g1, g3)s4 , c5 = m · e(g1, h0)s5+γ , β,

where γ = h(c1, c2, c3, c4, e(g1, h0)s5), and s1 �= s2, s3, s4 or s5.
According to the decryption process, a ciphertext c can be accepted if

e(c2,d0,i)

c
f(d−1,i)
4 ·cd−1,i

3 ·e(c1,d1,i)
= e(g1, h0)s5 , c5/e(g1, h0)γ = R,

R/e(g1, h0)s5 = m, β = H(c1, c2, c3, c4, c5, m, R), (1)

where d−1,i, d0,i, d1,i are the elements of a private key of ID.
And according to (1),

e(c2,d0,i)

c
f(d−1,i)
4 ·cd−1,i

3 ·e(c1,d1,i)
= e(c2,(h0g

r−1,i
2 g

f(r−1,i)
3)α(

∏ i
k=1 hlh

IDk
k)r0,i)

c
r−1,i
3 ·cf(r−1,i)

4 ·e(c1,gr0,i)
= e(g1, h0)s5 .

Since A has not queried the decryption key associated with the identity or its
prefix, and r0,i is randomly chosen from Z∗

p , we know that

e(g1, h0)s5c
f(d−1,i)
4 c

d−1,i

3 = e(c2, (h0g
d−1,i

2 g
f(d−1,i)
3)α), (2)

e(c2,
∏i

k=1 hlh
IDk

k) = e(c1, g).(3)

112 Y. Ren and D. Gu

From (3), we know s1 = s2. Since r−1,i is randomly chosen from Z∗
p and

f(r−1,i) = − bq

cq
r−1,i − aq

cq
, according to (2),

e(g1, h0)s5c
− aq

cq

4 = e(c2, (h0g
− aq

cq

3)α), c3c
− bq

cq

4 = e(c2, (g2g
− bq

cq

3)α). (4)
From (4),

(s5 − s2)logh0 − aq

cq
logg3(s4 − s2) = 0,

(s3 − s2)logg2 − bq

cq
logg3(s4 − s2) = 0. (5)

Since logh0 = f1(α), logg2 = f2(α), logg3 = f3(α), f1(x), f2(x), f3(x) are ran-
domly chosen, logh0, logg2, logg3 are uniformly random. And because h0 �=

g
aq
cq

3 , g2 �= g
bq
cq

3 , we know s2 = s3 = s4 = s5 from (5).
Therefore, s1 = s2 = s3 = s4 = s5. A ciphertext can be accepted only if it is

valid. The decryption oracle, in the simulation and in the actual construction,
rejects all invalid ciphertexts under identities or their prefix not queried by A.

Claim 2 If the decryption oracle rejects all invalid ciphertexts, then A has
advantage 1/(p− 1) in guessing the bit w.

When Z is sampled from PTBDHE , a challenge ciphertext c∗ is a valid cipher-
text for the randomness of s∗.

First, we show the adversary cannot obtain a valid ciphertext c = (c1, c2, c3,
c4, c5, β) for mw associated with an identity ID from c∗, where

c1 = (
∏i

k=1 hlh
IDk

k)s′
, c2 = gs′

, c3 = e(g1, g2)s′
,

c4 = e(g1, g3)s′
, c5 = mw · e(g1, h0)s′+γ , β,

where γ = h(c1, c2, c3, c4, e(g1, h0)s′
).

There are three cases to consider:

(1) s′ = s∗, ID = ID∗: c = c∗, the ciphertext will certainly be rejected.
(2) s′ = s∗, ID �= ID∗: (c2, c3, c4) = (c∗2, c∗3, c∗4).

Assume ID = (ID1, . . . , IDj), ID∗ = (ID∗
1 , . . . , ID∗

i).
When j ≥ i, c1 = c∗1 ·

∏i
k=1(h

s∗
k)IDk−ID∗

k ·
∏j

k=i+1(hlh
IDk

k)s∗
.

Otherwise, c1 = c∗1 ·
∏j

k=1(h
s∗
k)IDk−ID∗

k ·
∏i

k=j+1(hlh
ID∗

k

k)−s∗
.

Since s∗ = loggg
′ is uniformly random, the adversary cannot compute a valid

c1 from c∗.
(3) s′ �= s∗:

(c1, c2, c3, c4, γ) �= (c∗1, c∗2, c∗3, c∗4, γ∗), c5 = c∗5 · e(g1, h0)s′+γ−s∗−γ∗
.

Since s∗ = loggg
′ is uniformly random, γ∗ is uniformly random, the adversary

cannot compute a valid c5 from c∗.
Therefore, the adversary cannot obtain a valid ciphertext c for mw associated

with identity ID from c∗.
Finally, We know

c∗5 = mw · e(c∗2 ,d0,i∗)

(c∗4)
f(d∗−1,i

)
(c∗3)

d∗−1,i e(d1,i∗ ,c∗1)
· e(g1, h0)γ∗

= mw · e(g1, h0)s∗+γ∗
, where

γ∗ = h(c∗1, c
∗
2, c

∗
3, c

∗
4, e(g1, h0)s∗

).

Secure Hierarchical IBE Scheme in the Standard Model 113

Since s∗ = loggg
′ is uniformly random, γ∗ is uniformly random, and s∗ + γ∗ = 0

with probability 1/(p− 1), c∗5/mw is uniformly random for the adversary except
probability 1/(p− 1). So A can guess w′ = w with probability 1

2 + 1
p−1 .

Lemma 2. When Z is sampled according to RTBDHE , the joint distribution of
A’s view and the bit w is indistinguishable from that in the actual construction.

Proof. The lemma follows from Claim 1 and the following claim.
Claim 3 If the decryption oracle rejects all invalid ciphertexts, then A has no

advantage in guessing the bit w.
When Z is sampled from RTBDHE , we know that s3, s4 �= s∗. As above, the

adversary cannot obtain a valid ciphertext c for mw associated with identity ID
from c∗. And

c∗5 = mw ·
e(c∗2, d0,i∗)

(c∗4)
f(d∗

−1,i)(c∗3)
d∗
−1,ie(d1,i∗ , c∗1)

· e(g1, h0)γ∗

= mw · e(gs∗
1 , h0g

−aqαq

) · Zaq · e(g1, h0)γ∗
,

where γ∗ = h(c∗1, c∗2, c∗3, c∗4, e(gs∗
1 , h0g

−aqαq

) · Zaq).
Since s∗, aq, Z are uniformly random, γ∗ is uniformly random, and c∗5/mw is

random for the adversary. So A can only guess w′ = w with probability 1/2 and
has no advantage in guessing the bit w.

Time Complexity: In the simulation, B’s overhead is dominated by computing
private keys and decrypting the ciphertexts in response to A’s queries. Each key
generation computation requires O(l) exponentiations in G1, and each decryp-
tion computation requires O(1) exponentiations and pairings in G1, G2. Since A
makes at most q − 1 such queries, t′ = t + O(texp · lq) + O(tpair · q).

In the reductions , B’s success probability and time complexity are the same
as A’s, except for additive factors depending on p and q respectively. So, one
could say that our HIBE system has a tight security reduction in the standard
model, addressing an open problem posed in [3].

4.2 Efficiency

In the following table, we compare the efficiency of the known HIBE schemes in
the standard model.

Table 1. Comparison to other HIBE schemes in the standard model

Scheme Security Public Private Ciphertext Pairing
model key size key size size operation

BB[7] IND-sID-CPA O(l) O(i) O(i) O(i)
BBG[9] IND-sID-CPA O(l) O(i) O(1) O(1)
CS[16] IND-ID-CPA O(l) O(i) O(i) O(i)

ALYW[12] IND-ID-CPA O(l) O(i) O(1) O(1)
Ours IND-ID-CCA2 O(l) O(i) O(1) O(1)

114 Y. Ren and D. Gu

In this table, i represents the number of levels of identity on which the opera-
tions are performed, l is the maximum number of levels in the HIBE. “sID, ID”
denote selective-ID and adaptive-ID model respectively.

5 Conclusions

Currently, there is no hierarchical identity based encryption scheme that is fully
CCA2 secure in the standard model, with short public parameters and a tight
reduction. In this paper, we first propose an HIBE scheme that is fully secure
in the standard model. And it achieves IND-ID-CCA2 security based on the
decision q-TBDHE problem. The ciphertext size is independent of the level of
the hierarchy. Moreover, our scheme has short public parameters, high efficiency
and a tight reduction simultaneously.

Acknowledgements

We would like to thank anonymous referees for their helpful comments and
suggestions. The work described in this paper was supported by the National
Science Foundation of China under Grant (No.60573031), and also funded by
863 Hi-tech Research and Development Program of China (2006AA01Z405).

References

1. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

2. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

3. Gentry, C.: Practical Identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

4. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

5. Boneh, D., Gentry, C., Waters, B.: Collusion-resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

6. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

7. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

8. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

Secure Hierarchical IBE Scheme in the Standard Model 115

9. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

10. Naccache, D.: Secure and practical identity-based encryption. Cryptology ePrint
Archive, Report 2005/369 (2005), http://eprint.iacr.org/

11. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

12. Au, M.H., Liu, J.K., Yuen, T.H., Wong, D.S.: Practical hierarchical identity based
encryption and signature schemes without random oracles,
http://eprint.iacr.org/2006/368

13. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version. In: STOC 1998, pp. 209–218 (1998)

14. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

15. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

16. Chatterjee, S., Sarker, P.: On Hierarchical Identity Based Encryption Protocols
with Short Public Parameters, http://eprint.iacr.org/2006/279

17. Chatterjee, S., Sarkar, P.: Trading time for space: towards an efficient IBE scheme
with short(er) public parameters in the standard model. In: Won, D.H., Kim, S.
(eds.) ICISC 2005. LNCS, vol. 3935, pp. 424–440. Springer, Heidelberg (2006)

http://eprint.iacr.org/
http://eprint.iacr.org/2006/368
http://eprint.iacr.org/2006/279

A Fuzzy ID-Based Encryption Efficient When
Error Rate Is Low

Jun Furukawa1, Nuttapong Attrapadung2, Ryuichi Sakai3, and Goichiro
Hanaoka4

1 NEC Corporation, Japan
j-furukawa@ay.jp.nec.com

2 AIST, Japan
n.attrapadung@aist.go.jp

3 Osaka Electro-Communication University, Japan
sakai@isc.osakac.ac.jp

4 AIST, Japan
hanaoka-goichiro@aist.go.jp

Abstract. The fuzzy identity-based encryption schemes are attribute-
based encryption schemes such that each party with the private key for
an attribute set S is allowed to decrypt ciphertexts encrypted by an
attribute set S ′, if and only if the two sets S and S ′ are close to each
other as measured by the set-overlap-distance metric. That is, there is a
threshold t and, if t out of n attributes of S are also included in S ′, the
receivers can decrypt the ciphertexts. In previous schemes, this threshold
t is fixed when private keys are generated and the length of ciphertexts
are linear to n. In this paper, we propose a novel fuzzy identity-based
encryption scheme where the threshold t is flexible by nature and the
length of ciphertexts are linear to n − t. The latter property makes the
scheme short if it allows receivers to decrypt ciphertexts when error rate
n− t, i.e., distance between the two attribute sets, is low.

Keywords: Fuzzy, biometrics, identity-based, low error rate.

1 Introduction

The notion of fuzzy identity-based encryption (FIBE) schemes was introduced
by Sahai et al. in [16]. These schemes are in a class of identity-based encryp-
tion schemes where each identity is viewed as a set of descriptive attributes
[9,11,1,8,10,7,5] and each party with the private key of an attribute set S is al-
lowed to decrypt ciphertexts encrypted by an attribute set S′, if and only if S
and S′ are close to each other as measured by the set-overlap-distance metric.

Interesting applications of FIBE schemes can be found where attributes are
biometrics. Since biometrics are hard to be free from noise, error-tolerance prop-
erty of FIBE schemes is what solves this problem of using biometrics as identities.
In such applications, for example, giving a privilege to Alice by issuing a private
key is easy if she is physically present since the authentication process is direct

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 116–129, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A FIBE Efficient When Error Rate Is Low 117

and straight forward. Then, Alice can present her authorized public key, i.e., her
biometrics, to Bob even if she carries no electronic devices. Then, if Bob wants
to send some data to her which data are allowed to be revealed to only privileged
people, he encrypts this data by Alice’s biometric and sends it her. Now, Alice
can decrypt it later from her home or office.

According to Naor’s observation in [4], identity-based encryption schemes can
be transformed into signature schemes. Hence, by generating a signature, Alice
can also prove to Bob standing in front of her that she is privileged person.

The first two FIBE schemes were proposed in [16]. In these schemes, a receiver
is able to decrypt a ciphertext that is encrypted by a set S of n attributes only
when he has more than t keys that correspond to attributes in S. Here t is
a threshold that is fixed when those keys for attributes are generated and the
length of ciphertext is linear to n. Although it is possible to make this t flexible
by preparing multiple systems or by preparing attributes whose corresponding
keys are distributed to every players. These modifications increase costs of the
system. When FIBE schemes are applied to cases where attributes are biometrics,
it is natural that one’s two biometrics at different observations are close to each
other. Hence, it is likely that n− t << n in majority of the cases.

In this paper, we propose a novel FIBE scheme where the threshold t is flexi-
ble by nature and the length of ciphertexts is linear to n− t. The latter property
implies that ciphertexts are much shorter than those in previous schemes in most
natural cases. More precisely, users who are granted d attributes are required to
keep only d + 1 private elements in an elliptic curve with a paring. And cipher-
texts, that are encrypted by a set S of n attributes and that can be decrypted by
t keys that correspond to attributes in S, are composed of 2(n− t + 1) elements
in the elliptic curve or in its target field of the pairing. Our scheme also has a
nice property that attributes can be dynamically granted to receivers while they
are granted to receiver as whole in the schemes in [16].

Our scheme is based on the identity-based broadcast encryption scheme pro-
posed by Sakai et al. in [15]. Later, the security of this scheme is proved in [12]
in the generic group model and an essentially the same scheme is independently
proposed in [13] with a proof in the random oracle model. In our scheme, the
keys for attributes are similar to those of receivers in [15]. A ciphertext in our
scheme for an attribute set S is similar to that for the corresponding receiver
set with an exception that the public key in our scheme is reencrypted. Hence, a
receiver, in the sense of [12], needs this new public key as well as his private key
for the decryption. The number of elements required for the decryption among
this new public key is the number of receivers in the set for which the cipher-
text is encrypted. Moreover, every time the receiver obtained a private key of
another receiver, the number of the elements of the new public key required for
the decryption decreases by one. Hence, if a ciphertext includes n − t elements
of the new public key, t private keys of receivers, who are included in the S for
which the ciphertext is encrypted, are enough for decrypting it in our scheme.

We prove that our scheme is key indistinguishable under fuzzy selective ID-
and-attribute and chosen plaintext attacks in the random oracle model if the

118 J. Furukawa et al.

general bilinear decision assumption holds. This security model is a variant of
that introduced in [16] along the line of selective security introduced in [6]. The
general bilinear decision assumption is proved to hold in the generic bilinear
group model.

The paper is organized as follows. Section 2 describes the model of fuzzy
selective ID-and-attribute security. Section 3 proposes our FIBE scheme.
Section 4.2 proves our scheme is key indistinguishable under fuzzy selective ID-
and-attribute and chosen plaintext attacks. Section 5 compares our scheme with
previous schemes.

2 Model

2.1 System and Algorithms

Players in FIBE schemes are private key generator (PKG), receivers, and senders.
Each receiver is labeled by an index and is given some attributes. They use four
algorithms Setup, AttGrant, Encrypt, and Decrypt. Let Ri denote a receiver with
an index i. Let N be the set of indices of the all receivers and M be the set
of indices of the all attributes. Receivers should be distinguished by indices so
that the PKG can decides whether or not it may give a key of new attribute to
the relevant receiver. Note that the PKG can give keys for multiple of attributes
and they are not required to be given at the same time. Let K denote key space.

Setup: A probabilistic algorithm for the PKG that, given some security param-
eters, outputs the public parameter params and the master key mkey. The
descriptions of an attribute index space M, receiver identity space N , and a
key space K are included in params. params is given to all interested players
while mkey is kept secret.

AttGrant: A (possibly) probabilistic algorithm for the PKG to give receivers
attributes. Given params, an index i ∈ N of receiver, an index j ∈ M of
attribute, and mkey, it outputs an attribute key skeyi,j for Ri’ s j-attribute.
skeyi,j is given to Ri.

Encrypt: A probabilistic algorithm for senders that, given a set of attribute in-
dices S ⊂M and an error tolerance parameter t, outputs a key key ∈ K and
a header hdr. S and t are included in hdr.
Receivers are expected to have at least t out of |S| attribute keys among
those whose indices are in S to compute key from this hdr.

Decrypt: A deterministic algorithm for receiver that, given hdr, params, and
{skeyi,j}j∈T such that T ⊂ S ∈ hdr and |T | = t ∈ hdr for some i ∈ N ,
outputs a key key.

We require well constructed FIBE schemes to be complete. That is, it holds that
for every security parameters, for every random tapes input to algorithms,

(mkey, params) ← Setup

∀S, t s.t. S ⊂M ∈ params, 0 < t ≤ |S|

A FIBE Efficient When Error Rate Is Low 119

(key, hdr) ← Encrypt(S, t,)
∀i, T s.t. T ⊂ S, |T | = t

(skeyi,j)j∈T ← (AttGrant(params, mkey, i, j))j∈T

key′ ← Decrypt(hdr, (skeyi,j)j∈T)

key = key′

Our set of algorithms has a number of advantages over that in [16]. Our Setup
does not include the error tolerance parameter in params. This is because the
error tolerance parameter can vary among different ciphertexts in our scheme.
Our AttGrant, which corresponds to Extract in [16], is able to dynamically grant
receivers new attributes while Extract should give a set of attributes to each
receiver as whole.

2.2 Security Requirements

We first consider the following game.

Definition 1. Key-distinguishing game under fuzzy selective ID-and-attribute
and chosen plaintext attacks proceeds between an adversary A and a challenger
C as in the following:

1. A outputs a receiver identity i∗, an attribute set S∗, and an attribute set T ∗

of size t∗ − 1.
2. C, given some security parameters, runs Setup and obtains params and mkey.

params is given to A.
3. A sends the following queries for polynomial times to C.

– A sends to C a pair (i, j) ∈ N ×M such that (i, j) �∈ i∗ × (S∗ \ T ∗).
Then, C, by running AttGrant with mkey, generates a private key skeyi,j

and sends it to A
During the above queries A asks C for the test ciphertext once.
– Then, C first randomly choose b ∈ {0, 1} and key1−b ∈ K. Next, C gener-

ates (key∗
b , hdr∗) by running Encrypt with the input of S∗ and t∗. Finally,

C sends (key∗
0, key∗1, hdr∗) to A.

4. A outputs a guess b′ ∈ {0, 1}.

Let AdvA(b) be the probability that C outputs b in the above game.

Definition 2. A fuzzy identity-based encryption scheme is key-indistinguishable
under fuzzy selective ID-and-attribute and chosen plaintext attacks if for all
polynomial-time adversary A, |AdvA(0)− AdvA(1)| is negligible.

If we consider a game where S∗, t∗, i∗ are adaptively chosen and where A may
ask decryption queries, then full and stronger notion of security is introduced.
As usual, such a weaker notion is introduced since it is hard to prove that the
proposed scheme satisfies the stronger notion. Except for artificial schemes, no
concrete adaptive attacks are found for schemes that are only selectively secure.

120 J. Furukawa et al.

3 Proposed Scheme

Our scheme uses cyclic groups with bilinear pairing.

Definition 3. Let G and G̃ denote two cyclic groups of prime order q. A bilinear
pairing is an efficient mapping e : G × G → G̃ such that e(uα, vβ) = e(u, v)αβ

for all u, v ∈ G and α, β ∈ Z/qZ and there exists a generator g of G such that
e(g, g) generates G̃. We will refer to such a tuple (G, G̃, e, g) as a bilinear pairing
quadruple.

Let Ej
χ[f] denote the coefficient of χj-term in a polynomial f of χ. That is,

Ej
χ[f] = 1

j!
∂j

∂χj f
∣∣∣
χ=0

where ∂
∂x denote formal derivative1.

Setup: Suppose m, n, κ ∈ N and a random tape are given as a security param-
eters. It first chooses a hash function H, params = (H, m, n, (G, G̃, e, q)) for
|q| = κ. Then, it randomly chooses ω, χ, δ ∈ Z/qZ. Let each of (θj)j∈M ∈R

Z/qZm be the hash (H) value of a string that describe the corresponding
attribute, i.e., θj = H(params, description of j-th attribute). Next, it gener-
ates

G = e(g, gδ) , y = gω ,

(gi)i∈M = (gχi

)i∈M , (yi)i∈M = (yχi

)i∈M , (Gi)i∈M = (Gχi

)i∈M

The public key and the master key are

pkey = (params, g, y, G, (gi)i∈M, (yi)i∈M, (θj)j∈M, (Gi)i∈M)
mkey = (ω, χ, δ).

AttGrant: Suppose pkey, mkey, an identity i ∈ N , an attribute index j ∈ M,
and a random tape are given. If no attribute keys for i is generated before,
AttGrant randomly chooses φi ∈ Z/qZ. If any of them is generated before,
AttGrant uses the same φi as before. Then, AttGrant generates a private key
skeyi,j for an identity i related to the attribute index j as

skeyi,j := (di, di,j) =
(

gφi , g
ωφi−δ

(χ+θj)

)
and outputs it.

Encrypt: Suppose pkey, an attribute set S ⊂ M, a threshold t, and a random
tape are given. It first randomly chooses ρ ∈ Z/qZ. We let g0 = g and ij be
j-th index in S. Then, it generates key and hdr for S as

key := C = Gρ

hdr := (S, c0, c1,0, . . . , c1,n−t, C2,1, . . . , C2,n−t)

=

⎛⎝S,
∏

j=0,...,n

gj
ρEj

χ

[∏
j|ij∈S (χ+θij

)
]
, (yi

ρ)i=0,...,n−t, (Gi
ρ)i=1,...,n−t

⎞⎠
1 For example, if f(χ) =

∏3
i=1(χ − αi) = χ3 − (α1 + α2 + α3)χ2 + (α1α2 + α2α3 +

α3α1)χ− α1α2α3, E2
χ[f] = −(α1 + α2 + α3).

A FIBE Efficient When Error Rate Is Low 121

Note that c0 = gρ
∏

j∈S (χ+θj). Finally, it outputs hdr.
(c1,0, . . . , c1,n−t, C2,1, . . . , C2,n−t) in hdr corresponds to “reencrypted public
key portion” of the original scheme [15].

Decrypt: Let Si be set of all j ∈ S such that user i has skeyi,j . We assume
without loosing generality |Si| = t. We also let S̄i = S \ Si.
Decrypt computes

dSi =
∏
j∈Si

di,j∏
k∈Si,k �=j(θk − θj)

(
= g

ωφi−δ∏
j∈Si

(χ+θj)

)

cSi =
t∏

j=0

y
Ej

χ

[∏
j∈S̄i

(χ+θj)
]

j (= yρ
∏

j∈S̄i
(χ+θj))

GSi =
n−t∏
j=1

Cj
Ej

χ

[∏
j∈S̄i

(χ+θj)
]

(= Gρ(
∏

j∈S̄i
(χ+θj)−

∏
j∈S̄ θj))

and computes

G′ =
e(di, cSi)
e(c0, dSi)

=
e(gφi , gωρ

∏
j∈S̄i

(χ+θj))

e(gρ
∏

j∈S (χ+θj), g
ωφi−δ∏

j∈Si
(χ+θj))

=
e(gρ, gωφi

∏
j∈S̄i

(χ+θj))

e(gρ
∏

j∈S̄i
(χ+θj), gωφi−δ)

= e(g, gδ)ρ
∏

j∈S̄i
(χ+θj).

Then, it computes

key′ = (G′/GSi)
1∏

j∈S̄i
θj = Gρ

It outputs key′.

The completeness of the scheme is clear from the above description.

4 Security Analysis

4.1 Preliminaries

We define a “General Bilinear Decision Problem” in bilinear groups, which is a
straight forward generalization of “General Diffie-Hellman Exponent problem” of
[3]. Then introduce the “General Bilinear Decision Assumption” which is proved
to hold in the generic bilinear group model.

Definition 4. General Bilinear Decision Problem: Let p be a prime and
let s and m be two positive integer constants. Let G and G̃ be order q cyclic
groups with an efficient bilinear mapping e : G × G → G̃ and g is a genera-
tor of G and G = e(g, g). Let P,P′,Q,Q′ be tuples of polynomials, where P =
(p1, . . . , ps),Q = (q1, . . . , qs),P′ = (p′1, . . . , p

′
s),Q

′ = (q′1, . . . , q
′
s) ∈ Fp[X1, . . . ,

122 J. Furukawa et al.

Xm]s and p1 = q1 = p′1 = q′1 = 1. Let P(x1, . . . , xn) denote (p1(x1, . . . , xm), . . .,
ps(x1, . . . , xm)) and gP(x1,...,xm) = (gp1(x1,...,xm), . . . , gps(x1,...,xm)). We use sim-
ilar notation for Q,P′,Q′.

We say an algorithm B has an advantage ε in solving general bilinear decision
problem with respect to (P,Q) and (P′,Q′) if

|Pr[B(gP(x1,...,xm), GQ(x1,...,xm)) = 1]

−Pr[B(gP′(x1,...,xm), GQ′(x1,...,xm)) = 1]| > ε

where the probability is taken over random choice of x0, . . . , xm ∈R Z/qZ and
random tapes of B.

Definition 5. Dependent and Independent Polynomials: We say a pair
of tuples (P,Q) and a pair of tuples (P′,Q′) are dependent if there exists tuple
of s2 + s constants
{aij}i=1,...,s,j=1,...,s, {bi}i=1,...,s such that either

0 ≡
s∑

i,j=1

aijpipj +
s∑

i=1

biqi ∧ 0 �≡
s∑

i,j=1

aijp
′
ip

′
j +

s∑
i=1

biq
′
i

or

0 �≡
s∑

i,j=1

aijpipj +
s∑

i=1

biqi ∧ 0 ≡
s∑

i,j=1

aijp
′
ip

′
j +

s∑
i=1

biq
′
i

holds. We let (P,Q) �∼ (P′,Q′) denote this.
We say that a general bilinear decision problem with respect to (P,Q) and

(P′,Q′) is independent if (P,Q) and (P′,Q′) are not dependent. We let (P,Q)
∼ (P′,Q′) denote this.

The general Diffie-Hellman Exponent problem in [3] is a special case of the
above problem when each of {pi = p′i}i=1,...,s is a polynomial of x1, . . . , xm−1,
Q = (1, f(x1, . . . , xm−1)), and Q′ = (1, xm).

Definition 6. The General Bilinear Decision Assumption: We say that
the general bilinear decision assumption holds, if for every poly-time adversary,
the advantage ε in solving every general bilinear decision problem with respect to
every sets of (P,Q) and (P′,Q′) that are independent is negligible.

The general bilinear decision assumption is justified by the following Theorem 1.
That is, its difficulty is proved in the the generic bilinear group model introduced
below. This is an extension of the generic group model [14] for ordinary bilinear
groups of prime order defined in [2].

Definition 7. The generic bilinear group model: Let us consider the case
the bilinear groups of prime order q are G and G̃ and g is a generator of G. In this
model, elements of G and G̃ appear to be encoded as unique random strings, so

A FIBE Efficient When Error Rate Is Low 123

that no property other than equality can be directly tested by the adversary. There
exist two oracles in this model. Those are, oracles that perform group operations
in each G and G̃ and an oracle that performs paring e. The opaque encoding of
an element in G is modeled as an injective random function ψ : Z/qZ → Σ ⊂
{0, 1}∗, which maps all α ∈ Z/qZ to the string representation ψ(α) of gα ∈ G.
We similarly define ψ̃ : Z/qZ → Σ̃ for G̃. The attacker communicates with the
oracles using the (ψ, ψ̃)-representations of the group elements only.

Theorem 1. Let dP , dP ′ , dQ, and dQ′ be, respectively, the maximum degree of
polynomials in P,P′,Q, and Q′ and let

d = max(2dP , 2dP ′ , dQ, dQ′). In the generic bilinear group model, no algo-
rithm A that makes a total of at most qg queries to the oracles computing group
operations in G, G̃, and e : G × G → G̃ has an advantage ε in solving any of
general bilinear decision problem with respect to (P,Q) and (P′,Q′) which are
independent. Where,

ε =
(qg + 2s)2d

p
.

The proof of the theorem is given in Appendix A. The above Theorem 1 implies
that the general bilinear decision assumption holds in the generic bilinear group
model.

4.2 Security of the Proposed Scheme

Theorem 2. Suppose that the general bilinear decision assumption holds. Then,
the proposed fuzzy identity-based encryption scheme is key-indistinguishable un-
der fuzzy selective ID-and-attribute and chosen plaintext attacks in the random
oracle model.

Proof. We first describe two distributions (P,Q) and (P′,Q′). One is the same
as the distribution of values that A receives from C in the key-distinguishing
game when b = 0 and the other is the same as the one that A receives from C
in the key-distinguishing game when b = 1.

Let Ω be the set of all pair of (i, j) ∈ N ×M that A asks the challenger for
skeyi,j . Suppose that g̃ is a generator of G. Let ω, χ, δ be random variables and
(θj)j∈M be distinct hash values. Let

C = e(g̃, g̃)ρδ
∏

j∈M(χ+θj)2 , G = e(g̃, g̃)δ
∏

j∈M(χ+θj)2

(C2,i)i=1,...,n−t = (e(g̃, g̃)χiρδ
∏

j∈M(χ+θj)2)i=1,...,n−t

(Gi)i∈M = (e(g̃, g̃)δχi ∏
j∈M(χ+θj)2)i∈M

g = g̃
∏

j∈M(χ+θj) , y = g̃ω
∏

j∈M(χ+θj) , c0 = g̃ρ
∏

j∈S (χ+θj)
∏

j∈M(χ+θj)

(gi)i∈M = (g̃χi ∏
j∈M(χ+θj))i∈M , (yi)i∈M = (g̃ωχi ∏

j∈M(χ+θj))i∈M
(di, di,j)(i,j)∈Ω = ((g̃φi

∏
j∈M(χ+θj), g̃(ωφi−δ)

∏
k∈M,k �=j(χ+θk)))(i,j)∈Ω

(c1,i)i=0,...,n−t = (g̃χiρω
∏

j∈M(χ+θj))i=0,...,n−t.

124 J. Furukawa et al.

Let P =
(
g, y, c0, (gi)i∈M, (yi)i∈M, (di, di,j)(i,j)∈Ω , (c1,i)i=0,...,n−t

)
and Q =

(C, G, (C2,i)i=1,...,n−t, (Gi)i∈M). Let (P′,Q′) be the same as (P,Q) except C

is replaced with random elements in G̃. Then, if we consider (ω, χ, δ) are random
variables, the distribution of (P,Q) is exactly the same as that A receives from
C in the key-distinguishing game when b = 0 and the distribution of (P′,Q′)
is exactly the same as that A receives from C in the key-distinguishing game
when b = 1.

One can construct an algorithm B that can break the general bilinear decision
assumption as follows. First, B randomly chooses size of S∗ and t∗. Then, B get
a polynomial that is either (P,Q) or (P′,Q′) that is consistent with the |S∗|
and t∗ as a general bilinear decision problem. We note that this polynomial, an
instance of the problem, specifies all φi, θj , and Ω.

Next, B play the role of C and let A choose S∗, T ∗, and i∗. If the size of S∗

and t∗ are different from what B had expected, it aborts. If they are as expected,
B chooses random oracles (i.e., determines the correspondence between i ∈ M
and θi and the correspondence between i∗ ∈ N and φi) so that Ω fits to S∗

and T ∗ that A has chosen. Then, B can play the role of C by using the given
polynomial.

Now, if A is able to distinguish between the distribution for b = 0 and that
for b = 1, B can distinguish whether the given polynomial is (P,Q) or (P′,Q′).

Therefore, what was left to prove is that (P,Q) and (P′,Q′) are independent.
This is proven in Appendix B.

5 Comparison

Let n be the number of attributes by which messages are encrypted. Let t be an
error tolerance parameter such that at least t out of n attributes need to coincide
for the receiver to decrypt ciphertexts. Let d be the number of attributes the
receiver is granted.

In our scheme, each ciphertext consists of 2(n − t + 1) elements and each
private key consists of d+1 elements. In the first scheme of [16], each ciphertext
consists of n + 2 elements and each private consists of d elements. In the second
scheme of [16], each ciphertext consists of n + 3 elements and each private key
consists of 2d elements. In our scheme, t can be chosen for each ciphertext. But
in both schemes in [16], t is a fixed parameter. The comparison is given in the
Table. 1. This shows that ciphertexts of our scheme is shorter than that of

Table 1. Comparison with the previous works

ciphertext length private key length threshold
Our Scheme 2(n− t + 1) d + 1 flexible

1st scheme in [16] n + 2 d fixed
2nd scheme in [16] n + 3 2d fixed

A FIBE Efficient When Error Rate Is Low 125

previous scheme when t < n/2, which we believe is the most of the natural
cases. Besides these efficiency, our scheme provides flexible tolerance parameter
and dynamical grant of attributes.

References

1. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryp-
tion. In: IEEE Symposium on Security and Privacy 2007, pp. 321–334 (2007)

2. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

3. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

4. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

5. Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: ACM Con-
ference on Computer and Communications Security 2007, pp. 456–465 (2007)

6. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

7. Chase, M.: Multi-authority Attribute Based Encryption. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

8. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded Ciphertext Policy Attribute
Based Encryption. ICALP (2), 579–591 (2008)

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

10. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM Conference on Computer and Communi-
cations Security 2007, pp. 195–203 (2007)

11. Pirretti, M., Traynor, P., McDaniel, P., Waters, B.: Secure attribute-based systems.
In: ACM Conference on Computer and Communications Security 2006, pp. 99–112
(2006)

12. Sakai, R., Furukawa, J.: Identity-Based Broadcast Encryption. Cryptographic
eprint archive 2007/217

13. Delerablée, C.: Identity-Based Broadcast Encryption with Constant Size Ci-
phertexts and Private Keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833. Springer, Heidelberg (2007)

14. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

15. Sakai, R., Kasahara, M.: New Efficient Broadcast Encryption. In: SCIS 2007, 3C3-1
(2007)

16. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

126 J. Furukawa et al.

A Proof of Theorem 1

Proof. The proof is similar to that of Theorem A.2 in [3] and no novel technique
is introduced here.

Consider an algorithm B that plays the following game with A. Algorithm B
maintains two lists of pairs, LP = {(pi, ψP,i) : i = 1, . . . , τP }, LQ = {(qi, ψQ,i) :
i = 1, . . . , τQ} under the invariant that at step τ in the game, τP + τQ = τ + 2s.
Here, pi ∈ Fp[X1, . . . , Xm] and qi ∈ Fp[X1, . . . , Xm] are multi-variate polyno-
mials. The ψP,i and ψQ,i are strings in {0, 1}k. The lists are initialized at step
τ = 0 by initializing τP = τQ = s. B chooses b ∈ {0, 1} at the beginning of
the game. We set p1, . . . , ps in LP and q1, . . . , qs in LQ to be, respectively, the
polynomials in P and Q if b = 0. We set them to be polynomials in P′ and Q′ if
b = 1. Algorithm B completes the preparation of the lists LP and LQ by setting
the ψ-strings associated with distinct polynomials to random strings in {0, 1}k.

We can assume that A makes oracle queries only on strings obtained from
B, since B can make the strings in G and GT arbitrarily hard to guess by
increasing k.

We note that B can easily determine the index i of any given string ψP,i ∈ LP

and ψQ,i ∈ LQ. B starts the game by providing A with the value of p and a tuple
of strings {ψP,i}i=1,...,s, {ψQ,i}i=1,...,s meant to encode some tuple in Gs × Gs

T .
Algorithm B responds to A’s oracle queries as follows.

Group Operation in G,GT . A query in G consists of two operands ψP,i and
ψP,j with 1 ≤ i, j ≤ τP and a selection bit indicating whether to multiply
or divide the group elements. To answer, let τ ′

P ← τP + 1. Perform the
polynomial addition or subtraction pτ ′

P
= pi ± pj depending on whether

multiplication or division is requested. If the result pτ ′
P

= pl for some l ≤
τP , then set ψP,τ ′

P
= ψP,l; otherwise, set ψP,τ ′

P
to a new random string in

{0, 1}k \ {ψP,1, . . . , ψP,τP }. Insert the pair (pτ ′
P
, ψP,τ ′

P
) into the list LP and

update the counter τP ← τ ′
P . Algorithm B replies to A with the string ψP,τP .

G̃ queries are handled analogously, this time by working with the list LQ and
the counter τQ.

Bilinear Pairing. A query of this type consists of two operands ψP,i and ψP,j

with 1 ≤ i, j ≤ τP . To answer, let τ ′
Q ← τQ + 1. Perform the polynomial

multiplication qτ ′
Q

= pi · pj . If the result qτ ′
Q

= ql for some l ≤ τQ, then
set ψQ,τ ′

Q
= ψQ,l; otherwise, set ψQ,τ ′

Q
to a new random string in {0, 1}k \

{ψQ,1, . . . , ψQ,τQ}. Insert the pair (qτ ′
Q
, ψQ,τ ′

Q
) into the list LQ and update

the counter τQ ← τ ′
Q. Algorithm B replies to A with the string ψQ,τQ .

After at most qg queries, A terminates and returns a guess b′ ∈ {0, 1}. At this
point B chooses random {x1, . . . , xm}. For i = 1, . . . , m, we set Xi = xi. It follows
that the simulation provided by B is perfect unless the chosen random values
for the variables X1, . . . , Xm result in an equality relation between intermediate
values that is not an equality of polynomials. In other words, the simulation is
perfect unless for some i, j one of the following holds:

A FIBE Efficient When Error Rate Is Low 127

1. pi(x1, . . . , xm) − pj(x1, . . . , xm) = 0, yet the polynomials pi and pj are not
equal.

2. qi(x1, . . . , xm) − qj(x1, . . . , xm) = 0, yet the polynomials qi and qj are not
equal.

Let fail be the event that one of these two conditions holds. When event fail
occurs, then B’s responses to A’s queries deviate from the real oracle’s responses
when the input tuple is derived from the vector (x1, . . . , xm) ∈ Fm

p .
We first bound the probability that event fail occurs. We need to bound the

probability that for some i, j we get (pi − pj)(x1, . . . , xm) = 0 even though
pi − pj �= 0 or that (qi − qj)(x1, . . . , xm) = 0 even though qi − qj �= 0. By
construction, the maximum total degree of these polynomials is at most d =
max(2dP , 2dP ′ , dQ, dQ′). Therefore, for a given i, j the probability that a random
assignment to X1, . . . , Xn is a root of qi− qj is at most d/p. The same holds for
pi − pj . Since there are no more than 2(q+2s

2) such pairs (pi, pj) and (qi, qj) in
total, we have that

Pr[fail] ≤
(

q + 2s
2

)
2d

p
≤ (q + 2s)2d/p.

If event fail does not occur, then B’s simulation is perfect.
Since (P,Q) and (P′,Q′) are independent, the distributions A is given are

exactly the same unless fail happens. Therefore, the theorem is proved.

B Proof of Independence (Sketch)

Lemma 1. P,Q,P′,Q′ defined in the proof of Theorem 2, are independent.

Proof. We let Ω′ be {i|∃j, (i, j) ∈ Ω}. If (P,Q) and (P′,Q′) are dependent, then
there exist

a1, a2,i, a3,i,

b1,1, b1,2, b1,3, b1,4,i, b1,5,i, b1,6,i, b1,7,i,j, b1,8,i , b2,2, b2,3, b2,4,i, b2,5,i, b2,6,i, b2,7,i,j , b2,8,i,

b3,3, b3,4,i, b3,5,i, b3,6,i, b3,7,i,j, b3,8,i , b4,4,i, b4,5,i, b4,6,i, b4,7,i,j , b4,8,i

b5,5,i, b5,6,i, b5,7,i,j, b5,8,i , b6,6,i, b6,7,i,j, b6,8,i,

b7,7,i,j, b7,8,i , b8,8,i

for appropriate i, j such that the following equation (abbreviated) holds.

ρδ
∏

k∈M
(χ + θk)2 + a1δ

∏
k∈M

(χ + θk)2 +
n−t∗∑
i=1

a2,iχ
i
ρδ

∏
k∈M

(χ + θk)2 + . . .

= b1,1

∏
k∈M

(χ + θk) ·
∏

k∈M
(χ + θk) + b1,2

∏
k∈M

(χ + θk) · ω
∏

k∈M
(χ + θk) + . . .

Note that the coefficient of the first term is fixed to 1. We show that these
however do not exist. Instead of checking total of this lengthy equation, we see
only terms that contain ρ. So, we do not see the detail of the above equation.

128 J. Furukawa et al.

For the terms that contain ρ, the following equation (abbreviated) should holds.
Here we divided all terms by

∏
k∈M(χ + θk).

ρδ
∏

k∈M
(χ + θk)+

n−t∗∑
i=1

a2,iχ
i
ρδ

∏
k∈M

(χ + θk)

= b1,3 · ρ
∏

k∈S∗
(χ + θk)

∏
k∈M

(χ + θk) +
∑
i∈M

b1,4,i · χi
∏

k∈M
(χ + θk) + . . .

We now see terms that contain only ρωχjφi for some i, j. That is,

0 =
∑

(i,j)∈Ω

b3,7,i,jρ
∏

k∈S∗
(χ + θk) · ωφi

∏
k∈M,k �=j

(χ + θk)

+
∑
i∈Ω′

n−t∗∑
j=0

b6,8,i,jφi · χjρω
∏

k∈M
(χ + θk)

Inserting −θm ∈ M to χ, we get

0 =
∑

(i,m)∈Ω

b3,7,i,mρ
∏

k∈S∗
(θk − θm) · ωφi

∏
k∈M,k �=m

(θk − θm)

Hence,

Fact 1: b3,7,i,j = 0 for (i, j) such that j �∈ S∗.

Thus, for terms that contain only ρωχjφi, we have the following for some i, j:

0 = ρω
∑
i∈Ω′

φi

⎛⎝ ∑
j∈Ω(i)∩S∗

b3,7,i,j

∏
k∈S∗,k �=j

(χ + θk) +
n−t∗∑
j=0

b6,8,i,j · χj

⎞⎠
Here Ω(i) = {j|(i, j) ∈ Ω}. Therefore, for every i ∈ Ω′

0 =
∑

j∈Ω(i)∩S∗
b3,7,i,j

∏
k∈S∗,k �=j

(χ + θk) +
n−t∗∑
j=0

b6,8,i,j · χj (1)

should hold.
We will see the condition for Eq. (1) to hold. Since |Ω(i) ∩ S∗ = T ∗| = t − 1

and consider a matrix (t− 1)× (t− 1) matrix A�,k such that

∑
j∈Ω(i)∩S∗

b3,7,i,j +
n−t∗∑
j=0

b6,8,i,jχ
j

∏
k∈S∗,k �=j

(χ + θk) ≡
∑

j∈Ω(i)∩S∗

t−1∑
k=1

b3,7,i,jA�j ,kχn−k.

Here, �j’s are indices such that {�j}j = {1, . . . , t− 1}. Since the determinant of
(A�j ,k) is

∏
i,j∈Ω(i)∩S∗,i<j(θi − θj) and θi �= θj if i �= j, the matrix (A�j ,k) is

regular. Hence, Eq. (1) holds only when the following fact 2 holds:

A FIBE Efficient When Error Rate Is Low 129

Fact 2: b3,7,i,j = 0 for all (i, j) such that i ∈ Ω′ and j ∈ Ω(i) ∩ S∗.

We now see terms that contain only ρδ. Then, the following equation should
holds:

ρδ
∏

k∈M
θk = −ρδ

∑
i∈Ω′

⎛⎝ ∑
j∈Ω(i)∩S∗

b3,7,i,j +
∑

j∈Ω(i),j �∈S∗
b3,7,i,j

⎞⎠ ∏
k∈S∗

θk

∏
k∈M,k �=j

θk

From Fact 1 and Fact 2, the terms in right hand side are 0. This contradicts to
non-zero of the left hand side.

Type-Based Proxy Re-encryption and Its
Construction

Qiang Tang

Faculty of EWI, University of Twente, the Netherlands
q.tang@utwente.nl

Abstract. Recently, the concept of proxy re-encryption has been shown
very useful in a number of applications, especially in enforcing access con-
trol policies. In existing proxy re-encryption schemes, the delegatee can
decrypt all ciphertexts for the delegator after re-encryption by the proxy.
Consequently, in order to implement fine-grained access control policies,
the delegator needs to either use multiple key pairs or trust the proxy
to behave honestly. In this paper, we extend this concept and propose
type-based proxy re-encryption, which enables the delegator to selec-
tively delegate his decryption right to the delegatee while only needs one
key pair. As a result, type-based proxy re-encryption enables the dele-
gator to implement fine-grained policies with one key pair without any
additional trust on the proxy. We provide a security model for our con-
cept and provide formal definitions for semantic security and ciphertext
privacy which is a valuable attribute in privacy-sensitive contexts. We
propose two type-based proxy re-encryption schemes: one is CPA secure
with ciphertext privacy while the other is CCA secure without ciphertext
privacy.

1 Introduction

In a proxy re-encryption scheme [5,15], a delegator (say, Alice) and a delegatee
(say, Bob) generate a proxy key that allows a semi-trusted third party (say, the
proxy) to convert ciphertexts encrypted under Alice’s public key into ciphertexts
which can be decrypted by Bob. Recently, proxy re-encryption has been shown
very useful in a number of applications such as access control in file storage [1],
email forwarding [19], and law enforcement [13].

Motivation. We have the following observations on the existing proxy
re-encryption schemes and their applications. One is that, with respect to one
key pair of the delegator, the proxy is able to re-encrypt all the ciphertexts
so that the delegatee can obtain all the plaintexts. The other is that, in many
applications, it is likely that the delegator only wishes a specific delegatee to
see a subset of his messages. In order to implement fine-grained access control
policies, the delegator can choose a different key pair for each possible subset
of his messages and choose a proxy to delegate his decryption right. However,
this approach is infeasible in practice. Alternatively, the delegator can choose to

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 130–144, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Type-Based Proxy Re-encryption and Its Construction 131

trust the proxy to enforce his policies by re-encrypting the pre-defined subset of
his ciphertexts to the specific delegatee. This approach is also infeasible because
of the strong trust requirement on the proxy. For example, if the proxy colludes
with a malicious delegatee (or, the proxy is compromised), then all messages of
the delegator will be compromised.

In fact, the delegator might have more concerns about the delegation in prac-
tical applications. An observation is that, with a public key encryption scheme, if
Alice encrypts a message for Bob using his public key, then Alice can stay anony-
mous. However, with a proxy re-encryption scheme, this kind of anonymity might
not be trivially achieved. For example, in the schemes in [11], Bob can (at least)
tell whether messages are from the same user or not.

Contribution. In this paper, we propose the concept of type-based proxy re-
encryption which enables the delegator to selectively delegate his decryption
right to delegatees. In a type-based proxy re-encryption scheme, the delegator
categorizes his messages (ciphertexts) into different subsets and is capable of
delegating the decryption right of each subset to a specific delegatee. The ci-
phertexts for the delegator are generated based on the delegator’s public key
and the message type which is used to identify the message subset. This new
primitive has (at least) the following promising properties. One is that the dele-
gator only needs one key pair so that the key management problem is simplified.
The other is that the delegator can choose a particular proxy for a specific dele-
gatee, which might be based on the sensitiveness of the delegation. Compromise
of one proxy key will only affect one subset of messages.

We provide a security model for our concept and provide formal definitions
for semantic security and ciphertext privacy which is a valuable attribute in
privacy-sensitive contexts. If a type-based proxy re-encryption scheme achieves
ciphertext privacy property then all re-encrypted ciphertexts are indistinguish-
able from normal ciphertexts originally generated for the delegatee, therefore,
message senders (the delegators) remain anonymous. We propose two type-based
proxy re-encryption schemes. The first scheme achieves ciphertext privacy and
is IND-PR-CPA secure based on the XDH and the Co-BDH assumptions in the
random oracle model. The second scheme is IND-PR-CCA secure based on the
BDH and the KE assumptions in the random oracle model, but it does not
achieve ciphertext privacy.

Related Work. Mambo and Okamoto [15] firstly propose the concept of dele-
gation of decryption right in the context of speeding up decryption operations.
Blaze, Bleumer and Strauss [5] introduce the concept of atomic proxy cryp-
tography which is proxy re-encryption. They present an Elgamal [10] based
proxy re-encryption scheme, in which the proxy is also capable of converting
ciphertexts encrypted for Bob into ciphertexts which can be decrypted by Alice.
Jakobsson [14] and Zhou et al. [20] simultaneously propose quorum-based proto-
cols, which divide the proxy into many components. Dodis and Ivan [13] propose
generic constructions of proxy re-encryption schemes by using double-encryption.
Ateniese et al. [1] propose an Elgamal based scheme and show its application

132 Q. Tang

in securing file systems. In addition, Ateniese et al. also point out a number of
desirable properties for proxy re-encryption schemes. Note that these papers are
mainly focused on the traditional public-key encryption schemes. Apart from the
generic construction of Dodis and Ivan [13], there are two identity-based proxy
re-encryption schemes: one is proposed by Green and Ateniese [11] and the other
is proposed by Matsuo [16]. In both schemes, the delegator and the delegatee
are assumed to be registered at the same domain (or, the same key generation
center).

Organization. The rest of the paper is organized as follows. In Section 2 we pro-
vide some preliminary knowledge. In Section 3 we present the security model for
type-based proxy re-encryption. In Section 4 we present the IND-PR-CPA se-
cure type-based proxy re-encryption scheme with ciphertext privacy and prove its
security. In Section 5 we present the IND-PR-CCA secure type-based proxy re-
encryption scheme without ciphertext privacy and prove its security. In
Section 6 we conclude the paper.

2 Preliminaries

If x is chosen uniformly at random from the set Y , then we write x ∈R Y . The
symbol ⊥ denotes an error message. Our security analysis is done in the random
oracle model [4]. Next, we review the necessary knowledge about pairing and the
related assumptions, and then review the Public Key Encryption (PKE).

2.1 Review of Pairing

More detailed information can be found in [6,12]. Generally, a pairing (or, bilinear
map) satisfies the following properties:

1. G1, G2, and GT are three multiplicative groups of prime order p;
2. g1 is a generator of G1 and g2 is a generator of G2;
3. ê : G1×G2 → GT is an efficiently-computable bilinear map with the following

properties:

– Bilinear: for all a, b ∈ Zp, we have ê(ga
1 , gb

2) = ê(g1, g2)ab.
– Non-degenerate: ê(g1, g2) �= 1.

The Co-Bilinear Diffie-Hellman (Co-BDH) problem is as follows: given g1, g
a
1 , gb

1
∈ G1, g2, g

c
2 ∈ G2 as input, output ê(g1, g2)abc ∈ GT . An algorithm A has ad-

vantage ε in solving Co-BDH in G if

Pr[A(g1, g2, g
a
1 , gb

1, g
c
2) = ê(g1, g2)abc] ≥ ε,

where the probability is over the random choice of a, b, c ∈ Zp, and the random
bits of A.

Definition 1. We say that the Co-BDH assumption holds if any polynomial-
time adversary has only a negligible advantage ε in solving the Co-BDH problem.

Type-Based Proxy Re-encryption and Its Construction 133

Note that the Co-BDH assumption is closely related to the Asymmetric Bilinear
Diffie-Hellman (ABDH) assumption defined in [7].

The eXternal Diffie-Hellman (XDH) assumption is also widely used in the
literature (e.g. [8]). We say that an algorithm A has advantage ε in solving the
XDH problem if

|Pr[A(g2, g
a
2 , gb

2, g
a·b
2) = 0]− Pr[A(g2, g

a
2 , gb

2, g
c
2) = 0]| ≥ ε,

where the probability is over the random choice of a, b, c ∈ Zp, and the random
bits of A.

Definition 2. We say that the XDH assumption holds if any polynomial-time
adversary has only a negligible advantage ε in solving the XDH problem.

Instead of the above general setting, the simplified setting is also widely used
(e.g. [6]). Here, a pairing (or, bilinear map) satisfies the following properties:

1. G and GT are two multiplicative groups of prime order p;
2. g is a generator of G;
3. ê : G×G → GT is an efficiently-computable bilinear map with the following

properties:

– Bilinear: for all u, v ∈ G and a, b ∈ Zp, we have ê(ua, vb) = ê(u, v)ab.
– Non-degenerate: ê(g, g) �= 1.

The Bilinear Diffie-Hellman (BDH) problem is as follows: given a tuple g, ga, gb,
gc ∈ G as input, output ê(g, g)abc ∈ G. An algorithm A has advantage ε in
solving BDH if

Pr[A(g, ga, gb, gc) = ê(g, g)abc] ≥ ε,

where the probability is over the random choice of a, b, c ∈ Zp, and the random
bits of A.

Definition 3. We say that the BDH assumption holds if no polynomial-time
algorithm has only a negligible advantage ε in solving the BDH problem.

Besides these computational/decisional assumptions, the Knowledge of Expo-
nent (KE) assumption is also used in a number of papers (e.g. [3,9]). The KE
assumption is defined as follows.

Definition 4. For any adversary A, which takes a KE challenge (g, ga) as input
and returns (C, Y) where Y = Ca, there exists an extractor A′, which takes the
same input as A returns c such that gc = C.

2.2 Review of Public Key Encryption

A Public Key Encryption (PKE) scheme [17] involves a Trusted Third Party
(TTP) and users, and consists of four algorithms (Setup, KeyGen, Encrypt,
Decrypt) which are defined as follows. As a standard practice, the security of

134 Q. Tang

a PKE scheme is evaluated by an attack game played between a challenger and
an adversary, where the challenger simulates the protocol execution and answers
the oracle queries from the adversary. Corresponding to the PKE algorithms, we
also introduce the oracles for the adversary.

– Setup(k) : Run by the TTP, this algorithm takes a security parameter k as
input and generates the public parameter params, which is an implicit input
for other algorithms and we omit it in the description for simplicity.

– KeyGen(k) : Run by a user, this algorithm generates a key pair (pk, sk). An
KeyGen oracle can be queried with a public key pk; the challenger returns
the corresponding private key sk.

– Encrypt(m, pk) : Run by the message sender, this algorithm takes a message
m and a public key pk as input, and outputs a ciphertext c encrypted under
the public key pk.

– Decrypt(c, sk) : Run by the message receiver, this algorithm takes a cipher-
text c and the private key sk as input, and outputs the message m. A Decrypt
oracle can be queried with a pair (c, pk) as input; the challenger returns
Decrypt(c, sk).

We extend the concept of PKE to type-based PKE which enables a message
sender to explicitly include some type information in the encryption process.
A type-based PKE consists of four algorithms (Setup, KeyGen, Encrypt, Decrypt),
where Setup and KeyGen are defined as above, and

– Encrypt(m, t, pk) : Run by the message sender, this algorithm takes a message
m, a type string t, and a public key pk as input, and outputs a ciphertext
c encrypted under the public key pk. Note that both c and t should be sent
to the message receiver.

– Decrypt(c, t, sk) : Run by the message receiver, this algorithm takes a cipher-
text c, a message type t, and the private key sk as input, and outputs the
message m. A Decrypt oracle can be queried with a pair (c, t, pk) as input;
the challenger returns Decrypt(c, t, sk).

In the above descriptions, the type information t can also be included as a part
of the ciphertext c, but we have explicitly used type information t as a label of
the ciphertext c. This is only a description preference.

3 The Concept of Type-Based Proxy Re-encryption

In a type-based proxy re-encryption scheme, the delegator possesses a key pair
(pk, sk) with a type-based PKE scheme (Setup1, KeyGen1, Encrypt1, Decrypt1),
as defined in Section 2.2. We assume that the delegatees use a PKE scheme
(Setup2, KeyGen2, Encrypt2, Decrypt2).

Suppose the delegator wants to delegate his decryption right for messages with
type t to a delegatee with key pair (pk′, sk′), he runs the Pextract algorithm to
generate the proxy key.

Type-Based Proxy Re-encryption and Its Construction 135

– Pextract(pk, pk′, t, sk) : This algorithm takes the delegator’s public key pk,
the delegatee’s public key pk′, a message type t, the delegator’s private key
sk as input and outputs the delegation key rk

pk
t→pk′ . A Pextract oracle can

be queried with a tuple (pk, pk′, t) as input; the challenger returns the proxy
key rk

pk
t→pk′ .

Note that all proxy keys, rk
pk

t→pk′ for any t and pk′, are generated based on the
delegator’s single key pair. To delegate his right, the delegator assigns rk

pk
t→pk′

to an appropriate proxy, which will preform the re-encryption for the delegator’s
ciphertexts.

– Preenc(c, t, rk
pk

t→pk′) : Run by the proxy, this algorithm takes a ciphertext
c (for the delegator), a message type t, and the proxy key rk

pk
t→pk′ as in-

put, and outputs a new ciphertext c′ (for the delegatee with (pk′, sk′)). A
Preenc oracle can be queried with (c, t, pk, pk′) as input; the challenger re-
turns Preenc(c, t, rk

pk
t→pk′).

In contrast to the assumption of multi-level delegation (e.g. in [11]), we assume
that there is only one level delegation, namely the delegatees will not further
delegate their decryption rights to other users.

3.1 Threat Model for Type-Based Proxy Re-encryption

In practice, there might be multiple different parties acting as proxies. For ex-
ample, Alice may choose Proxy 1 to delegate her decryption right to Bob and
choose a proxy 2 to delegate his decryption right to Charlie, where these two
proxies have no relationship. Every involved proxy is assumed to be semi-honest
in the following sense: it will honestly convert the delegator’s ciphertexts using
the proxy key; however, it might act maliciously to obtain some information
about the plaintexts of the delegator and the delegatee.

We identify the following security requirements with respect to the semantic
security for plaintexts.

1. Firstly, the proxy should not obtain any information about the plaintexts of
either the delegator or the delegatee.

2. Secondly, the delegatee should be able to decrypt all the appropriate type
of plaintexts of the delegator after the re-encryption by the proxy. However,
the delegatee alone should not obtain any information about the plaintexts
before the re-encrypted by the proxy. This is essential when we want the
proxy to be a policy enforcer.

In our formal definitions, these requirements lead to the IND-PR-CCA/IND-
PR-CPA security of type-based proxy encryption schemes for the delegator.

With a public key encryption scheme, if Alice encrypts a message to Bob
using his public key, then Alice can stay anonymous. However, with a proxy
re-encryption scheme, this kind of anonymity might not be trivially achieved.

136 Q. Tang

1. params1
$← Setup1(k); params2

$← Setup2(k); (pk, sk) $← KeyGen1(k)
2. (m0, m1, t

∗) $←A(KeyGen2,Pextract,Preenc,Decrypt1,Decrypt2)(params1, params2, pk)
3. b

$← {0, 1}; cb
$← Encrypt1(mb, t

∗, pk)
4. b′ $←A(KeyGen2,Pextract,Preenc,Decrypt1,Decrypt2)(params1, params2, pk, cb)

Fig. 1. IND-PR-CCA Security

For example, in the schemes in [11], Bob can tell whether messages are from the
same user or not. In many potential applications of proxy re-encryption, this
might become a privacy concern if the delegator does not want the delegatee to
know whether a certain message is from him or not. Therefore, a re-encrypted
ciphertext should be indistinguishable from a normal ciphertext generated under
the delegatee’s public key. This requirement leads to the definition of ciphertext
privacy.

3.2 Formal Security Definitions

Before the formal definitions, we first introduce the idea behind our IND-PR-
CCA definition (the idea of IND-PR-CPA security follows immediately). The
definition covers two types of adaptive adversaries: a malicious delegatee and
a malicious proxy. In the case of a malicious delegatee with key pair (pk′, sk′),
the adversary is allowed to know all proxy keys for message types t �= t∗, either
the private key sk′′ or the proxy key rk

pk
t∗→pk′′ for any other delegatee with

(pk′′, sk′′), but not rk
pk

t∗→pk′ . In the case of a malicious proxy with rk
pk

t∗→pk′ ,
the adversary is allowed to know all proxy keys for message types t �= t∗, either
the private key sk′′ or the proxy key rk

pk
t∗→pk′′ for any other delegatee with

(pk′′, sk′′), but not sk′. In addition, the adversary is capable of issuing decryption
queries (see our remarks below). We believe the adversary has been granted the
most privileges possible.

IND-PR-CCA Security. We first define the semantic security against a chosen
ciphertext attack for the delegator.

Definition 5. A type-based proxy re-encryption scheme is said to be IND-PR-
CCA secure for the delegator if any polynomial time adversary has only a negli-
gible advantage in the IND-PR-CCA game, where the adversary’s advantage is
defined to be |Pr[b′ = b]− 1

2 |.

Analogous to the IND-CCA definition [2], as depicted in Figure 1, the IND-PR-
CCA game is as follows.

1. Game setup: The challenger takes a security parameter k as input, runs
Setup1 to generate the public system parameter params1 and runs Setup2 to
generate the public system parameter params2. The challenger runs KeyGen1
to generate a key pair (pk, sk).

Type-Based Proxy Re-encryption and Its Construction 137

2. Phase 1: The adversary takes params1, params2, and pk as input, and has
access to the following types of oracles: KeyGen2, Pextract, Preenc, Decrypt1,
and Decrypt2. Once the adversary decides that Phase 1 is over, it outputs two
equal length plaintexts m0, m1, and a message type t∗. At the end of Phase
1, the following constraint should be satisfied: For any pk′, if (pk, pk′, t∗) has
been queried to the Pextract oracle, then pk′ should not have been queried
to the KeyGen2 oracle.

3. Challenge: The challenger picks a random bit b ∈ {0, 1} and returns cb =
Encrypt1(mb, t

∗, pk) as the challenge to the adversary.
4. Phase 2: The adversary is allowed to continue querying the same types of

oracles as in Phase 1. At the end of Phase 2, we have the following constraints.
(a) (cb, t

∗, pk) has not been queried to the Decrypt1 oracle.
(b) For any pk′, if (pk, pk′, t∗) has been queried to the Pextract oracle, then

pk′ should not have been queried to the KeyGen2 oracle.
(c) If pk′ has been queried to the KeyGen2 oracle, (cb, t

∗, pk, pk′) should not
have been queried to the Preenc oracle.

(d) If (pk, pk′, t∗) has been queried to the Pextract oracle, then (c′b, pk′)
should not have been queried to the Decrypt2 oracle where c′b is a valid
output of Preenc(cb, t

∗, pk, pk′).
5. Guess (game ending): The adversary outputs a guess b′ ∈ {0, 1}.

We remark on the constraints (c) and (d) in the above game. In the case of type-
based proxy re-encryption, if the adversary obtains sk′, then a Preenc query
with the input (cb, t

∗, pk, pk′) is equivalent to a Decrypt1 query with the in-
put (cb, t

∗, pk). If the adversary obtains rk
pk

t∗→pk′ , then a Decrypt2 query with

the input (c′b, pk′), where c′b is a valid output of a Preenc query with the in-
put (cb, t

∗, pk, pk′), is equivalent to a Decrypt1 query with the input (cb, t
∗, pk).

These constraints are necessary to prevent the adversary from winning the game
trivially.

IND-PR-CPA Security. We define the semantic security against a chosen plain-
text attack for the delegator. Analogous to the IND-CPA definitions for tra-
ditional PKE schemes [2], we can just remove the decryption privileges of the
adversary to define the IND-PR-CPA game, i.e. the oracle accesses to Preenc,
Decrypt1, and Decrypt2 are removed. However, we need to provide the adversary
a Preenc† oracle to cover the case that a malicious delegatee with (pk′, sk′) can
always decrypt the re-encrypted ciphertexts for him.

– Preenc†(m, t, pk, pk′): the challenger returns Preenc(Encrypt1(m, t, pk),
t, rk

pk
t→pk′).

Note that the re-encrypted ciphertext might leak some information about the
delegator’s private key and hence help the adversary to obtain some information
of the delegator’s ciphertexts. This has been ignored in [11].

The IND-PR-CPA game is depicted in Figure 2, and a detailed description
can be obtained by forbidding the Preenc, Decrypt1, and Decrypt2 oracle access
and providing Preenc† oracle access in the IND-PR-CCA game.

138 Q. Tang

1. params1
$← Setup1(k); params2

$← Setup2(k); (pk, sk) $← KeyGen1(k)
2. (m0, m1, t

∗) $←A(KeyGen2,Pextract,Preenc†)(params1, params2, pk)
3. b

$← {0, 1}; cb
$← Encrypt1(mb, t

∗, pk)
4. b′ $←A(KeyGen2,Pextract,Preenc†)(params1, params2, pk, cb)

Fig. 2. IND-PR-CPA Security

Definition 6. A type-based proxy re-encryption scheme is said to be IND-PR-
CPA secure for the delegator if any polynomial time adversary has only a neg-
ligible advantage in the IND-PR-CPA game (depicted in Figure 2), where the
adversary’s advantage is defined to be |Pr[b′ = b]− 1

2 |.

Ciphertext privacy. The ciphertext privacy attribute means that, for any del-
egatee, a re-encrypted ciphertext is indistinguishable from a normal ciphertext
generated under the delegatee’s public key. The attack game for ciphertext pri-
vacy is as follows.

1. Game setup: The challenger takes a security parameter k as input, runs
Setup1 to generate the public system parameter params1 and runs Setup2 to
generate the public system parameter params2. The challenger runs KeyGen1
to generate a key pair (pk, sk).

2. Phase 1: The adversary takes params1, params2, and pk as input, and has
access to the following types of oracles: KeyGen2 and Pextract. Once the
adversary decides that Phase 1 is over, it outputs a message m, a message
type t, and pk′.

3. Challenge: The challenger picks a random bit b ∈ {0, 1} and returns a chal-
lenge cb as follows.
– If b = 0, then cb = Encrypt2(m, pk′).
– If b = 1, then cb = Preenc(Encrypt1(m, t, pk), t, rk

pk
t→pk′).

4. Phase 2: The adversary has access to the same types of oracles as in
Phase 1.

5. Guess (game ending): The adversary outputs a guess b′ ∈ {0, 1}.

Definition 7. A type-based proxy re-encryption scheme achieves ciphertext pri-
vacy if any polynomial time adversary has only a negligible advantage in the
above game, where the adversary’s advantage is defined to be |Pr[b′ = b]− 1

2 |.

4 CPA-Secure Scheme with Ciphertext Privacy

In this section we propose a new type-based proxy re-encryption scheme which
achieves ciphertext privacy. The scheme is IND-PR-CPA secure based on the
Co-BDH and the XDH assumptions in the random oracle model. We note that
the ciphertext privacy is achieved through the re-randomization by the proxy.

Type-Based Proxy Re-encryption and Its Construction 139

4.1 Description of the Scheme

The Delegator’s Type-Based PRE Scheme. The delegator uses the following type-
based PKE scheme (Setup1, KeyGen1, Encrypt1, Decrypt1).

1. Setup1(k) : This algorithm generates three multiplicative cyclic groups G1,
G2, and GT of prime order p, a random generator g1 of G1, a random gen-
erator g2 of G2, a bilinear map ê : G1 ×G2 → GT , and two hash functions

H1 : {0, 1}∗ → G2, H2 : {0, 1}∗ → {0, 1}�,

where � is a polynomial in k and {0, 1}� is the plaintext space. The public
parameter is denoted as params1 = (G1, G2, GT , p, g1, g2, H1, H2, ê, �), and
we further assume the type information is t ∈ {0, 1}∗.

2. KeyGen1(k) : This algorithm outputs a key pair (pk, sk) where u ∈R Zp,
pk = gu

1 , and sk = u.
3. Encrypt1(m, t, pk) : This algorithm outputs a ciphertext c = (c1, c2, c3),

where
r ∈R Zp, c1 = gr

1 , h ∈R GT , c2 = m⊕ H2(h).

c3 = h · ê(pk, H1(0||t))r

= h · ê(g1, H1(0||t))u·r

4. Decrypt1(c, t, sk) : This algorithm recovers m as follows:

m′ = c2 ⊕ H2(
c3

ê(c1, H1(0||t))sk
)

= m⊕ H2(h)⊕ H2(
h · ê(g1, H1(0||t))u·r

ê(g1, H1(0||t))u·r)

= m

The delegatee’s PRE scheme. The delegatees use the following PKE scheme
(Setup2, KeyGen2, Encrypt2, Decrypt2).

1. Setup2(k) : Set params2 = params1 = (G1, G2, GT , p, g1, g2, H1, H2, ê, �).
2. KeyGen2(k) : This algorithm outputs a key pair (pk, sk), where v ∈R Zp,

pk = gv
2 , and sk = v.

3. Encrypt2(m, pk) : This algorithm outputs a ciphertext c = (c0, c1, c2, c3),
where

x, y ∈R Zp, c0 = gx
1 , c1 = gv·y

2 , w ∈R GT , c2 = m⊕ H2(w),

c3 = w · ê(gx
1 , gy

2)
= w · ê(g1, g2)x·y

4. Decrypt2(c, sk) : This algorithm recovers m as follows:

m′ = c2 ⊕ H2(
c3

ê(c0, c1)v−1)

= m⊕ H2(w)⊕ H2(
w · ê(g1, g2)x·y

ê(gx
1 , gv·y

2)v−1)

= m

140 Q. Tang

The delegation algorithms. Suppose the delegator has a key pair (pk, sk), where
pk = gu

1 and sk = u. Suppose a delegatee has a key pair (pk′, sk′), where pk′ = gv
2

and sk′ = v. The algorithms Pextract and Preenc are defined as follows.

– Pextract(pk, pk′, t, sk): The proxy key is rk
pk

t→pk′ , where

s ∈R Zp, rk
pk

t→pk′ = (gv·s
2 , gs

2 · H1(0||t)−sk).

– Preenc(c, t, rk
pk

t→pk′): Given a ciphertext c = (c1, c2, c3), where

c1 = gr
1, c2 = m⊕ H2(h), c3 = h · ê(g1, H1(0||t))u·r,

this algorithm computes a new ciphertext c′ = (c′0, c
′
1, c

′
2, c

′
3), where

z ∈R Zp, c′0 = c1, c′1 = g
v·(s+z)
2 , c′2 = c2,

c′3 = c3 · ê(c′0, g
(s+z)
2 · H1(0||t)−sk)

= h · ê(gr
1, H1(0||t)u) · ê(gr

1, g
(s+z)
2 · H1(0||t)−u)

= h · ê(g1, g2)r·(s+z).

The re-encrypted ciphertext is also a valid ciphertext for the delegatee so that
the delegatee can obtain the plaintext m by running Decrypt2.

4.2 Security Analysis

The proposed scheme is proven to be IND-PR-CPA secure from Lemma 1 and
achieve ciphertext privacy from Lemma 2. The proofs appear in the full
paper [18].

Lemma 1. The proposed type-based proxy re-encryption scheme is IND-PR-
CPA secure based on the Co-BDH and the XDH assumptions in the random
oracle model.

Lemma 2. The proposed type-based proxy re-encryption scheme achieves ci-
phertext privacy unconditionally.

5 CCA-Secure Scheme without Ciphertext Privacy

In this section we propose a new type-based proxy re-encryption scheme which is
IND-PR-CCA secure based on the BDH and the KE assumptions in the random
oracle model. However, the scheme does not achieve ciphertext privacy.

Type-Based Proxy Re-encryption and Its Construction 141

5.1 Description of the Scheme

The delegator’s type-based PKE scheme. The delegator uses the following type-
based PKE scheme (Setup1, KeyGen1, Encrypt1, Decrypt1).

1. Setup1(k) : This algorithm generates two cyclic groups G and GT of prime
order p, a generator g of G, a bilinear map ê : G×G → GT , and three hash
functions

H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → Zp, H3 : {0, 1}∗ → {0, 1}�,

where � is a polynomial of k and {0, 1}� is the plaintext space. The public
parameter is denoted as params1 = (G, GT , p, g, H1, H2, H3, ê, �), and we
further assume the type information is t ∈ {0, 1}∗.

2. KeyGen1(k) : This algorithm outputs a key pair (pk, sk) where u ∈R Zp,
pk = gu, and sk = u.

3. Encrypt1(m, t, pk) : This algorithm outputs the ciphertext c = (c1, c2, c3, c4),
where

h ∈ GT , c1 = gH2(m||h), c2 = h · ê(pk, H1(0||t))H2(m||h),

c3 = m⊕ H3(h), c4 = H1(1||c1||c2||c3)H2(m||h).

4. Decrypt1(c, t, sk) : This algorithm recovers the plaintext as follows:

(a) Verify ê(c1, H1(1||c1||c2||c3)) = ê(g, c4).
(b) Compute h = c2

ê(H1(0||t),c1)sk and m = c3 ⊕ H3(h).
(c) Verify c1 = gH2(m||h).
(d) Return m.

During decryption, if any of the verifications fails, the algorithm returns an
error symbol ⊥.

The delegatee’s PKE scheme. Suppose (Setup, KeyGen, Encrypt, Decrypt) is a
PKE scheme which has the plaintext space Zp. The delegatees use a PKE scheme
(Setup2, KeyGen2, Encrypt2, Decrypt2).

1. Setup2(k) : Output params2 = (params, G, GT , p, g, H1, H2, H3, ê, �) where
params is the public parameter generated by Setup(k).

2. KeyGen2(k) : Output a key pair (pk, sk) which is the output of KeyGen(k).
3. Encrypt2(m, pk) : This algorithm outputs the ciphertext c = (c−1, c0, c1, c2,

c3), where

w ∈ GT , x, y ∈R Zp, c−1 =Encrypt(x, pk), c0 =Encrypt(y, pk), c1 = gH2(m||w),

c2 = w · ê(gH2(m||w), H1(2||x||c−1||pk) · H1(2||y||c0||pk)), c3 = m⊕ H3(w).
4. Decrypt2(c, sk) : This algorithm recovers the plaintext as follows:

(a) Compute w= c2
ê(c1,H1(2||Decrypt(c−1,sk)||c−1||pk)·H1(2||Decrypt(c0,sk)||c0||pk)) and

m = c3 ⊕ H3(w).
(b) Verify c1 = gH2(m||w).
(c) Return m.

During decryption, if any of the verifications fails, the algorithm returns an
error symbol ⊥.

142 Q. Tang

The delegation algorithms. Suppose the delegator has a key pair (pk, sk). Sup-
pose a delegatee has the key pair (pk′, sk′). The algorithms Pextract and Preenc
are defined as follows.

– Pextract(pk, pk′, t, sk): The proxy key is rk
pk

t→pk′ , where

s1 ∈R Zp, s2 = Encrypt(s1, pk′),

rk
pk

t→pk′ = (s2, H1(2||s1||s2||pk′) · H1(0||t)−sk).

– Preenc(c, t, rk
pk

t→pk′): Given a ciphertext c = (c1, c2, c3, c4), where

c1 = gH2(m||h), c2 = h · ê(pk, H1(0||t))H2(m||h),

c3 = m⊕ H3(h), c4 = H1(1||c1||c2||c3)H2(m||h).

this algorithm first verifies ê(c1, H1(1||c1||c2||c3)) = ê(g, c4). If the verifica-
tion passes, it computes a new ciphertext c′ = (c′−1, c

′
0, c

′
1, c

′
2, c

′
3), where

r ∈R Zp, c′−1 = Encrypt(r, pk′), c′0 = s2, c′1 = c1, c′3 = c3,

c′2 = c2 · ê(c′1, H1(2||r||c′−1||pk′) · H1(2||s1||s2||pk′) · H1(0||t)−sk)

= h · ê(pk, H1(0||t))H2(m||h) · ê(gH2(m||h), H1(2||r||c′−1||pk′)

·H1(2||s1||s2||pk′) · H1(0||t)−sk)
= h · ê(gH2(m||h), H1(2||r||c′−1||pk′) · H1(2||s1||s2||pk′)).

Otherwise, it return an error symbol ⊥.

It is clear that the re-encrypted ciphertext is also a valid ciphertext for the
delegatee so that the delegatee can obtain the plaintext m by running Decrypt2.

5.2 Security Analysis

The proposed scheme is proven to be IND-PR-CCA secure from Lemma 3. The
proof appears in the full paper [18].

Lemma 3. The proposed type-based proxy re-encryption scheme is IND-PR-
CCA secure based on the BDH assumption and the KE assumptions in the ran-
dom oracle model, given that (Setup, KeyGen, Encrypt, Decrypt) is deterministic
and one-way.

6 Conclusion

In this paper we have introduced the concept of type-based proxy re-encryption
to address the inefficiency issues of traditional proxy re-encryption schemes in

Type-Based Proxy Re-encryption and Its Construction 143

practical applications. We have also proposed two schemes which are IND-PR-
CPA secure and IND-PR-CCA secure respectively. The IND-PR-CPA secure
scheme also achieves ciphertext privacy (which means that a re-encrypted ci-
phertext is indistinguishable from a normal ciphertext for the delegatee), but
the IND-PR-CCA secure scheme does not achieve this attribute. Designing an
IND-PR-CCA scheme with ciphertext privacy is left as an open problem. The
security model proposed in this paper is particularly designed for traditional
PKE schemes, hence, it is interesting to extend it to the ID-based setting.

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

3. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004)

4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM conference on Computer and
communications security, pp. 62–73. ACM Press, New York (1993)

5. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

6. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

7. Borisov, N., Mitra, S.: Restricted queries over an encrypted index with applications
to regulatory compliance. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung,
M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 373–391. Springer, Heidelberg (2008)

8. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005)

9. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992)

10. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

11. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)

12. Seroussi, G., Blake, I.F., Smart, N.P.: Elliptic Curves in Cryptography. Cambridge
University Press, Cambridge (1999)

13. Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: Proceedings of the Network
and Distributed System Security Symposium. The Internet Society (2003)

144 Q. Tang

14. Jakobsson, M.: On quorum controlled asymmetric proxy re-encryption. In: Imai,
H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 112–121. Springer, Heidelberg
(1999)

15. Mambo, M., Okamoto, E.: Proxy cryptosystems: Delegation of the power to decrypt
ciphertexts. IEICE TRANSACTIONS on Fundamentals of Electronics, Communi-
cations and Computer Sciences E80-A(1), 54–63 (1997)

16. Matsuo, T.: Proxy re-encryption systems for identity-based encryption. In: Takagi,
T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575,
pp. 247–267. Springer, Heidelberg (2007)

17. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1997)

18. Tang, Q.: Type-based proxy re-encryption and its construction. Technical Report
TR-CTIT-08-47, Centre for Telematics and Information Technology, University of
Twente (2008)

19. Wang, L., Cao, Z., Okamoto, T., Miao, Y., Okamoto, E.: Authorization-Limited
Transformation-Free Proxy Cryptosystems and Their Security Analyses*. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences (1), 106–114 (2006)

20. Zhou, L., Marsh, M.A., Schneider, F.B., Redz, A.: Distributed blinding for dis-
tributed elgamal re-encryption. In: Proceedings of the 25th IEEE International
Conference on Distributed Computing Systems, pp. 824–824. IEEE Computer So-
ciety, Los Alamitos (2005)

Toward a Generic Construction of Universally
Convertible Undeniable Signatures from

Pairing-Based Signatures

Laila El Aimani

b-it (Bonn-Aachen International Center for Information Technology),
Dahlmannstr. 2, D-53113 Bonn, Germany

elaimani@bit.uni-bonn.de

Abstract. Undeniable signatures were proposed to limit the verification
property of ordinary digital signatures. In fact, the verification of such
signatures cannot be attained without the help of the signer, via the
confirmation/denial protocols. Later, the concept was refined to give the
possibility of converting the issued undeniable signatures into ordinary
ones by publishing a universal receipt that turns them publicly verifiable.

In this paper, we present the first generic construction for univer-
sally convertible undeniable signatures from certain weakly secure cryp-
tosystems and any secure digital signature scheme. Next, we give two
specific approaches for building universally convertible undeniable sig-
natures from a large class of pairing-based signatures. These methods
find a nice and practical instantiation with known encryption and sig-
nature schemes. For instance, we achieve the most efficient undeniable
signatures with regard to the signature length and cost, the underlying
assumption and the security model. We believe these constructions could
be an interesting starting point to develop more efficient schemes or give
better security analyses of the existing ones.

Keywords: Undeniable signatures, Pairing-based signatures, Generic
construction.

1 Introduction

Undeniable signatures were originally introduced in 1990 by Chaum and van
Antwerpen [8] to limit the self-authenticating property of digital signatures. In
fact, the verification algorithm in these signatures is replaced by a confirmation
(denial) protocol between the verifier and the signer, in which the verifier learns
the validity (invalidity) of the issued signature without being able to transfer
his conviction to a third person. This cryptographic primitive proved valuable
in many applications where privacy is a big concern, e.g., licensing software.

In 1991, the notion of undeniable signature was boosted by Boyar et al. [3] to
allow the conversion of a selected undeniable signature into an ordinary one by
releasing a piece of information at a later time. The model supported also the
universal conversion achieved by publishing a universal receipt (by the signer)
that transforms all undeniable signatures into publicly verifiable ones.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 145–157, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

146 L.El. Aimani

1.1 Related Work

Since the introduction of undeniable signatures, a series of proposals sprang up,
covering a variety of different aspects. Pairing-based signatures 1 have received
a lot of attention in these settings. Actually, most such signatures include in
the verification equation a pairing computation between a part of the signature
and some other parameters. Therefore, if we implement the same signature in a
non bilinear group, namely a group where the Decisional Diffie-Hellman prob-
lem (DDH) is intractable, the resulting signature cannot be publicly verifiable.
Hence, the signer must perform a proof of equality/inequality of two discrete log-
arithms with the verifier. Such a duality between pairing-based signatures and
undeniable signatures has been illustrated in the literature by some proposals,
e.g., the BLS signatures [2] whose undeniable variant are the early Chaum and
van Antwerpen [8] signatures or Boneh and Boyen’s signatures [1] which resulted
in Laguillaumie and Vergnaud’s undeniable signatures [12]. All these signatures
inherit the security properties of their underlying digital signatures and have
their invisibility based on a variant of the DDH problem.

Unfortunately, this approach does not give the possibility of converting the
resulting signatures. A tantalizing challenge is to propose a general approach
that constructs undeniable signatures from (a large category of) pairing-based
signatures with the possibility of converting them to ordinary ones.

1.2 Our Contributions

We propose the first generic construction of universally convertible undeniable
signatures from secure digital signatures and some weakly secure cryptosystems.
Our design uses the “encryption of a signature” method 2 and relaxes the security
requirement on the underlying cryptosystem, without compromising the overall
security. As a consequence, we allow malleable cryptosystems in our design which
impacts positively the efficiency of the confirmation/denial protocols.

Next, we give an efficient generic construction of universally convertible un-
deniable signatures. In fact, following the same principle, we shrink the set of
signatures, upon which we build the undeniable signatures, down to a certain
class of pairing-based signatures and we use an appropriate Key Encapsulation
Mechanism. This construction finds a very efficient instantiation and results in
the most efficient universally convertible undeniable signature scheme without
random oracles and whose security rests on standard assumptions.

Finally, we enlarge the set of pairing-based signatures to include most propos-
als that appeared in the literature so far. In this way, the resulting undeniable
signatures inherit the same virtues of the underlying digital signatures and ac-
quire other interesting properties concerning their invisibility.

1 See Section 2 for definitions of pairings, bilinear groups, etc...
2 This method has been successfully used in a number of primitives such as designated

confirmer signatures [5]. It consists in generating a signature on the message to be
signed, then encrypting it. The validity or invalidity of the resulting signature are
checked via concurrent proofs of knowledge.

Toward a Generic Construction 147

2 Preliminaries

2.1 Bilinear Maps

Definition 1. Let (G, +) and (H,×) 3 be groups of prime order d. Let P be a
generator of G. G is called a bilinear group if there exists a map e : G×G → H,
with the following properties:

1. bilinearity: for all (P, Q) ∈ G2 and a, b ∈ Zd, e(aP, bQ) = e(P, Q)ab,
2. efficient computability for any input pair, and
3. non-degeneracy: e(P, P) �= 1H.

2.2 Digital Signatures

A signature scheme Σ comprises three algorithms, keygen, sign, and verify:

– keygen is a probabilistic key generation algorithm which returns pairs of
private and public keys (sk, pk) depending on the security parameter k,

– sign is a signing algorithm which takes on input a private key sk and a
plaintext m and returns a signature σ, and

– verify is a deterministic algorithm which takes on input a public key pk, a
signature σ and outputs 1 if the signature is valid and 0 otherwise.

Definition 2. A signature scheme is said to be (t, ε, qs)-EUF-CMA secure if
no adversary A, operating in time t and issuing at most qs queries, wins the
following game with probability greater than ε, where the probability is taken
over all the random choices:
Setup. A is given the public parameters of the given signature scheme.
Queries. A queries the challenger for signatures on at most qs messages.
Output. A outputs a pair (m, σ) and wins the game if m has not been queried
before and verifypk(m, σ) = 1.

2.3 Public-Key Encryption Schemes

An asymmetric encryption scheme comprises the following algorithms:

– keygen is a probabilistic key generation algorithm which returns pairs of
private and public keys (sk, pk) depending on the security parameter k,

– encrypt is a probabilistic encryption algorithm which takes on input a public
key pk and a plaintext m, and returns a ciphertext c, and

– decrypt is a deterministic decryption algorithm which takes on input a secret
key sk and a ciphertext c, and returns the corresponding plaintext m or ⊥.

A cryptosystem provides indistinguishability (IND) if it is difficult to distinguish
pairs of ciphertexts based on the messages they encrypt. In case the adversary
against the scheme has access to a decryption oracle, the scheme is said to be
indistinguishable under chosen ciphertext attacks (IND-CCA), otherwise it is
indistinguishable under chosen plaintext attacks (IND-CPA). Formal definitions
can be found in [4].
3 In the rest of the document, the group G is denoted additively whereas the group H

is denoted multiplicatively.

148 L.El. Aimani

2.4 Key Encapsulation Mechanisms (KEM)

A KEM is a tuple of algorithms K = (keygen, encap, decap) where

– keygen probabilistically generates a key pair (sk, pk),
– encap, or the encapsulation algorithm which, on input a random nonce r and

the public key pk, generates a session key denoted k and its encapsulation
c, and

– decap, or the decapsulation algorithm. Given the private key sk and the
element c, this algorithm computes the decapsulation k of c, or returns ⊥ if
c is invalid.

Definition 3. A KEM is said to be (t, ε)-IND-CPA secure if no adversary A,
operating in time t, wins the following game with probability greater than ε:

– Phase 1. A gets the parameters of the KEM from his challenger.
– Challenge. The challenger computes a given encapsulation c�, then picks

uniformly at random a bit b from {0, 1}. If b = 1, then he sets k� to k1 where
k1 = decap(c�). Otherwise, he sets k� to a uniformly chosen string from the
session keys space. The challenge is (c�, k�).

– Phase 2. A outputs a bit b′ (representing his guess of k� being the decap-
sulation of c�) and wins the game if b = b′. We define A’s advantage as
Adv(A) = |Pr[b = b′] − 1

2 |, where the probability is taken over the random
choices of the adversary A and the challenger.

The Hybrid Encryption Paradigm. It consists in combining KEMs with
secure secret key encryption algorithms or Data Encapsulation Mechanisms
(DEMs) to build encryption schemes. In fact, one can fix a session key k using
the KEM, then uses it to encrypt a message using an efficient DEM. Decryp-
tion is achieved by first recovering the key from the encapsulation (part of the
ciphertext) then applying the DEM decryption algorithm. It can be shown that
one can obtain an IND-CPA cryptosystem from an IND-CPA KEM combined
with a DEM indistinguishable under a one time attack (IND-OT). We refer to
[11] for the necessary and sufficient conditions on KEMs and DEMs in order to
obtain a certain level of security for the resulting hybrid encryption scheme.

3 Universally Convertible Undeniable Signatures
(UCUS)

3.1 Definition

Setup. On input the security parameter k, outputs the public parameters.
Key Generation. Generates probabilistically a key pair (sk, pk).
Signature. On input the public parameters, the private key sk and a message

m, outputs an undeniable signature µ.
Verification. This is an algorithm run by the signer to check the validity of

an undeniable signature µ issued on m, using his private key sk.

Toward a Generic Construction 149

Confirmation/Denial Protocol. These are interactive protocols between a
prover and a verifier. Their common input consists of the public parameters
of the scheme, the signature µ and the message m in question. The prover,
that is the signer, uses his private key sk to convince the verifier of the
validity (invalidity) of the signature µ on m.

Universal Conversion. Releases a universal receipt, using sk, that makes all
undeniable signatures universally verifiable.

Universal Verification. On input a signature, a message, a receipt and the
public key pk, outputs 1 if the signature is valid and 0 otherwise.

3.2 Security Model

In addition to the completeness, soundness and non-transferability of the proofs
inherent to the confirmation/denial protocols, a convertible undeniable signature
scheme requires two further properties, that are unforgeability and invisibility.

Unforgeability. The natural security requirement that a universally convert-
ible signature scheme should fulfill is the existential unforgeability against a
chosen message attack (EUF-CMA). It is defined through the following game.

– Setup. The adversary A is given the public parameters of the scheme in
addition to the universal receipt.

– Queries. A queries the signing oracle adaptively on at most qs messages.
Note that there will be no need to query the confirmation/denial oracles
since A has the universal receipt at his disposal.

– Output. At the end, A outputs a pair consisting of a message m, that has
not been queried before, and a string µ. A wins the game if µ is a valid
undeniable signature on m.

We say that a universally convertible undeniable signature scheme is (t, ε, qs)-
EUF-CMA secure if there is no adversary, operating in time t, that wins the
above game with probability greater than ε.

Invisibility. Invisibility against a chosen message attack (INV-CMA) is defined
through the following game between an attacker A and his challenger R.

– A gets the parameters of the scheme from R.
– Phase 1. A adaptively query the signing and confirmation/denial oracles.
– Challenge. Eventually, A outputs a message m� that has not been queried

before to the signing oracle and requests a challenge signature µ�. R picks
a bit b ∈R {0, 1}. If b = 1, then µ� is generated as usual using the signing
oracle, otherwise it is chosen uniformly at random from the signatures space.

– Phase 2. A can adaptively query the previous oracles with the exception of
not querying m� to the signing oracle or (m�, µ�) to the verification oracles.

– Output. A outputs a bit b′ representing his guess on µ� being a valid
signature on m�. He wins the game if b = b′. We define A’s advantage as
Adv(A) = |Pr[b = b′]− 1

2 |.

150 L.El. Aimani

We say that a convertible undeniable signature scheme is (t, ε, qs, qv)-INV-CMA
secure if no adversary operating in time t, issuing qs queries to the signing
oracle and qv queries to the confirmation/denial oracles wins the above game
with advantage greater than ε.

4 A Systematic Approach for UCUS from Some
Cryptosystems and Digital Signatures

4.1 Design Principle

We use the “encryption of a signature” method. Thus, we first generate a digital
signature on the message to be signed, then encrypt the resulting signature
using a suitable cryptosystem obtained from the hybrid encryption paradigm.
Confirmation or denial of the resulting signatures exist by virtue of Goldreich et
al.’s result [10]. In fact, the verification and decryption algorithms in a signature
scheme and a cryptosystem respectively define an NP (co-NP) language for which
there exists a zero knowledge proof system.

This method has been in use for some time ago. For instance, Camenisch
and Michels [5] used it for designated confirmer signatures. One of the main
differences between the two proposals dwells in the security assumption on the
cryptosystem. We actually require only IND-CPA secure KEMs (thus IND-CPA
cryptosystems), as we do not allow individual conversions of the undeniable sig-
natures, versus IND-CCA cryptosystems. The consequences of this are twofold.
First, we require a weak security notion on the cryptosystem without compromis-
ing the overall security. This gives many and simpler choices for the cryptosys-
tem to be used. Second, we allow malleable cryptosystems in our construction,
which impacts positively the confirmation/denial protocols efficiency. In fact,
cryptosystems with homomorphic properties possess efficient decryption proofs
of knowledge, i.e, one can prove efficiently the knowledge of the plaintext corre-
sponding to a given ciphertext. Such schemes are not ruled out from our design.

4.2 Proposed Construction

Let Σ be a digital signature scheme given by Σ.keygen which generates a key
pair (private key = Σ.sk, public key= Σ.pk), Σ.sign and Σ.verify.

Let furthermore Γ be a cryptosystem obtained using the hybrid encryption
paradigm and described by Γ.keygen (that generates the pair (private key =
Γ.sk, public key= Γ.pk)), Γ.encrypt and Γ.decrypt. Note that the encapsulation
of the key used to encrypt a given string is always contained in the ciphertext.

We assume for simplicity that the space of signatures produced by Σ is the
same as the space of messages encrypted by Γ .

Let m ∈ {0, 1}� be a message, we propose the following scheme:

Setup. Invoke Γ.setup and Σ.setup.
Key Generation. Invoke Σ.keygen and Γ.keygen to generate Σ.sk, Σ.pk Γ.sk

and Γ.pk. Set the public key to (Σ.pk, Γ.pk) and the private key to (Σ.sk,
Γ.sk).

Toward a Generic Construction 151

Signature. First compute an encapsulation c together with its decapsulation
k using Γ.pk. Then compute a (digital) signature σ = Σ.signΣ.sk(m‖c) on
m‖c. Finally encrypt the resulting signature under Γ.pk (using k). Output
µ = Γ.encryptΓ.pk(σ). Note that c is part of µ.

Verification (By the Signer.) To check the validity of an undeniable signa-
ture µ (that comprises the encapsulation c), issued on a certain message m,
the signer first computes σ = Γ.decryptΓ.sk(µ), then calls Σ.verify on σ and
m‖c using Σ.pk. µ is valid if and only if the output of the latter item is 1.

Confirmation/Denial Protocol. To confirm (deny) a purported signature
µ (containing the encapsulation c) on a certain message m, the signer first
computes σ = Γ.decryptΓ.sk(µ), then invokes the algorithm Σ.verify on σ
and m‖c. According to the result, the signer issues a proof of knowledge of
the decryption of µ that passes (does not pass) the verification algorithm
Σ.verify.

Universal Conversion. Release Γ.sk.

4.3 Security Analysis and Efficiency Considerations

We first note that the properties of completeness, soundness and non-
transferability of the confirmation/denial protocols are met by our construction
as a direct consequence of the zero-knowledge proofs of knowledge. In the sequel,
we prove that the construction resists existential forgeries and that signatures
are invisible.

Theorem 1. Our generic construction is (t, ε, qs)-EUF-CMA secure if the un-
derlying digital signature scheme is (t, ε, qs)-EUF-CMA secure.

Proof. Let A be an attacker that (t, ε, qs)-EUF-CMA breaks the existential un-
forgeability of our construction. We will construct an adversary R that (t, ε, qs)-
EUF-CMA breaks the underlying digital signature scheme:

Key generation. R gets the parameters of the signature scheme in question
from his challenger. Then he chooses an appropriate cryptosystem Γ (ob-
tained from the encryption of a signature paradigm) with parameters Γ.pk,
Γ.sk, Γ.encrypt and Γ.decrypt. R fixes the above parameters as a setting for
the undeniable signatures A is trying to attack.

Signature queries. For a signature query on a message m,R will first compute
an encapsulation c together with its decapsulation k (using Γ.pk). Then he
will request his challenger for a digital signature σ on m‖c. Finally, he will
encrypt σ under Γ.pk (using k) and output the result to A.

Final Output. Once A outputs his forgery µ� on m�. R will decrypt the
signature to obtain σ�. If µ� is valid then by definition σ� is valid too. R will
output σ� as a forgery on the message (m�‖c�) where c� is the encapsulation
of the key that was used to encrypt σ�. In fact the probability that m�‖c�

has been queried by R on a query mi‖ci (mi �= m�) is negligeable since ci is
obtained by R from a random process (the encapsulation algorithm).

152 L.El. Aimani

Note that there will be no need to simulate the confirmation/denial oracles since
A has the universal receipt Γ.sk allowing the verification of the signatures.
�

Theorem 2. Our proposed construction is (t, ε, qs, qv)-INV-CMA secure if it is
(t, ε′, qs)-EUF-CMA secure and the KEM used in the underlying cryptosystem is
(t + qsqv, ε · (1− ε′)qv)-IND-CPA secure.

Proof. Let A be an attacker that (t, ε, qs, qv)-INV-CMA breaks our undeniable
signatures, assumed to be (t, ε′, qs)-EUF-CMA secure. We will construct an al-
gorithm R that (t + qsqv, ε · (1− ε′)qv)-IND-CPA breaks the underlying KEM:

Phase 1
Key Generation. R gets the parameters of the KEM K from his challenger.

Then he chooses an appropriate IND-OT secure DEM together with a sig-
nature scheme Σ.

Signature Queries. For a signature query on m. R first fixes a session key k
together with its decapsulation c using K.pk. Then he computes a (digital)
signature σ on m‖c using Σ.sk. Finally, he encrypts the produced signa-
ture (using k) and outputs the result to A. R will maintain a list L of the
queries he got (messages), the corresponding digital signatures and finally
the signatures he issued.

Verification (Confirmation/Denial) Queries. For a signature µ on m, R
will look up the list L. If a record having as first component the message m
and third component µ appears in the list, then R will execute the confir-
mation protocol, otherwise, he will run the denial protocol. This simulation
differs from the real one when the signature µ is valid and has not been
obtained from a signature query. Thus, µ will correspond to a valid exis-
tential forgery of the undeniable signature scheme in question4. Hence, the
probability that this scenario does not happen is at least (1− ε′)qv because
the undeniable signature scheme is (t, ε′, qs)-EUF-CMA secure by assump-
tion. Finally, R can issue such proofs of knowledge, without knowing the
private key of K, using the rewinding technique because the protocols are
zero knowledge, thus simulatable.

Challenge. Eventually, A outputs a challenging message m�. R will use his
challenge (c�, k�) to compute a digital signature using Σ.sk on m�‖c�. Then
he encrypts the resulting signature using k� and outputs the result µ� to A.
Therefore µ� is either a valid signature on m� or a random element from the
(undeniable) signatures space (k� is random according to 2.4 and the DEM is
IND-OT), which conforms to the game rules defined in 3.2.

Phase 2 A will continue issuing queries to the signing, confirmation and denial
oracles and R can answer as previously.
4 This is the reason for generating a signature on the message in question concatenated

with the encapsulation. In fact, valid signatures can only be obtained from the
signing oracle (under the assumption that the scheme is EUF-CMA secure) even if
the underlying cryptosystem offers the possibility of generating a different ciphertext
for the same message (e.g., ElGamal [9]).

Toward a Generic Construction 153

Final Output
When A outputs his answer b ∈ {0, 1}, R will forward this answer to his own
challenger. Therefore R will (t + qsqv, ε · (1 − ε′)qv)-IND-CPA break Γ .
�

5 Construction of UCUS from Certain Pairing-Based
Signatures Using KEMs

In the generic construction proposed in 4, the confirmation/denial protocols
involve proofs of knowledge of the decryption of the undeniable signature and
that this decryption is a digital signature on some known data. Therefore, one
needs to consider a set of cryptosystems and signatures for which such proofs
could be performed efficiently. One solution to achieve this is to consider the
following class of signatures (KEMs).

5.1 Defining the Class C1 of Signatures and K of KEMs

Definition 4. C1 is the set of pairing-based signatures such that:

1. The considered pairing e is from G×G to H.
2. The signature σ on a message m is written as σ = (S, σ̄) such that

(a) σ̄ = σ\S reveals no information about m nor about (sk, pk) the key pair
related to the given signature scheme.

(b) S ∈ G and the verification equation of the signature is of the form:
e(S, P) = f(σ̄, m, PP).

where P is a known generator of the group G (set as a public parameter of
the scheme), f is a public function, m is the message in question and PP
are the known public parameters of the signature scheme

The definition above may seem too restrictive but it already captures two very
important pairing-based signatures, namely BLS [2] (where the message-key-
independent part is the empty string) and Waters’ [14] signatures.

Definition 5. K is the set of KEMs such that:

1. The KEM is implemented in a bilinear group G where the considered pairing
e is from G×G to a group H.

2. P is a known generator of the group G.
3. The session keys space K is the same as the group G.
4. Let k ∈ G be an element and c a given encapsulation. On common input

e(k, P) and c:
– If k is the decapsulation of c, then there exists an efficient zero-knowledge

proof C of this assertion, using the private key of the KEM,
– otherwise, there exists an efficient zero-knowledge proof D of k not being

the decapsulation of c (using also the private key of the KEM).

154 L.El. Aimani

A KEM in the Class K:

– setup. Consider a bilinear group G, with prime order d, generated by P .
– keygen. Generate two values x1, x2 ∈ Z×

d and compute X1 = x1P and X2 =
x2P . Set the private key to sk = (x1, x2) and the public key to pk = (X1, X2).

– encap. On input a nonce (a, b) ∈R Z2
d and pk, generate the session key

k = (a + b)P and its encapsulation c = (aX1, bX2).
– decap. Given sk and c = (aX1, bX2), compute k as k = x−1

1 aX1 + x−1
2 bX2.

This KEM is IND-CPA secure assuming the intractability of the Decision Linear
Problem.

Definition 6. Decision Linear Problem (DLP). Given U, V, H, aU, bV,
cH ∈ G, output 1 if a + b = c mod (#G) and 0 otherwise.

The traditional DDH problem (corresponding to b = 0) can be reduced to DLP.
In fact, DLP is believed to be hard even in bilinear groups where DDH is easy.

Fact 1 The KEM described above is in the class K.

Proof. – X1 is a generator of G.
– The proof C (D) consists of the proof of equality (inequality) of the discrete

logarithm of X2 in base P and of e(bX2, X1) in base e(k, X1)e(aX1, P)−1.
We refer to [7] ([6]) for the proof of equality (inequality) of two discrete
logarithms.
�

5.2 Construction

Following the notations in 5.1 we consider an EUF-CMA digital signature scheme
Σ ∈ C1 and an IND-CPA secure KEM K ∈ K, where the considered groups G
and H , and the generator P are the same for both Σ and K. We assume that the
proofs C and D are known to the signer. A universally convertible undeniable
signature, on a given message m, can be obtained by first invoking K to fix a key
k and its encapsulation c, then generating a digital signature σ = (S, σ̄) on m‖c.
The result is µ = (µ1, µ2, µ3) = (c, S + k, σ̄) 5. Confirmation or denial of such a
signature are achieved via the proofs C or D respectively, on the common input
m, µ1 and e(µ2, P)f(µ3, m‖c, PP)−1. In fact, if k = K.decap(µ1) and e(k, P) =
e(µ2, P)f(µ3, m‖c, PP)−1, then the signer issues C (using the private key of the
KEM). Otherwise, if k = K.decap(µ1) and e(k, P) �= e(µ2, P)f(µ3, m‖c, PP)−1,
he issues the proof D. Finally, the universal conversion is done by releasing K.sk.

Unforgeability of such a construction is easily guaranteed by virtue of
Theorem 1. As far as invisibility is concerned, we can base it directly on the
underlying KEM. In fact, since σ̄ does not reveal any information about the
signing/verifying key (of the digital signature scheme) nor about the message in
question, an attacker A capable of deciding on the validity of a given undeni-
able signature must definitely use information leaked by the encryption of the
remaining part of the signature, that is (c, k + S). Due to page limitation, the
complete proofs will be given in the full version of the paper.
5 The DEM encryption algorithm consists in adding the key to the message, whereas

the decryption is the addition of the key inverse (in G) to the ciphertext.

Toward a Generic Construction 155

Theorem 3. Let A be a (t, ε, qs)-EUF-CMA adversary against the above con-
struction. Then, there exists a (t, ε, qs)-EUF-CMA adversary against the under-
lying digital signature scheme.
�

Theorem 4. Our proposed construction is (t, ε, qs, qv)-INV-CMA secure if it is
(t, ε′, qs)-EUF-CMA secure and the underlying KEM is (t + qsqv, ε.(1 − ε′)qv)-
IND-CPA secure.
�

Instantiation of our framework with Waters’ signatures [14] and the KEM de-
scribed above results in a very efficient universally convertible undeniable signa-
ture scheme. In fact, the best scheme that was proposed so far [15] achieves the
same security features (standard model and the same underlying standard as-
sumptions), and thought it presents the additional quality of selective conversion,
it has a longer signature and a higher signature generation and verification cost
(approximately a multiplicative parameter k) and a higher key generation and
universal conversion cost (a multiplicative parameter 2n/k), where k is a public
parameter to be optimized and n is the length of the message to be signed.

6 Toward a Generic Construction of UCUS from
Pairing-Based Signatures

In this section, we give the first generic construction of universally convertible
undeniable signatures from a large class of pairing-based signatures, denoted C2,
and from any IND-CPA cryptosystem whose decryption is efficiently verifiable.

6.1 Generic Construction

Definition 7. C2 is the same set of signatures defined in Definition 4 with the
exception of the verification equation being of the form e(S, E) = f(σ̄, m, PP),
where E ∈ G is not necessarily a fixed generator of G.

