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Preface

In 2008 the Workshop on Languages and Compilers for Parallel Computing
left the USA to celebrate its 21st anninversary in Edmonton, Alberta, Canada.
Following its long-established tradition, the workshop focused on topics at the
frontier of research and development in languages, optimizing compilers, applica-
tions, and programming models for high-performance computing. While LCPC
continues to focus on parallel computing, the 2008 edition included the presen-
tation of papers on program analysis that are precursors of high performance in
parallel environments.

LCPC 2008 received 35 paper submissions. Each paper received at least three
independent reviews, and then the papers and the referee comments were dis-
cussed during a Program Committee meeting. The PC decided to accept 18
papers as regular papers and 6 papers as short papers. The short papers appear
at the end of this volume.

The LCPC 2008 program was fortunate to include two keynote talks. Keshav
Pingali’s talk titled “Amorphous Data Parallelism in Irregular Programs” ar-
gued that irregular programs have data parallelism in the iterative processing
of worklists. Pingali described the Galois system developed at The University of
Texas at Austin to exploit this kind of amorphous data parallelism.

The second keynote talk, “Generic Parallel Algorithms in Threading Building
Bocks (TBB),” presented by Arch Robison from Intel Corporation addressed
very practical aspects of using TBB, a production C++ library, for generic par-
allel programming and contrasted TBB with the Standard Template Library
(STL).

LCPC continues to be a strong workshop thanks to the support that it enjoys
from both the programming language and optimizing compiler communities and
from the various segments of the high-performance computing community. The
continued strength of LCPC is also in no small part due to the passionate com-
mitment of David Padua and the Steering Committee as well as due to the time
commitment of Program Committee members, anonymous reviewers, and con-
tributing authors. We are grateful for the financial support provided by iCore.
The organization of LCPC by the Department of Computing Science at the
University of Alberta in Edmonton counted on outstanding volunteers including
Fran Moore, Sheryl Maiko, and Sunrose Ko.

September 2008 José Nelson Amaral
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CUDA-Lite: Reducing GPU Programming
Complexity

Sain-Zee Ueng, Melvin Lathara, Sara S. Baghsorkhi, and Wen-mei W. Hwu

Center for Reliable and High-Performance Computing
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
{ueng,mlathara,bsadeghi,hwu}@crhc.uiuc.edu

Abstract. The computer industry has transitioned into multi-core and
many-core parallel systems. The CUDA programming environment from
NVIDIA is an attempt to make programming many-core GPUs more
accessible to programmers. However, there are still many burdens placed
upon the programmer to maximize performance when using CUDA. One
such burden is dealing with the complex memory hierarchy. Efficient and
correct usage of the various memories is essential, making a difference of
2-17x in performance. Currently, the task of determining the appropriate
memory to use and the coding of data transfer between memories is still
left to the programmer. We believe that this task can be better performed
by automated tools. We present CUDA-lite, an enhancement to CUDA,
as one such tool. We leverage programmer knowledge via annotations
to perform transformations and show preliminary results that indicate
auto-generated code can have performance comparable to hand coding.

1 Introduction

In 2007, NVIDIA introduced the Compute Unified Device Architecture (CUDA)
[9], an extended ANSI C programming model. Under CUDA, Graphics Process-
ing Units (GPUs) consist of many processor cores, each of which can directly
address into a global memory. This allows for a much more flexible programming
model than previous GPGPU programming models [11], and allows developers
to implement a wider variety of data-parallel kernels. As a result, CUDA has
rapidly gained acceptance in application domains where GPUs are used to exe-
cute compute intensive, data-parallel application kernels.

While GPUs have been designed with higher memory bandwidth than CPUs,
the even higher compute throughput of GPUs can easily saturate their available
memory bandwidth. For example, the NVIDIA GeForce 8800 GTX comes with
86.4 GB/s memory bandwidth, approximately ten times that of Intel CPUs on a
Front Side Bus. However, since the GeForce 8800 has a peak performance of 384
GFLOPS and each floating point operation operates on up to 12 bytes of source
data, the available memory bandwidth cannot sustain even a small fraction of
the peak performance if all of the source data are accessed from global memory.

Consequently, CUDA and its underlying GPUs offer multiple memory types
with different bandwidth, latency, and access restrictions to allow programmers

J.N. Amaral (Ed.): LCPC 2008, LNCS 5335, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 S.-Z. Ueng et al.

to conserve memory bandwidth while increasing the overall performance of their
applications. Currently, CUDA programmers are responsible for explicitly al-
locating space and managing data movement among the different memories to
conserve memory bandwidth. Furthermore, additional hardware mechanisms at
the memory interface can enhance the main memory access efficiency if the ac-
cess patterns follow memory coalescing rules. Currently, CUDA programmers
shoulder the responsibility of massaging the code to produce the desirable ac-
cess patterns. Experiences show that such responsibility presents a major burden
on the programmer. CUDA-lite is designed to relieve such burden. Furthermore,
CUDA code that is explicitly optimized for one GPU’s memory hierarchy de-
sign may not easily port to the next generation or other types of data-parallel
execution vehicles.

This paper presents CUDA-lite, an experimental enhancement to CUDA that
allows programmers to deal only with global memory, the main memory of a
GPU, with transformations to leverage the complex memory hierarchy. For in-
creased efficiency, the programmers provide annotations describing certain prop-
erties of the data structures and code regions designated for GPU execution. The
CUDA-lite tools analyze the code along with these annotations and determine if
the memory bandwidth can be conserved and latency can be reduced by utilizing
any special memory types and/or by massaging memory access patterns. Upon
detection of an opportunity, CUDA-lite performs the transformations and code
insertions needed. CUDA-lite is designed as a source-to-source translator. The
output is CUDA code with explicit memory-type declarations and data trans-
fers for a particular GPU. We envision CUDA-lite to eventually target multiple
types and generations of data-parallel execution vehicles. If maximum perfor-
mance is desired, the programmer can still choose to program certain kernels at
the CUDA level.

In this paper we present CUDA-lite in detail. We cover the memories and
techniques that are leveraged by the tool to conserve memory bandwidth and
reduce memory latency. We describe how CUDA-lite identifies the opportunities
and the hand transformations that it replaces. We have developed plug-ins for
the Phoenix compiler [7] from Microsoft to perform all of the transformations as
a source-to-source compiler, and evaluated our results by passing the resulting
source code through NVIDIA’s tool chain. We show that the performance of
code generated by CUDA-lite matches or is comparable to hand generated code.

2 CUDA Programming Model

The CUDA programming model is ANSI C extended with keywords and con-
structs. The GPU is treated as a coprocessor that executes data-parallel kernel
functions. The user supplies a single source program encompassing both host
(CPU) and kernel (GPU) code. These are separated and compiled by NVIDIA’s
compiler, nvcc. The host starts the kernel code with a function call. The complete
description of the programming model can be found in [8,9,10].
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Fig. 1. CUDA Programming Model and Memory Hierarchy

Figure 1 depicts the programming model and memory hierarchy of CUDA.
Threads are organized into a three-level hierarchy, and are executed on the
streaming multiprocessors (SMs) on the GPU. At the highest level, each ker-
nel creates a single grid, which consists of many thread blocks (TBs) arranged in
two dimensions. The maximum number of threads per TB is 512, arranged in a
three dimensional manner. Each TB is assigned to a single SM for its execution.
Each SM can handle up to eight TBs at a time. Threads in the same TB can
share data through the on-chip shared memory and can perform barrier syn-
chronization by invoking the syncthreads primitive. Synchronization across
TBs can only be safely accomplished by terminating the kernel.

One of the major bottleneck to achieving performance while using CUDA is
the memory bandwidth and latency. The GPU provides several different memo-
ries with different behaviors and performance that can be leveraged to improve
memory performance. However, the programmer must explicitly and correctly
utilize these different memories in the source code in order to gain the benefit.
In the rest of this section we will examine shared memory and desirable memory
access patterns to global memory that improve memory performance, and show
the work required of programmers. Work that CUDA-lite intends to automate.

We focus on memory coalescing for global memory and shared memory in
this work since these are the only writable memories in CUDA. We leave the
read-only memories, constant and texture, for future work.

2.1 Global Memory

CUDA exposes a general-purpose, random access, readable and writable off-chip
global memory visible to all threads. It is the slowest of the available memory
spaces, requiring hundreds of cycles, and is not cached. However, its resem-
blance to a CPU’s memory in its generality and size are also what allows more
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Fig. 2. Example Code: Base Case

general-purpose applications to be ported easily onto the GPU. A straightfor-
ward implementation of an application would be to utilize only global memory
as a proof of concept for parallelizing the algorithm on CUDA.

Figure 2 shows an example CUDA code. The function main sets up the data
for computation on the CPU while the function kernel contains the code that
is actually executed on the GPU. Notice that variables that reside in the global
memory of the GPU, like a device, are allocated in main and data movement
is also performed there via API calls to cudaMemcpy.

In the kernel function, each thread on the GPU traverses a different row of
the 2-D array a, scaling each element by a thread specific value before storing into
the corresponding location in array b. Since each TB must have the same number
of threads, depending on the data size and program parallelization there may be
excess threads that do not have data to operate on. The conditional check on line
12 that exits the kernel function before the loop handles these cases. This check
becomes important as we attempt to utilize memory coalescing (Section 2.3).

2.2 Shared Memory

Shared memory is a small (16KB per SM for the GeForce 8800) readable and
writable on-chip memory and as fast as register access. Shared memory is unini-
tialized at the beginning of execution, and resident data is private to each TB
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and visible to all threads within the same TB. The intuition is that shared mem-
ory should be used for data that is reused, especially if reused across different
threads in a TB. However, we found that memory performance improvement
from coalesced global memory accesses (Section 2.3) is large enough that shared
memory should be leveraged for such purposes even if there is no data reuse.

2.3 Memory Coalescing

Global memory does have a behavior called memory coalescing that helps con-
serve bandwidth while reducing effective latency. Conceptually it is similar to
loading an entire cache line from memory versus loading one word at a time.
Threads in a TB are numbered along the x direction first and gathered sequen-
tially into warps. On the GeForce 8800 a group of 32 threads form a warp.
Each warp executes in SIMD (single-instruction, multiple-data) fashion, i.e. all
threads in the same warp execute the same instruction at the same time. When
the threads of a half-warp execute a global load, the loads are consolidated if
they meet constraints necessary for the hardware to perform memory coalescing.
Otherwise the loads are serviced individually. We summarize the requirements
here and refer interested readers to [10] for full details.

There are four major requirements that memory accesses to global memory
have to follow for memory coalescing to happen:

1. Each element of the array has to be 4, 8, or 16 bytes and aligned.
2. The threads in the half-warp have to access consecutive memory addresses

in order, e.g. thread number N within the half-warp need to access address
BaseAddr + N.

3. Thread numbering matters only along the first dimension of the thread block,
the x dimension.1

4. BaseAddr must be aligned to a multiple of the element size.

(a) Traversal Along the Rows (b) Traversal Along the Columns (c) Tiled Traversal

Fig. 3. Graphical View of Data Traversal: (a) Row (b) Column (c) Tiled

1 Thread blocks are usually created so that the x dimension is a multiple of the number
of threads in a warp.
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The requirements for memory coalescing are complex. Furthermore, with the
exception of access alignment, all of the requirements must be fulfilled or there
will be no improvement in the memory performance; a partial improvement usu-
ally occurs if alignment is the only requirement missed. The data access pattern
to fulfill the memory coalescing requirement is also not natural for all algorithms,
e.g. reduction across the rows of an array. When performing a reduction across
the rows of an array, it is more natural to have one thread per row, as in Fig-
ure 3(a). The different groups of colored arrows represent different TBs. However,
traversing one thread per column, shown in Figure 3(b), is needed to fulfill re-
quirement 2 for memory coalescing. The data accessed by threads in a half-warp
need to be adjacent to one another in the horizontal direction, not vertical, for
the accesses to coalesce. The lack of synchronization across TBs also contributes
to making this traversal pattern unnatural for performing a reduction across rows
in CUDA. An alternative is to tile the computation, as shown in Figure 3(c).
The tile is first traversed along the column and data is coalesced loaded into a
buffer in shared memory, indicated by the grayed arrows. The algorithm then
operates on the data along the row from shared memory before moving to the
next tile. The performance improvement from doing coalesced loads and using
shared memory makes this worthwhile despite the instruction overhead.

For example, the memory access to array a on line 18 of Figure 2 does not
coalesce because it violates rule number 2. For each iteration of the loop, thread N
accesses a[N*ASIZE + i]; bki does not matter since the threads are in the same
thread block. This means that each thread is accessing data vertically adjacent
to each other, as in Figure 3(a), which does not trigger coalescing.

Figure 4 shows the kernel code from Figure 2 rewritten by hand so the al-
gorithm is tiled and the memory accesses coalesced. The amount of code is
roughly doubled. The original loop has been tiled and additional code is in-
serted to load/store data between global and shared memory. The load from
array a on line 25 is coalesced since thread N accesses a[k*ASIZE + N] on each
iteration. The computation kernel now operates on the data in shared memory,
and the loop around it has included the check on line 12 of the original code as
an additional condition. In other words, the excess threads we mentioned back
in Section 2.1 may be used to perform memory coalescing accesses, but must not
be allowed to perform actual computation.

This rewriting is a large additional burden on the programmer. Not only must
the programmer fulfill the memory coalescing requirements, the programmer also
has to maintain correctness. The performance improvement this optimization
provides will be the ideal, or oracle, case for CUDA-lite.

3 CUDA-Lite

Since the behavior of memory coalescing is complex yet understood, we be-
lieve that such transformations are best undertaken by an automated tool. This
would reduce the potential for errors in writing memory coalescing code, and re-
duce the burden upon programmers. In our vision, programmers would provide a
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straightforward implementation of the kernel code that utilizes only global mem-
ory, and depend on tools to optimize the memory performance.

We have developed tools to automate the transformations previously done by
hand to maximize memory performance via memory coalescing. The programmer
provides a version of the program that has been parallelized for CUDA using
only global memory and the tools output a version with the memory accesses
optimized. In other words, the tools transform code like the kernel function in
Figure 2 to the memory coalescing version in Figure 4. We rely upon information

Fig. 4. Example Code: Hand Coalesced Kernel
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Fig. 5. CUDA-lite Annotations

from the programmer provided via annotations to perform our transformations.
We call the software tools and annotations together CUDA-lite.

Figure 5 shows the current form of the annotations in CUDA-lite. Part (a)
indicates the functions of interest, i.e. kernel functions running on the GPU,
and parallelization factors. While some of the information, like threads per TB,
can eventually be derived from CUDA code, the last argument gives program-
mers some control over how much resources a kernel generated by CUDA-lite
should take. Part (b) indicates what arrays in global memory are of interest and
their properties. This gives control over which memory accesses are targeted
for optimization, which uses up resources. The speedup gained from performing
memory coalescing needs to be balanced against excessive resource usage that
reduces executing parallelism. We will discuss this in detail in Section 4. Part (c)
is for annotating exit checks, such as the conditional check on line 12 of Figure
2 mentioned in Section 2.1. While CUDA threads may terminate early, CUDA-
lite may need those threads to satisfy memory coalescing and synchronization
requirements. Therefore CUDA-lite removes the early termination and places
guards around the original computation, as mentioned in Section 2.3. Finally,
part (d) conveys information about the control flow of loops in the program. We
currently use this information to perform loop transformations.

We recognize that some of the information provided by the annotations is
derivable by advanced compiler techniques. However, the point of the annota-
tions was to quickly provide the additional information needed and enable the
transformations so that the memory hierarchy optimization automation work
can proceed. It is not necessarily the final form.

Requirement 2 of the four requirements detailed in Section 2.3 is the most dif-
ficult to satisfy and check for. CUDA-lite derives the expression used in global
memory accesses by performing a backwards dataflow up to the parameters of
the kernel function and thread indices. The expression is first simplified by ex-
tracting all references to the thread index in the x direction. We leverage the
SIMD execution model to eliminate the need for temporal locality checks, since
the execution model guarantees that the expression is the same for all threads
in the warp. The desired expression is one where every thread in a half-warp
accesses the same location, differing only by their order within the half-warp.
Consequently, any instance of �thi.x/hwarp� can be safely disregarded, where
thi.x is the thread index in the x dimension and hwarp is the number of threads
in a half-warp. Mathematically this can be seen as the function f in Equation 1.



CUDA-Lite: Reducing GPU Programming Complexity 9

As long as the expression fits the form of the function, then the memory access
is coalesced.

f(thi.x) = thi.x + g

(⌊
thi.x

hwarp

⌋)
+ C (1)

Figure 6(a) shows the relevant pseudo-code and expression generated by
CUDA-lite for the memory access to array a in Figure 2. Due to the ASIZE
multiplier on the first term, the expression does not fit function f and thus the
load is not coalesced. Part (b) shows the memory access to array a in Figure 4.
Unlike part (a), the expression does fit the form of the function f and therefore
the access is coalesced.

If the memory access is not already coalesced, CUDA-lite will attempt to
automatically generate a coalescing version. The labels of the additional boxes
in Figure 4 outline the majority of the transformations: inserting shared mem-
ory variables, performing loop tiling, generating memory coalesced loads and/or
stores, and replacing the original global memory accesses with accesses to the
corresponding data in shared memory.

The shared memory size and tiling factor are fixed and known for each target
GPU, due to the half-warp requirement for memory coalescing. The amount of
shared memory allocated can thus be determined by the number of arrays of
interest, array dimensions, and array element size. The generation of coalescing
loads or stores depends on the relationship between the array dimension and the
threading dimension. If they match, then CUDA-lite needs to have each thread
load from the appropriate place in global memory into the thread’s correspond-
ing position in shared memory. If the array is of higher dimension than the
thread organization, two-dimension to one dimension in the running example,
then CUDA-lite generates loops that load/store the data. This can be seen in
the Coalesced Loads and Stores boxes of Figure 4. These loops must not only
be tiled correctly for correct data movement but they must also obey the array
bounds.

ASIZE*thix + i + a + TPB*ASIZE*bki

thix + ASIZE*k + TPB*j + a + TPB*ASIZE*bki

(a)

(b)

for (i = 0 to ASIZE)        // line 15, Figure 2
  a[(bki*TPB+thix)*ASIZE+i] // line 18, Figure 2

for (j = 0 to End)                // line 17, Figure 4
  for (k = 0 to TPB)              // line 20, Figure 4
    a[(bki*TPB+k)*ASIZE+j*TPB+thi] // line 18, Figure 4

Pseudo-code:

Expression:

Pseudo-code:

Expression:

Fig. 6. Array Access and Expression (a) Non-Coalescing (b) Coalescing
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#define ASIZE 3000
#define TPB 32

void
kernel (float *a, float *b)
{
  __annotation (L"__global__ TPB 1");
  __annotation (L"garray a 2 4 ASIZE ASIZE");
  __annotation (L"garray b 2 4 ASIZE ASIZE");

  int thi = threadIdx.x;
  int bki = blockIdx.x;
  float t = (float) thi + bki;
  int i;

  __annotation (L"BoundChk");
  if (bki * TPB + thi >= ASIZE)
    return;

  for (i = 0; i < ASIZE; i++)
    {
      __annotation (L"loop i 0 ASIZE 1");
      b[(bki*TPB+thi)*ASIZE + i] = 
        a[(bki*TPB+thi)*ASIZE + i] * t;
    }
}

1

5

10

15

20

25

Fig. 7. Example Code: CUDA-lite Kernel

Figure 7 shows how the example kernel would be annotated using the current
implementation of CUDA-lite. The programmer only needs to insert the five
boxed additional lines instead of doubling the amount of code like in Figure 4.

It is important to note that CUDA-lite does not affect parallelization and
threading decisions, and operates under the constraints of how the program has
been parallelized. This was a deliberate decision to make the problems that
CUDA-lite is tackling more tractable. CUDA-lite can be folded into a more
comprehensive programming framework for GPU computing system as the part
that handles memory optimization.

4 Experimental Results

We have implemented CUDA-lite using the Phoenix compiler [7] as a source-
to-source compiler using two Phoenix plug-ins: one to perform the necessary
analysis and code transformations, and another to generate source code back
from the IR. The regenerated source code is then fed into NVIDIA’s compiler
nvcc to generate binaries for execution. We used CUDA version 1.0 for all of our
experiments. The CPU was an Opteron 248 system running at 2.2GHz with 1GB
of memory. The GPU was a GeForce 8800 GTX. The source codes for Phoenix
are straightforward CUDA implementations that use only global memory, with
slight manipulations so the CUDA extensions not recognized by Phoenix can be
passed through and regenerated correctly.

We present three applications as our benchmark: MRI-FHD, TPACF, and
the running example of this paper. These three applications display differences
in the arrays to be optimized (e.g. 1-D and 2-D) and the level of control flow
sophistication (e.g. loop nesting) that CUDA-lite had to handle. MRI-FHD is
one of the compute intensive portions of three-dimensional MRI Reconstruction,
of which details can be found in [16]. TPACF stands for the two-point angular
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Fig. 8. Overall Results

correlation function, which is used to characterize the probability of finding a
cosmological object at a given distance from another cosmological body. A more
detailed description of the algorithm can be found in [3]. Both of these programs
experienced terrific speedup moving from CPU to GPU [14].

Figure 8 shows the overall results for our benchmarks. The run times are
normalized to the base case of the application implemented in CUDA utiliz-
ing only global memory. For each application we show base, hand-coalesced,
and CUDA-lite results. It is obvious how important improving the memory per-
formance can be, providing between 2 to 17x performance difference in these
studies. CUDA-lite, despite being generated from an automated tool, provided
performance comparable to the hand-generated versions for all of the applica-
tions. We explain the discrepancy of the results between hand-generated and
CUDA-lite-generated code in Section 4.1.

Figure 9 shows the detailed results of our experiments. Part (a) is MRI-FHD.
Fast math is a compiler option in nvcc to utilize the hardware special function
units (SFUs) on the GeForce 8800. This is very beneficial for MRI-FHD because
its sine and cosine calculations can be performed on the SFUs. We present three
sets of data: Code generated by hand, passing hand-generated code through
Phoenix (Post-Phoenix), and CUDA-lite. The second set of data gives an idea
of the overhead for going through a translation tool, and provides a more ap-
propriate comparison for CUDA-lite. Note that Post-Phoenix and CUDA-lite
memory coalescing code out-perform hand-generated. Fewer registers per thread
were allocated by nvcc for the Post-Phoenix and CUDA-lite codes than the hand-
generated code, which allowed two TBs to run concurrently on an SM. Otherwise
the register allocation allowed only one. Part(b) shows the details of the TPACF
results. Although the performance of CUDA-lite is the same as Post-Phoenix,
they are both worse than hand-generated. Only one TB could run on an SM at
a time in all cases due to shared memory usage.

Figure 9(c) shows the results for the running example code in this paper. We
compare the benefits of load coalescing, store coalescing, and both. There are
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two arrays in the example code. Array a is read while array b is stored to. Using
the annotations in CUDA-lite, we control which accesses are coalesced by the
tool. The results indicate that coalescing either the load or the store is better
than coalescing both. When only one access to one array is coalesced, up to three
TBs can run concurrently on an SM. When accesses to both arrays are coalesced,
the amount of shared memory used is doubled and the number of TBs running
is reduced to one. Consequently, automatically coalescing all memory accesses
is not always a good policy. Resource usage and overall performance need to be
taken into account, perhaps in a performance optimization search like in [15].

4.1 Post-phoenix Overhead

Intuitively, regenerating source code from a compiler should add some amount
of overhead. Curiously, our results show that this does not always translate into
performance loss. Going through Phoenix showed no ill effect for MRI-FHD, a
visible slowdown in TPACF, and mixed results in the example code. We narrowed
down the problem to a combination of control flow and executing parallelism.

The output of Phoenix uses only GOTO statements to express the control
flow of the program. This results in poor performance on CUDA. We verified
this by manually generating versions that consist of only GOTO statements for
control flow and observed similar degradations in performance. This explains
the slowdown of TPACF and coalesced LD+ST in the example code. Multiple
TBs executing on an SM provides additional parallelism to mask this overhead
in MRI-FHD.

5 Related Work

Techniques have been proposed to allow array-dominated applications to benefit
from scratch-pad memories [5,12]. In [2], the authors used the polyhedral model
to detect data locality and copy the portion of data that is going to be used in
a tile into the shared memory (or “scratch-pad memory”) of a GPU. Our moti-
vation and approach is different as we copy data from global memory to shared
memory even if there is no data reuse. This is due to the significant performance
benefit of coalescing global memory accesses on the GPU architecture.

Related techniques have also been developed to manipulate data accesses for
SIMD devices [13,18]. SIMD units typically operate on short vectors, as opposed
to the large massively parallel arrays that CUDA prefers. Also, memory coalesc-
ing has to be linear access since that is the requirement from the programming
model. Data permutation and rearrangement would apply to setting up the data
outside of the GPU kernel, or detecting that the data usage within the kernel
covers data in such a way that interaction with the array should be coalesced.

We performed loop transformations such as tiling to properly reorganize the
execution pattern. Wolf et al. [17] covered the loop transformations that enhance
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data locality in loop nests. We decided not to automate the tiling transformations
and rely upon programmer annotations instead since that was not the focus
of our work. Our approach is not the same as the multi-level tiling schemes
presented in [4,6], but we share the view that having a global knowledge of data
access patterns facilitates improving locality in higher levels of memory hierarchy
and increases global memory bandwidth performance.

There exists a body of work that incorporates programmer knowledge in per-
forming transformations. Among these, the Spec# system by Microsoft [1] is
closest to our work. It utilizes annotations to allow a separate verifying compiler
to check for program correctness. Our annotations are information that feed
directly into compiler analyses and transformations, usually information that
would otherwise be missing or difficult to infer automatically by the compiler.

6 Conclusion and Future Work

In this paper we introduced CUDA-lite to help relieve programmers of the burden
of optimizing the memory performance of code developed under the CUDA pro-
gramming environment for GPU, which offers a complex memory hierarchy that
needs to be leveraged to best match memory bandwidth with compute through-
put. This is an important task due to the large effect memory performance has
on overall performance (2-17x).

We show that CUDA-lite produces code with performance comparable to
hand-coded versions. The coding requirements for CUDA-lite are lower than
performing the same transformations by hand and provides a layer of abstrac-
tion from the definition of warps in CUDA, which could change in the future.
Since CUDA-lite does not handle the parallelizing aspects of GPU programming,
we foresee CUDA-lite as the memory optimizing module of an eventual overall
framework for facilitating GPGPU programming that encompasses paralleliza-
tion and resource usage decisions to maximize performance.

For future work we plan to broaden the application set and to extend CUDA-
lite to leverage constant memory. We also hope to simplify the annotations in
CUDA-lite, some of which can be replaced by compiler analyses currently not in
our infrastructure.
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Purcell, T.J.: A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26(1), 80–113 (2007)

12. Panda, P.R., Dutt, N.D., Nicolau, A.: Efficient utilization of scratch-pad mem-
ory in embedded processor applications. In: EDTC 1997: Proceedings of the 1997
European Conference on Design and Test (1997)

13. Ren, G., Wu, P., Padua, D.A.: Optimizing data permutations for SIMD devices.
In: PLDI, pp. 118–131 (2006)

14. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B., Hwu, W.W.:
Optimization principles and application performance evaluation of a multithreaded
GPU using CUDA. In: PPoPP, pp. 73–82 (2008)

15. Ryoo, S., Rodrigues, C.I., Stone, S.S., Baghsorkhi, S.S., Ueng, S., Stratton, J.A.,
Hwu, W.W.: Program optimization space pruning for a multithreaded GPU. In:
CGO (April 2008)

16. Stone, S.S., Haldar, J.P., Tsao, S.C., Hwu, W.W., Liang, Z., Sutton, B.P.: Ac-
celerating advanced MRI reconstructions on GPUs. In: Proceedings of the 2008
International Conference on Computing Frontiers (May 2008)

17. Wolf, M.E., Lam, M.S.: A data locality optimizing algorithm. In: PLDI 1991: Pro-
ceedings of the ACM SIGPLAN 1991 Conference on Programming Language De-
sign and Implementation (1991)

18. Wu, P., Eichenberger, A.E., Wang, A., Zhao, P.: An integrated simdization frame-
work using virtual vectors. In: ICS, pp. 169–178 (2005)

http://research.microsoft.com/Phoenix/
http://www.nvidia.com/cuda


MCUDA: An Efficient Implementation of CUDA
Kernels for Multi-core CPUs

John A. Stratton, Sam S. Stone, and Wen-mei W. Hwu

Center for Reliable and High-Performance Computing and
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
{stratton,ssstone2,hwu}@crhc.uiuc.edu

Abstract. CUDA is a data parallel programming model that supports
several key abstractions - thread blocks, hierarchical memory and bar-
rier synchronization - for writing applications. This model has proven
effective in programming GPUs. In this paper we describe a framework
called MCUDA, which allows CUDA programs to be executed efficiently
on shared memory, multi-core CPUs. Our framework consists of a set
of source-level compiler transformations and a runtime system for par-
allel execution. Preserving program semantics, the compiler transforms
threaded SPMD functions into explicit loops, performs fission to elimi-
nate barrier synchronizations, and converts scalar references to thread-
local data to replicated vector references. We describe an implementa-
tion of this framework and demonstrate performance approaching that
achievable from manually parallelized and optimized C code. With these
results, we argue that CUDA can be an effective data-parallel program-
ming model for more than just GPU architectures.

1 Introduction

In February of 2007, NVIDIA released the CUDA programming model for use
with their GPUs to make them available for general purpose application pro-
gramming [1]. However, the adoption of the CUDA programming model has been
limited to those programmers willing to write specialized code that only executes
on certain GPU devices. This is undesirable, as programmers who have invested
the effort to write a general-purpose application in a data-parallel programming
language for a GPU should not have to make an entirely separate programming
effort to effectively parallelize the application across multiple CPU cores.

One might argue that CUDA’s exposure of specialized GPU features limits
the efficient execution of CUDA kernels to GPUs. For example, in a typical
usage case of the CUDA programming model, programmers specify hundreds
to thousands of small, simultaneously active threads to achieve full utilization
of GPU execution resources. However, a current CPU architecture currently
supports only up to tens of active thread contexts. On the other hand, some
language features in the CUDA model can be beneficial to performance on a
CPU, because these features encourage the programmer to use more disciplined
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control flow and expose data locality. Section 2 describes in more detail the key
CUDA language features and a deeper assessment of why we expect many CUDA
features to map well to a CPU architecture for execution. We propose that if an
effective mapping of the CUDA programming model to a CPU architecture is
feasible, it would entail translations applied to a CUDA program such that the
limiting features of the programming model are removed or mitigated, while the
beneficial features remain exposed when possible.

Section 3 describes how the MCUDA system translates a CUDA program into
an efficient parallel C program. Groups of individual CUDA threads are collected
into a single CPU thread while still obeying the scheduling restrictions of bar-
rier synchronization points within the CUDA program. The data locality and
regular control encouraged by the CUDA programming model are maintained
through the translation, making the resulting C program well suited for a CPU
architecture.

The implementation and experimental evaluation of the MCUDA system is
presented in Section 4. Our experiments show that optimized CUDA kernels
utilizing MCUDA achieve near-perfect scaling with the number of CPU cores,
and performance comparable to hand-optimized multithreaded C programs. We
conclude this paper with a discussion of related work in Section 5 and some
closing observations in Section 6.

2 Programming Model Background

On the surface, most features included in the CUDA programming model seem
relevant only to a specific GPU architecture. The primary parallel construct is a
data-parallel, SPMD kernel function. A kernel function invocation explicitly cre-
ates many CUDA threads (hereafter referred to as logical threads.) The threads
are organized into multidimensional arrays that can synchronize and quickly
share data, called thread blocks. These thread blocks are further grouped into
another multidimensional array called a grid. Logical threads within a block are
distinguished by an implicitly defined variable threadIdx, while blocks within a
grid are similarly distinguished by the implicit variable blockIdx. At a kernel in-
vocation, the programmer uses language extensions to specify runtime values for
each dimension of threads in a thread block and each dimension of thread blocks
in the grid, accessible within the kernel function through the variables blockDim
and gridDim respectively. In the GPU architecture, these independent thread
blocks are dynamically assigned to parallel processing units, where the logical
threads are instantiated by hardware threading mechanisms and executed.

Logical threads within CUDA thread blocks may have fine-grained execution
ordering constraints imposed by the programmer through barrier synchroniza-
tion intrinsics. Frequent fine-grained synchronization and data sharing between
potentially hundreds of threads is a pattern in which CPU architectures typically
do not achieve good performance. However, the CUDA programming model does
restrict barrier synchronization to within thread blocks, while different thread
blocks can be executed in parallel without ordering constraints.
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The CUDA model also includes explicitly differentiated memory spaces to take
advantage of specialized hardware memory resources, a significant departure
from the unified memory space of CPUs. The constant memory space uses a
small cache of a few kilobytes optimized for high temporal locality and accesses
by large numbers of threads across multiple thread blocks. The shared memory
space maps to the scratchpad memory of the GPU, and is shared among threads
in a thread block. The texture memory space uses the GPU’s texture caching and
filtering capabilities, and is best utilized with data access patterns exhibiting 2-
D locality. More detailed information about GPU architecture and how features
of the CUDA model affect application performance is presented in [2].

In the CUDA model, logical threads within a thread block can have indepen-
dent control flow through the program. However, the NVIDIA G80 GPU archi-
tecture executes logical threads in SIMD bundles called warps, while allowing
for divergence of thread execution using a stack-based reconvergence algorithm
with masked execution [3]. Therefore, logical threads with highly irregular con-
trol flow execute with greatly reduced efficiency compared to a warp of logical
threads with identical control flow. CUDA programmers are strongly encouraged
to adopt algorithms that force logical threads within a thread block to have very
similar, if not exactly equivalent, execution traces to effectively use the implic-
itly SIMD hardware effectively. In addition, the CUDA model encourages data
locality and reuse for good performance on the GPU. Accesses to the global
memory space incur uniformly high latency, encouraging the programmer to use
regular, localized accesses through the scratchpad shared memory or the cached
constant and texture memory spaces.

A closer viewing of the CUDA programming model suggests that there could
also be an efficient mapping of the execution specified onto a current multi-
core CPU architecture. At the largest granularity of parallelism within a kernel,
blocks can execute completely independently. Thus, if all logical threads within a
block occupy the same CPU core, there is no need for inter-core synchronization
during the execution of blocks. Thread blocks often have very regular control
flow patterns among constituent logical threads, making them amenable to the
SIMD instructions common in current x86 processors [4,5]. In addition, thread
blocks often have the most frequently referenced data specifically stored in a
set of thread-local or block-shared memory locations, which are sized such that
they approximately fit within a CPU core’s L1 data cache. Shared data for the
entire kernel is often placed in constant memory with a size limit appropriate
for an L2 cache, which is frequently shared among cores in CPU architectures.
If a translation can be designed such that these attributes are maintained, it
should be possible to generate effective multithreaded CPU code from the CUDA
specification of a program.

