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Message from the General Chairs

The 2008 International Conference on Cryptology in India (INDOCRYPT 2008)
was the ninth event in this series. It was organized by the Department of Com-
puter Science and Engineering, Indian Institute of Technology Kharagpur, in
co-operation with the Cryptology Research Society of India (CRSI). Over the
years, INDOCRYPT has become a leading forum for disseminating the latest re-
search results in cryptology. This year’s conference brought together leading and
eminent researchers worldwide in Kharagpur (India), during December 14-17,
2008, to present and discuss a wide variety of aspects on cryptology and security.

The program of the conference spanned over four days and included, in ad-
dition to a high-quality technical program, two tutorials delivered by the very
best in the field, giving young researchers and students an excellent opportunity
to learn about the latest trends in cryptography and cryptanalysis.

A conference of this magnitude would not have been possible without the hard
and excellent work of all the members of the Organizing Committee. Our special
thanks are due to Dipanwita Roy Chowdhury and Vincent Rijmen (Program
Co-chairs) for coordinating and leading the effort of the Program Committee,
culminating in an excellent technical program. We are grateful to the Tutorial
Chair, Debdeep Mukhopadhyay, for arranging two high-quality tutorial talks by
eminent leaders in the field.

We are indebted to all other members of the Organizing Committee for their
excellent work. Dilip Kumar Nanda (Organizing Chair) along with his team co-
ordinated all the local arrangements with elan. Abhijit Das (Publication Chair)
managed the publication of the conference proceedings through his tireless ef-
forts. We also take this opportunity to acknowledge the contributions of the
Publicity Chair (Soumen Maity) and of the Finance Chair (Raja Datta) to the
success of the conference. No amount of thanks is sufficient for the omnipresent
team of enthusiastic volunteers who did their best for the smooth sailing of the
conference.

Last but not the least, we extend our heartfelt thanks to the authors, the
reviewers, the participants, and the sponsors of the conference, for their vital
contributions to the success of the event.

December 2008 Indranil Sen Gupta
Bimal K. Roy



Message from the Technical Program Chairs

Welcome to the Proceedings of the 9th International Conference on Cryptology,
INDOCRYPT 2008. This annual event started off eight years ago in the year
2000 by the Cryptology Research Society of India and has gradually matured
into one of the topmost international cryptology conferences.

This year we received 111 papers from all over the world. After a rigorous
review process, the Program Committee selected 33 papers out of the 111 sub-
missions. Most of the papers received at least three independent reviews made
by the Program Committee members and also by additional external experts.
The papers along with the reviews were scrutinized by the Program Commit-
tee members during a two-week discussion phase. We would like to thank the
authors of all the papers for submitting their quality research work to the con-
ference. Special thanks go to the Program Committee members and the external
reviewers who gave their precious time in reviewing and selecting the best set of
papers.

We are fortunate to have several eminent researchers as keynote and invited
speakers. The main conference program was preceded by a day of tutorial pre-
sentations. We would like to thank Debdeep Mukhopadhyay, the Tutorial Chair,
for his active initiation and enthusiasm to make the tutorial sessions a success.
We would like to express our thanks to Abhijit Das, the Publication Chair,
who gave his precious time to compile the conference proceedings. Further, we
thank Anirban Sarkar, who helped with the setting up and maintenance of the
conference Web server.

We hope that you will find the INDOCRYPT 2008 proceedings technically
rewarding.

December 2008 Dipanwita Roy Chowdhury
Vincent Rijmen
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Slid Pairs in Salsa20 and Trivium

Deike Priemuth-Schmid and Alex Biryukov

FSTC, University of Luxembourg
6, rue Richard Coudenhove-Kalergi,
L-1359 Luxembourg
(deike.priemuth-schmid,alex.biryukov)@uni.lu

Abstract. The stream ciphers Salsa20 and Trivium are two of the fi-
nalists of the eSTREAM project which are in the final portfolio of new
promising stream ciphers. In this paper we show that initialization and
key-stream generation of these ciphers is slidable, i.e. one can find distinct
(Key, IV) pairs that produce identical (or closely related) key-streams.
There are 22°¢ and more then 23° such pairs in Salsa20 and Trivium
respectively. We write out and solve the non-linear equations which de-
scribe such related (Key, IV) pairs. This allows us to sample the space
of such related pairs efficiently as well as detect such pairs in large por-
tions of key-stream very efficiently. We show that Salsa20 does not have
256-bit security if one considers general birthday and related key distin-
guishing and key-recovery attacks.

Keywords: Salsa20, Trivium, eSSTREAM, stream ciphers, cryptanalysis.

1 Introduction

In 2005 Bernstein [2] submitted the stream cipher Salsa20 to the eSTREAM-
project [5]. Original Salsa20 has 20 rounds, later 8 and 12 rounds versions were
also proposed. The cipher Salsa20 uses the hash function Salsa20 in a counter
mode. Its 512-bit state is initialized by copying into it 128 or 256-bit key, 64-
bit nonce and counter and 128-bit constant. Previous attacks on Salsa used
differential cryptanalysis exploiting a truncated differential over three or four
rounds. The first attack was presented by Crowley [4] which could break the 5
round version of Salsa20 within claimed 310 trials. Later a four round differential
was exploited by Fischer et al. [6] to break 6 rounds in 2177 trials and by Tsnunoo
et al. [I2] to break 7 rounds in about 2! trials. The currently best attack by
Aumasson et al. [I] covers 8 round version of Salsa20 with estimated complexity
of 2251,

The stream cipher Trivium was submitted by De Canniére and Preneel [3]
in 2005 to the eSTREAM-project [5]. Trivium has an internal state of 288 bits
and uses an 80-bit key and an 80-bit initial value (IV). The interesting part of
Trivium is the nonlinear update function of degree 2. In [I0] Raddum presented
and attacked simplified versions of Trivium called Bivium but the attack on
Trivium had a complexity higher than the exhaustive key search. Bivium was

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 1 2008.
© Springer-Verlag Berlin Heidelberg 2008



2 D. Priemuth-Schmid and A. Biryukov

completely broken by Maximov and Biryukov [§] and an attack on Trivium with
complexity about 2'°° was presented which showed that key-size of Trivium can
not be increased just by loading longer keys into the state. In [9] McDonald et
al. attacked Bivium using SatSolvers. Another approach that gained attention
recently is to reduce the key setup of Trivium as done by Turan and Kara [13]
and Vielhaber [14]. So far no attack faster than exhaustive key search was shown
for Trivium.

In this paper we start with our investigation of Salsa20 followed by a descrip-
tion of the attacks. We show that the following observation holds: suppose that
you are given two black boxes, one with Salsa20 and one with a random map-
ping. The attacker is allowed to chose a relation F for a pair of inputs, after
which a secret initial input « is chosen and a pair (z, F(z)) is encrypted either by
Salsa20 or by a random mapping. We stress that only the relation F is known
to the attacker. The goal of the attacker is given a pair of ciphertexts to tell
whether they were encrypted by Salsa20 or by a random mapping. To make the
life of the attacker more difficult the pair may be hidden in a large collection of
other ciphertexts. It is clear that for a truly random mapping no useful relation
F would exist and moreover there is no way of checking a large list except for
checking all the pairs or doing a birthday attack. On the other hand Salsa20
can be easily distinguished from random in both scenarios if F is a carefully
selected function related to the round-structure of Salsa20. Moreover it is not
only a distinguishing but also a complete key-recovery attack via discovering the
initial state. Our attacks are independent of the number of rounds in Salsa and
thus work for all the 3 versions of Salsa. We also show a general birthday attack
on 256-bit key Salsa20 with complexity 2!92 which can be further sped up twice
using sliding observations.

In the second part of this paper we describe our results about Trivium which
show a large related key-class (239 out of 280 keys) which produce identical key-
streams up to a shift. We solve the resulting non-linear sliding equations using
Magma and present several examples of such slid key-IV pairs. The interesting
observation is that for a shift of 111 clocks 24-key-bits do not appear in these
equations and thus for a fixed IV there is a 224 freedom of choice for the key
that may have a sliding property.

2 Slid Pairs in Salsa20

2.1 Brief Description of Salsa20

The Salsa20 encryption function uses the Salsa20 hash function in a counter
mode. The internal state of Salsa20 is a 4 x 4 - matrix of 32-bit words. A vector
(Y0, Y1, Y2, ys3) of four words is transformed into (zo, 21, 22, 23) by calculatin

z1=1y1 B ((yo+y3) K 7) z3 =ys B ((22 + z1) <« 13)
zo=y2® ((z1 +v0) K 9) 20 =90 @ ((23 + 22) K 18) .

! In the complete Salsa20 section the symbol “+” denotes the addition modulo 232,
the other two symbols work at the level of the bits with “®” as XOR-addition and
“<” as a shift of bits.
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This nonlinear operation called quarterround is the basic part of the column-
round where it is applied to columns as well as of the rowround to transform
rows. A so called doubleround consists of a columnround followed by a row-
round. The doubleround function of Salsa20 is repeated 10 times. If Y denotes
the matrix a key-stream block is defined by

Z =Y + doubleround'’(Y) .

One columnround as well as one rowround has 4 quarterrounds which means 48
word operations in total. Thus the 10 doublerounds of Salsa20 give 960 word
operations and result with the 16 word operations from the feedforward in 976
word operations in total for one encryption.

The cipher takes as input a 256-bit key (ko, ..., k7), a 64-bit nonce (ng,n1)
and a 64-bit counter (co, c1). A 128-bit key version of Salsa20 copies the 128-bit
key twice. In this paper we mainly concentrate on the 256-bit key version. The
remaining four words are set to fixed publicly known constants, denoted with
00,01,0% and o3.

2.2 Slid Pairs

The structure of a doubleround can be rewritten as columnround then a matrix
transposition another columnround followed by a second transposition. We define
F to be a function which consists of a columnround followed by a transposition.
Now the 10 doublerounds can be transferred into 20 times function F. If we have
2 triples (keyl, noncel, counterl) and (key2, nonce2, counter2) so that

F [ 15" starting state (keyl, noncel, counterl)]
= 2" starting state (key2, nonce2, counter2)

then this property holds for each point during the round computation and espe-
cially its end. Pay attention that the feedforward at the end of Salsa20 destroys
this property. We call such a pair of a 15 and 2"¢ starting state a slid pair and
show their relation in Fig.[l

Sl—>.7-'-0—> 19 x F -OX—>EH—>Z

S’T—> 19x 7 fo—s| 7 o >— 7

Fig. 1. Relation of a slid pair

In a starting state four words are constants and 12 words can be chosen freely
which leads to a total amount of 2384 possible starting states. If we want that
a starting state after applying function F results in a 2°¢ starting state we
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obtain four wordwise equations. This means we can choose eight words of the
15¢ starting state freely whereas the other four words are determined by the
equations as well as the words for the 2"d starting state. This leads to a total
amount of 22°¢ possible slid pairs.

For the 128-bit key version no such slid pair exists due to the additional
constrains of four fewer words freedom in the 15¢ starting state and four more
wordwise equations in the 2" starting state.

With function F we get two equations S’ = F(S) and X' = F(X). The
words for these matrices we denote as

g0 ko k1 ko ro T1 T2 I3 20 21 R2 23
g— k3 o1 no n1 x| ¥4 @ w6 w7 g | # % 2z
co 1 02 ks T3 X9 T10 Ti1l z8 29 Z10 211
ks ke k7 o3 T12 T13 T14 T15 Z12 213 214 215
oo kg ki kb xo Ty ThH Tk 20 21 zh 24
! ! ! ! ! ! ! ! ! ! !
’ k3 o1 ny ny ’ Ty Ts Te L7 7 24 25 Ze 27
S’ = ro K X' = / / ’ ’ Z = / o /
Co C1 02 Ry Ty Tg9 Tio T11 28 29 210 *11
/ / ! ! ! ! ! ! ! ! !
ks kg k7 o3 T12 T13 T14 T15 212 %13 %14 %15

The set up of the system of equations for a whole Salsa20 computation is too
complicated but the equations for the computation of F are very clear. For a
complete description of the equations see the appendix[Al The structure of both
systems of equations coming from the relation F is the same especially all the
known variables are at the same place. Due to the eight words freedom we have
in a 1°¢ or 2" starting state there are some relations in the 12 non-fixed words.
For the 2°¢ starting state these relations are very clear as they deal only with
words

0=kh+k), O0=ki+n}, 0=c\+c¢, and 0=Fk,+k;, (1)

whereas for the 1% starting state these relations depend on the bits and thus
are more complicated. Sliding by the function F is applicable to any version of
Salsa20/r where 7 is even. For r odd there would be no transposition at the end
of the round computation, equations are a bit different, though still solvable.

2.3 Sliding State Recovery Attack on the Davies-Meyer Mode

In this subsection we consider a general state-recovery slide attack on a Davies-
Meyer construction. We demonstrate it on an example of Davies-Meyer feedfor-
ward used with the iterative permutation from Salsa20. The feedforward breaks
the sliding property and makes slide attack more complicated to mount. We
consider the following scenario:

1. The oracle chooses a secret 512-bit state S (here we assume that there is no
restriction of 128-bit diagonal constants and the full 512 bits can be chosen
at random).

2. The oracle computes F(S) = 5’.
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3. The oracle computes Salsa20(S), Salsa20(S”) and gives them to the attacker.
4. The goal of the attacker is to recover the secret state S.

Due to the weak diffusion of F the attacker can write separate systems of equa-
tions for each column of S. If one combines for one column the quarterround
coming from S’ = F(S) the corresponding quarterround from X’ = F(X) and
the feedforward one gets a system with 16 equations shown below. We assume
all 16 variables are unknown.

s1=352® ((so+s12) K T7) 21 =24 ® (w0 + 12) K 7)
sy =355 D ((s1 +s0) K 9) zh =23 ® (7] + 30) K 9)
s5 =512 @ ((sp + s1) <« 13) x5 = x12 @ ((25 + 77) K 13)
50 = 50 @ ((s5 + s2) < 18) zh = xo @ ((v5 + 72) < 18)
20 = To + S0 28 = Tg + Ss 20 = xh + 8y 25 = xh + sh
Z4 = X4+ S84 212 = T12 + S12 2=z + 81 23 =a3+ s3

This system can be reduced to four equations. In the first equation two variables
must be guessed to solve it. In the remaining three equations always two variables
are known either the guessed s-variable or the calculated s’-variable. Thus they
can be solved without guessing any more variables. Depending on which variables
are guessed or known some of the equations can be used to check the guess.

2 = [(2‘4 —54)® ([(Zo —50) + (212 — 512)] K 7)} + [84 @ ((s0 + s12) 7)]
25 = [(28 — s8) ® ([(21 — s1) + (20 — s0)] << 9)] + [s8 D ((s1 + s0) << 9)]

25 = (212 — s12) ® ([(25 — s5) + (21 — s1)] << 13)] + [s12 @ ((sh + s1) <« 13)]
20 = (20 — 50) ® ([(25 — s5) + (22 — 55)] < 18)] + [s0 @ ((s5 + 55) < 18)]

Therefore the system of equations for one column with complete unknown vari-
ables can be solved by guessing only two variables. With the four guesses of 264
steps each the attacker can completely recover the 512-bit secret state S. This
shows that Salsa20 without the diagonal constants is easily distinguishable from
a random function, for which a similar task would require about 25! steps.

The addition of the diagonal constants reduces the flexibility of the oracle in
a choice of the initial states to 2256 but the attack works even better:

1. The oracle chooses a starting state S’ with key k', nonce n’ and counter ¢’
satisfying equations (). The attacker does not know this state.

2. The oracle applies .7:71(5’) to compute the related key k, nonce n and
counter c.

3. The oracle computes Salsa20(S), Salsa20(S”) and gives them to the attacker.

4. The goal of the attacker is to recover the secret state S.

The knowledge of the diagonal makes the previous attack even faster and allows
the full 384-bit (256-bit entropy) state recovery with complexity of 4-232 because
the known words appear at the same place in the system of equations for the
columns. If in a system of equations for one column two known variables appear
at different places this system is solvable immediately.

If the attacker chooses the nonce and the counter n’, ¢’ (160-bits of entropy)
then the complexity drops to 2 - 232. Furthermore if nonce and counter n, ¢ are
known (128-bits of entropy left). The state can be recovered immediately (with
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Fig. 2. Relation of the 1% and 2"¢ starting state

or without knowing counter ¢’ and nonce n'). Figure 2l shows the relation for the
starting states with the known words indicated as grey squares.

Due to the fact that we are able to recover the full internal state this attack
also works as a related key key-recovery attack on Salsa20 because the key is
loaded directly into the internal state. A detailed description how to recover
both keys for a slid pair is given in the extended version [II]. Table [ shows the
time complexities for the described attacks, memory complexity is negligible.

Table 1. Time complexities for state-recovery attacks

known words of the starting states sliding on Salsa20  random oracle
nothing 966 9511
only diagonal 234 2255
diagonal, nonce and counter n’, ¢’ 233 2159
diagonal, nonce and counter n, ¢ o(1) 2127
diagonal, nonce and counter n,c and n’, ¢ O(1) 263

2.4 A Generalized Related Key Attack on Salsa20

Suppose we are given a (possibly large) list of ciphertexts with the corresponding
nonces and counters and we are told that in this list the slid pair is hidden. The
question is, can we find slid pairs in a large list of ciphertexts efficiently? As we
saw in the previous section, given such slid ciphertext pair it is easy to compute
both keys. The task is made more difficult by the feedforward of Salsa20, which
destroys the sliding relationship. Nevertheless in this section we show that given
a list of ciphertexts of size O(2) it is possible to detect a slid pair with memory
and time complexity of just O(QZ)E. The naive approach which would require to
check for each possible pair the equations from function F will have complexity
O(2%) which is too expensive. Our idea is to reduce the amount of potential
pairs by sorting them by eight precomputed words, so that only elements where
these eight words match have the possibility to yield a slid pair. After decreasing
the number of possible pairs in that way we can check the remaining pairs using
additional constraints coming from the sliding equations.

2 Sorting is done via Bucket sort so we save the logarithmic factor ! in complexity.
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For the sorting we use Bucket sort because each word has only 232 possibilities.

The number of words we sort by is equal to the number of runs of Bucket sort.

We have a set M of ciphertexts with corresponding nonces and counters. Each

ciphertext can be either a 15¢ or a 279 starting state to regard this the set is

stored twice first under M; to check for possible 1 starting states and second
under M> to check for possible 2" starting states.

Step 1: Sort the first list

For each element in set M7 undo the feedforward for the four words on the diago-
nal and xg = zg—c1. Then sort M; by the specified eight words xg, x5, 10, 15, Tg
and C1,21,%213-

Step 2: Sort the second list

Select only elements of My that satisfy equation 0 = ¢, 4+ ¢} since only such an
entry can be a 2°¢ starting state. For each element undo the feedforward for the
four words on the diagonal and 7y, . . ., zj because nonces and counters are known.
Then compute for each element the words marked in bold in the equations

o = zp D ((25 + 25) K 18) ks = —n}

x5 = 25 @ ((24 +ny + 27) K 18) T10 = 210 ® (79 + 25) <« 18)

T15 = 215 © (213 + 214) K 18) w1 = (23 +n1) ® ((27 + 26) K 13)
o =25 D ((w5 + x1) K 7) ko = k5 @ ((ny +nb) <« 13)
c1=n5® ((01+ ko) K 7) z1 =1z1+ ko

ke =n) & ((ny +01) K 9) z13 = (ke + 27) & (w6 + x5) < 9) .

During this computation we calculate three key words kg, k¢ and k%. Sort the
set Mo by the calculated eight words g, x5, T10, 15,9 and cy, 21, 213 for the
potential 15 starting states.

Step 3: Check each possible pair

Cross check all the possible pairs that match in the eight words and thus satisfy
the 256-bit filtering. For the conforming pairs we can continue the check, using
the following equations. If a test condition is wrong this pair can not be a slid
pair. For each pair undo for the ciphertext of the 1% starting state the feedfor-
ward for the word xg = z¢ — ng. Then compute the bold variables and check the
three conditions below

compute ki =—cj+ ((no®cy) > 13) i1 = —a5+ (w6 D wg) >> 13)

k1 =co® ((ky +02) < 9) T2 = x5 ® ((z11 + x10) K 9)
k7:kﬁ@((02+no) <« 7) 9314:33/11@((3310+$6) <« 7)
check 211 = 2h + kY z2 = X2+ k1 214 = 14 + k7 .

During this computation we calculate the three key words k1, k7 and k.

3 If the number of rounds of Salsa is odd then such simple sorting would not be possible,
since Salsa equations are easier to solve in reverse direction. In our approach we know
2 words at the input and 3 words at the output of the columnround which is easier
to solve than the opposite (3 words at the input vs. 2 at the output). Nevertheless
the system is still solvable.
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For the rest of the pairs we have two similar systems of equations to check.
We first solve the following equations

25 = [(z8 — co) ® ((21 — kb + w0) < 9)] + [co @ (kb + 00) << 9)]
213 = [(27 — 1) © ((212 — ks + 215) K 9)] + [m1 @ ((k5 + 03) K 9)]

and if there is no solution for k{, or kf this pair can not be a slid pair. Otherwise
we use k(, as well as ki, to compute four more key words while we check two more
conditions in each system

with kj Ky =co® ((k0 +00) K 9) ks = —ki

ks = kb @ (K + k) << 13) xy =21 — kg

T12 = (25 — kz) ((z5 — kY +71) < 13)

ks =k\® ((00 + ks) < 7) s =21 O ((z0 + z12) K 7)
check z12 = 12 + ks 24 = T4+ k3
with kf ks =n1 @ (k5 + 03) << 9) 7= —kg

=k & ((ks + ks5) < 13) xh2 = 212 — k5

x11 = (214 — k7) @ ((213 — k6 + z12) K 13)

ko =ki® ((03+ka) K T) 3 =21 ® ((T15 +711) K 7)
check z11 = x11 + ka z3 =x3+ k2 .

For the checking of the potential slid pairs we have nine extra test conditions
while expecting only seven but due to the different arithmetic operations the
dependencies of the equations are not clear. In total we have at least filtering
power of 32 x 7 bits. Thus we expect that only the correct slid pairs survive this
check. The remaining pairs are the correct slid pairs for which we completely
know both keys.

Complexity. Assume we are given a list of 2! ciphertexts with corresponding
nonces and counters. Instead of storing the list twice we use two kinds of pointers,
one for the potential 15¢ starting states and the other one for the potential 274
starting states. For the pointers we need 1/32 x 2! words of memory. The larger
the list of the random states in which our target is hidden — the larger would be
the complexity of the attack. However the time complexity of the attack grows
only linearly with the size of the list. A summary for the complexity of different
lists is given in Table? with memory in words and time in Salsa encryptions.
The number of slid pairs is 22°6 which gives for a random starting the prob-
ability of 27128 to be a 1% or a 2" starting state. Via the birthday paradox we

Table 2. Complexities for different list sizes

list size memory time
gl28 98 x 2128 gl22
9192 39 % 2192 9186

2256 36 X 2256 2250
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expect in an amount of 226 random ciphertexts for one slid pair both starting
states. We have described how to search in a big list efficiently for a slid pair
and recover both secret keys.

2.5 Time-Memory Tradeoff Attacks on Salsa

Salsa20 has 23%* possible starting states. We notice that the square root of 233 is
less than the keyspace size for keys longer than 192-bits. Thus a trivial birthday
attack on 256-bit key Salsa20 would proceed as follows:

In the preprocessing stage a list of randomly chosen starting states together
with their ciphertexts is generated and sorted by the ciphertexts. During the
on-line stage ciphertexts are captured and checked for a match with an entry of
the list. The corresponding key is retrieved from the entry in the list.

Of course due to very high memory complexity this attack can be only viewed
as a certificational weakness. The complexities are summarized in Table[3] where
R stands for a complete run of Salsa20 and M for a matrix of Salsa (16 words).

Table 3. Complexities for the birthday attack

attack state precomp. memory time  captured
for 256-bit key size space ciphertexts
chosen nonce and counter 2256 R x 2128 o)1 x 2128 9128 2128
chosen nonce or counter ~ 2%2° R x 2169 9opf x 2160 2160 2160
general 2381 R x 2192 gpf x 2192 9192 2192
using sliding property 238 R x 2192 950 x 2192 9192 glo1

Improved Birthday Using the Sliding Property. We can use the sliding
property to increase the efficiency of the birthday attack twice (which can be
translated into reduction of memory, time or increase of success probability of
the birthday attack).

Salsa20 has 2384 possible starting states in total and the sliding property
reduces the number of possible starting states to 2257 (a slid pair has two starting
states) which gives for a random starting state the probability of 27127 to be a
starting state for a slid pair (either 15* or 2°¢ one).

During the preprocessing stage we generate a sample of starting states
by using equation () from section and choose the remaining eight words at
random. We compute the corresponding ciphertexts for these states as well as
the eight specified words for the corresponding 15 starting states mentioned
in section 4] Step 2. We use two kinds of pointers to sort this generated list
by the ciphertexts for the 2" starting states and by the eight words for the
corresponding 15% starting state. We capture ciphertext from the key-stream
where we also know the nonce and the counter. The amount of 2'°! captured
ciphertexts contains about either 264 15t starting states or 264 274 starting states.
We check if the ciphertext is a correct one for a 2"¢ starting state from our list
(direct birthday) or is matching the eight words for a 15! starting state for one

2192 2nd
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of the states from our collection (then proceed as described in section[Z4] Step 3
to check the remaining eight words) (indirect birthday). In both cases we learn
the key for this ciphertext.

3 Slid Pairs for Trivium

3.1 Brief Description of Trivium

The designers introduced the stream cipher Trivium with a state size of 288 bits.
This internal state can be split into three registers. The first register which we
call A has length 93, the second one called B has length 84 and the last register
named C has 111 bits. The internal state is denoted in the following way

A: (s1,52,...,503) Bt (S94,505,...,8177) C: (S178,5279,...,5288) -

Update and Key-Stream Production. The nonlinear update function of
degree 2 uses 15 bits of the internal state to compute three new bits each for
one register and the key-stream bit z; is calculated by adding only 6 of these 15
bits together. In the following pseudo-code all computations are over GF(2).

1. t1 «— Se6+ So3 5. t1 +— 114591592+ 5171
2. t2 — s162 + Ss177 6. t2 «— t2+4 S175 - S176 + S264
3. t3 — 5243 + Soss 7. 13 «— t3+4 s286 - S287 + Se9
4. z; — ti+ta+ts

8. A (81,82,...,593) — (t3,81,...,892)

9. B: (894,895,...,8177) — (t1,894,...,8176)

10. C: (si78,8279,...,5288) «— (t2,8178,..., S287)

Key and IV Setup. In register A the 80-bit key is loaded and in register B the
80-bit IV. All remaining positions in the three registers are set to zero except
for the last three bits in register C which are set to one

A: (81,82,...,893) — (Kg(),...,K1,0,...,O)
B: (894,895,...,5177) — (I‘/go,...,lvl,o,...,())
C: (8178,5279,...,5288) — (0,...,0,1,1,1) .

In this paper we refer to this state with key, IV and 128 fixed positions as starting
state. After the registers are initialized in the described way the cipher is clocked
4 x 288 times using the update function without producing any key-stream bits.
This will finish the key setup. Now each following clock will produce a key-stream
bit.

3.2 Slid Pairs

We start with the observation made by Jin Hong on the eSTREAM forum [7],
that it is possible to produce sliding states in Trivium. We searched for pairs
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of key and IV which produce another starting state after a few clocks. If we
have a key and IV pair (K7,IV;) which produce another starting state with
a key and IV (K3, IV3), the created key-stream by (K2, IV3) will be the same
as the one created by (K7,IV;) except for a shift of some bits. The number
of shifted bits is equal the number of clocks needed to get from the 15 to the
27d starting state. We call such a pair of two key and IV pairs a slid pair and
denote this with [(K1,IV1), (K2, IV2),c] whereas ¢ stands for the number of
clocks-shifts.

Due to the special structure of the third register with 108 zeros and the last
three ones the first possibility of a 2°d starting state to occur is after 111 clocks.
Each following clock gives the chance for a 2°4 starting state. Two examples for
slid pairs written in hexadecimal numbers are given below. The bits for keys and
IVs are ordered from 1 to 80 but in the key and IV setup they are used the other
way around.

(K1, IV1), (K2, IV?),111]

K 70011000001E00000000

IV . AF9D635BCEF9AE376CF7

key—stream4: 2E7338CB404272ABEE3F7BEC2F8D
55E27536D29AFFFF15DFDFD711AECC78D13D7B61 ...

Ky 780000001DA2000003C1

IV . 1DF35CF6D4FFF4E3A6CO

key-stream: 55E27536D29AFFFF15DFDFD711AECC78D13D7B61 ...

(K3, IV3), (K4, IVy4),112]

Ks - 02065B9C001730000000

1Vs: 609FC141828705160A3C

key-stream: A48BCA9143685F03DE646F83AB52
88BC9542798983349A959503E63BBF29C4755DES6 . . .

Ky B98000003E96E70005CE

A 2B7C1483BC476A62E4CB

key-stream: 88BC9542798983349A959503E63BBF29C4755DES6 . . .

3.3 Systems of Equations

We describe the 2"? starting state as polynomial equations in the 80 key and
80 IV variables of the 15¢ pair. The 128 fixed positions in a starting state yield
a system of equations with 160 variables and 128 equations. We have more
variables than equations which gives us freedom in 32 variables. To solve these
systems we tried the F4 algorithm implemented in the computer algebra system
Magma to get a Grobner basis and the solutions for (K7, IV;) but gave up after
¢ = 115 because of the long computation time. A more brute force approach
guessing a part of the variables, check this guess and print the solution which

4 The shift is ¢ = 111 which means the first 111 bits are a prefix. When rewriting
these prefix from hexadecimal to binary numbers the leading zero must be omitted
because 111 is not a multiple of 4.
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Table 4. Some facts for the systems of equations

clock-shift ¢ 111 112 113 114 115 116 ... 124
variables in equations 136 137 138 139 140 141 ... 149
last key bits not in the equation 24 23 22 21 20 19 ... 11
a priori given bits 6 15 14 13 13 13 ... 13
computing time magma (days) 25 25 10 325 64 - - -
guess bits for magma® 0 4 6 8 10 - - -

we implemented for each individual ¢ worked much better. To get the 2" key
and IV one can use the systems of equations which describe the key and IV in
the 2°¢ starting state just inserting the known values of the 1% key and IV pair
or simply clock Trivium ¢ times starting from (K1, IV7) to get (Ko, IV2).

Some Facts about these Systems. The system of equations for the first
instance which appears after 111 clocks contains only 136 variables because the
last 24 bits of the key do not occur in this system. Furthermore 16 bits are given
a priori due to the 13 zeros in register A and 3 ones in register C. The degree
of the monomials in the equations raised from 1 to 3. Due to the missing of
the 24 key bits in the equations these bits can be chosen arbitrarily. This leads
us to 224 different keys for one IV in the 15 key and IV pair of a slid pair.
TableM collects some facts for the systems which we solved with our brute force
approach. We found that we have some times slightly less but most times slightly
more solutions that we would have expected. This is described in detail in [TT].
Each clock-shift yields in another but related system of equations and the
higher the clock-shift the more complicated the system of equations will be. Due
to the length of register C which defines the occurrence of a 2" starting state
we have at least 111 clock-shifts. Thus we have minimum 111 x 232 ~ 239 slid
pairs, just within a shift of 221 bits of each other. There are much more slid
pairs for longer shifts, but the equations would be much more complicated.

Nonexistence of Special Slid Pairs. We searched for slid pairs with ad-
ditional constraints. The first type applies when the keys in both key and IV
pairs are the same for any clock-shift c: ([(K,IV1),(K,IV3)],c) and the sec-
ond type applies when both times the same IV is used for any clock-shift c:
([(K1,1IV), (Ka,IV)],c). In both cases the fixed 2"¢ key or IV leads to 80 ad-
ditional equations which account for the occurrence of all 80-bit of key or IV
resulting in overdefined systems with 208 equations and 160 variables. For both
types the systems are not likely to be solvable for any reasonably small amount
of shift. As a result of the 48 extra equations the chance for such system to have
a solution is about 2748, We computed that for the first 31 instances (clock-shifts
111 up to 142) these systems have no solution.

5 We guessed these bits to get a solution from Magma in a reasonable amount of time.
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Conclusion

In this paper we have described sliding properties of Salsa20 and Trivium which
lead to distinguishing, key recovery and related-key attacks on these ciphers. We
also show that Salsa20 does not offer 256-bit security due to a simple birthday
attack on its 384-bit state. Since the likelihood of falling in our related key
classes by chance is relatively low (2256 out of 23% for Salsa20, 239 out of 289
for Trivium) these attacks do not threaten most of the real-life usage of these
ciphers. However designer of protocols which would use these primitives should
be definitely aware of these non-randomness properties, which can be exploited
in certain scenarios.
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A Salsa20 System of Equations for a Slid Pair

Word equations given by the equations S’

1. ky=ks® ((o0+ks) K 7)
2. ki =co® ((ko+00) K 9)
8. kb =ks® ((K + ko) < 13)
4. oo=o00® ((ky+Fk1) < 18)
5. np=c® ((o1+ko) K7)
6. nj=ke®((np+o01)<K9)
7. Ky =ko® ((n} +np) < 13)
8. o1 =01®((ki+n)) K 18)
9. ki=kr®((o2+n0) KT)
10. C{):]ﬂ@((kﬁl-f—dz) K 9)
11. ¢; =no® ((ch + ki) <« 13)
12. 02 =02 ® ((c} + c)) K 18)
18. ki =ko® ((03+ka) K 7)
14. ké =n; P ((ké + 0'3) < 9)
15. kb = ks ® ((kg + k5) << 13)
16. 03 = 03 ® ((k7 + k) < 18)

17.
18.
19.
20.

21.
22.
23.
24.

25.
26.
27.
28.

29.
30.
31.
32.

zh =24 @ ((
zh = z3 D ((
33/324312@(
zo = x0 @ ((
vy = 29 @ ((
93/7:$13€9(
zy = x1 @ ((
x5 = x5 ((

/

(

z13 = 27 ® ((z12 + 215
(
(

F(S) and X' = F(X).

o+ z12) K 7)

z) 4 x0) K 9)

(zh + 7)) < 13)
x5 + 25) K 18)

z5s + 1) K T7)

(6 + x5) K 9)

zh + x6) <K 13)

z) + a7) K 18)
zh = 214 @ ((T10 + T6) <K 7)
zg = 22 ® ((z11 + 210) K 9)
Ty = x6 @ ((x5 + 211) <K 13)
zho = z10 ® ((z5 + 7§) < 18)
o =23 ® ((z15 + 211) K 7)

) kK 9)
2y = 211 ® (213 + 712) K 13)
zhs = z15 @ ((wha + 213) K 18)

Word equations given by the feedforward for the key-stream words of the 15t
and 2°¢ starting state.

33.
34.
35.
36.

37.
38.
39.
40.

20 = xo + 00
z1 = x1 + ko
za=x2+ k1
z3 = T3 + k2
z4 =74+ k3
25 = T5 + 01
26 = Te + No
Zr =x7+m

41.
42.
43.
44.

45.
46.
47.
48.

z8 = X8 + Co
Z9 = X9 + C1
Z10 = T10 + 02
z11 = 211 + ka

z12 = T12 + k5
213 = T13 + ke
214 = T14 + k7
Z15 = T15 + 03

49.

51.
52.

53.
54.
55.
56.

/ !
Zo = To + 00

! ’
2y =21+ kg

2h = xh + ki
23 = x% + k)
2y =y + kb
25 = x5 + o1
z()-:x{)-+n6
2h = xh +n}

57.
58.
59.
60.

61.
62.
63.
64.

25 = x5 + ¢

z9 =y + ¢}

2ho = 2ho + 02
211 = xh1 + ki
212 = Tha + k3
213 = T3 + kg
2y = 1 + k7
Z15 = @15 + 03
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Abstract. In cryptology we commonly face the problem of finding an unknown
key K from the output of an easily computable keyed function F'(C, K) where
the attacker has the power to choose the public variable C. In this work we focus
on self-synchronizing stream ciphers. First we show how to model these primi-
tives in the above-mentioned general problem by relating appropriate functions F'
to the underlying ciphers. Then we apply the recently proposed framework pre-
sented at AfricaCrypt’08 by Fischer et. al. for dealing with this kind of problems
to the proposed T-function based self-synchronizing stream cipher by Klimov and
Shamir at FSE’05 and show how to deduce some non-trivial information about
the key. We also open a new window for answering a crucial question raised by
Fischer et. al. regarding the problem of finding weak IV bits which is essential
for their attack.

Keywords: Self-synchronizing Stream Ciphers, T-functions, Key Recovery.

1 Introduction

The area of stream cipher design and analysis has made a lot of progress recently, mostly
spurred by the eStream [|6] project. It is a common belief that designing elegant strong
synchronizing stream ciphers is possible, however, it is harder to come up with suitable
designs for self-synchronizing ones. Despite numerous works on self-synchronizing
stream ciphers in the literature, there is not yet a good understanding of their design
and cryptanalytic methods. Many self-synchronizing stream ciphers have shown not
to withstand cryptanalytic attacks and have been broken shortly after they have been
proposed. In this work we show how to model a self-synchronizing stream cipher by a
family of keyed functions F'(C, K). The input parameter C, called the public variable,
can be controlled by the attacker while the input K is an unknown parameter to her
called the extended key; it is a combination of the actual key used in the cipher and
the unknown internal state of the cipher. The goal of the attacker would be to recover
K or to get some information about it. The problem of finding the unknown key K,
when access is given to the output of the function F'(C, K) for every C' of the attacker’s
choice, is a very common problem encountered in cryptography. In general, when the
keyed function F' looks like a random function, the best way to solve the problem is
to exhaust the key space. However, if F' is far from being a random function there
might be more efficient methods. Recently, Fischer et. al. [7] developed a method to
recover the key faster than by exhaustive search in case F' does not properly mix its

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 15126, 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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input bits. The idea is to first identify some bits from C' referred to as weak public
variable bits and then to consider the coefficient of a monomial involving these weak
bits in the algebraic normal form of F'. If this coefficient does not depend on all the
unknown bits of K, or it weakly depends on some of them, it can be exploited in an
attack. Having modeled the self-synchronizing stream ciphers as the above-mentioned
general problem, we consider the T-function based self-synchronizing stream cipher
proposed by Klimov and Shamir [8]] and use the framework from [7]] to deduce some
information about the key bits through some striking relations. Finding the weak public
variable bits was raised as a crucial open question in [7] which was done mostly by
random search there. In the second part of our work we try to shed some light in this
direction in a more systematic way. The recently proposed cube attack by Dinur and
Shamir [4], which has a strong connection to [7]] and the present work, also includes
some systematic procedure to find weak public variable bits.

The rest of the paper is organized as follows. In section 2] we review the method
from [[7] and try to make the connection between [4] and [7] clearer. In section [3] we
describe the self-synchronizing stream ciphers and explain how to derive keyed func-
tions F'(C, K) which suit the framework from [7]. Section [ covers the description of
the Klimov-Shamir T-function based self-synchronizing stream cipher along with its
reduced word-size versions which will later be attacked in section [5l and [6l Section
also includes our new direction of finding weak bits in a systematic way.

2 An Approach for Key Recovery on a Keyed Function

Notations. We use B = {0, 1} for the binary field with two elements. A general m-
bit vector in B™ is denoted by C = (c1, ¢2, . . ., ¢ ). By making a partition of C' into
U € B and W € B™ !, we mean dividing the variables set {c1,¢2,...,¢cm} into
two disjoint subsets {uy, ...,u; } and {wy, ..., wm,—; } and setting U = (uq, ..., u;) and
W = (wi,...,wn—;). However, whenever we write (U; W) we mean the original
vector C. For example U = (c2,¢4) and W = (c1, ¢3, ¢5) is a partition for the vector
C = (c1,¢3,¢4,¢5) and (U; W) is equal to C and not to (¢, ¢4, 1, C3, ¢5). We also use
the notation U = C'\ W and W = C \ U. A vector of size zero is denoted by §.

In this section we review the framework from [7] which was inspired by results
from [LLISL11]. Let F' : B™ x B™ — B be a keyed Boolean function which maps the
m-bit public variable C and the n-bit secret variable K into the output bit z = F'(C, K).
An oracle chooses a key K uniformly at random over B" and returns z = F(C, K)
to an adversary for any chosen C' € B™ of adversary’s choice. The oracle chooses
the key K only once and keeps it fixed and unknown to the adversary. The goal of the
adversary is to recover K by dealing with the oracle assuming that he has also the power
to evaluate F’ for all inputs, i.e. all secret and public variables. To this end, the adversary
can try all possble 2" keys and filter the wrong ones by asking enough queries from the
oracle. Intuitively each oracle query reveals one bit of information about the secret key
if F" mixes its input bits well enough to be treated as a random Boolean function with
n + m input bits. Therefore, assuming log, n < m, then n key bits can be recovered
by sending O(n) queries to the oracle. More precisely if the adversary asks the oracle
n + [ queries for some integer 5 > 0, then the probability that only the unknown
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chosen key by the oracle (i.e. the correct candidate) satisfies these queries while all the
remaining 2" — 1 keys fail to satisfy all the queries is (1 — 2~ ("+)2" -1 x 1 — =277
(for 8 = 10t is about 1 — 10~3). The required time complexity is O(n2™). However, if
F extremely deviates from being treated as a random function, the secret key bits may
not be determined uniquely. It is easy to argue that F' divides B" into J equivalence
classes K1, Ka,...,K  for some J < 2", see Lemma 1 from [7]. Two keys K’ and
K" belong to the same equivalence class iff F/(C, K’) = F(C,K") forall C' € B™. Let
n; denotes the number of keys which belong to the equivalence class K ;. Note that we
have Z;]:l n; = 2™. A random key lies in the equivalence class /C; with probability
n;/2™ in which case (n — log, n;) bits of information can be achieved about the key.
The adversary on average can get Z;]:I (n — logy n;) 4 bits of information about the
n key bits by asking enough queries. It is difficult to estimate the minimum number of
needed queries due to the statistical dependency between them. It highly depends on
the structure of F' but we guess that O(n) queries suffice again. However, in case where
F' does not properly mix its input bits, there might be faster methods than exhaustive
search for key recovery. We are interested in faster methods of recovering the unknown
secret key in this case.

If one derives a weaker keyed function I'(W,K) : B™~! x B® — B from F
which depends on the same key and a part of the public variables, the adversary-
oracle interaction can still go on through I this time. The idea of [7] is to derive
such functions from the algebraic expansion of F' by making a partition of the m-
bit public variable C into C = (U; W) with [-bit vector U and (m — [)-bit vector
W. Let F(C,K) = >, I'an(W,K)U* where U® = u{'u3?...u;" for the multi-
index & = (o,...,). In other words, I, (W, K) is the coefficient of U® in the
algebraic expansion of F. For every a € B!, the function I, (W, K) can serve as a
function I" derived from F'. The function corresponding to a = (1,...,1) is the co-
efficient of the maximum degree monomial. Previous works [3L[7] suggest that this
function is usually more useful. We also only focus on the maximum degree monomial
coefficient. Hence we drop the subscript « and write I'(W, K) instead of I, (W, K)
for @« = (1,...,1). Inspired by the terminology of [4] we refer to U as cube vector
and to I'(W, K) as superpoly corresponding to cube vector U. Thanks to the relation
I(W,K) = @yem F((U; W), K), the adversary can still evaluate the superpoly for
any W of his choice and for the same chosen key K by the oracle. This demands that
the adversary sends 2! queries to the oracle for each evaluation of I".

In order to have an effective attack we need to have a weak superpoly function.
In [7]] several conditions were discussed under which the superpoly can be considered
as a weak function and potentially lead to an attack. Refer to [4] for more scenarios and
generalizations. In this paper we look for cube vectors U such that their superpoly does
not depend on a large number of key bits. We refer to those key bits which I'(TW, K)
does not depend on as neutral key bits. This is a special case of the third scenario in [7]
where probabilistic neutral bits were used instead. If the superpoly effectively depends
on t;, < n key bits and ¢, < m — [ public key bits, assuming these ¢; + t,, bits are
mixed reasonably well, the involved ¢; secret bits can be recovered in time 2tk by
sending O(#;2') queries to the oracle. However, if the superpoly extremely deviates
from being treated as a random function, as we already argued, it may even happen
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that the t; key bits can not be determined uniquely. In this case one has to look at
the corresponding equivalence classes to see how much information one can achieve
about the involved ¢ key bits. In sections [l and [6] we will provide some examples by
considering Klimov-Shamir’s self-synchronizing stream cipher.

2.1 Connection with Previous Works

The attack is closely related to differential [2,/9] and integral [10./3] kind of attacks,
and the recent cube attack [4)]. For [ = 0 we have U = () and W = C and hence
I' = F, that is we are analyzing the original function. For ! = 1 let’s take U = (¢;) and
W = C\ (¢;) for some 1 < ¢ < m. In this case we are considering a variant of (trun-
cated) differential cryptanalysis, that is we have I'(W, K) = F(C,K) & F(C & AC, K)
where AC' is an m-bit vector which is zero in all bit positions except the i-th one.
For bigger [, this approach can be seen as an adaptive kind of higher order differential
cryptanalysis. A more precise relation between the framework in [7] and (higher order)
differential cryptanalysis seems to be as follows: The superpoly I"(W, K), which com-
putes the coefficient of the maximum degree monomial, is computed as the sum of all
outputs F'(C, K) where C' = (U; W) has a fixed part W and U varies over all possible
values. This is what is also done in (higher order) differential cryptanalysis. However,
in applications of the framework in [[7], the values for W are often chosen adaptively.
By adaptively we mean that a stronger deviation from randomness is observed for some
specific choices for W (e.g. low weight W’s) or even a specific value for W (e.g. W =
0). Whereas in most applications of (higher order) differential cryptanalysis, specific in-
put values are of no favour. The recently proposed cube attack by Dinur and Shamir [4]
still lies in the second scenario (condition) proposed in [7]], having had been inspired by
the earlier work by Vielhaber [12]. In [7]] the public variable C' was the Initial Vector
of a stream cipher and the cube variables were called weak IV bits whenever the de-
rived function I" turned out to be weak enough to mount an attack. This concept can
be adapted according to each context depending on the public variable (weak cipher-
text bits, weak plaintext bits, weak message bits, efc). In general the terminology weak
public variables can be used. On the whole, it is not easy to find week public variables.
While [4] uses a more systematic procedure, [[7] uses random search over cube vectors.
In section[6 we will also take kind of systematic method. Another point which is worth
mentioning is that cube attack [4] nicely works with complexity O(n2¢~1) if I is a
random function of degree d in its m + n input bits. In this case the superpoly corre-
sponding to any cube vector of size d — 1 is weak, since it is a random linear function
in key bits and remaining public variables.

3 Self-Synchronizing Stream Ciphers

A self-synchronizing stream cipher is built on an output filter O : K x § — M and a
self-synchronizing state update function (see Definition[I) i : M x K xS — M, where
S, K and M are the cipher state space, key space and plaintext space. We suppose that
the ciphertext space is the same as that of the plaintext. Let ' € K be the secret key,
and {5;}5°,, {pi}2, and {¢;}5°, denote the sequences of cipher state, plaintext and
ciphertext respectively. The initial state is computed through the initialization procedure
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as So = Z(K, IV) from the secret key K and a public initial value V. The ciphertext
(in an additive stream cipher) is then computed according to the following relations:

Ci:pi®O(K75i)7 (1)
Siy1 =U(c;, K, S;). 2

Definition 1. [8] (SSF) Let {c¢;}5°, and {¢;}32, be two input sequences, let Sy and
Sy be two initial states, and let K be a common key. Assume that the function U is used
to update the state based on the current input and the key: S;11 = U(c;, K, S;) and
§i+1 = U, K, S’Z) The function U is called a self-synchronizing function (SSF) if
equality of any r consecutive inputs implies the equality of the next state, where r is
some integer; i.e.:

Ci = Ciyonry Cigr—1 = Cigr—1 = Sigr = Sigr. 3)

Definition 2. The “resynchronization memory” of a function U, assuming it is a SSF,
is the least positive value of v such that Eq. 3 holds.

3.1 Attack Models on Self-Synchronizing Stream Ciphers

There are two kinds of attack on synchronizing stream ciphers: distinguishing attacks
and key recovery attackdll. The strongest scenario in which these attacks can be applied
is a known-keystream attack model or a chosen-1V-known-keystream attack if the cipher
uses an IV for initialization. It is not very clear how applying distinguishing attacks
make sense for self-synchronizing stream ciphers. However, in the strongest scenario,
one considers key recovery attacks in a chosen-ciphertext attack model or in a chosen-
1V-chosen-ciphertext attack if the cipher uses an IV for initialization.

In this paper we only focus on chosen-ciphertext attacks. Our goal as an attacker is
to efficiently recover the unknown key K by sending to the decryption oracle chosen ci-
phertexts of our choice. More precisely, we consider the family of functions {H; : M®x
KxS8 — M|i=1,2,...r}, where r is the resynchronization memory of the cipher and
Hiler, ... e, K, 8) = O(K,Gi(er,...,ci, K, S)), where G; : M! x K xS — Sis
recursively defined as G, 1 (c1,...,¢i, ciy1, K, S) = U(cit1, K, Gi(ca, ..., ¢, K, S))
with initial condition G; = U.

Note that due to the self-synchronizing property of the cipher H,(c1, ..., ¢, K,S)
is actually independent of the last argument .S, however, all other » — 1 functions depend
on their last input. The internal state of the cipher is unknown at each step of operation
of the cipher but because of the self-synchronizing property of the cipher it only depends
on the last r ciphertext inputs and the key. We take advantage of this property and force
the cipher to get stuck in a fixed but unknown state S* by sending the decryption oracle
ciphertexts with some fixed prefix (c*,,,...,c* ) of our choice. Having forced the
cipher to fall in the unknown fixed state S*, we can evaluate any of the functions H;,
i=1,2,...,r, atany point (¢1,...,¢;, K,S*) for any input (cy, ..., ¢;) of our choice

! One could also think of state recovery attack in cases in which the synchronizing stream cipher
is built based on a finite state machine and the internal state does not easily reveal the key.
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by dealing with the decryption oracle. To be clearer let z = H;(c1,...,¢;, K,S*). In

order to compute z for an arbitrary (cy,...,c;), we choose an arbitrary c 11 € M
and ask the decryption oracle for (p—_,41,--.,P—1,P0, - - -, Pi+1)— the decrypted plain-
text corresponding to the ciphertext (c*,.,,...,cg, ¢1,...,¢;,C;p ). We then set z =

Pit1 Bl

To make notations simpler, we merge the unknown values X and S* in one unknown
variable K = (K,S*) € K x S, called extended unknown key. We then use the sim-
plified notation F;(C,K) = H;(cy,..., ¢, K,S*) : M? x (K x §) — M where
C= (Cl,...,Ci).

4 Description of the Klimov-Shamir T-Function Based
Self-Synchronizing Stream Cipher

Shamir and Klimov [8] used the so-called multiword T-functions for a general method-
ology to construct a variety of cryptographic primitives. No fully specified schemes
were given, but in the case of self-synchronizing stream ciphers, a concrete example
construction was outlined. This section recalls its design. Let <<, +, X, @ and V
respectively denote left rotation, addition modulo 254, multiplication modulo 254, bit-
wise XOR and bit-wise OR operations on 64-bit integers. The proposed design works
with 64-bit words and has a 3-word internal state S = (sg, s1, SQ)T. A 5-word key
K = (ko, k1, ko, ks, k4) is used to define the output filter and the state update function
as follows:

O(K,S) = ((so @ s2 @ k3) << 32) x (((s1 ® ka) << 32) V 1), 4)
and
(st @ sh) V1)@ ko)
Ule, K, 8) = | (b sp) v @ k)* | 4 ®)
(she s V1)@ k)’
where
sp=so®dc
sh =81 — (e 21) (6)

sh =82 ® (c K 43).

Generalized Versions. We also consider generalized versions of this cipher which use
w-bit words (w even and typically w = 8,16, 32 or 64). For w-bit version the number
of rotations in the output filter, Eq. [l is ¢ and those of the state update function, Eq.[6l
are [ 4] and [ %’], [#] being the closest integer to x.

It can be shown [8]] that the update function ¢/ is actually a SSF whose resynchro-
nization memory is limited to w steps and hence the resulting stream cipher is self-
synchronizing indeed. Our analysis of the cipher for w = 8, 16, 32 and 64 shows that
it resynchronizes after r = w — 1 steps (using w(w — 1) input bits). It is an open question
if this holds in general.
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Remark 1. In [8] the notation (ko, k1, k2, ko, k{,) is used for the key instead of the
more standard notation (ko, k1, k2, k3, k4). The authors possibly meant to use a 3-word
key (ko, k1, k2) by deriving the other two key words (ko and k{, in their notations
corresponding to k3 and k4 in ours) from first three key words. However, they do not
specify how this must be done if they meant so. Also they did not introduce an ini-
tialization procedure for their cipher. In any case, we attack a more general situation
where the cipher uses a 5-word secret key K = (ko, k1, k2, k3, k4) in chosen-ciphertext
attack scenario. Moreover, for the 64-bit version the authors mentioned the best attack
we are aware of this particular example [64-bit version] requires O(2°%) time”, without
mentioning the attack.

5 Analysis of the Klimov-Shamir T-Function Based
Self-Synchronizing Stream Cipher

Letw (w = 8,16, 32 or 64) denote the word size and r = w—1 be the resynchronization
memory of the w-bit version of the Klimov-Shamir self-synchronizing stream cipher.
Let B = {0,1} and B,, denote the binary field and the set of w-bit words respectively.
Following the general model of analysis of self-synchronizing stream ciphers in sec-
tion[3.1] we focus on the family of functions 7;(C,K) : B{, xB® — B,,i=1,2,...,r
where C' = (c1,...,¢) and K = (K, S*) = (ko, k1, k2, ks, k4, s§, s, s5). We also look
at a word b as an w-bit vector b = (bo, ..., b,_1), by being its LSB and b,,_1 its MSB.
Therefore any vector A = (ag,a1,...,ap—1) € BP could be also treated as a vec-
tor in BP*“ where the (iw + j)-th bit of A is a; ;, the j-th LSB of the word a;, for

1=0,1,...,p—land j = 0,1,...,w— 1 (we start numbering the bits of vectors from
ZEero).
Now, forany i =1,...,7and j = 0,...,w — 1 we consider the family of Boolean

functions F; ; : B™ x B® — B which maps the iw-bit input C and the 8w-bit extended
key K into the j-th LSB of the word F;(C, K). Any of these keyed functions can be
put into the framework from [7] explained in section [2l The next step is to consider a
partitioning C' = (U; W) with [-bit segment U and (iw — [)-bit segment W to derive
the (hopefully weaker) functions I'”; : B*~! x B% — B where I}7; is the superpoly
in F; ; corresponding to the cube vector U. Whenever there is no amblgmty we drop
the superscript or the subscripts. We may also use FU [w] in some cases to emphasize
the word-size. We are now ready to give our sunulatlon results.

Note: Instead of giving giving the variables of cube vector U we give the bit num-
bers. For example for w = 16, the set {0, 18, 31, 32} stands for the cube vector U =
(1,0, €2,2,C2,15, €3,0)-

Example 1. For all possible common word sizes (w = 8,16, 32 or 64) we have been
able to find some 7, j and U such that I" is independent of W and only depends on three
key bits ko0, k1,0 and k3 o. Table 1 shows some of these quite striking relations. We
also found relations F{ }[8] =1+ kopand I—‘l{’f(i),7,8,9,10} [16] = 1+ ko, involving only
one key bit. For w = 64 the three relations in Table 1 give 1.75 bits of information
about (ko’(), kl,O; kg)o).
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Table 1. Simple relations on three key bits (ko,o0, k1,0, k2,0)

w
8
16 3
16 3

i
2

0
0
0

3250

64110
64110
64120

U

{10}
{11}

{21}
{42}
{20}

i)
1+ ko,0k1,0 + ko,0k2,0 + k1,0k2,0
1+ ko,ok1,0 + k2,0 + ko,0k1,0k2,0
1+ ko,0 + k1,0k2,0 + ko,0k1,0k2,0
1+ ko,0k1,0 + k2,0 + ko,0k1,0k2,0
3216 0 {96,97,98} 1 + koo + k2,0 + ko,0k2,0

1+ ko,ok1,0 + k2,0 + ko,0k1,0k2,0
1+ ko,0 + k1,0k2,0 + ko,0k1,0k2,0
1+ ko,0k1,0 + ko,0k2,0 + k1,0k2,0

A more detailed analysis of the functions I'”; [w] (W, K) for different values of i, j and
U reveals that many of these functions depend on only few bits of their (iw — [)-bit
and 8w-bit arguments. Let ¢,, and ¢, respectively denote the number of bits of W and
K which I" effectively depends on. In addition let ¢} out of ¢; bits come from K and

the remaining ¢, = ¢, — ¢}, bits from S* (remember K =

values for some of these functions.
Having in mind what we mentioned in section 2] and being too optimistic, we give

the following proposition.

(K,S*)). Table 2 shows these

Table 2. Effective number of bits of each argument which I" depends on. Note that the functions
having the same number of effective bits do not necessarily have the same involved variables.

w
8
16
32
64
8
16
32
64
8
8
16
16
16
16

N W W R R e

7

J
0
0
0
0
0
0
0
0
0
0
0
0
0

0

32150
32150
32150
64310
64310
64 31 0 {129,130} 84
64 31 0 {150,151} 84

{1}
{u}
{u}
{u}
{8}
{18}
{16}
{34}
(33,34}
(38,39}
{32}
{66}
(76,77}
{64}
{130}

ti
20
40
80
160

88

tw
8
16
32
64
5
11
23
51
6
7
58
52
33
30
293
279
231

1274 89
1243 88
1158 84
1155 84

1y, ts
9 11
1723
33 47
65 95
3 6
6 12
14 28
30 60
4
5
17
16
12
12
41
40
36

OO O OO OO OO O oo

comment

§<u<10
16 <u <20
32 < u < 42
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Proposition 1. If a function I'; U is random-looking enough, recovering the t;, unknown
bits of the extended key takes expected time i x tj, x 21tk

The unity of time is processing one ciphertext word of the underlined self-synchronizing
stream cipher. The factors 2! and i come from the following facts: computing I" from
F; needs 2! evaluations of F; (remember I',(W,K) = @y g Fij(U; W),K)) and
computing JF; needs ¢ iterations of the c1pher

Even if the ideal condition of Proposition 1 is not satisfied, the only thing which is
not guaranteed is that the ¢; involved unknown bits are uniquely determined. Yet some
information about them can be achieved. Refer to the note in section [2] regarding the
equivalence classes.

Example 2. Take the relation Fé{o }[8](W K) from Table 2. This particular function
depends on tp = 5 bits (ko 0, k() 1, kl 0, kg 0, kg 1) of the key and on t,, = 7 bits
(c1,4,€1,5,C1,6,C2,0, C2.1, C2,5, C2,6) Of the ciphertext. The ANF of this function is:

Fgl{})g} [8] = 1+ ko,0ko,1 + ko,oko,1k2,0 + k2,0ka1 + kooc14+
ko,0k2,0c1,4 + Ko,0k1,0c1,5 + ko,0k1,0k2,0c1,5+
kooc1,6 + ko,0k2,0¢1,6 + k2,0c2.0 + ko,0k2,0¢2,0+ @)
k2,0c2,1 + 2,021 + Ko,0C2,0c2,1 + k2,0C2,0C2,1+
ko,0k2,0C2,0c2,1 + k1,0k2,0C2,5 + k2,0C2,6-

This equation can be seen as a system of 2t« = 128 equations versus ¢, = 5 unknowns.
Our analysis of this function shows that only 48 of the equations are independent which
on average can give 3.5 bits of information about the five unknown bits (2 bits of infor-
mation for 25% of the keys and 4 bits for the remaining 75% of the keys).

Example 3. Take the relation F7{)%3’34} [16](W, K) from Table 2. This particular function
depends on ¢, = 12 key bits and on ¢,, = 33 ciphertext bits. Our analysis of this
function shows that on average about 2.41 bits of information about the 12 key bits can
be achieved (10 bits of information for 12.5% of the keys, 3 bits for 25% of the keys
and 0.67 bits about the remaining 62.5% of the keys).