It is clear that this class of signatures captures a large category of pairing-based
signatures. In fact, almost all (pairing-based) signatures [2,1,16,14], that have
been proposed so far, involve a pairing computation in the verification equation,
between the key-message-dependent part of the signature and other entities.
Note that the key-message-independent part in [2,16] is the empty string.

Proposed Construction. Let Σ ∈ C2 be an EUF-CMA signature from C2
and Γ be an efficient decryption verifiable IND-CPA cryptosystem. Let further
d denote the group order of G and p a suitable integer such that Γ is IND-CPA
secure in Zp (the message space of Γ is included in Zp). Note that p > d due the
contrast of key sizes between finite-field (or ring) and elliptic-curve cryptography.

We devise a universally convertible undeniable signature scheme as follows.
First, we choose r ∈R Zp then encrypt it under Γ to result in s =Γ.encryptΓ.pk(r).
Then, generate a digital signature (S, σ̄) on the message to be signed m concate-
nated with s. The signature consists of the triple µ = (s, rS = (r mod d)S, σ̄).

156 L.El. Aimani

To confirm (deny) a signature µ = (s, rS, σ̄), the signer decrypts s then proves
the equality (inequality) of the decryption of s and the discrete logarithm of
e(rS, E) in base f(σ̄, m‖s, PP). Finally, the universal conversion is achieved by
releasing Γ.sk.

Theorem 5. Let A be a (t, ε, qs)-EUF-CMA adversary against the above con-
struction. Then, there exists a (t, ε, qs)-EUF-CMA adversary against the under-
lying digital signature scheme.
�

Theorem 6. Our proposed construction is (t, ε, qs, qv)-INV-CMA secure if it is
(t, ε′, qs)-EUF-CMA secure and the underlying cryptosystem is (t + qsqv, ε.(1 −
ε′)qv)-IND-CPA secure.
�

Efficient realizations using this technique could be obtained by combining Wa-
ters’ signatures [14] with an IND-CPA cryptosystem such as ElGamal [9] or
Paillier [13].

7 Conclusion

In this paper, we proposed a construction for universally convertible undeniable
signatures from secure digital signatures and some weakly secure cryptosystems.
Next, we designed two efficient generic constructions for undeniable signatures
from a large class of pairing-based signatures. These constructions found prac-
tical instantiations with some known signatures and cryptosystems. It might be
good to analyze the security of the existing undeniable signature schemes or
propose efficient ones using this technique. Finally, one is tempted to extend
this approach to other “opaque” signatures such as directed signatures, or com-
bine it with the techniques using commitment schemes in order to get better
constructions.

Acknowledgments

I would like to thank the anonymous reviewers for their helpful comments.
Thanks go also to Joachim von zur Gathen for suggestions that improved the
quality of the paper. This work was supported by the B-IT foundation.

References

1. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

2. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. J.
Cryptology 17(4), 297–319 (2004)

3. Boyar, J., Chaum, D., Damg̊ard, I.B., Pedersen, T.B.: Convertible undeniable sig-
natures. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537,
pp. 189–205. Springer, Heidelberg (1991)

Toward a Generic Construction 157

4. Rackoff, C., Simon, D.R.: Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1992)

5. Camenisch, J., Michels, M.: Confirmer Signature Schemes Secure against Adapta-
tive Adversaries. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp.
243–258. Springer, Heidelberg (2000)

6. Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Dis-
crete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–
144. Springer, Heidelberg (2003)

7. Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

8. Chaum, D., van Antwerpen, H.: Undeniable Signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

9. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme based on
Discrete Logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

10. Goldreich, O., Micali, S., Wigderson, A.: How to Prove all NP-Statements in Zero-
Knowledge, and a Methodology of Cryptographic Protocol Design. In: Odlyzko,
A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg
(1987)

11. Herranz, J., Hofheinz, D., Kiltz, E.: KEM/DEM: Necessary and Sufficient Condi-
tions for secure Hybrid Encryption (August 2006),
http://eprint.iacr.org/2006/265.pdf

12. Laguillaumie, F., Vergnaud, D.: Short Undeniable Signatures Without Random
Oracles: the Missing Link. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R.
(eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 283–296. Springer, Heidelberg
(2005)

13. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

14. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

15. Yuen, T., Au, M.H., Liu, J.K., Susilo, W. (Convertible) Undeniable Signatures
Without Random Oracles. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007.
LNCS, vol. 4861, pp. 83–97. Springer, Heidelberg (2007)

16. Zhang, F., Safavi-Naini, R., Susilo, W.: An Efficient Signature Scheme from Bilin-
ear Pairings and Its Applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004.
LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)

http://eprint.iacr.org/2006/265.pdf

Concrete Security for Entity Recognition:
The Jane Doe Protocol

Stefan Lucks1, Erik Zenner2, André Weimerskirch3, and Dirk Westhoff4

1 Bauhaus-Universität Weimar, Germany
http://medsec.medien.uni-weimar.de/

2 Technical University of Denmark
http://www.erikzenner.name/

3 escrypt Inc., USA
http://weimerskirch.org/

4 NEC Europe Ltd
Dirk.Westhoff@nw.neclab.eu

Abstract. Entity recognition does not ask whether the message is from
some entity X, just whether a message is from the same entity as a pre-
vious message. This turns turns out to be very useful for low-end devices.
The current paper proposes a new protocol – the “Jane Doe Protocol” –,
and provides a formal proof of its concrete security. The protocol neither
employs asymmetric cryptography, nor a trusted third party, nor any
key pre-distribution. It is suitable for light-weight cryptographic devices
such as sensor network motes and RFID tags.

1 Introduction

Consider the following story: Two strangers meet at a party and make a bet.
They introduce themselves as Jane and John Doe, which may or may not be
their real names. Some days later, however, it turns out that Jane is the winner,
and John receives a message: “John, please transfer the prize to bank account
[. . .] Thank you. Jane.”. How does John know that this message actually has
been sent from that person, who had called herself “Jane” at that party? In
other words, how does John recognise Jane – or a message from her?

Below, we will use the names Alice and Bob instead of Jane and John Doe
for sender and receiver. As the protocol goal is about entity recognition, “real”
names are unimportant. Alice and Bob are technical devices communicating in
a hostile environment. Recognising each other would be easy if they could use
unique identities and digital signatures: Initially, Alice would send Bob her public
key. Later, Alice would sign all the messages she sends to Bob, and Bob would
verify these signatures. But digital signatures are computationally expensive,
and may seem an “overkill” to the problem at hand.

In this paper, we present the Jane Doe protocol, a light-weight solution to
entity recognition using only symmetric primitives (namely, message authenti-
cation codes). Even low-end devices, which are too slow for digital signatures
or the like, can run our protocol. The protocol does not depend on any trusted

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 158–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Concrete Security for Entity Recognition: The Jane Doe Protocol 159

third party. Neither does it require a pre-established common secret key. It runs
efficiently enough for real-time applications. In addition, it is interactive and
provides information about the freshness and timeliness of messages.

Our research is motivated by the emergence of extremely low-power and low-
cost devices such as sensor network motes and RFID tags. The continued desire
to make these devices smaller at an attractive price offsets the technological
advancements of increasing computational power. While implementing digital
signatures and public-key techniques on such devices is technologically feasible,
it is a hard burden from an economic viewpoint. Also, such devices are often used
in networks where one can neither assume availability of a trusted third party,
nor availability of pre-deployed secret or authentic information, and with a dy-
namic network topology. Another motivation is the question to what degree one
can imitate the functionality of public-key cryptography and digital signatures
by just using some simple primitives from symmetric cryptography. The Jane
Doe protocol turns out to be as powerful as the common two step protocol for
authenticating messages, consisting of a non-authenticated Diffie-Hellman key
agreement at initialisation time followed by MAC authenticated messages.

Previous Work: The security goal of entity recognition has independently been
proposed by a couple of different authors under different names [2,18,16,10,8].

An early protocol to actually address entity recognition was the Resurrect-
ing Duckling protocol [17]. As it requires the exchange of a secret key in the
initialisation phase, it does meet our security requirements. The Guy Fawkes
protocol by [1] is more suitable for entity recognition, but it implicitly assumes
Alice to know when Bob has seen her commitment ai. While this may be the
case in the original use case (Guy Fawkes would publish his commitments in
a newspaper), an explicit confirmation of receipt may be desirable in most ap-
plication contexts. The Remote User Authentication protocol [14] uses a
message authentication code (MAC) and a cut-and-choose approach, which is
much more demanding than our protocol. In [15], messages are authenticated
using MACs, with a symmetric key being exchanged using Diffie-Hellman
key exchange at protocol start. The problem here is that the key exchange
requires public-key operations, which are too onerous for low-end systems. In
the full paper [13], we provide a rough comparison of this approach with our
proposal. The zero-common-knowledge protocol [18] from SAC 2003 uses
hash chains, like our protocol, but turned out to be flawed [12,13].

2 Scenario Description

Sending messages: Alice is the sender of messages, Bob the receiver. All protocols
start with an initialisation phase, where Alice and Bob for the first time
contact each other and exchange some initial material. Later, messages are sent
from Alice to Bob in distinct time frames, which we denote as epochs. There
can be at most n such epochs. Each such epoch i consists of four basic steps:
1. Alice receives some external data xi, the origin of which lies outside the

scope of the protocol (e.g. a measurement from a sensor).

160 S. Lucks et al.

2. Alice authenticates and sends the message to Bob. Formally, we write Com-
mitMessage(xi,i).

3. Bob sends a confirmation that he received some data, supposedly from Alice.
4. Alice opens the commitment and proves that it was really her who send the

message. We write AcceptMessage(xi, i) if Bob believes the message xi to
be authentic and fresh in epoch i.

Adversary capabilities: The well-known Dolev-Yao model [7] assumes that Eve
is in full control over the connection between Alice and Bob, i.e. she is an active
adversary. In particular, she can

– read all messages sent from Alice or from Bob,
– modify messages, delay them or send them multiple times to Alice, Bob, or

to both of them,
– and send messages generated by herself to Alice or Bob or both.

This is considered as reasonable pessimism: Over-estimating the adversary is not
as bad as under-estimating her capabilities. However, e.g. Gollmann [9] argues
that novel applications may need more specific models. In our case, we make
the special assumption that during the initialisation phase, Eve behaves like a
passive adversary. She can read the messages between Alice and Bob (which
precludes any kind of secret key exchange), but she relays them faithfully. Note
that this is a weakening of the usual assumption that Alice and Bob can use a
protected communication channel for initialisation, i.e. our scenario requires less
external protection than most other proposals.

In typical application scenarios, Eve may even be able to extract secret data
inside the devices by tampering, in addition to controlling the network. Our
protocol does not protect against this kind of threat. If this threat is relevant for
the application at hand, and if it can not be mitigated by using tamper-resistant
hardware, then additional protection measures (like introducing redundancy and
using secure multi-party computation algorithms) have to be introduced.

Adversary goal: Driven by reasonable pessimism as before, we assume that Eve
aims for an existential forgery in a chosen message scenario:

– Eve may have some influence on xi. Thus, for purposes of security analysis,
we allow her to choose messages xi which Alice will authenticate and send,
i.e. CommitMessage(xi,i).

– She succeeds if Bob accepts any message x′ �= xi as authentic, i.e. AcceptMes-
sage(x′, i).

At the beginning of the protocol, Alice and Bob choose initial random values
a0 resp. b0. From then on, Alice and Bob act as strictly deterministic machines.
When receiving a message, Alice and Bob update their internal state and send
a response, if necessary. Eve is a probabilistic machine with independent con-
nections to Alice and to Bob. In the context of this paper, the actual choice of
a machine model is not important – any reasonable machine model will do.

Concrete Security for Entity Recognition: The Jane Doe Protocol 161

We require the initial random values (=keys) a0 and b0 to be chosen indepen-
dently from the keys for other sessions. To this regard, our setting is much
simpler than any communication scenario where the same key material can be
used in more than one session (see e.g. [4,3]).

Limitation: We assume that the number of messages to be authenticated is
known in advance, or a reasonable upper bound is known. During the initiali-
sation phase, both Alice and Bob commit to the endpoint of a hash chain. The
length of this hash chain bounds the number of messages to be authenticated.
This limits of our approach, compared to other solutions employing public-key
cryptography. Those, however, may be less efficient than our scheme, [13].

Reliability: Since Eve has full control over the connection between Alice and Bob,
denial of service attacks are trivial for Eve. In addition, if the communication
channel itself is unreliable, messages may be lost or faulty messages may be
received even without the active involvement of a malicious adversary. Such
problems can not be solved at cryptographical level, but have to be managed
outside of the protocol. But the following reliability properties can be guaranteed:

Soundness: If the network is reliable and Eve behaves like a passive wire, the
protocol works well: Bob accepts each message xi Alice has committed to.

Recoverability: If Eve suppresses or modifies some messages, or creates some
messages of her own, Bob may refuse to accept a message xi Alice has com-
mitted to. However, once Eve begins again to honestly transmit all messages,
like a passive wire, the soundness with respect to new messages is regained.

3 The Jane Doe Protocol

In this section, we describe the Jane Doe protocol to solve the entity recognition
problem without using public-key cryptography. We write s for the size of a
symmetric key. A second security parameter is the tag size c ≤ s for message
authentication. (Typically: s ≥ 80 and c ≥ 32.) We use two functions, a MAC
m : {0, 1}s × {0, 1}∗ → {0, 1}c and a one-way function h : {0, 1}s → {0, 1}s. (In
Section 4, we will describe how to derive both m and h from a single MAC.) We
write x ∈r {0, 1}s to indicate a random s-bit string x, uniformly distributed.

Initialisation phase: For initialisation, Alice chooses a0 ∈r {0, 1}s and generates
a hash chain a1 := h(a0), . . . , an := h(an−1). Similarly, Bob chooses b0 ∈r {0, 1}s

and generates b1 := h(b0), . . . , bn := h(bn−1). When running the protocol, both
Alice and Bob learn some values bi resp. ai from the other’s hash chain. If
Alice accepts bi as authentic, we write AcceptKey(bi). Similarly for Bob and
AcceptKey(ai). The initialisation phase, where Eve can read the messages but
relays them faithfully, consists of two messages:

1. Alice → Bob: an. (Thus: AcceptKey(an).)
2. Bob → Alice: bn. (Thus: AcceptKey(bn).)

162 S. Lucks et al.

Message authentication: We split the protocol up into n epochs, plus the ini-
tialisation phase. The epochs are denoted by n− 1, . . . , 0 (in that order). Each
epoch allows Alice to send one authenticated message1, and Bob to receive and
verify it. The internal state of each Alice and Bob consists of

– an epoch counter i,
– the most recent value from the other’s hash chain, i.e., bi+1 for Alice, and

ai+1 for Bob (we write AcceptKey(bi+1) and AcceptKey(ai+1)), and
– a one-bit flag, to select between program states A0 and A1 for Alice resp.

B0 and B1 for Bob.

Also, both Alice and Bob store the root a0 resp. b0 of their own hash chain.2

This value does not change during the execution of the protocol. Note that after
the initial phase, and before the first epoch n − 1, Alice’s state is i = n − 1,
AcceptKey(bn), and A0, and Bob’s is i = n − 1, AcceptKey(an), and B0. One
epoch i can be described as follows:

A0 (Alice’s initial program state)
Wait for xi (from the outside), then CommitMessage(xi ,i):
1. compute di = m(ai, xi) (using ai as the key to authenticate xi);
2. send (di, xi); goto A1.

A1 Wait for a message b′ (supposedly from Bob), then
1. if h(b′) = bi+1

then bi := b′; AcceptKey(bi); send ai; set i := i− 1; goto A0
else goto A1.

B0 (Bob’s initial program state)
Wait for a message (d′, x′) (supposedly from Alice), then
1. send bi and goto B1.

B1 Wait for a message a′ (supposedly from Alice), then
1. if h(a′) = ai+1 then

(a) ai := a′; AcceptKey(ai);
(b) if m(ai, x

′) = d′

then xi := x′; AcceptMessage(xi,i)
(else do not accept any message in epoch i);

(c) set i := i− 1; goto B0
else goto B1

Figure 1 gives a simplified view on the protocol.

1 Several messages can be sent per epoch. For ease of presentation, we combine them.
2 Alice can either store a0 and compute the ai on demand by making i calls to h, or

store all the ai using n units of memory. Her third option is to implement a time-
storage trade-off, requiring only about log2 n units of memory and log2

√
n calls to

h [6]. Similarly for Bob and the bi.

Concrete Security for Entity Recognition: The Jane Doe Protocol 163

d := m(a , x)iii

else wait for new a i

a i

i(x , i)

i(b)

(a)i

(x , i)i

ii

ib

x , d

if h(b)=b
then AcceptKey

i i+1

else wait for new ib if ih(a)=a i+1
then AcceptKey

xi
CommitMessage

if m(a , x) = d i i i
then AcceptMessage

Alice Bob

Fig. 1. Simplified description of one epoch of the protocol

Reliability: The following reliability properties are met:

Soundness: The protocol is sound: If all messages are faithfully relayed, Alice
commits to the message xi in the beginning of epoch i and Bob accepts xi

at the end of the same epoch.
Recoverability: Repeating old messages cannot harm security – Eve may know

them anyway. We thus allow Alice to re-send ai+1 and (xi, di) if she is in
state A1 and has been waiting too long for the value bi from Bob. Similarly,
if Bob is in state B1 and has been waiting too long for ai, Bob sends the
value bi again. This allows our protocol to recover. On the other hand, if
Bob receives a faulty (x′, d′) �= (xi, di), he will refuse to accept any message
in epoch i. Recovering means that soundness can be restored in epoch i− 1.

4 Security

4.1 Building Blocks and Assumptions

The main cryptographic building block in this paper is a MAC

m∗ : {0, 1}s × {0, 1}∗ → {0, 1}s

We fix some constant message const and define the two functions m and h we
actually use in the protocol

h : {0, 1}s → {0, 1}s, h(k) = m∗(k, const), and

m : {0, 1}s × {0, 1}∗ → {0, 1}c, m(k, x) = truncate-to-c-bit(m∗(k, x)).

In the case of m, a restriction is x �= const. If neccessary, we we can, e.g., define
const as a single zero-bit, and prepend a single one-bit to every message x.

Security against adaptive chosen message attacks has been established as a
standard requirement for MACs:

164 S. Lucks et al.

Assumption 1. It is infeasible for the adversary to provide an existential
forgery in an adaptive chosen message attack scenario against m∗. I.e., the
adversary is given access to an authentication oracle, computing ti = m(y, xi)
for the adversary, where y ∈r {0, 1}s is secret and the adversary is allowed to
choose arbitrary messages xi. “Adaptive” means that the adversary is allowed to
choose xi after having seen ti−1. The adversary wins if she can produce a pair
(x′, t′) with m(y, x′) = t′, without previously asking the oracle for m(y, x′).

Unfortunately, this standard assumption is not quite sufficient for our purposes.
Below, we will not make use of assumption 1 at all, but instead, define two similar
assumptions. Firstly, we use m instead of m∗ as a MAC, i.e., the truncation of
m∗ to c ≤ s bit. The security of m does not follow from the security of m∗. So
we need to make the same assumption for m instead of m∗:

Assumption 2. It is infeasible for the adversary to provide an existential
forgery in an adaptive chosen message attack scenario against m.

Furthermore, we use h to build a hash chain, which implies that h must be
one-way. It may be surprising, but m∗ being secure against existential forgery
is not sufficient for the one-wayness of h = m∗(·, const). If, given k∗ = h(k) =
m∗(k, const), the adversary can find the secret k, then she can forge messages.
But the adversary could just as well find some value k′ �= k with k∗ = h(k′) =
m∗(k′, const) without necessarily being able to to generate existential forgeries.
We thus need to exclude this case:

Assumption 3. The function m∗ is one-way. I.e., given a random k ∈ {0, 1}s,
and a message const, it is infeasible to find any k′ ∈ {0, 1}s with m∗(k, const) =
m∗(k′, const).

Note that inverting m∗ (i.e., breaking the one-wayness of h) would either allow
us to find a secret key and thus to forge messages, or provide a 2nd preimage,
i.e., a value k′ �= k with h(k) = h(k′). Indeed, for our formal proof of security
we could replace assumption 3 by assuming 2nd preimage resistance. The proof
would be slightly more complicated, though.

4.2 Proving Security for Epoch 0

Theorem 1. If the adversary can efficiently break epoch 0 of the protocol, she
can efficiently break either assumption 2 or assumption 3.
Concrete security. If she can break the protocol in time t with probability p, she
can either invert h or forge a message for m in time ≤ t + 2t∗ with probability
p/2. Here, t∗ is the time to evaluate either h or m, which ultimately boils down
to the time for evaluating m∗.

Proof. Eve can send the following messages (see also left side of Figure 2):

(1) If Alice’s program state is A0: x0 to Alice.
Alice responds d0 := m(a0, x0) (and x0, but x0 is known to Eve, anyway).

Concrete Security for Entity Recognition: The Jane Doe Protocol 165

Left: The four types of messages Right: Eve, connected to some game

Fig. 2. Eve in epoch i

(2) If Bob’s program state is B0: (x′, d′) to Bob – with x′ �= x0.
(3) If Alice’s program state is A1: b′ to Alice – with h(b′) = b1.
(4) If Bob’s program state is B1: a′ to Bob – with h(a′) = a1.

Remember that she is successful if she gets Bob to AcceptMessage(x′,i) for a
message x′ that Alice has not send in epoch i.

Note that (3)-like messages b′ with h(b′) �= b1 to Alice do not affect Alice’s
state; Alice ignores them. Since Eve can check h(b′) = b1 on her own, we assume
w.l.o.g. Eve not to send any message b′ with h(b′) �= b1 to Alice. Similarly, for
(4)-like messages, we assume, Eve not to send any a′ with h(a′) �= a1 to Bob.

In order to successfully attack, Eve must send exactly one message (1) to Alice
(to ensure CommitMessage(x0 , 0)) and both messages (2) and (4) to Bob (for
AcceptMessage(x′, 0)). Eve may send at most one message (3) to Alice. W.l.o.g.,
we assume Eve to send exactly one message (3). (If she wins her attack game
without sending message (3), she has sent message (2) and did learn b0 from
Bob. She can always send a final message (3) with b′ = b0.)

While (1,2,3,4) is the protocol-defined “natural” order for sending the mes-
sages, Eve is not bound to this order. There are some restrictions though:

– Message (1) must be sent before message (3). Until she knows and has com-
mitted to x0, Alice wouldn’t even listen to message (3).

– Also, Bob wouldn’t listen to (4) before having received (2).

In the context of this proof, we just need to distinguish between two cases, which
we represent by two games: Either message (2) is sent before message (3), or the
other way. Consider disconnecting Eve from Alice and Bob, and connecting her
with either of two games (cf. right side of Figure 2). If we win such a game, we
can either invert h or forge messages. We will show that Eve cannot distinguish
her participation in such a game from the “real” attack against the protocol and
show that a successful attack by Eve is essentially the same as us winning one of
our games. So at the end, if Eve can feasibly attack the protocol, we can feasibly
invert h(·) = m(·, const) or forge messages for m∗. The games are the following:

1st game (inverting h): Given k∗ = h(k) = m∗(k, 0), for a uniformly distributed
random k, find some k′ with m∗(k′, 0) = k∗.

166 S. Lucks et al.

– Randomly choose a0, compute a1 := h(a0).
– If Eve sends message

• (1), the value x0: compute and respond d0 := m(a0, x0).
• (2): abort the game.
• (4): Report an error! (Message (2) must be sent before message (4), and

this algorithm aborts after message (2).)
– When Eve sends (3), the value b′: print k′ := b′ and stop.

The values provided to Eve during the 1st game are distributed exactly as in
the case of the real attack game. Namely, a0 and b0 are independent uniformly
distributed random values, and all the other values are derived from a0 and b0.
Note that if Eve sends message (3) before message (2), the game succeeds; else
it doesn’t. To compute a1, we call h. To compute d0, we call m. Thus, we need
two function calls. As Eve herself runs in time t, the game takes time t + 2t∗.

2nd game (existential forgery for m): Consider an unknown random y, known
y∗ = h(y), and the ability to ask an oracle for m(y, ·). Proceed as follows.

– Set a1 := y∗; randomly choose b0; compute b1 := h(b0).
– If Eve sends message

• (1), the value x0: ask the oracle for the response d0 = m(y, x0).
• (3): abort the game.
• (4): Report an error!

– When Eve sends (2), the pair (x′, d′): print (x′, d′) and stop.

Eve’s attack succeeds if and only if (x′, d′) is an existential forgery.
Similarly to above, the distribution of values provided during the game is

identical to the real attack game. The only computation during the game is the
one for b1 := h(b0), so the game needs time t + t∗ ≤ t + 2t∗.

Completing the proof: The 1st game is the counterpart of the second game: one
succeeds if message (2) is sent before message (3), the other one, if message (3) is
sent before message (2). Eve doesn’t know which game we play – or rather, that
we are playing games with her at all, instead of mounting the “real” attack. So
Eve still succeeds with probability p. If we randomly choose the game we play,
we succeed with p/2. Neither game takes more than time t + 2t∗.
�

4.3 Security in Any Epoch i

At a first look, it may seem that the security proof for epoch 0 is also valid for
epochs i > 0. But in epoch 0, the keys for the MAC m∗ are uniformly distributed
random values a0 and b0 in {0, 1}s, while later, we use ai and bi:

– Our security assumptions for m∗ require uniformly distributed random keys.
– Our security assumptions for m∗ do not ensure the uniform distribution of

the output values ai = h(ai−1) = m∗(ai−1, 0) and bi = . . .

Concrete Security for Entity Recognition: The Jane Doe Protocol 167

Now m∗ could be defined such that the one-way function h(x) = m∗(x, 0) per-
mutes over {0, 1}s. This would solve our problem, but restrict our choices m∗

too much. In practice, however, most cryptographic MACs can reasonably be
assumed to behave pseudorandomly. Thus, we make an additional assumption.

Let u ∈r {0, 1}s be a random variable chosen according to the uniform dis-
tribution. Let w be a random variable chosen by applying the function h to a
uniformly distributed input, i.e., v ∈r {0, 1}s, and w := h(v). Let A be a dis-
tinguishing adversary for u and w. The advantage AdvA of A in distinguishing
u from w is defined in the usual way:

AdvA =
∣∣Pr[A(u) = 1]− Pr[A(w) = 1]

∣∣
Assumption 4. No efficient adversary A can feasibly distinguish the distribu-
tion of the random variable w = h(v), v ∈r {0, 1}s, from the distribution of
u ∈r {0, 1}s. I.e., for all efficient A the advantage AdvA is negligible.

Recall that h is defined by h(·) = m∗(·, const). For typical MACs m∗, this
assumption is highly plausible.

We use assumption 4 to prove the pseudorandomness of values a1 := h(a0),
. . . , an := h(an−1) for a random a0, along an entire hash chain.

Lemma 1. If, for any i ∈ {1, 2, . . . , n− 1}, the adversary can efficiently distin-
guish ai from ai−1, she can also distinguish a1 from a0, thus breaking
Assumption 4.
Concrete security. Let i ∈ {1, 2, . . . , n− 1} be given. If the adversary can distin-
guish ai from ai−1 in time t with an advantage α, she can distinguish a1 from
a0 im time at most t + (i − 1) ∗ t∗ with the same advantage α. Here, t∗ is the
time for evaluating h.

Proof. Let a value r0 be given, either distributed like a0 or like a1. Compute
r1 := h(r0) . . . , ri−1 := h(ri−2). Now, ri−1 is either distributed like ai−1, or like
ai, and we can distinguish between both options for ri−1 in the same time and
with the same advantage as for ai−1 and ai. Computing ri−1 takes at most i− 1
calls to h.
�

One more issue has to be taken into account. In the single-epoch case, we argued
that finding 2nd preimages, i.e., values a′ �= ai with h(a′) = h(ai) = ai+1
when given ai, is infeasible under our assumptions. But when dealing with more
than one epoch, Eve might possibly trick Alice into committing to some new
message xi−1 and sending di := m(ai−1, xi−1) – even before Bob has seen ai

(see below). In contrast to an ordinary 2nd preimage attack, Eve now does not
just know ai, but she also has some additional information about ai−1. Driven
by the usual reasonable pessimism, we even assume Eve to know ai−1 itself. We
consider finding an a′ �= ai with h(a′) = h(ai) = ai+1 as a guided 2nd preimage.
Theoretically, such guided 2nd preimages might be possible, even under all the
assumptions we made so far. Thus, we make one additional assumption.

168 S. Lucks et al.

Assumption 5. It is infeasible to find guided 2nd preimages for h. I.e., given
a0 ∈r {0, 1}s, a1 = h(a0), and a2 = h(a1), it is infeasible to find any a′ �= a1
with h(a′) = a2.

Recall that the adversary wins in epoch i if she can make Alice to CommitMes-
sage(xi,i) and Bob to AcceptMessage(x′, i) for any x′ �= xi.

Theorem 2. If there is any epoch i ∈ {0, . . . , n−1} in which the adversary can
feasibly win with significant probability, at least one of the assumptions 2, 3, 4,
or 5 is false.
Concrete security. If she can win in epoch i, in time t with probability p, she
can either invert h, forge a message for m, or generate a guided 2nd preimage
for h in time ≤ t + 2t∗ with probability p/4. Or she can distinguish (ai, bi) from
(ai−1, bi−1) with advantage p/4. Here, t∗ is the time for calling either h or m,
which ultimately boils down to calling m∗.

Proof. We say, the protocol in a “synchronised state”, if there is an i ∈ {0, . . . , n}
such that Bob knows ai but not ai−1, while Alice knows bi but not bi−1. I.e.,
the protocol is in a synchronised state if both Alice and Bob are in the same
epoch i− 1. After the initialisation, both are in epoch n− 1, hence the protocol
is in a synchronised state.

For the proof, we need to analyse independently how Eve can benefit from
non-synchronised states, and how she can benefit from synchronised states.

Non-synchronised states: Consider Alice and Bob to be in epoch i, thus the
protocol state is synchronised. Alice will not move forward into epoch i − 1
without having seen bi with h(bi) = bi+1. If Eve could provide such a bi without
obtaining it from Bob, she could win in epoch i anyway. Thus we can safely
assume that Alice does not move forward before Bob sends bi. For the same
reason, we may assume Bob not moving forward to epoch i− 1 without having
seen ai from Alice. Bob only sends bi after having seen ai from Alice. Thus, Bob
can never be ahead of Alice. Temporarily, Alice can be ahead of Bob – especially
if Eve does not forward ai to Bob. This would give a protocol state with Alice
living in epoch i − 1 while Bob still lives in epoch i. But without having seen
bi−1, Alice cannot move ahead into epoch i−2, and Bob does not send this while
he is still in epoch i.

At this point, Eve has but two options to proceed. One is to forward ai to
Bob, thus creating a new synchronised state. The second is to choose a message
xi−1 and send it to Alice, who responds with the authentication tag di−1 =
m(ai−2, xi−1). If, after sending xi−1 to Alice, Eve sends the value ai to Bob
which she has seen before, there is no gain for Eve. The order of messages has
changed, but the messages are the same, anyway. To benefit from the second
option, Even has to send a value a′ �= ai with h(a′) = h(ai) = ai+1 to Bob.
If Eve could find such a value a′, she could find guided 2nd preimages, thus
breaking assumption 5.

Synchronised states: Now consider both Alice and Bob being in some epoch i,
and Eve trying to win in this epoch. This part of the proof is done by induction.

Concrete Security for Entity Recognition: The Jane Doe Protocol 169

We start with epoch 0. Recall that if both assumption 2 and assumption 3 hold,
the adversary cannot feasibly win in epoch 0.

Now assume that no efficient adversary can win in epoch epoch (i-1), but there
is an efficient algorithm to win epoch i with significant probability. Clearly, we
can use this algorithm to distinguish (ai−1, bi−1) from (ai−2, bi−1), thus breaking
assumption 4.

Concrete security (sketch): This part is quite similar to the proof of theorem 1,
the single-epoch case. Instead of two different games, we need to define four:

1. One game to invert h (like the 1st game in the proof of theorem 1).
2. One game to forge messages for m (like the 2nd game above).
3. One game to generate guided 2nd preimages for h.
4. One game to distinguish (ai−1, bi−1) from (ai−2, bi−1).

If Eve wins, we succeed in at least one of the games. Which game we succeed in
depends on Eve’s behaviour. As we must commit to one game in advance (i.e.
before we know how Eve behaves), the probability of success decreases from p
(for Eve) to p/4 (for us).
�

5 Final Remarks and Conclusion

The Jane Doe protocol does not provide security against denial of service attacks.
I.e., if Eve sends a fake di in epoch i, Bob will send bi and then not accept the
“real” di Alice may later send.

Freshness means that a message has been committed to recently. In our case,
when Bob accepts message xi in epoch i, he can be sure that Alice (following the
protocol rules) did not commit to that message before she had seen and verified
Bob’s response bi+1 from the previous epoch. In this sense, our protocol ensures
the freshness of the messages authenticated.

The messages are “fresh” by belonging to the current epoch. But Eve is able
to stretch any epoch at her will. Assume, e.g., that Alice commits to a message
mi =“I am well”, but Eve delays forwarding di = m(ai, “all is well”) to Bob.
Later, Alice would need to raise an alarm, but instead Eve forwards di to Bob
who sends bi, which Eve immediately forwards to Alice. The protocol logic would
require Alice to reply ai, thus confirming that she is well. Instead of confirming
such an outdated message, Alice could simply terminate communication with
Bob. Eve has the power to cut the communication between Alice and Bob,
anyway, and Bob will eventually notice that Alice doesn’t respond any more.

Assuming some underlying primitive (from which we derive m∗) to behave like
a random oracle is theoretically sound and would allow us to greatly simplify
our security proofs. But in practice, cryptographic primitives never behave like
random oracles. Results in the random oracle model hardly provide any guideline
for the choice of a good primitive. Our very specific standard model assumptions
on m∗ are meant to serve as such a guideline.

Note that we have two functions, a message authentication code (MAC)
m and a hash function h, both of which are derived from another MAC m∗.

170 S. Lucks et al.

In principle, one could choose m and h independently from each other, with-
out deriving them from the same underlying primitive, as has been suggested
in [12]. Under appropriate assumptions, one can still prove the security of the
Jane Doe protocol. This requires more complex and less natural assumtions than
those made here. Even if m is a secure MAC and h is modelled as a random
oracle, the protocol may actually be insecure[13]. Deriving both m and h from
one single primitive m∗ thus saves us from some difficult technical issues.

Furthermore, we believe that deriving both h and m from the same underlying
primitive is natural and meets practical necessities very well.

Conclusions: Entity recognition is an adopted security goal especially useful
for constrained pervasive applications. The Jane Doe protocol provides entity
recognition. The protocol is efficient, runs on on very low-end devices, and is
provably secure. We believe this to be a significant step into the direction of
provably secure protocols for low-end devices.

References

1. Anderson, R., Bergadano, F., Crispo, B., Lee, J.-H., Manifavas, C., Needham, R.:
A New Family of Authentication Protocols. ACM Operating Systems Review 32
(1998)

2. Arkko, J., Nikander, P.: Weak Authentication: How to Authenticate Unknown
Principals without Trusted Parties. In: Proc. Security Protocols Workshop 2002
(2002)

3. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773. Springer, Heidelberg (1994)

4. Bird, R., Gopal, I., Herzberg, A., Janson, P., Kutten, S., Molva, R., Yung, M.:
Systematic design of two-party authentication protocols. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576. Springer, Heidelberg (1992)

5. Buonadonna, P., Hill, J., Culler, D.: Active Message Communication for Tiny Net-
worked Sensors. In: Proc. 20th Joint Conference of the IEEE Computer and Com-
munications Societies. IEEE, Los Alamitos (2001)

6. Coppersmith, D., Jakobsson, M.: Almost Optimal Hash Sequence Traversal. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357. Springer, Heidelberg (2003)

7. Dolev, D., Yao, A.: On the Security of Public Key Protocols. IEEE Trans. Infor-
mation Theory 29(2), 198–208 (1983)

8. Dielsma, P., Mödersheim, S., Vigano, L., Basin, D.: Formalizing and Analyzing
Sender Invariance. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S.
(eds.) FAST 2006. LNCS, vol. 4691. Springer, Heidelberg (2007)

9. Gollmann, D.: Protocol Design: Coming Down from the Cloud (Invited Talk). In:
Workshop on RFID and Lightweight Crypto 2005 (2005),
http://www.iaik.tugraz.at/research/krypto/events/

10. Hammell, J., Weimerskirch, A., Girao, J., Westhoff, D.: Recognition in a Low-Power
Environment. In: Proc. ICDCSW 2005. IEEE, Los Alamitos (2005)

11. Hodjat, A., Verbauwhede, I.: The Energy Cost of Secrets in Ad-hoc Networks. In:
IEEE Circuits and Systems workshop on wireless communications and networking.
IEEE, Los Alamitos (2002)

http://www.iaik.tugraz.at/research/krypto/events/

Concrete Security for Entity Recognition: The Jane Doe Protocol 171

12. Lucks, S., Zenner, E., Weimerskirch, A., Westhoff, D.: Entity Recognition for Sensor
Network Motes. In: Proc. INFORMATIK 2005, vol. 2, pp. 145–149 (2005); LNI Vol.
P-68, ISBN 3-88579-379-0 (an early 5-page abstract of the current research)

13. Lucks, S., Zenner, E., Weimerskirch, A., Westhoff, D.: Concrete Security for Entity
Recognition: The Jane Doe Protocol (Full Paper), eprint, full version of the current
paper

14. Mitchell, C.: Remote User Authentication Using Public Information. In: Paterson,
K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898. Springer, Heidelberg
(2003)

15. Russell, S.: Fast Checking of Individual Certificate Revocation on Small Systems.
In: Proc. 15th Annual Computer Security Application Conference. IEEE, Los
Alamitos (1999)

16. Seigneur, J.-M., Farrell, S., Jensen, C., Gray, E., Chen, Y.: End-to-end trust in per-
vasive computing starts with recognition. In: Hutter, D., Müller, G., Stephan, W.,
Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802. Springer,
Heidelberg (2004)

17. Stajano, F., Anderson, R.: The Resurrecting Duckling: Security Issues for Ad-hoc
Wireless Networks. In: Malcolm, J.A., Christianson, B., Crispo, B., Roe, M. (eds.)
Security Protocols 1999. LNCS, vol. 1796. Springer, Heidelberg (2000)

18. Weimerskirch, A., Westhoff, D.: Zero Common-Knowledge Authentication for
Pervasive Networks. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS,
vol. 3006. Springer, Heidelberg (2004)

19. Weimerskirch, A., Westhoff, D., Lucks, S., Zenner, E.: Efficient Pairwise Authenti-
cation Protocols for Sensor and Ad-hoc Networks. In: Sensor Network Operations.
IEEE Press, Los Alamitos (2004)

Efficient and Strongly Secure Password-Based
Server Aided Key Exchange

(Extended Abstract)

Kazuki Yoneyama�

The University of Electro-Communications
yoneyama@ice.uec.ac.jp

Abstract. In ACNS’06, Cliff et al. proposed the password-based server
aided key exchange (PSAKE) as one of password-based authenticated
key exchanges in the three-party setting (3-party PAKE) in which two
clients with different passwords exchange a session key by the help of
their corresponding server. Though they also studied a strong security
definition of 3-party PAKE, their security model is not strong enough
because there are desirable security properties which cannot be cap-
tured. In this paper, we define a new formal security model of 3-party
PAKE which is stronger than the previous model. Our model captures
all known desirable security requirements of 3-party PAKE, like resis-
tance to key-compromise impersonation, to leakage of ephemeral private
keys of servers and to undetectable on-line dictionary attack. Also, we
propose a new scheme as an improvement of PSAKE with the optimal
number of rounds for a client, which is secure in the sense of our model.

Keywords: password-based key exchange, password-based server aided
key exchange, leakage of internal states, undetectable on-line dictionary
attack.

1 Introduction

Recently, password-based authenticated key exchange (PAKE) protocols are re-
ceived much attention as practical schemes in order to share a mutual session
key secretly and reliably. Basic PAKE schemes enable two entities to authen-
ticate each other and agree on a large session key from a human memorable
password. Thus, PAKE schemes are regarded as practical key exchange schemes
because entities do not have any pre-shared cryptographic symmetric key, certifi-
cate or support from a trusted third party. Such basic schemes which two entities
pre-share a common password are classified into a model called same password-
authentication (SPA) model. The SPA model is most cultivated PAKE model
in previous studies and is usually used for client-to-server key exchanges. The
concept of PAKE was first introduced by Bellovin and Merritt [1] in 1992 known
as encrypted key exchange (EKE). First construction of password-only PAKE

� Supported by JSPS Research Fellowships for Young Scientists.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 172–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient and Strongly Secure PSAKE 173

in SPA model was proposed by Jablon [2] in 1996 known as simple password
exponential key exchange (SPEKE). Formal definitions for this setting were first
given by Bellare et al. [3] and Boyko et al. [4], and a concrete construction was
also given in the random oracle (RO) model. And, various protocols have been
proposed to achieve secure PAKE scheme in SPA model.

1.1 Password-Based Key Exchange in the 3-Party Setting

With a variety of communication environments such as mobile network, it is
considered as one of main concerns to establish a secure channel between clients
with different passwords. Several schemes have been presented to provide PAKE
between two entities with their different passwords, called different password-
authentication (DPA) model. Practically, clients prefer to remember very few
passwords but not many. Consequently, PAKE in DPA model is useful to solve
this problem. In DPA model, entities carry out key exchange with the assistance
of intermediate server because entities have no secret common information. So, it
is usually called password-based authenticated key exchanges in the three-party
setting (3-party PAKE) and is usually used for client-to-client key exchanges.

Basic security requirements of 3-party PAKE are known-key security (KS)
(i.e., the session key is not compromised in the face of adversaries who have
learned some other session keys), basic impersonation (BI) (i.e., the adversary
cannot impersonate any honest client to the other client of the session without
the client’s password), and resistance to off-line dictionary attacks (offDA). The
resistance to offDA means that there is no successful adversary as follows: The
adversary guesses a password and verifies his guess off-line. No participation of
the server is required, so the server do not notice the attack. If his guess fails
the adversary tries again with another password, until he finds the proper one.

Though 3-party PAKE has been considered in early papers [5,6], these
schemes assume trusted intermediate server perfectly because the server can
know the session key of clients. Several works [7,8,9] considered key privacy
against passive server (KP) (i.e., a semi-honest server cannot know information
of the session key of clients). However, none of their schemes enjoys provable
security. Indeed, a scheme [7] is known to be vulnerable to an undetectable on-
line dictionary attack (UDonDA) [10]. The central idea of UDonDA is that an
attacker guesses a password of a client, completes some computations with it and
sends the server the result as a part of his request for a session key. Then, if the
server cannot tell this request from the request from honest clients, the server
performs some further computations on the result using the correct password of
the client and responses. This response helps the attacker to verify his guess. So,
the server is used as an oracle without taking notice of the attack.

First formal security definition of 3-party PAKE (AFP model) was proposed
by Abdalla et al. [11]. They also provided a generic method to construct provably
secure 3-party PAKE protocol from 2-party PAKE. To reduce the complexity
of generic construction, the first concrete protocol of provably secure 3-party
PAKE protocol in the random oracle model is proposed in [12]. Wang and Hu
pointed out that schemes in [11,12] are vulnerable to UDonDA, and provided a

174 K. Yoneyama

stronger definition of 3-party PAKE (WH model) which captures resistance to
UDonDA.

Cliff et al. [13] proposed another security definition of 3-party PAKE (CTB
model) which is an extension of the Canetti-Krawczyk model [14] for 2-party
AKE. Also, they proposed a variant of 3-party PAKE, called the password-based
server aided key exchange (PSAKE), which has the similar setting of 3-party
PAKE except the server uses password and encryption based authenticators.
The encryption based authenticator in PSAKE means that a client has the
server’s public-key as well as the password between with the server, and the
server has his private-key as well as clients’ passwords. They also prove security
of PSAKE in the standard model, i.e., without random oracle. By helping of
the encryption based authenticator, PSAKE has strong security which cannot
be prevent in password-only setting 3-party PAKE schemes. Indeed, PSAKE
seems to be secure against leakage of ephemeral private keys of servers (LEP)
(i.e., even if all the session specific ephemeral private key of the server in a
session is compromised, then secrecy of the session key is not compromised)1

and against key-compromise impersonation (KCI) (i.e., when a client’s password
is compromised, this event does not enable an outside adversary to impersonate
other entities to the client).

1.2 Need for New Security Models

AFP model, CTB model and WH model formalize indistinguishability of session
keys against outside adversaries. However, each model has some uncaptured
security requirement, respectively. For example, AFP model and WH model
cannot grasp the notion of forward secrecy (FS) (i.e., secrecy of the past session
keys after leakage of passwords). Also, CTB model and WH model cannot grasp
KP. Furthermore, in AFP model and CTB model, resistance to UDonDA is out
of scope. In addition, there are some security requirements which is not captured
in these models (see Section 2.2).2 Indeed, schemes in [11,15] are insecure against
LEP because these schemes include 2-party PAKE between a client and a server.
In 2-party PAKE, if an ephemeral private key of either party is leaked, then
the password of the party is easily derived by offDA because the session key
deterministically depends on the client’s ephemeral key, static password, and
communication received from the other party. Thus, the secrecy of the session
key is not guaranteed. Therefore, by LEP the temporary session key is revealed
and schemes in [11,15] are clearly insecure against BI. Similarly, the scheme in

1 This property is not guaranteed when the ephemeral private key of a client of the
session is leaked. In this case, password of the client is easily derived by off-line
dictionary attacks because the session key deterministically depends on the client’s
ephemeral key, static password, and communication received from other parties.
Thus, secrecy of the session key is not guaranteed. So, we only consider leakage with
respect to the server.

2 Indeed, the scheme in [13] may be secure against UDonDA and satisfies other de-
sirable security requirements. However, CTB model itself does not support these
requirements.

Efficient and Strongly Secure PSAKE 175

Table 1. Comparison between previous schemes and our scheme

setting of # of rounds UDonDA LEP
setup for a client

[11] password-only 2 + P insecure insecure
[12] password-only 2 insecure insecure
[15] password-only 2 + P secure insecure
[13] password and public-key crypto 3 unproven unproven

Our scheme password and public-key crypto 2 secure secure

Where P denote the number of moves of a secure 2-party PAKE.

[12] is also insecure against LEP because from the ephemeral private key of the
server passwords can be revealed by offDAs.

1.3 Our Contribution

We define a new stronger security model of 3-party PAKE than previous models.
Our model is based on the recent formal model of authenticated key exchange by
LaMacchia et al. [16]. The major difference between our model and previous mod-
els consists in adversary’s available oracle queries, specifically, revealing of static
secret or ephemeral secret separately, and in adversary’s capability in the target
session, i.e., the adversary can obtain static secrets of all entities and ephemeral
secrets of the server in the target session. Therefore, our model can represent re-
sistance to complicated attacks which cannot be captured in previous models.

Also, we construct a new 3-party PAKE scheme based on Abdalla-Pointcheval
scheme in [12]. Our scheme is the same setting as PSAKE (i.e., use of public-
key crypto). Also, our scheme only needs the optimal number of rounds, i.e.,
2-rounds between a client and the server, as Abdalla-Pointcheval scheme. Thus,
our scheme is more efficient than general constructions in [11,15] and PSAKE.
Furthermore, we show that our scheme is secure in the sense of our model in the
random oracle model. While public-key encryption schemes are time-consuming,
as same as PSAKE, by helping of the server’s public-key crypto, our scheme
can satisfy strong security like resistance to LEP and to KCI. Based on our
knowledge, our scheme is the first 3-party PAKE scheme which resistance to
LEP is proved.

The comparison between previous schemes and ours is shown in Table 1.

2 Preliminaries

2.1 3-Party PAKE

3-party PAKE schemes contain three parties (two clients and a server) who will
engage in the protocol. We denote the set of clients by U and the server by S. Let
each password be pre-shared between a client and the server and be uniformly
and independently chosen from fixed low-entropy dictionary D of the size |D|.

176 K. Yoneyama

Note that clients do not need to share passwords with other clients. In addition,
in PSAKE and our scheme, the server pre-establishes his public-key and private-
key pair and goes public the public-key. We denote with U l the lth instance which
clients U ∈ U runs. Also, we denote with Sl the lth instance which the server
S runs. All instances finally output accept symbol and halt if their specified
execution is correctly finished. The session identifier sidli

P of an instance P li is
represented via matching conversations, i.e., concatenations of messages which
are sent and received between clients in the session, along with their identity
strings, (initialized as null). Note that, we say that two instances P li

i and P
lj
j

are partnered if both P li
i and P

lj
j output accept, both P li

i and P
lj
j share the

same sid but not null, and the partner identification set for P li
i coincides with

the one for P
lj
j .

2.2 Problems of Previous Models

In AFP model, FS, and resistance to KCI, LEP and UDonDA cannot be cap-
tured. First, resistance to KCI and LEP, and FS cannot be represented because
adversary capabilities do not include any query for corruption of parties in the
test session. Therefore, conditions of KCI, LEP and FS cannot be represented.
Also, resistance to UDonDA is out of scope in AFP model. They count UDonDA
in the number of queries for message modifications which are limited to certain
numbers. Hence, in AFP model, UDonDA is not discriminated from detectable
on-line dictionary attacks.

Since CTB model is the extension for 3-party PAKE from the Canetti-
Krawczyk model [14] for 2-party AKE, CTB model inherits uncaptured security
properties from the Canetti-Krawczyk model. More specifically, in CTB model,
KP, and resistance to KCI, LEP and UDonDA cannot be captured. First, re-
sistance to KCI cannot be represented because adversary capabilities do not
include any query for corruption of parties in the test session before completing
the session. And, resistance to LEP cannot be represented because adversary
capabilities do not include any query for reveal of ephemeral keys of parties in
the test session. Therefore, conditions of KCI and LEP cannot be represented.
Also, KP and resistance to UDonDA are out of scope in CTB model. Though
KP requires that a passive server (i.e., passwords of clients can be known), can-
not distinguish the real session key in a session and a random key, there is no
definition which captures such a situation. Thus, KP is not guaranteed even if
the security in the CTB model is satisfied. As AFP model, they count UDonDA
in the number of queries for message modifications which are limited to certain
numbers. Hence, in CTB model, UDonDA is not discriminated from detectable
on-line dictionary attacks.

WH model can be regarded as AFP model plus resistance to UDonDA. Thus,
FS, and resistance to KCI and LEP cannot be captured from the same reason
as AFP model.

Efficient and Strongly Secure PSAKE 177

3 New Model: Strong 3-Party PAKE Security

3.1 Adversary Capabilities

An outside adversary or a malicious insider can obtain and modify messages
on unauthenticated-links channels. Furthermore, the adversary is given oracle
access to client and server instances. We remark that unlike the standard notion
of an “oracle”, in this model instances maintain state which is updated as the
protocol progresses.

– Execute(U l1
1 , U l2

2 , Sl3) : This query models passive attacks. The output of
this query consists of the messages that were exchanged during the honest
execution of the protocol among U l1

1 , U l2
2 and Sl3 .

– SendClient(U l, m) : This query models active attacks against a client. The
output of this query consists of the message that the client instance U l would
generate on receipt of message m.

– SendServer(Sl, m) : This query models active attacks against the server. The
output of this query consists of the message that the server instance Sl would
generate on receipt of message m.

– SessionKeyReveal(U l) : This query models misuses of session keys. The out-
put of this query consists of the session key held by the client instance U l if
the session is completed for U l. Otherwise, return ⊥.

– StaticKeyReveal(P) : This query models leakage of the static secret of P (i.e.,
the password between the client and the server, or the private information
for the server). The output of this query consists of the static secret of P .
Note that, there is no giving the adversary full control of P or revealing any
ephemeral secret information.

– EphemeralKeyReveal(P l) : This query models leakage of all session-specific
information (ephemeral key) used by instance P l. The output of this query
consists of the ephemeral key of the instance P l.

– EstablishParty(U, S, pwU) : This query models the adversary to register a
static secret pwU on behalf of a client. In this way the adversary totally
controls that client. Clients against whom the adversary did not issue this
query are called honest.

– Test(U l) : This query doesn’t model the adversarial ability, but indistin-
guishability of the session key. At the beginning a hidden bit b is chosen.
If no session key for the client instance U l is defined, then return the un-
defined symbol ⊥. Otherwise, return the session key for the client instance
U l if b = 1 or a random key from the same space if b = 0. Note that, the
adversary can make an only Test query at any time during the experiment.
The target session is called the test session.

– TestPassword(U, pw′) : This query doesn’t model the adversarial ability, but
no leakage of the password. If the guess password pw′ is just the same as the
client U ’s password pw, then return 1. Otherwise, return 0. Note that, the
adversary can an only TestPassword query at any time during the experiment.

178 K. Yoneyama

3.2 Definition of Indistinguishability

Firstly, we consider the notion of indistinguishability. This notion provides se-
curity properties with respect to session keys, i.e., KS, FS, KP, resistance to BI,
resistance to KCI and resistance to LEP. Note that, to capture notions of FS
and resistance to KCI, an adversary can obtain static keys in the test session.

The adversary is considered successful if it guesses whether the challenge is
the true session key or a random key. The adversary is allowed to make Execute,
SendClient, SendServer, SessionKeyReveal, StaticKeyReveal, EphemeralKeyReveal,
EstablishParty and Test queries, and outputs a guess bit b′. Let Succind denote
the event that b′ = b where b is the random bit chosen in the Test(U l) query.
Note that, we restrict the adversary such that U l and the partnered client Ū l′

of the session are honest, and none of the following conditions hold:

1. The adversary reveals the session key of sidl
U or of sidl′

Ū .
2. The adversary asks no SendClient(U l, m) or SendClient(Ū l′ , m′) query. Then

the adversary either makes queries:

– EphemeralKeyReveal(U l) or
– EphemeralKeyReveal(Ū l′).

3. The adversary asks SendClient(Ū l′ , m) query. Then the adversary either
makes queries:

– StaticKeyReveal(U),
– StaticKeyReveal(S),
– EphemeralKeyReveal(U i) for any session i or
– EphemeralKeyReveal(Ū l′).

4. The adversary asks SendClient(U l, m) query. Then the adversary either
makes queries:

– StaticKeyReveal(Ū),
– StaticKeyReveal(S),
– EphemeralKeyReveal(U l) or
– EphemeralKeyReveal(Ū i) for any session i.

Now, the adversary A’s advantage is formally defined by:

Advind(A) = |2 · Pr[Succind]− 1| and Advind(t, R) = max
A
{Advind(A)},

where the maximum is over all A with time-complexity at most t and using the
number of queries to its oracle at most R.

We say that a 3-party PAKE satisfies indistinguishability of the session key
if the advantage Advind is only negligibly larger than n · qsend/|D|, where n is
a constant and qsend is the number of send queries, and parties who complete
matching sessions compute the same session key.

Efficient and Strongly Secure PSAKE 179

Capturing Security Properties. The condition of KS is represented as the
adversary can obtain session keys except one of the test session by
SessionKeyReveal query. The condition of KP against passive server is repre-
sented as the freshness condition 2, that is, the adversary can obtain static and
ephemeral private key of the server by StaticKeyReveal and EphemeralKeyReveal
query but no SendClient query for the test session. BI is represented as the fresh-
ness condition 3, that is, the adversary can freely eavesdrop messages, obtain
ephemeral private key of the server, and send any message to honest clients ex-
cept the target client by Execute and SendClient queries but no StaticKeyReveal
query to the target client and the server. KCI and the condition of FS are
also represented as the freshness condition 4, that is, the adversary can ob-
tain static secret of the target client by StaticKeyReveal query but cannot ask
StaticKeyReveal query to the partnered client and the server. LEP is represented
as the adversary can obtain ephemeral key of the server on the test session by
EphemeralKeyReveal query. Also, our model captures resistance to unknown-key
share (UKS) (i.e., any client C including a malicious client insider cannot in-
terfere with the session establishment between two honest clients A and B such
that at the end of the attack both parties compute the same session key which
C may not learn it, yet while A is convinced that the key is shared with B, B
believes that the peer to the session has been C). UKS is represented as the
adversary can establish a malicious insider by EstablishParty query and try to
make a honest client which thinks that he shares the session key with the insider
share the session key with an another honest client by choosing these two honest
clients for the test session.

By the definition of indistinguishability, we can guarantee to prevent these
attacks in our model.

3.3 Definition of Password Protection

Next, we consider the notion of password protection. This notion provides se-
curity properties with respect to passwords, i.e., resistance to UDonDA and to
offDA. Beyond the notion of indistinguishability, the notion of password protec-
tion is needed because we have to consider security for passwords against attacks
by malicious client insiders which can trivially know the session key. Thus, just
the notion of indistinguishability cannot capture insider attacks. Also, we cannot
allow the adversary to reveal ephemeral private keys of the target client. Given
the ephemeral key, the target password is easily derived by offDA because the
session key in a session deterministically depends on the client’s ephemeral key,
the password, and communication received from the other party.

The adversary is considered successful if it guesses a password of a client. The
adversary is allowed to make Execute, SendClient, SendServer, SessionKeyReveal,
StaticKeyReveal, EphemeralKeyReveal and TestPassword queries. Let Succpw de-
note the event that TestPassword(U) outputs 1. Note that, we restrict the ad-
versary such that U and the server of the session are honest, and none of the
following conditions hold:

180 K. Yoneyama

– We suppose that S is the corresponding server of U . Then the adversary
either makes queries:

• StaticKeyReveal(U),
• StaticKeyReveal(S) or
• EphemeralKeyReveal(U i) for any session i.

Now, the adversary A’s advantage is formally defined by:

Advpw(A) = Pr[Succpw] and Advpw(t, R) = max
A
{Advpw(A)},

where the maximum is over all A with time-complexity at most t and using the
number of queries to its oracle at most R.

We say that a 3-party PAKE satisfies password protection if the advantage
Advpw is only negligibly larger than n · qsend/|D|, where n is a constant and
qsend is the number of send queries which messages are found as “invalid” by
the party. “Invalid” message means the message which is not derived according
to the protocol description.

Capturing Security Properties. UDonDA is represented as the adversary
can unlimitedly use SendClient and SendServer queries as far as the party does
not find that the query is “invalid”. offDA is represented as the adversary can be
the insider by SessionKeyReveal, StaticKeyReveal and EphemeralKeyReveal queries
except the target client and her corresponding server.

By the definition of password protection, we can guarantee to prevent these
attacks in our model.

4 Proposed Scheme

In this section, we show our 3-party PAKE scheme in the same setting as PSAKE.

4.1 Notation

Let p be a prime and let g be a generator of a finite cyclic group G of order p.
A, B ∈ U are identities of two clients, and S is identity of their corresponding
server. (Gen, Enc, Dec) is a public-key encryption scheme, where Gen(1k) is key
generation algorithm, Encpk(m; ω) is encryption algorithm of a message m using
a public key pk and randomness ω, and Decsk(c) is decryption algorithm of
a cipher-text c using a private key sk. A and S (resp. B and S) have shared
common secret password pwA (resp. pwB), and S has pre-established his private
key skS with his public key pkS . H1 : D×U2 → G, H2 : D×{0, 1}k×G → G and
H3 : U2 × S2 × Cspace2 ×G3 → {0, 1}k are hash functions modeled as random
oracles, where Cspace is the space of a cipher-text for (Gen, Enc, Dec) and k is a
sufficiently large security parameter.

For simplicity, we omit “(mod p)” in this paper when computing the modular
exponentiation. “v

R← V ” means randomly choosing an element v of a set V .

Efficient and Strongly Secure PSAKE 181

Public information : G, g, p, H1, H2, H3
Long-term secret of clients : pwA for A and pwB for B

Long-term secret of server : (pwA, pwB, skS)

Client A Server S Client B

x
R← Z∗p y

R← Z∗p
X := gx Y := gy

X∗ := X · H1(pwA, A, B) Y ∗ := Y · H1(pwB, B, A)
CA ← EncpkS

((X∗, pwA); ωA) CB ← EncpkS
((Y ∗, pwB); ωB)

A, B, CA−−−−−−−−→ B, A, CB←−−−−−−−−

(X̃∗, p̃wA) ← DecskS
(CA)

(Ỹ ∗, p̃wB) ← DecskS
(CB)

p̃wA
?= pwA, p̃wB

?= pwB
X̂ := X̃∗/H1(pwA, A, B)
Ŷ := Ỹ ∗/H1(pwB , B, A)

r
R← Z∗p, N

R← {0, 1}k

Ȳ := Ŷ r , X̄ := X̂r

Ȳ ∗ := Ȳ · H2(N, pwA, X̃∗)
X̄∗ := X̄ · H2(N, pwB, Ỹ ∗)

S, N, CB , X̄
∗

, Ȳ
∗

←−−−−−−−−−−−−−−− S, N, CA, X̄
∗

, Ȳ
∗

−−−−−−−−−−−−−−−→

KA := (Ȳ ∗/H2(N, pwA, X∗))x KB := (X̄∗/H2(N, pwB, Y ∗))y

SKA := SKB :=
H3(A, B, S, CA, CB , X̄∗, Ȳ ∗, KA) H3(A, B, S, CA, CB, X̄∗, Ȳ ∗, KB)

Fig. 1. A high-level overview of our protocol

4.2 Protocol Description

Here, we show the construction of our scheme. To guarantee resistance to
UDonDA, we apply public-key encryption for servers like PSAKE and the
3-party PAKE scheme in [8]. A high-level overview of our protocol appears in
Figure 1.

Then, our protocol is described as follows:

Step 1. Clients A and B choose x, y ∈ Z∗
p randomly, compute X = gx and

Y = gy, and blind them as X∗ = X ·H1(pwA, A, B) and Y ∗ = Y ·H1(pwB, B, A)
respectively. Next, they generate CA ← EncpkS ((X∗, pwA); ωA) and CB ←
EncpkS ((Y ∗, pwB); ωB) by using their corresponding server’s public-key pkS

with randomness ωA and ωB respectively. Finally, A sends (A, B, CA) to the
server S and B sends (B, A, CB) to the server S. So, ephemeral private-keys of
A and B are (x, X, X∗, ωA) and (y, Y, Y ∗, ωB) respectively.

Step 2. The server S decrypts (X̃∗, p̃wA) ← DecskS (CA) and (Ỹ ∗, p̃wB) ←
DecskS (CB) by using skS respectively. If p̃wA �= pwA or p̃wB �= pwB, then
S aborts the session. It is also crucial that the server rejects any value X̃∗

or Ỹ ∗ whose underlying value X or Y is equal to 1. Otherwise, S computes
X̂ = X̃∗/H1(pwA, A, B), blinds it as X̄ := X̂r where r is S’s first random
value from Z∗

p. S also computes Ŷ and Ȳ similarly. Next, S computes Ȳ ∗ =
Ȳ · H2(N, pwA, X̃∗) where N is S’s second random value from {0, 1}k. S per-
forms similar operations and obtains X̄∗. Finally, S sends (S, N, CB , X̄∗, Ȳ ∗) to
A, sends (S, N, CA, X̄∗, Ȳ ∗) to B, and deletes session-specific information (X̃∗,
Ỹ ∗, p̃wA, p̃wB, r, N, X̂, Ŷ , X̄, Ȳ). So, ephemeral private-keys of S is empty.

182 K. Yoneyama

Step 3. A and B compute their Diffie-Hellman keys KA = (Ȳ ∗ / H2(N, pwA,
X∗))x and KB = (X̄∗ / H2(N, pwB , Y ∗))y respectively. Session keys are gener-
ated from the Diffie-Hellman key and transcripts, SKA = H3(A, B, S, CA, CB ,
X̄∗, Ȳ ∗, KA) and SKB = H3(A, B, S, CA, CB, X̄∗, Ȳ ∗, KB). When session keys
are honestly generated, SKA = SKB because KA = (gyr)x and KB = (gxr)y.

4.3 Design Principles

Our protocol can be viewed as an extension of Abdalla-Pointcheval scheme [12].
The main deference consists in use of public-key encryption.

First, upon receiving an input from a client, the corresponding server verifies
the validity of encrypted password of the client and him. This procedure prevents
UDonDA as the technique of Lin et al. [8]. Applying the server’s public-key may
put a burden on clients because they have to verify the server’s public-key in
advance, and the certificate infrastructure is needed. However, we can easily
resolve this problem by applying ID-based encryption for the server instead of
standard public-key encryption for the server. Since clients can encrypt messages
by using only corresponding the server’s ID in ID-based encryption, clients need
no keeping nor verifying the server’s public-key. If we replace use of public-key
encryption to use of ID-based encryption, security of our scheme is not changed.

Next, elimination of ephemeral states except necessary states is needed for
resistance to LEP as the technique of [16]. Even if EphemeralKeyReveal query is
asked, information of passwords and the session key do not leak from leakage
information because all critical states are deleted immediately when these states
are used.

Finally, when a client blinds X or Y with his password, we make the client
include the identities of both clients into the computation of the password-based
blinding factors. This procedure prevents KCI and UKS by a malicious client
insider as the technique of Choo et al. [17].

5 Security of Our Scheme

In this section, we show security properties of our scheme.

5.1 Building Blocks

We recall the definition of the decisional Diffie-Hellman assumptions which we
use in the security proof of our scheme. Let p be a prime and let g be a generator
of a finite cyclic group G of order p.

Decisional Diffie-Hellman Assumption (DDH). We can define the DDH
assumption by defining two experiments, Expddh−real

g,p (I) and Expddh−rand
g,p (I).

For a solver I, inputs (gu, gv, Z) is provided, where u, v are drawn at random
from Z∗

p. Z = guv in Expddh−real
g,p (I) and Z = gw in Expddh−rand

g,p (I), where w is
drawn at random from Z∗

p. We define the advantage of I in violating the DDH
assumption, Advddh

g,p (I), as |Pr[Expddh−real
g,p (I) = 1] − Pr[Expddh−rand

g,p (I) = 1]|.
The advantage function of the group, Advddh

g,p (t), is defined as the maximum value
of Advddh

g,p (I) over all I with time-complexity at most t.

Efficient and Strongly Secure PSAKE 183

5.2 Main Theorems

Theorem 1. Assuming (Gen, Enc, Dec) is a semantically secure public-key en-
cryption scheme and DDH problem is hard, then our scheme satisfies indistin-
guishability in Sec. 3.2.

Theorem 2. Assuming (Gen, Enc, Dec) is a semantically secure public-key en-
cryption scheme, then our scheme satisfies password protection in Sec. 3.3.

Owing to lack of space, we cannot give proofs of Theorem 1 and 2. Please refer
to [18] for these proofs.

6 Conclusion

Firstly, we pointed out that previous security definitions of 3-party PAKE cannot
capture all desirable security requirements. Next, we proposed a new stronger
definition of 3-party PAKE which captures all desirable security requirements.
Finally, we introduced a 3-party PAKE protocol in the same setting as PSAKE
with optimal rounds for client and proved its security in the sense of our stronger
definition.

Our scheme use public-key encryption as a building block in order to guarantee
resistance to UDonDA. However, public-key encryption schemes are time-
consuming. Thus, a remaining problem of further researches is efficient construc-
tion which satisfies stronger security.

References

1. Bellovin, S.M., Merritt, M.: Encrypted Key Exchange: Password-Based Protocols
Secure Against Dictionary Attacks. In: IEEE S&P 1992, pp. 72–84 (1992)

2. Jablon, D.P.: Strong Password-Only Authenticated Key Exchange. Computer
Communication Review, ACM SIGCOMM 26(5), 5–26 (1996)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure
against Dictionary Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

4. Boyko, V., MacKenzie, P.D., Patel, S.: Provably Secure Password-Authenticated
Key Exchange Using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

5. Steiner, J.G., Neuman, B.C., Schiller, J.I.: Kerberos: An Authentication Service
for Open Network Systems. In: USENIX Winter 1988, pp. 191–202 (1988)

6. Lomas, T.M.A., Gong, L., Saltzer, J.H., Needham, R.M.: Reducing Risks from
Poorly Chosen Keys. In: SOSP 1989, pp. 14–18 (1989)

7. Steiner, M., Tsudik, G., Waidner, M.: Refinement and Extension of Encrypted Key
Exchange. ACM Operating Systems Review 29(3), 22–30 (1995)

8. Lin, C.L., Sun, H.M., Hwang, T.: Three-party Encrypted Key Exchange: Attacks
and A Solution. ACM Operating Systems Review 34(4), 12–20 (2000)

9. Chang, Y.F., Chang, C.C.: Password-authenticated 3PEKE with Round Efficiency
without Server’s Public Key. In: CW 2005, pp. 340–344 (2005)

184 K. Yoneyama

10. Ding, Y., Horster, P.: Undetectable On-line Password Guessing Attacks. Operating
Systems Review 29(4), 77–86 (1995)

11. Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-Based Authenticated Key
Exchange in the Three-Party Setting. In: Public Key Cryptography 2005, pp. 65–
84 (2005)

12. Abdalla, M., Pointcheval, D.: Interactive Diffie-Hellman Assumptions with Appli-
cations to Password-Based Authentication. In: Financial Cryptography 2005, pp.
341–356 (2005)

13. Cliff, Y., Tin, Y.S.T., Boyd, C.: Password Based Server Aided Key Exchange. In:
Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 146–161.
Springer, Heidelberg (2006)

14. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

15. Wang, W., Hu, L.: Efficient and Provably Secure Generic Construction of Three-
Party Password-Based Authenticated Key Exchange Protocols. In: Barua, R.,
Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 118–132. Springer, Hei-
delberg (2006)

16. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger Security of Authenticated Key
Exchange. In: Provsec 2007 (2007)

17. Choo, K.K.R., Boyd, C., Hitchcock, Y.: Examining Indistinguishability-Based
Proof Models for Key Establishment Protocols. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg (2005)

18. Yoneyama, K.: Efficient and Strongly Secure Password-based Server Aided Key Ex-
change (2008), http://www.oslab.ice.uec.ac.jp/member/yoneyama/IC08.pdf

http://www.oslab.ice.uec.ac.jp/member/yoneyama/IC08.pdf

Round Efficient Unconditionally Secure
Multiparty Computation Protocol

Arpita Patra�, Ashish Choudhary��, and C. Pandu Rangan���

Department of Computer Science and Engineering
IIT Madras, Chennai 600036, India

{arpita,ashishc}@cse.iitm.ernet.in, rangan@iitm.ernet.in

Abstract. In this paper, we propose a round efficient unconditionally
secure multiparty computation (UMPC) protocol in information theoretic
model with n > 2t players, in the absence of any physical broadcast chan-
nel. Our protocol communicates O(n4) field elements per multiplication
and requires O(n log(n) + D) rounds, even if up to t players are under
the control of an active adversary having unbounded computing power,
where D denotes the multiplicative depth of the circuit representing the
function to be computed securely. In the absence of a physical broad-
cast channel and with n > 2t players, the best known UMPC protocol
with minimum number of rounds, requires O(n2D) rounds and commu-
nicates O(n6) field elements per multiplication. On the other hand, the
best known UMPC protocol with minimum communication complexity
requires communication overhead of O(n2) field elements per multiplica-
tion, but has a round complexity of O(n3 +D) rounds. Hence our UMPC
protocol is the most round efficient protocol so far and ranks second ac-
cording to communication complexity.

Keywords: Multiparty Computation, Information Theoretic Security.

1 Introduction

Secure Multiparty Computation (MPC): Secure multiparty computation
(MPC) allows a set of n players to securely compute an agreed function, even if
up to t players are under the control of a centralized adversary. More specif-
ically, assume that the desired functionality can be specified by a function
f : ({0, 1}∗)n → ({0, 1}∗)n and player Pi has input xi ∈ {0, 1}∗. At the end
of the computation of f , Pi gets yi ∈ {0, 1}∗, where (y1, . . . , yn) = f(x1, . . . , xn).
The function f has to be computed securely using a protocol where at the end of
the protocol all (honest) players receive correct outputs and the messages seen
by the adversary during the protocol contain no additional information about

� Financial Support from Microsoft Research India Acknowledged.
�� Financial Support from Infosys Technology India Acknowledged.

��� Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for
Secure Communication and Computation Sponsored by Department of Information
Technology, Govt. of India.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 185–199, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

186 A. Patra, A. Choudhary, and C.P. Rangan

the inputs and outputs of the honest players, other than what can be computed
from the inputs and outputs of the corrupted players. In the information theo-
retic model, the adversary who actively controls at most t players, is adaptive,
rushing [10] and has unbounded computing power. The function to be computed
is represented as an arithmetic circuit over a finite field F consisting of five type
of gates, namely addition, multiplication, random, input and output. A MPC
protocol securely evaluates the circuit gate-by-gate [5].

The MPC problem was first defined and solved by Yao [16]. The research
on MPC in information theoretic model was initiated by Ben-Or et. al. [5] and
Chaum et. al. [8] in two different independent work and carried forward by the
works of [15,2]. Information theoretic security can be achieved by MPC protocols
in two flavors –(a) Perfect: The outcome of the protocol is perfect in the sense
that no probability of error is involved in the computation of the function (b)
Unconditional: The outcome of the protocol is correct except with negligible error
probability. While Perfect MPC can be achieved iff t < n/3 [5], unconditional
MPC (UMPC) requires only honest majority i.e t < n/2 [15]. In the recent years,
lot of research concentrated on designing communication efficient protocols for
both perfect and unconditional MPC (see [4,11,10,3]).

Broadcast: Broadcast is an important primitive used in all MPC and UMPC
protocols and allows a sender to distribute a value x, identically among all the
players. If a physical broadcast channel is available in the network, then achieving
broadcast is very trivial. But if the broadcast channel is not physically available
in the network, then broadcasting an � bit(s) message can be simulated by ex-
ecuting some protocol. In particular, for unconditionally (with negligible error
probability) broadcasting � bits, the protocol of [14] communicates Ω(n2�+n6κ)
bits and requires Ω(n) rounds with t < n/2 on the availability of information
theoretic PKI setup,where κ is the error parameter. From the recent results of
Fitzi et. al. [12], broadcast can be achieved with communication complexity of
O(n� + n7κ) bits and round complexity of O(n).

Our Motivation: Two important parameters of MPC protocols are commu-
nication and round complexity which have been the subject of intense study
over the past two decades. Reducing the communication and round complexity
of MPC protocols is crucial, if we ever hope to use these protocols in practice.
But looking at the most recent advancements in the arena of MPC, we find
that round complexity of MPC protocols has been increased to an unacceptable
level in order to reduce communication complexity. In the sequel, we present
a table which gives an overview of the communication complexities and round
complexities of perfect and unconditional MPC protocols. The communication
complexities are given in terms of bits where κ represents the bit length of a
field element in the case of perfect MPC and error parameter in the case of
UMPC, respectively. cM and D denote the number of multiplication gates and
multiplicative depth of the circuit, respectively.

Round Efficient UMPC Protocol 187

Reference Type? Resilience Broadcast Communication Round
Protocol Complexity Complexity

[10] Unconditional t < n/2 [12] O((cMn6 + n7)κ) O(n2D)
[3] Unconditional t < n/2 [12] O((cMn2 + n7)κ) O(n3 + D)
[4] Perfect t < n/3 [6,7] O((cMn + Dn2 + n3)κ) O(n2 + D)

If the practical applicability of multiparty protocols are of primary focus, then
it is always desirable not to sacrifice one parameter for the other. So it is very
essential to design protocol which balances both the parameters appropriately,
which is the motivation of this paper.

Our Network Model: We denote the set of n = 2t + 1 players involved in
the secure computation by P = {P1, P2, . . . , Pn} where player Pi possesses ci

input values. We assume that all the n players are connected with each other
by pairwise secure channels. Moreover, the system is synchronous and the pro-
tocols proceed in rounds, where in each round a player performs some compu-
tations, sends (broadcasts) values to its neighbors (everybody), receives values
from neighbors and may again perform some more computation, in that or-
der. The function to be computed is specified as an arithmetic circuit over a
finite field F with input, addition, multiplication, random and output gates.
We denote the number of gates of each type by cI , cA, cM , cR and cO, re-
spectively. We model the distrust in the system by a centralized adversary At,
who has unbounded computing power and can actively control at most t play-
ers during protocol execution. To actively control a player means to take full
control over it and make it behave arbitrarily. Moreover At is adaptive and
rushing [10].

Our protocol provides information theoretic security with a negligible error
probability of 2−O(κ) for some security parameter κ. To achieve this error prob-
ability, all our computation are done over a finite field F = GF (2κ). Thus each
field element can be represented by κ bits. We assume that n = poly(κ). We also
assume that the messages sent through the channels are from the specified do-
main. Thus if a player receives a message which is not from the specified domain
(or no message at all), he replaces it with some pre-defined default message.

Our Contribution: We propose a new UMPC protocol which communicates
O(n4) field elements per multiplication and requires O(n log(n) + D) rounds
over a point-to-point network (in the absence of physical broadcast channel) with
n = 2t+1 players. We introduce a new technique called Rapid Player Elimination
(RPE) which is used in the preprocessing stage of our UMPC protocol. Loosely
speaking, RPE works as follows: The preprocessing stage of our UMPC protocol
may fail several times due to the (mis)behavior of certain number of corrupted
players whose corruptions are identified. RPE creates a win-win situation, where
the adversary must reveal the identities of 2i new corrupted players at the ith

step. Otherwise, the preprocessing stage will not fail. Thus RPE ensures that
preprocessing stage may fail at most �log(t)� times.

188 A. Patra, A. Choudhary, and C.P. Rangan

2 Unconditionally Secure MPC Protocol with n = 2t + 1

We now present an UMPC protocol with n = 2t + 1. Prior to that we present a
number of sub-protocols each solving a specific task. Some of the sub-protocols
are based on few existing techniques while some are proposed by us for the first
time. We describe all our sub-protocols in the following settings: We define two
sets C and P ′ where at any point of time C denotes the set of corrupted players
identified so far and P ′ = P \ C. So, P ′ denotes the set of players involved in
the execution of the sub-protocols. Initially, P ′ = P and C = ∅. As the protocol
proceeds, some players will be detected as corrupted and will be added to C
and removed from P ′. We denote the number of players in P ′ by n′ which is
initially equal to n. The number of players which can be still corrupted in P ′ is
denoted by t′ where t′ = t−|C|. Note that n′ will always maintain the following:
n′ ≥ t + 1 + t′ ≥ 2t′ + 1 since t ≥ t′ and at any stage P ′ will always contain all
the t + 1 honest players. Also at any point of time P = P ′ ∪ C.

2.1 Information Checking (IC [10,15])

It is an information theoretically secure method for authenticating data and is
used to generate IC signatures. When a player INT ∈ P ′ receives an IC signature
from a dealer D ∈ P ′ on some secret value(s) S, then INT can later produce
the signature and have the players in P ′ verify that it is in fact a valid signature
of D on S. The complete definition of IC scheme, its outcome and the properties
that should be satisfied by its outcome is provided in [13]. We now present an
IC protocol, called EfficientIC, given in Table 1, which allows D to sign on an
� length secret S ∈ F�. Let S = (s(1), . . . , s(�)) ∈ F�.

Lemma 1. Protocol EfficientIC correctly generates IC signature on � field el-
ements (each of size κ bits) at once by communicating and broadcasting O((� +
n)κ) bits. The protocol satisfies the properties of IC signature with probability at
least 1− 2−O(κ).

We also use another IC protocol which is a slight modification of the IC protocol,
called IC described in [10]. The protocol allows D to sign on a single field element
s ∈ F (i.e. � = 1; S = s). The protocol is given in [13]. Like EfficientIC, proto-
col IC has three sub-protocols: Distr(D, INT,P ′, s), AuthVal(D, INT,P ′, s),
RevealVal(D, INT,P ′, s).

Linearity of Protocol IC and EfficientIC: Protocol IC and EfficientIC
satisfies the linearity property as specified by the following lemma:

Lemma 2 (Linearity of Protocol EfficientIC[10]). The IC signature
generated by EfficientIC satisfies linearity property. In particular, INT
can compute ICSig((r1s(1,1)+r2s(2,1)),...,(r1s(1,)+r2s(2,)))(D, INT) from
ICSig(s(1,1),s(1,2)...,s(1,)) (D, INT) and ICSig(s(2,1),s(2,2)...,s(2,))(D, INT) and
receivers can compute verification information corresponding to
ICSig((r1s(1,1)+r2s(2,1)),...,(r1s(1,)+r2s(2,)))(D, INT), without doing any further
computation.

Round Efficient UMPC Protocol 189

Table 1. EfficientIC(D, INT,P ′,
, s(1), . . . , s(�))

EfficientDistr(D, INT,P′, �, s(1), . . . , s()): Round 1: D selects a random �+t′−1 degree poly-

nomial F (x) over F, whose lower order � coefficients are s(1), . . . , s(). In addition, D selects an-
other random � + t′ − 1 degree polynomial R(x), over F, which is independent of F (x). D selects
n′ distinct random elements α1, α2, . . . , αn′ from F such that each αi ∈ F − {0, 1, . . . , n′ − 1}. D
privately gives F (x) and R(x) to INT . To receiver Pi ∈ P′, D privately gives αi, vi and ri, where
vi = F (αi) and ri = R(αi). The polynomial R(x) is called authentication information, while
for 1 ≤ i ≤ n′, the values αi, vi and ri are called verification information.

EfficientAuthVal(D, INT,P′, �, s(1), . . . , s()): Round 2: INT chooses a random d ∈ F \ {0}
and broadcasts d, B(x) = dF (x) + R(x).

Round 3: For 1 ≤ j ≤ n′, D checks dvj + rj
?= B(αj). If D finds any inconsistency, he

broadcasts F (x). Parallely, receiver Pi broadcasts “Accept” or “Reject”, depending upon whether
dvi + ri = B(αi) or not.

Local Computation (by each player): if F (x) is broadcasted in Round 3 then accept the
lower order � coefficients of F (x) as D’s secret and terminate. else construct an n′ length bit
vector V Sh, where the jth, 1 ≤ j ≤ n′ bit is 1(0), if Pj ∈ P′ has broadcasted “Accept” (“Reject”)
during Round 3. The vector V Sh is public, as it is constructed using broadcasted information.
If V Sh does not contain n′ − t′ 1’s, then D fails to give any signature to INT and IC protocol
terminates here.

If F (x) is not broadcasted during Round 3, then (F (x), R(x)) is called D’s IC signature on
S = (s(1), . . . , s()) denoted by ICSig

(s(1),...,s())
(D, INT).

EfficientRevealVal(D, INT,P′, �, s(1), . . . , s()): (a) Round 1: INT broadcasts F (x), R(x); (b)
Round 2: Pi broadcasts αi, vi and ri.

Local Computation (by each player): For the polynomial F (x) broadcasted by INT , con-

struct an n′ length vector V Rec
F (x) whose jth bit contains 1 if vj = F (αj), else 0. Similarly, construct

the vector V Rec
R(x) corresponding to R(x). Finally compute V Rec

F R = V Rec
F (x) ⊗V Rec

R(x), where ⊗ denotes

bit wise AND. If V Rec
F R and V Sh matches at least at t + 1 locations (irrespective of bit value at

these locations), then accept the lower order � coefficients of F (x) as S = (s(1), . . . , s()). In this
case, INT is able to prove D’s signature on S. Otherwise he fails to prove.

2.2 Unconditional Verifiable Secret Sharing and Reconstruction

Definition 1. t′-1D-Sharing: A value s is correctly t′-1D-shared among the
players in P ′ if every honest Pi ∈ P ′ is holding a share si of s, such that there
exists a degree t′ polynomial f(x) over F with f(0) = s and f(j) = sj for every
Pj ∈ P ′. The vector (s1, s2, . . . , sn′) of shares is called a t′-sharing of s and is
denoted by [s]t′ . A set of shares (possibly incomplete) is t′-consistent if they lie
on a t′ degree polynomial.

Definition 2. t′-2D-sharing [3]: A value s is correctly t′-2D-shared among the
players in P ′ if there exists t′ degree polynomials f, f1, f2 . . . , fn′

with f(0) = s
and for i = 1, . . . , n′, f i(0) = f(i). Moreover, every player Pi ∈ P ′ holds a share
si = f(i) of s, the polynomial f i(x) for sharing si and a share-share sji = f j(i)
of the share sj of every player Pj ∈ P ′. We denote t′-2D-sharing of s as [[s]]t′ .

Definition 3. t′-2D(+)-sharing: A value s is correctly t′-2D(+)-shared among
the players in P ′ if there exists t′ degree polynomials f, f1, f2 . . . , fn′

with f(0) =
s and for i = 1, . . . , n′, f i(0) = f(i). Moreover, every Pi ∈ P ′ holds a share
si = f(i) of s, the polynomial f i(x) for sharing si and Pj’s IC Signature on
share-share sji = f j(i) of Pj’s share sj, i.e. ICSigsji(Pj , Pi) for every Pj ∈ P ′.

190 A. Patra, A. Choudhary, and C.P. Rangan

We denote the t′-2D(+)-sharing of s as 〈〈s〉〉t′ . Note that in [3], the authors
called this sharing as 2D∗-sharing.

Definition 4. t′-2D(+,�)-sharing: A set of values s(1), . . . , s(�) are correctly
t′-2D(+,�)-shared among the players in P ′ if every secret s(l) is individually t′-
2D(+)-shared. But now instead of Pi holding separate IC-signatures for each of
the share-shares s

(l)
ji for l = 1 . . . , � from Pj, a single IC-signature on s

(1)
ji , . . . , s

(�)
ji

is given by Pj to Pi (i.e. ICSig(s(1)
ji ,...,s

()
ji)(Pj , Pi)). The t′-2D(+,�)-sharing is de-

noted as 〈〈s1, . . . , s�〉〉t′ .

If a secret s is t′-1D-shared/t′-2D-shared/t′-2D(+)-shared by a dealer D ∈ P ′

(any player from P ′ may perform the role of a dealer), then we denote the sharing
by [s]Dt′ /[[s]]Dt′ /〈〈s〉〉Dt′ . Similarly if a set of � secrets s(1), . . . , s(�) are t′-2D(+,�)-
shared by player D, we denote it by 〈〈s1, . . . , s�〉〉Dt′ . Notice that when a secret s is
t′-2D(+)-shared, then s is also t′-1D-Shared and t′-2D-shared by default. Hence
t′-2D(+)-sharing is the strongest sharing among t′-1D-sharing, t′-2D-sharing and
t′-2D(+)-sharing. In some sense, t′-2D(+,�)-sharing is the extension of t′-2D(+)-
sharing for � secrets. If a dealer D∈ P ′ is honest, then he will always correctly
t′-1D-share/t′-2D-share/t′-2D(+)-share a secret s. Among these three types of
sharing, t′-2D(+)-sharing of a secret s allows efficient reconstruction of the secret
with n′ players. However, a corrupted D may perform sharing in an incorrect way.
To achieve parallelism, in the sequel, we describe a protocol called 2D(+,�)Share
which allows a dealer D∈ P ′ to verifiably t′-2D(+,�)-share � ≥ 1 length secret
[s(1), s(2), . . . , s(�)]. The protocol ensures correct t′-2D(+,�)-sharing even for a
corrupted D and is given in Table 2.

The goal of the protocol is as follows: (a) If D is honest then he correctly gen-
erates t′-2D(+,�)-sharing of the secret [s(1), s(2), . . . , s(�)], such that all the honest
players publicly verify that D has correctly generated the sharing. Also when D
is honest, then the secret will be information theoretically secure from the adver-
sary At. (b) If D is corrupted and has not generated correct t′-2D(+,�)-sharing,
then with very high probability, everybody will detect it.

Lemma 3. Protocol 2D(+,�)Share correctly generates t′-2D(+,�)-sharing of �
field elements, with overwhelming probability. The protocol takes ten rounds com-
municates, communicates O((�n2+n3)κ) bits and broadcasts O((�n2+n3)κ) bits.

Proof: See full version of the paper [13]. �

Remark: When an � length secret [s(1), . . . , s(�)] is t′-2D(+,�)-shared, then im-
plicitly the individual secrets are t′-1D-shared by polynomials g

(1)
0 (y), . . . ,

g
(�)
0 (y). Also note that given 〈〈a(1), . . . , a(�)〉〉t′ and 〈〈b(1), . . . , b(�)〉〉t′ , the players

in P ′ can compute 〈〈c(1), . . . , c(�)〉〉t′ where for l = 1, . . . , �, c(l) = F(a(l), b(l))
and F denotes any linear combination.

Conversion From a t′-2D(+,�)-sharing to � t′-2D+-sharing: Given 〈〈s(1),

s(2), . . . , s(�)〉〉t′ , we present a protocol Convert2D(+,�)to2D+ which produces
the � t′-2D+-sharing of the individual � secrets, namely 〈〈s(l)〉〉t′ for l = 1, . . . , �.

Round Efficient UMPC Protocol 191

(〈〈s(1)〉〉t′ , . . . , 〈〈s()〉〉t′) = Convert2D(+,)to2D+(P′, t′, �, 〈〈s(1), s(2), . . . , s()〉〉t′)

Let f
(l)
i (x), 1 ≤ i ≤ n′, 1 ≤ l ≤ � be the polynomials used for generating 〈〈s(1) . . . , s()〉〉t′ . For

every pair of players Pi and Pj from P′, the following is done:

1. Player Pi as a dealer executes Distr and AuthVal of IC(Pi, Pj ,P, f
(l)
i (j)) for all l ∈ {1, . . . , �}

to give ICSig
f
(l)
i

(j)
(Pi, Pj) to Pj . Since 〈〈s(1), . . . , s()〉〉t′ is generated using 2D(+,)Share, it

implies that either Pj already holds ICSig
(f(1)

i
(j),f(2)

i
(j),...,f

()
i

(j))
(Pi, Pj) from Pi or every player

from P′ has ignored Pi’s signature. In the later case, players in P′ will again ignore Pi’s signature.
Otherwise Pj can now check if Pi has given signature on the same individual values.

2. Upon receiving the signatures on say f̄
(1)
i (j), . . . , f̄

()
i (j) (i.e ICSig

f̄
(l)
i

(j)
(Pi, Pj) for l =

1, . . . , �) , Pj checks f
(l)
i (j) ?= f̄

(l)
i (i). If there is inconsistency for some l ∈ {1, . . . , �} then Pj

along with all players in P′ invoke EfficientRevealVal(Pi, Pj ,P′, �, f
(1)
i (j), f

(2)
i (j), . . . , f

()
i (j))

and RevealVal(Pi, Pj ,P′, f̄
(l)
i (j)) for all l ∈ {1, . . . , �}.

3. In the previous step, if Pj is not able to produce the signature that he received from Pi, then
all the players from P′ ignore the IC signatures received from Pj during step 1. Otherwise if the
signatures are valid then f

(1)
i (j), . . . , f

()
i (j) and f̄

(1)
i (j), . . . , f̄

()
i (j) are public. All players in P′

check f
(l)
i (j) ?= f̄

(l)
i (j) for l = 1, . . . , �. If the test fails for some l, then all the players in P′

ignore the values received from Pi during first step. Otherwise the signature produced by Pj will
be ignored.

Lemma 4. Protocol Convert2D(+,�)to2D+ takes five rounds and communi-
cates O((�n3 + n4)κ) bits and broadcasts O((�n3 + n4)κ) bits.

Reconstruction of a t′-2D+-shared secret: Let 〈〈s〉〉t′ be a t′-2D+-sharing,
shared using the polynomials H(x, y), fi(x), gi(y), 1 ≤ i ≤ n′ among the players
in P ′. We now present a protocol 2D+Recons which allows the (honest) players
to correctly recover s with very high probability.

s = 2D+Recons(P′, t′, 〈〈s〉〉t′)
For all Pj ∈ P′ such that Pj ’s IC signatures are not ignored by the players in P′, player
Pi sends ICSigfj (i)(Pj , Pi) to every player Pk in P′. Player Pk ∈ P′ checks the validity of
ICSigfj (i)(Pj , Pi) with respect to his own verification information. If the verification passes

then Pk accepts ICSigfj (i)(Pj , Pi). Now if for all Pj ∈ P′, Pk accepts ICSigfj(i)(Pj , Pi) (which

he receives from Pi) then Pk checks whether fj(i)s are t′-consistent (ideally fj(i) = gi(j) for all
Pj ∈ P′; so fj(i)s will lie on t′ degree polynomial gi(y)). If yes then Pk adds Pi to his CORE set
and let the t′ degree polynomial (on which fj(i)s lie on) be gi(y). Player Pk takes all the gi(y)
polynomials corresponding to the players in his CORE and interpolates the bivariate polynomial
H(x, y) and finally sets the secret s = H(0, 0). It is easy to check that all honest players from P′

recovers the same secret s.

Lemma 5. Protocol 2D+Recons takes one round and privately communicates
O(n3κ) bits.

2.3 Generating Random t′-2D(+,�)-Sharing

We now present protocol Random(P ′, t′, �) in Table 3, which allows the players
in P ′ to jointly generate a random t′-2D(+,�)-sharing, 〈〈r(1), . . . , r(�)〉〉t′ .

192 A. Patra, A. Choudhary, and C.P. Rangan

Table 2. 〈〈s(1), . . . , s(�)〉〉Dt′ = 2D(+,�)Share(D,P ′, t′,
, s(1), . . . , s(�))

1. For every l = 1, . . . , �, D picks a random bivariate polynomial H(l)(x, y) of de-
gree t′ in both the variables, with H(l)(0, 0) = s(l). Let f

(l)
i (x) = H(l)(x, i) and

g
(l)
i (y) = H(l)(i, y). Now D wants to hand over n′ values on f

(l)
i (x) and g

(l)
i (y)

for l = 1, . . . , � to Pi with his IC signature on them. For that D executes Effi-
cientDistr and EfficientAuthVal of EfficientIC(D, Pi,P′, �, f

(1)
i (j), f

(2)
i (j), . . . , f

()
i (j)) for

for all j ∈ {1, . . . , n′}. Similarly D executes EfficientDistr and EfficientAuthVal of
EfficientIC(D, Pi,P′, �, g

(1)
i (j), g

(2)
i (j), . . . , g

()
i (j)) .

2. For l = 1, . . . , �, Pi checks whether the sets f
(l)
i (1), . . . , f

(l)
i (n′) and g

(l)
i (1), . . . , g

(l)
i (n′)

are t′-consistent. If the values are not t′-consistent, for some l ∈ {1, . . . , �} then Pi along
with all players in P′ invoke EfficientRevealVal(D, Pi,P′, �, f

(1)
i (j), f

(2)
i (j), . . . , f

()
i (j)) and

EfficientRevealVal(D, Pi,P′, �, g
(1)
i (j), g

(2)
i (j), . . . , g

()
i (j)) for all j ∈ {1, . . . , n′}. If the sig-

natures produced by Pi are valid and for some l ∈ {1, . . . , �}, either f
(l)
i (1), . . . , f

(l)
i (n′) or

g
(l)
i (1), . . . , g

(l)
i (n′) is not t′-consistent, then the protocol terminates without generating desired

output.

3. For every pair of players Pi and Pj from P′ the following will be executed:

(a) Pi as a dealer executes EfficientDistr and EfficientAuthVal of
EfficientIC(Pi, Pj ,P′, �, f

(1)
i (j), . . . , f

()
i (j)) to give his IC signature on f

(1)
i (j), . . . , f

()
i (j)

to Pj . Upon receiving the signature, Pj checks whether f
(l)
i (j) ?= g

(l)
j (i) for

l = 1, . . . , �. If there is an inconsistency then Pj along with all players in P′ invoke
EfficientRevealVal(D, Pj ,P′, �, g

(1)
j (i), g

(2)
j (i), . . . , g

()
j (i)).

(b) If Pj fails to produce valid signature in the previous step, then all the players from P′ ignore
the IC signatures received from Pj in previous step. Otherwise, if Pj is able to produce valid
signature then g

(1)
j (i), g

(2)
j (i), . . . , g

()
j (i) become public. Using the public values Pi checks

whether f
(l)
i (j) ?= g

(l)
j (i) for l = 1, . . . , �. If he finds any inconsistency, then Pi along with all

players in P′ invoke EfficientRevealVal(D, Pi,P′, �, f
(1)
i (j), f

(2)
i (j), . . . , f

()
i (j)).

(c) If Pi fails to produce valid signature in the previous step, then all the players from P′

ignore the IC signatures received from Pi in step 3(a). Else if Pi is able to produce valid
signature, then all the values f

(1)
i (j), f

(2)
i (j), . . . , f

()
i (j) become public. Every player then

verifies f
(l)
i (j) ?= g

(l)
j (i) for l = 1, . . . , �. If f

(l)
i (j) �= g

(l)
j (i) for some l ∈ {1, . . . , �} then the

protocol terminates without generating the desired output.

Lemma 6. With overwhelming probability, Random generates random 〈〈r(1), . . . ,
r(�)〉〉t′ in eight rounds and privately communicates and broadcasts O((�n3+n4)κ)
bits.

2.4 Proving c = ab

Definition 5. t′-1D(+)-sharing: A value s is correctly t′-1D(+)-shared among
the players in P ′, denoted by 〈s〉t′ , if there exists t′ degree polynomial f(x) held

Table 3. Protocol for Generating
 Random t′-2D(+,�)-Sharing

〈〈r(1), . . . , r()〉〉t′ = Random(P′, t′, �)
Every player Pi ∈ P′ invokes 2D(+,)Share(Pi,P′, t′, �, r(1,Pi), . . . , r(,Pi)) to generate
〈〈r(1,Pi), . . . , r(,Pi)〉〉Pi

t′ , where r(1,Pi), . . . , r(,Pi) are randomly selected from F. Let Pass de-

notes the set of players Pi in P′ such that t′-2D(+,)Share(Pi,P′, t′, �, r(1,Pi), . . . , r(,Pi))
is executed successfully. Now all the players in P′ jointly computes 〈〈r(1), . . . , r()〉〉t′ =∑

Pi∈P ass〈〈r(1,Pi), . . . , r(,Pi)〉〉Pi
t′ .

Round Efficient UMPC Protocol 193

by D with f(0) = s. Every player Pi ∈ P ′ holds a share si = f(i) of s with an
IC signature on it from the dealer D (i.e. ICSigsi(D, Pi)).

Definition 6. t′-1D(+,�)-sharing: We say that a set of secrets s(1), . . . , s(�) are
correctly t′-1D(+,�)-shared among the players in P ′ if there exists t′ degree poly-
nomials f (1), . . . , f (�) held by D, with f (l)(0) = s(l) for l = 1, . . . , �. Every player
Pi ∈ P ′ holds shares s

(1)
i = f (1)(i), . . . , s(�)

i = f (�)(i) of s(1), . . . , s(�) along with
a single IC signature on them from the dealer D (i.e. ICSig(s(1)

i ,...,s
()
i)(D, Pi))).

We denote the t′-1D(+,�)-sharing of � length secret by 〈s1, . . . , s�〉t′ .

If � secrets s(1), . . . , s(�) are t′-1D(+,�)-shared by player D, we denote it by
〈s1, . . . , s�〉Dt′ . Now let D∈ P ′ has already correctly t′-1D(+,�)-shared a(1), . . . , a(�)

and b(1), . . . , b(�) among the players in P ′. Now D wants to correctly t′-2D(+,�)-
share c(1), . . . , c(�) without leaking any additional information about a(l), b(l)

and c(l), such that every (honest) player in P ′ knows that c(l) = a(l)b(l) for
l = 1, . . . , �. We propose a protocol ProveCeqAB, given in Table 4 to achieve
this task. The idea of the protocol is inspired from [10] with the following mod-
ification: we make use of our protocol 2D(+,�)-Share, which provides us with
high efficiency. For a detailed explanation, see the full version of the paper [13].

Lemma 7. In ProveCeqAB, if D does not fail, then with overwhelming prob-
ability, every (a(l), b(l)), c(l) satisfies c(l) = a(l)b(l). ProveCeqAB takes twenty
five rounds and communicates O((�n2+n4)κ) bits and broadcasts O((�n2+n4)κ)
bits. Moreover, if D is honest then a(l), b(l) and c(l) are information theoretically
secure.

2.5 Multiplication

Let two sets of � values a(1), . . . , a(�) and b(1), . . . , b(�) are correctly t′-2D(+,�)-
shared among the players in P ′, i.e. 〈〈a(1), . . . , a(�)〉〉t′ and 〈〈b(1), . . . , b(�)〉〉t′ .
We now present a protocol called Mult, given in Table 5, which allows the
players to compute t′-2D(+,�)-sharing 〈〈c(1), . . . , c(�)〉〉t′ such that c(l) = a(l)b(l)

for l = 1, . . . , �. Our protocol is based on the technique used in [10] with the
following difference: we make use of our protocol ProveCeqAB, which provides
us with high efficiency. For full details, see the full version of the paper [13].

Lemma 8. With overwhelming probability, protocol Mult produces 〈〈c(1), . . . ,
c(�)〉〉t′ from 〈〈a(1), . . . , a(�)〉〉t′ and 〈〈b(1), . . . , b(�)〉〉t′ such that c(l) = a(l)b(l) if
less then n′ − 2t′ players are added to C. Mult takes twenty five rounds and
communicates O((�n3 +n5)κ) bits and broadcasts O((�n3 +n5)κ) bits. Moreover,
c(l), a(l) and b(l) remains secure.

2.6 Proving a=b

Consider the following scenario: Let D∈ P ′ has t′-1D(+,�)-shared � values a(1),
. . . , a(�) among the players in P ′. Now some more computation has been carried
out after the sharing done by D and during the computation some players have

194 A. Patra, A. Choudhary, and C.P. Rangan

Table 4. 〈〈c(1), . . . , c(�)〉〉Dt′ =ProveCeqAB(D,P ′, t′,
, 〈a(1), . . . , a(�)〉Dt′ , 〈b(1), . . . , b(�)

〉Dt′)

1. D randomly generates (β(1), . . . , β()) ∈ F
	. and invokes

2D(+,)Share(D,P′, t′, �, c(1), . . . , c()), 2D(+,)Share(D, P′, t′, �, β(1), . . . , β()) and
2D(+,)Share(D,P′, t′, �, b(1)β(1), . . . , b()β()). If any of the Share protocol fails, then
D fails and the protocol terminates. For l = 1, . . . , �, let a(l), b(l), c(l), β(l) and β(l)b(l)

are implicitly shared using polynomials fa(l)
(x), fb(l) (x), fc(l) (x), fβ(l)

(x) and fβ(l)b(l) (x)
respectively.

2. Players in P′ jointly generate a random number r. This is done as follows: first the players
in P execute the protocol Random(P′, t′, 1) to generate 〈〈r〉〉t′ . Then the players compute
r = 2D+Recons(P′, t′, 〈〈r〉〉t′).

3. D broadcasts F (l)(x) = rfa(l)
(x) + fβ(l)

(x) for l = 1 . . . , �.

4. Player Pi ∈ P′ checks F (l)(i) ?= rfa(l)
(i) + fβ(l)

(i) for l = 1, . . . , �. If the test fails for at least

one l, then Pi and all players invoke EfficientRevealVal(D, Pi,P′, �, fa(1)
(i), . . . , fa()

(i)) and

EfficientRevealVal(D, Pi,P′, �, fβ(1)
(i), . . . , fβ()

(i)). If the signature is invalid, ignore Pi’s

complaints. Otherwise all the values (fa(1)
(i), . . . , fa()

(i)) and (fβ(1)
(i), . . . , fβ()

(i)) become

public. Using these values all players publicly checks F (l)(i) ?= rfa(l)
(i)+fβ(l)

(i) for l = 1, . . . , �.
If the test fails for at least one l, then D fails and the protocol terminates here.

5. D broadcasts G(l)(x) = F (l)(0)fb(l) (x) − fβ(l)b(l) (x) − rfc(l) (x) for l = 1 . . . , �.

6. Player Pi ∈ P′ checks G(l)(i) ?= F (l)(0)fb(l) (i) − fβ(l)b(l) (i) −
rfc(l) (i). If the test fails for at least one l, then Pi and all play-

ers in P′ invoke EfficientRevealVal(D, Pi,P′, �, fb(1) (i), . . . , fb() (i)),

EfficientRevealVal(D, Pi,P′, �, fβ(1)b(1) (i), . . . , fβ()b() (i)) and

EfficientRevealVal(D, Pi,P′, �, fc(1) (i), . . . , fc() (i)).

7. If the signature is invalid, ignore Pi’s complaint. Otherwise all the values (fb(1) (i), . . . , fb() (i)),

(fβ(1)b(1) (i), . . . , fβ()b() (i)) and (fc(1) (i), . . . , fc() (i)) become public. Using these values all

players publicly checks G(l)(i) ?= F (l)(0)fb(l) (i) − fβ(l)b(l) (i) − rfc(l) (i) for l = 1, . . . , �. If the
test fails for at least one l, then D fails and protocol terminates here.