3 Kernel Translation

While the features of the model seem promising, the mapping of the computation
is not straightforward. The conceptually easiest implementation is to spawn an
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OS thread for every GPU thread specified in the programming model. However,
allowing logical threads within a block to execute on any available CPU core
mitigates the locality benefits noted in the previous section, and incurs a large
amount of scheduling overhead. Therefore, we propose a method of translating
the CUDA program such that the mapping of programming constructs maintains
the locality expressed in the programming model with existing operating system
and hardware features.

There are several challenging goals in effectively translating CUDA applica-
tions. First, each thread block should be scheduled to a single core for locality,
yet maintain the ordering semantics imposed by potential barrier synchroniza-
tion points. Without modifying the operating system or architecture, this means
the compiler must somehow manage the execution of logical threads in the code
explicitly. Second, the SIMD-like nature of the logical threads in many applica-
tions should be clearly exposed to the compiler. However, this goal is in conflict
with supporting arbitrary control flow among logical threads. Finally, in a typi-
cal load-store architecture, private storage space for every thread requires extra
instructions to move data in and out of the register file. Reducing this overhead
requires identifying storage that can be safely reused for each thread.

The translation component of MCUDA which addresses these goals is com-
posed of three transformation stages: iterative wrapping, synchronization en-
forcement, and data buffering. For purposes of clarity, we consider only the case
of a single kernel function with no function calls to other procedures, possibly
through exhaustive inlining. It is possible to extend the framework to handle
function calls with an interprocedural analysis, but this is left for future work.
In addition, without loss of generality, we assume that the code does not contain
goto or switch statements, possibly through prior transformation [6]. All trans-
formations presented in this paper are performed on the program’s abstract
syntax tree (AST).

3.1 Transforming a Thread Block into a Serial Function

The first step in the transformation changes the nature of the kernel function
from a per-thread code specification to a per-block code specification, temporar-
ily ignoring any potential synchronization between threads. Figure 1 shows an
example kernel function before and after this transformation. Execution of logical
threads is serialized using nested loops around the body of the kernel function
to execute each thread in turn. The loops enumerate the values of the previ-
ously implicit threadIdx variable and perform a logical thread’s execution of
the enclosed statements on each iteration. For the remainder of the paper, we
will consider this introduced iterative structure a thread loop. Local variables
are reused on each iteration, since only a single logical thread is active at any
time. Shared variables still exist and persist across loop iterations, visible to all
logical threads. The other implicit variables must be provided to the function at
runtime, and are therefore added to the parameter list of the function.

By introducing a thread loop around a set of statements, we are making
several explicit assumptions about that set of statements. The first is that the
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Fig. 1. Introducing a thread loop to serialize logical threads in Coulombic Potential

program allows each logical thread to execute those statements without any
synchronization between threads. The second is that there can be no side entries
into or side exits out of the thread loop body. If the programmer has not specified
any synchronization point and the function contains no explicit return statement,
no further transformation is required, as a function cannot have side entry points,
and full inlining has removed all side-exits. In the more general case, where using
a single thread loop is insufficient for maintaining program semantics, we must
partition the function into sets of statements which do satisfy these properties.

3.2 Enforcing Synchronization with Deep Fission

A thread loop implicitly introduces a barrier synchronization among logical
threads at its boundaries. Each logical thread executes to the end of the thread
loop, and then “suspends” until every other logical thread (iteration) completes
the same set of statements. Therefore, a loop fission operation essentially parti-
tions the statements of a thread loop into two sets of statements with an implicit
barrier synchronization between them. A synchronization point found in the im-
mediate scope of a thread loop can be thus enforced by applying a loop fission
operation at the point of synchronization.

Although a loop fission operation applied to the thread loop enforces a barrier
synchronization at that point, this operation can only be applied at the scope
of the thread loop. As mentioned before, the general case requires a transfor-
mation that partitions statements into thread loops such that each thread loop
contains no synchronization point, and each thread loop boundary is a valid
synchronization point. For example, consider the case of Figure 2. There are
at minimum four groups of statements required to satisfy the requirements for
thread loops: one leading up to the for loop (including the loop initialization
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Fig. 2. Applying deep fission in Matrix Multiplication to enforce synchronization

statement), one for the part of the loop before the synchronization point, one
after the synchronization point within the loop (including the loop update), and
finally the trailing statements after the loop.

In this new set of thread loops, the logical threads will implicitly synchronize
every time the loop conditional is evaluated, in addition to the programmer-
specified synchronization point. This is a valid transformation because of the
CUDA programming model’s requirement that control flow affecting a synchro-
nization point must be thread-independent. This means that if the execution of
a synchronization point is control-dependent on a condition, that condition must
be thread-invariant. Therefore, if any thread arrives at the conditional evalua-
tion, all threads must reach that evaluation, and furthermore must evaluate the
conditional in the same way. Such a conditional can be evaluated outside of a
thread loop once as a representative for all logical threads. In addition, it is valid
to force all threads to synchronize at the point of evaluation, and thus safe to
have thread loops bordering and comprising the body of the control structure.

In describing our algorithm for enforcing synchronization points, we first as-
sume that all control structures have no side effects in their declarations. We
enforce that for loops must be transformed into while loops in the AST, re-
moving the initialization and update expressions. In addition, all conditional
evaluations with side effects must be removed from the control structure’s dec-
laration, and assigned to a temporary variable, which then replaces the original
condition in the control structure. Then, for each synchronization statement S,
we apply Algorithm 1 to the AST with S as the input parameter.

After this algorithm has been applied with each of the programmer-specified
synchronization points as input, the code may still have some control flow for
which the algorithm has not properly accounted. Recall that thread loops assume
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Algorithm 1. Deep Fission around a Synchronization Statement S
loop

if Immediate scope containing S is not a thread loop then
Partition all statements within the scope containing S into thread loops. State-
ments before and after S form two thread loops. In the case of an if-else con-
struct, this also means all statements within the side of the construct not con-
taining S are formed into an additional thread loop. {See Figure 2(c)}

else
Apply a loop fission operation to the thread loop around S and return {(See
Figure 2(d).)}

end if
S ← Construct immediately containing S {Parent of S in the AST}

end loop

that there are no side entries or side exits within the thread loop body. Control
flow statements such as continue, break, or return may not be handled correctly
when the target of the control flow is not also within the thread loop. Figure 3(b)
shows a case where irregular control flow would result in incorrect execution. In
some iterations of the outer loop, all logical threads may avoid the break and
synchronize correctly. In another iteration, all logical threads may take the break,
avoiding synchronization. However, in the second case, control flow would leave
the first thread loop before all logical threads had finished the first thread loop,
inconsistent with the program’s specification. Again, we note that since the syn-
chronization point is control-dependent on the execution of the break statement,
the break statement itself can be a valid synchronization point according to the
programming model.

Therefore, the compiler must pass through the AST at least once more to
identify these violating control flow statements. At the identification of a control
flow statement S whose target is outside its containing thread loop, Algorithm 1
is once again applied, treating S as a synchronization statement. For the ex-
ample of Figure 3, this results in the code shown in Figure 3(c). Since these

thread_loop{
  while() {

    ...
    if()
      break;
    ...

    syncthreads();

    ...

  }
}

while() {
  thread_loop{
    ...
    if()
      break;
    ...
  }
  \\syncthreads();
  thread_loop{
    ...
  }
}

while() {
  thread_loop{
    ...
  }
  if()
    break;
  thread_loop{
    ...
  }
  \\syncthreads();
  thread_loop{
    ...
  }
}

(a) Initial Code with 
Serialized Logical Threads

(b) Synchronized at 
Barrier Function

(c) Synchronized at 
Control Flow Point

Fig. 3. Addressing unstructured control flow. The break statement is treated as an
additional synchronization statement for correctness.
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transformations more finely divide thread loops, they could reveal additional
control flow structures that violate the thread loop properties. Therefore, this
irregular control flow identification and synchronization step is applied itera-
tively until no additional violating control flow is identified.

The key insight is that we are not supporting arbitrary control flow among
logical threads within a block, but leveraging the restrictions in the CUDA lan-
guage to define a single-threaded ordering of the instructions of multiple threads
which satisfies the partial ordering enforced by the synchronization points. This
“over-synchronizing” allows us to completely implement a “threaded” control
flow using only iterative constructs within the code itself. The explicit synchro-
nization primitives may now be removed from the code, as they are guaranteed
to be bounded by thread loops on either side, and contain no other computation.
Because only barrier synchronization primitives are provided in the CUDA pro-
gramming model, no further control-flow transformations to the kernel function
are needed to ensure proper ordering of logical threads. Figure 4(a) shows the
matrix multiplication kernel after this hierarchical synchronization procedure
has been applied.

3.3 Replicating Thread-Local Data

Once the control flow has been restructured, the final task remaining is to buffer
the declared variables as needed. Shared variables are declared once for the
entire block, so their declarations simply need the shared keyword removed.
However, each logical thread has a local store for variables, independent of all
other logical threads. Because these logical threads no longer exist independently,
the translated program must emulate private storage for logical threads within
the block. The simplest implementation creates private storage for each thread’s
instance of the variable, analogous to scalar expansion [7]. This technique, which
we call universal replication, fully emulates the local store of each logical thread
by creating an array of values for each local variable, as shown in Figure 4(b).
Statements within thread loops access these arrays by thread index to emulate
the logical thread’s local store.

However, universal replication is often unnecessary and inefficient. In functions
with no synchronization, thread loops can completely serialize the execution of
logical threads, reusing the same memory locations for local variables. Even
in the presence of synchronization, some local variables may have live ranges
completely contained within a thread loop. In this case, logical threads can still
reuse the storage locations of those variables because a value of that variable is
never referenced outside the thread loop in which it is defined. For example, in
the case of Figure 4(b), the local variable k can be safely reused, because it is
never live outside the third thread loop.

Therefore, to use less memory space, the MCUDA framework should only
create arrays for local variables when necessary. A live-variable analysis deter-
mines which variables have a live value at the end of a thread loop, and creates
arrays for those values only. This technique, called selective replication, results
in the code shown in Figure 4(c), which allows all logical threads to use the same
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Fig. 4. Data replication in Matrix Multiplication

memory location for the local variable k. However, a and b are defined and used
across thread loop boundaries, and must be stored into arrays.

References to a variable outside of the context of a thread loop can only exist
in the conditional evaluations of control flow structures. Control structures must
affect synchronization points to be outside a thread loop, and therefore must be
uniform across the logical threads in the block. Since all logical threads should
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have the same logical value for conditional evaluation, we simply reference element
zero as a representative, as exemplified by the while loop in Figure 4 (b-c).

It is useful to note that although CUDA defines separate memory spaces
for the GPU architecture, all data resides in the same shared memory system
in the MCUDA framework, including local variables. The primary purpose of
the different memory spaces on the GPU is to specify access to the different
caching mechanisms and the scratchpad memory. A typical CPU system provides
a single, cached memory space, thus we map all CUDA memory types to this
memory space.

3.4 Work Distribution and Runtime Framework

At this point in the translation process the kernels are now defined as block-level
functions, and all that remains is, on kernel invocation, to iterate through the
block indexes specified and call the transformed function once for every specified
block index. For a CPU that gains no benefits from multithreading, this is an
efficient way of executing the kernel computation. However, CPU architectures
that do gain performance benefits from multithreading will likely not achieve
full efficiency with this method. Since these blocks can execute independently
according to the programming model, the set of block indexes may be partitioned
arbitrarily among concurrently executing OS threads. This allows the kernels to
exploit the full block-level parallelism expressed in the programming model.

4 Implementation and Performance Analysis

We have implemented the MCUDA automatic kernel translation framework un-
der the Cetus source-to-source compilation framework [8], with slight modifica-
tions to the IR and preprocessor to accept ANSI C with the language extensions
of CUDA version 0.8. MCUDA implements the algorithms presented in the previ-
ous section for kernel transformations and applies them to the AST intermediate
representation of Cetus. The live variable analysis required for robust selective
replication described in Section 3.3 is incomplete, but the current implemen-
tation achieves the same liveness results for all the applications presented in
this section. For compatibility with the Intel C Compiler (ICC), we replace the
CUDA runtime library with a layer interfacing to standard libc functions for
memory management. We chose to implement the runtime assignment of blocks
to OS threads with OpenMP, using a single “parallel for” pragma to express the
parallelism. A large existing body of work explores scheduling policies of such
loops in OpenMP and other frameworks [9,10,11,12], For our experiments, we
use the default compiler implementation.

Figure 5 shows the kernel speedup of three applications: matrix multiplica-
tion of two 4kx4k element matrices (MM4K), Coulombic Potential (CP), and
MRI-FHD, a computationally intensive part of high-resolution MRI image re-
construction. These applications have previously shown to have very efficient
CUDA implementations on a GPU architecture [13]. The CPU baselines that
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CP MM4K MRI-FHD
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Fig. 5. Performance (inverse runtime) of MCUDA kernels relative to optimized CPU
code. MCUDA results vary by the number of worker threads (1-4). CPU Opti imple-
mentations are parallelized across 4 threads.

we are measuring against are the most heavily optimized CPU implementations
available to us, and are threaded by hand to make use of multiple CPU cores.
All performance data was obtained on an Intel Core 2 Quad processor clocked at
2.66 GHz (CPU model Q6700). All benchmarks were compiled with ICC (version
10.1). Additionally, the CPU optimized matrix multiplication application uses
the Intel MKL.

We can see that the performance scaling of this implementation is very good,
with practically ideal linear scaling for a small number of processor cores. For each
application, the performance of the CUDA code translated through the MCUDA
framework is within 30% of the most optimized CPU implementation available.
This suggests that the data tiling and locality expressed in effective CUDA kernels
also gain significant performance benefits on CPUs, often replicating the results
of hand-optimization for the CPU architecture. The regularly structured iterative
loops of the algorithms were also preserved through the translation. The compiler
vectorized the innermost loops of each application automatically, whether those
were thread loops or loops already expressed in the algorithm.

Tuning CUDA kernels entails methodically varying a set of manual optimiza-
tions applied to a kernel. Parameters varied in this tuning process may include
the number of logical threads in a block, unrolling factors for loops within the
kernel, and tiling factors for data assigned to the scratchpad memory [14]. The
performance numbers shown are the best results found by tuning each applica-
tion. In the tuning process, we found that not all optimizations that benefit a
GPU architecture are effective for compiling and executing on the CPU. In these
applications, manual unrolling in the CUDA source code almost always reduced
the effectiveness of the backend compiler, resulting in poorer performance. Opti-
mizations that spill local variables to shared memory were also not particularly
effective, since the shared memory and local variables reside in the same memory
space on the CPU.
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In general, the best optimization point for each application may be different
depending on whether the kernel will execute on a GPU or CPU. The archi-
tectures have different memory systems, different ISAs, and different threading
mechanisms, which make it very unlikely that performance tuning would arrive
at the similar code configuration for these two architectures. For all the appli-
cations we have explored so far, this has always been the case. For example, the
best performing matrix multiplication code uses per-block resources that are ex-
pressible in CUDA, but well over the hardware limits of current GPUs. The best
CUDA code for the CPU uses 20KB of shared memory and 1024 logical threads
per block, both over the hardware limits of current GPUs. Similarly, the best
CP code uses an amount of constant memory larger than what a current GPU
supports. Developing a system for tuning CUDA kernels to CPU architectures
is a very interesting area of future work, both for programming practice and
toolchain features.

For the benchmarks where the MCUDA performance is significantly below the
best hand-tuned performance, we think that this is primarily because of algo-
rithmic differences in the implementations. Projects like ATLAS have explored
extensive code configuration searches far broader than we have considered in
these experiments, and some of that work may be relevant here as well. People
have achieved large speedups on GPU hardware with “unconventional” CUDA
programming [15], and it is possible that more variations of CUDA code config-
urations may eventually bridge the current performance gap. The hand-tuned
MRI-FHD implementation uses hand-vectorized SSE instructions across logical
threads, whereas ICC vectorizes the innermost loop of the algorithm, seemingly
with a minor reduction in efficiency. Future work should consider specifically
targeting the thread loops for vectorization, and test the efficiency of such a
transformation.

5 Related Work

With the initial release of the CUDA programming model, NVIDIA also released
a toolset for GPU emulation [1]. However, the emulation framework was designed
for debugging rather than for performance. In the emulation framework, each
logical thread within a block is executed by a separate CPU thread. In contrast,
MCUDA localizes all logical threads in a block to a single CPU thread for better
performance. However, the MCUDA framework is less suitable for debugging the
parallel CUDA application for two primary reasons. The first is that MCUDA
modifies the source code before passing it to the compiler, so the debugger can
not correlate the executable with the original CUDA source code. The second
is that MCUDA enforces a specific scheduling of logical threads within a block,
which would not reveal errors that could occur with other valid orderings of the
execution of logical threads.

The issue of mapping small-granularity logical threads to CPU cores has been
addressed in other contexts, such as parallel simulation frameworks [16]. There
are also performance benefits to executing multiple logical threads within a single
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CPU thread in that area. For example, in the Scalable Simulation Framework
programming model, a CPU thread executes each of its assigned logical threads,
jumping to the code specified by each in turn. Logical threads that specify
suspension points must be instrumented to save local state and return execu-
tion to the point at which the logical thread was suspended. Taking advantage
of CUDA’s SPMD programming model and control-flow restrictions, MCUDA
uses a less complex execution framework based on iteration within the origi-
nally threaded code itself. The technique used by MCUDA for executing logical
threads can increase the compiler’s ability to optimize and vectorize the code
effectively. However, our technique is limited to SPMD programming models
where each static barrier-wait instrinsic in the source code waits on a different
thread barrier.

A large number of other frameworks and programming models have been pro-
posed for data-parallel applications for multi-core architectures. Some examples
include OpenMP [17], Thread Building Blocks [18], and HPF [19]. However,
these models are intended to broaden a serial programming language to a paral-
lel execution environment. MCUDA is distinct from these in that it is intended
to broaden the applicability of a previously accelerator-specific programming
model to a CPU architecture.

Liao et al. designed a compiler system for efficiently mapping the stream pro-
gramming model to a multi-core architecture [20]. CUDA, while not strictly a
stream programming model, shares many features with stream kernels. MCUDA’s
primary departure from mapping a stream programming model to multi-core ar-
chitectures is the explicit use of data tiling and cooperative threading, which al-
lows threads to synchronize and share data. With MCUDA, the programmer can
exert more control over the kernels with application knowledge, rather than re-
lying on the toolset to discover and apply them with kernel merging and tiling
optimizations. It is also unclear whether the range of optimizations available in
the CUDA programming model can be discovered and applied by an automated
framework.

6 Conclusions

We have described techniques for efficiently implementing the CUDA program-
ming model on a conventional multi-core CPU architecture. We have also imple-
mented an automated framework that applies these techniques, and tested it on
some kernels known to have high performance when executing on GPUs. We have
found that for executing these translated kernels on the CPU, the expression of
data locality and computational regularity in the CUDA programming model
achieves much of the performance benefit of tuning code for the architecture by
hand. These initial results suggest that the CUDA programming model could be
a very effective way of specifying data-parallel computation in a programming
model that is portable across a variety of parallel architectures.

As the mapping of the CUDA language to a CPU architecture matures, we
expect that the performance disparity between optimized C code and optimized
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CUDA code for the CPU will continue to close. As with any other level of soft-
ware abstraction, there are more opportunities for optimization at lower levels
of abstraction. However, if expressing computation in the CUDA language al-
lows an application to be more portable across a variety of architectures, many
programmers may find a slightly less than optimal performance on a specific
architecture acceptable.
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Abstract. Ease of programming is one of the main impediments for the broad 
acceptance of multi-core systems with no hardware support for transparent data 
transfer between local and global memories. Software cache is a robust 
approach to provide the user with a transparent view of the memory 
architecture; but this software approach can suffer from poor performance. In 
this paper, we propose a hierarchical, hybrid software-cache architecture that 
targets enabling pre-fetch techniques. Memory accesses are classified at 
compile time in two classes, high-locality and irregular. Our approach then 
steers the memory references toward one of two specific cache structures 
optimized for their respective access pattern. The specific cache structures are 
optimized to enable high-level compiler optimizations to aggressively unroll 
loops, reorder cache references, and/or transform surrounding loops so as to 
practically eliminate the software cache overhead in the innermost loop. The 
cache design enables automatic pre-fetch and modulo scheduling transforma-
tions. Performance evaluation indicates that the optimized software-cache 
structures combined with the proposed pre-fetch techniques translate into 
speed-up between 10% and 20%.  Evaluation is done on a set of parallel NAS 
applications. 

Keywords: Cell BE Architecture, Software Cache, Pre-fetching, Modulo 
Scheduling. 

1   Introduction 

Heterogeneity has become one particular trend in recently proposed computer 
systems. For instance, the IBM Cell BE processor [1-5] is a multi-core design that 
mixes two architectures: a traditional superscalar core based on the PowerPC 
architecture surrounded by eight cores based on the Synergistic Processor Element 
(SPE)[4]. In the IBM Cell architecture, the SPEs are provided with local memories 
and data transfers from/to main memory are explicitly performed under software 
control. In terms of programmability, this adds another level of complexity and 
programmers have to deal with the burden of explicitly program the necessary data 
transfers within applications. General compiler-based solutions [5] are difficult to  
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Fig. 1. Overhead of traditional software cache approaches 

deploy due to the lack of sufficient information at compile time to generate correct 
and efficient code. 

One global solution is that of emulating a hardware cache by software techniques. 
In software cache based environments, every memory reference is wrapped by control 
handlers to ensure correctness. Control handlers are responsible for all cache 
operations: look-up, placement/replacement, data transfers, synchronization, address 
translation, and consistency. Figure 1 shows an example of the kind of code emitted 
by the compiler targeting a software emulated cache. 

The memory references r1, r2 and r3 have been transformed and the correspondent 
code is showed in Figure 1b. Before the actual use of data, it is necessary to check if 
the data is resident in the software cache. This checking is done by invoking the HIT 
runtime call. If data is not resident then miss handler MAP is invoked to serve a miss. 
The MAP miss handler is responsible for selecting a cache line to be evicted (if 
necessary, and then perform the write-back operation), and finally loads the requested 
line in a synchronous manner. When data is resident in the software cache, the actual 
access can be allowed, but this operation requires an address translation: the REF 
handler is responsible for that. For memory reference r3, it is necessary to update 
memory consistency structures, in the example this is associated to the 
CONSISTENCY handler. 

Clearly, the transformed code in Figure 1b is far from optimal, especially because 
of how memory references r3 and r1 are treated. Those references expose a high  
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degree of spatial locality, but every of their instances are going to be checked at 
runtime introducing unnecessary overhead. For references which expose a high 
degree of spatial-locality, it is trivial to compute the number of useful data present in 
the current cache line along the execution of the innermost loop. For such type of 
memory references we can easily compute the number of loop iterations (within the 
iteration space of i-loop) for which the current cache line can provide data for such 
references. This would allow iterating without a miss and without any software cache 
intervention. But this optimization requires some control over the cache geometry. 

First, we must be able to pin a cache line in the cache storage, releasing it only 
when all high-locality references are done with it. Second, the cache must have at 
least one unoccupied cache line per distinct high locality references in the loops, if we 
want to remove all checking code from the innermost loop. Third, it would be 
desirable to have a “big” cache line size in order to maximize the number of iterations 
that could be executed with no need of any cache intervention. On the other side, 
reference r2 should be treated with very different mechanisms: it exposes very poor 
spatial locality, so a small cache line would be desirable. This suggests a hybrid 
design where memory references are mapped to specific storages according to the 
locality they expose. 

Another source of significant overhead is the synchronous communication in the 
MAP handler. Whatever the implementation of the MAP handler, it is necessary to 
introduce a synchronization between the data transfer and the actual load/store 
operation the MAP is associated to. This hinders the possibilities of overlapping 
communication with computation. Pre-fetch techniques can be introduced to hide the 
memory latencies, but in the context of software cache systems, pre-fetch does not 
come for free. Pre-fetching requires execution of control code related to the lookup, 
placement/replacement and data transfer operations. Besides, it is necessary to ensure 
that the pre-fetch data is in the range of the valid address space. One well known pre-
fetch technique is the modulo scheduling execution [7-9]. In Figure 1c this technique 
has been applied to the original source code. Basically, data used in iteration i+1 is 
pre-fetched in iteration i. Now the communications in AMAP are asynchronous, 
which makes possible to overlap some computation in iteration i with some 
communication related to data used in iteration i+1.  Notice the TSYNCH call which 
is responsible that the data required for load/store operations is already in the cache 
storage. But the problem is not yet solved, since there are two undesirable situations 
that make the transformation in Figure 1c inapplicable. First, it is necessary to ensure 
that no conflict appear between the set of consecutive AMAP operations. This is 
related to the associative level of the cache design and suggests a full associative 
scheme, always limited by the look-up overheads. Second, it is possible that some 
write-back operation is triggered along an AMAP operation: this implies some 
communication that has to be performed synchronously, making useless the modulo 
scheduling transformation. 

Our main contribution is to design a hierarchical, hybrid software-cache 
architecture that is designed from the ground up to enable compiler optimizations that 
reduce software cache overheads.  We identify two main data access patterns, one for 
high-locality and one for irregular accesses. Because the compiler optimizations 
targeting these two patterns have different objectives and requirements, we have 
designed two distinct cache structures that best respond to these distinct access 



34 N. Vujić et al. 

patterns and optimization requirements. In particular, our design includes: (1) a high-
locality cache with a variable configuration, lines that can be pinned, and a 
sophisticated eager write-back mechanism; and (2) a transaction cache with fast, fully 
associative lookup, short lines, and an efficient write-through policy. The cache 
design includes specific support for automatic pre-fetch and modulo scheduling code 
transformations. 

The rest of the paper is organized as follows. Section 2 presents our software cache 
design. Section 3 describes the code transformations enabled by our approach. Section 
4 evaluates our approach using some applications of the NAS benchmarks. Related 
work is presented in Section 5 and Section 6 concludes the paper with some 
conclusions. 

2   Software Cache Design 

We describe in this section the design of our hierarchical, hybrid software cache. 
Figure 2 shows the high level architecture of our software cache. Memory references 
exposing a high degree of locality are mapped by the compiler to the High-Locality 
Cache, and the others, irregular accesses are mapped into the Transactional Cache. 
The Memory Consistency Block implements the necessary data structures to maintain 
a relaxed consistency model. The Pre-fetching Block implements necessary data 
structures to maintain pre-fetching for regular memory references. 

The cache is accessed through one block only, either the High-Locality Cache or 
the Transactional Cache. Both caches are consistent with each other. The hybrid 
approach is hierarchical in that the Transactional Cache is forced to check for the 
data in the High-Locality Cache storage during the lookup process. 
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Fig. 2. Block diagram of our software cache design 

2.1   The High Locality Cache 

The High-Locality Cache enables compiler optimizations for memory references that 
expose a high degree of spatial locality. It is designed to pin cache lines using explicit 
reference counters, deliver good hit ratios, and maximize the overlap between 
computation and communication.  
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2.1.1   High-Locality Cache Structures 
The High Locality Cache is composed of the following six data structures, depicted in 
Figure 3: (1) the Cache Storage to store application data, (2) the Cache Line 
Descriptors to describe each line in the cache, (3) the Cache Directory to retrieve the 
lines, (4) the Cache Unused List to indicate the lines that may be reused, (5) the 
Cache Translation Record to preserve for each reference the address resolved by  
the cache lookup, and (6) the Cache Parameters to record global configuration 
parameters. 

The Cache Storage is a block of data storage organized as N cache lines, where N 
is total cache storage divided by the line size. The line size is described by the Cache 
Line Size parameter, and must be a power of 2. In our configuration, we can store 
between 16 to 128 cache lines of sizes from 512 to 4KB, within its 64KB cache 
storage.  

Each cache line is associated with a unique Cache Line Descriptor that describes 
all there is to know about that line. Its Global Base Address is a global memory 
address that corresponds to the base address associated with this line in global 
memory. Its Local Base Address corresponds to the  base address of the cache line in 
the local-memory cache storage. Its Cache Line State records state such as whether 
the line holds modified data or not. Its Reference Counter keeps track of the number 
of memory references that are currently referencing this cache line. Its Directory 
Links is a pair of pointers used by the cache directory to list all of the line descriptors 
that map to the same cache directory entry. Its Free Links is a pair of pointers used to 
list all the lines that are currently unused (i.e. with reference counter of zero). Its 
Communication Tags are a pair of integer values used to synchronize data transfers 
to/from the software cache.  In our configuration, we synchronize using DMA fences, 
using each of the 32 distinct hardware fences. Our communication tags thus range 
from 0 to 31. 

The Cache Translation Record preserves information generated by the lookup 
process and to be later used when data is accessed by the actual reference. It contains 
3 elements; the global base address of the original reference, the local base address in 
the cache storage, and a pointer to the cache line descriptor.  

We implement an efficient, fully associative cache structure using the Cache 
Directory structure. It contains a sufficiently large number of double–linked lists (128  
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Fig. 3. Structures of the High Locality Cache and Transactional Cache 
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in our implementation), where each list can contain an arbitrary number of cache line 
descriptors. A hash function is applied to the global base address to locate its 
corresponding list, which is then traversed to find a possible match. The use of a hash 
function enables us to efficiently implement cache configurations with up to 128-way 
fully associative caches.  

The Cache Unused List is a double-linked list which contains all the cache line 
descriptor no longer in use. Other cache parameters include parameters such as the 
Cache Directory Hash Mask, a mask used by the cache directory to associate a global 
base address with its specific linked list.  

2.1.2   High-Locality Cache Operational Model 
The operational model for the High Locality Cache is composed of all the operations 
that execute upon the cache structures and implement the primitive operations shown 
in Figure 1, namely lookup, placement, communication, synchronization and 
consistency mechanisms. The following paragraphs describe each type of operation. 

The lookup operation for a given reference r, translation record h, and global 
address g is divided in two different phases. The first phase checks if the global 
address g is found in the cache line currently pointed to by the translation record h. 
When this is the case, we have a hit and we are done. Otherwise, we have a situation 
where the translation record will need to point to a new cache line in the local storage. 
The lookup process then enters its second phase. The second phase accesses the cache 
directory to determine if the referenced cache line is already resident in the cache 
storage.  When we have a hit, we update the translation record h and we are done. 
Otherwise, a miss occurs and we continue with placement and communication 
operations. 

The reference counter is often updated during the lookup process. Whenever a 
translation record stops pointing to a specific cache line descriptor, the reference 
counter of this descriptor is decremented by one. Similarly, whenever a translation 
record starts pointing to a new cache line descriptor, the reference counter of this new 
descriptor is incremented by one.  

The placement code is invoked when a new line is required. Free lines are 
discovered when their descriptor’s reference counter reaches zero. Free lines are 
immediately inserted at the end of the unused cache line list. Modified lines are then 
eagerly written back to global memory. When a new line is required, we grab the line 
at the head of the unused cache line list after ensuring that the communication 
performing the write-back is completed, if the line was modified. 

We support a relaxed consistency model. While it is the Memory Consistency 
Block responsibility  to maintain consistency, the High-Locality Cache is responsible 
for informing the consistency block of which subsets of any given cache line have 
been modified and how to trigger the write-back mechanism. Every time a cache line 
miss occurs, cache thus informs the Memory Consistency Block about which elements 
in the cache line are going to be modified.  

The communication code performs all data transfer operations asynchronously. For 
a system such as the Cell BE processor with a full-featured DMA engine, we reserve 
the DMA tags 0 to 15 for data transfers from main memory to the local memory, and 
tags 16 to 31 for data transfers in the reverse direction. In both cases, tags are 
assigned in a circular manner. Tags used in the communication operations are 



 Automatic Pre-Fetch and Modulo Scheduling Transformations 37 

recorded in the Communication Tags field of the Cache Line Descriptor. All data 
transfers tagged with the same DMA tag are forced by the DMA hardware to strictly 
perform in the order they were programmed. 

The synchronization operation is supported by the data in the Cache Line 
Descriptor, in the Communication Tags field. The DMA tags stored in this field are 
used to check that any pending data transfer is completed. The Communication Tags 
record every tag that invokes the corresponding cache line. 

When accessing data, the global to local address translation is supported through 
the translation record. The translation operation is composed of several arithmetic 
computations required to compute the reference’s offset in the cache line and to add 
the offset to the local base address. 

2.2   The Pre-Fetch Block 

The Pre-Fetch Block enables automatic pre-fetch for regular memory references. The 
Pre-fetch Block is selective in the sense that not all regular memory references trigger 
the pre-fetch. It is activated under demand according to the activity in the High 
Locality Cache. For selected references, the memory addresses are forwarded to the 
Pre-fetch Block. Then the pre-fetch can be activated and all forwarded addresses 
determine the next cache lines to be pre-fetched. 

2.2.1   The Pre-Fetch Structures 
The Pre-Fetch Block is composed of the following four structures: (1) Pre-Fetch 
Translation Record to preserve for each reference the address resolved by the pre-
fetch operation, (2) Pre-fetch Translation Table to keep track of records being used in 
pre-fetch operation, and (3) the Pre-fetch Communication Tags to preserve DMA tags 
used for pre-fetching. 

The Pre-Fetch Translation Record structure consists of four fields: (1) the pre-
fetch global address is the base address of the cache line that triggers pre-fetch, (2) the 
pre-fetch local address is the base address of the cache line allocated to hold the pre-
fetched data in the local store, (3) the pre-fetch cache line descriptor is a pointer to the 
cache line descriptor of the pre-fetched line, and (4)  the pre-fetch distance that 
indicates the next cache line to be pre-fetched as a distance (in a number of cache 
lines) from the cache line base address that triggered the pre-fetch. 

The Pre-Fetch Translation Table is a table where each entry holds one Pre-Fetch 
Translation Record.  The Pre-fetch Counter keeps track of the number of pending pre-
fetch operations. 

The Pre-fetch Communication Tags consists of all communication tags actively 
used for pre-fetching purposes. These tags are going to be used to synchronize the 
data transfers associated to the pre-fetched data. 

2.2.2   The Pre-Fetch Block Operational Model 
Memory references that have been selected to trigger the pre-fetch are recorded in the 
Pre-fetch Translation Table. Pre-fetch is activated from the High Locality Cache and 
this causes the Pre-fetch Block to traverse the Pre-fetch Translation Table and for 
every non empty entry performs the look-up, placement and replacement operations 
as if the cache line being pre-fetched was referenced by the actual computation. 
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Along this process all the communication tags used in the data transfers are recorded 
in the Pre-fetch Communication Tags register. Under control of the High Locality 
Cache, it is possible to synchronize with the pre-fetched data using this register. 