Example 4. Take the relation F;)%g’gg} [16](W, K) from Table 2. This particular function
depends on ¢, = 12 key bits and on ¢,, = 30 ciphertext bits. Our analysis of this
function shows that on average about 1.94 bits of information about the 12 key bits can
be achieved (10 bits of information for 12.5% of the keys, 3 bits for another 12.5% of
the keys and 0.42 bits for the remaining 75% of the keys).

Example 5. Take the relation I 7{7%4} [16](W, K) from Table 2. This particular function
depends on ¢, = 16 key bits and on ¢,, = 52 ciphertext bits. Our analysis of this
function shows that on average about 5.625 bits of information about the 16 key bits
can be achieved (13 bits of information for 25% of the keys, 11 bits for 12.5% of the
keys, 4 bits for another 12.5% of the keys, and 1 bit for the remaining 50% of the keys).

For larger values of ¢ we expect I to fit better the ideal situation of Proposition 1. There-
fore, we give the following claim about the security of the 64-bit version of Klimov-
Shamir’s proposal.
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Proposition 2. We expect each of the functions I :;{117%9’130}[64] and T :;{117%0’151}[64] to
reveal a large amount of information about the corresponding t;, = 84 involved key

bits for a non-negligible fraction of the keys. The required computational time is 31 X
84 x 22184 ~ 2928,

In [7] the bits of the set U were called weak IV bits. With the same terminology, here
we call them weak ciphertext bits. How to find these weak bits was raised as an open
question in [7]. In the next section we present a systematic procedure to find weak
ciphertext bits, with the consequence of improving Proposition 21

6 Towards a Systematic Approach to Find Weak Ciphertext Bits

The idea is to start with a set U and extend it gradually. At each step we examine all the
ciphertext bits which I"V depends on, to choose an extended U for the next step which
results in a I which depends on the least number of key bits. Table 3 shows our simula-
tion results by starting from function Fl{f)l} [64] from Table 2 which effectively depends
on t;, = 90 extended key bits and ¢,, = 51 ciphertext bits. Similar to Proposition[2] one
expects each of the functions I, [64] in Table 3 to reveal a large amount of information
about the corresponding ¢, involved extended key bits (including t;. effective key bits)
for a non-negligible fraction of the keys in time #,2!***, as indicated in the last col-
umn. In particular by starting from the function in the bottom of Table 3, (the promised
large amount of information about) the involved ), = 12 key bits and ¢, = 33 internal
state bits can be gained in time 257> (for a non-negligible fraction of the keys). Notice,
that once we have the correct value for the unknown extended key for some function in
Table 3, those of the previous function can be recovered by little effort. Therefore we
present the following proposition.

Proposition 3. We expect that by starting from I 1{})79’32741} [64] and going backwards

to I 1{’%1} [64] as indicated in Table 3, a large amount of information about the involved
try = 90 unknown bits (including t}. = 30 effective key bits) is revealed for a non-
negligible fraction of the keys in time 2595 .

Remark 2. By combining the results of different functions I" one can get better results.
Finding an optimal combination demands patience and detailed examination of different
I"’s. We make this statement clearer by an example as follows. Detailed analysis of
F3{117%9, 130} [64] and Fg{ff)o’ 151} [64] shows that the key bits which they depend on are
{0—27,64—90,128 — 156} and {0 — 28, 64 — 90, 128 — 155}, respectively. These two
functions have respectively 27 and 28 bits in common with the 30 key bits {0—19,21 —
30} involved in I\ [64]. They also include the key bits {0,32,64} for which 1.75
information can be easily gained according to Ex.[Il Taking it altogether it can be said
that a large amount of information about the 88 key bits {0—30, 32,64 —90, 128 — 156}
can be achieved in time 2%-5 with a non-negligible probability.

7 Conclusion

In this work we proposed a new analysis method for self-synchronizing stream ciphers
which was applied to Klimov-Shamir’s example of a construction of a T-function based
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self-synchronizing stream cipher. We did not fully break this proposal but the strong key
leakage demonstrated by our results makes us believe a total break is not out of reach.
In future design of self-synchronizing stream ciphers one has to take into account and
counter potential key leakage.

Acknowledgement. We would like to thank Martijn Stam for his helpful editorial com-
ments.
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Abstract. In this paper, the RC4 Key Scheduling Algorithm (KSA) is
theoretically studied to reveal non-uniformity in the expected number of
times each value of the permutation is touched by the indices i, j. Based
on our analysis and the results available in the literature regarding the
existing weaknesses of RC4, few additional layers over the RC4 KSA
and RC4 Pseudo-Random Generation Algorithm (PRGA) are proposed.
Analysis of the modified cipher (we call it RC4") shows that this new
strategy avoids existing weaknesses of RC4.

Keywords: Bias, Cryptography, Keystream, KSA, PRGA, RC4, Secret
Key, Stream Cipher.

1 Introduction and Motivation

RC4 is one of the most popular and efficient stream ciphers. The data struc-
ture of RC4 consists of an array S of size N (typically, 256), which contains a
permutation of the integers {0,..., N — 1}, two indices ¢ (deterministic) and j
(pseudo-random) and a secret key array K. Given a secret key key of [ bytes
(typically 5 to 32), the array K of size N is such that K[y] = key[y mod [] for
any y, 0 <y < N —1.

There are two components of the cipher: the Key Scheduling Algorithm (KSA)
that turns an identity permutation into a random-looking permutation and the
Pseudo-Random Generation Algorithm (PRGA) that generates keystream bytes
which get XOR-ed with the plaintext bytes to generate ciphertext bytes. All
additions in both the KSA and the PRGA are additions modulo N.

KSA PRGA
Initialization: Initialization:
For i =0,..., N —1 i=j =0;
S[i] = 4; Keystream Generation Loop:

j=o0; i=i+1;
j = j + Slils

Scrambling: j [4]
Fori=0,...,N—1 Swap(S[i], S[4]);
Jj = + Sli] + K[i]); t = S[i] + S[4];
Swap(S[i], S[3]); Output z = S[t];

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 27 2008.
© Springer-Verlag Berlin Heidelberg 2008
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The literature on RC4 cryptanalysis is quite rich. There have been several
works on the reconstruction of the permutation looking at the keystream output
bytes [LOJ3TJ19]. Of these, the latest one [19] achieves a complexity of 2241, ren-
dering RC4 insecure with key length beyond 30 bytes. Further, knowing the per-
mutation, it is also possible to get certain information on the secret key [2312I[1].

Apart from these, there exist several other works [SI22/T3|TAT5T6I26127] on
the weaknesses of the RC4 PRGA. However, all of these exploit the initial
keystream bytes only. According to [20], if some amount of initial keystream
bytes are thrown away, then RC4 is quite safe to use. Moreover, it is argued
in [I3J25] that many biases in the PRGA are due to the propagation of the
biases in the KSA via Glimpse Theorem [S/I5]. These biases in the keystream
would disappear, if one could remove the corresponding biases in the permuta-
tion during the KSA.

In this paper, we discuss several weaknesses of RC4 and suggest remedies to
overcome them. During last few years, there have been efforts, e.g., VMPC [35],
RC4A [27], RC4(n,m) [6] etc. on the modification of RC4 towards further im-
provement and there also exist distinguishing attacks on them [TI8/32J33]. This
shows that there is significant interest in the cryptographic community for anal-
ysis and design of RC4 and its modifications. However, in all of these ciphers,
the design is modified to a great extent relative to RC4. We keep the RC4 struc-
ture as it is and add a few more operations to strengthen the cipher. Thus, we
attempt to exploit the good points of RC4 and then provide some additional
features for a better security margin.

One may argue that concentrating on the eSTREAM candidates [3] is more
practical than modifying RC4. However, the eSTREAM candidates have com-
plicated structure in general and they work on word (32 bit) oriented manner.
Our goal is to keep the simple structure of RC4 and add a few steps to it to
have a byte oriented stream cipher with further strength. The existing litera-
ture on RC4 reveals that in spite of having a very simple description, the cipher
possesses nice combinatorial structures in the shuffle-exchange paradigm. Our
design retains this elegant property of RC4 and at the same time removes the
existing weaknesses.

2 Movement Frequency of Permutation Values

Before we go into the technicalities, let us introduce a few notations. We denote
the initial identity permutation by Sy and the permutation at the end of the r-th
round of the KSA by S,., 1 <r < N. Note that »r = y+ 1, when the deterministic
index i takes the value y, 0 < y < N — 1. Thus, the permutation after the KSA
will be denoted by Sy. By j., we denote the value of the index j after it is

y
updated in round . Also, let f, = YW Vo4 ZK [z], that would be referred
=0

frequently in the subsequent discussions.
We observe that many values in the permutation are touched once with a very
high probability by the indices i, j during the KSA.
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Theorem 1. The probability that a value v in the permutation is touched exactly
once during the KSA by the indices i, j, is given by %\}’ -(NJQI)N_l, 0<v<N-1.

Proof. Initially, v is located at index v in the permutation. It is touched exactly
once in one of the following two ways.

1. v is not touched by any of {41, ja2, - . ., j, } in the first v rounds. In round v+1,
when i becomes v, the value v at index v is moved to the left by j,11 due
to the swap and remains there until the end of KSA. Thus, the probability
contribution of this part is (V') - 5 - (NyH)N vl = v (VDN L

2. For some t, 1 <t < v, it is not touched by any of {41, j2, ..., jt—1}; then it is
touched for the first time by j; = v in round ¢ and hence is moved to index

t—1; and it is not touched by any one of the subsequent (N —t) many j values.
v

The probability contribution of this part is z:(NJ\_,l)t_1 L (NSHN=t -

N N
N—1 =
NN
Adding the above two contributions, we get the result. a

Using similar arguments one could compute the probability that a value is
touched exactly twice, thrice and in general = times, during the KSA. However,
the computation would be tedious and complicated for > 1. A more natural
measure of this asymmetric behaviour would be the expected number of times
each value in the permutation is touched during the KSA. This is computed in
the next theorem.

Theorem 2. The expected number of times a value v in the permutation is
touched by the indices i, j during the KSA is given by E, =1+ (*N;")-(Vy1)",
0<v<N-1.

Proof. Let x,, = 1, if the value v is touched by the indices %, j in round y + 1 of

the KSA (i.e., when ¢ = y); otherwise, let 2,, =0,0 <v < N-1,0<y < N—-1.

Then the number of times v is touched by 4,j during the KSA is given by
N-1

X, = Z Zy,y. In any round y+1, any value v is touched by j with a probability
y=0

]1,. To this, we need to add the probability of v being touched by 4, in order to

find P(x, , = 1). Now, v is touched by the index 7 in round y + 1, iff Sy[y] = v.

We consider three possible ways in which S,[y] can become v.

1. Case y < v. Initially, the value v was situated in index v. In order for v to
move from index v to index y < v, either v has to be touched by i and y has
to be touched by j, or vice versa, during the first y rounds. But this is not
possible, giving P(Sy[y] = v) = 0.

2. Case y = v. We would have S,[v] = v, if v is not touched by any of
{j1,J2, .., Jv} in the first v rounds, the probability of which is (Njgl)”.

3. Case y > v. Once S,[v] = v, the swap in the next round moves the value
v to a random location jy41, giving P(Sy41[y] = v) = (Vy')Y - & For all
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y > v, until y is touched by the deterministic index 4, i.e., until round y + 1,
v will remain randomly distributed. Hence, for all y > v, P(Sy[y] = v) =

P(Syalyl =v) = y (V1)
Noting that E(x,,y) = P(zyy = 1) = 5 +P(Syly] = v), we have E,, = E(X,) =

N-1 v—1 N—-1
Y Blwey) = 1+ Y P(Sylyl = v) + P(Su[o] = v) + Y P(Syly] = v) =
y=0 y=0 y=v+1
L+ (2N7) - (My1)Y (adding the three-part contributions). O

We find that FE, decreases from 3.0 to 1.37, as v increases from 0 to 255. To
demonstrate how close the experimental values of the expectations match with
our theoretical values, we perform 100 million runs the KSA, with random key
of 16 bytes in each run. The experimental results correspond to the theoretical
formula, as summarised in the first two rows of Table[Ilin Section

In [2401], it is shown that the probabilities P(j,+1 = Sxy'[y]) increase with
increasing y. This is connected to the above decreasing pattern in the expec-
tations. In the first half of the KSA, i.e., when y is small, the values v = S[y]
are thrown more to the right with high probability by the index j,+i due to
the swap and hence are touched again either by the deterministic index ¢ or by
the pseudo-random index j in the subsequent rounds. On the other hand, in the
second half of the KSA, i.e., when y > 128, the values v = S[y] are thrown more
to the left by the index j,+1 due to the swap and hence are never touched by i
in the subsequent rounds, and may be touched by j with a small probability.

Towards designing a key scheduling algorithm in shuffle-exchange paradigm,
it is important that each value in the permutation is touched (and therefore
moved with probability almost one) sufficient number of times. In such a case, it
will be harder to guess the values of j for which a permutation byte is swapped.
In RC4 KSA, there are many permutation bytes which are swapped only once
with a high probability, leading to information leakage from Sy regarding the
secret key bytes. We keep this in mind while designing the modified KSA in the
next section.

3 Removing the Weaknesses of KSA

In this section, we first look into what are the existing weaknesses of the RC4
KSA, followed by suggestions to remove them. We propose a new version of the
KSA and study its security issues.

3.1 Existing Weaknesses

Many works have explored the RC4 KSA and discovered its different weaknesses.
Here we present an overview of these results.

(1) In [28], it was empirically shown that the probabilities P(Sn[y] = fy)
decrease from 0.37 for y = 0 to 0.006 for y = 48 (with N = 256) and beyond
that settle down to 0.0039 (~ ,4.). Later, in [23], explicit formula for these
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probabilities for all y € [0,..., N — 1] were theoretically derived. This result was
further used in [23J2I1] to recover the secret key from the final permutation Sy
after the KSA.

(2) In RC4 KSA, the update rule is j = (54 S[i] + K[i]). The work [23] showed
that for a certain class of update functions which update j as a function of “the
permutation S and j in the previous round” and “the secret key K7, it is always
possible to construct explicit functions of the key bytes which the permutation
at every stage of the KSA will be biased to.

(3) It has been shown in [I3] that the bytes Sn[y], SN [Sn[y]], Sn[Sn[SN[Y]]],
and so on, are biased to f,. In particular, they showed that P(Sn[Sn[y]] = fy)
decreases from 0.137 for y = 0 to 0.018 for y = 31 and then slowly settles down
to 0.0039 (beyond y = 48).

(4) Analysis in [24/T] shows that inverse permutations Sy'[y], Sx'[Sx'[¥]];
and so on are biased to j,+1, and in turn, to f,.

(5) It was shown for the first time in [I7, Chapter 6] and later investigated
further in [20/25] that each permutation byte after the KSA is significantly biased
(either positive or negative) towards many values in the range 0,..., N — 1. For
eachy, 0 <y < N—2, P(Sy[y] = v) is maximum at v = y+1 and this maximum
probability ranges approximately between , (1+ 3) and , (1+ }) for different
values of y, with N = 256.

(6) The work [4] showed for the first time that RC4 can be attacked when
used in the IV mode (e.g. WEP [II]). Subsequently, there have been series of
improvements [I5J9I30/34] in this direction, exploiting the propagation of weak
key patterns to the keystream output bytes.

3.2 Proposal for KSAT : A Revised KSA

In this section, we present a modified design (called KSA™) that removes the
weaknesses of RC4 KSA discussed in Section Bl The evaluation for such a
design is presented in Section B3l In this case, we will name the permutation
after the KSA* as Sy+.

We propose a three-layer key scheduling followed by the initialization. The
initialization and basic scrambling in the first layer are the same as the original
RC4 KSA.

Initialization Layer 1: Basic Scrambling
Fori=0,..., N -1 Fori=0,..., N -1

S[i] = 4; Jj = (3 + S[i] + K[i]);
=0 Swap(S[i], S[5]);

In the second layer, we scramble the permutation further using IV’s. According
to [7], for stream ciphers using IV’s; if the IV is shorter than the key, then the
algorithm may be vulnerable against the Time Memory Trade-Off attack. Thus,
in this effort, we choose the IV size as the same as the secret key length. The
deterministic index ¢ moves first from the middle down to the left end and then
from the middle upto the right end. In our scheme, an I-byte IV, denoted by an
array [0, ...,l—1], is used from index J;’ —1 down to ];7 — [ during the left-ward
movement and the same IV is repeated from index g up to g] + 1 — 1 during
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the right-ward movement. Here, we assume that N is even, which is usually the
case in standard RC4. For ease of description, we use an array IV of length NV
with IV [y] = 0 for those indices which are not used with IV’s.

For N = 256 and [ = 16, this gives a placement of 16 x 2 = 32 many bytes
in the middle of the I'V array spanning from index 112 to 143. This is to note
that repeating the IV bytes will create a dependency so that one cannot choose
all the 32 bytes freely to find some weakness in the system as one byte at the
left corresponds to one byte at the right (when viewed symmetrically from the
middle of an N-byte array). Further, in two different directions, the key bytes
are added with the IV bytes in an opposite order. Apart from the 2! many
operations involving the IV, the rest of NV — 2] many operations are without the
involvement of I'V in Layer 2. This helps in covering the IV values and chosen
IV kind of attacks will be hard to mount.

Layer 2: Scrambling with IV Layer 3: Zigzag Scrambling

Fori*g’—ldownto() Fory=0,...,N—1
]_(]+S[]) ( M"’IV[Z])? If _OmOdZthenz v.
Swap(S(il, S11)): Elseio N - v

Fori=Y, .. N1 ~se(z~+g[-]_+z}(f~])

) T i=(j P i]);

In the third and final layer, we perform more scrambling in a zig-zag fashion,
where the deterministic index i takes values in the following order: 0, 255, 1, 254,
2,253, ..., 125, 130, 126, 129, 127, 128. In general, if y varies from 0 to N — 1
in steps of 1, then i = § or N — y;l depending on y is even or odd respectively.
Introducing more scrambling steps definitely increases the cost of the cipher.
The running time of the KSA™ is around three times that of RC4 KSA, because
there are three similar scrambling layers instead of one, each having N iterations.
As the key scheduling is run only once, this will not affect the performance of
the cipher much.

3.3 Analysis of KSAT with Respect to RC4 KSA

In this section, we discuss how the new design avoids many weaknesses of the
original RC4 KSA. We performed extensive experiments to verify that KSA™ is
indeed free from the weaknesses of the RC4 KSA. In all our experiments that
are presented in this section, we use null IV, i.e., iv[y] = 0 for all y. We could
not find any weakness with such null IV as well as with randomly chosen I'V’s.

Removal of Secret Key Correlation with the Permutation Bytes: Let
us first discuss on Layer 2 of the KSA+. The deterministic index ¢ is moved
from the middle to the left end so that the values in the first quarter of the
permutation, which were biased to linear combination of the secret key bytes,
are swapped. This helps in removing the biases in the initial values of Item (1)
described in Section Bl This is followed by a similar operation in the second
half of the permutation to get rid of the biases of the inverse permutation as
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described in Ttem (4). Next, the XOR operation helps further to wipe out these
biases. The biases considering the nested indexing mentioned in Item (3) and
Ttem (4) arise due to the biases of direct indexing. So, the removal of the biases
at the direct indices of Sy and Sg,l gets rid of those at the nested indices also.

The bias of Item (2), which is a generalization of the bias of Item (1), origi-
nates from the incremental update of j which helps to form a recursive equation
involving the key bytes. In the new design, the bit-by-bit XOR operation as well
as the zig-zag scrambling in Layer 3 prevents in forming such recursive equations
connecting the key bytes and the permutation bytes.

We could not find any correlation between Sy+[y] (also Sx+[Sn+[y]],
Sn+[Sn+[Sn+[W]]]s . ..) with f,. We believe that with our design, it is not possi-
ble to get correlation of the permutation bytes with any function combining the
secret key bytes.

In Section 2] the relation between the biases of the inverse permutation and
the movement frequency of the permutation values has been discussed in detail.
The following experimental results show that, such weaknesses of RC4 KSA are
absent in our design. Averaging over 100 million runs of KSA™ with 16 bytes
key in each run, we find that as v increases from 0 to 255, F, decreases from
4.99 to 3.31 after the end of Layer 2 and from 6.99 to 5.31 after the end of
Layer 3. Table [l shows the individual as well as the incremental effect of each of
Layer 2 and Layer 3, when they act upon the identity permutation Sy and the
permutation Sy obtained after Layer 1. The data illustrate that the effect of
Layer 2 or Layer 3 over identity permutation Sy is similar as Layer 1. However,
after Layer 1 is over (when we have somewhat random permutation Sy coming
out of RC4 KSA), each of Layer 2 and Layer 3 individually enforces each value
in the permutation to be touched uniformly (approximately twice) when the
average is considered over many runs.

Table 1. Average, Standard Deviation, Maximum and Minimum of the expectations
FE, over all v between 0 and 255. Here Lr means Layer r, r = 1, 2, 3.

avg sd  maz min

+ Theory 2.0025 0.4664 3.0000 1.3700

RO4 KSA (KSA™ L)  poociiment  2.0000 0.4655 2.9959 1.3686
I . L2 on Sg 2.0000 0.4658 2.9965 1.3683
KSAT L2 (Experiment) 15 o g 2.0000 0.0231 2.0401 1.9418
L1 + L2 4.0000 0.4716 4.9962 3.3103

L3 on Sg 2.0000 0.4660 3.0000 1.3676

+ .
KSAT L3 (Experiment) 13 on g 2.0000 0.0006 2.0016 1.9988

L1 + L2 + L3 6.0000 0.4715 6.9962 5.3116

Uniform values of the expectations can be achieved easily with normal RC4,
by keeping a count of how many times each element is touched and performing
additional swaps involving the elements that have been touched less number of
times. However, this will require additional space and time. In normal RC4, many
permutation elements are touched only once (especially those towards the right
end of the permutation), leaking information on j in the inverse permutation.
Our target is to prevent this by increasing the number of times each element is
touched, without keeping any additional space such as a counter. The data in
Table [[l show that this purpose is served using our strategy.
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How Random is Sy+: Now we present experimental evidences to show how
the biases of Item (5) in RC4 KSA are removed. We compare the probabilities
P(S[u] = v) for 0 < u,v < 255 from standard KSA and our KSA™T. All the
experiments are performed with 100 million runs, each with a randomly chosen
secret key of length 16 bytes and null IV.

Experimental results show that there exists some non-uniformities after Layer
2, which is completely removed after Layer 3. The maximum and minimum values
of the probabilities as well as the standard deviations summarised in Table
elaborate this fact further.

Table 2. Average, Standard Deviation, Maximum and Minimum of the Probabilities
P(S[u] = v) over all u and v between 0 and 255. Note that . = 0.003906 for N = 256.

avg sd maz min
Theory [25} Theorem 1] 0.003901 0.000445 0.005325 0.002878

RC4 KSA Experiment 0.003906 0.000448 0.005347 0.002444
KSA+ (Bxoeriment After Layer 2 0.003906 0.000023 0.003983 0.003803
(Experiment) After Layer 3 0.003906 0.000006 0.003934 0.003879

In [I7, Page 67], it was mentioned that the RC4 KSA need to be executed
approximately 6 times in order to get rid of these biases. Whereas, in our case,
we need to run KSA effectively 3 times.

On Introducing the IV’s: The IV-mode attacks, mentioned in Item (6) of
Section 3.1l succeed because in the original RC4, IV’s are either prepended or
appended with the secret key. As the Layer 2 shows, in KSA™, we use the IV’s in
the middle and also the corresponding key bytes are added in the updation of j.
In Layer 2, 2l many operations involve IV values, but N — 2! many operations do
not. Moreover, after the use of IV, we perform a third layer of zig-zag scrambling
where no use of IV is made. This almost eliminates the possibility of chosen IV
attack once the key scheduling is complete.

SSL protocol bypasses the WEP attack [4] by generating the encryption keys
used for RC4 by hashing (using both MD5 and SHA-1) the secret key and the
IV together, so that different sessions have unrelated keys [29]. Since our KSA™
is believed to be free from the IV-weaknesses, it can be used without employing
hashing. Thus, the cost of hashing can be utilized in the extra operations in
Layer 2 and Layer 3. This conforms to our design motivation to keep the basic
structure of RC4 KSA and still avoid the weaknesses.

On Retaining the Standard KSA in Layer 1: One may argue that Layer
1 is not necessary and Layer 2, 3 would have taken care of all the existing
weaknesses of RC4. While this may be true, these two layers, when operated on
identity permutation, might introduce some new weaknesses not yet known. It is
a fact that RC4 KSA has some weaknesses, but it also reduces the key correlation
with the permutation bytes and other biases at least to some extent compared
to the beginning of the KSA. In the process, it randomizes the permutation to
a certain extent. The structure of RC4 KSA is simple and elegant and easy to
analyze. We first let this KSA run over the identity permutation, so that we
can target the exact biases that are to be removed in the subsequent layers. In
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summary, we wanted to keep the good features of RC4 KSA, and remove only
the bad ones.

We evaluated the performance of our new design using the eSTREAM testing
framework [3]. The C-implementation of the testing framework was installed
in a machine with Intel(R) Pentium(R) 4 CPU, 2.8 GHz Processor Clock, 512
MB DDR RAM on Ubuntu 7.10 (Linux 2.6.22-15-generic) OS. A benchmark
implementation of RC4 is available within the test suite. We implemented our
modified RC4, which we call RC47, that incorporates both KSAt and PRGAT,
maintaining the API compliance of the suite. Test vectors were generated in the
NESSIE [21] format.

Tests with 16 bytes secret key and null IV using the gce default O3-ual-ofp
compiler report 16944.70 cycles/setup for RC4 KSA and 49823.69 cycles/setup
for the KSAT of RC4T. Thus, we can claim that the running time of our KSA*

is approximately ‘fggii:?g = 2.94 times than that of the RC4 KSA.

4 PRGAT: Modifications to RC4 PRGA

There are a number of important works related to the analysis of the RC4 PRGA.
The main directions of cryptanalysis in this area are

(1) finding correlations between the keystream output bytes and the secret
key [2822IT3] and key recovery in the IV mode [AIT5/9J30034] (these exploit the
weaknesses of both the KSA and the PRGA),

(2) recovering the RC4 permutation from the keystream output bytes [T0/31T9]
and

(3) identifying distinguishers [T427/16].

In Section 3.2 we proposed KSA™ in such a manner that one cannot get
secret key correlations from the permutation bytes. This guarantees that the
keystream output bytes, which are some combination of the permutation bytes,
cannot have any correlation with the secret key. As argued in Section [3.3] IV’s
are used in such a way, that they cannot be easily exploited to mount an attack.
So we target the other two weaknesses, enlisted in Item (2) and (3) above, in
our design of PRGA™.

For any byte b, b (respectively b7 ) denotes the byte after right (respectively
left) shifting b by n bits. For r > 1, we denote the permutation, the indices i, j
and the keystream output byte after round r of the PRGA (or PRGA™) by S&,
i%, j¢ and z, respectively.

The main idea behind this design of PRGA™ is masking the output byte such
that it is not directly coming out from any permutation byte. Two bytes from
the permutation are added modulo 256 (a nonlinear operation) and then the
outcome is XOR~ed with a third byte (for masking non-uniformity). Introducing
additional S[t'], S[t"], over the existing S[t] in RC4, makes the running time of
PRGA™ more than that of RC4 PRGA. Note that the evolution of the permu-
tation S in PRGA™ stays exactly the same as in RC4 PRGA. We introduce a
constant value 0z AA (equivalent to 10101010 in binary) in ¢’, as without this, if
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4 becomes 0 in rounds 256, 512, ... (i.e., when i® = 0), then ¢ and ¢’ in such a
round become equal with probability 1, giving an internal bias.

PRGA™
RC4 PRGA Initialization:
Initialization: i=37=0;
i=35=0; Keystream Generation Loop:
Keystream Generation Loop: t=1+1;
i=i+1; J=3J+5li;
j =3+ Sl Swap(S[il, STj));
Swap(Slil, Sj)); t = S[i] + S[jl;
t = S[i] + S[jl; ¢ = (S[ih @ 3] + ST ® j3) @ 0rAA;
Output z = S[t; t" =3+ S[j];

Output z = (S[t] + S[t']) ® S[t"];

Resisting Permutation Recovery Attacks: The basic idea of cryptanalysis
in [19] is as follows. Corresponding to a window of w+ 1 keystream output bytes,
one may assume that all the j’s are known, i.e., jﬁjﬁrh .. 7jTG+w are known.
Thus w many S&[i¢] will be available from ;<\ ; — j&. Then w many equations of

the form S¢ ' [z,] = SC[i¢]+ SC[j¢] will be found where each equation contains
only two unknowns. The idea of [10] (having complexity around 2779 to 2797)
actually considered four unknowns ¢, S9[i%], S¢[;%], S¢ ' [z].

Our design does not allow the strategy of [I9] as SY[SC[i%] + SY[;“]] is
not exposed directly, but it is masked by several other quantities. To form the
equations as given in [I9], one first needs to guess S¢[t], S¢[t'], S¢[t"] and looking
at the value of z, there is no other option than to go for all the possible choices.
The same permutation structure of S in RC4™ can be similarly exploited to get
the good patterns [I9, Section 3], but introducing additional ¢, ¢”, we ensure the
non-detectability of such a pattern in the keystream and thus the idea of [19]
Section 4] will not work.

Information on permutation bytes is also leaked in the keystream via the
Glimpse Main Theorem []/15], which states that during any PRGA round,
P(S[j] =i—z) = P(S[i] = j — z) & 5. The assumption i = S[i] + S[j] hold
with a probability A, leading to the bias P(S[j] =i—z)= {14+ (1— 5)- p =
r— N2 & ». To obtain such biases in PRGA™, one need to have more assump-
tions of the above form. Thus, Glimpse like biases of PRGA™, if at all exist,
would be much weaker.

Resisting Distinguishing Attacks: In [I4], it was proved that P(z2 = 0) = %
instead of the uniformly random case of ]1, This originates from the fact that
when Sy[2] = 0 and Sn[1] # 2 after the KSA, the second keystream output
byte zo takes the value 0. Based on this, they showed a distinguishing attack
and a ciphertext-only attack in broadcast mode. We avoid this kind of situation
in our design. As a passing remark, we like to present an experimental result.
Hundred million secret keys of length 16 byte are generated and 1024 rounds
of PRGA are executed for each such key. The empirical evidences indicate that
Pz =v)= 4, 1<r<1024,0<v < N —1.
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In the work [27], it was observed that P(z1 = 22) = A — y2, which leads
to a distinguishing attack. Even after extensive experimentation, we could not
observe such bias in the keystream output bytes of PRGA™T. The same experi-
ment described above supported that P(z, = z,41) is uniformly distributed for
1 <r<1023.

In [I6], it has been shown that getting strings of pattern ABTAB (A, B are
bytes and T is a string of bytes of small length G, say G < 16) are more probable
in RC4 keystream than in random stream. In uniformly random keystream, the
probability of getting such pattern irrespective of the length of T is ]\}2. It has
been shown in [I6, Theorem 1] that for RC4, the probability of such an event

—4—8G

is ]\}2 (1+°¢ 5 ), which is above ]\}2, but less than ]\}2 + ]\}3. This result is

based on the fact that the permutation values in locations that affect the swaps
and the selection of output bytes in both pairs of rounds that are G-round
apart, remain unchanged with high probability during the intermediate rounds.
The permutation in PRGA™T evolves in the same way as RC4 PRGA, but the
keystream output generation in PRGAT is different, which does not allow the
pattern AB to propagate down the keystream with higher probability for smaller
interval lengths (G). In [16], 2! keystreams of size 224 each were used to observe
these biases effectively. The simulation on PRGA™ reveals that it is free from
these biases.

We now present the software performance analysis of PRGAT using the
same specifications as described at the end of Section B3l The stream en-
cryption speed for RC4 and RC4™ turned out to be 14.39 cycles/byte and
24.51 cycles/byte respectively. Thus, we can claim that the running time of
one round of our PRGA™ is approximately ﬁ:gé = 1.70 times than that of RC4
PRGA.

5 Conclusion

Though RC4 can be stated in less than ten lines, newer weaknesses are being
discovered every now and then even after twenty years of its discovery. This
raises the need for a new design of a stream cipher, which would be as simple
as the description of RC4, yet devoid of the existing weaknesses of RC4. This is
the target of this paper. We present a three-layer architecture of the scrambling
phase after the initialization, which removes many weaknesses of the KSA. We
also add a few extra steps in the PRGA to strengthen the cipher. Experimental
results also support our claim. An extended version of this paper is available in
TACR Eprint Server [12], that contains some relevant graphs which could not fit
here due to space constraints.

Even after our arguments and empirical evidences, the security claim of RC4™
is a conjecture, as is the case with many of the existing stream ciphers. We could
not observe any immediate weakness of the new design and the cipher is subject
to further analysis.
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Abstract. A new bias is detected in the key scheduling algorithm of
RC4 and a novel framework that advantageously combines this new bias
with the existing ones is proposed. Using the new bias, a different algo-
rithm is proposed to retrieve the RC4 key given the state table. The new
method not only improves the success probability but also provides a
more efficient way of calculation in comparison with the previous meth-
ods for any key size. The efficiency of the algorithm is demonstrated
experimentally. If the key length is 40 bits, the secret key is retrieved
with a 99% success rate in 0.007 seconds. The success probability for
retrieving the 128 bit RC4 key is also increased significantly. 128-bit key
can be retrieved with 3% success rate in 185 seconds and 7.45% success
rate in 1572 seconds on a 2.67GHz Intel CPU.

Keywords: RC4, Stream Cipher, Cryptanalysis, Key Scheduling Algo-
rithm, State Table.

1 Introduction

RC4 is one of the most famous stream ciphers which was designed by Ron Rivest.
It is introduced in 1987 but the algorithm is kept secret until its description is
anonymously published on the Cypherpunks mailing list [I] in 1994.

After its first release, RC4 stream cipher became very popular especially in
software. In the past twenty years it is mostly used in some popular protocols
such as SSL (Secure Socket Layer) and TLS (Transport Layer Security) to pro-
tect internet traffic and some others such as WEP (Wired Equivalent Privacy)
and WPA (Wi-Fi Protected Access) to secure wireless networks.

Attacks on RC4 are generally majored in two groups. First group is based on
the weaknesses of the PRGA. Second group is based on the weaknesses of the
KSA. Additionally, many works try to exploit the special weaknesses existing in
the usage of IV (Initial Value).

Our study focuses on analyzing the KSA. In this paper, we present a more
efficient algorithm to derive the secret key from a given internal state. Analyzing
the KSA has direct consequences in WEP attacks like in [9], [22] and [23]. The
algorithm basicly depends on the newly discovered bias in the KSA. Although,
the new bias seems symmetrically similar to the previously known biases in terms
of structure, it provides an independent piece of information about the internal
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states of the KSA. We propose a very efficient simple algorithm which com-
bines the Roos’ observation [21I] and the equations derived in [19], the difference
equations in [2] and our new bias advantageously.

This paper is organized as follows: In Section [2 we describe the RC4 algo-
rithm. In Section [B] we present the existing work on RC4. In Section @l we de-
scribe the basic assumptions and equations of the attacks presented in [19] and [2]
which use the bias of the first bytes of the initial permutation. In Section [, we
give the description of our new bias on the KSA and related distributions some of
which are already known. In Section 6l we explain the key recovering algorithm.
In Section [7 we discuss our results along with a comparison with the previous
studies. In Section 8] we summarize the work done.

Recently, we have been aware of other two studies on the key retrieval problem
from the state table. The first study [I3] has many common points with this work.
The second group has considered a bit-by-bit key recovery approach [§].

2 The RC4 Stream Cipher

The internal state table of RC4 S consists of a permutation of N possible words
where N = 2". Two n-bit index pointers ¢ and j are used to randomize the
state table. The pseudo-random variable j is secret but ¢ is public and its value
at any stage of the stream generation is generally known. The running key
values are also produced with an address variable formed with the help of 4
and j.

RC4 consists of two algorithms; KSA (Key Scheduling Algorithm) and PRGA
(Pseudo Random Generation Algorithm). KSA initializes the internal state table
S with the encryption key K.

The KSA and PRGA are given below. All additions in the algorithms are
performed modulo N.

Key Scheduling Algorithm Pseudo Random Generation Algorithm

for i=0to2"! i—0

S[i] «— 1 j<0

endfor loop

7«0 t—1+1

for i = 0to 2"7! j < § 4 S[i]

j—j+ S[]+ K[i mod ] swap(S[i], S[4])

swap(Sli], S[j]) t — Sli] + S[j]

endfor output S[t]
endloop

In most of the applications, RC4 uses the parameters n = 8 and [ = 16. Hence
the table S consists of N = 256 elements. In this paper, we also assume these
values unless explicitly stated otherwise.
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3 Previous Work on RC4

Finney in [3], observed a group of states that RC4 can never enter. These states
satisfy the property j = ¢+1 and S[i+1] = 1. If RC4 was not designed carefully,
one of every 2'¢ keys would fall into a cycle of length 255 - 256.

Golic showed that RC4 can be distinguished from other keystream generators
by using the linear statistical weakness of RC4 [6].

Knudsen et al. showed the intrinsic properties of RC4 which are independent
of the key scheduling and the key size [10]. They have developed a backtracking
algorithm in which the initial state table S is guessed given a small part of the
running key stream.

Fluhrer and McGrew described a method which explicitly computes digraph
probabilities [5]. This method can be used to distinguish 8-bit RC4 from a ran-
dom sequence. Parts of the internal state table can also be determined with this
method.

Grosul and Wallach showed that a pair of keys produce running key streams
that are very similar in the first 256 bytes when the key size is same with the
table size [1].

Mironov proposed an idealized model of RC4 and analyzed it applying the
theory of random shuffles [I8]. At the end of his analysis, he found a conservative
estimate (512 bytes of the running key) that should be discarded for safety.

Mantin’s thesis [I4] is a valuable resource on RC4 up to its date of writing.
Then, Mantin and Shamir described a major statistical weakness in RC4 caused
by the first and second bytes of the running key [16].

Fluhrer, Mantin and Shamir showed that RC4 is completely insecure in a
common mode of operation which is used in Wired Equivalent Privacy Protocol,
in which a fixed secret key is concatenated with known IV modifiers [4]. With
these observations, practical attacks were designed and applied on the WEP
protocol. Vaudenay and Vuagnoux, described a passive only attack that improves
the key recovery process on WEP by the weaknesses they observed in KSA of
RC4 [23]. Tews, R.P. Weinmann and Pyshkin demonstrate a new attack on 104
bit WEP [22].

Pudovkina found the number of keys of the RC4 cipher generating initial
permutations with the same cycle structure [20]. It is found that the distribution
of the initial permutations is not uniform.

Mantin described a new distinguishing attack using the bias in the digraph
distribution of the cipher [I5]. By this bias, one can predict the next bit or byte
of the running key if 2*° or 2°0 output words are known respectively.

Maitra and Paul have observed that the initial bytes of the permutation after
the KSA are biased with some linear combination of the key bytes. This leads
to a bias in some key stream bytes [11], [12].

Paul and Maitra, discovered the secret key from the initial state table using
biases in the first entries of the table [19]. They create some equations by using
the first entries of the initial state table. These equations have significant prob-
ability. They guess some of the bytes of the secret key and they obtain the rest
of the key by using these equations. Existence of many correct equations lead
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to the success of their algorithm. Carmeli and Biham presented an algorithm to
retrieve the secret key if the internal state table is given [2]. Their study depends
on the equations in [I9]. They also propose additional equations by considering
the differences of the existing equations. They declare that they increased the
success rate by filtering and correcting some of the equations and also using the
new ones. Combining all these equations into a statistical algorithm lead them
obtain better results than [19].

Recently Maximov and Khovratovich proposed an attack which recovers some
special internal states of the RC4 from the keystream [17].

We started our study by depending on the biases given in [I9] and [2] and by
using some of the equations described in [I9] and [2]. We observed a different
bias and by using this bias we created new equations that lead us to obtain
higher success rate than [2].

4 Notations and Basic Assumptions

4.1 Notations

The S, and j, denote the values of the state table S and the index value j after
r iterations of the KSA respectively. jg is the initial value of j and jy is the last
value of j at the end of the KSA. Sy is the identity permutation and Sy is the
initial permutation. S is used to denote the initial permutation instead of Sy.
We denote the number of key bytes by [.
K|a...b] denotes the sum of the key bytes in the range a,a + 1, ..., b.
By a variable address(t), we mean the index ¢ such that S[i] = ¢ when the
KSA has finished.
ela] means the event a. The events are described in Section
nc denotes the number of candidates, which have the highest weight among a
larger group.

4.2 Previous Biases of the KSA

A bias of a linear combination of the secret key bytes is first discovered by Roos
in 1995 [21I]. This bias is described in Theorem [Il He has given the probability
of the bias experimentally and has observed that it has significant probability in
the first 40 — 50 entries of the state table.

Theorem 1. The most likely value for S[i] at the end of the KSA is
i(i+1
ﬂﬂ:Kmmﬂ+’@;)nde. (1)
Paul and Maitra, in [I9] has expressed this bias theoretically. The formula is

given in Theorem

Theorem 2. Assume that during the KSA the index j takes its values uniformly
at random from 0,1, ..., N — 1. Then,

i(i+1) N —1 N—l)z‘u;l)H\, 1

P(Sli = K[o-i)+ " ) = (7 00 )
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The underlying assumptions of Theorem [2] are the following:

1. Sy[r] = r for r € {0, ..., i}, i.e. S[r] is not swapped until the r-th iteration.
2. Siljiv1] = Jit1-
3. jr#iforre{i+1,..,N—1}.

Assuming that the first event occurs, only the key bytes and some constant
values are needed to calculate the j;41 value.

% i

Jit1 = Z(K[T] + S.[r]) = Z(K[T] +7)=KJ[0...i] +

r=0 r=0

i(i +1)

5
Assuming that the second event occurs, S;1[¢] = j;+1 holds after i+ 1" iteration
of the KSA. Assuming that the third event occurs, the index j does not point
to S[i] again, so S[i] is not swapped again once more until the end of the KSA.
If all of the events occur then () holds

Snli] = Sitali] = jix1 = > _(K[r] + S,[r]) = K[0...i] +

r=0

i(i + 1)
5

Finally, Biham and Carmeli have generalized the assumptions in [2] as follows:

1. Sp[r] =rforr € {i1+1,...,i2},1.e. S[r] is not swapped until the r-th iteration.
2. Si,[jiy+1] = Jir+1 and Sy [fiy 11] = Jiz 41
3. jr#Fiforrefii+1,.,.N—1}and j. #igforr € {ia+1,.... N — 1}

Under these assumptions, they get

, , . , ig(ig +1 i1(i +1
Snlio] — Sxlir] = K[i1 + L...io] + 2( 22 ) _ 12 ).
They have considered the differences of the state elements. Theorem [B] gives the

bias of these differences.

Theorem 3. Assume that during the KSA the index j takes its values uniformly
at random from 0,1,.... N — 1 and let 0 < iy < i < N. Let C; = S[i] — i(Z;H).
Then,
P((Ciy, — Cyiy) = K[ix + 1...i2]) >
i Qo — i1+ 2, 2 Nt TN . T2

(1= 2= T Sy I[ a- SN (3)
In this way, they have more equations to consider. The difference bias works still
after the 50" entry, and their probabilities are much higher. The authors have
also suggested assigning a weight to the key candidates, and methods to filter
wrong equations and adjust the weights. As a result, their success probabilities
of retrieving the key are much higher than [19)].

The proofs of theorems use the occurance probability of the underlying events
and can be shown by induction.
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5 Useful Distributions of the KSA

In this section we present the statistical properties of the KSA which will be
helpful in our algorithm.

Definition 1. After the KSA, if j; = S[i], we call this as event 1 has occured
for index i, and denote event 1 by e[l].

If the following assumptions hold, event 1 occurs.

1. jr # ji for r € {0, ...,i — 1}, i.e. S[j;] is not swapped until the i-th iteration.
2. j; > 1, 1i.e S[i] is swapped with a greater index.
3. jr #iforr e {i+1,..., N—1},i.e. S[i] is not swapped after the i-th iteration.

The following theorem for the probability of e[1] exists in Section 2 of [19] in a
more generalized framework.

Theorem 4

P(Sli] =ji) = (1 - ]1V)Z'(1— i]_vl)(l— ]1V)N*”*1+ zlv (4)

This property investigates the information obtained from S[i] as in Theorem 2

and 3. But it is related with a single entry of the table, not with a sequence

sum. Therefore, it gives information for only the j value, not the key itself. In

Section [ we will exploit this property to obtain information of the key bytes.
The probability of e[1] is still high after the 50" entry.

Table 1. The Probabilities Given by Theorem [l

(4 o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Prob. .371 .369 .368 .366 .365 .363 .362 .360 .359 .358 .356 .355 .353 .352 .350 .349
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Prob. .348 .346 .345 .343 .342 .340 .339 .337 .336 .335 .333 .332 .330 .329 .327 .326

5.1 New Bias

In this section, we propose a new property of the KSA which seems similar to
the observation in [2] in a symmetric structure. Instead of their consideration
of S[i]’s, we have also exploited the information from the j values, i.e. j =
address(S[i])’s. It is interesting that they form their bias by only considering
one of the swapped variables. This approach provides us an independent bias.
The new bias is more significant for the address of latter indexes, in contrast
with the previous properties.

Definition 2. After the KSA, if j; = address(i), we call this as event 2 has
occured for index i, and denote event 2 by e[2].

e[2] occurs under the following assumptions:
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1. Si[i] = i, i.e. S[i] is not swapped until the i-th iteration.
2. j; <.
3. jr#£giforre{iy+1,...,N —1}.
If these conditions hold, S;[i] is swapped with S;[j], and then S;[j] is not swapped

with another value till the end of KSA. Therefore, we have address(i) = j;. The
probability distribution of this event is the following:

Theorem 5

1, i 1oy, 1 1oy, i, 1
R L L A O A (O E

The probabilities of e[2] are higher for the greater index values.

P(address[i] = j;) > (1—

Table 2. The Probabilities Given by Theorem

1 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
Prob. .326 .327 .329 .330 .332 .333 .335 .336 .337 .339 .340 .342 .343 .345 .346 .348
i 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
Prob. .349 .350 .352 .353 .355 .356 .358 .359 .360 .362 .363 .365 .366 .368 .369 .371

We can generalize this procedure by analyzing the differences as in [2]. We
explain the information satisfied by the differences with an example.

Example 1. Assume that the following events happened during KSA:

1. Sa50[250] = 250, Sa51[251] = 251,

2. At step 250, we swap [250] with Sa50[j250]. Therefore Sas0[jaso] = 250. As-
sume that this entry does not change in the later steps.

3. At step 251, we swap Sa51[251] with Sas1[j2s1]. Therefore Sasi[jas1] = 251.
Assume that this entry does not change in the later steps.

If the above assumptions hold, then we have,
address(251) = jas1 and address(250) = jaso. Therefore,

address(j251) - address(j250) = j251 — j250 = (5[251] + K[].].D mod 256

depends only on K[11]. Considering the addresses of the values 251 and 250, we
gather information about one byte of the key.

This method can be generalized as below:

1. Sy[r] = r for r € {i1,...,i2}, i.e. S[r] is not swapped until the r-th iteration.
2. jil S il and jiz S iQ.

3. jr#£jy forre{ir+1,..,N—1} and j,. # j;, forr € {ia+1,..., N — 1}.

If the first event occurs, then the index j is affected in iterations ¢; through is
only by the key bytes and constant values. The second event ensures that the
index ¢ and the third event ensures that the index j does not point to S[j;, ] and
S[ji,] in later iterations. Therefore, S[ji, ] = ¢1 and S[j;,] = i2 remains the same
after the KSA. The probability distribution of this bias is given in Theorem
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Theorem 6. Assume that during the KSA the index j takes its values uniformly
at random from {0,1,...., N — 1}, and let 0 < iy < iz < N. Then,

P(address(iz) — address(iy) = Kliy + 1..dg] + (i1 + 1) + (i1 + 2) + ... +i2) >

N—(ig—i1+1))iliﬁl(1_r i1+1, i0+1 N -1

Ty R N P G N )

r=1

The solutions of equations from Theorem [3] and Theorem [6 can be used to get
the encryption key. But instead, we suggest to analyze the journey of j values
during the KSA with the help of Theorems [ and [l

5.2 More Distributions

Theorems [ and [}l motivate to consider the probabilities of the following events.
Definition 3 and Definition 5 are previously analyzed in [II]. These events have
non trivial probabilities to distinguish the j sequence from random.

Definition 3. After the KSA, if j; = S[S[i]], we call this as event 3 has occured
for index i, and denote event 3 by e[3].

Definition 4. After the KSA, if j; = address(address(i)), we call this as event
4 has occured for index i, and denote event 4 by e[4].

Similarly, we may define the following events:

Definition 5. After the KSA, if j; = S[S[S[i]]], we call this as event 5 has
occured for index i, and denote event 5 by e[5).

Definition 6. After the KSA, if j; = address(address(address(i))), we call
this as event 6, and denote event 6 by e[6).

We have observed that continuing further after e[6] does not produce helpful bias.
Now we have 6 events for guessing j values produced during KSA. In Section [6]
we will use them to retrieve information about the key bytes.

6 The Key Recovering Algorithm

In our algorithm, first we get a unique suggestion by using some key guessing
methods which hold with a probability for all of the key bytes, but we consider a
portion of this group as correct. From the unique suggestion, we assign m bytes
of the key with some probabilities. However we do not know exactly which m
bytes are correct. Therefore, we have to try C(n,m) number of combinations to
match the correct one. After the assignment of partial key bytes, the remaining
bytes are updated according to the update mechanism. The pseudo code of the
algorithm is given in Section
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6.1 Key Guessing Methods

This section explains the scenarios which are beneficial for us to guess the j
values during the KSA. The KSA produces 256 pseudo-random j values. If we
have the information of successive j and S[i] values, we can get the related key
bytes. Our assumption is that one of the events have occured for the successive
j values and S[i] = i for the second entry. Since j; = j;—1 + S[i] + K[i mod [] in
KSA, one byte of key information is obtained.

The j values can be guessed by the 6 events in Section Bl

1. e[l]: j = S[i] (The event of Theorem @)

2. e[2]: j = address(i) (The event of Theorem ()
3. e[3]: 5 = S[S]i]]

4. e[d]: j = address(address(i)).

5. e[5]: 5 = S[S[S[:]]].

6. e[6]: j = address(address(address(i))).

These 6 events confirm 6 candidates for the j value at each step of the KSA.
Then, for two successive values j; and j;4+1, we obtain 36 combinations. For
instance, the event e[11] means both j; and j;11 satisfy event 1 above, and the
event e[41] denotes that j; satisfies event 4 and j;41 satisfies event 1. Additionally,
we assume that S;[i] = ¢ is satisfied. In this way, we get 36 candidates for one
key byte. Since the key is repeated (N/I) times during KSA, we get (N/I) x
36 possible values for each key byte. Since these events occur with different
probabilities in different parts of the table, the candidates which are below a
previously determined threshold value are eliminated.

For each index value, these probabilities are assigned as weights for the can-
didates. A candidate value can be observed more than once with different prob-
abilities for the same key byte. Total weight of such candidates are calculated in
a way that uses their frequency and also the sum of their individual weights.

6.2 Initial Key Guessing

The first 16-byte candidate that has the maximum weight is assigned as the key
bytes. We do not trust all bytes of the selected candidate but generally assume
that arbitrary m-bytes of it are true with some probability. Then, we are left
with C(I,m) possible combinations that should be tried to find the matching
key bytes.

For the 16-byte key this method provides m = 4,8 and 12 bytes of the key
with probabilities 0.91, 0.65 and 0.06 respectively. Using only this information,
the full 16-byte key can be guessed with 0.0001 probability in 0.0063 seconds on
2.67GHz CPU with 2GB RAM. We can use this information to provide a lower
bound for the success probability of the algorithm for greater complexities. For
instance, if the 8 bytes are obtained correctly by this approach, and the remaining
8 bytes are searched, then the full key can be obtained with 0.65 probability with
a complexity of C(16,8) x 28%8 ~ 278 key trials.
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6.3 The Update Mechanism

In [2], the authors have used an iterative process for reviewing and updating
the weights. We use a similar structure with a special technique to increase the
success probability of obtaining new key bytes from the already known ones.

The longer sequence sums considered in Theorem [l provide information on
more bytes, but have less probability to occur. For our algorithm, we have de-
cided to consider the sums in groups of 4 bytes as the optimal sequence length
parameter. We have already guessed some of the bytes in the 4-byte group from
the selected combination elements. In addition to these known bytes, the sum
informations in the 4-byte sequence are also used. By this way the unknown
bytes of this group are determined using the method given in [2]. This method
increases the number of candidates, but the weights of the correct ones also
increase.

We can explain this with the following example.

Ezample 2. Assume that there are 36 x 16 candidates for each of K[0], K'[1],
K|[2], K[3] and the values of K[0] and K [2] are fixed in the selected combination.
We can use the following equations to find the possible K[1] values:

1. K[1] = K10...1] = K]0].

2. K[1] = K[1...2] — K[2].

3. K[1] = K[0...2] — K[0] — K[2].
After obtaining new candidates for K[1], we can fix its value by trying the
possible candidates through a selected depth. Then, we need to find possible
K [3] values by using the following equations:

1. K[3] = K[2..3] — K[2].

2. K[3] = K[1..3] - K[1] — K[2].

3. K[3] = K[0...3] — K[0] — K[1] — K[2].
From the new candidates, the same procedure is applied to decide on the value
of K[3]. After fixing the value of K[3] the updating process is finished for this
4-byte group. The same method is applied for the remaining 4-byte groups of
the key and a total guess is made for all key bytes.

6.4 The Algorithm

In this section, we will discuss our key retrieval algorithm given the initial state
table. This algorithm is based on the observations described in the previous
sections. This algorithm utilizes the observations in [19] and [2] with the new
ones in a novel framework.

The below algorithm is designed for fixed m and nc values. We can increase the
success probability of retrieving the key by using different (m,nc) pairs. In this
case, we have to consider the (m;, nc;) pairs which have no trivial intersection.
The total time complexity of this attack is the sum of individual complexities
of the algorithm for each (m;,nc;) pair. Since there is no way to avoid the
intersection between the pairs, the gained success probability is less than the
sum of individual success probabilities. The results of this approach for 12 and
16 — byte key are given in Table 3.
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KEY RETRIEVAL ALGORITHM(S)

1. Compute all C; values for i and obtain all suggestions for sum such as
K[0...l] = Ci41 — Ch.
2. Among the suggestions select the one with the highest weight as sum value.
Reduce all C;’s in which ¢ > [ to suggestions for sequences in which ¢ < [.
4. Choose the parameter m. For all m-byte combinations of 1 do:
— 4.1 Fix the specific bytes of the key that are declared to be true in the selected
combination(described in Section [6.2]).
— 4.2 For the remaining [—m bytes, choose the parameter nc, number of candidates.
— 4.3 For each 4-byte group do:
—— 4.3.1 Start the update process which chooses the first nc candidates that have
been sorted according to the weights for the unknown key bytes(described in Sec-
tion [6.3]).
— 4.4 Try all combinations of resulting candidates obtained for 4-byte groups.
Return the correct key when it is found.
5. Return fail.

w

The first three lines are from [2].

Table 3. Experimental Results of the Key Retrieval Algorithm

m nc Psuccess T[sec] # Of TTialS Psuccess Of [2], [19] T[Sec] [2] T[SeC] [19}*
2 [ 128 ] .998 [0.011 273
5[ 3 256 | .998 |0.008 2193 .8640 0.02 366
6 6 254 [3.959] 2%3F
8 8 239 [1.808| 220%™ .0124 3.04 100
32 431 ]48.939| 22895 .0212 7.43 1000

12[m* [nci*| 506 [54.390] 2°77°
10 | 8 034 | 185 23096
16/ 12 | 16 020 | 16.7 PRERE .0005 278 500
m; nc;*| 0745 | 1572 23591

[ =7 of key bytes, m =# of selected bytes, nc =selection depth.

*Rough estimation of [2] about [I9] to achieve the same success with them.
**(ms,ne;) = {(4,6), (5,7), (6,8),(7,10), (8,16), (9, 32), (10, 128) }.

6% (. nes) = {(6,4), (7,5), (8,6), (9,7), (10,8), (11, 10), (12, 22), (13, 64), (14, 256)}.

7 Experimental Results

Table 3 compares our results with previous studies [19] and [2]. We cannot ex-
ecute the previous algorithms under exactly the same conditions with our al-
gorithm, since we do not have the source code of these algorithms. We have
run the algorithm on 2.67GHz Intel CPU with 2GB RAM. The success proba-
bilites are derived from 10000 randomly generated key-state table pairs. Time
complexity estimates are empirical. For each chosen [, m and nc values, we try
C(l,m) = (nc)(l_m) number of key candidates, but the time cost of each candi-
date varies with respect to the location of the fixed bytes in the combination
and the depth of the trial. For short key sizes such as 5 or 8 bytes, our algorithm
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almost retrieves more than 90 percent success in seconds. For longer key sizes,
our success probabilities are about 10-50 times better in the same computation
time. The results indicate the effectiveness in terms of both the time complexity
and success probability.

8 Conclusions

We presented our new observations on the Key Scheduling Algorithm (KSA) of
RC4 which point out the structural weaknesses of it. We showed the theoreti-
cal distribution of our newly detected bias which is structurally symmetric but
independent from the previous studies. We described a framework which uses
a simple and efficient algorithm to retrieve the RC4 secret key, given the inter-
nal state table. The new observations on the KSA of RC4 significantly increase
the success rate of the attack compared to the previous studies. We exploited
the Roos’ observation [21], its theoretical proof [19] and the difference equations
of [2] in addition to the events of our new observations. This work shows that
the KSA of RC4 is not perfect, because it leaks information about the secret key
if the initial state table is known. It is an open question whether these observa-
tions can be used for attacking Pseudo Random Generation Algorithm (PRGA)
or improving the attacks on the Wired Equivalent Privacy (WEP) protocol.
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Two Attacks on RadioGatun
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Abstract. We investigate the security of the hash function design called
RADIOGATUN in a recently proposed framework of sponge functions. We
show that previously introduced symmetric trails can hardly be used
to construct collisions and to find a second preimage efficiently. As a
generalization of truncated differentials, trails with linear and non-linear
restrictions on differences are proposed. We use these trails to find semi-
free-start collisions and second preimages with the meet-in-the middle
approach and the complexity in the gap between claimed security level
and the birthday bound. We also provide some observations on lower
bounds on the complexity of our methods with respect to the length of
the trail used. This is the best attack on RADIOGATUN.

Keywords: hash functions, cryptanalysis, sponge.

RADIOGATUN [I], the subject of this paper, is a design of hash functions pro-
posed by Bertoni et al. at the Second Cryptographic Hash Workshop in 2006.
Though having been presented as a so called iterative mangling function it ac-
tually fits the sponge framework later proposed by the same authors [2/3]. The
hash functions PANAMA [6] and GRINDAHL [10] also have much common with
RADIOGATUN and the sponge framework.

The sponge is an iterative construction, which is an alternative to the Merkle-
Damgard design. The latter approach consists of the iterated application of the
compression function, which gets a message block as the input and assumed to be
collision-resistant. The sponge construction operates on smaller message blocks
and a round function. After a message is fully processed the sponge generates
output of infinite length by just consecutively applying the round function and
taking a block in an internal state as a new output block.

Bertoni et al. proved [2] that such a construction is resistant against collision
and (second-)preimage attacks of complexity lower than the birthday bound as-
suming that the round function is a randomly chosen permutation which prop-
erties are not exploited by an adversary. However, this assumption is not the
case for concrete sponge-based hash functions so the designers claim a reduced
security level (see the next section for careful explanation).

RADIOGATUN is actually a family of hash functions with the size I,, of the
building block — word — as a parameter. Although the internal state of the
hash function is rather big (58 words), the performance is quite impressive.
For example, RADIOGATUN with [, = 32, which is claimed to be as secure as

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 53 2008.
© Springer-Verlag Berlin Heidelberg 2008
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SHA-256, is twice faster [I]. This makes RADIOGATUN a very promising design
in view of the NIST hash function competition [g].

This paper presents two attacks on RADIOGATUN: semi-free-start (or chosen
IV) collision search and the second preimage search. The outline of the paper is
as follows. First we describe the RADIOGATUN hash function and discuss on the
claimed security level: why it is much lower than an intuitive bound with respect
to the size of the internal state. In Section [2] we investigate the differential-
based collision attacks on RADIOGATUN using the notion of differential trail. We
show that previously introduced symmetric trails [I] do not provide attacks with
reasonable complexity. We introduce trails with truncated differentials of linear
form, which are extremely suitable for RADIOGATUN due to its slow diffusion.