8. Every player checks whether G(l) ?= 0 for l = 1, . . . , �. If the test fails for at least one l, then D
fails and protocol terminates here. Otherwise D has proved that c(l) = a(l)b(l) for l = 1, . . . , �.

been detected as faulty and removed from P ′. Let us denote the snapshot of
P ′ before and after the computation by P1 and P2 respectively. Also assume
|P1| = n1 and the number of corrupted players in P1 is t1 with n1 ≥ t + 1 + t1.
Similarly |P2| = n2 and the number of corrupted players in P2 is t2 with n2 ≥
t+1+ t2, t1 > t2. Now D wants to correctly t2-2D(+,�)-share b(1), . . . , b(�) among
the players of P2 such that b(l) = a(l), without leaking any additional information
about a(l). We propose a protocol ProveAeqB to achieve this task.

Lemma 9. In protocol ProveAeqB, if D does not fail, then with overwhelm-
ing probability, every (a(l), b(l)) satisfies a(l) = b(l). ProveAeqB takes thirteen
rounds and communicates and broadcasts O((�n2 +n3)κ) bits. Moreover, if D is
honest then At learns no information about a(l), for 1 ≤ l ≤ �.

2.7 Resharing

As described in previous section, consider the time-stamps before and after some
computation where before and after the computation, P ′ is denoted by P1 and

Round Efficient UMPC Protocol 195

Table 5. 〈〈c(1), . . . , c(�)〉〉t′ = Mult(P ′,
, 〈〈a(1), . . . , a(�)〉〉t′ , 〈〈b(1), . . . , b(�)〉〉t′)

1. Given 〈〈a(1), . . . , a()〉〉t′ , it implies that ith shares of a(1), . . . , a() are t′-1D(+)-shared
by Pi i.e. 〈a(1)

i , . . . , a
()
i 〉Pi

t′ for Pi ∈ P′. Similarly we have 〈b(1)i , . . . , b
()
i 〉Pi

t′ .Player

Pi invokes ProveCeqAB(Pi,P′, t′, �, 〈a(1)
i , . . . , a

()
i 〉Pi

t′ , 〈b(1)i , . . . , b
()
i 〉Pi

t′) to generate

〈〈c(1)
i , . . . , c

()
i 〉〉Pi

t′ .
2. If at least n′−2t′ players fails in executing ProveCeqAB, then remove them from P′, adjust

t′ and terminate the protocol without generating the expected result. Otherwise for simplicity
assume that the first 2t′ + 1 players are successful in executing ProveCeqAB.

3. All the players compute: 〈〈c(1), . . . , c()〉〉t′ =
∑2t′+1

i=1 ri〈〈c(1)
i , . . . , c

()
i 〉〉Pi

t′ , where
(r1, . . . , r2t′+1) represents the recombination vector [9].

〈〈a(1), . . . , a()〉〉Dt2 = ProveAeqB(D,P2, t1, t2, �, 〈a(1), . . . , a()〉Dt1)

1. D invokes 2D(+,)Share(D,P2, t2, �, a(1), . . . , a()) to verifiably t2-2D(+,)-share
(a(1), . . . , a()). D selects a random � length tuple (c(1), . . . , c()) ∈ F

	 and invokes
2D(+,)Share(D,P2, t1 − 1, �, c(1), . . . , c()). If protocol 2D(+,)Share fails then D fails
here and the protocol terminates here. Otherwise for convenience we say that D has
t2-2D(+,)-shared (b(1), . . . , b()). For an honest D, a(l) = b(l) for l = 1, . . . , �.

2. For l = 1, . . . , �, let a(l), b(l) and c(l) are implicitly shared using polynomials fa(l)
(x) (degree

t1), fb(l) (x) (degree t2) and fc(l) (x) (degree t1 − 1) respectively. Now D broadcasts the

polynomials F (l)(x) = fa(l)
(x) + xfc(l) (x) − fb(l) (x).

3. Player Pi ∈ P2 checks whether F (l)(i) ?= fa(l)
(i) + ifc(l) (i) − fb(l) (i). If the

test fails for at least one l, EfficientRevealVal(D, Pi,P1, �, fa(1)
(i), . . . , fa()

(i)),

EfficientRevealVal(D, Pi, P2, �, fb(1) (i), . . . , fb() (i)) and

EfficientRevealVal(D, Pi, P2, �, fc(1) (i), . . . , fc() (i)) are invoked.
4. If the signatures are invalid, then ignore Pi’s complaints. Otherwise all the values

(fa(1)
(i), . . . , fa()

(i)), (fb(1) (i), . . . , fb() (i)) and (fc(1) (i), . . . , fc() (i)) become public.

Using these values all players publicly checks whether F (l)(i) ?= fa(l)
+ ifc(l) (i) − fb(l) (i)

for l = 1, . . . , �. If the test fails for at least one l, then D fails and protocol terminates here.

5. Every player checks F (l)(0) ?= 0 for l = 1, . . . , �. If the test fails for at least one l, then D
fails and protocol terminates here. Else D has proved that a(l) = b(l).

P2 respectively. Let the players in P1 holds a t1-2D(+,�)-sharing of � values
s(1), . . . , s(�) i.e. 〈〈s(1), . . . , s(�)〉〉t1 . Now the players want to jointly generate t2-
2D(+,�)-sharing of same values i.e 〈〈s(1), . . . , s(�)〉〉t2 among the players in P2
where t2 < t1. This is done by protocol Reshare.

〈〈a(1), . . . , a()〉〉t2 = Reshare(P′, t1, t2, �, 〈〈a(1), . . . , a()〉〉t1)

1. Given 〈〈a(1), . . . , a()〉〉t1 , it implies that the ith shares of a(1), . . . , a() are already

t1-1D(+,)-shared by Pi, i.e. 〈a(1)
i , . . . , a

()
i 〉Pi

t1
for Pi ∈ P1. Player Pi in P2 invokes

ProveAeqB(Pi,P2, t1, t2, �, 〈a(1)
i , . . . , a

()
i 〉Pi

t1
) to generate 〈〈a(1)

i , . . . , a
()
i 〉〉Pi

t2
. For simplicity as-

sume that first t1 + 1 players are successful in ProveAeqB. Since n2 = t + 1 + t2 and t > t1, at
least t + 1 ≥ t1 + 1 honest players will always be successful.

2. All the players compute: 〈〈a(1), . . . , a()〉〉t2 =
∑ t1+1

i=1 ri〈〈a(1)
i , . . . , a

()
i 〉〉Pi

t2
, where

(r1, . . . , rt1+1) represents the recombination vector.

196 A. Patra, A. Choudhary, and C.P. Rangan

Lemma 10. With overwhelming probability, protocol Reshare produces t2-2D(+,�)-
sharing 〈〈a(1), . . . , a(�)〉〉t2 from 〈〈a(1), . . . , a(�)〉〉t1 with t2 < t1. Reshare takes
thirteen rounds and communicates O((�n3 + n4)κ) bits and broadcasts O((�n3 +
n4)κ) bits. Moreover, At learns nothing about a(l), for 1 ≤ l ≤ �.

2.8 Preparation Phase

We call a triple (a, b, c) as a multiplication triple if c = ab. The goal of the
preparation phase is to generate correct d-2D+-sharing of (cM + cR) secret mul-
tiplication triples where d denotes the number of corrupted players still present
in P ′ at the end of preparation phase. So in total there will be cM + cR multi-
plication triples (a(i), b(i), c(i)) such that c(i) = a(i)b(i) for i = 1, . . . , (cM + cR).
The generation of cM + cR multiplication triples is divided into �log(t)� seg-
ments, wherein each segment is responsible for generating d-2D(+,�)-sharing of
� = � cM+cR

log t � triples. Here we use a novel technique called rapid player elimina-
tion (RPE) which works in the following way: The computation of a segment is
non-robust i.e. a segment may fail due to the (mis)behavior of certain number of
corrupted players who reveal their identity during the execution of the segment.
At the beginning of preparation phase we set the counter for keeping track the
number of (segment) failures to zero i.e f = 0. We create a win-win situation,
where if a segment fails, then it must be due to the revelation/detection of at
least 2f new corrupted players. After removing the corrupted players from P ′,
a fresh execution of the same segment will be started with f incremented by 1.
This ensures that total �log(t)�− 1 failures can occur (i.e f ≤ �log(t)�− 1) since
�log(t)�−1 failures are enough to reveal all the t corrupted players. Once all the
t corrupted players are revealed, rest of the computation can run without occur-
rence of any failure. Specifically, in every segment one of the following occurs: (a)
t1-2D(+,�)-sharing of � = � cM+cR

log t � secret multiplication triples will be generated,
where t1 denotes the number of corrupted players present in P ′ (t1 = t − |C|)
at the beginning of the segment’s execution; (b) the segment fails with at least
2f corrupted players being eliminated from P ′ (and added to C), where f de-
notes the number of failures occurred so far. But there are two problems here.
We want all the triples to be d-2D+-shared. But since the number of corrupted
players in P ′ may change dynamically after every failure, the sharing produced
in different segment may be of different degree. Also the sharing produced by
segments are t1-2D(+,�)-sharing where t1 may vary segment to segment. So, to
achieve our goal, we first use protocol Reshare to obtain uniform d-2D(+,�)-
sharing for all the segments. Then, we use Protocol Convert2D(+,�)to2D+ to
produce d-2D+-sharing from d-2D(+,�)-sharing. By using this approach, we can
efficiently generate the triples with less communication overhead. For full details
of the protocol, see [13].

Lemma 11. With overwhelming probability, protocol Preparation Phase pro-
duces correct d-2D+-sharing of (cM+cR) secret multiplication triples in O(log(t))
rounds, communicates O((cM +cR)n3+n4)κ bits and broadcasts O((cM +cR)n3+
n4)κ bits. Moreover, At learns nothing about (a(i), b(i), c(i)) for 1 ≤ i ≤ �.

Round Efficient UMPC Protocol 197

Preparation Phase

1. Let P′ = P, n′ = n, � = � cM +cR
log t � and t′ = t. Let f = 0.

2. For every segment k = 1, . . . , �log(t)�, do the following:

(a) Set P1 = P′, n1 = n′ and t1 = t′. Invoke Random(P1, t1, �) twice in
parallel to generate 〈〈a(1)

k , . . . , a
()
k 〉〉t1 and 〈〈b(1)k , . . . , b

()
k 〉〉t1 . Then Invoke

Mult(P1, �, 〈〈a(1)
k , . . . , a

()
k 〉〉t1 , 〈〈b(1)k , . . . , b

()
k 〉〉t1) to generate 〈〈c(1)

k , . . . , c
()
k 〉〉t1 .

(b) If Mult fails to produce 〈〈c(1)
k , . . . , c

()
k 〉〉t1 , then it must have removed 2f new corrupted

players from P′ (i.e |P1| − |P′| = n1 − n′ ≥ 2f). Thus repeat this segment with f = f + 1.
Else increment k.

3. Now let P2 = P′, n2 = n′ and d = t′. For every segment k = 1, . . . , �log(t)�, check whether
c
(1)
k , . . . , c

()
k are d-2D(+,)-shared. If c

(1)
k , . . . , c

()
k are α-2D(+,)-shared with α > d then

invoke Reshare(P2, α, d, �, 〈〈a(1)
k , . . . , a

()
k 〉〉α), Reshare(P2, α, d, �, 〈〈b(1)k , . . . , b

()
k 〉〉α) and

Reshare(P2, α, d, �, 〈〈c(1)
k , . . . , c

()
k 〉〉α) to generate 〈〈a(1)

k , . . . , a
()
k 〉〉d, 〈〈b(1)k , . . . , b

()
k 〉〉d and

〈〈c(1)
k

, . . . , c
()
k

〉〉d.

4. For every segment k=1, . . . , �log(t)�, invoke Convert2D(+,)to2D+(P2, d, �, 〈〈a(1)
k , . . . , a

()
k 〉〉d),

Convert2D(+,)to2D+(P2, d, �, 〈〈b(1)k , . . . , b
()
k 〉〉d) and Convert2D(+,)to2D+(P2, d, �, 〈〈c(1)

k , . . . ,

c
()
k 〉〉d) to obtain 〈〈a(1)

k 〉〉d, . . . , 〈〈a()
k 〉〉d, 〈〈b(1)k 〉〉d, . . . , 〈〈b()k 〉〉d and 〈〈c(1)

k 〉〉d, . . . , 〈〈c()
k 〉〉d.

2.9 Input Phase

Once Preparation Phase is complete, the execution of Input Phase begins.
The goal of the input phase is to generate d-2D+-sharing of cI inputs. Assume
that player Pi ∈ P has ci inputs. Thus cI =

∑n
i=1 ci. We stress that though

some players from P might have failed and removed during preparation phase,
we still allow them to feed their input. Recall that at the end of preparation
phase, P2 = P ′. So once all the players in P feed their input, the rest of the
computation will be performed among the players in P2. For this, each input
sharing is then reshared among the players in P2. Also if some player Pi fails to
correctly share their input, then everybody accepts a default d−2D(+,ci) sharing
on behalf of that player.

Lemma 12. With overwhelming probability, protocol Input Phase produces
correct d-2D+-sharing of cI inputs. Input Phase takes twenty eight rounds
and communicates O(cIn

3 + n5)κ bits and broadcasts O(cIn
3 + n5)κ bits.

Input Phase

1. Every player Pi ∈ P with ci inputs s
(1)
i , s

(2)
i , . . . , s

(ci)
i , invokes

2D(+,ci)Share(Pi,P, t, ci, s
(1)
i , s

(2)
i , . . . , s

(ci)
i) to generate 〈〈s(1)

i , . . . , s
(ci)
i 〉〉t.

2. For every Pi, invoke Reshare(P2, t, d, ci, 〈〈s(1)
i , . . . , s

(ci)
i 〉〉t) to gener-

ate 〈〈s(1)
i , . . . , s

(ci)
i 〉〉d provided d < t. For every player Pi, invoke

Convert2D(+,ci)to2D+(P2, d, ci, 〈〈s(1)
i , . . . , s

(ci)
i 〉〉d) to obtain 〈〈s(1)

i 〉〉d, . . . , 〈〈s(ci)
i 〉〉d.

2.10 Computation Phase

Once Preparation Phase and Input Phase are over, the computation of the
circuit (of the agreed upon function f) proceeds gate-by-gate. First, to every

198 A. Patra, A. Choudhary, and C.P. Rangan

random and every multiplication gate, a prepared d-2D+-shared random triple
is assigned. And a d-2D+-shared input is assigned to the corresponding input
gates. A gate (except output gate) g is said to be computed if a d-2D+-sharing
〈〈xg〉〉d is computed for the gate. Note that all the random and input gates will
be computed as soon as we assign d-2D+-shared random triples (generated in
Preparation Phase) and d-2D+-shared inputs (generated in Input Phase)
to them respectively. A gate is said to be in ready state, when all its fanin
gates have been computed. In the Computation Phase, the circuit evaluation
proceeds in rounds wherein each round all the ready gates will be computed
parallely. Evaluation of input, random and addition gates do not require any
communication. Evaluation of multiplication and output gate requires 2 and 1
call to Protocol 2D+Recons respectively. So the individual gates in the circuit
are evaluated as shown in the above table. The correctness of the steps described
for multiplication gate follows from [1] which introduced the technique called
Circuit Randomization.

Lemma 13. With overwhelming probability, protocol Computation Phase eval-
uates the circuit gate-by-gate in a shared fashion and outputs the desired outputs.
Computation Phase takes D rounds and communicates O((cM +cO)n3κ) bits.

Computation Phase
Input Gate: 〈〈s〉〉d = IGate(〈〈s〉〉d)

Assign a d-2D+-sharing of an input, say 〈〈s〉〉d.

Random Gate: 〈〈a〉〉d = RGate(〈〈a〉〉d, 〈〈b〉〉d, 〈〈c〉〉d)

Assign a d-2D+-sharing of a multiplication triple, say (〈〈a〉〉d, 〈〈b〉〉d, 〈〈c〉〉d), where only the first
component is used.

Addition Gate: 〈〈z〉〉d = AGate(〈〈x〉〉d, 〈〈y〉〉d)

If 〈〈x〉〉d and 〈〈y〉〉d are the inputs to the addition gate, all players in P2 compute 〈〈z〉〉d =
〈〈x〉〉d + 〈〈y〉〉d with 〈〈z〉〉d as the output of the gate.

Multiplication Gate: 〈〈z〉〉d = MGate(〈〈x〉〉d, 〈〈y〉〉d, (〈〈a〉〉d, 〈〈b〉〉d, 〈〈c〉〉d))

1. Let 〈〈x〉〉d and 〈〈y〉〉d are the inputs to the multiplication gate and (〈〈a〉〉d, 〈〈b〉〉d, 〈〈c〉〉d) is the
random multiplication triple assigned to it. Then all players in P2 compute the output 〈〈z〉〉d) in
the following way.

2. All players in P2 compute 〈〈α〉〉d = 〈〈x〉〉d − 〈〈a〉〉d and 〈〈β〉〉d = 〈〈y〉〉d − 〈〈b〉〉d.

3. All players in P2 invoke 2D+Recons(P2, d, 〈〈α〉〉d) and 2D+Recons(P2, d, 〈〈β〉〉d) to recon-
struct α and β.

4. All players in P2 compute 〈〈z〉〉d = αβ + α〈〈b〉〉d + β〈〈a〉〉d + 〈〈c〉〉d.

Output Gate: x = OGate(〈〈x〉〉d)

If 〈〈x〉〉d is the input to the output gate, all players in P2 compute x = 2D+Recons(P2, d, 〈〈x〉〉d).

Now our new UMPC protocol for evaluating function f is: (1). Invoke Prepa-
ration Phase (2). Invoke Input Phase (3). Invoke Computation Phase.

Theorem 1. With overwhelming probability, our new UMPC protocol can eval-
uate an agreed upon function securely against an active adaptive rushing ad-
versary At with t < n/2 and requires O(log(t) + D) rounds and communicates
O(((cI + cR + cM + cO)n3)κ) bits and broadcasts O((cI + cM + cR)n3 +n5)κ bits.

Round Efficient UMPC Protocol 199

Using the protocol of [12] to simulate the broadcasts, the communication com-
plexity and round complexity of our UMPC protocol is as follows:

Theorem 2. With overwhelming probability, our new UMPC protocol requires
O(n log(t) + D) rounds and communicates O(((cI + cM + cR + cO)n4 + n7)κ)
bits.

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992)

2. Beaver, D.: Secure multiparty protocols and zero-knowledge proof systems toler-
ating a faulty minority. Journal of Cryptology 4(4), 75–122 (1991)

3. Beerliová-Trub́ıniová, Z., Hirt, M.: Efficient multi-party computation with dispute
control. In: Proc. of TCC, pp. 305–328 (2006)

4. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

6. Berman, P., Garay, J.A., Perry, K.J.: Bit optimal distributed consensus. Computer
Science Research, 313–322 (1992)

7. Carter, L., Wegman, M.N.: Universal classes of hash functions. Journal of Com-
puter and System Sciences (JCSS) 18(4), 143–154 (1979)

8. Chaum, D., Crpeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Proc. of FOCS 1988, pp. 11–19 (1988)

9. Cramer, R., Damg̊ard, I.: Multiparty Computation, an Introduction. Contempo-
rary Cryptography. Birkháuser, Basel (2005)

10. Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multi-
party computations secure against an adaptive adversary. In: Stern, J. (ed.) EU-
ROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)

11. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007)

12. Fitzi, M., Hirt, M.: Optimally Efficient Multi-Valued Byzantine Agreement. In:
Proc. of PODC 2006, pp. 163–168. ACM, New York (2006)

13. Patra, A., Choudhary, A., Pandu Rangan, C.: Round Efficient Unconditionally
Seecure Multiparty Computation. Cryptology ePrint Archive, Report 2008/399

14. Pfitzmann, B., Waidner, M.: Information-theoretic pseudosignatures and byzantine
agreement for t ≥ n/3. Technical report, IBM Research (1996)

15. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC, pp. 73–85 (1989)

16. Yao, A.C.: Protocols for secure computations. In: Proc. of 23rd IEEE FOCS, pp.
160–164 (1982)

A New Anonymous Password-Based
Authenticated Key Exchange Protocol�

Jing Yang and Zhenfeng Zhang

State Key Laboratory of Information Security,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

National Engineering Research Center of Information Security, Beijing 100190, China
{yangjing,zfzhang}@is.iscas.ac.cn

Abstract. In Indocrypt 2005 Viet et al. first proposed an anonymous
password-based key exchange protocol: APAKE and its extension:
k -out-of-n APAKE. Then Shin et al. presented an improved protocol
TAP. In this paper, we first show that the TAP protocol is vulnerable
to two attacks. One is an impersonating attack and the other is an
off-line dictionary attack, which is also applied to k -out-of-n APAKE.
Furthermore, we propose a novel anonymous password-based key ex-
change protocol, and prove its security in the random oracle model
under the square computational Diffie-Hellman assumption and decision
inverted-additive Diffie-Hellman assumption. We also extend our proto-
col to the distributed setting, which is secure against the proposed attacks.

Keywords: Password-based AKE, Anonymous authentication.

1 Introduction

Password-based authenticated key exchange (PAKE) has received growing atten-
tion in recent years. The two communication entities in PAKE can establish a fresh
authenticated session key by only using a pre-shared human-memorable password,
without the heavy-weight PKI. However PAKE also suffers from so-called exhaus-
tive guessing or dictionary attacks due to the small space of the password. By now
many password-based key establishment schemes have been proposed, including
EKE [7], AuthA [5,6], SPEKE [9], SRP [7], password-based TLS [3] et al. Besides
such two-party protocols, some studies focus on the group setting. A password-
based group key establishment protocol enable a group of users to authenticate
each other and establish a fresh session key for further secure communication.
Each user either shares a common password with all others, or just shares a pass-
word with a trusted server. For the latter case, the establishment of a session key
needs server’s help, who may know the key or not.

Anonymity is an increasing hot issue nowadays. An anonymous authentication
scheme [12] is a protocol that allows a member called a prover of a group to
� The work is supported by National Natural Science Foundation of China (90604018,

60873261), National Basic Research Program (973) of China (2007CB311202),
National High-Tech R&D Program (863) of China (2006AA01Z454), and National
Key Technologies R&D Program of China (2006BAH02A02).

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 200–212, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A New Anonymous PAKE Protocol 201

convince a verifier that she is a member of the group without revealing any
information about her. Anonymity in the public key cryptosystem has been
discussed for a long time. The group signature , ring signature and anonymous
credential system are obvious solutions to it. However due to the low entropy of a
password, anonymous authentication in a password-based scheme is a challenging
thing. By now there have been only a few research results on this issue.

Viet et al. [12] first proposed, as we know, an anonymous PAKE protocol,
called APAKE, which can make a user establish a session key with a server anony-
mously with only sharing a short password. And they extended it to the k -out-of-n
APAKE protocol between a group of members and a server. They combined a
password-based AKE protocol [2] for generating secure channels with an Oblivi-
ous Transfer protocol [11] for client’s anonymity. Later Chai et al.[8] proposed a
similar smart card-based PAKE protocol preserving user’s privacy. And recently
Shin et al. [10] pointed out that Viet et al.’s k -out-of-n APAKE protocol is in-
secure against an off-line dictionary attack, and proposed a so-called threshold
anonymous PAKE (TAP) protocol. The TAP protocol is claimed to provide se-
mantic security of session keys, unilateral authentication of server S and clients’
anonymity against a passive server. With the threshold t = 1, the TAP protocol
is more efficient than Viet et al.’s APAKE protocol. Both the k -out-of-n APAKE
protocol and the TAP protocol works in distributed settings, in order to enable a
group of member to establish a session key with a server anonymously. Such kind
of protocols is called as distributed anonymous PAKE in this paper.

1.1 Our Contribution

Our contribution in this paper is twofold. Firstly, we point out the vulnerabili-
ties of both Viet et al. and Shin et al. distributed anonymous PAKE protocols.
Shin et al.’s TAP (t ≥ 2) protocol is insecure against two attacks. One is an
impersonating attack breaking the unilateral authentication of the scheme, and
the other one is an off-line dictionary attack, which can make a malicious client
get all other clients’ passwords. And the latter is also applied to Viet et al.’s
k-out-of-n APAKE protocol. Secondly, we propose a new anonymous password-
based authenticated key exchange protocol, named NAPAKE. In the random or-
acle model, we prove its security under the square computational Diffie-Hellman
assumption and decision inverted-additive Diffie-Hellman assumption. Further-
more, we give an extension of our protocol to the distributed setting, which is
secure against the proposed two attacks.

1.2 Organization

The paper is organized as following: Section 2 presents two attacks against the
afore-mentioned anonymous PAKE protocols. In section 3, we introduce the
formal model and security assumptions for the two-party anonymous PAKE.
Our new protocol NAPAKE is shown in section 4, along with its efficiency and
security analysis. And the extension of NAPAKE to the distributed setting is
given also in the section 4. Finally section 5 concludes the whole paper.

202 J. Yang and Z. Zhang

2 Security Flaws of Two Distributed Anonymous PAKE
Protocols

In this section, we present two attacks against Shin et al.’s TAP (t ≥ 2) [10] pro-
tocol. One is an impersonating attack breaking the unilateral authentication of
the scheme, and the other one is an insider’s off-line dictionary attack. Moreover
the latter is also applied to Viet et al.’s k-out-of-n APAKE [12] protocol.

Note that, both the k-out-of-n APAKE and TAP protocol have been claimed
to be secure for the AKE security and unilateral authentication. In fact, the
security model they adopted is for the two-party setting, and the subgroup is
treated as a whole entity in their model. Therefore, the insiders’ attack has
not been covered sufficiently. Although a kind of insider adversary was also
considered in the k-out-of-n APAKE, it is used only for the user’s anonymity.

The attacks show that insider’s attack is practical and seems easier to mount
in distributed (multiparty) anonymous PAKE protocols than two-party settings.

2.1 Brief Review of the TAP Protocol

Shin et al.’s threshold anonymous PAKE protocol is illustrated in Fig.1. The
goal of the protocol is to make the t clients in SG establish a session key with S
anonymously. It works in the group G with the prime order q and two generators
g and h. Let F : {0, 1}∗ → Zq and G : {0, 1}∗ → G be two full-domain hash
functions, and H1 and H2 be secure cryptographic hash functions from {0, 1}∗
to {0, 1}l, where l is a security parameter.

2.2 The Impersonating Attack against TAP

Suppose SG initiates the TAP protocol. Let AG be another subgroup of Γ , which
consists of t′ malicious clients not included in SG. AG wants to impersonate S
to establish a session key with SG. The detail is shown as follows.

1′. AG intercepts the message {Γ, t, {Xi
∗}1≤i≤n}. Each client Ck in AG, chooses

a random numbers ek from Zq, computes Ek = gek , Fk = hF(k,pwk) and
Ek

∗ = Ek · Fk, and constructs a new set {X∗′
i }1≤i≤n, in which Xi

∗′
= E∗

k if
Ci is in AG, or otherwise X∗′

i = X∗
i . After that, AG initiates another run of

the TAP protocol with S by sending (Γ, t′, {X∗′
i }1≤i≤n).

2′. Upon receipt of the message (Γ, t′, {X∗′
i }1≤i≤n), the server S executes the

protocol as normal.
3′. – Each Ck in AG, looks for Zk and extracts Sk, where Sk = Zk ⊕G(k, Kk)

and Kk = Y ek .
– With all Sk, AG reconstructs the polynomial f(x) =

∑t′−1
l=0 ulx

l by La-
grange interpolation, and gets Sj = f(j), G(j, Kj) = Sj ⊕ Zj for all n
clients.

– AG chooses a new shared secret S̃ ∈R G and new coefficients {ũl}1≤l≤t−1

to construct a new polynomial f̃(x) =
∑t−1

l=0 ũlx
l with u0 = S̃.

A New Anonymous PAKE Protocol 203

Client: SG ⊂ Γ (|SG| = t) Server: S (Wi = hF(i,pwi))

For each Ci ∈ SG y ∈R Zq, Y = gy, S ∈R G
xi ∈R Zq, Xi = gxi u0 = S, uk ∈ G

Wi = hF(i,pwi), X∗
i = Xi ×Wi For j = 1 to n

For each Cj ∈ Γ − SG, Sj = f(j)

X∗
j ∈R G,

Γ,t,{X∗
i }1≤i≤n−−−−−−−−−−→ Xj = X∗

j /Wj , Kj = X
y
j

Zj = G(j, Kj)⊕ Sj

VS = H1(Γ‖S‖Trans‖S)
S,Y,{Zj}1≤j≤n,VS←−−−−−−−−−−−− sk = H2(Γ‖S‖Trans‖S)

For each Ci ∈ SG, picks up Zi

Si = Zi ⊕ G(i, Ki)
S′ =

∑t
k=1 λkSk,

where λk =
∏

1≤m≤t,m�=k
m

m−k

If VS �= H1(Γ‖S‖Trans‖S′), reject
Otherwise sk = H2(Γ‖S‖Trans‖S′)

Note: Γ = (C1, · · · , Cn), Trans = t‖{X∗
i }1≤i≤n‖Y ‖{Zj}1≤j≤n

Fig. 1. Shin et al.’s threshold anonymous PAKE (TAP) protocol

– AG computes n shares S̃j = f̃(j), and generates new {Z̃j}1≤j≤n, where
Z̃j = G(j, Kj) ⊕ S̃j . Then AG computes ṼS = H1(Γ‖S‖Trans‖S̃) and
s̃k = H2(Γ‖S‖Trans‖S̃) where Trans = t‖{Xi

∗}1≤i≤n‖Y ‖{Z̃j}1≤j≤n.
Finally AG sends the message (S, Y, {Z̃j}1≤j≤n, ṼS) to SG.

3. – Each client Ci in SG, looks for Z̃i and extracts S̃i from Z̃i, where S̃i =
Z̃i ⊕ G(i, Ki) and Ki = Y xi .

– By collaborating with one another, SG reconstructs S̃′ from {S̃i}1≤i≤t by
Lagrange interpolation. To check ṼS , SG computes Ṽ ′

S = H1(Γ ||S||Trans

||S̃′) which obviously equals to ṼS . After that, SG generates its session key
s̃k = H2(Γ ||S||Trans||S̃′). In the end SG believes it establishes a session
key with the server S, but it is actually established with AG.

The key to the attack is that anyone who can get the shared secret S chosen
by S can get all clients’ hiding codes {G(j, Kj)}1≤j≤n via the corresponding Si.
With those hiding codes, the adversaries is able to generate the correct message
for SG. Actually a similar attack can be mounted by malicious clients in SG to
cheat other ones in SG.

2.3 The Off-Line Dictionary Attack against TAP and k-Out-of-n
APAKE

The off-line dictionary attack shown in this section can be mounted to both TAP
(t ≥ 2) and k-out-of-n APAKE. We only give the detail of the implementation
for TAP, and the other one is similar.

204 J. Yang and Z. Zhang

To get the shared secret chosen by the server S, the clients in SG have to
collect all secret shares and compute S. Suppose Cm is the one who does the
very thing. All other clients send their own Si to Cm, and he computes S from
{Si}1≤i≤n, and sends it to all other clients.

However if Cm wants to know other clients’ password, he can execute the
following off-line dictionary attack, by which he could get all other clients’ pass-
words without being detected. The attack flows are shown below.

1. The subgroup SG = {C1, . . . , Cm, . . . , Ct} initiates the protocol as usual, and
Cm records {X∗

i }1≤i≤n.
2′. – Cm impersonates the server to send the second message. He chooses

y ∈R Zq to compute Y = gy. Also he chooses n + 1 random values: S
and {Zj}1≤j≤n from G.

– Cm generates an authenticator VS = H1(Γ ||S||Trans||S) and a ses-
sion key sk = H2(Γ ||S||Trans||S), where Trans = t‖{X∗

i }1≤i≤n‖Y ‖
{Zj}1≤j≤n. Then he sends (S, Y, {Zj}1≤j≤n, VS) to SG.

3. – Each client Ci in SG, except Cm, looks for Zi and computes Si = Zi ⊕
G(i, Ki) with Ki = Y xi . Then they send their own Si to Cm. (No matter
how Si is sent, Cm must be able to recover it.)

– Cm sends S to all other clients, and they can verify its correctness by
checking whether V ′

S = H1(Γ ||S||Trans||S) is equal to VS . Obviously
they are same, so all other clients accept S and believe it indeed comes
from the server.

– After collecting all Si, Cm guesses a password pw′
i for any client Ci in SG,

and get the corresponding G(i, K ′
i), where K ′

i = (X∗
i /hF(i,pw′

i))y . Then
Cm computes Z ′

i = Si ⊕ G(i, K ′
i). By checking whether Z ′

i equals to Zi,
Cm can find out the correct password pw′

i for the client Ci. Similarly, Cm

is able to get all other clients’ passwords.

If SG doesn’t specify a particular client to recover S, it may alternatively let
all clients broadcast their secret shares. Then any adversary, no matter whether
in the subgroup or not, can mount the above attack. And the result is the clients
of SG would find that the verification is not satisfied and they terminate the
run of the protocol. Yet with their broadcasted secret shares, the adversary has
already gotten all clients’ passwords.

TAP didn’t give the specification of how to recover S for the subgroup. But no
matter how Si being sent, the protocol can hardly resist the off-line dictionary
attack. In fact, members in SG have to recover S from {Si}, so the only thing
unknown to an insider adversary after getting Si is the password, if he can
control the message from the server to SG. The key to the attack is that the
members in SG cannot verify the second message whether from the server or
not, namely they cannot distinguish Zi from a random value. Moreover using
the hiding code to protect secret shares makes the off-line dictionary attack
feasible.

A New Anonymous PAKE Protocol 205

3 The Model and Security Notions

By now, anonymous PAKE protocols can be classified into two types: the two-
party setting and the distributed setting. Defining the security model for the dis-
tributed anonymous PAKE will be our next work in the future. In this paper, we
focus on the security specification in the two-party setting, and adopt the model
introduced in [5] to describe an adversary’s capability and define the security tar-
gets, which provides a neat treatment to dictionary attacks. Due to the anonymity
property, we modify the definition of user’s authentication and introduce a new
definition of user’s anonymity, which is different from that in [12].

3.1 Formal Model

Participants. There is a fixed set of n client users Γ = {U1, . . . , Un}. S is a
trusted server. Each user Ui in Γ shares a low-entropy secret pwi with S, which
is drawn from a small dictionary Password, according to a distribution D. S has
a list of passwords as PWS = {pwi}1≤i≤n.

The participants in the two-party anonymous PAKE setting are a single user
U and the server S, with U belonging to Γ . The U and S may have several
instances called oracles involved in distinct, possibly concurrent, executions of
P . Generally, we denote the instance ρ (resp., δ) of participant U (resp., S) by∏ ρ

U (resp.,
∏

δ
S).

Adversarial Model. An adversary A is a probabilistic algorithm with a dis-
tinguished query tap. A can take the entire control of the network during the
protocol execution. The capability of A is modelled by the following oracles:

- Execute(U , ρ, S, δ): This query models passive attacks, where the adversary
gets access to honest executions of P between the instances

∏ ρ
U and

∏
δ
S by

eavesdropping.
- Send(I, m): This query enables to consider active attacks by having A send-

ing a message to instance I (U , or S). The adversary A gets back the response
I generates in processing the message m according to the protocol P .

- Reveal(I): This query models the misuse of the session key by instance I. The
query is only available to A if the attacked instance actually “holds” a session
key and it releases the latter to A.

3.2 Security Notions

AKE Security. An adversary A is allowed to call oracles Execute and Send
during an execution of an anonymous PAKE protocol P . Eventually, A calls
Test(I)-query only one time, for some instance I (U , or S), which is defined like
below:

-Test(I): This query tries to capture the adversary’s ability to distinguish real
keys from random ones. The Test oracle tosses a coin and obtains a bit b ∈ {0, 1}.
If b = 0, then Test gives a random bit sequence, and if b = 1, then Test gives a
session key (the output of Reveal(I)).

206 J. Yang and Z. Zhang

The Test(I)-query is only available to A if attacked instance I is Fresh (which
roughly means that the session key that I hold is not “obviously” known to the
adversary). Receiving the output of Test, the adversaryA outputs a bit b′, which
represents A’s guess of b. An AKE advantage is

Advake
P,D(A) = 2Pr[b = b′]− 1

where the probability is taken over all the random coins of the adversary and all
the oracles and the passwords are picked from a dictionary D. The protocol P is
said to be (t, ε)-AKE-secure if A’s advantage is smaller than ε for any adversary
A running in time t.

Authentication. The server’s authentication is defined by the probability
that A successfully impersonates a sever instance in an execution of P by
SuccS−auth

P (A). Impersonation succeeds when a user accepts a session key which
is shared with no instance of the server, that is,

SuccS−auth
P,D (A) = Pr

[
U accept a key with no instance of S

]
The definition of user’s authentication is a little unusual. In an anonymous PAKE
protocol, the server only knows that the user is in a group Γ without identifying
the actual identity. So it is defined by the probability that A successfully im-
personates an instance of a user in Γ in an execution of P by SuccU−auth

P (A).
Impersonation succeeds when the server accepts a session key which is shared
with no instance of any user in Γ , that is,

SuccU−auth
P,D (A) = Pr

[
S accept a key with no instance of U ∈ Γ

]
A protocol P is said to be (t, ε)-S-auth-secure (resp. (t, ε)-U -auth-secure) if A’s
success probability for breaking S-auth (resp. U -auth) is smaller than ε for any
adversary A running in time t.

Anonymity. In terms of the user’s anonymity, the server is considered as an
adversary. Furthermore, it is restricted that Γ only has two users U0 and U1.
In each execution of protocol P , a user instance Ub is randomly chosen with
b ∈R {0, 1}. At the end of the execution S outputs b′ ∈ {0, 1}, which means the
server’s guess on the user’s identity. S’s success in breaking the user’s anonymity
is defined by the happening of the event S Guess Auth, that is S authenticates
itself to the user and guesses the correct b. S’s advantage on breaking the user’s
anonymity is defined as:

AdvU anoy
P,D (S) = 2Pr[S Guess Auth]− 1

The protocol P is said to be (t, ε)-U -anoy-secure if S’s advantage on breaking
the user’s anonymity is smaller than ε in time t.

3.3 Cryptographic Assumption

The security of NAPAKE is based on the Square Computational Diffie-Hellman
assumption (SCDH) and the Decisional Inverted-Additive Diffie-Hellman

A New Anonymous PAKE Protocol 207

assumption (DIADH). SCDH is a variation of the standard computational Diffie-
Hellman assumption (CDH), and is proven to be equivalent to the CDH assump-
tion [4]. The DIADH assumption was introduced by Mackenzie in [9]. He proves
a lower bound for solving the problem in the generic model, which asymptoti-
cally matches the lower bound for solving DDH (Decision Diffie-Hellman) in the
generic model. In other words, the two assumptions are equivalent.

Square Computational Diffie-Hellman assumption (SCDH). The SCDH
assumption in a represented group G = 〈g〉 is that given gx, with x randomly
chosen in Zq, it is hard to compute gx2

.

Decisional Inverted-Additive Diffie-Hellman assumption (DIADH).
The DIDH assumption states that the distributions (gx, gy, gxy/(x+y)) and
(gx, gy, gr) in a represented group G = 〈g〉 are computationally indistinguishable
when x, y, r are drawn at random from Zq and x + y �= 0.

4 The New Anonymous PAKE Protocol

In this section, we proposed a new anonymous password-based authenticated key
exchange protocol, NAPAKE, as mentioned previously. The AKE security and
server’s authentication are proved under the SCDH and DIADH assumptions,
and the user’s authentication and anonymity are analyze additionally. The ef-
ficiency comparison between TAP (t = 1) and NAPAKE is given subsequently.
Finally, a new distributed anonymous PAKE protocol based on NAPAKE is
presented, which is secure against the two above attacks.

4.1 Protocol Description

Let G = 〈g〉 be a finite, cyclic group of prime order q. Assume G : {0, 1}∗ → G
is a full-domain hash function, and H0 , H1 : {0, 1}∗ → {0, 1}l are two random
hash functions, with l denoted as a security parameter. Let pwi be a password
shared between the client Ci and the server S, and PWi = G(i, pwi). The high-
level description is shown as follows, and it is illustrated in Fig.2. We assume
the two entities have already agreed on the client group Γ before a protocol run.

1. The server S chooses rS ∈R Zq, and for all n clients in Γ generates Aj =
PW rS

j with 1 ≤ j ≤ n. Then S sends (S, {Aj}1≤j≤n) to client Ci.
2. Ci checks all the values in {Aj} are different from each other. If not, Ci aborts

the protocol. Otherwise, Ci picks Ai from {Aj}, and draws two random
values rc and x from Zq. Then Ci computes X = gx, Z = Arc

i , and generates
X∗ = Z ·X and B = PW rc

i . After that, Ci sends (X∗, B) to S.
3. S computes Z ′ = BrS with the random value rS and recovers X ′ = X∗/Z ′.

Then he chooses y randomly from Zq, and computes Y = gy and K ′ = X ′y.
And he generates the authenticator AuthS = H1(Trans||Z ′||K ′) and the
session key sk = H0(Trans||Z ′||K ′), where Trans = Γ ||S||{Aj}||X∗||B||Y .
Finally he sends (Y, AuthS) to Ci.

208 J. Yang and Z. Zhang

Γ = {C1, · · · , Cn}, PWi = G(i, pwi)

Client: Ci ∈ Γ Server: S

S, {Aj}1≤j≤n←−−−−−−−−− rS ∈R Zq, Aj = PW
rS
j (1 ≤ j ≤ n)

Choose Ai from {Aj}1≤j≤n

rc, x ∈R Zq , X = gx, Z = A
rc
i

X∗ = Z ·X, B = PW
rc
i

X∗,B−−−−→ Z′ = BrS , X ′ = X∗/Z′

y ∈R Zq, Y = gy, K′ = X ′y

K = Y x Y,AuthS←−−−−−− AuthS = H1(Trans‖Z′‖K′)
Verify AuthS = H1(Trans‖Z‖K) sk = H0(Trans‖Z′‖K′)

sk = H0(Trans‖Z‖K)

Note: Trans = Γ‖S‖{Aj}1≤j≤n‖X∗‖B‖Y

Fig. 2. The NAPAKE protocol

4. Ci computes the Diffie-Hellman value K = Y x, and then check that whether
AuthS equals to H1(Trans||Z||K). If not, U aborts the protocol. Otherwise,
he computes the session key sk = H0(Trans||Z||K) and accepts it.

4.2 Security

The NAPAKE can achieve semantic security of the session key and explicit
server’s authentication under the DIADH and SCDH assumptions, as shown
in Theorem 1. It also indicates that NAPAKE is secure against dictionary at-
tacks since the advantage of the adversary essentially grows with the ratio of
interactions (number of Send-queries) to the number of passwords. The user’s
authentication is preserved in an implicit way, because Theorem 1 guarantees
that no adversary can impersonate a user in Γ to establish a session key with
the server. Theorem 2 states that the user is anonymous against the server in
NAPAKE .

Theorem 1 (AKE/S-auth Security). Consider the protocol NAPAKE, run-
ning on a group of a prime order q and a dictionary Password equipped with
the distribution D. For any adversary A with a time bound t, with less than
qs Send-queries, qe Execute-queries, and qg and qh hash queries to G,H0,H1,
respectively, we have

Advake
NAPAKE(A) ≤ 4ε, SuccS−auth

NAPAKE(A) ≤ ε,

where

ε =
qs

2l
+

q2
h

2
× SuccDIADH

g,G (t + 2τe) + qh × SuccSCDH
g,G (t + 2τe) + 3D(qs) +

3T 2

2q
,

and T = qs + qe + qg, τe is the computational time for an exponentiation in G.

A New Anonymous PAKE Protocol 209

Proof. (Sketch) For the AKE security and the server’s authentication, the index
of U is not essential, so we assume the client U is C1 in Γ without loss of
generality. Let (I1, I2, I3) be an instance of DIADH, where I1 = gw1 , I2 = gw2 ,
I3 = gw3 , and w1, w2, w3 are drawn randomly from Zq. Note that the SCDH
problem is intractable in G. We give a sequence of games, starting from the real
game G0 and ending with G5, to prove the security of NAPAKE.

In G1, we simulate as usual all the hash oracles G, H0, H1 by maintaining hash
lists ΛG , ΛH, and the Send, Execute, Reveal and Test oracles. Also two private
hash oracles H′

0, H′
1 are imported and simulated. In G2, we exclude the collision

in the output of the G oracle or in the partial transcript ({X∗, B}, {Y }). In G3,
sk and AuthS are computed with the private oracles H′

0 and H′
1 respectively.

It is safe to do that because the collisions of partial transcripts {X∗, B}, {Y })
have been excluded. Furthermore we change all values about PWi with random
values. In such game the adversary has no advantage on the Test-query. G3 is
indistinguishable from G2, only if the event AskH = AskH1∨ AskH0 does not
happen.

AskH1: A queries H1(Trans||Z ′||K ′) or H1(Trans||Z||K) for the transcript
({S, {Aj}}, {X∗, B}, {Y }), with Z = DHPW (A1, B) and K = DHg((X∗/Z), Y).
AskH0: A queries H0(Trans||Z ′||K ′) or H0(Trans||Z||K) for the transcript
({S, {Aj}}, {X∗, B}, {Y }), where some party has accepted, but event AskH1
did not happen. Furthermore the event AskH1 can be split in 3 disjoint sub-
class: AskH1-passive, the event that all data in a transcript come from an ex-
ecution between instance of U and S (which means that A1, X∗, B, and Y
have been simulated). AskH1-withU, the event that the execution involved only
an instance of U . AskH1-withS, the event that the execution involved only an
instance of S.

In G4, the instance (I1, I2, I3) is used to modify the simulation of some oracles
as follows. Rule S 1: Choose rS randomly from Zq, and compute A1 = IrS

3 . Rule
U 1: Choose rc randomly from Zq, and compute B = Irc

3 . Rule S 2: Choose y
randomly from Zq, and compute Y = Iy

1 . Rule G: Choose k randomly from Zq,
and flip a coin d, with d ∈ {1, 2}. Compute r = Ik

d , output k and d. The record
(q, k, d, r) is added to ΛG .

InG5, we first use Lemma 1 to make sure that there is only one pair of (Z, K)
with one password corresponding to a partial transcript in ΛH. With Lemma
1, events AskH1-withU and AskH1-withS happen only if the adversary guesses
the correct password, which means the success probability of active attacks is
upper-bounded by the password guessing possibility. Lemma 2 shows that the
probability of AskH1-passive is negligible, which means that no passive adversary
can break the session key’s semantic security with non-negligible probability.
Then it is easy to see that the desired result follows from Lemmas 1 and 2. �
Lemma 1. For some partial transcript ({S, {Aj}}, {X∗, B}, {Y }), if there are
two elements PW0 and PW1 such that (Γ, S, {Aj}, X∗, B, Y, Zb, Kb) are in ΛH
with Zb = DHPWb

(A1, B) and Kb = DHg((X∗/Zb), Y), one can solve the DI-
ADH problem with probability 1/2.

210 J. Yang and Z. Zhang

Lemma 2. For some passive partial transcript ({S, {Aj}}, {X∗, B}, {Y }), if
there is an element PW such that (Γ, S, {Aj}, X∗, B, Y, Zb, Kb) are in ΛH with
Z = DHPW (A1, B)) and K = DHg((X∗/Z), Y), one can solve the SCDH prob-
lem with probability 1/2.

Theorem 2. The NAPAKE protocol is anonymous against the server.

Proof. (Sketch)Consider the event S Guess Auth in the definition above, i.e., S
authenticates itself to the user and guesses the correct b, which means that
S sends a correct authenticator AuthS to the user Ub for a partial transcript
({S, A0, A1}, {X∗, B}, {Y }), where A0, A1, and Y are chosen by S, and {X∗ =
gx · Arc

b , B = PW rc

b } are computed by Ub. Namely, for such a transcript, S
computes a correct Z = DHPWb

(Ab, B) and K = Y x. Let e0 = logPW0
A0,

e1 = logPW1
A1.

If S is honest, then e0 = e1 is known to S, and S is sure to be able to
compute the correct Z and K to authenticate itself. In such a situation, (X∗, B)
is a valid encryption of gx with respect to both A0 and A1. Therefore, the event
S Guess Auth happens only with probability 1/2, and thus AdvU anoy

P,D (S) = 0.
If e0 �= e1 are known to S, he can compute Z0 = Be0 and Z1 = Be1 . S has to

choose one to generate AuthS , and it happens to be correct only with probability
1/2 due to the randomness of X∗ and B. So AdvU anoy

P,D (S) = 0.
If S is malicious while e0 and e1 are unknown to S, the probability that S can

compute a correct authenticator is upper-bounded by solving the CDH problem.
Thus AdvU anoy

P,D (S) is still negligible provided CDH assumption holds. �

4.3 Efficiency

In NAPAKE, client Ci needs to do 4 modular exponentiations with 1 on-line, and
server S does n+3 modular exponentiations with 2 on-line. Compared with TAP
(t = 1), NAPAKE costs 1 (resp., 2) more modular exponentiation for Ci (resp.,
S), and thus less efficient than TAP with t = 1. However, NAPAKE is different
from TAP in essence. The TAP protocol is a key transport protocol, where the
session key is chosen and totally controlled by the server. The NAPAKE protocol
is a key agreement protocol, where the session key is determined by both the
client and the server, and none of them can control the key alone. Moreover,
the NAPAKE protocol has an advantage that the server can reuse the first
message for all users in Γ . That is, the server doesn’t have to do the n modular
exponentiations in each execution of the protocol. TAP (t = 1) doesn’t have this
property, because the data Y in the second message must not to be the same in
different runs. The n modular exponentiations would waste the computational
resource of the server greatly in APAKE and TAP, if an adversary tries to
connect the server continually. However in NAPAKE the first message can be
reused so the threat of DoS attack would be reduced dramatically.

With respect to the communication efficiency, our protocol requires a band-
width of (n + 1)|hash| and 3|q|, which is linear to the size of the user group as
TAP (t = 1) and APAKE.

A New Anonymous PAKE Protocol 211

Γ = {C1, · · · , Cn}, PWi = G(i, pwi)

Client: SG ⊂ Γ (|SG| = t) Server: S

rS ∈R Zq

S,{Aj}1≤j≤n←−−−−−−−−− Aj = PW
rS
j (1 ≤ j ≤ n)

For each Ci ∈ SG,
ri, xi ∈R Zq, Xi = gxi , Zi = A

ri
i y ∈R Zq, Y = gy

Bi1 = Zi ·Xi, Bi2 = PW
ri
i

t,{Bi1,Bi2}1≤i≤t−−−−−−−−−−−→ uk ∈R Zq(1 ≤ k ≤ t− 1)

f(x) =
t−1∑
k=1

ukxk + y

For 1 ≤ j ≤ t

yj = f(j), Z′
j = B

rS
j2

X ′
j = Bj1/Z

′
j , Kj = (X ′

j)
yj

For each Ci ∈ SG
{Kj}1≤j≤t,AuthS←−−−−−−−−−−−− AuthS = H1(Trans‖Y)

Y ′
i = K

x−1
i

i , Y ′ =
∏

Ci∈SG Y
λi

i sk = H0(Trans‖Y)
where λi =

∏
1≤m≤t,m�=i

m
m−i

Verify AuthS = H1(Trans‖Y ′)
sk = H0(Trans‖Y ′)

Note: Trans = Γ‖S‖{Aj}1≤j≤n‖t‖{Bi1, Bi2}1≤i≤t‖{Kj}1≤j≤y

Fig. 3. The D-NAPAKE protocol

4.4 Extension of NAPAKE

Based on the proposed NAPAKE protocol, a new distributed anonymous PAKE,
named D-NAPAKE, is presented in Fig.3. The D-NAPAKE also uses a secret
share scheme to distribute the session key in SG, and the shared secret is Y = gy,
which is chosen by the server. The secret is transported to SG in a so-called
Diffie-Hellman way, not the previous hiding code way in the k-out-of-n APAKE
protocol and the TAP protocol. With such method the D-NAPAKE protocol
is secure against the afore-mentioned impersonating attack. Furthermore, the
D-NAPAKE protocol can also resist the off-line dictionary attack proposed in
section 2.3. The reason is that, although D-NAPAKE also adopts the secret-
share method, no one can make use of the transcript and the partial secrets
{Yj} to guess the passwords of the clients in SG, because of the random factors
of rs, ri and xi.

5 Conclusion

In this paper, we proposed a new anonymous password-based authenticated key
exchange protocol, named NAPAKE, which is proved secure under the SCDH
and DIADH assumptions in the random oracle model.

212 J. Yang and Z. Zhang

As for the distributed anonymous PAKE, we analyzed the vulnerabilities of
the Viet et al.’s k -out-of-n APAKE protocol and Shin et al.’s TAP (t ≥ 2)
protocol. We have given two attacks against the TAP protocol. One is an im-
personating attack breaking the unilateral authentication of the scheme. The
other is an off-line dictionary attack from a malicious insider, which make the
adversary be able to guess all clients’ passwords. And the second one is also
applied to Viet et al.’s k -out-of-n APAKE. An extension of our protocol to the
distributed setting can resist the proposed two attacks.

References

1. Abdalla, M., Pointcheval, D.: Simple Password-Based Encrypted Key Exchange
Protocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208.
Springer, Heidelberg (2005)

2. Abdalla, M., Pointcheval, D.: Interactive Diffie-Hellman Assumptions with Appli-
cations to Password-based Authentication. In: S. Patrick, A., Yung, M. (eds.) FC
2005. LNCS, vol. 3570, pp. 341–356. Springer, Heidelberg (2005)

3. Abdalla, M., et al.: Provably secure password-based authentication in TLS. In:
Proceedings of the 2006 ACM Symposium on Information, Computer and Com-
munications Security, pp. 35–45. ACM Press, New York (2006)

4. Bao, F., Deng, H.R., Zhu, H.F.: Variations of Diffie-Hellman Problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003)

5. Bresson, E., Chevassut, O., Pointcheval, D.: Security Proofs for an Efficient
Password-Based Key Exchange. In: Proceedings of the 10th ACM Conference on
Computer and Communications Security 2003, pp. 241–250. ACM Press, New York
(2003)

6. Bresson, E., Chevassut, O., Pointcheval, D.: New Security Results on Encrypted
Key Exchange. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 145–158. Springer, Heidelberg (2004)

7. Boyd, C., Mathuria, A.: Protocols for authentication and key establishment.
Springer, Heidelberg (2003)

8. Chai, Z.C., Cao, Z.F., Lu, R.X.: Efficient Password-Based Authentication and Key
Exchange Scheme Preserving User Privacy. In: Cheng, X., Li, W., Znati, T. (eds.)
WASA 2006. LNCS, vol. 4138, pp. 467–477. Springer, Heidelberg (2006)

9. MacKenzie, P.: On the Security of the SPEKE Password-authenticated Key Ex-
change Protocol. In: IACR ePrint archive, http://eprint.iacr.org/2001/057/

10. Shin, S., Kobara, K., Imai, H.: A Secure Threshold Anonymous Password-
Authenticated Key Exchange Protocol. In: Miyaji, A., Kikuchi, H., Rannenberg,
K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 444–458. Springer, Heidelberg (2007)

11. Tzeng, W.G.: Efficient 1-Out-n Oblivious Transfer Schemes. In: Naccache, D., Pail-
lier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 159–171. Springer, Heidelberg (2002)

12. Viet, D.Q., Yamamura, A., Hidema, T.: Anonymous Password-Based Authenti-
cated Key Exchange. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.)
INDOCRYPT 2005. LNCS, vol. 3797, pp. 244–257. Springer, Heidelberg (2005)

http://eprint.iacr.org/2001/057/

Group Key Management: From a
Non-hierarchical to a Hierarchical Structure

Sébastien Canard and Amandine Jambert

Orange Labs R&D, 42 rue des Coutures, BP6243, F-14066 Caen Cedex, France
{sebastien.canard,amandine.jambert}@orange-ftgroup.com

Abstract. Since the very beginnings of cryptography many centuries
ago, key management has been one of the main challenges in crypto-
graphic research. In case of a group of players wanting to share a com-
mon key, many schemes exist in the literature, managing groups where all
players are equal or proposing solutions where the group is structured
as a hierarchy. This paper presents the first key management scheme
suitable for a hierarchy where no central authority is needed and permit-
ting to manage a graph representing the hierarchical group with possibly
several roots. This is achieved by using a HMAC and a non-hierarchical
group key agreement scheme in an intricate manner and introducing the
notion of virtual node.

Keywords: Key Management, Access Control, Hierarchy.

1 Introduction

Key management scheme is one of the fundamental cryptographic primitive after
encryption and digital signature. Such scheme allows e.g. two parties to securely
exchange information among them. A running direction of research on key man-
agement is to generalize two party key agreement schemes to multi party setting,
where a group of users try to create cryptographic keys together.

There are currently two main approaches regarding this generalization, de-
pending on the structure of the group. In some cases, all members of the group
are considered equals and each of them participates approximately at the same
level to the construction of a cryptographic key that is finally shared by all mem-
bers: this is called “group key management”. Many papers exist in the literature
in this case and their aim is to make the better generalization of the seminal
Diffie-Hellman paper, dealing with authentication or group’s dynamicity.

The second approach deals with hierarchy-based access control where mem-
bers of the group are related one to another by a subordination relation while
trying to access some protected documents. In this case, the group is most of
the time represented as an oriented graph with no oriented cycle. In this set-
ting, there is one key per group member and the main issue is then to provide
a hierarchy of the keys in such a way that it is possible for a group member to
derive from her own key all the keys that are lower in the graph. In this case, the
dynamicity of the group concerns either the possibility to add or delete nodes in

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 213–225, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

214 S. Canard and A. Jambert

the graph, or the capacity to modify the key of a particular node. Ideally, these
modifications imply the modification of a minority of node keys.

1.1 Related Work

The first work on this problem of key management in a hierarchy was by Akl
and Taylor in 1983 [1]. Since then a large number of papers have been published
[2, 4, 6, 7, 8, 9, 10, 12, 13, 17, 19, 21, 23, 25, 26, 27, 28, 29] and they can be
divided into several families.

The first family contains the original paper of Akl and Taylor and its different
improvements [1, 7, 10, 13, 17, 21]. These protocols use a Central Authority (CA)
to generate keys and related public data. The dynamicity of the graph is not
always possible in these proposals, and even in this case, a modification implies
the recalculation of the keys of some predecessors. The second family is based
on Sibling Intractable Function Family (SIFF) [12, 27]. While these solutions
use a CA for generation and dynamism of the graph, their low complexity is
quite attractive. The main problem comes from the difficulty to decide if a
practical algorithm to generate such function exists or not (even in the literature
[2, 22, 28]). The third group of papers uses polynomial interpolation [6, 9, 29]
but [6] and [9] do not consider the dynamicity of the group, and the way to update
keys in [29] is relatively inefficient. In the last group of papers [2, 4, 8, 19, 26, 28],
the keys are randomly generated and the role of the CA is to provide the public
link between them. Different possibilities are proposed and the best ones only use
low cost operations as hash functions or xor operations. Two other papers [23, 25]
use many modular exponentiations and thus induce a high complexity. Note that
the solution in [25], even if presented with a CA, can be described without.

Mainly all these proposals use a Central Authority and only consider the case
of a rooted graph. It is thus an open problem to describe an efficient graph key
management in a multi-rooted oriented graph where (i) no Central Authority is
needed and (ii) in which we can manage dynamic graphs.

1.2 Our Contribution

Our main idea in the construction of a graph key management is that we use at
the same time two different solutions, depending on the structure of the subgraph
we are considering. More precisely, the method to compute the key of a node
in the graph depends on the number of fathers this node has. If there is one
father, we use a Message Authentication Code (MAC) function on input the key
of the father, a counter enumerating (approximately) the number of children of
the father and a security constant.

The case where a node has several fathers cannot be treated as the case
of one father and we thus adopt a different approach which consists in using
group key agreement for a non-hierarchical group (in our case, the group of the
fathers). More precisely, we introduce the concept of Refreshable and Replayable
Group Key Agreement (R&R-GKA) schemes where the main difference with
a traditional GKA scheme is that the internal state information is not truly
composed of ephemeral secret information using random data, as it is the case

Group Key Management 215

in existing GKA schemes. Moreover, we require an additional algorithm to replay
the creation of the shared key using one private information and some public
data, and we finally need a refresh method that permits to renew the shared key
with a minimal effect on player’s keys.

Our second trick is used when several fathers have several children in common.
In that case, we introduce a virtual node between fathers and children so as to
speed up the generation phase by using the “one-father method”.

1.3 Organization of the Paper

The paper is organized as follows. After the present introduction, we set up in
Section 2 our model for key management in an oriented graph. The cryptographic
primitives we will use later are given in Section 3. Section 4 presents our scheme
and its security arguments. Finally, we provide a conclusion in Section 5 and the
bibliography afterward.

2 Problem and Model

The problem of access control in a hierarchy appears when users get different
rights on common resources. As an example, workers in a company use com-
mon resources but according to their positions or their departments, they are
not allowed to access the same documents. Another example could be on-line
newspapers: different subscriptions lead to different rights.

For our part, we study the cryptographic aspect of access control. We represent
the hierarchy by a graph and we look at access control as a problem of key
management in that graph.

2.1 Notation

We consider an oriented graph denoted G = {N, A} where N = {n1, n2, ..., nl},
of cardinality l, is the set of nodes (in the following a node is denoted either ni

or simply i) and A = {a1, a2, ..., am}, of cardinality m, is the set of edges, such
that there is no oriented cycles. An edge a ∈ A corresponds to a couple of nodes
(ni, nj), representing the fact that there is an edge going from node ni to node
nj . ni is called the father and nj is the child. We denoted by Fi (resp. Ci) the
number of fathers (resp. children) of the node ni. The set of fathers of node ni

is denoted by Fi = {fi[1], · · · , fi[Fi]} and the set of children of a node nj is
denoted Cj = {cj[1], · · · , cj [Cj]}.

A path P = {a1, · · · , ak} of cardinality k is a set of edges where for all
i ∈ {1, · · · , k − 1}, if ai = (ni0 , ni1) and ai+1 = (ni2 , ni3), then ni1 = ni2 : we
also talk of the path from the first node to the last one.

If there is a path from node ni to node nj , we say that ni is an ascendant
of nj and that nj is a descendant of ni. We denote by Di the set of descendant
nodes of node ni and by Aj the set of ascendant nodes of node nj . Note that
Fi ⊂ Aj and Ci ⊂ Dj .

216 S. Canard and A. Jambert

Each node j represents a subgroup of members that share the same secret
cryptographic key, named the node key and denoted knj (or simply kj) related
to a public value pvnj (or simply pvj). In the following, we consider a subgroup
as a unique entity to avoid some authentication problems for which it exists well-
known techniques. As we consider oriented graphs, we have a hierarchy between
nodes. As a consequence, a node key knj should be computable by all members
of subgroups/nodes that belong to Aj .

2.2 Actors and Procedures

We present in this section a formal definition of a graph key management scheme
for a graph G. A graph key management scheme implies a set P of l players
denoted P1, · · · , Pl. Each player Pi corresponds to a node i in the graph. In the
following, we consider that the graph representation G is known by all players
of the system.

Definition 1. A Graph Key Management scheme (noted GKM) consists in the
following algorithms:

– Setup is an algorithm which on input a security parameter τ generates the set
of parameters of the system Γ . We now consider that the security parameter
τ belongs to Γ .

– UserSetup is an algorithm which on input the set of parameters Γ provides
each player in P with a long-lived key pair (ski, pki). From now on, Γ in-
cludes the public keys pki of all players.

– KeyGeneration is an algorithm which launches a protocol between all players
P1, · · · , Pl, each of them taking on input the parameters Γ of the system
and the long-lived key pair (ski, pki). Each player secretly outputs the first
instance of the key related to its node, denoted ki[0]. The algorithm outputs
the first instance of some related public elements denoted PE[0].

– KeyDerivation is an algorithm which on input the parameters Γ , a node j, a
player Pi and an instance ρ provides the player Pi using the ρ-th instance of
her node key ki[ρ] and the corresponding public elements PE[ρ] with either
an error message ⊥ if i /∈ Aj or the corresponding ρ-th instance of the key
of node j, that is kj [ρ].

– KeyRefresh is an algorithm which on input the node j that needs to be re-
freshed launches a protocol between all players P1, · · · , Pl. Each player takes
on input the parameters Γ , the current instance ρ, their corresponding node
key ki[ρ] and the corresponding public elements PE[ρ] and secretly outputs
the new instance of the node key, denoted ki[ρ + 1]. The algorithm outputs
the new instance of some related public elements denoted PE[ρ + 1].

Remark 1. The efficiency of the KeyRefresh algorithm is a really important issue
and if a particular node needs to be refreshed, this procedure should not (and
needs not to) modify all the keys in the graph. The best configuration is when
only the keys of the descendant nodes are modified. Note also that, for simplicity
reasons, we consider in our model that all the keys change their version during
this procedure, even if the new version may be equal to the previous one for
some particular nodes.

Group Key Management 217

2.3 Security Properties

A Graph Key Management scheme must have the Key Recovery security prop-
erty. This corresponds to the fact that any coalition of players can’t recover the
key of a node which does not belong to their descendants.

The Key Recovery property corresponds to the following Experiment.

Experiment Expkeyrecovery
GKM,A :

1. the challenger C initializes the system and sends the graph to A.
2. A interacts with the system by generating and refreshing (player) keys, cor-

rupting players and/or keys. At any time of the experiment, it must remain
at least one key which is not corrupted. A key is considered as corrupted if
at least one of its ascendant is corrupted or if the player corresponding to
this node has beforehand been corrupted.

3. A finally outputs the identifier of the graph key management π, a node i, an
instance ρ and an uncorrupted node key k.

We define the success of an adversary A for this experiment as:

Succkeyrecovery
GKM,A (τ) = Pr [k = ki[π, ρ]] .

Definition 2 (Key Recovery). We say that a GKM scheme satisfies the Key
Recovery property if Succkeyrecovery

GKM,A (τ) is negligible.

Remark 2. Note that this security model is stronger than the one given in e.g. [2]
since this is the adversary who chooses the node he wants to focus on. In [2], a
challenger chooses one particular node and the adversary has to output the key
of this node. Note also that it is not possible to use a decisional experiment in
graph key management where the aim of the adversary is to distinguish a true
key from a random one (as it is done for many other key agreement primitives)
since it is enough for the adversary to corrupt a descendant node and checks the
consistency of the key derivation to win such game.

3 Useful Tools

3.1 The HMAC Functions

A cryptographic message authentication code (MAC) is a cryptographic tool
used to authenticate a message and belongs to the family of symmetric cryptog-
raphy. A MAC scheme is composed of a key generation algorithm KeyGen which
permits to generate the MAC key denoted K. The code generation algorithm
MAC accepts as input the secret key K and an arbitrary-length message m and
outputs the message authentication code for message m, under the secret key
K: Σ = MAC(K, m) . Finally, the code verification algorithm VerMAC takes as
input a message m, the secret key K and a message authentication code Σ ∈ C
and outputs 1 if Σ = MAC(K, m) and 0 otherwise.

218 S. Canard and A. Jambert

To be considered as secure, a MAC scheme should resist to existential forgery
under chosen-plaintext attacks (EF-CMA), which means that even if an adver-
sary A has access to an oracle which possesses the secret key and generates
MACs for messages chosen by the adversary, A is unable to guess the MAC for
a message it did not query to the oracle.

In our graph key management scheme (see Section 4), the used MAC scheme
needs furthermore the pseudorandomness property, which says that an adversary
is unable to distinguish the output of a Pseudo-Random Function (PRF) from a
true random value. As a consequence, we will use the HMAC construction [20]
which has been proved to be a PRF by Bellare [3].

3.2 The Notion of Refreshable and Replayable Group Key
Agreement

A Group Key Agreement (GKA) scheme is a mechanism which permits to es-
tablish a cryptographic key shared by a group of participants, based on each
one’s contribution, over a public network. It exists several GKA schemes in the
literature, using either an authenticated mode [5] or not [15, 16, 18, 24]. Note
that it is possible to transform any unauthenticated protocol to an authenticated
one using generic methods [11, 14].

In fact, in this paper, we need a GKA with some additional properties that
are naturally verified by many of these schemes. We thus introduce the notion of
Refreshable and Replayable Group Key Agreement (R&R-GKA) scheme. The
main difference with a traditional GKA scheme is that the internal state in-
formation is not truly composed of ephemeral secret information using random
data. Here, each player has a long-lived key to participate to the protocol but
also another “personal” secret key used to create the shared one and replacing
the ephemeral secret information. This new secret key can not be considered as
“long-lived” since it can be refreshed when necessary. Moreover, a R&R-GKA has
the following properties, which are reached most of the time by GKA schemes:

– it is a contributory Group Key Agreement protocol (GKA) [16],
– we require an additional deterministic algorithm which accepts previously

fixed inputs and which is (once initialized) replayable by any player using
his private information and some public data,

– it should contains a refresh method that permits to renew the shared key
with a minimal effect on player’s personal secret keys.

Procedures. More formally, we have the following definition, which is de-
rived from [5]. Let P be the set of potential players for the GKA, that is,
P = {P1, · · · ,Pl}.
Definition 3. A R&R-GKA scheme consists in the following algorithms:

– Setup is an algorithm which on input τ generates the set of parameters of
the system Γ . We now consider that the security parameter τ belongs to Γ .

– UserSetup is an algorithm which on input Γ provides each player in P with
a long-lived key pair (ski, pki). Γ now includes the players public keys pki.

Group Key Management 219

– KeyGeneration is an algorithm which on input a set I ⊂ P of players secretly
provides each player in I a first instance of a personal secret key ki[I, 0]
related to I. This algorithm then launches a protocol between all players in
I, each of them taking on input Γ , the long-lived key pair (ski, pki) and their
personal secret key ki[I, 0]. Each player secretly outputs the first instance of
the shared secret key of the set I denoted K[I, 0]. The algorithm also outputs
the first instance of some related public elements denoted PE[I, 0].

– KeyRefresh is an algorithm which on input a set I ⊂ P and a subset J ⊂ I
of players, secretly provides each player in J with a new instance of her
personal secret key related to I denoted ki[I, ρ + 1], if ρ is the current in-
stance. Each player in I \ J sets ki[I, ρ + 1] = ki[I, ρ]. This algorithm then
launches a protocol between all players in I, each of them taking on input
the set of parameters Γ , the long-lived key pair (ski, pki), the two instances
of their personal secret key ki[I, ρ] and ki[I, ρ + 1], K[I, ρ] and PE[I, ρ].
Each player secretly outputs the new instance of the shared secret key of the
set I denoted K[I, ρ + 1]. The algorithm also outputs the new instance of
the public elements denoted PE[I, ρ + 1].

– KeyRetrieve is an algorithm which on input a set I ⊂ P, a player Pi ∈ I and
an instance ρ, provides the player Pi taking on input the parameters Γ , the
ρ-th instance of her personal secret key ki[I, ρ] and the corresponding public
elements PE[I, ρ] with the corresponding ρ-th instance of the common secret
for I, that is K[I, ρ].

Note that the UserSetup procedure is done only once whereas the KeyGeneration
one can be done several times, possibly in a concurrent manner.

Security property. It is commonly believed that the best security property for
group key agreement is the Key Independence one (also known as Authenticated
Key Exchange (AKE) property), where the aim of the adversary is to distinguish
a true shared key from a random value. In this paper, we need to be sure that
an adversary can not learn a non-corrupted instance of the personal secret key
of a player. Since the adversary has access to the KeyRetrieve method, this is
obviously related to the Key Recovery property, which says that the adversary
can not compute a non-corrupted instance of the shared key.

4 Our Key Management Scheme

In this section, we present our solution of key management in an oriented graph
structure. We first give an overview and then detail all procedures. Note that it
is possible to use our method either in a centralized or in a distributed mode. In
the first case, the roots generate all the keys and finally distribute them to all
nodes. In the latter case, all nodes participate in the generation of the keys. In
both cases, it is possible to construct the keys of the hierarchy while all players
are not necessarily connected all the time.

220 S. Canard and A. Jambert

4.1 Overview of Our Solution

One of our main ideas in the construction of a graph key management is that we
use at the same time two different solutions, depending on the structure of the
subgraph we are considering. More precisely, the method to compute the key of
a child depends on the number of fathers this child has. We thus describe the
two possible methods.

The case of one father. In this case, we use a simple HMAC function. Let si

be a counter specific to the node i. This counter represents the number of times
the node i has computed a new key using his own. si is related to the number
of children, the number of refresh and potentially the dynamicity of the graph
(see Section 4.5) and is maintained by the node. For each new child, the node i
computes the HMAC function using its key ki and the message corresponding to
the concatenation of the counter si and a random constant number C ∈ {0, 1}τ

specific to the graph. After that, this counter is incremented for the next child.

The case of several fathers. Here, we adopt a different approach which
consists in using a non-hierarchical group key agreement (GKA) scheme. Let us
consider a node i having several fathers fi[1], . . ., fi[Fi], where Fi is the number
of fathers. Each father will be a player in the GKA scheme. By construction,
each node is consequently related to a node key which will be used as a personal
secret key in the GKA scheme.

As this shared value should be first computed interactively but also needs to be
recalculated non-interactively, it should be possible for a father to use his node key
and some public values to compute off-line the key of his child: we consequently
need a R&R-GKA scheme such as described in the previous section.

Virtual nodes. The problem with the above technique is firstly that the known
group key agreement schemes are deterministic and secondly that it implies
many computations for all actors. Our second trick is used when two or more
fathers have several children in common. In that case, we introduce a virtual
node between fathers and children so as to speed up the generation phase.

This virtual node v is inserted between the fathers (f1, f2 and f3) and the
children (c1 and c2), as shown in Figure 1.

This new node is also related to a cryptographic key denoted kv, computed
from the keys of the fathers using the above method based on group key agree-
ment schemes. Next, from this virtual key kv it is possible to compute the keys
for all children using the “one father” method, since this virtual node becomes
the unique virtual father of several children.

4.2 Detail Procedures

We are now able to describe in details the different algorithms and protocols
of our Graph Key Management scheme. Let τ be the security parameter, M
be a secure MAC such as defined in the previous section and GKA be a secure

Group Key Management 221

=⇒

f1
f2 f3

v

c1 c2

f1
f2 f3

c1 c2

Fig. 1. The case of several fathers having several children

R&R-GKA scheme such as defined previously. Let G = {N, A} be a graph where
N = {1, 2, · · · , l} and A = {a1, a2, · · · , am}. In the following, a node is tag as
keyed when its key has been computed.

– Setup(1τ): this algorithm consists first in choosing at random a value C ∈
{0, 1}τ and second in executing the GKA.Setup(1τ) procedure which out-
puts GKA.Γ . The output of this algorithm is then Γ = (C, GKA.Γ). This
procedure also modifies the graph to insert virtual nodes, such as explained
above and described in Figure 1. We denote G̃ = {Ñ, Ã} the new graph with,
by convention, Ñ = {1, 2, · · · , l̃} and Ã = {ã1, · · · , ãm}. Note that taken on
input the initial graph G, the new graph G̃ is unique.

– UserSetup(Γ): it consists in executing the GKA.UserSetup(GKA.Γ) proce-
dure which provides each player with a long-lived key-pair (ski, pki). All
public keys are included in GKA.Γ and thus in Γ .

– KeyGeneration(): for each node i ∈ Ñ , there are several cases.
• i has no father in the graph: the node key ki[0] is chosen at random in
{0, 1}τ . There is no corresponding public value in this case.

• i has one father f ∈ Ñ in the graph: let sf be the number of current
keyed children of f . Then

ki[0] = M.MAC(kf [0], C‖sf + 1).

The new number of keyed children sf + 1 for node f concatenated with
the focused node i corresponds to the related public information pki =
sf + 1‖i in this case.

• i has Fi fathers (f1, · · · , fFi): they execute the GKA.KeyGeneration pro-
cedure on input I = {f1, · · · , fFi} where each f ∈ I is “given” their
node key kf [0] as a personal secret key kf [I, 0]. During the execution
of this algorithm, the protocol between all players in I is launched. The
key ki[0] of the node i is then the output of this protocol, that is K[I, 0].
The related public element is then pki = PE[I, 0]‖i where PE[I, 0] is
outputted by the GKA.KeyGeneration algorithm.

At the end, at each node corresponds a key ki[0] and the algorithm outputs
the first instance of the public element PE[0] corresponding to the set of all
public information pki[0] outputted in the second and third cases.

222 S. Canard and A. Jambert

– KeyDerivation(Γ, j, i, ρ): we need first to choose the best path between the
nodes i and j. The choice of the smallest one (using standard graph shortest
path finder algorithms) is not necessarily the best one. Obviously, in terms of
computational efficiency, the case of one father (computation of a MAC) is
more efficient than the case of several fathers (execution of a GKA protocol).
Consequently, we should choose the path where the number of requests to
the GKA is the smallest one. This path can be found either by exhaustive
search or using a shortest path finder for weighted graphs. We now consider
that this algorithm exists (note that it can be executed only once at the
creation of the graph).

Then, for each node v in the path between the node i and the descendant
node j, this algorithm works as follows
• if v has one father f : let sv‖v be the part of the public element PE[ρ]

corresponding to the focused node v. Then, computes

kv[ρ] = M.MAC(kf [ρ], C‖sv).

• if v has Fv fathers (f1, · · · , fFv): let pkv = PE[V , ρ]‖v be the part
of the public element PE[ρ] corresponding to the node v with V =
{f1, · · · , fFi}. Let f ∈ V be the father for which the key is known. This
key can come from either the input of the algorithm or by derivation
using one of the two methods. Then, executes the GKA.KeyRetrieve pro-
cedure on input V , f and ρ. f takes as inputs GKA.Γ , kf [V , ρ] = kf [ρ],
PE[V , ρ] and obtains the corresponding instance of the key kv[ρ].

– KeyRefresh(j): since we use virtual nodes, the targeted node has necessarily
one father f (either a “true” father or a virtual node). We necessarily have
kf [ρ + 1] = kf [ρ] if ρ is the current instance. Thus, if we denote by sf

the number of times this father has computed a key for one of his children
(either during the KeyGeneration procedure or a previous KeyRefresh one),
then computes

kj [ρ + 1] = M.MAC(kf [ρ + 1], C‖sf + 1).

The corresponding public information becomes pkj = sf + 1‖j.
Now that the key of the targeted node has been refreshed, the case of his

own child has to be studied. There are then two cases for the new targeted
node i, depending on the number of fathers the node has. If there is only
one, we can do again what we have done for the first refresh.

If there are several fathers (f1, · · · , fFi), let pki = PE[I, ρ]‖i be the part
of the public element PE[ρ] corresponding to the focused node i and where
I = {f1, · · · , fFi}. Let F ⊂ I be the set of fathers for which the key has
been previously refreshed. Then, executes the GKA.KeyRefresh procedure
on input I and F , where by assumption, each element f ∈ F has already
received a new instance of its node key kf [I, ρ + 1] = kf [ρ + 1]. This key
is next used as a personal secret key in the GKA.KeyRefresh procedure.
Again, for each v ∈ I \ F , we have kv[ρ + 1] = kv[ρ]. During the execution
of this algorithm, the protocol between all players in I is launched. The new

Group Key Management 223

instance of the key ki[ρ+1] of the node i is then the output of this protocol,
that is K[I, ρ + 1]. The related public information is pki = PE[I, ρ + 1]‖i
where PE[I, ρ + 1] is outputted by the GKA.KeyGeneration algorithm. The
new instance of the public elements is then the set of all pki.

4.3 Security Considerations

Theorem 1. Our key management scheme verifies the key recovery property
under the existential unforgeability and the pseudorandomness of the HMAC
and the key recovery property of the Group Key Management scheme.

Proof. The idea of the proof is to play two different games with a possible
adversary against the key recovery of our graph key management scheme. In
the first game, we design a machine winning the EF-CMA experiment of the
MAC scheme and in the second game, our machine tries to win the key recovery
experiment for the R&R-GKA scheme. We thus flip a coin and play one of the
two games. In case of success, we end and otherwise, we flip another coin. We
are sure to succeed with probability 1/2. Due to space limitation, the complete
proof is not given here.

Remark 3. During the KeyGeneration procedure, it is possible for a player to
cheat by not giving the right key to one of her descendant. In order to detect
such fraud, it is possible to add a key confirmation procedure where each node
publishes a label related to its secret node key.

4.4 Efficiency Considerations

It is possible to instantiate our generic construction with the Group Key Agree-
ment scheme presented in [16], where the solution is based on the use of a tree.
While this solution is not the most efficient one regarding the complexity point
of view, it fits very well our needs.

During the key generation phase of our construction, the case where there is
only one father is very efficient since only needing a HMAC operation. When
there are several fathers, we first insert the virtual node and then compute the
corresponding node key using e.g. [16]. For each virtual node v, each father
computes log2(Fv) + 1 modular exponentiations in a group of prime order. We
should add the so-called blinded keys [16], which corresponds to log2(Fv) − 1
modular exponentiations in a group of prime order for the whole group.

4.5 The Dynamic Case

In case of a dynamic graph, we need to add two new procedures.

AddNode. The key of the j-th child of a node is computed from his father’s
one thanks to a specific counter sf . In the static case, this counter is set to the
number of current children plus the number of refreshes. In the dynamic case,
this counter is also incremented when a new node is added to this father.

224 S. Canard and A. Jambert

DeleteNode. We need first to modify the graph. The targeted node is deleted and
the different links between ascendants and descendants are created. Note that
if a path already exists from an ascendant to a descendant, there is no need to
create a new one. In the second step, we refresh the keys in the sub-graph with
all fathers of the deleted node as root(s). This step uses techniques described
in either the KeyGeneration procedure or the KeyRefresh one and may use the
dynamicity of the R&R-GKA scheme (deletion of a group member) if necessary.

5 Conclusion

This paper describes the first key management scheme suitable for multi-rooted
oriented graphs with no oriented cycle without needing the presence of a central
authority. In the most general setting, this scheme can be used for access control
in a group with a hierarchical structure. Our construction mainly takes advantage
of the use of a group key agreement designed for a non-hierarchical structure.
We finally use virtual nodes in our graph so as to speed up the key generation
phase.

Acknowledgments. We are grateful to Marc Girault and Jacques Traoré for
their suggestions, and to anonymous referees for their valuable comments.

References

1. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in
a hierarchy. In: ACM (ed.) ACM Trans. Comput. Syst. (TOCS 1983), vol. 1, pp.
239–248 (1983)

2. Atallah, M.J., Frikken, K.B., Blanton, M.: Dynamic and efficient key management
for access hierarchies. In: ACM CCS 2005, pp. 190–202 (2005)

3. Bellare, M.: New proofs for nmac and hmac. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 602–619. Springer, Heidelberg (2006)

4. Birget, J., Zou, X., Noubir, G., Ramamurthy, B.: Hierarchy-based access control in
distributed environments. In: IEEE International Conference on Communications,
vol. 1, pp. 229–233 (2001)

5. Bresson, E., Chevassut, O., Pointcheval, D.: Provably secure authenticated group
diffie-hellman key exchange. ACM Trans. Inf. Syst. Secur. 10(3), 10 (2007)

6. Chang, C.-C., Lin, I.-C., Tsai, H.-M., Wang, H.-H.: A key assignment scheme for
controlling access in partially ordered user hierarchies. In: AINA 2004, p. 376.
IEEE Computer Society, Los Alamitos (2004)

7. Chick, G.C., Tavares, S.E.: Flexible access control with master keys. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 316–322. Springer, Heidelberg (1990)

8. Chou, J.-S., Lin, C.-H., Lee, T.-Y.: A novel hierarchical key management scheme
based on quadratic residues. In: Cao, J., Yang, L.T., Guo, M., Lau, F. (eds.) ISPA
2004. LNCS, vol. 3358, pp. 858–865. Springer, Heidelberg (2004)

9. Das, M.L., Saxena, A., Gulati, V.P., Phatak, D.B.: Hierarchical key management
scheme using polynomial interpolation. SIGOPS 39(1), 40–47 (2005)

10. De Santis, A., Ferrara, A.L., Masucci, B.: Cryptographic key assignment schemes
for any access control policy. Inf. Process. Lett. 92(4), 199–205 (2004)

Group Key Management 225

11. Desmedt, Y., Lange, T., Burmester, M.: Scalable authenticated tree based group
key exchange for ad-hoc groups. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and
USEC 2007. LNCS, vol. 4886, pp. 104–118. Springer, Heidelberg (2007)

12. Hardjono, T., Zheng, Y., Seberry, J.: New solutions to the problem of access control
in a hierarchy. Technical Report Preprint 93-2 (1993)

13. He, M., Fan, P., Kaderali, F., Yuan, D.: Access key distribution scheme for level-
based hierarchy. In: PDCAT 2003, pp. 942–945 (2003)

14. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. J.
Cryptol. 20(1), 85–113 (2007)

15. Kim, Y., Perrig, A., Tsudik, G.: Group key agreement efficient in communication.
IEEE Trans. Comput. 53(7), 905–921 (2004)

16. Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement. ACM Trans. Inf.
Syst. Secur. 7(1), 60–96 (2004)

17. Kuo, F.H., Shen, V.R.L., Chen, T.S., Lai, F.: Cryptographic key assignment scheme
for dynamic access control in a user hierarchy. In: IEE Proceedings Computers and
Digital Techniques, vol. 146, pp. 235–240 (1999)

18. Lee, S., Kim, Y., Kim, K., Ryu, D.-H.: An efficient tree-based group key agreement
using bilinear map. In: Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS,
vol. 2846. Springer, Heidelberg (2003)

19. Lin, C.-H.: Hierarchical key assignment without public-key cryptography. Com-
puters & Security 20, 612–619 (2001)

20. Krawczyk, H., Bellare, M., Canetti, R.: Hmac: Keyed-hashing for message authen-
tication. In: RFC 2104 (1997)

21. MacKinnon, S.J., Taylor, P.D., Meijer, H., Akl, S.G.: An optimal algorithm for
assigning cryptographic keys to control access in a hierarchy. IEEE Trans. Com-
put. 34(9), 797–802 (1985)

22. Ragab Hassen, H., Bouabdallah, A., Bettahar, H., Challal, Y.: Key management
for content access control in a hierarchy. Comput. Netw. 51(11), 3197–3219 (2007)

23. Ray, I., Narasimhamurthi, N.u.: A cryptographic solution to implement access
control in a hierarchy and more. In: SACMAT 2002, pp. 65–73. ACM, New York
(2002)

24. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups.
IEEE Transactions on Parallel and Distributed Systems 11(8), 769–780 (2000)

25. Wu, J., Wei, R.: An access control scheme for partially ordered set hierarchy with
provable security (2004/295) (2004), http://eprint.iacr.org/

26. Zhang, Q., Wang, Y.: A centralized key management scheme for hierarchical access
control. In: IEEE GLOBECOM 2004, vol. 4, pp. 2067–2071 (2004)

27. Zheng, Y., Hardjono, T., Pieprzyk, J.: Sibling intractable function families and
their applications. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT
1991. LNCS, vol. 739, pp. 124–138. Springer, Heidelberg (1993)

28. Zhong, S.: A practical key management scheme for access control in a user hierar-
chy. Computers & Security 21, 750–759 (2002)

29. Zou, X., Karandikar, Y., Bertino, E.: A dynamic key management solution to access
hierarchy. Int. J. Netw. Manag. 17(6), 437–450 (2007)

http://eprint.iacr.org/

Scan Based Side Channel Attacks on Stream
Ciphers and Their Counter-Measures

Mukesh Agrawal1, Sandip Karmakar2, Dhiman Saha2,
and Debdeep Mukhopadhyay3

1 B.Tech. Student, 2 MS Student, 3 Assistant Professor
Dept. of Computer Science and Engineering

Indian Institute of Technology Kharagpur, India
{mukesh,sandipk,dhimans,debdeep}@cse.iitkgp.ernet.in

Abstract. Scan chain based attacks are a kind of side channel attack,
which targets one of the most important feature of todays hardware -
the test circuitry. Design for Testability (DFT) is a design technique that
adds certain testability features to a hardware design. On the other hand,
this very feature opens up a side channel for cryptanalysis, rendering
crypto-devices vulnerable to scan-based attack. Our work studies scan
attack as a general threat to stream ciphers and arrives at a general
relation between the design of stream ciphers and their vulnerability to
scan attack. Finally, we propose a scheme which we show to thwart the
attacks and is more secure than other contemporary strategies.

1 Introduction

The widespread use of low-power hand-held/portable devices have necessitated
the use of stream ciphers for cryptographic security. Stream ciphers [1] are much
less power consuming and much faster than the block ciphers. The security of
stream ciphers has been examined by several researchers. However, nowadays it is
not only important for an algorithm to be mathematically robust but also they
should be resistant against attacks which exploit implementation weaknesses.
This class of cryptanalysis are known as Side Channel Attacks(SCA). They use
the information leaked by side channels like power, timing etc. One such side
channel attack is scan chain based attack. This technique exploits the fact that
most of modern day ICs are designed for testability. Scan chains are one of the
most popular methods to test a design. In this scheme all flip-flops (FFs) are
connected in a chain and the states of the FFs can be scanned out through the
chain. Scan testing equips a user with two very powerful features namely con-
trollability and observability. Controllability refers to the fact that the user can
set the FFs to a desired state, while observability refers to the power to observe
the content of the FFs. Both these desirable features of a scan-chain testing
methodology can be fatal from cryptographic point of view. In cryptographic al-
gorithms, knowledge of intermediate values of the cipher can seriously reduce the
complexity of breaking it. It has been shown in literature ([2],[3]) that attackers
can very effectively use this scan technique to completely break a cryptosystem.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 226–238, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Scan Based Side Channel Attacks 227

Such kinds of attack can have profound practical importance as the security of
the system can be compromised using unsophisticated methods. For example,
keys can be extracted from popular pay TV set-top boxes via scan-chains at a
cost of few dollars. Naturally, the attack can be prevented by eliminating the
test capabilities from the design. However, this increases the risk of shipping
chips with defects, which may hamper the normal functionality of the designs.
Hence, research is needed to study the scan-chain based attacks against designs
of standard ciphers with the objective of developing suitable DFT techniques for
cryptographic hardware.

In this paper we have attacked Trivium, a hardware based stream cipher en-
listed in phase 3 of the eStream [4] project. We have generalized the attack to
any stream cipher and have highlighted the reason as to why such implementa-
tions crumble against scan based attacks. To prevent such attacks, various secure
scan-chain design have been proposed. [2] proposed the technique in which in-
verters are inserted at random points of a scan chain. However, we show in this
paper that the inverter based scheme can still be attacked. [3] provided a state
machine based technique to achieve the same. But the architecture is difficult to
incorporate in existing design flow. The motivation of this work is to propose a
secure scan chain mechanism which is resistant against the existing attacks, at
the same time provides high quality testability.

The paper is organized as follows: Section 2 gives a brief description of scan-
chains and the scan based attacks on stream ciphers, Section 3 describes a
case-study on a scan based attack on Trivium stream cipher, while Section 4
generalizes scan based attack on stream ciphers. A suitable counter-measure
against scan chain based attacks is proposed in Section 5. Finally, Section 6
concludes the paper. The specification of Trivium is discussed in the Appendix.

2 Preliminaries

2.1 Scan Chains and Scan Based Attacks

Scan chains are a DFT technique kept with the objective to test designs by
providing a simple way to set and observe every flip-flop in an Integrated Circuit.
A special signal called scan enable is added to a design. When this signal is
asserted, every flip-flop in the design is connected as a chain of registers. One
input pin provides the data to this chain, and one output pin is connected to the
output of the chain. On each clock event, an input pattern can be scanned-in to
the registers. Then after a normal run of the device, the updated contents of the
registers are scanned out of the scan chain. A standard scan chain is shown in
Fig. 1. The test data is given through the scan in line and the output pattern is
scanned out through the scan out line as shown in the figure.

The notion of scan based attacks and its prevention on crypto hardware ap-
peared in many contemporaryworks. [5] has shown scan based attack on dedicated
hardware implementation of the Data Encryption Standard(DES). Among some
secure scan chain designs are Scan enable integrity [6], Scan chain scrambling [7],

228 M. Agrawal et al.

Fig. 1. Design of a Scan Chain

tree based scan chain with a compactor [8], Spy Flip-flop[9], Flipped-scan [2], Cir-
cularscan [10], Lock and Key [11] and Secure Scan [3]. A comparative study on
the existing scan chain techniques have been presented in [12]. A scan attack on
the Advanced Encryption Standard(AES) is discussed in [3], while [2] mounts an
attack on the RC4 stream cipher.

A scan attack has two phases, namely, the phase when an attacker ascertains
the internal structure of the scan chain, followed by deciphering the cryptogram.
Our study reveals that stream ciphers are generally vulnerable to the first phase
of a scan attack, while vulnerability to the second phase depends specifically on
the robustness of the algorithm. To be precise, the second part of the attack
depends on whether it is possible to track back to previous state of the cipher
from the knowledge of the current state.

Next, we give a scan based attack on Trivium stream cipher as a case study.
Trivium is a hardware based stream cipher enlisted in phase 3 of the eStream[13]
project. It may be noted that although the following attack is targeted for the
implementation of Trivium in [14], the attack may be adapted to other imple-
mentations as well. However, as any side channel analysis the attack is dependent
on the implementation.

3 A Case Study on the Trivium Stream Cipher

3.1 Objective of the Attacker

The aim is to obtain the message stream from the stream of ciphertexts. He
observes the cryptogram c1, c2, c3, · · · , cl. He then gets the possession of the
device and his intention is to obtain the plaintexts m1, m2, m3, · · · , ml using
scan-chain based side channel analysis.

3.2 Attack on Trivium

Here we show the attack on the implementation of Trivium suggested in [14].
Trivium has a total of 288 internal state registers. The control circuitry in [14]
requires an 11-bit counter which adds 11 more registers while 3 registers are
required for the temporary variables. So the scan chain for trivium has a total
of 302 registers.

As already mentioned in Section 2, a scan attack consists of two phases, ascer-
taining which bit corresponds to which register and deciphering the cryptogram.

Scan Based Side Channel Attacks 229

Scan based attacks try to exploit the information gained about the internal
states of the cipher through the scan chain. All hardware with scan chain based
DFT have a scan-in and scan-out line. This allows the user to scan in a desired
pattern in test mode, run the circuit in normal mode and then scan out the
pattern to verify the functioning of the device. In case of crypto devices this
feature equips an attacker with a tool by virtue of which he can gain knowledge
about the internal intermediate states of the crypto algorithm. He exploits this
knowledge to break the cryptosystem. Literature shows that these attacks are
quite easy to implement and do not require any sophisticated set-up.

Ascertaining Bit Correspondence. As far as Trivium is concerned the first
phase of the attack can be broken down in 3 parts i.e., ascertaining the location
of the internal state bits, the counter bits and the temporary registers. Once the
attacker gets hold of the crypto-chip, he tries to scan out the data to get the state
of the registers. What the attacker does not know is the correspondence between
the actual bits and the pattern he has scanned out. However, by some clever use
of key and IV setup and by using certain properties of the state update function
he can easily find the exact positions of the bits in the scanned out pattern. The
following procedure details the steps the attacker takes:

1. Ascertaining location of counter bits
The attacker can ascertain the positions of the counter bits by exploiting the
Key-IV input pattern. As per the design in [14] the user is needed to give
a padded input pattern as, (Key80, 013, IV80, 0112, 13) through the Key IV
padding line. Here Key80 represents the 80 bits of the key while 013 denotes
a sequence of 13 0’s, similarly the other notations may be explained. The
attacker inputs a pattern of all zeros i.e., 0288. He then runs the system in
normal mode for (210 − 1) cycles. Since the internal state of the cipher is
set to all zeros, so according to Equation 7 (refer Appendix), running the
cipher will have no change on the 288-bit internal state register and the
temporary registers which always remain in an all zero state. The only thing
that changes is the 11-bit counter. Since the system runs for (210−1) cycles,
so 10 bits of the counter will be set to 1. The attacker then scans out the
pattern and the bits which are 1, are concluded to be the 10 counter bits.
The 11th counter bit can be determined by scanning in the scanned out
pattern again and running the system for 1 cycle. This sets the 11th counter
bit to 1. The attacker now scans out the pattern to get the bit position. The
attacker requires a total of 288 clock cycles to scan-in the pattern and the
same number of clock cycles to scan-out the pattern.

It might be noted that to mount the scan attack the attacker need not
know which bit of the counter corresponds to which bit-position but only
the positions of all the counter-bits as a whole. The number of clock-cycles
required is (288 + 210 − 1 + 288 + 288 + 1 + 288) = 2176.

2. Ascertaining the internal state bits
This part of the attack is straight-forward. The attacker here again tries to
exploit the key-IV input pattern. He first resets the circuit and then gives

230 M. Agrawal et al.

a pattern in which only key1 = 1 and remaining bits are 0 during Key-IV
setup (Equation 5) .i.e.,

(s1, s2, s3, s4, · · · , s288) ← (1, 079, 013, 080, 0112, 03).

He then runs the system for 1 clock-cycle to load the first key bit, after
which he scans out the entire pattern in test-mode. The output pattern will
have 1s in two positions. Out of these one will correspond to the counter
LSB which the attacker already knows while the other corresponds to s1.
So the bit position of s1 in the output pattern is ascertained. He proceeds
likewise setting to 1 only the bit he wants to find in the input pattern and
then running the corresponding number of clock-cycles in normal mode.
Typically, to find the ith bit position he has to run the system for i clock
periods. He thus finds the bit positions for all the 288 state bits in the output
pattern. The number of clock-cycles required is

∑288
i=1 i + 2882 = 124560.

3. Ascertaining the temporary register bits
The attacker has already determined the positions of (288+11) = 299 inter-
nal registers. He then finds the temporary registers t1, t2, t3. The following
equations can be derived from Equation 6,

t1 ← s66 ⊕ s91.s92 ⊕ s93 ⊕ s171

t2 ← s162 ⊕ s175.s176 ⊕ s177 ⊕ s264

t3 ← s243 ⊕ s286.s287 ⊕ s288 ⊕ s69

The attacker sets the input pattern in such a way that when he runs the
cipher in normal mode after key-IV load, only one of the temporary registers
changes their value to 1 while the others are 0. For example, the attacker
can set s66 = 1 i.e.,

(s1, s2, s3, s4, . . . , s288) ← (065, 1, 012, 013, 080, 0112, 03).

He then loads the Key-IV pattern in normal mode and runs for 1 more clock
cycle which will set t1 = 1. He scans out the pattern and as he already knows
all other bit positions he can get the position of t1. This requires 2 × 288
clocks, 288 for scanning in and 288 for scanning out. He repeats the process
to get t2. Once he obtains t1 and t2, the position of t3 becomes evident.
Thus, he requires a total of 4× 288 clocks.

This concludes the first phase of the attack with the attacker now having
the knowledge of all the bits positions in the internal state of the cipher.
He then advances to the next phase where he attempts to decipher the
cryptogram from the knowledge of the internal state.

3.3 Deciphering the Cryptogram

In a stream cipher, we XOR the plain text bit to the key stream bit to get the
ciphertext bit. So, if we have key stream bit Ki and cipher text Ci, plaintext
bit Pi can be obtained as,

Scan Based Side Channel Attacks 231

Pi = Ki ⊕ Ci

The attacker had scanned out the internal state of Trivium after getting
hold of the device. Now, he has ascertained the position of state bits in the
scan-chain. This information will be used to decipher the cryptogram and
to obtain the plaintext. We proceed by knowing the previous state from the
current state. Table 1 gives a clear picture about the relation of present
and previous states of Trivium. As is clear from the encryption algorithm,
current state is a right shift of previous state with first bit being a non-linear
function of some other bits. So, our task remains to calculate ’a’,’b’ and ’c’.
Observe the following equations:

t1 = s66 ⊕ s93 (1)
t1 = t1 ⊕ s91 · s92 ⊕ s171 (2)

(s94, s95, · · · , s177) ← (t1, s94, · · · , s176) (3)

Equations 1 and 2 can be combined to get,

t1 = s66 ⊕ s93 ⊕ s91 · s92 ⊕ s171 (4)

This should be noted that if we give a clock at this configuration of Trivium,
register s94 gets loaded with t1 and other bits are shifted to their right. So,
we can say that what is s67 now, must have been s66 in the previous state
and what is s93 now, must have been s92 in the previous state and so on.
Hence, from Equation 3 and 4 and by referring to Table. 1 we have the
following equation:

s94 = a⊕ s67 ⊕ s92 · s93 ⊕ s172

⇒ a = s94 ⊕ s67 ⊕ s92 · s93 ⊕ s172

Similarly, ’b’ and ’c’ can be deduced by the following set of equations:

s178 = b⊕ s163 ⊕ s176 · s177 ⊕ s265

⇒ b = s178 ⊕ s163 ⊕ s176 · s177 ⊕ s265

And,

s1 = c⊕ s244 ⊕ s287 · s288 ⊕ s70

⇒ c = s1 ⊕ s244 ⊕ s287 · s288 ⊕ s70

Hence, we can compute all the previous states given a single current state
of the internal registers. Once obtained a state, one can easily get the key
stream bit for the l successive time units by following Equation 7. The key
stream bit when xored with the ciphertext bit of the state produces the
corresponding plaintext bit.

232 M. Agrawal et al.

Table 1. Internal states of Trivium

Present State Previous State

(s1, s2, · · · , s93) (s2, s3, · · · , s93, a)
(s94, s95, · · · , s177) (s95, s96, · · · , s177, b)

(s178, s179, · · · , s288) (s179, s180, · · · , s288, c)

3.4 Attack Simulation

The stream cipher Trivium was implemented in Verilog HDL. A scan-chain was
inserted in the design. The entire attack was simulated and verified on the Spar-
tan3 xc3s5000-fg900 FPGA platform. The results of the simulations entirely
matched with the attack scenario presented above.

4 Generalization of the Attack on Stream Ciphers

The strategy applied above to break Trivium can be extended to any stream
cipher. In general, the structure of stream ciphers make them vulnerable only
to the first phase of the attack. This is because all of them have a key and/or
IV setup phase where the user is allowed to load the key or IV from outside.
This can be exploited to ascertain the bit correspondence between the internal
registers and the key-IV bits. However, Stream ciphers also have some bits that
are not loaded from outside. These bits are internally assigned to either zeros or
ones. Unfortunately, this is not good enough. These bits also have to be included
in the scan-chain for the purpose of testability and may be over-written by the
scan input and read through scan-out line. This shall determine their positions
in the scan chain. However, the second phase of the attack cannot be generalized
over all stream ciphers. The second phase of the attack relies on the particular
algorithm. As already mentioned, this depends on whether we can deduce the
previous state of the cipher from the knowledge of its current state. The case-
study reveals the fact that an insecure scan-chain can be fatal even to the modern
stream ciphers. So we need to implement a secure scan-chain which shall help
us to test the device without revealing the internal states to an unauthorized
person. Next section describes such a counter-measure.

5 Prevention Mechanism

One of the recent techniques in implementing secure scan-chains is the Flipped-
scan [2] technique. In this scheme inverters are introduced at random points
in the scan-chain. Security lies in the fact that an attacker cannot guess the
positions of the inverters with a probability significantly greater that 1

2 . However,
this scheme is vulnerable to an attack which we call the reset attack. The reset
attack is elaborated next.

Scan Based Side Channel Attacks 233

Fig. 2. Example Demonstrating Attack on Flipped-Scan

5.1 Reset Attack on Flipped-Scan Mechanism

In standard VLSI design, each FF is accompanied by either a synchronous or
asynchronous RESET which initializes the FF to zero. An attacker can assert
the reset signal and obtain the scan-out pattern by operating the crypto chip
in test mode. The scan-out pattern would look like series of 0’s interleaved with
series of 1’s. The places where polarity is reversed are the locations where an
inverter has been inserted. The following example illustrates the attack.

Example 1. Suppose there is a scan-chain of 10 D-FFs; and inverters are placed
at position numbers 1, 3, 6, 7 and 11, out of 11 possible positions as shown in
Fig. 2. We apply a reset signal and scan out the pattern. We will get a pattern
equal to X1, X2, · · · , X10, where Xi = ai+1⊕ ai+2 · · ·⊕ a11, where ai is 1 if there
is an inverter in the ith link and ai = 0 otherwise.

We will get this pattern in the order X10, X9, · · · , X1. In this example,

X10 = a11

X9 = a10 ⊕ a11

X8 = a9 ⊕ a10 ⊕ a11

...
X1 = a2 ⊕ a3 · · · a11

From the above set of equations it follows that we will get a sequence X =
{0, 0, 1, 1, 1, 0, 1, 1, 1, 1}. As previously stated, inverters have been inserted at
those positions where polarity is reversed in the pattern. Here, the positions
where inverters were placed are 3,6,7 and 11. Presence of inverter at the 11th

position was detected using the fact that first bit obtained while scanning out is
1. It can be easily deduced whether there is an inverter in the first position or
not by feeding in a bit and observing if the output toggles or not. Thus, inverters
are placed at positions 1,3,6,7 and 11. By the above procedure, one can always
ascertain the location of inverters. Therefore, the design in [2] is no longer secure.

In the following section we give a scheme which overcomes this threat against
the reset attack while maintaining high level of security against conventional
scan chain based attacks.