Introducing pre-fetch support requires reserving some of the available 
communication tags specifically for that purpose. The range of tags that was used to 
bring data in to the cache storage is split in two different ranges, one from 0 to 7, the 
other from 8 to 15. Both ranges are assigned in a circular manner and the High 
Locality Cache and the Pre-fetch block are coordinated to switch from one range to 
the other every time the Pre-fetch block is required to perform pre-fetch operations. 

2.3   The Transactional Cache 

The Transactional Cache is aimed at memory references that do not expose any 
spatial locality. Because miss ratios are expected to be high, this cache is designed to 
deliver very low hit and miss overhead while enabling overlapped computation and 
communication. The design introduces very simple structures that allow support for 
lookup, placement, communication, consistency, synchronization, and translation 
mechanisms. 

In our configuration, the transactional storage is organized as a small 4KB capacity 
cache, fully associative, and with 32 128-bytes cache lines. It supports a relaxed 
consistency model using a write-through policy. 

2.3.1   The Transactional Cache Structures 
The Transactional Cache is composed of the following four data structures, shown in 
Figure 3: (1) the Cache Directory to retrieve the lines, (2) the Cache Storage to hold 
the application data, (3) the Translation Record to preserve the outcome of a cache 
lookup for each reference, and (4) some additional cache state. 

The Cache Directory is organized as a vector of 32 4-byte entries. Each entry holds 
the global base address associated with this entry’s cache line. The index of the entry 
in the directory structure is also used as index into the Cache Storage to find the data 
associated with that entry. The directory entries are packed in memory and aligned at 
a 16-byte boundary so as to enable the use of fast SIMD compares to more quickly 
locate entries. The Cache Storage is organized as 32 cache lines, where each 128-
bytes line is aligned at a 128-byte boundary. 

To increase concurrency, the cache directory and storage structures are logically 
divided in four equal-size partitions; the Cache Turn Ticket indicates which partition 
is actively used. Within the active partition, the Cache Placement Index points to the 
cache line that will be used to service the next miss.  

At a high level, the active partition is used for buffering cache lines which are 
going to be used in the current transaction and these cache lines were pre-fetched. The 
next partition, in circular manner, is used for placing cache lines which we are pre-
fetching and which are going to be used in the next transaction in the next iteration of 
the unrolled loop. Other two partitions are used to buffer data of the two previous 
transactions while their modified data is being flushed back to the main memory. 
Based on this explanation, we defined three states in which our partitions can be: in-
use, pre-fetching and flushing. 
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2.3.2   The Transactional Cache Operational Model 
In this paper, a transaction is a set of computation and related communication that will 
happen as a unit (but never rollback). Operations in a transaction happen in four 
consecutive steps: (1) initialization, (2) communication into local memory, (3) 
computation associated with the transaction, and (4) propagation of any modified 
state back to global memory. 

During initialization, in Step 1, the Cache Turn Ticket is set to point to the next 
partition in the circular manner. The Cache Placement Index is set to point to the first 
cache line of the new partition. In our configuration, its value can be 0, 8, 16 or 24 
when the ticket is, respectively, pointing to partition 0, 1, 2, or 3. In addition, all cache 
directory entries in the new active partition are erased. 

In Step 2, the data corresponding to each global-memory reference is brought into 
the local memory, using sequences of look-up and possibly calls to the miss-handler. 
The lookup process for a given reference r, translation record h, and global address g 
first proceeds with a standard High-Locality cache lookup, since we do not want to 
replicate data in both cache structures. This first lookup can be avoided if address g 
can be guaranteed not to be found in the high-locality cache. When a hit occurs, the 
Local Base Address field in translation record h is simply set to point to the 
appropriate sub-section of the line in the high-locality cache storage. When a miss 
occurs, however, we proceed by checking the address g against the entries in 
transactional cache directory. This lookup is fast on architectures with SIMD units, 
such as the SPEs. On platforms where 4 entries fit into one SIMD register, such as the 
SPEs, we perform a 32-way address match using 8 compare SIMD instructions. When 
a miss occurs, a placement operation is executed. When a hit occurs, the look-up can 
operate in one of two ways. If the hit occurred within the active partition (partition 
where we are going to pre-fetch the data for next iteration), we simply update the 
translation record h. If the hit occurred within the next partition, in circular manner, 
then we need to do two actions. First, we need to migrate the line to the active 
partition, a placement operation is used for this operation as well. Second, we need to 
inform previous partition (partition which is in in-use state) about migrated cache line 
in order to maintain consistency between transactions. If, however hit occurred within 
the other partitions, we simply update the translation record h.  

The placement code simply installs a new directory entry and associated cache line 
data at the line pointed by the Cache Placement Index. The placement index is then 
increased by one (modulo 32). Communications generated by the miss in Step 2 
results into an asynchronous 128-byte transfer into local memory.  

Step 3 proceeds with the computation, using the same translation record as seen in 
Section 2.1.  

In Step 4, every modified storage location that was modified by a store in Step 3 is 
directly propagated into global memory. This approach to relaxed consistency 
eliminates the need for any extra data structures (such as dirty bits) and do not 
introduce any transfer atomicity issue. These asynchronous communications occur 
regardless of whether a hit or miss occurred in Step 2. Moreover, only the modified 
bytes of data are transferred into global memory during Step 4. 

In order to ensure consistency within and across transactions, every data transfer is 
tagged with the index of the cache line being used (from 0 to 31), and a fence is 
placed right after the data transfer operation. All data transfers tagged with the same 
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tag are forced by the hardware to perform strictly in the order under which they were 
programmed. The synchronization code occurs in precisely two places. The first 
synchronization is placed between Steps 2 & 3, to ensure that the data arrive before 
being used. When Partition 0 is active, we wait for data transfer operations with tags 
[0..7], for partition 1 appropriate tags are [8..15], for partition 2 tags are [16..23] and 
for partition 3 wait for tags [24..31]. For the data transfer initiated in Step 4, the 
synchronization code is placed at the beginning of the next transaction with the same 
value for the Cache Turn Ticket, synchronizing with the data transfer operations 
tagged with numbers [0..7], [8..15], [16..23] or [24..31].  

2.4   The Memory Consistency Block 

The Memory Consistency Block contains the necessary data structures to maintain a 
relaxed consistency model. For every cache line in the High Locality Cache, 
information about what data has been modified is maintained using a Dirty Bits data 
structure. Whenever a cache line has to be evicted, the write-back process is 
composed by three steps. The cache line in main memory is read, then a merge 
operation is applied between both versions, the one resident in the cache storage and 
the one recently transferred, and finally, the output of the merge is sent back to main 
memory. All data transfers are synchronous and atomic. 

3   Code Transformations 

We describe in this section the type of code transformation techniques that are now 
enabled using our pre-fetching and modulo scheduling approach in the software 
cache. With no loss of generality, the code transformation targets the execution of 
loops. 

The code transformations are performed in three ordered phases: (1) classifying of 
memory references into regular and irregular accesses; (2) transformation of the code 
to optimize regular memory accesses, and (3) transformation of the code to optimize 
irregular memory accesses. We illustrate this process in Figure 4 using the same 
introductory example presented in Figure 1a. 

3.1   Classification of Memory Accesses 

In Phase 1, memory accesses are classified as regular or irregular accesses. Figure 4a 
shows the classification of the references for our exemplary code. Memory accesses 
index[i] and v[i] with i=0…N are labeled as regular, while memory access w[tmp] 
with tmp=index[i] is labeled as irregular memory access.  

3.2   Regular Access Transformations 

In phase 2, original for-loop is transformed into two nested loops (Figure 4b). 
Dynamic sub-chunking of the iteration space is done by using those two nested loops. 
In each dynamic sub-chunk of iterations we are sure that all relevant data are 
permanent in the cache storage and iterating through them, in the inner for-loop of the 
transformed code, is not going to produce miss. Work done in the inner for-loop  
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Fig. 4. Example of C code and its code transformation 

(related to regular memory accesses) does not have any cache overhead. In the while 
loop we are introducing necessary code transformations per each high locality 
memory reference. The lookup, dynamic sub-chunking, consistency maintaining, pre-
fetching and synchronization operation are done in the while loop. 

The lookup operation checks if the address &index[i] of the reference r1 is in the 
cache line pointed to by the translation record (handle) h1. This checking is done by 
using AVAIL macro. The AVAIL macro returns for reference r1 number of iterations 
for which this reference will be present in the cache line pointed to by handle h1. If 
this number is greater than zero we have hit and then we are proceeding with 
determining of the upcoming dynamic sub-chunk of the iteration space. If this number 
is equal to zero then macro HMAP_PF is invoked to serve a miss. Notice the third 
argument of the HMAP_PF macro, indicating if pre-fetch has to be considered for the 
given memory reference. This argument corresponds to the pre-fetch distance, 
indicating the next cache line to be most likely accessed by the memory reference. In 
case the distance is other than zero, pre-fetch is activated and the address is forwarded 
to the Pre-fetch Block. Next step is determining of the upcoming dynamic sub-chunk 
of the iteration space. Once we have sub-chunking factor n we can process with 
consistency and synchronization operations. Since reference r1 is read only access 
reference then consistency operation is not processed for r1 but is processed for r3 
which is read and write access reference. The PREFETCH macro triggers pre-fetch 
for all forwarded addresses. Notice that the pre-fetch code is executed before the 
synchronization with the DMA engine takes place, giving the opportunity to overlap 
the pre-fetch code to actual communication. 
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3.3   Irregular Access Transformation 

In Phase 3, we transform the inner for-loop so as to optimize cache overhead for 
irregular memory accesses. The first task is to determine the transactions. In our 
work, the scope of a transaction is a basic block, or a subset of. Large transactions are 
beneficial as they potentially increase the number of concurrent misses, thus 
increasing communication overlap. In general, a transaction can contain as many 
distinct irregular accesses as there are entries in a single partition of the transactional 
cache, 8 in our configuration. Because of our focus on loops, larger transactions are 
mainly achieved through loop unrolling. In our example, we unrolled the inner for-
loop by a factor of 2 (for conciseness) so as to include two w[tmp] and w[tmp’] 
references within a single transaction. 

The code generated for a transaction closely follows the four step process outlined 
in Section 2.2.2. As shown in Figure 4c, we first initialize the transaction using the 
macro TINIT (Step 1) and then proceed in asynchronously acquiring the data of each 
irregular reference r2 (due to loop unrolling of factor 2 we have two r2  references) 
using the GET macro (Step 2). Once all irregular references have been processed, we 
issue a TSYNC operation to synchronize with pending DMAs issued by appropriate 
GET macros. We then access the data using the REF macro (Step 3) and write-back 
the modified data using the PUT macro (Step 4). 

Conceptually, the work inside transactions in modulo scheduled loop can be 
visualized as four tasks. In the loop prologue we pre-fetch data which are going to be 
used within computation section in the first iteration of the unrolled loop. We assign 
task Step1&2 to this prologue. At the beginning of the unrolled loop body we pre-
fetch data which is going to be used in the next iteration or in the loop epilogue. In 
this part of the code we use translation records h2 and h2’. We assign task Step1’&2’ 
to this part of the unrolled loop body. After this we have a necessary synchronization 
point where we synchronize with pending DMAs determined by translation records 
h2 and h2’. When we are sure that data has arrived in the cache, we execute 
computation section and at the end, modified data is sent back to main memory (PUT 
macro). This corresponds to task Step3&4. In the steady state of the loop, partitions  
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Fig. 5. Sequence of events in a modulo scheduled loop 
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go changing of state: pre-fetch, in-use, flushing. Note that for conciseness, the loop 
unrolling has been done assuming that the number of iteration was a multiple of two. 
Figure 5 shows the evolution of each partition for three iterations of the loop. 

4   Evaluation 

In the evaluation section we measure the impact in performance of the proposed pre-
fetching techniques: automatic pre-fetch for regular references, modulo scheduling for 
irregular references. In this evaluation we never combine these two techniques in the 
same loop. We compare two cache configurations, one where pre-fetch is enabled, 
another where pre-fetch is not active. Improvement is measured in terms of speed-up. 

We have evaluated the proposals with the CG, IS and FT parallel applications from 
the NAS benchmark suite [10] and STREAM parallel application [6], which are 
parallelized using OpenMP directives. All measurements are performed on a Cell BE 
blade with two Cell BE processors running at 3.2 GHz with 1 GB of memory (512 
MB per processor) under Linux Fedora Core 6 (Kernel 2.6.20-CBE). Only one Cell 
BE processor is used for the evaluation. 
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Fig. 6. Speed-up factors for automatic pre-fetch and modulo scheduling. Modulo scheduling is 
used in CG loop9 and IS loop3, due to CG and IS are totally dominated by irregular memory 
accesses in the mentioned loops. 

Figure 6 shows speedup factors obtained by enabling pre-fetch in a variety of loops 
from the CG-B, IS-B, FT-B and STREAM benchmarks. Overall execution times for 
CG-B, IS-B and FT-B are shown in Figure 7. For STREAM, the improvements are 
noticeable, but very predictable in the sense that the four tested kernels are not 
computationally bounded. Communications represent an important percentage of 
overall execution time. This is yet more noticeable in the differences we observe 
between the four kernels: the copy kernel which is not including any floating point 
operation doubles the performance of the other kernels. 

In the case of CG-B, the improvements range from 3% up to 10 % at most. Loops 
3 and 7 suffer from slight degradation (not even a 1% and 5% respectively). The 
reason for that is related to the differences on how deeply the loops are affected by 
communications. The CG-B loop 9 is dominated with irregular memory references 
and is the most consuming loop in the CG-B. Improvement achieved in this loop has 
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good influence on overall execution time of the CG-B (Figure 7). The case of the IS-
B is different. Here the benefits are quite impressive: loop 2 improves about 15% and 
loop 3 improves about 40%. Loop 3 is totally dominated by irregular memory 
references and the introduction of the modulo scheduling transformation is what 
causes such improvement. Improvement in loop3 has good influence on overall 
execution time of the IS-B. The case of FT is very different and exposes very poor 
improvements, ranging from slight performance degradation (2% at most) up to some 
improvement close 5%. All loops are dominated by the computation, not by the 
communication overheads. There is no improvement in overall execution time for FT. 
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Fig. 7. Execution times of NAS benchmarks. Corresponding speedup factors in overall execution 
times are: CG - 1,082, IS - 1,203 and FT - 0,996. 

5   Related Work 

Although a different technique, tiling transformations and static buffers may be used to 
reach the same level of code optimization [5]. In general, when the access patterns in the 
computation can be easily predicted, static buffers can be introduced by the compiler, 
double-buffering techniques can be exploited at runtime, usually involving loop tiling 
techniques. This approach, however, requires precise information about memory 
aliasing at compile time, which is not always available. In general, the association 
between static buffers and memory references should be postponed until run time. This 
is what we do in this paper, since cache lines are treated as buffers that are dynamically 
allocated, solving all the difficulties related to memory aliasing. Of course, if the 
performance of a software cache approach is to match that of static buffers, clearly, any 
efficient implementation should work with a cache line size similar to that of the static 
buffers (usually 1KB, 2KB, 4KB, depending on the number of memory references to 
treat) [5]. This is the case of the software cache design presented in this paper. 

Specifically for the Cell BE, there has been  proposal to perform data pre-fetching 
under an inspector/executor model [12]. For indirect accesses, a slicing compilation 
technique is introduced to generate a code version that at runtime computes all 
memory addresses generated in indirect accesses. This makes possible to overlap 
DMA transfers with the slice execution. This approach has been showed to return 
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considerable improvements for indirect accesses, but the technique is limited to the 
associative level in the cache design. Cache conflicts cause to switch between the 
inspector and executor code versions, diminishing the effects of this technique. 

The Memory Hierarchical Layer Assignment (MHLA) [13] is a unified technique 
which addresses the problem of optimizing the data assignments into memory layers 
and the block transfers between memory layers. This technique starts from the source 
code specification of the application and by collecting profiling information optimizes 
memory mapping and execution order of data transfers. Also, memory organization is 
potentially customized by this technique. The similarity of this technique with our 
approach is that pre-fetching is implemented by invoking DMA operations in order to 
overlap computation and communication. In contrast to our technique, MHLA is 
aimed for buffering techniques and simple memory organizations due to application-
specific pre-fetching approach. 

Hare [14] is a pre-fetching scheme consisting of a programmable engine controlled 
by the user instructions. This technique uses hardware support for pre-fetching. 
Indeed, pre-fetching is initiated by the hardware at run-time. Programming the 
proposed engine by user code takes advantages from compile-time analyzes and 
hardware eliminates additional pre-fetch instruction overhead. In contrast with this 
proposal, in our work we do not have any hardware support for pre-fetching. 

Interrupt Triggered Software Pre-fetching (ITSP) [15] is a pre-fetching technique 
for real-time embedded systems that adds pre-fetching instructions in interrupt handler 
software to target cache misses. Pre-fetching optimizations done in ITSP tunes the 
software to be executed based on observed performance during previous executions. In 
contrast with our work, ITSP relies on profiling information collected during previous 
executions of application and hardware pre-fetching instructions are used. 

6   Conclusions 

This paper presents a novel hybrid software cache architecture designed for pre-
fetching purposes. Hybrid software cache architecture maps memory accesses 
according to the locality they are exposing. According to difference in mapping, pre-
fetching is organized in order to enable good overlap of communication and 
computation for both types of memory accesses. We show performances of pre-
fetching for regular and irregular memory accesses. We also show impact of additional 
instruction overhead introduced due to software implemented pre-fetching. We show 
that with our approach good speedup can be obtained in some benchmarks (speedup 
factors from 1.15 to 1.43) and also we show that additional instruction overhead in 
software implemented pre-fetching sometimes has negative impact on overall 
performances of some applications and some particular loops in the applications.  
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Abstract. Set sharing is an abstract domain in which each concrete object is
represented by the set of local variables from which it might be reachable. It is
a useful abstraction to detect parallelism opportunities, since it contains definite
information about which variables do not share in memory, i.e., about when the
memory regions reachable from those variables are disjoint. Set sharing is a more
precise alternative to pair sharing, in which each domain element is a set of all
pairs of local variables from which a common object may be reachable. However,
the exponential complexity of some set sharing operations has limited its wider
application. This work introduces an efficient implementation of the set shar-
ing domain using Zero-supressed Binary Decision Diagrams (ZBDDs). Because
ZBDDs were designed to represent sets of combinations (i.e., sets of sets), they
naturally represent elements of the set sharing domain. We show how to synthe-
size the operations needed in the set sharing transfer functions from basic ZBDD
operations. For some of the operations, we devise custom ZBDD algorithms that
perform better in practice. We also compare our implementation of the abstract
domain with an efficient, compact, bitset-based alternative, and show that the
ZBDD version scales better in terms of both memory usage and running time.

1 Introduction

Set sharing [11] is an abstract domain aimed at tracking dependency information among
sets of variables. In set sharing abstractions, each concrete object is represented by the
set of program variables from which it might be reachable. Set sharing-based analyses
discover valuable information for parallelizing instructions, statements, function calls,
etc. (and are therefore typically used for that purpose), since each abstract state contains
definite information about which variables do not share, i.e., which variables cannot
reach the same memory location. From this perspective, set sharing analysis can be seen
as a compact encoding of the information present in points-to analyses, but in set shar-
ing only the groups of variables that might reach the same object in memory are stored.

Set sharing has been shown to be a more precise alternative to, e.g., pair sharing, in
which each domain element is a set of all pairs of local variables from which a common
object may be reachable. However, some of the intrinsic operations of the set sharing
domain are exponential in the number of local variables being tracked, which can be-
come a problem for certain programs and has limited so far wider application. This
intrinsic complexity can be dealt with in part by introducing widenings, i.e., simplify-
ing the sharing sets conservatively when they become too large, but of course at the

J.N. Amaral (Ed.): LCPC 2008, LNCS 5335, pp. 47–63, 2008.
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expense losing precision. Finding significantly more efficient implementations reduces
the need for resorting to such lossy solutions and consequently improves practicality.

We introduce a new, efficient implementation of the set sharing domain using Zero-
supressed Binary Decision Diagrams (ZBDDs). ZBDDs were designed to represent sets
of combinations (i.e., sets of sets), so they can represent very naturally the elements of
the set sharing domain. To the best of our knowledge this is the first link provided be-
tween set sharing and ZBDDs. We start by providing set-sharing transfer functions for
a subset of Java.1 We then show how to express the operations needed for implementing
the set sharing transfer functions in terms of basic ZBDD operations. Also, for some
of the operations, we propose custom ZBDD algorithms that are more appropriate for
these particular cases than those in the standard ZBDD libraries. In particular we pro-
vide a design for native ZBDD operations that emulate non-standard set manipulations.
The introduction of ZBDDs is done at the implementation level and does not alter the
definition of the domain operations, so that the domain designer does not need to be
aware of their presence. Finally, we provide performance results comparing two im-
plementations of the set-sharing domain: an efficient, compact, bitset-based alternative
(representing a highly-tuned version of the traditional approach) and our ZBDD-based
implementation. The results show that the ZBDD version scales better in terms of both
memory usage and running time. Our custom ZBDD algorithms are also shown to per-
form better in practice than the stock ones.

2 Reachability and Sharing

As mentioned before, we will concentrate for concreteness on a subset of Java, although
set sharing has been shown to be applicable to different classes of imperative and declar-
ative languages. A concrete state G = (V ar ∪Obj, E) is a directed graph where every
node can be either a variable v ∈ V ar or an object o ∈ Obj. The edges of the graph have

been labeled such that o1
f−→ o2 means “the field f of object o1 points to o2.” We will as-

sume that edges connecting variables and objects have the special label -. An object o is

reachable from the variable v in G iff there is a path v
-−→ o1

f−→ o1
g−→ o2 . . .

h−→ o. The
reachability set of a variable v in the state G is the set of all objects that are reachable
from it, i.e., reach(G, v) = {o ∈ Obj | o is reachable from v in G}.

One or more variables share in a state G if the intersection of their reachabilty sets
is non-empty:

share(G, V ) ⇔
⋂

v∈V

reach(G, v) �= ∅.

Since null variables have no outgoing edges (conversely, if o.f is null, there is no edge
in the graph that starts at o and is labeled with f), they do not share.

Given graph G, define its set sharing as the set of maximal sets of variables that share:

sh(G) = {V ′ ⊆ V ar | share(G, V ′) and �W s.t. V ′ ⊂ W and share(G, W )}
1 As we will see later, these transfer functions, which are independent from the specific way

in which the internal set-sharing domain operations are implemented, are in fact themselves
improvements over those previously proposed.
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Fig. 1. Three concrete states

The set sharing provides definite information about which variables do not have any
memory location in common, i.e., the memory regions reachable from them are disjoint.
We can be sure that no object is reachable from more than one variable of a set W if no
superset of W is an element of sh(G).

Example 1. Fig. 1 shows three examples of concrete states. We assume that all the
variables are of type Foo, a class with two fields f and g, pointing to objects of class
Foo. In the graph G0, the reachability sets are reach(G0, v0) = reach(G0, v1) =
{o0, o1, o2} , reach(G0, v2) = {o2} and reach(G0, v3) = {o3}. The set sharing of G0
is sh(G0) = {{v0, v1, v2} , {v3}}. Note that sh(G0) = {{v0, v1} , {v0, v1, v2} , {v3}}
is not an acceptable set sharing, even though v0 shares with v1, because {v0, v1} ⊂
{v0, v1, v2}, and v0, v1, and v2 all share. The reachability sets of v1 and v2 in G1 and
G2 differ from the ones in G0; however, the set sharing is the same for all three graphs:
sh(G0) = sh(G1) = sh(G2) = {{v0, v1, v2} , {v3}}.

Note that the information provided by set sharing abstract states at program points is in-
strumental for parallelization: assume that the set sharing of the example, {{v0, v1, v2} ,
{v3}}, is in fact the abstract state inferred by analysis at the program point just be-
fore two consecutive method calls m(v0, v1, v2) and n(v3). The set sharing represents
a number of concrete states (including G0, G1, and G2) in all of which v3 points to
a memory region that is disjoint from the memory regions pointed to by v0, v1, or
v2. Since analysis is safe, while actual sharing during execution may be less, there
cannot be any concrete states in which there is more sharing than that implied by
{{v0, v1, v2} , {v3}}. Thus, under reasonable assumptions regarding the parallel ab-
stract machine, memory management, scheduling, etc., the two method calls can be
safely parallelized since they are independent: execution of m(v0, v1, v2) cannot af-
fect that of n(v3) and they can proceed in parallel without interference. Also, the final
state after executing them in parallel will be equivalent to the state obtained after their
sequential execution.

3 Sharing Semantics as Set Operations

3.1 Notation

We use double capital letters (like SH) for sets of sets, single capital letters (S) for sets
and lowercase letters (for instance, v) to denote elements of a set. We write SHV =
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{S ∈ SH | V ⊆ S} to denote the subset of SH containing all sets having V as a sub-
set. Conversely, SH−V = SH − SHV . For singleton sets, we define a more concise
notation: SHv = SH{v} and SH−v = SH−{v}.

We define projecting out v from SH as removing v from every set in SH : SH |−v =
{S \ {v} | S ∈ SH} \ {{}}. The replacement operator on sets of sets replaces all the
ocurrences of variable v1 with v2 in every set. Formally, SH |v2

v1
=

{
S|v2

v1

∣∣ S ∈ SH
}

,
where

S|v2
v1

=
{

S if v1 /∈ S
S \ {v1} ∪ {v2} else

The binary union operator � computes the unions of all pairs of sets taken from two
sets of sets: SH1 � SH2 = {S1 ∪ S2 | S1 ∈ SH1, S2 ∈ SH2}.

3.2 Abstract Operations

In this section, we review the abstract set sharing semantics that was defined and proven
correct in previous work [16]. We also improve the precision for two of the operations:
the field load and the field store. Our compositional semantics defines a denotation func-
tion for each expression and command. We define the special variable res, which stores
the result of an expression. Thus, the functions for both expressions and commands are
transformers on set sharings. The function for an expression transforms the set sharing
to abstract a state in which res points to the result of evaluating the expression.

Figs. 2 and 5 contain the semantics of expressions and commands, respectively. They
represent the transition from an initial abstract state [6] SH to a final abstract state
SH ′. In our domain, an abstract state SH approximates all the set sharings of a set of
concrete states GG: SH = α(GG) =

⋃
G∈GG

sh(G) , i.e., SH is a correct abstraction of

a set of concrete states {G1, . . . , Gn} if sh(Gi) ⊆ SH, i = 1..n. For instance, given a
concrete state G such that sh(G) = {{v3}}, the abstract state {{v0, v1, v2} , {v3}} is
a valid approximation of G. If a variable is null in the concrete states {G1, . . . , Gn},
it does not appear in SH . Thus, the predicate mustBeNull(SH, v) returns true when
SHv = ∅.

In practice, our abstract state is a pair composed of an abstract set sharing and a type
component τ . The objective of this second element is to approximate the set of possi-
ble types of each variable. This corresponds to the concept of a “type of class” analy-
sis [1,7]. In our context, τ helps in determining which variables are non null and which

SEI
π�null�(SH)

SH ′ = SH

SEI
π�new k�(SH)

SH ′ = SH ∪ {{res}}

SEI
π�v�(SH)

SH ′ = ({{res}} � SHv) ∪ SH−v

SEI
π�v.f�(SH)

SH ′=

8<
:

⊥ if mustBeNull(SH, v)

SH ∪ ({{v, res}} �
[

S∈SHv

P(S|−v)) else

Fig. 2. Abstract semantics for the expressions as set operations
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ones may be null. If we consider null as another type [13], then a variable may be null if
null is one of its possible types: mayBeNull(τ, v) = (mustBeNull(SH, v) and null ∈
τ(v)). For clarity, we omitted the type component from the transfer functions in Fig. 2
and 5; the full version of the semantics can be found in the Appendix in Fig. 13 and 14.

3.3 Semantics of Expressions

Null, New and Variable Load: The null expression loads the null constant into the
special variable res, so it has no effect on the abstract state, since res does not point
to any object, and therefore does not share with any variable (including itself), both be-
fore and after evaluating the expression. The new expression adds the singleton {res}
to the current set sharing, since it creates a fresh object that cannot be reached from
any of the existing variables. A variable load v forces res to be an alias of v, and
therefore res shares with all those variables with which v shares. Sharings in SH−v

remain unaffected, since the addition of res cannot change the reachability set of any
variable not reachable from v. For instance, given SH = {{v0, v1, v2} , {v3}}, the
variable load v0 results in SH ′ = SH−v ∪ ({{res}} � SHv) = {{v3}} ∪ ({{res}} �
{{v0, v1, v2}})={{v3}} ∪ {{res} ∪ {v0, v1, v2}} = {{v0, v1, v2, res} , {v3}}.

Field Load: In the case that v.f is null, there is no change in the existing set sharing.
Because the expression of SH ′ includes SH , that case is correctly approximated. When
v.f is not null, we know that the object being assigned to res is reachable from v. The
other variables that share with v in SH may or may not share with res in SH ′. In the
state G0 of Fig. 3, although v2 shares with v0 in the initial and final states, it does not
share with res in the final state; however, v1 will share with both res and v0 after the
load. We write {{v, res}} �

⋃
S∈SHv

P(S|−v)) to account for objects reachable from v

which become also reachable from res, and may be reachable from any subset of the
variables that shared with v in SH . Objects not reachable from v (SH−v) are accounted
for by the union with SH . For instance, in the same state G0, if {v3} ∈ SH , then the
load of v0.f does not alter that particular element, which has to also be present in SH ′.

Example 2. The graphs in Fig. 3 illustrate three different memory states before the
evaluation of v0.f. They correspond to the graphs in Fig. 1, but this time we indicate
the type of every object and the object pointed to by res after the expression evalua-
tion. The initial set sharing is identical in all cases: sh(G0) = sh(G1) = sh(G2) =
{{v0, v1, v2} , {v3}}. However, the evaluation results in a different set sharing for
each resulting graph G′

i: sh(G′
0) = {{v0, v1, v2} , {v0, v1, res} , {v3}}, sh(G′

1) =
{{v0, v1, v2, res} , {v3}}, and sh(G′

2) = {{v0, v1, v2} , {v0, res} , {v3}}. Assume that
the abstract state that approximates all the initial concrete states is also SH =
{{v0, v1, v2} , {v3}}. The transfer function for v0.f results in a final abstract state
SH ′ = SH ∪ ({{v0, res}} � P({v1, v2})) = {{v0, v1, v2} , {v3}} ∪ ({{v0, res}} �
{{} , {v1} , {v2} , {v1, v2}}) = {{v0, v1, v2} , {v0, v1, v2, res} , {v0, v1, res} ,
{v0, v2, res} , {v0, res} , {v3}}. As required, all the sharings sh(G′

0), sh(G′
1), and

sh(G′
2) are included in SH ′.
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3.4 Semantics of Commands

Variable Store: For a store of the form v=expr, the semantics comprises three steps.
First, the expression on the right-hand side is evaluated. Second, all ocurrences of v are
removed from the current abstract state, since the value of v is being overwritten. Fi-
nally, all appearances of res are replaced by v, which deletes res from the abstract state.

Field Store: First, we evaluate the expression whose result is being stored; SH1 con-
tains that intermediate value. Sharings in SH1 unrelated to v or res are unaffected by
the store and contained in SH2 = SH1−{v,res} , which is a subset of the final state.
For each sharing in SH1v , the store might affect the reachability set of each vari-
able involved and result in many smaller sharings. For example, in a memory state
like G in Fig. 4, an assignment to v0.f destroys any sharing between v0 and v1 (note
that res does not share with v1), but not the one between v0 and v2. All the possible
combinations for the final sharings that have to do with v are contained in SH3 =⋃
S∈SH1v

P(S) \ {{}}.

Now, for every sharing in SH3 that contains v we have two possibilities: all the
variables share also with res (and therefore, with SH1res ), or none of them does. Note
that every possible intermediate case in which just a few of the variables share with
SH1res is represented by a smaller subset in SH3 containing only those variables.
While SH4 = SH1res � SH3v includes the combinations in which all the variables do
share with SH1res , SH3 approximates the situations in which none of them do share
with res.

Foo

FooFoo

gf

gfgf

V2V1 V0

gf

Foo

res

Fig. 4. Graph G

Example 3. Assume an initial state (after evaluating
the expression) G depicted in Fig. 4. The dotted edge
indicates where v0.f will point after the execution
of v0.f= expr. The initial set sharing is sh(G) =
{{v0, v1} , {v0, v2} , {res}}. After the load, sh(G′) =
{{v0, v2} , {v0, res} , {v1}}. Assume that the starting
abstract state, after the evaluation of the expression
expr, is also SH1 = {{v0, v1} , {v0, v2} , {res}}.
Since there is no sharing unrelated to v or res,
SH2 = ∅. The next step is to calculate SH3 =
P({v0, v1}) ∪ P({v0, v2}) \ {{}}= {{v0} , {v0, v1} , {v1}} ∪ {{v0} , {v0, v2} , {v2}}
= {{v0} , {v0, v1} , {v0, v2} , {v1} , {v2}}. Since SH1res = {{res}} and SH3v0 =
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SCI
π�v=expr�(SH)

SH1 = SEI
π�expr�(SH)

SH2 = SH1|−v

SH ′ = SH2|vres

SCI
π�v.f=expr�(SH)

SH1 = SEI
π�expr�(SH)

SH2 = SH1−{v,res}

SH3 =
[

S∈SH1v

P(S) \ {{}}

SH4 = SH1res � SH3v

SH ′ =

(
⊥ if mustBeNull(SH1, v)

SH2 ∪ (SH3 ∪ SH4)|−res else

SCI
π�if v==null com1 else com2�(SH)

SH1 = SCI
π�com1�(SH|−v)

SH2 = SCI
π�com2�(SH)

SH ′ =

8<
:

SH1 if mustBeNull(SH, v)
SH1 ∪ SH2 if mayBeNull(τ, v)
SH2 else

SCI
π�if v==w com1 else com2�(SH)

SH1 = SCI
π�com1�(SH)

SH2 = SCI
π�com2�(SH)

SH ′ =

8<
:

SH1 if mustAlias(SH, v, w)
SH1 ∪ SH2 if mayAlias(SH, v, w)
SH2 else

SCI
π�com1;com2�(SH)

SH ′ = SCI
π�com2�(SCI

π�com1�(SH))

Fig. 5. Abstract semantics for the commands

{{v0} , {v0, v1} , {v0, v2}}, SH4 = {{v0, res} , {v0, v1, res} , {v0, v2, res}}. The fi-
nal abstract state SH ′ = {{v0} , {v0, v1} , {v0, v2} , {v1} , {v2}} is the union of
SH3|−res = SH3 and SH4|−res ⊂ SH3. As required, sh(G′) ⊆ SH ′ holds after
the removal of the auxiliary variable res from G′.

Conditional Statements: In the case where the guard is (v==null), the type com-
ponent may contain definite information about whether a variable v is not null (null /∈
τ(v)). If we cannot determine exactly the nullity of v (i.e., mayBeNull(τ, v) is true),
then the final state is the least upper bound of the resulting set sharing for the two
branches. In particular, SH1 � SH2 = SH1 ∪ SH2.