Then we present collision and second-preimage attacks based on the trails
discussed above. Both attacks use the invertibility of the round function and
the abscence of the message scheduling in order to apply the meet-in-the mid-
dle approach. Collisions are found in the chosen IV framework though a bit
slower second-preimage attack can be also converted to the collision search. The
complexities of both attacks are in the gap between the claimed security level
and the bound given by the birthday paradox. We also provide some theoretical
observations on the lower bound on the complexities of the attacks which can
be maintained with the truncated differential trails and the meet-in-the-middle
approach.

1 RadioGatun

Description. RADIOGATUN operates on words of some integer length I,,. The
parameter is fixed for a concrete hash function, and we denote by RADIOGATUN-
I, the corresponding hash function. An internal state of RADIOGATUN consists
of two substates also called belt (B) and mill (A) of size 39 words and 19 words,
respectively. The round function treats them differently. The belt is updated by
a simple linear transformation and fed with 12 words of the mill and with 3
words of the message block in a linear way. The mill is fed with 3 words of the
belt and 3 words of the message block in a linear way and afterwards is updated
by a nonlinear function. The resulting round function is invertible (see Fig. [II).

There is no message scheduling in RADIOGATUN. First a message to be hashed
is appropriately padded and then it is divided by 3-word blocks, which are used
only once. The iteration starts with the state full of 0s. One step consists of the
message injection and the application of the round function. After the message
is fully processed RADIOGATUN iterates with 16 blank rounds (without any
injections) and generates output of infinite length by just consecutively applying
the round function and taking a 2-word block in the internal statd!] as a new
output block.

We denote the injected block by M. Following this notation, the round func-
tion of RADIOGATUN transforms a state S = (A, B) to a new state S" = (4’, B):

! More precisely, the second and the third words of the mill.



Two Attacks on RadioGatin 55

Mill Belt
1
||||||||||||||||||||§—§g/\
LLITTTTITTTT soen
I (T T

N fencion > (o ®
[T IIITIIITIT] o
Belt2Mill )

i
LITTITTTTTTITITITTITTITITIT]

Fig. 1. One round of RADIOGATUN
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Only the Mill function is non-linear. Due to space limits a full description is
skipped, so we refer to the original paper [IJ.

Security. The output of RADIOGATUN can be considered as a pseudorandom
generator, which generates 2 words per step. The designers assume that each
application will choose its own length of the hash digest. While for short [-
bit outputs the complexity of collision search can be estimated as 2//2 RADIO-
GATUN calls, this is evidently not for longer ones. As a result, a common security
level should have been defined thus providing an upper bound on the complexity
of a particular attack.

In the original paper the notion of capacity was introduced. The capacity of
the ideal iterative mangling function is the size of internal state minus the size
of the message block to be injected. However, since the RADIOGATUN round
function is not ideal, the security level of RADIOGATUN was indicated by a
smaller capacity of 19l,,. This implicitly means that both collision and second-
preimage attacks are slower than 2%-°'» though it was not clearly stated. The best
non-trivial attack found by the designers requires 246/ hash function calls and is
substantially slower than the birthday attack, which requires about 227-5= hash
querie&ﬁ. Now the designers explicitly claim a security level of 29-% operations
for both the attacks [J] thus following so called flat sponge claim [2]. So we
conclude that there is a big gap between the birthday bound with respect to the
internal state and the security level. Any attack in this gap, though not breaking

2 The internal state contain 58 words, but a 3-word flexibility is provided by the
injection of a message block not used before. See also Sec.
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the security level, could be nevertheless interesting because it should point out
weaknesses in the internal transformations.

2 Trails

In order to build a collision we consider so called differential trails [TJ5I7], or
simply trails. A trail is a pair of [hash function] iterations with restrictions on
internal variables. Such restrictions may be imposed on the differences between
variables or the values of particular variables.

This paper is partly inspired by the attack on GRINDAHL [I2]. In this section
some notions from that paper are used (control words, degrees of freedom) so
we kindly ask the reader to familiarize with it.

2.1 Symmetric Trails and Trails with Fixed Differences

If a design operates on words of arbitrary length (like RADIOGATUN) then one
may consider so-called symmetric trails that deal with word differences of form
000...0and 111...1. In the original paper on RADIOGATUN [I] and in the attack
on PANAMA [5] symmetric trails were discussed. Such trails are in some sense
independent of the word length. However, their probabilities seem to drastically
decrease as l,, grows.

Indeed, authors of [I] found a symmetric trail for the RADIOGATUN with 1-bit
words such that a collision search following this trail would require about 246
operations while the birthday bound is 227-5. This observation made authors to
claim that corresponding symmetric trail for RADIOGATUN-I,, (RADIOGATUN
with l,-bit words) would imply 246" as the complexity of the collision search.

However, the following observation make us to disagree with this generaliza-
tion. Given a trail with fixed (non-truncated) values of differences (not only
symmetric ones) an adversary actually knows the input and output differences
(Ain, Aput) of the nonlinear function y, the part of the Mill function. The pair
(Ain, Aour) impose a set of conditions on input and output values. The number
of conditions imposed on the input value is the Hamming weight of the input
difference plus the number of 001-patternd] in the difference [5]%

Let us estimate the average number of conditions. The average Hamming
weight of the 191, bit word is 9.50,,, the average number of 001-patterns is
17/8l,,. Thus we have about 11.5,, conditions on the bits of the mill in each
round. If there were no injection to the mill, only two rounds would give enough
conditions to completely determine the value of the mill. However, 6l,, bits are
injected to the mill from the belt (31,,) and the message (3[,,) thus compensating
6l,, conditions so we have about 5.5, bit conditions per round. As a result, one
can define the values of the mill given only about 4 rounds of a trail. However,

3 The word 001 0000 001 001 000 contains three 001-patterns.
~~ ~—

4 Full description of function x and its properties may be found in Daemen’s PhD
thesis [4, p. 126].
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since a full collision trail covers at least 6 rounds, with high probability no
message pair fits a given trail.
We can reformulate this result as an informal conjecture.

Conjecture 1. Either a differential trail with fixed values of differences has prob-
ability 0 or any 4 consecutive rounds of the trail completely define the message
pair.

A counterargument may be that one might find a trail with low Hamming weight
of the input difference. However, such a difference is likely to expand to an
average one due to diffusion properties in the Mill function. So far there is no
example of such low-weight trails.

We conclude that symmetric trails and trails with fixed differences seem to
be insufficient to evaluate the security of RADIOGATUN.

2.2 Truncated Differentials and Linear Space of Differences

The key idea is to consider truncated differentials of linear form and exploit
the linearity of transformations in the belt. We take a linear subspace R C Zéw
of dimension r. Let us also consider the first round such that the difference is
injected by the message block. Let these injected differences belong to R.

If the Mill function provided an ideal diffusion then the probability that the
difference in any word of the mill after applying the Mill function belongs to
R would be about 2" ~'». However, words 0, 3, 6, 10, 11, 14 and 18 of the mill
are not affected by the message injection, so there will be zero difference in
them after the first round. Thus 8 of the 12 mill words that are feedforwarded
to the belt are affected by the message injection. The difference in them is not
randomly distributed but one can find R such that the R-difference appears with
probability 2" ~!». The inverse of the Mill function provides the diffusion close
to uniform.

An example of R for RADIOGATUN-8 might be the following space: R =
{b7bg ... b1bo ’ by = bg = b; = 0}. Let A and A’ be random mills such that
A[16]) @ A'[16], A[17] & A'[17], and A[18] & A’[18] belong to R. Apply the Mill
function to both mills and compute the difference AA = {Ag, Ay, ..., A1g}. We
made 1000 experiments and observed that the probability that A; € R is close
to 1/8 = 125/1000 (see Table ).

Table 1. Distribution of differences in the output of the Mill function

1 112 4|5|7|8|9]12(13|15|16|17
#{A; € R}|145(134(116|141|115|122|109|134|132|138|129|106

Thus we assume that 8 words enter the Mill2Belt feedforward with the differ-
ence from R with probabilityﬁ 28(r=lw) One of these differences is added to the

5 We assume the independency of the separate events, which seems to be the case for
non-trivial R and quite big (> 7) n.
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difference imposed by the message injection. Since any linear space is closed un-
der addition, all 10 non-zero differences (8 from the mill and 2 from the message
injection) in the belt belong to R (see also Table 2 round 1).

Now we describe how this idea can be used in attacks.

3 Collision Search

In this section we show how to find a state S and the two different messages m
and m’ that convert S to the same state. Following the notation from [2] there
exist two paths p # ¢ from one state to another one. This is usually called semi-
free-start collision attack [11]. In other words, we build a collision for messages
with a chosen IV. Although the IV is fixed to 0 in RADIOGATUN, the IV that
we get in the attack can be any intermediate internal state, which makes the
attack interesting.

First we describe a simplified version of the attack, and then introduce several
tricks, which lead to a full attack. We apply the meet-in-the-middle approach,
because the initial state can be arbitrarily chosen, there is no message schedule,
and the round function is invertible. As a result, we can start with a final state
and step back.

We start from a set of arbitrary chosen pairs of identical states. We vary
injected message blocks during 5 rounds and difference in them and thus get set
S1 of pairs. 5 rounds are required to fill 38 of 39 belt words with differences. The
sixth message injection fills the last belt word. We also start from another set of
arbitrary chosen pairs of identical states and step backwards for 4 rounds varying
message blocks and difference in them as well. As a result, we get set Sy of pairs.
If a pair belongs to both sets then we obtain a collision. The complexity of this
approach is about 2°%» hash function queries. This process is briefly illustrated
in Figure

Pair of states

5 rounds
Birthday space

20 e -

O

l\ Point in

AN _ } ~the birthday space:

___________ mills are equal,

4 rounds elt differences are equal

Fig. 2. Outline of the meet-in-the-middle collision search
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Table 2. Full trail. Words with differences after the round function is applied.

Round Words with differences
Mill Belt
1 1,2,4,5,7,8,9,[1,0], [1,1], [1,2]
12, 13, 15, 16, 17

2 Al [1,0], [1,1], [1,2], [2,0], [2,1], [2,2], [4,2], [5,1], [7,2], [8,1],
[9,0], [12,0]

3 Al (0,0, [1,0], [1,1], [1,2], [2,0], [2,1], [2,2], [3,0], [3,1], [3,2],
[4,2], 5,1], [5,2], 6,0, [6,1], [7,2], [8,1], [8,2], [9,0], [9,1],
[10,0], [10,2], [11,1], [12,0]

4 Al All except [0,1], [0,2], [6,0], [9,0]

5 Al All except [0,2]

6 Al All

7 Al All except [L,2], [2,1], [3,0], [4,2], [5,1], [6,0], [7,2], [8,1],
[9,0], [10,2]

8 Al [0,0], [0,1] ,[0,2], [1.,1], [2,0], [3,2], [4,1], [5,0], [6,2], [7,1],
[8,0], 9,2], [10,1], [11,0], [12,0], [12,1], [12,2]

9 12-18 [0,0], [0,1], [0,2]

Due to space limitations we can not provide here a full graphical represen-
tation of the resulting differential trail. However, it can be fully determined by
the words with differences after each round. Providing that each message block
has difference in all three words we derive the trail described in Table 2l The
trail covers 9.5 rounds (after the 10th message injection all the words have zero
difference).

In order to compare this approach with the birthday attack we introduce the
notion of the birthday space. Assume that in order to get a collision we need to
obtain two states that fit a particular relation (in the simplest case — two equal
states). Then each class of equivalency is a point in the birthday space. The
complexity of an attack that uses a birthday paradox is thus the square root of
the size of the birthday space. If an adversary seeks an internal collision using the
birthday paradox, the coincidence of all the words is not necessary. Since there is
no message scheduling, and each message block can be chosen independently, it
is enough to obtain two states colliding in all words not affected by the message
injection and in three more words, which are the sums of words affected by the
corresponding message words. Thus we have the birthday space of dimension
550, and the complexity of the birthday attack is 227-5%«  which is smaller than
our naive meet-in-the-middle attack, where the dimension of the birthday space
is 2% 191, + 2 % 390, = 1161,,.

Next we show that pairs may not completely coincide. First we relax restric-
tions on the belt and show that the equality of the difference in the belt is
enough.

Proposition 1. The belt-to-mill feedforward in n < 13 consecutive rounds can
be considered as injection of n independently chosen 3-word blocks.



60 D. Khovratovich
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Fig. 3. Scheme of the belt recovery

Proof. Indeed, one can recover the belt from any n < 13 3-word blocks without
contradiction. This can be proved by the following observation. Let us derive the
values of the belt words consecutively while iterating one round after another.
At each step we derive 3 more known words and use the known message and mill
values to carry out the known values to the next step. Due to slow rotation new
values cover consecutive columns in the belt. This process is briefly illustrated
in Figure[3

Formally, denote the belt in the beginning of the trail by B and in the end by
B’. Tt is easy to see that belt words are not mixed with each other, only message
and mill words are added. Thus B'[i, j] = Bli —n, j] + f (i, j) where n is the trail
length and f is a function of the message and the mills. The belt words that are
feedforwarded to the mill are derived from distinct B words. Thus giving any set
of feedforward blocks, the mill values and message blocks one can recover the
original B without contradiction.

Let us return to the 9-round trail. If a state from S; and a state from S5 coincide
in the mill and in the difference in the belt then the corresponding parts of the
trail can be combined into one trail. At the same time, 27 words of the initial
belt are recovered. The other 12 words can be assigned randomly. The dimension
of the birthday space is 2 % 191, + 39[,, = 77l,, so the complexity of the second
version of the attack is about 238:5%w,

Linear Truncated Differentials. In order to reduce the birthday space we impose
restrictions on the differences that are fed to the belt. We choose integer r <
l, (the exact value of r will be defined later) and a linear space R C Zi* of
dimension r that fits the assumptions of uniformity (see section 22]). In order
to obtain a desired difference we vary the injected messages. We choose the first
message block in the pair randomly thus having 3l,, degrees of freedom (see
also [12]). The second message should have the R-difference with the first one
so we have 3r more degrees of freedom. Thus the probability that we find the
words to be injected such that a given pair pass through the next round with
R-restriction is 287~ 8lwF3r+3le. — 9llr=5lw (if this value exceeds 1 then we just
obtain more pairs).

The latter value can be also considered as a multiplier ¢ such that if N pairs
enter the round then ¢ - N pairs with R-difference can be obtained from them
after one iteration.
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We need 5 rounds and one more message injection to fill the 39 words of the
belt (we use the trail presented in Table[2) with R-differences. Let (A, B) denote
the internal state as a pair of the mill and the belt in the beginning of sixth round.
We also require that the 12 words of A that are feeded to the belt in the sixth
round should also have R-difference (this is arranged by the message injection in
rounds 4 and 5). To sum up, we need 56 R-difference words in the mills during
five rounds while the freedom provided by injections is 5 (3r+3l,,) = 157+ 150,,.
Additionally, we randomly choose the words that are feedforwarded from the belt
(see Proposition [I]) in rounds 1-4 thus having 12[,, more degrees of freedom. As
a result, if we start with 271 pairs then 2m1T157+27he+56r=56l, — gna+71r—290,
pairs pass through five rounds.

Now we consider the second part of the trail and proceed back from the aero-
difference state. Only 3 message injections are needed to fill the belt with R-
differences. However, the difference in the mill would coincide with the difference
in the 12 words of the belt. We add one more round. Thus 48 words with R-
difference should be obtained during the process. The multiplier is

9 (12r— 121, +3r+31,+3ly,) _ 960r—24l,

Finally, let us calculate the dimension of the birthday space. Recall that we need
that pairs should coincide in the value of the mill, in the difference of the mill,
and in the difference of the belt. The dimension of the resulting birthday space is
190, +(12r+71,)+39r = 51r+4261,,. However, we have not used the freedom that
is provided by the message injection in round 6 and the bell-to-mill feedforward
in round 5 yet. This freedom allows us to further relax the restriction on the
coincidence of pairs: we do not care of values of the mill in 6 words and of 3
word differences. Finally, the resulting birthday space is of dimension 201,, + 48r.
Now we compute r such that the number of pairs throughout the attack is
minimal. Let us denote by 2™ and 2"? the number of pairs that we start with
from the first round and from the last round, respectively. Then the number of
pairs and the complexity of the attacd is bounded by max (2", 2m+7ir=29w onz
2n2+60r=24lu) The second requirement is that the number of pairs in the middle
round should be enough to perform the birthday attack: (ny + 71r —291,) 4+ (na +
60r — 241,,) = 20l,, + 48r. The best solution is provided by the r equal to 0.41,,.
This implies the equation ny + ny = 39.8l,,. The resulting complexity is 2199

Relazation. Further we note that several words in the belt are updated by the
mill words twice during the first 5 rounds. Since we need R-difference only in
the middle state, arbitrary difference can be injected at the first time and later
converted to the R-difference. As before, we expect the probability of getting
an R-difference as 277!, After this relazation we have no restrictions on the
difference in the message injection in the first round (the idea is illustrated in
Figured]). Furthermore, we have no restrictions on the mill difference in the first
round. The only difference that should be maintained by the first injection is
the difference in 3 mill words after round 2.

5 We assume that the search for appropriate message blocks and belt words is of neg-
ligible cost and can be maintained with a lookup table.
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Following this approach we obtain  Before relaxation After relaxation

probability 24876l for a random pair

to come out of the first part of the trail.

The probability for the second part of

the trail (reverse process) is 2487 —12lw, ?4_ e?b

However, the number of pairs is no

longer a monotonic function of the @
round number, so we adjust the value

of r in order to keep the number of ?b G?‘—

considered pairs minimal during the -
attack. The resulting complexity is
about 28 hash function queries with

r = 4/13l, and the birthday space R — R-difference

of dimension 48r + 20l,, ~ 34l,,. The * — arbitrary difference
number of pairs after every round is

given in Table Bl Fig. 4. Idea of the relaxation

Strengthening. The fact that the number of pairs is not a monotonic function
of the round number means that degrees of freedom are not properly used. Here
we notice that after relaxation most words with R-differences are not added to
each other so we can omit the restriction on linearity. One may consider a group
of differences (instead of a linear space) of arbitrary size between 1 and 2'».

In order to flatten the function of the number of pairs we consider particular
words in the mill and strengthen the restriction on differences in them taking
another space R for a particular word. As a result, we deal with several different
R’s, each with its own size.

The benefit is given as follows. Suppose we work with a two-round trail. The
number of pairs is N before the first round, 2! N (I > 0) before the second round,
and N after the second round. Then the the overall complexity is bigger than
both the initial and end values and is equal to 2'N. If we follow the idea of
strengthening and add [ more conditions on the difference after the first round
(and in the end) then the number of pairs is reduced to N after the first round
and to gf in the middle. The dimension of the middle space is also decreased by

Table 3. The complexity of the collision search after the relaxation (r = 4/13l.)

Degrees of Words to Number of

Round freedom  control  pairs (log,) Round

Deg. of Words to N-r  of
freedom control  pairs

0 - - 12.5,,

10 - - 13.81.
1 6l 3 14.50.,

9 9w 10 15.90.,
2 9w 10 16.61.,

8 9 10 181y
3 9 11 1814,

7 9y 13 181y
4 9w 13 1814 6 o1 15 161
5 9w 13 1814 v v
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l. In order to maintain the birthday attack we must increase the initial number
of pairs from N to N2!/2. The complexity of the attack is thus reduced to N24/2.

Theoretical lower bound. One may ask the question what the smallest complexity
is that we can achieve following the ideas of linear differences, relaxation and
strengthening. Let us recall that the dimension of the middle space without
restrictions on differences is 771,,. If we impose P linear restrictions on differences
then the dimension will be 771, — P. On the other hand, we have 51[,, degrees
of freedom (provided by 6 message blocks and belt2mill feedforward blocks) to
compensate the restrictions. Thus the multiplier of the first part of the trail is
251w=PF "The lowest complexity is achieved if the multiplier is equal to 1, so we
obtain P = 51[,, and the dimension of the middle space is 26l,,. The number of
pairs required by the birthday attack is 2'3" which is the lower bound.

4 Second Preimage Search

The idea of the second-preimage attack is Original
iteration

similar to a simple collision one. While we
looked for collisions with arbitrary pairs,
in the second-preimage attack the first el-
ement of every pair is fixed and is equal
to the original internal state. We pull a
number of states through the iteration
process from both ends and look for the
coincidence in the middle round. We vary
injected messages in order to obtain R- ;.
differences in the middle round. The trail =~ roud
is similar to that is given in Table [2]
but the zero differences are now arbitrary
differences.

Let us consider 10 rounds of the hash
iteration to which we want to find a sec-
ond preimage (called below the original
iteration). Where these rounds should be
located will be discussed later. Denote the
internal states of the original iteration in
the beginning of 11 consecutive rounds:
Iy, I1,...,I1p. Suppose we also have Ny
states (the exact value will be also defined
later) that are resulted from iteration of
the original zero state with some random
message. Then we consider Nj differences
between these states and the state Iy as the first difference in the 10-round trail,
which is obtained from the trail in Table 2] by adding one more round in the be-
ginning and replacing zero differences with arbitrary differences. Next for each

Initial
state

Fig. 5. Outline of the second preimage
search



64 D. Khovratovich

of N states we look for the 6-block messages that provide an R-difference state
in the middle round (a state that has an R-difference in every word with the
state Ig). As a result, we obtain a set S7 of internal states. See also Figure [ as
an illustration.

Similarly, suppose we have Ny states that are resulted from reverse iteration
of the last internal state of the original iteration. We treat them in the similar
way and look for the 4-block messages that provide an R-difference state in the
middle round. Thus we obtain a set Sy of internal states. Then we look for a
state that is presented in both sets. Such a state implies a parallel iteration,
which gives the same hash value.

Now let us estimate what are N1, No and the complexity of the attack. The
injection in round 0 controls 4 mill words in the end of round 1 such that the
resulting difference belong to R. The injections in rounds 1-4 control 12 words
and the last one control 8 words. Thus the probability that a state can be pulled
to the middle state with R-differences is 2(4112+4+8)(r—lw)+3+6r — 978r—60Ly The
same idea holds for reverse steps. We start with N, states and the proportion
24(12r =12, +3r) — 960r=48lw of them comes out of the iteration.

The dimension of the birthday space in the beginning of 6-th round is 71,,+51r
(12 words of the mill and all the words of the belt must have R-difference, and
the other 7 mill words may have arbitrary difference). Given 3r more degrees of
freedom from the message injection in round 6 we derive that 23->/»+247 internal
states are required to perform the birthday attack.

The optimal complexity is given by the r = 0.8[,, that converts the multiplier
200r—=48lw 6 one. Thus we derive

Ny = 23:5bu+24r+600, =781 _ 9203l £ 935y +24r+481, —60r _ 922.70,
; .

If we follow the method of relaxation and strengthening as described in Section Bl
then the complexity about 220%» could be achieved. This is actually the lower
bound for these meet-in the middle attacks with 10-round trails, which can be
checked following the method in Section [3l

5 Implementation of Attacks

Though optimal r might be non-integer, we can take concrete values just to
check whether our approach works in real life. Due to high complexity of the
attack even with small number bits in a word we can not perform the attack
as a whole but we tested the RADIOGATUN round function on different spaces
R and encountered good distribution of differences in the output (see Table [II),
especially in reverse steps. We also checked that values in the belt words and
message blocks to be injected can be chosen such that the desired differences
appear in the output of the non-linear function. Thus we substantiated the main
assumptions made throughout the description of the attack.

One may also argue that RADIOGATUN with reduced number of words in the
belt and in the mill may be considered as an easier object for the attack. How-
ever, the reduced round function and its inverse do not provide good differential
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Table 4. Summary of attacks on RADIOGATUN

Attack Type Complexity Origin

Symmetric trails 246w m
Birthday 227-5lw -

Collisions R-difference 219-9%w This paper

After relaxation 218lw This paper
Birthday 227-5lw -

Second preimage search R-differences 2227w This paper

After relaxation ~ 2200w This paper™

* — hypothetical.

characteristics (close to random) anymore. We checked this for the internal state
that is reduced threefold. This (non-uniformity) is also the case with small I,
(the number of bits in a word), which makes our attack inefficient.

We also note that the attack becomes trivial for RADIOGATUN-1 since there
are only two options for R, and both of them give high complexity.

6 Conclusions

We investigated the security of RADIOGATUN using differential trails with lin-
ear restrictions on differences. We applied the meet-in-the-middle approach and
managed to reduce the complexity with help of new tricks such as relaxation and
strengthening. We showed how to find semi-free-start collisions with complexity
about 2'8 hash function calls and the second preimage with about 2227« calls
(with a possible improvement up to 220%+). We also provided theoretical lower
bounds on the complexity of the attack which follow the same approach.

The main weakness of the RADIOGATUN round function that we exploited
is plenty of linear operations and slow diffusion in the belt. We suppose that a
compromiss between adding more non-linearity in the primitive transformations
and the speed might be found so the design could be seriously strengthened and
the security level could be increased (say, up to 2'6w). As a result, a smaller
versions (in terms of l,,) could be used as a 256/384/512-bit hash function.

Regarding RADIOGATUN itself, though our attacks do not break the claimed
security level (29-°!), they are faster than the birthday attack and the attack
that might be carried out from GRINDAHL [I2]. Thus we conclude that RADIO-
GATUN is still resistant against differential-based collision search though this
resistance is now provided only by a substantially low security level.
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Faster Multicollisions*

Jean-Philippe Aumasson

FHNW, Windisch, Switzerland

Abstract. Joux’s multicollision attack is one of the most striking re-
sults on hash functions and also one of the simplest: it computes a k-
collision on iterated hashes in time [log, k]-2"/%, whereas k!'/*.2n(k=1/k
was thought to be optimal. Kelsey and Schneier improved this to 3 -
27/2 if storage 2"/2 is available and if the compression functions admits
easily found fixed-points. This paper presents a simple technique that
reduces this cost to 2"/? and negligible memory, when the IV can be
chosen by the attacker. Additional benefits are shorter messages than
the Kelsey/Schneier attack and cost-optimality.

Keywords: hash function, collision.

1 Introduction

Cryptographic hash functions are key ingredients in numerous schemes like
public-key encryption, digital signatures, message-authentication codes, or mul-
tiparty functionalities. The last past years the focus on hash functions has dra-
matically increased, because of new attacks on the compression algorithm of
MD5 and SHA-1 and on their high-level structure, e.g. multicollision attacks.
We introduce these attacks below.

Consider an arbitrary function f : {0,1}" x {0,1}™ + {0,1}". A classic
construction [24125] defines the iterated hash of f as the function

hHo(Ml e M@):
fori=1,...,/do
Hi — f(Hi—1, M;)
return H,

where Hy is called the initial value (IV), and f the compression function.
Damgard and Merkle [7/18] independently proved in 1989 that h is collision-
resistant if f is collision-resistant when the bitlength of the message is appended
at its end (a technique referred as MD-strengthening). This technique also pre-
vents the fized-point attack—a folklore multicollision attack—whose basic idea
is that if M satisfies f(Ho, M) = Hy, then hy,(M ... M) = Hy.

The problem we will focus on is how quickly one can compute k distinct mes-
sages mapping by hy, to the same value, when MD-strengthening is applied (call

* Article previously accepted to SECRYPT 2008, but withdrawn by the author because
unable to attend the conference. This author was supported by the Swiss National
Science Foundation under project no. 113329.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 67[77] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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this a k-collision). An extension of the birthday attack computes k-collisiond]
within about k!'/F . 2n(k=1)/k calls to f, which was believed to be the optimal
until the technique of [I0] that requires only [log, k] - 2"/2 f-calls. Kelsey and
Schneier subsequently reduced this cost to 3 - 2%/2 [12], provided that storage
27/2 is available, and that f admits easily found fixed-points. Though seldom
cited, this technique is more powerful than Joux’s in the sense that the cost of
finding a k-multicollision is independent of k, yet a drawback is the length of
the colliding messages, significantly larger.

1.1 Contribution

This paper reviews the previous techniques for computing k-collisions, and
presents a novel method whose main features are

— a cost independent of the number of colliding messages k (with on/2 trials)
— short colliding messages (with [logs k| blocks)
— negligible storage requirements

Limitations of the attack are the need for easily found fixed-points, and the
IV chosen by the attacker. This means that the IV used for the multicollisions
cannot be set to a predefined value, which corresponds to the model called “semi-
free-start collisions” in [I4], “collision with different IV” in [2I], and “collision
(random IV)” in [I7]. Within this model, our technique is optimal, because k-
collisions become as expensive as collisions.

The practical impact of this attack is limited, because it does not break
the complexity barrier 2"/2. However, in terms of price/performance ratio (or
“value” [21], §2.5.1]) it outperforms all the previous attacks, since for the same
price as a collision, one gets k-collisions.

1.2 Related Work

Multicollisions received a steady amount of attention since Joux’s attack: [19J9]
generalized them to constructions where a message block can be used multiple
times; [30] revisited the birthday attack for multicollision; dedicated multicolli-
sion attacks were found for MD2 [13] and MD4 and HAVAL [31]. Finally, [11]
used multicollisions for the “Nostradamus attack”.

1.3 Notations

Let f:{0,1}™ x {0,1}"™ — {0,1}" be the compression function of the iterated
hash hg,, for an arbitrary Hy, where MD-strengthening is applied. If f admits
easily found fixed-points, write FP# : {0,1}" +— {0,1}" a function such that for
all M, FP¢(M) is a fixed-point for f, i.e. f(FPs(M), M) =FP¢(M).

Then, fix a unit of time (e.g. an integer addition, a call to f, a MIPS-year,
etc.), and a unit of space (e.g. a bit, a 32-bit word, a n-bit chaining value, a

! Plural is used because from any k-collision we can derive many other k-collisions, by
appending the same arbitrary data at the end of colliding messages.
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128 Gb hard drive, etc.), and write the cost of computing f as T time units
and Sy space units (resp. Tep and Sgp for FPy); we assume these costs input-
independent; we disregard the extra cost of auxiliary operations and memory
accesses (though of certain practical relevance); we also disregard the constant
factor caused by “memoryless” birthday attacks [29123].

Note that our goal is to find (the description of) many messages with same
digest, not to effectively construct them. Hence, the time cost of finding a k-
collision is not lower-bounded by %k (e.g. k steps of a Turing machine), neither
are the space requirements.

2 Joux Multicollisions

This method computes 2*-collisions for k times the cost of finding a single col-
lision: Assuming m < n, first compute a colliding pair (M7, M7), i.e. such that
f(Ho, M1) = f(Hy, M{) = Hy, then compute a second colliding pair (Mo, MJ)
such that f(Hy, M2) = f(Hy, Mj) = Hs, and so on until (M, M}) with Hy_q
as IV. Hence, for a symbol X € {M, M'}, any of the 2¥ messages of the form
X1 ... X has intermediate hash values Hi, ..., Hy, and 2¥-collisions can be de-
rived from these 2* messages by appending extra blocks with correct padding.
The cost of the operations above is time k - 2"/2 . T, and negligible space.

o~
\Hl .

Fig. 1. Illustration of Joux’s method for k = 2: first a collision f(Ho, M1) =
f(Ho, M1) = H; is computed, then a second collision f(H1, M2) = f(H1, M3) = Hs is
found; the 4 colliding messages are My Ma, My Mj, M{Ms, and MM,

Fig. [ gives an intuitive presentation of the attack; computing a 2¥-collision
can be seen as the bottom-up construction of a binary tree, where each collision
increases by one the tree depth. Note that a chosen IV does not help the attacker.

3 Kelsey/Schneier Multicollisions

As an aside in their paper on second-preimages, Kelsey and Schneier reported
a method for computing k-collisions when f admits fixed-points [12], §5.1]; an
advantage over Joux’s attack is that the cost no longer depends on k. Here we
will detail this result, which benefited of only a few informal lines in [I2], and is
seldom refered in literature.
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3.1 Fixed-Points

A fized-point for a compression function f is a pair (H, M) such that f(H, M) =
H. For a random f finding a fixed-point requires about 2" trials, by brute force
search. Because it does not represent a security threat per se, neither it helps to
find preimages or collisions, that property has not been perceived as an undesir-
able attribute: in 1993, Preneel, Govaerts and Vandewalle considered that “this
attack is not very dangerous” [22], and according to Schneier in 1996, this “is
not really worth worrying about” [28] p.448]; the HAC is more prudent, writing
“Such attacks are of concern if it can be arranged that the chaining variable has
a value for which a fixed point is known” [I7), §9.102.(iii)].

The typical example is the Davies-Meyer construction for blockcipher-based
compression functions, which sets f(H, M) = Ey(H) ® H. Hence, for any M a
fixed point is (E},'(0), M):

Ev(Ey (0) @ Eyf(0) =00 By (0) = H.

Therefore, each message block M has a unique H that gives f(H, M) = H and
that is trivial to computeﬁ.

Note that the functions MD4/5 and SHA-0/1/2 all implicitly follow a Davies-
Meyer scheme (where integer addition replaces XOR). More generally, an it-
erated hash may admit fixed-points for a sequences of compressions rather
than a single compression—e.g. for two compressions, defining f'(H, M, M') =
F(f(H, M), M"). Generic multicollision attacks apply as well to this type of func-
tion, up to a redefinition of f and m.

3.2 Basic Strategy

We first consider the simplest case, i.e. when any IV is allowed. Recall the fixed-
point attack mentioned in §Il which exploits a fixed-point f(H, M) = H to
build the multicollision hy (M) = hy(MM) = hy(MMM ...M) = H. MD-
strengthening protects against this attack, since it forces the last blocks of the
messages to be distinct. The idea behind Kelsey/Schneier multicollisions is to
bypass MD-strengthening using a second fized-point. This fixed-point will be
used to adjust the length of all messages to a similar value, to get the same
padding data in all messages. Fig. @l illustrates this attack: fix n > 2; if the first
fixed-point is repeated k times, then the second fixed-point is repeated n — k
times to have n blocks in total. The last block imposed by MD-strengthening
will thus be the same for all messages. The second fixed-point is integrated via
a meet-in-the-middle technique (MITM) that goes as follows:

1. Compute a list Lq:
(M, f(Ho, My)), ..., (Mans2, f (Ho, Man/2)).
2. Compute a list Lo:
(M{,FP(MY)),..., (Mg /2, FP(Myn,2)).

% Similar fixed-points can be found for the constructions numbered 5 to 12 in [22].
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Ho » Hy...Hp >Hj >~ HJ‘ ...... Hj » Hp

Ho Ho...... Ho >Hj >Hj...Hj » Hp

Fig. 2. Schematic view of the Kelsey/Schneier multicollision attack, for an IV chosen
by the attacker: a first fixed-point allows to expand the message, while a second one
adjust the lengths to a similar value

3. Look for a collision on the second pair element (M;, H;) € L1, (M}, H;) € Lo.
4. Construct colliding messages of the form M; ... MZM]’ o M]’,, such that the
length of the whole message is kept constant.

The attack runs in time 27/2 . T, + on/2. Trp, and needs storage Sy + Spp +
on/2. S (ntm)» With S,y the space used to store a (n + m)-bit string. These
values are independent of the size of the multicollision. The length of messages
is addressed later.

When the 1V is restricted to a specific value, the first fixed-point has to be in-
troduced with another MITM:; time cost grows to 2 - 2/2 . T, + 27/2 . Tep, and
storage is similar (the second MITM reuses the space allocated for the first one).

3.3 Multiple Fixed-Points and Message Length

In the above attack, a k-collision contains messages of about & blocks. In com-
parison, Joux’s method produces messages of [log, k] blocks. This gap can be
reduced by using more than two fixed-points: Assume that K > 2 fixed-points
are integrated in the message. The attack now runs in time (K —1)(2"/2- T +
2"/2 . Tgp), counting (K — 1) MITM’s, for a chosen IV. Also suppose a limit of
¢ blocks per message (e.g. a maximum number of blocks allowed by a design,
typically 264), with ¢ > 2K.

Given the limit ¢, how large can be a multicollision in terms of K? The number
of constructible colliding messages is equal to the number of compositions of
¢ having at most K non-null summanddl. The number we are looking for is
Cox = Zfigl (f) (summing over the number of separators), so we will get a
Co, i-collision.

For example, consider SHA-256, which admits fixed-points: with K = 8 one
finds 2°7-collisions in time about 14-2'%8, with 1024-block messages; in compari-
son Joux’s method computes 2°7-collisions in time about 57 - 2128, with 57-block
messages, and if we fix the message length to 1024 it finds 2!0?4-collisions, in
time about 1024 - 2128, This stresses that a small number of fixed-points leads
to much longer messages. Performance becomes similar for the two attacks (in
terms of time cost, message length, and k) when K = |¢/2].

3 A composition (or ordered partition) of a number is a way of writing it as an ordered
sum of positive integers. For example, 3 admits four compositions: 3, 2+ 1, 1 + 2,
1+1+1.
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4 Faster Multicollisions

This section presents a method applicable when the compression function admits
easily found fixed-points (like MD5, SHA-1, SHA-256), and when the IV can be
chosen by the attacker. Despite its relative simplicity it has not mentioned in
the literature, as far as we know.

4.1 Description

The key idea of the attack is that of fized-point collision, i.e. a collision for the
function FP; since FP ¢ outputs n-bit this costs time Trp .27/2 and space Sgp. A
fixed-point collision is a pair (M, M’) such that FP¢(M) = FP¢(M') = Hy, and
thus f(Ho, M) = f(Hy, M') = Hy. The distribution of Hy (as a random variable)
depends on f and FPy; e.g. for Davies-Meyer schemes based on a pseudoranom
permutation (PRP), this will be uniform.

Once found a fixed-point collision (M, M'), a 2*-collision can be constructed
by considering all the k-block sequences in the set {M, M'}* followed by an
arbitrary sequence of blocks M* with convenient padding. For example, a 4-
collision will be

Hy X Hy M Hy Y H

Ho X Ho M B, 1

Ho ™ Hy M Hy Y H

Ho™ Ho M B, 1
The sole significant computation is for finding a fixed-point collision, hence the
whole attack costs time Tgp - 27/2 and memory Sgp (with negligible overhead).
For instance, for a Davies-Meyer function computing FP; has the same cost as

computing f, thus time cost is Ty - 27/2 Observe that the attack requires no
call to the compression function itself, but just to the derived function FP.

Hy
M,
Hy \ . 4{'
Hy /

M

Fig. 3. Illustration of our technique for k = 2: a fixed-point collision f(Ho, M1) =
f(Ho, M{) = Hp is computed, then the four colliding messages are M;M;, M;Mj,
M{M;i, and M{M;j. Contrary to Joux’s attack, Hy is here chosen by the attacker.
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If computing fixed-points is nontrivial but easier than expected, this attack
becomes more efficient than Joux’s as soon as k > Trp/T; (for computing
2F_collisions).

4.2 Finding Fixed-Point Collisions

For a PRP-based Davies-Meyer compression function, the cost of finding a fixed-
point collision (i.e. FP;(M) = FP¢(M")) equals the cost of finding a collision
(i.e. f(Ho,M) = f(Hy,M'")); indeed in both cases the function is essentially
one query to the PRP, thus the same refined birthday-based methods can be
used [29123].

This suggests that for Davies-Meyer functions (like MD5, SHA-1, SHA-256)
finding a fixed-point collision is cost-equivalent to finding a collision: indeed the
goal is now to find (M, M’) such that E;;!(0) = E,}(0), while classical collisions
need Ey(H) = Epp(H). Therefore, if E is a PRP then finding a fixed-point
collision with fixed IV is exactly as hard a finding a collision.

For hash functions that don’t have obvious fixed-points, finding a fixed-point
collision is at least as hard as finding a collision. Contrary to Davies-Meyer
schemes, the ability to find fixed-IV collisions does not directly allow to find
fixed-point collisions.

The statements above cover other blockcipher-based schemes that allow the
easy finding of fixed-points (cf. the 8 schemes in [22]). We conjecture that known
techniques for finding collisions on MD5 and SHA-1 can be adapted to find fixed-
point collisions within similar complexity.

4.3 Distinct-Length Multicollisions

The attacks of Joux and Kelsey/Schneier find colliding messages of same length.
A variant of our technique allows to find sets of messages that collide and do
not all have the same block length. The idea is to find a fixed-point collision
f(H,M) = f(H,M') = H such that M and M’ contain valid padding bits,
that is, are of the form ...10...0||¢. The chosen message bitlength ¢ should
be different for M and M’, and be consistent with the number of zeros added.
Finding a fixed-point collision with these restrictions is not more expensive than
in the general case as soon as at least n/2 bits in the message blocks are not
padding bits.

Once a pair (M, M’) with the above conditions is found, we can directly
describe multicollisions. Suppose for example that M = ...10...0[{ and M' =
...10...0||¢', where £ encodes the length of a 2-block message, and ¢’ encodes the
length of a 3-block message. Then the messages M| M, M'|M, M||M|M',...,
M'||M'||M’" all have the same hash value by hp, and have suitable message
length encoding.

4.4 Comparison to Joux and Kelsey/Schneier

Compared to Joux’s technique, ours has the advantage of a cost independent
of k; optimality of the algorithm follows (with respect to the assumption that



74 J.-P. Aumasson

a single collision costs at least 27/2 f-calls). Compared to Kelsey/Schneier, our
technique benefits of short messages ([log, k] for a k-collision), and no storage
requirement. However, our attack is limited by the chosen IV, which makes it
irrelevant for many applications of hash functions.

Consider for example an attacker with 2130 . T; power to attack SHA-256:
with Joux’s technique he finds 4-collisions, with Kelsey/Schneier’s he finds k-
collisions with k-block messages if memory 2'2%- S 74g) is available, and with our
method he finds k-collisions of length [log, k| for 4 different IV’s, for any k.

4.5 Application to Concatenated Hash Functions

Let the hash function H(M) = hg, (M)} (,)(M), where h is an iterated hash

whose compression function f admits fixed-points, and A’ and ideal hash func-
tion (in practice, h and A’ might be the same function, and use different TV’s).
Suppose further that both hash to n-bit digests.

A basic birthday attack finds collisions on H within 2™ calls to h, and as many
to h'; Joux reduced this cost to n/2 - 2"/2 . Ty + 27/2 . Ty, Our multicollision
technique applies similarly, if the IV of h can be chosen by the attacker: first
compute a 2"/2-collision for h, in time 2"/2 - Tgp, then look for a collision on A’
among these messages, in time 2"/2. T}, . Assuming T}/ = T, we get an overall
cost 27/2F1. T instead of (n+1)-2"/2. T} with Joux’s technique. Our method
is almost optimal, since it almost reaches the cost of computing a collision on h
or h' (up to a factor 2).

4.6 Countermeasures

The foremost question is “do we really need countermeasures?” A pragmatic
answer would be negative, arguing that the barrier 2*/? remains intact thus the
security level is not reduced; however, from a price/performance perspective,
security is clearly damaged. So if cheap countermeasures exist there seems to be
really few reasons to ignore them.

The first obvious measure against our attacks and Kelsey/Schneier’s is to
avoid easy-to-find fixed-points. For example by using one of the four blockcipher-
based constructions in [22] that have no fixed-points. Another choice is to
“dither” the hash function, i.e. adding a stage-dependent input to the compres-
sion function, cf. [2126l6/T2/T4]). For example by adding a counter to the input
of f, such that H; = f(H;—1, M;,). Dithering however doesn’t protect against
Joux’s method, since this computes a new collision for every dither value.

Joux’s attack can be prevented by a technique like the “wide-pipe” and
“double-pipe” of [I5] or the similar chop-MD [6] construction, which enlarge
the chain values compared to the hash value. This trick also makes our at-
tack unapplicable, because it increases the cost of finding fixed-point collisions.
Kelsey/Schneier attacks are applicable when fixed-points are easily found.

Another construction proposed in [I6] prevents from all multicollision attacks
presented here, including ours. Generally, our attack will work for some hash
construction when both Joux’s and Kelsey/Schneier do, hence won’t work when
at least one does not apply.
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A construction published in Dean’s thesis [8 §5.6.3, credited to Lipton] con-
sists in hashing M as M||M, with M the padded message, to simulate a “variable
IV”. This prevents all nontrivial multicollision attacks, but is unreasonably in-
efficient.

5 Conclusions

We presented a multicollision attack applicable to iterated hashes when the
IV can be chosen by the attacker, and when fixed-points for the compression
function are easy to find. This can be seen as a variant of Joux’s attack when
some restrictions are put on the hash function (Joux’s attack works for any IV
and doesn’t need fixed-points).

Our attack leaves open two related issues:

1. Can we find other generic attacks on iterated hashes that exploit easily-found
fixed-points?
2. How to find fixed-point collisions for dedicated hash functions?

Current known generic attacks using fixed-points are those of Dean for second-
preimages [8, 5.3.1], Kelsey/Schneier for multicollision [12], and ours in this
paper. Fixed-point collisions are likely to be found using similar techniques as
collisions, for blockcipher-based functions. Positive results to those two issues
would lead to new generic attacks (finding collisions or preimages) and new
dedicated attacks (finding fixed-points).
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Abstract. We present a new type of 2-block collisions for MD5. The
colliding messages differ in words ma, mg, mi2 in both blocks. The dif-
ferential paths for the collisions were generated by our implementation
of Stevens algorithm [II]. The actual colliding messages were found by
a version of Klima’s algorithm involving tunnels [3].

Keywords: MD5, differential paths, collisions, Stevens algorithm.

1 Introduction

At rump session of Crypto 2004 X. Wang presented two pairs of colliding mes-
sages for MD5 [I7]. A more detailed description of the method for constructing
colliding pairs of messages was given in the paper [I8] presented at Eurocrypt
2005. Each colliding pair consisted of messages of the same length 1024 bits, i.e.
two blocks (M ||Ms) and (M{||M}). Their modular differences were:

SM, = M] — M; = (0,0,0,0,2%,0,0,0,0,0,0,+2'°,0,0,2%,0)
My = My — My = —6M,
(0,0,0,0,23!,0,0,0,0,0,0,—2%,0,0,23 0)

The most important part of [I8] was the so called differential path for each
block. The differential path says how modular differences and xor of registers
Q@+, Q; evolve during the calculation of the MD5 compression function applied
to My, M{ and Ms, M}, resp. However, the paper [I§] gives no information about
how the differential paths were found.

Since then, many improvements of the collision search algorithm based on
the differential paths of Wang et al. have been published. Two most important
developments were the multi-block message modification (already mentioned in
[18]) and tunneling [3].These methods decreased the time required for finding
a pair of colliding messages to less than one minute on a PC. The theoretical
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complexity was estimated [2] to 227 calculations of the MD5 compression function
for Klima’s algorithm [3] and 229 calculations for Stevens’ algorithm [12].

A new type of collisions - the so called chosen prefix collisions were published
n [I1]. In case of chosen prefix collisions one starts with different initial vectors
IVand IV’ with modular difference 61V = IV — IV’ = (0, z, 2, z) and constructs
messages M, M’ such that MD5(IV, M) = MD5(IV’, M’). The number of blocks
of M and M’ equals the weight of x i.e. the minimal number of non-zero co-
efficients in any binary signed digit representation (BSDR) of x. The authors
used chosen prefix collisions to construct colliding X.509 certificates. A major
development of [I1] is an algorithm for an automated construction of differential
paths.

Another paper to mention in this context is the paper [I6] by Yajima et
al. The authors point out that there might be colliding pairs of messages with
other differences than those of Wang et al. However their estimates of time
required for finding colliding pairs with these differences were too high even if
the corresponding differential paths were known.

Recently Sasaki et al. [I0] made another progress in the study of MD5 colli-
sions. They constructed a differential path that allowed them to find two message
blocks My, M{ with modular differences

SM, = M] — M; = (0,0,0,0,0,0,0,0,0,0,0,+2%0,0,0,0)

such that MD5(IV, M;) — MD5(IV, Mj) = (231,231,231 231), Then they mod-
ify the algorithms of [I] to construct efficiently a message block Ms such that
MD5(IV, M ||Mz) = MD5(IV, M{||Mz). This is then applied to recover the first
31 letters of the client password used in the APOP. It was significant improve-
ment of the result from [4] and [9], where Wang’s et al. collisions enabled recovery
of the first three characters of the password.

In this paper we present a new type of 2-block collisions for MD5. We choose
one of the differences of messages suggested in [I6] and construct the corre-
sponding colliding message pair. In our case the colliding messages (M ||Ma)
and (Mj7||M3) have differences

SM, = M| — M, = (0,0,2",0,0,0,0,0,0,+22",0,0,2",0,0,0)
My = My — My = —5M;
= (07 07 2317 07 07 07 07 07 07 _2277 07 07 2317 07 07 0)

We use our own implementation of Stevens differential path searching algorithm
(the original implementation has not been published yet) to construct differential
paths. We also give some details of our implementation in section @l As for the
algorithm finding colliding messages satisfying a given differential path we also
use our own implementation of Klima’s algorithm [3]. We do not provide any
details since the algorithm based on tunnels is described well in e.g. [3], [13].

Recently Xie et al. announced in [I9] a different type of two block colliding
messages with differences
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§M; = M] — M; = (0,0,0,0,0,0,+280,0,2%,0,0,0,0,0,23)
OMy = My — My = —6M,
=(0,0,0,0,0,0,-2%,0,0,2%",0,0,0,0,0,2%")

Their collisions also belong among the collisions forecasted in [I6], the case
t = 43, see section [3

2 Preliminaries

We follow description and notation from [I3]. MD5 can be described as follows:

1. Pad the message with the 1-bit, then as many 0 bits until the resulting length
equals 448 mod 512, and the bitlength of the original message expressed as
a 64-bit integer. The total bitlength of the padded message is then multiple
of 512.

2. Divide the padded message into N consecutive 512-bit blocks M, M, ...,
Mpy.

3. Go through N + 1 states IV;, for 0 < ¢ < N, called the intermediate
hash values. Each intermediate hash value IV; consists of four 32-bit words
ai, b, ¢i, d;. For i = 0 these are initialized to fixed public values: (ag, bo, co, do)
= (OX67452301, OxEFCDAB89, 0x98BADCFE, OX10325476) and fori=1,2,...,
N intermediate hash value IV; is computed using the MD5 compression
function described below: IV, = H(IV,;_1, M;).

4. The resulting hash value is the last intermediate hash value IV y.

2.1 MD5 Compression Function

The input for the compression function H(IV, M) is an intermediate hash value
IV = (a,b,¢,d) of length 128bits and a 512-bit message block M. There are
64 steps, each step uses a modular addition, a left rotation, and a non-linear
function. Depending on the step ¢, addition constants C; and rotation constants
s¢ (all defined in standard [6]) are used.

The non-linear function f; is defined by

F(z,y,z) = (x Ay)V (-x Az), for0<t<15,
f = G(z,y,2) =(x AN2)V(yA—z), for 16 <t <31,
PTYH(@y, ) =2y @ 2, for 32 <t <47,
I(z,y,z) =y ® (z A —z2), for 48 <t < 63,
The message block M is divided into 16 consecutive 32-bit words mg, m1, . .., m15

and expanded to 64 words W;, for 0 <t < 64, of 32 bits each:

My, for 0 <t < 15,

145t mod 16, for 16 <t < 31,
M543t mod 16, for 32 <t <47,
M7t mod 16, for 48 < t < 63,

W =
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For 0 <t < 64 the compression function algorithm maintains a working register
with 4 state words Q¢, Q¢—1, Qt—2, Qr—3. These are initialized as (Qo, @1, Q—2,
Q_3) = (b,¢,d,a) and, for 0 < t < 64 in succession, updated as follows:

Fy = fi(Q¢, Qi—1,Q¢—2),
Ty =Fy+ Qi3+ Cy + Wy,
Ry = RL(T}, sy),

Qt+1 = Q¢ + R

After all steps are computed, the resulting state words are added to the inter-
mediate hash value and returned as output: H(IV, M) = (a + Qe1,b + Qs4,¢ +
Q63,d + Qp2)-

2.2 Differential Paths

A differential path for compression function H is a precise description of the
propagation of differences through the 64 steps caused by JIV and d M

OF;, = fi(Q4, Qi—1, Qi—2) — fi(Q1; Qr—1,Qr—2);
0T, = 0F; + 0Q¢—3 + 0Wy;
§R, = RL(T!,C,) — RL(T}, C\);

0Qi+1 = 0Q¢ + 0 RRy.

We use notation of bitconditions (also taken from [I3]) on (Q:, @}) to describe
differential paths, where a single bitcondition specifies directly or indirectly the
values of the bits Q[i] and Q}[i].

A binary signed digit representation (BSDR) of a word X is a sequence Y =
(k;)2L,, often simply denoted as Y = (k;), of 32 digits k; € {—1,0,+1} for

0 <4 < 31, where
31

X =) k2 mod 2%,
i=0
A particularly useful BSDR of a word X which always exists is the Non-
Adjacent Form (NAF), where no two non-zero k;’s are adjacent. The NAF is not
unique since we work modulo 232 (making k3; = —1 equivalent to k3; = +1),
however we will enforce uniqueness of the NAF by choosing k31 € {0,+1}.
Among the BSDRs of a word, the NAF has minimal weight (see e.g. [14]).

Table 1. Differential bitconditions

q,[7] condition on (Q:[i], Q4[i]) ki
Qt[i] = Q;[Z] 0

+ Q:[i] =0, Qifi] =1 +1
- il =1, Qii] =0 -1
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Table 2. Boolean function bitconditions

q,[7] condition on (Q:[i], Q%[i]) direct/indirect direction
0 Qi) = Qi =0 direct
1 Qi) = Qili] =1 direct
- Q:[i] = Q1li] = Qi-1]i] indirect backward
v Q+i] = Q1] = Qet1li] indirect forward
! Q+i] = Qili] = ~Qi—1][7] indirect backward
y Qi) = Q1li] = ~Qe41d] indirect forward
m Q+[i] = Qili] = Q¢—2[i] indirect backward
w Q:[i] = Q1li] = Qu+2]i] indirect forward
# Q+[i] = Qili] = —Qi—2][7] indirect backward
h Q+[i] = Qi[i] = ~Qry2[i] indirect forward
? Q+[i] = Qi[i] A (Q+[i] = 1V Qi—2[i] = 0) indirect backward
q Q+[i] = Qii] A (Qe42[i] = 1V Q4fi] = 0) indirect forward

3 New 2-Block Collisions in MD5

The collisions of Wang et al. [18] make use of a weakness in the message expansion
of MD5, in particular in its interplay with the non-linear function in the third
round (steps ¢t = 32,...,47). This weakness appears for all ¢ = 32,...,44, not
only fot t = 34 used in [I§]. This had been observed already by Yajima et al.
n [16]. They conjectured that any ¢t = 32,...,44 might possible lead to 2-block
collisions with similar characteristics.

More specifically there are 13 triplets of possible differences in messages

dy = (W4, 0Wii1,0Wii3) = (0M(5434) mod 165 0M(8434) mod 165 OT7(1443i) mod 16)>

where ¢ = t — 32, for which one can hope to construct 2-block collision similar
to those ones by Wang et al. They are summarized in Table [3

We believe this pattern must had been already known to Wang et al, because
they had chosen for their collisions the triplet defined by ¢t = 34 which requires
the smallest number of conditions in rounds 2—4 to have manageable computa-
tional complexity. An obvious strategy for choosing the ¢ and the corresponding
triplet of differences to have a differential path with manageable computational
complexity is to obey the following conflicting requirements:

Table 3. Generalized Wang type differentials

step (SQt 5Ft 5Wt 5Tt (SRt St
t 0 0 :|:23175‘ :|:23175‘ .231

t+1 231 .93 .231 0 0

t+2 .23 0 0 0 0

t+3 .23 .93 .231 0 0
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1. Choose the triplet d; such that the differences in messages appear in the sec-
ond round as soon as possible, in particular the difference in dms43; mod 16-

2. Choose the triplet d; such that the difference in dms13; mod 16 appears in
the fourth round as late as possible.

However, to find colliding messages with the forecasted differences requires to
find a differential path including a partial collision after two rounds, the pre-
scribed differences in the third round and their consequences in the rest of round
3 and in round 4. This is what Wang et al. did in [I8]. Yajima et al. in [I6] con-
structed a partial differential path for steps 17,...,64 in the case of differences
dy4, and estimated the number of conditions in rounds 2 to 4 for their partial
differential path. They presented a table comparing the number of conditions in
rounds 2 to 4 for the differential path for the first block of Wang et al. for the
differences ds4, and the partial differential path they proposed for the differences
d44.

Table 4. Number of conditions in rounds 2 to 4 for the first block

round Wang: d34  Yajima: dga ours: daa

2 15 52 50
3 0 0 0
4 20 17 16

In this paper we present full differential paths for both blocks for the dif-
ferences d44 and examples of the 2-block colliding messages with these differ-
ences. We constructed the full differential paths using our own implementation
of Stevens algorithm described in [I1] and [I3]. The differential path for the first
block we constructed differs in the second round from the partial path proposed
by Yajima et al. In table 4 we also present the number of conditions on @); with-
out the conditions on T} for our differential path for the first block. The numbers
taken from the paper by Yajima et al. are also the numbers of conditions on @
without the conditions on T} that were completely missing in the paper by Wang
et al. [I§].

The differential paths we constructed and the corresponding colliding mes-
sages are presented in appendix [Al The actual colliding messages were found
by an algorithm involving Klima’s tunnels which is similar to the near-collision
block searching algorithm presented by Stevens in [I3].

4 On Our Implementation of Stevens Algorithm

In this section, we discuss the details of our implementation of Stevens algorithm
for generating differential paths. This algorithm can be divided into two main
parts

— extending partial differential paths,
— connecting partial differential paths.
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We use the following terminology for partial differential paths. An upper path
is a partial differential path generated forward from an IV, a lower path is a
partial differential path generated backward from the registers 64, ...,61. Note
that our terminology differs from the one used by Stevens in [IT].

4.1 Extending Partial Differential Paths

We provide more information on backward generation of lower paths. We start
with a partial differential path for steps 63,...,31. This path is kept fixed
through out the whole run of the algorithm. We constructed it by hand in the
simplest possible way. This lower path is presented in table

Table 5. Partial lower differential path with §

t 5Qt 5Ft 5Wt (STt (SRt St

28 231

29 0

30 0

31 0 0 .231 0 0 20
32-43 0 0 0 0 0

44 0 0 427 4227 .93 4

45 231 231 93t 0 0 11

46 .231 0 0 0 0 16

47 931 231 98t 0 0 23
48-51 .23t .98l 0 0 0

52 231 0 .231 0 0 6
53-61 931 .231 0 0 0

62 231 0 .231 0 0 15

63 231 231 4927 4927 4916 9

64 +216 - - - -

The Stevens algorithm for extending differential paths uses 3 basic choices at
each step t.

1. A choice of a BSDR of Q.

2. A choice of §F;[i] for i = 0,...,31. This choice determines a BSDR of ¢ F}.

3. A choice of a BSDR of 6T} (in the case of generating upper paths forward)
or JR; (in the case of generating lower paths backward).

To limit the number of possible choices of BSDR’s for §Q); we use the following
4 basic parameters

(a) max nbr is the maximal number of BSDR’s of 6@,

(b) maz dif is the the maximal difference between the weight of a BSDR of §Q
and the weight of its NAF,

(c) maz len is the maximal length of carry propagation,

(d) maz prp is the maximal number of carry propagations.
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To choose a BSDR, of 6Q); within the limits specified by the parameters one
can use different approaches. One possibility is to generate randomly a BSDR
satisfying the parameters and then to continue to the next choice. Another pos-
sibility is to generate all BSDR’s satisfying all four parameters and then either
to choose randomly from all generated possibilities or deterministically in some
prescribed order.

Stevens mentions in his thesis that he sets up mazx dif = 2 and then he chooses
6@ randomly among all BSDR’s satisfying this condition. The advantage of this
approach is speed.

In our implementation we have selected the other approach and generate all
BSDR’s satisfying all four parameters. Then we choose a particular BSDR de-
terministically. Our approach gives us information about the number of possible
choices of BSDR’s and therefore it provides us with some information about the
tree of all possible extensions of partial differential paths.

To generate all BSDR’s of 6Q); (within the limits set up by the four parame-
ters) exactly once we developed our own algorithm. The details of the algorithm
and a proof of its correctness will be presented in another paper.