234 M. Agrawal et al.

Fig. 3. Xor-Chain Architecture

5.2 Description of Xor-Chain

We propose a prevention scheme which is based on insertion of xor gates at
random points in the scan chain. We call the scheme Xor-Chain. One of the
inputs to the xor gate is the present input of the flip-flop from the one preceding
it in the chain while the other input is the current output of the flip-flop. Actually
each xor-gate serves as a data-dependent inverter which conditionally inverts the
present input based on the past input. Clearly, this configuration passes the reset
attack on the flipped scan architecture, as in case of reset, scan-chain output will
be all zeros, i.e., the xor gates become transparent.

Fig. 3 shows a xor-chain architecture having six D-FFs. In this structure xor-
gates are inserted before 2nd, 4th and 5th FFs. In order to test a circuit, we first
reset the chip and then feed in a pattern to the chain architecture.

5.3 Testability

We next inspect whether the proposed xor chain architecture may be used to
test the circuit. For this purpose the following result needs to be satisfied by the
proposed scan chain.

Theorem 1. Let X = {X1, X2, · · · , Xn} be the vector space of inputs to the
xor-chain and Y = {Y1, Y2, · · · , Yn} be the vector space of outputs from the xor-
chain. Then there is a one-to-one correspondence between X and Y, if the xor
chain is reset before feeding in the pattern X.

Proof. The proof has essentially two parts. First we try to prove the one-to-one
correspondence between the input and what gets into the FFs.

Let the existence of an xor gate be denoted by a variable ai ∈ (0, 1) such
that if ai = 1 then there is an xor gate before the ith FF. Otherwise, if ai = 0
there is no xor gate. At any instant of time t the state of the internal FFs of the
xor-chain can be expressed as follows:

St
1 = Xn−t ⊕ St−1

1 .a1

St
2 = St−1

1 ⊕ St−1
2 .a2

St
3 = St−1

2 ⊕ St−1
3 .a3

...

St
n = St−1

n−1 ⊕ St−1
n .an

Scan Based Side Channel Attacks 235

where,

n =⇒ the total number of FFs,
St

i =⇒ the state(value) of the ith FF in the tth clock cycle,
Xn−t =⇒ the input to the xor-chain at the tth clock cycle.

Solving the above system of equations by multiplying these equations with ap-
propriate values of ai and subsequent xoring, we get the following expression:

a1.S
t
2 ⊕ a1.a2.S

t
3 ⊕ . . . (a1.a2...an−1).St

n = St
1 ⊕Xn−t ⊕ (a1.a2...an).St−1

n

For testing, before scanning in a pattern, the circuit is always reset. Hence, all
FFs are initially holding 0. In the above equation, St−1

n is the state of the nth

FF at the (t− 1)th clock cycle. However, that should be 0 because of the initial
reset. So the term (a1.a2...an).St−1

n is always 0 independent of the values of
a1, a2, ...an. Thus the resultant equation can be rewritten as:

Xn−t = a1.S
t
2 ⊕ a1.a2.S

t
3 ⊕ . . . (a1.a2...an−1).St

n ⊕ St
1

It can be inferred from above that given the states of all the FFs at an instant
(i.e., St

1, ..., S
t
n) and the configuration of the xor-chain(i.e., a1, ..., an) one can

find out what the input to the chain was. Thus we can conclude that given a
fixed X and (a1, a2, .., an), the states of internal FFs have a one-to-one mapping
with vector space X .

Proceeding in a similar way it can be established that the states of the FFs and
the pattern scanned out will also bear a one-to-one correspondence. Thus the
pattern scanned in and scanned out of the xor-chain will also have a one-to-one
relation among themselves.

Thus the proposed xor chain architecture can be used for testability as we
can have a unique output pattern for a given input pattern.

5.4 Security Analysis

In order to mount a scan attack on a crypto hardware in general and stream
cipher in particular, an attacker must first ascertain the structure of the scan-
chain. So the main aim of any prevention mechanism is to thwart such an at-
tempt. Similar, to the philosophy of flipped scan chain, security of our scheme
relies on the fact that if the positions of the xor gates are unknown to the at-
tacker, then it is computationally infeasible for him to break the structure of the
scan-chain. As a rule of thumb in designing we insert m = �n/2� xor gates in a
scan-chain with n FFs. We show in the following that even if the attacker has
the knowledge of the number of xor gates (m) among the number of FFs, the
probability of successfully determining the structure is about 1/2n.

Theorem 2. For an xor scan-chain with n FFs and m = �n/2� xor gates, the
probability to guess the correct structure by an attacker with knowledge of n is
nearly 1/2n.

236 M. Agrawal et al.

Table 2. Hardware Overhead Comparison

Prevention Mechanism No. of insertions Total Transistor Count

Flipped Scan �(n + 1)/2� (n + 1)
Xored Scan �n/2� 5n

Proof. Let the number of FFs be n and the number of xor gates be m. Hence,
the number of structures possible is nCm, where nCm means the number of ways
of choosing m unordered elements from n elements. Let us assume that the
attacker uses the knowledge that the number of xor gates is half the number of
FFs, so that we have m = �n/2�. Therefore, the probability to guess the correct
structure is now 1/nC�n/2�.

In order to compute the bound, we use the fact the maximum value of nCr

is when r = �n/2�. We combine this with the fact that the maximum binomial
coefficient (given by the above value) must be greater that the average of all
binomial coefficients, i.e., when r runs from 0 to n.

But, nC�n/2�>2n/(n + 1) ⇒ nC�n/2�>2n−log2(n+1). And for large values of n,
n− log2(n+1) ≈ n. Hence, the probability of guessing the correct scan structure
is nearly 1/2n

5.5 Hardware Overhead

The xor-chain model requires insertion of xor gates at random points of a scan
chain. In terms of gate count, the xor-chain is more costly than its nearest coun-
terpart flipped-scan. Table 2 compares the hardware overhead of the proposed
prevention scheme with [2].

6 Conclusion

In this paper, we have shown that hardware designs of stream ciphers can be
subjected to attacks when tested using scan chains. We demonstrate such an
attack on a recent hardware based phase-3 stream cipher of eStream, named
Trivium. The attack shows that stream ciphers, because of their inherent de-
sign methodology are vulnerable to scan based attacks. The paper in search
of counter-measures against scan attacks shows that a contemporary strategy
named Flipped Scan Chain may be attacked. Finally, a new protection mech-
anism using xor chains has been suggested and shown to be resistant against
known attacks without compromising testability.

References

1. Stallings, W.: Cryptography and Network Security: Principles and Practice. Pear-
son Education, London (2002)

2. Sengar, G., Mukhopadhyay, D., Chowdhury, D.R.: Secured flipped scan-chain
model for crypto-architecture. IEEE Trans. on CAD of Integrated Circuits and
Systems 26(11), 2080–2084 (2007)

Scan Based Side Channel Attacks 237

3. Yang, B., Wu, K., Karri, R.: Secure scan: A design-for-test architecture for crypto
chips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 25(10), 2287–2293 (2006)

4. eSTREAM, European network of excellence for cryptology (ecrypt) stream cipher
project

5. Yang, B., Wu, K., Karri, R.: Scan based side channel attack on dedicated hardware
implementations of data encryption standard. In: ITC 2004: Proceedings of the
International Test Conference on International Test Conference, Washington, DC,
USA, pp. 339–344. IEEE Computer Society, Los Alamitos (2004)

6. Hely, D., Bancel, F., Flottes, M.-L., Rouzeyre, B.: Test control for secure scan
designs. In: ETS 2005: Proceedings of the 10th IEEE European Symposium on
Test, Washington, DC, USA, pp. 190–195. IEEE Computer Society, Los Alamitos
(2005)

7. Hely, D., Flottes, M.-L., Bancel, F., Rouzeyre, B., Berard, N., Renovell, M.: Scan
design and secure chip. In: IOLTS 2004: Proceedings of the 10th IEEE International
On-Line Testing Symposium, Washington, DC, USA, p. 219. IEEE Computer So-
ciety, Los Alamitos (2004)

8. Mukhopadhyay, D., Banerjee, S., RoyChowdhury, D., Bhattacharya, B.B.: Cryp-
toscan: A secured scan chain architecture. In: ATS 2005: Proceedings of the 14th
Asian Test Symposium on Asian Test Symposium, Washington, DC, USA, pp.
348–353. IEEE Computer Society, Los Alamitos (2005)

9. Hély, D., Bancel, F., Flottes, M.-L., Rouzeyre, B.: A secure scan design method-
ology. In: DATE 2006: Proceedings of the conference on Design, automation and
test in Europe, 3001 Leuven, Belgium, pp. 1177–1178. European Design and Au-
tomation Association (2006)

10. Arslan, B., Orailoglu, A.: Circularscan: A scan architecture for test cost reduction.
date 02, 21290 (2004)

11. Lee, J., Tehranipoor, M., Patel, C., Plusquellic, J.: Securing scan design using lock
and key technique. In: DFT 2005: Proceedings of the 20th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems, Washington, DC,
USA, pp. 51–62. IEEE Computer Society, Los Alamitos (2005)

12. Hely, D., Bancel, F., Flottes, M.-L., Rouzeyre, B.: Secure scan techniques: A com-
parison. In: IOLTS 2006: Proceedings of the 12th IEEE International Symposium
on On-Line Testing, Washington, DC, USA, pp. 119–124. IEEE Computer Society,
Los Alamitos (2006)

13. Trivium, http://www.ecrypt.eu.org/stream/triviump3.html
14. Chelton, W., Good, T., Benaissa, M.: Review of stream cipher candidates from a

low resource hardware perspective,
http://www.ecrypt.eu.org/stream/triviump3.html

http://www.ecrypt.eu.org/stream/triviump3.html
http://www.ecrypt.eu.org/stream/triviump3.html

238 M. Agrawal et al.

Appendix

A Trivium Specifications

The following description is taken from [14].

A.1 Key and IV Setup

First, the key and IV are used to initialize the internal states of the cipher which
are then updated using Equation 6 but without generating the key-stream.

(s1, s2, s3, ..., s93) ← (K1, K2, K3, ..., K80, 0, 0, ..., 0)
(s94, s95, s96, ..., s177) ← (IV1, IV2, IV3, ..., IV80, 0, 0, ..., 0)

(s178, s179, s180, ..., s288) ← (0, 0, ..., 1, 1, 1) (5)

for i = 1 to 4× 288 do
t1 ← s66 ⊕ s91.s92 ⊕ s93 ⊕ s171

t2 ← s162 ⊕ s175.s176 ⊕ s177 ⊕ s264

t3 ← s243 ⊕ s286.s287 ⊕ s288 ⊕ s69

(s1, s2, s3, ..., s93) ← (t3, s1, s2, ..., s92)
(s94, s95, s96, ..., s177) ← (t1, s94, s95, ..., s176)

(s178, s179, s180, ..., s288) ← (t2, s178, s179, ..., s287)
end for (6)

A.2 KeyStream Generation

The state update function is given by Equation 7. The variable zi denotes the
key-stream bit while N denotes the number of bits to be generated and N ≤ 264.

for i = 1 to N do
t1 ← s66 ⊕ s93

t2 ← s162 ⊕ s177

t3 ← s243 ⊕ s288

zi ← t1 ⊕ t2 ⊕ t3

t1 ← t1 ⊕ s91.s92 ⊕ s171

t2 ← t2 ⊕ s175.s176 ⊕ s264

t3 ← t3 ⊕ s286.s287 ⊕ s69

(s1, s2, s3, s4, ..., s93) ← (t3, s1, s2, s3, s4, ..., s92)
(s94, s95, s96, s97, ..., s177) ← (t1, s94, s95, s96, s97, ..., s176)

(s178, s179, s180, s181, ..., s288) ← (t2, s178, s179, s180, s181, ..., s287)
end for (7)

Floating Fault Analysis of Trivium

Michal Hojśık1 and Bohuslav Rudolf2

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
michal.hojsik@ii.uib.no

2 National Security Authority, Na Popelce 2/16, 150 06 Prague 5, Czech Republic
b.rudolf@nbu.cz

Abstract. One of the eSTREAM final portfolio ciphers is the hardware-
oriented stream cipher Trivium. It is based on 3 nonlinear feedback shift
registers with a linear output function. Although Trivium has attached
a lot of interest, it remains unbroken by passive attacks.

At FSE 2008 a differential fault analysis of Trivium was presented. It
is based on the fact that one-bit fault induction reveals many polynomial
equations among which a few are linear and a few quadratic in the inner
state bits. The attack needs roughly 43 induced one-bit random faults
and uses only linear and quadratic equations.

In this paper we present an improvement of this attack. It requires
only 3.2 one-bit fault injections in average to recover the Trivium inner
state (and consequently its key) while in the best case it succeeds after
2 fault injections. We termed this attack floating fault analysis since it
exploits the floating model of the cipher. The use of this model leads to
the transformation of many obtained high-degree equations into linear
equations.

The presented work shows how a change of the cipher representation
may result in much better attack.

Keywords: Trivium, stream cipher, differential fault analysis.

1 Introduction

The year 2008 is the last year of the European project ECRYPT. Within the
project a search for new stream ciphers, eSTREAM project, took place. After
3 project phases within 4 years the final results were announced on Eurocrypt
2008. The eSTREAM committee has pointed out four ciphers within each of
the two profiles (hardware/software oriented ciphers) and published them as
the eSTREAM portfolio.

At the very beginning of eSTREAM, 34 ciphers were proposed and evaluated
but only some have made their way up to the final phase or were even included to
the final portfolio. Among these (portfolio) ciphers, the stream cipher Trivium
is somehow special. First of all its design is indeed very simple. It brings us
again to the question how simple can a secure cipher be. Secondly, Trivium is
the fastest cipher among all proposals in many tested architectures (see e.g. [15]

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 239–250, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

240 M. Hojśık and B. Rudolf

or [14] for more details) and although Trivium was largely analysed, it remains
unbroken by passive attacks.

Earlier this year at FSE 2008, a differential fault attack on Trivium was pre-
sented [2]. It is based on the fact, that an injection of a one-bit fault (a bit flip)
into a Trivium inner state reveals to an attacker a few linear and a few quadratic
equations in the inner state bits. The attack requires roughly 43 fault injections
at random positions and it assumes that all fault injections are performed into
the same inner state. This can be achieved in the chosen-ciphertext attack sce-
nario assuming that the initialisation vector is a part of the cipher input. In
this case, an attacker will always use the same cipher input (cipher text and
initialisation vector) which will lead to the same cipher inner state during the
decryption. This would allow him to perform the fault injection to the same
inner state during the deciphering process. Hence the attack can be described
as chosen-ciphertext fault injection attack.

In this paper, we present an essential improvement of this attack and we
describe a novel approach to the differential fault analysis of Trivium. Using
this approach, we have obtained much better results in the sense of number of
fault injections needed. Where the original attack needs 43 fault injections, our
approach reveals the secret key after 3.2 fault injections in average (over 10, 000
experiments). In the best cases we have obtained the secret key after only 2 fault
injections.

The main idea behind our attack is a simple way of transforming polynomial
equations obtained during the attack into linear equations. This procedure is
based on what we call the floating description of Trivium and on some fault
propagation properties of Trivium’s inner state evolution.

Formally, we significantly extend the number of variables by denoting every
new inner state bit as a new variable, while not forgetting its connections given
by the Trivium inner state evolution. Consequently many keystream difference
equations become linear or have low degree. We use equations up to degree 4 and
we linearise them subsequently using already revealed inner state bits, which are
obtained by the use of Gauss-Jordan elimination for the linear equations.

In the beginning, we start off the equations system by the keystream equations
and the inner state bit connections and afterwards we use fault injection to obtain
more equations. After each fault injection and the following equations processing,
we search the inner state bit sequences for a time t in which the Trivium inner state
ISt would contain a sufficient number of known bits. Since shifting of the Trivium
inner state (seen as an interval of the inner state bit sequence) in time reminded us
of floating of the inner state, we call this description the floating description and
the attack the floating fault analysis. After finding such a time t, for which the
inner state ISt is known, we clock Trivium backwards until we obtain an initial
state from which we can directly read used secret key and IV.

The rest of the paper is organised as follows. In Sec. 2 we review the related
work, while Sec. 3 describes Trivium in the floating notation. In Sec. 4 we sum-
marise attack prerequisites, followed by the attack description in Sec. 5. The
paper is concluded by Sec. 6.

Floating Fault Analysis of Trivium 241

2 Related Work

As far as we known, the stream cipher Trivium has been, despite its simplicity,
secure against all non side-channel attacks. At this point, we would like to recall
some related work on Trivium as well as some results on stream cipher side-
channel analysis.

New methods of solving systems of sparse quadratic equations are applied by
Raddum to Trivium in [4]. The attack has complexity of O(2162). Maximov and
Biryukov in [5] tried to solve the system of equations given by Trivium keystream
by guessing some inner state bits, which would result in a reduction of degrees
of obtained equations. The complexity of their attack is O(c · 283.5), where c is
the time needed to solve a sparse system of linear equations. In [6], presented at
SASC 2007, Babbage pointed out different possible approaches to the analysis of
Trivium. Thuran and Kara presented a model of the Trivium initialisation part
as an 8-round function in [7]. Their linear approximation of 2-round Trivium
has bias 2−31. Differential cryptanalysis is applied to the initialisation part of
Trivium in [8]. Recently at SASC 2008, Fisher, Khazaei and Meier presented a
new method for key recovery attacks [13]. They successfully applied their attack
to Trivium with a reduced number of initialisation steps (672 out of the original
1152 steps). In the same paper they also provide evidence that the proposed
attack is not applicable on Trivium with full initialisation.

Since the presented attack is a fault analysis attack, i.e. a side-channel attack,
we would also like to mention some previous work on the side-channel analysis of
stream ciphers. An overview on passive side-channel attacks on stream ciphers
can be found in [9], while fault attacks on stream ciphers are described in [10].
Recently, authors of [12] have theoretically analysed ciphers in phase 3 of the
eSTREAM project with respect to many types of side-channel analysis. Early
this year at FSE 2008, authors of [2] have described differential fault analysis of
Trivium. They have presented an attack that requires 280 keystream bits and
in average 43 fault injections to reveal the used secret key. The authors have
also designed a simple method for fault position determination. As already men-
tioned, our attack is an extension of their work which leads to a rapid reduction
in the number of fault injections needed.

3 Trivium Description in the Floating Model

The stream cipher Trivium is a bit-oriented additive synchronous stream cipher
with 80-bit secret key and 80-bit initialisation vector (IV). Trivium (as other
stream ciphers) can be divided into two parts: the initialisation algorithm, which
turns a secret key and an initialisation vector into the inner state of Trivium,
and the keystream generation algorithm, which produces the keystream (one bit
per step).

Necessarily condition for a simple description of our attack is the use of the
following notation (first described in [3]). In this notation the cipher inner state
registers are represented by the binary sequences they produce instead of de-
scribing them as finite length NLFSRs. We will refer to this notation as the

242 M. Hojśık and B. Rudolf

floating notation or the floating description. We have chosen this name since in
this notation a Trivium inner state is an interval which is “floating” on the inner
state bit sequences as time goes on.

The stream cipher Trivium consists of 3 non-linear feedback shift registers.
The sequences produced by the first, the second and the third register will be
denoted by {xn}, {yn} and {zn} respectively. Since Trivium registers are of
lengths 93, 84 and 111 these sequences will be indexed from −93, −84 and −111
onwards. So at time t the Trivium inner state is equal to

ISt = (xt−1, . . . , xt−93, yt−1, . . . , yt−84, zt−1, . . . , zt−111).

At the beginning of the initialisation part of Trivium, an 80-bit secret key K =
(k1, . . . , k80) is used to initialise the sequence {xn}∞n=−93 so that x−i = ki, i =
1, . . . , 80 and an 80-bit initialisation vector IV = (u1, . . . , u80) is used to initialise
the sequence {yn}∞n=−84 so that y−i = ui, i = 1, . . . , 80. Finally z−109, z−110
and z−111 are set to one and all previously unset xn, yn and zn are set to zero
for all n < 0. We will refer to this state as to the initial state.

For n ≥ 0, the following recursions are used to compute new inner state bits
xn, yn and zn:1

xn = xn−69 + zn−66 + zn−111 + zn−110zn−109,

yn = yn−78 + xn−66 + xn−93 + xn−92xn−91, (1)

zn = zn−87 + yn−69 + yn−84 + yn−83yn−82.

The only difference between the initialisation part and the keystream genera-
tion part of Trivium is the keystream production function present in the latter
one, while the former consists of 1152 recursion steps. For the sake of notation
simplicity, we will denote the keystream sequence by {on}∞n=1152 (i.e. it will be
indexed from 1152 onwards). It is computed as

on = xn−66 + xn−93 + yn−69 + yn−84 + zn−66 + zn−111, n ≥ 1152. (2)

In the classical description, the cipher is represented by its 288 bit inner state
IS = (s1, . . . , s288) which is updated each cipher clock. This description can be
found e.g. in the cipher specification [1] and we will refer to this as the static
notation or static description.

In the rest of the paper we will start our investigations at some random, but
fixed time t. For simplicity, we will denote this time as time t = 0. So the inner
state at this time will be IS0 = (x−1, . . . , x−93, y−1, . . . , y−84, z−1, . . . , z−111).
(This was denoted by ISt0 = (s1, . . . , s288) by authors of [2].) From now on, by
x−1 we mean the value of xn for n = t− 1 for the fixed but unknown time t and
not the value k1 as set in the initialisation part of Trivium.

1 All additions in this paper are carried modulo 2.

Floating Fault Analysis of Trivium 243

4 Attack Prerequisites

The attack presented in this paper is a differential fault analysis attack, meaning
that an attacker has to be able to (repeatedly) insert a fault into a cipher inner
state IS0. As recently mentioned in Sect. 3, this is an arbitrary but fixed Trivium
inner state. In our case, inserting a fault means a bit flip on an unknown random
position. The inner state after the fault injection will be denoted by IS′

0.
We also assume that an attacker is able to obtain N consecutive keystream

bits after the fault injection, where in our implementation we have successfully
used N = 800. This keystream will be referred to as the faulty keystream and will
be denoted by {o′n}. Further we assume that the attacker has also access to the
first N consecutive bits of so called proper keystream, {on}, which is generated
from the proper inner state IS0.

The last assumption we make is that the attacker is able to repeat the fault
injection to the same inner state IS0 (each time inserting a fault into a new
random position). This means, that the attacker has to run Trivium more than
once with the same secret key and IV to reach the same inner state. This can
be achieved in the chosen-ciphertext scenario, assuming that the initialisation
vector is a part of the cipher input. In this case, the attacker will always use the
same cipher input (cipher text and initialisation vector) which will lead to the
same cipher inner state during the decryption. This would allow him to perform
the fault injection to the same inner state during the deciphering process.

All together, these are the prerequisites of our attack:

1. Attacker is able to obtain the first N consecutive bits of the keystream {on}
produced out of the inner state IS0.

2. Attacker is able to inject exactly one fault (a bit flip) into the inner state
IS0 into an unknown random position.

3. Attacker is able to obtain the first N consecutive bits of the keystream {o′n}
produced out of the faulty inner state IS′

0.
4. Attacker is able to repeat the fault injection into a random position of IS0

M times.

In our implementation of the attack, we have used N = 800 and the attack
reveals the secret key in average after 3.2 fault injections. During our experiments
(we have run the attack 10000 times) the attack succeeded with the probability
2% for M = 2, 78.5% for M = 3, 99.8% for M = 4 and for M = 5 the attack
always revealed the secret key.

5 Floating Fault Analysis of Trivium

The authors of [2] described a differential fault analysis of Trivium based on the
static model. In this paper we take the advantage of the floating model and we
show that this model leads to much better results.

Before describing the attack itself, let us introduce some more notation. For
each of the sequences {xn}, {yn}, {zn} and {on} we define a delta sequence

244 M. Hojśık and B. Rudolf

{δxn}, {δyn}, {δzn} and {δon} respectively as a difference between the proper
sequence (a sequence without the fault injection) and the faulty sequence (the
sequence after the fault injection). All faulty variables are marked by a prime.
Using (1), (2) and the following equation describing the difference induced by
multiplication

δ(ab) = a′b′ + ab = δa · b + a · δb + δa · δb
we obtain the following equations describing the delta sequences:

δon = δxn−66 + δxn−93 + δyn−69 + δyn−84 + δzn−66 + δzn−111 (3)
δxn = δxn−69 + δzn−66 + δzn−111 + δzn−109 · zn−110 + (4)

+ zn−109 · δzn−110 + δzn−109 · δzn−110

δyn = δyn−78 + δxn−66 + δxn−93 + δxn−91 · xn−92 + (5)
+ xn−91 · δxn−92 + δxn−91 · δxn−92

δzn = δzn−87 + δyn−69 + δyn−84 + δyn−82 · yn−83 + (6)
+ yn−82 · δyn−83 + δyn−82 · δyn−83.

According to the assumptions 1 and 3 in Sec. 4 an attacker is able to obtain the
proper keystream {on} as well as the faulty keystream {o′n}. During the attack
he will compute the delta keystream {δon} for each fault injection and express
its bits as expressions in variables {xn}, {yn} and {zn} using equations (3), (4),
(5) and (6). We will refer to this equations as the delta keystream equations.
Afterwards he will try to solve these equations.

5.1 Faults in the Floating Model and the Corresponding
Delta-Equations

We claim that using the floating notation, an attacker will obtain many more
linear and quadratic equations than with the static notation, using the same at-
tack model and having the same assumptions. Why is there a difference between
the static model and the floating model? In fact there is no difference in the ob-
tained equations - they are equivalent. The difference is in the representation, in
our viewpoint. In the static model, at time t for some t > 0, the floating model
variable xt (or yt or zt equivalently) would be expressed as a polynomial in bits
of the fixed initial state IS0 = (x−1, . . . , x−93, y−1, . . . , y−84, z−1, . . . , z−111) =
(s1, . . . , s288). Hence some of the obtained delta keystream equations which are
in fact linear in the floating variables ({xn}, {yn}, {zn}), are polynomial in the
static initial state variables ((s1, . . . , s288)). In other words, δon is in the static
model often a linear combination of nonlinear terms {δxn}, {δyn}, {δzn} which
are expressed in the variables (s1, . . . , s288). On the other hand, in the floating
model we have clearly many more variables. Instead of 288 variables of the fixed
inner state in the static model, we have 3N +288 variables in the floating model,
which gives us 2688 variables for N = 800 as we have used in our implementation
(288 initial state variables plus 3 new variables for each Trivium step). Since we
do not forget about the connections between variables, the floating model can
be seen as a useful extension of the static model.

Floating Fault Analysis of Trivium 245

Another important difference between these two models is the following: In
the static model we fix the set of variables as bits of the inner state into which
the fault injections are performed. So before the single injected fault spreads
over the inner state and produces many linear equations, the expressions for
the new inner state bits become polynomial and therefore in fact linear delta
keystream equations contain high-degree polynomials. In the floating model we
decide which inner state we would like to compute according to the obtained
equations. So we wait until the fault spreads over the inner state and only then
do we try to compute the inner state for the best possible time. More precisely,
during the attack we try to determine values of all the variables {xn}, {yn} and
{zn} and we wait until there are enough known variables in an interval of a single
inner state, regardless of the actual position of this state in time. For illustration,
in our experiments during the attack we have obtained enough equations in the
bits of inner state ISt which is reached after approximately 300 steps of Trivium,
i.e. we have obtained a Trivium inner state that appears roughly 300 steps after
the fault injection. Afterwards we clock Trivium backwards until we reach a state
ISu similar to the initial state. Then the secret key equals to (xu−1, . . . , xu−80)
and IV = (yu−1, . . . , yu−80).

In the floating model, the attack starts with the initial delta inner state
{δxn}−1

n=−93, {δyn}−1
n=−84, {δzn}−1

n=−111, where all the bits are equal to zero ex-
cept one (the bit where the fault injection occurred). So for example if the fault
was injected into xi, i ∈ {−93, . . . ,−1} (a bit of the first register), the initial
delta state would be

(δx−93, . . . , δxi−1, δxi, δxi+1, . . . , δx−1) = (0, . . . , 0, 1, 0, . . . , 0)
(δy−84, . . . , δy−1) = (0, . . . , 0)
(δz−111, . . . , δz−1) = (0, . . . , 0).

Afterwards we inductively use equations (4), (5) and (6) to express {δxn}, {δyn}
and {δzn} for n ≥ 0 as polynomials in variables {xn}, {yn}, {zn}. These are af-
terwards used to represent bits of known sequence {δon} as terms in the variables
{xn}, {yn}, {zn}, i.e. they are used to create the delta keystream equations.

Now let’s look closer on these equations. When do they contain non-linear
dependencies? From (3) it follows, that δon is a linear combination of values
{δxn}, {δyn} and {δzn}. So it will contain non-linear terms if and only if any
of these values will be non-linear. Let’s examine e.g. the case of δxn. For some
j > 0, δxj depends non-linearly on {xn}, {yn}, {zn} if and only if at least one of
the following conditions is satisfied:

1. at least one of the values δxj−69, δzj−66 or δzj−111 is non-linear in {xn},
{yn}, {zn},

2. δzj−109 or δzj−110 (or both of them) has degree at least 1 as a polynomial
in {xn}, {yn} and {zn}.

Clearly, case 1 is only a transition of a non-linearity from other terms so a new
non-linearity is created only in the case 2. As described in the above example,
the starting delta inner state is all zero except one bit and consequently there are

246 M. Hojśık and B. Rudolf

Table 1. The average number of equations after different numbers of fault injections.
FI stands for fault injection(s).

equations before/after eq. processing
degree 1 degree 2 degree 3 degree 4

Before FI 800/800 2400/2400 0 0
After 1 FI 825/992 2466/2350 35/2 57/1
After 2 FI 1017/1232 2419/2236 36/3 57/1
After 3 FI 1258/2396 2298/484 37/1 56/0
After 4 FI 2402/2685 498/6 8/0 12/0

only few non-linearity creations and transitions for small values of j. Although
afterwards both cases occur more often, we are still able to obtain low degree
equations thanks to the simple substitution we use to eliminate non-linearities
(we substitute already known variables into the higher degree equations). More-
over many variables are known directly from the delta keystream equations, since
they appear as a linear equation with only one term.

Tab. 1 shows the average number of obtained equations of degree up to four
after one, two, tree and four fault injections. Each table entry contains two
values, where the first one stands for the number of equations right after the
fault injection while the second one stands for the number of equations after
they were processed by methods described in Sect. 5.3. The average is computed
over 10000 experiments.

5.2 Fault Position Determination

During the fault injection phase of the attack, a fault (a bit flip) is injected
at a random position of the actual Trivium inner state. In order to be able
to proceed with the attack, we need to know this position. Authors of [2] have
described a very simple fault position determination technique. In this paper, we
will use their technique as described in section 5.3. of [2]. Briefly, the technique
is based on the fact that the distribution of ones in the delta keystream uniquely
determines the position of the induced fault within the inner state. After the
fault injection, an attacker computes the delta keystream {δon} and determines
the fault position (by a single table look-up) according to the distance between
the first occurrences of non-zero bits in {δon}.

This technique is deterministic and leads to the right result for all possible
fault positions, assuming that exactly one fault was injected. In the attack de-
scription, we will refer to this technique as the fault position determination().

5.3 The Equations System and Its Processing

All the equations used during the attack are in variables {xn}, {yn} and {zn}.
The corresponding system will contain equations from 3 different sources:

– The first set of equations is given by the proper keystream {on} for n =
0, . . . , N − 1. In the floating description, all keystream equations are linear

Floating Fault Analysis of Trivium 247

and have the form of Eq. (2). These are the 800 linear equations in the first
line of Tab. 1.

– The second set of equations comes from the Eq. (1) which describes the
connections between the variables {xn}, {yn} and {zn} and these are the
2400 quadratic equations in the first line of Tab. 1.

– The last set of equations are those coming from the fault injections and we
term them delta keystream equations.

During the attack we try to solve the actual equation system by the use of two
simple methods. The first one is the Gauss-Jordan elimination which we apply
to the system of obtained linear equations and we term this procedure Gauss().
The second used technique is the substitution. By the term Substitution() we
will denote a procedure which substitutes values of already known variables into
the equations of higher degree (in our implementation we use equations up to
degree 4). Since the number of revealed variables after each fault injection is
fairly high, the substitution reduces the degree of many non-linear equations.
Hereby we utilise the higher degree equations as a potential source of new linear
equations and this is the only way how we use them.

5.4 The Attack Algorithm

The attack algorithm is described by Alg. 1. We have used equations up to degree
4 and N = 800. Afterwards the attack has revealed the secret key after 3.2 fault
injections in average.

Since Eq. (3), (4), (5) and (6) are simple, we do not need any precomputations
compared to the attack from [2]. After we determine the fault position at step 10
of Alg. 1 using the function fault position determination(), we compute symbolic
delta equations (described by Eq. 3) for the actual fault position. Afterwards we
insert these equations into our equations system using the values of the actual
delta-keystream {δon} computed at step 9 of Alg. 1 as the right-hand-side.

Table 2 shows the average maximal number of known variables in a single
inner state ISt (maximum over all possible inner states, i.e. over all positions of
the inner state in time t) after 1, 2, 3, 4 and 5 fault injections as well as the
estimated probability that the attack will succeed after a given number of fault
injections. We see that the attack will succeed after 2 fault injections only with
probability 2%, while after 4 fault injections the attack had revealed the secret
key in 99.8% of all the cases.

Table 2. The average maximal number of known variables in a single inner state and
the estimated probability of success after different numbers of fault injection. Average
made over 10, 000 experiments with random key, IV and fault position.

fault injections 1 2 3 4 5
known variables in a single state 30 70.4 245.5 287.5 288
probability of success 0 0.02 0.79 0.99 1

248 M. Hojśık and B. Rudolf

Algorithm 1. Floating Fault Attack
1: get Trivium in an unknown fixed inner state IS0

2: obtain the first N consecutive bits of {on}, starting from inner state IS0

3: insert keystream equations (Eq. 2 in Sect. 3) into the eq. system
4: insert connection equations (Eq. 1 in Sect. 3) into the eq. system
5: while for all t ISt not known do
6: reset Trivium to the state IS0

7: insert a fault into IS0

8: obtain the first N consecutive bits of the faulty keystream {o′n}
9: δon ← on + o′n, n = 0, . . . , N − 1

10: e← fault position determination({δon})
11: compute delta keystream equations for e and insert them into the eq. system
12: repeat
13: do Substitution()
14: until it keeps changing the equation system
15: do Gauss()
16: if new variables obtained by Gauss() then
17: goto 12
18: end if
19: end while
20: // at this point we have a known inner state ISt

21: run Trivium backwards starting with ISt until an inner state similar to the initial
state is reached

22: read the secret key from the reached initial state

5.5 Implementation and Complexity

In the floating model, the number of variables depends on the number of Trivium
steps performed. In our implementation we have used N = 800 which gives us
2400+288 (initial state) = 2688 variables. Clearly, all obtained equations are
very sparse. However, we have used the straight-forward implementation of the
Gauss-Jordan elimination. Due to the implementation complexity, we use only
equations up to degree 4.

According to the nature of the proposed algorithm, it is indeed very hard to
do any theoretical complexity analysis. Hence we have used the average number
of procedure calls to do the following complexity estimate. The most complex
procedure used in the attack algorithm is the Gauss-Jordan elimination. We
suppose that for a m × n matrix it has the complexity of O(nm2) operations.
Since the number of columns equals 2688 and if we suppose that the number
of linear equations is in average lower than 1024, we gain the running time
of roughly 211.4 · 220 = 231.4 simple operations per an average Gauss-Jordan
elimination used in the attack. We have performed 10000 runs of the attack and
in the average one attack makes 80 .= 26.3 calls of the Gauss() procedure. All
together we can retrieve the secret key in the time of 231.4 · 26.3 = 237.7 simple
operations. Since the average running time of the attack was only 40.3 seconds
on our desktop computer with AMD Athlon 64 X2 Dual-Core 3800+ processor,
the complexity estimate can be seen as the upper limit.

Floating Fault Analysis of Trivium 249

5.6 Effort for Further Improvements

During our experiments, we have tried to stop the attack at the point when we
have found an inner state ISu (for any u) with at least 288−G known bits for
a given G. Then we could use the brute force to determine the rest of the inner
state bits. We have tried G = 20 and G = 30 but in the average over 10000
experiments, these attacks led to very similar results.

Another way to improve our attack could be the trick described in [5]. Namely,
we tried to do an educated guess of up to 30 variables in the following way: after
the second fault injection when we have already gathered many high-degree equa-
tions, we have guessed those variables which maximised the number of higher-
degree terms eliminated by this guess. In this way we obtain not only 30 new
known variables, but also more low-degree equations. However experiments have
shown that the contribution of this smart guess to the final number of fault
injections needed is in fact neglectable (even if applied on different places of the
attack algorithm).

6 Conclusion

The paper describes a new approach to the fault analysis of Trivium. We have
taken advantage of the so called floating model and have proposed and imple-
mented an attack which can reveal the secret key after 3.2 fault injections in
average using 800 keystream bits. In the best cases, we were able to reconstruct
the secret key only after 2 fault injections.

Our results show how important it is for cryptanalysis to choose the right
model for cipher representation.

References

1. De Cannière, C., Preneel, B.: Trivium: A Stream Cipher Construction Inspired
by Block Cipher Design Principles. eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/30 (2005), http://www.ecrypt.eu.org/stream

2. Hojsik, M., Rudolf, B.: Differential Fault Analysis of Trivium. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 158–172. Springer, Heidelberg (2008)

3. ECRYPT discussion forum,
http://www.ecrypt.eu.org/stream/phorum/read.php?1,448

4. Raddum, H.: Cryptanalytic Results on Trivium. eSTREAM, ECRYPT Stream
Cipher Project, Report 2006/039 (2006), http://www.ecrypt.eu.org/stream

5. Maximov, A., Biryukov, A.: Two Trivial Attacks on Trivium. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2007/006 (2007),
http://www.ecrypt.eu.org/stream

6. Babbage, S.: Some Thoughts on Trivium. eSTREAM, ECRYPT Stream Cipher
Project, Report 2007/007 (2007), http://www.ecrypt.eu.org/stream

7. Turan, M.S., Kara, O.: Linear Approximations for 2-round Trivium. eSTREAM,
ECRYPT Stream Cipher Project, Report 2007/008 (2007),
http://www.ecrypt.eu.org/stream

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream/phorum/read.php?1,448
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

250 M. Hojśık and B. Rudolf

8. Biham, E., Dunkelman, O.: Differential Cryptanalysis in Stream Ciphers. COSIC
internal report (2007)

9. Rechberger, Ch., Oswald, E.: Stream Ciphers and Side-Channel Analysis. In: SASC
2004 - The State of the Art of Stream Ciphers, Workshop Record, pp. 320–326
(2004), http://www.ecrypt.eu.org/stream

10. Hoch, J.J., Shamir, A.: Fault Analysis of Stream Ciphers. In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg (2004)

11. Biham, E., Granboulan, L., Nguyen, P.: Impossible Fault Analysis of RC4 and Dif-
ferential Fault Analysis of RC4. In: SASC 2004 - The State of the Art of Stream Ci-
phers, Workshop Record, pp. 147–155 (2004), http://www.ecrypt.eu.org/stream

12. Gierlichs, B., et al.: Susceptibility of eSTREAM Candidates towards Side Channel
Analysis. In: SASC 2008 - The State of the Art of Stream Ciphers, Workshop
Record, pp. 123–150 (2008), http://www.ecrypt.eu.org/stream

13. Fisher, S., Khazaei, S., Meier, W.: Chosen IV Statistical Analysis for key Recovery
Attacks on Stream Cipher. In: SASC 2008 - The State of the Art of Stream Ciphers,
Workshop Record, pp. 33–41 (2008), http://www.ecrypt.eu.org/stream

14. Hwang, D., et al.: Comparison of FPGA - Targeted Hardware Implementations of
eSTREAM Stream Cipher Candidates. In: SASC 2008 - The State of the Art of
Stream Ciphers, Workshop Record, pp. 151–162 (2008),
http://www.ecrypt.eu.org/stream

15. Good, T., Benaissa, M.: Hardware Performance of eSTREAM Phase-III Stream
Cipher Candidates. In: SASC 2008 - The State of the Art of Stream Ciphers,
Workshop Record, pp. 163–174 (2008), http://www.ecrypt.eu.org/stream

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

Algebraic Methods in Side-Channel Collision
Attacks and Practical Collision Detection

Andrey Bogdanov1, Ilya Kizhvatov2, and Andrey Pyshkin3

1 Horst Görtz Institute for Information Security
Ruhr-University Bochum, Germany

abogdanov@crypto.rub.de
2 University of Luxembourg, Luxembourg

ilya.kizhvatov@uni.lu
3 Technical University Darmstadt, Germany
pychkine@cdc.informatik.tu-darmstadt.de

Abstract. This paper presents algebraic collision attacks, a new power-
ful cryptanalytic method based on side-channel leakage which allows for
low measurement counts needed for a successful key recovery in case of
AES. As opposed to many other side-channel attacks, these techniques
are essentially based on the internal structure of the attacked crypto-
graphic algorithm, namely, on the algebraic properties of AES. More-
over, we derived the probability distributions of Euclidean distance for
collisions and non-collisions. On this basis, a statistical framework for
finding the instances of side-channel traces leaking most key information
in collision attacks is proposed.

Additionally to these theoretical findings, the paper also contains a
practical evaluation of these side-channel collision attacks for a real-world
microcontroller platform similar to many smart card ICs. To our best
knowledge, this is the first real-world study of collision attacks based
on generalized internal collisions. We also combined our methods with
ternary voting [1] which is a recent multiple-differential collision detec-
tion technique using profiling, where neither plaintexts, ciphertexts nor
keys have to be known in the profiling stage.

Keywords: Side-channel attacks, collision attacks, algebraic cryptana-
lysis, multiple-differential collision attacks, ternary voting, AES, DPA.

1 Introduction

Motivation. The motivation of this paper is to develop a framework minimizing
the number of online measurements needed for a successful key recovery in a real-
world noisy environment. This is to a certain extent equivalent to extracting a
maximum amount of key information from the given side-channel signal, which
is the central question of side-channel cryptanalysis. In practice, this setting is
important in such cases where the attacker has very restricted access to the
device due to organizational policies or where only few cryptographic operations
with the same key are allowed, which is used as a side-channel countermeasure

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 251–265, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

252 A. Bogdanov, I. Kizhvatov, and A. Pyshkin

in some real-world systems. An independent line of motivation we pursue is
to come up with an efficient and practical alternative to such well-known side-
channel techniques as differential power analysis (DPA) [2] and template attacks
[3], [4] which would be free of their main natural limitations: Dependency on a
certain leakage model for DPA and the necessity of thoroughly characterizing
the attacked device for template attacks.

Side-channel collision attacks are a well-suited base for the solution of these
problems due to the inherently low numbers of needed measurements, the ab-
sence of any concrete leakage model, and the possibility to build collision tem-
plates without detailed knowledge of the target.

Collision attacks. Basic side-channel collision attacks [5] were improved in [6]
by introducing the notion of generalized collisions that occur if two S-boxes at
some arbitrary positions of some arbitrary rounds process an equal byte value
within several runs. However, [6] treats only the linear collisions of AES which
are generalized collisions that occur in the first AES round only. Moreover, the
results in [6] as well as those in [5] assume that the collision detection is absolutely
reliable, while there are significant error probabilities in real-world scenarios.
Though this problem was approached in [1] by introducing multiple-differential
collision detection (binary and ternary voting), a sound real-world evaluation of
these methods is still lacking.

Our contribution. Additionally to linear collisions, we consider nonlinear col-
lisions that are defined as generalized collisions comprising several rounds. They
deliver extra information contained in further AES rounds. Each such collision
can be considered as a nonlinear equation over a finite field. The set of all de-
tected collisions corresponds to a system of nonlinear equations with respect to
the key, which can be solved using techniques closely related to the algebraic
cryptanalysis of AES with a reduced number of rounds which are referred to as
algebraic collision-based key recovery.

For collision detection, the Euclidean distance is used. We obtain probability
distributions of this statistic in the univariate Gaussian noise model. We show
that for large numbers of points in the side-channel trace these two Euclidean
distances can be approximated by normal distributions with different parame-
ters. This allows us to define a statistical metric for the time instants of the trace
leaking most information for collision detection. It turns out that these points
are quite different from those leaking key data in standard DPA.

Combining these improvements, we achieve a considerable reduction of the
number of online measurements needed for a successful key recovery. We imple-
mented the attacks for an Atmel AVR ATMega16 microcontroller. The practical
results can be found in Table 1. In a version of the attack, we additionally use
collisions from ternary voting, a multiple-differential collision detection tech-
nique from [1]. Neither plaintexts, ciphertexts nor keys have to be known in the
profiling stage.

This indicates that the algebraic collision attacks on AES without profiling
are superior to standard CPA in terms of number of measurements needed.

Algebraic Methods in Side-Channel Collision Attacks 253

Table 1. Summary of results: Hamming-distance based CPA, basic collision attack (on
our ATmega16 AES implementation) without profiling and stochastic methods with
profiling (on an ATM163 AES implementation [4]) vs. collision attacks based on FL-
collisions with and without profiling for Coffline ≤ 240 (P – success probability, Conline –
number of online measurements, Cprofiling – number of profiling measurements, Coffline

– number of offline operations for key recovery)

P Conline Cprofiling

HD-based CPA 0.8 61 0
Basic collision attack [5] 0.85 300 0
Stochastic methods [4] for ATM163 0.82 10 200
FL-collisions, this paper 0.76 16 0
FL-collisions, this paper 0.72 12 625

Rather surprisingly, the efficiency of our collision techniques without profiling
is comparable to the stochastic methods [4] with profiling (one of best known
template-based attacks) for low numbers of profiling curves. Moreover, if profil-
ing is allowed for collision attacks, the number of online measurements can be
further reduced. Note that all the implemented collision techniques (both with
and without profiling) do use the knowledge of the time instances leaking most
information.

2 Preliminaries

2.1 Basic Notation

All collision attacks have two stages: an online stage, where measurements on the
target device implementing the attacked cryptographic algorithm are performed,
and an offline stage, where the cryptographic key is obtained from the traces
acquired in the online stage. Additionally, a collision attack can be enhanced
to have a profiling stage, where some profiling traces are obtained from some
implementation of the attacked cryptographic algorithm.

In this paper we perform our collision attacks at the example of AES. We use
the following notation to represent its variables. K = {kj}16

j=1, kj ∈ GF(28) is the
16-byte user-supplied key (the initial AES subkey). X = {xj}16

j=1, Y = {yj}16
j=1

and Z = {zj}16
j=1, xj , yj, zj ∈ GF(28) are the first, next to the last and last 16-

byte AES subkeys, respectively. AES plaintexts are denoted by P i = {pi
j}16

j=1,
pi

j ∈ GF(28) and ciphertexts by Ci = {ci
j}16

j=1, ci
j ∈ GF (28), where i = 1, 2, . . .

is the number of AES execution.
Collision-based key recovery methods for AES are mainly parametrized by

the number γ of random plaintexts and/or ciphertexts needed to obtain the
cryptographic key with success probability P . In our collision attacks, γ can be
chosen between 4 and 20 in the majority of cases. We are interested in success
probabilities P ≥ 0.5.

254 A. Bogdanov, I. Kizhvatov, and A. Pyshkin

2.2 Linear Collision-Based Key Recovery

Given a linear collision (within the first round of AES), one obtains a linear
equation with respect to the key over GF(28) of the form

S(pi1
j1
⊕ kj1) = S(pi2

j2
⊕ kj2), or kj1 ⊕ kj2 = pi1

j1
⊕ pi2

j2
= ∆j1,j2 for j1 �= j2.

In the example of Figure 1, one has the following equation: k4⊕k11 = p1
4⊕p2

11 =
∆4,11. S-boxes where collisions occurred (active S-boxes) are marked by the
numbers of collisions they account for. The input byte pi

j is characterized by its
position j ∈ {1, . . . , 16} within the plaintext block and the number i = 1, 2, . . .
of the plaintext block it belongs to.

If D collisions have been detected, they can be interpreted as a system of
linear binomial equations over GF(28):⎧⎨⎩

kj1 ⊕ kj2 = ∆j1,j2

. . .
kj2D−1 ⊕ kj2D = ∆j2D−1,j2D

This system cannot have the full rank due to the binomial form of its equations.
Moreover, for small numbers of inputs to AES the system is not connected and
it can be divided into a set of h0 smaller independent (with disjunct variables)
connected subsystems with respect to the parts of the key. Each subsystem
has one free variable. Let h1 be the number of all missing variables, and h =
h0 + h1. Then the system has 28h solutions. That is, Coffline = 28h guesses
have to be performed, which is the offline complexity of the attack. Each key
hypothesis is then tested using a known plaintext-ciphertext pair to rule out
incorrect candidates. Coffline quickly becomes feasible as the number of distinct
inputs grows. The probability that Coffline ≤ 240 (h ≤ 5) is about 0.85 for γ = 6,
if all collisions are detected. Note that the question of reliable collision detection
was not treated in [6].

2.3 Direct Binary Comparison Using Side-Channel Signal

There are ways of deciding if two S-boxes accept equal inputs using side-channel
information obtained from the implementation of the attacked cryptographic

1 1

AddRoundKey

SubBytes

aa

bb

p1
4 p2

11

Fig. 1. A linear collision for some pair of runs

Algebraic Methods in Side-Channel Collision Attacks 255

algorithm. For instance, typical side channels are the power consumption of
devices as well as their electromagnetic radiation, which manifest some data and
key dependency in many cases.

Given two side-channel traces τ1 = (τ1,1, . . . , τ1,l) ∈ Rl, τ2 = (τ2,1, . . . , τ2,l) ∈
Rl, respectively corresponding to some pair of S-box executions with inputs a1
and a2, it has to be decided whether a1 = a2 for collision detection. In this paper
we use the Euclidean distance based binary comparison test T (as in [5] and [1])
for this purpose:

T (τ1, τ2) =
{

0 (no collision), if H(τ1, τ2) < W
1 (collision), if H(τ1, τ2) ≥ W,

where W is a decision threshold and H is the following statistic:

H(τ1, τ2) = 1/
l∑

j=1

(τ1,j − τ2,j)2.

Test T is characterized by the following type I and II error probabilities1:

α = Pr{T (τ1, τ2) = 0|a1 = a2}, β = Pr{T (τ1, τ2) = 1|a1 �= a2}.

2.4 Ternary Voting: Indirect Comparison of Traces Using Profiling

As already mentioned in Subsection 2.1, collision detection can be made more
efficient if profiling is allowed. One approach to such template-based collision
detection is the ternary voting proposed in [1]: Test T on two target traces τ1
and τ2 for inputs a1 and a2 can be amplified by using further N reference traces
{πi}N

i=1, πi = (πi,1, . . . , πi,l) ∈ Rl, which correspond to some random unknown
inputs bi ∈ GF(28) and have been acquired on a similar implementation prior
to the online stage. The main idea of ternary voting is to indirectly compare τ1
and τ2 through the pool of reference traces {πi}N

i=1. The ternary voting test can
be defined as follows:

V (τ1, τ2) =
{

0 (no collision), if G(τ1, τ2) < U
1 (collision), if G(τ1, τ2) ≥ U,

where G(τ1, τ2) =
∑N

i=1 F (τ1, τ2, πi) with F (τ1, τ2, πi) = T (τ1, πi) · T (τ2, πi), U
is some decision threshold, and T is the binary comparison test as defined in
Subsection 2.3. The key observation is that the distributions of G(τ1, τ2) for
a1 = a2 and for a1 �= a2 will be different. Typically, for sufficiently large N ’s
G(τ1, τ2) will be higher for a1 = a2 than for a1 �= a2. To decide if there has
been a collision, the attacker needs to statistically distinguish between these
two distributions. We use ternary voting to amplify direct binary comparison,
combining the sets of collisions detected by both methods, see Section 5.2.
1 Note that α and β strongly depend on the statistical properties of the traces (among

many other factors, on the noise amplitude) and the choice of W .

256 A. Bogdanov, I. Kizhvatov, and A. Pyshkin

3 Algebraic Collision-Based Key Recovery

In this section we identify (Subsection 3.1) types of nonlinear generalized col-
lisions enabling efficient algebraic representation that give rise to efficient key
recovery. Then the corresponding systems of nonlinear equations are constructed
(Subsection 3.2) and solved (Subsection 3.3). We first assume that all collisions
are detected correctly. We deal with collision detection errors in Subsection 3.4
and Section 4.

3.1 Nonlinear Collisions

FS-Collisions. Generalized collisions in the first two AES rounds occurring
between bytes of the first two rounds are called FS-collisions. If input bytes ai1

j1

and ai2
j2

of two S-boxes collide, one has the simple linear equation over GF (28):

ai1
j1
⊕ ai2

j2
= 0.

If ai
j lies in the S-box layer of the first round, then αi

j = kj ⊕ pi
j, for some i, j.

Otherwise, one has

ai
j = xj ⊕m(j−1) div 4 · bi

(j−1) mod 4+1 ⊕mj div 4 · bi
j mod 4+5⊕

m(j+1) div 4 · bi
(j+1) mod 4+9 ⊕m(j+2) div 4 · bi

(j+2) mod 4+13,

where m = (m0, m1, m2, m3) = (02, 03, 01, 01)2 and bi
j = S(kj ⊕ pi

j).
We distinguish between the following three types of FS-collisions: linear col-

lisions in the first round, nonlinear collisions between the first two rounds, and
nonlinear collisions within the second round. These three collision types are il-
lustrated in Figure 2. Collision 1 occurs between two bytes of the first round,
linearly binding k1 and k13. Collision 2 occurs between the S-box number 7 of
the second round and the S-box number 1 of the first round. It binds 6 key bytes:
k1, k3, k8, k9, k14, and k7. Collision 3 algebraically connects two MixColumn
expressions on 8 key bytes after the S-box layer with two bytes of the second
subkey in a linear manner. The algebraic expressions in this example are the
following:

1 : k1 ⊕ p1
1 = k13 ⊕ p1

13
2 : k1 ⊕ p2

1 = S−1(s2
7) =

x7 ⊕ 01 · S(k2 ⊕ p2
2)⊕ 02 · S(k8 ⊕ p2

8)⊕ 03 · S(k9 ⊕ p2
9)⊕ 01 · S(k14 ⊕ p2

14)
3 : s3

7 = s3
16,

k7 ⊕ 01 · S(k3 ⊕ p3
3)⊕ 02 · S(k8 ⊕ p3

8)⊕ 03 · S(k9 ⊕ p3
9)⊕ 01 · S(k14 ⊕ p3

14)=
x16 ⊕ 03 · S(k4 ⊕ p3

4)⊕ 01 · S(k5 ⊕ p3
5)⊕ 01 · S(k10 ⊕ p3

10)⊕ 02 · S(k15⊕p3
15)

Note that there are also mirrored collisions occurring between the S-boxes of the
last round (number 10) and the round next to the last one (number 9). Such
collisions are called LN-collisions.
2 Here and below any byte uv = u · 16 + v =

∑7
i=0 di · 2i is interpreted as the element

of GF (28) = GF (2)[ω] using a polynomial representation
∑7

i=0 di · ωi, where ω8 +
ω4 + ω3 + ω + 1 = 0 holds.

Algebraic Methods in Side-Channel Collision Attacks 257

R

1,2 1

2,3 3

AddRoundKey

AddRoundKey

SubBytes

SubBytes

ShiftRows

MixColumnMixColumnMixColumnMixColumn

p1
1

p2
1

p2
3

p3
3 p3

4 p3
5

p2
8

p3
8

p2
9

p3
9 p3

10 p1
13

p2
14

p3
14 p3

15

s2
7

s3
7

s3
16

Fig. 2. FS-collisions

1,3

1,2

3

2

AddRoundKey

AddRoundKey

AddRoundKey

SubBytes

SubBytes

ShiftRows

. . .
a1, a2

b2

p1
2, p

3
2 p3

13

c2
6 c1

8, c
2
8

Fig. 3. FL-collisions

FL-Collisions. FL-collisions are generalized collisions between bytes of the first
and last rounds. If plaintexts as well as ciphertexts are known, an FL-collision
leads to a simple nonlinear equation. Linear collisions within the first round as
well as those within the last round can be additionally used.

Figure 3 illustrates these three types of collisions. Collision 1 occurs between
the 2nd byte of the first round and the 5th byte of the last round for some input
and output with p1

2 and c1
8 (note that the bytes do not have to belong to the same

input/output pair). Input y2⊕a1 to S-box 5 in the last round can be expressed as

258 A. Bogdanov, I. Kizhvatov, and A. Pyshkin

Table 2. Solving equation systems for FS-collisions over GF (2)

Inputs, γ 5 5 4 4
Success probability π 0.425 0.932 0.042 0.397
Offline complexity (time), s 142.8 7235.8 71.5 6456.0
Memory limit, MB 500 500 500 500
Number of variables 896 896 768 768
Linear/quadratic equations 96+8D/3276 96+8D/3276 96+8D/2652 96+8D/2652

S−1(z8⊕ c1
8) using the corresponding ciphertext and last subkey bytes. Collision

2 of Figure 3 is a linear collision within the last AES round. Collision 3 is a
standard linear collision within the first AES round. The following equations
result from these collisions:

1 : k2 ⊕ p1
2 = y5 ⊕ a1 = S−1(z8 ⊕ c1

8), S(k2 ⊕ p1
2) = z8 ⊕ c1

8
2 : y5 ⊕ a2 = y7 ⊕ b2, z8 ⊕ c2

8 = z6 ⊕ c2
6

3 : k2 ⊕ p3
2 = k13 ⊕ p3

13.

3.2 Constructing Systems of Equations for FS- and FL-Collisions

Equations for FS-collisions. The application of the Faugère F4 algorithm to
a system of equations constructed in Subsection 3.1 for FS-collisions gives results
that are superior to the linear collision attack and are summarized in Table 2.

The system of nonlinear equations is considered over GF(2). For γ inputs
there are 128 variables of the first subkey K, 128 variables of the second subkey
X and 128 · γ intermediate variables for the output bits of the first round S-box
layer. The collision-independent part of the system consists of S-box equations
for the first round and linear equations for the key schedule. Since the AES S-box
can be implicitly expressed as 39 equations of degree 2 [7], we have 39 · 16 · γ
quadratic equations over GF(2) connecting the inputs and outputs of the first
round S-boxes, and 4 · 39 = 156 quadratic and 12 · 8 = 96 linear equations
connecting K and X using the key schedule relations. Each of the three types of
FS-collisions adds 8 linear equations to the system, resulting in 8 ·D equations
if D collisions occurred.

Equations for FL-collisions. FL-collisions can be also obviously expressed
as a system of quadratic equations over GF (2). Now we show how to derive a
system of quadratic equations over GF (28) for these collisions. One way is to use
the BES expression [7]. However one would have 8 variables per one key byte in
this case. We describe a simpler system, which has only 32 variables.

It is clear that linear collisions in the first or the last round can be interpreted
as linear equations over GF (28). Let us consider a nonlinear FL-collision of type 1
(see example above). Its algebraic expression is given by S(kj1 ⊕ pi1

j1
) = zj2 ⊕ ci2

j2
for some j1, j2 ∈ {1, . . . , 16}, i1, i2 = 1, 2, . . . Recall that the AES S-box is the
composition of the multiplicative inverse in the finite field GF (28), the GF (2)-
linear mapping, and the XOR-addition of the constant 63. The GF (2)-linear

Algebraic Methods in Side-Channel Collision Attacks 259

mapping is invertible, and its inverse is given by the following polynomial over
GF (28):

f(x) = 6e · x27
+ db · x26

+ 59 · x25
+ 78 · x24

+ 5a · x23

+7f · x22
+ fe · x2 + 05 · x.

Hence we have

(kj1 ⊕ pi1
j1

)−1 = f(zj2)⊕ ci2
j2
⊕ 63) = f(zj2)⊕ f(ci2

j2
⊕ 63).

If we replace f(zj2) by a new variable uj2 , we obtain the quadratic equation

(kj1 ⊕ pi1
j1

)(uj2 ⊕ f(ci2
j2
⊕ 63)) = 1,

which holds with probability 255
256 . The following proposition follows:

Proposition 1. Solutions to the equation S(kj1⊕pi1
j1

) = zj2⊕ci2
j2

coincides with
solutions to the equation

(kj1 ⊕ pi1
j1

)(uj2 ⊕ f(ci2
j2
⊕ 63)) = 1

under the change of variables uj2 = f(zj2) with a probability of 255
256 .

Moreover, if zj2 ⊕ zj3 = ∆j2,j3 = ci2
j2
⊕ ci3

j3
, then we have

f(zj2)⊕ f(zj3) = uj2 ⊕ uj3 = f(∆j2,j3).

Thus, we derive for FL-collisions the system S of quadratic equations over
GF (28) in 32 variables K = {kj , uj}1≤j≤16. Furthermore, each equation of the
resulting system has only two variables. We call such equations binomial.

We say that a subset of variables K′ ⊂ K is connected, if for any non-trivial
partition of K′ = A ∪ B there is an equation in S in two variable v ∈ A and
w ∈ B. Thus K can be devided into disjoint subsets Ki with respect to S, where
Ki is either connected or singleton. Each Ki corresponds to an unique subsystem
Si, and we call (Ki, Si) a chain.

3.3 Solving Systems for FS- and FL-Collisions

Solving equations for FS-collisions. The system of nonlinear equations for
FS-collisions is solved in the following way. First the system is passed to the
F4 algorithm without modifications. If it is not solvable, one guesses the largest
connected linear component as in linear collision-based recovery (that is, 8 bits
per connected component, see Subsection 2.2), adds the corresponding linear
equation to the system and tries to solve the system again. The memory limit
for the Magma program was set to 500 MB. It can be seen from Table 2 that for
5 inputs most (> 93%) instances of the FS-system can be solved within several
hours on a PC. For 4 inputs, less systems are solvable (about 40%) within approx.
2 hours on a standard PC under Linux.

260 A. Bogdanov, I. Kizhvatov, and A. Pyshkin

Solving equations for FL-collisions. FL-collisions lead, as a rule, to better
results. Each equation binds only two GF (28)-variables, since one deals with
binomial equations introduced in Subsection 3.2 for FL-collisions. There are 32
variables K over GF (28). The algebraic relations on these variables are much
simpler, since one has both plaintext and ciphertext bytes (more information
related to the detected collisions).

Moreover, for the system we have a set of independent chains. Let (Ki, Si)
be a chain, and v ∈ K′. Since K′ is connected, there exists a relation between v
and any other variable of K′. It is not hard to prove that this relation can be
expressed as linear or quadratic equation in two variables.Further, some chain
can have a non-linear equation such that the corresponding variables still be
connected also without this equation. In this case we call this chain a cycle. For
any cycle the system has at most two solutions. Thus, there are often nonlinear
subsystems solvable independently (see the example below).

On average, there are about 1.02 independently solvable subsystems covering
30.08 out of 32 GF (28)-variables for γ = 5 inputs and 0.99 cycles covering
20.08 out of 32 GF (28)-variables for γ = 4 inputs. Statistically there are 43.58
collisions for γ = 5 inputs and 29.66 collisions for γ = 4 inputs.

Table 3 contains the results for applying the F4 algorithm to FL-systems of
nonlinear equations averaged over 10000 samples. After resolving the nonlinear
subsystems using F4, as for FS-collisions, we guess variables defining the re-
maining bytes in a way similar to the linear key-recovery. With Coffline ≤ 240,
practically all FL-systems are solvable for 5 inputs, an FL-system being solvable
with probability 0.85 for γ = 4 inputs.

3.4 Key Recovery Robust to Type I Collision Detection Errors

Both algebraic and linear collision-based key recovery methods can be made
tolerant to non-zero type I error probabilities of collision detection: A non-zero
value of the type I collision detection error probability α is equivalent to omitting
some collisions. If the number of inputs γ is somewhat increased, this is easily
tolerated by the methods, since the number of true (apriori) collisions grows
quadratically with the increase of the number of inputs.

Under the assumption that the type II error probability β is negligibly low,
we performed this trade-off between α, γ and success probability P for FS-, FL-
and linear collisions. The results can be found in Figure 4 and show that the
FL-collision based method is superior to FS- and linear collision based methods

Table 3. Solving equation systems over GF (28) for FL-collisions

Inputs, γ 5 4
Success probability π 1.00 0.85
Offline complexity (operations) ≤ 240 ≤ 240

Memory limit, MB 500 500
Number of variables 32 32
Average number of equations 43.58 29.66

Algebraic Methods in Side-Channel Collision Attacks 261

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ααα

PPP

γ = 4 γ = 5

γ = 5

γ = 5

γ = 6γ = 6

γ = 7γ = 8 γ = 9

γ = 17γ = 17γ = 17

FS-collisions FL-collisions Linear collisions

Fig. 4. Success probability P against type I error probability α in FS-, FL- and linear
collision-based key recovery for different numbers γ of random inputs

even in the presence of strong noise. For example, while type I error probabilities
up to α = 0.65 are well tolerated with only γ = 7 inputs for FL-collisions, one
needs at least γ = 8 or γ = 9 inputs to achieve a comparable tolerance level for
FS- and linear collisions, respectively.

4 Towards Reliable Collision Detection in Practice

Probability distribution of Euclidean distance. Given two traces τ1 =
(τ1,1, . . . , τ1,l) ∈ Rl and τ2 = (τ2,1, . . . , τ2,l) ∈ Rl, we assume that each point τi,j

can be statistically described as τi,j = si,j + ri,j , where si,j is signal constant
(without noise) for the given time point i as well as some fixed input to the
S-box, and ri,j is Gaussian noise due to univariate normal distribution3 with
mean 0 and some variance σ2 remaining the same for all time instances in our
rather rough model. Let τ1 and τ2 correspond to some S-box inputs a1 and a2.

If a1 = a2, the corresponding deterministic signals are equal (that is, s1,j =
s2,j for all j’s) and one has:

1/H(τ1, τ2)a1=a2 =
l∑

j=1

(τ1,j − τ2,j)
2 =

l∑
j=1

ξ2
j = 2σ2

l∑
j=1

η2
j ,

where ξj = r1,j − r2,j , ξj ∼ N
(
0, 2σ2

)
and ηj ∼ N (0, 1). That is, statistic

1/H(τ1, τ2)a1=a2 follows the chi-square distribution with l degrees of freedom up
to the coefficient 2σ2. As the chi-square distribution is approximated by normal
distribution for high degrees of freedom, one has the following

3 The real measured power consumption is often due to the generic multivariate normal
distribution. However, almost all entries of the corresponding covariance matrix are
close to zero. Thus, the model with independent multivariate normal distribution
seems to be quite realistic.

262 A. Bogdanov, I. Kizhvatov, and A. Pyshkin

Proposition 2. Statistic 1/H(τ1, τ2)a1=a2 =
∑l

j=1 (τ1,j − τ2,j)
2 for

τi = (τi,1, . . . , τi,l) ∈ Rl with τi,j ∼ N
(
si,j , σ

2
)

can be approximated by nor-
mal distribution N (2σ2l, 8σ4l) for sufficiently large l’s.

Alternatively, if a1 �= a2, one has

1/H(τ1, τ2)a1 �=a2 =
l∑

j=1

(τ1,j − τ2,j)
2 =

l∑
j=1

(
δ
(1,2)
j + ξj

)2
= 2σ2

l∑
j=1

ν2
j ,

where δ
(1,2)
j = τ1,j − τ2,j , ξj = r1,j − r2,j , ξj ∼ N

(
0, 2σ2

)
and

νj ∼ N
(
δ
(1,2)
j /

√
2σ, 1

)
. That is, statistic 1/H(τ1, τ2)a1 �=a2 follows the noncentral

chi-square distribution with l degrees of freedom and λ =
∑l

j=1

(
δ
(1,2)
j /

√
2σ

)2

up to the coefficient 2σ2. Again, we have an approximation using

Proposition 3. Statistic 1/H(τ1, τ2)a1 �=a2 =
∑l

j=1 (τ1,j − τ2,j)
2 for

τi = (τi,1, . . . , τi,l) ∈ Rl with τi,j ∼ N
(
si,j , σ

2
)

can be approximated by nor-

mal distribution N
(
2σ2(l + λ), 8σ4(l + 2λ)

)
with λ =

∑l
j=1

(
δ
(1,2)
j /

√
2σ

)2
for

sufficiently large l’s.

Selection of most informative trace points. In the direct binary com-
parison, we try to distinguish between the distributions 1/H(τ1, τ2)a1 �=a2 and
1/H(τ1, τ2)a1=a2 . As described above these statistics approximately follow nor-
mal distribution for large numbers of trace points. That is, to efficiently distin-
guish between these two statistics it is crucial to decrease their variances while
keeping the difference of their means high. For this purpose, to increase the suc-
cess probability of the Euclidean distance test, we propose to discard points of
traces with small minimal contribution to the difference of means.

To illustrate this method of point selection, we assume for the moment that
δ
(1,2)
j = 0 for j > l/2 and δ

(1,2)
j �= 0 for j ≤ l/2 with l even, that is, the

second half of the trace does not contain any data dependent information. Then
we can discard the second halves of the both traces τ1 and τ2 in the direct
binary comparison function and compute two related statistics on the rest of
the points:

1/H ′(τ1, τ2)a1=a2 =
l/2∑
j=1

(τ1,j − τ2,j)2, 1/H ′(τ1, τ2)a1 �=a2 =
l/2∑
j=1

(τ1,j − τ2,j)2.

This will adjust the means and variances of the approximating normal distri-
butions: N

(
σ2l, 4σ4l

)
and N

(
2σ2(l/2 + λ), 8σ4(l/2 + 2λ)

)
, respectively. Note

that the difference of means remains unaffected and equal to 2σ2λ. At the same
time both variances are reduced, one of them by factor 2, which allows one to
distinguish between these two distributions more efficiently and, thus, to detect
collisions more reliably.

Algebraic Methods in Side-Channel Collision Attacks 263

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

var(si,j)
min δ

(i1,i2)
j for ai1 �= ai2

j

N
or

m
al

iz
ed

va
lu

es

clock cycle 1 clock cycle 2

Fig. 5. Informative points for collision detection and DPA

More generally speaking, for AES we have to reliably distinguish between

inputs in each (ai1 , ai2) of the
(

256
2

)
pairs of byte values, ai1 , ai2 ∈ GF(28).

Thus, the most informative points j of the traces are those with maximal mini-
mums of δ

(i1,i2)
j over all pairs of different inputs, that is, points j with maximal

values of
min

ai1 �=ai2

δ
(i1,i2)
j .

We estimated these values for all time instances j of our AES implementation
and compared this to the signal variance in the same time points, var(si,j), ai ∈
GF(28), which is known to be a good indicator of the points leaking information
in DPA. This comparison is represented in Figure 5 for two clock cycles of our
8-bit table look-up operation.

5 Experimental Validation

5.1 AES Implementation and Measurement Equipment

We performed our attacks for a typical AES implementation on the Atmel AT-
mega16 microcontroller, an RISC microcontroller from the 8-bit AVR family
with a Harvard architecture. 8-bit AVR microcontrollers are widely used in em-
bedded devices. To run a collision attack, the attacker has to know when the AES
S-boxes are executed. So we measured the power consumption of the table look-
ups corresponding to the relevant S-box applications. These include instances in
SubBytes, ShiftRows, and MixColumns operations.

The microcontroller was clocked at 3.68 MHz and supplied with an operating
voltage of 5V from a standard laboratory power source. The variations of the
power consumption were observed on a shunt resistor of 5.6 Ohm inserted into
the ground line of the microcontroller. The measurements were performed with
a LeCroy WaveRunner 104MXi DSO equipped with ZS1000 active probe. The
DSO has 8-bit resolution and 1 GHz input bandwidth (with the specified probe).
The acquisitions were performed at the maximum sampling rate of 10 GS/s

264 A. Bogdanov, I. Kizhvatov, and A. Pyshkin

2 3 4 5
20

30

40

50

60

70

2 3 4
20

30

40

50

60

70

3 4 5
20

30

40

50

60

70

2 2.5 3 3.5 4
10

20

30

40

50

60

70

tt

t t

γ
·t

/
P

γ
·t

/
P

γ
·t

/
P

γ
·t

/
P

γ = 5
γ = 6

γ = 6

γ = 7

γ = 7

γ = 8

γ = 8

γ = 8

γ = 9

γ = 10
γ = 12

CPA

CPA

CPA CPA

FS-collisions FL-collisions

Linear collisions TV-amplified FL-collisions

Fig. 6. Performance of collision attacks based on FS-, FL- and linear collisions without
profiling as well as of FL-collision based attacks with profiling (ternary voting with 625
profiling measurements) vs. Hamming-distance based CPA on the same traces

without any input filters. We stress that this measurement setup is not noise-
optimized4.

5.2 Attack Scenarios and Results

Performance metric. We use the following efficiency metric to compare the
performance of all these attacks: t ·γ/P , where t is the number of averagings, γ is
the number of different inputs, and P is the success probability of the attack. In
case of the Hamming-distance based CPA we apply a similar metric: n/p16, where
n is the number of measurements needed to determine a single-byte chunk of the
AES key with probability p. These metrics characterize the expected number of
measurements needed to recover the whole 16-byte key. The performance results
for CPA can be found in Figure 6.

Collision attacks without profiling. In the online stage, an attacker ob-
serves executions of AES for γ random inputs, each repeated t times. Then,
the t · γ traces are averaged t times and one obtains γ averaged traces for γ

4 As in case of DPA [8], collision detection methods tend to be sensitive to the pre-
processing of measured signals. To denoise the traces, we proceed in two steps.
First, the traces are decimated by applying a low-pass filter to the original traces
and subsequently resampling them at a lower rate. Additionally to noise reduction,
this weakens time jitter. Second, the decimated traces are denoised by applying a
wavelet decomposition at a certain level, thresholding the detail coefficients, and
subsequent wavelet reconstruction. Our experiments show that symlets proposed by
Daubechies (first of all, the ’sym3’ wavelet) are most suitable for this operation.

Algebraic Methods in Side-Channel Collision Attacks 265

random inputs. These are used to detect collisions – linear, FS- or FL-collisions
(see Sections 2 and 3) depending on the key-recovery method – with the direct
binary comparison (see Subsection 2.3). All key-recovery methods need AES
plaintexts to be known. Additionally, if the attack is based on FL-collisions, the
corresponding AES ciphertexts have to be known.

Note that since the adaptive threshold W is used in the direct binary com-
parison which eliminates all type II errors, many true collisions are omitted due
to the increased type I error probability by shifting W to the right. That is,
for given γ and α, the success probability P of the whole attack follows the
dependencies illustrated in Figure 4 for different key-recovery methods.

Profiling-amplified collision attacks. If profiling is possible prior to the
online stage, the ternary voting method (see Subsection 2.4) can be used to
detect additional collisions, which are omitted by the direct binary comparison
due to the application of the adaptive threshold. Taking additional collisions is
equivalent to the increase of α, which further improves the performance metric
t ·γ/P . In our profiling-amplified attacks we used N = 105 profiling S-box traces
τi which is equivalent to about 105/160 = 625 executions of AES in the profiling
stage. See Figure 6 for concrete results of collision attacks with profiling.

References

1. Bogdanov, A.: Multiple-differential side-channel collision attacks on AES. In: Os-
wald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer,
Heidelberg (2008)

2. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

3. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 51–62. Springer, Heidelberg (2003)

4. Lemke-Rust, K.: Models and Algorithms for Physical Cryptanalysis. PhD thesis,
Ruhr University Bochum (2007)

5. Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on AES: Combining
side channel- and differential-attack. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)

6. Bogdanov, A.: Improved side-channel collision attacks on AES. In: Adams, C., Miri,
A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Heidelberg
(2007)

7. Cid, C., Murphy, S., Robshaw, M.: Algebraic Aspects of the Advanced Encryption
Standard. Springer, Heidelberg (2006)

8. Charvet, X., Pelletier, H.: Improving the DPA attack using wavelet transform. In:
NIST Physical Security Testing Workshop (2005)

New Related-Key Boomerang Attacks on AES

Michael Gorski and Stefan Lucks

Bauhaus-University Weimar, Germany
{Michael.Gorski,Stefan.Lucks}@uni-weimar.de

Abstract. In this paper we present two new attacks on round reduced
versions of the AES. We present the first application of the related-key
boomerang attack on 7 and 9 rounds of AES-192. The 7-round attack
requires only 218 chosen plaintexts and ciphertexts and needs 267.5 en-
cryptions. We extend our attack to nine rounds of AES-192. This leaves
to a data complexity of 267 chosen plaintexts and ciphertexts using about
2143.33 encryptions to break 9 rounds of AES-192.

Keywords: block ciphers, AES, differential cryptanalysis, related-key
boomerang attack.

1 Introduction

The Advanced Encryption Standard (AES) [8] has become one of the most used
symmetric encryption algorithm in the world. Differential cryptanalysis [6] is
one of the most powerful attacks on block ciphers like the AES. It recovers
subkey bits for the first or the last rounds, while using differential properties of
the underlying cipher. Variants of this attack such as the impossible differential
attack [2], the truncated differential attack [16], the higher order differential
attack [16], the differential-linear attack [17], the boomerang attack [21], the
amplified boomerang attack [12] and the rectangle attack [3] were introduced.

The boomerang attack [21] is a strong extension of differential cryptanalysis to
break more rounds than differential attacks can do, since the cipher is treated as
a cascade of two sub-ciphers, using short differentials in each sub-cipher. These
differentials are combined in an adaptive chosen plaintext and ciphertext attack
to exploit properties of the cipher that have a high probability.

Related-key attacks [1, 15] apply differential cryptanalysis to ciphers using
different but related keys and consider the information that can be extracted
from encryptions under these keys. Ciphers with a weak key schedule are vul-
nerable to this kind of attack. The idea of related-key differentials was presented
in [13], while two encryptions under two related-keys are used. Biryukov [7] pro-
pose a boomerang attack on the AES-128 which can break up to 5 and 6 out of
10 rounds. The related-key boomerang attack was published first in [4], but was
not used to attack the AES.

We present the first related-key boomerang attack on 7 rounds of AES-192
using 4 related keys. Our related-key boomerang attack can also break 9 rounds
using 256 related keys. It uses less data and less time than existing attacks on

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 266–278, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

New Related-Key Boomerang Attacks on AES 267

Table 1. Existing attacks on round reduced AES-192

Attack # rounds # keys data / time source

Impossible Differential 7 1 292 / 2186 [19]
Square 7 1 232 / 2184 [18]
Partial Sums 7 1 19 · 232 / 2155 [9]
Partial Sums 7 1 2128 − 2119 / 2120 [9]
Related-Key Differential-Linear 7 2 222 / 2187 [22]
Related-Key Differential-Linear 7 2 270 / 2130 [22]
Related-Key Impossible 7 2 2111 / 2116 [11]
Related-Key Impossible 7 32 256 / 294 [5]
Related-Key Boomerang 7 4 218 / 267.5 Section 4

Partial Sums 8 1 2128 − 2119 / 2188 [9]
Related-Key Impossible 8 2 288 / 2183 [11]
Related-Key Rectangle 8 4 286.5 / 286.5 [10]
Related-Key Rectangle 8 2 294 / 2120 [14]
Related-Key Differential-Linear 8 2 2118 / 2165 [22]
Related-Key Impossible 8 32 2116 / 2134 [5]
Related-Key Impossible 8 32 292 / 2159 [5]
Related-Key Impossible 8 32 268.5 / 2184 [5]

Related-Key Rectangle† 9 256 286 / 2181 [4]
Related-Key Rectangle 9 64 285 / 2182 [14]
Related-Key Boomerang 9 256 267 / 2143.33 Section 5

Related-Key Rectangle 10 256 2125 / 2182 [14]
Related-Key Rectangle 10 64 2124 / 2183 [14]
† the attack with some flaws corrected by Kim et al. [14].

the same number of reduced rounds. Table 1 summarizes existing attacks on
AES-192 and our new attacks on 7 and 9 rounds.

In Section 2 we give a brief description of the AES. In Section 3 we describe
the related-key boomerang attack. In Section 4, we present a new related-key
boomerang attack on 7-round of AES-192. Our 9 round attack is presented in
Section 5. We conclude the paper in Section 6.

2 Description of the AES

The AES [8] is a block cipher using data blocks of 128 bits with 128, 192 or
256-bit cipher key. A different number of rounds is used depending on the length
of the cipher key. The AES has 10, 12 and 14 rounds when a 128, 192 or 256-bit

268 M. Gorski and S. Lucks

cipher key is used respectively. The plaintexts are treated as a 4 x 4 byte matrix,
which is called state. A round applies four operations to the state:

– SubBytes (SB) is a non-linear byte-wise substitution applied on every byte
of the state matrix in parallel.

– ShiftRows (SR) is a cyclic left shift of the i-th row by i bytes, where i ∈
{0, 1, 2, 3}.

– MixColumns (MC) is a multiplication of each column by a constant 4 x 4
matrix.

– AddRoundKey (AK) is a XORing of the state and a 128-bit subkey which
is derived from the cipher key.

An AES round function applies the SB, SR, MC and AK operation in order.
Before the first round a whitening AK operation is applied and the MC operation
is omitted in the last round because of symmetry. We concentrate on the 192-bit
version of the AES in this paper and refer to [8] for more details on the other
versions. Let Wi be a 32-bit word, then the 192-bit cipher key is represented by
W0||W1||W2|| . . . ||W5. The 192-bit key schedule algorithm works as follows:

– For i = 6 till i = 51
• If i ≡ 0 mod 6, then Wi = Wi−6 ⊕ SB(RotByte(Wi−1))⊕ Rcon(i/6),
• else Wi = Wi−6 ⊕Wi−1.

where Rcon denotes fixed constants depending on its input and RotByte repre-
sents a byte-wise left shift. The whitening key is W0||W1||W2||W3, the subkey of
round 1 is W4||W5||W6||W7, the subkey of round 2 is W8||W9||W10||W11 and so
one. The bytes coordinates of a 4 x 4 state matrix are labeled as:

x0 x4 x8 x12
x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15

3 The Related-Key Boomerang Attack

We now describe the related-key boomerang attack [4] in more detail. But first,
we have to give some definitions.

Definition 1. Let P, P ′ be two bit strings of the same length. The bit-wise xor
of P and P ′, P ⊕ P ′, is called the difference of P, P ′. Let a be a known and ∗
an unknown non-zero byte difference.

Definition 2. α → β is called a differential if α is the plaintext difference P⊕P ′

before some non-linear operation f(·) and β is the difference after applying these
operation, i.e, f(P)⊕ f(P ′). The probability p is linked on a differential saying
that an α difference turns into a β difference with probability p. The backward
direction, i.e., α ← β has probability p̂.

New Related-Key Boomerang Attacks on AES 269

Two texts (P, P ′) are called a pair, while two pairs (P, P ′, O, O′) are called a
quartet. Regularly, the differential probability decreases the more rounds are in-
cluded. Therefore two short differential covering only a few rounds each will be
used instead of a long one covering the whole cipher. Related-keys are used to
exploit some weaknesses of the key schedule to enhance the probability of the
differentials being used. We call such differentials related-key differentials. We
split the related-key boomerang attack into two steps. The related-key boomerang
distinguisher step and the key recovery step. The related-key boomerang distin-
guisher is used to find all plaintexts sharing a desired difference that depends
on the choice of the related-key differential. These plaintexts are used in the key
recovery step afterwards to recover subkey bits for the initial round key.

Distinguisher Step. During the distinguisher step we treat the cipher as a
cascade of two sub-ciphers EK(P) = E1

K(P)◦E0
K(P), where K is the key used for

encryption and decryption. We assume that the related-key differential α → β
for E0 occurs with probability p, while the related-key differential γ → δ for
E1 occurs with probability q, where α, β, γ and δ are differences of texts. The
backward direction E0−1 and E1−1 of the related-key differential for E0 and E1

are denoted by α ← β and γ ← δ and occur with probability p̂ and q̂ respectively.
The related-key boomerang distinguisher involves four different unknown but
related-keys Ka, Kb = Ka⊕∆K∗, Kc = Ka⊕∆K ′ and Kd = Ka⊕∆K∗⊕∆K ′,
where ∆K∗ and ∆K ′ are known cipher key differences. The attack works as
follows:

1. Choose a pool of s plaintexts Pi, i ∈ {1, . . . , s} uniformly at random and
compute a pool P ′

i = Pi ⊕ α.
2. Ask for the encryption of Pi under Ka, i.e., Ci = EKa(Pi) and ask for the

encryption of P ′
i under Kb, i.e., C′ = EKb

(P ′
i).

3. Compute the new ciphertexts Di = Ci ⊕ δ and D′
i = C′

i ⊕ δ.
4. Ask for the decryption of Di under Kc, i.e., Oi = E−1

Kc
(Di) and ask for the

decryption of D′
i under Kd, i.e., O′

i = E−1
Kd

(D′
i).

– For each pair (Oi, O
′
j), i, j ∈ {1, . . . , s}

5. If Oi ⊕O′
j equals α store the quartet (Pi, P

′
j , Oi, O

′
j) in the set M .

A pair (Pi, P
′
j), i, j ∈ {1, . . . , s} with the difference α satisfies the differential

α → β with the probability p. The output of E0 is Ai and A′
j , i.e., E0

Ka
(Pi) = Ai

and E0
Kb

(P ′
j) = A′

j have a certain difference β = Ai ⊕ A′
j with probability p.

Using the ciphertexts Ci and C′
j we can compute the new ciphertexts Di = Ci⊕δ

and D′
j = C′

j ⊕ δ. Let Bi = E1−1

Kc
(Di) and B′

j = E1−1

Kd
(D′

j) are the decryption
of Di and D′

j with E1−1

Ki
i ∈ {c, d}. A difference δ turns into a difference γ after

passing E1−1

Ki
with probability q̂. Since δ = Ci ⊕Di and δ = C′

j ⊕D′
j we know

that γ = Ai⊕Bi and γ = A′
j ⊕B′

j with probability q̂2. Since we also know, that
Ai⊕A′

j = β with probability p, it follows that (Ai⊕Bi)⊕(Ai⊕A′
j)⊕(A′

j⊕B′
j) =

γ ⊕ β ⊕ γ = β = (Bi ⊕ B′
j) holds with probability p · q̂2. A β difference turns

into an α difference after passing the differential E0−1

Ki
with probability p̂. Thus,

270 M. Gorski and S. Lucks

Fig. 1. The related-key boomerang distinguisher

a pair of plaintexts (Pi, P
′
j) with Pi ⊕ P ′

j = α generates a new pair of plaintexts
(Oi, O

′
j) where Oi⊕O′

j = α with probability p · p̂ · q̂2. A quartet containing these
two pairs is defined as:

Definition 3. A quartet (Pi, P
′
j , Oi, O

′
j) which satisfies Pi⊕P ′

j = α = Oi ⊕O′
j,

Ai ⊕ A′
j = β = Bi ⊕ B′

j, Ai ⊕ Bi = γ = A′
j ⊕ B′

j, Ci ⊕ Di = δ = C′
j ⊕ D′

j is
called a correct related-key boomerang quartet which occurs with probability
Prc = p · p̂ · q̂2. A quartet (Pi, P

′
j , Oi, O

′
j) which only satisfies the condition

P ⊕ P ′
j = α = Oi ⊕O′

j is called a false related-key boomerang quartet.

Figure 1 displays the structure of the related-key boomerang distinguisher step.
Any attacker who applies a related-key boomerang distinguisher does not know
the internal states Ai, A

′
j , Bi, B

′
j , since he can only apply a chosen plaintext

and ciphertext attack on the cipher. The set M which is the output of the
related-key boomerang distinguisher, therefore contains correct and false related-
key boomerang quartets. It is impossible to form another distinguisher which
separates the correct and the false related-key boomerang quartets, since the
interior differences β and γ cannot be computed.

Key Recovery Step. The second step of the related-key boomerang attack is
the key recovery step. From now on, an attacker operates on the set M that was
stored by the related-key boomerang distinguisher. Let ka, kb, kc and kd be some
key bits of the last round keys derived from the cipher keys Ka, Kb, Kc and Kd.
Let dk(C) be the one round partially decryption of C under the key bits k. The
key bits are related as kb = ka ⊕∆k∗, kc = ka ⊕∆k′ and kd = ka ⊕∆k∗ ⊕∆k′,
where ∆k∗ and ∆k′ are differences of the last round key bits. These differences

New Related-Key Boomerang Attacks on AES 271

are derived from the cipher key difference ∆K∗ and ∆K ′. The key recovery step
works as follows:

- For each key-bit combination of ka

1. Initialize a counter for each key-bit combination with zero.
- For all quartets (P, P ′, O, O′) stored in M

2. Ask for the encryption of P, P ′, O, O′ under Ka, Kb, Kc and Kd re-
spectively and obtain the ciphertext quartet C, C′, D, D′. Decrypt
the ciphertexts C, C′, D, D′ under ka, kb, kc, kd, i.e., C̄ = dka(C),
C̄′ = dkb

(C′), D̄ = dkc(D) and D̄′ = dkd
(D′).

3. Test whether the differences C̄ ⊕ D̄ and C̄′ ⊕ D̄′ have a desired
difference an attacker would expect depending on the related-key
differential being used. Increase a counter for the used key-bits if the
difference is fulfilled in both pairs.

4. Output the key-bits ka with the highest counter as the correct one.

Four cases can be distinct in Step 3, since M contains correct and false related-
key boomerang quartets and the key-bit combination ka can either be correct
or false. A correct related-key boomerang quartet encrypted with the correct
key bits will have the desired difference needed to pass the test in Step 3 with
probability 1. Hence, the counter for the correct key bits is increased. The three
other cases are: a correct related-key boomerang quartet is used with false key
bits (PrcKf

), a false related-key boomerang quartet is used with the correct
key-bits (PrfKc) or a false related-key boomerang quartet is used with a false
key-bit combination (PrfKf

). We assume that the cipher acts like a random
permutation. In these cases we assume that

PrcKf
= PrfKc = PrfKf

=: Prfilter.

The probability that a quartet in one of the three undesirable cases is counted
for a certain key bit combination is Prfilter. The related-key differentials have
to be chosen such that the counter of the correct key bits is significantly higher
than the counter of each false key bit combination. If the differentials have a high
probability the key recovery step outputs the correct key-bits in Step 4 with a
high probability much faster than exhaustive search.

4 Related-Key Boomerang Attack on 7-Round AES-192

In this section we mount a key recovery attack on 7-round AES-192 using 4
related keys. The cipher is represented as E = E1 ◦ E0. E0 is a differential
containing rounds 1 to 4 and including the whitening key addition as well as
the key addition of round 4. E1 is a differential covering rounds 5 to 7. After
applying the related-key boomerang distinguisher for E1 ◦E0 using the related-
key differentials E0 and E1 we apply it to recover 8 key-bits of the seventh
round-keys. We assumed, that the S-Box acts like a random permutation. Thus,
all S-Box output differences will have the same probability for a given input
difference. The notation used in our attack will be defined as:

272 M. Gorski and S. Lucks

– Ka, Kb, Kc, Kd unknown cipher keys (192 bit).
– Kai, Kbi, Kci, Kdi unknown round keys of round i, where i ∈ {0, 1, 2, . . . , 12}

(128 bit).
– ∆K∗, ∆K ′ known cipher key differences (192 bit).
– ∆K∗

i , ∆K ′
i known subkey differences of round i (128 bit).

– Pi, P
′
j , Oi, O

′
j plaintexts.

– Ci, C
′
j , Di, D

′
j ciphertexts.

– E0
Ki

(·) 4-round AES-192 encryption from round 1 to 4 under key Ki, where
i ∈ {a, b, c, d}.

– E1−1

Ki
(·) 3-round AES-192 decryption from round 7 to 5 under key Ki, where

i ∈ {a, b, c, d}.
– a is a known non-zero byte difference.
– b is an output difference of S-Box for the input difference a.
– c, d are unknown non-zero byte differences.
– ∗ is a variable unknown non-zero byte differences.

The Structure of the Keys. In our attack we use four related but unknown
keys Ka, Kb, Kc and Kd. Let Ka be the unknown key an attacker would like to
recover. The relation that is required for the attack is:

Kb = Ka ⊕∆K∗, Kc = Ka ⊕∆K ′

Kd = Ka ⊕∆K∗ ⊕∆K ′

∆K∗ is the cipher key difference used for the first related-key differential E0 and
∆K ′ is the cipher key difference used for the second related-key differential E1.
An attacker only knows the differences ∆K∗ and ∆K ′ but does not know the
keys. He chooses the cipher key differences as:

∆K∗ =
a a

and ∆K ′ =
a a

Using the key schedule algorithm of AES-192 we can use the cipher key differ-
ences ∆K∗ and ∆K ′ to derive the round key differences ∆K∗

0 , . . . , ∆K∗
8 and

∆K ′
0, . . . , ∆K ′

8 respectively.1 These values are shown in Figure 2 and 3.
The difference b can be one of 27 − 1 values, because of the symmetry of the

XOR operation and the fact that an a difference can be one of 28−1 differences. If
two texts forming an a difference passing the S-Box only one of 27−1 differences
can occur.

The Related-Key Differential E0 for rounds 1 − 4. The input difference
α of E0 has a non-zero difference in bytes 8 and 12. These differences are of
value a with the probability 2−16. This is the probability that two randomly
chosen non-zero bytes are of value a. The whitening key addition AK0 generates
a zero difference in each byte of the state matrix. These zero differences remain
1 These related keys are also used in [10].

New Related-Key Boomerang Attacks on AES 273

∆K∗
0

a a
∆K∗

1 ∆K∗
2

a
∆K∗

3
a a

∆K∗
4

a a

b b

∆K∗
5

a a

b b b b

∆K∗
6

a a

c c c c
b b

∆K∗
7

d d
c c c
b b b

Fig. 2. Round key differences derived from ∆K∗

∆K′
0

a
∆K′

1
a a a

∆K′
2

a a
∆K′

3
a a

∆K′
4

a a
∆K′

5

∆K′
6

a
∆K′

7
a a

Fig. 3. Round key differences derived from ∆K′

until AK2 is applied, since ∆K∗
1 has only zero differences and does not alter the

differences in the state matrix. AK2 generates an a difference in byte 0, which
is transformed into a non-zero difference after SB3. MC3 creates a non-zero
difference in bytes 0,1,2 and 3, while AK3 inserts an a difference in bytes 8 and
12. After applying SR4 we just have one non-zero byte in column 0 and 1 and
two non-zero bytes in column 2 and 3. Four non-zero bytes remain after MC4
in column 0 and 1 with probability one, while we do not know which bytes of
column 2 and 3 are non-zero. These bytes are labeled with ?. Then AK4 places
an a difference in byte 12. We call βout the difference obtaining after passing
the related-key differential E0. The probability of the differential E0, i.e., the
transformation of an α difference into a βout difference is given by

Pr(α → βout) = 2−16.

The related-key differential E0 is shown in Figure 4.

The Related-Key Differential E1−1

for rounds 7−5. The input difference
δ consists of a non-zero difference in byte 0 and two a differences in bytes 8 and
12. This differences vanish after AK−1

7 , since ∆K ′
7 has two a differences in bytes

8 and 12 while the other bytes of ∆K ′
7 have a zero difference. Only the non-

zero difference in byte 0 remains. SB−1
7 generates an a difference in byte 0 with

probability 2−8 since we assume that the S-Box acts like a random permutation.
If this occurs the text difference after SB−1

7 is equal to the subkey difference
∆K ′

6. Hence, all bytes have a zero difference after applying AK−1
6 . All bytes will

274 M. Gorski and S. Lucks

α∗ ∗
AK0,...,AK2−→

a
SB3,SR3,MC3−→

∗
∗
∗
∗

AK3−→
∗ a a
∗
∗
∗

SB4,SR4−→
∗ ∗ ∗

∗
∗
∗

MC4−→
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?

AK4−→

βout

∗ ∗ ? ∗
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?

Fig. 4. The related-key differential E0

δ∗ a a
AK−1

7−→
∗

SR−1
7 ,SB−1

7−→
a AK

−1
6 ,MC

−1
6 ,SR

−1
6 ,SB

−1
6 ,

AK−1
5 ,MC−1

5 ,SR−1
5 ,SB−1

5−→

γ

Fig. 5. The related-key differential E1−1

also have a zero difference after AK−1
5 , since ∆K ′

5 has a zero difference in each
byte. We call the text difference after applying E1−1

γ which consists of 16 zero
bytes. The probability of E1−1

is Pr(γ ← δ) = 2−8. The related-key differential
E1−1

is shown in Figure 5.

The Related-Key Differential E0−1

for rounds 4 − 1. For the following
steps we need that the output difference βout of the related-key differential E0

is equal to the input difference βin for the related-key differential E0−1
. Note

that βin and βout are not only equal in the same positions of non-zero differences
but are also equal in each byte. We will shown how to construct such a case.
From the boomerang condition inside the cipher for two differences γ1 and γ2
we know that βout ⊕ γ1 ⊕ γ2 = βin holds with some probability. Since γ1 and γ2
are equal in each byte, we simply write γ. Thus the above condition reduces to
βout ⊕ γ ⊕ γ = βout = βin. Using the differentials above, the differences βin and
βout are equal with probability one. Note that these difference occur only with
some probability, which will be described more detailed later.

Let A, A′, B, B′ be the internal state after SR4 when encrypting P, P ′, O, O′

under Ka, Kb, Kc, Kd respectively. We use the same notation as in Figure 1. Since
MC is linear γ can be expressed as γ = Ka4 ⊕ MC4(A) ⊕ Kc4 ⊕ MC4(B) =
Ka4⊕Kc4⊕MC4(A⊕B) and as γ = Kb4⊕MC4(A′)⊕Kd4⊕MC4(B′) = Kb4⊕
Kd4 ⊕MC4(A′ ⊕B′). Considering these equations we obtain A⊕A′ = B ⊕B′.
Thus MC4 can be undone with the probability 1. This means that we know
exactly that after MC−1

4 only the bytes 0,7,8,10,12 and 13 are non-zero, while
all other bytes are zero. SB−1

4 then transforms a non-zero difference into an a
difference with probability 2−8. Regarding bytes 8 and 12 we have the probability
2−16 of doing so. The resulting a differences in bytes 8 and 12 are canceled out
by AK−1

3 . After that MC−1
3 generates a non-zero with a fixed position from four

non-zero bytes with probability 2−24. We have only one a difference after SB−1
3

New Related-Key Boomerang Attacks on AES 275

βin∗ ∗ ? ∗
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?

AK−1
4−→
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?
∗ ∗ ? ?

MC−1
4−→
∗ ∗ ∗

∗
∗
∗

SR−1
4 ,SB−1

4−→
∗ a a
∗
∗
∗

AK−1
3−→
∗
∗
∗
∗

MC−1
3 ,SR−1

3 ,SB−1
3−→

a
AK−1

2 ,...,AK−1
0−→

α′
a a

Fig. 6. The related-key differential E0−1

in byte 0 with probability 2−24 · 2−8 = 2−32. This a difference is canceled out by
AK−1

2 . We call α the difference that is the output of the related-key differential
E0−1

. α has an a difference in the bytes 8 and 12. The differential E0−1
has the

probability Pr(α ← βin) = 2−16 · 2−32 = 2−48 and is shown in Figure 6.

The Attack. The attack first applies a related-key boomerang distinguisher to
obtain all correct and false boomerang quartets which are stored in M . A key-
search is then applied on M to find 1 byte of the seventh round keys. Let ka7
be an 8-bit subkey in the position of byte 0 of the seventh round key Ka7. Let
d7ki7(X), i ∈ {a, b, c, d} be the seventh round partially decryption of X under
the 8-bit subkey ki. The attack is as follows:

1. Choose 249.5 structures S1,S2,. . . , S249.5 of 216 plaintexts Pi, i ∈ {1, 2, . . . , 216},
where all bytes are fixed except for bytes 8 and 12. Ask for encryption of Pi under
Ka to obtain the ciphertexts Ci, i.e., Ci = EKa(Pi).

2. Compute 249.5 structures S′
1, S

′
2, . . . , S

′
249.5 of 216 plaintexts P ′

i = Pi. Ask for
encryption of the P ′

i under Kb, where Kb = Ka⊕∆K∗ to obtain the ciphertexts
C′

i, i.e., C′
i = EKb

(P ′
i).

3. Compute 249.5 structures S∗
1 , S∗

2 , . . . , S∗
249.5 of 216 ciphertexts Di, i.e, Di =

Ci ⊕ δ where δ is a fixed difference with any non-zero byte difference in byte 0
and two a differences in bytes 8 and 12. Ask for decryption of Di under Kc to
obtain the plaintexts Oi, i.e., Oi = E−1

Kc
(Di).

4. Compute 249.5 structures S′∗
1 , S′∗

2 , . . . , S′∗
249.5 of 216 ciphertexts D′

i, i.e., D′
i =

C′
i ⊕ δ where δ is as in Step 3. Ask for decryption of D′

i under Kd to obtain the
plaintexts O′

i, i.e., O′
i = E−1

Kd
(D′

i).
5. Store only those quartets (Pi, P

′
j , Oi, O

′
j), i, j ∈ {1, 2, . . . , 216} in the set M

where Oi ⊕O′
j have an a difference in bytes 8 and 12, while the remaining byte

differences are zero.
6. For each 8-bit key ka7 compute kb7 = ka7, kc7 = ka7 and kd7 = ka7.

For each quartet passing the test in Step 5:

6.1. Ask for encryption of (Oi, O
′
j) under Kc, Kd to obtain (Di, D

′
j) and

compute (Ci, C
′
j) respectively.

6.2. Partially decrypt a ciphertext quartet (Ci,C
′
j ,Di,D

′
j), i.e.,C̄i =d7ka7(Ci),

C̄′
j = d7kb7 (C

′
j), D̄i = d7kc7 (Di) and D̄′

j = d7kd7(O
′
j).

276 M. Gorski and S. Lucks

6.3. Increase the counter for the used 8-bit subkey ka7 by one if C̄i⊕ D̄i and
C̄′

j ⊕ D̄′
j have an a-difference in byte 0.

7. Output the 8-bit subkey ka7 which counts at least two quartets as the correct
one.

Analysis of the Attack. Two pools of 216 plaintexts can be combined to
approximately (216)2 = 232 quartets. Using 249.5 structures we obtain #PP ≈
249.5 · 232 = 281.5 quartets in total. A correct related-key boomerang quartet
occurs with probability Prc = Pr(α → βout) · (Pr(γ ← δ))2 · Pr(α ← βin) =
2−16 ·(2−8)2 ·2−48 = 2−80 since all related-key differential conditions are fulfilled.
A random permutation of a difference Oi ⊕O′

j has 14 zero byte difference with
probability Prf = 2−112. Thus, after Step 5 we have about #C = #PP ·Prc =
281.5 · 2−80 = 21.5 correct and #F = #PP · Prf = 281.5 · 2−112 = 2−30.5 false
related-key boomerang quartets. The data and time complexity of Step 6 to 7 is
negligible compared to the other steps before, since we expect to have only 21.5

quartets stored.
A false combination of quartets and key bits is counted in Step 6.3 with the

probability Prfilter = 2−16. This is the probability that an active byte with an
unknown non-zero difference has an a difference after SB−1

7 .
At least #CKc = 21.5 correct related-key boomerang quartets and addition-

ally #FKc = #F · Prfilter = 2−30.5 · 2−16 = 2−46.5 false related-key boomerang
quartets are counted with the correct key bits. About #CKc + #FKc = 21.5 +
2−46.5 ≈ 3 quartets are counted in Step 6.3 for the correct key bits.

About #CKf = #C · Prfilter = 21.5 · 2−16 = 2−14.5 correct related-key
boomerang quartets and #FKf = #F · Prfilter = 2−30.5 · 2−16 = 2−46.5 false
related-key boomerang quartets are counted with the false key bits, which are
approximately #CKf + #FKf = 2−14.5 + 2−46.5 = 2−14.5 counts for each false
key bit combination.

Using the Poisson distribution we can compute the success rate of our attack.
The probability that the number of remaining quartets for each false key bit
combination is larger than 1 is Y ∼ Poisson(µ = 2−14.5), Pr(Y ≥ 2) ≈ 0.
Therefore the probability that our attack outputs false key bits as the correct
one is very low. We expect to have a count of 22 quartets for the correct key
bits. The probability that the number of quartets counted for the correct key
bits is larger than 1 is Z ∼ Poisson(µ = 3), Pr(Z ≥ 2) ≈ 0.8.

The data complexity of this attack is determined by Steps 1, 2, 3 and 4
which is about 218 = 22 · 216 adaptive chosen plaintexts and ciphertexts for each
structure. We do not have to compute all structures simultaneously, thus we
keep only four structures in memory, which reduces the memory requirements
of our attack. The time complexity is about 267.5 = 249.5 · 22 · 216 seven round
AES-192 encryptions. Our attack has a success rate of 0.8.

5 Related-Key Boomerang Attack on 9-Round AES-192

Our related-key boomerang attack can be extend to attack 9 rounds of AES-
192 using 256 related keys. The data complexity is of 267 chosen plaintexts and

New Related-Key Boomerang Attacks on AES 277

ciphertexts and the time complexity is about 2143.33 nine round AES encryptions.
The details are described in a full version of the paper available on ePrint or
upon request.