In the case where the condition is v==w, the sharing information may be enough to tell
that the two variables are definitely equal, because they are both null: mustAlias(SH,
v, w)=(mustBeNull(SH, v) and mustBeNull(SH, w)). On the other hand, v and w do
not share if they do not appear together within a subset of SH. Therefore mayAlias(SH,
v, w) = (mustAlias(SH, v, w) and SH{v,w} �= ∅). It is important to see that sharing
information does not imply equality: a set sharing like {{v, w}} indicates that v and w
might reach a common object, not that they must be aliases.

Example 4. Given a command like if (cond) v0 = v1 else {v0 = null;
v1 = null}, and assuming an initial abstract state SH = ∅ that does not contain
enough information to determine cond, the set sharing corresponding to the if branch
is SH1 = {{v0, v1}}. The abstract state after simulating theelse branch is SH2 = {}.
Therefore, the final state is SH ′ = SH1 ∪ SH2 = {{v0, v1}}. However, SH ′ does
not imply that v0 necessarily shares with v1, even when they appear together in SH ′,
but that v0 might reach an object reachable from v1 in some of the concrete states
approximatted by SH ′; in the example, if cond would be false, both variables are null
and do not share.
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4 Semantics as ZBDD Operations

Zero-suppressed BDDs (ZBDDs) [8,9] are a data structure similar to binary decision
diagrams (BDDs) [3], but designed to encode sets of combinations (i.e., sets of sets
of primitive elements). To encode the set sharing domain using ZBDDs, we define the
primitive elements to be the variables in the program being analyzed. ZBDDs have
been demostrated to perform better [14,15] than standard BDDs when encoding sets of
combinations that are sparse in the sense that a) the set contains just a small fraction
of all the possible combinations, and b) each combination contains just a few literals.
A ZBDD is a rooted directed acyclic graph (DAG) of non-terminal and terminal nodes.
Each non-terminal ZBDD node is labeled with a variable, and has two outgoing edges
to other nodes, called the zero-edge and the one-edge. There are two terminal nodes, the
zero node and the one node. They do not have variables or outgoing edges. The universe
of all variables is totally ordered, and the order of the variables appearing on the nodes
of any path through the ZBDD is consistent with the total order. Each path through the
ZBDD that ends at the one terminal node defines a set of variables. The set contains a
variable v if the path passes through a node labeled with v, and leaves the node along
its one edge. Assuming the variable ordering is fixed, the smallest ZBDD representing
a given set of sets is unique, and can be found efficiently.

1

1
0

0

1
0

V2

V1

0 1

V0

Fig. 6.

Example 5. Assume a set of variables V ar = {v0, v1, v2} and the
variable ordering v0, v1, v2. The unique smallest ZBDD represent-
ing the set of sets {{v0, v2} , {v1}} is the ZBDD shown in Fig. 6.
There are two paths from the root of the ZBDD to the one termi-
nal node. On the path containing the v0 and v1, only the node la-
beled v1 is exited through the one edge; thus, this path represents
the set {v1}. On the path containing v0 and v2, both nodes are exited
through their one edges; thus, this path represents the set {v0, v2}.

Efficient algorithms exist for common operations on the
set of sets encoded by a ZBDD, including union (denoted
+), intersection, set difference, product (SH1 ∗ SH2 =
{S1 ∪ S2 | S1 ∈ SH1 and S2 ∈ SH2}), and division (SH/v =
{S \ {v} | S ∈ SH and v ∈ S} and SH%v = {S ∈ SH | v �∈ S}).

A set sharing like SH = {{v0, v2} , {v1}} is expressed in ZBDD notation as SH =
v0v2 + v1. Note that we will denote single literal sets by a single lower case letter
(like v), while generic ZBDDs will be referred to with double upper case (normally,
SH). For instance, given the set sharings SH = v0v2 + v1 and v0 , an expression like
SH ∗ v0 = v0v1 + v0v2 is legal. The empty set is written as 0, and the set containing
only the empty set is written as 1.

4.1 Expressions and Commands; Native Operations

Figs. 7 and 9 show the ZBDD version of the transfer functions2 in Fig. 2 and 5. For
most of the set operations, there is an equivalent native ZBDD operation. For instance,

2 The type component is again omitted, although in practice it is updated in an identical fashion
to Fig. 13 and 14.
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SEI
π�null�(SH)

SH ′ = SH

SEI
π�new k�(SH)

SH ′ = SH + res

SEI
π�v�(SH)

SH ′ = setResEqTo(SH, v)

SEI
π�v.f�(SH)

SH ′=

(
⊥ if mustBeNull(SH, v)

SH + v ∗ res ∗ powUnion(SH/v) else

setResEqTo ( P ) {
i f (P = 0 or P = 1 or P.top > v )

re turn P
i f (P.top < v) )

re turn Getnode (P.top ,P0 ,P1 )
re turn Getnode (P.top ,P0 , r e s∗P1 )

}

powUnion ( P ) {
i f (P = 0 or P = 1 )

re turn P
R0 ← powUnion(P0)
R1 ← powUnion(P1)
re turn Getnode (P.top ,Ro + R1 ,1 + R1 )

}

Fig. 7. Abstract semantics for the expressions as ZBDD operations

SH1�SH2 is equivalent to SH1 ∗SH2 and SH−v is equivalent to SH%v. This corre-
spondence is useful because it results in no gap between the denotational semantics of
Sect. 3 and the implementation. However, we added a number of non-standard ZBDD
operators to improve the readability of the equations. The set of elements in SH con-
taining v (SHv, in set notation) is obtained via SH//v = SH/v ∗ v. We delete all
the ocurrences of v in SH using projOut(SH, v) = SH/v + SH%v − 1. The unit
set 1 (which represents the set containing the empty set) has to be deleted because SH
might contain the single literal v, as we did in the corresponding project out set operator
SH |−v.

In other occasions, we created new ZBDD operators because of efficiency reasons.
For instance, the variable load set equation SH ′ = ({{res}} � SHv) ∪ SH−v can be
expressed as SH ′ = res∗ (SH//v)+SH%v. This combination of standard operators,
while intuitive, has the disadvantage of being inefficient in practice. Since we expect this
function to be invoked with high frequency (every time a variable is on the right hand
side of an assignment), we devised a dedicated ZBDD algorithm that computes the same
result, setResEqTo(SH, v). The algorithm, shown in Fig. 7, uses the same notation as
in [9]: P0 and P1 for the graph reachable through the zero-edge and one-edge, respec-
tively, P.top for the current variable, and Getnode(v, P0, P1) for the procedure that
generates a node with the variable v and subgraphs P0 and P1. The correctness of se-
tResEqTo(SH, v) is based on a variable order in which res is always the last variable,
the one closer to the leaves. Given this precondition, we only need to find v in the graph,
and then multiply its one-edge child by res, which will preserve the variable order.

With the basic ZBDD operators and setResEqTo we can understand the transfer
functions of the null, new, and variable load expressions. The field load, on the other
hand, depends on the ZBDD version of the predicate that determines whether a variable
is null: mustBeNull(SH, v) = (SH/v = 0). It also requires computing the union of
the powersets of the elements of a set sharing SH : {P(S) | S ∈ SH}. Although this
seems to be a complex operation, it has a very natural description in terms of an algo-
rithm in ZBDDs. We have devised a native ZBDD algorithm, powUnion(SH), shown
in pseucode in Fig. 7. The correctness proof of the algorithm is given in the appendix.
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Fig. 8. ZBDDs representing v0v2, 1 + v2, and 1 + v0 + v0v2 + v2

SCI
π�v=expr�(SH)

SH1 = SEI
π�expr�(SH)

SH2 = projOut(SH1%res, v)

SH ′ = SH1/res ∗ v + SH2

SCI
π�v.f=expr�(SH)

SH1 = SEI
π�expr�(SH)

SH2 = SH1%v%res

SH3 = projOut(
powUnion(SH1//v) − 1, res)

SH4 = (SH1/res) ∗ (SH3//v)

SH ′ =

(
⊥ if mustBeNull(SH1, v)

SH2 + SH3 + SH4 else

SCI
π�if v==null com1 else com2�(SH)

SH1 = SCI
π�com1�(projOut(SH, v))

SH2 = SCI
π�com2�(SH)

SH ′ =

8<
:

SH1 if mustBeNull(SH, v)
SH1 + SH2 if mayBeNull(τ, v)
SH2 else

SCI
π�if v==w com1 else com2�(SH)

SH1 = SCI
π�com1�(SH)

SH2 = SCI
π�com2�(SH)

SH ′ =

8<
:

SH1 if mustAlias(SH, v, w)
SH1 + SH2 if mayAlias(SH, v, w)
SH2 else

SCI
π�com1;com2�(SH)

SH ′ = SCI
π�com2�(SCI

π�com1�(SH))

Fig. 9. Abstract semantics for the commands

This native implementation will prove to be fundamental for the scalability of the anal-
ysis (Sect. 5).

Example 6. We show how the native algorithm computes powUnion(v0v2). Fig. 8 con-
tains the initial ZBDD representing v0v2 (left). To compute powUnion for the orig-
inal ZBDD, we first recursively compute powUnion for the node labeled v2. When
powUnion is applied to the node labeled v2, which represents the set v2, we have
R0 = P0 = 0 and R1 = P1 = 1. The result is a node labeled v2 with zero suc-
cessor R0 + R1 = 1 and one successor 1 + R1 = 1 + 1 = 1, shown in the center of the
figure. This ZBDD represents the powerset of v2, namely 1+v2. We will call this ZBDD
N . When we compute powUnion of the original ZBDD, R0 = P0 = 0, and R1 = N .
This step generates a node with value v0, zero successor R0 + R1 = 0 + N = N , and
one successor 1 + R1 = 1 + N = N . Because both nodes are identical (reduction rule
applied within Getnode), we can delete one of them and change both edges of v0 to
lead to just one N , as shown in the right ZBDD in Fig. 8. The resulting graph represents
1 + v0 + v0v2 + v2.
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The command semantics (Fig. 9) is described in terms of the operators listed before.
We only add a new predicate, used when checking if two variables might be aliases:
mayAlias(SH, v, w) = (mustAlias(SH, v, w) and SH/(v ∗ w) �= 0). The following
example shows how the field store from Example 3 would be calculated using ZBDDs.

Example 7. Assume we start evaluating v0.f= expr in an abstract set sharing SH1 =
v0v1 + v0v2 + res. Because all the sharings in SH1 contain v0 or res, SH2 = 0. The
union of the powersets of SH1//v0 = v0v1+v0v2 is calculated in a very similar fashion
to the last example, and results in a set sharing 1+v0+v0v1+v0v2+v1+v2. Therefore,
SH3 = projOut(v0+v0v1+v0v2+v1+v2, res) = v0+v0v1+v0v2+v1+v2. The last
component of the result is SH4 = (SH1/res) ∗ (SH3//v0) = 1 ∗ (SH3//v0) = v0 +
v0v1+v0v2. The result is SH ′ = 0+SH3+SH4 = SH3 = v0+v0v1+v0v2+v1+v2,
which is the same result obtained in the set example.

5 Experiments

To evaluate the scalability (in terms of memory usage and running time) of the ZBDD
approach, we compared it to an alternative representation for set sharings based on sets
of bitsets. Bitsets are a fast, light representation compared to other ways of representing
a set sharing. In a bitset, each bit bi indicates if the variable vi is in the sharing (bi = 1)
or not (bi = 0). Our first implementation used the Java library where a BitSet is an
array of double words. However, our first experiments showed that this approach does
not scale beyond set sharings with more than a few thousand elements. For this reason,
we replaced the library implementation by a lightweight version, which only requires a
single word to represent each sharing. This effectively limits the number of variables to
be not more than 32 for the bitset approach, which is reasonable when confronted with
powerset operations. In all the experiments we assume that the number of variables
n is bounded by 32, but note that the ZBDD implementation scales well for larger set
sharings, and could handle bigger values of n. Our ZBDD implementation of set sharing
is based on the JDD library [21].

Several characteristics of set sharings influence the memory usage and the perfor-
mance of the data structure representing them. Although the number of variables n
seems to be important, our two representations are independent of this parameter. In
the case of the bitsets, because we use 32 bits to store every sharing, independently of
the number of variables. In the case of ZBDDs, only the statistical distribution of the
sharings (i.e., their sparsity) influences the number of nodes required to represent the
information, and therefore the memory usage and performance of the ZBDD. For
the same reason, the behavior of the two data structures is independent of the shar-
ing density of SH , i.e., the proportion of the number of sharings over the maximum
possible: SHd = |SH |/2n.

The most decisive factor is the number of sharings |SH |. Because we allocate a new
bitset every time a new sharing is added, the performance of the set of bitsets approach
is inversely proportional to |SH |. In the case of ZBDDs we also have to take into
account the variable density. This metric is the average number of variables per sharing:
vd = 1

n∗|SH| ∗
∑

S∈SH|S|. A small variable density is synonymous with a sparse set
sharing, and therefore we can expect the ZBDD to perform inversely proportional to the
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Fig. 10. Memory usage experiments. Over 25 runs.

metric. We now examine how the number of sharings and the variable density relate to
memory consumption and execution times in our experiments.

Memory Usage: We generated random set sharings and measured the space require-
ments for the Java objects backing the set of bitsets and ZBDD as reported by a pro-
filer [12]. The different memory usages are shown on the left of Fig. 10. The plot shows
that the ZBDD scales better than the bitset solution. The differences are more signifi-
cant (a factor of 5) for large values of |SH |. A set of bitsets uses 56 bytes per sharing,
less than the 80 required by a set of the JDK 1.5 BitSet class. At one million sharings,
the set of bitsets requires more than 56Mb, while the same information occupies 12Mb
in the ZBDD version (vd = 0.28). The staircase behavior of the ZBDD memory usage
function is due to the capacity of the array storing the node list (ZBDDs are represented
as arrays in JDD), which doubles when the load exceeds a certain threshold.

In the leftmost graph in Fig. 10 we did not take into account the effect of variable
density. The other plot in that figure demonstrates how ZBDDs benefit from sparse
variable distributions. This time we do not show the number of Kbytes in the y-axis, but
rather the number of nodes in the binary decision diagram. As expected, sparse sharings
require fewer nodes than those that are more dense in terms of vd. In the experiments,
the number of nodes goes down by an average 38.2% from vd = 0.34 to vd = 0.22.

Speed: We measured the number of milliseconds required to compute the semantics
of the most significant operations (variable load/store, and field load/store), given a
random initial set sharing. We disabled the JDD cache for the experiments. All the
measurements were done on a Pentium M 1.73Ghz with 1Gb of RAM. The virtual
machine was Sun’s JVM 1.5.0 running on Ubuntu 6.06. The results are in Figs. 11
and 12.

The time required to simulate a variable load presents a similar, linear behavior in
both cases; the bitset version is 14.6% faster in the average. Although not reflected in
Fig. 11, the native operation setResEqto takes half the time of the equivalent compo-
sition of ZBDD operations (see Sect. 4). For the variable store, both running times are
roughly linear in the number of sharings. However, the lack of a native ZBDD imple-
mentation results in running times noticeably slower than those of the set of bitsets. It
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remains an open question whether a dedicated ZBDD algorithm can be devised for this
command.

The powerset operation is a major obstacle for a feasible implementation of set shar-
ing using the sets of bitsets. Both the field load and field store transfer functions depend
on this operation. While the ZBDD powUnion algorithm requires reasonable times for
calculating the union of many powersets, the bitset implementation presents exponential
growth with respect to the number of sharings. For example, it needs half a minute to
compute the output state for a field load in which the initial sharing has 5,000 elements.
The ZBDD implementation finishes the same operation in less than 600ms. The field
store (Fig. 12, right), which is a more complex operation, presents a similar pattern,
although the running times are always significantly larger than for the field load.

6 Related Work

The ideas presented in this paper build on one hand on [16], where a first definition of a
set sharing-based analysis for Java was introduced and shown to offer advantages in cer-
tain cases with respect to pair sharing-based analyses. We offer substantially improved
definitions of the abstract semantics, a reduction in the number of components of an
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abstract state, and in some cases (like the field load and store) more precise abstract
operations. In addition, a significant difference with our previous work is of course the
use of Zero-suppressed Decision Diagrams to efficiently implement the analysis do-
main. This is done without having to redesign any of the existing abstract operations.
The experiments in [16] involved small set sharings (of at most 50 elements at a time)
while in this paper we show how with ZBDDs we can scale up to thousands of sharings
and still get reasonable times.

There has been extensive work in recent years on the use of BDDs [2,22,24,25] to
represent (abstract) points-to information. In these abstractions, information is stored
in the form of (v, a) pairs, where each such pair indicates that v may point to the al-
location site a. As mentioned before, set sharing information can be interpreted as an
abstraction of points-to information where instead of representing which exact objects
can be pointed to by a variable, the domain captures only which sets of variables may
point transitively to the same object. Thus, our analysis works at a different level since
the set sharing encoding can result in some loss of precision, but offers the advantage
of more compact representation.

ZBDDs were introduced by Minato [8] and applied to a great diversity of problems
in model checking (e.g., [5,10,23]). More recently, Lhoták et al. have applied ZBDDs
to the exploration of infinite state spaces [14] in the context of points-to analysis. The
main differences between this work and [14] are one hand the abstraction used (set
sharing vs. points-to pairs) and on the other that in the approach proposed the domain
does not require relational information, i.e., we can use existing ZBDD libraries [20,21]
directly in our implementation.

To the extent of our knowledge, this is the first work that relates set sharing anal-
ysis with ZBDDs or presents implementation results for the set-sharing domain using
any type of binary decision diagram. In the logic programming realm, there has been a
significant amount of work related to set sharing-based analysis for the automatic paral-
lelization of Prolog programs (e.g., [11,17,18]). However, the abstract operations show
significant differences with the ones required for an imperative/OO language. Further-
more, to the best of our knowledge, all existing implementations use lists of lists to
represent set sharings. In [4] a connection between the set sharing domain and standard
BDDs is suggested, but no implementation or experimental results are provided and
there is no mention of ZBDDs. More recent work [19] for Java presents results for a
BDD-based implementation of the less precise pair sharing domain [16]. Because in
this case the abstraction is a set of pairs (and not a set of sets), the representation used
is quite different from ours.
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A Complete Semantics for the Expressions and Commands

Contained in figures 13 and 14. In the case of the type component, the least upper bound
is computed as τ1 � τ2 = { (v, τ1(v) ∪ τ2(v)) | v ∈ V ar}.

SEI
π�null�(SH, τ )

SH ′ = SH

τ ′ = τ [res �→ {null}]
SEI

π�new k�(SH, τ )

SH ′ = SH ∪ {{res}}
τ ′ = τ [res �→ {k}]

SEI
π�v�(SH, τ )

SH ′ = ({{res}} � SHv) ∪ SH−v

τ ′ = τ [res �→ τ (v)]

SEI
π�v.f�(SH, τ )

SH ′=

8><
>:

⊥ if mustBeNull(SH, v)

SH ∪ ({{v, res}} �
[

S∈SHv

P(S|−v)) else

τ1 = τ [v �→ (τ (v) \ {null}), res �→ (↓F (v.f) ∪ {null})]

Fig. 13. Abstract semantics for the expressions as set operations

SCI
π�v=expr�(SH, τ)

(SH1, τ1) = SEI
π�expr�(SH, τ)

SH2 = SH1|−v

SH ′ = SH2|vres

τ ′ = τ1[v �→ τ1(res)] \ (res, τ1(res))

SCI
π�v.f=expr�(SH, τ)

(SH1, τ1) = SEI
π�expr�(SH, τ)

SH2 = SH1−{v,res}

SH3 =
[

S∈SH1v

P(S) \ {{}}

SH4 = SH1res � SH3v

SH ′ =

(
⊥ if mustBeNull(SH1, v)

SH2 ∪ (SH3 ∪ SH4)|−res else

τ ′ = τ1[v �→ (τ1(v) \ {null})] \ (res, τ1(res))

SCI
π�if v==null com1 else com2�(SH, τ)

SH1 = SH|−v

τ1 = τ [v �→ {null}]
σ1 = SCI

π�com1�(SH1, τ1)
τ2 = τ [v �→ (τ(v) \ {null})]
σ2 = SCI

π�com2�(SH, τ2)

(SH ′, τ ′) =

8<
:

σ1 if mustBeNull(SH, v)
σ1 	 σ2 if mayBeNull(τ, v)
σ2 else

SCI
π�if v==w com1 else com2�(SH, τ)

σ1 = SCI
π�com1�(SH, τ)

σ2 = SCI
π�com2�(SH, τ)

(SH ′, τ ′) =

8<
:

σ1 if mustAlias(SH, v, w)
σ1 	 σ2 if mayAlias(SH, v, w)
σ2 else
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π�com1;com2�(SH, τ)

(SH ′, τ ′) = SCI
π�com2�(SCI

π�com1�(SH, τ))

Fig. 14. Abstract semantics for the commands
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B PowUnion: Correctness Proof

Proof. powUnion(SH) correctly computes
⋃

S∈SH

P(S):

powUnion(ZBDD(a, P0, P1)) = powUnion(P0 + a ∗ P1) = powUnion(Po) +
powUnion(a∗P1) =

⋃
S∈P0

P(S) ∪
⋃

S∈P1

(P(S∪{a}) =
⋃

S∈P0

P(S) ∪{{a}}∪
⋃

S∈P1

(P(S)�

{{} , {a}}) =
⋃

S∈P0

P(S) ∪
⋃

S∈P1

P(S) ∪ {{a}} ∪
⋃

S∈P1

(P(S)� {{a}}) =
⋃

S∈P0∪P1

P(S) ∪

{{a}}∪({{a}}�
⋃

S∈P1

P(S)) = ZBDD(a, powUnion(P0 +P1), 1+powUnion(P1)).
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Abstract. Demand for instruction level parallelism calls for increas-
ing register bandwidth without increasing the number of register ports.
Emerging architectures address this need by partitioning registers into
multiple distributed banks, which offers a technology scalable substrate
but a challenging compilation target. This paper introduces a register
allocator for spatially partitioned architectures. The allocator performs
bank assignment together with allocation. It minimizes spill code and
optimizes bank selection based on a priority function. This algorithm
is unique because it must reason about multiple competing resource
constraints and dependencies exposed by these architectures. We demon-
strate an algorithm that uses critical path estimation, delays from reg-
isters to consuming functional units, and hardware resource constraints.
We evaluate the algorithm on TRIPS, a functional, partitioned, tiled
processor with register banks distributed on top of a 4× 4 grid of ALUs.
These results show that the priority banking algorithm implements a
number of policies that improve performance, performance is sensitive
to bank assignment, and the compiler manages this resource well.

1 Introduction

Traditional architectures offer a single register file with uniform delay for reading
from and writing to any architectural (physical) register. Register allocation
assigns variables (virtual registers) to architectural registers when possible. In
traditional graph coloring [4] and linear scan [14] algorithms, the only goal is to
minimize the overhead of load and store instructions created by spilling variables
to memory.

To address current technology scaling challenges, emerging architectures par-
tition resources such as registers, caches, and ALUs. This approach provides
the bandwidth needed for high ILP programs while increasing the resources
available on the chip. Spatially partitioned processors have non-uniform regis-
ter access times, which place more burden on the register allocator, requiring
a more sophisticated algorithm that intertwines bank and register assignment.
To optimize for the partitioned layout of these processors, the register allocator
must consider the location of register banks and data caches, and the placement
of instructions on ALUs in order to decide which register bank to use for each
register. The delay in reading or writing a register depends on the length of
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the path between the register bank and the ALU that reads or writes the reg-
ister. Minimizing the communication latencies between partitioned components
requires changes to traditional register allocation heuristics.

This paper proposes a bank allocation method for spatially partitioned ar-
chitectures and evaluates it on the TRIPS hardware. The algorithm uses an
evaluation function that selects a bank such that register values arriving at
the same instruction at the same time are close to each other. The evaluation
function calculates a score for each bank based on previously assigned banks of
dependent instructions and the processor’s topological characteristics.

We customize this evaluation function for TRIPS, a spatially partitioned tiled
processor with register banks distributed in a row above a 4× 4 array of ALUs.
TRIPS is an instantiation of EDGE ISA in which each instruction encodes its
consumer instructions directly. This direct, data-flow communication among in-
structions eliminates the need for an operand bypass network. Another charac-
teristic of EDGE ISAs is atomic block execution, which amortizes the overhead
of branch prediction and instruction cache access over a group of instructions.
The results show that significant swings in performance are possible, and the
algorithm improves over bank oblivious allocation by an average of 6%.

2 Related Work

Conventional register allocation methods. Chaitain et al. [4] present a graph-
coloring register allocator that uses an interference graph (IG) to encode overlap
between live ranges. Nodes represent variable live ranges and an edge indicates
that the variables connected by that edge are simultaneously alive at some pro-
gram point. A graph coloring register allocator assigns architectural registers
to nodes such that two connected nodes do not receive the same color. If the
graph is not colorable by N (the number of available physical registers), then
some nodes are removed and the variables are spilled to memory to to make it
colorable. The goal of a graph coloring allocator is to achieve an N -colorable
graph with minimal spills [1,3].

Traub et al. [18] designed linear scan allocators that greedily scan the program
variables to find a register assignment. Instead of using an interference graph,
they directly use the live interval, which is the collection of instructions in which
the variable is live. With good heuristics for ordering variables, the compiler can
achieve the same code quality as graph coloring in many cases, but significantly
faster. In this study, we start with a linear scan register allocator and add bank
assignment functionality to it.

Bank assignment for clustered processors. In clustered processors, functional
units and register files are partitioned or replicated and then grouped into on-
chip clusters [9,12]. Clusters are connected through an inter-cluster communica-
tion network [11]. In each cluster, reads and writes are sent to the local register
file (local reads/writes) or to remote register files in another cluster through the
inter-cluster communication network. The register allocator attempts to mini-
mize the number of remote register accesses.
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Ellis generated code for VLIW processors with partitioned register files with
a partitioning method called BUG (bottom-up greedy) intertwined with instruc-
tion scheduling [8]. Hiser et al. later extended that work by abstracting machine-
dependent details into node and edge weights in a graph called the register
component graph (RCG) [10]. The unconnected nodes (virtual registers) are good
candidates to be assigned to separate banks. The algorithm first creates an ideal
instruction schedule, assuming a single multiported register file. It then parti-
tions the virtual registers by evaluating the benefit of assigning a given virtual
register to each of the register banks, choosing the bank with the most benefit.
The cost model includes the necessary copy instructions for virtual registers used
in more than one partition. The algorithm runs as a pre-process before instruc-
tion scheduling and register allocation, which then use the specified banks to
schedule instructions and allocate registers in partitions.

In this paper we address bank assignment for a different type of architecture in
which registers, the ALUs, and the L1 cache banks all are physically partitioned
and connected together via a lightweight on-chip network. The TRIPS architec-
ture supports block atomic execution and direct dataflow communication among
instructions in a block. Unlike other approaches [2,12], register allocation must
occur before scheduling in TRIPS. Because blocks have a fixed size, the com-
piler must insert spills before placing instructions in blocks and then schedule [6].
Cluster architectures have a fixed inter-cluster communication delay, whereas in
TRIPS, the register access delay depends on the distance between the register
and the ALU of the instruction reading or writing that register.

The method we propose is most similar to Hiser et al. [10], but generalizes the
register component graph to consider the arrival time of the virtual registers to
each instruction. The algorithm also considers physical layout of the processor
grid when choosing the best bank. Whereas Hiser et al. perform bank allocation
as a pre-process before register allocation, our algorithm combines bank and
register assignment. Each bank allocation decision thus uses information from
prior allocation decisions, including spilled registers.

3 Background

Spatially partitioned uniprocessor architectures allow higher frequency operation
at lower power, while exposing greater concurrency and data bandwidth. For
example, the Raw processor integrates a low-latency on-chip network into its
processor pipelines in a single-chip multiprocessor [17]. It provides programmable
network routers for static routing, in which the programmer treats the Raw tiles
as elements of a distributed serial processor. The most important characteristic of
a spatially distributed architecture is that the topology of instruction placement
is exposed in the ISA and performance is greatly dependent on both the exact
placement of instructions and the time spent routing data between instructions.

We investigate register banking on the TRIPS processor, which is a spatially
partitioned processor that uses an EDGE ISA. In an EDGE ISA, the compiler
groups instructions into large, fixed-size blocks similar to hyperblocks [13]. The
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ISA employs predication to form large blocks. Within each TRIPS block, the
compiler encodes the instructions in dataflow form. Each instruction specifies
where to send its result. At runtime, an individual instruction executes when it
receives all of its operands, and each TRIPS block is executed atomically.

3.1 Overview of TRIPS

Figure 1 shows a diagram of a TRIPS processor core composed of a 2-D grid of
16 execution tiles (ETs), 4 distributed register tiles (RTs), 4 distributed L1 data
cache tiles (DTs), 5 instruction cache tiles and a global control tile. Each ET has
an integer unit, a floating-point unit, and reservation stations for instructions.
Each RT includes 32 registers, resulting in a total register file capacity of 128
registers. The TRIPS tiles communicate using a lightweight operand network
that dynamically routes operands and load/store traffic through intermediate
tiles in Y-X order.

A TRIPS program consists of a series of instruction blocks that are individu-
ally mapped onto the array of execution tiles and executed atomically [15]. The
compiler statically specifies where instructions execute, i.e., on which ET. The
hardware determines when they execute by dynamically issuing instructions af-
ter their operands become available. The architecture reads inputs from registers
and delivers them into the ET array. Operands produced and consumed within
the array are delivered directly to the target instruction. Direct instruction com-
munication requires no register file accesses. Operand arrival triggers instruction
execution, thus implementing a dataflow execution model. A TRIPS block may
hold up to 128 computation instructions with up to 8 mapped to any given ET.

The TRIPS ISA imposes several constraints on the blocks generated by the
compiler:

– The maximum block size is 128 instructions.
– The number of register reads and writes in a TRIPS block is 32 reads (eight

reads per register tile) and 32 writes (eight writes per register tile).
– The total number of executed load and store instructions in a TRIPS block

must not exceed 32.
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3.2 Compiling for TRIPS

To explain the interaction between the TRIPS register allocator and instruction
scheduler, we describe different phases of the TRIPS compiler backend [15].

As shown in Figure 2, the first phase is block formation, in which the com-
piler combines basic blocks into a set of TRIPS blocks integrating if-conversion,
predication, unrolling, tail duplication, and head duplication as necessary to
form optimized blocks [13]. The compiler also performs scalar optimizations that
merge redundant instructions and eliminate unnecessary predicates as an inte-
grated step of block formation. During block formation, the compiler assumes
an infinite virtual register set and uses a RISC-like intermediate form called TIL
(TRIPS Intermediate Language).

After block formation, the compiler performs register allocation of virtual
registers (variables) to physical registers. The variables defined and used inside
a single block are not register allocated because EDGE instructions directly
encode their consumer instructions. Therefore, the register allocator allocates
only variables that are live-in or live-out across blocks. The allocator enforces the
constraints on the TRIPS blocks regarding the number of reads and writes from
each register tile. Allocation must occur prior to instruction scheduling because a
spill could cause a block to violate the block size limit. In this case, the compiler
performs reverse if-conversion, splits the block, and performs allocation again,
until no spills violate the block constraints. We explain the register allocation
algorithms in detail in the following sections.

The last phase in the TRIPS compiler backend is instruction scheduling, which
outputs TRIPS Assembly Language (TASL). TASL fully specifies blocks and
within blocks it encodes dataflow target form: each instruction has an identifier
and each instruction may specify one or more instruction identifiers to which its
result should be sent. The architecture maps instruction identifiers to execution
tiles [6]. TASL is portable because the hardware can map instruction identifiers
at run time based on various hardware topologies. The scheduler uses a cost
function to choose an execution tile on which to place each instruction. This
function considers features such as the communication among the dependent in-
structions, network delay, and network contention. It also considers the location
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Fig. 2. TRIPS compiler overview
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of the register bank (RT) of each register read or written by that instruction.
The scheduler needs to know the register bank to which each variable is allocated
to produce an efficient schedule.

3.3 Base Linear Scan Register Allocator

This allocator simply extends a linear scan algorithm. It performs a liveness
analysis to compute the live range information at a block granularity. It sorts
variables for allocation using a priority function similar to Chow and Hennessey’s
priority function [5]:

PriorityDEF (vr) =
∑

i=LR(vr)

(Di ∗ ST COST + Ui ∗ LD COST ) (1)

where binary values Di and Ui indicate whether the variable is defined or used
in block Bi. ST COST and LD COST are the delays associated with store and
load instructions, respectively. LR(vr) returns a list of blocks in which variable
vr is live. For each variable, the allocator considers all available physical registers,
regardless of their register bank. For each register, the allocator tests for:

– Live range conflicts: The register live range must not conflict with the
variable live range (i.e., the register has not already been assigned to another
variable with an overlapping live range).

– Block read/write conflicts: The assignment must not violate the limit
on the number of register reads or writes in the block (32 reads and 32
writes). Also, the assignment must not violate the limit on the number of
bank accesses (8 reads and writes per bank) for all blocks that read or write
the variable.

The allocator assigns the virtual register to a candidate register that meets these
criteria and updates the live range of the physical register to encompass the live
range of that variable. We configure this algorithm to perform bank-oblivious
and round-robin assignments. Bank oblivious uses all the registers in the first
bank, then the second, and so on. Round robin cycles through the banks as it
assigns physical registers to variables in priority order.

If no physical register satisfies both the live range and bank conflict tests, the
register allocator inserts spill loads and stores inside each block that uses or de-
fines that virtual register. After a spill, register allocation is repeated to account
for new live ranges generated by the spill code. An indirect effect of spilling on
TRIPS that does not exist in conventional processors is that added loads and
stores increase block sizes. If a block size exceeds the maximum (128 instruc-
tions for TRIPS), the block becomes invalid. The compiler forms valid blocks by
splitting each invalid block into two blocks using reverse if-conversion [19], which
creates new live ranges, and then performs register allocation again. To reduce
the probability of splitting blocks, the allocator first identifies blocks that would
overflow as a consequence of spilling and adds them to a list called SIBLOCKS
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(spilling invalidate blocks). Using this list, the allocator increases the priority
associated with registers used in those blocks:

PriorityEDGE(vr) = PriorityDEF (vr) + α
∑

i=LR(vr)∩SIBLOCKS

SizeBi

128 − SizeBi
.

(2)

where α is a fixed value greater than all possible values of PriorityEDGE(vr),
LR represents the live range of a virtual register, and SizeBi is the size of
block Bi. Based on this function, any virtual register live in one of the blocks in
SIBLOCKS has higher priority than all virtual registers without this property.