The second choice is to pick § F;[i], for i = 0,...31, and therefore BSDR of 0 F;.
In what follows we use notations and definitions of sets Ugpe, Vape and Wype g
from subsection 5.5.2 of [I1]. This choice depends on the precomputed values
of the functions FC(t,abc,g) and BC(t,abe,g), where a = q,[i], b = q,[i — 1],
¢ = q,[¢ — 2] are bitconditions, and g € {0,1, —1}.

There are again two different approaches to choose §Fy[i] (that is a BSDR of
0F;). One possibility is to choose §F;[i]’s randomly from the set Vgp. provided
|[Vabe| > 1. This is the approach used by Marc Stevens in his thesis [13]. This
leads to random selection of BSDR/’s of § F;. Our approach is to limit the number
of possible choices for a BSDR of §F; by a parameter maz dF and, if |Vgpe| > 1,
we choose JF[i] € Vype in the prescribed order 0, 1, -1. We proceed from i = 0
to ¢ = 31.

The third choice is to pick a BSDR of § R;. Depending on the choice of BSDR
of §R; there are at most four possibilities for 67;. Stevens describes in his thesis
how he chooses the most probable one. In our implementation we choose either
the NAF of dR; or the BSDR that differs from the NAF of §R; in the sign at
the leading bit.

The algorithm for generating upper paths forward differs from the one for
generating lower paths backward in inessential details.

4.2 Connecting Partial Differential Paths

We generate partial upper differential paths forward up to step 12 (the last com-
puted value is §Q13) and partial lower differential paths backward up to step 17
(the last computed value is §Q14). The choice of the bounds is the same as in [13].

We have implemented the algorithm for connecting differential paths de-
seribed in [I1] without any modifications. It should be noted however that the
output of the algorithm depends on the order of some steps in the algorithm and
on the data structures used to keep the intermediate results.
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Table 6. The parameters for partial lower paths

t max dif max len max prp max nbr max dF max con
15 - - - - - 67
16 - - - - - 60
17 2 2 2 10 1000 51
18 2 2 2 10 1000 41
19 2 2 2 10 1000 39
20 2 2 2 10 1000 35
21 2 2 2 10 1000 24
22 2 2 2 10 1000 20
23 2 2 2 10 1000 18
24 2 2 2 10 1000 11
30-25 2 1 2 10 1000 10

We supplement the connecting algorithm with the check if the rotation of §7%,
t = 11,...,15, leads to the correct dR; selected in the extending parts of the
algorithm. We try all possibilities for free bits in registers Q11, . . ., @16 and when
there exists the possibility providing correct rotation of §7;, we fix free bits and
continue with the collision generating part of algorithm.

The connecting algorithm seems to have surprisingly high success rate. Stevens
in a test run of his improved connecting algorithm successfully connected 52 pairs
of upper and lower paths out of 2.5 - 10% x 5-10° attempted pairs.

In our implementation the ratio of successfully connected pairs appears to be
very sensitive on the choice of parameters for generating partial differential paths,
especially the parameter max dF. The distribution of the number of successfully
connected pairs in different runs of our implementation was rather irregular, but
on average we constructed about 126 full differential paths out of 8-10* x 2-10°
pairs of upper and lower paths for the first block and 4 full differential paths
for the second block. However, without it no reasonable estimate of the success
rate of the connecting partial differential path algorithm can be made and the
number of test runs is not high enough to make any reasonable conclusions. In
any case, this observed phenomenon calls for deeper theoretical investigation.

4.3 Choosing Parameters

The number of generated partial differential paths in a given time appears to be
extremely sensitive on the choice of the parameters.

We present in table [ the parameters we used for generating lower paths
in each step. The parameter max con for step t denotes the total number of
conditions from the start of generation of partial paths to step t. We used the
same parameters for both blocks.

The strategy for generating lower paths was to set the parameters in such a
way that the following goals were achieved.
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— The number of possible lower paths generated using chosen parameters is
sufficient for the next (connecting) part of the algorithm (from about 5- 104
to 2.5 -10%).

— The time needed to generate sufficient number of possible lower paths using
chosen parameters is feasible (less than 1 day on single PC).

— The number of conditions in steps 17,...,30 is as small as possible.
— In particular, the number of conditions in steps 2,...,30 is as small as pos-
sible.

Setting the parameters is not straightforward and the values were obtained after
some experimentation. There might be better choices and a theoretical under-
standing for an automated choice of the parameters is needed.

The strategy for the generating upper paths was not formulated in such detail.
The goal was to limit the number of conditions in steps 0, . . ., 12 in such a way that
the sufficient number of upper differential paths was generated in few hours. The
total number of conditions is 80 for the first block and 180 for the second block.

5 Conclusion

We presented a new type of 2-block MD5 collisions. We found them using our
implementation of Stevens algorithm. The implementation can be used to con-
struct differential paths for other types of differences in messages stated in [16],
i.e. to construct target or 2-block collisions in MD5.
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A Differential Paths and Collision Example

Table 7. Differential path for the first and second blocks without tunnels, registers -3

to 30
first block second block

3 1
S N F e e 1 i
1 Fo e e 1o
[ Y o e Fo e e
N Vooetiieee e o e 7 V.
20 oo o 1 i Fo e e 1+ ..., .. Ve.o.o.. 1.
1S 78 P o e ool V..., oo 1..... +.
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8| .0.+...0 ....... + v...v.v +.. 1.+, ||.1.-v.4+0 +1+.40+. v+.v.0+vV —-v.V+V+V
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11| v+0-0.+1 10vi+Ov. viv0O.+1+ 1..+4000. ||[y-.1-1.- 11-.1-11 -1-0.-00 O+++-010
12| .11+1++1 0100++11 0-110++0 0--0111. |[00Ov.-1v+ 0++0-101 010-v11- 11101000
13| +1+-40-- -+--11-1 ++-—=1+1- +11+-——_ [[++0..+.+ -00100+- —=++ . ++1 —=0++—+.
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20| e e e e e e e e
27| +. T e e e +. T e e e
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20| 0. itiiit e e e [
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Table 8. Differential path for both blocks, registers 31 to 64. I, J, K € {0,1}, I # K

31-45 e e e
46 T e e e
47 1P
48 T e e e
49 1
50 O
51 B
52 G
53 1P
54 G
55 1
56 Koot e e e
57 1
58 G
59 1P
60 G
61 1
62 O
63 1
64 e e e

Table 9. Collision
IV 0x67452301 0x10325476 0x98badcfe Oxefcdab89
My OxCE7TE83CA  OxCADE345E 0xB81D83A5 0xb562EDF19

0xB93C9D41  0xF9C4E244  O0x5B9B832F O0xE16D2FES5
0x4B286759 OxFOFE0301 OxA912EF12 0x95A85769
0x18ADF66C 0x8B1AD802 0x291B44AB  0x732AF6A2
Ny 0xCE7E83CA  O0xCADE345E  0x381D83A5 0x562EDF19
0xB93C9D41  0xF9C4E244  O0x5B9B832F O0xE16D2FE5
0x4B286759 0x01FE0301 OxA912EF12 0x95A85769
0x98ADF66C 0x8B1AD802 0x291B44AB  0x732AF6A2

IV, OxFADBF815 0x1B73566D 0x6BCF3C99 O0x5D6E2DFF
v} O0x7ADBF815 0x9B73566D OxEBCF3C99 O0xDD6F2DFF
IV, ®IV]  0x80000000 0x80000000 0x80000000  0x80010000
Mo 0x6A9BOD7D  Ox9AAEEDA9 0x62255628 0xB6A85040

0xC7EO8FD1  0x077E530A  0xDEDD6809  0xD20A7D80

0x55DFBE93  0x78571C29  0xC13D746C 0x062792C8

0x45A152CE  0x69727500 Ox351EC8F7  OxCFFFAF73

N2 0x6A9BOD7D  Ox9AAEEDA9  0xE2255628 0xB6A85040
0xC7EO8FD1  0x077E530A OxDEDD6809  0xD20A7D80

0x55DFBE93  0x70571C29  0xC13D746C 0x062792C8

0xC5A152CE  0x69727500 0x351EC8F7  O0xCFFFAF73

IV, =1V5  0xA5A29F9F  0xBC622670 0x54E1D520 OxE6FAS818E
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Abstract. In this work, we provide new and improved attacks against
22, 23 and 24-step SHA-2 family using a local collision given by Sanad-
hya and Sarkar (SS) at ACISP ’08. The success probability of our 22-step
attack is 1 for both SHA-256 and SHA-512. The computational efforts
for the 23-step and 24-step SHA-256 attacks are respectively 2''-® and
2%8-5 calls to the corresponding step reduced SHA-256. The correspond-
ing values for the 23 and 24-step SHA-512 attack are respectively 2'¢-°
and 2%2-° calls. Using a look-up table having 23 (resp. 2°*) entries the
computational effort for finding 24-step SHA-256 (resp. SHA-512) col-
lisions can be reduced to 2'%% (resp. 22:%) calls. We exhibit colliding
message pairs for 22, 23 and 24-step SHA-256 and SHA-512. This is the
first time that a colliding message pair for 24-step SHA-512 is provided.
The previous work on 23 and 24-step SHA-2 attacks is due to Indesteege
et al. and utilizes the local collision presented by Nikoli¢ and Biryukov
(NB) at FSE ’08. The reported computational efforts are 2'® and 2285
for 23 and 24-step SHA-256 respectively and 2*3° and 2°3 for 23 and
24-step SHA-512. The previous 23 and 24-step attacks first constructed
a pseudo-collision and later converted it into a collision for the reduced
round SHA-2 family. We show that this two step procedure is unneces-
sary. Although these attacks improve upon the existing reduced round
SHA-2 attacks, they do not threaten the security of the full SHA-2 family.

Keywords: Cryptanalysis, SHA-2 hash family, reduced round attacks.

1 Introduction

Cryptanalysis of SHA-2 family has recently gained momentum due to the impor-
tant work of Nikoli¢ and Biryukov [6]. Prior work on finding collisions for step re-
duced SHA-256 was done in [45] and [§]. These earlier works used local collisions
valid for the XOR linearized version of SHA-256 from [2] and [7]. On the other
hand, the work [6] used a local collision which is valid for the actual SHA-256.
The authors in [6] developed techniques to handle nonlinear functions and
the message expansion of SHA-2 to obtain collisions for up to 21-step SHA-
256. The 21-step attack of [6] succeeded with probability 2719, Using similar

* This author is supported by the Ministry of Information Technology, Govt. of India.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 91 2008.
© Springer-Verlag Berlin Heidelberg 2008
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techniques, but utilizing a different local collision, [I1] showed an attack against
20-step SHA-2 which succeeds with probability one and an attack against 21-
step SHA-256 which succeeds with probability 2715, Further work [9] developed
collision attacks against 21-step SHA-2 family which succeeds with probability
one. Very recently, Indesteege et al. [3] have developed attacks against 23 and
24 step SHA-2 family. They utilize the local collision from [6] in these attacks.

Our Contributions. Our contributions in terms of the number of steps at-
tacked and the success probability of these attacks are as follows.

— We describe the first deterministic attack against 22-step SHA-256 and SHA-
512.
— We describe new attacks against 23 and 24-step SHA-256 and SHA-512.

e The complexity of the 23-step attack for both SHA-256 and SHA-512 is
improved in comparison to the existing 23-step attacks of [3].

e The complexity of 24-step SHA-512 attack is improved in comparison to
the existing attack of [3]. In fact, improving the complexity to 23%-% from
the earlier reported 253 allows us to provide the first message pair which
collides for 24-step SHA-512.

Table 1. Summary of results against reduced SHA-2 family. Effort is expressed as
either the probability of success or as the number of calls to the respective reduced
round hash function.

Work Hash Function Steps Effort Local Collision Attack FExample

Prob. Calls utilized Type  provided
[455] SHA-256 18 * GH [2] Linear yes
[8] SHA-256 18 o SSs [1] 7 yes
[6] SHA-256 20 3 NB [6] Non-linear  yes
21 2719 " ” yes
[11] SHA-256/512 1820 1 1 SS [11] 7 yes
SHA-256 21 2718 ” ” yes
@ SHA-256/512 21 1 1 " 7 yes
[3] SHA-256 23 218 NB [6] ? yes
24 9285 ? ? yes
SHA-512 23 2139 ” ” yes
24 2% ? ” no
This work SHA-256/SHA-512 22 1 1 SS [11] 7 yes
SHA-256 23 ott-5 ” ” yes
24 9285 ? ? yes
24 Q155 f 7 ” no
SHA-512 23 2165 ” ” yes
24 232:5 ? ? yes
24 2225 ¢ 7 ” no

* Tt is mentioned in [l5] that the effort is 2° but no details are provided.

** Effort is given as running a C-program for about 30—40 minutes on a standard PC.
t A table containing 232 entries, each entry of size 8 bytes, is required.

t A table containing 2% entries, each entry of size 16 bytes, is required.



New Collision Attacks against Up to 24-Step SHA-2 93

e Using a table lookup, the complexity of the 24-step SHA-256 attack
is improved in comparison to the existing 24-step attack of [3]. The
table contains 232 entries with each entry of size 8 bytes. Similary, the
complexity of the 24-step SHA-512 attack is also improved using a table
lookup. For this case, the table lookup has 264 entries each entry of 16
bytes.

e Examples of Colliding message pairs are provided for 22, 23 and 24-step
SHA-256 and SHA-512.

Our contributions to the methodology of the attacks are as follows.

— We use a different local collision for our 22, 23 and 24-step attacks. The
earlier work [3] uses the local collision from [6] while we use a local collision
from [IT].

— The work in [3] describes 23 and 24-step collisions as a two-part procedure—
first obtain a pseudo-collision and then convert it into a collision. In con-
trast, our analysis is direct and shows that such a two-part description is
unnecessary.

— Details of a required “guess-then-determine algorithm” to solve a non-linear
equation arising in the 24-step attack are provided in this work. A suggestion
for a similar algorithm is given in [3] but no details are provided. There are
two algorithms— one for SHA-256 and the other for SHA-512.

A summary of results on collision attacks against reduced SHA-2 family is given
in Table [l

2 Preliminaries

In this paper we use the following notation:

— Message words: W; € {0,1}", W/ € {0,1}"; n is 32 for SHA-256 and 64 for
SHA-512.

— Colliding message pair:{Wy, W1, Wa, ... Wiz} & {W{, W{, W3, ... Wi}

— Expanded message pair:{Wy, Wy, Wa,... W,_1} & {W}§, W{, Wi,...W/_,}.
The number of steps r is 64 for SHA-256 and 80 for SHA-512.

— The internal registers for the two messages at step i: REG; = {a;,...,h;}
and REG] = {a},...,h}}.

— ROTRF(z): Right rotation of an n-bit string = by & bits.

— SHRF(x): Right shift of an n-bit string 2 by & bits.

— @: bitwise XOR; +, —: addition and subtraction modulo 2".

— 60X = X' — X where X is an n-bit quantity.

— (521($) = 21(6;) — E1(6i) = Zl(ei + $) — 21(ei).

— (520($) = Zo(ag) — Eo(ai) = Eo(ai + .7,‘) — Eo(ai).

= 0fpas(@,y,2) = fuas(ai +2,bi +y, ¢+ 2) — faas(ai, bis ¢i).

= 0frp(x.y,2) = fir(ei + o, fi +y,9i + 2) — frr(ei, fis gi)-
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2.1 SHA-2 Hash Family

Eight registers are used in the evaluation of SHA-2. In Step i, the 8 registers are
updated from (Cli—l, bi—1, ci—1, di—1, €i—1, fi—1, gi—1, hi—l) to (ah bi, c;, di, eq,
fiy Gi, hi). For more details, see [I].

By the form of the step update function, we have the following relation.

Cross Dependence Equation (CDE)

€ = Q; + Qj—yg — 20(%’-1) - fMAJ(ai—hai—z, ai—3)~ (1)

Later, we make extensive use of this relation. Note that a special case of this
equation was first utilized in §6.1 of [11]. The equation in the form above was
used in [9]. This equation can be used to show that the SHA-2 state update can
be rewritten in terms of only one state variable. This fact was later observed
in [3] independently.

Table 2. The 9-step Sanadhya-Sarkar local collision [11] used in the present work. Our
deterministic 22-step attack and the probabilistic 23 and 24-step attacks use unequal
message word differences to achieve the same differential path.

Step oW; Register differences
I 11 5ai (Sbl (SCZ' 5d7, 561- (sz 591- 5}11
i—1 0 0 0 000OOO OO
i 1 1 1 0 0 01 0 0 O
t+1 -1 W,,n 01 0 0 -1 1 0 O
i+2Wis2 O 0 01 0-1-110
1+3WipsdWigzs 0 0 0 1 0 —1-11
1+4 0 0 0 00 01 0-1-1
i+5 0 0 0 00 00O 1 0 -1
i1+6 0 0 0 000OO O 1 0
i+70Wirr 0 0 00 0OO O 0 1
i+8 -1 -1 0 0 0 0 OO O O

3 Nonlinear Local Collision for SHA-2

We use two variations of a 9-step non-linear local collision for our attacks. This
local collision was given recently by Sanadhya and Sarkar [T1]. This local collision
starts by introducing a perturbation message difference of 1 in the first message
word. Next eight message words are chosen suitably to obtain the desired differ-
ential path. Table[2 shows the local collision used. The message word differences
are different for the two variations of the local collision. Columns headed I and
IT under §W; in Table [2 show the message word differences for the first and the
second variations of the local collision respectively.

In the local collision, the registers (a;—_1, ..., hi—1) and W; are inputs to Step
i of the hash evaluation and this step outputs the registers (a;, ..., h;).
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4 The Deterministic 22-Step SHA-2 Attack

In [6], a single local collision spanning from Step 6 to Step 14 is used and a 21-step
collision for SHA-256 is obtained probabilistically. We use a similar method for
our attack but this time we use the local collision of Table Pl spanning from Step
7 to Step 15. Message words are given by Column (IT). The SHA-2 design has
freedom of message words Wy to Wis. Since the local collision spans this range
only, we can deterministically satisfy all the required conditions. The message
words after Step 16 are generated by message expansion. The local collision is
chosen in such a way that the message expansion produces no difference in words
W; and W/ for i € {16,17,...21}. This results in a deterministic 22-step attack.
We explain this fact below.

First of all, note that the local collision starts from Step 7. It can be seen
from the structure of the local collision that dW; = 1 and éWy = 611 =
OWia = dWi3 = W14 = 0. In addition, dWi5 is —1. Messages outside the span
of the local collision are taken to have zero differentials. Therefore §W; = 0 for
i€40,1,2,3,4,5,6}. Consider the first 6 steps of message expansion for SHA-2
next.

Wie = o1 ( + Wy + oo(W1) + W,

Wia) (W)
Wiz = 01(Wis) + Wig + oo(W2) + W1,
Wis = 01(Wig) + Wi + 00(W3) + W, @)
Wig = o1(Whr) + Wiz + 0o(Wy) + Wi,
Wao = 01 (Wig) + Wiz + oo(Ws) + Wi,
Wa1 = 01(Wig) + Wia + 00(Ws) + Ws.

Terms which may have non-zero differentials in the above equations are un-
derlined. To obtain 22-step collisions in SHA-2, it is sufficient to ensure that
8{o1(W15) + Wi} = 0 so that Wiz = 0. This also ensures that next 4 steps
of the message expansion do not produce any difference, and we have a 22-step
collision. By using the local collision described earlier, it is possible to determin-
istically satisfy the condition 6{o1(W15)+Wip} = 0. Further details are available
in [10].

5 A General Idea for Obtaining 23 and 24-Step SHA-2
Collisions

Obtaining deterministic collisions up to 22 steps did not require the (single) local
collision to extend beyond step 15. For obtaining collisions for more number of
steps, we will need to start the local collision at Step 8 (or farther) and hence
the local collision will end at Step 16 (or farther). This will require us to analyze
the message expansion more carefully.

For obtaining collisions up to 22 steps, we also needed to consider message
expansion. But, following Nikoli¢ and Biryukov, we ensured that there were
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no differences in message words from Step 16 onwards. However, now that we
consider the local collision to end at Step 16 (or farther), this will necessarily
mean that one or more 6W; (for ¢ > 16) will be non-zero. This will require a
modification of the Nikoli¢-Biryukov strategy. Instead of requiring §W; = 0 for
i > 16, we will require 6W; = 0 for a few i’s after the local collision ends. So,
supposing that the local collision ends at Step 16 and we want a 23-step collision,
then 6Wig is necessarily —1 and we will require §Wi7 = -+ = §Wsyy = 0.

5.1 Satisfying Conditions on the Differential Path

Conditions on 6W;42, §W,; 3 and 6W;;4 shown in Table [2 give rise to the fol-
lowing conditions on the values of A, v and p.

5Wi+2 = 51 =—-1- 21([1, — 1) + El(u) — f]F(,U, — 1,0,’}/4— 1)
+frr(p, —1,7+1)
(5Wi+3 =0y = —21()\—1)4-21()\)—f]F()\—17LL—170) (3)
+f1r(A 1, —1)
L=—fir(A=1LA=1u—1)+ frr(A =1, A p).

Similar equations for the Nikoli¢-Biryukov differential path have been reported
in [3] and a method for solving them has been discussed. The method to solve
these equation is different for SHA-256 and for SHA-512. We discuss the exact
details about solving them later. In describing our attacks on the SHA-2 family,
we assume that some solutions to these equations have been obtained. These
solutions are required to obtain colliding message pairs for the hash functions.

6 23-Step SHA-2 Collisions

We show that by suitably placing a local collision of the type described in Col-
umn (I) of Table[2land using proper values for a,«y and p, it is possible to obtain
23-step collisions for SHA-2.

6.1 Case?1=28

The local collision is started at + = 8 and ends at i = 16. Setting 8 = «a, u =0
and 6; = 0, we need to choose a suitable value for d, which is the value of
0Wits = dWi1. For this case, we let § = ds.

Since the local collision ends at Step 16, it necessarily follows that Wy = —1.
Consequently, we need to consider dWig to ensure that it is zero. Since the
collision starts at ¢ = 8, all W, for 0 < j < 7 are zero. Consequently, we can
write 5W18 = 50’1(W16) + (5W11, where (50’1(W16) = O'1(W16 — 1) — O'1(W16). SO,
for 6W1g to be zero, we need 0W11 = —do1(Wig), so that W7 should be one of
the values which occur in the distribution of o1 (W) — o1 (W — 1) for some W.

Obtaining proper values for the constants only ensures that the local collision
holds from Steps 7 to i+ 8 as expected. It does not, however, guarantee that the
reduced round collision holds. In the present case, we need to have 6Wg to be
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Table 3. Values of a and e register for the §Ws given by Column (I) of Table [ to
hold. We have 8 = o and using CDE, A = S+ a — Xo(08) — f;ras (8, —1,a) = —Xo(a).
The value of u is either 0 or 1. Thus, the independent quantities are a,~y and p.

index¢—2¢—1 ¢ ¢4+174+274+3i+474+5 46
a « a -1 g8 15
e vy vy+1-1 pn A A—-1 -1 -1 —1—uw

zero. This will happen only if Wig takes a value such that o1 (Wig—1) — o1 (Wig)
is equal to —d. This can be ensured probabilistically in the following manner.
Let the frequency of ¢ used in the attack be freqs. This means that trying
approximately freqs possible random choices of Wy and W7, we expect a proper
value of Wi and hence, a 23-step collision for SHA-2. We discuss the cases of
SHA-256 and SHA-512 separately later.

Since 7 = 8, from Table Bl we see that ag to aip get defined and eg to e1y
get defined. Using CDE;, the values of eg down to eg is set by fixing values of ag
down to as. In other words, the values of as to ayg are fixed. Now, consider

els = X1(e13) + frr(eis, e12,e11) + a0 + e10 + Kia + Wia.

Note that in this equation all values other than W74 have already been fixed.
So, W14 and hence o1(W14) is also fixed. Now, from the update function of the
a register, we can write

Wy = ag — Xo(ag) — fuas(as,ar,a6) — X1(es) — frr(es, er,es) — es — Ko.

On the right hand side, all quantities other than e; have fixed values. Using
CDE,
es = as +ar — Yo(as) — faras(aa, as, az).

Again in the right hand side, all quantities other than a; have fixed values. So,
we can write Wy = C' — a;, where C' is a fixed value. (This relation has already
been observed in [3].)

Now,

a1 = Xo(ao) + frras(ao, bo, co) + Z1(eo) + frr(eo, fo,g0) + ho + K1+ Wh

where ag and ey depend on Wy whereas by, ¢y, fo, g0 and hg depend only on IV
and hence are constants. Thus, we can write a3 = ®(Wy) + W1, where

S(Wy) = Xo(ao) + faras(ao, bo,co) + X1(eo) + frr(eo, fo, 90) + ho + Ki.

We write &(Wp) to emphasize that this depends only on Wy. At this point, we
can write

Wi = 01(Wha) + Wy + ao(W1) + Wy

o1(Wia) + C — @(Wy) — Wy + oo(W1) + Wy
=D — @(Wo) - Wi+ O'()(Wl) + Wo.
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Estimate of Computation Effort. Let there be freq; values of Wi for which
o(Wie — 1) — 0(Wig) equals d. So, we have to solve this equation for Wy and
W1 such that Wig is one of these freqs possible values. The simplest way to
do this is to try out random choices of W, and W; until Wi takes one of the
desired values. On an average, success is obtained after freqs trials. Each trial
corresponds to about a single step of SHA-2 computation. So, the total cost of
finding suitable Wy and W is about gﬁf tries of 23-step SHA-2 computations.

For each such solution (Wy, W7) and an arbitrary choice of Wi5 we obtain
a 23-step collision for SHA-2. Note that after W, and W7 has been obtained
everything else is deterministic, i.e., no random tries are required. The task of
obtaining a suitable Wy and W7 can be viewed as a pre-computation of the
type required to find the values of o, and p. Then, the actual task of finding
collisions becomes deterministic.

6.2 Relation to the 23-Step Collision from [3]

The NB local collision has been used in [3]. The local collision was placed from
Step 9 to Step 17. In comparison, we have shown that the SS local collision gives
rise to two kinds of 23-step collision. The first one is obtained by placing the
local collision from Steps 8 to 16, and the second one is obtained by placing the
local collision from Steps 9 to 17.

The description of the attack in [3] is quite complicated. First they consider
a 23-step pseudo-collision which is next converted into 23-step collision. This
two-step procedure is unnecessary. Our analysis allows us to directly describe
the attacks.

7 24-Step Collisions

The local collision described in Column (I) of Table[2is placed from Step ¢ = 10
to Step i + 8 = 18 with u = 1. The values of §1, d2 as well as suitable values of
«, v and p need to be chosen.

Since, the collision ends at Step 18 and u = 1, we will have §W37 = 1 and
6Wis = —1. As a result, to ensure W19 = Wy = 0, we need to have §; =
(5W12 = —(0'1 (W17 + ].) —0'1(W17)) and (52 = (5W13 = —(O’l(ng - ].) —Jl(ng)).
Based on the differential behaviour of o; described in [I0], we should try to
choose 61 and d2 such that freq_5 and freqs, are as high as possible. (Here —d;
denotes —d; mod 2", where n is the word size 32 or 64.) But, at the same time,
the chosen ¢; and d2 must be such that (B are satisfied.

Now we consider Table[3l This table tells us what the values of the different a
and e-registers need to be. Since messages up to Wi are free, we can set values
for a and e registers up to Step 15. But, we see that e;¢ = —1 — u = —2. This
can be achieved by setting Wig to

Wi = e16 — Zi(e1s) — frr(eis, e1a,€13) — a1z — e12 — K. (4)

Since we want e = —2 and all other values on the right hand side are constants,
we have that Wig is a constant value. On the other hand, Wiyg is defined by
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message recursion. So, we have to ensure that Wi takes the correct value. In
addition, we need to ensure that Wiy and Wig take values such that o1 (W7 +
1) — 0'1(W17) = —(51 and O'1(W18 — 1) — O'1(W18) = —52.

Since ¢ = 10, from Table Bl we see that ag to ai2 have to be set to fixed
values and eg to ejg have to be set to fixed values. Using CDE, the values of ey
down to eg are determined by a7y to a4. So, the values of ag to asz are free and
correspondingly the choices of words Wy to W3 are free.

We have already seen that Wiyg is a fixed value. Note that

Wis = e1q — Xi(e13) — frr(eis, e12,e11) — a0 — €10 — Kia 5)
Wis = e15 — Xi(e1s) — frr(es, e13,e12) —ain — ein — Kis.

Since for both equations, all the quantities on the right hand side are fixed values,
so are Wy4 and Wis.
Using CDE twice, we can write

W9 = —W1 + C4 + fMAJ(a4aa37a2) - 430
Wio = —Wa + Cs + fras(as, as, az) — Py (6)
W11 = —W3 + CG + fMAJ(a67a57a4) - @2

where

Ci = eiys — Xi(eiva) — frr(€ita, €it3, €i42) — 2ai41 — Kiys
+20<ai)7

D, = Xo(ai) + faas(ai,bi,ci) + 21(ei) + frr(es, fiy i) + hit
Ki+1.

(7)

Using the expressions for Wy, W1o and Wp1 we obtain the following expressions
for Wlﬁ, W17 and ng.

Wig = 01(Wha) + C4 — Wi + frrag(aa, as, a2) — Po + oo(Wh)

+Wo

Wiz = 01(Wis) + Cs — Wa + farag(as, as, az) — @1 + oo(Wa) (8)
+Wh

Wig = 01(Wie) + Cs — Wi + farag(as, as, as) — P2 + 0o(Ws)
+Ws.

We need to ensure that Wig has the desired value given by (@) and that Wiz
and Wi take values which lead to desired values for o1 (Wi7) and do1(Wig) as
explained above.

The only free quantities are Wy to W3 which determine ag to asz. The value
of C4 depends on eg, e7 and eg, where eg has a fixed value and e; and eg are in
turn determined using CDE by a3 and as. Similarly, C5 is determined by eg, eg
and e7; where eg, eg have fixed values and e is determined using a3. The value
of Cg on the other hand is fixed. Coming to the @ values, @q is determined only
by Wy; @1 determined by Wy and W7y; and @5 determined by Wy, Wi and Ws.
Let

D =Wis — (o1(Wia) + Ca + frrag(as,as, as) — Py + Wo). (9)
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If we fix Wy and as, as, then the value of D gets fixed and we need to find W;
such that the following equation holds.

D = —-W; + go(W1). (10)

A guess-then-determine algorithm can be used to solve this equation. This al-
gorithm will be different for SHA-256 and for SHA-512 since the oy function
is different for the two. The guess-then-determine algorithms for both SHA-256
and SHA-512 are described in [10].

Solving (I0) Using Table Look-Up. An alternative approach would be to
use a pre-computed table. For each of the 2™ possible Wis (n is the word size
32 or 64), prepare a table of entries (Wi, —W; + 0o(W7)) sorted on the second
column. Then all solutions (if there are any) for (IQ) can be found by a simple
look-up into the table using D. The table would have 2" entries and if a proper
index structure is used, then the look-up can be done very fast. We have not
implemented this method.

Given ai,b1,...,h1 and ao the value of W5 gets uniquely defined; similarly,
given as, ba, ..., ho and ag, the value of W3 gets uniquely defined. The equations
are the following.

Wy = as — (Xo(a1) + faras(ar,bi,er) + hi 4+ Zi(er)

+frr(er, f1,91) + K2) (1)
W3 = a3z — (Xo(az) + faras(az, b, c2) + ho + Zi(e2)

+frr(ez, f2,92) + K3)

The strategy for determining suitable Wy, ..., W3 is the following.

Make random choices for Wy and as, as.
Run SHA-2 with W, and determine @.
From a3 and as determine e; and eg using CDE.
Determine Cy using (@) and then D using (@I).
Solve (M) for W; using the guess-then-determine algorithm.
Run SHA-2 with W7 to define aq,...,h.
Determine ¢ using () and then Wy using (ITJ).
Run SHA-2 with W5 to define ao, ..., ho.
Determine @, using () and then W3 using (LTI).
. Compute W17 and Wig using (8).
If 0'1(W17 + 1) — O'1(W17) = —¢; and O'1(W18 — 1) — Ul(Wls) = 0o,
then return Wy, Wy, Wy and Wj.

= B

= O

The values of Wy, Wy, Wy and W3 returned by this procedure ensure that the
local collision ends properly at Step 18 and that 0W; = 0 for j = 19,...,23.
This provides a 24-step collision.

Estimate of Computation Effort. Let Step 5 involve a computation of g
operations, where each operation is much faster than a single step of SHA-2;
by our assessment the time for each operation is around 27* times the cost of
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a single step of SHA-2. Thus, the time for Step 5 is about J, single SHA-2
steps. Further, let the success probability of the guess-then-determine attack be

p. Then Step 5 needs to be repeated roughly 11) times to obtain a solution.
By the choice of 01, the equality o1 (W17 + 1) — 01 (Wi7) = —d1 holds roughly
with probability 951 While by the choice of d5 the equality oq(Wrs — 1) —

2’71
reds,

01(Wig) = 02 holds roughly with probability f2n

reqs, ><Freq52

Step 11 with roughly f y2n probability. So, the entire procedure needs to

and we obtain success in

be carried out around times to obtain a collision.

freq512>< freqs,,

The guess-then-determine step takes about g/2* single SHA-2 steps. The time
for executing the entire procedure once is about (J; +3) single SHA-2 steps which
is about 2745 x (J, + 3) 24-step SHA-2 computations. Since the entire process
needs to be repeated many times for obtaining success, the number of 24-step
SHA-2 computations till success is obtained is about (. 2. ) x (2745 x

(54 +3) % 11,)

If (IQ) is solved using a table look-up, then the cost estimate changes quite
a lot. The cost of Step 5 reduces to about a single SHA-2 step so that the
overall cost reduces to about ( i ) x (2745 x 3 x 117) 24-step SHA-2

freqs, xfreqs,
computations. The trade-off is that we need to use a look-up table having 2"
entries.

freqs, xfreqs,

8 Exhibiting Colliding Message Pairs

The description in the previous sections provide an outline of how to obtain
colliding message pairs. To actually find collisions, a lot more details are required.
Due to lack of space, we are unable to provide these details here. (The reader
may refer to [10] for further details.) Here we simply provide examples of actual
collisions that we have found. These are given in Tables @] to [0

Table 4. Colliding message pair for 22-step SHA-512 with standard IV

0-3  0000000000000000 0000000000000000 c2bcB8e9a85e2eb5a 6d623c5d5a2a1442
4-7 cd38e6deel458de7 acb73305cddb1207 148f31a512bbade5 ecd66ba86d4ab7e9d
8-11 92aafble9cfalfcb 533c19b80a7c8968 e3ce7a41b11b4d75 aef3823c2a004b20
12-15 8d41a28b0d847692 7f214e01c4e96950 0000000000000000 0000000000000000
3 0000000000000000 0000000000000000 c2bc8e9a85e2eb5a 6d623c5d5a2a1442
-7 cd38e6deel1458de7 acb73305cddb1207 148f31a512bbade5 ecd66ba86d4ab7ea
1 90668fd7ec6718ee 533c19b80a7c8968 dfce7a41b11b4d76 aef3823c2a004b20
12-15 8d41a28b0d847692 7£214e01c4e96950 0000000000000000 ffffffffffFFffff

Table 5. Colliding message pair for 22-step SHA-256 with standard IV

W71 0-7 00000000 00000000 Obe293bf 99c539c9 1c672194 99b6ab8a EbfidOae 0a9al8d3
8-15 0c18cflc 329b3ebe dc4e7a43 ab33823f 8d41a28d 7£214e03 00000000 00000000
Wo 0-7 00000000 00000000 Obe293bf 99c539c9 1c672194 5bfldOae 0a9al8d4
8-15 07d56809 329b3e6e dcOe7a44 ab33823f 8d41a28d 7£214e03 00000000 ffffffff
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Table 6. Colliding message pair for 23-step SHA-256 with standard IV. These messages
utilize a single local collision starting at Step ¢ = 8.

W71 0-7 122060e3 000£f813f d92d3fc6 eadad75f fbOc6581 dcd558c4 d86428b4 6e2cab76
8-15 c8d597bf 6372d4c2 ddbd721c 79d654c4 £0064002 a894b7b6 91b7628e 3224db20
Wo 0-7 122060e3 000£813f d92d3fc6 ead4ad75f fbOc6581 dc4558c4d dB86428b4 6e2cab76
8-15 ¢8d597c0 6372d4cl ddbd721c 78d6b4c5 £0064002 a894b7b6 91b7628e 3224db20

Table 7. Colliding message pair for 23-step SHA-256 with standard IV. These messages
utilize a single local collision starting at Step ¢ = 9.

W71 0-7 c201ibef2 14cc32c9 3b80dadd d8212037 8987161d
8-15 3edd76e0 05f4lddc 9ebcOfc3 €099698a 2eaec58f
Wo 0-7 c201bef2 14cc32c9 3b80da4d d8212037 8987161d
8-15 3edd76e0 05f41ddd 9ebcOfc2 e099c98a 2daf2590

a790cbda 53b8d726 89e9a288
e7060b78 95d7030d 6bf777c0
a790cbda 53b8d726 89e9a288
e7060b78 95d7030d 6bf777c0

Table 8. Colliding message pair for 24-step SHA-256 with standard IV. These messages
utilize a single local collision starting at Step ¢ = 10.

W71 0-7 657adf63 06c066d7 90f0b709 95a3eldl
8-15 e6cfc63f de8fbdcl c20cald5b £74815cc
Wo 0-7 657adf63 06c066d7 90£0b709 95a3eldl
8-15 e6cfc63f de8fb4cl c20cal5c £74815chb

c3017f24 fad6c2bf dff43685 6abffOda
c2e789d9 208e7105 cc08b6cf 70171840
c3017£24 fad6c2bf dff43685 6abffOda
c2e7e9d9 1f8ed106 cc08b6cf 70171840

Table 9. Colliding message pair for 23-step SHA-512 with standard IV.
utilize a single local collision starting at Step ¢ = 8.

W1 0-3 b9fabfca729cab5c
4-7  27ed55b66c090b62

8-11 Db947bb4013b688c1
12-15 84e76299718478b9

Wgo 0-3 b9fa6fca729cab5c
4-7  27ed55b66c090b62

8-11 Db947bb4013b688c2
12-15 84e76299718478b9

8718310e1b3590e1
754b2163ff6feech
d9d72caBablcac04
£112e711647763e5
8718310e1b3590e1
754b2163ff6feech
d9d72ca8abicac03
£112e711647763e5

1d3d530cb075b721
6685£40£d8ab08£8
69d0e120220d4edc
d621d2687946e862
1d3d530cb075b721
6685f40fd8ab08f8
69d0e120220d4edc
d621d2687946e862

99166b30ecbdd705
590c1c0522f6fdfd
30a2e93aeef24e3f
0ee57069123ecc8b
99166b30ecbdd7056
590c1c0522f6fdfd
30a3493aeef25076
0ee57069123ecc8b

These messages

Table 10. Colliding message pair for 24-step SHA-512 with standard IV. These mes-

sages utilize a single local collision starting at Step i = 10.

W71 0-3 dedb689cfc766965
4-7 855e17555cfedc5f

8-11 86f3ff48fd12eal9
12-15 1 02767821

c7b8e064££720£7c
88566babccaab3e9d
cd156c6f8d6da38ce
04d0950(

Wo 0-3 dedb689cfc766965
4-7 855e17555cfedc5f
8-11 86f3ff48fdi2eal9d
12-15 1b66096b02767829

Note

c7b8e064££720£7¢
88566babccaab3e9d
cd15c6£8d6da38ce
04d0£50089db6e9f

c136883560348c9c
5dda9777938b73cd
5e2c6b7b0411e70b
5bc9b9673e38eff3
€136883560348c9c
5dda9777938b73cd
5e2c6b7b0411e70c
5bc9b9673e38eff3

3747df7d0cf47678
b17b00574a4e4216
36ed67e93a794e66
b05d879ad024d3fa
3747d£7d0cf47678
b17b00574a4e4216
36ed67e93a794e65
b05d879ad024d3fa

The submitted version of the paper contained much more details than is provided
in the current version. Due to page-limit restrictions on the published version
of the paper, we are unable to provide such details, which to a certain extent
may affect the readability of the paper. A longer and more detailed version is

available at [10].
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Secure Hierarchical Identity Based Encryption
Scheme in the Standard Model

Yanli Ren and Dawu Gu

Dept. of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

Abstract. An identity based cryptosystem is a public key cryptosys-
tem where the public key can be represented as an arbitrary string.
Hierarchical identity based cryptography is a generalization of identity
based encryption that mirrors an organizational hierarchy. It allows a
root, private key generator to distribute the workload by delegating pri-
vate key generation and identity authentication to lower-level private key
generators. Most of hierarchical identity based encryption schemes are
provably secure in the random oracles or weak models without random
oracles such as selective-ID model.

Currently, there is no hierarchical identity based encryption scheme
that is fully CCA2 secure in the standard model, with short public
parameters and a tight reduction. In this paper, we first propose a hier-
archical identity based encryption scheme that is fully secure in the stan-
dard model. And it achieves IND-ID-CCA2 security based on the decision
q-TBDHE problem. The ciphertext size is independent of the level of the
hierarchy. Moreover, our scheme has short public parameters, high effi-
ciency and a tight reduction simultaneously.

1 Introduction

An identity based (ID-based) cryptosystem [1] is a public key cryptosystem
where the public key can be represented as an arbitrary string such as an email
address. The user’s private key is generated by a trusted authority, called a
Private Key Generator (PKG), which applies its master key to issue private
keys to identities that request them. For an Identity Based Encryption (IBE)
scheme, Alice can securely encrypt a message to Bob using an unambiguous
name of him, such as email address, as the public key. ID-based cryptosystems
can simplify key management procedure compared to CA-based systems, so it
can be an alternative way for CA-based public key systems in some occasions,
especially when efficient key management and moderate security are required.
Shamir proposed the notion of IBE in 1984 as a way to simplify public key
and certificate management. Many ID-based schemes have been proposed after
that, but practical ID-based encryption schemes were not found until the work
of Boneh and Franklin [6] in 2001. Their IBE scheme was based on groups with
efficiently computable bilinear maps, but it is only provably secure in the random
oracle model. It has been shown that when random oracles are instantiated with
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concrete hash functions, the resulting scheme may not be secure [7][13]. Canetti,
Halevi, and Katz [14] suggested a weaker security notion for IBE, known as
selective identity(selective-ID) security, relative to which they were able to build
an inefficient but secure IBE scheme without using random oracles. Boneh and
Boyen [8] presented two very efficient IBE systems (“BB1” and “BB2”) with
selective-ID security proofs, also without random oracles. The same authors [7]
then proposed a coding-theoretic extension to their “BB1” scheme that allowed
them to prove security for the full notion of adaptive identity( adaptive-ID)
security without random oracles, but the construction was impractical. Waters
[2] then proposed a much simpler extension to ”BB1” also with an adaptive-ID
security proof without random oracles; its efficiency was further improved in two
independent papers, [17] and [10]. Almost all of the IBE systems since Boneh-
Franklin follow the “common strategy” for proving security; consequently, they
suffer from long parameters (when security is proven in the standard model)
and lossy reductions (in the standard model or the random oracle model). Until
2006, there is no IBE system that is fully secure without random oracles, yet
has short public parameters, or has a tight security reduction. Given this state
of affairs, several papers [5,8,2] have encouraged work on the open problem of
tight security; Waters [2] posed the open problem regarding compact public
parameters. So Gentry [3] proposed an IBE scheme that is fully secure in the
standard model with short public parameters and a tight security reduction,
where the ciphertext does not leak the identity of the recipient. His scheme
is simple and efficient, and his proof technique differs substantially from the
“common strategy” described above.

Although having a single PKG would completely eliminate online lookup, it
is undesirable for a large network because the PKG has a burdensome job. Not
only is private key generation computationally expensive, but also the PKG
must verify proofs of identity and establish secure channels to transmit private
keys. Hierarchical ID-based cryptography was first proposed in [4] and [11] in
2002. It allows a root PKG to distribute the workload by delegating private
key generation and identity authentication to lower-level PKGs. In an HIBE
scheme, a root PKG needs only generate private keys for domain-level PKGs,
who in turn generate private keys for users in their domains in the next level.
Authentication and private key transmission can be done locally. To encrypt
a message to Bob, Alice needs only obtain the public parameters of Bob’s root
PKG (and Bob’s identifying information); there are no “lower-level parameters”.
Another advantage of HIBE schemes is damage control: disclosure of a domain
PKG’s secret does not compromise the secrets of higher-level PKGs.

The first construction for HIBE is due to Gentry and Silverberg [4] where se-
curity is based on the Bilinear Diffie-Hellman (BDH) assumption in the random
oracle model. A subsequent construction due to Boneh and Boyen gives an efficient
selective-ID secure HIBE based on BDH without random oracles [7]. In both con-
structions, the length of ciphertexts and private keys, as well as the time needed
for decryption and encryption, grows linearly in the depth of the hierarchy. Then
Boneh, Boyen and Goh [9] present an HIBE system where the ciphertext size as
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well as the decryption cost are independent of the hierarchy depth. And they prove
that the scheme is selective-ID secure in the standard model. Though the schemes
that are selective-ID secure are also fully secure as long as one hashes the identity
prior to using it, the reduction is not tight. Then Chatterjee and Sarkar [16] pro-
posed an HIBE scheme that are fully secure in the standard model, but the size of
public parameters and the ciphertext are dependent of the level of the hierarchy.
In 2006, Man Ho Au constructed a constant size HIBE scheme that is fully se-
cure in the standard model [12]. However, the scheme is only valid for a user with
identity ID = (ID1,IDs,...,1D;),i > 2 and it is not secure when i = 2. More-
over, the scheme is only CPA secure in the standard model though an adaptive
CCA-secure [-level hierarchical identity based encryption (HIBE) scheme IT can
be constructed from a CPA-secure [ + 1-level HIBE scheme IT" and a strong one-
time signature scheme Sig. In fact, most HIBE scheme achieves CCA2 security
using this technique showed by Canetti et al.[15].

Our Contributions. In Gentry’s IBE scheme, they proposed an open problem,
that is to construct a hierarchical IBE system that has a tight reduction based
on a reasonable assumption. Currently, there is no HIBE scheme that is fully
CCA2 secure in the standard model, with short public parameters and a tight
reduction. In this paper, we propose an HIBE scheme that is fully CCA2 secure
in the standard model. The ciphertext size is independent of the level of the
hierarchy. Moreover, our scheme has short public parameters, high efficiency
and a tight reduction simultaneously.

2 Definitions

2.1 Bilinear Map

Let p be a large prime number, G1,G2 are two groups of order p, and g is
a generator of G1. e : G; X G; — (2 is a bilinear map, which satisfies the
following properties [2]:

(1)Bilinearity: For all u,v € G7 and a,b € Z, e(u®,v") = e(u,v).
(2)Non-degeneracy: e(g, g) # 1.

(3)Computability: There exists an efficient algorithm to compute e(u, v),
Yu,v € Gy.

2.2 Complexity Assumptions

The security of our scheme is based on a complexity assumption that we call the
decisional truncated bilinear Diffie-Hellman exponent assumption(TBDHE).

First, we recall the decisional version of ¢-BDHE problem [9], which is as
follows: Given a vector of 2q + 2 elements

ait?

(9’797ga7ga2,...,gaq’g 7._.’goézq’Z) c G?lﬁ_l x G2

adtt

to decide whether Z = e(g,g’)
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Since the tuple does not have the term g”“qul7 the bilinear map does not seem
to help decide whether Z = e(g, ¢’ )aq+1. Instead, we can use a truncated version
of the ¢-BDHE problem, in which the terms (g”“q”7 e gazq) are omitted from
the input vector. We call it the ¢-TBDHE problem for convenience. Clearly, the
decision ¢-TBDHE problem is hard if the decision ¢-BDHE problem is hard.

In the scheme of [3], the author define the ¢-ABDHE problem as follows:
Given a vector of ¢ + 4 elements

(99" 9,9% 9%, ...,g%", Z) € GT x Gy

to decide whether Z = e(g, ¢ )anrl
Obviously, the ¢-ABDHE problem can be solved once the ¢-TBDHE problem
is solved whereas not. So we can say that the TBDHE problem is at least as
difficult as the ABDHE problem.

An algorithm A that outputs w € {0, 1} has advantage ¢ in solving the decision
¢-TBDHE if

q ait?
|PriA(g 9.9, 9" e(g',9)*"") = 0]
—PrlA(g',9,9%,...,9% . Z) = 0]| =

where the probability is over the random choice of generators ¢g,¢9' € G1,a €
Zy,Z € G2, and the random bits consumed by A. We refer to the distribution
on the left as Prppgpe and the distribution on the right as Rrppyg.

We say that the decision (t,e,q)-TBDHE assumption holds in G, G5 if no
t-time algorithm has advantage at least € in solving the decision ¢-TBDHE
problem in Gy, Gs.

2.3 Secure Models

IND-ID-CCA2: HIBE security (IND-ID-CCA2) [9] is defined by the following
game between an adversary A and a challenger B.

Setup. The challenger B runs the Setup algorithm and gives A the resulting
system parameters params, keeping the master key to itself.

Phase 1. A adaptively issues queries q1,..., ¢, where query ¢; is one of the
following:

Key generation query< ID; >. B responds by running algorithm KeyGen to
generate the private key d; corresponding to the public key ID; and sends d;
to A.

Decryption query< ID;,¢; >. B responds by running algorithm KeyGen to
generate the private key d; corresponding to I D;. It then runs algorithm Decrypt
to decrypt the ciphertext c¢; using the private key d; and sends the resulting
plaintext to A.

Challenge. A outputs an identity /D* and two equal length plaintexts mq, m1
on which it wishes to be challenged. The only restriction is that A did not
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previously issue a key generation query for I D* or a prefix of ID*. B picks a ran-
dom bit w € {0,1} and sends ¢* to A, where ¢* = Encrypt(params, ID*,m,).

Phase 2. A issues additional queries ¢41, - .., ¢n, where g; is one of:

Key generation query < ID; >. where ID; # ID* and ID; is not a prefix of
1D*.

Decryption query ¢; # ¢* for ID* or any prefix of ID*. In both cases, B
responds as in Phase 1. These queries may be adaptive.

Guess. Finally, the adversary outputs a guess w’ € {0,1} and wins if w = w’.
We call an adversary A in the above game an IND-ID-CCA2 adversary. The

advantage of A is defined as |Prjw’ = w] — }|.

Definition 1. An HIBE system is (¢, &, gk, ga) IND-ID-CCA2 secure if all t-time

IND-ID-CCAZ2 adversaries making at most g key generation queries and at most

qq decryption queries have advantage at most € in winning the above game.

3 Hierarchical Identity Based Encryption Scheme

3.1 Set Up

Let G, G2 be defined as above, and g is a generator of G1. g1 = g, where a € Z
is a random number. e : G1 X G; — (> is a bilinear map, and [ is the maximum
number of levels in the HIBE. h : Gf x G§ — Z, H : G x G3 — Z are hash
functions randomly chosen from a family of universal one-way hash functions.
The PKG randomly chooses g2, 93, h; € G1(i = 0,1,...,1), and f(x) = ax + b,
where a,b € Z;. If go = g3 or hg = g§b7 choose another f(z) again. The public
parameters are (g, g1, 92, 93, f (), h, H, ho, ..., h;), « is the private key of PKG.

3.2 Key Generation

To a user U with identity ID = (IDy,IDs,...,1D;) € (Z})", the PKG randomly
chooses r_1 4,70,; € Z;, and computes

s = (gl ) [Ty Wby,
d_lﬂ = T—l,udl,z =g 70,4 dz_;,_l P = h’z+1’ .. .,du = hlo’l,

so the private key of Uisd= (dO,i; dfl)i7 dl,i7 di+1,i; ey dl,i)~

If hogy f(r i) — = 1, randomly choose r_; ; again.

The prlvate key can also be generated by its parent (ID1,1Ds,...,ID; 1)
having the secret key (doi—1,d—-1,i—1,d1,i—1,dii—1,---,dii—1). It computes:

i,0—1

dl,i = dl,ifl . gt7d}c)i = d}g)i,1 hk(k =1+1,..., l)7 where ro,i = T0,4-1 t+t.

doi=doi1-dpi1-dP (HZ:1 hihfPR)d o =dq -1,
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3.3 Encryption

To encrypt a message m € Gz, randomly choose s € Z, and compute

c1 = ([They MhiP*)* ca = g%, 3 = elg1, g2)°, ca = (g1, g3)°,
Cs =M - e(gla h0)5+’yvﬁ - H(617627637C47657m7m : e(glv hO)S)v

where v = h(e, ¢, 3, ca, (g1, ho)®).
The ciphertext of message m is ¢ = (c1, ¢2, ¢3, ¢4, ¢5, ).

Notice that encryption does not require any pairing computations once
e(g1,ho), (g1, 92), (g1, g3) have been pre-computed.

3.4 Decryption
e(c2,do, i)
Ci(d71,i),c‘3’*1’ie(c1 Jdi1,i)

v = h(c1,ca,c3,c4,e(g1,h0)®), c5/e(g1, ho)” = R, R/e(g1, ho)® = m.

Then he computes 5’ = H(cy, ¢z, ¢3, ¢4, c5,m, R) and verifies whether 5 = §. If
the equation holds, the ciphertext is valid. Otherwise, the recipient returns an
error message.

The recipient first decrypts =e(g1, ho)®, and

4 Analysis of the HIBE Scheme

4.1 Indistinguishability of the Ciphertext

Theorem 1. Assume that the (¢/,¢’,¢)-TBDHE assumption holds in Gy, Ga,
then the HIBE scheme is (¢, ¢, gk, ¢q4) IND-ID-CCA2 secure for t = t' — O(teyp -
ZQ) - O(tpair : Q)vg =&+ ]-/(p - 1)7Qk + g4 < q—1, where texp, tpair are the
average time required to exponentiate and pairing in G1, G2 respectively.

Proof. Assume A is an IND-ID-CCA2 adversary described as above. We con-
struct an algorithm B that solves the ¢-TBDHE problem as follows. At the
outset of the game, B is given a vector (¢',9,9%,...,9*",Z) € G‘ll+2 x Gg to
decide whether Z = e(g’,g)o‘q“.

Set Up. B randomly chooses fi(z), fa(), f3(z) € (Z;)[z] of degree g, where
fil@) =g aa’, falz) = 1o bia', fa(@) = 327 cia’.

Let g1 = g% ho = ¢/1(®), gy = ¢/2(®) gy = gfs() f(z) = Do

a
Cq Cq

g“(i=1,2,...,1), u; € Z; is a random number. If g, = gS“/Cq or hg = g§“/cq,

randomly choose f1(z), f2(x), f3(x) again. Then B sends the public parameters
(9,91, 92,93, f(x), ho, h1,..., ) to A. Observe that from the viewpoint of the
adversary, the distribution of these public parameters is identical to the real
construction since f1(z), fa(z), f3(x), u; are randomly chosen.

Phase 1. Key generation query.

A sends identity ID = (IDy,1Ds,...,ID;) to B. If ID = «, B uses « to solve
the ¢-TBDHE problem immediately. Else, B randomly chooses r_1 ;,70: € Z,
and computes
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doi = (gZ?;ol(ai+r—1,ibi+f(r—1,i)Ci)ai+1) . (H;ﬁl hlhka)TO,i’
dvi =7r—14,d1,i = g™ digr, = gut"on L dy = gt

So dip = (dos,d-14,d14,dix1,i,--.,dpi). If hoggfl’igg(hl'i) = 1, randomly
choose r_1 ; again.

It is a valid private key, because

flro1s) = —izhl,i — o, and ag +r-13bg + f(r-1,i)cg = 0,

?;01(ai—&-r_l,ibi—&-f(r_Li)ci)(xH’l =g :'I:O(ai“r'r’_Libi“l‘f(T‘—l,i)Ci)ai-'—l

(gfl(a) .gr—l,ifz(a) .gf('r’—l‘i)fis((l))a

g

d_1,; d_1,i)\a
= (hogy " 9:{( ' )) )

do.i = (hogy ™" g1 ") - (TTjey Pahp*)70

Therefore, d;p is randomly distributed because of the randomness of r_1 ;,70 ;.

Decryption query. A sends (ID,¢) to B.

B first executes the key generation query to identity 1D as above, then de-
crypts and verifies ¢ with the private key of identity I D according to the decryp-
tion process. If ¢ can pass the verification, B sends A the plaintext; otherwise,
B returns an error message.

Challenge. A sends (ID*,mg,m1) to B, where ID* or its prefix have never
been queried the private key in phase 1.
B randomly chooses m,,,w € {0,1}, and computes

« _TT0 Nug+upIDE o« _ r7b / a1 bttt
¢t =TTy (g)testPh ey = Zba - e(g!, g)> im0 bie
oy e , a=1 . it
CS—Q,CZ—Z"Q-e(g,g)ZmO” ,
e(c*7d0‘i* *
cE=my - 2 ~e(g1,ho)7

d* . d* .
()50 () rie(dy i)
%.do iv)
ﬂ* :H(C* C* C* C* C* m My - 5(02’ 0,i
15925 %39 %45 %5, wHy w af@* ), dr )
(C4) -1 (Cs) 1=1e(d1,i*,c1)
e(c3,do,i*)
PR ), and
(1) 1 (c3) il’le(dl,i*’cf)
do,i»,d_1 i+, d1 4+ are the elements of a private key of 1.D*.
(Remark: For any private key of ID*,

where 7* = h(c}, 3. ¢, ci,

q—

e(C;7dO,i*) — 794q . e(g/ g)ziﬂ} a; o’

+1
PN ACAPIFD N S * .
(C4) L (Cs) L e(dl,i*vcl)

Therefore, B cannot decide whether Z = e(¢/, g)”“qJrl even if he can generate
multiple random decryption keys for ID*.)

Then B sends ¢* to A, where ¢* = (¢}, ¢}, ¢k, ch, ¢, 5%).

let s* = logyg’, c* is a valid ciphertext for m,, under the randomness of s*.
Since logyg’ is uniformly random, s* is uniformly random, and so ¢* is a valid,
appropriately-distributed challenge to A.

Phase 2. A issues additional queries as phase 1.
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Key generation query < ID; >, where ID; # ID* and ID; is not a prefix of
1D*.

Decryption query ¢; # ¢* for ID* or any prefix of ID*. In both cases, B
responds as in Phase 1. These queries may be adaptive.

Guess. A submits a guess w’ € {0,1}. If w’ = w, B outputs 0 (indicating that

Z = e(g’,g)"‘ﬁl); otherwise, it outputs 1.

Probability Analysis

Lemma 1. When Z is sampled according to Prgpgg, the joint distribution of
A’s view and the bit w is indistinguishable from that in the actual construction,
except with probability 1/(p — 1).

Proof. When B’s input is sampled from Prppgg, B’s simulation appears
perfect to A if A makes only key generation queries. B’s simulation still appears
perfect if A makes decryption queries only on identities for which it queries
the private key, since B’s responses give A no additional information. Further-
more, querying well-formed ciphertexts to the decryption oracle does not help
A distinguish between the simulation and the actual construction, since, by the
correctness of Decrypt, well-formed ciphertexts will be accepted in either case.
Finally, querying a non-well-formed ciphertext for ID does not help A distin-
guish, since this cihertext will fail the “decrypt” check under every valid private
key for ID. Thus, the lemma follows from the following two claims.

Claim 1 Assuming the adversary does not find a collision in h, H, then the
decryption oracle, in the simulation and in the actual construction, rejects all
invalid ciphertexts under identities or their prefix not queried by A.

Proof. Let log(-) denote the logarithms to the base g, and an invalid ciphertext
¢ = (c1,c2,c3,c4,05,0) associated with an identity I.D for

er = (Iey MbPF)™ 00 = g, c3 = e(g1, 92)*,
Cq = e(g17g3)84a Cs =Mm - e(gla h0)85+’y7ﬂ7

where v = h(cy, c2,¢3,c4,€e(g1,h0)%), and s1 # 52, 53,54 OT S5.
According to the decryption process, a ciphertext ¢ can be accepted if
1do,i
taap o) = e(g1,ho)*, c5/e(g1,ho)” = R,
c ey 0 e(e1,da i)

4
R/e(g1,ho)® =m, B = H(ci,ca,c3,c4,c5,m, R), (1)

where d_1 ;,do,i,d1,; are the elements of a private key of ID.
And according to (1),

r—1,4 F(r—1,i)\a 1i IDy \rn -
e(e2,do,i) _ eleasthogy Mgy ) (Thes hihy, *)"0:%)

fld_1,4) d—1 r—1,i fr—14) ro.i
Cy4 ey tre(er,dri) C3 "Cyq e(er,g™0)

= e(g1,ho)*.