6 Conclusion

In this paper we improved attacks on 7 and 9 round reduced versions of AES-192.
This is the first application of the related-key boomerang attack on the AES. Our
7 round attack has a data complexity of 218 chosen plaintexts and ciphertexts. Its
time complexity is of 267.5 seven round AES-192 encryptions. We also presented
a 9 round related-key boomerang attack which needs only 267 chosen plaintexts
and ciphertexts and has a time complexity of 2143.33 nine round encryptions. Our
attacks are the best attacks on seven and nine rounds of AES-192 in terms of data
and time complexity known so far. The AES remains still unbroken but we have
shown that up to 7 rounds practical attacks are available yet.

Acknowledgements

The authors would like to thank Thomas Peyrin, Ewan Fleischmann and the
anonymous reviewers for many helpful comments.

References

[1] Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. J. Cryptol-
ogy 7(4), 229–246 (1994)

[2] Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. J. Cryptology 18(4), 291–311 (2005)

[3] Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack - Rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001)

[4] Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

[5] Biham, E., Dunkelman, O., Keller, N.: Related-Key Impossible Differential At-
tacks on 8-Round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS,
vol. 3860, pp. 21–33. Springer, Heidelberg (2006)

[6] Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J.
Cryptology 4(1), 3–72 (1991)

[7] Biryukov, A.: The Boomerang Attack on 5 and 6-Round Reduced AES. In: Dob-
bertin, H., Rijmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 11–15.
Springer, Heidelberg (2005)

[8] Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

[9] Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved Cryptanalysis of Rijndael. In: Schneier [20], pp. 213–230

278 M. Gorski and S. Lucks

[10] Hong, S., Kim, J., Lee, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced
Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

[11] Jakimoski, G., Desmedt, Y.: Related-Key Differential Cryptanalysis of 192-bit
Key AES Variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS,
vol. 3006, pp. 208–221. Springer, Heidelberg (2004)

[12] Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In: Schneier [20], pp. 75–93

[13] Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.)
ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

[14] Kim, J., Hong, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced AES-
192 and AES-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 225–241.
Springer, Heidelberg (2007)

[15] Knudsen, L.R.: Cryptanalysis of LOKI91. In: Seberry, J., Zheng, Y. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)

[16] Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

[17] Langford, S.K., Hellman, M.E.: Differential-Linear Cryptanalysis. In: Desmedt,
Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994)

[18] Lucks, S.: Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Keys.
In: AES Candidate Conference, pp. 215–229 (2000)

[19] Phan, R.C.-W.: Impossible differential cryptanalysis of 7-round Advanced En-
cryption Standard (AES). Inf. Process. Lett. 91(1), 33–38 (2004)

[20] Schneier, B. (ed.): FSE 2000. LNCS, vol. 1978. Springer, Heidelberg (2001)
[21] Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,

vol. 1636, pp. 156–170. Springer, Heidelberg (1999)
[22] Zhang, W., Zhang, L., Wu, W., Feng, D.: Related-Key Differential-Linear At-

tacks on Reduced AES-192. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 73–85. Springer, Heidelberg (2007)

New Impossible Differential Attacks on AES

Jiqiang Lu1,�, Orr Dunkelman2,��, Nathan Keller3,���, and Jongsung Kim4,†

1 Information Security Group, Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK and Department of Mathematics and Computer

Science, Eindhoven University of Technology,
5600 MB Eindhoven, The Netherlands

lvjiqiang@hotmail.com
2 École Normale Supérieure

Département d’Informatique,
45 rue d’Ulm, 75230 Paris, France

orr.dunkelman@ens.fr
3 Einstein Institute of Mathematics, Hebrew University.

Jerusalem 91904, Israel
nkeller@math.huji.ac.il

4 Center for Information Security Technologies(CIST), Korea University
Anam Dong, Sungbuk Gu, Seoul, Korea

joshep@cist.korea.ac.kr

Abstract. In this paper we apply impossible differential attacks to re-
duced round AES. Using various techniques, including the early abort
approach and key schedule considerations, we significantly improve pre-
viously known attacks due to Bahrak-Aref and Phan. The improvement
of these attacks leads to better impossible differential attacks on 7-round
AES-128 and AES-192, as well as to better impossible differential attacks
on 8-round AES-256.

Keywords: AES, Impossible differential cryptanalysis.

1 Introduction

The Advanced Encryption Standard (AES) [12] is a 128-bit block cipher with a
variable key length (128, 192, and 256-bit keys are supported). Since its selection,

� This author as well as his work was supported by a British Chevening / Royal
Holloway Scholarship.

�� The second author was supported by the France Telecome Chaire. Some of
the work presented in this paper was done while this author was staying at
K.U. Leuven.

��� This author is supported by the Adams Fellowship Program of the Israel Academy
of Sciences and Humanities.

† This author was supported by the MIC (Ministry of Information and Communica-
tion), Korea, under the ITRC (Information Technology Research Center) support
program supervised by the IITA (Institute of Information Technology Advance-
ment) (IITA-2006-(C1090-0603-0025)).

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 279–293, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

280 J. Lu et al.

AES gradually became one of the most widely used block ciphers. AES has
received a great deal of cryptanalytic attention, both during the AES process,
and even more after its selection.

In the single-key model, previous results can attack up to 7 rounds of AES-
128 (i.e., AES with 128-bit key). The first attack is a SQUARE attack suggested
in [14] which uses 2128−2119 chosen plaintexts and 2120 encryptions. The second
attack is a meet-in-the-middle attack proposed in [15] that requires 232 chosen
plaintexts and has a time complexity equivalent to almost 2128 encryptions.
Recently, another attack on 7-round AES-128 was presented in [1]. The new
attack is an impossible differential attack that requires 2117.5 chosen plaintexts
and has a running time of 2121 encryptions.

These results were later improved and extended in [19] to suggest impossible
differential attacks on 7-round AES-192 (data complexity of 292 chosen plaintexts
and time complexity of 2162 encryptions) and AES-256 (2116.5 chosen plaintexts
and 2247.5 encryptions).

There are several attacks on AES-192 [1,13,14,17,18,19]. The two most notable
ones are the SQUARE attack on 8-round AES-192 presented in [14] that requires
almost the entire code book and has a running time of 2188 encryptions and the
meet in the middle attack on 7-round AES-192 in [13] that requires 234+n chosen
plaintexts and has a running time of 2208−n + 282+n encryptions. Legitimate
values for n in the meet in the middle attack on AES-192 are 94 ≥ n ≥ 17, thus,
the minimal data complexity is 251 chosen plaintexts (with time complexity
equivalent to exhaustive search), and the minimal time complexity is 2146 (with
data complexity of 297 chosen plaintexts).

AES-256 is analyzed in [1,13,14,17,19]. The best attack is the meet in the
middle attack in [13] which uses 232 chosen plaintexts and has a total running
time of 2209 encryptions.

Finally, we would like to note the existence of many related-key attacks on
AES-192 and AES-256. As the main issue of this paper is not related-key at-
tacks, and as we deal with the single key model, we do not elaborate on the
matter here, but the reader is referred to [20] for the latest results on related-
key impossible differential attacks on AES and to [16] for the latest results on
related-key rectangle attacks on AES.

The strength of AES with respect to impossible differentials was challenged
several times. The first attack of this kind is a 5-round attack presented in [4]. This
attack is improved in [10] to a 6-round attack. In [18], an impossible differential
attack on 7-round AES-192 and AES-256 is presented. The latter attack uses 292

chosen plaintexts (or 292.5 chosen plaintexts for AES-256) and has a running time
of 2186 encryptions (or 2250.5 encryptions for AES-256). The time complexity of
the latter attack was improved in [19] to 2162 encryptions for AES-192.

In [1] a new 7-round impossible differential attack was presented. The new
attack uses a different impossible differential, which is of the same general type
as the one used in previous attacks (but has a slightly different structure). Using
the new impossible differential leads to an attack that requires 2117.5 chosen
plaintexts and has a running time of 2121 encryptions. This attack was later

New Impossible Differential Attacks on AES 281

improved in [19] to use 2115.5 chosen plaintexts with time complexity of 2119

encryptions.
The last application of impossible differential cryptanalysis to AES was the ex-

tension of the 7-round attack from [1] to 8-round AES-256 in [19]. The extended
attack has a data complexity of 2116.5 chosen plaintexts and time complexity of
2247.5 encryptions.

We note that there were three more claimed impossible differential attacks on
AES in [7,8,9]. However, as all these attacks are flawed [6].

In this paper we present a new attack on 7-round AES-128, a new attack on
7-round AES-192, and two attacks on 8-round AES-256. The attacks are based
on the attacks proposed in [1,18] but use additional techniques, including the
early abort technique and key schedule considerations.

Our improvement to the attacks on 7-round AES-128 from [1,19] requires
2112.2 chosen plaintexts, and has a running time of 2117.2 memory accesses. Our
improvement to the attack on 7-round AES-192 from [18] has a data complexity
of 291.2 chosen plaintexts and a time complexity of 2139.2 encryptions. Since the
first attack is also applicable to AES-192, the two attacks provide a data-time
tradeoff for attacks on 7-round AES-192.

Table 1. A Summary of the Previous Attacks and Our New Attacks

Key Number of Complexity Attack Type & Source
Size Rounds Data (CP) Time
128 7 2117.5 2121 Impossible Differential [1]

7 2115.5 2119 Impossible Differential [19]
7 232 2128 Meet in the Middle [15]
7 2112.2 2117.2 MA Impossible Differential (App. B)

192 7 292 2186.2 Impossible Differential [18]
7 2115.5 2119 Impossible Differential [19]
7 292 2162 Impossible Differential [19]
7 234+n 2208−n + 282+n Meet in the Middle [13]
8 2128 − 2119 2188 SQUARE [14]
7 2113.8 2118.8 MA Impossible Differential (App. B)
7 291.2 2139.2 Impossible Differential (Sect. 4.1)

256 7 292.5 2250.5 Impossible Differential [18]
7 232 2208 Meet in the Middle [13]
7 2115.5 2119 Impossible Differential [19]
8 2116.5 2247.5 Impossible Differential [19]
8 2128 − 2119 2204 SQUARE [14]
8 232 2209 Meet in the Middle [13]
7 2113.8 2118.8 MA Impossible Differential (App. B)
7 292 2163 MA Impossible Differential (Sect. 4.1)
8 2111.1 2227.8 MA Impossible Differential (App. B)
8 289.1 2229.7 MA Impossible Differential (Sect. 4.2)

CP – Chosen plaintext, MA – Memory Accesses.
Time complexity is measured in encryption units unless mentioned
otherwise.

282 J. Lu et al.

The best attack we present on 8-round AES-256 requires 289.1 chosen plain-
texts and has a time complexity of 2229.7 memory accesses. These results are sig-
nificantly better than any previously published impossible differential attack on
AES. We summarize our results along with previously known results in Table 1.

This paper is organized as follows: In Section 2 we briefly describe the structure
of AES. In Section 3 we discuss the impossible differential attack by [18] (and its
improvement from [19]) on 7-round AES-192. The improvement of Phan’s attack
on 7-round AES-192 along with its extension to 8-round AES-256 is presented
in Section 4. In Appendix A we describe a technique which is repeatedly used in
impossible differential attacks on AES. In Appendix B we describe the attack by
Bahrak and Aref on 7-round AES-128, and its possible improvements and exten-
sions (to 8-round AES-256). Appendix C outlines the impossible differentials used
in this paper for the sake of completeness. We conclude the paper in Section 5.

2 Description of AES

The advanced encryption standard [12] is an SP-network that supports key sizes
of 128, 192, and 256 bits. A 128-bit plaintext is treated as a byte matrix of size
4x4, where each byte represents a value in GF (28). An AES round applies four
operations to the state matrix:

– SubBytes (SB) — applying the same 8-bit to 8-bit invertible S-box 16 times
in parallel on each byte of the state,

– ShiftRows (SR) — cyclic shift of each row (the i’th row is shifted by i bytes
to the left),

– MixColumns (MC) — multiplication of each column by a constant 4x4 ma-
trix over the field GF (28), and

– AddRoundKey (ARK) — XORing the state with a 128-bit subkey.

We outline an AES round in Figure 1. In the first round, an additional Ad-
dRoundKey operation (using a whitening key) is applied, and in the last round
the MixColumns operation is omitted. As all other works on AES, we shall as-
sume that reduced-round variants also have the MixColumns operation omitted
from the last round.

The number of rounds depends on the key length: 10 rounds for 128-bit keys,
12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. The rounds are

xI
i xSB

i xSR
i xMC

i

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15 12 13 14 15 15 12 13 14

ShiftRows MixColumns

SB SR MC ARK

SubBytes

Fig. 1. An AES round

New Impossible Differential Attacks on AES 283

numbered 0, . . . , Nr− 1, where Nr is the number of rounds (Nr ∈ {10, 12, 14}).
For the sake of simplicity we shall denote AES with n-bit keys by AES-n, i.e.,
AES with 192-bit keys (and thus with 12 rounds) is denoted by AES-192.

The key schedule of AES takes the user key and transforms it into 11, 13, or
15 subkeys of 128 bits each. The subkey array is denoted by W [0, . . . , 59], where
each word of W [·] consists of 32 bits. The first Nk words of W [·] are loaded
with the user supplied key, i.e., Nk = 4 words for 128-bit keys, Nk = 6 words
for 192-bit keys, and Nk = 8 for 256-bit keys. The remaining words of W [·] are
updated according to the following rule:

– For i = Nk, . . . , 43/51/59, do
• If i ≡ 0 mod Nk then W [i] = W [i − Nk] ⊕ SB(W [i − 1] ≪ 8) ⊕

RCON [i/Nk],
• Otherwise W [i] = W [i− 1]⊕W [i−Nk],

where RCON [·] is an array of predetermined constants, and ≪ denotes rotation
of the word by 8 bits to the left. We also note that for 256-bit keys, when
i ≡ 4 mod 8 the update rule is W [i] = W [i− 8]⊕ SB(W [i− 1] ≪ 8).

2.1 The Notations Used in the Paper

In our attacks we use the following notations: xI
i denotes the input of round i,

while xSB
i , xSR

i , xMC
i , and xO

i denote the intermediate values after the appli-
cation of SubBytes, ShiftRows, MixColumns, and AddRoundKey operations of
round i, respectively. Of course, the relation xO

i−1 = xI
i holds.

We denote the subkey of round i by ki, and the first (whitening) key is k−1,
i.e., the subkey of the first round is k0. In some cases, we are interested in
interchanging the order of the MixColumns operation and the subkey addition.
As these operations are linear they can be interchanged, by first XORing the data
with an equivalent key and only then applying the MixColumns operation. We
denote the equivalent subkey for the altered version by wi, i.e., wi = MC−1(ki).

We denote bytes of some intermediate state xi or a key ki (or wi) by an
enumeration {0, 1, 2, . . . , 15} where the byte 4m + n corresponds to the n’th
byte in the m’th row of xi, and is denoted by xi,4·m+n. We denote the z’th col-
umn of xi by xi,Col(z), i.e., w0,Col(0) = MC−1(k0,Col(0)). Similarly, by xi,Col(y,z)
we denote columns y and z of xi. We define two more column related sets.
The first is xi,SR(Col(z)) which is the bytes in xi corresponding to the places
after the ShiftRows operation on column z, e.g., xi,SR(Col(0)) is composed of
bytes 0,7,10,13. The second is xi,SR−1(Col(z)) which is the bytes in the positions
of column z after having applied the inverse ShiftRows operation.

3 The Phan Impossible Differential Attack on 7-Round
AES-192

The security of AES against impossible differential attacks was challenged in
two lines of research. The first presented in [4,10,18,19], and the second in [1,19].

284 J. Lu et al.

Both lines use very similar impossible differentials as well as similar algorithms.
In this section we present the first line of research, represented by the Phan
attack [18] on 7-round AES-192. The second line of research, represented by the
Bahrak-Aref attack [1] on 7-round AES-192 is considered in Appendix B.

The Phan attack, as well as all the other known impossible differential attacks
on the AES, is based on the following 4-round impossible differential of AES,
first observed in [4]:

Proposition 1. Let ∆(xI
i) denote the input difference to round i, and let ∆(xSR

i+3)
denote the difference after the ShiftRows operation of round i + 3. If the following
two conditions hold:

1. ∆(xI
i) has only one non-zero byte,

2. In ∆(xSR
i+3), at least one of the four sets of bytes SR(Col(i)), for the four

different possible columns, is equal to zero,

then ∆(xI
i) −→ ∆(xSR

i+3) is an impossible differential for any four consecutive
rounds of AES. We outline one of these impossible differentials in Figure 3 (in
Appendix C). We also note that if in round i + 3 the order of MixColumns
and AddRoundKey is swapped, then, one can consider the impossible differential
∆(xI

i) −→ ∆(xO
i+3).

Proof. On the one hand, if ∆(xI
i) has only one non-zero byte then ∆(xI

i+1) has
non-zero values in a single column, and therefore, ∆(xI

i+2) has non-zero values
in all the 16 bytes of the table (following the basic diffusion properties of AES,
a fact used in many attacks on AES). On the other hand, if Condition (2) holds
then ∆(xI

i+3) has at least one zero column, and hence at least one of the four
sets of bytes SR−1(Col(i)) in ∆(xI

i+2) is equal to zero, a contradiction.

3.1 The Phan Attack Algorithm on 7-Round AES-192

The algorithm of the Phan attack, as described in [18], is the following (depicted
in Figure 2):

1. Encrypt 260 structures of 232 plaintexts each such that in every structure,
the bytes of SR−1(Col(0)) assume all the 232 possible values and the rest of
the bytes are fixed.

2. Select only the ciphertext pairs, corresponding to plaintexts in the same
structure, for which the difference in bytes SR(Col(2, 3)) is zero.

3. Guess k6 and partially decrypt the remaining ciphertext pairs through round
6 to get xI

6.
4. Using the guessed value of k6, retrieve k5,Col(0,1) by the key schedule al-

gorithm. For each remaining pair, decrypt xI
6 through ARK−1 ◦ MC−1 ◦

SR−1 ◦ SB−1 ◦MC−1 to get the difference ∆(xSR
4).1 If the difference does

not satisfy Condition (2) of Proposition 1, discard the pair.

1 Note that the ARK−1 operation in the end of round 4 can be skipped since it does
not affect the difference ∆(xSR

4).

New Impossible Differential Attacks on AES 285

Impossible Differential

ARK
k−1

SB SR MC ARK
k0

ARK
k6

SRSBARK
k5

MCSR

SRSBMC

Fig. 2. The 7-Round Impossible Differential Attack on AES-192 by Phan

5. Consider the plaintext pairs corresponding to the remaining ciphertext pairs.
Guess the value of k−1,SR−1(Col(0)) and partially encrypt each plaintext pair
through ARK ◦ SB ◦ SR ◦MC to get the difference ∆(xI

1). If the difference
satisfies Condition (1) of Proposition 1, discard the guess of k−1,SR−1(Col(0)).

6. If all the guesses of k−1,SR−1(Col(0)) are discarded for a guess of k6, repeat
Steps 3–5 with another guess of k6. If a candidate of k−1,SR−1(Col(0)) remains,
the rest of the key bits (or their equivalent) are exhaustively searched.

Step 1 of the attack consists of the encryption of 292 chosen plaintexts. Step 2 of
the attack takes 292 memory accesses and proposes 259 pairs for further analysis.
Steps 3 and 4 take together 2188 two-round decryptions, and suggest 229 pairs
for Step 5 (for a given key guess). Step 5 takes 2185 1-round encryptions.

Therefore, the data complexity of the attack is 292 chosen plaintexts, and
the time complexity is 2186.2 7-round AES-192 encryptions. The attack re-
quires 2157 bytes of memory, used for storing the discarded guesses of k6 and
k−1,SR−1(Col(0)).

4 Improving and Extending the Phan Attack

In this section we improve the Phan attack on 7-round AES-192 and extend it
to an attack on 8-round AES-256.

4.1 Improvement of the Phan Attack on 7-Round AES-192

The improvement of the Phan attack is based on the early abort technique and
key schedule considerations, as well as on a reuse of the data. Our approach
reduces the data and time complexities of the attack significantly.

Reducing the number of guessed key material. We observe that the
amount of guessed key bytes can be reduced for AES-192. This observation
was made independently in [19] and was used there only to gain an immediate
reduction in the time complexity of the Phan attack by factor 224. This follows
the fact that the 16 subkeys bytes are needed by the attack: k6,SR(Col(0,1)) and

286 J. Lu et al.

k5,Col(0,1) (rather than the entire k6 and k5,Col(0,1) as done in the original ver-
sion of the Phan attack). In the Phan attack, the attacker needs to guess these
16 subkey bytes. However, using the key schedule of AES-192, the amount of
guessed bytes can be reduced, as k6,(10,11) determine k5,9, k6,(10,13) determine
k5,8, and k6,(1,14) determine k5,12. Hence, it is sufficient to guess 13 key bytes
instead of 16.

Reducing the Time Complexity of Steps 3–4 of Phan’s Attack. The
time complexity of Steps 3 and 4 of the attack can be further reduced. We first
note that in the Phan attack the attacker can use four “output” differences
for the impossible differential, i.e., requiring one of the four sets SR(Col(0)),
SR(Col(1)), SR(Col(2)) or SR(Col(3)) of bytes to have a zero difference. Thus,
the attacker repeats Steps 3–4 four times, each time under the assumption
that the (shifted) column with zero difference is different. We shall describe
the steps the attacker performs under the assumption that xSR

4,SR(Col(0)) is zero.
In the improved attack, the attacker guesses the 80 bits of the key which

compose k6,SR(Col(0,1)) and k5,Col(0) (there are 2 bytes of k5,Col(0) which are
known due to the key schedule). Then, all the remaining pairs are decrypted
to find the differences in ∆xMC

4,SR−1(Col(0)) (we note that the actual values of
xMC

4,SR−1(Col(0,2,3)) are also known to the attacker). Under the assumption that
the pair has a difference which satisfies Condition (2) of Proposition 1 for
xSR

4,SR(Col(0)), the attacker can immediately deduce the actual difference in each
column of xMC

4 . This follows the fact that the MC operation is linear, and as
the attacker knows for each column the byte with zero difference before the MC
operation, and the difference in three bytes after the MC operation, she can
determine the difference in the fourth byte of each column.

Once ∆xMC
4 is computed, the attacker knows the input differences to Sub-

Bytes of round 5 as well as the output differences (in all bytes), and thus, she can
compute the exact inputs and outputs. Given an input and an output difference
of the SubBytes operation, there is on average one pair of actual values that
satisfies these differences.2 Once the outputs are known, the attacker encrypts
the values through Round 5 and retrieves the key bytes in k5,Col(1) suggested by
this pair. Of course, if the suggested key disagrees with the known byte (recall
that k5,9 is known due to the key schedule) then the pair is discarded (for the
specific 80-bit subkey guess). Otherwise, the pair is passed for further analysis
in Steps 5–6 of the attack (for a specific guess of 104 bits of the key, 80 that
were guessed and 24 that were computed).

The attacker starts with 259 pairs, and for each 80-bit key value and shifted
column, partially decrypts these pairs through three columns (two in one round,
and then another one in the second round), and analyzes the fourth column.
Hence, the time complexity of this step is roughly 2 · 259 · 280 · 4 = 2142 1-round
encryptions, which are equivalent to 2139.2 7-round encryptions.

2 More accurately, for randomly chosen input and output differences we expect that
about half of the combinations are not possible, about half propose two actual values,
and a small fraction suggest four values.

New Impossible Differential Attacks on AES 287

Each of the 259 · 280 · 4 = 2141 partially decrypted pairs is expected to suggest
one value for k5,Col(1). With probability 1 − 2−8 this value is discarded, and
thus, for a given 104-bit guess, we expect 2141 · 2−8/2104 = 229 pairs which are
analyzed in Steps 5–6.

Optimizing Steps 5–6 of the Phan 7-Round Attack. Step 5 of the Phan
attack can be performed efficiently using the hash table method described in [4].
A short description of this technique can be found in Appendix A. For each guess
of the 104 key bits in k5 and k6 there are 229 pairs, each suggesting 210 values of
the key to be removed. The time complexity of this step is 2104 · 229 · 210 = 2143

memory accesses. Therefore, it is expected that all the wrong guesses of the 104
guessed bits are discarded, and the attacker is left with the right value of 104
subkey bits. The rest of the key can be easily found using an exhaustive key
search.

The memory complexity of the attack also can be significantly improved. We
observe that there is no need to store the discarded values of the 136 guessed
subkey bits. Instead, for each 80-bit guess of k6,SR(Col(0,1)) and k5,Col(0), the
attacker repeats Steps 3–4 and stores for each value of k5,Col(1) the pairs which
can be used for analysis.

Therefore, the amount of memory required for the attack is smaller, as we
mainly need to store the data. The memory complexity of the attack is therefore
roughly 265 bytes of memory.

Finally, we slightly reduce the data complexity (and thus the time complexity)
of the attack. We observe that in the Phan attack, a wrong subkey for k6 has
probability 2−152.7 to remain after Step 5.3 As the time complexity of the attack
is already above 2130 encryptions, even if more subkeys remain, the attack can be
completed by exhaustive key search without affecting the overall time complexity.

We first note that out of W [24–29] (whose knowledge is equivalent to the
knowledge of the key) the attacker already knows 96 bits (for a given 104-bit
guess). Thus, as long as Step 5 does not suggest more than 234 values for the
104-bit key, the exhaustive key search phase of the attack would be faster than
2130. Hence, we can reduce the data complexity by a factor of 20.8, which in turn
reduces the time complexity of the attack by a similar factor.

Summarizing the improved attack, the data complexity of the attack is 291.2

chosen plaintexts, the time complexity is 2139.2 encryptions. The memory com-
plexity is 265 bytes of memory. For AES-256, as the attacker cannot exploit the
key schedule, the data complexity is 292 chosen plaintexts and the time com-
plexity is 2163 memory accesses.

4.2 Extension of the Phan Attack to 8-Round AES-256

The trivial extension of the Phan attack to 8-round AES-256 (by guessing the
last round subkey, partial decryption, and application of the 7-round attack)
leads to an attack whose time complexity is significantly higher than 2256. By

3 Due to space restrictions, the reader is refereed to [18] for the computation of this
figure.

288 J. Lu et al.

using key schedule arguments, changing the used impossible differentials, using a
more advanced attack algorithm, and reusing the data, we can present an attack
on 8-round AES-256.

Our attack still maintains the above general approach, i.e., the attack is of
the form:

– Encrypt 260 structures of 232 plaintexts each such that in every structure,
the bytes of SR−1(Col(0)) assume all the 232 possible values and the rest of
the bytes are fixed.

– For each value of k7 determine the pairs that are to be analyzed with this
subkey guess.

– Apply the 7-round attack with the selected pairs.

To perform the actual attacks, we need to make several modifications in the
internal 7-round attack. The first change is to use an impossible differential in
which the two active columns in xO

5 are (2,3) (rather than (0,1)). As a result, in
the 7-round attack there is no need to guess bytes from k5 since these key bytes
are known due to the key schedule, given the knowledge of k7. Thus, in each
iteration of the 7-round attack only 8 bytes from k6 are guessed.

As we show later, 290.7 chosen plaintexts are sufficient for the attack. Hence,
we describe the results while taking this figure into account. As the partial
decryption takes only 290.7 ·2128 = 2218.7 1-round decryptions, which is less than
the time complexity of the remainder of the attack, we do not optimize this step.

Analysis of Steps 3–4 of the 7-Round Attack in the 8-Round Attack
The most time consuming steps of the new 8-round attack are Steps 3–4 of the
7-round attack. This step is repeated 2128 times, where each time the attacker
has to analyze 257.7 pairs under 264 possible subkey guesses. However, the time
complexity of these steps can be further reduced.

We observe that if ∆xSR
4,SR(Col(0)) has a zero difference (recall that the at-

tack is repeated four times, once for each possible shifted column), and if xMC
4

has eight bytes with a zero difference, there are 28 − 1 possible differences in
each of the columns of xMC

4 . As there is a difference only in two bytes of each
column, we deduce that there are only 216 · (28 − 1) ≈ 224 different pairs of
actual values in the two active bytes in the pair (rather than 232). Thus, for
xMC

4,SR−1(Col(2,3)) there are 296 possible pairs of intermediate encryption values
which satisfy the required differences. As we are dealing with the actual val-
ues, we can partially encrypt these values through the SubBytes operation, and
the following ShiftRows operation and MC (applied to Columns (2,3) of xSR

5).
Given the value of k5,Col(2,3), the attacker is able to further compute the actual
values which enter the SubBytes of round 6, and its outputs.

Hence, Steps 3–4 can be performed in a slightly different manner: For each
guess of k7, the attacker computes k5,Col(1,2,3). Then, for each of the 296 possi-
ble actual values of xSB

5,SR−1(Col(2,3)), the attacker computes the respective val-
ues of xSR

6,SR(Col(2,3)). Then, the attacker partially decrypts all the ciphertexts
through round 7, and obtains xO

6 . For each of the 257.7 expected pairs with zero

New Impossible Differential Attacks on AES 289

difference in ∆(xO
6,SR(Col(0,1))), the attacker then computes the equivalent key

w6,SR(Col(2,3)) suggested by the pair for each of the 296 possible pairs of val-
ues of xSR

6,SR(Col(2,3)). For each of the 257.7 pairs, about 296/264 = 232 values of
w6,SR(Col(2,3)) are suggested.

An efficient implementation would therefore require only 232 memory accesses
for any remaining pair to retrieve this list of suggested w6,SR(Col(2,3)) values.
Then, each pair is added to the lists corresponding to the suggested values of
w6,SR(Col(2,3)). Steps 5 and 6 of the 7-round attack are repeated with these pairs
(for a guess of k7 and w6,SR(Col(2,3))). We note that as there are 257.7 pairs, each
suggesting 232 out of the 264 keys, we expect each key to be suggested by 225.7

pairs.
To further optimize the above attack, we note that the 296 pairs of values of

xSR
6,SR(Col(2,3)) (computed from the 296 possible pairs of values of xMC

4,SR−1(Col(2,3)))
are not changed as long as the value of k5,Col(2,3) is not changed. Thus, an
optimized implementation would try all possible values of k7 in the order of
the values of k5,Col(2,3). This reduces the total computational time of generating
these 296 pairs of values to about 264 · 296 encryptions of two columns for two
rounds, which is negligible with respect to the time complexity of the attack.

To conclude, this approach reduces the time complexity of this step to only
2128 · 257.7 · 232 · 2 = 2218.7 memory accesses for a given shifted column with zero
difference after round 4, or a total of 2220.7 memory accesses.

Reducing the Time Complexity of Step 5 of the 7-Round Attack. As
in the 7-round attack, Step 5 (of the 7-round attack) can be performed efficiently
using the hash table method described in [4]. The time complexity of this step
is 2192 · 237.7 = 2229.7 memory accesses.

The data complexity of the attack can be reduced as the attack can tolerate
wrong keys which remain with probability higher than 2−152. Given the time
complexity of the rest of the attack, it is sufficient to set the probability at 2−43,
i.e., we expect that out of the 2192 guesses of bytes in k7 and w6, only 2149 guesses
remain. For each such guess, the attacker guesses the remaining 64 bits of w6,
computes k6 from w6, recovers the secret key, and tests it using trial encryptions.
The time complexity of this step is close to 2149 · 264 = 2213 encryptions, which
is negligible with respect to the other steps of the attack.

Another observation is that it is possible to reuse the data and repeat the 7-
round attack using different pairs of columns. The attack can be repeated with
Col(1, 3) or Col(1, 2) in round 5 instead of Col(2, 3). Thus, the attacker repeats
the above analysis, assuming that there is no difference in columns 1 and 2 (or
1 and 3) of xO

5 . The attack algorithm is similar (with slight modifications of
the columns and the bytes involved). Each of these attacks retrieves a candidate
value for k6,SR(Col(1,2)) (or k6,SR(Col(1,3)) in the inner 7-round attack. As these
subkeys share bits, if a candidate value is discarded in one of the attacks, it
is sufficient to deduce that this value cannot be true. Hence, it is sufficient to
use 289.1 chosen plaintexts. The time complexity does not increase despite the 3
repetitions of the attack, as the data analyzed each time is reduced by a similar
factor.

290 J. Lu et al.

Summarizing the 8-round attack, the data complexity of the attack is 289.1

chosen plaintexts, the time complexity is 2229.7 memory accesses, and the mem-
ory complexity is about 2101 bytes of memory (used mostly to store the table of
296 pairs).

5 Summary and Conclusions

In this paper we improved the previously known impossible differential attacks
on 7-round AES and presented new attacks on 8-round AES-256. This research
shed more light on the security of AES, especially on the way to exploit the
relatively slow diffusion in the key schedule algorithm.

We presented two attacks on 7-round AES. The first attack (applicable to
AES-192 and AES-256) has a data complexity of about 291.2 chosen plaintexts
and a time complexity of 2139.2 encryptions for AES-192 (or 2163 memory ac-
cesses for AES-256). The second attack requires 2112.2 chosen plaintexts, and has
a running time of 2117.2 memory accesses (when attacking AES-128, a slightly
higher complexities are needed for AES-192 and AES-256).

We also presented two attacks on 8-round AES-256. The first and better one
requires 289.1 chosen plaintexts and has a time complexity of 2229.7 memory
accesses. The second one has a slightly smaller running time, in exchange for
much more data (2111.1 chosen plaintexts and 2224.3 memory accesses).

References

1. Bahrak, B., Aref, M.R.: A Novel Impossible Differential Cryptanalysis of AES. In:
Proceedings of the Western European Workshop on Research in Cryptology 2007,
Bochum, Germany (2007)

2. Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and
Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer,
Heidelberg (1999)

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23.
Springer, Heidelberg (1999)

4. Biham, E., Keller, N.: Cryptanalysis of Reduced Variants of Rijndael (unpublished
manuscript, 1999)

5. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

6. Chen, J.: Personal communications (August 2008)
7. Chen, J., Wei, Y., Hu, Y.: A New Method for Impossible Differential Cryptanal-

ysis of 7-round Advanced Encryption Standard. In: Proceedings of International
Conference on Communications, Circuits and Systems Proceedings 2006, vol. 3,
pp. 1577–1579. IEEE, Los Alamitos (2006)

8. Chen, J., Hu, Y., Wei, Y.: A New Method for Impossible Differential cryptanalysis
of 8-Round Advanced Encryption Standard. Wuhan University Journal of National
Sciences 11(6), 1559–1562 (2006)

New Impossible Differential Attacks on AES 291

9. Chen, J., Hu, Y., Zhang, Y.: Impossible differential cryptanalysis of Advanced
Encryption Standard. Science in China Series F: Information Sciences 50(3), 342–
350 (2007)

10. Cheon, J.H., Kim, M., Kim, K., Lee, J.-Y., Kang, S.: Improved Impossible Dif-
ferential Cryptanalysis of Rijndael and Crypton. In: Kim, K.-c. (ed.) ICISC 2001.
LNCS, vol. 2288, pp. 39–49. Springer, Heidelberg (2002)

11. Daemen, J., Rijmen, V.: AES Proposal: Rijndael, NIST AES proposal (1998)
12. Daemen, J., Rijmen, V.: The design of Rijndael: AES — the Advanced Encryption

Standard. Springer, Heidelberg (2002)
13. Demirci, H., Selçuk, A.A.: A Meet-in-the-Middle Attack on 8-Round AES. In: Pro-

ceedings of Fast Software Encryption 15. LNCS, vol. 5806, pp. 116–126. Springer,
Heidelberg (2008)

14. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

15. Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: Proceedings
of the Third AES Candidate Conference (AES3), New York, USA, pp. 230–241
(2000)

16. Kim, J., Hong, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced AES-
192 and AES-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 225–241.
Springer, Heidelberg (2007)

17. Lucks, S.: Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Keys. In:
Proceedings of the Third AES Candidate Conference (AES3), New York, USA, pp.
215–229 (2000)

18. Phan, R.C.-W.: Impossible Differential Cryptanalysis of 7-round Advanced En-
cryption Standard (AES). Information Processing Letters 91(1), 33–38 (2004)

19. Zhang, W., Wu, W., Feng, D.: New Results on Impossible Differential Cryptanalysis
of Reduced AES. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817,
pp. 239–250. Springer, Heidelberg (2007)

20. Zhang, W., Wu, W., Zhang, L., Feng, D.: Improved Related-Key Impossible Dif-
ferential Attacks on Reduced-Round AES-192. In: Biham, E., Youssef, A.M. (eds.)
SAC 2006. LNCS, vol. 4356, pp. 15–27. Springer, Heidelberg (2007)

A The Biham-Keller Technique for Efficiently
Eliminating Wrong Subkeys

In [4] a technique for eliminating wrong subkey candidates in the round be-
fore the impossible differential is presented. The attack has two stages: In the
precomputation stage, the attacker considers all possible pairs (z1, z2) of values
of xMC

0,Col(0) that have difference in a single byte. For all these 210 · 232 = 242

pairs, the attacker computes the corresponding xI
0,SR−1(Col(0)) values (denoted

by (w1, w2)), and stores in a table the values (w1 ⊕ w2, w1). The table is sorted
according to the w1 ⊕ w2 values.

In the online stage, for each input pair, the attacker computes the XOR differ-
ence between the two plaintexts in the bytes SR−1(Col(0)), and uses the table
to detect the 210 pairs of xI

0,SR−1(Col(0)) values corresponding to this difference.
Since the AddRoundKey operation does not change the XOR difference between

292 J. Lu et al.

the two plaintexts, by XORing the 210 corresponding w1 values with one of the
plaintexts, the attacker gets a list of 210 values of k−1,SR−1(Col(0)) that lead
the plaintext pair to the input difference of the impossible differential at the
beginning of Round 1.

These values are then marked in a list of all the possible k−1,SR−1(Col(0))
values. Once all the values in the list are marked, the attacker concludes that a
contradiction occurred, and discards the value of the corresponding subkeys in
the rounds after the impossible differential (i.e., in k5, k6, and k7).

B The Bahrak-Aref Attack and Our Improvements

The algorithm of the BA attack, as described in [1], has the total time complexity
of the attack is 2121 7-round AES encryptions.4 The data complexity of the attack
is 2117.5 chosen plaintexts, and the memory complexity is 2109 bytes of memory
required for storing the list of discarded key values.

We can improve this attack by using the following points (due to space con-
sideration the full details are given in the full online version of this paper):

– For each candidate pair, we start by guessing the difference which is impos-
sible, and derive from it the subkey which the pair suggests (rather than
trying all subkeys for a given pair).

– In the attack algorithm there is a location where there are 279.2 pairs, where
there are only 264 possible differences. As the analysis is “difference” based
it is possible to analyze each difference at this stage, rather then each pair.

– It is possible to use 4 different differentials in the first round of the attack,
thus increasing the number of subkey candidate discarded by a given pair
(and thus reducing data complexity).

– It is also possible to repeat the attack four times according to the exact
“output difference” of the impossible differential. Each of these trials have
a shared 96-bit subkey value (out of 112 bits each trial analyzes). Thus, by
carefully collecting the results, it is possible to even further reduce the data
complexity.

– Using the subkey schedule algorithm it is possible to reduce some of the
analysis work, by not analyzing subkey combinations which are impossible.

– Using the subkey schedule algorithm it is possible to perform the exhaustive
search part efficiently (by guessing the last three bytes required for a trial
encryption).

– Of course, the data complexity reduction also leads to a lower time
complexity.

The total time complexity of the modified attack is 2117.2 memory accesses
and data complexity of 2112.2 chosen plaintexts. For AES-192 and AES-256 there
is a need for more data (to allow better discarding of wrong key candidates).

4 In [1] one specific operation was considered as a full one-round decryption, while it
is only 1/4 round in reality.

New Impossible Differential Attacks on AES 293

SB SR MC ARK
ki

SB

SB

ARK
ki+2

MCSRSB

A ContradictionARK
ki+1

MCSR

ARK
wi+3

SR

A gray box stands for a non-zero difference in the byte, while a white box stands for a
zero difference.

Fig. 3. An Example for a 4-Round Impossible Differential of AES

For AES-192 2113.8 chosen plaintexts are needed and the time complexity of the
attack is 2118.8 memory accesses. For AES-256, similar result can be obtained,
but the attacker would have to repeat his attack several times.

It is also possible to extend this attack to 8-round AES-256. Instead of guessing
the last round subkey, we use similar methods as before, and slightly change the
output of the impossible differential to exploit the key schedule algorithm. This
along with the technique of guessing differences rather than keys and reapplying
the attack 12 times (instead of only 4 as before), leads to an attack which uses
2111.1 chosen plaintexts, and has time complexity of 2227.8 memory accesses.

C The Basic Impossible Differential of AES

In Figure 3 we give the structure of the impossible differentials used in all the
impossible differential attacks on AES.

Reflection Cryptanalysis of Some Ciphers

Orhun Kara�

TÜBİTAK UEKAE
National Research Institute of Electronics and Cryptology

Gebze 41470 Kocaeli/Turkey
orhun@uekae.tubitak.gov.tr

Abstract. In this paper, we provide a theoretical infrastructure of the
reflection attack. In addition, we mount the reflection attack on some
ciphers such as GOST, DEAL and a variant of DES. The attack method
exploits certain similarities among round functions which have not been
utilized in the previous self-similarity attacks. As an illustration, we in-
troduce a chosen plaintext attack on full-round GOST under the assump-
tion that its S-boxes are bijective. The attack works on approximately
2224 keys and its complexity is 2192 steps with 232 chosen plaintexts.
Also, we introduce a known plaintext attack on 30-round GOST, which
works for any key. The key is recovered with 2224 steps by using only
232 known plaintexts. As another example, we deduce that the reflection
attack works on DEAL for certain keys. For instance, a 192-bit DEAL-
key can be identified as a weak key by using approximately 266 known
plaintexts. Then, the key can be recovered with 2136 steps. The number
of weak keys of 192-bit DEAL is roughly 280.

Keywords: Reflection attack, Slide Attack, Related Key Attack, Self-
similarity, Block Cipher, Round Function, Round Key, Key Schedule,
Cryptanalysis.

1 Introduction

The reflection attack was first introduced in FSE 2007 by Kara and Manap [22].
The authors mounted the reflection attack on Blowfish and described a new class
of weak keys. Also, a brief description of the attack was given in its appendix
[22]. However, the attack scenario is restricted through the specific high level
structure of Blowfish itself. Some new descriptions of Blowfish were given by
rearranging specific arithmetic operations on the round keys so as to impose
certain conditions on the round keys. In this paper, we give a general view of the
attack idea, consummating the specific attack on Blowfish, and supply several
applications mounted on distinct ciphers such as GOST, DEAL and 2K-DES.
In addition, we provide a theoretical infrastructure of the attack method.

The reflection attack is related to the slide attacks [10,11] and the related
key attacks [3,28] as it is also a kind of self-similarity analysis. However, the
� Supported in part by the European Commission through the project FP-7 ICE under

the project grant number 206546.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 294–307, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reflection Cryptanalysis of Some Ciphers 295

principle and its assumptions are different from those in [10,11] or in [3,28].
Therefore, it is possible to apply the attack on some ciphers resistant to the
previous self-similarity attacks. The reflection attack exploits certain similarities
of some round functions of encryption process with those of decryption. This is
the main difference from the previous self-similarity attacks, which exploit the
similarities among the round functions only in encryption process. The main
principle behind the reflection attack consists of exploiting a biased distribution
of the fixed points of several intermediate rounds, and extending these prop-
erties to the full cipher. The reflection attack works especially well on ciphers
containing involutions, since the fixed points of intermediate rounds are likely
extended to the full cipher through the involutions.

The assumptions of the reflection attack are weaker than those of previous self-
similarity attacks in some cases. For instance, reflection attacks are not limited
to ciphers with simple key schedules. We give an example for the cipher DEAL,
which has a complicated key schedule, and discover certain weak keys. A more
interesting example is the reflection attack mounted on Blowfish [22].

We also apply the attack on GOST and 2K-DES (a variant of DES defined
in [10]). They all are theoretical attacks with marginal workloads. We intro-
duce a chosen plaintext attack on full-round GOST under the assumption that
its S-boxes are bijective. The attack works on approximately 2224 keys and its
complexity is 2192 steps with 232 chosen plaintexts. In addition, we introduce a
known plaintext attack on 30-round GOST which works for any key. The key is
recovered with 2224 steps by using only 232 known plaintexts. In another exam-
ple, we recover 2K-DES key by using 233 known plaintexts with a negligible time
complexity. These attacks on GOST and 2K-DES are the best attacks known
so far. Moreover, we detect that certain classes of DEAL keys are vulnerable to
reflection attacks. For example, a 192-bit DEAL-key can be identified as a weak
key by using approximately 266 known plaintexts. Then, the key can be recovered
with 2136 steps. The number of DEAL’s weak keys is roughly 280. So, the work-
load of identifying a weak key is less than the cardinality of the weak-key class.

This paper is organized as follows. We introduce notations and summarize
previous self-similarity analyses given in [10,11] and in [3,28] in Section 2. Then,
we give a simple example of the reflection attack on GOST in section 3. The
attack does not require any theoretical background. After this introductory ex-
ample, the fundamental idea of the reflection attacks and the general statements
are given in Section 3, including the assumptions and the description of a typical
attack on Feistel networks. In the following three sections, we give some attack
examples on three different ciphers. Finally, we conclude by discussing about the
new security criteria of block ciphers.

2 Notation and Previous Self-similarity Analyses

We use the following notations throughout the paper. Let EK : GF (2)n →
GF (2)n be a block cipher of block length n defined by a key material K and DK :
GF (2)n → GF (2)n be its inverse mapping. Assume that EK is a composition of
some round functions:

296 O. Kara

EK(x) = Fkr ◦ Fkr−1 ◦ · · · ◦ Fk1(x), x ∈ GF (2)n,

where r is the number of rounds, k1, ..., kr are the subkeys (round keys) and Fki

is the i-th round function. Define the composite of j − i + 1 functions starting
from i and denoted by FK [i, j] as

FK [i, j] = Fkj ◦ · · · ◦ Fki for 1 ≤ i < j ≤ r (1)

and as identity map for i > j. Such functions can be called intermediate func-
tions. Let UK(i, j) be the set of fixed points of the function FK [i, j]. More
explicitly,

UK(i, j) = {x ∈ GF (2)n : FK [i, j](x) = x}.

One of the generic attack methods that exploits some degree of self-similarity
is the slide attack [10,11]. In general, the typical slide attack can be applied if
the sequence of round keys has a short period, such as 1, 2 or 4. For instance,
if all the round keys are same, ki = K, then the encryption function will be
EK(x) = F r

K(x) = y. Let FK(x) = x′. Encrypting x′ we have EK(x′) = y′.
Then, from these two encryptions we obtain two equations which are probably
easy to solve: FK(x) = x′ and FK(y) = y′. Such (x, x′) pairs are called slid pairs.
The laborious part of the attack is to identify slid pairs. This basic attack can
be generalized if the period of sequence of round keys is 2 (i.e., ki = ki+2) or 4
(i.e., ki = ki+4) [11].

Related key attacks proposed by Biham [3] and independently by Knudsen
[28] are based on the powerful assumption that the attacker knows a relation
between several keys and can access encryption function with these related keys.
The goal is to find the keys. One of the most basic type of the relations defined
over a pair of keys is that the i-th subkey of one key is equal to the (i + 1)-th
subkey of the other key.

Self-similarity attacks are quite powerful cryptanalytic tools and there are
several extensions of both slide attacks (e.g [4,11,17,14]) and related key attacks.
In particular, they are serious attacks on block ciphers used in hash modes.
Some related key attacks are combined with the well-known statistical attacks
such as differential attack, linear attack, boomerang attack, square attack etc
[15,5,6,7,20,26,24]. A recent study by Biham, Dunkelman and Keller unifies the
classical related key attacks which use related key pairs and the composed attacks
exploiting both self-similarities and statistical deviances [8].

3 Chosen Plaintext Attack on Full-Round GOST

GOST, the Russian encryption standard [36], is a 32 round 64 bit Feistel net-
work with 256 bit key. It has a simple key schedule: 256 bit key is divided
into eight 32 bit words k0, ..., k7 and the sequence of round keys is given as
k0, ..., k7, k0, ..., k7, k0, ..., k7, k7, k6, ..., k1, k0. The round key is involved by the
modular addition in the round function. We do not consider details of the round
function. We only assume that it is bijective.

Reflection Cryptanalysis of Some Ciphers 297

There is no known attack on a single key which is better than the exhaustive
search for full-round GOST. A related key differential cryptanalysis is shown in
[24]. The attack is impractical for properly chosen S-boxes. A slide attack has
been mounted on 20 round GOST⊕, a variant of GOST defined in [11]. This
attack uses 233 known texts and 265 memory space and the key is recovered in
270 encryptions. Another related key differential attack given in [34] has been
mounted on 21 round GOST. This attack has a data complexity of 256 chosen
plaintexts. A recent related key differential attack that uses the idea of Seki and
Kaneko in [34], is mounted on GOST [25]. The attack is on full-round GOST and
recovers 12 bits of the key with 235 chosen plaintexts in 236 steps. However, the
attack is based on a powerful assumption that the attacker knows that the two
related keys differ in only eight specific bits. Another recent study by Biham,
Dunkelman and Keller is the improved slide attack mounted on GOST [4]. In this
attack, they firstly recover the key for 24-round reduced GOST in 263 steps and
then extend the attack to 30-round GOST with a workload of 2254 encryptions
by using almost the entire code book.

Denote the first eight rounds of GOST as FK [1, 8]. Note that FK [1, 8] ends
with a swap operation. Then, the GOST encryption function is given as

EK(x) = FK [8, 1] ◦ S ◦ F 3
K [1, 8](x),

where S is the swap operation of the Feistel network and FK [8, 1] is the inverse
of FK [1, 8]. In this work, we mount two reflection attacks on GOST. The first
attack is a chosen plaintext attack on full-round GOST and it is successful if the
key has certain properties. The number of such keys is roughly 2224. The second
attack is a known plaintext attack on 30-round GOST.

3.1 Description of the Attack

Assume there exists x such that x is a fixed point of both FK [1, 8] and the
swap operation S, i.e., FK [1, 8](x) = x and S(x) = x. Then, x is also a fixed
point of the encryption function EK . This observation leads to the following
attack: Encrypt all 232 plaintexts whose left and right halves are equal and
collect the fixed points in a set, say U . If U is empty, then the attack is not
applicable. Otherwise, for any x in U solve the equation FK [1, 8](x) = x for K.
Note that there are 2192 solutions and each of the solutions may be obtained
by guessing k0, k1, ..., k5 and then determining k6 and k7. Guessing k0, k1, ..., k5,
we construct a two-round Feistel network with unknown keys k6 and k7 and
an input-output pair given as (FK [1, 6](x), x). Then, solving the system for k6
and k7 is straightforward since the round functions Fk6 and Fk7 are bijective
and their outputs are known. By taking the inverses of Fk6 and Fk7 , we obtain
the inputs and then k6 and k7. Consequently, we obtain 2192 candidates for the
key by solving FK [1, 8](x) = x. We recover the correct key by searching over all
the candidates by roughly 2192 encryptions. We solve FK [1, 8](x) = x for each
x ∈ U . However, it is most likely that U is empty if there exists no fixed point of
FK [1, 8] with the equal halves. On the other hand, the number of keys satisfying
that ∃ x such that FK [1, 8](x) = x and S(x) = x is roughly 2224. Because, the

298 O. Kara

expected number of fixed points is one and the probability that any arbitrary
value is a fixed point of S is 2−32.

4 Generalizations of Reflection Attack

The reflection attack makes use of high level self-similarity. We compose a new
function whose output matches with the output of encryption function on a
large subset of input space by exploiting a biased distribution of fixed points of
a properly chosen intermediate function and by extending its properties through
certain involutions. The following statement plays a crucial role in the basic
attack. The principle in the statement is depicted in Figure 1.

Lemma 1. Let i, j be given such that 0 < j − i < i + j ≤ r. Assume that
Fki−t = F−1

kj+t
for all t : 1 ≤ t < i. If FK [i − t, i − 1](x) ∈ UK(i, j), then

x ∈ UK(i − t, j + t) for all t : 1 < t < i. In addition, if x ∈ UK(i − t, j + t) for
some t : 1 < t < i, then FK [i− t, i− 1](x) ∈ UK(i, j).

Proof. Assume that FK [i− t, i− 1](x) ∈ UK(i, j). Then we have

FK [i − t, j + t](x) = FK [j + 1, j + t] ◦ FK [i, j] ◦ FK [i− t, i− 1](x)
= FK [j + 1, j + t] ◦ FK [i− t, i− 1](x), since FK [i− t, i− 1](x) ∈ UK(i, j),
= x, since Fki−t = F−1

kj+t
for all t : 1 < t < i.

Hence x ∈ UK(i−t, j+t). On the other hand, assume that x ∈ UK(i−t, j+t) for
some t : 1 < t < i. Then the input of FK [i, j] is FK [i− t, i−1](x) and the output
of FK [i, j] is F−1

K [j + 1, j + t](x). However, F−1
K [j + 1, j + t] = FK [i − t, i − 1]

since we assume that Fki−t = F−1
kj+t

. Hence, FK [i− t, i− 1](x) ∈ UK(i, j).
�
The following corollary can lay the groundwork for an attack on product ciphers
whose some round functions in the encryption are equal to some round functions
in the decryption. The corollary works for the ciphers whose first (i+j−1)-round
iteration has many fixed points. In this case, the first i + j − 1 rounds may be
disregarded during the encryption of fixed points.

Fki−t Fki−2 Fki−1 FK [i, j] Fkj+1 Fkj+2 Fkj+t

PtP2P1P0P0P1P2Pt

FK [i− 2, j + 2]

FK [i− t, j + t]

Fig. 1. The reflection property with palindromic round keys given in Lemma 1. The
fixed point, P0, of the intermediate function FK [i, j] is extended to the fixed point, Pt,
of FK [i− t, j + t] through the involutions under the assumption that Fki−t = F−1

kj+t
.

Reflection Cryptanalysis of Some Ciphers 299

Corollary 1. Let i, j be given such that 0 < j − i < i + j ≤ r. Assume that we
have Fki−t = F−1

kj+t
for all t : 1 < t < i. Then, the encryption function EK is

equal to the function FK [i + j, r] on the pre-image set, F−1
K [1, i− 1](UK(i, j)).

Proof. The set F−1
K [1, i− 1](UK(i, j)) is equal to UK(1, j + i− 1) by Lemma 1.

On the other hand, we have FK [1, j + i− 1](x) = x for x ∈ UK(1, j + i− 1) by
definition. Thus,

EK(x)=Fkr ◦ · · · ◦ Fk1(x)=FK [i + j, r] ◦ FK [1, i + j − 1](x) = FK [i + j, r](x).
�

Corollary 1 states that there exists another function which equals to the encryp-
tion function on some special subset of the encryption space. This function is
probably much weaker than the encryption function since its number of rounds
may be much less than r. Then, the attack given below recovers the round keys
ki+j , ..., kr by solving the system of equations

FK [i + j, r](x) = EK(x) = y. (2)

We need m elements of F−1
K [1, i − 1](UK(i, j)) for solving Equation 2. The ex-

pected number of elements in F−1
K [1, i− 1](UK(i, j)) chosen randomly among t

plaintexts is (t·|UK(i, j)|)/2n. So, t should be approximately (m·2n)/(|UK(i, j)|)
in order to get about m elements of F−1

K [1, i − 1](UK(i, j)). Each plaintext ci-
phertext pair gives an equation in the form of Equation (2). However, only ap-
proximately m of these equations are the correct equations. One may try all the
plaintexts to solve Equation (2) exhaustively. However, if the conditional prob-
abilities, Pr(FK [1, i − 1](x) ∈ UK(i, j) | (x, EK(x))), are large enough for some
x, then it is more likely that the corresponding equations are correct. Choose �
plaintexts, x1, ..., x�, such that the sum of all the � probabilities corresponding
to xi’s is roughly m. This choice provides approximately m correct equations
among these � equations.

The correct equation set can be obtained by trying all subsets of m elements
of {x1, ..., x�}. Since the search should be sorted according to the probabilities of
subsets, we get an upper bound for the time complexity which is

(
�
m

)
·C, where

C is the time complexity of solving one equation set. This is a typical reflection
attack. There are three main parameters which specify the complexity of the
attack:

1. m: The number of required pairs (x, y) to solve Equation (2). By solving, we
mean that there exists a unique solution if all of the m equations are correct
and a contradiction (no solution) otherwise.

2. |UK(i, j)|: The cardinality of UK(i, j).
3. Pr(FK [1, i − 1](x) ∈ UK(i, j) | (x, EK(x))): The probability that FK [1, i −

1](x) is in UK(i, j) given EK(x).

The probability that FK [1, i−1](x) is in UK(i, j) is (|UK(i, j)|)/2n for randomly
chosen x. However, for given particular values of EK(x), the probability may be
much greater or less than (|UK(i, j)|)/2n depending on the structure of a cipher.
The following statement summarize the attack.

300 O. Kara

Theorem 1. Assume that we need m pairs to solve Equation (2) and let C be
the time required for solving it in terms of the number of encryptions. Then,
the attack to recover the round keys ki+j , ..., kr has a data complexity of (m ·
2n)/|UK(i, j)| known plaintexts. Assume the probabilities Pr(FK [1, i − 1](x) ∈
UK(i, j) | (x, EK(x))) are pre-calculated and the greatest � probabilities are chosen
among (m · 2n)/|UK(i, j)| plaintexts so that

�∑
s=1

Pr(FK [1, i− 1](xs) ∈ UK(i, j) | (xs, EK(xs))) ≈ m. (3)

Then, the attack has a time complexity which is at most
(

�
m

)
· C number of

encryptions.

Let us note that the false alarm probability of the attack is disregarded in The-
orem 1 since we assume that the solution set is empty if at least one of the
equations is incorrect.

4.1 Reflection Attack on Feistel Networks

Let a plaintext x ∈ GF (2)n be given as x = (x0, x1); x0, x1 ∈ GF (2)n/2.
The Feistel structure can be stated as a recursive function defined as xi =
Rki−1(xi−1) ⊕ xi−2 with the initial conditions given by x = (x0, x1). The func-
tion R : GF (2)n/2 → GF (2)n/2 is the encryption function and ⊕ is the “XOR”
operation. The i-th round operation is defined as

Fki(xi−1, xi) = (xi, xi+1) = (xi, Rki(xi)⊕ xi−1) (4)

for i ≤ r. In general, the swap operation is excluded in the last round and
(xr+1, xr) is the corresponding ciphertext. With some abuse of terminology, R
is also called the round function. We call the stream x0, x1, ..., xr, xr+1 the en-
cryption stream of x = (x0, x1) with respect to K.

Proposition 1 ([13]). For a natural number m < r, assume that km−i =
km+i, ∀i : 1 ≤ i ≤ min{r − m, m − 1}. Let x = (x0, x1) be encrypted and
x0, x1, ..., xr, xr+1 be its encryption stream. If Rkm(xm) = 0, then xm−i =
xm+i, ∀i : 1 ≤ i ≤ min{r − m, m − 1}. Conversely, if xm−i = xm+i and
xm−i+1 = xm+i−1 for some i, then Rkm(xm) = 0.

Proposition 1 has already been known during the studies on cycle structures
of DES (see [13,32]). Hence, the notion of the fixed points of the weak keys of
DES is well known. However, the studies focused on the algebraic properties of
DES permutations and their short cycles rather than developing a key recovery
attack [13,32,21,31]. The following corollary points out the opposite direction of
this old phenomenon.

Corollary 2. Assume that each round key ki determines a round function Rki

randomly. Let x = (x0, x1) be encrypted and x0, x1, ..., xr, xr+1 be its encryption

Reflection Cryptanalysis of Some Ciphers 301

stream. Assume that the round number r is even, r = 2r′ > 4, and kr′−i = kr′+i

∀i : 1 ≤ i < r′. Let sr′ be the cardinality of the pre-image set of the zero output,
R−1

kr′
(0). Then, Pr(x0 = xr) = 2−

n
2 (sr′ + 1− 2−

n
2 · sr′) and

Pr(Rkr′ (xr′) = 0 |x0 = xr) =
sr′

sr′ + 1− 2−
n
2 · sr′

.

Proof. Assume that the round function is random. Then, the probability that
x0 = xr is given as

Pr(x0 = xr) = Pr(x0 = xr |Rkr′ (xr′) = 0)Pr(Rkr′ (xr′) = 0)
+ Pr(x0 = xr |Rkr′ (xr′) �= 0)Pr(Rkr′ (xr′) �= 0)

= sr′ · 2−n/2 + 2−n/2(1− sr′ · 2−n/2) = 2−
n
2 (sr′ + 1− sr′ · 2−n

2).

Note that Pr(x0 = xr |Rkr′ (xr′) �= 0) = 2−n/2 since r > 4. On the other hand,
Pr(x0 = xr |Rkr′ (xr′) = 0) = 1 by Proposition 1. Hence, we conclude that

Pr(Rkr′ (xr′) = 0 |x0 = xr) =
Pr(x0 = xr |Rkr′ (xr′) = 0) · Pr(Rkr′ (xr′) = 0)

Pr(x0 = xr)

=
sr′

sr′ + 1− 2−
n
2 · sr′

.
�

The following theorem illustrates the property exploited by the attack on a
Feistel network with palindromic round keys.

Theorem 2. Assumptions are as in Corollary 2. Then the equality x0 = xr

implies that the equation

x1 = Rkr (xr)⊕ xr+1. (5)

is true with probability
sr′

sr′ + 1− 2−
n
2 · sr′

.

Proof. Assume that x0 = xr. Then by Corollary 2, we have Rkr′ (xr′) = 0 with
probability

sr′

sr′ + 1− 2−
n
2 · sr′

.

Thus, the equality x1 = xr−1 is true with the same probability by
Proposition 1. On the other hand xr+1 = Rkr (xr) ⊕ xr−1. Thus, the proba-
bility that x1 = Rkr (xr)⊕ xr+1 is

sr′

sr′ + 1− 2−
n
2 · sr′

.
�

Reflection Attack on Feistels. Note that the parameters in Theorem 2 are all pub-
lic except the last round key. (x0, x1) forms the plaintext and (xr+1, xr) forms the
corresponding ciphertext. So, Theorem 2 leads to a straightforward attack: En-
crypt some plaintexts and collect those such that x0 = xr. If the round keys sat-
isfy that k r

2−i = k r
2+i, then the corresponding equations, x1 = Rkr (xr)⊕xr+1, are

302 O. Kara

correct with probability roughly sr′/(sr′ + 1) (this probability is almost one half
if the round function is a permutation) for the collected plaintexts by Theorem 2.
Most probably, these equations are easy to solve. The last round key is recovered
by solving these equations. One may apply the attack several times with properly
chosen parameters or use the key schedule to recover the main key.

5 Known Plaintext Attack on 30-Round GOST

Consider 30-round GOST by eliminating the first two rounds. Then, the encryp-
tion function, E

(30)
K , is given as

E
(30)
K (x) = FK [8, 1] ◦ S ◦ F 2

K [1, 8] ◦ FK [3, 8](x)

where FK [8, 1] is the inverse of FK [1, 8]. Recall that S has 232 fixed points,
which are all the vectors whose left halves equal their right halves. Take S as
the intermediate function. Then, FK [8, 1] ◦ S ◦ FK [1, 8] has also 232 fixed points
by Lemma 1. Therefore, if we encrypt 232 arbitrary plaintexts, then we expect
that one of the ciphertexts is a fixed point of FK [8, 1]◦S ◦FK [1, 8]. Assume that
y is a fixed point of FK [8, 1] ◦ S ◦ FK [1, 8] and x is the corresponding plaintext.
Then, we have E

(30)
K (x) = y = FK [1, 8] ◦ FK [3, 8](x). Solve the equation, y =

FK [1, 8] ◦FK [3, 8](x) for K. Note that the equation has 2192 solutions. Guessing
the subkeys, k2, k3, ..., k7, we obtain a two-round Feistel network with keys k0
and k1, and an input/output pair given as (FK [3, 8](x), FK [8, 3](y)). Then, as in
the case of chosen ciphertext attack, recover k0 and k1 by reversing the round
functions. Then, one immediate check is whether y is a fixed point of FK [8, 1]◦S◦
FK [1, 8] by checking FK [1, 8](y) has equal halves. All the 232 plaintext/ciphertext
pairs are checked and we expect that one of the ciphertexts is a fixed point and
hence the corresponding equation, y = FK [1, 8] ◦ FK [3, 8](x), is correct. Then,
the correct key will be one of the 2192 candidates. In conclusion, we recover the
key with at most 2224 encryptions by using only 232 known plaintexts.

Remark 1. It is believed that GOST is less secure without the twist in the order
of round keys. In [11], it is concluded that the twist of GOST hinders the slide
attacks. However, it is surprising that the reflection attack exploits this twist
property of GOST.

6 Cryptanalysis of 2K-DES

2K-DES is one of the modified DES examples given in [10]. 2K-DES uses two
independent 48 bit keys K1 and K2 and has a very simple key schedule. K1 is
used in the odd-numbered rounds and K2 is used in the even-numbered rounds.
The total number of rounds is 64. It is most likely that 2K-DES resists to the
conventional differential [9] and linear attacks [30] due to its increased number
of rounds. Biryukov and Wagner have proposed a slide attack with a complexity
independent of the number of rounds [10]. The attack uses 232 known plaintexts

Reflection Cryptanalysis of Some Ciphers 303

and its time complexity is 250 2K-DES encryptions. Then, it is improved to 233

steps by applying complementation slide techniques [11].
Observe that k32−i = k32+i and k33−i = k33+i for i = 1, ..., 31 (note that

this condition is weaker than that of slide attack in [10]). Hence, one can apply
reflection attack to both encryption function and decryption function. Assume
that s32 = s33 = 1 for a given key.

We need to find one plaintext x = (x0, x1) satisfying x64 = x0 and another
plaintext x′ = (x′

0, x
′
1) satisfying x′

65 = x′
1. The former gives the equation x1 =

RK2(x64) ⊕ x65 and the latter gives x′
64 = RK1(x′

1) ⊕ x′
0 . Each equation is true

with a probability of nearly one half and one needs approximately 232 known plain-
texts to get approximately four equations by Theorem 2. Two of them are from
the encryption direction, whereas the other two equations are from the decryption
direction. Two equations deduced from x64 = x0 give at most 217 candidates for
K2 whereas other two equations deduced from x′

65 = x′
1 give at most 217 candi-

dates for K1. One may get the correct K1 and K2 by searching over these solution
sets exhaustively with 234 2K-DES encryptions. As a result, the reflection attack
on 2K-DES uses 232 known plaintexts and recovers the keys in 234 steps.

It is obvious that the attack can be improved further by increasing the amount
of plaintexts. If we use 233 plaintexts, then we expect four equations for each key
and two of them to be correct. It is most likely that two correct equations out
of four equations give a unique solution and we get no solution for the other two
equations. Hence, the time complexity in encryption is 2 ·

(4
2

)
· C by Theorem 1

where C = 2/64 = 2−5 encryption if the four equations are given. The equations
can be obtained by 233 checking whether the left half of a plaintext is equal to
the right half of the corresponding ciphertext. Observe that the attack works for
the keys whose round functions produce 0-string output.

7 Weak Keys of DEAL

DEAL is a 128 bit block cipher designed by Knudsen [27] and submitted to the
AES contest. It is a Feistel network and accepts three different key sizes, namely
128-bit (for 6 rounds), 192-bit (for 6 rounds) and 256-bit (for 8 rounds). DEAL
makes use of DES as its round function.

There are some impractical attacks on DEAL. The attack by Knudsen [27] is
a meet-in-the-middle attack and requires unrealistically many chosen plaintexts
and unrealistic amount of memory. In [29], Lucks uses similar techniques and
mounts chosen ciphertext attack on DEAL. A trade-off is given between the num-
ber of plaintext/ciphertext pairs and the time complexity. In [23], Kelsey and
Schneier discuss the existence of equivalent keys and mount a related key attack.

We mount the reflection attack on DEAL when the key satisfies some condi-
tions. We briefly describe DEAL and explain the attack for 128 bit key-length.
The attacks are quite similar for the other cases of key lengths.

DEAL-128 uses 128 bit key K, divided into two 64-bit parts as K1 and
K2. The six round keys, RK1, ..., RK6, are computed by using DES as RKi =
EC(K(i−1 mod 2)+1⊕RKi−1⊕ si) where E is the DES encryption, C is a 56-bit

304 O. Kara

public constant used as a DES key in the key schedule, RK0 = 0 and si’s are
64-bit constants. Only 56 bits of each RKi is used in the i-th round of DEAL
which we denote RED(RKi) (reduction of RKi to 56 bits). Note that the final
round ends with a swap.

Assume that RED(RK2) = RED(RK6) and RED(RK3) = RED(RK5).
The probability that these equalities hold is roughly 2−112. In this case, the last
five rounds of DEAL has 264 fixed points (without the last swap). Applying the
reflection attack similar to 2K-DES, we obtain approximately eight equations for
the first round encryption by collecting the plaintexts whose left parts are equal
to the left parts of their corresponding ciphertexts among 266 known plaintexts.
This will be enough to decide that the equalities RED(RK2) = RED(RK6)
and RED(RK3) = RED(RK5) hold, otherwise we would expect approximately
four plaintexts whose left parts are equal to the left parts of their corresponding
ciphertexts.

Four of the eight equalities are expected to come from the fixed points.
Hence, we can recover 56 bits of RK1 by making search over all possible val-
ues of RED(RK1) and checking whether approximately four of the equations,
ERK1(x) = y, hold. Recovering 56 bits of RK1 yields 56-bit information about
the first 64 bit part of the main key, K1. The remaining unknown key bits may
be obtained by applying several attacks on 5-round DEAL (see [27,29]). How-
ever, the simplest way is just to make search on the remaining bits. So, the time
complexity is around 272 steps.

We have the same data complexity for DEAL-192 and DEAL-256. This data
complexity is also the workload for identifying a weak key. On the other hand,
the time complexities of the reflection attacks on DEAL-192 and DEAL-256
are approximately 2136 and 2200 steps, respectively (this is the complexity of
searching the remaining bits after recovering 56 bits of a key). Note that we
have three equalities instead of two when the key length is 256 bits. Hence, the
probability that the equalities hold is roughly 2−168 in this case. As a result, the
attack is successful only for 192-bit and 256-bit key lengths since the number
of weak keys are roughly 280 and 288, respectively and identifying a weak key
costs less than the number of weak keys. Notice that such attacks which work on
some subset of the key space can be considered successful if identifying a weak
key costs less than the number of weak keys and recovering the key in this case
costs less than the complexity of the exhaustive search. Indeed, the total cost
of recovering a weak key among several keys, if exists, consists of the cost of
identifying the weak key with the cost of recovering it. Therefore, the reflection
attack is unsuccessful on 128-bit DEAL since the cost of identifying weak key
exceeds the number of weak keys.

8 Discussion

Some security criteria have been imposed on the lengths of parameters of a
stream cipher such as IV length [19] and internal state size [1,16]. The corre-
sponding criterion on block ciphers is that the block length should be at least

Reflection Cryptanalysis of Some Ciphers 305

as large as the key length if it is operated in a stream mode in order to sup-
ply resistance to tradeoff attacks. This is necessary also against distinguishing
attacks. Besides, observe that relatively much smaller block length of GOST is
also exploited in the reflection attack.

We illustrate some examples supporting that the assumptions about the in-
dependence of the round functions in the security proofs given in [35,2] are not
only sufficient but also necessary. Some classifications of key schedules have been
proposed in [12,18] according to the independence degree of round keys. It was
argued that AES key schedule was surprisingly simple and a new key schedule
was proposed for AES in [18]. On the other hand, the key scheduling process
of Blowfish is complex (see [33]), but some self-similarity attacks work in some
special cases [22,10]. This is due to the high degree of similarity of the func-
tions used to produce round keys, whereas these functions themselves are highly
complicated and nonlinear.

Acknowledgements. I thank Esen Akkemik, Hüseyin Demirci, Orr Dunkel-
man, Nezih Geçkinli, İsmail Güloğlu, Atilla Arif Hasekioğlu, Cevat Manap,
Raphael C.-W. Phan and Ali Aydın Selçuk for their constructive comments.

References

1. Babbage, S.: Improved Exhaustive Search Attacks on Stream Ciphers. In: IEE
Conference publication European Convention on Security and Detection, vol. 408,
pp. 161–166. IEE (1995)

2. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

3. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. J. of Cryp-
tology 7, 229–246 (1994)

4. Biham, E., Dunkelman, O., Keller, N.: Improved Slide Attacks. In: Biryukov, A.
(ed.) FSE 2007. LNCS, vol. 4593, pp. 153–166. Springer, Heidelberg (2007)

5. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

6. Biham, E., Dunkelman, O., Keller, N.: New Cryptanalytic Results on IDEA.
In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 412–427.
Springer, Heidelberg (2006)

7. Biham, E., Dunkelman, O., Keller, N.: A Simple Related-Key Attack on the Full
SHACAL-1. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 20–30. Springer,
Heidelberg (2006)

8. Biham, E., Dunkelman, O., Keller, N.: A Unified Approach to Related-Key Attacks.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 73–96. Springer, Heidelberg
(2008)

9. Biham, E., Shamir, A.: Differential Cryptanalysis of Data Encryption Standard.
Springer, Heidelberg (1993)

10. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

306 O. Kara

11. Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)

12. Carter, G., Dawson, E., Nielsen, L.: Key Schedules of Iterated Block Ciphers. In:
Boyd, C., Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438, pp. 80–89. Springer,
Heidelberg (1998)

13. Coppersmith, D.: The Real Reason for Rivest’s Phenomenon. In: Williams, H.C.
(ed.) CRYPTO 1985. LNCS, vol. 218, pp. 535–536. Springer, Heidelberg (1985)

14. Courtois, N., Bard, G.V., Wagner, D.: Algebraic and Slide Attacks on KeeLoq.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 89–104. Springer, Heidelberg
(2008)

15. Dunkelman, O., Keller, N., Kim, J.: Related-Key Rectangle Attack on the Full
SHACAL-1. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp.
28–44. Springer, Heidelberg (2007)

16. Golić, J.: Cryptanalysis of Alleged A5 Stream Cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

17. Furuya, S.: Slide Attacks with a Known-Plaintext Cryptanalysis. In: Kim, K.-c.
(ed.) ICISC 2001. LNCS, vol. 2288, pp. 214–225. Springer, Heidelberg (2002)

18. Henricksen, M.: Design, Implementation and Cryptanalysis of Modern Symmet-
ric Ciphers. PhD Thesis, ISRC, Faculty of Information Technology, Queensland
University of Technology (2005)

19. Hong, J., Sarkar, P.: Rediscovery of the Time Memory Tradeoff. In: Cryptology
ePrint Archive, Report 2005/090 (2005)

20. Hong, S., Kim, J., Kim, G., Lee, S., Preneel, B.: Related-Key Rectangle Attacks
on Reduced Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H.
(eds.) FSE 2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

21. Kaliski, B.S., Rivest, R.L., Sherman, T.: Is DES a Pure Cipher? (Results of More
Cycling Experiments on DES). In: Williams, H.C. (ed.) CRYPTO 1985. LNCS,
vol. 218, pp. 212–222. Springer, Heidelberg (1986)

22. Kara, O., Manap, C.: A new class of Weak Keys for Blowfish. In: Biryukov, A.
(ed.) FSE 2007. LNCS, vol. 4593, pp. 167–180. Springer, Heidelberg (2007)

23. Kelsey, J., Schneier, B.: Key-Schedule Cryptanalysis of DEAL. In: Heys, H.M.,
Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 118–134. Springer, Heidelberg
(2000)

24. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

25. Ko, Y., Hong, S., Lee, W., Lee, S., Kang, J.: Related Key Differential Attacks on
27 Rounds of XTEA and Full-Round GOST. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 299–316. Springer, Heidelberg (2004)

26. Kim, J., Hong, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced AES-
192 and AES-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 225–241.
Springer, Heidelberg (2007)

27. Knudsen, L.: DEAL - a 128-Bit Block Cipher,
http://www.ii.uib.no/∼larsr/aes.html

28. Knudsen, L.: Cryptanalysis of LOKI91. In: Zheng, Y., Seberry, J. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)

29. Lucks, S.: On the Security of 128-Bit Block Cipher DEAL. In: Knudsen, L.R. (ed.)
FSE 1999. LNCS, vol. 1636, pp. 60–70. Springer, Heidelberg (1999)

30. Matsui, M.: Linear Cryptanalysis Method of DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

http://www.ii.uib.no/~larsr/aes.html

Reflection Cryptanalysis of Some Ciphers 307

31. Moore, J.H., Simmons, G.J.: Cycle Structure of the DES with Weak and Semi-
Weak Keys. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 9–32.
Springer, Heidelberg (1987)

32. Moore, J.H., Simmons, G.J.: Cycle Structure of the DES for Keys Having Palin-
dromic (or Antipalindromic) Sequences of Round Keys. IEEE Transactions on
Software Engineering 13, 262–273 (1987)

33. Schneier, B.: Description of a New Variable - Length Key, 64 Bit Block Cipher
(Blowfish). In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 191–204. Springer,
Heidelberg (1994)

34. Seki, H., Kaneko, T.: Differential Cryptanalysis of Reduced Rounds of GOST. In:
Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 315–323. Springer,
Heidelberg (2001)

35. Vaudenay, S.: Decorrelation: A Theory for Block Cipher Security. J. of Cryptol-
ogy 16(4), 249–286 (1985)

36. Zabotin, I.A., Glazkov, G.P., Isaeva, V.B.: Cryptographic Protection for Informa-
tion Processing Systems. Cryptographic Transformation Algorithm. In: Govern-
ment Standard of the USSR, GOST 28147-89 (1989)

A Differential-Linear Attack on 12-Round
Serpent

Orr Dunkelman1,�, Sebastiaan Indesteege2,��, and Nathan Keller3,���

1 École Normale Supérieure
Département d’Informatique,

CNRS, INRIA
45 rue d’Ulm, 75230 Paris, France

orr.dunkelman@ens.fr
2 Katholieke Universiteit Leuven

Department of Electrical Engineering ESAT/SCD-COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

sebastiaan.indesteege@esat.kuleuven.be
3 Einstein Institute of Mathematics, Hebrew University.

Jerusalem 91904, Israel
nkeller@math.huji.ac.il

Abstract. Serpent is an SP Network block cipher submitted to the AES
competition and chosen as one of its five finalists. The security of Serpent
is widely acknowledged, especially as the best known attack so far is a
differential-linear attack on only 11 rounds out of the 32 rounds of the
cipher.

In this paper we introduce a more accurate analysis of the differential-
linear attack on 11-round Serpent. The analysis involves both theoretical
aspects as well as experimental results which suggest that previous at-
tacks had overestimated complexities. Following our findings we are able
to suggest an improved 11-round attack with a lower data complexity.
Using the new results, we are able to devise the first known attack on
12-round Serpent.

1 Introduction

Serpent [1] is one of the five block ciphers chosen as AES finalists. The cipher has
an SP Network structure repeating 32 rounds consisting of 4-bit to 4-bit S-boxes
and a linear transformation. The block size is 128 bits, and the supported key
size is of any length between 0 and 256 bits.

Since its introduction, Serpent was the target of extensive cryptanalytic ef-
forts [5,6,7,9,13]. Despite that, the best previously known attack is on 11-round

� The first author was supported by the France Telecome Chaire. Some of the work
presented in this paper was done while the first author was staying at K.U. Leuven.

�� F.W.O. Research Assistant, Fund for Scientific Research – Flanders (Belgium).
Also supported by the IAP Programme P6/26 BCRYPT of the Belgian State
(Belgian Science Policy).

��� The research presented in this paper was supported by the Adams fellowship.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 308–321, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Differential-Linear Attack on 12-Round Serpent 309

Serpent. In [13] a 256-bit key variant of 9-round Serpent is attacked using the
amplified boomerang attack. The attack requires 2110 chosen plaintexts and its
time complexity is 2252 9-round Serpent encryptions.

In [5] the rectangle attack is applied to 256-bit key 10-round Serpent. The
attack uses 2126.8 chosen plaintexts and has a time complexity of 2217 memory
accesses.1 The 10-round rectangle attack is improved in [7] and the improved
attack requires 2126.3 chosen plaintexts with time complexity of 2173.8 memory
accesses. A similar boomerang attack which requires almost the entire code book
is also presented in [7].

In [6] a linear attack on 11-round Serpent is presented. The attack exploits a
9-round linear approximation with bias of 2−58. The attack requires data com-
plexity of 2118 known plaintexts and time complexity of 2214 memory accesses.

The linear approximation presented in [6] is combined with a differential in [9]
to construct a differential-linear attack on 11-round Serpent. The data complex-
ity of this attack is 2125.3 chosen plaintexts and the time complexity is about
2139.2 11-round Serpent encryptions. The first attack on 10-round Serpent with
128-bit keys is also presented in [9]. The 10-round attack requires 2107.2 chosen
plaintexts and 2125.2 10-round Serpent encryptions.

We note that Serpent is also very common example in research about the
use of multiple linear approximations in linear cryptanalysis [11,12]. This line of
research actually shows that the use of multiple linear approximations can give
a great advantage from the data complexity point of view, but not necessarily
from the time complexity point of view.

In this paper we present a more accurate analysis of the 11-round attack
from [9], showing that the attack requires less data than previously believed
(namely, 2121.8 chosen plaintexts). This leads to an immediate reduction in the
time complexity of the attack (to 2135.7 encryptions). We then switch the order
of the differential and the linear parts in the differential-linear approximation.
The new 9-round differential-linear approximation is used to construct a new
11-round attack that uses 2113.7 chosen ciphertexts and has a running time of
2137.7 memory accesses.

The reduced data and time complexities allow to extend the 11-round attack
from [9] by one extra round, and obtain the first 12-round attack on Serpent.
This attack requires 2123.5 chosen plaintexts and has a time complexity of 2249.4

encryptions.
Finally, we present a novel related-key attack applicable to a modified variant

of Serpent in which the round constants are removed from the key schedule
algorithm. We note that, while the removal of these constants changes the cipher
into a more symmetric structure, the repeated core, i.e., 8-round Serpent, is
still relatively secure. The (still) non-trivial key schedule and the strong keyed
permutation make most related-key attacks are quite likely to fail.

We organize this paper as follows: In Section 2 we present a short description
of Serpent. Section 3 describes the differential-linear technique. We present the

1 In [5] a different number is quoted, but in [7] this mistake is identified, and the
correct time complexity of the algorithm is presented.

310 O. Dunkelman, S. Indesteege, and N. Keller

differential-linear attacks of this paper (the improved 11-round attack and the
new 12-round attack) in Section 4. Section 5 describes a related-key attack on a
modified variant of Serpent. We summarize our results and compare them with
previous results on Serpent in Section 6. The appendices contain the differentials
and the linear approximation used in the attacks.

2 A Description of Serpent

In [1] Anderson, Biham and Knudsen presented Serpent. Serpent has a block
size of 128 bits and it accepts 0–256 bit keys. Serpent is an SP Network block
cipher with 32 rounds. Each round is composed of key mixing, a layer of S-boxes
and a linear transformation. There is an equivalent bitsliced description which
is more efficient and easier to describe.

In our description we adopt the notations of [1] in the bitsliced version. The
intermediate value before round i is denoted by B̂i (a 128-bit value), where
the 32 rounds are numbered 0, 1, . . . , 31. Each B̂i is composed of four 32-bit
words X0, X1, X2, X3.

Serpent uses a set of eight 4-bit to 4-bit S-boxes. Each round function Ri uses
a single S-box applied 32 times in parallel. For example, R0 uses 32 copies of S0 in
parallel. The first copy of S0 takes the least significant bits from X0, X1, X2, X3
and returns the output to these bits. The set of eight S-boxes is used four times.
S0 is used in round 0, S1 is used in round 1, etc. After using S7 in round 7,
S0 is used again in round 8, then S1 in round 9, and so on. In the last round
(round 31) the linear transformation is omitted and another key is XORed.

The cipher may be formally described by the following equations:

B̂0 := P

B̂i+1 := Ri(B̂i) i = 0, . . . , 31
C := B̂32

where
Ri(X) = LT (Ŝi(X ⊕ K̂i)) For i = 0, . . . , 30
Ri(X) = Ŝi(X ⊕ K̂i)⊕ K̂32 For i = 31

where Ŝi is the application of the S-box S(i mod 8) thirty two times in parallel,
and LT is the linear transformation of Serpent.

As our attack do not use explictly the properties of the linear transformation
or the key schedule algorithm, we omit their description and refer the interested
reader to [1].

3 Differential-Linear Cryptanalysis

Differential cryptanalysis [2] analyzes ciphers by studying the development of
differences through the encryption process. A differential attack is mostly con-
cerned with an input difference ΩP for which an output difference ΩT holds with

A Differential-Linear Attack on 12-Round Serpent 311

high enough probability (even though there are variants which use the fact that
the probability is zero).

Linear cryptanalysis [16] analyzes the cipher by approximating the encryption
process in a linear manner. The attacker finds a linear approximation λP · P ⊕
λT · T which holds with probability 1/2 + q (q might be negative) and gathers
many plaintexts and ciphertexts. By checking whether the approximation holds,
one can deduce subkey information or distinguish the cipher from a random
permutation.

In 1994, Langford and Hellman [15] showed that both kinds of analysis can
be combined together in a technique called differential-linear cryptanalysis. The
attack uses a differential that induces a linear relation between two intermediate
encryption values with probability one. In [8,14] this technique is extended to
the cases where the probability of the differential part is smaller than one.

We use notations based on [2,4] for differential and linear cryptanalysis, re-
spectively. In our notations ΩP , ΩT are the input and output differences of the
differential characteristic, and λT , λC are the input and output subsets (denoted
by bit masks) of the linear approximation.

Let E be a block cipher described as a cascade of two sub-ciphers E0 and E1,
i.e., E = E1◦E0. Langford and Hellman suggested to use a truncated differential
ΩP → ΩT for E0 with probability 1. To this differential they concatenate a linear
approximation λT → λC for E1 with probability 1/2+q (or bias q). Their attack
requires that the bits masked in λT have a zero difference in ΩT .

If we take a pair of plaintexts P1 and P2 that satisfy P1⊕P2 = ΩP , then after
E0, λT ·E0(P1) = λT ·E0(P2). This follows from the fact that E0(P1) and E0(P2)
have a zero difference in the masked bits according to the output difference of
the differential.

Recall that the linear approximation predicts that λT · T = λC · E1(T) with
probability 1/2+q. Hence, λT ·E0(P1) = λC ·E1(E0(P1)) with probability 1/2+q,
and λT ·E0(P2) = λC · E1(E0(P2)) with probability 1/2 + q. As the differential
predicts that λT · E0(P1) = λT · E0(P2), then with probability 1/2 + 2q2, λC ·
C1 = λC · C2 where C1 and C2 are the ciphertexts corresponding to P1 and P2,
respectively, i.e., Ci = E1(E0(Pi)).

This fact allows to construct differential-linear distinguishers based on en-
crypting many plaintext pairs and checking whether the ciphertexts agree on
the parity of the output subset. The data complexity of the distinguishers is
O(q−4) chosen plaintexts. The exact number of plaintexts is a function of the
desired success rate, and of the number of possible subkeys.

In [8] Biham, Dunkelman and Keller proposed a way to deal with differen-
tials with probability p < 1. In case the differential is satisfied (probability p),
the above analysis remains valid. The assumption for the remaining 1− p of the
pairs is that the input subset parities are distributed randomly. In that case, the
probability that a pair with input difference ΩP will satisfy λC ·C1 = λC ·C2 is
p(1/2 + 2q2) + (1 − p) · 1/2 = 1/2 + 2pq2.

Furthermore, in [8] it is shown that the attack can still be applicable if ΩT ·
λT = 1, i.e., the differential predicts that there is a difference in approximated

312 O. Dunkelman, S. Indesteege, and N. Keller

bits. In this case, the analysis remains valid, but instead of looking for the
instances for which λT · C1 = λT · C2, we look for the cases when λT · C1 �=
λT · C2. As the analysis remains the same given a pair of plaintexts with the
input difference ΩP , the probability that the pair disagrees on the output subset
parity is 1/2 + 2pq2. Another interesting result is that the attack still applies
even when ΩT ·λT is unknown, as long as its value is fixed. The data complexity
of the enhanced differential-linear attack is O(p−2q−4).

4 Differential-Linear Attacks on Serpent

We first recall the 11-round attack from [9] which we use as a starting point of
our research. We then continue to improve the 11-round attack by reducing the
data complexity by a factor of about 28. Our main results follow from a small
change in the linear approximation, which takes into account the huge difference
between the number of active S-boxes and the number of pairs. Finally, we extend
the 11-round attack to 12 rounds.

4.1 The Previous Attack on 11-Round Serpent

The attack from [9] is a differential-linear attack using a 9-round differential-
linear approximation for rounds 2–10 composed of a 3-round differential and
a 6-round linear approximation. The input difference of the 3-round differen-
tial is ΩP = 0000 0000 0000 0000 0000 0000 4005 0000x which with prob-
ability 2−6 does not affect bits 1 and 117 at the entrance of round 5. The
6-round linear approximation starts with these bits, and the output mask is
λC = 0000 1000 0000 0000 5000 0100 0010 0001x. The bias of the approxima-
tion is 2−27, and thus the total bias of the differential-linear approximation is
2pq2 = 2·2−6·(2−27)2 = 2−59. We describe the differential and the approximation
in Appendices A and B, respectively.

There are 5 active S-boxes in the round before the differential-linear approx-
imation and 7 active S-boxes afterward. Thus, the attacker uses structures of
220 chosen plaintexts each (covering the five active S-boxes), thus resulting in
239 pairs (of which 219 are expected to have difference ΩP at the entrance to
round 1). After generating sufficiently many such structures, the attacker uses
the following algorithm: For each guess of the subkey in round 0 that enters the
5 active S-boxes, the attacker partially encrypts all the plaintexts, and finds all
the plaintext pairs with input difference ΩP . Then, for each of these pairs, and
for each guess of the subkey in round 10, the attacker checks whether the partial
decryption of the pair satisfies the approximation or not.

The last step is done in an optimized way using a table look-up. We note
that for each pair only 7 S-boxes are decrypted. Thus, there are 28 bits from
each of the two ciphertexts that are being decrypted (under a subkey guess
of 28 bits). Thus, instead of repeatedly decrypting the same values under the
same subkey guess, the attacker counts for each subkey guess of round 1 how

A Differential-Linear Attack on 12-Round Serpent 313

many times each of the 56-bit ciphertext values (the 28 bits from each of the
two paired ciphertexts) appears. Then, by performing 228 trial encryptions for
each of these counters, the attacker is able to deduce how many pairs satisfy the
approximation.

In [9] the above attack is applied using 2125.3 plaintexts (which compose 2124.3

pairs). The time complexity is mostly dominated by the division into pairs, i.e.,
the partial encryption of 2125.3 values under 220 possible subkeys. Repeating the
analysis done in [9] and using the success probability formula establishedin [17]
we have found out that for 2122.3 pairs, the success probability of the attack is
expected to be about 84%. Thus, the actual data and time complexity of the
original 11-round attack is 2123.3 chosen plaintexts, and the time complexity is
2137.2 encryptions.

We have experimentally verified the differential-linear property with a 3-round
differential and the first round of the linear approximation. While the expected
bias for this shortened approximation is 2 · 2−6(·2−5)2 = 2−15, we found out
that the bias of the shortened differential-linear approximation is 2−13.75. We
performed 100 experiments, where in each experiment 236 pairs with input dif-
ference ΩP were encrypted, and the intermediate encryption values were checked
with respect to whether the parity of the output subset is the same or not. The
standard deviation of the bias was 2−18.87.

The difference between the expected value and the actual value follows the
fact that even when the differential is not satisfied, and a difference enters one
of the approximated S-boxes, the output mask is still biased. This means that
the assumption that for pairs which do not follow the differential, there is no
bias from 1/2 with respect to whether the approximations hold simultaneously
for the two intermediate values, does not hold.

By assuming the piling-up lemma [16] to hold for the remainder of the linear
approximation, we expect that the actual bias of the 9-round differential-linear
approximation is also 21.25 times higher than 2−59, i.e., the probability that two
pairs with input difference ΩP have the same parity in λC is 1/2+2−57.75. Taking
this into account shows that the actual data complexity required for the original
11-round attack is 2121.8 chosen plaintexts, and that the actual time complexity
is 2135.7 encryptions.

4.2 Further Improvements of the 11-Round Attack

We first note that the attack can be easily improved by using the optimization
ideas performed in the original attack also in the differential side of the distin-
guishers ,i.e., in round 1. For each subkey guess, we can build a list of the pairs
according to the value in the 20 bits which enter the five active S-boxes. Thus,
let P1 and P2 be a pair under some subkey guess, and flip a bit which does not
enter an active S-box in both plaintexts to obtain P ′

1 and P ′
2, respectively. It is

obvious that P ′
1 and P ′

2 are actually a pair, without any need to partially encrypt
them. Thus, it is possible to improve the attack from [9] to be 220 ·2121.8 = 2141.8

memory accesses rather than 2135.7 11-round encryptions.

314 O. Dunkelman, S. Indesteege, and N. Keller

The second improvement is based on the observation that the attacker has
to process 2121.8 plaintexts/ciphertexts, and thus, the time complexity of the
partial decryption at round 11 (which is about 228 · 228 partial decryptions and
284 memory accesses for a subkey guess of round 1) can be increased without
affecting the time complexity of the attack. This can be achieved by inverting
the order of the differential and the linear approximation. If we use a 3-round
differential for rounds 11–13 (with probability 2−6) and the linear approximation
for rounds 5–10 as before (but in the decryption direction), then the linear ap-
proximation can be improved (increasing its bias by a factor of 2), thus reducing
the data complexity of the attack, and as a consequence the time complexity
as well. The change in the linear approximation is changing one of the approx-
imations in round 5 to activate more S-boxes in the round before in exchange
for a higher bias. The new 3-round differential for rounds 11–13 is presented in
Appendix A.

We experimentally verified that the bias in the number of pairs with ciphertext
difference ΩC having the same parity in the input of the differential is 2−7.
When we decrypted one more round, and applied the last round of the linear
approximation we expected a bias of 2pq2 = 2 · 2−6 · (2−6)2 = 2−17. However,
for 100 different keys, we have observed a bias of 2−14 (we used 236 pairs in each
experiment, and the mean value was 2−13.93 with standard deviation of 2−18.92).
Assuming that the remaining rounds behave independently, the expected bias
of the entire 9-round differential-linear approximation in the inverse direction
is 2−54.

The difference between the expected and the computed values follows from
the correlation between the differential and the linear approximation. It appears2

that in about half of the pairs satisfying the differential, the input difference in at
least one of the five active S-boxes in the first round of the linear approximation is
zero. As a result, the bias of the differential-linear approximation for these pairs
is much higher, and this causes the higher bias of the overall differential-linear
approximation.

Thus, the improved 11-round attack is as follows:

1. Select N = 2113.7 ciphertexts, consisting of 289.7 structures, each is chosen
by selecting:
(a) A ciphertext C0.
(b) The ciphertexts C1,. . . ,C224−1 which differ from C0 by all the 224 − 1

possible (non-empty) subsets of the twenty four bits which enter the 6
active S-boxes in round 14.

2. Decrypt these ciphertexts under the unknown key K.
3. For each value of the 24 bits of K14 entering these 6 S-boxes:

(a) Initialize an array of 272 counters to zeroes.
(b) Partially decrypt for each ciphertext the 6 active S-boxes in round 14

and find the pairs which satisfy the difference ΩC after round 13.

2 We have verified this claim experimentally.

A Differential-Linear Attack on 12-Round Serpent 315

(c) Given those 2112.7 pairs, perform for each ciphertext pair: Let extract36
be the function that extracts the 36 bits which enter the 9 active S-boxes
in round 4, then for each pair P, P ′ increment the counter corresponding
to extract36(P)||extract36(P ′).

(d) For every 36-bit guess of the subkey entering these S-boxes, compute the
parity of the corresponding partial decrypted pairs, and store the most
biased guess for these 36 subkey bits (along with the guess of K14).

4. Output the subkey combination with the largest deviation from N/2.

The data complexity of the attack is 2113.7 chosen plaintexts. The time com-
plexity of the attack is dominated mainly by Step 3 which is repeated 224 times.
For each of these guesses the attacker first identifies the pairs (using tables) and
has to perform 2113.7 memory accesses to compute extract36 for all the pairs
(Step 3(c)) and about 2108 memory accesses in Step 3(d), which means that the
total time complexity of the attack is 2137.7 memory accesses. Again, using the
success formula found in [17], for 2113.7 chosen plaintexts, the probability that
the right key has the largest bias is about 93%.

The memory complexity of the attack is 224 ·272 = 296 counters. As the attack
is repeated 224 times (once for each guess of K14), we can either store all the
data, i.e., 2113.7 values, or store for each such guess the number of pairs. The
second way is more efficient, as it allows analyzing each structure independently
of others, and discarding it once the analysis is done. This approach has no
impact on the data complexity or the time complexity, but it reduces the memory
complexity to 296 counters, each of up to 64 bits, or a total of 299 bytes.

4.3 12-Round Differential-Linear Attack

We now present a differential-linear attack on 12-round Serpent. The attack is
based on the original 11-round attack (in the forward direction) and uses the
fact that a pair which satisfies the input difference of the differential has at most
28 active S-boxes in round 0. Thus, it is possible to change the attack algorithm
a bit and obtain a 12-round attack against Serpent with 256-bit keys.

We have tried all the possible input differences to round 1 that lead to the
difference LT−1(ΩP) = 2000 0000 0000 01A0 0E00 4000 0000 0000x. This
difference is not affected by S-boxes 2, 3, 19, and 23, i.e., these S-boxes do
not affect the active bits of LT−1(ΩP). Thus, we can construct structures of
plaintexts which take this fact into consideration and obtain a 12-round attack
on Serpent:

1. Select N = 2123.5 plaintexts, consisting of 211.5 structures, each is chosen by
selecting:
(a) Any plaintext P0.
(b) The plaintexts P1,. . . ,P2112−1 which differ from P0 by all the 2112 − 1

possible (non-empty) subsets of the bits which enter all S-boxes besides
2, 3, 19, and 23 in round 0.

2. Request the ciphertexts of these plaintext structures (encrypted under the
unknown key K).

316 O. Dunkelman, S. Indesteege, and N. Keller

3. For each value of the 112 bits of K0 entering these 28 S-boxes, partially
encrypt all the plaintexts the first round, and apply the original 11-round
attack.

4. Each trial of the key gives us 112 + 20 + 28 = 160 bits of the subkeys (112
bits in round 0, 20 bits in round 1 and 28 bits in round 11), along with a
measure for correctness. The correct value of the 160 bits is expected to be
the most frequently suggested value (with more than 84% success rate).

5. The rest of the key bits are then recovered by auxiliary techniques.

The data complexity of the attack is 2123.5 chosen plaintexts. The time complex-
ity of the attack is 2123.5 ·2112 · 28

384 = 2231.7 encryptions for the partial encryption
in Step 3, and 2112 ·2137.4 = 2249.4 for the repeated trials of the 11-round attack.3

4.4 10-Round Differential-Linear Attack on Serpent with 128-bit
Keys

We can use the three improvements suggested earlier to improve the 10-round
attack on Serpent. We recall the three improvements:

– Better analysis of the bias of the differential-linear approximation,
– Better analysis of the success probability,
– Changing the output mask.

We shall start with changing the output mask of the approximation. In the 10-
round attack in [9], the last round of the approximation is omitted, and the new
8-round differential-linear approximation has a bias of 2 · 2−6 · (2−22)2 = 2−49.
The last round of the approximation is optimized for reducing the number of
active S-boxes in the last round (to 5 S-boxes). However, as before, we may
activate a few more S-boxes, and almost have no effect on the time complexity
of the attack (by increasing the counters).

By changing the output mask of the last round (where S1 is used) from λ′
C =

0010 0001 0000 1000 0100 0000 0000 0000 to λ′
C = 0010 0001 0000 1000 0300 0000

0000 0000, we increase the bias of the linear approximation by a factor of 2, i.e.,
the differential-linear approximation has a bias of 2−47.

Taking into consideration the better transition between the differential and
the linear approximation, we obtain that the actual bias is 2−45.75. Using the
formula from [17], and taking into consideration that there are 5 active S-boxes
before the differential, and 9 active S-boxes after the linear approximation, we
need 296.2 pairs, i.e., 297.2 chosen plaintexts to achieve a success rate of 84%.

The time complexity of the attack is 2111.2 10-round encryptions (the time
complexity required for partial encryptions and locating all the pairs) and 2128

memory accesses for handling the tables.
We note that if the approximation is not changed, the data complexity of the

10-round attack is 2101.2 chosen plaintexts, and the time complexity is 2115.2

encryptions.
3 We note that the time complexity of the 11-round attack is 2135.7 encryptions. As

the number of plaintexts is 21.7 times larger in this attack, the time complexity of
one iteration of the 11-round attack in this case is 21.7 times larger.

A Differential-Linear Attack on 12-Round Serpent 317

5 A Related-Key Attack on a Modified Serpent

It is a well known fact that ciphers that iterate the exact same round function
over and over are susceptible to slide attacks and related-key attacks [3,10]. In
Serpent the constants which modify the round function are found in two places:
the different S-boxes (which are used in a cycle of 8 rounds), and the constants
in the key schedule algorithm.

Removing the constants from the key schedule algorithm makes the cipher
susceptible to related-key attacks which treat the cipher as an iteration of the
same “round” function which is composed of 8 consecutive rounds. Even though
there are several attacks on 8-round Serpent, it is highly unlikely to elevate them
into attacks on the full Serpent, as 8-round Serpent is secure enough to prevent
easy detection of the related-key plaintext pairs.

We present a related-key relation that holds with probability of 2−124, and can
be used to distinguish this simplified variant of Serpent from a random permu-
tation (for 256-bit keys) with data complexity of about 2125 chosen plaintexts,
and a negligible time complexity. We then use this relation to retrieve partial
information about the keys.

Consider two related keys K and K ′ such that K = (w−8, . . . , w−1) and
K ′ = (w−8 ≪ 1, . . . , w−1 ≪ 1). For these two keys, all the corresponding
subkeys ki and k′

i respectively satisfy that ki = k′
i ≪ 1. Under these two keys we

consider the plaintexts P = (a, b, c, d) and P ′ = (a ≪ 1, b ≪ 1, c ≪ 1, d ≪ 1).
We denote such keys, plaintexts, or intermediate encryption values, i.e., two
values such that the second is a rotate to the left by one bit of each 32-bit word
independently, as satisfying the rotation property.

The rotation property is kept through the key addition, i.e., P ′ ⊕ K ′
1 is a ro-

tate left by one bit word-wise of P ⊕K, and the S-boxes layer. The only problem
is the linear transformation which contains cyclic rotations and shifts. The cyclic
rotations do not affect the rotation property, so the only problem in extending the
property is the shift operation. However, the property can bypass a shift with prob-
ability of 2−2. Let X be a 32-bit word, and let X ′ = X ≪ 1. Then, if the least
significant bit of X is zero, and the least significant bit of X ′ � m (the most sig-
nificant bit of X � m) is 0 as well, then X � m and X ′ � m satisfy the rotation
property. As in each linear transformation there are two such shifts, the probability
that the rotation property is maintained after the linear transformation is 2−4.

Serpent has 31 linear transformations, and thus, the probability that the ro-
tation property remains from the plaintext till the ciphertext is 2−124, while for
two random permutations, one expects the probability of 2−128. This property
can be used to distinguish this variant of Serpent from a random permutation
using about 2125 plaintexts. Given the pair that satisfies the rotation property
it is also possible to deduce the equivalent of 4 bits of the key.

6 Summary

In this paper we studied differential-linear cryptanalysis of Serpent. We showed
several improvements in the analysis of the previously best known results on

318 O. Dunkelman, S. Indesteege, and N. Keller

Table 1. Summary of Attacks on Serpent with Reduced Number of Rounds

Rounds Type of Attack Key Complexity
Size Data Time Memory

10 Rectangle [7] 192 & 256 2126.3 CP 2173.8 MA 2131.8 B
Boomerang [7] 192 & 256 2126.3 AC 2173.8 MA 289 B
Differential-Linear [9] all 2105.2 CP 2123.2 En 240 B
Differential-Linear (Sect. 4.4) all 2101.2 CP 2115.2 En 240 B
Differential-Linear (Sect. 4.4) all 297.2 CP 2128 MA 272 B

11 Differential-Linear [9] 192 & 256 2125.3CP 2172.4 En 230 B
Differential-Linear [9] 192 & 256 2125.3 CP 2139.2 En 260 B
Differential-Linear (Sect. 4.1) 192 & 256 2121.8 CP 2135.7 MA 276 B
Differential-Linear (Sect. 4.2) 192 & 256 2113.7 CC 2137.7 MA 299 B

12 Differential-Linear (Sect. 4.3) 256 2123.5 CP 2249.4 En 2128.5 B

En — Encryptions, MA — Memory Accesses, B — bytes, CP — Chosen Plaintexts
CC — Chosen Ciphertexts, AC — Adaptive Chosen Plaintexts and Ciphertexts.