4 Bank Assignment Algorithm for Spatially Partitioned
Processors

This section explains the bank allocation algorithm for spatially partitioned
processors. This algorithm, however, is not specific to the TRIPS processor and
can be applied to other spatially partitioned processors. Therefore, this section
explains the general algorithm, and the next section describes how we customize
the algorithm for the TRIPS processor.

In spatially partitioned processors a lightweight network connects the register
banks, ALUs, and data cache banks, which form a distributed 2-D substrate. A
virtual register (variable) can be allocated to any of the register banks on the
substrate, but the delay of accessing each register bank from an ALU on the
substrate depends on the distance between the register and the ALU, as well as
the contention in the network. For example, consider the sample substrate shown
in Figure 3 with three ALUs (A0...2) and three register banks (B0...2) connected
by the single delay-per-hop network shown with black lines. This figure shows
two bank assignments for the variables v0...3 where variables v1 and v2 are inputs
to instruction i0 in A1 and variables v0 and v3 are inputs to instruction i1 in
A2. The thick grey lines show the data transfers from register banks to the
destination ALUs and the number beside each arrow indicates the arrival time
of the corresponding register to that ALU. In the bank assignment on the left,
the distances between variables v0, v1 and their destination instructions are three
and two hops, respectively. However, the arrival of v0 or v1 will be delayed by
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at least one cycle because both v0 and v1 use the same path, i.e., the path that
connects register bank B0 to A0. Since the network only sends one value in
each cycle, one of them will be delayed. Similarly, there is a network contention
between variables v0 and v3 in the bank assignment on the right. This bank
assignment, however, places dependent variables v0 and v3 in the same bank,
resulting in fewer network hops, lower network congestion, and better overall
timing for both instructions: a minimum network delay of 2 rather than 3.

The bank assignment algorithm first creates a graph called a register depen-
dence graph (RDG). It then chooses an order in which to attempt to allocate
virtual registers to architectural registers. For every virtual register in that or-
dered list, it uses a bank score evaluation function to calculate the benefit of
placing the virtual register in each bank, and chooses the bank with the maxi-
mum score. The score for each bank is based on the banks of already allocated
virtual registers and the weights of the edges of the RDG connecting that virtual
register to other virtual registers. The register allocator next allocates the virtual
register to one of the physical registers in that bank and the process continues.

4.1 Register Dependence Graph

The algorithm first builds a register dependence graph with nodes representing
virtual registers and edges indicating dependences between virtual registers.

The weight on each edge between two virtual registers indicates the affinity
between those two virtual registers. Lower values on an edge indicate that placing
the virtual registers close together will improve the overall delay of the critical
path. To create the RDG, the algorithm processes the blocks in the program
one at a time. For each block, it estimates the execution time of instructions
using an ideal schedule on the acyclic data flow graph (DFG) of that block. This
ideal schedule assumes that all of the block’s input registers arrive at the same
time, and that there are no delays due to network contention. The algorithm
traverses the DFG in a breadth-first order. For each instruction, it estimates
the time its output virtual register is ready by adding the fixed execution delay
associated with that instruction to the time when all its inputs are ready. Using
this ideal schedule, the algorithm optimistically estimates when data from an
input register will be available to its consumer instructions in the block DFG.

In a second pass, the algorithm traverses the DFG, keeping track of the vari-
ables that are ancestors of each instruction in the critical path. When an in-
struction has two different variables as ancestors, the algorithm places an edge
between those variables with a weight equal to the difference between their
estimated arrival times at that instruction. If an edge already exists between
two virtual registers, the algorithm keeps track of the minimum weight for that
edge. An edge with a low weight indicates that the two virtual registers should
be placed close together.

Figure 4 provides sample intermediate code for a block, the block’s DFG with
the ideal estimated times, and the corresponding RDG. Variables a, b and c
are the inputs to the block and must be kept in registers (other variables are
temporary values within the block and are handled by the hardware). For this
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Fig. 4. (a) TIL block example, (b) Dataflow Dependence Graph (DDG) with ideal time
estimates, and (c) Register Dependence Graph (RDG)

example, we assume that the execution time of a mult instruction is three cycles
and the execution time of all other instructions is one cycle. The critical path of
the block is the chain including the mult, not, and sub instructions. The chain of
instructions coming from a and b intersect at the mult instruction at an estimated
time of 1 cycle for both a and b. Because the mult instruction is on the critical
path, we set the value on the link between a and b in the RDG to zero, meaning
that the two virtual registers should be as close together as possible.

The chain of instructions originating at b intersects with the chain of instruc-
tions originating at c at the add instruction, and also at the sub instruction. The
add instruction is not on the critical path, so this instruction is ignored. The sub
instruction is on the critical path, however, so the weight of the edge between
b and c is set to the difference between the arrival time of the data from each
register at the sub instruction, (5 − 3). Since we must perform scheduling after
register allocation, the allocator assumes an ideal schedule to estimate latencies
between instructions.

Each node in the RDG contains the following information for the correspond-
ing virtual register:

– Loop nesting depth: If the virtual register is used or defined in more than
one loop we select its maximum loop nesting depth.

– Total number of instructions affected by the virtual register: The
number of instructions in the DDG which depend directly or transitively on
this virtual register. For example, in Figure 4 the virtual registers a and b
affect three and four instructions, respectively.

4.2 Bank Assignment

After building the RDG, the algorithm begins a combined bank assignment and
register allocation phase. For a given virtual register, it first chooses the best
register bank according to a heuristic function, and then tests if a physical reg-
ister in that bank is available. If so, it assigns the virtual register to the physical
register. Otherwise, the allocator tries to find an alternative register in another
bank. Figure 5 shows the bank assignment algorithm. PriorityOrder determines
the order in which the virtual registers are allocated. In classic register alloca-
tion studies, the priority for each virtual register is computed based on spill code
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for each vr in PriorityOrder

bestBank = 0

bestScore = 0

for each register bank b

bankScore = CalculateBankScore(vr, b)

if (bankScore > bestScore)
bestScore = bankScore

bestBank = b
elsif (bankScore == bestScore)

bestBank = TieBreak(vr, bestBank, b)

reg = ChoosePhysicalRegisterFromBank(bestBank, vr)

if (reg found)
Replace vr with r in the code and update data for vr and bestBank

else

reg = ChoosePhysicalRegisterFromOtherBanks(bestBank, vr)

if (reg found)
Replace vr with r in the code and update data for vr and bestBank

else

Spill vr

Fig. 5. Bank Assignment Algorithm

CalculateBankScoreBasic(vr, bank)

return CalculateDependenceScore(vr, bank) - bank.numAssignedVR

CalculateDependenceScore(vr, bank)

score = 0
for each nvr RDG neighbor of vr assigned to NeighborBankSet(bank)

score += (RDG-MAX-WEIGHT - RDG Weight(vr, nvr))
return score

Fig. 6. Basic Implementation of CalculateBankScore Function

overhead produced if that virtual register is spilled [4,5]. Because bank assign-
ment is done in conjunction with register allocation, however, the priority order
must also take into account the dependencies between virtual registers and their
criticality. We define a simple priority function as follows:

Priorityspatial(vr) = 10LoopNestingDepth + NumOfEdges(vr, RDG). (3)

This function prioritizes virtual registers that have more dependencies with other
virtual registers and affect more instructions in the DDG.

The bank allocation algorithm uses the CalculateBankScore cost function.
Figure 6 shows a basic implementation of this function that uses the following
components:
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– Dependence score: A score based on the dependencies between the current
virtual registers and the already allocated virtual registers. The function ac-
cumulates the weights of the RDG edges between the current virtual register
and all virtual registers assigned to the current bank and its neighbor banks
(referred to as NeighborBankSet in Figure 6).

– Bank utilization penalty: The number of registers already assigned to the
bank. This component favors distributing virtual registers evenly across the
banks to improve concurrency.

The algorithm uses a tie breaker function, TieBreak, to determine the bank when
the scores of two banks for a given virtual register are identical. The definition of
NeighborBankSet and TieBreaker functions depends on the physical layout and
the characteristics of the processor grid. We explore implementations of these
functions for TRIPS processor.

4.3 Customizing the Bank Score Evaluation Function for TRIPS

Because TRIPS has fewer register banks than execution tiles, we expect heavy
traffic on the links connecting register banks to the execution tiles, and con-
tention on those links affects performance. We implement a TieBreaker function
to separate the load/store traffic, which flows from register banks to the data
tiles, from the rest of the traffic, as shown in Figure 7. This function priori-
tizes register banks on the left (i.e., lower bank numbers) if there are critical
load or store instructions dependent on the arrival time of the current virtual
register. Otherwise, it prioritizes the register banks on the right to move the
non-memory traffic out of the way of traffic to the data cache banks to avoid
network contention.

TRIPS TieBreaker(vr, bank1, bank2)

if (vr.affectedCriticalLoads + vr.affectedCriticalStores > 0)
return min(bank1, bank2)

else

return max(bank1, bank2)

Fig. 7. TieBreaker Function for TRIPS

5 Experimental Results

To evaluate performance we used the TRIPS hardware. The TRIPS chip is a
custom 170 million transistor ASIC implemented in a 130nm technology. For
these experiments, we ran the processor at 366MHz. The capacity of the L1
cache, L2 cache and main memory were 32 KB, 1 MB and 2GB, respectively. We
collected cycle counts from the hardware performance counters using customized
libraries and a runtime environment developed by the TRIPS team [20]. We used
C and Fortran programs from the EEMBC benchmark suite with the iteration
count set to 1000, and from the SPEC2000 benchmark suite [7,16].
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For comparison, we adapted Hiser et al.’s algorithm (HCSB) to work with an
EDGE ISA. We add a link in the RDG between two virtual registers if one is the
input to a hyperblock, the other is an output from that same hyperblock, and
there exists a dataflow path within the hyperblock from the input virtual register
to the output virtual register. For example, consider the block in Figure 4. There
will be edges between h and each of the inputs (a, b and c) in the RDG. The
remaining operations from HCSB carry over without changes to an EDGE ISA.

We compare the following bank alloction algorithms on TRIPS:

– Bank Oblivious: The linear scan register allocation algorithm explained in
Section 3.3 with no bank assignment mechanism. This algorithm uses all of
the architectural registers in the current bank before using the registers in
the next bank.

– Round Robin: The linear scan register allocation algorithm explained in
Section 3.3 using round-robin bank allocation. This allocator chooses physi-
cal registers from banks in a round robin fashion.

– HCSB: Our implementation of Hiser et al. [10].
– Spatial: The bank allocation algorithm for spatially partitioned processors

using the bank allocation priority function shown in Equation 3 and the
basic bank score function shown in Figure 6.

Table 1 contains the number of static spill load and store instructions for each
of the four allocators. Register allocation adds spill code to only 5 benchmarks
out of the 39 EEMBC and SPEC benchmarks we evaluated. This low rate of
spill code generation is partly because TRIPS has more registers than conven-
tional architectures. In addition, the TRIPS compiler converts temporary values
defined and used within a block to direct instruction communication that does
not go through the register file, as it would on a conventional RISC processor.

For the benchmarks in Table 1, the spatial and HCSB bank allocators pro-
duce less spill code compared to the bank oblivious and round-robin allocators.
The spatial and HCSB allocators prioritize variables based on the number of de-
pendences according to the priority function shown in Equation 3. As a result,
they allocate critical variables with higher numbers of dependences first. These
dependences directly indicate the number of spill instructions. By prioritizing
the variables with the most dependences first, if a variable later must be spilled,
then it will likely have fewer dependences and thus require less spill code.

Table 1. Number of static spill load and store instructions. For the remaining bench-
marks, none of the allocators generate any spill instructions.

Program Benchmark suite Bank oblivious Round robin HCSB Spatial
a2time EEMBC 111 111 30 31
applu SPEC 528 514 365 382
apsi SPEC 328 220 183 183

equake SPEC 30 30 10 10
mgrid SPEC 44 21 8 12
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Fig. 8. The speedup achieved using different bank assignment algorithms for EEMBC
on TRIPS compared to a bank-oblivious linear scan allocator

Figure 8 provides speedups using different bank assignment algorithms relative
to the performance of the bank oblivious allocator. On average, the spatial bank
assignment outperforms the other register allocators. The round-robin algorithm
achieves a 3% performance improvement over the bank oblivious algorithm. This
performance improvement results from a more balanced register distribution.
HCSB improves performance over the round-robin bank allocation by placing
dependent variables in nearby register banks. This algorithm, however, does not
consider the arrival times of variables or the topology of the processor substrate.
The spatial bank assignment algorithm places the virtual registers in the register
banks according to their arrival times at the critical instructions. It also places
registers used by critical load or store instructions to the register banks located
close to the cache banks. On average, this bank assignment algorithm performs
6% better than the bank oblivious assignment.

For some programs, the spatial bank allocator performs significantly better
than other allocators. The a2time benchmark has the largest speedup when using
the spatial or HCSB allocators. Table 1 shows that a2time is the only EEMBC
benchmark for which spill code is generated, and that the HCSB and spatial
algorithms significantly reduce spilling for this benchmark.

In fbital, the spatial bank allocator achieves a high speedup over the bank
oblivious allocator, and the round-robin allocator achieves the second best
speedup. Figure 9 (a) illustrates the simplified version of the most frequently
executed block of this program. In the critical path of this block (the grey lines
in the figure), the computation chain starting from two virtual registers v1 and
v2 ends by writing to variable v2. Variables v0 and v1 are also inputs to a store
memory operation. By separating memory and computation traffic, the spatial
bank allocator places v0, v1 and v2 in banks 0, 2, and 3, respectively. However,
the HCSB bank allocator, which considers only register dependencies, places
these dependent variables in banks 2, 1, and 1, respectively. Because of this al-
location, the critical path suffers extra delays caused by the memory traffic of
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Fig. 9. The critical paths of fbital and djpeg EEMBC programs
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Fig. 10. The speedup achieved using different bank assignment methods for the SPEC
benchmarks on TRIPS

the store instruction. Round robin randomly places v1 and v2 in banks 2 and 3,
achieving better results than HCSB.

In the critical path of djpeg, a predicate condition is computed using an
input variable, as shown in Figure 9 (b). Several parallel memory operations are
executed on both predicate paths. The round-robin bank allocator places the
critical variable in bank 0, which adds some delays to the predicate computations
because of the high memory traffic. The HCSB allocator places that variable
in bank 3, which is too far from the memory banks and adds some delays to
the memory operations. Considering memory bank locations, the spatial bank
allocator places that variable in bank 2, which results in the highest speedup
over the bank oblivious allocator.

For some programs, round robin and HCSB perform better than spatial. Ex-
amples of such programs are aifirf01, aiifft01 and matrix01. We suspect that in
these programs, the ideal schedule model used by the spatial bank assignment
algorithm to generate the register dependence graph has inaccuracies caused by
runtime resource constraints such as long latency cache misses.

Figure 10 illustrates the speedups using different bank assignment allocators
relative to the performance achieved using the bank oblivious allocator for the
SPEC benchmarks. Register allocation does not affect the SPEC benchmarks as
strongly as it affects the EEMBC benchmarks, most likely because the SPEC
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benchmarks are limited by other factors such as memory latency or instruction
cache pressure. As a result, benchmarks such as gzip, bzip, and equake are not
strongly affected. HCSB and round robin perform similarly on average, while the
spatial bank allocator performs slightly better. This speedup may be the result
of separating memory traffic from computation traffic.

6 Conclusions

In spatially partition processors, the delay of accessing registers depends on the
location of the register files and the ALUs on the grid. Consequently, we in-
troduce a register allocator that avoids spilling critical registers and estimates
operand arrival times for critical instructions to choose banks for dependent reg-
isters wisely. The allocator also considers the topological characteristics of the
hardware. In TRIPS, the memory tiles are located on the left side of the grid.
Considering the location of register files, the spatial allocator separates mem-
ory traffic from computation traffic when assigning banks to critical registers.
In addition, this allocator places dependent critical registers close together, so
that critical instructions receive their operands faster. The individual effects of
proximity of dependent registers and separation of memory and computation
traffic is still an open question and requires further research.
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Smashing: Folding Space to Tile through Time
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Abstract. Partial differential equation solvers spend most of their com-
putation time performing nearest neighbor (stencil) computations on
grids that model spatial domains. Tiling is an effective performance
optimization for improving the data locality and enabling course-grain
parallelization for such computations. However, when the domains are
periodic, tiling through time is not directly applicable due to wrap-
around dependencies. It is possible to tile within the spatial domain, but
tiling across time (i.e. time skewing) is not legal since no constant skewing
can render all loops fully permutable. We introduce a technique called
smashing that maps a periodic domain to computer memory without
creating any wrap-around dependencies. For a periodic cylinder domain
where time skewing improves performance, the performance of smash-
ing is comparable to another method, circular skewing, which also han-
dles the periodicity of a cylinder. Unlike circular skewing, smashing can
remove wrap-around dependencies for an icosahedron model of earth’s
atmosphere.

1 Introduction

Many computational science applications iterate over a discretized spatial do-
main to model its change over time or to converge to a steady-state solution for
unknowns within the discretized space. Regular computations are those where
the discretization of the simulation space is done with a one, two, or three-
dimensional grid whose values can be stored in an array of the same dimension-
ality. This paper focuses on the issues that arise when the discretized domain
is periodic. The wrap-around dependencies that result from periodicity make it
difficult to use a well known program optimization called time skewing. This
paper presents a technique called smashing that folds the data space so that
all dependencies in the corresponding iteration space are uniform, thereby en-
abling time skewing. Although other techniques such as circular skewing enable
time skewing for some periodic domains, smashing applies more generally and
exhibits comparable overhead.

In a periodic domain, some of the points on the grid boundary are simulation
space neighbors to points on a different boundary in the discrete grid. Fig. 1
shows the code and the iteration space for a computation that iterates over a
ring. The ring has been unrolled and discretized into a one-dimensional array.
Notice the long, or wrap-around, dependencies going from iteration point (1, 1)

J.N. Amaral (Ed.): LCPC 2008, LNCS 5335, pp. 80–93, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Iteration space of modeling a ring through time. The ring has been cut and
straightened. The vertical axis represents the points on the ring. The horizontal axis
represents time. Points are dependent on their neighbors in the previous time step. The
dependencies are shown with arrows. Because the top and bottom points are neighbors,
there are long dependencies from the top to the bottom and the bottom to the top.
The code has not been tiled.

to (2, 8) and (1, 8) to (2, 1). 1 Periodic domains arise from modeling hollow
objects or shells. Since they are hollow, shells can be represented in one less
dimension. Typically, the object is cut and unrolled to remove one dimension.
For example, ring is cut at one point and unrolled to form a line. A line is easy
to map into data and iteration domains, but the top and bottom points of the
line must still be treated as neighbors in simulation space. A cylinder or torus
can be represented with a plane.

Shells that result in periodic domains are frequently used to model physical
phenomena such as the earth’s atmosphere and surface. For example, the earth’s
atmosphere has been modeled with an icosahedron [11] and a cubed-sphere [1].

1 The code in Fig. 1 has been written using single assignment so that the dependencies
are clear, but actual implementations only use two one-dimensional arrays.
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Fig. 2 shows how an icosahedron is used to discretize one layer of the atmosphere
and how it can be unrolled into a set of two-dimensional grids.

Since stencil computations over periodic domains occur in many important
applications, there is significant interest in improving their performance through
data locality improvements and parallelization. Stencil computations can be
modeled as an iteration space where each point in the space represents one it-
eration of the loop. This space can then be tiled, breaking up the computations
in an attempt to group those that use the same data together thereby increase
data locality. Tiling as a performance optimization has been studied extensively
and has been shown to make code more efficient [6, 12, 15, 16].

Tiling these domains through time is difficult because the traditional strategy
of performing a uniform time skewing does not remove the cycle of dependencies
between tiles. They have non-uniform dependencies in nearly opposite directions.
Fig. 1 shows the example of trying to tile a ring as it is modeled through time. The
vertical axis represents the points on the ring. The horizontal axis represents time.
Because the top and bottom points are neighbors, there are long dependencies

Fig. 2. Icosahedron cut into five parallelograms. Figure courtesy of Randal, Ringer,
Heikes, Jones, and Baumgardner [11].
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Fig. 3. Iteration space that results from the smashed ring data space. Each node cor-
responds to two points from the original computation. Notice that the tiles have no
cyclic dependencies. Although tiling is legal, the displayed code has not been tiled.

from the top to the bottom and the bottom to the top. Any two-dimensional tiling
scheme based using only unimodular skewing as a preprocessing step will create
tiles with circular dependencies. There is no way to legally schedule tiles with cir-
cular dependencies, thus space can not be tiled through time.

In this paper, we resolve these difficulties through a new technique called
smashing that removes all the non-uniform neighbor relationships from the peri-
odic domains that result from rings, cylinders, tori, and icosahedra. Essentially,
it is a “data allocation” technique rather than a loop/iteration transformation.
In effect, we allocate the data by defining a map from the simulation space to
memory in such a way that all dependencies, including the periodic ones are
strictly uniform. Once the neighbor relationships in the data space are all uni-
form, the dependencies in the resulting iteration space are also uniform and
therefore amenable to unimodular skewing to enabling tiling through time, or
time skewing. Fig. 3 shows the iteration space that results from the smashed
ring data space. Notice that all of the dependencies are uniform.

Section 2 reviews the motivation for time skewing and previous techniques for
enabling time skewing in the presence of periodic domains. Section 3 presents
the smashing technique and shows how it works for the ring, cylinder, torus, and
icosahedron. Section 4 shows that the overhead of circular skewing and smashing
on a cylinder are both reasonable and comparable. Section 5 concludes.

2 Related Work

Related work includes research on applying time skewing, or tiling through time,
to stencil computations and techniques that enable tiling through time despite
wrap-around dependencies due to periodicity.
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Tiling through time to improve data locality in non-periodic, stencil computa-
tions has been studied and shown to improve performance in numerous contexts.
Wolf and Lam [15] showed how the uni-modular transformations skewing, rever-
sal, and permutation could be applied to perfectly nested stencil loops such as
SOR to enable tiling over time. Basetti et al. [3] use the term “temporal block-
ing” for the way they do multiple time steps by having more than one layer of
ghostcells in a structured mesh. Douglas et al. [4] modify the smoother in struc-
tured and unstructured multigrid implementations so that pieces of multiple time
steps that access similar data locations are performed to improve data locality.
Ahmed et al. [2] are able to tile across time for computations with imperfectly
nested loops such as those that occur in the Jocobi stencil computation. They
do this by embedding all of the iterations in the computation into a single prod-
uct space and performing tiling within that space. Sellappa and Chatterjee [13]
perform a temporal blocking across the time steps in Red-Black Gauss-Seidel.
Wonnacott [18] shows how to modify the storage mapping and time skew the
computation to ensure scalable locality, where scalable locality indicates that
a constant tile size may be selected so that the computation experiences data
locality no matter how large the problem size parameters grow.

Some previous research has also looked at tiling across time when there were
periodic boundaries in the simulation space.

Jin et al. [7] present at technique called recursive prismatic time skewing.
They calculate a reverse skewing factor to deal with periodic boundaries. The
reverse skewing factor is used to prevent the computation of boundary itera-
tion points at the start of the spatial domain that need computational results
from previous iterations of points later in the spatial domain. The code gen-
erated computes these boundary iteration points as soon as the dependencies
allow. Their technique is applicable to any (hyper) rectangular domain where
the periodic boundaries are each pair of parallel sides in the (hyper) rectangle.
Therefore, this technique applies to the ring, cylinder, and torus, but not the
cubed sphere or icosahedron.

Periodic domains have also been tiled using rhombus shaped tiles [5, 8, 10].
These tiles overlap at their bases, causing two tiles to compute some duplicate re-
sults. Each tile computes all the data it will need for subsequent time steps itself.
The iteration space does not need to be skewed, and the overlapping rhombus
tiles can start execution at the same time, thus resulting in no start-up cost [10].
These benefits can be enough to overcome the extra time spent recomputing
a portion of the iterations. Overlapping tiles can also be used to handle wrap-
around dependencies that are introduced due to periodic boundaries [5, 8]. The
presented techniques could feasibly be extended to handle the ring, cylinder, and
torus domains. More complex periodic boundaries such as the cubed sphere and
the icosahedron would require special logic to handle the varying directions of
periodicity they exhibit.

Song and Li [14] used the circular skewing technique introduced by Wolfe [17]
to make all of the long dependencies due to periodic domains point in the same
direction and therefore enable tiling through time. They formalized circular
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Fig. 4. Example of circular skewing on a ring. The horizontal axis is the time dimension.
The vertical axis represents the spatial domain of the ring. Initially, the wrap-around
causes non-uniform dependencies between the top and the bottom of this space. The
iteration points marked with x are the problem points that do not allow tiling through
time. The x points are translated by N (size of the ring) up to the diamonds. At each
time step, the number of points that need to be translated increases because more
points from the previous time step are translated. The triangles represent the points
that need to be translated multiple times. The background grid represents 2x2 tiles.

skewing only in the case where the spatial domain was one-dimensional. Circular
skewing plus unimodular skewing enables tiling through time. Fig. 4 shows that
a skewed iteration space (lower points) can be modified with circular skewing to
ensure that the resulting loop is fully permutable and therefore tileable. It re-
moves the negative non-uniform dependencies and creates positive non-uniform
dependencies. With all non-uniform dependencies going in the same direction, it
is possible to tile legally. It is possible to extend circular skewing to the cylinder
and torus domains, but the technique does not extend to the cubed sphere or
icosahedron.

Smashing differs from previous work that enables tiling through time despite
periodic dependencies due to the fact that it transforms the data space to prevent
such periodic dependencies instead of transforming the iteration space to deal
with them after the fact. As such, after smashing, techniques such as overlapping
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tiles [5, 8, 10], which enable load-balanced parallelism, are applicable to the
resulting iteration space.

3 Smashing

Smashing is a new storage mapping method that prevents wrap-around depen-
dencies due to periodicity, which occurs when modeling hollow objects. Given a
hollow object, one dimension needs to be removed to prevent iterating over the
empty space inside the object. Normally this dimension is removed by cutting
and unrolling. This creates wrap-around or non-uniform neighbors from one side
of the cut to the other. Smashing treats the data domain more like the object
it represents and smashes or flattens it to remove the extra dimension. This can
also be done by proceeding with the unrolling as is typical and then folding
the unrolled data space. For example, the unrolled ring creates a line, this line
is folded in half to create the smashed ring. Whether the data transformation
is done by smashing or folding, the end result is the same data space. It has
multiple layers but no wrap-around. In the ring example, the single fold causes
two layers. These layers can be stored as separate arrays or as a single two
dimensional array where the inner dimension has a size of two.

To explain how this removes the wrap-around dependencies in the iteration
space, we use the concept of neighbors in the data space. Neighbors are points
that are near each other in simulation space. The stencil defines the neighbors
of interest. In the data space a neighboring relationship is uniform if the neigh-
bors are a constant distance from one another. Non-uniform neighbors in the
data space cause the non-uniform dependencies in the iteration space. Smashing
creates a data space with only uniform neighboring relationships. A data space
with uniform neighbors can be mapped to an iteration space, skewed, and tiled
using the same methods that work on non-periodic domains. The remaining sub-
sections show the details of how smashing creates a uniform neighbor relation
for a ring, torus, and icosahedron.

3.1 Ring

Here we smash the data space of the ring and show how it removes the non-
uniform neighbor relations. The data space of the unrolled ring is a one dimen-
sional array ranging from 0 to N-1, where N is the number of discrete points in
the ring. We specify the neighbors in this data space as a piecewise affine func-
tion. For this example, we assume a stencil that uses the left and right adjacent
points.

Right(i) =
{

i = N − 1 : (0)
i < N − 1 : (i + 1)

Left(i) =

{
i = 0 : (N − 1)
i > 0 : (i − 1)
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The above neighbor functions contain non-uniformity. For the Right() neigh-
bor function, when i = N − 1, its right neighbor is 0. The distance between
them is N − 1 and is thus dependent on the number of points in the ring and
non-uniform. Likewise, when i = 0 its left neighbor is N −1. Smashing folds this
data space into a two-dimensional data space with the following transformation:

Smash(i) =

{
i < N/2 : (i, 0)
i ≥ N/2 : (N − 1 − i, 1)

We assume that N is even.
This creates a two dimensional array where the second dimension has two pos-

sible values. After this transformation, the neighbor function in the transformed
data space is as follows:

Right(i, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i = N − 1, k = 0 : (i, k + 1)
i < N − 1, k = 0 : (i + 1, k)
i = 0, k = 1 : (i, k − 1)
i > 0, k = 1 : (i − 1, k)

Left(i, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i = 0, k = 0 : (i, k + 1)
i > 0, k = 0 : (i − 1, k)
i = N − 1, k = 1 : (i, k − 1)
i < N − 1, k = 1 : (i + 1, k)

Notice that all the neighbors are now constant offsets from the data space
point (i, k).

3.2 Torus

A torus consists of a cylinder that has been rolled into a three-dimensional ring.
The top and bottom of the cylinder are connected, creating an object that looks
like a donut. To smash this we set the torus on edge and flatten it resulting in
four rectangles set on top of each other. Fig. 5 visualizes this another way. Cut
the torus vertically into two even halves. Straighten the two halves into cylinders.
Cut each cylinder along the long edge into two even halves, and straighten these
four halves into rectangles. The folding method results in the same four-layered
rectangle.

The unrolled torus is a single rectangle with wrap-around from the north
to south and from the east to west. The folding method folds this plane in half
horizontally and again vertically resulting in four layered rectangles of one-fourth
the size of the original. The points that were non-uniform neighbors on the edge
of the unrolled rectangle before folding are now within three layers of each other
on the edge of the folded rectangle.

The neighborhood of the unrolled torus is described with the following piece-
wise affine functions:

North(i, j) =

{
j = M − 1 : (i, 0)
j < M − 1 : (i, j + 1)
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Fig. 5. Smashing a torus by cutting it into two cylinders

South(i, j) =

{
j = 0 : (i, M − 1)
j > 0 : (i, j − 1)

East(i, j) =

{
i = N − 1 : (0, j)
i < N − 1 : (i + 1, j)

West(i, j) =

{
i = 0 : (N − 1, j)
i > 0 : (i − 1, j)

where N is the size of the domain in the i dimension, and M is the size in the j
dimension.

Unrolling introduces non-uniform neighbors as it did in the ring example.
The north neighbors of the points (i,M-1) are the points (i,0). These points are
a distance of M-1 from each other. The points along the other edges also have
non-uniform neighbors. Smashing folds the two-dimensional, unrolled data space
into a three-dimensional data space with the following transformation:

Smash(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i < N/2, j < M/2 : (i, j, 0)
i ≥ N/2, j < M/2 : (N − 1 − i, j, 1)
i < N/2, j ≥ M/2 : (i, M − 1 − j, 2)
i ≥ N/2, j ≥ M/2 : (N − 1 − i, M − 1 − j, 3)

N and M must be even.
The new neighbor functions are:

North(i, j, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k < 2, j = M/2 − 1 : (i, j, k + 2)
k ≥ 2, j = 0 : (i, j, k − 2)
k < 2, j < M/2 − 1 : (i, j + 1, k)
k ≥ 2, J > 0 : (i, j − 1, k)
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South(i, j, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k < 2, j = 0 : (i, j, k + 2)
k ≥ 2, j = M/2 − 1 : (i, j, k − 2)
k < 2, j > 0) : (i, j − 1, k)
k ≥ 2, J < M/2 − 1 : (i, j + 1, k)

East(i, j, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k = 0 or 2, i = N/2 − 1 : (i, j, k + 1)
k = 1 or 3, i = 0 : (i, j, k − 1)
k = 0 or 2, i < N/2 − 1 : (i, j + 1, k)
k = 1 or 3, i > 0 : (i, j − 1, k)

West(i, j, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k = 0 or 2, i = 0 : (i, j, k + 1)
k = 1 or 3, i = N/2 − 1 : (i, j, k − 1)
k = 0 or 2, i > 0 : (i, j − 1, k)
k = 1 or 3, i < N/2 − 1 : (i, j + 1, k)

The smashed torus has uniform neighbor relations, and the resulting iteration
space can be tiled without dealing with wrap-around dependencies.

3.3 Icosahedron Representation of the Earth

Modeling a sphere is difficult since a curve is hard to discretize. Randall et al. [11]
use a geodesic grid to model the earth’s atmosphere. They start with an icosahe-
dron and repeatedly bisect the faces to create increasingly finer grids. We smash
the icosahedron and remove all non-uniform neighbors. To do this, we start with
the unrolled icosahedron specified by Randall et al. [11], which is made up of
20 triangles, or alternatively, of 10 rhombi (diamonds) of two triangles each, or
even five parallelograms of four triangles each (see Fig. 2). The first and second
parallelograms are reconnected where their third and second triangles, respec-
tively, were connected in the original icosahedron (see Figures 7 and 8). The
third, fourth, and fifth parallelograms are similarly reconnected. This creates a
single polygon, but with non-uniform neighbors.

The non-uniform neighbors in the unrolled icosahedron can be made uniform
by folding (see Figures in Appendix A). We make ten vertical folds along the ten
main (i.e., longer) diagonals of the ten rhombi. The folds are made “accordion
style” so that we end up with ten long parallelograms laid out on top of each
other in ten layers (actually there are eleven layers – the first triangle, nine
parallelograms, and a last triangle, but the triangles can be “joined” together to
form a single parallelogram). The points that were non-uniform neighbors are
now at the same point of the new equilateral, but on a different layer from their
neighbor. To help visualize this, the reader is encouraged to cut out the Figures
in Appendix A and do some origami. The new data space can now be skewed
and tiled through time because all neighbors are an uniform distance from each
other.
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4 Experimental Results

To test the viability of smashing, we use a cylindrical domain and perform a
nearest neighbor stencil computation over time. Smashing enables tiling through
time, but introduces overhead in terms of accessing the data space. Our exper-
iments show that the overhead for smashing on a cylinder is comparable with
the overhead of circular skewing and that both result in an overall performance
benefit because they enable tiling over time.

In the stencil computation test, the neighbors are the north, south, east, and
west points, and the calculations (averaging the neighbors) are done using the
values of the neighbors from the previous time step. We iterate over this domain
with four separate methods, no tiling, tiling in two dimensions, tiling through
time using circular loop skewing, tiling through time using smashing. The results
for no tiling, circular loop skewing, and smashing are shown in fig. 6. Tiling in two
dimensions did not improve the results over not tiling for this domain, therefore
we do not include them in fig. 6.

We tried various tile sizes to find a reasonable tile size for each method. We
then compare the methods using the tile size that is the best we found for
each method. Our goal was not do determine what the optimal tile size is for
the selected problem sizes, but instead to show that with a good tiling, the
overhead of smashing competes with the less general circular skewing. In the
time dimension the tiles sizes ranged from 2 to 64. In the space dimension we
have square tiles ranging from 2 to 1024 on a side. We also tried not tiling the
inner loop. Kamil et al. [9] recommend not tiling the inner loop because of the

Fig. 6. Graph of the execution times for the cylinder using no tiling, circular skewing,
and smashing. The iteration spaces are all three-dimensional. The graph has been
normalized to the execution time of the no tiling method.
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Table 1. Tile Sizes

Method 1000-2000 4000

Circular Skew 16x2x0 8x1x0

Smashing 8x2x0 64x64x64

prefetcher. We tried multiple tile sizes and not tiling the inner loop was the best
strategy for all the methods except smashing on the 4000 size domain.