Since A has not queried the decryption key associated with the identity or its
prefix, and r¢; is randomly chosen from Z7, we know that

e(g1,ho)* e} T = eea, (hogs g3 )), (2)
e(ca, [Tj_y uhiP*) = e(c1, 9)-(3)
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From (3), we know s; = sp. Since 7_1; is randomly chosen from Z; and
b a .
fros) = ~eaT=1i ~ ., according to (2),
aq aq bq _bq

e(g1,ho)* ey “ = e(ca, (hogs “)%),eacy “ = e(ca, (9205 “*)%)- (4)
From (4),
(s5 — s2)logho — ?g loggs(ss — s2) = 0,
b
(s3 — s2)logga — .!loggs(sa — s2) = 0. (5)
Since logho = fi(a),logga = fa(a),loggs = f3(a), fi(), f2(z), f3(x) are ran-
domly chosen, loghg,loggs,loggs are uniformly random. And because hg #
ag bq

93", 92 # g3*, we know sy = s3 = 84 = s5 from (5).

Therefore, s; = so = s3 = s4 = s5. A ciphertext can be accepted only if it is
valid. The decryption oracle, in the simulation and in the actual construction,
rejects all invalid ciphertexts under identities or their prefix not queried by A.

Claim 2 If the decryption oracle rejects all invalid ciphertexts, then A has
advantage 1/(p — 1) in guessing the bit w.

When Z is sampled from Prgppg, a challenge ciphertext ¢* is a valid cipher-
text for the randomness of s*.

First, we show the adversary cannot obtain a valid ciphertext ¢ = (¢1, o, c3,
¢4, ¢5, 3) for my, associated with an identity ID from ¢*, where

er = (ITey ibPF) 02 = g%, 05 = €91, 92)"
Cq = 6(91,93)5 y C5 = My * e(g17 ho)s +’Y’ﬂ’

’
where v = h(e1, ¢, ¢3, ca, (g1, ho)*® ).
There are three cases to consider:

(1) s’ = s*,I1D = ID*: ¢ = ¢*, the ciphertext will certainly be rejected.
(2) ' = s*,ID # ID": (c2,c3,¢4) = (3,5, ¢}).

Assume ID = (IDy,...,ID;),ID* = (ID;,... ID}).
S « TT s*\ID,—ID} TTJ IDj\s*
When j >4, ¢y = ¢} - [[_q (R )Pk 1Dg ?@:i+1(hlhk RS
Otherwise, c1 = ¢ - TT_y (b ) Pr=TPL - TT} sy (uhyF) ="
Since s* = loggg’ is uniformly random, the adversary cannot compute a valid
¢y from c*.
(3) 8" # s*:
(c1,¢2,¢3,¢4,7) # (¢}, 63,65, ¢4,7") 05 = ¢ - e(g1, ho)* T775" 7",
Since s* = loggg’ is uniformly random, v* is uniformly random, the adversary
cannot compute a valid ¢5 from c*.
Therefore, the adversary cannot obtain a valid ciphertext ¢ for m,, associated
with identity I D from c*.
Finally, We know
. i e(cs,do i)
()= () T e(dy e vef)

V= h(CT7 CSvcga CZv 6(917 hO)s*)~

C5 = My ce(g1,ho)’" =muy -e(g1,ho)* T, where
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Since s* = logyg’ is uniformly random, v* is uniformly random, and s* +~* =0
with probability 1/(p — 1), ¢ /m,, is uniformly random for the adversary except

probability 1/(p — 1). So A can guess w’ = w with probability é + pil'

Lemma 2. When Z is sampled according to Rrgpn g, the joint distribution of
A’s view and the bit w is indistinguishable from that in the actual construction.

Proof. The lemma follows from Claim I and the following claim.

Claim 3 If the decryption oracle rejects all invalid ciphertexts, then A has no
advantage in guessing the bit w.

When Z is sampled from Rrpppg, we know that sz, s4 # s*. As above, the
adversary cannot obtain a valid ciphertext ¢ for m,, associated with identity 1D
from c¢*. And

P e(cs, doi+)
5 — w " * *
(Cz)f(d—l,i)(Cg)d’l’ie(dl,i*7CT)

= My - e(gf*a hog—aqaq) ALK e(glv ho)'y*7

~e(g1, ho)

where 'Y* = h’(CTa 637 C?ia 627 e(gf* ) hog—aq(xq) : Zaq)'

Since s*, aq, Z are uniformly random, v* is uniformly random, and ¢} /m,, is
random for the adversary. So A can only guess w' = w with probability 1/2 and
has no advantage in guessing the bit w.

Time Complexity: In the simulation, B’s overhead is dominated by computing
private keys and decrypting the ciphertexts in response to A’s queries. Each key
generation computation requires O(l) exponentiations in G, and each decryp-
tion computation requires O(1) exponentiations and pairings in G1, Gs. Since A
makes at most ¢ — 1 such queries, t’ =t + O(teqp - 1q) + O(tpair - q)-

In the reductions , B’s success probability and time complexity are the same
as A’s, except for additive factors depending on p and ¢ respectively. So, one
could say that our HIBE system has a tight security reduction in the standard
model, addressing an open problem posed in [3].

4.2 Efficiency

In the following table, we compare the efficiency of the known HIBE schemes in
the standard model.

Table 1. Comparison to other HIBE schemes in the standard model

Scheme Security Public Private Ciphertext Pairing
model key size key size size operation
BB[7] IND-sID-CPA O(l) O(4) O(i) O(4)
BBG[9] IND-sID-CPA O(l) O(4) O(1) 0(1)
CS[16] IND-ID-CPA  O(I) O(4) O(i) O(4)
ALYW[12] IND-ID-CPA  O(I) O(4) 0O(1) 0(1)
Ours IND-ID-CCA2 O(l) O(4) 0O(1) 0O(1)
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In this table, ¢ represents the number of levels of identity on which the opera-
tions are performed, [ is the maximum number of levels in the HIBE. “sID, ID”
denote selective-ID and adaptive-ID model respectively.

5 Conclusions

Currently, there is no hierarchical identity based encryption scheme that is fully
CCA2 secure in the standard model, with short public parameters and a tight
reduction. In this paper, we first propose an HIBE scheme that is fully secure
in the standard model. And it achieves IND-ID-CCA2 security based on the
decision g-TBDHE problem. The ciphertext size is independent of the level of
the hierarchy. Moreover, our scheme has short public parameters, high efficiency
and a tight reduction simultaneously.

Acknowledgements

We would like to thank anonymous referees for their helpful comments and
suggestions. The work described in this paper was supported by the National
Science Foundation of China under Grant (No.60573031), and also funded by
863 Hi-tech Research and Development Program of China (2006AA01Z405).

References

1. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47-53. Springer, Heidelberg
(1985)

2. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114-127. Springer, Heidelberg
(2005)

3. Gentry, C.: Practical Identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445-464. Springer, Hei-
delberg (2006)

4. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.)
ASTACRYPT 2002. LNCS, vol. 2501, pp. 548-566. Springer, Heidelberg (2002)

5. Boneh, D., Gentry, C., Waters, B.: Collusion-resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258-275. Springer, Heidelberg (2005)

6. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213-229. Springer, Heidelberg (2001)

7. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223-238. Springer, Heidelberg (2004)

8. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443-459. Springer,
Heidelberg (2004)



10.

11.

12.

13.

14.

15.

16.

17.

Secure Hierarchical IBE Scheme in the Standard Model 115

. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with con-

stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440-456. Springer, Heidelberg (2005)

Naccache, D.: Secure and practical identity-based encryption. Cryptology ePrint
Archive, Report 2005/369 (2005), http://eprint.iacr.org/

Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466-481. Springer, Heidelberg
(2002)

Au, M.H., Liu, J.K., Yuen, T.H., Wong, D.S.: Practical hierarchical identity based
encryption and signature schemes without random oracles,
http://eprint.iacr.org/2006/368

Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited
(preliminary version. In: STOC 1998, pp. 209-218 (1998)

Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255-271. Springer,
Heidelberg (2003)

Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207-222. Springer, Heidelberg (2004)

Chatterjee, S., Sarker, P.: On Hierarchical Identity Based Encryption Protocols
with Short Public Parameters, http://eprint.iacr.org/2006/279

Chatterjee, S., Sarkar, P.: Trading time for space: towards an efficient IBE scheme
with short(er) public parameters in the standard model. In: Won, D.H., Kim, S.
(eds.) ICISC 2005. LNCS, vol. 3935, pp. 424-440. Springer, Heidelberg (2006)


http://eprint.iacr.org/
http://eprint.iacr.org/2006/368
http://eprint.iacr.org/2006/279

A Fuzzy ID-Based Encryption Efficient When
Error Rate Is Low

Jun Furukawa!, Nuttapong Attrapadung?, Ryuichi Sakai®, and Goichiro
Hanaoka*

1 NEC Corporation, Japan
j-furukawa@ay. jp.nec.com

2 AIST, Japan
n.attrapadung@aist.go. jp

3 Osaka Electro-Communication University, Japan

sakaji@isc.osakac.ac. jp

4 AIST, Japan

hanaoka-goichiro@aist.go.jp

Abstract. The fuzzy identity-based encryption schemes are attribute-
based encryption schemes such that each party with the private key for
an attribute set S is allowed to decrypt ciphertexts encrypted by an
attribute set S’, if and only if the two sets S and S’ are close to each
other as measured by the set-overlap-distance metric. That is, there is a
threshold ¢ and, if ¢ out of n attributes of S are also included in &', the
receivers can decrypt the ciphertexts. In previous schemes, this threshold
t is fixed when private keys are generated and the length of ciphertexts
are linear to n. In this paper, we propose a novel fuzzy identity-based
encryption scheme where the threshold ¢ is flexible by nature and the
length of ciphertexts are linear to n — t. The latter property makes the
scheme short if it allows receivers to decrypt ciphertexts when error rate
n — t, i.e., distance between the two attribute sets, is low.

Keywords: Fuzzy, biometrics, identity-based, low error rate.

1 Introduction

The notion of fuzzy identity-based encryption (FIBE) schemes was introduced
by Sahai et al. in [16]. These schemes are in a class of identity-based encryp-
tion schemes where each identity is viewed as a set of descriptive attributes
[OTTITRITOLTIS] and each party with the private key of an attribute set S is al-
lowed to decrypt ciphertexts encrypted by an attribute set ', if and only if S
and S’ are close to each other as measured by the set-overlap-distance metric.
Interesting applications of FIBE schemes can be found where attributes are
biometrics. Since biometrics are hard to be free from noise, error-tolerance prop-
erty of FIBE schemes is what solves this problem of using biometrics as identities.
In such applications, for example, giving a privilege to Alice by issuing a private
key is easy if she is physically present since the authentication process is direct

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 116 2008.
© Springer-Verlag Berlin Heidelberg 2008
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and straight forward. Then, Alice can present her authorized public key, i.e., her
biometrics, to Bob even if she carries no electronic devices. Then, if Bob wants
to send some data to her which data are allowed to be revealed to only privileged
people, he encrypts this data by Alice’s biometric and sends it her. Now, Alice
can decrypt it later from her home or office.

According to Naor’s observation in [4], identity-based encryption schemes can
be transformed into signature schemes. Hence, by generating a signature, Alice
can also prove to Bob standing in front of her that she is privileged person.

The first two FIBE schemes were proposed in [16]. In these schemes, a receiver
is able to decrypt a ciphertext that is encrypted by a set S of n attributes only
when he has more than ¢ keys that correspond to attributes in S. Here ¢ is
a threshold that is fixed when those keys for attributes are generated and the
length of ciphertext is linear to n. Although it is possible to make this ¢ flexible
by preparing multiple systems or by preparing attributes whose corresponding
keys are distributed to every players. These modifications increase costs of the
system. When FIBE schemes are applied to cases where attributes are biometrics,
it is natural that one’s two biometrics at different observations are close to each
other. Hence, it is likely that n — t << n in majority of the cases.

In this paper, we propose a novel FIBE scheme where the threshold ¢ is flexi-
ble by nature and the length of ciphertexts is linear to n —t. The latter property
implies that ciphertexts are much shorter than those in previous schemes in most
natural cases. More precisely, users who are granted d attributes are required to
keep only d + 1 private elements in an elliptic curve with a paring. And cipher-
texts, that are encrypted by a set S of n attributes and that can be decrypted by
t keys that correspond to attributes in S, are composed of 2(n —t + 1) elements
in the elliptic curve or in its target field of the pairing. Our scheme also has a
nice property that attributes can be dynamically granted to receivers while they
are granted to receiver as whole in the schemes in [16].

Our scheme is based on the identity-based broadcast encryption scheme pro-
posed by Sakai et al. in [I5]. Later, the security of this scheme is proved in [12]
in the generic group model and an essentially the same scheme is independently
proposed in [I3] with a proof in the random oracle model. In our scheme, the
keys for attributes are similar to those of receivers in [I5]. A ciphertext in our
scheme for an attribute set S is similar to that for the corresponding receiver
set with an exception that the public key in our scheme is reencrypted. Hence, a
receiver, in the sense of [12], needs this new public key as well as his private key
for the decryption. The number of elements required for the decryption among
this new public key is the number of receivers in the set for which the cipher-
text is encrypted. Moreover, every time the receiver obtained a private key of
another receiver, the number of the elements of the new public key required for
the decryption decreases by one. Hence, if a ciphertext includes n — ¢ elements
of the new public key, ¢ private keys of receivers, who are included in the S for
which the ciphertext is encrypted, are enough for decrypting it in our scheme.

We prove that our scheme is key indistinguishable under fuzzy selective ID-
and-attribute and chosen plaintext attacks in the random oracle model if the
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general bilinear decision assumption holds. This security model is a variant of
that introduced in [16] along the line of selective security introduced in [6]. The
general bilinear decision assumption is proved to hold in the generic bilinear
group model.

The paper is organized as follows. Section [2] describes the model of fuzzy
selective ID-and-attribute security. Section Bl proposes our FIBE scheme.
Section proves our scheme is key indistinguishable under fuzzy selective ID-
and-attribute and chosen plaintext attacks. Section Bl compares our scheme with
previous schemes.

2 Model
2.1 System and Algorithms

Players in FIBE schemes are private key generator (PKQG), receivers, and senders.
Each receiver is labeled by an index and is given some attributes. They use four
algorithms Setup, AttGrant, Encrypt, and Decrypt. Let R; denote a receiver with
an index i. Let N be the set of indices of the all receivers and M be the set
of indices of the all attributes. Receivers should be distinguished by indices so
that the PKG can decides whether or not it may give a key of new attribute to
the relevant receiver. Note that the PKG can give keys for multiple of attributes
and they are not required to be given at the same time. Let K denote key space.

Setup: A probabilistic algorithm for the PKG that, given some security param-
eters, outputs the public parameter params and the master key mkey. The
descriptions of an attribute index space M, receiver identity space N, and a
key space K are included in params. params is given to all interested players
while mkey is kept secret.

AttGrant: A (possibly) probabilistic algorithm for the PKG to give receivers
attributes. Given params, an index i € N of receiver, an index j € M of
attribute, and mkey, it outputs an attribute key skey; ; for R;’ s j-attribute.
skey, ; is given to R;.

Encrypt: A probabilistic algorithm for senders that, given a set of attribute in-
dices S C M and an error tolerance parameter ¢, outputs a key key € K and
a header hdr. § and t are included in hdr.

Receivers are expected to have at least ¢ out of |S| attribute keys among
those whose indices are in S to compute key from this hdr.

Decrypt: A deterministic algorithm for receiver that, given hdr, params, and
{skey; ;}jer such that T C S € hdr and |T| = t € hdr for some i € N,
outputs a key key.

We require well constructed FIBE schemes to be complete. That is, it holds that
for every security parameters, for every random tapes input to algorithms,

(mkey, params) < Setup
VS, tst. S C M € params,0 < t < |S|
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(key, hdr) < Encrypt(S,t,)
Vi,Tst.TCS,|T|=t
(skey; ;)jer < (AttGrant(params, mkey, i, j))jer
key' «— Decrypt(hdr, (skey; ;)jer)
key = key

Our set of algorithms has a number of advantages over that in [16]. Our Setup
does not include the error tolerance parameter in params. This is because the
error tolerance parameter can vary among different ciphertexts in our scheme.
Our AttGrant, which corresponds to Extract in [I6], is able to dynamically grant
receivers new attributes while Extract should give a set of attributes to each
receiver as whole.

2.2 Security Requirements

We first consider the following game.

Definition 1. Key-distinguishing game under fuzzy selective ID-and-attribute
and chosen plaintext attacks proceeds between an adversary A and a challenger
C as in the following:

1. A outputs a receiver identity i*, an attribute set S*, and an attribute set T*
of size t* — 1.
2. C, given some security parameters, runs Setup and obtains params and mkey.
params is given to A.
3. A sends the following queries for polynomial times to C.
— A sends to C a pair (i,j) € N x M such that (i,7) € i* x (§*\ T*).
Then, C, by running AttGrant with mkey, generates a private key skey; ;
and sends it to A
During the above queries A asks C for the test ciphertext once.
— Then, C first randomly choose b € {0,1} and key,_, € K. Next, C gener-
ates (keyy,, hdr*) by running Encrypt with the input of S* and t*. Finally,
C sends (key;, keyy, hdr*) to A.
4. A outputs a guess b/ € {0,1}.

Let Adv 4(b) be the probability that C outputs b in the above game.

Definition 2. A fuzzy identity-based encryption scheme is key-indistinguishable
under fuzzy selective ID-and-attribute and chosen plaintext attacks if for all
polynomial-time adversary A, |Adv4(0) — Adv4(1)| is negligible.

If we consider a game where §*,t*,i* are adaptively chosen and where .4 may
ask decryption queries, then full and stronger notion of security is introduced.
As usual, such a weaker notion is introduced since it is hard to prove that the
proposed scheme satisfies the stronger notion. Except for artificial schemes, no
concrete adaptive attacks are found for schemes that are only selectively secure.
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3 Proposed Scheme

Our scheme uses cyclic groups with bilinear pairing.

Definition 3. Let G and G denote two cyclic groups of prime order q. A bilinear
pairing is an efficient mapping e : G x G — G such that e(u®,v°) = e(u,v)*?
Jor all u,v € G and o, 8 € Z/qZ and there exists a generator g of G such that

e(g, g) generates G. We will refer to such a tuple (G, G,e ,g) as a bilinear pairing

quadruple.
Let EJ[f] denote the coefficient of x/-term in a polynomial f of x. That is,

Ejlfl=} 8‘9;]. f - where 2 denote formal derivativdl

Setup: Suppose m,n,k € N and a random tape are given as a security param-
eters. It first chooses a hash function M, params = (H,m,n, (G, G, e,q)) for
lg| = . Then, it randomly chooses w, x,0 € Z/qZ. Let each of (0;)jem €r
Z/qZ™ be the hash (H) value of a string that describe the corresponding
attribute, i.e., ; = H(params, description of j-th attribute). Next, it gener-
ates

G=elg.q"), y=g*
(gi)ie/\/l = (Qxb)ieM , (yi)ie/\/l = (llxb)ieM , (Gi)ieM = (GXL)iEM
The public key and the master key are
pkey = (params, g,y, G, (g:)iem, (Yi)ieam, (05)jem;, (Gi)iem)
mkey = (w, X, 0).

AttGrant: Suppose pkey, mkey, an identity i € A/, an attribute index j € M,
and a random tape are given. If no attribute keys for i is generated before,
AttGrant randomly chooses ¢; € Z/qZ. If any of them is generated before,
AttGrant uses the same ¢; as before. Then, AttGrant generates a private key
skey; ; for an identity i related to the attribute index j as

wp;—8
skeyi’] . (dz,d )]) (gaﬁb g(x+6 >)

and outputs it.

Encrypt: Suppose pkey, an attribute set S C M, a threshold ¢, and a random
tape are given. It first randomly chooses p € Z/qZ. We let go = ¢ and i; be
j-th index in S. Then, it generates key and hdr for S as

key:=C=G"*
hdr .= (87 C0,C1,05 - - -5 Cl,n—t, 02)1, ey Cg)n,t)

EJ i +0;;
— | s, H gjp X[H_mjes(x j )] s (Wi”)i=o0,... .=t (G )i=1,...n—t
3

! For example, if f(x) = i —a) = X* = (1 + a2 + az)x® + (a1az + azaz +
ason)x — mazas, EX[f] = —(a1 + az + as).
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Note that ¢y = g?lies(H95)  Finally, it outputs hdr.
(€1,0,---y¢1,n=t,C21,...,C2 n—¢) in hdr corresponds to “reencrypted public
key portion” of the original scheme [I5].

Decrypt: Let S; be set of all j € S such that user ¢ has skey, ;. We assume
without loosing generality |S;| = t. We also let S; = S\ S;.
Decrypt computes

di.;j wdy—6
dSi = 2J (: gHjesi (X+9j)
]g Tkes, kzi Ok — 05)

t .

By |11 cs, (Xx+0; ] .

cs, = [Ty M0 (oot o)
J=0

n—t .
Go, = T &P s 6490] (ol e txsa-TLcs )

j=1
and computes

G = e(d;, cs;) . e(g‘bi,g‘””nyesi (X+9j))
B 6(007d5-) N oT1es(x+05) H.w%‘,(;j_e.)
i e(g JjES J g JES; j )

e(gp7 g‘*"¢71 HjeS‘i (X+9j))

_ pnjegi(XJrej).
e(ngjegi (X+9_j)’ gwaﬁi*&)

=e(9,9")
Then, it computes
1
key' = (G'/Gs,) b5 =GP
It outputs key'.

The completeness of the scheme is clear from the above description.

4 Security Analysis

4.1 Preliminaries

We define a “General Bilinear Decision Problem” in bilinear groups, which is a
straight forward generalization of “General Diffie-Hellman Exponent problem” of
[3]. Then introduce the “General Bilinear Decision Assumption” which is proved
to hold in the generic bilinear group model.

Definition 4. General Bilinear Decision Problem: Let p be a prime and
let s and m be two positive integer constants. Let G and G be order q cyclic
groups with an efficient bilinear mapping e : G x G — G and g is a genera-
tor of G and G = e(g,9). Let PP, Q,Q’ be tuples of polynomials, where P =
(pla"'ups)aQ = (Q17'~‘7qs)7P/ = (plluap;)ﬂQl = (qauaq;) € ]Fp[Xlu"'a
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Xn|®P andpr =q =py =q¢;=1. Let P(z1,...,x ) denote (pl(xl, O I
ps(T1, ... Tm)) and gPELTm) = (gPr(@1mm) — 0 gps(@1Bm)) e use sim-
ilar notation for Q,P’, Q’.

We say an algorithm B has an advantage € in solving general bilinear decision
problem with respect to (P, Q) and (P, Q’) if

Pr[B gP(ml,...,mm)7GQ(m1 ..... Tm)) 1
|
_Pr[B(gP’(w1,...,zm)7GQ'(:m,...,a:m)) _ 1” S €

where the probability is taken over random choice of xg,...,Tm €r Z/qZ and
random tapes of B.

Definition 5. Dependent and Independent Polynomials: We say a pair
of tuples (P, Q) and a pair of tuples (P', Q') are dependent if there exists tuple
of % + s constants

{ai]‘}izl’m)s’jzl’m’s, {bi}izl’m)s such that either

0= Z Q;i;PiP; + sz% N0 # Z az]plp] + ZbZQZ
i=1

3,j=1 3,j=1

or

0% Z Qi;Pip; + sz% NO= Z az]pzp] + Zbiq;
i=1

,j=1 ,j=1

holds. We let (P, Q) # (P',Q’) denote this.
We say that a general bilinear decision problem with respect to (P,Q) and
(P, Q') is independent if (P, Q) and (P, Q') are not dependent. We let (P,Q)
~ (P, Q") denote this.

The general Diffie-Hellman Exponent problem in [3] is a special case of the
above problem when each of {p; = p.}i=1,. s is a polynomial of x1,...,zm_1,

......

Q=(1, f(z1,..-,Zm-1)), and Q" = (1, x,,).

Definition 6. The General Bilinear Decision Assumption: We say that
the general bilinear decision assumption holds, if for every poly-time adversary,
the advantage € in solving every general bilinear decision problem with respect to
every sets of (P, Q) and (P, Q') that are independent is negligible.

The general bilinear decision assumption is justified by the following Theorem [T}
That is, its difficulty is proved in the the generic bilinear group model introduced
below. This is an extension of the generic group model [I4] for ordinary bilinear
groups of prime order defined in [2].

Definition 7. The generic bilinear group model: Let us consider the case
the bilinear groups of prime order q are G and G and g is a generator of G. In this
model, elements of G and G appear to be encoded as unique random strings, so
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that no property other than equality can be directly tested by the adversary. There
ezist two oracles in this model. Those are, oracles that perform group operations
in each G and G and an oracle that performs paring e. The opaque encoding of
an element in G is modeled as an injective random function ¢ : Z/qZ — X C
{0, 1}*, which maps all o € Z/qZ to the string representation (a) of g* € G.

We similarly define w Z/qZ — Y for G. The attacker communicates with the
oracles using the (w,w) -representations of the group elements only.

Theorem 1. Let dp,dp/,dg, and dg: be, respectively, the mazimum degree of
polynomials in P,P’, Q, and Q' and let

d = max(2dp,2dp/,dg,dq’). In the generic bilinear group model, no algo-
rithm A that makes a total of at most g, queries to the oracles computing group
operations in G, G, and e : G X G — G has an advantage € in solving any of
general bilinear decision problem with respect to (P, Q) and (P’,Q’) which are
independent. Where,

~ (gg + 25)2d
) )

The proof of the theorem is given in Appendix [Al The above Theorem [Ilimplies
that the general bilinear decision assumption holds in the generic bilinear group
model.

4.2 Security of the Proposed Scheme

Theorem 2. Suppose that the general bilinear decision assumption holds. Then,
the proposed fuzzy identity-based encryption scheme is key-indistinguishable un-
der fuzzy selective ID-and-attribute and chosen plaintext attacks in the random
oracle model.

Proof. We first describe two distributions (P, Q) and (P’, Q’). One is the same
as the distribution of values that A receives from C in the key-distinguishing
game when b = 0 and the other is the same as the one that A receives from C
in the key-distinguishing game when b = 1.

Let {2 be the set of all pair of (7,5) € N’ x M that A asks the challenger for
skey, ;. Suppose that g is a generator of G. Let w, x,d be random variables and
(05)jem be distinct hash values. Let

C = e(g, g)P5H_jEM(x+9j)2 , G =e(j,q) Hiermxt0s i)?
(Co,)imt,. ot = ( (G, )X PP Miea Ock0®y,
(G’L)’LEM (e(g g)éx HJEM X+o; ) ) eM
g= gHjeM(X+0J) Y= g“-’ ]eM(XJFe ) , ¢ = ngjeS(X+0j)HjeM(X+0j)

_ (gXiHjEM(XJng)) "inHjEM(X"ng)),

iem 5 Wi)iem = (9 iEM
((g¢i HjeM(X""Gj)’ g(w¢i—5) er/\/t‘k;éj(x""ek)))

(9i)iem
(d“di’j)(i,j)e(l =
(€1,i)i=0,0..n—t = (g’(i”“’H]‘eM(H@j))

ISy

1=0,...,n—t-
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Let P = (g,y,co0, (gi)ier, Wi)ieam, (di, di ;) jyen, (c1i)io,...n—t) and Q =
(C,G,(Ca,)i=1...n—t, (Gi)iem). Let (P',Q’) be the same as (P, Q) except C
is replaced with random elements in G. Then, if we consider (w, x, d) are random
variables, the distribution of (P, Q) is exactly the same as that A receives from
C in the key-distinguishing game when b = 0 and the distribution of (P, Q’)
is exactly the same as that A receives from C in the key-distinguishing game
when b = 1.

One can construct an algorithm B that can break the general bilinear decision
assumption as follows. First, B randomly chooses size of S* and t*. Then, B get
a polynomial that is either (P,Q) or (P’,Q’) that is consistent with the |S*|
and t* as a general bilinear decision problem. We note that this polynomial, an
instance of the problem, specifies all ¢;, 8;, and f2.

Next, B play the role of C and let A choose §*,T*, and *. If the size of &*
and t* are different from what B had expected, it aborts. If they are as expected,
B chooses random oracles (i.e., determines the correspondence between i € M
and #; and the correspondence between i* € N and ¢;) so that 2 fits to S*
and T* that A has chosen. Then, B can play the role of C by using the given
polynomial.

Now, if A is able to distinguish between the distribution for b = 0 and that
for b =1, B can distinguish whether the given polynomial is (P, Q) or (P, Q’).

Therefore, what was left to prove is that (P, Q) and (P’, Q’) are independent.
This is proven in Appendix [Bl

5 Comparison

Let n be the number of attributes by which messages are encrypted. Let ¢ be an
error tolerance parameter such that at least ¢ out of n attributes need to coincide
for the receiver to decrypt ciphertexts. Let d be the number of attributes the
receiver is granted.

In our scheme, each ciphertext consists of 2(n — ¢ + 1) elements and each
private key consists of d+ 1 elements. In the first scheme of [I6], each ciphertext
consists of n + 2 elements and each private consists of d elements. In the second
scheme of [I6], each ciphertext consists of n 4+ 3 elements and each private key
consists of 2d elements. In our scheme, t can be chosen for each ciphertext. But
in both schemes in [16], ¢ is a fixed parameter. The comparison is given in the
Table. [l This shows that ciphertexts of our scheme is shorter than that of

Table 1. Comparison with the previous works

ciphertext length private key length threshold
Our Scheme 2(n—t+1) d+1 flexible
1st scheme in [16] n+2 d fixed
2nd scheme in [16] n+3 2d fixed
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previous scheme when ¢t < n/2, which we believe is the most of the natural
cases. Besides these efficiency, our scheme provides flexible tolerance parameter
and dynamical grant of attributes.
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A  Proof of Theorem [I

Proof. The proof is similar to that of Theorem A.2 in [3] and no novel technique
is introduced here.

Consider an algorithm 5 that plays the following game with A. Algorithm B
maintains two lists of pairs, Lp = {(p;,¥p:) i =1,...,7p}, Lo = {(q:, %) :
i=1,...,7¢} under the invariant that at step 7 in the game, 7p + 79 = 7 + 2s.
Here, p; € Fp[X1,...,X,,] and ¢; € Fp[Xq,...,X,,] are multi-variate polyno-
mials. The ¢p; and g ; are strings in {0, 1}*. The lists are initialized at step
7 = 0 by initializing 7p = 79 = s. B chooses b € {0,1} at the beginning of
the game. We set p1,...,ps in Lp and gq1,...,¢s in Lg to be, respectively, the
polynomials in P and Q if b = 0. We set them to be polynomials in P’ and Q' if
b = 1. Algorithm B completes the preparation of the lists Lp and Lg by setting
the 1-strings associated with distinct polynomials to random strings in {0, 1}*.

We can assume that .4 makes oracle queries only on strings obtained from
B, since B can make the strings in G and Gp arbitrarily hard to guess by
increasing k.

We note that B can easily determine the index ¢ of any given string ¢p; € Lp
and ¥ ; € L. B starts the game by providing A with the value of p and a tuple
of strings {¢p;}i=1,... s, {¥Q,i}i=1,..,s meant to encode some tuple in G* x G5.
Algorithm B responds to A’s oracle queries as follows.

Group Operation in G,Gr. A query in G consists of two operands p; and
Yp,; with 1 < 4,7 < 7p and a selection bit indicating whether to multiply
or divide the group elements. To answer, let 7 « 7p + 1. Perform the
polynomial addition or subtraction p,;, = p; = p; depending on whether
multiplication or division is requested. If the result P, = D1 for some | <
7p, then set Yp,;, = ¢p;; otherwise, set ¢p s to a new random string in
{0,1}*\ {¢p1,...,¥prp}. Insert the pair (pr1,,p,r,) into the list Lp and
update the counter 7p « 7. Algorithm B replies to A with the string ¥p .
G queries are handled analogously, this time by working with the list Lg and
the counter 7q.

Bilinear Pairing. A query of this type consists of two operands ¥ p; and ¢ p ;
with 1 < 4,5 < 7p. To answer, let 7, « 7 + 1. Perform the polynomial
multiplication Gry, = Pi - Pj- If the result Gr, = @ for some | < 7g, then

set ¢QJ£9 = 1g,; otherwise, set ¢Q,ng to a new random string in {0, 1}*\
{¥q1,. . ¥q,ro} Insert the pair (¢r;,,¥q,r;,) into the list Lo and update
the counter 7q « 7. Algorithm B replies to A with the string 1q, -,

After at most g, queries, A terminates and returns a guess b’ € {0,1}. At this
point B chooses random {z1, ...,z }. Fori =1,...,m, we set X; = z;. It follows
that the simulation provided by B is perfect unless the chosen random values
for the variables X1, ..., X,, result in an equality relation between intermediate
values that is not an equality of polynomials. In other words, the simulation is
perfect unless for some 7, j one of the following holds:
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1. pi(z1,...,2m) — pj(z1,...,Tm) = 0, yet the polynomials p;, and p; are not
equal.

2. gi(z1,...,2m) — ¢j(x1,...,2m) = 0, yet the polynomials ¢; and ¢; are not
equal.

Let fail be the event that one of these two conditions holds. When event fail
occurs, then B’s responses to A’s queries deviate from the real oracle’s responses
when the input tuple is derived from the vector (z1,...,2zm,) € FJ'

We first bound the probability that event fail occurs. We need to bound the
probability that for some i,j we get (p; — p;)(z1,...,Zm) = 0 even though
pi —p; # 0 or that (¢; — ¢;)(x1,...,2m) = 0 even though ¢; — ¢; # 0. By
construction, the maximum total degree of these polynomials is at most d =
max(2dp,2dps,dg,dq ). Therefore, for a given i, j the probability that a random
assignment to X1,..., X, is a root of ¢; — ¢; is at most d/p. The same holds for
p; — p; - Since there are no more than 2(q‘§28) such pairs (p;, p;) and (g;, g;) in
total, we have that

Prifail] < (q—;Qs) 2pd < (q+2s)%d/p.

If event fail does not occur, then B’s simulation is perfect.
Since (P, Q) and (P’,Q’) are independent, the distributions 4 is given are
exactly the same unless fail happens. Therefore, the theorem is proved.

B Proof of Independence (Sketch)

Lemma 1. P,Q,P’, Q' defined in the proof of Theorem[3, are independent.

Proof. We let 2" be {i|37, (1,7) € 2}.If (P, Q) and (P’, Q') are dependent, then
there exist

a1,a24,0a3,4,
b1,1,b1,2,b1,3,b1,4,4,b1,5,i,b1,6,i,b1,7,4,5,01,8,5 » b2,2,02,3,b2 4.4, b2 54, b2.6,i,b2.7,4 5, 02,845
b3,3,03,4,i,03.5,i,b3,6,i,03,7,5,5, 03,84 5 ba,4,i,ba5,4,04,6,5,04745,ba8,
bs.5.i,b5.6,i, 05,7,4,5, 5,84 » b6,6,is b6,7,i,5, 06,8,
b7,7,i,5,b7,8,i » bg,8,i

for appropriate 7, j such that the following equation (abbreviated) holds.

n—t*

po T (x+06)% +aid [T x+06)*+ D azix'pd [ (x+0x)*+...

keM keM i=1 keM

=bia [ c+06) T x+600)+b12 ] x+66)-w [T x+66) + ...

keM keM keM keM

Note that the coefficient of the first term is fixed to 1. We show that these
however do not exist. Instead of checking total of this lengthy equation, we see
only terms that contain p. So, we do not see the detail of the above equation.
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For the terms that contain p, the following equation (abbreviated) should holds.
Here we divided all terms by [, c v (x + 0)-

ps ] x+0x)* Zaz ix'pd T (x+6x)

keM keM

=bi3z-p H (x + 0k) H (x +0k) + Zb1,4,i'Xi H (x +0k) +

kesS* keM ieM keM

We now see terms that contain only pwy’¢; for some i, j. That is,

Z b37z]pH X+9k Cwo; H (X+9k)

(i,5)€R kes* ke M, k#j
+ Z bo,s,idi - X pw [ (x+6k)
i€’ j=0 keM

Inserting —0,,, € M to x, we get

Z b3,7,i,mp H (Ok — Om) - woi H (O — O)

(i,m)eN keS* ke M k#m
Hence,
Fact 1: b3 7,; =0 for (¢,7) such that j ¢ S*.

Thus, for terms that contain only pwx?¢;, we have the following for some 3, j:

0= pw Z bi Z b3,7,i.; H X+ 0k) + Z b6.8.i.j X

e JjEN()NS* kES* k#j

Here (i) = {j|(i,j) € 2}. Therefore, for every i € 2

n—t*
0= > bamiy I Ge+00)+ D bosiy-x (1)
jeQ(i)ns* kES* ktj =0

should hold.
We will see the condition for Eq. (Il) to hold. Since [2(i)NS* =T* =t —1
and consider a matrix (t —1) x (¢t — 1) matrix Ay such that

n—t* t—1
Z b3,7,i,5 + Z b6, 8.i,5X’ H (x+0k) = Z 253,7,1‘,]‘146]-&)(”%.
JEN()NS* j=0 keS* k#j JEN()NS* k=1

Here, ¢;’s are indices such that {¢;}; = {1,...,t — 1}. Since the determinant of
(Ae, k) 18 T jep@ns« ic;(0i — 05) and 0; # 6 if i # j, the matrix (A, k) is
regular. Hence, Eq. ([l) holds only when the following fact 2 holds:
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Fact 2: b3 7,; =0 for all (4, 7) such that ¢ € £ and j € 2(i) N S*.

We now see terms that contain only pd. Then, the following equation should
holds:

po H O = —pd Z Z b7, + Z b3,7.4, H O H O
keM i€ \jen(i)ns* jen@),jas keS*  keM,k#j

From Fact 1 and Fact 2, the terms in right hand side are 0. This contradicts to
non-zero of the left hand side.
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Abstract. Recently, the concept of proxy re-encryption has been shown
very useful in a number of applications, especially in enforcing access con-
trol policies. In existing proxy re-encryption schemes, the delegatee can
decrypt all ciphertexts for the delegator after re-encryption by the proxy.
Consequently, in order to implement fine-grained access control policies,
the delegator needs to either use multiple key pairs or trust the proxy
to behave honestly. In this paper, we extend this concept and propose
type-based proxy re-encryption, which enables the delegator to selec-
tively delegate his decryption right to the delegatee while only needs one
key pair. As a result, type-based proxy re-encryption enables the dele-
gator to implement fine-grained policies with one key pair without any
additional trust on the proxy. We provide a security model for our con-
cept and provide formal definitions for semantic security and ciphertext
privacy which is a valuable attribute in privacy-sensitive contexts. We
propose two type-based proxy re-encryption schemes: one is CPA secure
with ciphertext privacy while the other is CCA secure without ciphertext
privacy.

1 Introduction

In a proxy re-encryption scheme [515], a delegator (say, Alice) and a delegatee
(say, Bob) generate a proxy key that allows a semi-trusted third party (say, the
proxy) to convert ciphertexts encrypted under Alice’s public key into ciphertexts
which can be decrypted by Bob. Recently, proxy re-encryption has been shown
very useful in a number of applications such as access control in file storage [I],
email forwarding [19], and law enforcement [13].

Motivation. We have the following observations on the existing proxy
re-encryption schemes and their applications. One is that, with respect to one
key pair of the delegator, the proxy is able to re-encrypt all the ciphertexts
so that the delegatee can obtain all the plaintexts. The other is that, in many
applications, it is likely that the delegator only wishes a specific delegatee to
see a subset of his messages. In order to implement fine-grained access control
policies, the delegator can choose a different key pair for each possible subset
of his messages and choose a proxy to delegate his decryption right. However,
this approach is infeasible in practice. Alternatively, the delegator can choose to
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trust the proxy to enforce his policies by re-encrypting the pre-defined subset of
his ciphertexts to the specific delegatee. This approach is also infeasible because
of the strong trust requirement on the proxy. For example, if the proxy colludes
with a malicious delegatee (or, the proxy is compromised), then all messages of
the delegator will be compromised.

In fact, the delegator might have more concerns about the delegation in prac-
tical applications. An observation is that, with a public key encryption scheme, if
Alice encrypts a message for Bob using his public key, then Alice can stay anony-
mous. However, with a proxy re-encryption scheme, this kind of anonymity might
not be trivially achieved. For example, in the schemes in [I1], Bob can (at least)
tell whether messages are from the same user or not.

Contribution. In this paper, we propose the concept of type-based proxy re-
encryption which enables the delegator to selectively delegate his decryption
right to delegatees. In a type-based proxy re-encryption scheme, the delegator
categorizes his messages (ciphertexts) into different subsets and is capable of
delegating the decryption right of each subset to a specific delegatee. The ci-
phertexts for the delegator are generated based on the delegator’s public key
and the message type which is used to identify the message subset. This new
primitive has (at least) the following promising properties. One is that the dele-
gator only needs one key pair so that the key management problem is simplified.
The other is that the delegator can choose a particular proxy for a specific dele-
gatee, which might be based on the sensitiveness of the delegation. Compromise
of one proxy key will only affect one subset of messages.

We provide a security model for our concept and provide formal definitions
for semantic security and ciphertext privacy which is a valuable attribute in
privacy-sensitive contexts. If a type-based proxy re-encryption scheme achieves
ciphertext privacy property then all re-encrypted ciphertexts are indistinguish-
able from normal ciphertexts originally generated for the delegatee, therefore,
message senders (the delegators) remain anonymous. We propose two type-based
proxy re-encryption schemes. The first scheme achieves ciphertext privacy and
is IND-PR-~CPA secure based on the XDH and the Co-BDH assumptions in the
random oracle model. The second scheme is IND-PR-CCA secure based on the
BDH and the KE assumptions in the random oracle model, but it does not
achieve ciphertext privacy.

Related Work. Mambo and Okamoto [15] firstly propose the concept of dele-
gation of decryption right in the context of speeding up decryption operations.
Blaze, Bleumer and Strauss [5] introduce the concept of atomic proxy cryp-
tography which is proxy re-encryption. They present an Elgamal [10] based
proxy re-encryption scheme, in which the proxy is also capable of converting
ciphertexts encrypted for Bob into ciphertexts which can be decrypted by Alice.
Jakobsson [I4] and Zhou et al. [20] simultaneously propose quorum-based proto-
cols, which divide the proxy into many components. Dodis and Ivan [I3] propose
generic constructions of proxy re-encryption schemes by using double-encryption.
Ateniese et al. [I] propose an Elgamal based scheme and show its application
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in securing file systems. In addition, Ateniese et al. also point out a number of
desirable properties for proxy re-encryption schemes. Note that these papers are
mainly focused on the traditional public-key encryption schemes. Apart from the
generic construction of Dodis and Ivan [I3], there are two identity-based proxy
re-encryption schemes: one is proposed by Green and Ateniese [I1] and the other
is proposed by Matsuo [16]. In both schemes, the delegator and the delegatee
are assumed to be registered at the same domain (or, the same key generation
center).

Organization. The rest of the paper is organized as follows. In Section [2l we pro-
vide some preliminary knowledge. In Section [B] we present the security model for
type-based proxy re-encryption. In Section @] we present the IND-PR-CPA se-
cure type-based proxy re-encryption scheme with ciphertext privacy and prove its
security. In Section [§] we present the IND-PR-CCA secure type-based proxy re-
encryption scheme without ciphertext privacy and prove its security. In
Section [l we conclude the paper.

2 Preliminaries

If = is chosen uniformly at random from the set Y, then we write x € Y. The
symbol L denotes an error message. Our security analysis is done in the random
oracle model [4]. Next, we review the necessary knowledge about pairing and the
related assumptions, and then review the Public Key Encryption (PKE).

2.1 Review of Pairing

More detailed information can be found in [6/12]. Generally, a pairing (or, bilinear
map) satisfies the following properties:

1. G1, Gg, and Gp are three multiplicative groups of prime order p;
2. g1 is a generator of Gy and g5 is a generator of Go;
3. € : Gy xGy — Gr is an efficiently-computable bilinear map with the following

properties:
— Bilinear: for all a,b € Z,, we have é(g¢, ¢5) = é(g1, 92)?.
— Non-degenerate: é(g1,g2) # 1.

The Co-Bilinear Diffie-Hellman (Co-BDH) problem is as follows: given g1, g7, g°
€ Gy,92,95 € Gy as input, output é(g1,g2)*° € Gr. An algorithm A has ad-
vantage € in solving Co-BDH in G if

Pr[A(g1, g2, 9%, 93, 95) = (g1, 92)""] >,

where the probability is over the random choice of a,b, c € Z,,, and the random
bits of A.

Definition 1. We say that the Co-BDH assumption holds if any polynomial-
time adversary has only a negligible advantage € in solving the Co-BDH problem.
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Note that the Co-BDH assumption is closely related to the Asymmetric Bilinear
Diffie-Hellman (ABDH) assumption defined in [7].

The eXternal Diffie-Hellman (XDH) assumption is also widely used in the
literature (e.g. [8]). We say that an algorithm .4 has advantage € in solving the
XDH problem if

| Pr[A(g2, 95,95, 95°) = 0] — Pr[A(g2, 95, 93, 95) = 0]| > €,

where the probability is over the random choice of a,b,c € Z,,, and the random
bits of A.

Definition 2. We say that the XDH assumption holds if any polynomial-time
adversary has only a negligible advantage € in solving the XDH problem.

Instead of the above general setting, the simplified setting is also widely used
(e.g. [6]). Here, a pairing (or, bilinear map) satisfies the following properties:

1. G and G are two multiplicative groups of prime order p;

2. g is a generator of G;

3. ¢: G xG — Gr is an efficiently-computable bilinear map with the following
properties:

— Bilinear: for all u,v € G and a,b € Z,,, we have é(u?,v") = é(u,v)?.
— Non-degenerate: é(g,g) # 1.

The Bilinear Diffie-Hellman (BDH) problem is as follows: given a tuple g, g%, ¢°,
g¢ € G as input, output é(g,¢)?® € G. An algorithm A has advantage € in
solving BDH if

PrlA(g,9% 9" 9°) = e(g,9)"] = e,
where the probability is over the random choice of a,b,c € Z,,, and the random
bits of A.

Definition 3. We say that the BDH assumption holds if no polynomial-time
algorithm has only a negligible advantage € in solving the BDH problem.

Besides these computational/decisional assumptions, the Knowledge of Expo-
nent (KE) assumption is also used in a number of papers (e.g. [3[9]). The KE
assumption is defined as follows.

Definition 4. For any adversary A, which takes a KE challenge (g, g%) as input
and returns (C,Y) where Y = C%, there exists an extractor A, which takes the
same input as A returns ¢ such that g¢ = C.

2.2 Review of Public Key Encryption

A Public Key Encryption (PKE) scheme [I7] involves a Trusted Third Party
(TTP) and users, and consists of four algorithms (Setup, KeyGen, Encrypt,
Decrypt) which are defined as follows. As a standard practice, the security of
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a PKE scheme is evaluated by an attack game played between a challenger and
an adversary, where the challenger simulates the protocol execution and answers
the oracle queries from the adversary. Corresponding to the PKE algorithms, we
also introduce the oracles for the adversary.

— Setup(k) : Run by the TTP, this algorithm takes a security parameter k as
input and generates the public parameter params, which is an implicit input
for other algorithms and we omit it in the description for simplicity.

— KeyGen(k) : Run by a user, this algorithm generates a key pair (pk, sk). An
KeyGen oracle can be queried with a public key pk; the challenger returns
the corresponding private key sk.

— Encrypt(m, pk) : Run by the message sender, this algorithm takes a message
m and a public key pk as input, and outputs a ciphertext ¢ encrypted under
the public key pk.

— Decrypt(c, sk) : Run by the message receiver, this algorithm takes a cipher-
text ¢ and the private key sk as input, and outputs the message m. A Decrypt
oracle can be queried with a pair (c¢,pk) as input; the challenger returns
Decrypt(c, sk).

We extend the concept of PKE to type-based PKE which enables a message
sender to explicitly include some type information in the encryption process.
A type-based PKE consists of four algorithms (Setup, KeyGen, Encrypt, Decrypt),
where Setup and KeyGen are defined as above, and

— Encrypt(m, t, pk) : Run by the message sender, this algorithm takes a message
m, a type string ¢, and a public key pk as input, and outputs a ciphertext
c encrypted under the public key pk. Note that both ¢ and ¢ should be sent
to the message receiver.

— Decrypt(c, t, sk) : Run by the message receiver, this algorithm takes a cipher-
text ¢, a message type t, and the private key sk as input, and outputs the
message m. A Decrypt oracle can be queried with a pair (c,t,pk) as input;
the challenger returns Decrypt(c, t, sk).

In the above descriptions, the type information ¢ can also be included as a part
of the ciphertext ¢, but we have explicitly used type information ¢ as a label of
the ciphertext c¢. This is only a description preference.

3 The Concept of Type-Based Proxy Re-encryption

In a type-based proxy re-encryption scheme, the delegator possesses a key pair
(pk, sk) with a type-based PKE scheme (Setup,, KeyGen,, Encrypt,, Decrypt; ),
as defined in Section We assume that the delegatees use a PKE scheme
(Setup,, KeyGen,, Encrypt,, Decrypt,).

Suppose the delegator wants to delegate his decryption right for messages with
type t to a delegatee with key pair (pk’, sk’), he runs the Pextract algorithm to
generate the proxy key.
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— Pextract(pk, pk’, t, sk) : This algorithm takes the delegator’s public key pk,
the delegatee’s public key pk’, a message type t, the delegator’s private key
sk as input and outputs the delegation key Tkpkﬁpk" A Pextract oracle can

be queried with a tuple (pk, pk’, t) as input; the challenger returns the proxy
key rkpk_tmk,.

Note that all proxy keys, Tkpkﬁpk' for any t and pk’, are generated based on the

delegator’s single key pair. To delegate his right, the delegator assigns Tkpkﬁpk/
to an appropriate proxy, which will preform the re-encryption for the delegator’s

ciphertexts.

— Preenc(c, t, Tkpkﬁpk/) : Run by the proxy, this algorithm takes a ciphertext

¢ (for the delegator), a message type t, and the proxy key Tkpkkaf as in-
put, and outputs a new ciphertext ¢ (for the delegatee with (pk’,sk’)). A
Preenc oracle can be queried with (¢, t, pk, pk’) as input; the challenger re-

turns Preenc(c, t, rkpk ).

In contrast to the assumption of multi-level delegation (e.g. in [11]), we assume
that there is only one level delegation, namely the delegatees will not further
delegate their decryption rights to other users.

i)pk:'

3.1 Threat Model for Type-Based Proxy Re-encryption

In practice, there might be multiple different parties acting as proxies. For ex-
ample, Alice may choose Proxy 1 to delegate her decryption right to Bob and
choose a proxy 2 to delegate his decryption right to Charlie, where these two
proxies have no relationship. Every involved proxy is assumed to be semi-honest
in the following sense: it will honestly convert the delegator’s ciphertexts using
the proxy key; however, it might act maliciously to obtain some information
about the plaintexts of the delegator and the delegatee.

We identify the following security requirements with respect to the semantic
security for plaintexts.

1. Firstly, the proxy should not obtain any information about the plaintexts of
either the delegator or the delegatee.

2. Secondly, the delegatee should be able to decrypt all the appropriate type
of plaintexts of the delegator after the re-encryption by the proxy. However,
the delegatee alone should not obtain any information about the plaintexts
before the re-encrypted by the proxy. This is essential when we want the
proxy to be a policy enforcer.

In our formal definitions, these requirements lead to the IND-PR-CCA /IND-
PR-CPA security of type-based proxy encryption schemes for the delegator.
With a public key encryption scheme, if Alice encrypts a message to Bob
using his public key, then Alice can stay anonymous. However, with a proxy
re-encryption scheme, this kind of anonymity might not be trivially achieved.
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Fig. 1. IND-PR-CCA Security

For example, in the schemes in [I1], Bob can tell whether messages are from the
same user or not. In many potential applications of proxy re-encryption, this
might become a privacy concern if the delegator does not want the delegatee to
know whether a certain message is from him or not. Therefore, a re-encrypted
ciphertext should be indistinguishable from a normal ciphertext generated under
the delegatee’s public key. This requirement leads to the definition of ciphertext
privacy.

3.2 Formal Security Definitions

Before the formal definitions, we first introduce the idea behind our IND-PR-
CCA definition (the idea of IND-PR-CPA security follows immediately). The
definition covers two types of adaptive adversaries: a malicious delegatee and
a malicious proxy. In the case of a malicious delegatee with key pair (pk’, sk’),
the adversary is allowed to know all proxy keys for message types t # t*, either
the private key sk’ or the proxy key rkpkgpku for any other delegatee with

(pk”, sk’), but not rk L In the case of a malicious proxy with rk "
DPR—Dp PR—Pp.
the adversary is allowed to know all proxy keys for message types t # t*, either

the private key sk” or the proxy key rk - for any other delegatee with
PR—Dp

(pk”, sk’), but not sk’. In addition, the adversary is capable of issuing decryption
queries (see our remarks below). We believe the adversary has been granted the
most privileges possible.

IND-PR-CCA Security. We first define the semantic security against a chosen
ciphertext attack for the delegator.

Definition 5. A type-based proxy re-encryption scheme is said to be IND-PR-
CCA secure for the delegator if any polynomial time adversary has only a negli-
gible advantage in the IND-PR-CCA game, where the adversary’s advantage is
defined to be | Pr[b’ = b] — 1|.

Analogous to the IND-CCA definition [2], as depicted in Figure[l] the IND-PR-
CCA game is as follows.

1. Game setup: The challenger takes a security parameter k as input, runs
Setup; to generate the public system parameter params; and runs Setup, to
generate the public system parameter paramss. The challenger runs KeyGen;
to generate a key pair (pk, sk).
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2. Phase 1: The adversary takes params;, paramss, and pk as input, and has
access to the following types of oracles: KeyGen,, Pextract, Preenc, Decrypt,,
and Decrypt,. Once the adversary decides that Phase 1 is over, it outputs two
equal length plaintexts mg, m1, and a message type t*. At the end of Phase
1, the following constraint should be satisfied: For any pk’, if (pk, pk’, t*) has
been queried to the Pextract oracle, then pk’ should not have been queried
to the KeyGen, oracle.

3. Challenge: The challenger picks a random bit b € {0,1} and returns ¢, =
Encrypt, (my, t*, pk) as the challenge to the adversary.

4. Phase 2: The adversary is allowed to continue querying the same types of
oracles as in Phase 1. At the end of Phase 2, we have the following constraints.
(a) (cp,t*,pk) has not been queried to the Decrypt; oracle.

(b) For any pk’, if (pk,pk’,t*) has been queried to the Pextract oracle, then
pk’ should not have been queried to the KeyGen, oracle.

(c) If pk’ has been queried to the KeyGen, oracle, (cp, t*, pk, pk’) should not
have been queried to the Preenc oracle.

(d) If (pk,pk’,t*) has been queried to the Pextract oracle, then (¢}, pk’)
should not have been queried to the Decrypt, oracle where ¢} is a valid
output of Preenc(cy, t*, pk, pk’).

5. Guess (game ending): The adversary outputs a guess b’ € {0, 1}.

We remark on the constraints (c¢) and (d) in the above game. In the case of type-
based proxy re-encryption, if the adversary obtains sk’, then a Preenc query
with the input (cp,t*, pk,pk’) is equivalent to a Decrypt; query with the in-
put (cp,t*, pk). If the adversary obtains rkpkgpk/, then a Decrypt, query with
the input (¢}, pk’), where ¢ is a valid output of a Preenc query with the in-
put (cp, t*, pk,pk’), is equivalent to a Decrypt; query with the input (cp,t*, pk).
These constraints are necessary to prevent the adversary from winning the game
trivially.

IND-PR-CPA Security. We define the semantic security against a chosen plain-
text attack for the delegator. Analogous to the IND-CPA definitions for tra-
ditional PKE schemes [2], we can just remove the decryption privileges of the
adversary to define the IND-PR-CPA game, i.e. the oracle accesses to Preenc,
Decrypt;, and Decrypt, are removed. However, we need to provide the adversary
a Preenc! oracle to cover the case that a malicious delegatee with (pk’, sk’) can
always decrypt the re-encrypted ciphertexts for him.

— PreencT(m7t,pk7pk’): the challenger returns Preenc(Encrypt,(m,t,pk),

t, rkpk‘ka').

Note that the re-encrypted ciphertext might leak some information about the
delegator’s private key and hence help the adversary to obtain some information
of the delegator’s ciphertexts. This has been ignored in [IT].

The IND-PR-CPA game is depicted in Figure 2] and a detailed description
can be obtained by forbidding the Preenc, Decrypt,, and Decrypt, oracle access
and providing Preenc’ oracle access in the IND-PR-CCA game.
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Fig. 2. IND-PR-CPA Security

Definition 6. A type-based proxy re-encryption scheme is said to be IND-PR-
CPA secure for the delegator if any polynomial time adversary has only a neg-
ligible advantage in the IND-PR-CPA game (depicted in Figure [3), where the
adversary’s advantage is defined to be | Pr[t) = b] — J|.

Ciphertext privacy. The ciphertext privacy attribute means that, for any del-
egatee, a re-encrypted ciphertext is indistinguishable from a normal ciphertext
generated under the delegatee’s public key. The attack game for ciphertext pri-
vacy is as follows.

1. Game setup: The challenger takes a security parameter k as input, runs
Setup; to generate the public system parameter params; and runs Setup, to
generate the public system parameter paramss. The challenger runs KeyGen;
to generate a key pair (pk, sk).

2. Phase 1: The adversary takes params;, paramss, and pk as input, and has
access to the following types of oracles: KeyGen, and Pextract. Once the
adversary decides that Phase 1 is over, it outputs a message m, a message
type t, and pk’.

3. Challenge: The challenger picks a random bit b € {0,1} and returns a chal-
lenge ¢ as follows.

— If b =0, then ¢, = Encrypt,(m, pk’).
— Ifb=1, then ¢, = Preenc(Encryptl(m,ka),tmkpk ).

4. Phase 2: The adversary has access to the same types of oracles as in
Phase 1.

5. Guess (game ending): The adversary outputs a guess b’ € {0, 1}.

—t>pk’

Definition 7. A type-based proxy re-encryption scheme achieves ciphertext pri-
vacy if any polynomial time adversary has only a negligible advantage in the
above game, where the adversary’s advantage is defined to be | Pr[t/ = b] — é\

4 CPA-Secure Scheme with Ciphertext Privacy

In this section we propose a new type-based proxy re-encryption scheme which
achieves ciphertext privacy. The scheme is IND-PR-CPA secure based on the
Co-BDH and the XDH assumptions in the random oracle model. We note that
the ciphertext privacy is achieved through the re-randomization by the proxy.
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4.1 Description of the Scheme

The Delegator’s Type-Based PRE Scheme. The delegator uses the following type-
based PKE scheme (Setup,, KeyGen,, Encrypt,, Decrypt; ).

1. Setup, (k) : This algorithm generates three multiplicative cyclic groups Gy,
G2, and G of prime order p, a random generator g; of G1, a random gen-
erator go of Go, a bilinear map é : G; X Go — G, and two hash functions

Hy:{0,1}* — Gy, Hy:{0,1}* — {0,1}*,

where ¢ is a polynomial in k and {0,1}* is the plaintext space. The public
parameter is denoted as params, = (G1,Ga,Gp,p, g1, g2,H1,H2,é,£), and
we further assume the type information is ¢ € {0,1}*.

2. KeyGen, (k) : This algorithm outputs a key pair (pk,sk) where u €r Z,,
pk = g}, and sk = u.

3. Encrypt,(m,t,pk) : This algorithm outputs a ciphertext ¢ = (¢1,c2,c3),
where

rER Zp, c1 = 9;7 h ER GT7 Co=m®® HQ(h)

C3 = h . é(pk, Hl(OHt))T
= h - &(g1, Hi (0[])""

4. Decrypt, (¢, t, sk) : This algorithm recovers m as follows:
C3

(er, Ho (0]]1))*)

sk

m’ = ca @ Ha(

)

The delegatee’s PRE scheme. The delegatees use the following PKE scheme
(Setup,, KeyGen,, Encrypt,, Decrypt,).