11-round Serpent, and suggested a new 11-round attack with a much lower
data complexity. Combining experimental results and the improved analysis,
we presented the first attack on 12-round Serpent. The attack uses 2123.5 chosen
plaintexts, and has a time complexity of 2249.4 encryptions.

Finally, we explored a related-key attack on a modified Serpent where the
round constants are removed from the key schedule, and showed that despite the
strong repeated cipher (8-round of Serpent), there are high probability related-
key properties that can be used both for distinguishing and key recovery.

We summarize our new attacks, and selected previously published attacks
against Serpent in Table 1.

References

1. Anderson, R., Biham, E., Knudsen, L.R.: Serpent: A Proposal for the Advanced
Encryption Standard, NIST AES Proposal (1998)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

3. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of
Cryptology 7(4), 229–246 (1994)

4. Biham, E.: On Matsui’s Linear Cryptanalysis. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 341–355. Springer, Heidelberg (1995)

5. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack – Rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001)

6. Biham, E., Dunkelman, O., Keller, N.: Linear Cryptanalysis of Reduced Round
Serpent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 16–27. Springer,
Heidelberg (2002)

7. Biham, E., Dunkelman, O., Keller, N.: New Results on Boomerang and Rectangle
Attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16.
Springer, Heidelberg (2002)

A Differential-Linear Attack on 12-Round Serpent 319

8. Biham, E., Dunkelman, O., Keller, N.: Enhancing Differential-Linear Cryptanaly-
sis. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 254–266. Springer,
Heidelberg (2002)

9. Biham, E., Dunkelman, O., Keller, N.: Differential-Linear Cryptanalysis of Serpent.
In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 9–21. Springer, Heidelberg
(2003)

10. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

11. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improved and Multiple Linear
Cryptanalysis of Reduced Round Serpent. In: Pei, D., Yung, M., Lin, D., Wu, C.
(eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 51–65. Springer, Heidelberg (2008)

12. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Experiments on the Multiple Lin-
ear Cryptanalysis of Reduced Round Serpent. In: Nyberg, K. (ed.) FSE 2008.
LNCS, vol. 5086, pp. 382–397. Springer, Heidelberg (2008)

13. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 75–93. Springer, Heidelberg (2001)

14. Langford, S.K.: Differential-Linear Cryptanalysis and Threshold Signatures,
Ph.D. thesis (1995)

15. Langford, S.K., Hellman, M.E.: Differential-Linear Cryptanalysis. In: Desmedt,
Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994)

16. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

17. Selçuk, A.A.: On Probability of Success in Linear and Differential Cryptanalysis.
Journal of Cryptology 21(1), 131–147 (2008)

18. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

320 O. Dunkelman, S. Indesteege, and N. Keller

A The Differential Characteristic

A.1 The Original 3-Round Differential

The 3-round truncated differential used in the original 11-round attack is as
follows. The first round of the differential is round 2 (or any other round that
uses S2) with probability 2−5:

ΩP = 0000 0000 0000 0000 0000 0000 4005 0000 S2→ Pr = 2−5

0000 0000 0000 0000 0000 0000 A004 0000 LT→
0040 0000 0000 0000 0000 0000 0000 0000 S3→ Pr = 2−1

00X0 0000 0000 0000 0000 0000 0000 0000

where X ∈ {2, 4, 6, 8, Ax, Cx, Ex}. After the linear transformation, we get the
following truncated differential in S4:

0QT30 0T200 0T100 0000 000Y4 00Y30 W2Y20W1 Y10Z0 S4→
0??0 0?00 0?00 0000 000? 00?0 ??0? ?0?0 = ΩT ,

where ? is any possible difference and Yi ∈ {0, 1}, Z ∈ {0, 2}, Wi ∈ {0, 8}, Ti ∈
{0, 4}, Q ∈ {0, 2, 4, 6}.

A.2 The 3-Round Differential in the Improved 11-Round Attack

The 3-round differential used in the improved 11-round attack is in the backward
direction.The output difference isΩC = 0000 0000 0000 0090 0000 0000 0000 0000x

which with probability of about 2−6 doesnot affect the bits in LT (λC). This follows
from the main following differential characteristic:

ΩC = 0000 0000 0000 0090 0000 0000 0000 0000
S−1
5→ Pr = 2−2

0000 0000 0000 0040 0000 0000 0000 0000 LT−1→
0000 A004 0000 0000 0000 0000 0000 0000

S−1
4→ Pr = 2−3

0000 ?009 0000 0000 0000 0000 0000 0000 LT−1→
0Z300 T2Y Z2R 0T14Z1 2080 0X200 10X10 01Q0 0W00

S−1
3→ Pr = 1

0?00 ???? 0??? ?0?0 0?00 ?0?0 0??0 0?00 = ΩT

with probability 1, when W ∈ {0, 4}, Q ∈ {0, 2, 8, Ax}, Xi ∈ {0, 1}, Zi ∈ {0, 8},
Ti ∈ {8, Ax}, R ∈ {8, Cx}.

We note that despite the fact that the probability of this differential is 2−5,
when counting all possible output differences, the probability that there is a
difference in the bits covered by LT (λC), the bias was found to be 0.007773, i.e.,
1/128.7 ≈ 2−7.007. This follows mostly from the cases where the differential does
not follow the second round, i.e., the input difference to S-box 24 is not 9, as
then there is an active S-box which affects the approximation with relatively high
probability (with output difference 2). Thus, the “probability” of the differential
can be assumed to be p = 2−6.

A Differential-Linear Attack on 12-Round Serpent 321

B The Linear Approximation

The 6-round linear approximation used in the attack is as follows. It starts before
the linear transformation of round 4 with λT = 2006 0040 0000 0100 1000 0000
0000 0000x. In round 5 the following approximation4 holds with bias −2−5:

LT (λT) = 0020 0000 0000 0000 0000 0000 0000 0002
S5→ Pr = 1

2
− 2−5

0040 0000 0000 0000 0000 0000 0000 0008 LT→
0000 0000 0000 0000 0000 0000 8000 0000

S6→ Pr = 1
2
− 2−3

0000 0000 0000 0000 0000 0000 1000 0000 LT→
0000 00A0 0001 0000 0000 0000 0000 0000

S7→ Pr = 1
2
− 2−5

0000 0010 0001 0000 0000 0000 0000 0000 LT→
0000 0000 0000 0000 0000 1000 0B00 00A0

S0→ Pr = 1
2

+ 2−6

0000 0000 0000 0000 0000 1000 0100 0010 LT→
0010 000B 0000 B000 0A00 0000 0000 0000

S1→ Pr = 1
2
− 2−7

0010 0001 0000 1000 0100 0000 0000 0000 LT→
0000 A000 0000 0000 1000 0B00 00B0 000B

S2→ Pr = 1
2
− 2−6

0000 1000 0000 0000 5000 0100 0010 0001 = λC .

After the linear transformation of round 11, LT (λC) = 000B 0000 B000 0300
00B0 200E 0000 0010, i.e., there are seven active S-boxes: 1, 8, 11, 13, 18, 23
and 28.

4 For the improved attack we change the input bias in S-box 29 to Ex and the bias
in that case is 2−4.

New AES Software Speed Records

Daniel J. Bernstein1 and Peter Schwabe2,�

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
peter@cryptojedi.org

Abstract. This paper presents new speed records for AES software,
taking advantage of (1) architecture-dependent reduction of instructions
used to compute AES and (2) microarchitecture-dependent reduction
of cycles used for those instructions. A wide variety of common CPU
architectures—amd64, ppc32, sparcv9, and x86—are discussed in detail,
along with several specific microarchitectures.

Keywords: AES, software implementation.

1 Introduction

This paper describes a new AES software implementation achieving extremely
high speeds on various common CPUs. For example, on an UltraSPARC III or
IV, this implementation’s main loop takes only 193 cycles/block. The small-
est cycle count previously claimed for AES software on any SPARC was 270
cycles/block by Helger Lipmaa’s proprietary software.

Almost all of the specific techniques we use are well known. The main novelty
in this paper lies in the analysis and combination of these techniques, producing
surprisingly high speeds for AES. We have published our software to ensure
verifiability of our results; we have, furthermore, placed the software into the
public domain to maximize reusability of our results.

Section 2 reviews the standard structure of “32-bit” AES software implemen-
tations. Section 3 surveys techniques for reducing the number of CPU instruc-
tions required to compute AES. Section 4 explains how we reduced the number
of CPU cycles required to compute AES on various platforms.

Thanks to Ruben Niederhagen and the anonymous reviewers for suggesting
many improvements in our explanations.

� The first author was supported by the National Science Foundation under grant
ITR–0716498. He carried out parts of this work while visiting Technische Universiteit
Eindhoven. The second author was supported by the European Commission through
the ICT Programme under Contract ICT–2007–216499 CACE. Permanent ID of this
document: b90c51d2f7eef86b78068511135a231f. Date: 2008.09.25.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 322–336, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

New AES Software Speed Records 323

Which AES? This paper focuses on the most common AES key size, namely 16
bytes (128 bits). We plan to adapt our implementation later to support 32-byte
(256-bit) keys. One might guess that AES is 40% slower with 32-byte keys, since
16-byte keys use 10 rounds while 32-byte keys use 14 rounds; actual costs are
not exactly linear in the number of rounds, but 40% is a reasonable estimate.

There are several modes of operation of AES: cipher-block chaining (CBC),
output feedback (OFB), counter mode (CTR), et al. There are also, in the litera-
ture, many different ways to benchmark AES software. This variability interferes
with comparisons. Often a faster AES performance report is from a slower AES
implementation measured with a less invasive benchmarking framework.

A big improvement in comparability has been achieved in the last few years by
eSTREAM, a multi-year ECRYPT project that has identified several promising
new stream ciphers. The eSTREAM benchmarking framework has been made
public, allowing anyone to verify performance data; includes long-message and
short-message benchmarks; and includes AES-CTR as a basis for comparison.
The original AES-CTR implementation in the benchmarking framework is a
reference implementation written by Brian Gladman; other authors have con-
tributed implementations optimized for several architectures.

This paper reports cycle counts directly from the eSTREAM benchmarking
framework, and uses exactly the same form of AES-CTR. Our software passes the
extensive AES-CTR tests included in the benchmarking framework. By similar
techniques we have also sped up Biryukov’s LEX stream cipher [6].

See [10] for much more information on the eSTREAM project; [9] for the
benchmarking framework; [4] for a more portable version of the benchmarking
framework (including our software as of version 20080905); and [12] for more
information about Gladman’s AES software.

Bitslicing. The recent papers [23], [17], and [19] have proposed bitsliced AES
implementations for various CPUs. The most impressive report, from Matsui
and Nakajima in [19], is 9.2 cycles/byte for bitsliced AES on a Core 2.

Unfortunately, this speed is achieved only for 2048-byte chunks that have
been “transposed” into bitsliced form. Transposition of ciphertext costs about 1
cycle/byte. More importantly, bitsliced encryption of a 576-byte Internet packet
costs as much as bitsliced encryption of a 2048-byte packet, multiplying the cycle
counts by approximately 3.5. Consequently this bitsliced implementation is not
competitive in speed with the implementation reported in this paper. The very
recent semi-bitsliced implementation in [14] uses much smaller chunks, only 64
bytes, but it is also non-competitive: it takes 19.81 cycles/byte on an Athlon 64.

Bitslicing remains of interest for several reasons: first, some applications en-
crypt long streams and do not mind padding to 2048-byte boundaries; second,
some applications will use bitslicing on both client and server and can thus elim-
inate the costs of transposition; third, bitsliced implementations are inherently
immune to the cache-timing attacks discussed in [3] and [21].
Other literature. Worley et al. in [26] report AES implementations for PA-
RISC and IA-64. Schneier and Whiting in [24] report AES implementations
for the Pentium, Pentium Pro, HP PA-8200, and IA-64. Weiss and Binkert in

324 D.J. Bernstein and P. Schwabe

[25] report AES implementations for the Alpha 21264. Aoki and Lipmaa in [1]
report AES implementations for the Pentium II. Most of these CPUs are now
quite difficult to find, but these papers—particularly [1]—are well worth reading
for their discussions of AES optimizations.

More recent AES speed reports: Osvik in [20] covers Pentium III, Pentium 4,
and Athlon. Lipmaa in [16] and [15] covers many CPUs. Matsui and Fukuda in
[18] cover the Pentium III and Pentium 4. Matsui in [17] covers the Athlon 64.

[5], [2], and [8] report implementations for smaller CPUs using the ARM
architecture. [13] reports implementations for graphics processors (GPUs). There
is also an extensive literature on implementations of AES in hardware, in FPGAs,
and in hardware-software codesigns.

2 A Short Review of AES

AES expands its 16-byte key into 11 “round keys” r0, . . . , r10, each 16 bytes.
Each 16-byte block of plaintext is xor’ed with round key r0, transformed, xor’ed
with round key r1 (ending “round 1”), transformed, xor’ed with round key r2
(ending “round 2”), transformed, etc., and finally xor’ed with round key r10
(ending “round 10”) to produce a 16-byte block of ciphertext.

Appendix A is sample code in the C programming language for a typical
round of AES. The round reads a 16-byte state stored in four 4-byte variables
y0, y1, y2, y3; transforms the variables; xor’s a 16-byte round key stored in four
4-byte variables; and puts the result into z0, z1, z2, z3.

The main work in the transformation is 16 table lookups indexed by the 16
bytes of y0, y1, y2, y3; beware that the last round of AES is slightly different.
Each table lookup produces 4 bytes. In this sample code there are four tables
interleaved in memory, with the jth entry of table i at address table+ 4i+16j;
table+ 4i is precomputed as a byte pointer tablei. For example,

p03 = (uint32) y0 << 4;
p03 &= 0xff0;
p03 = *(uint32 *) (table3 + p03);

in the sample code extracts the bottom byte of y0, multiplies it by 16, adds it
to the byte pointer table3, and reads the 4 bytes at that address.

One can eliminate the table interleaving, and store the jth entry of table i
at address table + 1024i + 4j; then the shift distances 20, 12, 4, 4 need to be
changed to 22, 14, 6, 2. An intermediate possibility is to interleave the first two
tables and interleave the second two tables, using shift distances 21, 13, 5, 3.

We do not describe the work required to invert this process, computing a
16-byte plaintext from a 16-byte ciphertext and a 16-byte key. In AES-CTR,
the “plaintext” is actually a 16-byte counter; the encrypted counter serves as
keystream that is xor’ed to the user’s actual plaintext, producing counter-mode
ciphertext. AES-CTR decryption is the same as AES-CTR encryption so it does
not require inverting AES.

New AES Software Speed Records 325

Relationship to SubBytes etc. An AES round is often described differently, as
a series of four operations on 4×4 matrices: SubBytes, ShiftRows, MixColumns,
and AddRoundKey. The last round skips MixColumns.

As part of the original AES proposal, Daemen and Rijmen described how
to merge SubBytes, ShiftRows, and MixColumns into 16 lookups from 4 tables
T0, T1, T2, T3, each containing 256 32-bit entries; AddRoundKey is nothing but
xor’ing the round key ri. See [7, Section 5.2]. As far as we know, the first imple-
mentation using this structure was written by Rijmen, Bosselaers, and Barreto.
This is the structure used in the sample code in Appendix A, and the starting
structure for the speedups described in the following sections.

3 Saving Instructions for AES

This section surveys several methods to reduce the number of CPU integer in-
structions, load instructions, etc. used for AES. Many of these methods take
advantage of additional instructions and features provided by some CPUs.

Beware that not all of the methods can be combined. Furthermore, minimizing
cycles is a much more subtle task than minimizing instructions. In Section 4 we
discuss the cycle counts that we have achieved on various platforms, taking
account of limited register sets, instruction latencies, etc.

3.1 Baseline (720 Instructions)

One round of AES can be decomposed into 16 shift instructions, 16 mask in-
structions, 16 load instructions for the table lookups, 4 load instructions for
the round keys, and 16 xor instructions. See Appendix A. Overall there are 68
instructions, specifically 20 loads and 48 integer instructions.

Subsequent code examples in this section express CPU instructions using
the qhasm language, http://cr.yp.to/qhasm.html. Each line that we display
represents one CPU instruction.

All of the target platforms have shift instructions, mask instructions, load
instructions, and xor instructions. Some platforms—for example, the x86 and
amd64—do not support three-operand shift instructions (i.e., shift instructions
where the output register is not the input register) but do have byte-extraction
instructions that are adequate to achieve the same instruction counts. In this
section we ignore register-allocation issues.

The 10-round main loop uses more than 680 instructions, for four reasons:

• Before the first round there are 4 extra round-key loads and 4 extra xors.
• The last round has 16 extra masks, one after each of the table lookups.
• For AES-CTR there are 4 loads of 4-byte plaintext words, 4 xors of keystream

with plaintext, and 4 stores of ciphertext words.
• There are 4 extra instructions for miscellaneous tasks such as incrementing

the AES-CTR input.

Overall there are 720 instructions, specifically 208 loads, 4 stores, and 508 integer
instructions. The 508 integer instructions consist of 160 shift instructions, 176
mask instructions, 168 xor instructions, and 4 extra instructions.

326 D.J. Bernstein and P. Schwabe

In this count we ignore the costs of conditional branches; these costs are easily
reduced by unrolling. We also ignore extra instructions needed to handle, e.g.,
big-endian loads on a little-endian architecture; almost all endianness issues can
be eliminated by appropriate swapping of the AES code and tables.

We also ignore the initial costs of computing the 176 bytes of round keys
from a 16-byte key. This computation involves hundreds of extra instructions—
certainly a noticeable cost—but the round keys can be reused for all the blocks
of a message. Round keys can also be reused for other messages if they are saved.

3.2 Table Structure and Index Extraction

Combined shift-and-mask instructions (−160 instructions). Some archi-
tectures allow a shift instruction p02=y0>>4 and a mask instruction p02&=0xff0
to be combined into a single instruction p02=(y0>>4)&0xff0. Replacing 160
shifts and 160 masks by 160 shift-and-mask instructions saves 160 instructions.

On the ppc32 architecture, for example, the rlwinm instruction can do any
rotate-and-mask where the mask consists of consecutive bits.

Scaled-index loads (−80 instructions). On other architectures a shift in-
struction p03<<=4 and a load instruction p03=*(uint32*)(table3+p03) can be
combined into a single instruction. The instructions

p03 = (uint32) y0 << 4
p03 &= 0xff0
p03 = *(uint32 *) (table3 + p03)

for handling the bottom byte of y0 can then be replaced by

p03 = y0 & 0xff
p03 = *(uint32 *) (table3 + (p03 << 4))

Similarly, the instructions

p00 = (uint32) y0 >> 20
p00 &= 0xff0
p00 = *(uint32 *) (table0 + p00)

for handling the top byte of y0 can be replaced by

p00 = (uint32) y0 >> 24
p00 = *(uint32 *) (table0 + (p00 << 4))

In 10 rounds there are 40 top bytes and 40 bottom bytes.
The x86 architecture, for example, allows scaled indices in load instructions.

The x86 scaling allows only a 3-bit shift, not a 4-bit shift, but this is easily
accommodated by non-interleaved (or partially interleaved) tables.

Second-byte instructions (−40 instructions). All architectures support a
mask instruction p03=y0&0xff that extracts the bottom byte of y0.

New AES Software Speed Records 327

Some architectures—for example, the x86—also support a single instruction
p02=(y0>>8)&0xff to extract the second byte of y0. In conjunction with scaled-
index loads this instruction allows

p02 = (uint32) y0 >> 6
p02 &= 0x3fc
p02 = *(uint32 *) (table2 + p02)

to be replaced by

p02 = (y0 >> 8) & 0xff
p02 = *(uint32 *) (table2 + (p02 << 2))

saving another 40 instructions overall.

Padded registers (−80 instructions). Some architectures—e.g., sparcv9—
do not have any of the combined instructions described above, but do have
64-bit registers. On these architectures one can expand a 4-byte value such as
0xc66363a5 into an 8-byte value such as 0x0c60063006300a50 (or various other
possibilities such as 0x0000c60630630a50). If this expansion is applied consis-
tently in the registers, the lookup tables (before the last round), and the round
keys, then it does not cost any extra instructions.

The advantage of the padded 8-byte value 0x0c60063006300a50 is that a
single mask instruction produces the shifted bottom byte a50, and a single shift
instruction produces the shifted top byte c60. Consequently the original eight
shift-and-mask instructions, for extracting four shifted bytes from y0, can be
replaced by six instructions:

p00 = (uint64) y0 >> 48
p01 = (uint64) y0 >> 32
p02 = (uint64) y0 >> 16
p01 &= 0xff0
p02 &= 0xff0
p03 = y0 & 0xff0

Expanded lookup tables, like scaled-index loads, thus save 80 instructions overall.

32-bit shifts of padded registers (−40 instructions). Some architectures—
for example, sparcv9—have not only a 64-bit right-shift instruction but also
a 32-bit right-shift instruction that automatically masks its 64-bit input with
0xffffffff. This instruction, in conjunction with padded registers, allows

p02 = (uint64) y0 >> 16
p02 &= 0xff0

to be replaced by p02 = (uint32) y0 >> 16, saving 40 additional instructions.

3.3 Speedups for the Last Round

Byte loads (−4 instructions). As mentioned earlier, the last round of AES
has 16 extra masks for its 16 table lookups. Four of the masks are 0xff. All of

328 D.J. Bernstein and P. Schwabe

the target architectures allow these masks to be absorbed into single-byte load
instructions. For example,

p00 = *(uint32 *) (table0 + p00)
p00 &= 0xff

can be replaced with p00 = *(uint8*) (table0 + p00) on little-endian CPUs
or p00 = *(uint8*) (table0 + p00 + 3) on big-endian CPUs.

Two-byte loads (−4 instructions). Four of the masks are 0xff00. These
masks can be absorbed into two-byte load instructions if the table structure has
00 next to the desired byte. Often this structure occurs naturally as part of other
table optimizations, and in any case it can be achieved by a separate table.

Masked tables (−8 instructions). The other eight masks are 0xff0000 and
0xff000000. These masked values cannot be produced by byte loads and two-
byte loads but can be produced by four-byte loads from separate tables whose
entries are already masked.

Separate masked tables are also the easiest way to handle the distinction
between padded 64-bit registers (see Section 3.2) and packed 32-bit AES output
words.

Combined mask and insert (−16 instructions). A 4-byte result of the last
round, such as z0, is produced by 4 xors with 4 masked table entries, where the
masks are 0xff, 0xff00, 0xff0000, 0xff000000.

Some architectures have an instruction that replaces specified bits of one
register with the corresponding bits of another register. For example, the ppc32
architecture has a rlwimi instruction that does this, optionally rotating the
second register. The instruction sequence

p00 &= 0xff000000
p11 &= 0xff0000
p22 &= 0xff00
p33 &= 0xff
z0 ^= p00
z0 ^= p11
z0 ^= p22
z0 ^= p33

can then be replaced by

p00 bits 0xff0000 = p11 <<< 0
p00 bits 0xff00 = p22 <<< 0
p00 bits 0xff = p33 <<< 0
z0 ^= p00

(Note for C programmers: in C notation, p00 bits 0xff0000 = p11 would be
p00 = (p00&0xff00ffff)|(p11&0xff0000).) This is another way—without us-
ing byte loads, and without constraining the table structure—to eliminate all the
extra masks.

New AES Software Speed Records 329

3.4 Further Speedups

Combined load-xor (−168 instructions). Often the result of a load is used
solely for xor’ing into another register. Some architectures—for example, x86
and amd64—allow load and xor to be combined into a single instruction.

Byte extraction via loads (−160 . . . −320 integer instructions; +200
load/store instructions). Extracting four indices from y0 takes at most 8
integer instructions, and on some architectures as few as 4 integer instructions,
as discussed in Section 3.2.

A completely different way to extract four bytes from y0—and therefore to
extract indices, on architectures allowing scaled-index loads—is to store y0 and
then do four byte loads from the stored bytes of y0. This eliminates between 4 and
8 integer instructions—potentially helpful on CPUs where integer instructions
are the main bottleneck—at the expense of 5 load/store instructions.

One can apply this conversion to all 160 byte extractions. One can also apply it
to some of the byte extractions, changing the balance between load instructions
and integer instructions. The optimum combination is CPU-dependent.

Round-key recomputation (−30 load instructions; +30 integer in-
structions). In the opposite direction: Instead of loading 44 round-key words,
say words 0, 1, 2, . . . , 43, one can load 14 round-key words, specifically words
0, 1, 2, 3, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, and compute the other round-key words
by 30 xors, taking advantage of the AES round-key structure. This reduces the
number of load instructions—potentially helpful on CPUs where loads are the
main bottleneck—although it increases the number of integer instructions.

One can also use intermediate combinations, such as 22 loads and 22 xors. As
before, the optimum combination is CPU-dependent.

Round-key caching (≈ −44 instructions). Each 16-byte block of input
involves 44 round-key loads (or xors). The same round keys are used in the next
block. On an architecture with many registers, some or all of the round keys can
be kept in registers, moving these loads out of the main loop. The same type of
savings appears if several blocks are handled in parallel.

Counter-mode caching (≈ −100 instructions). Recall that our AES soft-
ware uses counter mode in exactly the form specified by eSTREAM. AES is
applied to a 16-byte counter that is increased by 1 for every block of input.

Observe that 15 bytes of the counter remain constant for 256 blocks; just one
byte of the counter changes for every block of input. All operations in the first
round not depending on this byte are shared between 256 blocks. The resulting
values y0, y1, y2 and y3 can be saved and reused in 256 consecutive blocks.

Similar observations hold for round 2: only one of the four 4-byte input words
of round 2 changes every block. All computations not depending on this word
can be saved and reused in 256 consecutive blocks.

This caching is perhaps the least well known of all AES software speedups.
We learned it from an eSTREAM AES implementation by Hongjun Wu; we have
not found it elsewhere in the literature.

330 D.J. Bernstein and P. Schwabe

4 Saving Cycles for AES

Minimizing instructions is not the same as minimizing cycles. A CPU that ad-
vertises “four instructions per cycle” actually performs at most four instructions
per cycle; software that does not take account of microarchitecture-specific bot-
tlenecks often runs much more slowly, sometimes below one instruction per cycle.

For example, a typical microarchitecture does not allow the results of an inte-
ger instruction to be used until the next cycle; multiple instructions in the same
cycle must therefore be independent parallel operations. The results of a load
instruction cannot be used until two or three cycles later, requiring even more in-
dependent instructions to be carried out in parallel. On “in-order” CPUs, parallel
instructions need to write to different output registers; instruction scheduling is
often heavily constrained by limits on the number of architectural registers. On
“out-of-order” CPUs, controlling the precise scheduling of instructions can be
extremely difficult.

This section reports the cycle counts that we have achieved on several specific
CPUs. For each CPU we describe the important bottlenecks and the measures
that we took to address those bottlenecks. We describe the CPUs in decreasing
order of our cycle counts.

We report the speeds of our implementation and previous AES implemen-
tations measured by the eSTREAM benchmarking framework. The framework
focuses on long-stream performance, but it also measures short-packet perfor-
mance for the fastest software; our tables include the results for 576-byte packets.

4.1 Motorola PowerPC G4 7410, ppc32 Architecture

We measured our software on a computer named gggg in the Center for Re-
search and Instruction in Technologies for Electronic Security (RITES) at the
University of Illinois at Chicago. This computer has two 533MHz Motorola Pow-
erPC G4 7410 processors; measurements used one processor. Resulting speeds
for encrypting a long stream:

Software Measurement Cycles/byte
This paper eSTREAM 14.57 (or 15.34 for 576 bytes)
Wu eSTREAM 16.26
Bernstein eSTREAM 17.84
Gladman eSTREAM 26.74
OpenSSL 0.9.8c openssl speed aes 29

Unpublished code by Denis Ahrens is claimed in [16] to use 25.06 cycles/byte
on a PowerPC G4 7400, a very similar CPU to a PowerPC G4 7410, and 24.06
cycles/byte on a PowerPC G4 7457, a somewhat more powerful CPU.

Reducing instructions. For this CPU, our implementation uses 461 instruc-
tions in the main loop, specifically 180 load/store instructions, 279 integer in-
structions, and 2 branch instructions. We use the following techniques from

New AES Software Speed Records 331

Section 3: combined shift-and-mask instructions; combined mask-and-insert; and
counter-mode caching.

Reducing cycles. The PowerPC G4 7410 can dispatch at most 3 instructions
per cycle. At most 2 of the instructions can be load/store or integer instructions,
so our 459 non-branch instructions take at least 459/2 = 229.5 cycles, i.e., 14.34
cycles/byte. At most 1 of the instructions can be a load/store instruction, but
we have only 180 load/store instructions, so this is a less important bottleneck.

The G4 is, for most purposes, an in-order CPU, so load instructions have
to be interleaved with arithmetic instructions. Results of load instructions are
available after 3 cycles. Saving all possible callee-save registers makes 29 4-byte
integer registers available for AES encryption. Detailed analysis shows that these
are enough registers for almost perfect instruction scheduling, making the pro-
cessor execute 2 instructions almost every cycle in the AES main loop. Our 233
cycles/loop are very close to the 229.5 cycles/loop lower bound for 459 instruc-
tions. We do not mean to suggest that 29 registers are ample; further registers
would be useful for round-key caching.

4.2 Intel Pentium 4 f12, x86 Architecture

Warning: There are considerable performance differences between, e.g., a Pen-
tium 4 f12, a Pentium 4 f29, a Pentium 4 f41, etc. “Pentium 4” is not an adequate
CPU specification for performance measurements.

We measured our AES software on a computer named fireball in the Center
for Research and Instruction in Technologies for Electronic Security (RITES) at
the University of Illinois at Chicago. This computer has a single-core 1900MHz
Intel Pentium 4 f12 processor. Resulting speeds for encrypting a long stream:

Software Measurement Cycles/byte
This paper eSTREAM 14.13 (or 14.54 for 576 bytes)
Bernstein eSTREAM 16.97
Wu eSTREAM 18.23
OpenSSL 0.9.8g openssl speed aes 21
Gladman eSTREAM 26.48

Unpublished code by Matsui and Fukuda is claimed in [18] to use 15.69 cy-
cles/byte on a “Pentium 4 Northwood,” i.e., a Pentium 4 f2, and 17.75 cy-
cles/byte on a “Pentium 4 Prescott,” i.e., a Pentium 4 f3/f4. Unpublished code
by Osvik is claimed in [20] to use 16.25 cycles/byte on an unspecified type of Pen-
tium 4. Unpublished code by Lipmaa is claimed in [16] to use 15.88 cycles/byte
on an unspecified type of Pentium 4. We have seen several other reports of
Pentium 4 AES speeds above 20 cycles/byte.

Reducing instructions. For this CPU, our implementation uses 414 instruc-
tions in the main loop. We use the following techniques from Section 3: scaled-
index loads; second-byte instructions; byte loads; two-byte loads; masked tables;
combined load-xor; and counter-mode caching. We use some extra stores and

332 D.J. Bernstein and P. Schwabe

loads to handle the extremely limited number of general-purpose x86 integer reg-
isters. We compressed our total table size (including masked
tables for the last round) to 4096 bytes; this improvement does not affect the
eSTREAM benchmark results but reduces cache-miss costs in many applications.

Reducing cycles. There are several tricky performance bottlenecks on the Pen-
tium 4. We recommend the manuals by Agner Fog [11] for much more compre-
hensive discussions of several x86 (and amd64) microarchitectures.

The most obvious bottleneck is that the Pentium 4 can do only one load per
cycle. Our main loop has 177 loads, accounting for most—although certainly not
all—of the 226 cycles that we actually use.

4.3 Sun UltraSPARC III, Sparcv9 Architecture

We measured our AES software on a computer named icarus at the University
of Illinois at Chicago. This computer has eight 900MHz Sun UltraSPARC III
CPUs; measurements used one CPU. Resulting speeds:

Software Measurement Cycles/byte
This paper eSTREAM 12.06 (or 12.36 for 576 bytes)
Bernstein eSTREAM 20.75
Gladman eSTREAM 24.08
Wu eSTREAM 28.88
OpenSSL 0.9.7e openssl speed aes 35

We also measured our AES software on a computer named nmisolaris10 in
the NMI Build and Test Lab at the University of Wisconsin at Madison. This
computer has two 1200MHz Sun UltraSPARC III Cu processors; measurements
used one processor.

Software Measurement Cycles/byte
This paper eSTREAM 12.03 (or 12.33 for 576 bytes)
Wu eSTREAM 17.27
Bernstein eSTREAM 25.08
Gladman eSTREAM 25.08

Unpublished code by Lipmaa is claimed in [16] to use 16.875 cycles/byte on a
“480 MHz SPARC,” presumably an UltraSPARC II. Lipmaa discusses counter
mode in [15] but does not report any speedups for the SPARC in this mode.

Reducing instructions. For this CPU, our implementation uses 505 instruc-
tions in the main loop, specifically 178 load/store instructions, 325 integer in-
structions, and 2 branch instructions. We use the following techniques from Sec-
tion 3: padded registers; 32-bit shifts of padded registers; masked tables; and
counter-mode caching.

Reducing cycles. An UltraSPARC CPU dispatches at most four instructions
per cycle. Only one of these instructions can be a load/store instruction, so our

New AES Software Speed Records 333

178 load/store instructions use at least 178 cycles. Furthermore, only two of
these instructions can be integer instructions, so our 325 integer instructions use
at least 162.5 cycles.

The simplest way to mask a byte is with an arithmetic instruction: for exam-
ple, &0xff00. The SPARC architecture supports only 12-bit immediate masks,
so three of the masks have to be kept in registers.

The UltraSPARC is an in-order CPU, except for store instructions. Proper
instruction scheduling thus requires each load instruction to be grouped with two
integer instructions. Only 24 8-byte integer registers are available, posing some
challenges for instruction scheduling. We have built a simplified UltraSPARC
simulator that accounts for 186 cycles with our current instruction scheduling;
we are continuing to analyze the gaps between 178 cycles, 186 cycles, and the
193 cycles actually used by our main loop.

We have considered round-key recomputation (see Section 3) to trade some
loads for integer instructions, but this makes scheduling even more difficult. With
more registers we would expect to be able to reach approximately 170 cycles.

4.4 Intel Core 2 Quad Q6600 6fb, amd64 Architecture

We measured our AES software on a computer named latour in the Coding
and Cryptography Computer Cluster (C4) at Technische Universiteit Eindhoven.
This computer has a 2400MHz Intel Core 2 CPU with four cores; measurements
used one core. Resulting speeds for encrypting a long stream:

Software Measurement Cycles/byte
This paper eSTREAM 10.57 (or 10.79 for 576 bytes)
Wu eSTREAM 12.27
Bernstein eSTREAM 13.75
Gladman eSTREAM 16.17
OpenSSL 0.9.8g openssl speed aes 18

Unpublished code by Matsui and Nakajima is claimed in [19, Table 6] to
use 14.5 cycles/byte (without bitslicing) on a Core 2. See also the discussion of
bitslicing in Section 1.

Reducing instructions. For this CPU, our implementation uses 434 instruc-
tions in the main loop. We use the following techniques from Section 3: scaled-
index loads; second-byte instructions; byte loads; two-byte loads; masked tables;
combined load-xor; round-key recomputation; round-key caching; and counter-
mode caching.

Reducing cycles. The Core 2 can dispatch three integer instructions per cycle
but, like the Pentium 4, can dispatch only one load per cycle. We have often
spent extra integer instructions to avoid loads and to improve the scheduling
of loads. For example, we have kept round-key words in “XMM” registers, even
though copying an XMM register to a normal integer register costs an extra
integer instruction. Our main loop currently has 143 loads, accounting for most
of our 169 cycles.

334 D.J. Bernstein and P. Schwabe

4.5 AMD Athlon 64 X2 3800+ 15/75/2, amd64 Architecture

We measured our AES software on a computer named mace in the Center for
Research and Instruction in Technologies for Electronic Security (RITES) at
the University of Illinois at Chicago. This computer has one 2000MHz AMD
Athlon 64 X2 3800+ 15/75/2 CPU with two cores; measurements used one core.
Resulting speeds for encrypting a long stream:

Software Measurement Cycles/byte
This paper eSTREAM 10.43 (or 10.71 for 576 bytes)
Wu eSTREAM 13.32
Bernstein eSTREAM 13.40
Gladman eSTREAM 18.06
OpenSSL 0.9.8g openssl speed aes 21

Unpublished code by Matsui is claimed in [17] to use 10.62 cycles/byte on
an Athlon 64. Unpublished code by Lipmaa is claimed in [16] to use 12.44 cy-
cles/byte on an Athlon 64.

Reducing instructions. For this CPU, our implementation uses 409 instruc-
tions in the main loop. We use the following techniques from Section 3: scaled-
index loads; second-byte instructions; byte loads; two-byte loads; masked tables;
combined load-xor; and counter-mode caching.

Reducing cycles. The Athlon 64 can dispatch three instructions per cycle,
including two load instructions. Loads and stores must be carried out in program
order, placing a high priority on careful instruction scheduling.

Our Athlon-64-tuned software runs at 11.54 cycles/byte on the Core 2, and our
Core-2-tuned software runs at 14.77 cycles/byte on the Athlon 64, illustrating
the importance of microarchitectural differences.

References

1. Aoki, K., Lipmaa, H.: Fast implementations of AES candidates. In: AES Candidate
Conference, pp. 106–120 (2000)

2. Atasu, K., Breveglieri, L., Macchetti, M.: Efficient AES implementations for ARM
based platforms. In: SAC 2004: Proceedings of the 2004 ACM symposium on Ap-
plied computing, pp. 841–845. ACM, New York (2004),
http://doi.acm.org/10.1145/967900.968073

3. Bernstein, D.J.: Cache-timing attacks on AES (2005),
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

4. Bernstein, D.J.: Estreambench software package (2008),
http://cr.yp.to/streamciphers/timings.html#toolkit-estreambench

5. Bertoni, G., Breveglieri, L., Fragneto, P., Macchetti, M., Marchesin, S.: Efficient
software implementation of AES on 32-bit platforms. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 159–171. Springer, Heidel-
berg (2003)

http://doi.acm.org/10.1145/967900.968073
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/streamciphers/timings.html#toolkit-estreambench

New AES Software Speed Records 335

6. Biryukov, A.: A new 128 bit key stream cipher: Lex (2005),
http://www.ecrypt.eu.org/stream/papers.html

7. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999),
http://www.iaik.tugraz.at/Research/krypto/AES/old/∼rijmen/
rijndael/rijndaeldocV2.zip

8. Darnall, M., Kuhlman, D.: AES software implementations on ARM7TDMI. In:
Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 424–435.
Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11941378 30

9. De Cannière, C.: The eSTREAM project: software performance (2008),
http://www.ecrypt.eu.org/stream/perf

10. ECRYPT. The eSTREAM project (2008), http://www.ecrypt.eu.org/stream
11. Fog, A.: How to optimize for the Pentium family of microprocessors (2008),

http://www.agner.org/assem/

12. Gladman, B.: AES and combined encryption/authentication modes (2006),
http://fp.gladman.plus.com/AES/

13. Harrison, O., Waldron, J.: AES encryption implementation and analysis on com-
modity graphics processing units. In: Paillier and Verbauwhede [22], pp. 209–226

14. Könighofer, R.: A fast and cache-timing resistant implementation of the AES.
In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 187–202. Springer,
Heidelberg (2008)

15. Lipmaa, H.: AES ciphers: speed in no-feedback mode (2006),
http://www.adastral.ucl.ac.uk/∼helger/research/aes/nfb.html

16. Lipmaa, H.: AES/Rijndael: speed (2006),
http://www.adastral.ucl.ac.uk/∼helger/research/aes/rijndael.html

17. Matsui, M.: How far can we go on the x64 processors. In: Robshaw, M.J.B.
(ed.) FSE 2006. LNCS, vol. 4047, pp. 341–358. Springer, Heidelberg (2006),
http://www.iacr.org/archive/fse2006/40470344/40470344.pdf

18. Matsui, M., Fukuda, S.: How to maximize software performance of symmetric prim-
itives on Pentium III and 4 processors. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 398–412. Springer, Heidelberg (2005)

19. Matsui, M., Nakajima, J.: On the power of bitslice implementation on Intel Core2
processor. In: Paillier and Verbauwhede [22], pp. 121–134,
http://dx.doi.org/10.1007/978-3-540-74735-2 9

20. Osvik, D.A.: Fast assembler implementations of the AES (2003),
http://www.ii.uib.no/∼osvik/pres/crypto2003.html

21. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11605805 1

22. Paillier, P., Verbauwhede, I. (eds.): CHES 2007. LNCS, vol. 4727. Springer, Hei-
delberg (2007)

23. Rebeiro, C., Selvakumar, A.D., Devi, A.S.L.: Bitslice implementation of AES. In:
Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 203–212.
Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11935070 14

24. Schneier, B., Whiting, D.: A performance comparison of the five AES finalists. In:
AES Candidate Conference, pp. 123–135 (2000)

25. Weiss, R., Binkert, N.L.: A comparison of AES candidates on the Alpha 21264. In:
AES Candidate Conference, pp. 75–81 (2000)

26. Worley, J., Worley, B., Christian, T., Worley, C.: AES finalists on PA-RISC and
IA-64: implementations & performance. In: AES Candidate Conference, pp. 57–74
(2000)

http://www.ecrypt.eu.org/stream/papers.html
http://www.iaik.tugraz.at/Research/krypto/AES/old/~rijmen/
rijndael/rijndaeldocV2.zip
http://dx.doi.org/10.1007/11941378_30
http://www.ecrypt.eu.org/stream/perf
http://www.ecrypt.eu.org/stream
http://www.agner.org/assem/
http://fp.gladman.plus.com/AES/
http://www.adastral.ucl.ac.uk/~helger/research/aes/nfb.html
http://www.adastral.ucl.ac.uk/~helger/research/aes/rijndael.html
http://www.iacr.org/archive/fse2006/40470344/40470344.pdf
http://dx.doi.org/10.1007/978-3-540-74735-2_9
http://www.ii.uib.no/~osvik/pres/crypto2003.html
http://dx.doi.org/10.1007/11605805_1
http://dx.doi.org/10.1007/11935070_14

336 D.J. Bernstein and P. Schwabe

A Review: One AES Round, in C

z0 = roundkeys[i * 4 + 0];

z1 = roundkeys[i * 4 + 1];

z2 = roundkeys[i * 4 + 2];

z3 = roundkeys[i * 4 + 3];

p00 = (uint32) y0 >> 20;

p01 = (uint32) y0 >> 12;

p02 = (uint32) y0 >> 4;

p03 = (uint32) y0 << 4;

p00 &= 0xff0;

p01 &= 0xff0;

p02 &= 0xff0;

p03 &= 0xff0;

p00 = *(uint32 *) (table0 + p00);

p01 = *(uint32 *) (table1 + p01);

p02 = *(uint32 *) (table2 + p02);

p03 = *(uint32 *) (table3 + p03);

z0 ^= p00;

z3 ^= p01;

z2 ^= p02;

z1 ^= p03;

p10 = (uint32) y1 >> 20;

p11 = (uint32) y1 >> 12;

p12 = (uint32) y1 >> 4;

p13 = (uint32) y1 << 4;

p10 &= 0xff0;

p11 &= 0xff0;

p12 &= 0xff0;

p13 &= 0xff0;

p10 = *(uint32 *) (table0 + p10);

p11 = *(uint32 *) (table1 + p11);

p12 = *(uint32 *) (table2 + p12);

p13 = *(uint32 *) (table3 + p13);

z1 ^= p10;

z0 ^= p11;

z3 ^= p12;

z2 ^= p13;

p20 = (uint32) y2 >> 20;

p21 = (uint32) y2 >> 12;

p22 = (uint32) y2 >> 4;

p23 = (uint32) y2 << 4;

p20 &= 0xff0;

p21 &= 0xff0;

p22 &= 0xff0;

p23 &= 0xff0;

p20 = *(uint32 *) (table0 + p20);

p21 = *(uint32 *) (table1 + p21);

p22 = *(uint32 *) (table2 + p22);

p23 = *(uint32 *) (table3 + p23);

z2 ^= p20;

z1 ^= p21;

z0 ^= p22;

z3 ^= p23;

p30 = (uint32) y2 >> 20;

p31 = (uint32) y2 >> 12;

p32 = (uint32) y2 >> 4;

p33 = (uint32) y2 << 4;

p30 &= 0xff0;

p31 &= 0xff0;

p32 &= 0xff0;

p33 &= 0xff0;

p30 = *(uint32 *) (table0 + p30);

p31 = *(uint32 *) (table1 + p31);

p32 = *(uint32 *) (table2 + p32);

p33 = *(uint32 *) (table3 + p33);

z3 ^= p30;

z2 ^= p31;

z1 ^= p32;

z0 ^= p33;

A New Class of Weak Encryption Exponents
in RSA

Subhamoy Maitra and Santanu Sarkar

Indian Statistical Institute, 203 B T Road, Kolkata 700 108, India
{subho,santanu r}@isical.ac.in

Abstract. Consider RSA with N = pq, q < p < 2q, public encryption
exponent e and private decryption exponent d. We concentrate on the
cases when e(= Nα) satisfies eX−ZY = 1, given |N−Z| = Nτ . Using the
idea of Boneh and Durfee (Eurocrypt 1999, IEEE-IT 2000) we show that
the LLL algorithm can be efficiently applied to get Z when |Y | = Nγ

and γ < 4ατ
(

1
4τ

+ 1
12α
−

√
(1
4τ

+ 1
12α

)2 + 1
2ατ

(1
12

+ τ
24α
− α

8τ
)
)
. This

idea substantially extends the class of weak keys presented by Nitaj
(Africacrypt 2008) when Z = ψ(p, q, u, v) = (p − u)(q − v). Further, we
consider Z = ψ(p, q, u, v) = N − pu− v to provide a new class of weak
keys in RSA. This idea does not require any kind of factorization as used
in Nitaj’s work. A very conservative estimate for the number of such
weak exponents is N0.75−ε, where ε > 0 is arbitrarily small for suitably
large N .

Keywords: Cryptanalysis, Factorization, Lattice, LLL Algorithm.

1 Introduction

RSA [13] is the most well known public key cryptosystem. The security of RSA
depends on the hardness of factorization. Though RSA is quite secure if properly
used, the extensive literature in RSA cryptanalysis identified different scenario
where the security can be compromised. Before proceeding further, let us briefly
explain the standard notations related to RSA cryptosystem: (i) primes p, q with
same bit size, i.e., q < p < 2q. (ii) N = pq, φ(N) = (p − 1)(q − 1); (iii) e, d are
such that ed = 1 + tφ(N), t ≥ 1; (iv) N, e are available in public domain and
the message M is encrypted as C = Me mod N ; (v) the secret key d is required
to decrypt the message as M = Cd mod N .

There is detailed literature on RSA cryptanalysis and a survey on the attacks
on RSA before the year 2000 is available in [3]. One very important result re-
garding RSA weak keys has been presented in [14], where it has been shown
that N can be factored from the knowledge of N, e if d < 1

3N
1
4 . The important

idea of [6] using lattice based techniques has also been exploited in great de-
tail [4,5,1] to find weak keys of RSA when d < N0.292. For very recent results on
RSA cryptanalysis, one may refer to [7] and the references therein. Even with
all these cryptanalytic ideas, RSA is still quite secure if used properly. In this

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 337–349, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

338 S. Maitra and S. Sarkar

direction, identifying new weak keys of RSA is always important so that RSA
can be applied in a secured manner.

In [2], it has been shown that p, q can be found in polynomial time for every
N, e satisfying ex + y ≡ 0 mod φ(N), with x ≤ 1

3N
1
4 and |y| = O(N− 3

4 ex);
further some extensions considering the difference p−q have also been considered.
The work of [2] uses the result of [6] as well as the idea of CF expression [14] in
their proof. The number of such weak keys has been estimated as N

3
4−ε.

In a similar direction of [2], further weak keys are presented in [12]. The idea
of [12] is as follows. Consider that e satisfies eX − (p − u)(q − v)Y = 1 with
1 ≤ Y < X < 2−

1
4 N

1
4 , |u| < N

1
4 , v =

[
− qu

p−u

]
([x] means the nearest integer of

the real number x). If all the prime factors of p− u or q − v are less than 1050,
then N can be factored from the knowledge of N, e. The number of such weak
exponents are estimated as N

1
2−ε.

In [12], Continued Fraction (CF) expression is used to find the unknowns X, Y
among the convergents of e

N . We immediately get improved results over [12] using
the LLL [9] algorithm and our results are as follows.

– The bound on Y can be extended till Nγ ,

γ < 4ατ
(

1
4τ + 1

12α −
√

(1
4τ + 1

12α)2 + 1
2ατ (1

12 + τ
24α −

α
8τ)

)
, given e = Nα

and |N − (p− u)(q − v)| = N τ .
– The only constraint on X is to satisfy the equation eX−(p−u)(q−v)Y = 1,

which gives X = 1+(p−u)(q−v)Y
e , i.e., X = �N1+γ−α�.

– In [12], the constraint 1 ≤ Y < X < 2−
1
4 N

1
4 forces that the upper bound of

e is O(N). However, in our case the value of e can exceed this bound. Our
results work for e upto N1.875 for τ = 1

2 .

In fact, our result is more general. Instead of considering some specific form
eX − (p − u)(q − v)Y = 1, we consider equations like eX − ZY = 1, where
Z = ψ(p, q, u, v). Given e = Nα and the constraint |N − Z| = N τ , we can
efficiently find Z using the LLL algorithm when |Y | = Nγ , where

γ < 4ατ
(

1
4τ + 1

12α −
√

(1
4τ + 1

12α)2 + 1
2ατ (1

12 + τ
24α −

α
8τ)

)
.

As an example, we consider Z = ψ(p, q, u, v) = N − pu − v to present a new
class of weak keys in RSA. This idea does not require any kind of factorization
as used in [12]. We estimate a lower bound on the number of weak keys in this
class as N0.75−ε.

The organization of the paper is as follows. In Section 2 we present our main
result following the idea of [4,5]. The improvements over the results of [12]
are presented in Section 3. A completely new class of weak keys when Z =
ψ(p, q, u, v) = N − pu− v is studied in Section 4. Section 5 concludes the paper.

2 Our Basic Technique

In this section we build the framework of our analysis related to weak keys. First
we present a result based on continued fraction expression.

A New Class of Weak Encryption Exponents in RSA 339

Lemma 1. Let N = pq be an RSA modulus with q < p < 2p. Consider that e
satisfies the equation eX − ZY = 1 where |N − Z| = N τ . Then Y

X is one of the
convergents in the CF expansion of e

N when 2XY < N1−τ .

Proof. We have e
N − Y

X = eX−NY
NX = 1−(N−Z)Y

NX ≈ − (N−Z)Y
NX . So, | e

N − Y
X | ≈

| (N−Z)Y
NX | = Nτ Y

NX = Nτ−1Y
X . So, Y

X will be one of the convergents of e
N if Nτ−1Y

X <
1

2X2 ⇔ 2XY < N1−τ .
�

We will use the above result later to demonstrate certain improvements over
existing schemes. Next we present the following theorem which is the core of our
results. For detailed ideas related to lattices, one may have a look at [4,5].

Theorem 1. Let N = pq be an RSA modulus with q < p < 2p. Consider
that e (= Nα) satisfies the equation eX − ZY = 1 where |N − Z| = N τ , and
|Y | = Nγ . Then we can apply LLL algorithm efficiently to get Z when γ <

4ατ
(

1
4τ + 1

12α −
√

(1
4τ + 1

12α)2 + 1
2ατ (1

12 + τ
24α −

α
8τ)

)
.

Proof. We have eX − ZY = 1, which can also be written as eX = 1 + NY +
(Z − N)Y . Hence, 1 + NY + (Z − N)Y = 0 mod e. Thus, we have to find the
solution of f(x, y) = 1 + Nx + xy in Ze, where x = Y, y = Z −N (the unusual
assignment of Y to x is to maintain similar notation as in [4] in the following
part of the proof).

We have to find x, y such that 1 + x(N + y) ≡ 0 mod e, where |x| = Nγ = e
γ
α

and |y| = N τ = e
τ
α . Let X1 = e

γ
α , Y1 = e

τ
α . One may refer to [4, Sec-

tion 4] for detx = em(m+1)(m+2)/3X
m(m+1)(m+2)/3
1 Y

m(m+1)(m+2)/6
1 and dety =

etm(m+1)/2X
tm(m+1)/2
1 Y

t(m+1)(m+t+1)/2
1 . Plugging in the values of X1 and Y1,

we obtain, detx = em3(1
3 + γ

3α + τ
6α)+o(m3), dety = etm2(1

2 + γ
2α + τ

2α)+ mt2τ
2α +o(tm2).

Now det(L) = detxdety and we need to satisfy det(L) < emw, where w =
(m + 1)(m + 2)/2 + t(m + 1), the dimension of L. To satisfy det(L) < emw,
we need m3(1

3 + γ
3α + τ

6α) + tm2(1
2 + γ

2α + τ
2α) + mt2τ

2α < m3

2 + tm2, ignoring the
smaller terms. This leads to m2(1

3 + γ
3α + τ

6α−
1
2)+tm(1

2 + γ
2α + τ

2α −1)+ t2τ
2α < 0.

After fixing an m, the left hand side is minimized at t = m(α
2τ −

1
2 −

γ
2τ). Putting

this value we have, (1
12 + τ

24α −
α
8τ) + γ(1

4τ + 1
12α)− γ2

8ατ < 0.

So, γ < 4ατ
(

1
4τ + 1

12α −
√

(1
4τ + 1

12α)2 + 1
2ατ (1

12 + τ
24α −

α
8τ)

)
. Similar to

the idea in [4, Section 4], if the first two elements (polynomials P1(x, y), P2(x, y))
of the reduced basis out of the LLL algorithm are algebraically independent (i.e.,
nonzero resultant res(P1, P2) which is a polynomial of y, say), then we get y by
solving res(P1, P2) = 0. The value of y gives Z−N . (This actually happens with
a high probability in practice as we have also checked by experimentation.)
�

Based on Theorem 1, one can design

– a probabilistic polynomial time algorithm A, which will take
– N, e = Nα as inputs
– and will provide the correct Z if

340 S. Maitra and S. Sarkar

• eX − ZY = 1, with |N − Z| = N τ , and Y = Nγ , where

γ < 4ατ
(

1
4τ + 1

12α −
√

(1
4τ + 1

12α)2 + 1
2ατ (1

12 + τ
24α −

α
8τ)

)
.

• and the resultant polynomial res(P1, P2) on y is nonzero with integer so-
lution (in practice the integer solution is correct with a high
probability).

If Z is known, one can try to get further information on the primes. As example,
in [12], Z = ψ(p, q, u, v) = (p−u)(q−v), the knowledge of which presents a class
of weak keys in RSA. In our further analysis, we use Z = ψ(p, q, u, v) = N−pu−v
in Section 4.

We now like to list the following points.

– For a fixed α, the value of γ decreases when τ increases and
– given a fixed τ , the value of γ increases with the increased value of α.

Below we present the numerical values of γ corresponding to α following
Theorem 1 for three different values of τ , which are 1

4 , 1
2 , 3

4 .
In the work of [12], the value of τ has been taken as 1

2 . Thus we discuss some
cases when τ = 1

2 to highlight the improvements we achieve over [12]. Note that
for randomly chosen e’s such that e < φ(N), the value of e will be O(N) in most
of the cases. In such a case, putting α = 1 and τ = 1

2 , we get that γ < 0.284.
When α < 1 and τ = 1

2 , the bound on γ will decrease and it will become 0 at
α = 1

2 . However, for randomly chosen e’s such that e < φ(N), this will happen
in negligibly small proportion of cases.

Most interestingly, the bound of γ will increase further than 0.284 when α > 1.
Wiener’s attack [14] becomes ineffective when e > N1.5 and the Boneh-Durfee
attack [5] becomes ineffective when e > N1.875. Similar to the result of [5],
equations of the form eX − ZY = 1 cannot be used for e > N1.875, since in
such case no X will exist given the bound on Y . For τ = 1

2 , we have presented
the theoretical results for e reaching N1.875 in Table 1. Experimental results will
not reach this bound as we work with small lattice dimensions in practice, but
even then the experimental results for e reach close to the value N1.875 as we
demonstrate results for N1.774 in Section 3.3 for 1000-bit N .

Note that here we present a theoretical estimate on the bound of γ. These
bounds may not be achievable in practice due to the large lattice dimensions.
However, the experimental results are close to the theoretical estimates, which
are presented in Sections 3.3, 4.1.

Table 1. The numerical upper bounds of γ (in each cell) following Theorem 1, given
different values of α and τ

α 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.875
τ = 1

4
0.482 0.555 0.629 0.704 0.780 0.856 0.934 1.012 1.091 1.150

τ = 1
2

0.284 0.347 0.412 0.477 0.544 0.612 0.681 0.751 0.821 0.875
τ = 3

4
0.131 0.188 0.245 0.305 0.365 0.427 0.489 0.553 0.618 0.667

A New Class of Weak Encryption Exponents in RSA 341

3 Improvements over the Work of [12]

In this section we present various improvements over the work of [12]. For this,
first we present an outline of the strategy in [12]. Consider that e satisfies eX −
(p − u)(q − v)Y = 1 with 1 ≤ Y < X < 2−

1
4 N

1
4 , |u| < N

1
4 , v =

[
− qu

p−u

]
. If all

the prime factors of p − u or q − v are less than 1050, then N can be factored
from the knowledge of N, e. The number of such weak exponents are estimated
as N

1
2−ε. The flow of the algorithm in [12] is as follows.

1. Continued Fraction algorithm is used to find the unknowns X, Y among the
convergents of e

N .
2. Then Elliptic Curve Factorization Method (ECM [10]) is used to partially

factor eX−1
Y , i.e., (p− u)(q − v).

3. Next, an integer relation detection algorithm (LLL [9]) is used to find the
divisors of Becm-smooth part of eX−1

Y in a small interval.
4. Finally, if p− u or q − v is found, the method due to [6] is applied.

After knowing (p− u)(q− v), if one gets the factorization of p− u or q− v, then
it is possible to identify p − u or q − v efficiently and the overall complexity is
dominated by the time required for factorization. According to [12], if ECM [10]
is used for factorization, and if all prime factors of p − u or q − v are less than
1050, then getting p−u or q−v is possible in moderate time. Once p−u or q−v
is found, as u, v are of the order of N

1
4 , using the technique of [6], it is possible

to find p or q efficiently.

3.1 The Improvement in the Bounds of X, Y

In [12] the bounds of X and Y are given as 1 ≤ Y < X < 2−
1
4 N

1
4 . Since, u, v

are of O(N
1
4), we get that (p − u)(q − v) is O(N). When e is O(N1+µ), µ > 0

and X is O(Nν), 0 < ν ≤ 1
4 , the value of eX is O(N1+µ+ν). In such a case,

Y will be O(Nµ+ν), which is not possible as Y < X . Thus the values of e are
bounded by O(N) in the work of [12]. Next we generalize the bounds on X, Y .

The method of [12] requires 1 ≤ Y < X < 2−
1
4 N

1
4 . For τ = 1

2 , our result in
Lemma 1 gives that it is enough to have 2XY < N

1
2 pointing out better bounds

than [12] as follows:

– there is no need to have Y < X when X, Y are of O(N
1
4), and

– the bound of either X or Y can be greater than N
1
4 when the other one is

less than N
1
4 .

We have already noted that the values of e are bounded by O(N) in the work
of [12]. In our case, this bound is increased too. The exponent e is of the order
of (p−u)(q−v)Y

X , which is O(N2−τ

X2). Given τ = 1
2 , when X is O(N

1
4), we get the

bound on e as O(N), which is same as what given in [12]; however, our bound
increases as X decreases.

342 S. Maitra and S. Sarkar

3.2 Further Improvement over Section 3.1

With our results in Theorem 1, we get further bounds on X, Y . Note that Y =
Nγ . Thus, X = �N1+γ−α�. This gives, XY = N1+2γ−α, where

γ < 4ατ
(

1
4τ + 1

12α −
√

(1
4τ + 1

12α)2 + 1
2ατ (1

12 + τ
24α −

α
8τ)

)
, as in Theorem 1.

Our result gives the following improvements.

– The bound on Y can be extended till Nγ . One may have a look at Table 1
for the numerical values of the theoretical bounds of γ given some α. The
experimental results are presented in Section 3.3.

– X has to satisfy the equation eX − (p − u)(q − v)Y = 1, which gives X =
�N1+γ−α�. The value of X becomes smaller as α increases.

– The constraint 1 ≤ Y < X < 2−
1
4 N

1
4 in [12] forces that the upper bound

of e has to be O(N). However, in our case the value of e can exceed this
bound and the result works for e upto N1.875 theoretically as described in
Section 2.

3.3 Experimental Results

We have implemented the programs in SAGE 2.10.1 over Linux Ubuntu 7.04
on a computer with Dual CORE Intel(R) Pentium(R) D CPU 2.80GHz, 1 GB
RAM and 2 MB Cache. Below we start with a complete example.

Example 1. Let us consider that N, e are available. We choose a 1000-bit N
which is a product of two 500-bit primes. Let N be
6965301839116252842151601289304534942713324759565286529653767647
8768155930430666799437161475057925109785426932854120387907825516
6760398939767348434594081678022491354913429428712241705242402188
3293512985226845866182664930993217767070732004829330778668319338
402258431072292258308654308889461963963786753
and e be a 1000-bit number
6131104587526715137731121962949288372067853010907049196083307936
8589835495733258743040864963707793556567754437239459230699951652
4114049172146335728027441527646511562295901427592480445339976342
3629012467921720937327176882146018075507772227029755907501291937
300116177647310527785231764272675507839815927.

Running our method as explained in Theorem 1, we get (p − u)(q − v) as
6965301839116252842151601289304534942713324759565286529653767647
8768155930430666799437161475057925109785426932854120387907825516
6760398939767348434593866189401923798371559862126676390152959012
1188144136872190253575242273886606436919626785397201816501702315
901845767585961196177847672535848282542000103.

The factorization of (p− u)(q − v) is as follows:
34 × 1724 × 6168124 × 2297× 141803× 345133
×14127457182016070043858828063633385965304567483679
×173440358716185274816104088441799257634500675986881217808
26850377496712904460130651142191039.

A New Class of Weak Encryption Exponents in RSA 343

This requires 112151.62 seconds (less than 1.3 days) using the ECM method
of factoring.

In this case, p−u is 3×1724×6168124×345133 and the rest of the terms will
give q− v. Since, p−u < N

1
4 , p can be found using the idea of [6] in polynomial

time.
Finally one can find p, q as

3232329308513348128043498783477144091769556249463616612811415899
2596559541241660031449960551292345720627446011227767334525515385
02084543208800320998727,
2154886205675565418695665855651429394513037499642411075207610599
5064373027494440020966640367528230480418297340818511556350343590
01389695472533547333239 respectively.

In this example, X, Y are respectively 275 and 274 bit numbers as follows:
3035420144102701673311659229411748291628760686018968001955956890
2170379456331382787 and
2671883975804894456278842490580443758950128272095600125097638973
0227494745205672316. Note that these numbers are clearly greater than N

1
4 (in

contrary to the bound presented in [12] where 1 ≤ Y < X < 2−
1
4 N

1
4) as N is a

1000 bit integer here.
Now we show that the technique of [12] will not work here. We calculate the CF

expansion of e
N and study all the convergents Y

X with denominator X < 2−
1
4 N

1
4 .

Except X = Y = 1, no eX−1
Y is an integer. When X = Y = 1, we have eX−1

Y =
e−1. Thus in this case, (p−u)(q−v) = e−1. As given in [12, Lemma 4], one needs
to satisfy the condition |(p−u)(q−v)−N | < 2−

1
2 N

1
2 . Thus, in this example, one

needs to satisfy |e− 1−N | < 2−
1
2 N

1
2 , which is not true.

Next we go for different cases with e = Nα having varying α given the same
p, q in Example 1. The experimental results are as follows where each run to find
(p − u)(q − v) requires less than 15 minutes. Note that comparing to Table 1,
the results in Table 2 gives little lower values of γ. Further, we do not get the
solutions for these p, q values when α = 1.8, 1.875 as 1+γ−α becomes very close
to zero and hence X does not exist given the bound of Y . The maximum e for
which we get a valid X is of size 1774 bits in this example. Thus the maximum
value of α for which our method works in this example is 1.774. The value of γ
in this example is 0.778 as Y is a 778-bit integer.

Table 2. The numerical values of γ given α found by experiment when N is of 1000
bits and p, q are as in Example 1. The lattice has the parameters m = 7, t = 3, w = 60.

α 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.875
γ 0.274 0.336 0.399 0.464 0.529 0.596 0.659 0.726 – –

4 A New Class of Weak Keys
The problem with the idea of [12] is that one needs to factorize (p − u)(q − v)
to attack RSA and this is only possible when the factors of either (p−u) or (q−v)

344 S. Maitra and S. Sarkar

are relatively small. In this section we present a new class of weak keys where
there is no involvement of factorization at all. For this, let us first refer to the
following existing result from [11, Theorem 10].

Theorem 2. [11] Let N = pq be an RSA modulus with q < p < 2q. Let u be an
(unknown) integer that is not a multiple of q. Suppose we know an approximation
P̂ of pu with |pu− P̂ | ≤ 2N

1
4 . Then N can be factorized in time polynomial in

log N .

After finding X and Y from the continued fraction expression (as given in
Lemma 1 of e

N , one can get N − pu − v and hence pu + v. In our case, the
P̂ of Theorem 2 is pu + v. Following Theorem 2, if |v| < N

1
4 and u is not a

multiple of q, then one can get p.
Next we present further extension on this class of weak keys using the idea of

Theorem 1 and noting Z = ψ(p, q, u, v) = pq−pu− v = N −pu− v. In this case,
|N − Z| = |pu + v| = N τ . When Y = Nγ and e = Nα then X = �N1+γ−α�.
This gives, XY = N1+2γ−α, where

γ < 4ατ
(

1
4τ + 1

12α −
√

(1
4τ + 1

12α)2 + 1
2ατ (1

12 + τ
24α −

α
8τ)

)
, as in Theorem 1.

It is clear that when N1+2γ−α is greater than the bound N
pu+v = N1−τ of

Lemma 1, then we get a larger class of weak keys using the LLL method instead
of the technique using continued fraction expression. This happens when 1 +
2γ − α > 1− τ , which is true taking the value of the upper bound on γ.

As an example, taking α = 1 and τ = 1
2 the upper bound of γ is 0.284 and in

this case XY will be N0.568. However, the bound from Lemma 1 in this case is
N0.5. For larger values of α, the bound on XY will increase further.

4.1 Experimental Results

We consider the same N as used in Example 1.

Example 2. Let us first apply the continued fraction method as explained in
Lemma 1. The public exponent e is a 1000-bit number
6924191794904822444331919988065675834958089478755604021224486550
7412869094970482880973033565767568702443953304958933817087359916
4174174034188975911152337295179208385986195123683049905106852500
8344300373973162700864249336588337032797599912676619611066951994
203277539744143449608166337312588384073377751. Then the continued frac-
tion of e

N gives X, Y (respectively) as
1684996666696914987166688442938726917102321526408785780068975640579,
1675051614915381290330108388747571693885770140577513454985303531396.

Then we find pu + v as
1455711706935944763346481078909022402000177527246411623972976816
5827834476154028615829072068297700713978442098223807592204425878
660324320671085270850022954001141596160.

From pu + v we get p using the idea of Theorem 2 as in this case u = 252 is
not a multiple of q and v = 2175 is less than N

1
4 .

A New Class of Weak Encryption Exponents in RSA 345

Next we give an example using the LLL technique that cannot be done using
the technique of Lemma 1.

Example 3. The public exponent e is a 1000-bit integer as follows:
6875161700303375704546089777254797601588535353918071259131130001
5332829990657553375889250468602806539681604179662083731636763206
7332030043195254536198882701786034369526609680993429591977911304
8106951304856890084599364131003915783164223278468592950590533634
401668968574079388141851069809468480532614755.

Using Theorem 1 we get Y (a 240 bit integer)
1743981747042138853816214839550693531666858348727675018411981662
762169193, and pu + v (a 552 bit integer)
1455711706935944763346481078909022402000177527246411623972976816
5827834476154028615829072068297700713978442098223807592204425878
660324320671085270850022954001141596160.

In this case u, v are same as in Example 2 and hence p can be found us-
ing the idea of Theorem 2. It is to note that in this case X is a 241 bit in-
teger 1766847064778384329583297500742918515827483896875618958121606201
292619790. Note that � N

pu+v � is a 448-bit integer. Now 2XY should be less
than 448 bit for a success using the technique of Lemma 1, which is not possible
as X, Y are 241 and 240 bit integers respectively. Thus the idea of continued
fraction method can not be applied here.

Now we like to point out that the weak key of Example 3 is not covered by the
works of [14,15,2]. In this case, the decryption exponent d is a 999-bit integer
and hence the bound of [14] that d < 1

3N
1
4 will not work here.

Here p−q > N0.48 and according to [15, Section 6] one can consider β = 0.48.
If d = N δ, then according to [15, Section 6] the bound of δ will be 2− 4β < δ <

1−
√

2β − 1
2 for RSA to be insecure. Putting β = 0.48, one can get 0.08 < δ <

0.3217, which is much smaller than 0.999 (in Example 3, d ≈ N0.999) and hence
the weak keys of [15] does not cover our result.

In [2, Theorem 4, Section 4], it has been shown that p, q can be found in poly-

nomial time for every N, e satisfying ex+y = kφ(N), with 0 < x ≤ 1
3

√
φ(N)

e
N

3
4

p−q

and |y| ≤ p−q

φ(N)N
1
4
ex. According to [2], convergents of the CF expression of

e
N−�2√N� will provide k

x . For the parameters in Example 3, we calculated all

the convergents with x ≤ 1
3

√
φ(N)

e
N

3
4

p−q and we find that for each such k, x,
|ex− kφ(N)| > p−q

φ(N)N
1
4
ex. As y = ex− kφ(N), the bound on |y| is not satisfied.

Thus the weak key presented in Example 3 is not covered by the work of [2].
Next we go for different cases with e = Nα having varying α given the same

p, q in Example 1. The experimental results are as follows where each run to
find N − pu − v requires less than 15 minutes. As the attack works for the
values u = 252 and v = 2175 given in Example 2, we get N τ = pu + v and
hence τ = 0.552. In the first row of Table 3, we present the values of α where
e = Nα; the second row provides the theoretical upper bound on γ according

346 S. Maitra and S. Sarkar

Table 3. The numerical values of γ given different values of α when τ = 0.552 (both
theoretical and experimental values) when N is of 1000 bits and p, q are as in Example 1.
The lattice has the parameters m = 7, t = 3, w = 60.

α 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.72
γ (theoretical) 0.250 0.311 0.374 0.438 0.504 0.570 0.638 0.706 0.720

γ (experimental) 0.240 0.300 0.362 0.426 0.491 0.555 0.621 – –

to Theorem 1, given the values of α in the first row and τ = 0.552; the third
row presents the experimental values of γ, which is obtained from the bit size
of Y as found in the experiments. In experiments, we do not get the solutions
for these p, q values when α ≥ 1.7 as 1 + γ − α becomes very close to zero and
hence X does not exist given the bound of Y . The maximum e for which we get
a valid X is of size 1653 bits in this example. Thus the maximum value of α for
which our method works in this example is 1.653. The value of γ in such a case
is 0.656 as Y is a 656-bit integer.

We like to point out that one can exploit the techniques using sub-lattices
given in [5] for improvement in the bound of γ than in Theorem 1 (where we
use the idea of lattices following [4]). In practice, the idea of sub-lattices helps
in getting the same result with less lattice dimension. During actual execution,
for fixed N, e, u, v, Y , consider that t1 is the time in seconds to run the LLL
algorithm, t2 is the time in seconds to calculate the resultant and t3 is the time
in seconds to find the integer root of the resultant; and let us refer this as a
tuple < (bN , be, bu, bv, bY), t1, t2, t3 >a, where bN , be, bu, bv, bY are the bit-sizes
of N, e, u, v, Y respectively; and a = L for full rank lattice and a = S for sub-
lattice. Our examples are with lattice parameters m = 7, t = 3 and thereby giving
the dimension 60 for full rank lattice (following the idea of [4]) and dimension
43 for sub-lattice (exactly following [5] the dimension should be 45, but due to
the upper bounds X1, Y1 in Theorem 1, we get lower sub-lattice dimension). The
examples are as follows:

< (1000, 1000, 52, 175, 240), 20, 373, 4 >L, < (1000, 1000, 52, 175, 240), 14, 377, 4 >S ,

< (2000, 1995, 104, 350, 465), 79, 1074, 16 >L, < (2000, 1995, 104, 350, 465), 68, 1075, 15 >S , and

< (9999, 9999, 520, 1750, 2350), 4722, 5021, 248 >L, < (9999, 9999, 520, 1750, 2350), 4426, 5028, 198 >S .

As long as t1 is much less than t2, using sub-lattices (following [5]) instead of
lattices (following [4]) will not provide significant improvement in total execution
time. However, when t1 becomes dominant, then the implementation using sub-
lattices will provide faster execution.

4.2 Estimation of Weak Keys

In this section, we estimate the number of exponents for which our method
works. We first present a simple analysis.

Lemma 2. Consider RSA with N = pq, where p, q are primes such that q < p <
2q. Let e be the public encryption exponent that satisfies eX−(N−pu−v)Y = 1.
Then for X = Y = 1, N can be factorized in poly(logN) time from the knowledge
of N, e when u is not a multiple of q and |v| < N

1
4 . The number of such weak

A New Class of Weak Encryption Exponents in RSA 347

keys e, such that e < N is N
3
4−ε, where ε > 0 is arbitrarily small for suitably

large N .

Proof. Given the equation eX − (N − pu − v)Y = 1, we consider the scenario
when X = 1, Y = 1, i.e., when e = N − pu − v + 1. In such a case, from e,
we will immediately get pu + v and then following Theorem 2, one can get p in
O(poly(log N)) time when |v| < N

1
4 and u is not a multiple of q. Considering

1 < e < φ(N), we get that pu+ v < N . Considering p, q are of same bit size, i.e.,

q < p < 2q, one may find
√

N < p <
√

2N and
√

N
2 < q <

√
N . As, |v| < N

1
4

and v may be a negative integer, a conservative upper bound of u is
√

N
2 and

clearly in such a case u is not a multiple of q. The total number of options of

u, v pairs when 0 < u <
√

N
2 and |v| < N

1
4 is

√
N
2 × 2N

1
4 =

√
2N

3
4 . As we have

to consider those e’s which are coprime to φ(N), we can only consider those u, v
pairs such that gcd(N − pu− v + 1, φ(N)) = 1. Similar to the arguements of [2,
Lemma 13] and [12, Theorem 6], the number of such u, v pairs is N

3
4−ε, where

ε > 0 is arbitrarily small for suitably large N .
�

The result of Lemma 2 will actually work in a similar manner for any X, Y which
are bounded by a small constant as one can search those values of X, Y pairs to
guess pu + v. Now we discuss a more general scenario.

Consider τ ≤ 1 − ε1 for some arbitrarily small positive constant ε1. We have√
N < p <

√
2N , pu + v = N τ and |v| < N

1
4 . Thus, it is enough to consider

u ≤ 1√
2
N

1
2−ε1 . In such a case, N − pu − v will be c1N for some constant 0 <

c1 < 1. Considering e = c2N , with 0 < c2 < 1, a constant, we find that X, Y are
of the same order. As we consider e = c2N , we can estimate α as 1. Following
Theorem 1 and putting α = 1, we find that as τ goes towards 1 (i.e., ε1 goes

to 0), the value of 4ατ
(

1
4τ + 1

12α −
√

(1
4τ + 1

12α)2 + 1
2ατ (1

12 + τ
24α −

α
8τ)

)
goes

towards 0. As γ < 4ατ
(

1
4τ + 1

12α −
√

(1
4τ + 1

12α)2 + 1
2ατ (1

12 + τ
24α −

α
8τ)

)
, and

|Y | = Nγ , given that X, Y are of the same order, this puts a constraint on X
also and we need to consider X < N ε3 where

ε3 = 4ατ
(

1
4τ + 1

12α −
√

(1
4τ + 1

12α)2 + 1
2ατ (1

12 + τ
24α −

α
8τ)

)
, for α = 1 and

τ = 1− ε1.
Let us refer to the following result from [8].

Theorem 3. [8] Consider a large integer N that has a divisor d1 in an interval
(y, z] for a large y. Then N has exactly one divisor (almost certainly) in this
interval if z ≈ y + y

(logy)log 4−1 .

Now we present a technical result required for counting the weak keys.

Lemma 3. Let N = pq with q < p < 2q and 0 ≤ u, u′ ≤ 1√
2
N

1
2−ε1 . Let

X be an integer with 1 ≤ X < N ε3 such that gcd(X, N − pu − v) = 1 and
gcd(X, N − pu′ − v′) = 1, where |v|, |v′| < N

1
4 . Let e ≡ X−1 mod N − pu − v

and e′ ≡ X−1 mod N − pu′ − v′. If e = e′ then almost surely u = u′, v = v′.

348 S. Maitra and S. Sarkar

Table 4. Numerical values of ε3 (i.e., the bound of γ) following Theorem 1 correspond-
ing to the values of τ when α = 1

τ 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 0.97 0.99
ε3 0.284 0.220 0.160 0.130 0.100 0.077 0.051 0.025 0.015 0.005

Proof. We have e = e′. So N − pu − v and N − pu′ − v′ both divides eX − 1.
Since u, u′ ≤ 1√

2
N

1
2−ε1 , and |v|, |v′| < N

1
4 so N − pu − v and N − pu′ − v′ are

in the interval I = [N −N1−ε1 −N
1
4 , N + N

1
4]. Let y = N −N1−ε1 −N

1
4 and

y′ = N + N
1
4 . One can check that y′ < y + y

(logy)log 4−1 for a fixed ε1 and a large
N . Thus following Theorem 3, N − pu− v = N − pu′ − v′ holds almost surely.

Given N−pu−v = N−pu′−v′, we get pu+v = pu′+v′ iff p(u−u′) = v′−v.
Since p is O(

√
N) and v, v′ are O(N

1
4), we get u = u′ and v = v′.
�

Thus if any one (or both) of the pairs u, u′ and v, v′ are distinct, then e, e′ are
almost surely distinct once X is fixed. The number of such distinct u, v pairs is
1√
2
N

3
4−ε1 . Fixing X , for each pair of values of u, v, the exponent e need to be

coprime to φ(N). Similar to the arguements of [2, Lemma 13] and [12, Theo-
rem 6], the number of such u, v pairs is 1√

2
N

3
4−ε1−ε2 , where ε2 > 0 is arbitrarily

small for suitably large N . Once again, we like to highlight the constraint that
X < N ε3 , where the value of ε3 goes towards 0 as ε1 goes to zero. Following
Table 4, we get that when ε1 is 0.01, then ε3 = 0.005. Thus, in this case, for any
X < N0.005, we get approximately 1√

2
N0.74−ε2 many weak keys.

Note that, the problem becomes more complicated when we consider the set
of weak keys for two unequal values of X , say X ′, X ′′. Let HX′ and HX′′ be
two different sets of weak keys for X ′ �= X ′′. However, it is not clear what is the
intersection between HX′ and HX′′ . If it can be shown that for distinct values of
X , the corresponding sets HX does not have quite a large intersection, then the
total number of weak keys will be much higher than what demonstrated in this
section. Further in this section we have only considered e < N . As the result
of Theorem 1 shows that our technique can be applied for e > N too, that will
provide much larger class of weak keys.

5 Conclusion

In this paper we present some new weak keys of RSA. We study the public expo-
nents e(= Nα) when eX−ZY = 1 under the constraint |N−Z| = N τ . We show
that the LLL algorithm can be efficiently applied to get Z = ψ(p, q, u, v) when

|Y | = Nγ and γ < 4ατ
(

1
4τ + 1

12α −
√

(1
4τ + 1

12α)2 + 1
2ατ (1

12 + τ
24α −

α
8τ)

)
.

Some specific forms of ψ(p, q, u, v) are then studied. We improve the results
of [12] taking ψ(p, q, u, v) = (p − u)(q − v). Further, we consider ψ(p, q, u, v) =
N − pu − v to provide a new class of weak keys in RSA. A very preliminary
analysis of this class shows that the number of weak keys is at least N0.75−ε and

A New Class of Weak Encryption Exponents in RSA 349

it seems that a better analysis will provide a better bound than this. Further,
the study of different forms of ψ(p, q, u, v) may provide additional weak keys
that are not known till date.

References

1. Blömer, J., May, A.: Low secret exponent RSA revisited. In: Silverman, J.H. (ed.)
CaLC 2001. LNCS, vol. 2146, pp. 4–19. Springer, Heidelberg (2001)

2. Blömer, J., May, A.: A generalized Wiener attack on RSA. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 1–13. Springer, Heidelberg (2004)

3. Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem. Notices of the
AMS 46(2), 203–213 (1999)

4. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg
(1999)

5. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Trans. on Information Theory 46(4), 1339–1349 (2000)

6. Coppersmith, D.: Small solutions to polynomial equations and low exponent vul-
nerabilities. Journal of Cryptology 10(4), 223–260 (1997)

7. Jochemsz, E.: Cryptanalysis of RSA variants using small roots of polynomials. Ph.
D. thesis, Technische Universiteit Eindhoven (2007)

8. Ford, K., Tenenbaum, G.: The distribution of Integers with at least two divisors in
a short interval (last accessed July 1, 2008), http://arxiv.org/abs/math/0607460

9. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261, 513–534 (1982)

10. Lenstra, H.W.: Factoring integers with elliptic curves. Annals of Mathematics 126,
649–673 (1987)

11. May, A.: New RSA vulnerabilities using lattice reduction methods. PhD thesis,
University of Paderborn (2003) (last accessed July 1, 2008),
http://wwwcs.upb.de/cs/ag-bloemer/personen/alex/publications/

12. Nitaj, A.: Another Generalization of Wiener’s Attack on RSA. In: Vaudenay, S.
(ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 174–190. Springer, Heidelberg
(2008)

13. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public key cryptosystems. Communications of ACM 21(2), 158–164 (1978)

14. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory 36(3), 553–558 (1990)

15. de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Alge-
bra in Engineering, Communication and Computing 13(1), 17–28 (2002)

http://arxiv.org/abs/math/0607460
http://wwwcs.upb.de/cs/ag-bloemer/personen/alex/publications/

Two New Efficient CCA-Secure Online Ciphers:
MHCBC and MCBC

Mridul Nandi

National Institute of Standards and Technology
mridul.nandi@gmail.com

Abstract. Online ciphers are those ciphers whose ciphertexts can
be computed in real time by using a length-preserving encryption
algorithm. HCBC1 and HCBC2 are two known examples of Hash
Cipher Block Chaining online ciphers. The first construction is secure
against chosen plaintext adversary (or called CPA-secure) whereas
the latter is secure against chosen ciphertext adversary (or called
CCA-secure). In this paper, we have provided simple security analysis
of these online ciphers. We have also proposed two new more efficient
chosen ciphertext secure online ciphers modified-HCBC (MHCBC) and
modified-CBC (MCBC). If one uses a finite field multiplication based
universal hash function, the former needs one less key and one less field
multiplication compared to HCBC2. The MCBC does not need any
universal hash function and it needs only one blockcipher key unlike the
other three online ciphers where two independent keys (hash function
and blockcipher) are required.

Keywords: online cipher, CBC, universal hash function, random
permutation.

1 Introduction

In this paper we fix a finite group (G, +) (e.g., {0, 1}n with bitwise addition ⊕ for
some fixed positive integer n). An element of G is called a block. A cipher over a
domain D ⊆ G+ := ∪i≥1G

i is a keyed function family {FK}K∈K, where K is a
key space and for each key K, FK : D → D is a length-preserving permutation
on D (i.e., for each x ∈ D ∩Gi, FK(x) ∈ Gi). Any cipher over domain G is called
a blockcipher. An important blockcipher is AES [5] with

domain G = {0, 1}128. The pseudorandom permutation or PRP and strong
pseudorandom permutation [8] or SPRP are two well known security notions for
ciphers. They are also called chosen plaintext secure or CPA-secure and chosen
ciphertext secure or CCA-secure. Intuitively, a cipher is called PRP (or SPRP) if
it is indistinguishable from the ideal cipher based on encryption queries (or both
encryption and decryption queries respectively). An ideal cipher on D is chosen
at random from Perm(D), the set of all permutations on D.1 In this paper we
1 If D is an infinite set then we define the ideal cipher runtime as queries being asked to

it. A similar definition can be found for an ideal online cipher as defined in figure 1.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 350–362, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Two New Efficient CCA-Secure Online Ciphers: MHCBC and MCBC 351

are interested in online cipher with domain G+ whose ith ciphertext block C[i] is
computable from the first i plaintext blocks M [1], · · · , M [i]. The above property is
popularly known as online property. One can show that online ciphers can not be
PRP since the online property itself can be used to distinguish it from an ideal ci-
pher which actually does not have this property. The appropriate security notions
of an online cipher are CPA-online secure and CCA-online secure [1]. Informally
an online cipher is CPA-online secure (or CCA-online secure) if it is indistinguish-
able from an ideal online cipher (see figure 1) based on only encryption queries (or
encryption and decryption queries both respectively). The possible candidates of
online ciphers are in [3,4,6], most of which are different variants of Cipher Block
Chaining modes or CBC. If e ∈ Perm(D) then the CBC based on e with an initial
value IV is defined as e+(x1, · · · , xm) = (y1, · · · , ym) where yi = EK(yi−1 + xi),
1 ≤ i ≤ m and y0 = IV. One can see that CBC based on any blockcipher is an
online cipher. In [1] authors have shown that CBC with public or secret IV [3] and
ABC [6] ciphers (another example of online cipher) are not CPA-secure online ci-
phers. In the same paper [1] a CPA-secure HCBC1 online cipher and CCA-secure
HCBC2 online cipher have been proposed. These online ciphers need two keys (for
a blockcipher and a universal hash family [7,10,11]).
Applicability of online ciphers. The known online ciphers Hash-CBC namely,
HCBC1, HCBC2 and our constructions need current and previous plaintext
block and previous cipher block to compute the current cipher block. Thus,
online cipher could be used where encryption is made in an online manner with
a very small amount of memory or buffer. It could be useful in scenarios where
there is a constraint requiring length-preserving ciphertext. For example, one can
think some ciphers dealing with fixed packet formats, legacy code and disk-sector
encryption. In this situation, a length preserving PRP or SPRP can be used but
potentially these may be costlier than online ciphers as these are stronger security
notions than a CPA or CCA online secure.

Our contributions. In this paper we have provided simple as well as concrete
security analysis of HCBC1 and HCBC2. The proof idea can also be used in other
online ciphers. For example, we have used the same approach to have security
proof of our new proposals MHCBC and MCBC. These two new online ciphers
have many advantages over the previous ciphers. MHCBC needs a universal

Table 1. In this comparison universal hash function is based on the field multiplication
as given in example 1. Here, G = {0, 1}n, the set of blocks and kBC denotes the key size
of the blockcipher. The number of multiplications and block-cipher (BC) invocations
are given to encrypt a plaintext with m blocks.

Name of CPA-secure CCA-secure # field # BC Key-size
Online cipher multiplication
HCBC1 [2] � × m m n + kBC

HCBC2 [2] � � 2m m 2n + kBC

MHCBC � � m m n + kBC

MCBC � � 0 2m + 1 kBC

352 M. Nandi

hash function from G to G whereas HCBC2 needs a universal hash function
from G2 to G, which makes it a potential efficient candidate. For example, if
we use field multiplication based universal hash function then we need one less
field multiplication and one less key (see example 1). Our second construction
modified-CBC or MCBC does not need any universal hash function. It needs only
one blockcipher key. One can definitely replace the universal hash function of
MHCBC by a blockcipher (since an ideal blockcipher is ∆universal hash function,
see example 2) at the cost of an extra new independent blockcipher key which
eventually causes an extra key-scheduling algorithm. In this paper we have shown
that if we use same blockcipher key then MHCBC is not CCA-secure. Thus, the
security of MCBC indeed is not straightforward from that of MHCBC. Table 1
provides a comparison of these four online ciphers.

2 Basic Definition and Results

We write M = (M [1], · · · , M [m]) where M [i] ∈ G is the ith block of M . For
1 ≤ i ≤ j ≤ m, M [i..j] represents (M [i], M [i + 1], · · · , M [j]). If j < i then
by convention M [i..j] = λ, the empty string. X

∗← S means that the random
variable X is chosen uniformly from a finite set S and it is independent with
all previously defined random variables. An equivalent phrase “at random” is
also widely used in cryptology. Let F : K ×D → R where K is a finite set. By
abuse of notation we denote f

∗← F to mean that f := FK where K
∗← K. The

interpolation probability of F for any fixed tuple τ := ((M1, C1), · · · , (Mq, Cq))
is the probability Pr[f(M1) = C1, · · · , f(Mq) = Cq]. We define the set of all
non-empty prefixes of M1, · · · , Mq ∈ G+ as P(M1, · · · , Mq) or PM . We denote
σ := σ(M1, · · · , Mq) = |P(M1, · · · , Mq)|. Clearly, σ ≤

∑q
i=1 ‖Mi‖. For p ∈ G+

with ‖p‖ = m, we define chop(p) = p[1..m − 1] and last(p) = p[m]. In other
words, p = (chop(p), last(p)) where last(p) ∈ G and chop(p) ∈ G∗. Note that if
p ∈ G then chop(p) = λ and last(p) = p. By our convention, last(λ) = 0. Now
we define P′

M = P′(M1, · · · , Mq) := {p′ ∈ G∗ : p′ = chop(p) for some p ∈ PM}.
Let P(N, k) := N(N − 1) · · · (N − k + 1) for any positive integer k < N . A
function H : K × D → G is called ε-∆universal hash function with domain D
and key-space K if Pr[h(x1) = h(x2) + y] ≤ ε, ∀x1 �= x2 ∈ D, y ∈ G where
h denotes H(K, ·) and K is chosen uniformly from K. Now we state a simple
and useful property of ε-∆universal hash function and provide two examples
of universal hash function. An uniform random permutation or URP over G is
a random variable Eu ∗← Perm(G) (it means that Eu is chosen uniformly and
independently from Perm(G)). It is an ideal candidate of a blockcipher. Due to
limited space we omit most of the proofs and those can be found in the full
version [9].

Lemma 1. Let H be an ε-∆universal hash function and let (x1, y1), · · · , (xσ, yσ)
∈ D×G be distinct. Then, Pr[h(xi)+ yi = h(xj)+ yj, 1 ≤ i �= j ≤ σ] ≤ εσ(σ−1)

2 .

Example 1. Suppose (G, +, ·) is a finite field. Let D = G = K then H(K, x) = K ·
x is 1

N -∆universal hash function. This is true since the number of K’s such that

Two New Efficient CCA-Secure Online Ciphers: MHCBC and MCBC 353

K ·(x1−x2) = y is at most one. Similarly D = G2 = K. Let H((K1, K2), (x, y)) =
K1 · x + K2 · y then it is a 1

N -∆universal hash function.

Example 2. Let Eu ∗← Perm(G) then for any x1 �= x2 ∈ G and y ∈ G \ {0} we
have Pr[Eu(x1) = Eu(x2)+ y] = 1

N−1 . If y = 0 then Pr[Eu(x1) = Eu(x2)+ y] =
Pr[Eu(x1) = Eu(x2)] = 0. Hence Eu is 1

N−1 -∆universal hash function.

Proposition 1. Let X1, Y1, · · · , Xk, Yk be random variables taking values on G
and Eu ∗← Perm(G). Let COLLin denote the event that Xi’s are not distinct,
COLLout denote the event that Yi’s are not distinct then

Pr[Eu(X1) = Y1, · · · , Eu(Xk) = Yk] ≥ 1− Pr[COLLin]− Pr[COLLout]
P(N, k)

. (1)

We say a distinguisher is (q, σ)-CPA if it asks at most q encryption queries
such that total number of blocks in all queries is at most σ. Similarly we can
define (q, σ)-CCA distinguisher where it can ask both encryption and decryption
queries. Let F : K×D → D be a cipher with finite key-spaceK. Suppose an oracle
algorithm or distinguisher A has access of a cipher with domain D. Now AF ⇒ b
represents the event that A outputs b after interacting with FK where K

∗← K.
Similarly we define AF,F−1 ⇒ b. The CPA advantage of oracle algorithms for
a blockcipher E : K × G → G is AdvCPA

A (E, Eu) = Pr[AE ⇒ 1] − Pr[AEu ⇒
1]. The prp-insecurity of E is Insecprp

E (q, σ) = maxA AdvCPA
A (E, Eu) where

maximum is taken over all (q, σ)-CPA distinguishers. CCA advantage of A and
sprp-insecurity of a blockcipher can be defined similarly. Let AF,F−1

be an oracle
algorithm having access of an online cipher and its inverse. Responses of an ideal
online cipher or uniform random online permutation (UROP) oracle Πu and its
inverse oracle (Πu)−1 is defined below in figure 1. Like insecurity of a blockcipher
we can define Insecprop

F (q, σ) and Insecsprop
F (q, σ) where F is an online cipher. It

is the maximum CPA or CCA advantage for (q, σ) distinguishers distinguishing
F from the ideal online cipher Πu.

The longest common prefix of M, M ′ ∈ G∗ (or LCP(M, M ′)) is the block-
sequence N ∈ G� such that N is a longest common prefix of M and M ′.
One can check that LCP(M, M ′) always exists and it is unique. The length
of the longest common prefix is denoted by �M,M ′ . Any element of the form
τ = ((M1, C1), · · · , (Mq, Cq)) ∈ T := ((G+)2)+ is known as qr-tuple or query-
response tuple2 where Mi’s and Ci’s are block-sequences.

A qr-tuple τ = ((M1, C1), · · · , (Mq, Cq)) is said to be online-compatible if
�Mi,Mj = �Ci,Cj , for all 1 ≤ i, j ≤ q. Let Toc be the set of all online-compatible
qr-tuples. Let τ = ((M1, C1), · · · , (Mq, Cq)) ∈ Toc be a qr-tuple then for any
p ∈ PM := P(M1, · · · , Mq) we define the corresponding block-sequence
qp ∈ PC := P(C1, · · · , Cq) by Ci[1..j] where p = Mi[1..j]3. Now we provide
bounds of interpolation probability of UROP Πu.
2 Later we see that the pair (Mi, Ci) corresponds to a query-response pair where Mi

is encryption query and Ci is response or Ci is decryption query and Mi is response.
3 Clearly, j = ||p|| but there can be more than one choices of i. So we need to check

well defined-ness of qp. Suppose p = Mi[1..j] = Mi′ [1..j] for some i, i′ ≤ q and

354 M. Nandi

Initially P = ∅ and a function Γ : P→ Perm(G).
On encryption query M ∈ Gm

1. for i = 1 to m

2. p = M [1..i − 1];
3. if p ∈ P then C[i] = Γ (p)(M [i]);
4. else

5. Πu
p

∗← Perm(G);
6. P← P ∪ {p};
7. Γ (p) = Πu

p ;
8. C[i] = Γ (p)(M [i]);
9. endif
10. endfor
11. return C = C[1..m];

On decryption query C ∈ Gm

1. for i = 1 to m

2. p = M [1..i − 1];
3. if p ∈ P then M [i] = Γ (p)−1(C[i]);
4. else

5. Πu
p

∗← Perm(G);
6. P← P ∪ {p};
7. Γ (p) = Πu

p ;
8. M [i] = Γ (p)−1(C[i]);
9. endif
10. endfor
11. return M = M [1..m];

Fig. 1. Responses of a UROP oracle Πu and its inverse oracle (Πu)−1

Lemma 2. (Interpolation probability of UROP)
Let Pr := Pr[Πu(M1) = C1, · · · , Πu(Mq) = Cq] = 0 where Πu is an UROP.
Now 1

Nσ ≤ Pr ≤ 1
P(N,σ) if ((M1, C1), · · · , (Mq, Cq)) is an online-compatible,

otherwise Pr = 0, where σ is the total number of blocks in all q plaintexts.

Now we define an important object called view or transcript4 of a distinguisher
which actually contains all query-responses in the form of tuple.

Definition 1. (view or transcript of an adversary) Let g : G+ → G+ be an
oracle and τ = ((M1, C1), · · · , (Mq, Cq)) ∈ T , for some q ≥ 1.

(1) Chosen Plaintext Adversary : τ is called a view of Ag and denoted as
view(Ag) if M1, · · · , Mq are all the queries made by A and C1, · · · , Cq are the
corresponding responses.

(2) Chosen Ciphertext Adversary : τ is called a view of Ag,g−1
and denoted

as view(Ag,g−1
), if Mi is the query and Ci is the response whenever the ith query

is g-query or if Ci is query and Mi is response whenever ith query is g−1-query
(in both cases we have g(Mi) = Ci).

Now we define some views, subsets of Toc, called bad views and bound the
probability that a bad view occurs when a distinguisher is interacting with uni-
form random online permutation Πu. These bad views will be considered as
bad views for the online ciphers HCBC1, HCBC2, MHCBC and MCBC. Let
τ = ((M1, C1), · · · , (Mq, Cq)) and xp = last(p) and yp = last(qp).

hence
Mi,Mi′ ≥ j. Since τ is online compatible,
Ci,Ci′ =
Mi,Mi′ ≥ j. Thus,
Ci[1..j] = Ci′ [1..j].

4 The term “transcript” has been used in many literatures, but in this paper we mainly
use the word view as it really signifies the view of the oracle which is obtained by
the distinguisher after having query-responses.

Two New Efficient CCA-Secure Online Ciphers: MHCBC and MCBC 355

Vbad,1 = {τ ∈ Toc : yp1 = yp2 or yp1 = 0, for some p1 �= p2 ∈ PM}
Vbad,2 = {τ ∈ Toc : (yp1 , xp1) = (yp2 , xp2) or (yp1 , xp1) = (0,0), p1 �= p2 ∈ PM}
Vbad,3 = {τ ∈ Toc : yp1 + xp1 = yp2 + xp2 or yp1 + xp1 = 0, p1 �= p2 ∈ PM}.
Vbad,4 = {τ ∈ Toc : yp1 + xp1 = yp2 + xp2 or yp1 + xp1 = 0 or 1, p1 �= p2 ∈ PM}.

Proposition 2. For any (q, σ) CPA-distinguisher A interacting with a uniform
random online permutation Πu, Pr[view(AΠ) ∈ Vbad,1] ≤ σ(σ−1)

2N . For any (q, σ)
CCA-distinguisher A interacting with a uniform random online permutation Πu

and its inverse (Πu)−1, Pr[view(AΠu,(Πu)−1
) ∈ Vbad,i] ≤ (σ+2)(σ+3)

N , i = 2, 3, 4.

Proposition 3. (main tool of the paper)
Let F be an online cipher. Suppose for some 1 ≤ k ≤ 4 and for all τ ∈ Toc\Vbad,i,
the interpolation probability of F satisfies the following equation

Pr[F (M1) = C1, · · · , F (Mq) = Cq] ≥
(1− ε)
P(N, σ)

(2)

where τ = ((M1, C1), · · · , (Mq, Cq)) and σ is the total number of blocks in q

plaintexts. Then F is (q, σ, ε + (σ+2)(σ+3)
2N)-CCA secure when i = 2, 3, 4 or F is

(q, σ, ε + σ(σ−1)
2N)-CPA secure when i = 1.

The above proposition is true for any online ciphers and so it can be applied for
any other online ciphers. Depending on the definition of the online cipher, the
definition of bad views may have to be changed. The similar and a more general
result can be found in [12].

3 Two Known Online Ciphers : HCBC1 and HCBC2

3.1 HCBC1 [1]

Given a permutation π ∈ Perm(G) and a hash function h : G → G, we define
HCBC1[π, h] online permutation. Let xi, yi ∈ G, 1 ≤ i ≤ m, y0 = 0. Now,

HCBC1[π, h](x1, · · · , xm) = (y1, · · · , ym), yi = π(h(yi−1) + xi), 1 ≤ i ≤ m.

Note that HCBC1[π, h] is an online permutation. The online property can be
proved by induction as the ith output block only depends on (i − 1)th output
block and ithinput block. It is also a permutation and its inverse is defined as

HCBC1[π, h]−1(y1, · · · , ym) = (x1, · · · .xm), xi = π−1(yi)− h(yi−1), 1 ≤ i ≤ m.

Let Eu ∗← Perm(G) be a URP or uniform random permutation, e
∗← E be a

blockcipher and h
∗← H be an ε-∆universal hash function from G to G. We

define H1 := HCBC1[Eu, h], H1′ := HCBC1[e, h].

Interpolation probability of H1. We compute q-interpolation probability of
H1 for a type-1 qr-tuple τ := ((M1, C1), · · · , (Mq, Cq)) ∈ Vgood,1, i.e., we compute

356 M. Nandi

Pr[H1(M1) = C1, · · · , H1(Mq) = Cq]. From the definition ofHCBC1 one can verify
the following equivalences.

H1(M1) = C1, · · · , H1(Mq) = Cq

⇔ Eu(h(last(qchop(p))) + last(p)) = last(qp) ∀p ∈ PM

Thus,during the computationof the interpolation, (h(last(qchop(p)))+last(p))p∈PM

correspond to the set of inputs of Eu and (last(qp))p∈PM corresponds to the
set of outputs of Eu. Since τ ∈ Vgood,1, last(qp)’s are distinct for all p ∈
PM . Thus, all outputs of Eu are distinct. Now we prove that for all p ∈ PM ,
(last(qchop(p)), last(p))’s are distinct. Suppose for some p1, p2, (last(qp′

1), last(p1))
= (last(qp′

2), last(p2)) where p′i = chop(pi). Now last(qp′
1) = last(qp′

2) implies that
p′1 = p′2 and hence p1 = p2 (since last(p1) = last(p2)). By using lemma 1 we have
Pr[(h(last(qchop(p)))+last(p))’s are distinct] ≥ 1−ε

(
σ
2

)
. Thus, all inputs of Eu are

distinct with probability at least 1 − ε
(
σ
2

)
. Moreover, the inputs and outputs are

independent with Eu since h is independent with Eu. So Pr[Eu(h(last(qchop(p)))+

last(p)) = last(qp) ∀p ∈ PM] ≥ 1−ε(σ
2)

P(N,σ) . So we have proved the following theorem.
The second part of the theorem is followed from proposition 3.

Theorem 1. (interpolation probability of HCBC1)

Pr[H1(M1) = C1, · · · , H1(Mq) = Cq] ≥
1− ε

(
σ
2

)
P(N, σ)

(3)

for all ((M1, C1), · · · , (Mq, Cq)) ∈ Vgood,1 where H1 is based on ε-∆universal
hash function. Let A be a (q, σ)-CPA distinguisher then we have

AdvCPA
A (H1) ≤

(
σ

2

)
(ε +

1
N

),

AdvCPA
A (H1′) ≤

(
σ

2

)
(ε +

1
N

) + InsecCPA
E (σ).

3.2 HCBC2 [1]

Now we make similar study for HCBC2. We follow same notations as given in
HCBC1 except that h : G2 → G, h is ε-∆universal hash from G2 to G and
x0 = 0. H2 := HCBC2[Eu, h], H2′ := HCBC2[e, h] where

HCBC2[π, h](x1, · · ·, xm)=(y1, · · · , ym), yi = π(h(xi−1, yi−1)+xi)+h(xi−1, yi−1)

for 1 ≤ i ≤ m. HCBC2[π, h]−1 denotes its inverse online cipher.

Interpolation probability of H2. We compute q-interpolation probability of
H2 for any given type-2 qr-tuple τ := ((M1, C1), · · · , (Mq, Cq)) ∈ Vgood,2. From
the definition of HCBC2 we have the following equivalences.

H2(M1) = C1, · · · , H1(Mq) = Cq

⇔ Eu(zchop(p) + last(p)) = last(qp) + zchop(p) ∀p ∈ PM

Two New Efficient CCA-Secure Online Ciphers: MHCBC and MCBC 357

where zp = h(last(p), last(qp)). Thus while computing the interpolation,
(zchop(p) + last(p))p∈PM are all inputs of Eu and (zchop(p) + last(qp))p∈PM are
all outputs of Eu. Since τ ∈ Vgood,2, by using a similar argument, as given for
Vgood,1, we can show that ((last(chop(p)), last(qchop(p))), last(p))’s are distinct
and ((last(chop(p)), last(qchop(p))), last(qp))’s are distinct for all p ∈ PM . By
using lemma 1 we have

Pr[zchop(p) + last(p))’s are distinct] ≥ 1− ε

(
σ

2

)

Pr[zchop(p) + last(qp))’s are distinct] ≥ 1− ε

(
σ

2

)
.

Thus, all inputs and outputs of Eu are distinct with probability at least 1−2ε
(
σ
2

)
and the inputs and outputs are independent with Eu (since h is independent with
Eu). So by applying the proposition 1, Pr[Eu(zchop(p) + last(p)) = last(qp) +

zchop(p) ∀p ∈ PM] ≥ 1−2ε(σ
2)

P(N,σ) .