For our final results we ran the tile sizes that performed well for each method
and domain twenty times and took an average to produce Fig. 6. With this wide
variety of tile sizes, we can be reasonably sure that our choice of tile size is not
distorting the results. Table 1 shows the tiles size used for each method and
domain. The first dimension is time and the last is the inner loop. When the
size of the last dimension is zero, it means we did not tile the inner loop. The
columns show the problem size. We used the same tile size for problem the 1000,
1500, and 2000 problem sizes. They are in one column (1000-2000).

Tiling through time with both circular loop skewing and smashing shows a
speedup over not tiling through time. The times are comparable between cir-
cular loop skewing and smashing. These results show that smashing does not
introduce more overhead than less general techniques for enabling time skewing
on computations with periodic domains.

5 Conclusion

We have proposed, analyzed, and implemented in a number of examples a data
mapping technique called smashing. Smashing is an enabling transformation that
allows a well known and useful tiling transformation—time skewing—to be ap-
plied to stencil computations for domains with periodic boundary conditions. Un-
like previous techniques that address such periodic domains, smashing is not an
iteration space transformation of a given piece of code. Rather, it can be viewed
as a piecewise affine memory map—allocation of discretization points of the phys-
ical domain being modeled to memory locations that are viewed as a contiguous
multidimensional array. Our main result is to show that for many practical cases
smashing preserves the property that the neighbors of any point in the physical
domain remain neighbors in the multidimensional memory. As a result, any it-
erative stencil computation on this data space automatically enjoys the uniform
dependence properties that allow direct implementation of time skewing.

Smashing is easy to describe and implement, and as we have shown, provides
performance comparable to circular skewing. It removes the wrap-around from
the data space before it is converted to the iteration space and works for domains
such as the cube and icosahedron that earlier techniques like circular skewing
cannot handle.

An open question that we are investigating is a proof of generality: under
what conditions can an arbitrary “hollow” physical object be smashed down to
a contiguous multidimensional array while retaining the neighborhood property.
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In addition we are developing tools to automatically generate code that incor-
porates the smashing transformation from high-level stencil specifications for
hollow objects.
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Appendix A

Models of the icosahedron and the smashed icosahedron

Fig. 7. Model of the icosahedron. Cut out the figure and fold in along the dotted
lines. The edges will meet to form a icosahedron. Where the edges meet is where the
non-uniform neighbors are when it is flattened out.

Fig. 8. Model of the smashed icosahedron. Cut out the figure, fold in along the dotted
lines and out along the dashed lines. The result are ten layered parallelograms. The
points that were non-uniform neighbors lie on top of each other.
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Abstract. Dependence information between program values is extensively used
in many program optimization techniques. The ability to identify statements,
calls and loop iterations that do not depend on each other enables many trans-
formations which increase the instruction and thread-level parallelism in a pro-
gram. When program variables contain complex data structures including arrays,
records, and recursive data structures, the ability to precisely model data depen-
dence based on heap structure remains a challenging problem.

This paper presents a technique for precisely tracking heap based data depen-
dence in non-trivial Java programs via static analysis. Using an abstract interpre-
tation framework, the approach extends a shape analysis technique based on an
existing graph model of heaps, by integrating read/write history information and
intelligent memoization. The method has been implemented and its effectiveness
and utility are demonstrated by computing detailed dependence information for
two benchmarks (Em3d and BH from the JOlden suite) and using this information
to parallelize the benchmarks.

1 Introduction

The concept of data dependence between program statements is a fundamental tool for
the reordering of program statements and the determination of invariant values in basic
blocks, loops, or methods. Knowledge of data dependence allows the introduction of
instruction–level parallelism and thread–level parallelism (both in loops and method
invocations). In past work effective techniques for computing data dependence between
scalar variables have been developed. However, the extension of this work to tracking
memory–carried data dependence has been much less successful, in large part due to
the lack of suitable heap analysis techniques to support them.

Previous work focused broadly on two approaches for identifying possible heap–
carried data dependence, shape or points-to analysis as a proxy for data dependence
[2, 4, 7, 14] wherein the identification of various acyclic structures and/or access path
information is used to infer which expressions cannot access the same portion of the
heap, and the explicit tracking of read/written locations [3, 8, 9] which model the set of
locations that may be read/written at each program point. This work introduced several
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fundamental concepts involved in modeling heap carried data dependence. However
experimental work with these approaches was limited to small numbers of micro-
benchmarks or used coarse points-to style analysis.

This paper builds on the basic concepts developed in earlier work and makes several
contributions which are critical to analyzing non-trivial programs. The first is a novel
method for tracking read/write locations during the analysis. The approach presented in
this paper only tracks a two program locations per object field (one read location and
one write location) instead of a set of all possible read locations and a set of all possible
write locations per field. This is sufficient to identify the most recent program point
where each memory location may be used/modified while avoiding the additional space
usage and computational cost of tracking a set of program locations per object field. The
next contribution is a method to efficiently track read/write information through method
boundaries, in particular how to ensure that the addition of use–mod information does
not have a serious impact on the memoization of method body analysis results, which
is critical to applying the technique to realistic programs.

Our analysis technique uses an explicit store model for the heap objects which allows
us to easily track the identity of objects between program statements. This differs from
some recent work on shape analysis, which uses logical models with implicit store rep-
resentations [5, 15] that cannot be efficiently extended to track the properties of arbitrary
heap locations. It also differs from approaches based on separation logic which restrict
the program to regular recursive structures and limited sharing of objects on the heap in
order to ensure termination [1, 6]. These features preclude the use of these approaches
on many realistic application programs including the em3d and bh benchmarks, which
we analyze as detailed case studies here.

2 Running Examples

We use examples in this paper to illustrate the various aspects of the analysis technique.
The first is a small fragment created solely to illustrate the basics of the analysis. The
second is a routine taken from em3d, one of the JOlden [10, 13] benchmarks.

The first example 1 creates 2 Data objects, each of which has a single integer field
val, and puts them in a Pair object. If the conditional holds the first element of
the pair is modified and then the swap method is called to interchange the first and
second elements of the pair. This example is simple but relevant since in order to
determine that the asserted property always holds the analysis needs to be able to track
how pointer stores affect reachability relations in the heap, to identify where each heap
location may be written, and do so across method invocations.

The second program fragment is a method taken from the em3d benchmark. This
program builds a bipartite heap structure. Each call to computeNewValue takes a
ENode object from one side of the bipartite graph and updates the value field of this
node based on the value fields of ENode objects on the opposite side of the bipartite
graph. This example demonstrates the importance of precisely resolving the heap struc-
ture so the dependence analysis can determine that the set of heap location where the
value field is written is distinct from the locations that are read.
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m1 void main() {
m2 Pair p = new Pair(new Data(5), new Data(10));
m3 if(*)
m4 p.first.val = 0;
m5 swap(p);
m6 assert(p.first.val != 0);
m7 }

s1 void swap(Pair p) {
s2 Data temp = p.first;
s3 p.first = p.second;
s4 p.second = temp;
s5 }

Fig. 1. Conditional Modify and Swap

c1 static void computeNewValue(ENode n) {
c2 for(int i = 0; i < n.fromCount; i++)
c3 n.value -= n.coeffs[i] * n.fromN[i].value;
c4 }

Fig. 2. Compute (From em3d)

3 Abstract Heap Domain

The underlying abstract heap domain that we extend is a graph in which each node
represents a region of the heap (a set of objects or data structures) or a variable and
each edge represents a set of pointers or a variable target. The nodes and edges are
augmented with additional instrumentation predicates.

Types. Since each node in the graph represents a region of the heap (which may contain
objects of many types) we use a set of type names for each node in the heap graph which
contains the type of any object that may be in the region of the heap that is abstracted
by the given node.

Linearity. To model the number of objects abstracted by a given node (or pointers by
an edge) we use a linearity property which has 2 possible values 1, which indicates that
the node (edge) concretizes to either 0 or 1 objects (pointers) and the value ω , which
indicates that the node (edge) concretizes to any number of objects (pointers) in the
range [0,∞).

Abstract Layout. To track the connectivity and shape of the region a node abstracts, the
analysis uses abstract layout predicates Singleton, List, Tree, MultiPath, or Cycle. The
Singleton predicate states that there are no pointers between any of the objects repre-
sented by an abstract node. The List predicate states that each object has at most one
pointer to another object in the region. The other predicates correspond to the standard
definitions for Trees, Dags, and Cycles in the literature.
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Interference. The heap model uses two properties to track the potential that multiple
pointers or variables can reach the same memory location in the region that a particular
node represents. In this work the examples only require one of these properties (inter-
ference) so we omit the discussion of the other property (connectivity) and refer the
interested reader to [12] for a more detailed description.

Each edge abstracts a set of pointers in the concrete program. The interfere property
has three possible values, to track that some of the pointers may alias (ap), that none
of the pointers alias but they may point into the same data structure (thus can interfere,
ip), or that each of the pointers refers to a unique and disjoint data structure in the node
that the edge ends at (they are disjoint and non-interfering, np).

Heap Representation. We represent abstract heaps pictorially as labeled, directed multi-
graphs. The variable nodes are labeled with the variable that they represent. The nodes
representing the regions are represented as a record [type, linearity, layout]
that tracks the instrumentation predicates.

The edges (which represent sets of pointers) in the figures are represented as records
[offset, linearity, interfere]. The offset component indicates the offsets
(labels) of the references that are abstracted by the edge. These labels may be any of the
field identifiers that are used in the program or the special label, ?, which is the label
given to the summary field representing all the elements in a collection object Vector,
List, or an array.

To simplify the figures we omit entries in the labels when they are the default domain
value. The default values for the nodes are layout = (S)ingleton and linearity = 1. The
default edge values are linearity = 1 and interfere = np. The variable edges always
represent single references and the label is always implicitly the variable name.

3.1 Heap Structure Examples

Pair Example. Figure 3 shows the heap model (without any read/write information)
that is computed as the result of executing the pair constructor in the first example
program. The variable p points to a single object of type Pair (the linearity is 1 and
the shape in Singleton, as described above this default information is omitted from the
figure). The node representing the Pair object has 2 outgoing edges representing the
two pointers stored in the first and second fields. The analysis determines that
these edges each represent a single pointer (and since any edge representing a single
pointer cannot have any interference the interfere property is np). Again the default

Fig. 3. Pair Allocation, Structure Only
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properties of linearity 1 and non-interference are omitted from the figure. Finally, the
model shows that the first and second pointers each refer to a single Data object.

Em3d Example. The state of the heap at the entry to the computeNewValuemethod
in the program em3d is shown in Figure 4 (again without any read/write information).
The em3d program computes electro-magnetic field values in a 3–dimensional space
by constructing a list of ENode objects, each representing an electric field value and
a second list of ENode objects, which represent a magnetic field values. To compute
how the electric/magnetic field value for a given ENode object is updated at each step
the computeNewValue method uses an array of ENode objects from the opposite
field and performs a convolution of these field values and a scaling vector, updating the
current field value with the result.

Figure 4 shows the heap structure computed for the computeNewValue method.
We have placed dashed lines around the structures that represent the magnetic field (in
blue if color is available) and the electric field (in green). Variable g points to a single
object of type BiGrph, which is the data structure that encapsulates all the objects of
interest. The BiGrph object has 2 fields, the hNodes field pointing to a linked list of
ENode objects that make up the magnetic field and, the eNodes field pointing to a
linked list of ENode objects that make up the electric field.

Looking at the structures in the magnetic field we see the edge labeled [?, ω] which
represents all the pointers stored in the linked list. Since the linearity is ω we know the
edge may represent multiple pointers but each of these pointers must point to a unique
ENode object (the default interference value of non-interfering np is omitted). The
figure also shows that the magnetic field is represented by many ENode objects (the
node labeled [ENode, ω]) each of which has a pointer to a unique array of floats

Fig. 4. computeNewValue, Structure Only
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(the edge labeled coeffs) and an array of ENode objects (the edge labeled fromN)
which are used as the set of nodes from the opposite field. The edge that represents the
pointers stored in this array is labeled [?, ω , ap], which indicates that it represents all
the pointers stored in the array and, that the pointers it represents may alias (ap).

4 Data Dependence Extensions

To track the read/write histories of objects on the heap we extend the model presented
in Section 3 with information to track the identity of the objects represented by a given
node, and for each field in the object we track the most recent program location (state-
ment or control flow structure) where a read/write of that field may have occurred.

In order to ensure that the initial shape analysis when augmented with the read/write
domain remains efficient it is critical to minimize the amount of additional information
that is added to the heap model. The key observation is that for most optimization
applications the shape analysis only needs to provide precise information about the
most recent program location at which each field may have been read or written. Thus,
the analysis does not need to track every possible program location where a field may
have been read/written, and this significantly reduces the computational requirements.

4.1 Intermediate Representation

Before we introduce the domain extensions we need to specify how program locations
are represented. To simplify the analysis the Java programs are transformed into a struc-
tured mid-level intermediate language (called MIL). The partial grammar below pro-
vides a sample of the language constructs in the intermediate representation.

atom ::= var | literal
expr ::= atom | atom+ atom | new type(atom, . . . ,atom) | var. f

| var.m(atom, . . . ,atom) | var instanceof type | . . .
stmt ::= var=expr | var. f=atom | break | . . .
contol ::= if(atom) block else block | while(atom) block | . . .
block ::= (stmt | control)∗

The language has method invocations, conditional constructs (if, switch), ex-
ception handling (try-throw-catch) and looping statements (for, do, while).
The state modification and expressions cover the standard range of program operations
(load, store and assign along with logical, arithmetic and comparison operators). We
associate with each statement and each control flow structure a program location �.

4.2 Extended Domain

Read–Write Locations. Each node may represent a number of objects of different types
(τ1 . . .τm) and each type may have many fields ( f 1

τi
. . . f n

τi
). For each of these fields we

keep two program locations (�), the last time the field may have been read (�r) and the
last time the field may have been written (�w).

Node Identity. In order to efficiently analyze method invocations we memoize the in-
put and return abstract states and reuse them as possible. In order to prevent spurious
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Fig. 5. Pair with use-mod

inequalities between the read/write program locations (that refer to the locations in the
caller scope) in the memoized models we replace them with a generic modified outside
value. To allow us to match the identities of the objects in the input state with their
position in the output state we add a unique identity tag (a value in N) to each node that
is passed into a method call.

In our extended domain each node in the heap is now represented as a tuple [type,
linearity,layout,scalar-fields,identity]. The entriestype,layout
and count are as described in Section 3. The scalar-fields entry is a list of
field-readloc-writeloc entries, one for each scalar field, where readloc
and writeloc are either a program location � or the special entry 0 (modified outside).
The identity entry is a set of identity tags or is omitted entirely if the node does not
have a identity tag associated with it (or for clarity if it is not relevant to the example).

To track the read write information for the pointer fields we extend each edge label
to [offset, linearity, interfere, readloc-writeloc]where readloc
and writeloc are defined the same as for the scalar fields in the nodes. Again, for
clarity, we omit readloc-writeloc information if it is irrelevant to the example.

Figure 5 shows the model that is computed as the result of executing the pair con-
structor in the first example program. The pair is marked as having read and written
the two pointer fields at initialization (the m2-m2 entries on the first and second
edges) and the identity tag is omitted (since this object was allocated in the current
scope). The two Data objects which had their val fields initialized at program location
m2 have the entry m2-m2 in their scalar-fields read/write entry.

4.3 Local Data Dependence

Now that we have extended the model with the required instrumentation properties
we can define a set of dataflow operations to model the effects of program operations
on the read/write information. The changes for load and store operations are simple,
only requiring an update of the last read/write value for the target object to the current
program location, thus we omit a detailed description of these operations.

Data Flow Domain. If G is the set of all possible heap graphs and B = ℘(var)×
℘(var) (a simple domain to track which variables must be true, the first element of
the pair, and which must be false, the second element) then our abstract domain is
D =℘(G ×B).
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Given an element in the abstract domain, σ ∈ D , we assume the abstract semantics
are defined for expressions and statements. Thus, given an expression e, the abstract se-
mantics of this expression on the abstract state σ are given by S �e�σ and similarly for
statement s, the abstract semantics are given by S �s�σ . Using the B component of the
domain and a boolean condition b, we can filter an abstract state σ = {θ1, . . . ,θk} into
two new abstract states σtrue = S �b�true(σ) = {θi | b may be true in θi} and σfalse =
S �b� f alse(σ) = {θi | b may be false in θi}.

Abstract Conditional Semantics. Using the above definitions we can write the stan-
dard definition for the if statement, S �i f (b) blockt else block f �σ =S �blockt�(σtrue)∪
S �block f �(σfalse). However, using this definition of the semantics can result in expo-
nential growth in the number of states that the analysis must deal with (since for most
cases at the union of the abstract states that result from analyzing true and false branches
will have many models that are identical except for a few readloc–writeloc entries).

To avoid this we replace all the readloc–writeloc entries that refer to program lo-
cations in the true or false branches of the conditional with the program location of
the conditional before the union operation. Thus any differences that are solely due to
readloc–writeloc entries are removed and exponential growth is avoided. Given σ =
{θ1, . . . ,θk} and a block which contains statements/control structures at program loca-

tions pl = {ν1, . . . ,νi}, we define the operator♣(σ ,block,µ)=
{

θi|µpl

∣∣∣ θi ∈ σ
}

, which

performs the required replacements in the heap graph models. With this definition the
improved semantics for the conditional operation (at program location κ) are:

S �i f (b) blockt else block f �σ =
♣(S �blockt�(σtrue),blockt ,κ)∪♣(S �block f �(σfalse),block f ,κ)

Disjunctive Domain. To speed program analysis we employ a partially disjunctive do-
main [11] which we use to discard elements in the abstract states (θi) that contain redun-
dant read/write information. This is done by defining an order on the program locations
based on their control–flow order. In general this order is not total (e.g. statement loca-
tions in the true and false branches of an if statement). However, our replacement of
locations inside nested control–flow structures with the program location of the struc-
ture that contains them ensures that we can always compare the program locations that
appear in the readloc–writeloc entries.

Analyze Conditional Example. Figure 6(a) is the abstract heap that approximates the
state of the program after the true branch (S �blockt�(σtrue)), where the first element
of the pair had the val field written. In the node that represents the Data object
that was written we updated the writeloc entry to program location m4 (where the
write occurred, marked in red if color is available). Figure 6(b) shows the result of
♣(S �blockt�(σtrue),blockt ,m3), where we replaced the readloc–writeloc locations that
appear in the true branch with program location of the if statement (program location
m3, shown in blue).

Figure 6(c) shows the abstract heap from the false branch where no write occurred
(S �block f �(σfalse)). The most recent mod location is unchanged (program location m2,
where the object was initialized) in ♣(S �block f �(σfalse),block f ,m3) since program
location m2 is not nested in the conditional.
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(a) True Branch (b) True, After Mod Location Update

(c) False, After Mod Location Update (d) Discard Subsumed False Branch

Fig. 6. Updating Read/Write Locations At Control Flow Join

Given our order relation on the use-mod sites we can simplify the models resulting
from the true and false branches into a single model shown in Figure 6(d). Intuitively
the may use-mod information from the true branch indicates that the memory location
at p.first.val may have been written at location m3 (the if statement) or at some
previous point in the program, while the result of the false branch indicates that the
memory location at p.first.val may have been written at location m2. Since the
possibility that the object may be written at or before program location m2 is implied
by the statement that the object may be written at or before program location m3 we can
safely discard the model from the false branch.

Abstract Loop Semantics. The semantics of a looping statement while at program
location κ can be expressed in terms of accumulating all possible exit states. To do this
we define the state of the heap at the loop test for the ith iteration of the loop as:

σi =
{

σ if i = 0
S �block�(S �b�true(σi−1)) otherwise

Then we can define the semantics of the loop analysis as the union of all the possible
exits from the loop with the read/write program locations that occur within the loop
body replaced by the program location of the loop (κ). Formally:

S �while(b) block�σ =
⋃{♣(S �b� f alse(σi),block,κ)

∣∣ i ∈ N
}

4.4 Interprocedural Data Dependence

In order to efficiently handle large programs we memoize results of analyzing each
method. At method call sites, if we were to naively compare the memoized heap models
with the current call state the method specific readloc–writeloc entries we embed in
the model would create many spurious inequalities. As an example consider the swap
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function from our running example. The swap method could be called from multiple
locations in a program and at each of these call sites the Pair object may have a
different readloc–writeloc entries for the first and second fields. If comparision
is done in a naive manner these differences will result in spurious mismatches with
memoized analysis values, forcing the method to be re-analyzed for each call.

To avoid this problem we anonymize the readloc–writeloc locations before attempt-
ing to find a match in the memo table. However, when doing this anonymization we
need to ensure that we can figure out which locations in the result heap may have been
read/written in the call and which must not have been read/written (and thus have the
same readloc–writeloc entry as before the call).

Call Example. The anonymization and remapping operations are conceptually simple
but without some intuition into how they function the definitions are difficult to follow.
Thus, we first examine how the swap call is handled in the pair example. Figure 7
shows the steps that are taken to analyze the call at program location m5 assuming that
the memo table contains Subfigures 7(a) and 7(b) as a memoized result.

Figures 7(a) and 7(b) show that during the analysis of the swap method the analysis
has determined the first and second fields have been read and written (the readloc
and writeloc entries refer to program locations within the swap method, s2, s3 and s4)
but that the val fields are neither read nor written. The readloc and writeloc entries are
the modified–outside value 0. Further, based on the identity tag sets we know that the
object which was stored in the first field at the method entry (Figure 7(a)) and was
given the identity tag 2 is stored in the second field at the method exit (Figure 7(b)).
A similar situation holds for the object stored in the second field at the method entry,
which was assigned the identity tag 3.

Figure 7(c) shows the state of the heap model at the call site (location m5) after we
have added fresh tags (7, 8, and 9) to uniquely identify the nodes. After anonymizing
the locations of the readloc–writeloc entries to the modified–outside value (0) we have
the model shown in Figure 7(d), which is isomorphic (up to identity tags) to the model
in our memo table, Figure 7(a).

During the anonymization we construct a map from the identity tags we added
and the field identifiers to the readloc–writeloc entries in the caller scope that we are
anonymizing. This gives us the map ModM={(7,first)→(m2,m2), (7,second)→
(m2,m2), (8,val) → (m2,m3), (9,val) → (m2,m2)}. Using the isomorphism from
σin �→ σcall we have a map Π = {1 → 7,2 → 8,3 → 9}.

Using these maps we transfer the read/write information from the call input to the
memoized output, replacing any readloc–writeloc entries that refer to program loca-
tions in the callee body (swap) with the program location of the call site (program
location m5) and replacing any occurrences of the modified outside value with the ap-
propriate entry from modM. In Figure 7(b) the node with identify tag 2 has the modified
outside value for the readloc/writeloc of the val field (val-0-0). To place the correct
readloc–writeloc values into this node we look up the node that it maps to in the caller
scope (via the Π map), which gives us the identity tag 8. Then we look up the caller
scope readloc–writeloc information in the modM map, which gives us the read/write
information for the field, m2-m3.
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(a) Memo In (b) Memo Out

(c) Call In (d) Anonymized (e) Call Out

Fig. 7. Mapping Through Memoization

This remapping gives us the result in Figure 7(e), which shows that the object stored
in the second field of the Pair object may have been written at program location m3
but that the object stored in the first field has not been modified since initialization
at program location m2. Thus, we can determine that the read from p.first.val is
non-zero and the assertion will always succeed.

Dataflow Operations. For a method invocation at call site �call we give each node in
the call state σcall a unique tag κ ∈ N, set the read/write location to the modified outside
value and build a map ModM : N×field �→ (�r, �w).

We then compare the anonymized version of σcall with the entries in the memo table
ignoring the read/write information. If a match (σin,σout) is found then there is a graph
isomorphism Φ : σin �→ σcall. This isomorphism and the fact that the set of location tags
in σin and σout are the same implicitly defines a map, Π : {κ | κ a location tag ∈ σout}
�→ {κ ′ | κ ′ a location tag ∈ σcall}. Using this map we can then compute the result of
the call by replacing any readloc–writeloc values (�x) for the fields in each node n with:

(�′x) =
{

�call, if �′x is a location in the callee method
max({n′.�x | κ ∈ n.identity∧n′ ∈ σcall ∧Π(κ) ∈ n′.identity}), otherwise

5 Experimental Results

In this section we examine how the data dependence information can be used to perform
thread level parallelization on variations of two of the more complex JOlden bench-
marks, em3d and bh [10, 13]. To asses the performance of our approach we examine
the analysis runtime on the JOlden suite, several of the SPECjvm98 benchmarks [16],
and a logic formula manipulation program we developed as test case.

5.1 Case Studies

Em3d. The first application of the read/write dependence information we look at is
performing thread–level parallelization of the em3d benchmark. In Figure 2 we show
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Fig. 8. Em3d With Read/Write Info

e1 for(int i = 0; i < this.hNodes.size(); ++i)
e2 computeNewValue((ENode) this.hNodes.get(i));

Fig. 9. Main Em3d Compute Loop

the code for updating the value field of a single ENode object. By applying our
read/write analysis we obtain the model in Figure 8 at the end of the method body. We
see that some object from the list of magnetic field nodes has had the value field both
read and written in the loop, readloc = c2 and writeloc = c2 (marked in red if color
is available), while there have been reads from the coeffs and fromN pointer fields,
readloc = c2 (marked in green), writeloc = 0. The pointers in the fromN array have
also been read in order to access the value fields in the ENode objects in the opposite
field, which have been read but not written (readloc = c2, writeloc = 0).

Using this information, the fact that each reference in the linked list (LinkList)
of ENode objects refers to a unique object (the edge is np, the omitted default inter-
ference value) and the linear loop iteration, allows us to determine that each magnetic
ENode object is written on a single iteration of the main update loop, program location
e2, in Figure 9, which calls computeNewValue. Given this information it is valid to
thread parallelize this loop (and to vectorize the loop in computeNewValue). Doing
so results in a speedup of 3.21 on our quad-core test machine.

BH. Figure 10 shows the model that the analysis computes for the heap based read/write
information in the hackGravity method of the Barnes–Hutt benchmark. For clarity
we have simplified the heap structure in areas that are not relevant to this example.

The bh program performs a fast–multipole algorithm on the gravitational interaction
between a set of bodies (the Body objects) and uses a space decomposition tree of
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Fig. 10. BH With Read/Write Info

h1 Iterator b = this.bodyTabRev.iterator();
h2 while(b.hasNext())
h3 ((Body) b.next()).hackGravity(rsize, root);

Fig. 11. Main Update, Gravity Computation

Cell objects each of which has a Vector containing a subtree or a reference to the
Body objects. The program also keeps two vectors for accessing the bodies, bodyTab
and bodyTabRev. Figure 10 shows the state of the heap model after the loop body
(Figure 11) that contains the majority of the computation in bh. This loop takes each
Body object and walks the space decomposition tree (the root field) to determine a
new acceleration value for the Body object (stored in the newAcc field).

Our analysis is not able to precisely resolve the construction of the space decomposi-
tion tree and conservatively assumes it may be a cyclic structure (shown by the C in the
node representing the Cell objects). However, the analysis is able to determine that
the Cell objects and the Body objects represent distinct regions in the program. This
piece of information combined with the observation that the space decomposition tree
is only read in the loop body (all the readloc entries set to h2, marked in green, and the
writeloc entries set to 0), that the only part of the heap which is modified is never read
(the double[] stored in the newAcc field, writeloc = h2, set to red), and that the col-
lection being indexed over (the Vector referred to by the bodyTabRev field) does
not have multiple references to the same object (the ? edge is np, the omitted default
interference value), is sufficient to ensure that there are no heap–carried dependence in
this loop. Thus, we can safely thread–parallelize the loop body, achieving a factor of
2.98 speedup on our test machine.
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5.2 Performance

The analysis algorithm was written in C++ and compiled using gcc 4.2. The analysis as
well as the parallelization benchmarks were run on a 2.6 GHz Intel quad-core machine
with 4 GB of RAM (although memory consumption never exceeded 60 MB).

The original Java programs are transformed into MIL programs and the required stub
code is added to enable the analysis of the standard Java libraries (which requires from
200-600 lines depending on which libraries the benchmark uses). These MIL programs
are then processed by the analyzer. A demo version of the analyzer and benchmarks can
be obtained at [13].

Benchmark LOC Classes Methods Analysis Time Shape RW Dep
bisort 560 36 348 0.26s Y Y
mst 668 52 485 0.12s Y Y
tsp 910 42 429 0.15s Y Y
em3d 1103 56 488 0.31s Y Y
perimeter 1114 44 381 0.91s P N
health 1269 59 534 1.25s Y Y
voronoi 1324 58 549 1.80s Y Y
power 1752 57 520 0.36s Y Y
bh 2304 61 576 1.84s P Y
db 1985 68 562 1.42s Y Y
logic 3960 72 620 48.26s P Y
raytrace 5809 63 506 37.09s Y Y

Fig. 12. LOC is the size of the program after transformation to MIL (including library stub
code that must be analyzed), Classes/Methods are the number of classes/methods in the program
(including Java Libraries that are used). Shape reports the heap connectivity is correctly identified
and RW Dep reports if the RW information is useful (as in Section 5.1).

We report Y(es) in the Shape column if the analysis correctly identified all the rel-
evant the shape information of the heap structures in the program. P(artial) means the
analysis was able to determine the precise shape for some of the data structures but that
some properties were missed.

We report similar information for the utility of the RW information. Y(es) means the
read/write information would be sufficient to introduce substantial thread level paral-
lelism (as in Section 5.1) and provides the information required to enable significant
instruction level parallelism optimizations (e.g. code motion to improve scheduling,
elimination of redundant loads/stores or the identification of loop invariant values). We
Report (N)o for only one of the benchmarks, perimeter, where the read/write informa-
tion does not enable any thread level parallelism and only enables minor scheduling or
load elimination opportunities.

Our experimental results show that the analysis is capable of efficiently computing
very precise heap–carried dependence information over a range of benchmarks. In par-
ticular the ability to compute this information on the benchmarks bh, em3d, voronoi
and raytrace is a significant advance in the state of the art for understanding the pro-
gram heap. Computing precise shape and dependence information for these benchmarks
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requires the analysis to precisely model recursive data structures, Java collections, non-
trivial sharing between components of the heap and, in order to compute the dependence
information, to precisely track the part of the heap each read/write affects.

The analysis presented in this paper is not only capable of accurately modeling all
of these features but is able to do so efficiently (analyzing the smaller benchmarks
takes less than 2s per benchmark and raytrace at 5809 LOC takes only 37s). Based on
these results we believe that the analysis reported in this paper is robust enough to be
generally useful in the optimization of smaller Java programs and we plan to continue
work on scaling the analysis to handle larger programs with the same level of precision.
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Abstract. Irregular applications, i.e., programs that manipulate pointer-based 
data structures such as graphs and trees, constitute a challenging target for par-
allelization because the amount of parallelism is input dependent and changes 
dynamically. Traditional dependence analysis techniques are too conservative 
to expose this parallelism. Even manual parallelization is difficult, time con-
suming, and error prone. The Galois system parallelizes such applications using 
an optimistic approach that exploits higher-level semantics of abstract data 
types. 

In this paper, we study the performance and scalability of a Galoised, that is, 
automatically parallelized, version of Delaunay mesh refinement (DR) on a 
shared-memory system with 128 CPUs. DR is an important irregular applica-
tion that is used, e.g., in graphics and finite-element codes. The parallelized 
program scales to 64 threads, where it reaches a speedup of 25.8. For large 
numbers of threads, the performance is hampered by the load imbalance and the 
nonuniform memory latency, both of which grow as the number of threads in-
creases. While these two issues will have to be addressed in future work, we be-
lieve our results already show the Galois approach to be very promising. 

Keywords: parallel programming, multicore processors, sparse graph algo-
rithm, amorphous data-parallelism, optimistic execution, mesh refinement. 

1   Introduction 

Over the last three decades, the problem of automatic parallelization, i.e., the me-
chanical transformation of sequential code into parallel code by identifying program 
regions that can execute concurrently, has been studied extensively. As a result, mod-
ern compilers are able to achieve very good parallel performance in certain applica-
tion domains virtually without programmer guidance. 

In particular, for applications that process arrays and matrices, which we refer to as 
“regular” applications, a multitude of techniques have been developed to prove inde-
pendence between array accesses and to uncover, package, and schedule parallelism 
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at various levels [6]. In this class of programs, data parallelism mainly manifests itself 
as FOR-ALL loops over integer intervals for which the iterations can be statically 
proven to be independent. We call this crystalline data-parallelism. 

However, there exist a large number of important “irregular” applications that ma-
nipulate sparse graphs, which are much harder to parallelize. A characteristic example 
of this class of programs is Delaunay mesh refinement, a widely used computational 
geometry algorithm. For these applications, static parallelization techniques based on 
pointer [4] and shape analysis [5], [11], [16] are often insufficient because they must 
be correct for all possible inputs. However, the amount of parallelism in irregular 
applications is almost always data dependent and changes dynamically. We call this 
amorphous data-parallelism. For example, in Delaunay refinement, the parallelism is 
highly dependent on the shape of the input mesh. Thus, statically produced parallel 
schedules tend to be overly conservative for most inputs and unnecessarily serialize 
program execution. 

In semi-static approaches, the computation is split into an inspector phase, which 
determines the dependences between units of work, and an executor phase, which 
uses this schedule to perform the computations concurrently [14]. Since the inspector 
is also executed at runtime, the input of the program is taken into account when pro-
ducing the schedule. For Delaunay refinement, the usefulness of this approach is, 
however, limited because the mesh changes as the algorithm progresses. Hence, the 
inspector would have to be executed repeatedly, which is expensive because it in-
volves expanding the cavities (i.e., a substantial part of the work of a single iteration). 

The most promising way to automatically parallelize irregular programs is employing 
dynamic approaches that speculatively parallelize the code at runtime. In this approach, 
portions of the application are executed in parallel assuming that dependences are not 
violated. The runtime system is responsible for detecting any such violations and for 
restoring the program to the correct state by aborting one of the conflicting computa-
tions and executing it later. If no dependence violation is detected, the speculative state 
is committed, thus becoming visible to the rest of the program. 

In previous work, we introduced the Galois system [10], which we discuss in more 
detail below, to automatically and speculatively parallelize irregular code. While we 
believe our system to be practical, our previous studies [8], [9], [10] have not investi-
gated the scalability beyond small multicore systems. The goal of this paper is to study 
the performance of an application that has been automatically parallelized by the Ga-
lois system on a large-scale shared-memory multiprocessor. This study not only pro-
vides insight into the effectiveness of our approach but also brings out important issues 
pertaining to the parallelization of irregular applications in a real-world setting. 