1. Setupy(k) : Set paramss = paramsy = (G1, Ge, Gr, p, 91, 92, H1,Ha, &, £).

2. KeyGen, (k) : This algorithm outputs a key pair (pk, sk), where v €r Z,,
pk = g3, and sk = v.

3. Encrypty(m,pk) : This algorithm outputs a ciphertext ¢ = (co, 1, c2,c3),
where

2,y €Er Ly, co =97, c1=095", weERrGr, ca =mdH(w),

cs =w-é(g7,95)
=w-eé(g1,92)""

4. Decrypty(c, sk) : This algorithm recovers m as follows:
cs

é(Co, Cl)lﬁl )

w - é(gla 92)1'31
é(gt,95)"

m/:CQEDHQ(

=m @ Ha(w) & Ha(

~—

=m
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The delegation algorithms. Suppose the delegator has a key pair (pk, sk), where
pk = g% and sk = u. Suppose a delegatee has a key pair (pk’, sk’), where pk’ = g3
and sk’ = v. The algorithms Pextract and Preenc are defined as follows.

— Pextract(pk, pk’, t, sk): The proxy key is rk N where

: —sk
S E€R Ziﬂv Tkpkka’ = (gg s’gg : Hl(oHt) ) )
— Preenc(c, t, Tkpk:i»pk:/): Given a ciphertext ¢ = (¢1, ¢, ¢3), where
c1 =91, c2=m®Ha(h), cg="nh-eé(g1,Hi(0[[t))"",
this algorithm computes a new ciphertext ¢’ = (cf, ¢}, ¢4, ¢4), where

/ ’ v-(s+z) s
2 €R L, co=c1, €] = gy , Cy = Ca,

cs - e(ch, g8+ Hy(0[]t) %)

h-é(gy, Hi(0]]6)") - é(gf, g5 - Hi(0]t) ™)
h ( g1, 92)r 9+z)

/
C3

The re-encrypted ciphertext is also a valid ciphertext for the delegatee so that
the delegatee can obtain the plaintext m by running Decrypt,.

4.2 Security Analysis

The proposed scheme is proven to be IND-PR-CPA secure from Lemma, [I] and
achieve ciphertext privacy from Lemma [2I The proofs appear in the full
paper [18].

Lemma 1. The proposed type-based proxy re-encryption scheme is IND-PR-
CPA secure based on the Co-BDH and the XDH assumptions in the random
oracle model.

Lemma 2. The proposed type-based proxy re-encryption scheme achieves ci-

phertext privacy unconditionally.

5 CCA-Secure Scheme without Ciphertext Privacy

In this section we propose a new type-based proxy re-encryption scheme which is
IND-PR-CCA secure based on the BDH and the KE assumptions in the random
oracle model. However, the scheme does not achieve ciphertext privacy.
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5.1 Description of the Scheme

The delegator’s type-based PKFE scheme. The delegator uses the following type-
based PKE scheme (Setup,, KeyGen,, Encrypt,, Decrypt, ).

1.

Setup, (k) : This algorithm generates two cyclic groups G and Gp of prime
order p, a generator g of G, a bilinear map é : G x G — G, and three hash
functions

Hy:{0,1}* = G, Hy:{0,1}* — Z,, Hs:{0,1}* — {0,1}",
where ¢ is a polynomial of k and {0,1}* is the plaintext space. The public

parameter is denoted as params; = (G,Gr,p,g,Hi,Ha,Hs, é,¢), and we
further assume the type information is t € {0,1}*.

. KeyGen, (k) : This algorithm outputs a key pair (pk,sk) where u €r Z,,

pk = g“, and sk = u.

. Encrypt, (m, t, pk) : This algorithm outputs the ciphertext ¢ = (c1, ¢2, 3, 1),

where
heGr, e =g™mIM, ey = h-é(pk, Hy(0][#) MM,

c3=mo H3(h), Cc4 = H1(1HC1HCQHC;},)Hz(mHh).

. Decrypt, (¢, t, sk) : This algorithm recovers the plaintext as follows:

(a) Verify é(cy, Hi(1][er||eallcs)) = é(g, ca).
(b) Compute h = é(Hl(Oﬁi),cl)Sk and m = c3 ® Hs(h).

(c) Verify ¢; = gH2(mlih),

(d) Return m.

During decryption, if any of the verifications fails, the algorithm returns an
error symbol L.

The delegatee’s PKE scheme. Suppose (Setup,KeyGen, Encrypt, Decrypt) is a
PKE scheme which has the plaintext space Z,. The delegatees use a PKE scheme
(Setup,, KeyGen,, Encrypt,, Decrypt,).

1.

2.
3.

Setupy (k) : Output paramss = (params,G,Gr,p,g,H1,He,Hs, é,¢) where
params is the public parameter generated by Setup(k).

KeyGen, (k) : Output a key pair (pk, sk) which is the output of KeyGen(k).

Encrypt,(m, pk) : This algorithm outputs the ciphertext ¢ = (c¢_1, o, ¢1, o,
cs), where

w € Gr, ¢,y €r Ly, c—1=Encrypt(z, pk), co=Encrypt(y, pk), e = g™,

ca = w- &(gM ) Hy (2|l |eoa|[pk) - Hi(2llyllcollpk)), e =m & Hy(w).

. Decrypty(c, sk) : This algorithm recovers the plaintext as follows:

_ co
(a) Compute w= &(c1,H (2]|Decrypt(c_1,sk)||c_1||pk)-H1 (2] |Decrypt(co, sk)||co| [pk

m = c3 @ Hz(w).
(b) Verify ¢; = gH=tmllw),
(¢) Return m.

) and

During decryption, if any of the verifications fails, the algorithm returns an
error symbol L.
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The delegation algorithms. Suppose the delegator has a key pair (pk, sk). Sup-
pose a delegatee has the key pair (pk’, sk’). The algorithms Pextract and Preenc
are defined as follows.

— Pextract(pk, pk’, t, sk): The proxy key is rkpk where

i»pk’7
s1 €r Zp, s2 = Encrypt(sy, pk’),
o = (52 o @l sallpk) - Hi (0]10)),

— Preenc(c, t, rkpkiq)k’): Given a ciphertext ¢ = (¢1, ¢, ¢3, ¢4), where

1 = gHQ(mllh)a C2 = h - é(pka Hl(OHt))H2(m||h)7

cs =m @ Hs(h), ¢4 = Hi(1]|cr|]eal|es) 20,

this algorithm first verifies é(c1, Hi(1||c1]|ez]lcs)) = é(g,ca). If the verifica-
tion passes, it computes a new ciphertext ¢’ = (¢4, ¢, ¢}, ¢5, ¢4), where

/ ! / / /
r €r Ly, c_y = Encrypt(r,pk’), ¢y =s2, ¢} =c1, ¢ =cs,

ch = co - é(ch, Hi(2|r][cy |[pk") - Hi(2[|s1]]s2][pk) - H1 (0] [t) ")
= h - &(pk, Hy (0][£))2 (1) g (gH=0mlI) Hy (2] |||, [|pk")
Hi(2[]s1]]s2][pk’) - H1(0[]t) )
=R (g™ M Hy@2(|r|lc_[Ipk') - Hi(2]]s1]]s2][pk)).

Otherwise, it return an error symbol L.

It is clear that the re-encrypted ciphertext is also a valid ciphertext for the
delegatee so that the delegatee can obtain the plaintext m by running Decrypt,.

5.2 Security Analysis

The proposed scheme is proven to be IND-PR-CCA secure from Lemma[3l The
proof appears in the full paper [I§].

Lemma 3. The proposed type-based proxy re-encryption scheme is IND-PR-
CCA secure based on the BDH assumption and the KE assumptions in the ran-
dom oracle model, given that (Setup, KeyGen, Encrypt, Decrypt) is deterministic
and one-way.

6 Conclusion

In this paper we have introduced the concept of type-based proxy re-encryption
to address the inefficiency issues of traditional proxy re-encryption schemes in
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practical applications. We have also proposed two schemes which are IND-PR-
CPA secure and IND-PR-CCA secure respectively. The IND-PR-CPA secure
scheme also achieves ciphertext privacy (which means that a re-encrypted ci-
phertext is indistinguishable from a normal ciphertext for the delegatee), but
the IND-PR-CCA secure scheme does not achieve this attribute. Designing an
IND-PR-CCA scheme with ciphertext privacy is left as an open problem. The
security model proposed in this paper is particularly designed for traditional
PKE schemes, hence, it is interesting to extend it to the ID-based setting.
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Abstract. Undeniable signatures were proposed to limit the verification
property of ordinary digital signatures. In fact, the verification of such
signatures cannot be attained without the help of the signer, via the
confirmation/denial protocols. Later, the concept was refined to give the
possibility of converting the issued undeniable signatures into ordinary
ones by publishing a universal receipt that turns them publicly verifiable.

In this paper, we present the first generic construction for univer-
sally convertible undeniable signatures from certain weakly secure cryp-
tosystems and any secure digital signature scheme. Next, we give two
specific approaches for building universally convertible undeniable sig-
natures from a large class of pairing-based signatures. These methods
find a nice and practical instantiation with known encryption and sig-
nature schemes. For instance, we achieve the most efficient undeniable
signatures with regard to the signature length and cost, the underlying
assumption and the security model. We believe these constructions could
be an interesting starting point to develop more efficient schemes or give
better security analyses of the existing ones.

Keywords: Undeniable signatures, Pairing-based signatures, Generic
construction.

1 Introduction

Undeniable signatures were originally introduced in 1990 by Chaum and van
Antwerpen [§] to limit the self-authenticating property of digital signatures. In
fact, the verification algorithm in these signatures is replaced by a confirmation
(denial) protocol between the verifier and the signer, in which the verifier learns
the validity (invalidity) of the issued signature without being able to transfer
his conviction to a third person. This cryptographic primitive proved valuable
in many applications where privacy is a big concern, e.g., licensing software.

In 1991, the notion of undeniable signature was boosted by Boyar et al. [3] to
allow the conversion of a selected undeniable signature into an ordinary one by
releasing a piece of information at a later time. The model supported also the
universal conversion achieved by publishing a universal receipt (by the signer)
that transforms all undeniable signatures into publicly verifiable ones.

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 145 2008.
© Springer-Verlag Berlin Heidelberg 2008
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1.1 Related Work

Since the introduction of undeniable signatures, a series of proposals sprang up,
covering a variety of different aspects. Pairing-based signatures have received
a lot of attention in these settings. Actually, most such signatures include in
the verification equation a pairing computation between a part of the signature
and some other parameters. Therefore, if we implement the same signature in a
non bilinear group, namely a group where the Decisional Diffie-Hellman prob-
lem (DDH) is intractable, the resulting signature cannot be publicly verifiable.
Hence, the signer must perform a proof of equality /inequality of two discrete log-
arithms with the verifier. Such a duality between pairing-based signatures and
undeniable signatures has been illustrated in the literature by some proposals,
e.g., the BLS signatures [2] whose undeniable variant are the early Chaum and
van Antwerpen [8] signatures or Boneh and Boyen’s signatures [I] which resulted
in Laguillaumie and Vergnaud’s undeniable signatures [I2]. All these signatures
inherit the security properties of their underlying digital signatures and have
their invisibility based on a variant of the DDH problem.

Unfortunately, this approach does not give the possibility of converting the
resulting signatures. A tantalizing challenge is to propose a general approach
that constructs undeniable signatures from (a large category of) pairing-based
signatures with the possibility of converting them to ordinary ones.

1.2 Owur Contributions

We propose the first generic construction of universally convertible undeniable
signatures from secure digital signatures and some weakly secure cryptosystems.
Our design uses the “encryption of a signature” method @ and relaxes the security
requirement on the underlying cryptosystem, without compromising the overall
security. As a consequence, we allow malleable cryptosystems in our design which
impacts positively the efficiency of the confirmation/denial protocols.

Next, we give an efficient generic construction of universally convertible un-
deniable signatures. In fact, following the same principle, we shrink the set of
signatures, upon which we build the undeniable signatures, down to a certain
class of pairing-based signatures and we use an appropriate Key Encapsulation
Mechanism. This construction finds a very efficient instantiation and results in
the most efficient universally convertible undeniable signature scheme without
random oracles and whose security rests on standard assumptions.

Finally, we enlarge the set of pairing-based signatures to include most propos-
als that appeared in the literature so far. In this way, the resulting undeniable
signatures inherit the same virtues of the underlying digital signatures and ac-
quire other interesting properties concerning their invisibility.

1 See Section Bl for definitions of pairings, bilinear groups, etc...

2 This method has been successfully used in a number of primitives such as designated
confirmer signatures [5]. It consists in generating a signature on the message to be
signed, then encrypting it. The validity or invalidity of the resulting signature are
checked via concurrent proofs of knowledge.
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2 Preliminaries

2.1 Bilinear Maps

Definition 1. Let (G,+) and (H, x) B be groups of prime order d. Let P be a
generator of G. G is called a bilinear group if there exists a map e : Gx G — H,
with the following properties:

1. bilinearity: for all (P,Q) € G? and a,b € Zq, e(aP,bQ) = e(P, Q)%,

2. efficient computability for any input pair, and

3. non-degeneracy: e(P, P) # 1y.

2.2 Digital Signatures
A signature scheme X' comprises three algorithms, keygen, sign, and verify:

— keygen is a probabilistic key generation algorithm which returns pairs of
private and public keys (sk, pk) depending on the security parameter k,

— sign is a signing algorithm which takes on input a private key sk and a
plaintext m and returns a signature o, and

— verify is a deterministic algorithm which takes on input a public key pk, a
signature o and outputs 1 if the signature is valid and 0 otherwise.

Definition 2. A signature scheme is said to be (t,€,qs)-EUF-CMA secure if
no adversary A, operating in time t and issuing at most qs queries, wins the
following game with probability greater than e, where the probability is taken
over all the random choices:

Setup. A is given the public parameters of the given signature scheme.
Queries. A queries the challenger for signatures on at most qs messages.
Output. A oulputls a pair (m,o) and wins the game if m has not been queried
before and verify, (m,o) = 1.

2.3 Public-Key Encryption Schemes
An asymmetric encryption scheme comprises the following algorithms:

— keygen is a probabilistic key generation algorithm which returns pairs of
private and public keys (sk, pk) depending on the security parameter k,

— encrypt is a probabilistic encryption algorithm which takes on input a public
key pk and a plaintext m, and returns a ciphertext ¢, and

— decrypt is a deterministic decryption algorithm which takes on input a secret
key sk and a ciphertext ¢, and returns the corresponding plaintext m or L.

A cryptosystem provides indistinguishability (IND) if it is difficult to distinguish
pairs of ciphertexts based on the messages they encrypt. In case the adversary
against the scheme has access to a decryption oracle, the scheme is said to be
indistinguishable under chosen ciphertext attacks (IND-CCA), otherwise it is
indistinguishable under chosen plaintext attacks (IND-CPA). Formal definitions
can be found in [4].

3 In the rest of the document, the group G is denoted additively whereas the group H

is denoted multiplicatively.
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2.4 Key Encapsulation Mechanisms (KEM)
A KEM is a tuple of algorithms K = (keygen, encap, decap) where

— keygen probabilistically generates a key pair (sk, pk),

— encap, or the encapsulation algorithm which, on input a random nonce r and
the public key pk, generates a session key denoted k and its encapsulation
¢, and

— decap, or the decapsulation algorithm. Given the private key sk and the
element ¢, this algorithm computes the decapsulation k of ¢, or returns L if
¢ is invalid.

Definition 3. A KEM is said to be (t,¢)-IND-CPA secure if no adversary A,
operating in time t, wins the following game with probability greater than e:

— Phase 1. A gets the parameters of the KEM from his challenger.

— Challenge. The challenger computes a given encapsulation c*, then picks
uniformly at random a bit b from {0,1}. If b =1, then he sets k* to k1 where
k1 = decap(c*). Otherwise, he sets k* to a uniformly chosen string from the
session keys space. The challenge is (¢*, k*).

— Phase 2. A outputs a bit b/ (representing his guess of k* being the decap-
sulation of ¢*) and wins the game if b = V. We define A’s advantage as
Adv(A) = |Pr[b = V'] — 1|, where the probability is taken over the random
choices of the adversary A and the challenger.

The Hybrid Encryption Paradigm. It consists in combining KEMs with
secure secret key encryption algorithms or Data Encapsulation Mechanisms
(DEMS) to build encryption schemes. In fact, one can fix a session key k using
the KEM, then uses it to encrypt a message using an efficient DEM. Decryp-
tion is achieved by first recovering the key from the encapsulation (part of the
ciphertext) then applying the DEM decryption algorithm. It can be shown that
one can obtain an IND-CPA cryptosystem from an IND-CPA KEM combined
with a DEM indistinguishable under a one time attack (IND-OT). We refer to
[11] for the necessary and sufficient conditions on KEMs and DEMs in order to
obtain a certain level of security for the resulting hybrid encryption scheme.

3 Universally Convertible Undeniable Signatures

(UCUS)

3.1 Definition

Setup. On input the security parameter k, outputs the public parameters.

Key Generation. Generates probabilistically a key pair (sk, pk).

Signature. On input the public parameters, the private key sk and a message
m, outputs an undeniable signature p.

Verification. This is an algorithm run by the signer to check the validity of
an undeniable signature p issued on m, using his private key sk.
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Confirmation/Denial Protocol. These are interactive protocols between a
prover and a verifier. Their common input consists of the public parameters
of the scheme, the signature u and the message m in question. The prover,
that is the signer, uses his private key sk to convince the verifier of the
validity (invalidity) of the signature p on m.

Universal Conversion. Releases a universal receipt, using sk, that makes all
undeniable signatures universally verifiable.

Universal Verification. On input a signature, a message, a receipt and the
public key pk, outputs 1 if the signature is valid and 0 otherwise.

3.2 Security Model

In addition to the completeness, soundness and non-transferability of the proofs
inherent to the confirmation/denial protocols, a convertible undeniable signature
scheme requires two further properties, that are unforgeability and invisibility.

Unforgeability. The natural security requirement that a universally convert-
ible signature scheme should fulfill is the existential unforgeability against a
chosen message attack (EUF-CMA). It is defined through the following game.

— Setup. The adversary A is given the public parameters of the scheme in
addition to the universal receipt.

— Queries. A queries the signing oracle adaptively on at most g5 messages.
Note that there will be no need to query the confirmation/denial oracles
since A4 has the universal receipt at his disposal.

— Output. At the end, A outputs a pair consisting of a message m, that has
not been queried before, and a string p. A wins the game if u is a valid
undeniable signature on m.

We say that a universally convertible undeniable signature scheme is (¢, €, gs)-
EUF-CMA secure if there is no adversary, operating in time ¢, that wins the
above game with probability greater than e.

Invisibility. Invisibility against a chosen message attack (INV-CMA) is defined
through the following game between an attacker A and his challenger R.

— A gets the parameters of the scheme from R.

— Phase 1. A adaptively query the signing and confirmation/denial oracles.

— Challenge. Eventually, A outputs a message m* that has not been queried
before to the signing oracle and requests a challenge signature p*. R picks
a bit b €r {0,1}. If b = 1, then p* is generated as usual using the signing
oracle, otherwise it is chosen uniformly at random from the signatures space.

— Phase 2. A can adaptively query the previous oracles with the exception of
not querying m* to the signing oracle or (m*, u*) to the verification oracles.

— Output. A outputs a bit b’ representing his guess on p* being a valid
signature on m*. He wins the game if b = b'. We define A’s advantage as
Adv(A) = |Pr[b=b] - }|.
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We say that a convertible undeniable signature scheme is (¢, €, ¢, g, )-INV-CMA
secure if no adversary operating in time ¢, issuing ¢, queries to the signing
oracle and ¢, queries to the confirmation/denial oracles wins the above game
with advantage greater than e.

4 A Systematic Approach for UCUS from Some
Cryptosystems and Digital Signatures

4.1 Design Principle

We use the “encryption of a signature” method. Thus, we first generate a digital
signature on the message to be signed, then encrypt the resulting signature
using a suitable cryptosystem obtained from the hybrid encryption paradigm.
Confirmation or denial of the resulting signatures exist by virtue of Goldreich et
al.’s result [10]. In fact, the verification and decryption algorithms in a signature
scheme and a cryptosystem respectively define an NP (co-NP) language for which
there exists a zero knowledge proof system.

This method has been in use for some time ago. For instance, Camenisch
and Michels [5] used it for designated confirmer signatures. One of the main
differences between the two proposals dwells in the security assumption on the
cryptosystem. We actually require only IND-CPA secure KEMs (thus IND-CPA
cryptosystems), as we do not allow individual conversions of the undeniable sig-
natures, versus IND-CCA cryptosystems. The consequences of this are twofold.
First, we require a weak security notion on the cryptosystem without compromis-
ing the overall security. This gives many and simpler choices for the cryptosys-
tem to be used. Second, we allow malleable cryptosystems in our construction,
which impacts positively the confirmation/denial protocols efficiency. In fact,
cryptosystems with homomorphic properties possess efficient decryption proofs
of knowledge, i.e, one can prove efficiently the knowledge of the plaintext corre-
sponding to a given ciphertext. Such schemes are not ruled out from our design.

4.2 Proposed Construction

Let X be a digital signature scheme given by X.keygen which generates a key
pair (private key = X'.sk, public key= X.pk), X.sign and X .verify.

Let furthermore I" be a cryptosystem obtained using the hybrid encryption
paradigm and described by I'keygen (that generates the pair (private key =
I'sk, public key= I'.pk)), I.encrypt and I'.decrypt. Note that the encapsulation
of the key used to encrypt a given string is always contained in the ciphertext.

We assume for simplicity that the space of signatures produced by X' is the
same as the space of messages encrypted by I'.

Let m € {0,1}* be a message, we propose the following scheme:

Setup. Invoke I'.setup and X.setup.

Key Generation. Invoke Y .keygen and I'keygen to generate X'.sk, X.pk I'.sk
and I'.pk. Set the public key to (X.pk, I.pk) and the private key to (X.sk,
I'sk).
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Signature. First compute an encapsulation ¢ together with its decapsulation
k using I'.pk. Then compute a (digital) signature o = X.signy, o (m||c) on
m||c. Finally encrypt the resulting signature under I'.pk (using k). Output
p = Iencryptr (o). Note that c is part of p.

Verification (By the Signer.) To check the validity of an undeniable signa-
ture p (that comprises the encapsulation ¢), issued on a certain message m,
the signer first computes o = I'.decrypt . (1), then calls X.verify on o and
m||c using X.pk. p is valid if and only if the output of the latter item is 1.

Confirmation/Denial Protocol. To confirm (deny) a purported signature
i (containing the encapsulation ¢) on a certain message m, the signer first
computes o = I'decryptp g (1), then invokes the algorithm X.verify on o
and m|lc. According to the result, the signer issues a proof of knowledge of
the decryption of p that passes (does not pass) the verification algorithm
X verify.

Universal Conversion. Release I'.sk.

4.3 Security Analysis and Efficiency Considerations

We first note that the properties of completeness, soundness and non-
transferability of the confirmation/denial protocols are met by our construction
as a direct consequence of the zero-knowledge proofs of knowledge. In the sequel,
we prove that the construction resists existential forgeries and that signatures
are invisible.

Theorem 1. Our generic construction is (t,€,qs)-EUF-CMA secure if the un-
derlying digital signature scheme is (t,€,qs)-EUF-CMA secure.

Proof. Let A be an attacker that (¢, ¢, ¢5)-EUF-CMA breaks the existential un-
forgeability of our construction. We will construct an adversary R that (¢, €, gs)-
EUF-CMA breaks the underlying digital signature scheme:

Key generation. R gets the parameters of the signature scheme in question
from his challenger. Then he chooses an appropriate cryptosystem I" (ob-
tained from the encryption of a signature paradigm) with parameters I.pk,
I'sk, I'encrypt and I'.decrypt. R fixes the above parameters as a setting for
the undeniable signatures A is trying to attack.

Signature queries. For a signature query on a message m, R will first compute
an encapsulation c¢ together with its decapsulation k& (using I'.pk). Then he
will request his challenger for a digital signature o on mlc. Finally, he will
encrypt o under I'.pk (using k) and output the result to A.

Final Output. Once A outputs his forgery u* on m*. R will decrypt the
signature to obtain o*. If p* is valid then by definition ¢* is valid too. R will
output o* as a forgery on the message (m*||c*) where ¢* is the encapsulation
of the key that was used to encrypt o*. In fact the probability that m*||c*
has been queried by R on a query m;||c; (m; # m*) is negligeable since ¢; is
obtained by R from a random process (the encapsulation algorithm).
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Note that there will be no need to simulate the confirmation/denial oracles since
A has the universal receipt I'sk allowing the verification of the signatures. U

Theorem 2. Our proposed construction is (t,€,qs, g, )-INV-CMA secure if it is
(t,€,qs)-EUF-CMA secure and the KEM used in the underlying cryptosystem is
(t + qsqu, €+ (1 — €')% )-IND-CPA secure.

Proof. Let A be an attacker that (¢, €, gs, g,)-INV-CMA breaks our undeniable
signatures, assumed to be (¢, €, ¢;)-EUF-CMA secure. We will construct an al-
gorithm R that (¢ + ¢sqy, € - (1 — €)% )-IND-CPA breaks the underlying KEM:

Phase 1
Key Generation. R gets the parameters of the KEM K from his challenger.

Then he chooses an appropriate IND-OT secure DEM together with a sig-
nature scheme .

Signature Queries. For a signature query on m. R first fixes a session key k
together with its decapsulation ¢ using K.pk. Then he computes a (digital)
signature o on ml|c using X.sk. Finally, he encrypts the produced signa-
ture (using k) and outputs the result to A. R will maintain a list £ of the
queries he got (messages), the corresponding digital signatures and finally
the signatures he issued.

Verification (Confirmation/Denial) Queries. For a signature 1 on m, R
will look up the list L. If a record having as first component the message m
and third component p appears in the list, then R will execute the confir-
mation protocol, otherwise, he will run the denial protocol. This simulation
differs from the real one when the signature p is valid and has not been
obtained from a signature query. Thus, p will correspond to a valid exis-
tential forgery of the undeniable signature scheme in questiorﬂ Hence, the
probability that this scenario does not happen is at least (1 — ¢')? because
the undeniable signature scheme is (¢, €, ¢5)-EUF-CMA secure by assump-
tion. Finally, R can issue such proofs of knowledge, without knowing the
private key of IC, using the rewinding technique because the protocols are
zero knowledge, thus simulatable.

Challenge. Eventually, A outputs a challenging message m*. R will use his
challenge (c*,k*) to compute a digital signature using X.sk on m*|c¢*. Then
he encrypts the resulting signature using k* and outputs the result u* to A.
Therefore p* is either a valid signature on m* or a random element from the
(undeniable) signatures space (k* is random according to [Z4] and the DEM is
IND-OT), which conforms to the game rules defined in

Phase 2 A will continue issuing queries to the signing, confirmation and denial
oracles and R can answer as previously.

4 This is the reason for generating a signature on the message in question concatenated
with the encapsulation. In fact, valid signatures can only be obtained from the
signing oracle (under the assumption that the scheme is EUF-CMA secure) even if
the underlying cryptosystem offers the possibility of generating a different ciphertext
for the same message (e.g., ElGamal [9]).
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Final Output
When A outputs his answer b € {0,1}, R will forward this answer to his own
challenger. Therefore R will (¢ + ¢sqy, € - (1 — ¢')%)-IND-CPA break I 0

5 Construction of UCUS from Certain Pairing-Based
Signatures Using KEMs

In the generic construction proposed in @l the confirmation/denial protocols
involve proofs of knowledge of the decryption of the undeniable signature and
that this decryption is a digital signature on some known data. Therefore, one
needs to consider a set of cryptosystems and signatures for which such proofs
could be performed efficiently. One solution to achieve this is to consider the
following class of signatures (KEMs).

5.1 Defining the Class C; of Signatures and K of KEMs
Definition 4. C; is the set of pairing-based signatures such that:

1. The considered pairing e is from G x G to H.
2. The signature o on a message m is written as o = (S,7) such that
(a) & = o\S reveals no information about m nor about (sk, pk) the key pair
related to the given signature scheme.
(b) S € G and the verification equation of the signature is of the form:
e(S,P) = f(a,m, PP).
where P is a known generator of the group G (set as a public parameter of
the scheme), f is a public function, m is the message in question and PP
are the known public parameters of the signature scheme

The definition above may seem too restrictive but it already captures two very
important pairing-based signatures, namely BLS [2] (where the message-key-
independent part is the empty string) and Waters’ [I4] signatures.

Definition 5. K is the set of KEMs such that:

1. The KEM is implemented in a bilinear group G where the considered pairing
e is from G x G to a group H.
2. P is a known generator of the group G.
The session keys space K is the same as the group G.
4. Let k € G be an element and ¢ a given encapsulation. On common input
e(k, P) and c:
— If k is the decapsulation of c, then there exists an efficient zero-knowledge
proof C of this assertion, using the private key of the KEM,
— otherwise, there exists an efficient zero-knowledge proof D of k not being
the decapsulation of ¢ (using also the private key of the KEM ).

R
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A KEM in the Class K:

— setup. Consider a bilinear group G, with prime order d, generated by P.

— keygen. Generate two values x1, s € Z; and compute X; = 21 P and X5 =
29 P. Set the private key to sk = (z1, z2) and the public key to pk = (X7, X2).
encap. On input a nonce (a,b) €r Z2 and pk, generate the session key
k = (a+ b)P and its encapsulation ¢ = (aX7,bX5).

— decap. Given sk and ¢ = (aX1,bX3), compute k as k = J;l_laXl + xz_leg.

This KEM is IND-CPA secure assuming the intractability of the Decision Linear
Problem.

Definition 6. Decision Linear Problem (DLP). Given U, V, H, aU, bV,
cH € G, output 1 if a + b = cmod (#G) and 0 otherwise.

The traditional DDH problem (corresponding to b = 0) can be reduced to DLP.
In fact, DLP is believed to be hard even in bilinear groups where DDH is easy.

Fact 1 The KEM described above is in the class K.

Proof. — X is a generator of G.

— The proof C (D) counsists of the proof of equality (inequality) of the discrete
logarithm of X, in base P and of e(bX2, X1) in base e(k, X1)e(aX1, P)~ L.
We refer to [7] ([6]) for the proof of equality (inequality) of two discrete
logarithms. O

5.2 Construction

Following the notations in[E.Ilwe consider an EUF-CMA digital signature scheme
Y € C; and an IND-CPA secure KEM K € K, where the considered groups G
and H, and the generator P are the same for both X' and K. We assume that the
proofs C and D are known to the signer. A universally convertible undeniable
signature, on a given message m, can be obtained by first invoking K to fix a key
k and its encapsulation ¢, then generating a digital signature o = (.S,5) on m||c.
The result is p = (u1, po, pu3) = (¢, S + k,0) [. Confirmation or denial of such a
signature are achieved via the proofs C or D respectively, on the common input
m, p1 and e(uz, P) f(us, m||c, PP)~1. In fact, if k = K.decap(u1) and e(k, P) =
e(uz, P)f(us, m||c, PP)~, then the signer issues C (using the private key of the
KEM). Otherwise, if k = K.decap(u1) and e(k, P) # e(uz, P)f(us, m||c, PP)~1,
he issues the proof D. Finally, the universal conversion is done by releasing .sk.

Unforgeability of such a construction is easily guaranteed by virtue of
Theorem [0l As far as invisibility is concerned, we can base it directly on the
underlying KEM. In fact, since ¢ does not reveal any information about the
signing /verifying key (of the digital signature scheme) nor about the message in
question, an attacker A capable of deciding on the validity of a given undeni-
able signature must definitely use information leaked by the encryption of the
remaining part of the signature, that is (¢, k 4+ .5). Due to page limitation, the
complete proofs will be given in the full version of the paper.

5 The DEM encryption algorithm consists in adding the key to the message, whereas
the decryption is the addition of the key inverse (in G) to the ciphertext.
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Theorem 3. Let A be a (t,¢,qs)-EUF-CMA adversary against the above con-
struction. Then, there exists a (t,€,qs)-EUF-CMA adversary against the under-
lying digital signature scheme. O

Theorem 4. Our proposed construction is (t,€,qs, ¢y )-INV-CMA secure if it is
(t,€,qs)-EUF-CMA secure and the underlying KEM is (t 4+ qsqy,e.(1 — €)% )-
IND-CPA secure. o

Instantiation of our framework with Waters’ signatures [14] and the KEM de-
scribed above results in a very efficient universally convertible undeniable signa-
ture scheme. In fact, the best scheme that was proposed so far [15] achieves the
same security features (standard model and the same underlying standard as-
sumptions), and thought it presents the additional quality of selective conversion,
it has a longer signature and a higher signature generation and verification cost
(approximately a multiplicative parameter k) and a higher key generation and
universal conversion cost (a multiplicative parameter 2/¥), where k is a public
parameter to be optimized and n is the length of the message to be signed.

6 Toward a Generic Construction of UCUS from
Pairing-Based Signatures

In this section, we give the first generic construction of universally convertible
undeniable signatures from a large class of pairing-based signatures, denoted Cs,
and from any IND-CPA cryptosystem whose decryption is efficiently verifiable.

6.1 Generic Construction

Definition 7. Cs is the same set of signatures defined in Definition [J] with the
exception of the verification equation being of the form e(S,E) = f(a,m, PP),
where E € G is not necessarily a fived generator of G.

It is clear that this class of signatures captures a large category of pairing-based
signatures. In fact, almost all (pairing-based) signatures [2/T/I6/14], that have
been proposed so far, involve a pairing computation in the verification equation,
between the key-message-dependent part of the signature and other entities.
Note that the key-message-independent part in [2I16] is the empty string.

Proposed Construction. Let X € Cy be an EUF-CMA signature from C,
and I be an efficient decryption verifiable IND-CPA cryptosystem. Let further
d denote the group order of G and p a suitable integer such that I" is IND-CPA
secure in Z, (the message space of I" is included in Z,). Note that p > d due the
contrast of key sizes between finite-field (or ring) and elliptic-curve cryptography.

We devise a universally convertible undeniable signature scheme as follows.
First, we choose 7 € Z, then encrypt it under I" to result in s =I"encryptp (7).
Then, generate a digital signature (.5, ) on the message to be signed m concate-
nated with s. The signature consists of the triple p = (s,7S = (r mod d)S, 7).
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To confirm (deny) a signature p = (s,75,5), the signer decrypts s then proves
the equality (inequality) of the decryption of s and the discrete logarithm of
e(rS, E) in base f(a,m|s, PP). Finally, the universal conversion is achieved by
releasing I'.sk.

Theorem 5. Let A be a (t,¢,qs)-EUF-CMA adversary against the above con-
struction. Then, there exists a (t,¢,qs)-EUF-CMA adversary against the under-
lying digital signature scheme. 0

Theorem 6. Our proposed construction is (t,€,qs, g, )-INV-CMA secure if it is
(t,€,qs)-EUF-CMA secure and the underlying cryptosystem is (t + qsquv,€.(1 —
€)% )-IND-CPA secure. o

Efficient realizations using this technique could be obtained by combining Wa-
ters’ signatures [I4] with an IND-CPA cryptosystem such as ElGamal [9] or
Paillier [13].

7 Conclusion

In this paper, we proposed a construction for universally convertible undeniable
signatures from secure digital signatures and some weakly secure cryptosystems.
Next, we designed two efficient generic constructions for undeniable signatures
from a large class of pairing-based signatures. These constructions found prac-
tical instantiations with some known signatures and cryptosystems. It might be
good to analyze the security of the existing undeniable signature schemes or
propose efficient ones using this technique. Finally, one is tempted to extend
this approach to other “opaque” signatures such as directed signatures, or com-
bine it with the techniques using commitment schemes in order to get better
constructions.
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Abstract. Entity recognition does not ask whether the message is from
some entity X, just whether a message is from the same entity as a pre-
vious message. This turns turns out to be very useful for low-end devices.
The current paper proposes a new protocol — the “Jane Doe Protocol” —,
and provides a formal proof of its concrete security. The protocol neither
employs asymmetric cryptography, nor a trusted third party, nor any
key pre-distribution. It is suitable for light-weight cryptographic devices
such as sensor network motes and RFID tags.

1 Introduction

Consider the following story: Two strangers meet at a party and make a bet.
They introduce themselves as Jane and John Doe, which may or may not be
their real names. Some days later, however, it turns out that Jane is the winner,
and John receives a message: “John, please transfer the prize to bank account
[--.] Thank you. Jane.”. How does John know that this message actually has
been sent from that person, who had called herself “Jane” at that party? In
other words, how does John recognise Jane — or a message from her?

Below, we will use the names Alice and Bob instead of Jane and John Doe
for sender and receiver. As the protocol goal is about entity recognition, “real”
names are unimportant. Alice and Bob are technical devices communicating in
a hostile environment. Recognising each other would be easy if they could use
unique identities and digital signatures: Initially, Alice would send Bob her public
key. Later, Alice would sign all the messages she sends to Bob, and Bob would
verify these signatures. But digital signatures are computationally expensive,
and may seem an “overkill” to the problem at hand.

In this paper, we present the Jane Doe protocol, a light-weight solution to
entity recognition using only symmetric primitives (namely, message authenti-
cation codes). Even low-end devices, which are too slow for digital signatures
or the like, can run our protocol. The protocol does not depend on any trusted
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third party. Neither does it require a pre-established common secret key. It runs
efficiently enough for real-time applications. In addition, it is interactive and
provides information about the freshness and timeliness of messages.

Our research is motivated by the emergence of extremely low-power and low-
cost devices such as sensor network motes and RFID tags. The continued desire
to make these devices smaller at an attractive price offsets the technological
advancements of increasing computational power. While implementing digital
signatures and public-key techniques on such devices is technologically feasible,
it is a hard burden from an economic viewpoint. Also, such devices are often used
in networks where one can neither assume availability of a trusted third party,
nor availability of pre-deployed secret or authentic information, and with a dy-
namic network topology. Another motivation is the question to what degree one
can imitate the functionality of public-key cryptography and digital signatures
by just using some simple primitives from symmetric cryptography. The Jane
Doe protocol turns out to be as powerful as the common two step protocol for
authenticating messages, consisting of a non-authenticated Diffie-Hellman key
agreement at initialisation time followed by MAC authenticated messages.

Previous Work: The security goal of entity recognition has independently been
proposed by a couple of different authors under different names [2/I8ITGTOS].

An early protocol to actually address entity recognition was the Resurrect-
ing Duckling protocol [I7]. As it requires the exchange of a secret key in the
initialisation phase, it does meet our security requirements. The Guy Fawkes
protocol by [I] is more suitable for entity recognition, but it implicitly assumes
Alice to know when Bob has seen her commitment a;. While this may be the
case in the original use case (Guy Fawkes would publish his commitments in
a newspaper), an explicit confirmation of receipt may be desirable in most ap-
plication contexts. The Remote User Authentication protocol [14] uses a
message authentication code (MAC) and a cut-and-choose approach, which is
much more demanding than our protocol. In [15], messages are authenticated
using MACs, with a symmetric key being exchanged using Diffie-Hellman
key exchange at protocol start. The problem here is that the key exchange
requires public-key operations, which are too onerous for low-end systems. In
the full paper [13], we provide a rough comparison of this approach with our
proposal. The zero-common-knowledge protocol [I8] from SAC 2003 uses
hash chains, like our protocol, but turned out to be flawed [12/13].

2 Scenario Description

Sending messages: Alice is the sender of messages, Bob the receiver. All protocols
start with an initialisation phase, where Alice and Bob for the first time
contact each other and exchange some initial material. Later, messages are sent
from Alice to Bob in distinct time frames, which we denote as epochs. There
can be at most n such epochs. Each such epoch i consists of four basic steps:

1. Alice receives some external data x;, the origin of which lies outside the
scope of the protocol (e.g. a measurement from a sensor).



160 S. Lucks et al.

2. Alice authenticates and sends the message to Bob. Formally, we write Com-
mitMessage(x;,i).

3. Bob sends a confirmation that he received some data, supposedly from Alice.

4. Alice opens the commitment and proves that it was really her who send the
message. We write AcceptMessage(z;, i) if Bob believes the message z; to
be authentic and fresh in epoch i.

Adversary capabilities: The well-known Dolev-Yao model [7] assumes that Eve
is in full control over the connection between Alice and Bob, i.e. she is an active
adversary. In particular, she can

— read all messages sent from Alice or from Bob,

— modify messages, delay them or send them multiple times to Alice, Bob, or
to both of them,

— and send messages generated by herself to Alice or Bob or both.

This is considered as reasonable pessimism: Over-estimating the adversary is not
as bad as under-estimating her capabilities. However, e.g. Gollmann [J] argues
that novel applications may need more specific models. In our case, we make
the special assumption that during the initialisation phase, Eve behaves like a
passive adversary. She can read the messages between Alice and Bob (which
precludes any kind of secret key exchange), but she relays them faithfully. Note
that this is a weakening of the usual assumption that Alice and Bob can use a
protected communication channel for initialisation, i.e. our scenario requires less
external protection than most other proposals.

In typical application scenarios, Eve may even be able to extract secret data
inside the devices by tampering, in addition to controlling the network. Our
protocol does not protect against this kind of threat. If this threat is relevant for
the application at hand, and if it can not be mitigated by using tamper-resistant
hardware, then additional protection measures (like introducing redundancy and
using secure multi-party computation algorithms) have to be introduced.

Adversary goal: Driven by reasonable pessimism as before, we assume that Eve
aims for an existential forgery in a chosen message scenario:

— Eve may have some influence on ;. Thus, for purposes of security analysis,
we allow her to choose messages x; which Alice will authenticate and send,
i.e. CommitMessage(x;,i).

— She succeeds if Bob accepts any message =’ # x; as authentic, i.e. AcceptMes-
sage(x’, ).

At the beginning of the protocol, Alice and Bob choose initial random values
ag resp. bg. From then on, Alice and Bob act as strictly deterministic machines.
When receiving a message, Alice and Bob update their internal state and send
a response, if necessary. Eve is a probabilistic machine with independent con-
nections to Alice and to Bob. In the context of this paper, the actual choice of
a machine model is not important — any reasonable machine model will do.
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We require the initial random values (=keys) ag and by to be chosen indepen-
dently from the keys for other sessions. To this regard, our setting is much
simpler than any communication scenario where the same key material can be
used in more than one session (see e.g. [4)3]).

Limitation: We assume that the number of messages to be authenticated is
known in advance, or a reasonable upper bound is known. During the initiali-
sation phase, both Alice and Bob commit to the endpoint of a hash chain. The
length of this hash chain bounds the number of messages to be authenticated.
This limits of our approach, compared to other solutions employing public-key
cryptography. Those, however, may be less efficient than our scheme, [I3].

Reliability: Since Eve has full control over the connection between Alice and Bob,
denial of service attacks are trivial for Eve. In addition, if the communication
channel itself is unreliable, messages may be lost or faulty messages may be
received even without the active involvement of a malicious adversary. Such
problems can not be solved at cryptographical level, but have to be managed
outside of the protocol. But the following reliability properties can be guaranteed:

Soundness: If the network is reliable and Eve behaves like a passive wire, the
protocol works well: Bob accepts each message z; Alice has committed to.

Recoverability: If Eve suppresses or modifies some messages, or creates some
messages of her own, Bob may refuse to accept a message x; Alice has com-
mitted to. However, once Eve begins again to honestly transmit all messages,
like a passive wire, the soundness with respect to new messages is regained.

3 The Jane Doe Protocol

In this section, we describe the Jane Doe protocol to solve the entity recognition
problem without using public-key cryptography. We write s for the size of a
symmetric key. A second security parameter is the tag size ¢ < s for message
authentication. (Typically: s > 80 and ¢ > 32.) We use two functions, a MAC
m:{0,1}® x {0,1}* — {0,1}° and a one-way function h : {0,1}* — {0,1}". (In
Section [ we will describe how to derive both m and h from a single MAC.) We
write  €g {0,1}® to indicate a random s-bit string x, uniformly distributed.

Initialisation phase: For initialisation, Alice chooses ag €gr {0,1}° and generates
a hash chain a; := h(ag), . .., an := h(an—1). Similarly, Bob chooses by €g {0,1}*
and generates by := h(bog), ..., by := h(b,—1). When running the protocol, both
Alice and Bob learn some values b; resp. a; from the other’s hash chain. If
Alice accepts b; as authentic, we write AcceptKey(b;). Similarly for Bob and
AcceptKey(a;). The initialisation phase, where Eve can read the messages but
relays them faithfully, consists of two messages:

1. Alice — Bob: ay,. (Thus: AcceptKey(ay,).)
2. Bob — Alice: by,. (Thus: AcceptKey(by,).)
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Message authentication: We split the protocol up into n epochs, plus the ini-
tialisation phase. The epochs are denoted by n — 1, ..., 0 (in that order). Each
epoch allows Alice to send one authenticated message@, and Bob to receive and
verify it. The internal state of each Alice and Bob consists of

— an epoch counter 1,

— the most recent value from the other’s hash chain, i.e., b;;1 for Alice, and
a;+1 for Bob (we write AcceptKey(b; 1) and AcceptKey(a;+1)), and

— a one-bit flag, to select between program states A0 and Al for Alice resp.
B0 and B1 for Bob.

Also, both Alice and Bob store the root ag resp. by of their own hash chainE
This value does not change during the execution of the protocol. Note that after
the initial phase, and before the first epoch n — 1, Alice’s state is i = n — 1,
AcceptKey(by), and A0, and Bob’s is i« = n — 1, AcceptKey(a,), and B0O. One
epoch i can be described as follows:

A0 (Alice’s initial program state)
Wait for x; (from the outside), then CommitMessage(z;,i):
1. compute d; = m(a;, x;) (using a; as the key to authenticate x;);
2. send (d;,x;); goto Al.
A1 Wait for a message b’ (supposedly from Bob), then
1. if h(b') = biy1
then b; :=V'; AcceptKey(b;); send a;; set i := i — 1; goto A0
else goto Al.
B0 (Bob’s initial program state)
Wait for a message (d’,x’) (supposedly from Alice), then
1. send b; and goto B1.
B1 Wait for a message a’ (supposedly from Alice), then
1. if h(a') = Aj4+1 then
(a) a; :=a'; AcceptKey(a;);
(b) if m(a;, ') =d’
then z; := a’; AcceptMessage(x;,i)
(else do not accept any message in epoch 7);
(c) set i :=14—1; goto BO
else goto B1

Figure [1l gives a simplified view on the protocol.

! Several messages can be sent per epoch. For ease of presentation, we combine them.

2 Alice can either store ap and compute the a; on demand by making ¢ calls to h, or
store all the a; using n units of memory. Her third option is to implement a time-
storage trade-off, requiring only about log, n units of memory and log, v/n calls to
h [6). Similarly for Bob and the b;.
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N Alice Bob
— = CommitMessage (X;, 1)
d;:=m(a;, x;) Xi, di
_— =
bi
if h(b)=b;, =
then AcceptKey (b;) a;
else wait fornew b, ———L = if h(a)=a;,;
thenAcceptKey (a;)

if m(a;, xp) = d;

then AcceptMessage (x;, 1)

else wait for new a;

Fig. 1. Simplified description of one epoch of the protocol

Reliability: The following reliability properties are met:
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Soundness: The protocol is sound: If all messages are faithfully relayed, Alice
commits to the message z; in the beginning of epoch ¢ and Bob accepts x;

at the end of the same epoch.

Recoverability: Repeating old messages cannot harm security — Eve may know
them anyway. We thus allow Alice to re-send a;4+1 and (z;,d;) if she is in
state Al and has been waiting too long for the value b; from Bob. Similarly,
if Bob is in state B1 and has been waiting too long for a;, Bob sends the
value b; again. This allows our protocol to recover. On the other hand, if
Bob receives a faulty (z/,d") # (x;,d;), he will refuse to accept any message
in epoch i. Recovering means that soundness can be restored in epoch ¢ — 1.

4 Security

4.1 Building Blocks and Assumptions

The main cryptographic building block in this paper is a MAC

m*:{0,1}* x {0,1}* — {0,1}*

We fix some constant message const and define the two functions m and h we

actually use in the protocol

h:{0,1}°* — {0,1}°, h(k) = m*(k,const), and

m:{0,1}° x {0,1}* — {0,1}¢, m(k,z) = truncate-to-c-bit(m* (k, x)).

In the case of m, a restriction is x # const. If neccessary, we we can, e.g., define

const as a single zero-bit, and prepend a single one-bit to every message x.

Security against adaptive chosen message attacks has been established as a

standard requirement for MACs:
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Assumption 1. It is infeasible for the adversary to provide an existential
forgery in an adaptive chosen message attack scenario against m*. Le., the
adversary is given access to an authentication oracle, computing t; = m(y,x;)
for the adversary, where y €r {0,1}° is secret and the adversary is allowed to
choose arbitrary messages x;. “Adaptive” means that the adversary is allowed to
choose x; after having seen t;_1. The adversary wins if she can produce a pair
(2, ") with m(y, ") = t', without previously asking the oracle for m(y,z').

Unfortunately, this standard assumption is not quite sufficient for our purposes.
Below, we will not make use of assumption[Ilat all, but instead, define two similar
assumptions. Firstly, we use m instead of m* as a MAC, i.e., the truncation of
m* to ¢ < s bit. The security of m does not follow from the security of m*. So
we need to make the same assumption for m instead of m*:

Assumption 2. [t is infeasible for the adversary to provide an existential
forgery in an adaptive chosen message attack scenario against m.

Furthermore, we use h to build a hash chain, which implies that h must be
one-way. It may be surprising, but m* being secure against existential forgery
is not sufficient for the one-wayness of h = m*(-, const). If, given k* = h(k) =
m*(k, const), the adversary can find the secret k, then she can forge messages.
But the adversary could just as well find some value k' # k with k* = h(k') =
m*(k’, const) without necessarily being able to to generate existential forgeries.
We thus need to exclude this case:

Assumption 3. The function m* is one-way. Le., given a random k € {0,1}%,
and a message const, it is infeasible to find any k' € {0,1}* with m*(k, const) =
m*(k', const).

Note that inverting m* (i.e., breaking the one-wayness of h) would either allow
us to find a secret key and thus to forge messages, or provide a 2nd preimage,
i.e., a value k' # k with h(k) = h(k’). Indeed, for our formal proof of security
we could replace assumption B by assuming 2nd preimage resistance. The proof
would be slightly more complicated, though.

4.2 Proving Security for Epoch 0

Theorem 1. If the adversary can efficiently break epoch O of the protocol, she
can efficiently break either assumption[2 or assumption [3.

Concrete security. If she can break the protocol in time t with probability p, she
can either invert h or forge a message for m in time < t + 2t* with probability
p/2. Here, t* is the time to evaluate either h or m, which ultimately boils down
to the time for evaluating m*.

Proof. Eve can send the following messages (see also left side of Figure 2):

(1) If Alice’s program state is AO: zg to Alice.
Alice responds dy := m(ag, zo) (and xo, but xg is known to Eve, anyway).
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Alice X Bob
b ) D) @ e R
Comﬂ(nm%ssage X di 1 r-‘b1 Xi,di 1 : b;
1o 1
| Eve! 1 Eve!
b1 2
n@’) bM'E '(3) @ 3'11(? s ?—:13) &
mia’, x i i i

Ac:c:ep tMessage (X, 1)

Left: The four types of messages Right: Eve, connected to some game

Fig. 2. Eve in epoch ¢

(2) If Bob’s program state is BO: (z',d’) to Bob — with &’ # xg.
(3) If Alice’s program state is Al: b’ to Alice — with h(b') = b;.
(4) If Bob’s program state is B1: a’ to Bob — with h(a') = a;.

Remember that she is successful if she gets Bob to AcceptMessage(x’,i) for a
message x’ that Alice has not send in epoch .

Note that (3)-like messages b’ with h(b’) # by to Alice do not affect Alice’s
state; Alice ignores them. Since Eve can check h(b') = by on her own, we assume
w.l.o.g. Eve not to send any message b’ with h(d’) # by to Alice. Similarly, for
(4)-like messages, we assume, Eve not to send any a’ with h(a’) # a1 to Bob.

In order to successfully attack, Eve must send ezactly one message (1) to Alice
(to ensure CommitMessage(xzp,0)) and both messages (2) and (4) to Bob (for
AcceptMessage(x’,0)). Eve may send at most one message (3) to Alice. W.l.o.g.,
we assume Eve to send ezactly one message (3). (If she wins her attack game
without sending message (3), she has sent message (2) and did learn by from
Bob. She can always send a final message (3) with b’ = bg.)

While (1,2,3,4) is the protocol-defined “natural” order for sending the mes-
sages, Eve is not bound to this order. There are some restrictions though:

— Message (1) must be sent before message (3). Until she knows and has com-
mitted to xg, Alice wouldn’t even listen to message (3).
— Also, Bob wouldn’t listen to (4) before having received (2).

In the context of this proof, we just need to distinguish between two cases, which
we represent by two games: Either message (2) is sent before message (3), or the
other way. Consider disconnecting Eve from Alice and Bob, and connecting her
with either of two games (cf. right side of Figure ). If we win such a game, we
can either invert h or forge messages. We will show that Eve cannot distinguish
her participation in such a game from the “real” attack against the protocol and
show that a successful attack by Eve is essentially the same as us winning one of
our games. So at the end, if Eve can feasibly attack the protocol, we can feasibly
invert h(-) = m(-, const) or forge messages for m*. The games are the following:

1st game (inverting h): Given k* = h(k) = m*(k,0), for a uniformly distributed
random k, find some k" with m*(k’,0) = k*.
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— Randomly choose ag, compute a1 := h(ap).
— If Eve sends message
e (1), the value zo: compute and respond dy := m(ag, o).
e (2): abort the game.
e (4): Report an error! (Message (2) must be sent before message (4), and
this algorithm aborts after message (2).)
— When Eve sends (3), the value b': print &’ := b’ and stop.

The values provided to Eve during the 1st game are distributed exactly as in
the case of the real attack game. Namely, ag and by are independent uniformly
distributed random values, and all the other values are derived from ag and bg.
Note that if Eve sends message (3) before message (2), the game succeeds; else
it doesn’t. To compute ay, we call h. To compute dy, we call m. Thus, we need
two function calls. As Eve herself runs in time ¢, the game takes time ¢ + 2t*.

2nd game (existential forgery for m): Consider an unknown random y, known
y* = h(y), and the ability to ask an oracle for m(y, -). Proceed as follows.

— Set aq := y*; randomly choose by; compute by := h(bp).

— If Eve sends message
e (1), the value z¢: ask the oracle for the response dy = m(y, zo).
e (3): abort the game.
e (4): Report an error!

— When Eve sends (2), the pair (2/,d'): print (2, d") and stop.

Eve’s attack succeeds if and only if (2',d’) is an existential forgery.

Similarly to above, the distribution of values provided during the game is
identical to the real attack game. The only computation during the game is the
one for by := h(by), so the game needs time ¢ + t* < ¢ + 2t*.

Completing the proof: The 1st game is the counterpart of the second game: one
succeeds if message (2) is sent before message (3), the other one, if message (3) is
sent before message (2). Eve doesn’t know which game we play — or rather, that
we are playing games with her at all, instead of mounting the “real” attack. So
Eve still succeeds with probability p. If we randomly choose the game we play,
we succeed with p/2. Neither game takes more than time ¢ + 2t*. O

4.3 Security in Any Epoch 2

At a first look, it may seem that the security proof for epoch 0 is also valid for
epochs ¢ > 0. But in epoch 0, the keys for the MAC m* are uniformly distributed
random values ag and by in {0,1}®, while later, we use a; and b;:

— Our security assumptions for m* require uniformly distributed random keys.
— Our security assumptions for m* do not ensure the uniform distribution of
the output values a; = h(a;—1) = m*(a;—1,0) and b; = ...
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Now m* could be defined such that the one-way function h(z) = m*(z,0) per-
mutes over {0,1}*. This would solve our problem, but restrict our choices m*
too much. In practice, however, most cryptographic MACs can reasonably be
assumed to behave pseudorandomly. Thus, we make an additional assumption.

Let u €g {0,1}* be a random variable chosen according to the uniform dis-
tribution. Let w be a random variable chosen by applying the function A to a
uniformly distributed input, i.e., v €g {0,1}*, and w := h(v). Let A be a dis-
tinguishing adversary for u and w. The advantage Adv4 of A in distinguishing
u from w is defined in the usual way:

Advy = |Pr[A(u) = 1] — Pr[A(w) = 1]|

Assumption 4. No efficient adversary A can feasibly distinguish the distribu-
tion of the random wvariable w = h(v), v €r {0,1}%, from the distribution of
u €R {0,1}5. Le., for all efficient A the advantage Adva 1is negligible.

Recall that h is defined by h(-) = m*(-,const). For typical MACs m*, this
assumption is highly plausible.

We use assumption @ to prove the pseudorandomness of values a; := h(ap),
vy G = h(an—1) for a random ap, along an entire hash chain.

Lemma 1. If, for any i € {1,2,...,n— 1}, the adversary can efficiently distin-
guish a; from a;—1, she can also distinguish a1 from ag, thus breaking
Assumption [}

Concrete security. Let i € {1,2,...,n— 1} be given. If the adversary can distin-
guish a; from a;—q in time t with an advantage «, she can distinguish a1 from
ag im time at most t + (i — 1) x t* with the same advantage «. Here, t* is the
time for evaluating h.

Proof. Let a value rg be given, either distributed like ag or like a;. Compute
r1:=h(ro) ..., riz1 := h(r;—2). Now, r;_1 is either distributed like a;_1, or like
a;, and we can distinguish between both options for r;_; in the same time and
with the same advantage as for a;_; and a;. Computing r;_; takes at most i — 1
calls to h. O

One more issue has to be taken into account. In the single-epoch case, we argued
that finding 2nd preimages, i.e., values a’ # a; with h(a’) = h(a;) = a;41
when given a;, is infeasible under our assumptions. But when dealing with more
than one epoch, Eve might possibly trick Alice into committing to some new
message x;—1 and sending d; := m(a;—1,x;—1) — even before Bob has seen a;
(see below). In contrast to an ordinary 2nd preimage attack, Eve now does not
just know a;, but she also has some additional information about a;_;. Driven
by the usual reasonable pessimism, we even assume Eve to know a;_; itself. We
consider finding an a’ # a; with h(a’) = h(a;) = a;41 as a guided 2nd preimage.
Theoretically, such guided 2nd preimages might be possible, even under all the
assumptions we made so far. Thus, we make one additional assumption.
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Assumption 5. It is infeasible to find guided 2nd preimages for h. Le., given
ap €r {0,1}%, a1 = h(ao), and az = h(a1), it is infeasible to find any a’ # a1
with h(a') = asg.

Recall that the adversary wins in epoch i if she can make Alice to CommitMes-
sage(z;,i) and Bob to AcceptMessage(x’, i) for any ' # x;.

Theorem 2. If there is any epoch i € {0,...,n—1} in which the adversary can
feasibly win with significant probability, at least one of the assumptions[3, [3, [
or[A is false.

Concrete security. If she can win in epoch i, in time t with probability p, she
can either invert h, forge a message for m, or generate a guided 2nd preimage
for hin time < t 4 2t* with probability p/4. Or she can distinguish (a;,b;) from
(ai—1,bi—1) with advantage p/4. Here, t* is the time for calling either h or m,
which ultimately boils down to calling m*.

Proof. We say, the protocol in a “synchronised state”, if thereis ani € {0,...,n}
such that Bob knows a; but not a;_1, while Alice knows b; but not b;_1. lLe.,
the protocol is in a synchronised state if both Alice and Bob are in the same
epoch 7 — 1. After the initialisation, both are in epoch n — 1, hence the protocol
is in a synchronised state.

For the proof, we need to analyse independently how Eve can benefit from
non-synchronised states, and how she can benefit from synchronised states.

Non-synchronised states: Consider Alice and Bob to be in epoch 4, thus the
protocol state is synchronised. Alice will not move forward into epoch i — 1
without having seen b; with h(b;) = b;11. If Eve could provide such a b; without
obtaining it from Bob, she could win in epoch i anyway. Thus we can safely
assume that Alice does not move forward before Bob sends b;. For the same
reason, we may assume Bob not moving forward to epoch ¢ — 1 without having
seen a; from Alice. Bob only sends b; after having seen a; from Alice. Thus, Bob
can never be ahead of Alice. Temporarily, Alice can be ahead of Bob — especially
if Eve does not forward a; to Bob. This would give a protocol state with Alice
living in epoch ¢ — 1 while Bob still lives in epoch ¢. But without having seen
b;—1, Alice cannot move ahead into epoch i — 2, and Bob does not send this while
he is still in epoch 1.