Theorem 2. (interpolation probability of HCBC2)

Pr[H2(M1) = C1, · · · , H2(Mq) = Cq] ≥
1− 2ε

(
σ
2

)
P(N, σ)

(4)

for all ((M1, C1), · · · , (Mq, Cq)) ∈ Vgood,2 and H2 is based on ε-∆universal hash
function. Let A be a (q, σ)-CCA distinguisher then we have

AdvCCA
A (H2) ≤ (σ + 2)(σ + 3)

2
× (2ε +

1
N

),

AdvCCA
A (H2′) ≤ (σ + 2)(σ + 3)

2
× (2ε +

1
N

) + InsecCCA
E (σ).

4 Two New Online Ciphers : MHCBC and MCBC

4.1 MHCBC

With the same notation as in HCBC1 we define 1 ≤ i ≤ m,

MHCBC[π, h](x1, · · · , xm) = (y1, · · · , ym), yi = π(h(xi−1 +yi−1)+xi)+h(xi−1 +yi−1)

MHCBC[π, h]−1(y1, · · · , ym)=(x1, · · ·, xm), xi =π
−1(yi−h(xi−1+yi−1))−h(xi−1+yi−1).

H3 := MHCBC[Eu, h].
H3′ := MHCBC[e, h].

Note that MHCBC uses (G, G) universal hash function similar to HCBC1 and
still it is CCA-secure. This is true since both plaintext and ciphertext blocks are
xored and hence the adversary does not have any control on the XOR. In case
of HCBC2, these two blocks are inputs of a (G2, G) universal hash function.

358 M. Nandi

v

m1

y0 = 0

m0 = 0

v

m2

y1

m1

v

m i

y2

m2

yi

H H H

Fig. 2. MHCBC or Modified-Hash CBC online cipher

Now we will compute interpolation probability for type-3 qr tuples Vgood,3.
Recall that a qr-tuple ((M1, C1), · · · , (Mq, Cq)) ∈ Vgood,3 if and only if (last(p)+
last(qp))’s are distinct for all p ∈ P ∪ {λ}. Basic idea of the computation pf
interpolation is similar for online cipher constructions considered here. We first
provide an equivalent representation of interpolation as interpolation of URP
and hence it is sufficient to calculate interpolation probability of URP for a
specific tuple. Then we calculate the probability that all inputs and outputs of
URP. Finally by using proposition 1 we have interpolation probability.

Theorem 3. (interpolation probability of MHCBC)
For all ((M1, C1), · · · , (Mq, Cq)) ∈ Vgood,3,

Pr[H3(M1) = C1, · · · , H3(Mq) = Cq] ≥
1− ε

(2σ
2

)
P(N, σ)

(5)

Proof. From the definition of HCBC3 we have the following equivalences.

H3(M1) = C1, · · · , H3(Mq) = Cq

⇔ Eu(zchop(p) + last(p)) = last(qp) + zchop(p) ∀p ∈ PM

where zp = h(last(p) + last(qp)). Thus while computing the interpolation,
(zchop(p) + last(p))p∈PM are all inputs of Eu and (zchop(p) + last(qp))p∈PM are
all outputs of Eu. Moreover, ((last(chop(p)) + last(qchop(p))), last(p))’s and
((last(chop(p)) +last(qchop(p))), last(qp))’s are distinct for all p ∈ PM (since
τ ∈ Vgood,3). By using lemma 1 we have

Pr[zchop(p) + last(p))’s are distinct] ≥ 1− ε

(
σ

2

)

Pr[zchop(p) + last(qp))’s are distinct] ≥ 1− ε

(
σ

2

)
.

Thus, all inputs and outputs of Eu are distinct with probability at least 1−2ε
(
σ
2

)
and these are independent with Eu (since h is independent with Eu). So by
applying the proposition 1, Pr[Eu(zchop(p) + last(p)) = last(qp) + zchop(p) ∀p ∈
PM] ≥ 1−2ε(σ

2)
P(N,σ) .
�

Two New Efficient CCA-Secure Online Ciphers: MHCBC and MCBC 359

Corollary 1. Let A be a (q, σ)-CCA distinguisher then we have

AdvCCA
A (H3) ≤ (σ + 2)(σ + 3)

2
× (2ε +

1
N

),

AdvCCA
A (H3′) ≤

(
σ

2

)
(2ε +

1
N

) + InsecCCA
E (σ)

where H3 is based on ε-∆universal hash function. If we consider the finite field
multiplication based universal hash function then AdvCCA

A (H3′) ≤ 3(σ+2)(σ+3)
2N +

InsecCCA
E (σ).

4.2 MCBC or Modified-CBC

A Chosen Ciphertext Attack for a Variant of MHCBC

A simple replacement of H of MHCBC by v (note that, from example 2 we
know that v is universal hash function) would not make CCA-secure. So define
H′3(x1, · · · , xm) = (y1, · · · , ym) where yi = π(π(xi−1 + yi−1) + xi) + π(xi−1 +
yi−1), 1 ≤ i ≤ m. It is easy to see that H’3−1(0) = v(0) = v0 (known to us)
and hence H’3(0) = v0 ⊕ v(v0). So v(v0) is also known to us and call it v1. Now,
H’3(v0, v1) = (0, v1 ⊕ v0) always true where this is true with probability close to
1/N for the ideal online cipher. Thus we can have CCA-attack by making only
three queries with four blocks.

CCA-security analysis of MCBC

Let π ∈ Perm(G) then we define MCBC or modified CBC online permutation as
follows :

MCBC[π](x1, · · · , xm) = (y1, · · · , ym), yi = π(π(xi−1 + yi−1) + xi) + K + xi

1 ≤ i ≤ m and K = π(1). We write MC := MCBC[Eu] and MC′ := MCBC[e] for
a chosen blockcipher e

∗← E.
MCBC does not use any universal hash function since the underlying blockci-

pher is used in the place of the universal of hash function. Thus we are able

v

m1

v v

m2

y1

m1

v v

m i

v

y2

m2

yi

K1 K1 K1

0

v1

Fig. 3. MCBC or Modified-CBC online cipher

360 M. Nandi

to remove extra key storage as well as an extra design of a universal hash
function. The proof idea for MCBC is similar to MHCBC except the fact that
we have to consider all inputs and outputs of the underlying blockciphers. We
have to be a little bit careful while computing interpolation probability. We first
see all inputs and outputs of the uniform random permutation Eu during the
computations of interpolation probability of MC(M1) = C1, · · · , MC(Mq) = Cq

where ((M1, C1), · · · (Mq, Cq)) ∈ Vgood,4. Let P := P(M1, · · · , Mq). Now one can
check that

1. K := Eu(1), zchop(p) := Eu(wchop(p)) and (last(qp) − K − zchop(p)) are all
outputs of Eu, p ∈ PM where wp := last(p) + last(qp).

2. 0,1, wp, zchop(p) + last(p), p ∈ PM are all inputs of Eu.

Since ((M1, C1), · · · (Mq, Cq)) ∈ Vgood,4, for all p ∈ P∪ {λ}, (last(p) + last(qp))’s
are distinct and different from 1. All inputs and outputs are completely deter-
mined once zp and K is defined. Let A be the number of possible values of zp

and K such that

1, wp, zchop(p) + last(p), p ∈ PM are distinct and

K, zchop(p), last(qp)−K − zchop(p) p ∈ PM are distinct .

We estimate A by counting the complement. The above conditions are not true
due to following possibilities. Recall that σ′ = |P′|.

1. wp = 1 or wp1 = wp2 for some p1 �= p2 ∈ P′ and p ∈ P. This is not possible
since ((M1, C1), · · · (Mq, Cq)) ∈ Vgood,4.

2. zchop(p1) + last(p1) = wp2 or zchop(p1) + last(p1) = 1 for some p1 �= p2,
p1 ∈ P, p2 ∈ P′. There are at most Nσ′ × σ× (σ′ + 1)(≤ Nσ′ × σ2) solutions.

3. Similarly, zchop(p1) + last(p1) = zchop(p2) + last(p2) for some p1 �= p2 ∈ P.
There are at most Nσ′ × σ2 solutions.

4. zchop(p) and K are not distinct. There are at most Nσ′ × σ2 solutions.
5. K or zchop(p1) is same as last(qp2) − K − zchop(p2) for some p1 �= p2 ∈ P.

There are Nσ′ × σ2 solutions.
6. (last(qp)−K − zchop(p))’s are not distinct. There are Nσ′ × σ2 solutions.

So there are 5Nσ′
σ2 cases where the above is not true. Thus the number of

possible solutions is at least Nσ′+1 − 5Nσ′
σ2 and hence A ≥ Nσ′+1(1 − 5σ2

N).
For each such solution of zchop(p) and K such that the above is true we have

Pr[Eu(1)=K, Eu(wp)=zp, E
u(zchop(p)+last(p))=last(qp)−K−wchop(p),∀p ∈ PM]

=
1

P(N, σ + σ′ + 1)
.

Two New Efficient CCA-Secure Online Ciphers: MHCBC and MCBC 361

Summing over A solutions we have

Pr[MC(M1) = C1, · · · , MC(Mq) = Cq] ≥
A

P(N, σ + σ′ + 1)

≥
Nσ′+1(1− 5σ2

N)
P(N, σ + σ′ + 1)

≥
(1− 5σ2

N)
P(N, σ)

.

Thus we have the following main theorem for MCBC.

Theorem 4. (interpolation probability of MCBC)
For all ((M1, C1), · · · , (Mq, Cq)) ∈ Vgood,4

Pr[MC(M1) = C1, · · · , MC(Mq) = Cq] ≥
1− 5σ2/N

P(N, σ)
(6)

Corollary 2. Let A be a (q, σ)-CCA distinguisher with σ ≥ 6 then we have

AdvCCA
A (MC) ≤ 6σ2

N
,

AdvCCA
A (MC′) ≤ 6σ2

N
+ InsecCCA

E (2σ).

5 Conclusion

In this paper we analyze known online ciphers namely HCBC1 and HCBC2 and
propose two new online ciphers MHCBC and MCBC which have several ad-
vantages over the previous ones. In particular, MHCBC is more efficient than
HCBC2 and still has CCA-security. MCBC online cipher does not need any uni-
versal hash function and hence it has better performance as well as smaller key
size. Our security analysis is somewhat different from the usual game based secu-
rity analysis. We believe that our proof technique would be useful in many areas
where indistinguishability is concerned. One of the research goal we can think is
to provide online ciphers for incomplete plaintext blocks. One can analyze the
hardware performance of all these online ciphers.

Acknowledgement. We would like to acknowledge Professor Palash Sarkar
who had inspired us to write this paper. We also would like to thank anonymous
reviewers whose comments helped us to modify our earlier draft.

References

1. Bellare, M., Boldyreva, A., Knudsen, L., Namprempre, C.: On-Line Ciphers and
the Hash-CBC constructions. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 292–309. Springer, Heidelberg (2001)

362 M. Nandi

2. Bellare, M., Boldyreva, A., Knudsen, L., Namprempre, C.: On-Line Ciphers and
the Hash-CBC Constructions. Cryptology eprint archive,
http://eprint.iacr.org/2007/197

3. Bellare, M., Killan, J., Rogaway, P.: The security of the cipher block chanining
Message Authentication Code. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS,
vol. 839, pp. 341–358. Springer, Heidelberg (1994)

4. Black, J., Rogaway, P.: CBC MACs for arbitrary length messages. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215. Springer, Heidelberg (2000)

5. Daemen, J., Rijmen, V.: Resistance Against Implementation Attacks. A Compar-
ative Study of the AES Proposals. In: Proceedings of the Second AES Candidate
Conference (AES2), Rome, Italy (March 1999),
http://csrc.nist.gov/encryption/aes/aes home.htm

6. Knudsen, L.: Block chaining modes of operation. In: Symmetric Key Block Cipher
Modes of Operation Workshop (October 2000),
http://csrc.nist.gov/encryption/modes/workshop1/

7. Krawczyk, H.: LFSR-based hashing and authenticating. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)

8. Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-
random functions. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, p. 447.
Springer, Heidelberg (1986)

9. Nandi, M.: Two New Efficient CCA-Secure Online Ciphers: MHCBC and MCBC.
eprint archive, http://eprint.iacr.org/2008/401

10. Nevelsteen, W., Preneel, B.: Software performance of universal hash functions.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 24–41. Springer,
Heidelberg (1999)

11. Stinson, D.R.: On the connections between universal hashing, combinatorial de-
signs and error-correcting codes. Congressus Numerantium 114, 7–27 (1996)

12. Vaudenay, S.: Decorrelation: A Theory for Block Cipher Security. Journal of Cryp-
tology 16(4), 249–286 (2003)

http://eprint.iacr.org/2007/197
http://csrc.nist.gov/encryption/aes/aes_home.htm
http://csrc.nist.gov/encryption/modes/workshop1/
http://eprint.iacr.org/2008/401

Chai-Tea, Cryptographic Hardware
Implementations of xTEA

Jens-Peter Kaps

Volgenau School of IT&E, George Mason University, Fairfax, VA, USA
jkaps@gmu.edu

Abstract. The tiny encryption algorithm (TEA) was developed by
Wheeler and Needham as a simple computer program for encryption.
This paper is the first design-space exploration for hardware implemen-
tations of the extended tiny encryption algorithm. It presents efficient
implementations of XTEA on FPGAs and ASICs for ultra-low power
applications such as RFID tags and wireless sensor nodes as well as fully
pipelined designs for high speed applications. A novel ultra-low power
implementation is introduced which consumes less area and energy than
a comparable AES implementation. Furthermore, XTEA is compared
with stream ciphers from the eSTREAM portfolio and lightweight ci-
phers. The high speed implementations of XTEA operate at 20.6 Gbps
(FPGA) or 36.6 Gbps (ASIC).

Keywords: Efficient implementation, symmetric key algorithms, TEA,
XTEA, FPGA, ASIC.

1 Introduction

The Tiny Encryption Algorithm (TEA) was introduced by David Wheeler and
Roger Needham [1,2] in ’94. Their main design goal was to produce a cipher that
is simple, short and does not rely on large tables or pre-computations. Shortly
after TEA was published, a few minor weaknesses were found [3]. The original
authors eliminated those weaknesses in a new version of TEA called XTEA for
extended TEA [4]. A positive side effect of the new version, also called tean, is
that the main routine requires two fewer addition operations which results in
a faster algorithm. Also in [4] the authors described a variant of TEA called
Block TEA to cater for larger block sizes than the original algorithm’s 64-bit.
An attack on Block TEA was found and subsequently corrected in [5]. Other
recent attacks [6,7] target a reduced round version of TEA. The recommended
32 round version is still considered to be secure.

TEA uses only simple addition, XOR and shifts, and has a very small code
size. This makes TEA an ideal candidate to provide data security services for
wireless sensor network (WSN) nodes which have limited memory and computa-
tional power. Many software implementations of TEA for these nodes have been
reported [8,9,10]. Kanamori compared software implementations of the Advanced
Encryption Standard (AES) to implementations of TEA on sensor nodes [11] and

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 363–375, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

364 J.-P. Kaps

concluded that the memory requirements for TEA are one quarter the require-
ments of AES.

Even though TEA was proposed mainly for software implementations, its
simple design makes it also very suitable for hardware implementations. The im-
plementation designers can take advantage of the inherent parallelism of TEA
to boost performance or, on the other hand, reduce its area and power con-
sumption. This makes it possible to implement TEA for severe power constraint
applications such as passive radio frequency identification (RFID) tags and the
next generation WSN nodes. Customized hardware is currently the only option
for inexpensive passive RFID tags as they do not have a processor. The same
might become true for next generation sensor nodes which are predicted to be
powered by energy scavenged from the environment [12].

For environments in which the power consumption is not the most important
design criteria, field programable gate arrays (FPGAs) are an interesting option.
FPGAs can be re-programmed in the field which makes it possible to update the
cryptographic algorithm after deployment. This might be necessary if new crypt-
analytic results lead to changes in the TEA algorithm as we have seen in the past.

Hardware implementations of the original TEA were first published in [13,14]
targetting RFID tags. To the knowledge of the authors, this is the first design
space exploration of hardware implementations of XTEA. This paper covers im-
plementations for application specific integrated circuits (ASIC) as well as for
FPGAs, small, power and energy efficient implementations for ubiquitous com-
puting devices with stringent power constraints and high speed implementations
for server environments.

2 Extended Tiny Encryption Algorithm

The Extended Tiny Encryption Algorithm (XTEA) is a block cipher that uses
a cryptographic key of 128 bits to encrypt or decrypt data in blocks of 64 bits.
Each input block is split into two halves y and z which are then applied to a
routine similar to a Feistel network for N rounds where N is typically 32. Most
Feistel networks apply the result of a mixing function to one half of the data
using XOR as a reversible function. XTEA uses for the same purpose integer
addition during encryption and subtraction during decryption.

Figure 1 shows the C source code for XTEA as it was introduced in [4].
Additional parenthesis were added to clarify the precedence of the operators.
The main variables y, z, and sum, which assists with the subkey generation,
have a length of 32 bits. All additions and subtractions within XTEA are modulo
232. Logical left shifts of z by 4 bits are denoted as z � 4 and logical right shift
by 5 bits as z � 5. The bitwise XOR function is denoted as “^” in the source
code and ⊕ in this paper.

The first part of the algorithm is the encryption routine and the second part
is the decryption routine. The while-loop constitutes the round function. The
formulae that compute the new values for y and z can be split into a permu-
tation function f(z) = (z � 4 ⊕ z � 5) + z and a subkey generation function

Chai-Tea, Cryptographic Hardware Implementations of xTEA 365

int tean(long * v, long * k, int N)

{

unsigned long y=v[0], z=v[1], DELTA=0x9e3779b9;

if (N>0) { /* encryption */

unsigned long limit=DELTA*N, sum=0;

while (sum != limit) {

y += ((z<<4 ^ z>>5) + z) ^ (sum + k[sum&3]);

sum += DELTA;

z += ((y<<4 ^ y>>5) + y) ^ (sum + k[sum>>11 &3]);

}

} else { /* decryption */

unsigned long sum=DELTA*(-N);

while (sum) {

z -= ((y<<4 ^ y>>5) + y) ^ (sum + k[sum>>11 &3]);

sum -= DELTA;

y -= ((z<<4 ^ z>>5) + z) ^ (sum + k[sum&3]);

}

}

v[0]=y, v[1]=z;

return;}

Fig. 1. Source code of XTEA

sum + k(sum). The function k(sum) selects one block out of the four 32-bit
blocks that comprise the key, depending on either bits 1 and 0 or bits 12 and
11 of sum. The results of the permutation function and the subkey generation
function are XORed and then applied to y and z respectively, by addition in the
case of encryption or subtraction in the case of decryption.

This leads to the simplified block diagram shown in Fig. 2. For encryption,
z is applied to the left side, y to the right side, and all adder/subtracters are

f

+/−

Keygen

f

XOR

+/−

Keygen

+/−

XOR

subkey

sum key

128

z/y

32 32 32

y/z

Halfround 1

Halfround 2

∆

subkey

Fig. 2. Top level block diagram of XTEA

366 J.-P. Kaps

in addition mode. For decryption, the opposite is applied. The permutation
function is shown as f and the subkey generation as Keygen . One round of
xtea computes a new value for y and z. Therefore, we can view the computation
of one value as a halfround. A new value for sum is computed between the first
and the second halfround. It is incremented by a constant ∆ during encryption
and decremented during decryption. We included this computation into the first
halfround as it can be performed concurrently with the final addition/subtraction
of the data in this halfround.

3 Speed XTEA

Speed XTEA investigates how XTEA scales for fast hardware implementations.
We implemented a fully loop-unrolled, pipelined architecture of XTEA on FPGA
and ASIC. Each block of data can be associated with a new key and the mode can
be switched between encryption and decryption without loss of throughput. A
natural location for the pipeline cuts is between the half rounds, so called outer
round pipelining. However, due to the long delay of one halfround additional
pipeline cuts within the halfround, called inner round pipelining, are necessary.
Figure 3 indicates through thick dashed lines the location of three inner round
cuts that we want to investigate.

3.1 FPGA Implementation

FPGAs are composed of configurable logic blocks (CLB) and a programmable
interconnection network. We targeted the low cost Xilinx FPGA series Spartan 3
to compare our results with other reported block cipher implementations on the
same series. In addition, we implemented XTEA on the Xilinx Virtex 5 devices
which are a natural choice for high speed applications. Xilinx divides each CLB
into slices. Each slice on a Spartan-3 contains two sets of a 4-input look-up table
(LUT) followed by a flip-flop. The Virtex 5 slice contains four sets of a 6-input

Keysel

XOR

+ +

sftmix

+/−

f

z/y y/z key

2)

1)

3)

sum

Halfround 1 +/−

enc

subkey

Keygen

∆

Fig. 3. Pipeline cuts for half rounds

Chai-Tea, Cryptographic Hardware Implementations of xTEA 367

LUT followed by a flip-flop. Slices in both families have dedicated circuitry and
connections for fast carry propagation. Therefore, the result of additions can be
stored within the same slices avoiding any additional wire delay. This makes this
location ideal for a pipeline cut which is indicated by line number 2 in Fig. 3.
Furthermore the LUT contained in these slices can accommodate the function
sftmix and XOR .

Unfortunately the ideal clock speed of 3.18 ns on Spartan 3 (speed grade -5)
and 1.00 ns on Virtex 5 (speed grade -3) cannot be reached due to wire delays at
the input of the adder. Even though pipeline location 2 seems to be sufficient at
first glance, the key select function Keysel k(sum) can not be implemented with
a single LUT per bit. Each output bit depends on 9 input bits: The encryption
/ decryption flag, four bits from sum, and four bits from the key. In addition,
we noticed through timing analysis that the routing delay from the input of the
half round to the inner round pipeline cut number 2 was much larger than the
delay from the inner cut to the following outer round pipeline cut. Hence, we
placed an additional pipeline cut, indicated as line number 1 in Fig. 3, before
the first stage of adders.

Pipeline cut three is mainly of interest for ASIC implementation. The results
for FPGA show that it has no effect on the critical path delay because the XOR
can be performed in the LUTs of the slices occupied by the following adder.

We implemented variations of these possible cuts in a not loop-unrolled version
of XTEA to analyze their effect on the delay and to estimate the throughput-
area ratio of a fully unrolled implementation. Table 1 shows the results including
an approximation of the ratio of delay due to logic cells “Logic Delay” versus
routing delay. The throughput and the throughput area ratio are estimated for
a fully unrolled design with the same delay and 32 times the area.

Placing pipeline cuts in either location 2 or locations 1 & 2 yields the smallest
critical path delay and the best estimated throughput area ratio. We imple-
mented two loop-unrolled pipelined version of XTEA called SpeedXTEA-1 with
pipeline cut 2 and SpeedXTEA-2 with pipeline cuts 1 and 2. It is interesting to
note that the 6-input LUTs of the Virtex 5 have no significant advantage over
the 4-input LUTs on Spartan 3 in terms of critical path delay. The large speed
improvement of Virtex 5 is mainly due to its newer CMOS technology.

Table 1. Results for pipeline cuts in Halfround 1 & 2 Implementations

FPGA xc3s2000-5 xc5vlx100-3
Pipeline Cuts 1 2 1&2 1 2 1&2 1&2&3

Critical Path Delay (ns) 8.200 7.372 5.471 3.097 2.999 2.193 2.199
Logic Delay 67% 53% 71% 62% 51% 64% 65%

Routing Delay (ns) 2.71 3.46 1.59 1.18 1.47 0.79 0.77
Clock Cycles for one round 4 4 6 4 4 6 8

Area including overhead (Slices) 597 577 701 410 383 445 522
Estimated Troughput (Mbps) 7,805 8,681 11,698 20,665 31,340 29,184 29,104
Estimated Ratio (Mbps/Slice) 0.409 0.470 0.521 1.575 1.741 2.049 1.742

368 J.-P. Kaps

3.2 ASIC Implementation

Our ASIC implementations of XTEA are based on the SpeedXTEA-1 and Speed-
XTEA-2 FPGA designs and use the same pipeline cuts. SpeedXTEA-3 makes
use of the pipeline cuts 1, 2, and 3. This takes the XOR as well as sftmix and
keysel out of the critical path which is now determined solely by the delay of

the adders. We used Brent-Kung [15] adders which are more than three times
faster than ripple-carry adders (RCA) even though they are only 32-bit wide.
All pipeline cuts are implemented by using positive edge triggered flip-flops.

4 Tiny XTEA

The objective of Tiny XTEA was to develop an ultra-low power implementation
of XTEA. We assume that the 128-bit key and 64 bits of data are stored in
memory and can be accessed via an 8-bit data bus. This bus width selection and
the fact that we store a copy of the key and one data block in registers enables
us to compare our design with an ultra-low power AES design reported in [16].
Our implementation acts as a co-processor and has commands for loading a key
from memory and encrypting or decrypting one block of data.

4.1 ASIC Implementation

Power consumption in CMOS devices is the sum of the leakage power PLeak (also
called static power) and dynamic power PDyn. PLeak is caused by the leakage
current of each gate and therefore proportional to the circuit size. PDyn is caused
by gate output changes from ’0’ to ’1’ and vice versa and hence proportional
to the switching activity and to the clock frequency of the circuit. Ultra low-
power applications such as RFID tags and energy scavenger powered sensor
nodes [12] operate at frequencies of 100 kHz to 500 kHz where the leakage
power is dominant. Therefore, its reduction must be the primary design goal.
This can be achieved by reducing the circuit size.

From Fig. 2 we can see that it is sufficient to implement halfround 1 as it can
perform the same function as halfround 2. We chose to use a 32-bit datapath
as this is the native width of all operations used in XTEA. The main area
consuming parts, as far as ASIC design is concerned, are the registers required
to store the data (x and y), the key, and the variable sum. Using a smaller
datapath, for example 8 bits, would reduce the size of the adders and XORs
by one fourth. However, it would require the use of additional multiplexers to
select between four bytes of the the 32-bit words1 and to select 17 bits from z
in order to facilitate the f(z) = (z � 4 ⊕ z � 5) + z function. It would also
increase the number of clock cycles needed for one encryption, and require a
more complex control logic. The number of registers will not be affected. Hence,
a smaller datapath will not necessarily lead to smaller circuit with a reduced
power or energy consumption.
1 The current design employs only a single such multiplexer.

Chai-Tea, Cryptographic Hardware Implementations of xTEA 369

Table 2. Results for Halfround 1 Implementations

Number of Adders in Architecture 1 2 3 4 7a

Critical Path Delay (ns) 9.91 9.84 10.08 9.97 11.70
Clock Cycles for one operation 224 128 96 64 32

Area (NAND Equiv.) 1220 1330 1170 1351 2521
Dynamic Power (at 100 kHz) (µW) 0.49 0.54 0.67 0.86 1.54

Static Power (µW) 6.34 7.21 6.57 7.56 13.84
Total Power (at 100 kHz) (µW) 6.83 7.75 7.25 8.42 15.38

Energy per bit (pJ) 239.0 154.9 108.8 84.24 76.89

a Estimated, includes halfround1 and halfround 2.

The halfround function performs four integer additions if it is used as hal-
fround 1 and three integer additions as halfround 2. We can use the same adder
for additions and subtractions by including a small circuit to compute the 2’s-
complement of the subtrahend. The design of the halfround function can be
scaled to use only one adder or up to four adders. In order to determine the
ideal solution for an ultra-low power implementation on ASIC, we implemented
all four versions. From those results, we estimated the results of an implementa-
tion that combines halfround 1 and halfround 2 and therefore incorporates seven
adders. We used simple ripple carry adders (RCA) which consume less power
than faster adders of this width and at the targeted clock frequency [16].

Table 2 shows that the critical path delay of all implementations is almost
equivalent. The main contributors to the delay are the RCAs. The surprising
result is, that the area of the circuit does not grow linearly with the number of
adders. In fact, the halfround 1 architecture with three adders is smaller than the
one with two adders. The architectures adder1 and adder2 need a 32-bit wide
register to store temporary results which is not necessary in the other architec-
tures. Another reason for the nonlinearity is that with each additional adder,
the need for multiplexers to switch their inputs is reduced. The static power
consumption also has nonlinearities. This is due to the fact that not all gates
have the same leakage power. RCAs have a very high switching activity due to
glitches which is emphasized when multiple adders are in series as in the adder3
and adder4 architectures. This leads to a higher dynamic power consumption.
Another factor of the dynamic power consumption is the utilization of the adders
in each state of the computation, e.g. the state machine of the adder3 architec-
ture utilizes only one adder in every third state and three in all other states.
This reduces the average dynamic power consumption.

We implemented TinyXTEA-1 using the adder1 architecture which has the
lowest power consumption and TinyXTEA-3 using adder3 which is a good com-
promise between power consumption and speed.

4.2 FPGA Implementation

The FPGA implementation is based on the design of TinyXTEA-1 and Tiny-
XTEA-3. The main modification was the replacement of ripple carry adders with
fast carry propagate adders offered by the Xilinx FPGAs.

370 J.-P. Kaps

5 Results

All our designs were described in VHDL. The FPGA designs were implemented
using Xilinx ISE 9.1 tools and verified through post-place and route simulation
with ModelSim SE 6.3a and test vectors generated from the C-code given in [4].
All results reported in the FPGA section are from post-place and route analysis.
The ASIC implementations were synthesized using Synopsys power compiler and
a 0.13 µm, VDD = 1.2V ASIC library from TSMC which is characterized for
power. All results were reported at the gate level. Results for power, energy and
maximum delay from implementations using different CMOS processes, e.g.:
0.35 µm, 0.18 µm, can not be compared to ours as these results are depending
on the technology used.

5.1 ASIC Implementations

The results for the high speed ASIC implementation of XTEA are shown in
Table 3. It is interesting to note that SpeedXTEA-1 with one pipeline cut per
halfround has the same maximum path delay as SpeedXTEA-2 with two cuts.
However, the results are from gate level implementation, before placing and rout-
ing. Depending on the routing paths we will see a difference but it might not
be as significant as for the FPGA implementations. The result of SpeedXTEA-3
shows that our assumption that XOR is in the critical path is correct. It yields
the fastest speed of 36.6 Mbps. However, its throughput area ratio is less favor-
able than SpeedXTEA-1. Unfortunately, the comparison of SpeedXTEA with
high speed AES implementations is rather difficult. Satoh’s [17] AES implemen-
tation supports 128, 192, and 256-bit keys and operates in Galois Counter Mode.
Hodjat’s AES implementation in [18] has a throughput of 77 Gbps, however in
later publications [19,20] no detailed results were shown. The numbers for those
implementations in Table 3 were estimated from the published graphs.

Table 4 compares our tiny XTEA implementations with an ultra-low powerAES
implementation reported by Kaps in [16], the landmark AES implementations

Table 3. Results for Speed XTEA compared to fast AES implementations (ASIC)

Design M
ax

im
um

D
el

ay
(n

s)
C

lo
ck

C
yc

le
s

C
lo

ck
C

yc
le

s
L
at

en
cy

B
lo

ck
Si

ze
(b

it
s)

A
re

a
(G

at
e

E
qu

iv
al

en
ts

(G
E

))

T
hr

ou
gh

pu
t

(M
bp

s)
T

hr
ou

gh
pu

t/
A

re
a

(k
bp

s/
G

E
)

SpeedXTEA-1 2.87 1 128 64 307,190 22,300 72.6
SpeedXTEA-2 2.87 1 192 64 420,562 22,300 53.0
SpeedXTEA-3 1.75 1 256 64 529,987 36,571 69.0

AES (Satoh)[17] 3.00 1 11 128 297,542 42,667 143.4
AES (Hodjat) [18] 1.65 1 41 128 473,000 77,576 164.0

AES (composite) [19] 2.00 1 41 128 175,000 64,000 365.7
AES (LUT) [19] 1.91 1 21 128 275,000 67,000 143.4

Chai-Tea, Cryptographic Hardware Implementations of xTEA 371

Table 4. Results for Tiny XTEA compared to block ciphers and the eS-
TREAM ciphers (ASIC)

Design M
ax

im
um

D
el

ay
(n

s)

C
lo

ck
C

yc
le

s
B

lo
ck

Si
ze

(b
it
s)

K
ey

Si
ze

(b
it
s)

A
re

a
(G

at
e

E
qu

iv
al

en
ts

(G
E

))
T

hr
ou

gh
pu

t
at

10
0K

H
z

(K
bp

s)
T

hr
ou

gh
pu

t/
A

re
a

(K
bp

s/
G

E
)

P
ow

er
(

µ
W

)
E

ne
rg

y
pe

r
bi

t
(p

J)

TinyXTEA-1 11.28 240 64 128 3500 26.7 0.008 18.8 703
TinyXTEA-3 11.66 112 64 128 3490 57.1 0.016 19.5 341
AES 8-bit[16] 2.19 534 128 128 4070 24.0 0.006 23.8 994

AES 8-bit[21]a – 1016 128 128 3595 12.6 0.004 26.9 2135
AES 8-bit[22]a 12.50 1032 128 128 3400 12.4 0.004 4.5 363
DESXL[24,25]b – 144 64 184 2168 44.4 0.021 1.6 36

Camelia[26]a 27.67 21 128 128 11350 609.5 0.054 – –
Camelia[27] 8.93 44 128 128 6511 290.1 0.045 – –

Present-80[28]b – 32 64 80 1570 200.0 0.127 5.0 25
Present-128[28] – 32 64 128 1886c 200.0 0.106 – –

F-FCSR-H v2 [29] 2.55 1 8 80 4760 800 0.168 10.6 13
F-FCSR-16 [29] 3.15 1 16 128 8072 1,600 0.198 18.3 11

Grain v1 [29] 1.38 1 1 80 1294 100 0.077 3.3 33
Grain 128 [29] 1.08 1 1 128 1857 100 0.054 4.3 43

MICKEY v2 [29] 1.83 1 1 80 3188 100 0.031 7.1 71
MICKEY 128 [29] 2.42 1 1 128 5039 100 0.020 11.2 112

Trivium [29] 3.05 1 1 80 2580 100 0.039 5.5 55
Trivium (x64) [29] 2.87 1 64 80 4921 6,400 1.301 14.3 2

a Results are from 0.35 µm CMOS process.
b Results are from 0.18 µm CMOS process.
c Estimate, was not implemented in [28].

by Feldhofer [21,22] which both use 0.35 µm technology, as well as several light-
weight crypto algorithm implementations. Just recently the eSTREAM portfo-
lio [23] was published recommending four different stream ciphers for hardware
implementations. Common to these stream ciphers is that they use an 80-bit key.
Tables 5 and 4 list these ciphers including derivations of some of them that allow
for a 128-bit key.

The power consumption of TinyXTEA-1 is only marginally smaller than the
one of TinyXTEA-3. This confirms our results from the implementations of only
one halfround (see Table 2). TinyXTEA and the AES implementations have a
similar area consumption. Hence, the power consumption of both implementa-
tions should also be similar if the same CMOS technology were used. The AES
implementation in [22] consumes only a fifth of the power of the implementation
reported in [21], even though both use the same CMOS technology. This is due
to low level optimizations and voltage scaling. These techniques could also be
employed for TinyXTEA. The surprising result is that the AES from [21] uses
nine times more clock cycles than TinyXTEA-3 to encrypt twice as much data.

372 J.-P. Kaps

Table 5. Results for Tiny XTEA compared to 8-bit AES and the eSTREAM Portfolio
ciphers (FPGA)

Design M
ax

im
um

D
el

ay
(n

s)

C
lo

ck
C

yc
le

s
B

lo
ck

Si
ze

(b
it
s)

K
ey

Si
ze

(b
it
s)

A
re

a
(s

lic
es

)

T
hr

ou
gh

pu
t

(M
bp

s)
T

hr
ou

gh
pu

t/
A

re
a

(M
bp

s/
sl
ic

e)

Device
TinyXTEA-1 13.87 240 64 128 266 19 0.07 xc3s50-5
TinyXTEA-3 15.97 112 64 128 254 36 0.14 xc3s50-5
AES 8-bit[30] 14.93 3900 128 128 264 2 0.01 xc2s15-6

AES [31] 16.67 112 128 128 522 69 0.13 xc2s30-6
F-FCSR-H v2 [32] 7.25 1 8 80 342 1,104 3.23 xc3s50-5

F-FCSR-16 [32] 7.46 1 16 128 473 2,144 4.53 xc3s50-5
Grain v1 [32] 5.10 1 1 80 44 196 4.45 xc3s50-5

Grain 128 [32] 5.10 1 1 128 50 196 3.92 xc3s50-5
MICKEY v2 [32] 4.29 1 1 80 115 233 2.03 xc3s50-5

MICKEY 128 [32] 4.48 1 1 128 176 223 1.27 xc3s50-5
Trivium [32] 4.17 1 1 80 50 240 4.80 xc3s50-5

Trivium (x64) [32] 4.74 1 64 80 344 13,504 39.26 xc3s400-5

This leads to a 4.5 times higher throughput for XTEA and could result in a 4.5
times lower energy consumption per bit.

The stream cipher implementation listed in Table 4 were published in [29] and
have a much higher throughput than the XTEA or AES implementations at a
similar power consumption. Therefore, they consume less energy per bit. Light
weight ciphers like DESXL, Camelia and Present perform similarly well.

5.2 FPGA Implementations

The results of our XTEA implementations on FPGAs are summarized in Table 5
for tiny XTEA and Table 6 for speed XTEA. We expect from the ASIC analysis
in Table 2 that TinyXTEA-1, using only one adder, consumes a slightly larger
area than TinyXTEA-3 with three adders. Table 5 shows that this holds true
for the FPGA implementation as well.

The throughput of TinyXTEA-3 is almost twice as fast as TinyXTEA-1 since
it needs half as many clock cycles to encrypt one block of data. This is also
reflected in the throughput to area ratio. The smallest AES implementation is
the 8-bit AES by Good and Benaissa [30] which is similar in size to TinyXTEA.
However, its throughput is almost 9 times lower than TinyXTEA-3. The AES by
Chodowiec and Gaj [31] is twice as large as TinyXTEA-3 and its throughput is
almost twice as fast leading to a similar throughput area ratio. The 128-bit key
versions of the stream ciphers [32] MICKEY and Grain have a higher throughput
area ratio than XTEA or AES and occupy less area. We would like to remark
that our implementation does not involve block RAMs.

The high speed XTEA implementations summarized in Table 6 confirm our
predictions from Table 1. SpeedXTEA-2, with 2 cuts per halfround, has a much

Chai-Tea, Cryptographic Hardware Implementations of xTEA 373

Table 6. Results for Speed XTEA compared to fast AES implementations (FPGA)

Design M
ax

im
um

D
el

ay
(n

s)
C

lo
ck

C
yc

le
s

C
lo

ck
C

yc
le

s
L
at

en
cy

B
lo

ck
Si

ze
(b

it
s)

A
re

a
(s

lic
es

)

T
hr

ou
gh

pu
t

(M
bp

s)
T

hr
ou

gh
pu

t/
A

re
a

(M
bp

s/
sl
ic

e)

Device
SpeedXTEA-1 8.00 1 128 64 14,574 8,004 0.55 xc3s2000-5
SpeedXTEA-2 5.79 1 192 64 18,515 11,050 0.60 xc3s2000-5

SpeedXTEA-1 (V) 3.50 1 128 64 8,655 18,286 2.11 xc5vlx85-3
SpeedXTEA-2 (V) 3.10 1 192 64 9,647 20,645 2.14 xc5vlx85-3

AES 128-bit (S) [30] 5.10 1 70 128 17,425 25,101 1.44 xc3s2000-5
AES 128-bit (V) [30] 5.41 1 70 128 16,693 23,654 1.42 xcv2000E-8

shorter critical path delay than SpeedXTEA-1, and even though it consumes
more area, its throughput to area ratio is larger. Good and Benaissa report
on two fully loop unrolled high speed AES implementations in [30], one on a
Xilinx Spartan 3 (AES 128-bit (S)) and one on a Xilinx Virtex-E (AES 128-bit
(V)). The AES implementation has a slightly shorter critical path delay than the
SpeedXTEA-2 implementation on the same device and consume almost the same
amount of area. However, due to its two times larger block size the throughput
area ratio of AES is two times higher.

6 Conclusion

Our results on ASIC and FPGA show that XTEA is suitable for high-speed ap-
plications, however, it does not perform as fast as AES. Any speed improvement
for XTEA would likely involve a significant increase in area and result in a lower
throughput area ratio. Our ultra-low power implementation show that XTEA
might be better suited for low resource environments than AES. Furthermore,
XTEA’s smaller block size of 64-bit is advantageous for applications where fewer
than 128 bits of data have to be encrypted at a time. However, stream ciphers
are a very interesting option as they have a higher throughput while consuming
a smaller or similar sized area. The small code size of XTEA makes it an in-
teresting choice in environments where some devices use software and other use
hardware implementations.

References

1. Wheeler, D., Needham, R.: TEA, a tiny encryption algorithm. Technical report,
Cambridge University, England (November 1994)

2. Wheeler, D., Needham, R.: TEA, a tiny encryption algorithm. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

3. Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, newDES, RC2, and TEA. In: Han, Y., Okamoto, T., Qing,
S. (eds.) ICIS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

374 J.-P. Kaps

4. Wheeler, D., Needham, R.: TEA extensions. Technical report, Cambridge Univer-
sity, England (October 1997)

5. Wheeler, D., Needham, R.: Correction to xtea. Technical report, Cambridge Uni-
versity (1998)

6. Castro, J.C.H., Viñuela, P.I.: New results on the genetic cryptanalysis of TEA and
reduced-round versions of XTEA. In: Congress on Evolutionary Computation CEC
2004, vol. 2, pp. 2124–2129 (2004)

7. Moon, D., Hwang, K., Lee, W., Lee, S., Lim, J.: Impossible differential cryptanal-
ysis of reduced round XTEA and TEA. In: Daemen, J., Rijmen, V. (eds.) FSE
2002. LNCS, vol. 2365, pp. 49–60. Springer, Heidelberg (2002)

8. Liu, S., Gavrylyako, O.V., Bradford, P.G.: Implementing the TEA algorithm on
sensors. In: ACM-SE 42: Proceedings of the 42nd annual Southeast regional con-
ference, pp. 64–69. ACM Press, New York (2004)

9. Pavlin, M.: Encryption using low cost microcontrollers. In: 42nd International Con-
ference on Microelectronics, Devices and Materials and the Workshop on MEMS
and NEMS, Society for Microelectronics Electronic, pp. 189–194 (2006)

10. Niati, R., Yazdani, N.: A more energy efficient network setup method for wire-
less sensor networks. In: Asia-Pacific Conference on Communications, pp. 640–643
(2005)

11. Kanamori, Y.: Reliability and security in a wireless body area network of intelligent
sensors. Master’s thesis, The University of Alabama in Huntsville (July 2002)

12. Amirtharajah, R., Chandrakasan, A.P.: Self-powered signal processing using
vibration-based power generation. IEEE Journal of Solid-State Circuits 33(5), 687–
695 (1998)

13. Israsena, P.: Securing ubiquitous and low-cost RFID using tiny encryption algo-
rithm. In: Symp. on Wireless Pervasive Computing, 4 pp. IEEE, Los Alamitos
(2006)

14. Israsena, P.: Design and implementation of low power hardware encryption for
low cost secure RFID using TEA. In: Information, Communications and Signal
Processing, pp. 1402–1406 (December 2005)

15. Brent, R.P., Kung, H.T.: A regular layout for parallel adders. IEEE Transactions
on Computers C-31(3), 260–264 (1982)

16. Kaps, J.P., Sunar, B.: Energy comparison of AES and SHA-1 for ubiquitous com-
puting. In: Zhou, X., Sokolsky, O., Yan, L., Jung, E.-S., Shao, Z., Mu, Y., Lee, D.C.,
Kim, D.Y., Jeong, Y.-S., Xu, C.-Z. (eds.) EUC Workshops 2006. LNCS, vol. 4097,
pp. 372–381. Springer, Heidelberg (2006)

17. Satoh, A.: High-speed hardware architectures for authenticated encryption mode
GCM. In: International Symposium on Circuits and Systems (ISCAS) 2006, pp.
4831–4834 (May 2006)

18. Hodjat, A., Verbauwhede, I.: Speed-area trade-off for 10 to 100 Gbits/s throughput
AES processor. In: Asilomar Conference on Signals, Systems and Computers, vol. 2,
pp. 2147–2150 (November 2003)

19. Hodjat, A., Verbauwhede, I.: Area-throughput trade-offs for fully pipelined 30 to
70 Gbits/s AES processors. IEEE Trans. Computers 55(4), 366–372 (2006)

20. Hodjat, A., Verbauwhede, I.: Minimum area cost for a 30 to 70 Gbits/s AES
processor. In: IEEE Comp. Soc. Annual Symposium on VLSI, pp. 83–88 (February
2004)

21. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID
systems using the AES algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)

Chai-Tea, Cryptographic Hardware Implementations of xTEA 375

22. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. IEE Proceedings of Information Security 152(1), 13–20 (2005)

23. Babbage, S., Canniére, C.D., Canteaut, A., Cid, C., Gilbert, H., Johansson, T.,
Parker, M., Preneel, B., Rijmen, V., Robshaw, M.: The eSTREAM portfolio. Tech-
nical report, eSTREAM, ECRYPT Stream Cipher Project (April 2008)

24. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight DES vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

25. Poschmann, A., Leander, G., Schramm, K., Paar, C.: New light-weight crypto algo-
rithms for RFID. In: International Symposium on Circuits and Systems (ISCAS),
pp. 1843–1846 (May 2007)

26. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-bit block cipher suitable for multiple platforms – design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

27. Satoh, A., Morioka, S.: Hardware-focused performance comparison for the standard
block ciphers AES, Camellia, and Triple-DES. In: Boyd, C., Mao, W. (eds.) ISC
2003. LNCS, vol. 2851, pp. 252–266. Springer, Heidelberg (2003)

28. Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann, A., Robshaw, M.,
Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007)

29. Good, T., Benaissa, M.: Hardware performance of eStream phase-iii stream cipher
candidates. In: State of the Art of Stream Ciphers Workshop (SASC 2008), pp.
163–173 (February 2008)

30. Good, T., Benaissa, M.: AES on FPGA from the fastest to the smallest. In: Rao,
J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 427–440. Springer, Hei-
delberg (2005)

31. Chodowiec, P., Gaj, K.: Very compact FPGA implementation of the AES algo-
rithm. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 319–333. Springer, Heidelberg (2003)

32. Hwang, D., Chaney, M., Karanam, S., Ton, N., Gaj, K.: Comparison of FPGA-
targeted hardware implementations of eSTREAM stream cipher candidates. In:
State of the Art of Stream Ciphers Workshop (SASC 2008), pp. 151–162 (February
2008)

High Speed Compact Elliptic Curve
Cryptoprocessor for FPGA Platforms

Chester Rebeiro1 and Debdeep Mukhopadhyay2

1 MS Student, Dept. of Computer Science and Engineering
Indian Institute of Technology Madras, India

rebeiro@cse.iitm.ernet.in
2 Assistant Professor, Dept. of Computer Science and Engineering

Indian Institute of Technology Kharagpur, India
debdeep@cse.iitkgp.ernet.in

Abstract. This paper proposes an efficient high speed implementation
of an elliptic curve crypto processor (ECCP) for an FPGA platform.
The main optimization goal for the ECCP is efficient implementation
of the important underlying finite field primitives namely multiplication
and inverse. The techniques proposed maximize the utilization of FPGA
resources. Additionally improved scheduling of elliptic curve point arith-
metic results in lower number of register files thus reducing the area
required and the critical delay of the circuit. Through several compar-
isons with existing work we demonstrate that the combination of the
above techniques helps realize one of the fastest and compact elliptic
curve processors.

1 Introduction

Elliptic Curve Cryptography (ECC) provides more security per key bit compared
to other security standards. Although fast due to the shorter key size, software
implementations of ECC do not meet the high speed required by some network-
ing applications. These applications require ECC to be accelerated by dedicated
hardware engines. The most common platform for such hardware accelerators
are FPGAs. There are several advantages of using FPGAs for cryptographic ap-
plications [21]. Most important is the in-house programmability feature, recon-
figurability, low non-recurring costs, simpler design cycles, faster time to market,
and greater performance per unit area.

Implementation of ECC follows a layered hierarchical scheme. The perfor-
mance of the top layers in the hierarchy is greatly influenced by the performance
of the underlying layers. It is therefore important to have efficient implemen-
tations of finite field arithmetic which form the bottom layer of the hierarchy.
Generally for ECC use of prime fields or binary extension fields is recommended.
Binary extension fields have the advantage that they have an efficient represen-
tation on a computer.

The elliptic curve crypto processor (ECCP) proposed in this paper is de-
signed for high speed applications using FPGA as the platform. There are sev-
eral reported high performance FPGA processors for elliptic curve cryptography

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 376–388, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

High Speed Compact Elliptic Curve Cryptoprocessor for FPGA Platforms 377

[1][2][3][10]. Various acceleration techniques have been used although most im-
plementations focus on the top layers of ECC. Pipelining and parallelism of the
top layers is used to speed up point operations. High speed is also obtained by
precomputations, efficient point representations, use of special curves, and effi-
cient instruction scheduling techniques. The ECCP described here achieves high
speed by implementing efficient finite field primitives. Additionally the primi-
tives proposed in this paper are optimized for the FPGA platform thus resulting
in good area×time product of the processor.

The most important arithmetic primitives for binary finite fields are multipli-
cation and inversion as they occupy the most area and have the longest delay
compared to other primitives. Efficient implementation of these primitives would
therefore result in an efficient elliptic curve processor. There are several finite
field multiplication algorithms that exist in literature. Of these the Karatsuba
multiplier [7] is one that has sub-quadratic area complexity. It is also shown to
be fastest if designed properly [17] [4]. The most common finite field inversion
algorithms are based on the extended Euclidean algorithm (EEA) and the Itoh-
Tsujii algorithm (ITA) [6]. Generally the EEA and its variants, the binary EEA
and Montgomery algorithms, result in compact hardware implementations, while
the ITA is faster. The large area required by the ITA is mainly due to the multi-
plication unit. ECC requires to have a multiplier present. This multiplier can be
reused by the ITA for inverse computations. In this case the multiplier need not
be considered in the area required by the ITA. The resulting ITA without the
multiplier is as compact as the EEA making it the ideal choice for multiplicative
inverse hardware [17].

The elliptic curve processor presented is built with novel multiplication and
inversion algorithms. It efficiently implements the elliptic curve operations on
the processor so that the scalar multiplication completes in minimum number
of clock cycles (given the single finite field multiplier present in the design) and
requires the minimum number of register files. The proposed implementation
requires two register files, this is lesser compared to [14], which required three
register files. The smaller number of register files results in lesser area required.
The resulting ECCP is one of the fastest reported and has best area utilization.

The paper is organized as follows: Section 2 has the required background
for ECC. Section 3 presents the implementation of the finite field primitives.
This section proposes the use of a hybrid Karatsuba multiplier and a quad-Itoh
Tsujii inversion algorithm for FPGA platforms. The 4th section describes the
construction of the ECCP, and the 5th section has the comparison of the ECCP
with reported works. The final section has the conclusion.

2 Background

The elliptic curve can be represented in affine coordinates (2 point system) or
projective coordinates (3 point system). The projective coordinate representation
of an elliptic curve over the field GF (2m) is given by

Y 2 + XY Z = X3 + aX2Z2 + bZ4 (1)

378 C. Rebeiro and D. Mukhopadhyay

where a and b ∈ GF (2m) and b �= 0. The points on the elliptic curve together
with the point at infinity (O) form an abelian group under addition.

The operations that are performed on the group are point addition and point
doubling. The equation for point addition in López-Dahab (LD) projective co-
ordinates [9] for the projective point P = (X1, Y1, Z1) and the affine point
Q = (x2, y2) is shown in Equation 2. The result is the point on the curve
(P + Q) = (X3, Y3, Z3).

A = y2 · Z2
1 + Y1 ; B = x2 · Z1 + X1 ; C = Z1 ·B

D = B2 · (C + a · Z2
1) ; Z3 = C2 ; E = A · C ; X3 = A2 + D + E

F = X3 + x2 · Z3 ; G = (x2 + y2) · Z2
3 ; Y3 = (E + Z3) · F + G

(2)

The LD projective equation of doubling a point P = (X1, Y1, Z1) is given in
Equation 3. The result is the point on the curve 2P = (X3, Y3, Z3).

Z3 = X2
1 · Z2

1 ;X3 = X4
1 + b · Z4

1

Y3 = b · Z4
1 · Z3+X3 · (a · Z3 + Y 2

1 + b · Z4
1)

(3)

The cryptographic operation in the ECCP is scalar multiplication : Given a
basepoint P on the curve and a scalar k, the scalar multiplication determines
the product kP . This computation is done using a double and add algorithm
which traverses the bits of the scalar k and does a point doubling for every bit
in k. For every bit set to 1 the point doubling is followed by a point addition.

3 Implementing Finite Field Primitives on an FPGA

Maximizing the performance of the finite field primitives requires the design to
be customized for the target hardware. The Xilinx FPGA [22] is made up of
configurable logic blocks (CLBs). Each CLB on a Xilinx Virtex 4 FPGA con-
tains two slices. Each slice contains two lookup tables (LUTs). The LUT is the
smallest programmable element in the FPGA. A LUT has four inputs and can
be configured for any logic function having a maximum of four inputs. The LUT
can also be used to implement logic functions having less than four inputs, two
for example. In this case only half the LUT is utilized the remaining part is
not utilized. Such a LUT having less than four inputs is an under utilized LUT.
Most compact implementations are obtained when the utilization of each LUT
is maximized. The percentage of under utilized LUTs in a design is determined
using Equation 4. LUTk signifies that k (1 ≤ k ≤ 4) inputs out of 4 are used by
the design block realized by the LUT. So, LUT2 and LUT3 are under utilized
LUTs, while LUT4 is fully utilized.

%UnderUtilizedLUTs =
LUT2 + LUT3

LUT2 + LUT3 + LUT4
∗ 100 (4)

High Speed Compact Elliptic Curve Cryptoprocessor for FPGA Platforms 379

3.1 Finite Field Multiplication

Finite field multiplication of two elements in the field GF (2m) is defined as
C(x) = A(x)B(x)modP (x), where A(x), B(x), and C(x) ∈ GF (2m) and P (x)
is the irreducible polynomial of degree m which generates the field GF (2m).
Implementing the multiplication requires two steps. First, the polynomial prod-
uct C′(x) = A(x)B(x) is determined, then the modular operation is done on
C′(x). The Karatsuba algorithm is used for the polynomial multiplication. The
Karatsuba algorithm achieves its efficiency by splitting the m bit multiplicands
into two 2-term polynomials : A(x) = Ahxm/2 + Al and B(x) = Bhxm/2 + Bl.
The multiplication is then done using three m/2 bit multiplications as shown
in Equation 5. The three m/2 bit multiplications are implemented recursively
using the Karatsuba algorithm.

C′(x) = (Ahxm/2 + Al)(Bhxm/2 + Bl)

= AhBhxm + (AhBl + AlBh)xm/2 + AlBl

= AhBhxm + ((Ah + Al)(Bh + Bl) + AhBh + AlBl)xm/2 + AlBl

(5)

The basic recursive Karatsuba multiplier cannot be applied directly to ECC
because the binary extension fields used in standards such as [19] have a de-
gree which is prime. There have been several published variants of the Karat-
suba multiplier for ECC such as the binary Karatsuba multiplier [15], the simple
Karatsuba multiplier [20], and the general Karatsuba multiplier [20]. The simple
Karatsuba multiplier is the basic recursive Karatsuba multiplier with a small
modification. If an m bit multiplication is needed to be done, m being any inte-
ger, it is split into two polynomials as in Equation 5. The Al and Bl terms have
�m/2� bits and the Ah and Bh terms have �m/2� bits. The Karatsuba multipli-
cation can then be done with two �m/2� bit multiplications and one �m/2� bit
multiplication. In the general Karatsuba multiplier, the multiplicands are split
into more than two terms. For example an m term multiplier is split into m
different terms.

Hybrid Karatsuba Multiplier : The design of the proposed hybrid Karat-
suba multiplier is based on observations from Table 1. The table compares the
general and simple Karatsuba multipliers for gate counts, LUTs, and percentage

Table 1. Multiplication Comparison on Xilinx Virtex 4 FPGA

n General Simple
Gates LUTs LUTs Un- Gates LUTs LUTs Un-

der Utilized der Utilized
2 7 3 66.6% 7 3 66.6%
4 37 11 45.5% 33 16 68.7%
8 169 53 20.7% 127 63 66.6%
16 721 188 17.0% 441 220 65.0%
29 2437 670 10.7% 1339 669 65.4%
32 2977 799 11.3% 1447 723 63.9%

380 C. Rebeiro and D. Mukhopadhyay

14 15 14 15 15 15 14 1514 15

233

29 29 29 29

1514 14 15 14 15

5858 59

29 29 30 29

116 117

58

Simple

General

Fig. 1. 233 Bit Hybrid Karatsuba Multiplier

of under utilized LUTs on a Xilinx Virtex 4 FPGA. For the simple Karatsuba
multiplier, the percentage of under utilized LUTs is high resulting in bloated
area requirements. In the case of the general Karatsuba multiplier, the percent-
age of under utilized LUTs is low therefore there is better LUT utilization even
though the gate count is higher. For n > 29, the number of gates in the general
Karatsuba multiplier exceeds the benefits obtained by fully utilizing the LUTs
resulting in bigger area requirements.

In the hybrid Karatsuba multiplier, all recursions are done using the simple
Karatsuba multiplier except the final recursion. The final recursion is done using
a general Karatsuba multiplier when the multiplicands have a size less than 29
bits. The initial recursions using the simple Karatsuba multiplier result in low
gate count, while the final recursion using the general Karatsuba multiplier re-
sult in low LUT requirements. For a 233-bit hybrid Karatsuba multiplier shown
in Figure 1, the four initial recursions are done using the simple Karatsuba mul-
tiplier, while the final recursion is done with 14-bit and 15-bit general Karatsuba
multipliers.

3.2 Finite Field Inversion

The multiplicative inverse of an element a ∈ GF (2m) is the element a−1 ∈
GF (2m) such that a−1 · a ≡ 1mod(m). From Fermat’s little theorem, the mul-
tiplicative inverse can be written as a−1 = a2m−2 = (a2m−1−1)2. The naive
technique of computing a−1 requires (m− 2) multiplications and (m− 1) squar-
ings. Itoh and Tsujii in [6] reduced the number of multiplications required by
an efficient use of addition chains. An addition chain for n ∈ N is a sequence
of integers of the form U = (u0 u1 u2 · · ·ur) satisfying the properties
u0 = 1, ur = n and ui = uj + uk, for some k ≤ j < i. An addition chain for 232
is U = (1 2 3 6 7 14 28 29 58 116 232).

Let βk(a) = a2k−1 ∈ GF (2m) and βk+j(a) = (βj)2
k

βk = (βk)2
j

βj [16], then
a−1 = (βm−1(a))2. Using the addition chain shown above, the inverse of an ele-
ment a ∈ GF (2233) can be determined with 232 squarings and 10 multiplications
as shown in Table 2.

High Speed Compact Elliptic Curve Cryptoprocessor for FPGA Platforms 381

Table 2. Inverse of a ∈ GF (2233) using generic ITA

βui
(a) βuj+uk

(a) Exponentiation
1 β1(a) a

2 β2(a) β1+1(a) (β1)2
1
β1 = a22−1

3 β3(a) β2+1(a) (β2)2
1
β1 = a23−1

4 β6(a) β3+3(a) (β3)2
3
β3 = a26−1

5 β7(a) β6+1(a) (β6)2
1
β1 = a27−1

6 β14(a) β7+7(a) (β7)2
7
β7 = a214−1

7 β28(a) β14+14(a) (β14)2
14

β14 = a228−1

8 β29(a) β28+1(a) (β28)2
1
β1 = a229−1

9 β58(a) β29+29(a) (β29)2
29

β29 = a258−1

10 β116(a) β58+58(a) (β58)2
58

β58 = a2116−1

11 β232(a) β116+116(a) (β116)2116
β116 = a2232−1

Generalizing the Itoh-Tsujii Algorithm: The equation for the square of an
element a ∈ GF (2m) is given by a(x)2 =

∑m−1
i=0 aix

2i mod p(x), where p(x) is the
irreducible polynomial. This is a linear equation and hence can be represented
in the form of a matrix (T) as shown : a2 = T · a. The matrix depends on the
finite field GF (2m) and the irreducible polynomial of the field. The exponenti-
ation in the ITA is done with squarer circuits. We extend the ITA so that the
exponentiation can be done with any 2n circuit and not just squarers. Raising a
to the power of 2n is also linear and can be represented in the form of a matrix:
a2n

= T n(a) = T ′a.
For any a ∈ GF (2m) and k ∈ N, define αk(a) = a2nk−1. Using the theorems

shown below, we can conclude that any 2n circuit can be used to implement the
Itoh-Tsujii algorithm thus generalizing the algorithm.

Theorem 1. If a ∈ GF (2m) , αk1(a) = a2nk1−1 and αk2(a) = a2nk2−1 then
αk1+k2(a) = (αk1(a))2

nk2
αk2(a), where k1, k2 and n ∈ N.

Theorem 2. The inverse of an element a ∈ GF (2m) is given by a−1 =[
αm−1

n
(a)

]2
when n | (m − 1) and a−1 =

[
(αq(a))2

r

βr(a)
]2

when n � (m − 1),
where nq + r = m− 1 and n, q and r ∈ N.

Quad Itoh Tsujii Inversion Algorithm: Consider the case when n = 2
such that αk(a) = a4k−1. To implement this requires quad circuits instead of the
conventional squarers. On FPGA platforms, using quad circuits has advantages
over squarers. An example of this advantage is shown in Table 3. The table shows
the equation of each output bit for an element b ∈ GF (29) for a squarer and a
quad circuit and the number of LUTs each circuit takes.

We would expect the LUTs required by the quad circuit be twice that of the
squarer. However this is not the case. The quad circuit’s LUT requirement is only
1.5 times that of the squarer. This is because the quad circuit has a lower per-
centage of under utilized LUTs (Equation 4).For example, from Table 3 we note

382 C. Rebeiro and D. Mukhopadhyay

Table 3. Comparison of LUTs required for a Squarer and Quad circuit for GF (29)

Output Squarer Circuit Quad Circuit
bit b(x)2 #LUTs b(x)4 #LUTs
0 b0 0 b0 0
1 b5 0 b7 0
2 b1 + b5 1 b5 + b7 1
3 b6 0 b3 + b7 1
4 b2 + b6 1 b1 + b3 + b5 + b7 1
5 b7 0 b8 0
6 b3 + b8 1 b6 + b8 1
7 b8 0 b4 + b8 1
8 b4 + b8 1 b2 + b4 + b6 + b8 1

Total LUTs 4 6

Table 4. Comparison of Squarer and Quad Circuits on Xilinx Virtex 4 FPGA

Field Squarer Circuit Quad Circuit Size ratio
#LUTs Delay (ns) #LUTq Delay (ns)

#LUTq
2(#LUTs)

GF (2193) 96 1.48 145 1.48 0.75
GF (2233) 153 1.48 230 1.48 0.75

Table 5. Inverse of a ∈ GF (2233) using Quad-ITA

αui
(a) αuj+uk

(a) Exponentiation
1 α1(a) a3

2 α2(a) α1+1(a) (α1)4
1
α1 = a42−1

3 α3(a) α2+1(a) (α2)4
1
α1 = a43−1

4 α6(a) α3+3(a) (α3)4
3
α3 = a46−1

5 α7(a) α6+1(a) (α6)4
1
α1 = a47−1

6 α14(a) α7+7(a) (α7)4
7
α7 = a414−1

7 α28(a) α14+14(a) (α14)414
α14 = a428−1

8 α29(a) α28+1(a) (α28)4
1
α1 = a429−1

9 α58(a) α29+29(a) (α29)429
α29 = a458−1

10 α116(a) α58+58(a) (α58)458
α58 = a4116−1

that output bit 4 requires three XOR gates in the quad circuit and only one in
the squarer. However both circuits require only 1 LUT. These observations are
scalable to large fields as is shown in Table 4.

Based on these observations we propose a quad-ITA which uses quad exponen-
tiation circuits instead of squarers. The steps involved in obtaining the inverse
of an element a ∈ GF (2233) (Table 5) now requires 10 multiplications and 115
quads (compared to 232 quads when squarers are used).

4 Elliptic Curve Crypto Processor

The elliptic curve crypto processor (ECCP) (Figure 2) takes as input a scalar
k and produces the product kP , where P = (Px, Py) is the basepoint of the
curve. The basepoint along with the curve constant is stored in the ROM and

High Speed Compact Elliptic Curve Cryptoprocessor for FPGA Platforms 383

RA
RA

RA1

2

4

RA

Unit

Arithmetic

C1

C0

and basepoint

k

ROM
curve constant

A0

A1

B0

B1

c[0:11]c[12:24]

3

RB
RB
RB

RB1

2

4

3

Control Unit

kPx

kPy

Register Bank

Fig. 2. Block Diagram of the Elliptic Curve Crypto Processor

loaded into registers during initialization. The ECCP implements the scalar mul-
tiplication algorithm using the elliptic curve double and add formulae. To be
implemented, these formulae require arithmetic operations such as additions,
squarings, and multiplications (Figure 3). Of these the hardware for multiplica-
tion is the biggest therefore the ECCP can afford to have only one finite field
multiplier. Several adders and squarers can be used as they contribute marginally
to the latency and area of the processor.

The equation for point addition (Equation 2) has 8 multiplications (assuming
a=1) therefore with one multiplier (which is capable of doing one multiplication
per clock cycle) it would require a minimum of 8 clock cycles. Similarly point
doubling (Equation 3) would require a minimum of 4 clock cycles. The design
of the arithmetic unit is optimized so that the addition and doubling takes the
minimum required clock cycles.

The arithmetic unit in the ECCP has two outputs. At every clock cycle, at
least one of the outputs is derived from the multiplier. This ensures that the
multiplier is used in every clock cycle. In order to generate two outputs the

SQUARE

SQUARE

SQUARE

SQUARE

SQUARE

SQUARE

A

MUX

MUX

B

A0

c[2:0]

c[5:3]

A1

B0 B0

B0

B1 B1

B1

A0

A1

A1+B1

4

2

A0+B0

A0

A02

A1

A0+A1+B12

B1+A02

A0+A1

B0

A04

4

2

4A0

M
4A0+B0

M+A1

M+B0

M+B0+B12

M+B1

c[11:9]

qsel

A0

B12

A1

B0 B1

MUX

D

C1

C0

C

MUX

M

B02

QOUT

c[12]c[9]

c[8:6]B04

KARATSUBA

MULTIPLIER

HYBRID

QUADBLOCK

Fig. 3. Arithmetic Unit

384 C. Rebeiro and D. Mukhopadhyay

quad−1 quad−2 quad−3 quad−4 quad−5 quad−6 quad−7 quad−8 quad−9QIN

qsel

QOUT

Fig. 4. Quadblock: Raises the Input to the Power of 4q

arithmetic unit requires at least four input lines. The data on the four input
lines is read from registers. The registers are implemented using the FPGA’s
dual ported distributed RAM. Each dual ported RAM has two address lines,
two output data lines, and one input data line, therefore to feed the four input
arithmetic unit at least two dual ported RAMs (RA and RB) are required. Each
dual ported RAM, called a register file, implements four 233 bit registers and
the two register files are collectively known as a register bank.

The control unit generates a 25 bit control word every clock cycle. This control
word selects the four registers whose data would be read, selects the inputs to
the multiplier using multiplexers MUXA and MUXB and selects the output
of the arithmetic unit through MUXC and MUXD. The control word also
determines the register where the result gets written into.

Using LD projective coordinates has the overhead that the result has to be
converted from projective to affine coordinates. This requires an inverse to be
computed followed by two multiplications. The inverse is computed using the
proposed quad-ITA. Obtaining the inverse requires steps in Table 5 to be com-
puted. Each step has a computation of a power followed by a multiplication. The
computation of the power has the form α4q

, where q is as large as 58. Comput-
ing α458

would require 58 cascaded quad circuits. However this would result in
a large latency. An alternate solution is to have s(< 58) cascaded quad circuits.
Computing the power α4s

can be done in one clock cycle. Computing α4q

with
q < s is done by tapping out the interim result using a multiplexer (Figure 4).
Computing α4q

with q > s is done by recycling the result in the quadblock. This
would require �q/s� clock cycles. The number of cascades s is the largest number
of quads such that the overall delay of the quadblock is less than the longest

I28

A5

A4

A2
A3

D4

D3

A6

A7

D2

D1

A8

I1 I2

A1

I27I26I25Init1 Init2 Init3

Detect leading 1

complete

k =1i

k =0i complete

Fig. 5. Finite State Machine

High Speed Compact Elliptic Curve Cryptoprocessor for FPGA Platforms 385

Table 6. Scheduling Point Doubling on the ECCP

Cycle Operation AU Inputs AU Output
A0 A1 B0 B1 C0 C1

1 RA1 = RB2
4 · RA2

1 ; RB3 = RA4
1 RA1 - - RB4 RA1 RB3

2 RB3 = RA2 = RB3 · RA3 - RA3 RB3 - RA2 RB3
3 RA3 = (RB4

4 + RA2)(RA1 + RB2
1 + RA2) RA2 RA1 RB4 RB1 RA2 RB4

RB4 = (RB4
4 + RA2)

4 RB1 = RB3 · RA1 + RA2 RA1 RA2 - RB3 - RB1

delay in the ECCP, which is through the multiplier. This ensures that the quad-
block does not alter the maximum frequency of operation. For GF (2233), nine
cascades of quad produce the required result.

The finite state machine (FSM) for the ECCP is shown in Figure 5. There are
three initialization states (Init1 to Init3), four states (D1 to D4) are required for
the point doubling, eight states (A1 to A8) are required for the point addition.
At the state D4 a decision is made depending on the value of the key bit ki. If
ki = 1, the addition states are entered. If ki = 0 the doubling corresponding to
the next bit in k is considered. The final conversion of the result from projective
to affine requires 28 states (I1 to I28). The number of clock cycles required is
given by #ClockCycles = 3 + 12(h− 1) + 4(l− h) + 28, where l is the length of
the scalar k and h its hamming weight.

4.1 Point Equations on the ECCP

The projective double and add equations on the ECCP (Equations 3 and 2)
require to be scheduled efficiently in order to minimize the number of clock cycles
required. The scheduling ensures that every clock cycle has a multiplication.
Table 6 and Table 7 shows the scheduling for point doubling and point addition.
They show the operations that are performed at every clock cycle, the data that
is driven into the arithmetic unit, and the registers used to store the output of
the arithmetic unit. The constant b is assumed to be present in register RA3.
The point P = (X1, Y1, Z1) is present in registers (RB4, RB1, RA1) and another
affine point Q = (x2, y2) is present in registers (RA4, RB2). The point doubling
operation computes P = 2P while the point addition operation computes P =
P + Q. Point doubling taking 4 clock cycles while addition takes 8 clock cycles.

Table 7. Scheduling Point Addition on the ECCP

Cycle Operation AU Inputs AU Output
A0 A1 B0 B1 C0 C1

1 RB1 = RB2 · RA2
1 + RB1 RA1 - RB1 RB2 - RB1

2 RB4 = RA4 · RA1 + RB4 RA1 RA4 RB4 - - RB4
3 RA2 = RB3 = RA1 · RB4 - RA1 - RB4 RA2 RB3

4 RB4 = RB2
4(RB3 + RA2

1) RA1 - RB4 RB3 - RB4
5 RA2 = RB1 · RB2 RA2 - RB4 RB1 RA2 RB4

RB4 = RB2
1 + RB4 + RB1 · RA2

6 RA1 = RB2
3 ; RB3 = RB4 + RA4 · RB2

3 - RA4 RB3 RB4 RA1 RB3

7 RB1 = (RA4 + RB2)RA2
1 RA1 RA4 - RB2 - RB1

8 RB1 = (RA1 + RA2)RB3 + RB1 RA1 RA2 RB1 RB3 - RB1

386 C. Rebeiro and D. Mukhopadhyay

5 Performance Evaluation

In this section we compare our work with reported GF (2m) elliptic curve crypto
processors implemented on FPGA platforms (Table 8). Our ECCP was synthe-
sized using Xilinx’s ISE for Virtex 4 and Virtex E platforms. Since the pub-
lished works are done on different field sizes, we use the measure latency/bit for
evaluation. Here latency is the time required to compute kP . Latency is com-
puted by assuming the scalar k has half the number of bits 1. The only faster
implementations are [18] and [3]. However [18] does not perform the final in-
verse computation required for converting from LD to affine coordinates. Also,
as shown in Table 9, our implementation has better area time product compared
to [3], while the latency is almost equal. To compare the two designs we scaled
the area of [3] by a factor of (233/m)2 since area of the elliptic curve processors
is mostly influenced by the multiplier, which has an area of O(m2). The time is
scaled by a factor (233/m) since it is linear.

Table 8. Comparison of the Proposed GF (2m) ECCP with FPGA based Published
Results

Work Platform Field Slices LUTs Gate Freq Latency Latency
m Count (MHz) (ms) /bit (ns)

Orlando [12] XCV400E 163 - 3002 - 76.7 0.21 1288
Bednara [2] XCV1000 191 - 48300 - 36 0.27 1413
Kerins [8] XCV2000 239 - - 74103 30 12.8 53556
Gura [5] XCV2000E 163 - 19508 - 66.5 0.14 858
Mentens [11] XCV800 160 - - 150678 47 3.810 23812
Lutz [10] XCV2000E 163 - 10017 - 66 0.075 460
Saqib [18] XCV3200 191 18314 - - 10 0.056 293
Pu [13] XC2V1000 193 - 3601 - 115 0.167 865
Ansari [1] XC2V2000 163 - 8300 - 100 0.042 257
Chelton [3] XCV2600E 163 15368 26390 238145 91 0.033 202

XC4V200 163 16209 26364 264197 153.9 0.019 116
This Work XCV3200E 233 18705 36802 306516 28.91 0.065 279

XC4V140 233 19674 37073 314818 60.05 0.031 124

Table 9. Comparing Area×Time Requirements with [3]

Work Field Platform Slices Scaled Latency Scaled Area
Slices (ms) Latency (ms) ×Time

(m) (S) SS = S(233
m)2 (T) TS = T (233

m) (SS × TS)
Chelton [3] 163 XC4V200 16209 33120 0.019 0.027 894
This Work 233 XC4V140 19674 19674 0.031 0.031 609

6 Conclusion

In this paper we proposed an elliptic curve crypto processor for binary finite
fields. It is compact and one of the fastest implementations reported. High speed
of operation is obtained by having a combinational finite field multiplier us-
ing the proposed quad Itoh Tsujii algorithm to find the inverse, duplicating
hardware units, and efficient implementation of point arithmetic. The ECCP is
also compact and has better area×time product compared to the fastest ECCP.
Compactness is achieved by the proposed hybrid Karatsuba multiplier and by
minimizing the register file requirements in the ECCP.

High Speed Compact Elliptic Curve Cryptoprocessor for FPGA Platforms 387

References

1. Ansari, B., Hasan, M.A.: High Performance Architecture of Elliptic Curve Scalar
Multiplication. Technical report, Department of Electrical and Computer Engi-
neering, University of Waterloo (2006)

2. Bednara, M., Daldrup, M., von zur Gathen, J., Shokrollahi, J., Teich, J.: Recon-
figurable Implementation of Elliptic Curve Crypto Algorithms. In: Parallel and
Distributed Processing Symposium., Proceedings International, IPDPS 2002, Ab-
stracts and CD-ROM, pp. 157–164 (2002)

3. Chelton, W.N., Benaissa, M.: Fast Elliptic Curve Cryptography on FPGA. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 16(2), 198–205
(2008)

4. Grabbe, C., Bednara, M., Shokrollahi, J., Teich, J., von zur Gathen, J.: FPGA
Designs of Parallel High Performance GF (2233) Multipliers. In: Proc. of the IEEE
International Symposium on Circuits and Systems (ISCAS 2003), Bangkok, Thai-
land, vol. II, pp. 268–271 (May 2003)

5. Gura, N., Shantz, S.C., Eberle, H., Gupta, S., Gupta, V., Finchelstein, D., Goupy,
E., Stebila, D.: An End-to-End Systems Approach to Elliptic Curve Cryptography.
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
349–365. Springer, Heidelberg (2003)

6. Itoh, T., Tsujii, S.: A Fast Algorithm For Computing Multiplicative Inverses in
GF (2m) Using Normal Bases. Inf. Comput. 78(3), 171–177 (1988)

7. Karatsuba, A.A., Ofman, Y.: Multiplication of Multidigit Numbers on Automata.
Soviet Physics Doklady 7, 595–596 (1963)

8. Kerins, T., Popovici, E., Marnane, W.P., Fitzpatrick, P.: Fully Parameterizable
Elliptic Curve Cryptography Processor over GF (2). In: Glesner, M., Zipf, P., Ren-
ovell, M. (eds.) FPL 2002. LNCS, vol. 2438, pp. 750–759. Springer, Heidelberg
(2002)

9. López, J., Dahab, R.: Improved Algorithms for Elliptic Curve Arithmetic in
GF (2n). In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 201–212.
Springer, Heidelberg (1999)

10. Lutz, J., Hasan, A.: High Performance FPGA based Elliptic Curve Cryptographic
Co-Processor. In: ITCC 2004: Proceedings of the International Conference on Infor-
mation Technology: Coding and Computing (ITCC 2004), Washington, DC, USA,
vol. 2, p. 486. IEEE Computer Society, Los Alamitos (2004)

11. Mentens, N., Ors, S.B., Preneel, B.: An FPGA Implementation of an Elliptic Curve
Processor GF (2m). In: GLSVLSI 2004: Proceedings of the 14th ACM Great Lakes
symposium on VLSI, pp. 454–457. ACM, New York (2004)

12. Orlando, G., Paar, C.: A High Performance Reconfigurable Elliptic Curve Processor
for GF (2m). In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 41–56.
Springer, Heidelberg (2000)

13. Pu, Q., Huang, J.: A Microcoded Elliptic Curve Processor for GF (2m) Using FPGA
Technology. In: Proceedings of 2006 International Conference on Communications,
Circuits and Systems, vol. 4, pp. 2771–2775 (June 2006)

14. Rodŕıguez, S.M.H., Rodŕıguez-Henŕıquez, F.: An FPGA Arithmetic Logic Unit for
Computing Scalar Multiplication using the Half-and-Add Method. In: ReConFig
2005: International Conference on Reconfigurable Computing and FPGAs, Wash-
ington, DC, USA. IEEE Computer Society, Los Alamitos (2005)

15. Rodŕıguez-Henŕıquez, F., Koç, Ç.K.: On Fully Parallel Karatsuba Multipliers for
GF (2m). In: Proc. of the International Conference on Computer Science and Tech-
nology (CST), pp. 405–410

388 C. Rebeiro and D. Mukhopadhyay

16. Rodŕıguez-Henŕıquez, F., Morales-Luna, G., Saqib, N.A., Cruz-Cortés, N.: Parallel
Itoh-Tsujii Multiplicative Inversion Algorithm for a Special Class of Trinomials.
Des. Codes Cryptography 45(1), 19–37 (2007)

17. Rodŕıguez-Henŕıquez, F., Saqib, N.A., Dı́az-Pèrez, A., Ķoc, Ç.K.: Cryptographic
Algorithms on Reconfigurable Hardware (Signals and Communication Technology).
Springer-Verlag New York, Inc., Secaucus (2006)

18. Saqib, N.A., Rodŕıiguez-Henŕıquez, F., Diaz-Perez, A.: A Parallel Architecture
for Fast Computation of Elliptic Curve Scalar Multiplication Over GF (2m). In:
Proceedings of 18th International Parallel and Distributed Processing Symposium
(April 2004)

19. U.S. Department of Commerce, National Institute of Standards and Technology.
Digital signature standard (DSS) (2000)

20. Weimerskirch, A., Paar, C.: Generalizations of the Karatsuba Algorithm for Effi-
cient Implementations. Cryptology ePrint Archive, Report 2006/224 (2006)

21. Wollinger, T., Guajardo, J., Paar, C.: Security on FPGAs: State-of-the-art Im-
plementations and Attacks. Trans. on Embedded Computing Sys. 3(3), 534–574
(2004)

22. Xilinx. Virtex-4 User Guide (2007)

More Discriminants
with the Brezing-Weng Method

Gaetan Bisson1,2 and Takakazu Satoh3

1 LORIA, 54506 Vandoeuvre-lès-Nancy, France
2 Technische Universiteit Eindhoven, 5600 Eindhoven, The Netherlands

3 Tokyo Institute of Technology, 152-8551 Tokyo, Japan

Abstract. The Brezing-Weng method is a general framework to gen-
erate families of pairing-friendly elliptic curves. Here, we introduce an
improvement which can be used to generate more curves with larger dis-
criminants. Apart from the number of curves this yields, it provides an
easy way to avoid endomorphism rings with small class number.

Keywords: Pairing-friendly curve generation, Brezing-Weng method.

1 Introduction

Since its birth in 2000, pairing-based cryptography has solved famous open prob-
lems in public key cryptography: the identity-based key-exchange [1], the one-
round tripartite key-exchange [2] and the practical identity-based encryption
scheme [3]. Pairings are now considered not only as tools for attacking the dis-
crete logarithm problem in elliptic curves [4] but as building blocks for crypto-
graphic protocols.

However, for these cryptosystems to be practical, elliptic curves with an effi-
ciently computable pairing and whose discrete logarithm problem is intractable
are required.

There are essentially two general methods for the generation of such curves:
the Cocks-Pinch method [5], which generates individual curves, and the Brezing-
Weng method [6], which generates families of curves while achieving better ρ-
values.

Our improvement extends constructions based on these methods by provid-
ing more curves with discriminants larger than what the constructions would
normally provide (by a factor typically up to 109 given current complexity of al-
gorithms for computing Hilbert class polynomials). In the Cocks-Pinch method
the discriminant can be freely chosen so our improvement is of little interest
in this case; however, the Cocks-Pinch method is limited to ρ ≈ 2. To achieve
smaller ρ-values, one has to use the Brezing-Weng method where known efficient
constructions mostly deal with small (one digit) discriminants; our improvement
then provides an easy and efficient way to generate several curves with a wide
range of discriminants, extending known constructions while preserving their
efficiency (in particular, the ρ-value).

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 389–399, 2008.
© Springer-Verlag Berlin Heidelberg 2008

390 G. Bisson and T. Satoh

The curves we generate, having a larger discriminant, are possibly more secure
than curves whose endomorphism ring has small class number —even though,
at the time of this writing, no attack taking advantage of a small class number
is known. To say the least, our improvement brings a bit of diversity to families
of curves as generated by the Brezing-Weng method.

In Section 2, we recall the general framework for pairing-friendly elliptic curve
generation. Then, in Section 3, we present the Brezing-Weng algorithm and our
improvement. Eventually, in Section 4, we study practical constructions and their
efficiency; we also present a few examples.

2 Framework

2.1 Security Parameters

Let E be an elliptic curve defined over a prime finite field Fp. We consider the
discrete logarithm problem in some subgroup H of E of large prime order r. In
addition, we assume that r is different from p.

For security reasons, the size of r should be large enough to avoid generic
discrete logarithm attacks. For efficiency reasons, it should also not be too small
when compared to the size of the ground field; indeed, it would be impractical
to use the arithmetic of a very large field to provide the security level that could
be achieved with a much smaller one. Therefore, the so-called ρ-value

ρ :=
log p

log r

must be as small as possible. Note that, for practical applications, it is desirable
that the parameters of a cryptosystem (here, p) be of reasonable size relatively
to the security provided by this cryptosystem (here, r), which is precisely what
a small ρ-value asserts.

We wish to generate such an elliptic curve and ensure that it has an efficiently
computable pairing, that is a non-degenerate bilinear map fromH2 to some cyclic
group.

Known pairings on elliptic curves, i.e. the Weil and Tate pairings, map to
the multiplicative group of an extension of the ground field. By linearity, the
non-degeneracy of the pairing (on the subgroup of order r) forces the extension
to contain primitive rth roots of unity. Let Fpk be the minimal such extension;
the integer k is called the embedding degree with respect to r. It can also be
defined elementarily as

k = min{i ∈ N : r | pi − 1}.

There are different ways of evaluating pairings, each featuring specific implemen-
tation optimizations. However, all known efficient methods are based on Miller’s
algorithm which relies on the arithmetic of Fpk . Therefore, the evaluation of a
pairing can only be carried out when k is reasonably small.

More Discriminants with the Brezing-Weng Method 391

In addition, the discrete logarithm problem must be practically intractable in
both the subgroup of the curve and the multiplicative group of the embedding
field. At the time of this writing, minimal security can be provided by the bounds

log2 r ≥ 160 and k log2 p ≥ 1024.

However, these are to evolve and, as the bound on k log2 p is expected to grow
faster than that on log2 r (because the complexity of the index-calculus attack on
finite fields is subexponential whereas those of elliptic curve discrete logarithm
algorithms are exponential), we have to consider larger embedding degrees in
order to preserve small ρ-values.

2.2 Curve Generation

In order to generate an ordinary elliptic curve with a large prime order sub-
group and an efficiently computable pairing, we look for suitable values of the
parameters:

– p, the cardinality of the ground field;
– t, the trace of the Frobenius endomorphism of the curve (such that the curve

has p + 1− t rational points);
– r, the order of the subgroup;
– k, its embedding degree.

Here, “suitable” means that there exists a curve achieving those values. This
consistency of the parameters can be written as the following list of conditions:

1. p is prime.
2. t is an integer relatively prime to p.
3. |t| ≤ 2

√
p.

4. r is a prime factor of p + 1− t.
5. k is the smallest integer such that r | pk − 1.

By a theorem of Deuring [7], Conditions 1–3 ensure that there exists an ordi-
nary elliptic curve over Fp with trace t. The last conditions then imply that its
subgroup of order r has embedding degree k.

When r does not divide k —which is always the case in cryptographic appli-
cations as we want k to be small (for the pairing to be computable) and r to
be large (to avoid generic discrete logarithm attacks)— Condition 5 is equiva-
lent to r | Φk (p), which is a much more handy equation; therefore, assuming
Condition 4, it is also equivalent to

r | Φk (t− 1) .

To retrieve the Weierstrass equation of a curve with such parameters using the
complex multiplication method, we need to look at −D, the discriminant (which
need not be squarefree) of the quadratic order in which the curve has complex
multiplication. Indeed, the complex multiplication method is only effective when

392 G. Bisson and T. Satoh

this order has reasonably small class number. Due to a result of Heilbronn [8],
in practice we ask for D to be a small positive integer.

Writing the Frobenius endomorphism as an element of the complex multipli-
cation order leads to the very simple condition

∃y ∈ N, 4p = t2 + Dy2

which ensures that −D is a possible discriminant. It is referred to as the com-
plex multiplication equation. Note that, instead of being added to the list, this
condition may supersede Condition 3 as it is, in fact, stronger.

Using the cofactor of r, namely the integer h such that p + 1− t = hr, we can
also write the complex multiplication equation as

Dy2 = 4p− t2 = 4hr − (t− 2)2 .

Note that if both the above equation considered modulo r and the “original”
complex multiplication equation hold, we recover the equation that states that
the curve has a subgroup of order r.

Assuming p > 5, the third condition implies that p divides t if and only if
t = 0; therefore, as p is expected to be large, we only have to check whether
t �= 0. This condition is omitted from the list below as it (mostly) always holds
in practical constructions; bear in mind that it is required, though.

Finally, we can summarize the requirements to generate a pairing-friendly
elliptic curve; we are looking for⎧⎨⎩ p, r primes

t, y integers
D, k positive integers

such that

⎧⎨⎩ r | Dy2 + (t− 2)2

r | Φk (t− 1)
t2 + Dy2 = 4p

.

In practical computations, r may not necessarily be given as a prime. However,
if r is a prime times a small cofactor, replacing it by that prime leads to the
generation of a pairing-friendly elliptic curve without affecting much the ρ-value.
Therefore, this slightly weaker condition is acceptable.

3 Algorithms

Let us fix D and k as small positive integers. The Cocks-Pinch method consists
in solving the above equations to retrieve values of p, r, t and y; it proceeds in
the following way:
1. Choose a prime r such that the finite field Fr contains

√
−D and z, some

primitive kth root of unity.
2. Put t = 1 + z and y = t−2√−D

mod r.
3. Take lifts of t and y in Z and put p = 1

4

(
t2 + Dy2

)
.

This algorithm has to be run for different parameters r and z until the output
p is a prime integer; then, the complex multiplication method can be used to
generate an elliptic curve over Fp with p + 1 − t points, a subgroup of order r
and embedding degree k.

Asymptotically, pairing-friendly elliptic curves generated by this algorithm
have ρ-value 2.

More Discriminants with the Brezing-Weng Method 393

3.1 The Brezing-Weng Method

The Brezing-Weng method starts similarly by fixing small positive integers D
and k. Then, it looks for solutions to these equations as polynomials p, r, t and
y in Q [x]. Once a solution is found, for any integer x, an elliptic curve with
parameters (p (x) , r (x) , t (x) , y (x) , D, k) can be generated provided that p (x)
and r (x) are prime and that t (x) and y (x) are integers.

To enable this, we expect polynomials p and r to have infinitely many simul-
taneous prime values. There is actually a very precise conjecture on the density
of prime values of a family of polynomials:

Conjecture 1 (Bateman and Horn [9]). Let f1, . . . , fs be s distinct (non-
constant) irreducible integer polynomials in one variable with positive leading
coefficient. The cardinality of RN , the set of positive integers x less than N such
that the fi (x)’s are all prime, has the following asymptotic behavior:

cardRN ∼ C (f1, . . . , fs)∏
i deg fi

∫ N

2

du

(log u)s when N →∞,

the constant C (f1, . . . , fs) being defined as

∏
p∈P

(
1− 1

p

)−s
(

1− 1
p

card

{
x ∈ Fp :

∏
i

fi (x) = 0

})

where P denotes the set of prime numbers.

The latter constant quantifies how much the fi’s differ from independent random
number generators, based on their behavior over finite fields; it can, of course,
be estimated using partial products.

However, if we only need a quick computational way of checking polynomials
p and r, we may use a weaker corollary, earlier conjectured by Schinzel [10] and
known as hypothesis H, which just consists in assuming that the constant C (fi)
is non-zero. Consider two polynomials, p and r; in that case, the corollary states
that, provided that

gcd {p (x) r (x) : x ∈ Z} = 1,

the polynomials p and r have infinitely many simultaneous prime values.
Actually, there is a subtle difference with the polynomials we are dealing

with here: they might have rational coefficients. However, we believe that the
assumption of the above conjecture can be slightly weakened as

gcd {p (x) r (x) : x ∈ Z such that p (x) ∈ Z and r (x) ∈ Z} = 1

so to work with families of rational polynomials. Of course, we use the convention
gcd ∅ = 0 (in case there is no x such that both p (x) and r (x) are integers).

Given small positive integers D and k, the Brezing-Weng method works as
follows:

394 G. Bisson and T. Satoh

1. Choose a polynomial r with positive leading coefficient such that Q [x] / (r)
is a field containing

√
−D and z, some primitive kth root of unity.

2. Put t = 1 + z and y = t−2√−D
(represented as polynomials modulo r).

3. Take lifts of t and y in Q [x] and put p = 1
4

(
t2 + Dy2

)
.

This algorithm has to be run for different parameters r and z until the polyno-
mials p and r satisfy the conditions of the above conjecture. Then, we might be
able to find values of x at which the instantiation of the polynomials yields a
suitable set of parameters and thus generate an elliptic curve.

To heuristically check whether p and r satisfy the above conjecture, we com-
pute the gcd of the product p (x) r (x) for those x ∈

{
1, . . . , 102

}
such that p (x)

and r (x) are both integers. If this gcd is 1, the hypothesis of the conjecture is
satisfied; otherwise, we assume it is not.

The main feature of this algorithm is that the ρ-value of the generated curves
is asymptotically equal to deg p

deg r ; therefore, a good ρ-value will be achieved if the
parameters (D, k, r, z) can be chosen so that the polynomial p is of degree close
to that of r. Because of the way p is defined, the larger the degree of r is, the
more unlikely this is to happen.

Such wise choices are rare and mainly concerned with small discriminants;
indeed, when D is a small positive integer,

√
−D is contained in a cyclotomic

extension of small degree which can therefore be taken as Q [x] / (r), thus pro-
viding a r-polynomial with small degree.

There exist a few wise choices for large D (cf. Paragraph 6.4 of [11]) but those
are restricted to a small number of polynomials (p, r, t, y) and do not provide as
many families as we would like.

3.2 Our Improvement

The key observation is that, if there exists an elliptic curve with parameters
(p, r, t, y, D, k), then for every divisor n of y there also exists an elliptic curve
with parameters

(
p, r, t, 1

ny, Dn2, k
)
. Note that this transformation preserves the

ground field and the number of points of the curve, and therefore its ρ-value.
For one-shot Cocks-Pinch-like methods, this is of little interest since we could

have set the discriminant to be −Dn2 in the first place. However, for the Brezing-
Weng method where good choices of the parameters (D, k, r, z) are not easily
found, it provides a way to generate curves with a wider range of discriminants
with the same machinery that we already have.

This improvement works as follows:

1. Generate a family (p, r, t, y, D, k) using the Brezing-Weng method.
2. Choose an integer x such that p (x) and r (x) are prime, and t (x) and y (x)

are integers.
3. Compute the factorization of y (x).
4. Choose some divisor n of y (x) and generate a curve with parameters

(
p (x) ,

r (x) , t (x) , 1
ny (x) , Dn2, k

)
using the complex multiplication method.

In Step 3, we do not actually have to compute the complete factorization of
y (x). Indeed, n cannot be too large in order for the complex multiplication

More Discriminants with the Brezing-Weng Method 395

method with discriminant −Dn2 to be practical. So, we only have to deal with
the smooth part of y (x).

However, to avoid efficiently computable isogenies between the original curve
(with n = 1, as generated by the standard Brezing-Weng method) and our curve,
n must have a sufficiently large prime factor [12]. Indeed, such an isogeny would
reduce the discrete logarithm problem from our curve to the original curve.

These constraints are best satisfied when n is a prime in some interval. Specif-
ically, let D be fixed and consider prime values for the variable n; the complexity
of computing the Hilbert class polynomial (with discriminant −Dn2) is Θ

(
n2

)
[13] and that of computing the above-mentioned isogeny is Θ

(
n3

)
[12].

Therefore, we recommend to choose a prime factor n of y (x) as large as
possible among those n such that the complex multiplication method with dis-
criminant −Dn2 is practical, that is, the Hilbert class polynomial is computable
in reasonable time. Given current computing power, n ≈ 105 seems to be a good
choice; however, to choose the size of the parameter n more carefully, we refer
to a detailed analysis of the complexity [13].

By a theorem of Siegel [14], when D is fixed, the class number of the quadratic
field with discriminant −Dn2 grows essentially linearly in n. Therefore, with n
chosen as described above, the class number is expected to be reasonably large.
This helps avoiding potential (though not yet known) attacks on curves with
principal or nearly-principal endomorphism ring.

A toy example. Let D = 8, k = 48 and r = Φk (the cyclotomic polynomial of
order k).

As x is a primitive kth root of unity in Q [x] / (r), put

t (x) = 1 + x and
√
−D = 2

(
x6 + x18) .

The Brezing-Weng method outputs polynomials

y (x) =
1
4
(
−x11 + x10 − x7 + x6 + x3 − x2) and p =

1
4
(
t2 + Dy2) ,

and the degree of p is such that this family has ρ-value 1.375.
For example, if x = 137 then

p (x) = 12542935105916320505274303565097221442462295713

which is a prime number and r (x) is a prime number as well. The next step is
to factor y (x) as

y (x) = −1 · 2 · 17 · 1372 · 229 · 9109 · 84191 · 706631

and n can possibly be any product of these factors.
Take for instance n = 17, which results in discriminant −2312 with class

number 16 (as opposed to class number one which would be provided by the
standard Brezing-Weng method, i.e. with n = 1). The Weierstrass equation

396 G. Bisson and T. Satoh

of a curve with parameters
(
p (x) , r (x) , t (x) , 1

ny (x) , Dn2, k
)

is given by the
complex multiplication method as

Y 2 = X3 + 935824186433623028047894899424144532036848777X
+ 8985839528233295688881465643014243982999429660;

this being, of course, an equation over Fp(x).

4 Constructions

We already mentioned that n should have a large prime factor. To increase
chances for y to have such factors, we seek constructions where y is a nearly-
irreducible polynomial, i.e. of degree close to that of its biggest (in terms of
degree) irreducible factor.

Many constructions based on the Brezing-Weng method can be found in Sec-
tion 6 of the survey article [11]. However, only few involve a nearly-irreducible
y (most of those y are divisible by a power of x). Here, we describe a generic
construction that is likely to provide nearly-irreducible y’s.

4.1 Generic Construction

Fix an odd prime D and a positive integer k.
The extension Q [x] / (r) has to contain primitive kth roots of unity; the sim-

plest choice is therefore to consider a cyclotomic extension.
So, let us put r = Φke for some integer e to be determined. Let ζD be a

primitive Dth root of unity; the Gauss sum (for details, see, e.g., [15, Theorem
1.2.4]) √(

−1
D

)
D =

D−1∑
i=1

(
i

D

)
ζi
D

shows that, for
√
−D to be in Q [x] / (r), the product ke may be any multiple of

εD where ε = 4 if −1 is a square modulo D, ε = 1 otherwise.
Therefore, we can use the following setting for the Brezing-Weng method:

1. Choose an odd prime D and a positive integer k.
2. Put ε = 4 if −1 is a square modulo D, ε = 1 otherwise.
3. Choose a positive integer e such that εD | ke.
4. Choose a positive integer f relatively prime to k.
5. Put r = Φke, z = xef .
6. Use the expression

√
−D = x

ke
ε

D−1∑
i=1

(
i

D

)
xi ke

D mod r

for the computation of y in the Brezing-Weng method.

More Discriminants with the Brezing-Weng Method 397

As the latter polynomial is of large degree, it can be expected to be quite
random once reduced modulo r. Therefore, it is likely to be nearly-irreducible
and so the polynomial y given by the Brezing-Weng method might also be nearly-
irreducible.

To support this expectation, we have computed δ := deg m
deg y where m is the

biggest irreducible factor of y = −1
D (z − 1)

√
−D, the polynomials for z and√

−D being given by the above algorithm. There are 4670 valid quadruplets
(D, k, e, f) ∈ {1, . . . , 20}4 (i.e. for which D is an odd prime and εD | ke); the
following table gives the number of valid quadruplets in this range leading to
values of δ with prescribed first decimal.

δ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
79 27 51 72 26 309 388 320 807 1127 1464

We see that, in this range, more than 70% of valid quadruplets lead to a y-
polynomial whose largest irreducible factor is of degree at least 0.8 deg y.

4.2 Examples

Generic Construction. Let D = 3, k = 9, e = 1 and f = 4.
The Brezing-Weng method outputs the polynomials

p (x) = 1
3

(
x8 + x7 + x6 + x5 + 4x4 + x3 + x2 + x + 1

)
y (x) = 1

3

(
x4 + 2x3 + 2x + 1

)
which represent a family of elliptic curves with ρ-value 1.333.

To generate a cryptographically useful curve from this family, we look for an
integer x such that p (x) is a prime, r (x) is nearly-prime and y (x) is an integer;
we also have to make sure that p (x)k and r (x) are of appropriate size for both
security and efficiency.

Many such x’s are easily found by successive trials; for instance, in the integer
interval

[
227; 228

]
, there are 58812 of them, which is only 6 times less than what

a pair of independent random number generators would be expected to achieve
(calculated as

∫ 228

227 log−2); for slightly more than a fifth of these, y (x) has a
prime factor in the integer interval

[
104; 106

]
, which can therefore be used as n

in our algorithm.
For example, let us put x = 134499652; we have:

p (x) = 35698341005790839038787210375794\
985673959363094188344177147207303

r (x) = 3 · 1973357221157926680445163219766947256676055062891
y (x) = 419 · 153733 · 1693488567670454571754477

If we choose n = 153733, the discriminant is −3·1537332 and has class number
51244; computations give a Weierstrass equation for the curve:

Y 2 = X3 + 18380344310754022726680092877438\
217394215740605269665898315768997X

+ 3541158719057354715243251263604\
83038157372705450329206494776897

398 G. Bisson and T. Satoh

Sporadic Families. Our improvement requires families with nearly-irreducible
y’s which is why we described a generic construction that is able to generate such
families for various parameters (D, k). However, for a few specific parameters,
there are sporadic constructions with good ρ-values that also feature nearly-
irreducible y’s, and our improvement produces curves with larger discriminants
without changing ρ-values.

To illustrate this, let us consider the Barreto-Naehrig family [16] which fea-
tures the optimal ρ-value of 1 for parameters D = 3, k = 12 and is parametrized
by the following polynomials:

p (x) = 62x4 + 62x3 + 4 · 6x2 + 6x + 1
r (x) = 62x4 + 62x3 + 3 · 6x2 + 6x + 1
y (x) = 6x2 + 4x + 1

For instance, if x = 549755862066, we have:

p (x) = 3288379836712499477504831531496220248757101197293
r (x) = 13 · 61 · 4146758936585749656374312380967431265034293149
y (x) = 151579 · 11963326366170669619

If we choose n = 151579, the discriminant is −3 · 1515792 and has class number
50526; computations give a Weierstrass equation for the curve:

Y 2 = X3 + 983842331478040932232760138380470085419271212296X
+ 2848148112127026939825061113251126889450914939726

Acknowledgements

The authors would like to thank Pierrick Gaudry for helpful discussions and
Andreas Enge for computing the explicit curve equations found in Section 4.2.
Our gratitude also goes to Tanja Lange for her comments and suggestions on a
draft version of this paper.

References

1. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: Pro-
ceedings of the Symposium on Cryptography and Information Security (2000); ref.
C20

2. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.)
ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)

3. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM
Journal of Computing 32(3), 586–615 (2003)

4. Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curve logarithms in a
finite field. IEEE Transactions on Information Theory 39(5), 1639–1646 (1993)

5. Cocks, C., Pinch, R.: Identity-based cryptosystems based on the Weil pairing (Un-
published manuscript, 2001)

More Discriminants with the Brezing-Weng Method 399

6. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography.
Design, Codes and Cryptography 37(1), 133–141 (2005)

7. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper.
Abhandlungen aus dem mathematischen Seminar der hamburgischen Univer-
sität 14, 197–272 (1941)

8. Heilbronn, H.: On the class-number in imaginary quadratic fields. Quarterly Jour-
nal of Mathematics 5, 150–160 (1934)

9. Bateman, P., Horn, R.: Primes represented by irreducible polynomials in one vari-
able. In: Proceedings of Symposia in Pure Mathematics, vol. 3, pp. 119–132. Amer-
ican Mathematical Society (1965)

10. Schinzel, A., Sierpinski, W.: Sur certaines hypothèses concernant les nombres pre-
miers. Acta Arithmetica 4, 185–208 (1958)

11. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Cryptology ePrint Archive, Report 2006/372 (2006)

12. Galbraith, S.: Constructing isogenies between elliptic curves over finite fields. The
London Mathematical Society Journal of Computation and Mathematics 2, 118–
138 (1999)

13. Enge, A.: The complexity of class polynomial computation via floating point ap-
proximations. ArXiv preprint, cs.CC/0601104 (2006)

14. Siegel, C.: Über die Classenzahl quadratischer Zahlkörper. Acta Arithmetica 1,
83–86 (1935)

15. Berndt, B., Evans, R., Williams, K.: Gauss and Jacobi sums. John Wiley & Sons,
Chichester (1998)

16. Barreto, P., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel,
B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg
(2006)

Another Approach to Pairing Computation in
Edwards Coordinates

Sorina Ionica2 and Antoine Joux1,2

1 DGA
2 Université de Versailles Saint-Quentin-en-Yvelines, 45 avenue des États-Unis,

78035 Versailles CEDEX, France
{sorina.ionica,antoine.joux}@m4x.org

Abstract. The recent introduction of Edwards curves has significantly
reduced the cost of addition on elliptic curves. This paper presents new
explicit formulae for pairing implementation in Edwards coordinates. We
prove our method gives performances similar to those of Miller’s algo-
rithm in Jacobian coordinates and is thus of cryptographic interest when
one chooses Edwards curve implementations of protocols in elliptic curve
cryptography. The method is faster than the recent proposal of Das and
Sarkar for computing pairings on supersingular curves using Edwards
coordinates.

Keywords: Tate pairing, Miller’s algorithm, Edwards coordinates.

1 Introduction

Pairings on elliptic curves are currently of great interest due to their applica-
tions in a number of cryptographic protocols such as the tripartite Diffie-Hellman
protocol [19], identity-based encryption [5], short signatures [6] and group signa-
tures [7]. In this paper we propose to reassess the computational cost of pairings
in the light of the introduction by Edwards [12] of a new representation of the
addition law on elliptic curves. Recently, a method for computing pairings in Ed-
wards coordinates for supersingular curves was proposed in [11]. The approach
proposed in the present paper is very different from [11].