The rest of the paper is organized as follows. Section 2 discusses the Delaunay 
mesh refinement algorithm in detail. Section 3 illustrates the Galois system. Section 4 
presents the experimental methodology. Section 5 shows the results. Section 6 sum-
marizes related work. Section 7 concludes the paper with a summary and future work. 

2   Delaunay Mesh Refinement 

Mesh generation is a vital component of many applications in graphics and the nu-
merical solution of partial differential equations. The goal of mesh generation is to 
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represent a surface or a volume as a tessellation composed of simple shapes like tri-
angles or tetrahedra. 

Although many types of meshes are used in practice, Delaunay meshes are particu-
larly important since they have a number of desirable mathematical properties [3]. 
The Delaunay triangulation of a set of points in the plane is the triangulation such that 
no point is inside the circumcircle of any triangle. This property is called the empty 
circle property. An example of such a mesh is given in Fig. 1. 

 

Fig. 1. Delaunay mesh (the circumcircles of the triangles contain no mesh points) 

In practice, the Delaunay property alone is not sufficient, and it is necessary to im-
pose quality constraints governing the shape and size of the triangles. For a given 
Delaunay mesh, this is accomplished by iterative mesh refinement, which succes-
sively fixes “bad” triangles (triangles that do not satisfy the quality constraints) by 
adding new points to the mesh and re-triangulating it. Fig. 2 illustrates this process. 

 

Fig. 2. Delaunay mesh refinement steps 

The shaded triangle in Fig. 2(a) is assumed to be bad. To fix it, a new point is 
added at the center of this triangle’s circumcircle. Adding this point may invalidate 
the empty circle property of some neighboring triangles. Hence, all affected triangles 
need to be determined. This region is called the cavity of the bad triangle and  
is shaded in Fig. 2(b). In this example, all triangles belong to the cavity, but in larger 
meshes, a cavity usually only covers a small fraction of the mesh. In the final step,  
the cavity is re-triangulated as shown in Fig. 2(c). Re-triangulating a cavity may gen-
erate new bad triangles, but it can be proven that this iterative refinement process will 
ultimately terminate and produce a guaranteed-quality mesh [3]. Different orders of 
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processing bad triangles may lead to different meshes, but all such meshes satisfy the 
quality constraints. 

Fig. 3 provides pseudocode for mesh refinement. The input is a Delaunay mesh in 
which some triangles may be bad, and the output is a refined mesh in which all trian-
gles satisfy the quality constraints. There are two key data structures used in this algo-
rithm. One is a worklist containing the bad triangles in the mesh. The other is a graph 
representing the mesh structure where the nodes correspond to the triangles and the 
edges denote triangle adjacencies. The two-dimensional algorithm works as follows. 

1. Find all the bad triangles in the mesh and put them into the worklist [line 3]. Then 
repeat the following steps until the list of bad triangles is empty [line 4]. 

2. Pick a triangle from the list [line 5]. The processing of other bad triangles may 
have removed this triangle from the mesh. If so, there is nothing to do [line 6]. 

3. Compute the cavity of the bad triangle as follows. Find the circumcenter of the 
triangle, add this new point to the mesh and determine the triangles that no longer 
satisfy the empty circle property because of this new point [lines 7 and 8]. 

4. Re-triangulate the cavity [line 9]. 
5. Replace the triangles in the cavity with the new triangles (i.e., remove the old tri-

angles from the mesh and add in the newly calculated triangles) [line 10]. 
6. Because the newly created triangles are not guaranteed to meet the quality con-

straints, any newly created bad triangles must be added to the worklist [line 11]. 

 1: Mesh mesh = ...;  // read in initial mesh 
 2: WorkList wl; 
 3: wl.add(mesh.badTriangles()); 
 4: while (wl.size() != 0) { 
 5:   Triangle t = wl.get();  // get bad triangle 
 6:   if (t no longer in mesh) continue; 
 7:   Cavity c = new Cavity(t); 
 8:   c.expand(); 
 9:   c.retriangulate(); 
10:   mesh.update(c); 
11:   wl.add(c.badTriangles()); 
12: } 

Fig. 3. Pseudocode of the 2D mesh refinement algorithm 

2.1   Opportunities for Exploiting Amorphous Data-Parallelism 

The natural unit of work for parallel execution in Delaunay mesh refinement is the 
processing of a bad triangle. Because a cavity is typically a small neighborhood of a 
bad triangle, the cavities of two bad triangles that are far apart in the mesh often do 
not overlap and can therefore be processed concurrently. 

An example of processing several triangles in parallel is given in Fig. 4. The left 
mesh is the original mesh, and the right mesh represents its refinement. In the left 
mesh, the black triangles are the bad triangles while the dark grey triangles are the 
other triangles in the cavities. In the right mesh, the black points mark the newly 
added points and the light grey triangles denote the newly created triangles. Clearly, 
all the cavities in Fig. 4 can be refined in parallel without conflicts. Thus, Delaunay 
mesh refinement is an example of a worklist algorithm where the units of work may 
be independent. 
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Fig. 4. Processing triangles in parallel 

3   The Galois Model 

The Galois programming model [10] is a concurrent, object-based, shared-memory 
model that is designed to be implemented as an extension to an object-oriented lan-
guage. An application parallelized under this model consists of two components: the 
client code, which is written by the user of the system and has easily-understood se-
quential semantics, and the library and runtime code, which encapsulates all the com-
plexity of parallel execution. 

3.1   Client Code 

The programming model provides two language constructs, called optimistic set itera-
tors, that allow the user to implicitly express amorphous data-parallelism. The well-
defined sequential semantics of these set iterators makes it easier to understand, write, 
and debug client code. 

• Set iterator: for each e in Set S do B(e) 
The loop body B(e) is executed for each element e of set S. Since the elements of a 
set are not ordered, this construct denotes that, in a serial execution of the loop, the 
iterations can be executed in any order. There may be dependences between the it-
erations, as is the case with Delaunay mesh refinement, but any serial order of exe-
cuting iterations is permitted. Iterations may dynamically add elements to S. 

• Ordered-set iterator: for each e in OrderedSet S do B(e) 
This construct denotes a partially-ordered iterator over S. Contrary to the Set itera-
tor, the execution order must respect the partial order imposed by the OrderedSet S. 

3.2   The Galois Runtime and Class Libraries 

The runtime system speculatively executes iterations of set iterators in parallel, 
thereby taking advantage of potential amorphous data-parallelism in the application. 
To guarantee that the parallel execution preserves the sequential semantics of the 
iterators, the system must ensure that concurrent accesses of and method invocations 
on shared objects are properly coordinated. 
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One way to detect conflicts in the Galois system is through commutativity checks. 
Intuitively, two iterations that concurrently access a shared object do not conflict if 
they call commuting methods on the object. Note that commutativity conditions are a 
property of the abstract data type of the object and are therefore only dependent on the 
public interface of the type and not on the concrete implementation of that interface. 
Thus, the implementation can be changed without affecting the commutativity condi-
tions. These conditions are specified as annotations in the class definition [10]. 

Alternatively, conflict detection can be performed on partitioned data structures 
[9]. For example, a Delaunay mesh can easily be partitioned. Whenever two iterations 
touch the same partition of a shared data structure, a conflict is raised. Even though 
this scheme is less precise than commutativity checking, it is simpler and has a lower 
overhead, which is why we use it in this study. 

The Galois system also supports overdecomposition. The basic idea of overdecom-
position is to partition the data into more partitions than there are cores in the machine 
so that multiple partitions are mapped to each core. When a thread accesses a partition 
of a data structure, it owns all elements in that partition, and the other threads are not 
allowed to access them. Assigning multiple partitions to a core increases the probabil-
ity that a thread can continue to perform useful work even if other threads have tem-
porarily locked some of its partitions [9]. 

Whenever a conflict is detected, one or more iterations must be rolled back, i.e., a 
series of undo actions are executed by the runtime system. For each method of a 
shared object type, the class implementor must provide another method that performs 
a “semantic undo”. For example, the undo of add(x) in a set is remove(x). As each 
iteration executes, the system records the undo actions corresponding to the methods 
that get called and uses them to perform a rollback if a conflict occurs. 

4   Methodology 

To study the scalability and other performance aspects of our Galoised version of 
Delaunay mesh refinement, we performed experiments on a Sun E25K server running 
SunOS 5.9. The system contains sixteen CPU boards with four dual-core 1.05 GHz 
UltraSPARC IV processors. The 128 CPUs share 512 GB of main memory. Each core 
has a 64 kB four-way set-associative L1 data cache and a unified 8 MB L2 cache. 

We use Sun’s Java compiler version 1.6.0_02 and the HotSpot 64-bit server virtual 
machine version 1.6.0-b105. Because HotSpot dynamically compiles frequently exe-
cuted bytecode into native machine code, we repeat each experiment nine times in the 
same VM and report results for the median as well as the fastest run. To prevent other 
jobs from interfering with our measurements, we always reserve all 128 CPUs regard-
less of how many threads we create. Furthermore, to minimize the interference by the 
garbage collector, we use a 400 GB heap and force a garbage collection by calling 
System.gc() five times before executing the measured code section. 

All measurements are obtained through source code instrumentation; that is, we 
read the timer and the CPU performance counters before and after the measured code 
section, compute the difference, and write the result to the standard output. We use 
the Java Native Interface and C code we wrote to access the performance counters. 
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We evaluate Delaunay mesh refinement on three random inputs. The small input 
contains 100,770 triangles of which 47,768 are initially bad. The middle input has 
219,998 triangles of which 104,229 are initially bad. The large input consists of 
549,998 triangles of which 261,100 are initially bad. 

All measurements in this study refer to the refinement algorithm only. In particular, 
reading the input, building the initial graph, and partitioning the initial graph are ex-
cluded as we have not yet Galoised these components of the code. 

5   Results 

5.1   Speedup 

Fig. 5 shows the speedup of the parallel code on the three inputs for various thread 
counts relative to the fastest run of our sequential implementation. The solid lines 
display the best and the dashed lines the median speedups. The overdecomposition 
factor is 32. There was no garbage collection during the execution of the timed code. 
The sequential refinement code takes 31.96, 76.16, and 195.1 seconds, respectively, 
for the small, medium, and large input. 

The automatically parallelized code scales to 64 or 128 threads, depending on the 
input. Scaling is good (over 50% efficiency) up to 32 threads, where the speedup is 
roughly 20 for all three inputs. The large input scales to 128 threads, where it reaches  
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Fig. 5. Speedup over the fastest sequential run 
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a speedup of a 26.5, the highest we observed. The performance drop with 64 threads 
is due to a high CPI (cf. Section 5.2), which we believe is caused by unfortunate parti-
tioning that results in a large amount of communication. 

The median runtimes start to diverge from the fastest runtimes at eight threads be-
cause of slow communication between CPU boards. Recall that our machine com-
prises sixteen boards with eight processors each. Thus, experiments with eight or 
fewer threads may incur only intra-board communication whereas experiments with 
sixteen or more threads necessarily incur inter-board communication, which is slow. 
Hence, as long as the operating system executes all threads on CPUs of the same 
board, the runtimes of the nine experiments vary only slightly and the median is very 
close to the fastest runtime. However, as soon as multiple boards are involved, which 
may already happen with eight worker threads because of other JVM threads, it 
greatly matters whether threads that exchange data are assigned to the same board or 
not. Because some assignments result in better locality than others, the random alloca-
tion of threads to cores by the operating system yields different runtimes for each 
experiment, as is reflected by the discrepancy of up to a factor of 2.7 between the 
median and the best speedups. Due to this high variability, we believe the results 
reported in this paper for large numbers of threads show the correct trends but the 
absolute values might be unreliable. 

The parallel code with one thread is 13% slower than our sequential implementa-
tion. This result reflects the overhead introduced by Galois, which includes the time it 
takes to start and terminate worker threads, the cost of checking for runtime conflicts 
(even though no conflicts can occur with just one thread), and the expense of re-
cording the undo information. 

In summary, the scaling is surprisingly good for an automatically parallelized ir-
regular application. The efficiency is better than 66.6% up to 16 threads for the fastest 
runs. Above 16 threads, it drops quickly due to load imbalance and memory latency. 

5.2   Memory Access Latency 

To confirm the negative impact of the inter-board communication, we measured the 
average number of cycles it takes to execute an instruction. Fig. 6 shows the results. 
Because the same code is executed and because most instructions that do not access 
the memory have a fixed latency, we attribute any increase in the number of cycles 
per instruction (CPI) to slower memory accesses. Direct measurements of the L2 
cache stall cycles corroborate our results but only capture part of the memory latency. 

The CPI (and therefore the memory latency) starts to greatly increase above 16 
threads, exposing the nonuniformity in the memory access time. With large numbers 
of threads, the CPI is up to 2.44 times as high as the CPI with a single thread. Since 
instructions that touch the memory represent only a fraction of the executed instruc-
tions, the average slowdown per memory access is, of course, even higher. Thus, the 
slow inter-board communication speed is one of the primary performance hurdles in 
the Galoised refinement code for large numbers of threads on our system. 

5.3   Load Balance 

Fig. 7 illustrates the fraction of time that the concurrent threads have to wait, on aver-
age, for the slowest thread to finish. For example, in the 128-thread run with the small  
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Fig. 6. Average cycles per instruction (CPI) 
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Fig. 7. Average thread waiting time as a percentage of the total runtime 
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input, the threads idle 75.5% of the time, on average. Note that there is no task steal-
ing and new work generated by a thread is always handled by that same thread. 

We observe very little load imbalance (under six percent idle time) up to eight 
threads. Above eight threads, the imbalance starts to become significant and for 128 
threads, on average over half of the time the threads are idling for all three inputs. The 
load imbalance grows with the number of threads because larger thread counts result 
in less work per thread, which increases the likelihood of imbalance problems. Thus, 
load imbalance is the second main reason preventing the automatically parallelized 
code from scaling well to 128 CPUs. Note that, on the one hand, our random inputs 
are quite homogenous and thus probably more balanced than real inputs, meaning that 
load imbalance may be an even bigger problem in practice. On the other hand, we use 
a somewhat naive work partitioner based on recursive subdivision, and employing a 
more sophisticated partitioner may improve the load balance. 

5.4   Aborted Speculations 

Some of the speculative refinements fail because their cavity extends to a partition of 
the graph that is locked by another thread. Fig. 8 depicts the fraction of the attempted 
refinements that had to be aborted (and retried later). The overdecomposition factor is 
32. In the median run with the large input, 18.8% of the refinements were aborted. 
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Fig. 8. Percentage of attempted refinements that were aborted due to speculation conflicts 
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There are relatively few aborts, as one might expect with a large overdecomposi-
tion factor. With the fastest runs, we see almost no aborts up to four threads. Larger 
numbers of threads cause more aborts for two reasons. First, the higher latency of the 
aforementioned inter-board communications slows down some of the refinements, 
meaning that they take longer and are therefore more likely to conflict with other 
concurrent refinements. This is probably also the reason why the (slower) median 
runs sometimes have much higher abort ratios than the fastest runs. Second, increas-
ing the thread count increases the number of partitions but makes them smaller. 
Hence, the chance of a cavity overlapping multiple partitions increases. 

Nevertheless, the observed abort ratios are too low to severely impact the scalabil-
ity. In fact, aborts are detected quite early, namely during the cavity expansion and 
before the actual refinement work. As a result, they only have a small effect on the 
runtime (cf. Section 5.6). 

5.5   Overdecomposition 

Fig. 9 illustrates the impact of the overdecomposition factor on the speedup over the 
sequential code. For improved readability, we only show results for the fastest runs 
with the middle input. 

As one might expect, one partition per thread results in poor performance. Two 
partitions per thread are necessary and sufficient for good performance up to eight  
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Fig. 9. Speedup of the fastest runs and middle input for different overdecomposition factors 
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threads. For larger numbers of threads, higher overdecomposition factors tend to help 
because they lower the misspeculation rate of the optimistic execution. However, 
beyond a certain level of overdecomposition, there is little benefit in using smaller 
partitions. In fact, the locking overhead increases as the partitions become smaller 
because the cavities are more likely to span multiple partitions, which necessitates the 
acquisition of multiple locks. The odd behavior with one partition per thread and 128 
threads may be an artifact of the aforementioned high variability in our measurements 
with large thread counts. 

5.6   Result Summary 

Fig. 10 summarizes the results from the previous subsections by accumulating the 
runtime of all threads. The figure shows numbers for the fastest run with the middle 
input. The results for the other two inputs are qualitatively similar. The runtimes are 
relative to the sequential runtime. Each bar is broken down into five categories. They 
are, from bottom to top, 1) the runtime of the sequential code, 2) the single-thread 
overhead, i.e., the runtime of the parallel code with just one thread, 3) the aborted 
work due to misspeculations, 4) the memory latency as computed in Section 5.2, and 
5) the time the threads idle while waiting for the slowest thread to finish. 

Because Fig. 10 sums up the runtime across all threads, the total runtime would be 
the same regardless of the number of threads if the parallel implementation scaled 
perfectly. However, as we noted in the previous subsections, there are factors that  
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Fig. 10. Accumulative runtime breakdown for the fastest run with the middle input 
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hamper the scalability of Delaunay mesh refinement. Up to four threads, the over-
heads of the Galois system remain low, and hence the total runtime stays roughly 
constant. However, beyond four threads we see that the load imbalance and the mem-
ory latency begin to increase rapidly. Both of these overheads are the result of proces-
sors being unable to perform useful work (either because of waiting for memory or 
for slower threads). For large numbers of threads, the load imbalance represents the 
biggest performance bottleneck followed by the memory latency. The aborted work 
and the parallelization (single-thread) overhead are minor in comparison. 

6   Related Work 

Hand-written parallel implementations of Delaunay mesh refinement exist for 2D [1] 
and 3D [2] meshes. While both implementations eschew optimistic parallelization, 
they are not amenable to automatic parallelization (an automatic approach could not 
generate these particular parallel implementations from the sequential algorithm) for 
several reasons. In the 2D code, the mesh is partitioned among multiple processors, 
and each partition is processed relatively independently. However, the standard De-
launay algorithm is augmented with special handling for the boundaries between 
partitions. Thus, this approach is effectively a new algorithm for parallel Delaunay 
refinement rather than a straightforward parallelization of the sequential algorithm. In 
the 3D code, the mathematical properties of the Delaunay algorithm were examined 
and the authors developed a distance metric establishing the greatest possible size of a 
cavity in the mesh. Thus, regions sufficiently far apart can be processed in parallel. 
This approach to parallelization requires specific algorithmic knowledge and, again, is 
therefore not a straightforward parallelization of the sequential algorithm. 

Other approaches to automatic parallelization of irregular programs include Thread 
Level Speculation (TLS) [7], [15]. This technique automatically parallelizes FOR 
loops in sequential programs using optimistic parallelization. However, because TLS 
focuses on parallelizing standard sequential programs, it cannot leverage key algo-
rithmic semantics in the parallelization. Thus, the generated parallel programs must 
exactly match the sequential program, preventing TLS from, e.g., reordering parallel 
computation to better exploit locality. 

Another approach that has been studied extensively is Transactional Memory [12] 
(TM). One key distinction between the Galois approach and TM is that the latter is 
mainly concerned with optimistic synchronization as opposed to optimistic paralleli-
zation. In other words, the input program for a TM system has already been parallel-
ized and the goal is to find an efficient and less error-prone way to synchronize the 
parallel tasks. In contrast, the main concern of the Galois model is to present the user 
with the right abstractions to express the amorphous data-parallelism in irregular 
codes as well as to provide an efficient implementation of those abstractions. 

TLS and TM both detect speculative conflicts based on memory-level consistency. 
As we discuss elsewhere [10], tracking conflicts at such a low level may trigger false 
conflicts and thus disallow parallel execution that is actually safe. One way to over-
come this problem in the case of Transactional Memory is to use open nested transac-
tions [13]. This approach, however, complicates the semantics of the program and, as 
a result, increases the effort required by the programmer. 
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7   Conclusions and Future Work 

This paper studies the scalability of an important “irregular” sparse graph application, 
Delaunay mesh refinement, which has been automatically parallelized using the Ga-
lois system. Our measurements on a 128-CPU shared-memory computer identified the 
load imbalance and the long nonuniform memory latency (due to inter-board commu-
nication) to be the primary bottlenecks to scaling for large numbers of threads. Specu-
lation aborts and the overdecomposition factor have a relatively minor impact on the 
performance. Overall, the automatically parallelized code scales to 64 or 128 threads, 
depending on the input, and achieves a speedup of 26.5 over the sequential code. 

While this work only investigates a single application, it raises several issues that 
are known to be problematic in parallelization. Thus, we believe Delaunay mesh re-
finement to be a representative amorphous data-parallel program worth studying and 
our findings to be more generally applicable. For instance, future multicore systems 
will likely also have nonuniform memory latency. 

Addressing this issue is our primary target for future work. To minimize the inter-
board communication, i.e., the slowest memory accesses, we will hierarchically parti-
tion the work and pin it to CPUs such that the memory hierarchy (including the inter-
connection network) matches the hierarchy of the work partitions. To address the load 
imbalance, we will modify the work scheduler and add support for work or partition 
stealing. Other future work includes Galoising the sequential mesh partitioner, which 
currently takes longer to run than the parallel refinement code. 
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Abstract. Certain high-performance applications like multimedia and
gaming have performance requirements beyond reducing program execu-
tion time. These applications have repetitive components whose desired
performance characteristics are more naturally expressed using soft real-
time theory with its probabilistic guarantees. However, for large com-
plex gaming and multimedia applications, programmers typically avoid
real-time constructs as they significantly constrain how the program-
mer can express functionality. Instead, such applications are developed
as monolithic programs using conventional languages like C/C++. Here
the soft real-time behavior of the application becomes an emergent qual-
ity rather than being enforced by design. Programmers must then tweak
parameters/algorithms until the application’s soft real-time behavior be-
comes acceptable. There are currently no analysis techniques that di-
rectly extract the soft real-time execution characteristics of monolithic
applications written without the use of real-time constructs. We intro-
duce a domain-agnostic profiling methodology that identifies program
execution-contexts whose variant behavior most significantly affects the
soft real-time characteristics of the application.

1 Introduction

Important classes of high-performance applications, such as gaming and multime-
dia have performance requirements beyond minimizing program execution time.
These applications have Quality-of-Service (QoS) requirements on repetitive ap-
plication components, such as a live-video encoding application that attempts
to maximally compress the input image stream while maintaining a sufficiently
smooth frame-rate. Other examples include real-time object tracking and recog-
nition kernels at the heart of many military and commercial applications.

Typically, games, streaming live-video encoders and video players attempt to
maintain a reasonably high frame-rate for a smooth user experience. However,
they frequently drop the frame-rate by a small amount and occasionally by a
large amount if the computational requirements suddenly peak or compute re-
sources get taken away. Therefore, the QoS requirements of such applications is
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best described using a combination of i) soft real-time theory with its probabilis-
tic guarantees, and ii) the runtime sophistication of certain application-specific
artifacts, such as the degree of compression achieved on a raw video stream, or
the realism of Artificial Intelligence or physics modeling in games. During the
design optimization stage, programmers like to tweak algorithms and parameter
values in order to maximize the runtime sophistication of their application while
minimally compromising the desired real-time characteristics. In this paper, we
exclusively focus on characterizing the soft real-time behavior of an application,
in the absence of any knowledge about the application’s functionality or its do-
main. We limit our technique to informing the programmer about an applica-
tion’s soft real-time behavior, and leave it to the programmer to decide how best
to tweak algorithms based on application and domain specific knowledge.

Monolithic Applications. Programmers often use specialized real-time languages
and libraries to either guarantee that real-time requirements are met (hard real-
time, for safety critical applications), or are met as close as possible (soft real-
time). Such programming requires that the application be broken up into real-time
constructs such as tasks, ordering dependencies be established between tasks, and
completion deadlines (probabilistic or hard) be set on the tasks. However, when
developing large applications like gaming and video, programmers typically es-
chew the benefits of formal real-time methods and languages, instead using
conventional C/C++ development flows for their significant high-productivity
advantages. The soft real-time behavior of the resulting monolithic application
becomes entirely an emergent quality rather than being enforced by design. Pro-
grammers are then left to use ad-hoc means to understand what application com-
ponents are responsible for undesirable soft real-time behavior.

In order to rectify the lack of suitable analysis tools for such applications, we
propose a profile-driven methodology for characterizing the soft real-time be-
havior of conventionally written monolithic applications. The primary objective
of our profiling methodology is the identification of application components that
exhibit the maximum variability in their execution time. Such components are
the ones most likely to affect the meeting of implied execution deadlines (such
as desired frame-rates).

Application Structure. A soft real-time application typically processes a sequence
of data items, such as a sequence of image-frames for MPEG video encoding.
There are soft real-time requirements limiting the average execution time and
variability in execution time for functions that process the data sequence. A
programmer unfamiliar with the application stands to gain important insights
about the application’s design and functionality if the most significant functions
processing the data sequence are pointed out. Our profile analysis framework
automatically identifies those functions whose repetitious behavior most signif-
icantly contributes variance to their enclosing scopes. Consequently, the set of
functions identified by the profile analysis can be expected to closely match the
set of functions that process the data sequence. The primary intuition behind
this reasoning is as follows: the application needs soft real-time requirements



126 T. Kumar et al.

to be enforced primarily because processing each data item, or parts of a data
item, does not take constant time. Isovic, et al. [1] show that there is a significant
amount of variation in decoding times for realistic video streams and argue that
standard scheduling algorithms that assume average values and limited variation
in frame decoding times will lead to poor video quality.

More generally, a soft real-time application may exhibit variability at many
levels: from the highest level of processing a data item, to lower levels of pro-
cessing pieces of the data item. Examples of this are image-frames at the highest
level in video-encoding, and motion-estimation over 8-pixel × 8-pixel blocks of
the image-frame. The execution-time of motion-estimation may vary dramati-
cally from block-to-block even within the same image-frame, depending on how
wide the motion-estimation searches to find a closely matching block. There is a
large body of research showing how the search-space of motion-estimation can be
limited based on the types of input video expected or the search-space dynami-
cally adapted in order to more consistently achieve the desired frame-rate. Our
profiling framework helps the programmer identify functions contributing signif-
icant variability at all levels of processing in the application, and empowers the
programmer to make decisions about whether, where and to what extent algo-
rithmic or configuration-parameter tweaking needs to be done, such as adjusting
parameters that constrain the size of the motion-estimation search window.

1.1 Research Questions

We posed the following open research questions in order to drive the design of
our profile analysis framework:

Question 1. Component discovery Can recurrent behavior identified during
profiling of function calls be used to identify individual components of an appli-
cation’s soft real-time functionality?

Question 2. Structure discovery Can the identified recurrent behavior be
used to reconstruct the soft real-time structure of the application? The structure
would be composed of components of soft real-time functionality.

Question 3. Context-sensitivity discovery Can the context-dependent vari-
ability in the behavior of soft real-time components be detected? The behavior
of a component may differ significantly depending on where it is invoked.

Question 4. Generality How reliably can behavior discovered during profiling
be expected to generalize to future runs of the application on arbitrary inputs?

1.2 Contributions

We make the following specific contributions in this paper.

– We describe a tractable approach for succinctly capturing the behavior of
millions of profile events in terms of tens of soft real-time components. The
discovered components are functions that introduce significant variability
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to the application’s real-time behavior, and hence are most important to
be brought to the attention of a programmer interested in improving soft
real-time behavior.

– We demonstrate that function call-chain segments capture the context sensi-
tivity of a component’s soft real-time behavior. We motivate how the length
of call-chain segments gives them varying ability to differentiate between
multiple contexts of execution of a component. We provide algorithms that
choose the correct segment lengths in order to produce highly succinct pro-
file results that differentiate only between those contexts where behavior is
significantly different.

– We illustrate the use of specific statistical theory for constructing algorithms
that find patterns of behavior (dominant components and corresponding
execution-contexts). Due to probabilistic guarantees provided by the statisti-
cal theory, the produced patterns generalize well for describing the behavior
of the application executing on arbitrary input data.

We validate the correctness of the identified components by profiling well-
known multimedia applications. Extensive prior research exists about the soft
real-time behavior of these applications. The components reported by our pro-
filing methodology match closely with those described in prior research as the
main causes of soft real-time variance in these applications.

Among the questions listed above, only the structure discovery question is
not satisfactorily answered by our current methodology. Although the discov-
ered components and their call-chain contexts do allow the programmer to infer
the structure, this inference is not sufficiently precise and may not work in all
circumstances. In Section 6 we provide insights on how our technique can be
improved to accommodate structure discovery as well.

Overview. Section 2 introduces the profile representation constructed from the
raw stream of profile events. Section 3 introduces the relevant statistical theory
and describes the analysis performed on the constructed profile representation
for detecting patterns. Section 4 provides experimental validation.

2 Profile Representation

We profile-instrument the application and use the generated profile events to
construct a Calling Context Tree (CCT). Ammons, et al. [2] showed that a CCT
representation succinctly captures the dynamic structure of the function calls
executed by the application. It preserves the full call-chain context of invocation,
and merges information along multiple identical contexts into a single context.
This makes the CCT an ideal representation for investigating context-sensitive
behavior.

We automatically profile-instrument a C/C++ application using the LLVM
[3] compiler infrastructure. We execute the application on test inputs and use
the generated sequence of profile-events to construct the CCT as described in [2].
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void main() {
  for(i=0;i<100;++i) {
    if(i%5 == 0)
      A(0, i); //Lexical id=0
    A(1, i); //Lexical id=1
  }
}

void A(int flag, int i) {
  if(flag != 0)
    B(i); //Lexical id=0
  // other statements
}

void B(int i) {
  for(j=0;j<i;++j) {
    S1;
  }
}
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Fig. 1. Sample Program and CCT with Annotated Node Statistics

During CCT construction, we annotate statistics on each CCT node. These
statistics are used by subsequent analysis for detecting patterns. Figure 1 shows
an example program, the corresponding CCT and annotated node statistics. Func-
tion A was invoked from two call-sites within the parent function main. This leads
to two children nodes for function A. Since function B was never invoked under
the left A node, it only gets a NULL edge at its call-site in A. The next subsection
describes the node annotations required for our variant call-context analysis.

2.1 Node Annotations

Each node is annotated with the following statistics about the execution of the
function-call corresponding to it:

1. invocation count N: The number of times the corresponding function-
call was invoked.

2. mean X̄: The mean execution time across all invocations of the function-call
corresponding to the node. This includes the execution time of all children
function-calls.

3. variance σ2: The statistical variance in the execution time of the function-
call across all invocations. Variance is the square of the standard deviation
σ. Using σ2 = E(X2)− X̄2, a single pass over the profile data constructs the
CCT and computes all node annotations including variance.

2.2 Measuring Execution Time

We need to use some notion of elapsed time to time-stamp each function entry
and exit event. Ideally, we would like to use wall-clock time with the application
running on the target platform. Initially, we need to profile-instrument each
function entry and exit since we don’t know which ones will be significant for
determining an application’s variant behavior. However, this approach will suffer
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such a large runtime overhead that wall-clock measurements will be rendered
meaningless for capturing the application’s real-time behavior.

In order to avoid introducing significant distortions to the application’s real-
time behavior, we chose to use dynamic-instruction-counts to estimate elapsed
time. While measuring dynamic-instruction-count does not account for micro-
architectural effects and system level stalls (such as cache misses), it does al-
low us to robustly compare execution times in the order-of-magnitude sense for
function-call instances in the CCT. Our primary motivation is to determine which
function call instances (CCT nodes) are highly variant with respect to their mean
execution times, and which function call instances are orders-of-magnitude more
variant than others. Time-stamping profile events with dynamic-instruction-
counts suffices for this purpose, while at the same time remaining unaffected
by the overheads of profile-instrumentation. The LLVM compiler pass inserts
code to update a global counter for the dynamic-instruction-count. This counter
is sampled when dumping profile events during program execution.

Once the pattern generation analysis has been performed using dynamic-
instruction-counts to measure elapsed time, the function names that cumulatively
(i.e., over all CCT instances of same function) consume significant execution time
are known. In subsequent iterations of profiling, real wall-clock time can be used
to dump profile events only for those functions that were previously seen to con-
sume significant time cumulatively. This would dramatically lower the runtime
overhead of profile-instrumentation since lower-level functions that do not af-
fect the overall analysis would not get profile-instrumented at all. The resulting
wall-clock measurements can then be expected to closely match the real-world
execution timing of the application.

3 Detecting Patterns of Behavior

Once the CCT has been constructed and its node annotations calculated, the
CCT is traversed in pre-order for analysis. Nodes whose total execution time
constitutes a miniscule fraction (say, < 0.02%) of the total execution time of
the program and their children subtrees, are deemed as insignificant. All other
nodes are deemed significant. Since CCT nodes subsume the execution time of
their children nodes, once a node is found to be insignificant, the nodes in its
children subtree are guaranteed to be insignificant as well.

Since insignificant nodes individually constitute a miniscule portion of the
program’s execution time, any patterns of behavior detected for them would
quite likely provide very limited benefits in optimizing the design of the whole
application. Therefore insignificant nodes are ignored from all further analysis.
This dramatically reduces the part of the CCT that needs to be examined by any
subsequent analysis, leading to considerable savings in analysis time. For each
application, the programmer can experimentally tweak the cutoff percentage
used to determine significant nodes. A good methodology for this would be to
start with a relatively large cutoff threshold (say, 0.1%) and successively reduce
it until the profiling results stabilize. Stabilization suggests that further inclusion
of less significant nodes does not affect the analysis.



130 T. Kumar et al.

3.1 Tagging Nodes

We examine the annotations of nodes to determine if the corresponding nodes
exhibit high-variance in execution-time within the context of the caller function
(parent node). This is captured by the variance P.σ2. We use Chebyshev’s in-
equality [6] given below to determine meaningful thresholds to compare a node’s
variance. Chebyshev’s inequality establishes conservative probability bounds
on a given collection of data samples while making no assumptions about the
underlying probability distribution that generated the data.

Pr(|X − µ| ≥ kσ) ≤ 1
k2 (1)

In our experiments, we define a node to be high-variant if its execution time
cannot be guaranteed to lie within 200% of its mean with atleast 96% probability.
This implies 1

k2 = 1−0.96 = 0.04 and kσ = 2×µ. Therefore σ
µ ≥ 0.4 becomes the

condition for high-variance. Consequently we use the Coefficient-of-Variability
metric for classifying the variant nature of nodes: CoV = σ

µ . The choice of the
variance-window around the mean and the probability of samples falling within
it can be tweaked by the user based on the method described above. As the
programmer pushes the probability guarantee of samples falling within the kσ
variance window to 100%, 1

k2 → 0 and k → ∞. This implies that the window
kσ → ∞ would trivially encompass all possible execution-times. Therefore, it is
practical to keep the probability not too close to 100%, and for almost all soft
real-time applications a probability guarantee of 96% would suffice, though this
can be adjusted to the guarantees desired for any given application. Qualitatively,
kσ = 200% × µ suggests a highly variant behavior as the execution-time can
increase to over thrice the mean execution time (and reduce all the way down to
0). Based on how stringent the soft real-time requirements are for an application,
the programmer can adjust the threshold that defines high-variant behavior.