At this point, Eve has but two options to proceed. One is to forward a; to
Bob, thus creating a new synchronised state. The second is to choose a message
zi—1 and send it to Alice, who responds with the authentication tag d;_1 =
m(a;—2,x;—1). If, after sending x;_1 to Alice, Eve sends the value a; to Bob
which she has seen before, there is no gain for Eve. The order of messages has
changed, but the messages are the same, anyway. To benefit from the second
option, Even has to send a value @’ # a; with h(a’) = h(a;) = a;+1 to Bob.
If Eve could find such a value a’, she could find guided 2nd preimages, thus
breaking assumption

Synchronised states: Now consider both Alice and Bob being in some epoch 1,
and Eve trying to win in this epoch. This part of the proof is done by induction.
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We start with epoch 0. Recall that if both assumption 2] and assumption [3] hold,
the adversary cannot feasibly win in epoch 0.

Now assume that no efficient adversary can win in epoch epoch (i-1), but there
is an efficient algorithm to win epoch i with significant probability. Clearly, we
can use this algorithm to distinguish (a;—1,b;—1) from (a;_2, b;—1), thus breaking
assumption [4

Concrete security (sketch): This part is quite similar to the proof of theorem [I]
the single-epoch case. Instead of two different games, we need to define four:

1. One game to invert h (like the 1st game in the proof of theorem [I).
2. One game to forge messages for m (like the 2nd game above).

3. One game to generate guided 2nd preimages for h.

4. One game to distinguish (a;_1,b;—1) from (a;—2,b;—1).

If Eve wins, we succeed in at least one of the games. Which game we succeed in
depends on Eve’s behaviour. As we must commit to one game in advance (i.e.
before we know how Eve behaves), the probability of success decreases from p
(for Eve) to p/4 (for us). O

5 Final Remarks and Conclusion

The Jane Doe protocol does not provide security against denial of service attacks.
Le., if Eve sends a fake d; in epoch i, Bob will send b; and then not accept the
“real” d; Alice may later send.

Freshness means that a message has been committed to recently. In our case,
when Bob accepts message z; in epoch i, he can be sure that Alice (following the
protocol rules) did not commit to that message before she had seen and verified
Bob’s response b; 1 from the previous epoch. In this sense, our protocol ensures
the freshness of the messages authenticated.

The messages are “fresh” by belonging to the current epoch. But Eve is able
to stretch any epoch at her will. Assume, e.g., that Alice commits to a message
m; =“I am well”, but Eve delays forwarding d; = m(a;, “all is well”) to Bob.
Later, Alice would need to raise an alarm, but instead Eve forwards d; to Bob
who sends b;, which Eve immediately forwards to Alice. The protocol logic would
require Alice to reply a;, thus confirming that she is well. Instead of confirming
such an outdated message, Alice could simply terminate communication with
Bob. Eve has the power to cut the communication between Alice and Bob,
anyway, and Bob will eventually notice that Alice doesn’t respond any more.

Assuming some underlying primitive (from which we derive m*) to behave like
a random oracle is theoretically sound and would allow us to greatly simplify
our security proofs. But in practice, cryptographic primitives never behave like
random oracles. Results in the random oracle model hardly provide any guideline
for the choice of a good primitive. Our very specific standard model assumptions
on m* are meant to serve as such a guideline.

Note that we have two functions, a message authentication code (MAC)
m and a hash function A, both of which are derived from another MAC m*.
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In principle, one could choose m and & independently from each other, with-
out deriving them from the same underlying primitive, as has been suggested
n [I2]. Under appropriate assumptions, one can still prove the security of the
Jane Doe protocol. This requires more complex and less natural assumtions than
those made here. Even if m is a secure MAC and h is modelled as a random
oracle, the protocol may actually be insecure[13]. Deriving both m and h from
one single primitive m* thus saves us from some difficult technical issues.

Furthermore, we believe that deriving both h and m from the same underlying
primitive is natural and meets practical necessities very well.

Conclusions: Entity recognition is an adopted security goal especially useful
for constrained pervasive applications. The Jane Doe protocol provides entity
recognition. The protocol is efficient, runs on on very low-end devices, and is
provably secure. We believe this to be a significant step into the direction of
provably secure protocols for low-end devices.
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Abstract. In ACNS’06, Cliff et al. proposed the password-based server
aided key exchange (PSAKE) as one of password-based authenticated
key exchanges in the three-party setting (3-party PAKE) in which two
clients with different passwords exchange a session key by the help of
their corresponding server. Though they also studied a strong security
definition of 3-party PAKE, their security model is not strong enough
because there are desirable security properties which cannot be cap-
tured. In this paper, we define a new formal security model of 3-party
PAKE which is stronger than the previous model. Our model captures
all known desirable security requirements of 3-party PAKE, like resis-
tance to key-compromise impersonation, to leakage of ephemeral private
keys of servers and to undetectable on-line dictionary attack. Also, we
propose a new scheme as an improvement of PSAKE with the optimal
number of rounds for a client, which is secure in the sense of our model.

Keywords: password-based key exchange, password-based server aided
key exchange, leakage of internal states, undetectable on-line dictionary
attack.

1 Introduction

Recently, password-based authenticated key exchange (PAKE) protocols are re-
ceived much attention as practical schemes in order to share a mutual session
key secretly and reliably. Basic PAKE schemes enable two entities to authen-
ticate each other and agree on a large session key from a human memorable
password. Thus, PAKE schemes are regarded as practical key exchange schemes
because entities do not have any pre-shared cryptographic symmetric key, certifi-
cate or support from a trusted third party. Such basic schemes which two entities
pre-share a common password are classified into a model called same password-
authentication (SPA) model. The SPA model is most cultivated PAKE model
in previous studies and is usually used for client-to-server key exchanges. The
concept of PAKE was first introduced by Bellovin and Merritt [I] in 1992 known
as encrypted key exchange (EKE). First construction of password-only PAKE
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in SPA model was proposed by Jablon [2] in 1996 known as simple password
exponential key exchange (SPEKE). Formal definitions for this setting were first
given by Bellare et al. [3] and Boyko et al. [4], and a concrete construction was
also given in the random oracle (RO) model. And, various protocols have been
proposed to achieve secure PAKE scheme in SPA model.

1.1 Password-Based Key Exchange in the 3-Party Setting

With a variety of communication environments such as mobile network, it is
considered as one of main concerns to establish a secure channel between clients
with different passwords. Several schemes have been presented to provide PAKE
between two entities with their different passwords, called different password-
authentication (DPA) model. Practically, clients prefer to remember very few
passwords but not many. Consequently, PAKE in DPA model is useful to solve
this problem. In DPA model, entities carry out key exchange with the assistance
of intermediate server because entities have no secret common information. So, it
is usually called password-based authenticated key exchanges in the three-party
setting (3-party PAKE) and is usually used for client-to-client key exchanges.

Basic security requirements of 3-party PAKE are known-key security (KS)
(i.e., the session key is not compromised in the face of adversaries who have
learned some other session keys), basic impersonation (BI) (i.e., the adversary
cannot impersonate any honest client to the other client of the session without
the client’s password), and resistance to off-line dictionary attacks (offDA). The
resistance to off DA means that there is no successful adversary as follows: The
adversary guesses a password and verifies his guess off-line. No participation of
the server is required, so the server do not notice the attack. If his guess fails
the adversary tries again with another password, until he finds the proper one.

Though 3-party PAKE has been considered in early papers [BJ6], these
schemes assume trusted intermediate server perfectly because the server can
know the session key of clients. Several works [78[9] considered key privacy
against passive server (KP) (i.e., a semi-honest server cannot know information
of the session key of clients). However, none of their schemes enjoys provable
security. Indeed, a scheme [7] is known to be vulnerable to an undetectable on-
line dictionary attack (UDonDA) [I0]. The central idea of UDonDA is that an
attacker guesses a password of a client, completes some computations with it and
sends the server the result as a part of his request for a session key. Then, if the
server cannot tell this request from the request from honest clients, the server
performs some further computations on the result using the correct password of
the client and responses. This response helps the attacker to verify his guess. So,
the server is used as an oracle without taking notice of the attack.

First formal security definition of 3-party PAKE (AFP model) was proposed
by Abdalla et al. [TI1]. They also provided a generic method to construct provably
secure 3-party PAKE protocol from 2-party PAKE. To reduce the complexity
of generic construction, the first concrete protocol of provably secure 3-party
PAKE protocol in the random oracle model is proposed in [12]. Wang and Hu
pointed out that schemes in [I1IT2] are vulnerable to UDonDA, and provided a



174 K. Yoneyama

stronger definition of 3-party PAKE (WH model) which captures resistance to
UDonDA.

Cliff et al. [I3] proposed another security definition of 3-party PAKE (CTB
model) which is an extension of the Canetti-Krawczyk model [I4] for 2-party
AKE. Also, they proposed a variant of 3-party PAKE, called the password-based
server aided key exchange (PSAKE), which has the similar setting of 3-party
PAKE except the server uses password and encryption based authenticators.
The encryption based authenticator in PSAKE means that a client has the
server’s public-key as well as the password between with the server, and the
server has his private-key as well as clients’ passwords. They also prove security
of PSAKE in the standard model, i.e., without random oracle. By helping of
the encryption based authenticator, PSAKE has strong security which cannot
be prevent in password-only setting 3-party PAKE schemes. Indeed, PSAKE
seems to be secure against leakage of ephemeral private keys of servers (LEP)
(i.e., even if all the session specific ephemeral private key of the server in a
session is compromised, then secrecy of the session key is not compromised
and against key-compromise impersonation (KCI) (i.e., when a client’s password
is compromised, this event does not enable an outside adversary to impersonate
other entities to the client).

1.2 Need for New Security Models

AFP model, CTB model and WH model formalize indistinguishability of session
keys against outside adversaries. However, each model has some uncaptured
security requirement, respectively. For example, AFP model and WH model
cannot grasp the notion of forward secrecy (F'S) (i.e., secrecy of the past session
keys after leakage of passwords). Also, CTB model and WH model cannot grasp
KP. Furthermore, in AFP model and CTB model, resistance to UDonDA is out
of scope. In addition, there are some security requirements which is not captured
in these models (see SectionIZZI)E Indeed, schemes in [ITI15] are insecure against
LEP because these schemes include 2-party PAKE between a client and a server.
In 2-party PAKE, if an ephemeral private key of either party is leaked, then
the password of the party is easily derived by off DA because the session key
deterministically depends on the client’s ephemeral key, static password, and
communication received from the other party. Thus, the secrecy of the session
key is not guaranteed. Therefore, by LEP the temporary session key is revealed
and schemes in [IT/I5] are clearly insecure against BI. Similarly, the scheme in

! This property is not guaranteed when the ephemeral private key of a client of the
session is leaked. In this case, password of the client is easily derived by off-line
dictionary attacks because the session key deterministically depends on the client’s
ephemeral key, static password, and communication received from other parties.
Thus, secrecy of the session key is not guaranteed. So, we only consider leakage with
respect to the server.

Indeed, the scheme in [I3] may be secure against UDonDA and satisfies other de-
sirable security requirements. However, CTB model itself does not support these
requirements.
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Table 1. Comparison between previous schemes and our scheme

setting of # of rounds UDonDA LEP
setup for a client
[11] password-only 2+ P insecure insecure
[12] password-only 2 insecure insecure
[15] password-only 2+ P secure insecure
[13] password and public-key crypto 3 unproven unproven
Our scheme password and public-key crypto 2 secure  secure

Where P denote the number of moves of a secure 2-party PAKE.

[12] is also insecure against LEP because from the ephemeral private key of the
server passwords can be revealed by off DAs.

1.3 Owur Contribution

We define a new stronger security model of 3-party PAKE than previous models.
Our model is based on the recent formal model of authenticated key exchange by
LaMacchia et al. [I6]. The major difference between our model and previous mod-
els consists in adversary’s available oracle queries, specifically, revealing of static
secret or ephemeral secret separately, and in adversary’s capability in the target
session, i.e., the adversary can obtain static secrets of all entities and ephemeral
secrets of the server in the target session. Therefore, our model can represent re-
sistance to complicated attacks which cannot be captured in previous models.

Also, we construct a new 3-party PAKE scheme based on Abdalla-Pointcheval
scheme in [I2]. Our scheme is the same setting as PSAKE (i.e., use of public-
key crypto). Also, our scheme only needs the optimal number of rounds, i.e.,
2-rounds between a client and the server, as Abdalla-Pointcheval scheme. Thus,
our scheme is more efficient than general constructions in [ITJI5] and PSAKE.
Furthermore, we show that our scheme is secure in the sense of our model in the
random oracle model. While public-key encryption schemes are time-consuming,
as same as PSAKE, by helping of the server’s public-key crypto, our scheme
can satisfy strong security like resistance to LEP and to KCI. Based on our
knowledge, our scheme is the first 3-party PAKE scheme which resistance to
LEP is proved.

The comparison between previous schemes and ours is shown in Table [11

2 Preliminaries

2.1 3-Party PAKE

3-party PAKE schemes contain three parties (two clients and a server) who will
engage in the protocol. We denote the set of clients by U and the server by S. Let
each password be pre-shared between a client and the server and be uniformly
and independently chosen from fixed low-entropy dictionary D of the size |D|.
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Note that clients do not need to share passwords with other clients. In addition,
in PSAKE and our scheme, the server pre-establishes his public-key and private-
key pair and goes public the public-key. We denote with U the I*" instance which
clients U € U runs. Also, we denote with S! the [*" instance which the server
S runs. All instances finally output accept symbol and halt if their specified
execution is correctly finished. The session identifier sidl}é of an instance P is
represented via matching conversations, i.e., concatenations of messages which
are sent and received between clients in the session, along with their identity

strings, (initialized as null). Note that, we say that two instances P' and P;"

are partnered if both P/ and P;j output accept, both P! and P;" share the
same sid but not null, and the partner identification set for Pili coincides with
the one for P;j.

2.2 Problems of Previous Models

In AFP model, FS, and resistance to KCI, LEP and UDonDA cannot be cap-
tured. First, resistance to KCI and LEP, and FS cannot be represented because
adversary capabilities do not include any query for corruption of parties in the
test session. Therefore, conditions of KCI, LEP and FS cannot be represented.
Also, resistance to UDonDA is out of scope in AFP model. They count UDonDA
in the number of queries for message modifications which are limited to certain
numbers. Hence, in AFP model, UDonDA is not discriminated from detectable
on-line dictionary attacks.

Since CTB model is the extension for 3-party PAKE from the Canetti-
Krawczyk model [14] for 2-party AKE, CTB model inherits uncaptured security
properties from the Canetti-Krawczyk model. More specifically, in CTB model,
KP, and resistance to KCI, LEP and UDonDA cannot be captured. First, re-
sistance to KCI cannot be represented because adversary capabilities do not
include any query for corruption of parties in the test session before completing
the session. And, resistance to LEP cannot be represented because adversary
capabilities do not include any query for reveal of ephemeral keys of parties in
the test session. Therefore, conditions of KCI and LEP cannot be represented.
Also, KP and resistance to UDonDA are out of scope in CTB model. Though
KP requires that a passive server (i.e., passwords of clients can be known), can-
not distinguish the real session key in a session and a random key, there is no
definition which captures such a situation. Thus, KP is not guaranteed even if
the security in the CTB model is satisfied. As AFP model, they count UDonDA
in the number of queries for message modifications which are limited to certain
numbers. Hence, in CTB model, UDonDA is not discriminated from detectable
on-line dictionary attacks.

WH model can be regarded as AFP model plus resistance to UDonDA. Thus,
FS, and resistance to KCI and LEP cannot be captured from the same reason
as AFP model.
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3 New Model: Strong 3-Party PAKE Security

3.1 Adversary Capabilities

An outside adversary or a malicious insider can obtain and modify messages
on unauthenticated-links channels. Furthermore, the adversary is given oracle
access to client and server instances. We remark that unlike the standard notion
of an “oracle”, in this model instances maintain state which is updated as the
protocol progresses.

- Execute(U{l,Uéz,SZS') : This query models passive attacks. The output of
this query consists of the messages that were exchanged during the honest
execution of the protocol among U}*, U2 and S's.

— SendClient(U!,m) : This query models active attacks against a client. The
output of this query consists of the message that the client instance U! would
generate on receipt of message m.

— SendServer(S!,m) : This query models active attacks against the server. The
output of this query consists of the message that the server instance S! would
generate on receipt of message m.

— SessionKeyReveal(U') : This query models misuses of session keys. The out-
put of this query consists of the session key held by the client instance U if
the session is completed for U!. Otherwise, return L.

— StaticKeyReveal(P) : This query models leakage of the static secret of P (i.e.,
the password between the client and the server, or the private information
for the server). The output of this query consists of the static secret of P.
Note that, there is no giving the adversary full control of P or revealing any
ephemeral secret information.

— EphemeralKeyReveal(P') : This query models leakage of all session-specific
information (ephemeral key) used by instance P'. The output of this query
consists of the ephemeral key of the instance P'.

— EstablishParty(U, S, pwy) : This query models the adversary to register a
static secret pwy on behalf of a client. In this way the adversary totally
controls that client. Clients against whom the adversary did not issue this
query are called honest.

— Test(U!) : This query doesn’t model the adversarial ability, but indistin-
guishability of the session key. At the beginning a hidden bit b is chosen.
If no session key for the client instance U'! is defined, then return the un-
defined symbol L. Otherwise, return the session key for the client instance
Ul if b = 1 or a random key from the same space if b = 0. Note that, the
adversary can make an only Test query at any time during the experiment.
The target session is called the test session.

— TestPassword(U, pw’) : This query doesn’t model the adversarial ability, but
no leakage of the password. If the guess password pw’ is just the same as the
client U’s password pw, then return 1. Otherwise, return 0. Note that, the
adversary can an only TestPassword query at any time during the experiment.
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3.2 Definition of Indistinguishability

Firstly, we consider the notion of indistinguishability. This notion provides se-
curity properties with respect to session keys, i.e., KS, FS, KP, resistance to BI,
resistance to KCI and resistance to LEP. Note that, to capture notions of FS
and resistance to KCI, an adversary can obtain static keys in the test session.

The adversary is considered successful if it guesses whether the challenge is
the true session key or a random key. The adversary is allowed to make Execute,
SendClient, SendServer, SessionKeyReveal, StaticKeyReveal, EphemeralKeyReveal,
EstablishParty and Test queries, and outputs a guess bit b'. Let Succ™® denote
the event that b’ = b where b is the random bit chosen in the Test(U!) query.
Note that, we restrict the adversary such that U! and the partnered client U v
of the session are honest, and none of the following conditions hold:

1. The adversary reveals the session key of sidéj or of sidé—}.
2. The adversary asks no SendClient(U*, m) or SendClient(T" ,m’) query. Then
the adversary either makes queries:
— EphemeralKeyReveal (U') or
— EphemeralKeyReveal(T").

3. The adversary asks SendCIient(ﬁl',m) query. Then the adversary either
makes queries:

— StaticKeyReveal(U),

— StaticKeyReveal(.9),

— EphemeralKeyReveal(U?) for any session i or
— EphemeralKeyReveal(U").

4. The adversary asks SendClient(U!,m) query. Then the adversary either
makes queries:

— StaticKeyReveal(U),

— StaticKeyReveal(.5),

— EphemeralKeyReveal (U') or

— EphemeralKeyReveal(U?) for any session i.

Now, the adversary A’s advantage is formally defined by:
Adv™(A) = |2 - Pr[Succ™] — 1| and Adv"(t,R) = mﬁx{/—\dvmd(A)},

where the maximum is over all A with time-complexity at most ¢ and using the
number of queries to its oracle at most R.

We say that a 3-party PAKE satisfies indistinguishability of the session key
if the advantage Adv™® is only negligibly larger than n - gseng/|D|, where n is
a constant and ¢gsenq is the number of send queries, and parties who complete
matching sessions compute the same session key.
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Capturing Security Properties. The condition of KS is represented as the
adversary can obtain session keys except one of the test session by
SessionKeyReveal query. The condition of KP against passive server is repre-
sented as the freshness condition 2, that is, the adversary can obtain static and
ephemeral private key of the server by StaticKeyReveal and EphemeralKeyReveal
query but no SendClient query for the test session. Bl is represented as the fresh-
ness condition 3, that is, the adversary can freely eavesdrop messages, obtain
ephemeral private key of the server, and send any message to honest clients ex-
cept the target client by Execute and SendClient queries but no StaticKeyReveal
query to the target client and the server. KCI and the condition of FS are
also represented as the freshness condition 4, that is, the adversary can ob-
tain static secret of the target client by StaticKeyReveal query but cannot ask
StaticKeyReveal query to the partnered client and the server. LEP is represented
as the adversary can obtain ephemeral key of the server on the test session by
EphemeralKeyReveal query. Also, our model captures resistance to unknown-key
share (UKS) (i.e., any client C including a malicious client insider cannot in-
terfere with the session establishment between two honest clients A and B such
that at the end of the attack both parties compute the same session key which
C may not learn it, yet while A is convinced that the key is shared with B, B
believes that the peer to the session has been C). UKS is represented as the
adversary can establish a malicious insider by EstablishParty query and try to
make a honest client which thinks that he shares the session key with the insider
share the session key with an another honest client by choosing these two honest
clients for the test session.

By the definition of indistinguishability, we can guarantee to prevent these
attacks in our model.

3.3 Definition of Password Protection

Next, we consider the notion of password protection. This notion provides se-
curity properties with respect to passwords, i.e., resistance to UDonDA and to
offDA. Beyond the notion of indistinguishability, the notion of password protec-
tion is needed because we have to consider security for passwords against attacks
by malicious client insiders which can trivially know the session key. Thus, just
the notion of indistinguishability cannot capture insider attacks. Also, we cannot
allow the adversary to reveal ephemeral private keys of the target client. Given
the ephemeral key, the target password is easily derived by off DA because the
session key in a session deterministically depends on the client’s ephemeral key,
the password, and communication received from the other party.

The adversary is considered successful if it guesses a password of a client. The
adversary is allowed to make Execute, SendClient, SendServer, SessionKeyReveal,
StaticKeyReveal, EphemeralKeyReveal and TestPassword queries. Let Succ?” de-
note the event that TestPassword(U) outputs 1. Note that, we restrict the ad-
versary such that U and the server of the session are honest, and none of the
following conditions hold:
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— We suppose that S is the corresponding server of U. Then the adversary
either makes queries:

o StaticKeyReveal(U),
e StaticKeyReveal(.S) or
e EphemeralKeyReveal(U*?) for any session i.

Now, the adversary A’s advantage is formally defined by:

AdvP?(A) = Pr[Succ?™] and AdvP*(t,R) = mgx{Adva(.A)},

where the maximum is over all A with time-complexity at most ¢ and using the
number of queries to its oracle at most R.

We say that a 3-party PAKE satisfies password protection if the advantage
AdvP" is only negligibly larger than n - gsend/|D|, where n is a constant and
(send is the number of send queries which messages are found as “invalid” by
the party. “Invalid” message means the message which is not derived according
to the protocol description.

Capturing Security Properties. UDonDA is represented as the adversary
can unlimitedly use SendClient and SendServer queries as far as the party does
not find that the query is “invalid”. off DA is represented as the adversary can be
the insider by SessionKeyReveal, StaticKeyReveal and EphemeralKeyReveal queries
except the target client and her corresponding server.

By the definition of password protection, we can guarantee to prevent these
attacks in our model.

4 Proposed Scheme
In this section, we show our 3-party PAKE scheme in the same setting as PSAKE.

4.1 Notation

Let p be a prime and let g be a generator of a finite cyclic group G of order p.
A, B € U are identities of two clients, and S is identity of their corresponding
server. (Gen, Enc, Dec) is a public-key encryption scheme, where Gen(1%) is key
generation algorithm, Encpy(m;w) is encryption algorithm of a message m using
a public key pk and randomness w, and Decg(c) is decryption algorithm of
a cipher-text ¢ using a private key sk. A and S (resp. B and S) have shared
common secret password pw4 (resp. pwp), and S has pre-established his private
key sks with his public key pks. Hy : DxU? — G, Hy : Dx{0,1}*xG — G and
Hs : U? x 8% x Cspace? x G* — {0,1}* are hash functions modeled as random
oracles, where Cspace is the space of a cipher-text for (Gen, Enc, Dec) and k is a
sufficiently large security parameter.

For simplicity, we omit “(mod p)” in this paper when computing the modular

L R .
exponentiation. “v < V” means randomly choosing an element v of a set V.
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Public information : G, g, p, H1, Hy, H3
Long-term secret of clients : pw 4 for A and pwp for B
Long-term secret of server : (pwy,pwpg, skg)

Client A Server S Client B
R R
T = ; y = ;
X'=g Y'=g
X* =X -Hy(pwy, A, B) Y*:=Y . Hy(pwpg, B, A)
Cp — Encpk,s((X*,pr);wA) cp «— Encpk,s((Y ,pwp)iwg)
A,B,Cy B,A,Cp
AL B
(X*, pwa) — Decgjg (Ca)
(v*, pr) —Decéks(cB)
PWA = pwy. PUR = pwp
X = X*/Hi(pwy, A, B)
v 7Y*/H1(pr B, A)
r 8 N B o, 13k
- P h -
Yi=Y", X:=X
Vo Ho(N,pwa, X*)
X*:= X .Hyo(N,pwg, Y*)
S,N,Cg, X", v* S,N,C4,X*, V™
S EB s 7 AN
Ky = (Y*/Ho(N,pwy, X*)* Kpg := (X*/Ho(N,pwpg,Y*))¥
SK 5 = o SKp = -
H3(A, B, S,Cy, Cp, X*, V*, Ky) H3(A, B, S, Cy, Cp, X*, Y*, Kp)

Fig. 1. A high-level overview of our protocol

4.2 Protocol Description

Here, we show the construction of our scheme. To guarantee resistance to
UDonDA, we apply public-key encryption for servers like PSAKE and the
3-party PAKE scheme in [8]. A high-level overview of our protocol appears in
Figure [l

Then, our protocol is described as follows:

Step 1. Clients A and B choose z,y € Z, randomly, compute X = g“ and
Y = ¢¥, and blind them as X* = X - Hy(pwa, A, B) and Y* =Y - Hy (pwg, B, A)
respectively. Next, they generate Cy « Encprs ((X*, pwa );wa) and Cp «—
Encyr (Y*, pwp );wp) by using their corresponding server’s public-key pkg
with randomness wa and wp respectively. Finally, A sends (A, B,C4) to the
server S and B sends (B, A,Cp) to the server S. So, ephemeral private-keys of
A and B are (z, X, X*,wa) and (y,Y, Y™ wp) respectively.

Step 2. The server S decrypts (X*,pwa) — Decys(Ca) and (Y*, pug) —
Decsis (Cp) by using skg respectively. If pwa # pwa or pwp # pwp, then
S aborts the session. It is also crucial that the server rejects any value X+
or Y* whose underlying value X or Y is equal to 1. Otherwise, S computes
X = X*/Hi(pwa, A, B), blinds it as X := X" where r is S’s first random
value from Z. S also computes ¥ and Y similarly. Next, S computes Y* =
Y- HQ(N,prJZ'*) where N is S’s second random value from {0, 1}*. S per-
forms similar operations and obtains X*. Finally, S sends (S, N,Cg, X*,Y*) to
A, sends (S, N,Ca, X*, Y*) to B, and deletes session-specific information (X*,
Y+ , pwa, pug, r, N, X, Y, X, Y). So, ephemeral private-keys of S is empty.
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Step 3. A and B compute their Diffie-Hellman keys K4 = (Y* / Ho(N, pwa,
X*)* and Kp = (X* / Hy(N,pwg,Y*))? respectively. Session keys are gener-
ated from the Diffie-Hellman key and transcripts, SK4 = H3(A, B, S, Ca, Cp,
X* Y* Ka)and SKp = H3(A, B, S, Ca, Cp, X*, Y*, Kg). When session keys
are honestly generated, SK4 = SKp because K4 = (¢¥")* and K = (¢*").

4.3 Design Principles

Our protocol can be viewed as an extension of Abdalla-Pointcheval scheme [12].
The main deference consists in use of public-key encryption.

First, upon receiving an input from a client, the corresponding server verifies
the validity of encrypted password of the client and him. This procedure prevents
UDonDA as the technique of Lin et al. [8]. Applying the server’s public-key may
put a burden on clients because they have to verify the server’s public-key in
advance, and the certificate infrastructure is needed. However, we can easily
resolve this problem by applying ID-based encryption for the server instead of
standard public-key encryption for the server. Since clients can encrypt messages
by using only corresponding the server’s ID in ID-based encryption, clients need
no keeping nor verifying the server’s public-key. If we replace use of public-key
encryption to use of ID-based encryption, security of our scheme is not changed.

Next, elimination of ephemeral states except necessary states is needed for
resistance to LEP as the technique of [16]. Even if EphemeralKeyReveal query is
asked, information of passwords and the session key do not leak from leakage
information because all critical states are deleted immediately when these states
are used.

Finally, when a client blinds X or Y with his password, we make the client
include the identities of both clients into the computation of the password-based
blinding factors. This procedure prevents KCI and UKS by a malicious client
insider as the technique of Choo et al. [17].

5 Security of Our Scheme
In this section, we show security properties of our scheme.

5.1 Building Blocks

We recall the definition of the decisional Diffie-Hellman assumptions which we
use in the security proof of our scheme. Let p be a prime and let g be a generator
of a finite cyclic group G of order p.

Decisional Diffie-Hellman Assumption (DDH). We can define the DDH

assumption by defining two experiments, Epoih*Te“l(I) and Expgih*m”d(I).
For a solver Z, inputs (g%, g", Z) is provided, where u,v are drawn at random
from Z;. Z = g"” in Expgi,h_real (Z) and Z = g% in Empgfiph*m"d(l'), where w is
drawn at random from Z;. We define the advantage of 7 in violating the DDH
assumption, Advgffnh(I)7 as \Pr[Epoi,h_real(I) =1] - Pr[Expgi,h_m"d(I) =1]|.
The advantage function of the group, Advgfnh (t), is defined as the maximum value

of Advzfiph(l) over all Z with time-complexity at most ¢.
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5.2 Main Theorems

Theorem 1. Assuming (Gen, Enc, Dec) is a semantically secure public-key en-
cryption scheme and DDH problem is hard, then our scheme satisfies indistin-
guishability in Sec. [32

Theorem 2. Assuming (Gen, Enc, Dec) is a semantically secure public-key en-
cryption scheme, then our scheme satisfies password protection in Sec. [T.3.

Owing to lack of space, we cannot give proofs of Theorem [Iland 2l Please refer
to [18] for these proofs.

6 Conclusion

Firstly, we pointed out that previous security definitions of 3-party PAKE cannot
capture all desirable security requirements. Next, we proposed a new stronger
definition of 3-party PAKE which captures all desirable security requirements.
Finally, we introduced a 3-party PAKE protocol in the same setting as PSAKE
with optimal rounds for client and proved its security in the sense of our stronger
definition.

Our scheme use public-key encryption as a building block in order to guarantee
resistance to UDonDA. However, public-key encryption schemes are time-
consuming. Thus, a remaining problem of further researches is efficient construc-
tion which satisfies stronger security.
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Abstract. In this paper, we propose a round efficient unconditionally
secure multiparty computation (UMPC) protocol in information theoretic
model with n > 2t players, in the absence of any physical broadcast chan-
nel. Our protocol communicates O(n4) field elements per multiplication
and requires O(nlog(n) + D) rounds, even if up to ¢ players are under
the control of an active adversary having unbounded computing power,
where D denotes the multiplicative depth of the circuit representing the
function to be computed securely. In the absence of a physical broad-
cast channel and with n > 2t players, the best known UMPC protocol
with minimum number of rounds, requires O(n*D) rounds and commu-
nicates O(n®) field elements per multiplication. On the other hand, the
best known UMPC protocol with minimum communication complexity
requires communication overhead of O(nz) field elements per multiplica-
tion, but has a round complexity of O(n®+D) rounds. Hence our UMPC
protocol is the most round efficient protocol so far and ranks second ac-
cording to communication complexity.

Keywords: Multiparty Computation, Information Theoretic Security.

1 Introduction

Secure Multiparty Computation (MPC): Secure multiparty computation
(MPC) allows a set of n players to securely compute an agreed function, even if
up to t players are under the control of a centralized adversary. More specif-
ically, assume that the desired functionality can be specified by a function
£ ({0,11)™ — ({0,1}*)™ and player P; has input z; € {0,1}*. At the end
of the computation of f, P; gets y; € {0,1}*, where (y1,...,yn) = f(21,...,Tn).
The function f has to be computed securely using a protocol where at the end of
the protocol all (honest) players receive correct outputs and the messages seen
by the adversary during the protocol contain no additional information about
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the inputs and outputs of the honest players, other than what can be computed
from the inputs and outputs of the corrupted players. In the information theo-
retic model, the adversary who actively controls at most ¢ players, is adaptive,
rushing [I0] and has unbounded computing power. The function to be computed
is represented as an arithmetic circuit over a finite field IF consisting of five type
of gates, namely addition, multiplication, random, input and output. A MPC
protocol securely evaluates the circuit gate-by-gate [5].

The MPC problem was first defined and solved by Yao [I6]. The research
on MPC in information theoretic model was initiated by Ben-Or et. al. [5] and
Chaum et. al. [§] in two different independent work and carried forward by the
works of [I5J2]. Information theoretic security can be achieved by MPC protocols
in two flavors —(a) Perfect: The outcome of the protocol is perfect in the sense
that no probability of error is involved in the computation of the function (b)
Unconditional: The outcome of the protocol is correct except with negligible error
probability. While Perfect MPC can be achieved iff ¢ < n/3 [5], unconditional
MPC (UMPC) requires only honest majority i.e t < n/2 [I5]. In the recent years,
lot of research concentrated on designing communication efficient protocols for
both perfect and unconditional MPC (see [4UTTIT0N3]).

Broadcast: Broadcast is an important primitive used in all MPC and UMPC
protocols and allows a sender to distribute a value z, identically among all the
players. If a physical broadcast channel is available in the network, then achieving
broadcast is very trivial. But if the broadcast channel is not physically available
in the network, then broadcasting an ¢ bit(s) message can be simulated by ex-
ecuting some protocol. In particular, for unconditionally (with negligible error
probability) broadcasting ¢ bits, the protocol of [14] communicates 2(n?¢+nSx)
bits and requires {2(n) rounds with ¢ < n/2 on the availability of information
theoretic PKI setup,where k is the error parameter. From the recent results of
Fitzi et. al. [12], broadcast can be achieved with communication complexity of
O(nf + n"k) bits and round complexity of O(n).

Our Motivation: Two important parameters of MPC protocols are commu-
nication and round complexity which have been the subject of intense study
over the past two decades. Reducing the communication and round complexity
of MPC protocols is crucial, if we ever hope to use these protocols in practice.
But looking at the most recent advancements in the arena of MPC, we find
that round complexity of MPC protocols has been increased to an unacceptable
level in order to reduce communication complexity. In the sequel, we present
a table which gives an overview of the communication complexities and round
complexities of perfect and unconditional MPC protocols. The communication
complexities are given in terms of bits where k represents the bit length of a
field element in the case of perfect MPC and error parameter in the case of
UMPC, respectively. cpy and D denote the number of multiplication gates and
multiplicative depth of the circuit, respectively.
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Reference Type? Resilience Broadcast Communication Round
Protocol Complexity Complexity

[10] Unconditional t < n/2 [12] O((cmn® +n")rK) O(n*D)
3] Unconditional ¢ < n/2 [12] O((cmn® +n")rK) O(n® + D)
2] Perfect t<mn/3 [617] O((emn + Dn? +n°)k) O(n? + D)

If the practical applicability of multiparty protocols are of primary focus, then
it is always desirable not to sacrifice one parameter for the other. So it is very
essential to design protocol which balances both the parameters appropriately,
which is the motivation of this paper.

Our Network Model: We denote the set of n = 2¢ 4+ 1 players involved in
the secure computation by P = {P;, P,,..., P,} where player P; possesses ¢;
input values. We assume that all the n players are connected with each other
by pairwise secure channels. Moreover, the system is synchronous and the pro-
tocols proceed in rounds, where in each round a player performs some compu-
tations, sends (broadcasts) values to its neighbors (everybody), receives values
from neighbors and may again perform some more computation, in that or-
der. The function to be computed is specified as an arithmetic circuit over a
finite field F with input, addition, multiplication, random and output gates.
We denote the number of gates of each type by ¢y, ca, cpr, cr and co, re-
spectively. We model the distrust in the system by a centralized adversary Ay,
who has unbounded computing power and can actively control at most ¢ play-
ers during protocol execution. To actively control a player means to take full
control over it and make it behave arbitrarily. Moreover A; is adaptive and
rushing [10].

Our protocol provides information theoretic security with a negligible error
probability of 29" for some security parameter . To achieve this error prob-
ability, all our computation are done over a finite field F = GF(2"). Thus each
field element can be represented by x bits. We assume that n = poly (k). We also
assume that the messages sent through the channels are from the specified do-
main. Thus if a player receives a message which is not from the specified domain
(or no message at all), he replaces it with some pre-defined default message.

Our Contribution: We propose a new UMPC protocol which communicates
O(n*) field elements per multiplication and requires O(nlog(n) + D) rounds
over a point-to-point network (in the absence of physical broadcast channel) with
n = 2t+1 players. We introduce a new technique called Rapid Player Elimination
(RPE) which is used in the preprocessing stage of our UMPC protocol. Loosely
speaking, RPE works as follows: The preprocessing stage of our UMPC protocol
may fail several times due to the (mis)behavior of certain number of corrupted
players whose corruptions are identified. RPE creates a win-win situation, where
the adversary must reveal the identities of 2* new corrupted players at the i*"
step. Otherwise, the preprocessing stage will not fail. Thus RPE ensures that
preprocessing stage may fail at most [log(¢)] times.
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2 Unconditionally Secure MPC Protocol with n = 2t + 1

We now present an UMPC protocol with n = 2¢ 4+ 1. Prior to that we present a
number of sub-protocols each solving a specific task. Some of the sub-protocols
are based on few existing techniques while some are proposed by us for the first
time. We describe all our sub-protocols in the following settings: We define two
sets C and P’ where at any point of time C denotes the set of corrupted players
identified so far and P’ = P\ C. So, P’ denotes the set of players involved in
the execution of the sub-protocols. Initially, P’ = P and C = (). As the protocol
proceeds, some players will be detected as corrupted and will be added to C
and removed from P’. We denote the number of players in P’ by n’ which is
initially equal to n. The number of players which can be still corrupted in P’ is
denoted by ¢’ where t' =t —|C|. Note that n’ will always maintain the following:
n >t+ 1+t >2t'+1since t >t and at any stage P’ will always contain all
the ¢ + 1 honest players. Also at any point of time P = P’ UC.

2.1 Information Checking (IC [10/15])

It is an information theoretically secure method for authenticating data and is
used to generate IC signatures. When a player INT € P’ receives an IC signature
from a dealer D € P’ on some secret value(s) S, then ITNT can later produce
the signature and have the players in P’ verify that it is in fact a valid signature
of D on S. The complete definition of IC scheme, its outcome and the properties
that should be satisfied by its outcome is provided in [I3]. We now present an
1C protocol, called EfficientIC, given in Table[Il which allows D to sign on an
¢ length secret S € F¢. Let S = (s, ..., s®)) e F*.

Lemma 1. Protocol EfficientIC correctly generates IC signature on £ field el-
ements (each of size k bits) at once by communicating and broadcasting O((¢ +
n)k) bits. The protocol satisfies the properties of IC signature with probability at
least 1 — 279,

We also use another IC protocol which is a slight modification of the IC protocol,
called IC described in [I0]. The protocol allows D to sign on a single field element
s € F (i.e. £ =1; S =s). The protocol is given in [13]. Like EfficientIC, proto-
col IC has three sub-protocols: Distr(D, INT,P’,s), AuthVal(D, INT, P’ s),
RevealVal(D, INT,P’, s).

Linearity of Protocol IC and EfficientIC: Protocol IC and EfficientIC
satisfies the linearity property as specified by the following lemma:

Lemma 2 (Linearity of Protocol EfficientIC[10]). The IC signature
generated by EfficientIC satisfies linearity property. In particular, INT
can compute TCSig((ry 501 4rps@D)Y, (115020 4rp52.0)) (D, INT) from
ICSig(S(1,1)7S(1,2)___78(1,2)) (D,INT) and IOSZ’Q(S(Z,I)78(2,2)___75(2,5))(D,INT) and
receivers — can  compute  verification  information  corresponding  to
ICSig((ry 500 47520, (11500 475201y (D, INT), without doing any further
computation.
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Table 1. EfficientIC(D, INT, P’,¢,s" ... s1)

EfficientDistr(D, INT, P’, ¢, s e 5(2)): Round 1: D selects a random £+t’ — 1 degree poly-

nomial F(z) over F, whose lower order ¢ coefficients are s e s In addition, D selects an-
other random £ + ¢’ — 1 degree polynomial R(x), over F, which is independent of F(z). D selects
n’ distinct random elements a1, az, . .., a,,s from F such that each a; € F —{0,1,...,n’ —1}. D
privately gives F(x) and R(z) to INT. To receiver P; € P’, D privately gives a;, v; and r;, where
v; = F(a;) and r; = R(a;). The polynomial R(x) is called authentication information, while
for 1 <14 < n/, the values «a;,v; and r; are called verification information.

EfficientAuthVal(D, INT, P’ ¢, s ,s(“): Round 2: INT chooses a random d € F \ {0}
and broadcasts d, B(z) = dF(z) + R(x).

Round 3: For 1 < j < n', D checks dv; + r; z B(aj). If D finds any inconsistency, he
broadcasts F'(z). Parallely, receiver P; broadcasts “Accept” or “Reject”, depending upon whether
dv; + r; = B(a;) or not.

Local Computation (by each player): Ir F(z) is broadcasted in Round 3 then accept the
lower order £ coefficients of F/(z) as D’s secret and terminate. ELSE construct an n’ length bit
vector V5" where the j,1 < j < n/ bit is 1(0), if P; € P’ has broadcasted “Accept” (“Reject”)

durin% Round 3. The vector V5" is public, as it is constructed using broadcasted information.
If V5" does not contain n’ — ¢’ 1’s, then D fails to give any signature to INT and IC protocol
terminates here.

If F(z) is not broadcasted during Round 3, then (F(xz), R(x)) is called D’s IC signature on
S = (5(1), cey 5(2)) denoted by IC'Sig(S(l) 7,.,75(£))(D’ INT).

EfficientRevealVal(D, INT, P’ £,sV ..., 5): (a) Round 1: INT broadcasts F(z), R(z); (b)
Round 2: P; broadcasts a;,v; and r;.

Local Computation (by each player): For the polynomial F(z) broadcasted by INT, con-
struct an n’ length vector VI‘I}(“TC) whose 7' bit contains 1 if v; = F(a;), else 0. Similarly, construct
the vector Vﬁic) corresponding to R(z). Finally compute Vlﬁgc = 156:) ® Vg(';c), where ® denotes
bit wise AND. If V}{EC and V" matches at least at t + 1 locations (irrespective of bit value at

these locations), then accept the lower order £ coefficients of F(x) as S = (s, ...,s¥). In this
case, INT is able to prove D’s signature on S. Otherwise he fails to prove.

2.2 Unconditional Verifiable Secret Sharing and Reconstruction

Definition 1. ¢-1D-Sharing: A wvalue s is correctly t'-1D-shared among the
players in P’ if every honest P; € P’ is holding a share s; of s, such that there
ezists a degree t' polynomial f(x) over F with f(0) =s and f(j) = s; for every
P; € P'. The vector (s1,52,...,5n) of shares is called a t'-sharing of s and is
denoted by [s]y. A set of shares (possibly incomplete) is t'-consistent if they lie
on at' degree polynomial.

Definition 2. t’-2D-sharing [3]: A value s is correctly t'-2D-shared among the
players in P’ if there exists t' degree polynomials f, f*, f2..., f" with f(0) =s
and fori=1,...,n/, f/(0) = f(i). Moreover, every player P; € P’ holds a share
s; = f(i) of s, the polynomial f*(z) for sharing s; and a share-share sj; = f7(i)
of the share s; of every player P; € P'. We denote t'-2D-sharing of s as [[s]]s .

Definition 3. ¢-2D(")-sharing: A value s is correctly t'-2D) -shared among
the players in P' if there exists t' degree polynomials f, f*, f2..., f* with f(0) =
s and for i = 1,...,n', f{(0) = f(i). Moreover, every P; € P’ holds a share
s; = f(i) of s, the polynomial f'(z) for sharing s; and P;’s IC Signature on
share-share sj; = fI(i) of Pj’s share sj, i.e. ICSigs,,(P;, P;) for every P; € P’
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We denote the t'-2D) -sharing of s as {(s))y. Note that in [3], the authors
called this sharing as 2D*-sharing.

Definition 4. t'-2D(+-Y-sharing: A set of values s™V,... s®O are correctly
t'-2DH0 shared among the players in P’ if every secret s is individually t' -
2D _shared. But now instead of P; holding separate IC-signatures for each of
the share-shares sg? forl=1...,¢ from P;, a single IC-signature on sﬁ), RN s%)
is given by P; to P; (i.e. IC’Sig(Sg))MS%))(Pj, P))). The t' -2D™0 _sharing is de-
noted as ({(s',...,s"))y. . .

If a secret s is t-1D-shared/t’-2D-shared/t'-2D(*)-shared by a dealer D € P’
(any player from P’ may perform the role of a dealer ), then we denote the sharing
by [s]R/[[s|2/{(s))P. Similarly if a set of £ secrets s(1), ..., s() are ¢'-2D(+:4)-
shared by player D, we denote it by ((s!, ..., s%))2. Notice that when a secret s is
t'-2D(F)-shared, then s is also ¢-1D-Shared and ¢’-2D-shared by default. Hence
t'-2D(H)-sharing is the strongest sharing among t’-1D-sharing, ¢/-2D-sharing and
t'-2DH)-sharing. In some sense, t’-2D(*9_sharing is the extension of ¢/-2D(*)-
sharing for ¢ secrets. If a dealer De P’ is honest, then he will always correctly
t'-1D-share/t'-2D-share/t'-2D(*)-share a secret s. Among these three types of
sharing, ¢-2D)-sharing of a secret s allows efficient reconstruction of the secret
with n’ players. However, a corrupted D may perform sharing in an incorrect way.
To achieve parallelism, in the sequel, we describe a protocol called 2D(+¥) Share
which allows a dealer D€ P’ to verifiably t'-2D(+%)-share £ > 1 length secret
[s1), 52 .. 5], The protocol ensures correct #-2D(+*)-sharing even for a
corrupted D and is given in Table

The goal of the protocol is as follows: (a) If D is honest then he correctly gen-
erates t'-2D(+H9)_sharing of the secret [s(), (2 ... 5] such that all the honest
players publicly verify that D has correctly generated the sharing. Also when D
is honest, then the secret will be information theoretically secure from the adver-
sary A;. (b) If D is corrupted and has not generated correct ¢/-2D(*)-sharing,
then with very high probability, everybody will detect it.

Lemma 3. Protocol 2D(t"¥)Share correctly generates t'-2D9-sharing of ¢
field elements, with overwhelming probability. The protocol takes ten rounds com-
municates, communicates O(({n*+n>)k) bits and broadcasts O(({n*+n>)k) bits.

PROOF: See full version of the paper [13]. |

Remark: When an ¢ length secret [s(l)7 e s(e)} is t/-2D(+0_shared, then im-
plicitly the individual secrets are ¢'-1D-shared by polynomials g(()l)(y), cey
gée)(y). Also note that given ((a™), ... a®))y and (M), ... b)), the players
in P’ can compute ((c¢V) ... c®))y where for I = 1,...,¢, ¢D = F(a® D)
and F denotes any linear combination.

Conversion From a t'-2D(*)-sharing to ¢ t'-2D*-sharing: Given <<s(1),
s@ s(£)>>t/, we present a protocol Convert2D(T9t02D* which produces
the ¢ t'-2D*-sharing of the individual £ secrets, namely ((s)))y for i =1,...,¢.
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WO,y ((sO)),)) = Convert2D T Dt02DH (P 1/, €, (s, sP .. sOY),))

Let fi(l)(:v), 1 <i<n',1<1<{be the polynomials used for generating <<s(1) ...,s(£)>>t/. For
every pair of players P; and P; from P’, the following is done:

1. Player P; as a dealer executes Distr and AuthVal of IC(P;, P;, P, fi(l) () foralll € {1,...,¢}
to give ICSigf(l)(_)(Pi, P;) to P;. Since ((s'V,...,5(9)),, is generated using 2D+ Share, it
23

implies that either P; already holds IC'Sig (Py, Pj) from P; or every player

G @t @O Gy
from P’ has ignored P;’s signature. In the later case, players in P’ will again ignore P;’s signature.
Otherwise P; can now check if P; has given signature on the same individual values.

2. Upon receiving the signatures on say fi(l)(j),...,ﬂ(b (7)) (e ICSigf,(U(_) (P;, Pj) for | =
P

1,...,4) , P; checks f;l)(j) Zz fi(l)(i). If there is inconsistency for some | € {1,...,¢} then P;

along with all players in P’ invoke EfficientRevealVal(P;, P;, P’ ¢, fi(l) (), fi(Z) (€2 fi(é)(j))

and RevealVal(P;, P;, P’, f{ (4)) for all L € {1,...,€}.

3. In the previous step, if P; is not able to produce the signature that he received from P;, then
all the players from P’ ignore the IC signatures received from P; during step 1. Otherwise if the

signatures are valid then fi(l)(j)7 RN fi(“(j) and fi(l)(j)7 RN fiu)(j) are public. All players in P’

check f;l)(j) z fi(l)(j) for I = 1,...,£. If the test fails for some I, then all the players in P’
ignore the values received from P; during first step. Otherwise the signature produced by P; will
be ignored.

Lemma 4. Protocol Convert2Dt9to2D% takes five rounds and communi-
cates O((In3 + n*)k) bits and broadcasts O((fn> + n*)k) bits.

Reconstruction of a #-2D"-shared secret: Let ({s))y be a t'-2D*"-sharing,
shared using the polynomials H(z,y), fi(x), gi(y),1 < i < n/ among the players
in P’. We now present a protocol 2DT Recons which allows the (honest) players
to correctly recover s with very high probability.

s = 2D Recons(P’,t', ({s));)

For all P; € P’ such that P;’s IC signatures are not ignored by the players in P’, player
P; sends ICSig‘fj(i)(Pj,Pi) to every player P in P’. Player P, € P’ checks the validity of
IC'Sigfj(i)(Pj,Pi) with respect to his own werification information. If the verification passes
then Pj, accepts ICSigfj(i)(Pj, P;). Now if for all P; € P’, Pj, accepts ICSigfj(i> (Pj, P;) (which
he receives from P;) then Py checks whether f;(i)s are t’-consistent (ideally f;(i) = g;(j) for all
P; € P’';s0 f;(i)s will lie on t' degree polynomial g;(y)). If yes then P adds P; to his CORE set
and let the ¢’ degree polynomial (on which f;(i)s lie on) be g;(y). Player Py takes all the g;(y)
polynomials corresponding to the players in his CORE and interpolates the bivariate polynomial
H(z,y) and finally sets the secret s = H(0,0). It is easy to check that all honest players from P’
recovers the same secret s.

Lemma 5. Protocol 2D Recons takes one round and privately communicates
O(n3k) bits.
2.3 Generating Random t’-2D(+¥)-Sharing

We now present protocol Random(P’,t', £) in Table[3] which allows the players
in P’ to jointly generate a random t'-2DH9-sharing, ((r(), ... (D)),
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Table 2. ((5(1), ceey s(z)>>? = 2D(+’£)Share(D, Pt e, s s(l))

1. For every I = 1,...,4, D picks a random bivariate polynomial H(l)(x,y) of de-
gree t' in both the variables, with H(l)(0,0) = s, Let fi(l)(:v) = H<l>(z,i) and
ggl)(y) = HW(i,y). Now D wants to hand over n’ values on fl(l)(:v) and ggl)(y)
for I = 1,...,¢ to P; with his IC signature on them. For that D executes Effi-
cientDistr and EfficientAuthVal of EfficientIC(D, P;,P’, ¢, f7 (), 1 (), ..., £9@5)) for
for all 5 € {1,...,n'}. Similarly D executes EfficientDistr and EfficientAuthVal of

EfficientIC(D, Pi, P, £,¢" (7), 67 (3), ..., 9 () -

k2

_ ) O] ) (7 Q) (1) (07
2. For I = 1,...,¢, P; checks whether the sets f;"/(1),...,f;”’(n’) and g;”(1),...,9;”(n)
are t’-consistent. If the values are not t’-consistent, for some | € {1,...,¢} then P; along
with all players in P’ invoke EfficientRevealVal(D, P;, P’ ¢, fi(l)(j)7 fi(Z)(j), RN fi(é)(j)) and
EfficientRevealVal(D, P;, P, £, 9" (j), ¢ (4), ..., 9P (j)) for all j € {1,...,n'}. If the sig-
natures produced by P; are valid and for some | € {1,...,¢}, either fi(l)(l),...,fi(l)(n') or
ggl) 1),..., ggl) (n') is not t'-consistent, then the protocol terminates without generating desired
output.

3. For every pair of players P; and P; from P’ the following will be executed:

(a) P; as a dealer executes EfficientDistr and  EfficientAuthVal of
EfficientIC(FP;, Pj,P',Z, fi(1>(j), ey fi(é)(j)) to give his IC signature on fi(l)(j), ey fi(z) ()
to Pj. Upon receiving the signature, P; checks whether fi(l) ) z g;l) (2) for
Il = 1,...,¢ If there is an inconsistency then P; along with all players in P’ invoke
EfficientRevealVal(D, P;, P, £, 9" (i), g{* (1), ..., ¢ (9)).

(b) If P; fails to produce valid signature in the previous step, then all the players from P’ ignore
the IC signatures received from P; in previous step. Otherwise, if P; is able to produce valid

signature then g§.1>(i), g§.2>(i), ce g§2> (i) become public. Using the public values P; checks
whether fi(l) ) Z g;l) (i) for I = 1,...,£. If he finds any inconsistency, then P; along with all
players in P’ invoke EfficientRevealVal(D, P;,P’, ¢, fi(l)(j)7 fi(z)(j)7 RN fi(“(j)).

(c) If P; fails to produce valid signature in the previous step, then all the players from P’
ignore the IC signatures received from P; in step 3(a). Else if P; is able to produce valid

signature, then all the values fi(l) (1), fi(2) () fi“)(j) become public. Every player then
verifies fi(l)(j) < gy)(i) forl=1,...,¢ If fi(l)(j) # g;.l)(i) for some I € {1,...,£} then the
protocol terminates without generating the desired output.

Lemma 6. With overwhelming probability, Random generates random ((r(") ...

OV in eight rounds and privately communicates and broadcasts O((€n>+n*)k)
bits.

2.4 Proving c = ab

Definition 5. t'-1D(f)-sharing: A value s is correctly t'-1D) -shared among
the players in P, denoted by (s)y, if there exists t' degree polynomial f(x) held

Table 3. Protocol for Generating ¢ Random ¢'-2D™9-Sharing

((rO ey, = Random(P', t/, £)
Every player P; € P’ invokes 2D(+‘Z)Share(Pi, Pt e, e P T(K’Pi)) to generate
((rP r“’Pi)))f,i, where r(1:P)  p(6Pi) are randomly selected from F. Let Pass de-
notes the set of players P; in P’ such that t'-2D(+‘Z)Share(Pi,P',t',Z,T(I‘Pi), S ,T(Z‘Pi))
is executed successfully. Now all the players in P’ jointly computes ((r", ..., r(z))>t/ =

) N\ P;
ZPiePass<<T(l‘P1)7 S ;T(E‘P1)>>t/~

)
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by D with f(0) = s. Every player P; € P’ holds a share s; = f(i) of s with an
IC signature on it from the dealer D (i.e. ICSigs, (D, F;)).

Definition 6. t'-1D(+-Y)-sharing: We say that a set of secrets sV, ..., s are
correctly t'-1DH0 _shared among the players in P’ if there exists t' degree poly-
nomials fV ..., f© held by D, with fO(0) = sO forl=1,...,¢. Every player
P, € P’ holds shares sz(-l) = fW@),.. .,SEZ) = fO®G) of sM, ..., 5O along with
a single IC signature on them from the dealer D (i.e. IC’Sig(Sgl)’__’sEz))(D7 P))).

We denote the t'-1D*9) _sharing of £ length secret by (s',..., s y.

If ¢ secrets s, ... s are t-1D(*)-shared by player D, we denote it by
(s',...,5"D . Nowlet D€ P’ has already correctly t'-1D*)-shared o), ... a®
and b, ... b among the players in P’. Now D wants to correctly #'-2D(+4)-
share ¢V, ..., ¢® without leaking any additional information about a®, b
and ¢, such that every (honest) player in P’ knows that ¢ = aMb® for
l=1,...,£. We propose a protocol ProveCeqAB, given in Table [ to achieve
this task. The idea of the protocol is inspired from [I0] with the following mod-
ification: we make use of our protocol 2D(+Y)-Share, which provides us with
high efficiency. For a detailed explanation, see the full version of the paper [13].

Lemma 7. In ProveCeqAB, if D does not fail, then with overwhelming prob-
ability, every (a(l)7b(l)), e satisfies ¢ = aWpV) . ProveCeqAB takes twenty
five rounds and communicates O((fn*+n*)k) bits and broadcasts O(({n*+n*)k)
bits. Moreover, if D is honest then a®® b and ¢V are information theoretically
secure.

2.5 Multiplication

Let two sets of ¢ values aV,...,a® and b, ... b are correctly t/-2D(+:0-
shared among the players in P’, i.e. ((a™,... a®))y and ((bM),... bE)),.
We now present a protocol called Mult, given in Table Bl which allows the
players to compute t-2D(H-sharing ((¢™V), ... ¢®)) such that ¢) = aMp®
for I = 1,...,£. Our protocol is based on the technique used in [I0] with the
following difference: we make use of our protocol ProveCeqAB, which provides
us with high efficiency. For full details, see the full version of the paper [13].

Lemma 8. With overwhelming probability, protocol Mult produces ((c(l), ceny
N from (M, ... a))y and (D, ... 0OV such that ¢V = aWp® if
less then n' — 2t' players are added to C. Mult takes twenty five rounds and
communicates O((n®+n®)k) bits and broadcasts O(({n®+n®)k) bits. Moreover,
. a® and bD remains secure.

2.6 Proving a=b

Consider the following scenario: Let De P’ has t'-1D(H%)-ghared ¢ values a1V,
.., a) among the players in P’. Now some more computation has been carried
out after the sharing done by D and during the computation some players have
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’I]‘Dable 4. (W, ..., cOND =ProveCeqAB(D,P’,t', ¢, (a™, ..., a2 (pM) ... p®
)er)

1. D randomly generates (B(l), - ,ﬁ(z)) S F*. and invokes
2Dt O 8hare(D, P/, t', 6, ..., c®), 2Dt O Share(D, P/, t', £, ..., 31) and
2D+ [)Share(D,P ,t,Z,b(l)ﬁ(l),...,b(e)ﬁ(z)). If any of the Share protocol fails, then
D fails and the protocol terminates. For | = 1,...,¢, let a<l>, b(l)7 c(l), ,6‘(” and ,G‘(Z)b(l)

are implicitly shared using polynomials fa(l)(x), fb(l)(:t)7 f‘c(l)(z)7 fﬁ(l)(z) and fBa)b(l)(:v)
respectively.

2. Players in P’ jointly generate a random number r. This is done as follows: first the players
in P execute the protocol Random(P’,t’,1) to generate ((r)),,. Then the players compute
r = 2DTRecons(P’,t’, ({(r))).

3. D broadcasts F (z) = rfa(l) (z) + fﬁ(l) (z) forl=1...,¢.

4. Player P; € P’ checks F()(4) < rfa(l) (2) + fﬂ(” (i) for I =1,...,£. If the test fails for at least
one l, then P; and all players invoke EfficientRevealVal(D, P;, P’, ¢, f"’(l) (2),... (b (2)) and
EfficientRevealVal(D, P;, P’, ¢, fﬂ(1>(i), .. .,fﬂ(é) (i)). If the signature is invalld, ignore P;’s
complaints. Otherwise all the values (f¢ v () fa(é) (z)) and (fﬁ(l) (i),..., fﬁ(b (i)) become
public. Using these values all players publicly checks F) (i) = rfa( ) (i) +f5(l) (i) forl =1,...,4¢.
If the test fails for at least one [, then D fails and the protocol terminates here.