Our starting point concerning Edwards curves is a generalized result of Bern-
stein and Lange [3]. They showed that an elliptic curve defined over a field K
of characteristic different from 2 is birationally equivalent over some extension
of K to an Edwards curve, i.e. a curve of the form x2 + y2 = 1 + dx2y2 with
d /∈ {0, 1}. A simple and symmetric addition law can be defined on such a curve:

(x1, y1), (x2, y2) →
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
. (1)

Bernstein and Lange showed that this addition law is, in fact, the standard
addition law on the corresponding elliptic curve and gave explicit formulae for
additions and doublings, which are faster than all previously known formulae.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 400–413, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Another Approach to Pairing Computation in Edwards Coordinates 401

The basic algorithm used in pairing computation was first described by Miller
and is an extension of the double-and-add method for finding a point multiple.
Our goal in this paper is to extend Miller’s algorithm to allow computation of
pairings on curves given in Edwards coordinates. The difficulty when trying to
express Miller’s algorithm in Edwards coordinates is that it is hard to find the
equations of rational functions that need to be evaluated at each addition step.
On a curve in Weierstrass form, these equations correspond to straight lines. For
curves in Edwards form matters are more complex.

Our main idea is to describe a map of degree 4 from the Edwards curve to a
curve Es,p : s2p = (1 + dp)2 − 4p. This curve has an equation of total degree 3
and as in the Weierstrass case, we can easily compute the equations of the two
lines that appear naturally when adding two points P1 and P2, i.e. the line l
passing through P1 and P2 and the vertical line v that passes through P1 + P2.
We then pullback l and v to the Edwards curve. The output of our algorithm is
essentially the desired pairing. More precisely, we obtain the 4-th power of the
usual pairing.

The remainder of this paper is organised as follows: Section 2 recalls basic
properties of Edwards curves and of the Edwards addition law. It also presents
Miller’s algorithm on an elliptic curve given by a Weierstrass equation. Section 3
introduces the curve Es,p and explains how to compute pairings on Edwards
curves by using this representation. Finally, in section 4 we give estimates of the
computational cost of the Tate pairing in Edwards coordinates and compare this
cost to that of a pairing implementation in Jacobian coordinates (for a Weier-
strass equation). We only treat the case of curves with even embedding degree
k, which is prefered in most of the cryptographic applications. For benchmark
purposes, we compare the efficiency of our suggestion to the use of Jacobian
coordinates, which is, to the best of our knowledge, the fastest existing method
for computing pairings. A proposal for the operation count in Jacobian coordi-
nates using recent formulas from [2] is presented in an extended version of this
paper [18]. In the case of supersingular curves, we also compare our method to
results obtained for supersingular curves in [11].

2 Preliminaries

2.1 Edwards Coordinates

Edwards showed in [12] that every elliptic curve E defined over an algebraic
number field K is birationally equivalent over some extension of K to a curve
given by the equation:

x2 + y2 = c2(1 + x2y2). (2)

In this paper, we make use of the results concerning elliptic curves over finite
fields obtained by Bernstein et al. [1]:

Theorem 1. Fix a finite field Fq with char(Fq)�=2. Let E be an elliptic curve
over Fq. E is birationally equivalent over Fq to a curve x2 + y2 = 1 + dx2y2 if
and only if the group E(Fq) has an element of order 4.

402 S. Ionica and A. Joux

In the sequel, we call the curve x2 + y2 = 1 + dx2y2 an Edwards curve. It was
shown in [3] that an Edwards curve E is birationally equivalent to the elliptic
curve Ed : (1/(1− d))v2 = u3 + 2((1 + d)/(1− d))u2 + u via the rational map:

ψ : Ed → E (3)

(u, v) →
(

2u

v
,
(u− 1)
(u + 1)

)
.

On an Edwards curve, we consider the following addition law:

(x1, y1), (x2, y2) →
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1− dx1x2y1y2

)
. (4)

In [3], it was shown that this addition law corresponds to the standard addition
law on the birationally equivalent elliptic curve and that the Edwards addition
law is complete when d is not a square. This means it is defined for all pairs
of input points on the Edwards curve with no exceptions for doublings, neutral
element, . . .

The neutral element of this addition law is O = (0, 1). For every point P =
(x, y) the opposite element is −P = (−x, y). The curve has a 4-torsion subgroup
defined over Fq. We note T2 = (0,−1) the point of order 2 and T4 = (1, 0),
−T4 = (−1, 0) the two points of order 4.

In the following sections we use projective coordinates. A projective point
(X, Y, Z) satisfying (X2 + Y 2)Z2 = Z4 + dX2Y 2 and Z �= 0 corresponds to the
affine point (X/Z, Y/Z) on the curve x2 + y2 = 1 + dx2y2. The Edwards curve
has two points at infinity (0 : 1 : 0) and (1 : 0 : 0). These points are actually
singularities of the curve and, as stated in [3], resolving them produces four
points defined over Fq(

√
d). If d is not a square in Fq then this is a quadratic

extension of Fq.
Edwards curves became interesting for elliptic curve cryptography when it was

proven by Bernstein and Lange in [3] that they provide addition and doubling
formulae faster than all addition formulae known at that time. Table 1 below
gives a cost comparison between operations of addition, doubling and mixed
addition (i.e. the Z-coordinate of one of the two points is 1) on the Edwards curve
and on the Weierstrass form in Jacobian coordinates. These results are taken
from [2]. We remind the reader that a point (X, Y, Z) in Jacobian coordinates
corresponds to the affine point (x, y) with x = X/Z2 and y = Y/Z3. We note

Table 1. Performance evaluation: Edwards versus Jacobian

Edwards coordinates Jacobian coordinates
addition 10M+1S 11M+5S

(plus S-M tradeoff)
doubling 3M+4S 1M+8S (plus 2 S-M tradeoffs)

or 3M+5S for a = −3
mixed addition 9M+1S 7M+4S

(plus S-M tradeoff)

Another Approach to Pairing Computation in Edwards Coordinates 403

by M the cost of a field multiplication and by S the cost of a field squaring. We
assume that the cost of addition and that of multiplication by d are negligible
(we choose d a small constant).

2.2 Background on Pairings

In this section we give a brief overview of the definition of the Tate pairing and
of Miller’s algorithm [21] used in pairing computations. This algorithm heavily
relies on the double and add method for finding a point multiple. Let E be an
elliptic curve given by a Weierstrass equation:

y2 = x3 + ax + b, (5)

defined over a finite field Fq. Consider r a large prime dividing #E(Fq) and k
the corresponding embedding degree, i.e. the smallest positive integer such that
r divides qk − 1.

Let P be a r-torsion point and for every integer i, denote by fi,P the function
with divisor div (fi,P) = i(P)− (iP)− (i− 1)(O) (see [22] for an introduction to
divisors). Note fr,P is such that div (fr,P) = r(P) − r(O).

In order to define the Tate pairing we take Q an element of E(Fqk)/rE(Fqk).
Let T be a point on the curve such that the support of the divisor D = (Q +
T)− (T) is disjoint from the one of fr,P . We then define the Tate pairing as:

tr(P, Q) = fr,P (D). (6)

This value is a representative of an element of F∗
qk/(F∗

qk)r. However for crypto-
graphic protocols it is essential to have a unique representative so we will raise it
to the ((qk − 1)/r)-th power, obtaining an r-root of unity. We call the resulting
value the reduced Tate pairing:

Tr(P, Q) = tr(P, Q)
qk−1

r .

As stated in [14] if the function fr,P is normalized, i.e. (ur
0fr,P)(O) = 1 for some

Fq-rational uniformizer uO at O, then one can ignore the point T and compute
the pairing as:

Tr(P, Q) = fr,P (Q)(q
k−1)/r.

In the sequel of this paper we only consider normalized functions. Before going
into the details of Miller’s algorithm, we recall the standard addition law on an
elliptic curve of Weierstrass equation. Suppose we want to compute the sum of
iP and jP for i, j ≥ 1. Let l be the line through iP and jP . Then l intersects the
cubic curve E at one further point R according to Bezout’s theorem (see [16]).
We take v the line between R and O (which is a vertical line when R is not O).
Then v intersects E at one more point which is defined to be the sum of iP and
jP , that is (i + j)P .

The lines l and v are functions on the curve and the corresponding
divisors are:

div (l) = (iP) + (jP) + (R)− 3(O),
div (v) = (R) + ((i + j)P)− 2(O).

404 S. Ionica and A. Joux

One can then easily check the following relation:

fi+j,P = fi,P fj,P
l

v
. (7)

In the sequel, we will call this relation Miller’s equation. Turning back to Miller’s
algorithm, suppose we want to compute fr,P (D). We compute at each step of the
algorithm on one side [m]P , where m is the integer with binary expansion given
by the i topmost bits of the binary expansion of r, and on the other side fm,P

evaluated at D, by exploiting the formula above. We call the set of operations
executed for each bit i of r a Miller operation.

Algorithm 1. Miller’s algorithm
INPUT: An elliptic curve E defined over a finite field Fq, P an r-torsion point on the

curve and Q ∈ E(Fqk).
OUTPUT: the Tate pairing tr(P, Q).

Let i = [log2(r)], K ← P ,f ← 1.
while i ≥ 1 do

Compute equations of l and v arising in the doubling of K.
K ← 2K and f ← f2l(Q)/v(Q).
if the i-th bit of r is 1 then

Compute equations of l and v arising in the addition of K and P .
K ← P + K and f ← fl(Q)/v(Q).

end if
Let i← i− 1.

end while

The advantage of dealing with the Weierstrass form when running the algo-
rithm is that the equations of l and v are easy to find as they already appear
in the addition process. This is obviously not the case with the Edwards curve,
whose equation has degree 4. It is difficult to describe the equation of a function
with divisor equal to div(fi+j,P /fi,P fj,P) and to establish a relation of type (7).
An idea would be to consider Miller’s equation on the birationally equivalent
Weierstrass curve and then transport this equation on the Edwards curve. How-
ever this yields an unefficient pairing computation. Our proposal is to map the
Edwards curve to another genus 1 curve with an equation of degree 3, get l and
v as straight lines and then pull them back to the Edwards curve.

3 Pairings on Edwards Curves

In this section, E denotes an Edwards curve defined over some finite field Fqk

of odd characteristic. Let us take a look at the action of the 4-torsion subgroup
defined over Fqk on a fixed point on the Edwards curve P = (x, y), with xy �= 0.
A simple computation shows that P + T4 = (y,−x), P + T2 = (−x,−y) and
P − T4 = (−y, x). We notice then that by letting p = (xy)2 and s = x/y − y/x
we characterize the point P up to an addition with a 4-torsion point. This leads

Another Approach to Pairing Computation in Edwards Coordinates 405

us to consider the following morphism from the Edwards curve to a curve Es,p

given by a s2p = (1 + dp)2 − 4p equation:

φ : E → Es,p

(x, y) → ((xy)2,
x

y
− y

x
).

In this section we study the arithmetic of the curve Es,p, establish Miller’s equa-
tion on this curve and then take its pullback, getting Miller’s equation, this
time on the Edwards curve. This yields all the tools needed to apply Miller’s
algorithm on the Edwards curve.

3.1 Arithmetic of the Curve s2p = (1 + dp)2 − 4p

In this section we study the arithmetic of the curve:

Es,p : s2p = (1 + dp)2 − 4p.

The equation of Es,p in homogeneous coordinates (P, S, Z) is given by S2P =
(Z + dP)2Z − 4PZ2. If we dehomogenize this equation by putting P = 1 we get
the Weierstrass equation of an elliptic curve:

s2 = z3 + (2d− 4)z2 + d2z. (8)

We note Os,p = (0, 1, 0) the point at infinity and T2,s,p = (1, 0, 0) which is a
two torsion point. The following definition is simply another way to write the
addition law on an elliptic curve in (p, s) coordinates.

Definition 1. Let P1, P2 ∈ Es,p, L the line connecting P1 and P2 (tangent line
to Es,p if P1 = P2), and R the third point of intersection of L with E. Let L

′
be

the vertical line through R (of equation p = pR). Then P1 + P2 is the point such
that L

′
intersects Es,p at R and P1 + P2 (the point symmetric to R with respect

to the p-axis).

We now show that this addition law corresponds to the addition law induced by
the Edwards addition law via the map φ.

Theorem 2. Let P1 = (x1, y1) and P2 = (x2, y2) be two points on the Edwards
curve and P3 their sum. Then φ(P3) is the sum of φ(P1) and φ(P2) in the
addition law of Definition 1.

Proof. Consider ψ : Ed → E the map defined in equation (3). By using propo-
sition 2.1 in [22] one can easily see that φ ◦ ψ is a morphism from Ed to the
elliptic curve Es,p. As φ ◦ ψ(OEd

) = Os,p (where OEd
is the point at infinity

of Ed), we deduce that φ ◦ ψ is an isogeny. Moreover it was shown in Theorem
3.2 of [3] that the Edwards addition law on E is the same as the addition law
induced by ψ. It follows that the addition law induced by φ is the same as the
standard addition law on the elliptic curve, so it corresponds to the addition law
described at Definition 1.
�

As in the sequel we need to compute the pullback of certain functions on the
curve Es,p we now compute the degree of this map.

406 S. Ionica and A. Joux

Proposition 1. The map φ : E → Es,p is separable of degree 4.

Proof. Let P = (x, y) be a point on the Edwards curve. The doubling formula
gives:

2P =
(

2xy

1 + d(xy)2
,

y2 − x2

1− d(xy)2

)
=

(
2xy

x2 + y2 ,
y2 − x2

2− (x2 + y2)

)
.

If xy �= 0 then by letting p = (xy)2 and s = x/y − y/x we can write:

4P =
(

4ps(1− d2p2)
(1− d2p2)2 − 4dp2s2 ,

4p(1 + dp)2 − ps2

(1 − d2p2)2 + 4dp2s2

)
.

This means that by defining:

ψ : Es,p → E

(p, s) →
(

4ps(1− d2p2)
(1− d2p2)2 − 4dp2s2 ,

4p(1 + dp)2 − ps2

(1− d2p2)2 + 4dp2s2

)
,

we get a rational map ψ such that φ ◦ψ = [4] on E. It follows that degφ divides
16. As the inseparable degree degi φ is a power of the characteristic of Fq, we
deduce that φ is a separable map (we have supposed that char(Fq) �= 2). By
putting φ(P) = Q we easily get φ−1(Q) = {P, P + T2, P + T4, P − T4}. We
conclude that degφ = 4.
�

3.2 Miller’s Algorithm on the Edwards Curve

Let P be a r-torsion point on the Edwards curve. We consider slightly modified
functions f

(4)
i,P :

f
(4)
i,P = i((P) + (P + T4) + (P + T2) + (P − T4))− ((iP) + (iP + T4)

+(iP + T2) + (iP − T4))− (i− 1)((O) + (T4) + (T2) + (−T4)).

Then f
(4)
r,P = r((P)+(P +T4)+(P +T2)+(P−T4))−r((O)+(T4)+(T2)+(−T4)),

which means that we can compute the Tate pairing up to a 4-th power:

Tr(P, Q)4 = f
(4)
r,P (Q)

qk−1
r .

We also get the following Miller equation:

f
(4)
i+j,P = f

(4)
i,P f

(4)
j,P

l

v
, (9)

where l/v is the function of divisor:

div (l/v) = ((iP) + (iP + T4) + (iP + T2) + (iP − T4))
+((jP) + (jP + T4) + (jP + T2) + (jP − T4))
−(((i + j)P) + ((i + j)P + T4) + ((i + j)P + T2) + ((i + j)P − T4)))
−((O) + (T4) + (T2) + (−T4)).

Another Approach to Pairing Computation in Edwards Coordinates 407

Let P
′

= φ(P) and let ls,p and vs,p be functions on the Es,p curve such that
div (ls,p) = (iP

′
) + (jP

′
) + (−(i + j)P

′
) − 2(T2,s,p) − (Os,p) and div (vs,p) =

((i + j)P
′
) + (−(i + j)P

′
)− 2(T2,s,p).

We observe that we have l/v = φ∗(ls,p/vs,p) up to constants in Fq. It is easy
to find the equations of ls,p and vs,p as they appear naturally in the definition of
the sum iP

′
+ jP

′
, namely ls,p is the line connecting iP

′
and jP

′
, and vs,p is the

vertical line through (i+j)P
′
. As we will see in the next section, we can compute

their pullback via the map φ without any significant computational cost.

4 Pairing Computation in Edwards Coordinates

In this section, we take a look into the details of the computation of pairings
in Edwards coordinates and give estimates of the computational costs of the
Miller operation. We start by estimating the cost of evaluating the function
f

(4)
r,P (Q) in terms of the cost of the doubling part of a Miller operation, which

is executed for every bit of r. This seems reasonable, as it gives an evaluation
which is independent from any fast exponentiation techniques that might be
used in the implementation of the algorithm, such as the sliding window method
or the use of a signed Hamming weight representation for r. We recall that a
signed representation (mn−1...m0)s is said to be in non-adjacent form, or NAF
for short, if mimi+1 = 0, with mi ∈ {−1, 0, 1}. The advantage of using such
a representation is that on average the number of non-zero terms in a NAF
expansion of length n is n/3 (see [8] for a precise analysis of the NAF density).

Moreover, in many cryptographic applications it is possible to choose r with
low Hamming weight. The construction of Cocks and Pinch as described in [4,
p. 210] allows for r to be chosen arbitrarily, so a prime of low Hamming weight
can be chosen. Further examples are provided by a construction of Brezing and
Weng [9] for prime embeddings degrees k, extended in [13] for all odd k < 200.
Note that if the loop length parameter r does not have low Hamming weight, it
is sufficient to have some multiple of r whose Hamming weight is small (usually
the elliptic curve group order �E(Fq)).

Example 1. The following example is given in [11]. Consider E : y2 = x3 + x
over Fq, with q ≡ 3 mod 4. This curve is supersingular and its corresponding
Edwards form is x2 + y2 = 1 − (xy)2, so d = −1. One may choose for instance
q = 2520 + 2363 − 2360− 1, r = 2160 + 23 − 1 or q = 21582 + 21551 − 21326 − 1, r =
2256 + 2225 − 1.

During the past few years, research in pairing-based cryptography focussed on
the reduction of the loop length in Miller’s algorithm. It was proven that for
curves with a small Frobenius trace t, the parameter r giving the length of
the loop can be replaced by t. The interested reader should refer to [17] for a
discussion on the choice of the loop length parameter.

Therefore, in order to give a complete evaluation of the complexity, we also
count the number of operations in the mixed addition step of the Miller oper-
ation and compare it to the mixed addition step in Jacobian coordinates. The

408 S. Ionica and A. Joux

reader may refer to [10] for global estimates of pairing computation in Jacobian
coordinates for some families of curves with k = 2 (in particular those in Ex-
ample 1). While estimates for the doubling part for the Weiestrass form can be
found in [20] and in [15], we were not able to find in the literature estimates
of the cost of the mixed addition step for Jacobian coordinates in a general
context. We propose in [18] a detailed computation of a full Miller operation
(doubling and mixed addition), which makes use of recent formulas for Jacobian
coordinates [2].

The remaining of this paper presents efficient computation of the Tate pairing
in Edwards coordinates for curves with even embedding degree. These curves are
preferred in cryptographic applications because a major part of the computations
is performed in a proper subfield of Fqk . However, the results obtained in section
3 are independent of the embedding degree, so similar computations are to be
done in a general case.

4.1 The Case of an Even Embedding Degree

Koblitz and Menezes showed in [20] that if q and k are chosen such as p ≡ 1
(mod 12) and k = 2i3j , then the arithmetic of the extension field Fqk can be
implemented very efficiently as this field can be built up as a tower of extension
fields:

Fq ⊂ Fqd1 ⊂ Fqd2 ... ⊂ Fqk ,

where the ith field Fqdi is obtained by adjoining a root of some irreducible
polynomial Xdi/di−1 − βi and di/di−1 ∈ {2, 3}.

We note by m,M (respectively s,S) the costs of multiplications (respectively
squarings) in the field Fq and in the extension Fqk . Then according to [20] we
get

M ≈ v(k)m and S ≈ v(k)s,

where v(k) = 3i5j . Moreover, a multiplication of an element in Fqk by an element
in Fq costs km operations.

In most cryptographic protocols there is some flexibility in the choice of the
order r subgroups generated by P and Q. P can be chosen such that < P > is
the unique subgroup of order r in E(Fq). Moreover, if the embedding degree is
even, it was shown that the subgroup < Q >⊂ E(Fqk) can be taken so that the
x-coordinates of all its points lie in Fqk/2 and the y-coordinates are products of
elements of Fqk/2 with

√
β, where β is a nonsquare in Fqk/2 and

√
β is a fixed

squareroot in Fqk (see [20] for details). The same kind of considerations apply
to Edwards curves. To do this we need to take a look at the birational map
that transforms a curve given by a Weierstrass equation into a curve given by
an Edwards equation. As stated in Section 2.1 the curve x2 + y2 = 1 + dx2y2 is
birationally equivalent to the curve Ed, via the rational map ψ : Ed → E. By
looking at the shape of this map, it follows that in the case of an even embedding
degree, the coordinates of elements of < P > can be chosen in Fq. The subgroup
< Q >∈ Fqk can be chosen such that its elements have y-coordinates in the

Another Approach to Pairing Computation in Edwards Coordinates 409

quadratic subextension Fqk/2 and x-coordinates that can be written as products
of elements of Fqk/2 with some squareroot of a nonsquare element β of Fqk/2 .

We now take a look into the details of the computation of a Miller iteration. We
note K = (X1, Y1, Z1). Following [3] the doubling formulas for 2K = (X3, Y3, Z3)
are:

X3 = 2X1Y1(2Z2
1 − (X2

1 + Y 2
1)),

Y3 = (X2
1 + Y 2

1)(Y 2
1 −X2

1),
Z3 = (X2

1 + Y 2
1)(2Z2

1 − (X2
1 + Y 2

1)).

On the curve Es,p we consider ls,p the tangent line to the curve at φ(K) = (p1, s1)
and vs,p the vertical line passing through φ(2K) = (p3, s3). These lines have the
following equations:

ls,p(s, p) = 2p2
1s1(s− s1)− p1(2d(1 + dp1)− (s2

1 + 4))(p− p1),
vs,p(s, p) = p− p3.

Consequently we get the following evaluations of l and v at point Q = (x, y) on
the Edwards curve:

l(x, y) = l1(x, y)/l2 = ((X2
1 + Y 2

1 − Z2
1)(X2

1 − Y 2
1)((2X1Y1(x/y − y/x)

−2(X2
1 − Y 2

1))− Z3(dZ2
1 (xy)2 − (X2

1 + Y 2
1 − Z2

1)))/
(2X1Y1(X2

1 + Y 2
1 − Z2

1)(X2
1 − Y 2

1)),
v(x, y) = v1(x, y)/v2 = (dZ2

3 (xy)2 − (X2
3 + Y 2

3 − Z2
3))/(X2

3 + Y 2
3 − Z2

3).

We now show that the computational cost of the doubling part in Miller’s al-
gorithm is significantly lower because we can ignore terms that lie in a proper
subfield of Fqk . These terms can be ignored because k is the multiplicative order

of q modulo r, so (qk − 1)/r is a multiple of qk
′
− 1 for some proper divisor k

′
of

k. So we ignore l2 and v2 because they depend only of the coordinates of P , so
they lie in Fq. Since (xy)2 ∈ Fqk/2 and hence v1(Q) ∈ Fqk/2 , it follows that we
can also ignore v1(Q). Hence the function evaluation step in the doubling part
of Miller’s algorithm becomes:

f1 ← f2
1 l1(Q). (10)

Note that multiplications by (xy)2 and x/y − y/x cost k/2m (x/y − y/x is the
product of some element in Fqk/2 with

√
β). Also note that computing x/y−y/x

costs one inversion in Fqk/2 . In some protocols Q is a fixed point, so we can
precompute x/y − y/x.

If k = 2, we actually have (xy)2 ∈ Fq, so we compute:

l1(x, y) = ((X2
1 + Y 2

1 − Z2
1)(X2

1 − Y 2
1)) · 2XY (x/y − y/x)− ((X2

1 + Y 2
1 − Z2

1)
·(X2

1 − Y 2
1)) · 2(X2

1 − Y 2
1)− Z3 · (dZ2

1 · (xy)2 − (X2
1 + Y 2

1 − Z2
1)),

410 S. Ionica and A. Joux

Table 2. Operations of the doubling part of the Miller operation for k > 2

A← X2
1 , B ← Y 2

1 , C ← (X1 + Y1)2, D ← A + B, (3s)
E ← C −D, F ← B − A, G← Z2

1 , H ← 2G−D, (1s)
X3 ← E ·H, Y3 ← D · F, Z3 ← D ·H, I ← G · F, J ← (I − Y3) · C (5m)

K ← J · (x/y − y/x), L← (I − Y3) · 2F, M ← Z3 · dG ((2 + k
2
)m)

N ←M · (xy)2, P ← Z3 · (A + B −G), l1 ← K + L−N + P ((1m + k
2
)m)

f1 ← f2
1 l1 (1M+1S)

Table 3. Comparison of costs for the doubling step of the Miller operation in the case
of k even

k = 2 k ≥ 4
Jacobian coordinates 10s + 3m + S + M 11s + (k + 1)m + S + M

Jacobian coordinates for a = −3 4s + 8m + S + M 4s + (k + 7)m + S + M

Das/Sarkar Edwards coordinates 6s + 9m + S + M -
(supersingular curves)
Edwards coordinates 4s + 9m + S + M 4s + (k + 8)m + S + M

For k > 2 some operations are done in Fqk and others in Fq, so we compute l1
as it follows:

l1(x, y) = ((X2
1 + Y 2

1 − Z2
1)(X2

1 − Y 2
1)) · 2X1Y1(x/y − y/x)− ((X2

1 + Y 2
1 − Z2

1)
·(X2

1 − Y 2
1)) · 2(X2

1 − Y 2
1)− Z3 · dZ2

1 · (xy)2 + Z3 · (X2
1 + Y 2

1 − Z2
1),

As an example, we detail the computation of the doubling step for k > 2 in
Table 2. Results are summarized in Table 3. The computations in the general
case for Jacobian coordinates are detailed in [18], while the ’a = −3’ case is taken
directly from [20], although some further s−m tradeoffs might be possible.

Next, we take a look at the mixed addition step in a Miller iteration. We
first count the number of operations that must be executed when adding K =
(X1, Y1, Z1) and P = (X0, Y0, 1). The result is K + P = (X3, Y3, Z3) with:

X3 = Z1(X0Y1 + Y0X1)(Z2
1 + dX0X1Y0Y1),

Y3 = Z1(Y0Y1 −X0X1)(Z2
1 − dX0X1Y0Y1),

Z3 = (Z2
1 + dX0X1Y0Y1)(Z2

1 − dX0X1Y0Y1).

On the Es,p, we consider ls,p the straight line passing through φ(K) = (p1, s1)
and φ(P) = (p0, s0) and vs,p the vertical line passing through the point φ(K) +
φ(P) = (p3, s3). We get:

ls,p(s, p) = (p0 − p1)(s− s1)− (s0 − s1)(p− p1);
vs,p(s, p) = p− p3.

Another Approach to Pairing Computation in Edwards Coordinates 411

Table 4. Operations of the mixed addition step of a Miller operation for k > 2

A← X2
1 , B ← Y 2

1 , C ← (X1 + Y1)2 − A−B, D ← C · (dX0Y0) (1m+3s)
E ← 2(X1 + X0) · (Y0 + Y1)− C − 2X0Y0, (1m)

F ← 2(X1 + Y0) · (Y1 −X0)− C + 2X0Y0, G← Z2
1 (1m+1s)

X3 ← Z1 · E · (2G + D), Y3 ← Z1 · F · (2G−D), Z3 ← (2G−D) · (2G + D) (5m)
H ← dG · (X0Y0)2, I ← (A + B −G−H) · C, (2m)

J ← I · (x/y − y/x),K ← 2(A + B −G−H) · (A−B) ((1 + k
2
)m)

L← C · (X0/Y0 − Y0/X0), M ← dG · (2A− 2B − L), N ←M · (xy)2 ((2 + k
2
)m)

P ← (2A− 2B − L) · (A + B −G), l1 ← J −K −N + P (1m)
f1 ← f1 · l1 (1M)

Consequently, we have the following equations for pullbacks:

l(x, y) = l1(x, y)/l2 = (X2
1 + Y 2

1 − Z2
1 − dZ2

1 (X0Y0)2))(X1Y1(
x

y
− y

x
)−

(X2
1 − Y 2

1))−
(

X2
1 − Y 2

1 −X1Y1(
X0

Y0
− Y0

X0
)
)

·(dZ2
1 (xy)2 − (X2

1 + Y 2
1 − Z2

1))
/(X1Y1(X2

1 + Y 2
1 − Z2

1 − dZ2
1 (X0Y0)2));

v(x, y) = v1(x, y)/v2 = (dZ2
3 (xy)2 − (X2

3 + Y 2
3 − Z2

3))/(X2
3 + Y 2

3 − Z2
3).

For the same reasons as above, the mixed addition step in the case of even k
becomes:

f1 ← f1l1(Q). (11)

Detailed computations of the mixed addition step for k > 2 are presented in
Table 4. We suppose having computed expressions like X0Y0, (X0Y0)2, X0/Y0−
Y0/X0 once and for all in the very beginning. As computing X0/Y0 − Y0/X0
costs one inversion in Fq, in some cases it will be less expensive to work with
l
′
1 = (X0Y0)l1 instead of l1.

Results and performance comparison are presented in Table 5.
By looking at tables 3 and 5 one can see that in the case of an even em-

bedding degree the cost of an implementation of Miller’s algorithm in Edwards
coordinates will be comparable to the cost of an implementation in Jacobian
coordinates. We find it important to state that, no matter the representation

Table 5. Comparison of costs for the mixed addition step of the Miller operation in
the case of k even

k = 2 k ≥ 4
Jacobian coordinates 3s + 14m + M 3s + (k + 13)m + 1M

Das/Sarkar Edwards coordinates 1s + 18m + M -
(supersingular curves)
Edwards coordinates 4s + 15m + M 4s + (k + 14)m + 1M

412 S. Ionica and A. Joux

one might choose to implement Miller’s algorithm in high embedding degrees, it
would be impossible to avoid the costly computation of 1M+1S in equation (10)
or the 1M in equation (11), as these are the updates in the Miller loop.

5 Conclusion

In this paper, we have given a new algorithm to compute pairings on Edwards
curves and compared its performance to that of an implementation of Miller’s
algorithm in Jacobian coordinates and to the method for Edwards coordinates
from [11]. We showed that this algorithm is competitive and that the presented
approach is faster than previously known methods for computing pairings on
Edwards curves.

References

1. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008)

2. Bernstein, D.J., Lange, T.: Explicit-formulas database (2007),
http://hyperelliptic.org/EFD/

3. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

4. Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography.
London Mathematical Society Lecture Note Series, vol. 317. Cambridge University
Press, Cambridge (2005)

5. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

6. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

7. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Atluri,
V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004: 11th Conference on Com-
puter and Communications Security, pp. 168–177. ACM Press, New York (2004)

8. Bosma, W.: Signed bits and fast exponentiation. J. de théorie des nombres de
Bordeaux 13(1), 27–41 (2001)

9. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography. Des.
Codes Cryptography 37(1), 133–141 (2005)

10. Chatterjee, S., Sarkar, P., Barua, R.: Efficient computation of Tate pairing in pro-
jective coordinate over general characteristic fields (2004)

11. Das, M.P.L., Sarkar, P.: Pairing computation on twisted Edwards form elliptic
curves. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209.
Springer, Heidelberg (2008)

12. Edwards, H.M.: A normal form for elliptic curves. Bull. AMS 44, 393–422 (2007)
13. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.

Cryptology ePrint Archive, Report 2006/372 (2006), http://eprint.iacr.org/

http://hyperelliptic.org/EFD/
http://eprint.iacr.org/

Another Approach to Pairing Computation in Edwards Coordinates 413

14. Granger, R., Hess, F., Oyono, R., Thériault, N., Vercauteren, F.: Ate pairing on
hyperelliptic curves (2007)

15. Granger, R., Page, D., Smart, N.P.: High security pairing-based cryptography re-
visited. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp.
480–494. Springer, Heidelberg (2006)

16. Hartshorne, R.: Algebraic Geometry. Graduate texts in Mathematics, vol. 52.
Springer, Heidelberg (1977)

17. Hess, F., Smart, N.P., Vercauteren, F.: The Eta Pairing Revisited. IEEE Transac-
tions on Information Theory 52, 4595–4602 (2006)

18. Ionica, S., Joux, A.: Another approach on pairing computation in Edwards coor-
dinates. Cryptology ePrint Archive, Report 2008/292 (2008),
http://eprint.iacr.org/

19. Joux, A.: A one round protocol for tripartite Diffie-Hellman. Journal of Cryptol-
ogy 17(4), 263–276 (2004)

20. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:
Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005)

21. Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptol-
ogy 17(4), 235–261 (2004)

22. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate texts in Mathematics,
vol. 106. Springer, Heidelberg (1986)

http://eprint.iacr.org/

A Verifiable Secret Sharing Scheme Based on
the Chinese Remainder Theorem

Kamer Kaya� and Ali Aydın Selçuk

Department of Computer Engineering
Bilkent University

Ankara, 06800, Turkey
{kamer,selcuk}@cs.bilkent.edu.tr

Abstract. In this paper, we investigate how to achieve verifiable
secret sharing (VSS) schemes by using the Chinese Remainder Theo-
rem (CRT). We first show that two schemes proposed earlier are not
secure by an attack where the dealer is able to distribute inconsistent
shares to the users. Then we propose a new VSS scheme based on the
CRT and prove its security. Using the proposed VSS scheme, we develop
a joint random secret sharing (JRSS) protocol, which, to the best of our
knowledge, is the first JRSS protocol based on the CRT.

Keywords: Verifiability, joint random secret sharing, Chinese Remain-
der Theorem, Asmuth-Bloom secret sharing scheme.

1 Introduction

Threshold cryptography deals with the problem of sharing a highly sensi-
tive secret among a group of users so that only when a sufficient number of
them come together can the secret be reconstructed. Well-known secret sharing
schemes (SSS) in the literature include Shamir [18] based on polynomial interpo-
lation, Blakley [2] based on hyperplane geometry, and Asmuth-Bloom [1] based
on the Chinese Remainder Theorem (CRT).

A t-out-of-n secret sharing scheme contains two phases: In the dealer phase,
the dealer shares a secret among n users. In the combiner phase, a coalition of
size greater than or equal to t constructs the secret. We call a SSS verifiable
if each user can verify the correctness of his share in the dealer phase and no
user can lie about his share in the combiner phase. Hence, neither the dealer nor
the users can cheat in a VSS scheme. Verifiable secret sharing schemes based on
Shamir’s SSS have been proposed in the literature [6,15]. These schemes have
been extensively studied and used in threshold cryptography and secure multi-
party computation [9,14,15].

� Supported by the Turkish Scientific and Technological Research Agency (TÜBİTAK)
Ph.D. scholarship.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 414–425, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Verifiable Secret Sharing Scheme 415

There have been just two CRT-based VSS schemes by Iftene [10] and Qiong
et al. [16]. In this paper, we show that these schemes are vulnerable to attacks
where a corrupted dealer can distribute inconsistent shares without detection
such that different coalitions will obtain different values for the secret. To the
best of our knowledge, these are the only VSS schemes that have been proposed
so far based on the CRT.

A typical application of a VSS scheme is the joint random secret shar-
ing (JRSS) primitive frequently used in threshold cryptography [9,11,14,15]. In a
JRSS scheme, all players act as a dealer and jointly generate and share a random
secret. So far, there have been no JRSS protocols proposed based on the CRT.

In this paper, we first show why existing attempts for a CRT-based verifiable
secret sharing scheme fail by attacks on the existing schemes. We then propose a
VSS scheme based on the Asmuth-Bloom secret sharing [1] and using this VSS
scheme, we propose a JRSS scheme. To the best of our knowledge the VSS and
JRSS schemes we propose are the first secure CRT-based schemes of their kind
in the literature.

The rest of the paper is organized as follows: In Section 2, we describe the
Asmuth-Bloom SSS in detail and introduce the notation we followed in the paper.
The VSS schemes proposed in [10,16] are described Section 3 and their flaws are
analyzed. After presenting our VSS scheme in Section 4, we propose the joint
random scheme in Section 5. Section 6 concludes the paper.

2 Asmuth-Bloom Secret Sharing Scheme

The Asmuth-Bloom SSS [1] shares a secret d among n parties by modular arith-
metic such that any t users can reconstruct the secret by the CRT. The scheme
presented in Figure 1 is a slightly modified version by Kaya and Selcuk [12] in
order to obtain better security properties.

According to the Chinese Remainder Theorem, y can be determined uniquely
in ZMS since y < M ≤ MS for any coalition S of size t.

Kaya and Selcuk [12] showed that the Asmuth-Bloom version presented here
is perfect in the sense that no coalition of size smaller than t can obtain any
information about the secret.

Quisquater et al. [17] showed that when mis are chosen as consecutive primes,
the scheme has better security properties. In this paper, we will also assume that
all mis are prime and we will choose them such that pi = 2mi +1 is also a prime
for 1 ≤ i ≤ n. The notation used in the paper is summarized in Table 1.

For the protocols in this paper, we assume that private channels exist between
the dealer and users. The share of each user is sent via these private channels;
hence no one except the user himself knows the share. Besides, we assume that
a broadcast channel exists and if some data is broadcast each user will read the
same value. Hence an adversary cannot send two different values to two different
users for a broadcast data.

416 K. Kaya and A.A. Selçuk

– Dealer Phase: To share a secret d among a group of n users, the dealer does
the following:
• A set of relatively prime integers m0 < m1 < . . . < mn are chosen where

m0 is a prime and
t∏

i=1

mi > m0
2

t−1∏
i=1

mn−i+1. (1)

• Let M denote
∏t

i=1 mi. The dealer computes y = d + Am0 where A

is a positive integer generated randomly subject to the condition that
0 ≤ y < M .

• The share of the ith user, 1 ≤ i ≤ n, is yi = y mod mi.

– Combiner Phase: Let S be a coalition of t users gathered to construct the
secret. Let MS denote

∏
i∈S mi.

• Let MS\{i} denote
∏

j∈S,j �=i mj and M ′
S,i be the multiplicative inverse

of MS\{i} in Zmi , i.e., MS\{i}M
′
S,i ≡ 1 (mod mi). First, the ith user

computes
ui = yiM

′
S,iMS\{i} mod MS .

• The users first compute

y =

(∑
i∈S

ui

)
mod MS

and then obtain the secret d by computing

d = y mod m0.

Fig. 1. Asmuth-Bloom secret sharing scheme

Table 1. Notations

Notation Explanation
n The number of users.
t The threshold, the minimum number of users required to

construct the secret.
d The secret to be shared.
m0 A prime; specifies the domain of d ∈ Zm0 .
mi : 1 ≤ i ≤ n The prime modulus for user i.
pi : 1 ≤ i ≤ n A safe prime, 2mi + 1.
P

∏n
i=1 pi.

y d + Am0, where A is a random number.
M The domain of y ∈ ZM .
yi : 1 ≤ i ≤ n y mod mi, the share of user i.
E(y) The commitment value of an integer y.
S A coalition of users.
MS The modulus of coalition S,

∏
i∈S mi.

A Verifiable Secret Sharing Scheme 417

3 Analysis of the Existing CRT-Based VSS Schemes

There have been two different approaches to achieve VSS by a CRT-based secret
sharing scheme. The first one, proposed by Iftene [10], obtains a VSS scheme
from Mignotte’s SSS [13] which is another CRT-based SSS similar to Asmuth-
Bloom. Here, we adapt Iftene’s approach to the Asmuth-Bloom SSS. The scheme
is given in Figure 2.

If the dealer is honest and the discrete logarithm problem is hard, the scheme
in Figure 2 is secure against a dishonest user because the verification data,
gi

y mod pi, can be used to detect an invalid share from a corrupted user in the
first step of the combiner phase.

However, if the dealer is dishonest, he can mount an attack despite the ad-
ditional verification data above: Let y be an integer and yi = y mod mi for
1 ≤ i ≤ n. In the combiner phase of Asmuth-Bloom SSS, the minimum number
of users required to obtain the secret is t; hence, y = d + Am0 must be smaller
than M =

∏t
i=1 mi. Note that, to reconstruct the secret d, each coalition S must

first compute y mod MS where MS ≥ M . If the dealer distributes the shares for
some y > M , then y will be greater than MS for some coalition S of size t.
Hence, S may not compute the correct y value and the correct secret d even
though yi = y mod mi for all i. Therefore, the given VSS scheme cannot detect
this kind of inconsistent shares from the dealer where different coalitions end up
with different d values. The same problem also arises in Iftene’s original VSS
scheme [10].

– Dealer Phase: To share a secret d ∈ Zm0 among a group of n users with
verifiable shares, the dealer does the following:
1. Use the dealing procedure of the Asmuth-Bloom SSS to obtain the shares

yi = y mod mi for each 1 ≤ i ≤ n where y = d + Am0 < M . Choose mis
such that each pi = 2mi + 1 is also a prime.

2. Let gi ∈ Z∗
pi

be an element of order mi. The dealer sends yi to the ith
user privately and makes the values pi, gi and zi = g

y
i mod pi public for

1 ≤ i ≤ n. The ith user can find whether his share is valid or not by
checking

zi
?≡ gi

yi mod pi. (2)

– Combiner Phase: Let S be a coalition gathered to construct the secret.
1. The share yi of user i ∈ S can be verified by the other users in S by the

verification equation zi
?≡ gi

yi mod pi.
2. If all shares are valid then the coalition S can obtain the secret d: First,

the ith user computes

ui = yiM
′
S,iMS\{i} mod MS .

3. Then the users compute y =
(∑

i∈S ui

)
mod MS and obtain the secret d

by computing d = y mod m0.

Fig. 2. Iftene’s CRT-based VSS extension

418 K. Kaya and A.A. Selçuk

– Dealer Phase: To share a secret d ∈ Zm0 among a group of n users with
verifiable shares, the dealer does the following:
1. Use the dealing procedure of the Asmuth-Bloom SSS to obtain the shares

yi = y mod mi for all 1 ≤ i ≤ n where y = d + Am0 < M .
2. Let p, q be primes such that q|(p − 1). Construct the unique polynomial

f(x) ∈ Zq[x] where deg(f(x)) = n−1 and f(mi) = yi. Construct a random
polynomial f ′(x) ∈ Zq[x] where deg(f ′(x)) = n− 1. Let zi = f ′(mi) for all
1 ≤ i ≤ n.

3. Let g ∈ Zp with order q, h be a random integer in the group generated by
g and E(a, b) = gahb mod p for inputs a, b ∈ Z∗

q . Compute

Ei = E(fi, f
′
i) = g

fih
f ′

i mod p,

where fi and f ′
i are the (i−1)th coefficients of f(x) and f ′(x), respectively,

for all 1 ≤ i ≤ n. Broadcast Eis to all users.
4. Send (yi, zi) secretly to the ith user for all 1 ≤ i ≤ n.
5. To verify the validity of his share, each user checks

E(yi, zi)
?≡

n∏
j=1

Ej
mi

j−1 ≡
n∏

j=1

g
fjmi

j−1
n∏

j=1

h
f ′

jmi
j−1 ≡ g

yih
zi mod p. (3)

– Combiner Phase: Let S be a coalition gathered to construct the secret.
1. The share (yi, zi) of user i ∈ S can be verified by the other users in S with

the verification equality E(yi, zi)
?≡ ∏n

j=1 Ej
mi

j−1
mod p.

2. If all shares are valid; the coalition S can obtain the secret d by using the
reconstruction procedure described in Section 2.

Fig. 3. Qiong et al.’s CRT-based VSS extension

Another VSS scheme based on Asmuth-Bloom secret sharing was proposed
by Qiong et al. [16]. Their approach is similar to the VSS of Pedersen [15] based
on Shamir’s SSS. Their scheme is given in Figure 3.

As the scheme shows, Qiong et al. treated the shares of Asmuth-Bloom SSS
as points on a degree-(n− 1) polynomial and adopted the approach of Pedersen
by evaluating the polynomial in the exponent to verify the shares. If the dealer
is honest, the scheme in Figure 3 is secure because the verification data can be
used to detect an invalid share from a corrupted user in the first step of the
combiner phase.

However, similar to the attack on Iftene’s VSS scheme, if the dealer uses some
y > M and computes the verification data by using the shares yi = y mod mi,
1 ≤ i ≤ n, the verification equation (3) holds for each user. But, for a coalition
S where y > MS, the coalition S cannot compute the correct y value and the
secret d.

Note that Iftene’s VSS scheme uses a separate verification data for each user;
hence even if all the verification equations hold, the secret can still be inconsistent
for different coalitions. Quiong et al.’s VSS scheme generates a polynomial f(x)
from the shares as in Feldman’s and Pedersen’s VSS schemes. This polynomial

A Verifiable Secret Sharing Scheme 419

is used to check all verification equations. But Asmuth-Bloom SSS depends on
the CRT and unlike Shamir’s SSS, here f is not inherently related to the shares.
Hence, even if all the equations hold, the shares can still be inconsistent as we
have shown.

4 Verifiable Secret Sharing with Asmuth-Bloom SSS

As discussed in Section 3, existing CRT-based VSS schemes in the literature
cannot prevent a dealer from cheating. To solve this problem, we will use a range
proof technique originally proposed by Boudot [4] and modified by Cao et al. [5].

4.1 Range Proof Techniques

Boudot [4] proposed an efficient and non-interactive technique to prove that a
committed number lies within an interval. He used the Fujisaki-Okamoto com-
mitment scheme [8], where the commitment of a number y with bases (g, h) is
computed as

E = E(y, r) = gyhr mod N

where g is an element in Z∗
N , h is an element of the group generated by g, and r

is a random integer. As proved in [4,8], this commitment scheme is statistically
secure assuming the factorization of N is not known.

After Boudot, Cao et al. [5] applied the same proof technique with a different
commitment scheme

E = E(y) = gy mod N

to obtain shorter range proofs. Here, we will use Cao et al.’s non-interactive
range-proof scheme as a black box. For further details, we refer the user to [4,5].
For our needs, we modified the commitment scheme as

E = E(y) = gy mod PN

where P =
∏n

i=1 pi and N is an RSA composite whose factorization is secret.
Note that even if φ(P) is known, φ(PN) cannot be computed since φ(N) is secret.
Throughout the section, we will use RngPrf(E(y), M) to denote the range proof
that a secret integer y committed with E(y) is in the interval [0, M).

4.2 A CRT-Based VSS Scheme

In our VSS scheme, the RSA composite N is an integer generated jointly by the
users and the dealer where its prime factorization is not known. Such an integer
satisfying these constraints can be generated by using the protocols proposed for
shared RSA key generation [3,7] at the beginning of the protocol. Note that we
do not need the private and the public RSA exponents in our VSS scheme as in
the original protocols [3,7]; hence those parts of the protocols can be omitted.

Let gi ∈ Z∗
pi

be an element of order mi. Let P =
∏n

i=1 pi and

g =

(
n∑

i=1

gi
P

pi
P ′

i

)
mod P (4)

420 K. Kaya and A.A. Selçuk

– Dealer Phase: To share a secret d ∈ Zm0 among a group of n users with
verifiable shares, the dealer does the following:
1. Use the dealing procedure of the Asmuth-Bloom secret sharing scheme

described in Section 2 to obtain the shares

yi = y mod mi

for each 1 ≤ i ≤ n where y = d + Am0 < M =
∏t

i=1 mi. Note that the
mis are large primes where pi = 2mi + 1 is also a prime for 1 ≤ i ≤ n.

2. Let N be an integer whose prime factorization is not known by the users
and the dealer. Compute E(y) = gy mod PN . Send yi to the ith user
secretly for all 1 ≤ i ≤ n and broadcast (E(y),RngPrf(E(y),M)).

3. The ith user checks
gi

yi
?≡ E(y) mod pi (5)

to verify yi = y mod mi. Then he checks the validity of the range proof
to verify y < M .

– Combiner Phase: Let S be a coalition gathered to construct the secret.
1. The share yi of user i ∈ S can be verified by the other users in S with

the verification equality gi
yi

?≡ E(y) mod pi.
2. If all shares are valid, the participants can obtain the secret d by using the

reconstruction procedure described in Section 2. Otherwise, the corrupted
users are disqualified.

Fig. 4. CRT-based verifiable secret sharing scheme

where P ′
i =

(
P
pi

)−1
mod pi for all 1 ≤ i ≤ n, i.e., g is the unique integer in ZP

satisfying g ≡ gi mod pi for all i. Our VSS scheme is described in Figure 4.

4.3 Analysis of the Proposed VSS Scheme

We analyze the correctness of the scheme and its security against passive and
active attackers below:

Correctness. Aside from the verification equation, the scheme uses the original
Asmuth-Bloom scheme. Hence, for correctness, we only need to show that when
the dealer and the users are honest, the verification equations in the dealer and
combiner phases hold. Note that, the condition y < M is checked in Step 3 of
the dealer phase by using RngPrf(E(y), M)). Furthermore, for a valid share yi,

E(y) mod pi = gy mod PN mod pi = gy mod pi

= gi
y mod pi = gi

yi mod pi.

Hence if the dealer and the users behave honestly, the verification equation holds
and the ith user verifies that his share is a residue modulo mi of the integer
y < M committed with E(y).

A Verifiable Secret Sharing Scheme 421

Security. For the security analysis, we will first show that the underlying SSS
is perfect as proved by Kaya et al. [12], i.e., no coalition of size smaller than t
can obtain any information about the secret.

Theorem 1 (Kaya and Selcuk [12]). For a passive adversary with t − 1
shares in the VSS scheme, every candidate for the secret is equally likely, i.e.,
the probabilities Pr(d = d′) and Pr(d = d′′) are approximately equal for all
d′, d′′ ∈ Zm0 .

Proof. Suppose the adversary corrupts t− 1 users and just observes the inputs
and outputs of the corrupted users without controlling their actions, i.e., the
adversary is honest in user actions but curious about the secret. Let S′ be the
adversarial coalition of size t−1, and let y′ be the unique solution for y in ZMS′ .
According to (1), M/MS′ > m0, hence y′ + jMS′ is smaller than M for j < m0.
Since gcd(m0, MS′) = 1, all (y′ + jMS′) mod m0 are distinct for 0 ≤ j < m0,
and there are m0 of them. That is, d can be any integer from Zm0 . For each value
of d, there are either �M/(MS′m0)� or �M/(MS′m0)� + 1 possible values of y
consistent with d, depending on the value of d. Hence, for two different integers
in Zm0 , the probabilities of d equals these integers are almost equal. Note that
M/(MS′m0) > m0 and given that m0 � 1, all d values are approximately
equally likely.

Besides the shares, the only additional information a corrupted user can obtain
is E(y) and RngPrf(E(y), M). Given that the discrete logarithm problem is hard
and Cao et al.’s range proof technique is computationally secure, the proposed
VSS scheme is also computationally secure.
�

The shares distributed by a dealer are said to be inconsistent if different coalitions
of size at least t obtain different values for the secret. The following theorem
proves that the dealer cannot distribute shares inconsistent with the secret.

Theorem 2. A corrupted dealer cannot cheat in the VSS scheme without being
detected. I.e., if the shares are inconsistent with the secret d then at least one
verification equation does not hold.

Proof. Let U = {1, . . . , n} be the set of all users. If the shares are inconsistent,
for two coalitions S and S′ with |S|, |S′| ≥ t,(∑

i∈S

yiM
′
S,iMS\{i}

)
mod MS �=

(∑
i∈S′

yiM
′
S′,iMS′\{i}

)
mod MS′ .

hence,

y =

(
n∑

i=1

yiM
′
U,iMU\{i}

)
mod MU > M,

because we need at least t+1 congruences to hold. If this is true then the dealer
cannot provide a valid range proof RngPrf(E(y), M). So, when a user tries to
verify that y < M , the range proof will not be verified.

422 K. Kaya and A.A. Selçuk

If the dealer tries to use a different y′ �= y value in the commitment E(y′) and
generates a valid proof RngPrf(E(y′), M), the verification equation (5) will not
hold for some user i. Hence, the VSS scheme guarantees that the n distributed
shares are consistent and they are residues of some number y < M .
�
Theorem 3. A user cannot cheat in the VSS scheme without being detected;
i.e., if a share given in the combiner phase is inconsistent with the secret, then
the verification equation does not hold.

Proof. When a user i sends an incorrect share y′
i �= yi = y mod mi in the

combiner phase, the verification equation

E(y)
?≡ gi

yi mod pi

will not hold because E(y) = gy mod PN , pi|P and since the order of gi ∈ Zpi

is mi, the only value satisfying the verification equation is yi.
�

5 Joint Random Secret Sharing

Joint random secret sharing (JRSS) protocols enable a group of users to jointly
generate and share a secret where a trusted dealer is not available. Although
there have been JRSS schemes based on Shamir’s SSS, so far no JRSS scheme
has been proposed based on CRT. Here we describe a JRSS scheme based on the
VSS scheme in Section 4. We first modify (1) used in the Asmuth-Bloom secret
sharing scheme in Section 2 as

t∏
i=1

mi > nm0
2

t−1∏
i=1

mn−i+1. (6)

We also change the definition of M as M =
⌊
(
∏t

i=1 mi)/n
⌋
. The proposed JRSS

scheme is given in Figure 5.

5.1 Analysis of the Proposed JRSS Scheme

Correctness. Observe that when all users behave honestly, the JRSS scheme
works correctly. Let y =

∑
i∈B y(i). It is easy to see that y <

∏t
i=1 mi since

y(i) < M for all i ∈ B, where |B| ≤ n and M =
⌊
(
∏t

i=1 mi)/n
⌋
. One can see

that yj = y mod mj for all j ∈ B by checking

y mod mj =

(∑
i∈B

y
(i)
j

)
mod mj = yj mod mj = yj .

Hence, each yi satisfies yi = y mod mi and y <
∏t

i=1 mi; so, y can be constructed
with t shares.

For correctness of the verification procedure in (7), one can observe that(∏
i∈B

E(y(i))

)
≡ g

∑
i∈B y(i)

≡ gy ≡ gi
yi (mod pi).

A Verifiable Secret Sharing Scheme 423

– Dealing Phase: To jointly share a secret d ∈ Zm0 the users do the following:
1. Each user chooses a secret di ∈ Zm0 and shares it by using the VSS scheme

as follows: He first computes

y
(i) = di + Aim0

where y(i) < M =
⌊
(
∏t

i=1 mi)/n
⌋
. Then the secret for the jth user is

computed as
y
(i)
j = y

(i) mod mj .

He sends y
(i)
j to user j secretly for all 1 ≤ i ≤ n and broadcasts

(E(y(i)), RngPrf(E(y(i)), M)).
2. After receiving shares the jth user verifies them by using the verification

procedure in (5). Let B be the set of users whose shares are verified cor-
rectly. The jth user computes his overall share

yj =

(∑
i∈B

y
(i)
j

)
mod mj

by using the verified shares.
– Combiner Phase: Let S be a coalition of t users gathered to construct the secret.

1. The share yi of user i ∈ S can be verified by the other users in S with the
verification equation,

g
yi

?≡
(∏

j∈B
E(y(j))

)
mod pi. (7)

2. If all shares are valid, the participants obtain the secret d =
(∑

i∈B di

)
mod

m0 by using the reconstruction procedure described in Section 2.

Fig. 5. CRT-based joint random secret sharing scheme.

Security. We will show that no coalition of size smaller than t can obtain any
information about the secret.

Theorem 4. For a passive adversary with t − 1 shares in the JRSS scheme,
every candidate for the secret is equally likely. I.e., the probabilities Pr(d = d′)
and Pr(d = d′′) are approximately equal for all d′, d′′ ∈ Zm0 .

Proof. Suppose the adversary corrupts t− 1 users and just observes the inputs
and outputs of the corrupted users without controlling their actions, i.e., the
adversary is honest in user actions but curious about the secret. Let S′ be the
coalition of the users corrupted by the adversary. The shares are obtained when
each user shares his partial secret di, i.e., the adversary will obtain t − 1 share
for each di. We will prove that the probabilities that di = d′i and d = d′′i are
almost equal for two secret candidates d′i, d

′′
i ∈ Zm0 .

We already proved that the Asmuth-Bloom SSS described in Section 2 is
perfect with equation (1). By using the shares of S′, the adversary can compute
y′(i) = y(i) mod MS′ . But even with these shares, there are M

MS′ consistent y(i)s

424 K. Kaya and A.A. Selçuk

which are smaller than M and congruent to y′(i) modulo MS′ . By replacing (1)
with (6) and changing the definition of M to

⌊
(
∏t

i=1 mi)/n
⌋
, the value of the

ratio
M

MS′
>

M∏t−1
i=1 mn−i+1

≈
∏t

i=1 mi

n
∏t−1

i=1 mn−i+1

is greater than m0
2. Hence, even with t−1 shares, there are still m0

2 candidates
for each y(i) which is used to share the secret di. Since gcd(m0, MS′) = 1, there
are approximately m0 y(i)s, consistent with a secret candidate d′i. Hence, for a
secret candidate d′i the probability that di = d′i is approximately equal to 1

m0
and the perfectness of the scheme is preserved.

Besides the shares, the only other information the adversary can observe is
the commitments and range proofs. Given that the discrete logarithm problem
is hard and Cao et al.’s range proof scheme is secure, the proposed JRSS scheme
is also computationally secure.
�

A corrupted user cannot cheat in the JRSS scheme without being detected. Since
we are using a VSS scheme, while user i is sharing his partial secret di, the con-
ditions of the Asmuth-Bloom SSS must be satisfied as proved in Theorem 2.
Furthermore, if user i sends an incorrect share in the combiner phase, the verifi-
cation equation (7) will not hold. As a result, we can say that the JRSS scheme
is secure for up to t − 1 corrupted users and no user can cheat in any phase of
the scheme.

6 Conclusion

In this paper, a CRT-based verifiable secret sharing scheme is proposed. We
showed that previous solutions for this problem did not guarantee the consis-
tency of the shares. A secure JRSS scheme based on Asmuth-Bloom scheme is
also proposed as a practical application of a VSS scheme. To the best of our
knowledge, the proposed schemes are the first CRT-based secure VSS and JRSS
schemes in the literature.

References

1. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. In-
formation Theory 29(2), 208–210 (1983)

2. Blakley, G.: Safeguarding cryptographic keys. In: AFIPS 1979, pp. 313–317 (1979)
3. Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. J. ACM 48(4),

702–722 (2001)
4. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel,

B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg
(2000)

5. Cao, Z., Liu, L.: Boudot’s range-bounded commitment scheme revisited. In: Qing,
S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 230–238. Springer,
Heidelberg (2007)

A Verifiable Secret Sharing Scheme 425

6. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
FOCS 1987: IEEE Symposium on Foundations of Computer Science, pp. 427–437
(1987)

7. Frankel, Y., MacKenzie, P.D., Yung, M.: Robust and efficient distributed RSA-
Key generation. In: STOC 1998: ACM Symposium on Theory of Computing, pp.
663–672. ACM Press, New York (1998)

8. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

9. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signa-
tures. Information and Computation 164(1), 54–84 (2001)

10. Iftene, S.: Secret sharing schemes with applications in security protocols. Technical
report, University Alexandru Ioan Cuza of Iaşi, Faculty of Computer Science (2007)

11. Ingemarsson, I., Simmons, G.J.: A protocol to set up shared secret schemes without
the assistance of a mutually trusted party. In: EUROCRYPT 1991, pp. 266–282.
Springer, Heidelberg (1990)

12. Kaya, K., Selçuk, A.A.: Threshold cryptography based on Asmuth-Bloom secret
sharing. Information Sciences 177(19), 4148–4160 (2007)

13. Mignotte, M.: How to share a secret? In: Proc. of the Workshop on Cryptography,
pp. 371–375. Springer, Heidelberg (1983)

14. Pedersen, T.P.: Distributed provers with applications to undeniable signatures. In:
Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 221–242. Springer,
Heidelberg (1991)

15. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

16. Qiong, L., Zhifang, W., Xiamu, N., Shenghe, S.: A non-interactive modular verifi-
able secret sharing scheme. In: ICCCAS 2005: International Conference on Com-
munications, Circuits and Systems, pp. 84–87. IEEE, Los Alamitos (2005)

17. Quisquater, M., Preneel, B., Vandewalle, J.: On the security of the threshold scheme
based on the Chinese Remainder Theorem. In: Naccache, D., Paillier, P. (eds.) PKC
2002. LNCS, vol. 2274, pp. 199–210. Springer, Heidelberg (2002)

18. Shamir, A.: How to share a secret? Comm. ACM 22(11), 612–613 (1979)

Secure Threshold Multi Authority Attribute
Based Encryption without a Central Authority

Huang Lin, Zhenfu Cao�, Xiaohui Liang, and Jun Shao

Department of Computer Science and Engineering, Shanghai Jiao Tong University
faustlin@sjtu.edu.cn, zfcao@cs.sjtu.edu.cn

Abstract. An attribute based encryption scheme (ABE) is a crypto-
graphic primitive in which every user is identified by a set of attributes,
and some function of these attributes is used to determine the ability to
decrypt each ciphertext. Chase proposed the first multi authority ABE
scheme in TCC 2007 as an answer to an open problem presented by
Sahai and Waters in EUROCRYPT 2005. However, her scheme needs a
fully trusted central authority which can decrypt every ciphertext in the
system. This central authority would endanger the whole system if it’s
corrupted.

This paper presents a threshold multi authority fuzzy identity based
encryption(MA-FIBE) scheme without a central authority for the first
time. An encrypter can encrypt a message such that a user could only
decrypt if he has at least dk of the given attributes about the message for
at least t+1, t ≤ n/2 honest authorities of all the n attribute authorities
in the proposed scheme. The security proof is based on the secrecy of
the underlying joint random secret sharing protocol and joint zero secret
sharing protocol and the standard decisional bilinear Diffie-Hellman as-
sumption. The proposed MA-FIBE could be extended to the threshold
multi authority attribute based encryption (MA-ABE) scheme and be
further extended to a proactive MA-ABE scheme.

Keywords: Threshold Multi Authority ABE, Without a central
authority.

1 Introduction

The primitive idea of identity based encryption(IBE) was first proposed by
Shamir[12] in 1984. In IBE system, a user is identified by a unique string, the
sender has to know the identity of the receiver in order to generate a ciphertext
for the receiver. However, this wouldn’t always be a realistic scenario since the
sender might only know the “attribute” of the receivers rather than the exact
identity of the receiver sometimes. For instance[3], in a secure database of an in-
telligence agency, one may specify a certain document can be accessed by agents
in the counterspy program. In this situation, it’s much more natural to encrypt
to the single attribute “counterspy”, instead of an enumerative list of all agents
� Corresponding author.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 426–436, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Secure Threshold Multi Authority Attribute 427

in the program. Fuzzy identity based encryption, a generalization of IBE, was
first proposed by Sahai and Waters[11] (denoted as SW05) in 2005 to deal with
this circumstance. In the FIBE system, the user is identified by a certain set of
attributes, and the ciphertext is encrypted under another set of attributes. The
user is able to decrypt the ciphertext when the intersection of the above two
attribute sets is larger than a certain preset threshold. For example, a sender
might encrypt a message which could be decrypted by those who are in any two
of the following three programs: “anti-drug” program, “anti-terror” program,
and “counterspy” program. In the FIBE system proposed by SW05, there would
be an authority, monitoring these three attributes, which is responsible for dis-
tributing secret keys to the users after verifying whether the users are indeed in
the claimed program.

However, there are commonly three departments each of which is responsi-
ble for one program and thus monitors the corresponding attribute in reality.
The benefit of three independent departments is noticeable: first, the other au-
thorities could still be trusted even when certain authorities in the system are
corrupted. In other words, the trust on one single authority is reduced and dis-
tributed through all the existing authorities. Second, it would reduce the burden
of the authority since the task of monitoring all these attributes and distribut-
ing secret keys corresponding to these attributes is now shared by the other
authorities. Therefore, the following open problem is presented in SW05: is it
possible to construct an attribute encryption scheme in which many different
authorities operate simultaneously, each handing out secret keys for a different
set of attributes.

1.1 Previous Work

To our best knowledge, there is only one existing multi authority attribute based
encryption scheme proposed by Chase [2]. Her scheme allows any polynomial
number of independent authorities to monitor attributes and distribute secret
keys. An encryption chooses, for each authority, a number dk and a set of at-
tributes. He can then encrypt a message such that a user could only decrypt if
he has at least dk of the given attributes for each authority k. Chase’s scheme
mainly employs the following two techniques : The first is to require that every
user has a global identifier (GID), and the second is to use a fully trusted central
authority.

The global GID is used to prevent a collusion attack between different users.
More specifically, a user who only has enough secret keys from a certain set of
authorities might collude with another user who only has enough keys from the
rest authorities to decrypt a ciphertext. The global GID could be considered
as a randomness embedding to each user’s secret keys. This technique is also
adopted in this paper.

The secret keys for each user could be considered as an evaluation of a function
on GID in Chase’s scheme. This evaluation is ephemeral and decoupled from
the master secret key y0 but the ability to decrypt is required to depend on the
users’ attribute rather than their individual GID (This is what distinguishes

428 H. Lin et al.

ABE from traditional IBE). The central authority is the second tool used in
Chase’s scheme in order to guarantee the above property. The central authority is
responsible to provide a final secret key to integrate the secret keys from the other
attribute authorities such that the decryption process would be independent
of GID. The central authority would be able to decrypt all the ciphertext in
the Chase’s system because it masters the system secret key. In other words,
now that the central authority has to be fully trusted, the trust is not totally
distributed through all the authorities. The security of the whole system would
be totally broken if the central authority is corrupted. Furthermore, it would also
increase the computation and communication cost to run and maintain such a
fully trusted authority in the system.

There is a possible attack, other than the collusion attack, which is ignored
in Chase’s paper (as shown footnote 2). Any qualified user couldn’t be able to
decrypt the ciphertext in her system even if there exists only one authority who
doesn’t distribute the correct secret keys. This attack is possible because all the
attribute authorities could be corrupted in any way in the system.

There are some other ABE schemes proposed recently, such as [10], [9], [6], [1],
[3]. The first key policy attribute based encryption scheme(KP-ABE) is proposed
in [6]. Both ABE schemes described in this paper are KP-ABE.

1.2 Our Contribution

This paper focuses on removing the central authority from multi authority ABE
scheme. It’s difficult to remove the central authority while preventing the collu-
sion attack and keeping the decryption process independent of the identifier of
each user. As indicated in the above, it’s the central authority which is respon-
sible to integrate the secret keys from the other attribute authorities in Chase’s
scheme, and thus to integrate these secret keys without the central authority
would be an obstacle in our system. Another difficulty is that the integration
must be accompanied with the last decryption step as Chase’s scheme did. The
integration aims to emancipate the users from the restriction of individual iden-
tifier, which means this integration shouldn’t be completed before the final de-
cryption step because the collusion attack might be possible if the users are free
from the bondage of GID.

In this paper, we replace the pseudo random function used in Chase’s scheme
by a polynomial. After that, we adopt the key distribution technique and the
joint zero secret sharing technique [5] to construct the first secure threshold multi
authority fuzzy identity based encryption scheme without a central authority.

In the proposed scheme, an encrypter can encrypt a message such that a
user could only decrypt if he has at least dk of the given attributes about the
message for at least t + 1, t ≤ n/2 honest authorities in the proposed scheme.
All the authorities only need to communicate with each other without revealing
any private information to the others during the initialization (or the periodical
update step when it comes to the proactive multi authority attribute scheme),
and they could operate independently and keep autonomous in the left steps of
the scheme. In other words, the whole relatively costly process is transparent

Secure Threshold Multi Authority Attribute 429

to the users, and won’t cause any additional inconvenience to them. The trust
is truly distributed between each authority in the proposed system, and the
expense due to the central authority also disappears since the central authority
is removed.

Our adversary is allowed to distribute incorrect secret keys deliberately. Our
proposed system always contains at least t + 1 honest authorities who would
distribute correct secret keys (due to the restriction for the (t − 1, n)-threshold
adversary, here t ≤ n/2), and those who obtain enough keys from these honest
authorities could still decrypt the respective ciphertext. In other words, the
faulty behavior of authorities wouldn’t disrupt our proposed system1.

The proposed threshold MA-FIBE scheme could be extended to multi au-
thority attribute based encryption scheme. The proposed scheme also could be
extended a proactive scheme which results in a more convenient and secure sys-
tem for the users.

1.3 Organization

At first, some preliminaries will be introduced in Section 2. Then, the security
model would be given in Section 3. In Section 4, the construction of threshold
MA-FIBE scheme without a central authority is provided. In the last section,
we’ll discuss about the extensions.

2 Preliminaries

2.1 Decisional BDH Assumption

The bilinear maps [9] is crucial to our construction, some basic facts related to
bilinear maps are introduced here.

Let G1 and G2 be two multiplicative cyclic groups of prime order q. Let g be
a generator of G and e be a bilinear map, e : G1 ×G1 → G2. The bilinear map
e has the following properties:

1. Bilinearity: for all u, v ∈ G1 and a, b ∈ Zq, we have e(ua, vb) = e(u, v)ab.
2. Non degeneracy: e(g, g) �= 1.

G1 is a bilinear group if the group operation in G1 and the bilinear map e :
G1×G1 → G2 are both efficiently computable. Note that the map e is symmetric
since e(ga, gb) = e(g, g)ab = e(gb, ga).

The security proof of the proposed scheme relies on Decisional Bilinear Diffie-
Hellman assumption, its definition is shown as follow [2]:

Definition 1. Decisional Bilinear Diffie-Hellman Assumption. Let a, b, c, z ←
Zq be chosen randomly, G1 be a group of prime order q and generator g. The
Decisional BDH assumption is that no probabilistic polynomial time algorithm

1 Chase’s scheme wouldn’t guarantee this, and even qualified users don’t have the
ability to decrypt if even one authority distributes incorrect secret keys.

430 H. Lin et al.

B can distinguish the tuple (A = ga, B = gb, C = gc, e(g, g)abc) from the tuple
(A = ga, B = gb, C = gc, e(g, g)z) with more than a negligible advantage. The
advantage of B is

|Pr[B(A, B, C, e(g, g)abc)]− Pr[B(A, B, C, e(g, g)z)] = 0|

where the probability is taken over the random choice of the generator g, the
random choice of a, b, c, z in Zq, and the random bits consumed by B.

2.2 Communication Model

The communication model of this paper is basically the same to that of [5].
Our computation model is composed of a set of n attribute authorities which
could be modeled by a PPT machine. Related definitions can be found in [8].
They are connected by a complete network of private (i.e. untappable) point-
to-point channels. In addition, all the authorities have access to a dedicated
broadcast channel. A partially synchronous communication model is assumed
in this paper. In other words, messages sent on either a point-to-point or the
broadcast channel are received by their recipients within some fixed time bound.
For simplicity of discussion, we assume that the authorities are equipped with
synchronized clocks.

2.3 Distributed Key Generation Protocol (DKG) and Joint Zero
Secret Sharing Protocol (JZSS)

Distributed key generation protocol and joint zero secret sharing protocol are
two vital components of the proposed construction. A more concrete introduction
to these two techniques could be found in Section 4.4 and 4.5 of [4]. Note that
Distributed key generation protocol is denoted as Joint-Exp-RSS and Joint zero
secret sharing scheme is denoted as Joint-Uncond-Secure-ZSS for short in this
paper. The original construction of DKG protocol could be found in [5].

In the DKG protocol, the players collectively choose shares corresponding
to a (t, n)-secret sharing of a random value σ. At the end of such a protocol

each player Pi has a share σi, where (σ1, · · · , σn)
(t,n)−−−→ σ, and σ is uniformly

distributed over the interpolation field, and the protocol also outputs gσ as a
public key. There’s no trusted dealer, who masters the secret σ in the regular se-
cret sharing scheme, in the DKG protocol. This secret can only be reconstructed
through the cooperation of at least t + 1 honest players. This property plays an
important role during the proposed construction since it’s the reason why the
central authority could be removed.

The secrecy [5] of DKG protocol could be defined as: no information on the
secret σ can be learned by a (t, n)-threshold static adversary which corrupts
at most t players except for what’s implied by the value y = gσ mod q. The
simulation of the DKG protocol could be found in Fig.4 of [4].

The JZSS protocol is similar to the joint random secret sharing protocols but
instead the players collectively choose shares corresponding to a known value
zero without a trusted dealer. The JZSS protocol can be deduced from the joint

Secure Threshold Multi Authority Attribute 431

unconditionally secure random secret sharing protocol with a slight modification
as shown in [4]. The players would obtain ”zero-shares” from the JZSS protocol
since all these shares form a (t, n)-secret sharing of 0. By adding such ”zero-
shares” to existing shares of some secret σ, one obtains a randomization of the
shares of σ without changing the secret. This is the typical way to use the JZSS
protocol.

However, JZSS protocol is used in a different manner from the typical way
during our basic constructions. m JZSS protocols along with two DKG protocols
are executed independently during the initialization to hide non-constant terms
of the secret polynomial of each authority from the rest authorities while ensuring
that all these terms would combine to 0. Informally, the JZSS protocol and
DKG protocol are traditionally used in a serial way, while they run parallel
in our basic construction, and a polynomial is used to tie up these independent
protocols. As a result, we consider a (t−1, n)-threshold static adversary attacking
the JZSS protocol, then the secrecy of the JZSS protocol could be stated as:
the share σi of the honest players are information theoretically secure to the
(t−1, n)-threshold static adversary. Note that the adversary shouldn’t be allowed
to corrupt t players as in the DKG protocol because the adversary would be able
to compute the shares of the honest players since the shared secret 0 is known to
the adversary. The proof of the secrecy of the JZSS protocol is straightforward.

3 Adversary and Security Model

The proposed multi authority system consists of n attribute authorities. Each
attribute authority monitors a set of nk attributes in the universe of attributes
U . The universe U consists of N attributes where N =

∑n
k=1 nk. The proposed

multi authority scheme consists of the following algorithms:
Setup: A randomized algorithm takes as input the security parameter κ and

outputs all the system public parameters PK and the secret key SK for attribute
authorities.

Secret Key Distribution(SKD)(SK, GID, Au): A randomized algorithm
takes as input the authorities’s secret key SK, a user u’s GID, and a set of
attributes Ak

u in the authority AAk’s domain (We will assume that the user’s
claim of these attributes has been verified before this algorithm is run, Au =
{Ak

u, k = 1, · · · , n}). Output a secret key Du for the user u.
Encryption(ENC)(AC, M, PK): A randomized algorithm takes as input an

attribute set AC of a message M , the system public parameters PK and outputs
the ciphertext C.

Decryption(DNC)(C, Du): A deterministic algorithm takes as input a ci-
phertext C, which was encrypted under an attribute set AC and decryption key
Du. Output a message m if |Ak

C
⋂

Ak
u | ≥ dk for at least t + 1 honest 2 attribute

authorities.
As in [6] and [2], our scheme is proved secure in the selective attribute set

model (SAS), in which the adversary must select the challenge attribute set he
2 Honest means the authority would distribute correct secret keys to the users.

432 H. Lin et al.

wishes to attack before receiving the parameters of the system. Our adversary is
static, i.e., chooses up to t−1, t ≤ n/2 corrupted authorities, and it’s denoted as
(t− 1, n) threshold adversary. At last, the authority controlled by the adversary
here is allowed to distribute incorrect secret keys to the users.

Consider the following game:
Setup: The (t−1, n)-threshold adversary sends a list of attribute sets AC∗ =

A1
C∗ , · · · , An

C∗ , one for each authority. He must also provide a list of corrupted
authorities (up to t−1). The simulator provides the adversary with the following
information after the generation of system parameters: the public keys for all
the honest authorities, and the secret keys for all corrupted authorities.

Secret Key Queries (SKD) (the total number of these queries are m for
each authority) The requirements for the queries are: for each GID and any t+1
authorities the adversary query, there must be at least one honest authority k
from which the adversary requests fewer than dk of the attributes given in Ak

C∗ .
The adversary never queries the same authority twice with the same GID.

Challenge: The adversary sends two messages M0 and M1. The challenger
chooses a bit x, computes the encryption of Mx for the attribute sets list AC∗ ,
and sends this ciphertext C∗ to the adversary.

More Secret Key Queries: The adversary may make more secret key
queries subject to the requirements described in the above.

Guess: The adversary outputs a guess x′. The adversary succeed if x = x′.

Definition 2. A multi authority attribute scheme is selective attribute sets
(SAS) CPA secure if there exists a negligible function ν such that, in the above
game any (t − 1, n)-threshold adversary will succeed with probability at most
1
2 + ν(κ) (κ denotes the system security parameter).

4 Threshold MA-FIBE Scheme without a Central
Authority

4.1 Primitive Idea

A large universe construction of FIBE is given by Sahai and Waters [11], and the
FIBE construction adopted in this section could be considered as the respective
variant construction with large size of public parameters. Different from Chase’s
scheme, each authority AAk selects a polynomial ak,0 + ak,1x + · · · + ak,mxm

rather than a pseudo random function to evaluate on a user’s GID. Only in this
way could we manage to use DKG and JZSS protocol to enable all authorities
to share a secret without letting any authority to master the system master
key. The system secret key a0 is generated by executing a DKG protocol and
thus a0 isn’t known to any authority, and each authority AAk, k = 1, · · · , n
would have the share ak,0 about a0. In order to generate the polynomial ak,0 +
ak,1x + · · · + ak,mxm, the authority AAk needs to decide how to pick up the
other coefficients ak,j , j = 1, · · · , m. However, the system has to ensure that
the ability to decrypt independent of GID. In consequence, JZSS protocol is
adopted to generate the other coefficients ak,j , k = 1, · · · , n, j = 1, · · · , m since

Secure Threshold Multi Authority Attribute 433

a1,j , · · · , an,j, j = 1, · · · , m forms a (t, n) threshold polynomial secret sharing of
0 due to JZSS protocol, and thus each user’s GID would have nothing to do
with the final decryption.

If the users obtain enough secret keys from honest authorities AAk,
then they would be able to compute the respective share e(g, g2)pk(0)s =
e(g, g2)(ak,0+ak,1GID+···+ak,mGIDm)s in the proposed scheme. As stated in the
above, (a1,0, · · · , an,0) form a random (t, n) threshold polynomial secret sharing
of a0 due to DKG protocol, and (a1,k, · · · , an,k)k=1,··· ,m form m random (t, n)
threshold polynomial secret sharing of 0. When the shares combine to the corre-
sponding secrets, GID would disappear in the final combining polynomial, and
they’ll have e(g, g2)a0s = e(g1, g2)s to decrypt the ciphertext. In other words,
the users are only liberated from GID in the final decryption step.

4.2 The Proposed Scheme

Fix prime order groups G1, G2, bilinear map e : G1 × G1 → G2, and generator
g ∈ G1. Define the universe of attributes U = {1, 2, · · · , N}. Each attribute
authority AAk monitors a set of nk attributes in this universe, where N =∑n

k=1 nk. For simplicity of discussion and without lost of generality, the first
t+1 authorities are assumed to be honest and distribute correct secret keys and
the decryptor has enough secret keys from all these honest authorities in the
following discussion.
1. Setup

– (a) Execute DKG protocol twice and JZSS protocol independently m
times, the shares of attribute authority AAi, i = 1, · · · , n obtained from
the execution of these two protocols constitute the set of partial secret
keys for each authority. In consequence, there are totally m + 2 secret
keys for each authority, as shown in the following table:

The secret keys Ski, i = 1, · · · , n for the respective AAi are
ai,0, · · · , ai,m, bi,m+1. The respective public keys of two DKG proto-
cols are ga0 , gb0 , which would be treated as a part of system public keys.

Table 1. Authorities secret keys

DKG JZSS · · · JZSS DKG
Sk1 a1,0 a1,1 · · · a1,m b1,m+1

Sk2 a2,0 a2,1 · · · a2,m b2,m+1

· · · · · · · · · · · · · · · · · ·
Skn an,0 an,1 · · · an,m bn,m+1

Public keys g1 = ga0 g2 = gb0

According to the DKG protocol, we have a0 =
∑t+1

l=1 akl,0γkl
, b0 =∑t+1

l=1 bkl,m+1γkl
. We also have 0 =

∑t+1
l=1 akl,jγkl

, j = 1, 2, · · · , m ac-
cording to the JZSS protocol. 3

3 γj =
∏

k∈{1,2,··· ,t+1},j �=k
0−k
j−k

denotes the Lagrange interpolation coefficients for the
set {1, 2, · · · , t + 1}.

434 H. Lin et al.

– (b) Each authority AAk, k = 1, · · · , n also needs to randomly choose an-
other set of secret keys tk,1, · · · , tk,nk

from Zq, each of which corresponds
to the j-th attribute mastered by the authority AAk in the universe U .
The corresponding public keys are Tk,1 = gtk,1 , · · · , Tk,nk

= gtk,nk .
– (c) the secret key SKk for each authority AAk, k = 1, · · · , n are

ak,0, ak,1, ak,2, · · · , ak,m, bk,m+1, tk,1, · · · , tk,nk

The secret keys of all authorities form the set of secret keys SK =
{SK1, · · · , SKn}.

The published public parameters PK are g, g1 = ga0 , g2 = gb0 ,
{Tk,1, · · · , Tk,nk

}k=1,··· ,n.
2. SKD(SK, GID, Au)

The user randomly selects a GID from Zq and presents it to the author-
ity, and the authority checks whether it’s valid (according to the method
mentioned in footnote 4), if it’s valid then continue, else reject.

For AAk, k = 1, · · · , n, the SKD process is shown as follows:
For each GID, the authority would first randomly select pk(x) (where

pk(x) is a dk−1 degree polynomial) satisfied with pk(0) = ak,0 +ak,1GID +
· · · + ak,mGIDm. The secret keys Du for u are Du = {Dk,j}j∈Ak

u,k=1,··· ,n,

where Dk,j = {gpk(j)/tk,j

2 }j∈Ak
u
.

3. ENC(AC, M, PK)
Choose a random value s ∈ Zq. For the attribute set AC = {Ak

C}, k ∈
{1, · · · , n}, generate the ciphertext C={AC, E = e(g1, g2)s · M ||0l′ , {Ek,j =
T s

k,j}j∈Ak
C,∀k} (k corresponds to the authority AAk, Ak

C denotes the attribute
set of the ciphertext monitored by authority AAk. In order to check whether
a decryption is valid, prior to encryption, we append M trailing 0s denoted
0l′ to message M ∈ {0, 1}l).

4. DEC(C, Du)
(1) For AAk, k = 1, 2, · · · , t + 1 run the following two steps.
– (a) For dk attributes i ∈ Ak

C
⋂

Au, compute e(Ek,i, Dk,i)
=e(gtk,js, g

pk(j)/tk,j

2)=e(g, g2)pk(j)s.
– (b) Interpolate to find

e(g, g2)pk(0)s = e(g, g2)(ak,0+ak,1GID+···+ak,mGIDm)s

(2)
∏t+1

k=1 e(g, g2)pk(0)sγk

= e(g, g2)
∑ t+1

k=1(γkak,0+γkak,1GID+···+γkak,mGIDm)s

= e(g, g2)a0s

= e(g1, g2)s

(3) E/e(g1, g2)s = M ||0l′

A possible collusion attack and the restriction of m:
The adoption of polynomial ak,0 + ak,1GID + ak,2GID2 + · · ·+ ak,mGIDm as
the master key while generating the secret key for a user might cause a collusion

Secure Threshold Multi Authority Attribute 435

attack. Assume m + 1 users who only have qualified secret keys for an attribute
set Ak

C of a ciphertext E, which means each user can calculate

e(g, g2)s·(ak,0+ak,1GID+ak,2GID2+···+ak,mGIDm).

Consequently, e(g, g2)s·(ak,0+ak,1x+ak,2x2+···+ak,mxm) could be interpolated since
there would be m+1 evaluations of e(g, g2)s·(ak,0+ak,1x+ak,2x2+···+ak,mxm) on dif-
ferent GIDs. Consider another user with identifier GID′ which only has eligible
secret keys for the other t attribute sets Akl

C , l = 1, · · · , t of the same ciphertext,
then e(g, g2)s·(akl,0+akl,1GID′+akl,2GID′2+···+akl,mGID′m), l = 1, · · · , t can be ob-
tained by them. If this user colludes with the above m + 1 users with satisfied
keys from Ak, then they’ll have the ability to interpolate e(g1, g2)s. It remains
to evaluate e(g, g2)s·(ak,0+ak,1x+ak,2x2+···+ak,mxm) on GID′ and do the rest in-
terpolation, which means all of them would be able to open the message even
though none of them is qualified to do this. That’s how the possible collusion
attack works.

In order to prevent this attack in practice, we have to restrict the number of
GIDs no more than m in the basic constructions. That’s why the number of
secret key queries is restricted to be equal to m in the security model. As we
can see here, m is a crucial parameter for the security of the basic constructions,
and there is a tradeoff between the security property and the efficiency of the
initialization step. Although the system could accommodate more GIDs as m
grows, more JZSS protocols need to be executed during the initialization while
m is bigger, and thus the computation and communication cost increase. The
security of the proposed construction can be stated as the following theorem,
the proof of which is given in the full version[7].

Theorem 1. The proposed threshold MA-FIBE scheme is SAS CPA secure in
the standard model and (t − 1, n)-threshold adversary model if Decisional BDH
assumption holds in (G1, G2) and the underling DKG protocol and JZSS protocol
are secure.

5 Extensions

We can employ the methods introduced in [6] to convert the proposed MA-FIBE
scheme into MA-ABE schemes without a central authority, and the concrete con-
structions and the proofs could be found in the full version[7]. Also, the primitive
idea of constructing a proactive secret sharing could be borrowed to construct
a proactive MA-ABE scheme in the large universe, and this construction would
also be shown in the full version[7]. Most extensions mentioned in Chase’s scheme
such as Changing dk, Leaving out authorities, could be realized by applying
the method used in Chase’s scheme directly to our proposed schemes. Our pro-
posed scheme could also be considered as a non trivial realization of an extension
named More complicated functions of the authorities in Chase’s paper
since the central authority is removed in the proposed constructions. However,

436 H. Lin et al.

there seems no convenient way to realize another extension Adding attribute
authorities in our proposed constructions. It seems that all the authorities, no
matter old or newly-jointed authorities, need to get together to renew the whole
system. This kind of trivial re-initialization implies certain inconvenience for the
users as mentioned in Section 4.2. Thus, how to add new authorities to the pro-
posed constructions without causing too much trouble for the users would be
left as an open problem.

Acknowledgement

This work was supported in part by the National Natural Science Foundation of
China under Grant Nos. 60773086, 60673079 and 60572155 .

References

1. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

2. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

3. Cheung, L., Newport, C.: Provably secure ciphertext policy abe. In: ACM Confer-
ence on Computer and Communications Security, pp. 456–465 (2007)

4. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold dss signatures.
Inf. Comput. 164(1), 54–84 (2001)

5. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptology 20(1), 51–83 (2007)

6. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

7. Lin, H., Cao, Z., Liang, X., Shao, J.: Secure threshold multi authority attribute
based encryption without a central authority (2008),
http://eprint.iacr.org/2008/

8. Cerecedo, M., Matsumoto, T., Imai, H.: Efficient and secure multiparty generation
of digital signatures based on discrete logarithms. IEICE Transactions on Funda-
mentals, 532–545 (1993)

9. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM Conference on Computer and Communi-
cations Security, pp. 195–203 (2007)

10. Pirretti, M., Traynor, P., McDaniel, P., Waters, B.: Secure attribute-based sys-
tems. In: ACM Conference on Computer and Communications Security, pp. 99–112
(2006)

11. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

12. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

http://eprint.iacr.org/2008/

Author Index

Agrawal, Mukesh 226
Akgün, Mete 40
Attrapadung, Nuttapong 116
Aumasson, Jean-Philippe 67

Bernstein, Daniel J. 322
Biryukov, Alex 1
Bisson, Gaetan 389
Bogdanov, Andrey 251
Boháček, Milan 78

Canard, Sébastien 213
Cao, Zhenfu 426
Choudhary, Ashish 185

Demirci, Hüseyin 40
Dunkelman, Orr 279, 308

El Aimani, Laila 145

Furukawa, Jun 116

Gorski, Michael 266
Gu, Dawu 104

Hanaoka, Goichiro 116
Hojśık, Michal 239

Indesteege, Sebastiaan 308
Ionica, Sorina 400

Jambert, Amandine 213
Joščák, Daniel 78
Joux, Antoine 400

Kaps, Jens-Peter 363
Kara, Orhun 294
Karmakar, Sandip 226
Kavak, Pınar 40
Kaya, Kamer 414
Keller, Nathan 279, 308
Khazaei, Shahram 15
Khovratovich, Dmitry 53
Kim, Jongsung 279
Kizhvatov, Ilya 251

Liang, Xiaohui 426
Lin, Huang 426
Lu, Jiqiang 279
Lucks, Stefan 158, 266

Maitra, Subhamoy 27, 337
Meier, Willi 15
Mukhopadhyay, Debdeep 226, 376

Nandi, Mridul 350

Patra, Arpita 185
Paul, Goutam 27
Priemuth-Schmid, Deike 1
Pyshkin, Andrey 251

Rangan, C. Pandu 185
Rebeiro, Chester 376
Ren, Yanli 104
Rudolf, Bohuslav 239

Saha, Dhiman 226
Sakai, Ryuichi 116
Sanadhya, Somitra Kumar 91
Sarkar, Palash 91
Sarkar, Santanu 337
Satoh, Takakazu 389
Schwabe, Peter 322
Selçuk, Ali Aydın 414
Shao, Jun 426

Tang, Qiang 130
Tůma, Jǐŕı 78

Vábek, Jǐŕı 78

Weimerskirch, André 158
Westhoff, Dirk 158

Yang, Jing 200
Yoneyama, Kazuki 172

Zenner, Erik 158
Zhang, Zhenfeng 200

	Title Page
	Preface
	Organization
	Table of Contents
	Stream Ciphers
	Slid Pairs in Salsa20 and Trivium
	Introduction
	Slid Pairs in Salsa20
	Brief Description of Salsa20
	Slid Pairs
	Sliding State Recovery Attack on the Davies-Meyer Mode
	A Generalized Related Key Attack on Salsa20
	Time-Memory Tradeoff Attacks on Salsa

	Slid Pairs for Trivium
	Brief Description of Trivium
	Slid Pairs
	Systems of Equations

	Conclusion
	References

	New Directions in Cryptanalysis of Self-Synchronizing Stream Ciphers
	Introduction
	An Approach for Key Recovery on a Keyed Function
	Connection with PreviousWorks

	Self-Synchronizing Stream Ciphers
	Attack Models on Self-Synchronizing Stream Ciphers

	Description of the Klimov-Shamir T-Function Based Self-Synchronizing Stream Cipher
	Analysis of the Klimov-Shamir T-Function Based Self-Synchronizing Stream Cipher
	Towards a Systematic Approach to FindWeak Ciphertext Bits
	Conclusion
	References

	Analysis of RC4 and Proposal of Additional Layers for Better Security Margin
	Introduction and Motivation
	Movement Frequency of Permutation Values
	Removing the Weaknesses of KSA
	Existing Weaknesses
	Proposal for KSA^{+} : A Revised KSA
	Analysis of KSA^{+} with Respect to RC4 KSA

	PRGA^{+}: Modifications to RC4 PRGA
	Conclusion
	References

	New Results on the Key Scheduling Algorithm of RC4
	Introduction
	The RC4 Stream Cipher
	Previous Work on RC4
	Notations and Basic Assumptions
	Notations
	Previous Biases of the KSA

	Useful Distributions of the KSA
	New Bias
	More Distributions

	The Key Recovering Algorithm
	Key Guessing Methods
	Initial Key Guessing
	The Update Mechanism
	The Algorithm

	Experimental Results
	Conclusions
	References

	Cryptographic Hash Functions
	Two Attacks on RadioGat\'{u}n
	RadioGat\'{u}n
	Trails
	Symmetric Trails and Trails with Fixed Differences
	Truncated Differentials and Linear Space of Differences

	Collision Search
	Second Preimage Search
	Implementation of Attacks
	Conclusions
	References

	Faster Multicollisions
	Introduction
	Contribution
	Related Work
	Notations

	Joux Multicollisions
	Kelsey/Schneier Multicollisions
	Fixed-Points
	Basic Strategy
	Multiple Fixed-Points and Message Length

	Faster Multicollisions
	Description
	Finding Fixed-Point Collisions
	Distinct-Length Multicollisions
	Comparison to Joux and Kelsey/Schneier
	Application to Concatenated Hash Functions
	Countermeasures

	Conclusions
	References

	A New Type of 2-Block Collisions in MD5
	Introduction
	Preliminaries
	MD5 Compression Function
	Differential Paths

	New 2-Block Collisions in MD5
	On Our Implementation of Stevens Algorithm
	Extending Partial Differential Paths
	Connecting Partial Differential Paths
	Choosing Parameters

	Conclusion
	References

	New Collision Attacks against Up to 24-Step SHA-2
	Introduction
	Preliminaries
	SHA-2 Hash Family

	Nonlinear Local Collision for SHA-2
	The Deterministic 22-Step SHA-2 Attack
	A General Idea for Obtaining 23 and 24-Step SHA-2 Collisions
	Satisfying Conditions on the Differential Path

	23-Step SHA-2 Collisions
	Case i = 8
	Relation to the 23-Step Collision from [3]

	24-Step Collisions
	Exhibiting Colliding Message Pairs
	References

	Public-Key Cryptography – I
	Secure Hierarchical Identity Based Encryption Scheme in the Standard Model
	Introduction
	Definitions
	Bilinear Map
	Complexity Assumptions
	Secure Models

	Hierarchical Identity Based Encryption Scheme
	Set Up
	Key Generation
	Encryption
	Decryption

	Analysis of the HIBE Scheme
	Indistinguishability of the Ciphertext
	Efficiency

	Conclusions
	References

	A Fuzzy ID-Based Encryption Efficient When Error Rate Is Low
	Introduction
	Model
	System and Algorithms
	Security Requirements

	ProposedScheme
	Security Analysis
	Preliminaries
	Security of the Proposed Scheme

	Comparison
	References

	Type-Based Proxy Re-encryption and Its Construction
	Introduction
	Preliminaries
	Review of Pairing
	Review of Public Key Encryption

	The Concept of Type-Based Proxy Re-encryption
	Threat Model for Type-Based Proxy Re-encryption
	Formal Security Definitions

	CPA-Secure Scheme with Ciphertext Privacy
	Description of the Scheme
	Security Analysis

	CCA-Secure Scheme without Ciphertext Privacy
	Description of the Scheme
	Security Analysis

	Conclusion
	References

	Toward a Generic Construction of Universally Convertible Undeniable Signatures from Pairing-Based Signatures
	Introduction
	Related Work
	Our Contributions

	Preliminaries
	Bilinear Maps
	Digital Signatures
	Public-Key Encryption Schemes
	Key Encapsulation Mechanisms (KEM)

	Universally Convertible Undeniable Signatures (UCUS)
	Definition
	Security Model

	A Systematic Approach for UCUS from Some Cryptosystems and Digital Signatures
	Design Principle
	Proposed Construction
	Security Analysis and Efficiency Considerations

	Construction of UCUS from Certain Pairing-Based Signatures Using KEMs
	Defining the Class \C_1 of Signatures and \K of KEMs
	Construction

	Toward a Generic Construction of UCUS from Pairing-Based Signatures
	Generic Construction

	Conclusion
	References

	Security Protocols
	Concrete Security for Entity Recognition: The Jane Doe Protocol
	Introduction
	Scenario Description
	The Jane Doe Protocol
	Security
	Building Blocks and Assumptions
	Proving Security for Epoch 0
	Security in Any Epoch i

	Final Remarks and Conclusion
	References

	Efficient and Strongly Secure Password-Based Server Aided Key Exchange
	Introduction
	Password-Based Key Exchange in the 3-Party Setting
	Need for New Security Models
	Our Contribution

	Preliminaries
	3-Party PAKE
	Problems of Previous Models

	New Model: Strong 3-Party PAKE Security
	Adversary Capabilities
	Definition of Indistinguishability
	Definition of Password Protection

	ProposedScheme
	Notation
	Protocol Description
	Design Principles

	Security of Our Scheme
	Building Blocks
	Main Theorems

	Conclusion
	References

	Round Efficient Unconditionally Secure Multiparty Computation Protocol
	Introduction
	Unconditionally Secure MPC Protocol with $n = 2t + 1$
	Information Checking (IC [10,15])
	Unconditional Verifiable Secret Sharing and Reconstruction
	Generating Random t'-$2D^{(+,\ell)}$-Sharing
	Proving $c = ab$
	Multiplication
	Proving a=b
	Resharing
	Preparation Phase
	Input Phase
	Computation Phase

	References

	A New Anonymous Password-Based Authenticated Key Exchange Protocol
	Introduction
	Our Contribution
	Organization

	Security Flaws of Two Distributed Anonymous PAKE Protocols
	Brief Review of the TAP Protocol
	The Impersonating Attack against TAP
	The Off-Line Dictionary Attack against TAP and k-Out-of-n APAKE

	The Model and Security Notions
	Formal Model
	Security Notions
	Cryptographic Assumption

	The New Anonymous PAKE Protocol
	Protocol Description
	Security
	Efficiency
	Extension of NAPAKE

	Conclusion
	References

	Group Key Management: From a Non-hierarchical to a Hierarchical Structure
	Introduction
	Related Work
	Our Contribution
	Organization of the Paper

	Problem and Model
	Notation
	Actors and Procedures
	Security Properties

	UsefulTools
	The HMAC Functions
	The Notion of Refreshable and Replayable Group Key Agreement

	Our Key Management Scheme
	Overview of Our Solution
	Detail Procedures
	Security Considerations
	Efficiency Considerations
	The Dynamic Case

	Conclusion
	References

	Hardware Attacks
	Scan Based Side Channel Attacks on Stream Ciphers and Their Counter-Measures
	Introduction
	Preliminaries
	Scan Chains and Scan Based Attacks

	A Case Study on the Trivium Stream Cipher
	Objective of the Attacker
	Attack on Trivium
	Deciphering the Cryptogram
	Attack Simulation

	Generalization of the Attack on Stream Ciphers
	Prevention Mechanism
	Reset Attack on Flipped-Scan Mechanism
	Description of Xor-Chain
	Testability
	Security Analysis
	Hardware Overhead

	Conclusion
	References

	Floating Fault Analysis of Trivium
	Introduction
	Related Work
	Trivium Description in the Floating Model
	Attack Prerequisites
	Floating Fault Analysis of Trivium
	Faults in the Floating Model and the Corresponding Delta-Equations
	Fault Position Determination
	The Equations System and Its Processing
	The Attack Algorithm
	Implementation and Complexity
	Effort for Further Improvements

	Conclusion
	References

	Algebraic Methods in Side-Channel Collision Attacks and Practical Collision Detection
	Introduction
	Preliminaries
	Basic Notation
	Linear Collision-Based Key Recovery
	Direct Binary Comparison Using Side-Channel Signal
	Ternary Voting: Indirect Comparison of Traces Using Profiling

	Algebraic Collision-Based Key Recovery
	Nonlinear Collisions
	Constructing Systems of Equations for FS- and FL-Collisions
	Solving Systems for FS- and FL-Collisions
	Key Recovery Robust to Type I Collision Detection Errors

	Towards Reliable Collision Detection in Practice
	Experimental Validation
	AES Implementation and Measurement Equipment
	Attack Scenarios and Results

	References

	Block Ciphers
	New Related-Key Boomerang Attacks on AES
	Introduction
	Description of the AES
	The Related-Key Boomerang Attack
	Related-Key Boomerang Attack on 7-Round AES-192
	Related-Key Boomerang Attack on 9-Round AES-192
	Conclusion
	References

	New Impossible Differential Attacks on AES
	Introduction
	Description of AES
	The Notations Used in the Paper

	The Phan Impossible Differential Attack on 7-Round AES-192
	The Phan Attack Algorithm on 7-Round AES-192

	Improving and Extending the Phan Attack
	Improvement of the Phan Attack on 7-Round AES-192
	Extension of the Phan Attack to 8-Round AES-256

	Summary and Conclusions
	References

	Reflection Cryptanalysis of Some Ciphers
	Introduction
	Notation and Previous Self-similarity Analyses
	Chosen Plaintext Attack on Full-Round GOST
	Description of the Attack

	Generalizations of Reflection Attack
	Reflection Attack on Feistel Networks

	Known Plaintext Attack on 30-Round GOST
	Cryptanalysis of 2K-DES
	Weak Keys of DEAL
	Discussion
	References

	A Differential-Linear Attack on 12-Round Serpent
	Introduction
	ADescriptionofSerpent
	Differential-Linear Cryptanalysis
	Differential-Linear Attacks on Serpent
	The Previous Attack on 11-Round Serpent
	Further Improvements of the 11-Round Attack
	12-Round Differential-Linear Attack
	10-Round Differential-Linear Attack on Serpent with 128-bit Keys

	A Related-Key Attack on a Modified Serpent
	Summary
	References

	New AES Software Speed Records
	Introduction
	A Short Review of AES
	Saving Instructions for AES
	Baseline (720 Instructions)
	Table Structure and Index Extraction
	Speedups for the Last Round
	Further Speedups

	Saving Cycles for AES
	Motorola PowerPC G4 7410, ppc32 Architecture
	Intel Pentium 4 f12, x86 Architecture
	Sun UltraSPARC III, Sparcv9 Architecture
	Intel Core 2 Quad Q6600 6fb, amd64 Architecture
	AMD Athlon 64 X2 3800+ 15/75/2, amd64 Architecture

	References

	Public-Key Cryptography – II
	A New Class of Weak Encryption Exponents in RSA
	Introduction
	Our Basic Technique
	Improvements over the Work of [12]
	The Improvement in the Bounds of X, Y
	Further Improvement over Section 3.1
	Experimental Results

	ANewClassofWeakKeys
	Experimental Results
	Estimation of Weak Keys

	Conclusion
	References

	Two New Efficient CCA-Secure Online Ciphers: MHCBC and MCBC
	Introduction
	Basic Definition and Results
	Two Known Online Ciphers : HCBC1 and HCBC2
	HCBC1 [1]
	HCBC2 [1]

	Two New Online Ciphers : MHCBC and MCBC
	MHCBC
	MCBC or Modified-CBC

	Conclusion
	References

	Cryptographic Hardware
	Chai-Tea, Cryptographic Hardware Implementations of xTEA
	Introduction
	Extended Tiny Encryption Algorithm
	Speed XTEA
	FPGA Implementation
	ASIC Implementation

	TinyXTEA
	ASIC Implementation
	FPGA Implementation

	Results
	ASIC Implementations
	FPGA Implementations

	Conclusion
	References

	High Speed Compact Elliptic Curve Cryptoprocessor for FPGA Platforms
	Introduction
	Background
	Implementing Finite Field Primitives on an FPGA
	Finite Field Multiplication
	Finite Field Inversion

	Elliptic Curve Crypto Processor
	Point Equations on the ECCP

	Performance Evaluation
	Conclusion
	References

	Elliptic Curve Cryptography
	More Discriminants with the Brezing-Weng Method
	Introduction
	Framework
	Security Parameters
	Curve Generation

	Algorithms
	The Brezing-Weng Method
	Our Improvement

	Constructions
	Generic Construction
	Examples

	References

	Another Approach to Pairing Computation in Edwards Coordinates
	Introduction
	Preliminaries
	Edwards Coordinates
	Background on Pairings

	Pairings on Edwards Curves
	Arithmetic of the Curve $s^2p=(1+dp)^2-4p$
	Miller’s Algorithm on the Edwards Curve

	Pairing Computation in Edwards Coordinates
	The Case of an Even Embedding Degree

	Conclusion
	References

	Threshold Cryptography
	A Verifiable Secret Sharing Scheme Based on the Chinese Remainder Theorem
	Introduction
	Asmuth-Bloom Secret Sharing Scheme
	Analysis of the Existing CRT-Based VSS Schemes
	Verifiable Secret Sharing with Asmuth-Bloom SSS
	Range Proof Techniques
	A CRT-Based VSS Scheme
	Analysis of the Proposed VSS Scheme

	Joint Random Secret Sharing
	Analysis of the Proposed JRSS Scheme

	Conclusion
	References

	Secure Threshold Multi Authority Attribute Based Encryption without a Central Authority
	Introduction
	Previous Work
	Our Contribution
	Organization

	Preliminaries
	Decisional BDH Assumption
	Communication Model
	Distributed Key Generation Protocol (DKG) and Joint Zero Secret Sharing Protocol (JZSS)

	Adversary and Security Model
	Threshold MA-FIBE Scheme without a Central Authority
	Primitive Idea
	The Proposed Scheme

	Extensions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