5. D broadcasts G (z) = F(l)(O)fb(l> (z) — fﬁ(l)b(” (z) — ch(” (z) forl=1...,¢.

6. Player P, € P checks GO@) = FO@©) " ) JLARLE)
rfc(l) (i). If the test fails for at least one [, then P; and all play-
ers in P’ invoke EfficientRevealVal(D, P;, P’, ¢, fb(l) (i),..., fb(g) (4)),
EfficientRevealVal(D, P;, P', ¢, 170 i) . p8 0@ 4y and
EfficientRevealVal(D, P;, P’ ¢, 1< (i), ..., ff“) (i)).

7. If the signature is invalid, ignore P;’s complaint. Otherwise all the values (fb(1> (@),..., fb(é) (@),
(f5(1>b(1) (2), . fBM)b(z> (4)) and (f °(1> (@),..., fc(é) (4)) become public. Using these values all
players publicly checks G (5) = F(l)( )72 @y — PO 4y e () for 1 = 1, £, If the
test fails for at least one [, then D fails and protocol terminates here.

8. Every player checks whether W Zoforl= 1,...,¢. If the test fails for at least one [, then D
fails and protocol terminates here. Otherwise D has proved that c® =a®Wp® for | = 1,...,¢.

been detected as faulty and removed from P’. Let us denote the snapshot of
P’ before and after the computation by P; and P, respectively. Also assume
|P1] = n1 and the number of corrupted players in Py is t; with nqy > ¢+ 1+ ;.
Similarly |Pz| = ng and the number of corrupted players in Py is ty with ny >
t+1+tg, t1 > to. Now D wants to correctly to-2D(+9-share b ... b() among
the players of P, such that b = a(¥), without leaking any additional information
about a). We propose a protocol ProveAeqB to achieve this task.

Lemma 9. In protocol ProveAeqB, if D does not fail, then with overwhelm-
ing probability, every (a(l),b(l)) satisfies a) = b . ProveAeqB takes thirteen
rounds and communicates and broadcasts O((fn* 4+ n3)k) bits. Moreover, if D is
honest then Ay learns no information about a(l), for1 <1</

2.7 Resharing

As described in previous section, consider the time-stamps before and after some
computation where before and after the computation, P’ is denoted by P; and
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Table 5. ((¢M,..., D))y = Mult(P’, £, ((a™P, ..., a D)), (V.. 6N ,0)

1. Given ((aV,...,a®)),,, it implies that i** shares of a,... a® are t-1D(T)-shared
by P; i.e. (agl), .. .,a§€)>5i for P; € P’. Similarly we have {bgl), .. .,b§€)>5i.Player
P; invokes ProveCeqAB(P;,P’,t, ¢, (aél), e agz))f,i, (bgl) s bgz))f,i) to generate
(e, e

2. If at least n’ —2t’ players fails in executing ProveCeqAB, then remove them from P’, adjust
t’ and terminate the protocol without generating the expected result. Otherwise for simplicity
assume that the first 2¢' 4+ 1 players are successful in executing ProveCeqAB.

3. All the players compute: ((cP,...,c®)),, = Zfif’l ri(<c£1), e c££)>>5i, where
(71, .., 7274 1) represents the recombination vector [9].

((a®, ..., a(z))>?2 = ProveAeqB(D,Ps, t1,ts, £, (aP, ..., au))z)

1. D invokes 2D(+'2)Share(D, P2, ta, L, a(l), RN a(é)) to  verifiably t2—2D(+’€)-share
(a(l), RPN a(e)). D selects a random ¢ length tuple (c(l), RN C(Z)) € F’ and invokes
2D<+’Z)Share(D,'P2,t1 — 1,€,c<1), . c(z)). If protocol 2D+ Share fails then D fails
here and the protocol terminates here. Otherwise for convenience we say that D has
t2-2D(H 0 shared (b(n, ey b(é)). For an honest D, a® =b® for | = 1,...,¢4.

2. Forl=1,...,¢1let a®, b® and ¢ are implicitly shared using polynomials fa(l) (z) (degree

t1), fb(l)(:v) (degree t2) and fc(l) (z) (degree t1 — 1) respectively. Now D broadcasts the
polynomials F® (z) = fa(l) (z) + xfc(l) (z) — fb(l) (z).

3. Player P; € P2 checks whether FO (3) <z f"(l)(i) + ifc(l) (i) — fb(l)(i). If the
test fails for at least one [, EfficientRevealVal(D, P;, Py, f“(l) (2),..., f“(é) (@),
EfficientRevealVal(D, P;, Py, ¢, f*' (0), ..., £ (i) and

14
EfficientRevealVal(D, P;, Py, £, £ (i), ..., 1< (1)) are invoked.
4. If the signatures are invalid, then ignore P;’s complaints. Otherwise all the values

V@, @, @, Y @) and 2V @), . 129 (6)) become public.

Using these values all players publicly checks whether F® (4) < fa(l) + ifc(l) (2) — fb(l) (@)
for I =1,...,£. If the test fails for at least one I, then D fails and protocol terminates here.

5. Every player checks F(l)(O) Z0forl = 1,...,2. If the test fails for at least one [, then D
fails and protocol terminates here. Else D has proved that a® =p®,

P, respectively. Let the players in P; holds a t;-2DH9_gharing of ¢ values
sM 5@ e, ((sM) ... ), . Now the players want to jointly generate to-
2D+ _gharing of same values i.e ((s() ... s())); among the players in Py
where to < t1. This is done by protocol Reshare.

((a®,...,a®)),, = Reshare(P’, t1,t2, ¢, ((a™,...,a®)),)
1. Given ({a(l),...,a“)})tl, it implies that the *" shares of a®,...,a®) are already
t1-1D9 _shared by P;, i.e. (aEl), .. .,ay))fli for P; € Pi. Player P; in P2 invokes
ProveAeqB(P;, P2, t1,t2, 4, (aél), ce ay))fli) to generate ((aél), RN a52)>)f;. For simplicity as-

sume that first ¢t; + 1 players are successful in ProveAeqB. Since no =t + 1+ t2 and ¢t > t1, at
least t + 1 > t1 + 1 honest players will always be successful.

2. All the players compute: ((a®),..., a(£)>>t2 = 221:'*1-1 ri(<a£1), .. ,a££)>>gi, where
(ri,.eey n1+1) represents the recombination vector.
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Lemma 10. With overwhelming probability, protocol Reshare produces to-2D(+0)-
sharing ((aM,...,a®)),, from (&M, ... a®)), with ty < t,. Reshare takes
thirteen rounds and communicates O((In® +n*)k) bits and broadcasts O((In> +
n*)k) bits. Moreover, A; learns nothing about a®¥), for 1 <1 < {.

2.8 Preparation Phase

We call a triple (a,b,c) as a multiplication triple if ¢ = ab. The goal of the
preparation phase is to generate correct d-2DT-sharing of (cps + cg) secret mul-
tiplication triples where d denotes the number of corrupted players still present
in P’ at the end of preparation phase. So in total there will be ¢p; + cg multi-
plication triples (a®,b®, c®) such that ¢ = a®p® for i = 1,..., (cas + cr).
The generation of ¢j; + cg multiplication triples is divided into [log(t)] seg-
ments, wherein each segment is responsible for generating d-2D(+-“)-sharing of
L= [ ‘;Rl triples. Here we use a movel technique called rapid player elimina-
tion (RPE) which works in the following way: The computation of a segment is
non-robust i.e. a segment may fail due to the (mis)behavior of certain number of
corrupted players who reveal their identity during the execution of the segment.
At the beginning of preparation phase we set the counter for keeping track the
number of (segment) failures to zero i.e f = 0. We create a win-win situation,
where if a segment fails, then it must be due to the revelation/detection of at
least 27 new corrupted players. After removing the corrupted players from P,
a fresh execution of the same segment will be started with f incremented by 1.
This ensures that total [log(t)] — 1 failures can occur (i.e f < [log(t)] — 1) since
[log(t)] —1 failures are enough to reveal all the ¢ corrupted players. Once all the
t corrupted players are revealed, rest of the computation can run without occur-
rence of any failure. Specifically, in every segment one of the following occurs: (a)
t1-2D+_sharing of £ = [} ;‘;R] secret multiplication triples will be generated,
where t; denotes the number of corrupted players present in P’ (t; = ¢ — |C])
at the beginning of the segment’s execution; (b) the segment fails with at least
27 corrupted players being eliminated from P’ (and added to C), where f de-
notes the number of failures occurred so far. But there are two problems here.
We want all the triples to be d-2D"-shared. But since the number of corrupted
players in P’ may change dynamically after every failure, the sharing produced
in different segment may be of different degree. Also the sharing produced by
segments are t,-2D(")-sharing where ¢; may vary segment to segment. So, to
achieve our goal, we first use protocol Reshare to obtain uniform d-2D(0-
sharing for all the segments. Then, we use Protocol Convert2D(T9t02D™ to
produce d-2D%-sharing from d-2D(*%)-sharing. By using this approach, we can
efficiently generate the triples with less communication overhead. For full details
of the protocol, see [13].

Lemma 11. With overwhelming probability, protocol Preparation Phase pro-
duces correct d-2D7T -sharing of (capr+cr) secret multiplication triples in O(log(t))
rounds, communicates O((cpr+cr)n3+n*)k bits and broadcasts O((car+cg)n+
n*)k bits. Moreover, A; learns nothing about (a™,b® c®) for 1 <i < 4.
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Preparation Phase
1.Let P =P, n =n, L= [01\1{)::1%] and t' =t. Let f = 0.
2. For every segment k = 1,..., [log(t)], do the following:

(a) Set P = P, ni = n' and t; = t. Invoke Random(Pi,ti,f) twice in
parallel to  generate (a(l) cee aff)»tl and {(b;cl), e bff)>>t1 . Then Invoke
Mult(Pq, ¢, ((a;cl), S a;cb <(b§cl)7 S b(€)>)t1) to generate ((cg), R cgcb))tl.

(b) Ir Mult fails to produce ({¢c;’, ... ,ck’))>t1, then it must have removed 2 new corrupted
players from P’ (i.e |Pi| — |P’| = n1 —n’ > 2f). Thus repeat this segment with f = f + 1.

ELSE increment k.

3. Now let P2 = P’, no = n/ and d = t’. For every segment k = 1,..., [log(t)], check whether
ci,l), .. .,cff) are d-2D(H %) _shared. If czl),...,cik) are a-2D(T 8 _shared with o > d then
invoke Reshare(P2,«,d, ¥, ((azl), e aff)»a), Reshare(P2, a, d, £, ((bil), R bfp})a) and
Reshare(P2, o, d, ¢, {(ci,l), e cff)>>a) to generate ((azl), e aﬁp})d, ({bil), RN bfp})d and
etV e,

4. For every segment k=1, . . ., [log(t)], invoke Convert2D{T 9 to2D* (P, d, ¢, ((a;cl) . a;p))d),
Convert2D "9 t02DH (P2, d, ¢, ((b;cl) see b;p))d) and Convert2DH) t02DT(Ps, d, ¢, <(c§cl) .
ei”))a) to obtain ((ai))a,- - (@i Vas (LN, (b ))a and (&), () a-

2.9 Input Phase

Once Preparation Phase is complete, the execution of Input Phase begins.
The goal of the input phase is to generate d-2DT-sharing of ¢; inputs. Assume
that player P, € P has ¢; inputs. Thus ¢; = > ; ¢;. We stress that though
some players from P might have failed and removed during preparation phase,
we still allow them to feed their input. Recall that at the end of preparation
phase, Po = P’. So once all the players in P feed their input, the rest of the
computation will be performed among the players in Ps. For this, each input
sharing is then reshared among the players in Ps. Also if some player P; fails to
correctly share their input, then everybody accepts a default d—2D(:¢) sharing
on behalf of that player.

Lemma 12. With overwhelming probability, protocol Input Phase produces
correct d-2D%-sharing of cr inputs. Input Phase takes twenty eight rounds
and communicates O(cin® + n®)k bits and broadcasts O(crn® + n’)k bits.

Input Phase

1. Every player P; € P with c; inputs sgl) s ng) e sici), invokes
2D(+’Ci)Share(Pi, P,t,ci, 551)’552)) ce ,sgni)) to generate ((sgl), RN sgni)»t.

2. For every P;, invoke Reshare(P2,t,d, c;, ({sgl), cey sgci)>>t) to gener-
ate ({sgl), RN sgei)»d provided d < t. For every player P;, invoke
Convert2DH¢)t02DT (Pa, d, ci, (s, ..., 5°)) ) to obtain ((s{))a, ..., ("))

2.10 Computation Phase

Once Preparation Phase and Input Phase are over, the computation of the
circuit (of the agreed upon function f) proceeds gate-by-gate. First, to every
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random and every multiplication gate, a prepared d-2D%-shared random triple
is assigned. And a d-2D7T-shared input is assigned to the corresponding input
gates. A gate (except output gate) g is said to be computed if a d-2DV-sharing
((zg))a is computed for the gate. Note that all the random and input gates will
be computed as soon as we assign d-2D7T-shared random triples (generated in
Preparation Phase) and d-2D*-shared inputs (generated in Input Phase)
to them respectively. A gate is said to be in ready state, when all its fanin
gates have been computed. In the Computation Phase, the circuit evaluation
proceeds in rounds wherein each round all the ready gates will be computed
parallely. Evaluation of input, random and addition gates do not require any
communication. Evaluation of multiplication and output gate requires 2 and 1
call to Protocol 2D Recons respectively. So the individual gates in the circuit
are evaluated as shown in the above table. The correctness of the steps described
for multiplication gate follows from [I] which introduced the technique called
Clircuit Randomization.

Lemma 13. With overwhelming probability, protocol Computation Phase eval-
uates the circuit gate-by-gate in a shared fashion and outputs the desired outputs.
Computation Phase takes D rounds and communicates O((car +co)n’k) bits.

Computation Phase
Input Gate: ((s))q = IGate(({s))a)

Assign a d-2D%-sharing of an input, say ((s))q4.
Random Gate: ({(a))a = RGate({{a)}a, ((0))a, {{c))a)

Assign a d-2DV-sharing of a multiplication triple, say ({{a))a, ((b))a, ({c))a), where only the first
component is used.

Addition Gate: ((2))qs = AGate({(z))a, {((y))a)

If ((z))a and ((y))q are the inputs to the addition gate, all players in P compute ((z))q =
({x))a + ((y))a with ((z))aq as the output of the gate.

Multiplication Gate: ((z))a = MGate(((z))d, ((¥))a, ({(a))a, ((b))a; ({c}))a))

1. Let ((x))q and ((y))q4 are the inputs to the multiplication gate and ({{a))a, ((b))a, ({(c))a) is the
random multiplication triple assigned to it. Then all players in P2 compute the output ((z))q) in
the following way.

2. All players in Py compute (())a = ((z))a — ((a))a and ((B))a = ((¥))a — ((b))a-

3. All players in P> invoke 2D Recons(Pa2, d, ({(a))q) and 2D Recons(P2, d, ({(B))a4) to recon-
struct a and 3.

4. All players in Pz compute ((2))q = af + a{(b))a + B{{a))a + ({c))a.
Output Gate: z = OGate(({(z))q)

If ((x))q is the input to the output gate, all players in P2 compute z = 2DT Recons(P2, d, {((z))4).

Now our new UMPC protocol for evaluating function f is: (1). Invoke Prepa-
ration Phase (2). Invoke Input Phase (3). Invoke Computation Phase.

Theorem 1. With overwhelming probability, our new UMPC protocol can eval-
uate an agreed upon function securely against an active adaptive rushing ad-
versary Ay with t < n/2 and requires O(log(t) + D) rounds and communicates
O(((er +cr +cn +co)n®)k) bits and broadcasts O((cr +car + cr)n® +n)k bits.
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Using the protocol of [12] to simulate the broadcasts, the communication com-
plexity and round complexity of our UMPC protocol is as follows:

Theorem 2. With overwhelming probability, our new UMPC protocol requires
O(nlog(t) + D) rounds and communicates O(((cr + car + cr + co)n* + n')k)
bits.

References

10.

11.

12.

13.

14.

15.

16.

. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-

baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420-432. Springer, Heidelberg
(1992)

. Beaver, D.: Secure multiparty protocols and zero-knowledge proof systems toler-

ating a faulty minority. Journal of Cryptology 4(4), 75-122 (1991)

. Beerliova-Trubiniova, Z., Hirt, M.: Efficient multi-party computation with dispute

control. In: Proc. of TCC, pp. 305-328 (2006)

. Beerliovéa-Trubiniova, Z., Hirt, M.: Perfectly-secure MPC with linear communica-

tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213-230.
Springer, Heidelberg (2008)

. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-

cryptographic fault-tolerant distributed computation. In: STOC, pp. 1-10 (1988)

. Berman, P., Garay, J.A., Perry, K.J.: Bit optimal distributed consensus. Computer

Science Research, 313-322 (1992)

. Carter, L., Wegman, M.N.: Universal classes of hash functions. Journal of Com-

puter and System Sciences (JCSS) 18(4), 143-154 (1979)

. Chaum, D., Crpeau, C., Damgard, I.: Multiparty unconditionally secure protocols

(extended abstract). In: Proc. of FOCS 1988, pp. 11-19 (1988)

. Cramer, R., Damgard, I.: Multiparty Computation, an Introduction. Contempo-

rary Cryptography. Birkhduser, Basel (2005)

Cramer, R., Damgard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multi-
party computations secure against an adaptive adversary. In: Stern, J. (ed.) EU-
ROCRYPT 1999. LNCS, vol. 1592, pp. 311-326. Springer, Heidelberg (1999)
Damgard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572-590.
Springer, Heidelberg (2007)

Fitzi, M., Hirt, M.: Optimally Efficient Multi-Valued Byzantine Agreement. In:
Proc. of PODC 2006, pp. 163-168. ACM, New York (2006)

Patra, A., Choudhary, A., Pandu Rangan, C.: Round Efficient Unconditionally
Seecure Multiparty Computation. Cryptology ePrint Archive, Report 2008/399
Pfitzmann, B., Waidner, M.: Information-theoretic pseudosignatures and byzantine
agreement for t > n/3. Technical report, IBM Research (1996)

Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC, pp. 73-85 (1989)

Yao, A.C.: Protocols for secure computations. In: Proc. of 23rd IEEE FOCS, pp.
160-164 (1982)



A New Anonymous Password-Based
Authenticated Key Exchange Protocol*

Jing Yang and Zhenfeng Zhang

State Key Laboratory of Information Security,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
National Engineering Research Center of Information Security, Beijing 100190, China
{yangjing,zfzhang}@is.iscas.ac.cn

Abstract. In Indocrypt 2005 Viet et al. first proposed an anonymous
password-based key exchange protocol: APAKE and its extension:
k-out-of-n APAKE. Then Shin et al. presented an improved protocol
TAP. In this paper, we first show that the TAP protocol is vulnerable
to two attacks. One is an impersonating attack and the other is an
off-line dictionary attack, which is also applied to k-out-of-n APAKE.
Furthermore, we propose a novel anonymous password-based key ex-
change protocol, and prove its security in the random oracle model
under the square computational Diffie-Hellman assumption and decision
inverted-additive Diffie-Hellman assumption. We also extend our proto-
col to the distributed setting, which is secure against the proposed attacks.

Keywords: Password-based AKE, Anonymous authentication.

1 Introduction

Password-based authenticated key exchange (PAKE) has received growing atten-
tion in recent years. The two communication entities in PAKE can establish a fresh
authenticated session key by only using a pre-shared human-memorable password,
without the heavy-weight PKI. However PAKE also suffers from so-called exhaus-
tive guessing or dictionary attacks due to the small space of the password. By now
many password-based key establishment schemes have been proposed, including
EKE [7], AuthA [5/6], SPEKE [9], SRP [7], password-based TLS [3] et al. Besides
such two-party protocols, some studies focus on the group setting. A password-
based group key establishment protocol enable a group of users to authenticate
each other and establish a fresh session key for further secure communication.
Each user either shares a common password with all others, or just shares a pass-
word with a trusted server. For the latter case, the establishment of a session key
needs server’s help, who may know the key or not.

Anonymity is an increasing hot issue nowadays. An anonymous authentication
scheme [I2] is a protocol that allows a member called a prover of a group to
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convince a verifier that she is a member of the group without revealing any
information about her. Anonymity in the public key cryptosystem has been
discussed for a long time. The group signature , ring signature and anonymous
credential system are obvious solutions to it. However due to the low entropy of a
password, anonymous authentication in a password-based scheme is a challenging
thing. By now there have been only a few research results on this issue.

Viet et al. [12] first proposed, as we know, an anonymous PAKE protocol,
called APAKE, which can make a user establish a session key with a server anony-
mously with only sharing a short password. And they extended it to the k-out-of-n
APAKE protocol between a group of members and a server. They combined a
password-based AKE protocol [2] for generating secure channels with an Oblivi-
ous Transfer protocol [I] for client’s anonymity. Later Chai et al.[8] proposed a
similar smart card-based PAKE protocol preserving user’s privacy. And recently
Shin et al. [I0] pointed out that Viet et al.’s k-out-of-n APAKE protocol is in-
secure against an off-line dictionary attack, and proposed a so-called threshold
anonymous PAKE (TAP) protocol. The TAP protocol is claimed to provide se-
mantic security of session keys, unilateral authentication of server S and clients’
anonymity against a passive server. With the threshold ¢ = 1, the TAP protocol
is more efficient than Viet et al.’s APAKE protocol. Both the k-out-of-n APAKE
protocol and the TAP protocol works in distributed settings, in order to enable a
group of member to establish a session key with a server anonymously. Such kind
of protocols is called as distributed anonymous PAKE in this paper.

1.1 Owur Contribution

Our contribution in this paper is twofold. Firstly, we point out the vulnerabili-
ties of both Viet et al. and Shin et al. distributed anonymous PAKE protocols.
Shin et al.’s TAP (t > 2) protocol is insecure against two attacks. One is an
impersonating attack breaking the unilateral authentication of the scheme, and
the other one is an off-line dictionary attack, which can make a malicious client
get all other clients’ passwords. And the latter is also applied to Viet et al.’s
k-out-of-n APAKE protocol. Secondly, we propose a new anonymous password-
based authenticated key exchange protocol, named NAPAKE. In the random or-
acle model, we prove its security under the square computational Diffie-Hellman
assumption and decision inverted-additive Diffie-Hellman assumption. Further-
more, we give an extension of our protocol to the distributed setting, which is
secure against the proposed two attacks.

1.2 Organization

The paper is organized as following: Section 2 presents two attacks against the
afore-mentioned anonymous PAKE protocols. In section 3, we introduce the
formal model and security assumptions for the two-party anonymous PAKE.
Our new protocol NAPAKE is shown in section 4, along with its efficiency and
security analysis. And the extension of NAPAKE to the distributed setting is
given also in the section 4. Finally section 5 concludes the whole paper.



202 J. Yang and Z. Zhang

2 Security Flaws of Two Distributed Anonymous PAKE
Protocols

In this section, we present two attacks against Shin et al.’s TAP (¢ > 2) [10] pro-
tocol. One is an impersonating attack breaking the unilateral authentication of
the scheme, and the other one is an insider’s off-line dictionary attack. Moreover
the latter is also applied to Viet et al.’s k-out-of-n APAKE [12] protocol.

Note that, both the k-out-of-n APAKE and TAP protocol have been claimed
to be secure for the AKE security and unilateral authentication. In fact, the
security model they adopted is for the two-party setting, and the subgroup is
treated as a whole entity in their model. Therefore, the insiders’ attack has
not been covered sufficiently. Although a kind of insider adversary was also
considered in the k-out-of-n APAKE, it is used only for the user’s anonymity.

The attacks show that insider’s attack is practical and seems easier to mount
in distributed (multiparty) anonymous PAKE protocols than two-party settings.

2.1 Brief Review of the TAP Protocol

Shin et al.’s threshold anonymous PAKE protocol is illustrated in Fig.1. The
goal of the protocol is to make the ¢ clients in SG establish a session key with S
anonymously. It works in the group G with the prime order g and two generators
g and h. Let F : {0,1}* — Z; and G : {0,1}* — G be two full-domain hash
functions, and H; and Hy be secure cryptographic hash functions from {0, 1}*
to {0,1}!, where [ is a security parameter.

2.2 The Impersonating Attack against TAP

Suppose SG initiates the TAP protocol. Let AG be another subgroup of I", which
consists of ¢’ malicious clients not included in SG. AG wants to impersonate S
to establish a session key with SG. The detail is shown as follows.

1. AG intercepts the message {I,¢,{X,;" }1<i<n}. Each client Cj in AG, chooses
a random numbers ey from Z,, computes E; = g%, Fj, = h7 (kpwi) and
Ey" = E}, - Fy, and constructs a new set {X:/}lgigny in which Xi*' = E}if
C; is in AG, or otherwise X} = X7. After that, AG initiates another run of
the TAP protocol with S by sending (I',#, { X' },-,<,.)-

2’. Upon receipt of the message (I',¢, {X:/}lgign), the server S executes the
protocol as normal.

3/. - Each Cf in AG, looks for Z, and extracts Sy, where S, = Z, & G(k, K)

and K = Y°r.

~ With all Sy, AG reconstructs the polynomial f(x) = Zflzl wz! by La-
grange interpolation, and gets S; = f(j), G(j, K;) = S; & Z; for all n
clients.

— AG chooses a new shared secret S €z G and new coefﬁmentb {Ul}1<l<t 1
to construct a new polynomial f(z) = Zl Zo Wt with ug = S.
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Client: SG C I'(|SG| = t) Server: S (W; = b7 (:Pwi))
For each C; € SG Y ER Zq,Y =gY,8S€er G
T ER Zq,X—L‘:gzi uo:S,ukEG
Wi = K7 0Pwid) X* = X; x W; Forj=1ton
For each C; € I' — SG, S; = f(9)
. Tt X <i<n .
X; €r G, — X =Xj/W, K;=X]

Z; =G0, K;) ®8;
Vs = H1(I'||S||Trans||S)

8 YA{Zi}1<j<n Ve
ESYhsisnVs g gy, (1)S|| Transl|s)

For each C; € SG, picks up Z;
Si = Z; ®G(3, Ks)
§' = % j—s M,
where \;, = Hlﬁmgt,myﬁk e
If Vs # H1(T||S||Trans||S’), reject
Otherwise sk = Ha(I'||S||Trans||s")

Note: I'=(Ch,---,Chn), Trans =t{{X; h<i<n[Y[{Zj}1<j<n

Fig. 1. Shin et al.’s threshold anonymous PAKE (TAP) protocol

— AG computes n shares S = f(j), and generates new {Z;}1<j<n, where
Z; = G(j,K;) ®S;. Then AG computes Vs = H1(F||S||Trans||S) and
sk = HQ(FHSHTTansHS) where Trans = ¢|[{X;" }1<Z<n||Y||{Z]}1§]§n.
Finally AG sends the message (S, Y, {(ZY1<j<n, VS) to SG.

3. — Bach client C; in SG, looks for Z; and extracts S, from Z;, where S, =
Z; @ G(i, K;) and K; =YY% . 3

~ By collaborating with one another, SG reconstructs S’ from {S;}1<i<; by
Lagrange interpolation. To check Vs, SG computes V§ = H, (I'||S||Trans
| \SN’) which obviously equals to V. After that, SG generates its session key
sk = Ho(I'||S|| Trans| |§/) In the end SG believes it establishes a session
key with the server S, but it is actually established with AG.

The key to the attack is that anyone who can get the shared secret S chosen
by S can get all clients” hiding codes {G(j, K;)}1<j<n via the corresponding S;.
With those hiding codes, the adversaries is able to generate the correct message
for SG. Actually a similar attack can be mounted by malicious clients in SG to
cheat other ones in SG.

2.3 The Off-Line Dictionary Attack against TAP and k-Out-of-n
APAKE

The off-line dictionary attack shown in this section can be mounted to both TAP
(t > 2) and k-out-of-n APAKE. We only give the detail of the implementation
for TAP, and the other one is similar.
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To get the shared secret chosen by the server S, the clients in SG have to
collect all secret shares and compute S. Suppose C,, is the one who does the
very thing. All other clients send their own S; to C,,, and he computes S from
{S:i}1<i<n, and sends it to all other clients.

However if C,, wants to know other clients’ password, he can execute the
following off-line dictionary attack, by which he could get all other clients’ pass-
words without being detected. The attack flows are shown below.

1. The subgroup SG = {C4,...,Cp,...,C;} initiates the protocol as usual, and
Cyy, records { X[ h<i<n.

2. - (), impersonates the server to send the second message. He chooses
Yy €R Zg to compute Y = ¢g¥. Also he chooses n + 1 random values: S
and {Zj}lgjgn from G.

— Cy, generates an authenticator Vs = Hi(I'||S||Trans||S) and a ses-
sion key sk = Ha(I'||S||Trans||S), where Trans = t||{X;}1<i<nl|Y]|
{Zj}lgjgn- Then he sends (S,Y, {Zj}lgjgn,v,s) to SG.

3. - Each client C; in SG, except C,,, looks for Z; and computes S; = Z; ®
G(i, K;) with K; = Y* . Then they send their own S; to Cy,,. (No matter
how S; is sent, C,, must be able to recover it.)

— C,, sends S to all other clients, and they can verify its correctness by
checking whether V¢ = H1(I'||S||Trans||S) is equal to Vg. Obviously
they are same, so all other clients accept S and believe it indeed comes
from the server.

— After collecting all S;, C),, guesses a password pw} for any client C; in SG,
and get the corresponding G(i, K!), where K/ = (X;/h7(:Pw))¥ Then
C,, computes Z! = S; @ G(i, K). By checking whether Z, equals to Z;,
Cyn, can find out the correct password pw) for the client C;. Similarly, Cp,
is able to get all other clients’ passwords.

If SG doesn’t specify a particular client to recover S, it may alternatively let
all clients broadcast their secret shares. Then any adversary, no matter whether
in the subgroup or not, can mount the above attack. And the result is the clients
of SG would find that the verification is not satisfied and they terminate the
run of the protocol. Yet with their broadcasted secret shares, the adversary has
already gotten all clients’ passwords.

TAP didn’t give the specification of how to recover S for the subgroup. But no
matter how S; being sent, the protocol can hardly resist the off-line dictionary
attack. In fact, members in SG have to recover S from {S;}, so the only thing
unknown to an insider adversary after getting S; is the password, if he can
control the message from the server to SG. The key to the attack is that the
members in SG cannot verify the second message whether from the server or
not, namely they cannot distinguish Z; from a random value. Moreover using
the hiding code to protect secret shares makes the off-line dictionary attack
feasible.
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3 The Model and Security Notions

By now, anonymous PAKE protocols can be classified into two types: the two-
party setting and the distributed setting. Defining the security model for the dis-
tributed anonymous PAKE will be our next work in the future. In this paper, we
focus on the security specification in the two-party setting, and adopt the model
introduced in [5] to describe an adversary’s capability and define the security tar-
gets, which provides a neat treatment to dictionary attacks. Due to the anonymity
property, we modify the definition of user’s authentication and introduce a new
definition of user’s anonymity, which is different from that in [12].

3.1 Formal Model

Participants. There is a fixed set of n client users I' = {Un,...,U,}. S is a
trusted server. Each user U; in I' shares a low-entropy secret pw; with S, which
is drawn from a small dictionary Password, according to a distribution D. S has
a list of passwords as PWs = {pw; }1<i<n.

The participants in the two-party anonymous PAKE setting are a single user
U and the server S, with U belonging to I'. The U and S may have several
instances called oracles involved in distinct, possibly concurrent, executions of
P. Generally, we denote the instance p (resp., d) of participant U (resp., S) by

[17 (vesp., [1%).

Adversarial Model. An adversary A is a probabilistic algorithm with a dis-
tinguished query tap. A can take the entire control of the network during the
protocol execution. The capability of .4 is modelled by the following oracles:

- Execute(U, p, S, §): This query models passive attacks, where the adversary
gets access to honest executions of P between the instances [[{, and [[% by
eavesdropping.

- Send(Z, m): This query enables to consider active attacks by having A send-
ing a message to instance I (U, or S). The adversary A gets back the response
I generates in processing the message m according to the protocol P.

- Reveal(I): This query models the misuse of the session key by instance I. The
query is only available to A if the attacked instance actually “holds” a session
key and it releases the latter to A.

3.2 Security Notions

AKE Security. An adversary A is allowed to call oracles Execute and Send
during an execution of an anonymous PAKE protocol P. Eventually, A calls
Test(I)-query only one time, for some instance I (U, or S), which is defined like
below:

-Test(I): This query tries to capture the adversary’s ability to distinguish real
keys from random ones. The Test oracle tosses a coin and obtains a bit b € {0,1}.
If b = 0, then Test gives a random bit sequence, and if b = 1, then Test gives a
session key (the output of Reveal(])).
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The Test(I)-query is only available to A if attacked instance I is Fresh (which
roughly means that the session key that I hold is not “obviously” known to the
adversary). Receiving the output of Test, the adversary A outputs a bit &', which
represents A’s guess of b. An AKE advantage is

AdvEs(A) = 2Prb = 0] — 1

where the probability is taken over all the random coins of the adversary and all
the oracles and the passwords are picked from a dictionary D. The protocol P is
said to be (¢, €)-AKE-secure if A’s advantage is smaller than e for any adversary
A running in time t.

Authentication. The server’s authentication is defined by the probability
that A successfully impersonates a sever instance in an execution of P by
S ucclsj_“"th(.A). Impersonation succeeds when a user accepts a session key which
is shared with no instance of the server, that is,

Succ, 5" (A) = Pr[U accept a key with no instance of |
The definition of user’s authentication is a little unusual. In an anonymous PAKE
protocol, the server only knows that the user is in a group I" without identifying
the actual identity. So it is defined by the probability that A successfully im-
personates an instance of a user in I" in an execution of P by Succh " (A).
Impersonation succeeds when the server accepts a session key which is shared
with no instance of any user in I", that is,

Succgzja“th (A) = Pr[S accept a key with no instance of U € I'|

A protocol P is said to be (t, €)-S-auth-secure (resp. (¢, €)-U-auth-secure) if A’s
success probability for breaking S-auth (resp. U-auth) is smaller than e for any
adversary 4 running in time ¢.

Anonymity. In terms of the user’s anonymity, the server is considered as an
adversary. Furthermore, it is restricted that I" only has two users Uy and Uj.
In each execution of protocol P, a user instance U, is randomly chosen with
b er {0,1}. At the end of the execution S outputs b’ € {0,1}, which means the
server’s guess on the user’s identity. S’s success in breaking the user’s anonymity
is defined by the happening of the event S Guess Auth, that is S authenticates
itself to the user and guesses the correct b. S’s advantage on breaking the user’s
anonymity is defined as:

Advg)gmy(S) = 2Pr[S Guess Auth] — 1

The protocol P is said to be (¢, €)-U-anoy-secure if S’s advantage on breaking
the user’s anonymity is smaller than € in time t.
3.3 Cryptographic Assumption

The security of NAPAKE is based on the Square Computational Diffie-Hellman
assumption (SCDH) and the Decisional Inverted-Additive Diffie-Hellman
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assumption (DTADH). SCDH is a variation of the standard computational Diffie-
Hellman assumption (CDH), and is proven to be equivalent to the CDH assump-
tion [4]. The DIADH assumption was introduced by Mackenzie in [9]. He proves
a lower bound for solving the problem in the generic model, which asymptoti-
cally matches the lower bound for solving DDH (Decision Diffie-Hellman) in the
generic model. In other words, the two assumptions are equivalent.

Square Computational Diffie-Hellman assumption (SCDH). The SCDH
assumption in a represented group G = (g) is that given ¢*, with x randomly
chosen in Zg, it is hard to compute g* .

Decisional Inverted-Additive Diffie-Hellman assumption (DIADH).
The DIDH assumption states that the distributions (g%, g¢¥,¢*¥/®*¥%)) and
(9™, g¥,9") in arepresented group G = (g) are computationally indistinguishable
when z,y,r are drawn at random from Z, and = +y # 0.

4 The New Anonymous PAKE Protocol

In this section, we proposed a new anonymous password-based authenticated key
exchange protocol, NAPAKE, as mentioned previously. The AKE security and
server’s authentication are proved under the SCDH and DIADH assumptions,
and the user’s authentication and anonymity are analyze additionally. The ef-
ficiency comparison between TAP (¢ = 1) and NAPAKE is given subsequently.
Finally, a new distributed anonymous PAKE protocol based on NAPAKE is
presented, which is secure against the two above attacks.

4.1 Protocol Description

Let G = (g) be a finite, cyclic group of prime order ¢g. Assume G : {0,1}* — G
is a full-domain hash function, and Ho , Hy : {0,1}* — {0,1}! are two random
hash functions, with [ denoted as a security parameter. Let pw; be a password
shared between the client C; and the server S, and PW; = G(i, pw;). The high-
level description is shown as follows, and it is illustrated in Fig.2. We assume
the two entities have already agreed on the client group I" before a protocol run.

1. The server S chooses rs €r Zq, and for all n clients in I" generates A; =
PW]TS with 1 < j <n. Then S sends (S, {4;}i<j<n) to client C;.

2. C; checks all the valuesin {A;} are different from each other. If not, C; aborts
the protocol. Otherwise, C; picks A; from {4;}, and draws two random
values 7, and x from Z,. Then C; computes X = ¢, Z = A7, and generates
X*=2Z-X and B = PW/*. After that, C; sends (X*, B) to S.

3. S computes Z' = B"S with the random value rg and recovers X' = X*/Z'.
Then he chooses y randomly from Z,, and computes Y = g¥ and K’ = X'V.
And he generates the authenticator Auths = Hi(Trans||Z'||K') and the
session key sk = Ho(T'rans||Z'||K"), where Trans = I'||S||{A,}||X*||B||Y.
Finally he sends (Y, Authg) to C;.
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F:{Cl,"‘ 7071,}7 PWz:g(l7pw1)
Client: C; € I” Server: S
S, {A;}1<i<n - .
S Mihgign o Zg, Aj = PW]S(1<j <n)
Choose A; from {A;}i<j<n
Tey X ER ZLNX = gz’Z = A:C
X*=2Z7-X,B=PW/ — 7' =DB"s, X' =X"/7'
y GR Zq,Y — gny/ — X/y
K—vy® Auths = H1(Trans||Z'||K")
Verify Auths = Hi(Trans||Z||K) sk = Ho(Trans||Z'|K")
sk = Ho(Trans||Z||K)

Note: Trans = I'||S||[{A4; h1<j< | X || B|IY

Fig. 2. The NAPAKE protocol

4. C; computes the Diffie-Hellman value K = Y*, and then check that whether
Authg equals to Hi(Trans||Z||K). If not, U aborts the protocol. Otherwise,
he computes the session key sk = Ho(Trans||Z||K) and accepts it.

4.2 Security

The NAPAKE can achieve semantic security of the session key and explicit
server’s authentication under the DTADH and SCDH assumptions, as shown
in Theorem 1. It also indicates that NAPAKE is secure against dictionary at-
tacks since the advantage of the adversary essentially grows with the ratio of
interactions (number of Send-queries) to the number of passwords. The user’s
authentication is preserved in an implicit way, because Theorem 1 guarantees
that no adversary can impersonate a user in I" to establish a session key with
the server. Theorem 2 states that the user is anonymous against the server in
NAPAKE .

Theorem 1 (AKE/S-auth Security). Consider the protocol NAPAKE, run-
ning on a group of a prime order q and a dictionary Password equipped with
the distribution D. For any adversary A with a time bound t, with less than
gs Send-queries, qo Execute-queries, and g4 and g, hash queries to G, Ho, Ha,
respectively, we have

Adviioaxn(A) <de,  Succd ) aks(A) <«

where
qs ¢ 372
€ = 2‘; + 2h x Succh) PR (t +27.) + qn x Succ) P (t + 27) + 3D(qs) + 0y
, , q

and T = qs + ge + qq, Te 15 the computational time for an exponentiation in G.
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Proof. (Sketch) For the AKE security and the server’s authentication, the index
of U is not essential, so we assume the client U is C; in I' without loss of
generality. Let (I1, I, Is) be an instance of DIADH, where I} = g¥1, Iy = g*2,
I3 = g"*, and w;, we, w3 are drawn randomly from Z,. Note that the SCDH
problem is intractable in G. We give a sequence of games, starting from the real
game GO and ending with G5, to prove the security of NAPAKE.

In G1, we simulate as usual all the hash oracles G, Hg, H; by maintaining hash
lists Ag, Ay, and the Send, Execute, Reveal and Test oracles. Also two private
hash oracles H{), H} are imported and simulated. In G2, we exclude the collision
in the output of the G oracle or in the partial transcript ({X*, B}, {Y'}). In G3,
sk and Authg are computed with the private oracles H{, and H} respectively.
It is safe to do that because the collisions of partial transcripts {X*, B},{Y'})
have been excluded. Furthermore we change all values about PW; with random
values. In such game the adversary has no advantage on the Test-query. G3 is
indistinguishable from G2, only if the event AskH = AskH1V AskHO does not
happen.

AskH1: A queries Hi(Trans||Z'||K') or Hi(Trans||Z||K) for the transcript
({9, {A4;}},{X*, B},{Y}), with Z = DHpw (A1, B) and K = DH,((X*/Z),Y).
AskHO: A queries Ho(Trans||Z'||K’) or Ho(Trans||Z||K) for the transcript
({S,{A4;}},{X*,B},{Y}), where some party has accepted, but event AskH1
did not happen. Furthermore the event AskH1 can be split in 3 disjoint sub-
class: AskH1-passive, the event that all data in a transcript come from an ex-
ecution between instance of U and S (which means that A;, X*, B, and Y
have been simulated). AskH1-withU, the event that the execution involved only
an instance of U. AskH1-withS, the event that the execution involved only an
instance of S.

In G4, the instance (I1, 2, I3) is used to modify the simulation of some oracles
as follows. Rule S 1: Choose 7g randomly from Z,, and compute A; = I5°. Rule
U 1: Choose 7, randomly from Z,, and compute B = I3°. Rule S 2: Choose y
randomly from Z,, and compute Y = I} . Rule G: Choose k randomly from Z,,
and flip a coin d, with d € {1,2}. Compute r = I%¥, output k and d. The record
(¢,k,d,r) is added to Ag.

InG5, we first use Lemma 1 to make sure that there is only one pair of (Z, K)
with one password corresponding to a partial transcript in Ay. With Lemma
1, events AskH1-withU and AskH1-withS happen only if the adversary guesses
the correct password, which means the success probability of active attacks is
upper-bounded by the password guessing possibility. Lemma 2 shows that the
probability of AskH1-passive is negligible, which means that no passive adversary
can break the session key’s semantic security with non-negligible probability.
Then it is easy to see that the desired result follows from Lemmas 1 and 2. [J

Lemma 1. For some partial transcript ({S,{A;}},{X*, B},{Y}), if there are
two elements PWy and PWy such that (I',S,{A;}, X", B,Y, Zy, Kp) are in Ay
with Zy = DHpw, (A1, B) and K, = DHy((X*/Zy),Y), one can solve the DI-
ADH problem with probability 1/2.
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Lemma 2. For some passive partial transcript ({S,{A4;}},{X*, B},{Y}), if
there is an element PW such that (T, S,{A;}, X*,B,Y, Zy, K}) are in Ay with
Z = DHpw(A1,B)) and K = DH,((X*/Z),Y), one can solve the SCDH prob-
lem with probability 1/2.

Theorem 2. The NAPAKE protocol is anonymous against the server.

Proof. (Sketch)Consider the event S Guess Auth in the definition above, i.e., S
authenticates itself to the user and guesses the correct b, which means that
S sends a correct authenticator Authg to the user U, for a partial transcript
({S, Ao, A1}, {X*,B},{Y'}), where Ay, Ay, and Y are chosen by S, and {X* =
g* - Ay, B = PW,°} are computed by Up. Namely, for such a transcript, S
computes a correct Z = DHpw,(4p, B) and K = Y*. Let ey = logpy, Ao,
e1 = logpyy, A1

If S is honest, then eg = e; is known to S, and S is sure to be able to
compute the correct Z and K to authenticate itself. In such a situation, (X*, B)
is a valid encryption of g* with respect to both Ay and A;. Therefore, the event
S Guess Auth happens only with probability 1/2, and thus Advg’gmy(S) =0.

If eg # e1 are known to S, he can compute Zg = B¢ and Z; = B. S has to
choose one to generate Authg, and it happens to be correct only with probability
1/2 due to the randomness of X* and B. So Adv% 2"¥(S) = 0.

If S is malicious while ey and e; are unknown to S , the probability that S can
compute a correct authenticator is upper-bounded by solving the CDH problem.
Thus Advg’gmy(S) is still negligible provided CDH assumption holds. O

4.3 Efficiency

In NAPAKE, client C; needs to do 4 modular exponentiations with 1 on-line, and
server S does n+3 modular exponentiations with 2 on-line. Compared with TAP
(t =1), NAPAKE costs 1 (resp., 2) more modular exponentiation for C; (resp.,
S), and thus less efficient than TAP with ¢t = 1. However, NAPAKE is different
from TAP in essence. The TAP protocol is a key transport protocol, where the
session key is chosen and totally controlled by the server. The NAPAKE protocol
is a key agreement protocol, where the session key is determined by both the
client and the server, and none of them can control the key alone. Moreover,
the NAPAKE protocol has an advantage that the server can reuse the first
message for all users in I'. That is, the server doesn’t have to do the n modular
exponentiations in each execution of the protocol. TAP (¢ = 1) doesn’t have this
property, because the data Y in the second message must not to be the same in
different runs. The n modular exponentiations would waste the computational
resource of the server greatly in APAKE and TAP, if an adversary tries to
connect the server continually. However in NAPAKE the first message can be
reused so the threat of DoS attack would be reduced dramatically.

With respect to the communication efficiency, our protocol requires a band-
width of (n + 1)|hash| and 3|g|, which is linear to the size of the user group as
TAP (¢t = 1) and APAKE.
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F:{Cl,.“7cn}7 PWz:g(’L,pwz)
Client: SG C I'(|SG| = t) Server: S

s ER Zq
S {A; j<n T -
SAihigign A;j=PW5(1<j<n)
For each C; € SG,
ri, X ER Lq, Xi = g%, Z; = A}* Yy ER Lq,Y = g¥
t,{B;1,B; i
Bu=Zi-Xi,Bip = pwri PPl o g G<k<to1)
t—1
fl@)= 3 wa® +y
k=1
For1<j5<t
Xj = Bj/Z;, K; = (X})"
For each C; € SG Auths = Hi(Trans|Y)
—1
S LI | S sk = Ho(Trans]|Y)

where >\'L = ngmgt,m;éi mniz
Verify Auths = Hi(Trans||Y")
sk = Ho(Trans||Y")

{Kj i<j<t,Authg
[ sgse RS

Note: Trans = I'l|S|[{A4;} 1<i<n lt{Bir, Biz hi<i<e [{EK <<y

Fig. 3. The D-NAPAKE protocol

4.4 Extension of NAPAKE

Based on the proposed NAPAKE protocol, a new distributed anonymous PAKE,
named D-NAPAKE, is presented in Fig.3. The D-NAPAKE also uses a secret
share scheme to distribute the session key in SG, and the shared secret is Y = ¢¥,
which is chosen by the server. The secret is transported to SG in a so-called
Diffie-Hellman way, not the previous hiding code way in the k-out-of-n APAKE
protocol and the TAP protocol. With such method the D-NAPAKE protocol
is secure against the afore-mentioned impersonating attack. Furthermore, the
D-NAPAKE protocol can also resist the off-line dictionary attack proposed in
section 2.3. The reason is that, although D-NAPAKE also adopts the secret-
share method, no one can make use of the transcript and the partial secrets
{Y;} to guess the passwords of the clients in SG, because of the random factors
of rg, r; and z;.

5 Conclusion

In this paper, we proposed a new anonymous password-based authenticated key
exchange protocol, named NAPAKE, which is proved secure under the SCDH
and DIADH assumptions in the random oracle model.
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As for the distributed anonymous PAKE, we analyzed the vulnerabilities of
the Viet et al.’s k-out-of-n APAKE protocol and Shin et al.’s TAP (¢t > 2)
protocol. We have given two attacks against the TAP protocol. One is an im-
personating attack breaking the unilateral authentication of the scheme. The
other is an off-line dictionary attack from a malicious insider, which make the
adversary be able to guess all clients’ passwords. And the second one is also
applied to Viet et al.’s k-out-of-n APAKE. An extension of our protocol to the
distributed setting can resist the proposed two attacks.
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Abstract. Since the very beginnings of cryptography many centuries
ago, key management has been one of the main challenges in crypto-
graphic research. In case of a group of players wanting to share a com-
mon key, many schemes exist in the literature, managing groups where all
players are equal or proposing solutions where the group is structured
as a hierarchy. This paper presents the first key management scheme
suitable for a hierarchy where no central authority is needed and permit-
ting to manage a graph representing the hierarchical group with possibly
several roots. This is achieved by using a HMAC and a non-hierarchical
group key agreement scheme in an intricate manner and introducing the
notion of virtual node.

Keywords: Key Management, Access Control, Hierarchy.

1 Introduction

Key management scheme is one of the fundamental cryptographic primitive after
encryption and digital signature. Such scheme allows e.g. two parties to securely
exchange information among them. A running direction of research on key man-
agement is to generalize two party key agreement schemes to multi party setting,
where a group of users try to create cryptographic keys together.

There are currently two main approaches regarding this generalization, de-
pending on the structure of the group. In some cases, all members of the group
are considered equals and each of them participates approximately at the same
level to the construction of a cryptographic key that is finally shared by all mem-
bers: this is called “group key management”. Many papers exist in the literature
in this case and their aim is to make the better generalization of the seminal
Diffie-Hellman paper, dealing with authentication or group’s dynamicity.

The second approach deals with hierarchy-based access control where mem-
bers of the group are related one to another by a subordination relation while
trying to access some protected documents. In this case, the group is most of
the time represented as an oriented graph with no oriented cycle. In this set-
ting, there is one key per group member and the main issue is then to provide
a hierarchy of the keys in such a way that it is possible for a group member to
derive from her own key all the keys that are lower in the graph. In this case, the
dynamicity of the group concerns either the possibility to add or delete nodes in

D.R. Chowdhury, V. Rijmen, and A. Das (Eds.): INDOCRYPT 2008, LNCS 5365, pp. 213 2008.
© Springer-Verlag Berlin Heidelberg 2008
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the graph, or the capacity to modify the key of a particular node. Ideally, these
modifications imply the modification of a minority of node keys.

1.1 Related Work

The first work on this problem of key management in a hierarchy was by Akl
and Taylor in 1983 [1]. Since then a large number of papers have been published
12, 4, 16, [, 18, 19, [10, 112, 13, [17, [19, 21, 123, [25, 126, 27, [28, 29] and they can be
divided into several families.

The first family contains the original paper of Akl and Taylor and its different
improvements |1, 7,110,113, (17, 21]. These protocols use a Central Authority (CA)
to generate keys and related public data. The dynamicity of the graph is not
always possible in these proposals, and even in this case, a modification implies
the recalculation of the keys of some predecessors. The second family is based
on Sibling Intractable Function Family (SIFF) [12, 27]. While these solutions
use a CA for generation and dynamism of the graph, their low complexity is
quite attractive. The main problem comes from the difficulty to decide if a
practical algorithm to generate such function exists or not (even in the literature
[2, 22, 128]). The third group of papers uses polynomial interpolation [6, |9, [29]
but [6] and 9] do not consider the dynamicity of the group, and the way to update
keys in [29] is relatively inefficient. In the last group of papers [2, 4, 8, 19, 26, [28],
the keys are randomly generated and the role of the CA is to provide the public
link between them. Different possibilities are proposed and the best ones only use
low cost operations as hash functions or xor operations. Two other papers [23,125]
use many modular exponentiations and thus induce a high complexity. Note that
the solution in [25], even if presented with a CA, can be described without.

Mainly all these proposals use a Central Authority and only consider the case
of a rooted graph. It is thus an open problem to describe an efficient graph key
management in a multi-rooted oriented graph where (i) no Central Authority is
needed and (ii) in which we can manage dynamic graphs.

1.2 Owur Contribution

Our main idea in the construction of a graph key management is that we use at
the same time two different solutions, depending on the structure of the subgraph
we are considering. More precisely, the method to compute the key of a node
in the graph depends on the number of fathers this node has. If there is one
father, we use a Message Authentication Code (MAC) function on input the key
of the father, a counter enumerating (approximately) the number of children of
the father and a security constant.

The case where a node has several fathers cannot be treated as the case
of one father and we thus adopt a different approach which consists in using
group key agreement for a non-hierarchical group (in our case, the group of the
fathers). More precisely, we introduce the concept of Refreshable and Replayable
Group Key Agreement (R&R-GKA) schemes where the main difference with
a traditional GKA scheme is that the internal state information is not truly
composed of ephemeral secret information using random data, as it is the case
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in existing GKA schemes. Moreover, we require an additional algorithm to replay
the creation of the shared key using one private information and some public
data, and we finally need a refresh method that permits to renew the shared key
with a minimal effect on player’s keys.

Our second trick is used when several fathers have several children in common.
In that case, we introduce a virtual node between fathers and children so as to
speed up the generation phase by using the “one-father method”.

1.3 Organization of the Paper

The paper is organized as follows. After the present introduction, we set up in
Section[2lour model for key management in an oriented graph. The cryptographic
primitives we will use later are given in Section[3l Section [ presents our scheme
and its security arguments. Finally, we provide a conclusion in Section [}l and the
bibliography afterward.

2 Problem and Model

The problem of access control in a hierarchy appears when users get different
rights on common resources. As an example, workers in a company use com-
mon resources but according to their positions or their departments, they are
not allowed to access the same documents. Another example could be on-line
newspapers: different subscriptions lead to different rights.

For our part, we study the cryptographic aspect of access control. We represent
the hierarchy by a graph and we look at access control as a problem of key
management in that graph.

2.1 Notation

We consider an oriented graph denoted G = {N, A} where N = {ny,na,...,n;},
of cardinality [, is the set of nodes (in the following a node is denoted either n;
or simply i) and A = {a1,ag, ..., anm }, of cardinality m, is the set of edges, such
that there is no oriented cycles. An edge a € A corresponds to a couple of nodes
(ni,mj), representing the fact that there is an edge going from node n; to node
nj. n; is called the father and n; is the child. We denoted by F; (resp. C;) the
number of fathers (resp. children) of the node n;. The set of fathers of node n;
is denoted by F; = {fi[l],---, fi[Fi]} and the set of children of a node n; is
denoted C]‘ = {Cj[l], LG [C]]}

A path P = {a1,---,ar} of cardinality k is a set of edges where for all
ie{l,---k—=1},if a; = (nyy,ni,) and a1 = (N4y, n4y), then n; = ny,: we
also talk of the path from the first node to the last one.

If there is a path from node n; to node nj, we say that n; is an ascendant
of n; and that n; is a descendant of n;. We denote by D; the set of descendant
nodes of node n; and by A; the set of ascendant nodes of node n;. Note that
Fi C .Aj and C; C 'Dj.
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Each node j represents a subgroup of members that share the same secret
cryptographic key, named the node key and denoted k,,, (or simply k;) related
to a public value puv,; (or simply pv;). In the following, we consider a subgroup
as a unique entity to avoid some authentication problems for which it exists well-
known techniques. As we consider oriented graphs, we have a hierarchy between
nodes. As a consequence, a node key k,, should be computable by all members
of subgroups/nodes that belong to A;.

2.2 Actors and Procedures

We present in this section a formal definition of a graph key management scheme
for a graph G. A graph key management scheme implies a set P of [ players
denoted Py, - - -, P;. Each player P; corresponds to a node ¢ in the graph. In the
following, we consider that the graph representation G is known by all players
of the system.

Definition 1. A Graph Key Management scheme (noted GK M ) consists in the
following algorithms:

— Setup is an algorithm which on input a security parameter T generates the set
of parameters of the system I'. We now consider that the security parameter
T belongs to I'.

— UserSetup is an algorithm which on input the set of parameters I' provides
each player in P with a long-lived key pair (sk;, pk;). From now on, I' in-
cludes the public keys pk; of all players.

— KeyGeneration is an algorithm which launches a protocol between all players
Pi1, -+, Pi, each of them taking on input the parameters I of the system
and the long-lived key pair (sk;,pk;). Each player secretly outputs the first
instance of the key related to its node, denoted k;[0]. The algorithm outputs
the first instance of some related public elements denoted PEI0].

— KeyDerivation is an algorithm which on input the parameters I', a node j, a
player P; and an instance p provides the player P; using the p-th instance of
her node key k;[p] and the corresponding public elements PE|p] with either
an error message L if i ¢ A; or the corresponding p-th instance of the key
of node j, that is k;[p].

— KeyRefresh is an algorithm which on input the node j that needs to be re-
freshed launches a protocol between all players Py, - -+, P;. Each player takes
on input the parameters I', the current instance p, their corresponding node
key k;[p] and the corresponding public elements PE[p] and secretly outputs
the new instance of the node key, denoted k;[p + 1]. The algorithm outputs
the new instance of some related public elements denoted PE[p + 1].

Remark 1. The efficiency of the KeyRefresh algorithm is a really important issue
and if a particular node needs to be refreshed, this procedure should not (and
needs not to) modify all the keys in the graph. The best configuration is when
only the keys of the descendant nodes are modified. Note also that, for simplicity
reasons, we consider in our model that all the keys change their version during
this procedure, even if the new version may be equal to the previous one for
some particular nodes.
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2.3 Security Properties

A Graph Key Management scheme must have the Key Recovery security prop-
erty. This corresponds to the fact that any coalition of players can’t recover the
key of a node which does not belong to their descendants.

The Key Recovery property corresponds to the following Experiment.

: k
Experiment Exp&yara

1. the challenger C initializes the system and sends the graph to .A.

2. A interacts with the system by generating and refreshing (player) keys, cor-
rupting players and/or keys. At any time of the experiment, it must remain
at least one key which is not corrupted. A key is considered as corrupted if
at least one of its ascendant is corrupted or if the player corresponding to
this node has beforehand been corrupted.

3. A finally outputs the identifier of the graph key management 7, a node i, an
instance p and an uncorrupted node key k.

We define the success of an adversary A for this experiment as:

keyrecovery

Suceggara (1) = Prlk = ki[m, p]].

Definition 2 (Key Recovery). We say that a GKM scheme satisfies the Key

Recovery property if Succg}’g‘ﬁ‘ﬁ'y (1) is negligible.

Remark 2. Note that this security model is stronger than the one given in e.g. [2]
since this is the adversary who chooses the node he wants to focus on. In [2], a
challenger chooses one particular node and the adversary has to output the key
of this node. Note also that it is not possible to use a decisional experiment in
graph key management where the aim of the adversary is to distinguish a true
key from a random one (as it is done for many other key agreement primitives)
since it is enough for the adversary to corrupt a descendant node and checks the
consistency of the key derivation to win such game.

3 Useful Tools

3.1 The HMAC Functions

A cryptographic message authentication code (MAC) is a cryptographic tool
used to authenticate a message and belongs to the family of symmetric cryptog-
raphy. A MAC scheme is composed of a key generation algorithm KeyGen which
permits to generate the MAC key denoted K. The code generation algorithm
MAC accepts as input the secret key K and an arbitrary-length message m and
outputs the message authentication code for message m, under the secret key
K: ¥ = MAC(K,m) . Finally, the code verification algorithm VerMAC takes as
input a message m, the secret key K and a message authentication code X' € C
and outputs 1 if ¥ = MAC(K, m) and 0 otherwise.
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To be considered as secure, a MAC scheme should resist to existential forgery
under chosen-plaintext attacks (EF-CMA), which means that even if an adver-
sary A has access to an oracle which possesses the secret key and generates
MACs for messages chosen by the adversary, A is unable to guess the MAC for
a message it did not query to the oracle.

In our graph key management scheme (see Section M), the used MAC scheme
needs furthermore the pseudorandomness property, which says that an adversary
is unable to distinguish the output of a Pseudo-Random Function (PRF) from a
true random value. As a consequence, we will use the HMAC construction [20]
which has been proved to be a PRF by Bellare |3].

3.2 The Notion of Refreshable and Replayable Group Key
Agreement

A Group Key Agreement (GKA) scheme is a mechanism which permits to es-
tablish a cryptographic key shared by a group of participants, based on each
one’s contribution, over a public network. It exists several GKA schemes in the
literature, using either