Once the CCT is constructed from the profile data, it is pre-order traversed
in linear time and individual nodes may be tagged as being high-variant. As
mentioned earlier, the traversal is restricted to significant nodes.

3.2 Signature Generation for Patterns

The previous subsection described how significant nodes in the CCT were individ-
ually tagged if they exhibited statistical high-variance. The next step is to find
patterns of call-chains whose presence on the call-stack can be used to predict
the occurrence of the high-variance behavior found at the tagged nodes. For a
given tagged node P , we restrict the call-chain pattern to be some contiguous
segment of the call-chain that starts at main (the CCT root node) and ends at P .

The names of the sequence of function-calls in the call-chain segment become
the detection pattern arising from the tagged node. This particular detection
pattern might occur at other places in the significant part of the CCT. Quite
possibly, the occurrence of this detection pattern elsewhere in the CCT does not
match the statistical behavior, i.e., mean and CoV values, that were observed at
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the tagged node. Therefore, our key criteria in generating the detection pattern
is the following:

All occurrences in the significant CCT of a detection pattern arising
from a high-variance tagged node must exhibit the same statistical
behavior that was observed at the tagged node.

Notice that this condition is trivially satisfied if we allow our detection pat-
tern to extend all the way to main from the tagged node, since this pattern
cannot occur anywhere else due to its full call-context being a unique path in
the CCT. In many applications, patterns extending to main are likely to gen-
eralize very poorly to the regression execution of the application on arbitrary
input data. Regression execution refers to the real-world-deployed execution of
the application, as opposed to the profile execution of the application that pro-
duced the profile sequence used for constructing the CCT. In many applications,
we expect the behavior of the function call at the top of the stack to be cor-
related with only the function-calls just below it in the call-stack. This short
call-sequence would be expected to produce the same statistical behavior re-
gardless of where it was invoked from within the program (i.e., regardless of
what sits below it in the call-stack). In this paper we focus our attention on
detecting just such call-sequences. We call these Minimal Distinguishing Call
Sequences (MDC sequences) corresponding to any particular statistical behavior.
These are the shortest length detection sequences whose occurrence predicts the
behavior at the tagged node, with no false positive or false negative predictions
in the CCT. A pattern with MDC is illustrated in Figure 2.

Given a tagged node P , Algorithm 1 produces the MDC sequence for P that
is just long enough to distinguish the occurrence of P from the occurrence of
any other significant node that has the same function-name as P but does not
match the statistical behavior of P (the other set). This is done by starting the
MDC sequence with a call-chain consisting of just P , and then adding successive
parent nodes of P to the call-chain until the MDC sequence becomes different
from every one of the same length call-chains originating from nodes in the

Fig. 2. Minimal Distinguishing Call-Context Pattern
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other set. Therefore, by construction, using steps 6 - 9 of Algorithm 1, the MDC
sequence cannot occur at any CCT nodes that do not satisfy the statistics of P
(matching mean and CoV). However, the same MDC sequence may still occur at
multiple nodes in the CCT that do satisfy the statistics for P (at some nodes in
the match set in step 5). There is no need for P ’s MDC sequence to distinguish
against these nodes as they all have the same statistics and correspond to the
call of the same function as for P . Since all nodes in the match set will have
the same other set, the algorithm is optimized to generate the other set only
once, and apply it for all nodes in the match set even though only P was passed
as input. The algorithm outputs the MDC sequence for each node in match set
(called the Distinguishing Context for P ).

Algorithm 1. Minimal Distinguishing Call Sequence Generation
Input: CCT C, Tagged CCT Node P
Output: Distinguishing Context DC for P : set of pairs of form <MDC sequence,

node of occurrence>
begin1

DC ←− ∅;2

func name ←− Name of function corresponding to node P ;3

all set ←−4

get all significant node occurrences of function in CCT (func name, C);
match set ←− identify all nodes with matching statistics(P, all set);5

other set ←− all set − match set ; // identify nodes with same name6

whose statistics don’t match P’s

for each CCT node m in match set do7

MDC ←− [< func name, lexical-id of m in its parent >] ; // initialize8

MDC as call-chain of length 1

Extend MDC sequence with parent nodes of m (and their lexical-ids) until9

the detection pattern MDC is different from call-chains of same length
arising from every node in other set;
DC ←− DC ∪ {< MDC, m >};10

end11

3.3 Grouping and Distinguishing between Similar Patterns

In the previous discussion, we assumed that the programmer desired to dis-
tinguish between tagged nodes whenever their statistics (mean, CoV) did not
match exactly. However, exact matching of statistics may lead to very long detec-
tion patterns that generalize poorly to regression runs. For example, if multiple
high-variant tagged nodes with very different means require long call-chains to
distinguish between each of them, then it may be preferable to actually have a
shorter call-chain pattern that does not distinguish between the tagged nodes.

Furthermore, if the same detection sequence occurs at multiple tagged nodes
in the significant CCT and the nodes have matching statistics, we would like to
combine the multiple occurrences of the detection sequence into a single detection
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sequence. Such detection sequences are likely to generalize very well to the re-
gression run of the application, and are therefore quite important to detect.

In order to address the preceding two concerns in a unified framework, we first
use Algorithm 1 to generate short patterns using only the “broad-brush” notions
of high-variance, without distinguishing between tagged nodes using their statis-
tics (mean, CoV). Then we group patterns with identical call-contexts (arising
from different tagged nodes) and use pattern-similarity-trees (PST) to start dif-
ferentiating between them based on their statistics. The initial group forms the
root of a PST. We apply a Similarity-Measure (SM) function on the group to see if
it requires further differentiation. If the patterns in the group have widely differ-
ent means or CoVs, and the programmer wants this to be a differentiating factor,
then the similarity check with the appropriate SM will fail. In our experimental
evaluation, we use an SM that checks if the corresponding means and CoVs of
the two patterns being compared are within 10% of each other; the programmer
can choose to plug in a different SM, say one that checks only on means.

Once the SM test fails on a group, all the patterns in the group are extended by
one more parent function from their corresponding call-chains (tagged CCT nodes
are kept associated with patterns they generate). This will cause the resulting
longer patterns to start to differ from each other. Again identical longer patterns
are grouped together as multiple children groups under the original group. This
process of tree-subdivision is continued separately for each generated group until
the SM function succeeds in all current leaf nodes. At this point, each of the leaf
groups in the PST contain one or more identical patterns. The patterns across
different leaf groups are however guaranteed to be different in some part of
their prefixes. Patterns in different leaf groups may be of different lengths, even
though the corresponding starting patterns in the root PST node were of the
same length. All the identical patterns in the same leaf-node are collapsed into
a single detection-pattern. For example, an SM function that differentiates on
σ but not on means (or only weakly on means), will produce leaf nodes that
contain patterns with a single σ but a collection of widely varying means.

3.4 Ranking Impact of Patterns

The previous steps produce numerous patterns (11 to 46 patterns for our bench-
marks) characterizing the variability in the application at multiple levels. It is
highly desirable to rank the patterns in order to focus the programmer’s atten-
tion on the ones that are most likely to contribute variability to the program. For
this purpose we introduce a metric that we call the Variability Impact Metric or
VIM. The Chebyshev inequality introduced earlier points us towards a suitable
definition for VIM. While the CoV = σ

µ indicates whether the variations are large
with respect to the mean, the kσ term in the Chebyshev inequality indicates
the absolute amount of variability. The variability per invocation multiplied by
the total invocation count of that pattern gives the total amount of variability
contributed by the innermost function in the pattern to its immediate parent.
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Therefore, we define VIM as follows, with N being the invocation count of the
innermost function in the pattern:

VIM = kσN (2)

While this metric indicates how much variance is contributed by the innermost
function F to its immediate parent C (referring to the pattern in Figure 2), it is
not necessarily implied that the pattern’s variance contribution propagates up
the call-chain to A or B. For example, if B invokes C from inside a loop, then
the VIM for C will measure the variance impact to iterations of the loop, not to
B directly. In fact, it is possible that B is not variant at all if each iteration of
C consumes correspondingly lower time if the loop-count is high, and vice-versa
when the loop-count is low, leading to a constant execution-time for the loop
across all invocations of B. A similar situation can occur without loops if B
invokes C inside a very infrequently executed branch.

Despite the limitation described above, the profile analysis technique is excel-
lent for eliminating unlikely contributors of variance. Therefore, the correct way
to interpret the produced patterns is to think of them as highly likely contribu-
tors of variance. This immediately allows the programmer to narrowly focus on
very limited parts of the application in order to identify the causes of violations
to the soft real-time requirements. The programmer would of course have to ex-
amine relative invocation counts along a given pattern’s call-chain to infer how
far up the call-chain an innermost function is likely to be contributing variance.

4 Experimental Evaluation

The Statistical Profile Analysis tool has been written in Python. We did not use
any high-performance numerical or scientific libraries (such as NumPy, SciPy) in
the Python implementation. We profile instrumented a number of applications
in the MediaBench II Video suite and a real-time object-recognition benchmark
(mimas-findTux) from the Mimas Computer Vision application-suite [18]. We
generate profile data (sequence of profile events) for each benchmark using the
input data sets provided with the benchmark suites, or some larger external data
sets if the profiles are too short. Specifically, we use two different input data-sets
for each benchmark, referred to as D1 and D2.

We run profile analysis on D1 to create patterns and then use D2 for the regres-
sion run that we use to validate the statistics of the patterns found previously.
The regression run simulates the application call-stack using the profile events.
No CCT is constructed and no analysis is performed in the regression phase. We
use a generic finite-state-machine sequence detector to detect the occurrence of
the patterns at the top-of-the-stack. Such a sequence detector needs to check
the call-stack for the possible occurrence of every pattern on every profile event.
This is the cause of the significant slow-down seen in Table 1 in the pass times
for the regression runs compared to the profile runs. We would like to emphasize
that the profile analysis time consists entirely of the time to read and parse the
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Table 1. Patterns Found in Benchmarks

Benchmark Profiling on D1: Pat. Generation Regression on D2

# of Pass time # of Pattern # of Pass time Pattern Pat Set
steps (seconds) patterns Set size steps (seconds) Set size overlap

H.263enc 30000000 397 9 7 60000000 1245 7 100%
H.263dec 25000000 341 30 5 60000000 2194 6 100%
findTux 30000000 402 60 3 40000000 2833 3 100%

mpeg2enc 30000000 387 44 5 60000000 2943 5 100%
mpeg2dec 30000000 402 20 5 60000000 1657 5 80%

profile file from disk. The actual time for all of the analysis combined (variance
tagging, minimum call-context detection, etc) consumes a fraction of a second.

Table 1 shows the length of the D1 profile (in terms of number of entry /
exit events) used to generate patterns, the number of high-variance patterns
found, and the length of the D2 profile used during regression to simulate the
real-world execution of an application. The Pass Time refers to the duration of
time needed to complete profile analysis or regression.

Clearly during regression the input data set is different, which will lead to cor-
responding changes in the call-chains invoked, their frequencies and their variant
behaviors. However, in our validation we strive to demonstrate that the patterns
capture the statistical behavior of the application at a more fundamental level,
which tends to remain relatively constant across different data-sets. In order to
demonstrate this, we introduce the notion of a Pattern Set both for Profiling
and Regression. We define the Pattern Set to consist of a subset of patterns that
are found to be most impactful as measured by their Variability-Impact-Metric
(VIM). Specifically, we limit the Pattern Set to only those patterns whose VIM is
atleast 10% of the VIM of the pattern with the highest VIM. This is done sepa-
rately for Profiling and Regression, leading to the construction of two potentially
disjoint sets. Table 1 shows that in fact the Regression Pattern Set very closely
mirrors the Profiling Pattern Set (Pattern Set Overlap column). This implies
that the same set of patterns that were found to be most impactful during Pro-
filing tend to remain most impactful during Regression. The Pattern Set spans
an order-of-magnitude of the largest VIM values (i.e., 10×). We chose to define
the Pattern Set as such because we expect the data-set induced variations to
cause relative fluctuations due to changes in length of data (number of events)
and type of data (for example, encoding video with constant background versus
moving background, different frame-dimensions, etc). Despite these variations in
characteristics of input data, the most impactful patterns found on D1 tend to
remain most impactful on D2 as well, validating our intuition that our patterns
capture variant behavior in a statistically sound manner. In mpeg2dec, the VIM
of one pattern was just slightly smaller during regression causing it to be dropped
from the Regression Pattern Set. Similarly, a pattern that had barely missed in-
clusion in the Profiling Pattern Set got included in the Regression Pattern Set.
However, both these patterns have similar VIMs (in the order-of-magnitude of
sense). Therefore, despite a Pattern Set Overlap of only 80%, this result also
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shows that Profiling and Regression Pattern Sets match closely for mpeg2dec.
In H.263dec, there was a pattern that barely missed inclusion in the Profiling
Pattern Set, but got included in the Regression Pattern Set.

Figure 3 shows the distribution of the mean and CoV values for all the patterns
discovered, on a per-benchmark basis. For each benchmark, the left-segment in
the scatter-plot shows the distribution found during Profiling (on D1), and the
right-segment shows during Regression (on D2). No VIM based distinction is made
between patterns; the least varying pattern with low invocation-count is given a
point just like the most impactful pattern. For all benchmarks the distributions
between Profiling and Regression are very similar, except for a uniform linear
shift and uniform scaling of one distribution with respect to the other. When
we look at Figure 4 plotted using only patterns in the Profiling and Regression
Pattern Sets, we again see a close similarity between Profiling and Regression dis-
tributions, indicating that the dominant patterns are fundamentally associated
with the application behavior, regardless of data-sets. For example, encoding
raw video with a larger image frame-size quadratically increases the mean and
possibly the CoV of a motion-estimation pattern, but motion-estimation remains
dominant independent of the image frame-size.

The following is representative across the benchmarks of the compaction of
information achieved in going from raw profile data to the final profile results:
800MB to 1.3 GB of raw profile event data reduced to a CCT with 600 to 800
nodes, out of which 200 to 350 nodes were found significant, out of which 16
to 116 nodes were tagged high-variant, which were grouped down to 9 to 60
patterns with identical contexts and similar means and CoVs (using pattern
similarity tree), finally out which 3 to 7 were dominant patterns (pattern set).

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

H
.2

6
3
d
e
c

H
.2

6
3
e
n
c

m
im

a
s
-f

in
d
T

u
x

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
cM

e
a
n

Profiling on D1 Regression on D2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

H
.2

6
3
d
e
c

H
.2

6
3
e
n
c

m
im

a
s
-f

in
d
T

u
x

m
p
e
g
2
d
e
c

m
p
e
g
2
e
n
c

C
o
e
ff
ic

ie
n
t 

o
f 

V
a
ri
a
b
ili

ty

Profiling on D1 Regression on D2

Fig. 3. Comparison of mean and CoV scatter-plots between Profiling D1 and Regression
D2 using all patterns
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Fig. 4. Comparison of mean and CoV scatter-plots between Profiling D1 and Regression
D2 using Pattern Set

4.1 Case Study: H.263enc

Figure 5 shows the Profiling Pattern Set for the H.263enc benchmark, sorted
from the most impactful to the least. The VIM found for each pattern is shown
for the Profiling and Regression phases. Function-names are shown in boxes and
the edge-annotations give the lexical-id (lexical position) of the call-site of
the callee (sink of arrow) within the body of the caller (source of arrow). The
italicized number on top of each box gives the number of times the corresponding
function was invoked as part of the pattern. A pattern’s invocation-count corre-
sponds to the invocation-count of the function in the left-most box. This is the
innermost function of the pattern, and the entire pattern occurs only when the
entire call-chain segment occurs on the stack. Therefore, the invocation-count of
the innermost function is the invocation count of the pattern.

The patterns in Figure 5 were automatically discovered by the profile anal-
ysis framework with no guidance from the user, and no application or domain
knowledge. Yet, these patterns closely mirror conventional wisdom about the
parts of video-encoding applications that are the most important with regards
to meeting or violating soft real-time requirements. Motion-estimation related
macroblock search-spaces are known to be the most variant parts of video en-
coding [16], since the search space can be quite large and it is hard to know up
front how quickly the search will terminate.

Note that the middle three patterns and the bottom three patterns are identi-
cal except for a difference in lexical-ids. In both cases, the multiple identical
patterns have very similar statistical characteristics (VIMs and also from their po-
sitions in the scatter plots). These could have been combined into a single pattern
in both cases, but our analysis framework distinguishes based on lexical-ids
within patterns. The downside here is having three patterns where one would
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Fig. 5. Pattern Set for H.263enc

suffice, but in general this produces greater resolving power between identical
call-chains whose behavior varies between call-sites, such as with mpeg2enc.

5 Related Work

Existing application profiling techniques look for program hot-spots and hot-
paths [4,5,9]. These techniques attempt to find performance bottlenecks in an
application, and do not attempt to identify variant behavior impacting an ap-
plication’s soft real-time characteristics.

Calder et al. have used statistical techniques to characterize large scale pro-
gram behavior using few recurrent intervals of code [7] and to find phase change
points in the dynamic execution of a program [8]. However, their work was not
intended for mining soft real-time characteristics of an application, and cannot
be adapted for such. In particular, they seek out intervals in [7] with closely
matching set of dynamic basic-blocks, whereas we seek out call-contexts where
the same function exhibits highly variant execution time.

Variability Characterization Curves (VCCs) and Approximate VCCs [10] have
been used to characterize the variability in the workloads of multimedia appli-
cations. Such analysis techniques require domain-specific knowledge of the ap-
plication before they can be applied. Similarly, there are custom techniques for
improving the QoS of each type of application, such as by Roitzsch et al [15]
that develop a higher-level representation model of a generic MPEG decoder, and
based on this predict video decoding times with high accuracy. In contrast, our
framework characterizes the variant behavior in the application in a completely
domain-independent manner, with no assistance from the user.
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For applications written using real-time constructs/formalisms such as tasks
and deadlines, there is an established body of formal techniques [11,12] that
analyze or ensure the real-time characteristics of the application. For monolithic
applications written without the use of these abstractions, our framework is
unique in its ability to characterize their soft real-time behavior.

Worst-Case-Execution-Time (WCET) [13] is an analysis methodology appli-
cable to monolithic applications, and has been incorporated into commercial
products such as from AbsInt [17]. However, for non-safety-critical, compute-
intensive applications like gaming and video, knowledge of the likely range of
real-time behavior is more important for driving design optimization than knowl-
edge of worst case behavior. The likely range (detected by our technique) can
be substantially removed from the worst case, thereby diminishing the value of
characterizing the worst case behavior for such applications.

In contrast with prior work [14] on identifying variant behavior in monolithic
applications, the techniques in this paper establish statistically robust probabil-
ity bounds on variant behavior and produce concise results prioritized by their
impact on soft real-time behavior.

6 Conclusion

In this paper we demonstrated that analyzing a profile sequence of time-stamped
function entry and exit events can be used to i) identify the dominant soft real-
time components of functionality in an application, ii) determine the context-
sensitivity of the behavior of the identified components, and iii) concisely convey
the components and their context sensitivity to the programmer using patterns
consisting of minimal-length call-chain segments. Further, we established that
the dominant patterns detected during profile analysis continue to remain dom-
inant in regression runs of the application on input data sets that have different
characteristics (differences in frame-dimensions, encoding format, degree of mo-
tion in input videos). This experimental validation coupled with a sound foun-
dation of our algorithms in statistical theory suggests that our analysis detects
fundamental aspects of an application. Lastly, we find that patterns identified
by our profile analysis in well-known multimedia applications correspond closely
with extensive prior research studying the causes of soft real-time variance in
these applications. In conclusion, our technique concisely captures the true soft
real-time characteristics of a monolithic application, for which existing real-time
analysis techniques are inapplicable.

Future Work. Call-chain segments were found useful in defining contexts for
components, but call-chains do not sufficiently capture which components con-
tain other components, and more importantly, whether contained components
contributed significant variance to any parent component. We are currently de-
veloping a concise hierarchical representation for capturing the cause-effect and
containment structure between components.
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Abstract. In this paper we propose a lock assignment technique to sim-
plify the mutual exclusion enforcement in multithreaded programs. Pro-
grammers are allowed to annotate the regions of code that are expected
to be mutually exclusive as critical sections, without using explicit
locks. The compiler then automatically infers an assignment of the min-
imum number of locks to critical sections by solving the Minimum Lock
Assignment (MLA) problem so as to enforce mutual exclusion without
any loss of concurrency. We show that the MLA problem is NP-hard.
We have proposed a heuristic to solve the MLA problem, and tested the
optimality of the heuristic with the Integer Linear Programming (ILP)
solver. We have also tested the efficiency of the heuristic using scientific
applications, from which we obtain up to 30% performance gain with
respect to the programs in which all critical sections are controlled by a
single lock.

1 Introduction

Given that the processors in current and future computer systems are becom-
ing multi- or many-core by default, it is important to address the performance
and productivity issues in multithreaded programming. One of the major per-
formance and productivity issues in multithreaded programming arises from en-
forcing the mutual exclusion (mutex for short) using lock/unlock operations.
Programmers explicitly assign lock variables to control mutex regions, and the
lock variables are acquired by the executing thread before the mutex region is
executed, and are released after the execution of the mutex region completes.
Explicitly managing multiple locks is error prone since it is easy for program-
mers to introduce data races and create deadlocks. Alternatively, programmers
� The author participated this work when he was a graduate student in the University
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can use a single lock to control all mutex regions to avoid deadlocks and data
races. However, they lose concurrency among mutex regions by unnecessarily
serializing them.

In this paper, we propose a lock assignment technique to simplify the enforce-
ment of mutual exclusion in multithreaded programs. We allow the programmers
to annotate regions of code that are expected to be executed mutually exclusively
as critical sections, without managing explicit locks. The compiler then au-
tomatically infers an assignment of multiple compiler-managed locks to critical
sections (possibly multiple locks for one critical section) to preserve the mutual
exclusion and also exploit the concurrency among critical sections.

A naive lock assignment approach associates one lock to each shared mem-
ory location, and the lock set of a critical section is the set of locks assigned
to memory locations it accesses. This approach, however, may use more locks
than necessary, and introduce excessive overhead on lock acquisition and re-
lease. To control the locking overhead, we would use the minimum number of
locks which is necessary to preserve the mutual exclusion and fully exploit the
concurrency between critical sections. We formulate this lock assignment task
as the Minimum Lock Assignment (MLA) problem:

Problem 1 (Minimum Lock Assignment). Given a multithreaded program with
a set of critical sections, find the minimum number of distinct locks that are
needed for controlling the critical sections such that

(a) Two critical sections are assigned disjoint sets of locks if (1) they are
concurrent and (2) they do not access any common location, or if they access a
common location then none of them writes to the common location.

(b) Two critical sections are assigned at least one common lock if (1) they are
concurrent and (2) they access some common location and at least one of them
writes to the common location.

Note that a critical section can be assigned a set of locks. The semantics of a
lock set follows the strict two-phase locking policy [1].

The solution of the MLA problem consists of two main phases: the analysis
phase and the lock assignment phase. In the analysis phase, the compiler
reads the multithreaded program and statically determines whether a pair of
critical sections are interfering. Two critical sections are interfering if they are
concurrent and they access some common shared memory location(s), with at
least one of them writes to the common location(s). In the lock assignment phase
the compiler calculates the minimum number of locks to control critical sections
according to the analysis result, and assigns one or more locks to each critical
section. Besides, the runtime system guarantees that an execution is deadlock
free by acquiring and releasing locks in a predetermined order. The analysis
phase is solved by concurrency analysis, data set analysis and pointer analysis.
However, due to the space limitation, in this paper we simply assume the analy-
sis result is already calculated, and we only focus on the lock assignment phase.
Readers can refer to [1,2] for more details on the analysis phase and deadlock
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avoidance options. In the following discussion we refer to the MLA problem as
the lock assignment phase exclusively, without any further clarification.

The rest of the paper is organized as follows. In Section 2 we introduce the
concurrency graph as the main data structure to solve the MLA problem. In
Section 3 we prove that MLA problem is related to the graph coloring problem
and it is NP-hard. We then present a heuristic to solve the MLA problem. We also
formulate the MLA problem as an Integer Linear Programming (ILP) problem.
In Section 4 we evaluate our heuristic by comparing it with optimal solutions
produced by the commercial ILP solver CPLEX. In 300 randomly generated
testing cases we observe that our MLA heuristic is optimal for 83.3% of them.
We also test the performance of our heuristic using a 10-way Sunfire machine on
a set of Splash2 [3] benchmarks, and obtain up to 30.17% performance speedup
with respect to programs in which all critical sections are controlled by a single
lock. Related work is presented in Section 5, and finally we conclude in Section 6.

2 Concurrency Graph and Critical Sections

In this section, we introduce the concurrency graph to model the potential con-
currency and interference among critical sections in a multithreaded program.

2.1 Concurrency Graph

Definition 1. A Concurrency Graph is an undirected graph G = (V, E), in
which: a vertex v ∈ V denotes a textual critical section, and there is an edge
(u, v) ∈ E if instances of critical sections u and v may be concurrent.

In the above definition, if two instances of the critical section u are concurrent,
we do not introduce a self-loop on u, since we will assign at least one lock
to each critical section, and the mutual exclusion of u with respect to itself is
self preserved. As an example, Figure 1(b) illustrates the concurrency graph for
the program shown in Figure 1(a). The set of shared memory locations that are
accessed within critical sections are also listed within curly braces in Figure 1(b).

Two concurrent critical sections are said to be non-interfering if either they
do not access a common location or if they access a common location then

(b)

CS1 CS2

CS4CS3
N

NI I

{ x }

{ x, y } { z }

I

{ y , z }cobegin
    critical { x ++; } // CS1
    critical { y ++; z ++; } // CS2
    ||
    critical { x ++; y ++; } // CS3
    ||
    critical {z ++; } // CS4
coend

(a)

Fig. 1. (a) Example program (b) Concurrency graph
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none of them writes to the common location. Two concurrent critical sections
are interfering if they access some common location and at least one of them
writes to the common location. We extend the concurrency graph defined in
Definition 1 by labeling an edge (u, v) with label I when critical sections u and
v are interfering, and with label N when u and v are non-interfering.

Note that a general concurrency graph may be a forest of connected graphs,
and we analyze each connected component independently. In the following dis-
cussion, we simply assume that a concurrency graph G is a connected graph.

2.2 Non-interfering Concurrency Graphs

Consider a class of multithreaded programs Pn whose corresponding concurrency
graph contains only non-interfering edges. Since all incident edges of a critical
section are non-interfering, it cannot share any lock with its neighbors. This
implies that whenever two critical sections are connected (concurrent), they re-
quire different locks. We can now rephrase the MLA problem (Problem 1) for
non-interfering concurrency graphs as follows:

Problem 2. Given a program with a set Vn of non-interfering critical sections,
find the minimum number of locks that can be assigned to critical sections such
that if two different critical sections in Vn are concurrent then they get different
locks.

The above problem is equivalent to the classical graph coloring problem — color
the vertices (critical sections) of a graph using the minimum number of colors
(locks) such that no two adjacent (concurrent) vertices (critical sections) are
given the same color (lock). The MLA problem for this special class of programs
is NP-hard1.

2.3 Interfering Concurrency Graphs

Consider a class of programs Pi, for which the concurrency graph contains only
interfering edges. In this case, two critical sections are either concurrent and
interfering, or are not concurrent (not connected). If they are concurrent and
interfering, they should share at least one common lock to preserve the mutual
exclusion, which implies that they must be serialized. If they are not concurrent,
they are already serialized. Therefore, in this interfering special case, there is no
inherent concurrency, so we can use a single lock to control all critical sections
without introducing any performance penalty.

2.4 Concurrency Graph Partition

In general cases, a concurrency graph contains both non-interfering edges and
interfering edges. Given a concurrency graph G = (V, E), let En denote the set
1 For certain classes of graphs, such as the interval graphs, the graph coloring problem

can be solved in polynomial time. However, the general concurrency graphs are not
necessarily interval graphs.
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Fig. 2. (a) A general concurrency graph (b) The non-interfering subgraph Gn (c) The
interfering subgraph Gi (d) The SNIG Gs

n (e) The crossing edges (double lines), se-
rializing interfering edges (dotted lines), and the interfering subgraph (in dotted box)
(f) A un-safe borrowing from CS3 to CS4 (g) A safe borrowing from CS4 to CS3 (h)
Final lock assignment result

of non-interfering edges and Ei denote the set of interfering edges in G, such
that E = En ∪ Ei and En ∩ Ei = ∅. Let Gn = (Vn, En) be the non-interfering
subgraph induced by En, where Vn ⊆ V such that a vertex vn ∈ Vn has at least
one non-interfering edge incident on it. Figure 2(b) illustrates the non-interfering
subgraph of Figure 2(a). Let Gi = (Vi, E

′
i) be the interfering subgraph induced by

vertices Vi, where Vi = V − Vn and E′
i ⊆ Ei is a set of interfering edges (ui, vi)

such that ui, vi ∈ Vi. Figure 2(c) illustrates the interfering subgraph for Fig-
ure 2(a). Finally, let E′′

i = Ei−E′
i be a set of interfering edges that are not in Gi.

Some of interfering edges in E′′
i connect vertices of the non-interfering subgraph,

for example, edges (CS1, CS3) and (CS3, CS4), as illustrated as bold dashed lines
in Figure 2(d). We call such interfering edges that occur inside a non-interfering
subgraph as serializing interfering edges Es, because they could “serialize” the
inherent concurrency that exists within non-interfering subgraph. The remain-
ing interfering edges Eci = E′′

i − Es are crossing edges between vertices in Gn

and Gi. In the example shown in Figure 2(a), Eci = {(CS3, CS6), (CS4, CS6)},
illustrated as double solid lines in (e). Besides the non-interfering subgraph Gn

and the interfering subgraph Gi, we introduce the notion of the serializing non-
interference graph (SNIG) as the non-interfering subgraph with serializing edges,
Gs

n = (Vn, En ∪ Es). Figure 2(d) illustrates an example of SNIG. SNIGs have
some interesting properties that will influence the lock assignment.

2.5 Serializing Non-interference Graph

Let us consider a class of concurrency graphs called Serializing Non-Interfering
Graphs (SNIGs). A SNIG consists of only non-interfering edges and serializing
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interfering edges (as defined in the previous section). Serializing interfering edges
constrain the inherent concurrency in a non-interfering concurrency graph. They
also constrain the minimum number of locks required to color a SNIG.

The following observation states that sometimes it is impossible to color a
SNIG if a vertex can be assigned only one color.

Observation 1. It is impossible to color an arbitrary SNIG with the following
conflicting constraints:

1. Each vertex gets only one color,
2. If vertices u and v are connected by a non-interfering edge then they are

given two different colors,
3. If two vertices u and v are connected by a serializing interfering edge then

they are given the same color.

Consider the SNIG in Figure 3. Assume we satisfy all above constraints, then all
critical sections get the same lock, because they are connected by serializing in-
terfering edges (CS1, CS3), (CS3, CS4) and (CS4, CS2). However, the constraint
(2) requires that CS1 and CS2 are given two different colors, a contradiction.
Therefore Figure 3 cannot satisfy all three constraints.

CS1

CS4

CS3

CS2

N
N N

I

I

I

Fig. 3. Example SNIG for Observation 1

There are two ways to handle the above impossibility: relax constraint (1) in
the above observation, or relax constraint (2). By relaxing constraint (1) we are
allowed to assign multiple colors to each vertex. By relaxing constraint (2) we
will reduce the concurrency. Constraint (3) must be satisfied since otherwise the
mutual exclusion will be violated. In the MLA solution we will take the approach
of assigning multiple locks so as to maximize the concurrency.

Let C(x) be the set of colors that are assigned to a vertex u, the coloring
problem on SNIG is stated as the following:

Problem 3. Given a SNIG Gs
n = (Vn, En ∪ Es) find the minimum number of

colors to color Gs
n such that:

(a) If two vertices u and v are connected by a non-interfering edge then C(u)∩
C(v) = ∅ and

(b) If two vertices u and v are connected by a serializing edge then C(u) ∩
C(v) �= ∅.
Let G be an arbitrary concurrency graph, and let Gs

n be the SNIG of G. We will
show in Section 3.2 that the minimum number of locks required by G equals the
minimum number of locks required by Gs

n.
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3 Minimum Lock Assignment Solution

The MLA problem for arbitrary concurrency graphs is NP-hard because one
special case - MLA problem for non-interfering concurrency graph - is NP-hard.
In this section we present a heuristic approach for solving MLA. We also for-
mulate the MLA problem as an Integer Linear Programming (ILP) problem,
and in Section 4 we will use this ILP formulation to quantitatively evaluate our
heuristic.

3.1 A Naive Solution

Assume all shared memory locations that a critical section accesses can be stati-
cally identified by compiler analysis, then a simple solution to the MLA problem
is to assign a distinct lock to each shared memory location, and the lock set of
a critical section is the set of locks assigned to memory locations it accesses.
However, this approach may use more locks than necessary, and introduce more
overhead of lock acquisition and release. We say the number of locks required
in this simple solution, i.e., the total number of memory locations accessed in a
program, denoted as |M |, is the upper bound (UB) of the optimal MLA solution.

3.2 MLA Heuristic

Our MLA heuristic consists of three main steps (see Figure 4):

Step 1: Assign locks to non-interfering subgraph Gn using graph coloring
heuristic (Line 6).

Step 2: Ensure that the serializing interfering edges in SNIG are correctly
handled (Line 7).

Step 3: Finally propagate the locks to the interfering subgraph Gi (Line 8).

The first step is straightforward. We use a heuristic graph coloring algo-
rithm [4] to color Gn, and one possible solution for our example is shown in
Figure 2(b).

Next, we must ensure that critical sections connected by serializing interfering
edges in SNIGs are correctly serialized. The details of this step are given by the
function HandleSerializingEdges in Figure 4. In Figure 2(d), CS1, CS3 and
CS4 are in Gn and each of them has obtained a lock from the graph coloring.
Interfering critical sections CS1 and CS3 are automatically serialized by sharing
lock 1, but CS3 and CS4 are not. A straightforward method to solve this is let one
of them “borrow” the lock from the other. For a serializing interfering edge (u, v),
we say vertex u borrows the lock from v, denoted as borrow(u ← v), if u adds v’s
lock to its lock set, Lock(u) = Lock(u)∪Lock(v). Denote the set of locks from u’s
non-interfering neighbors as NIN(u), NIN(u) =

⋃
(u,w)∈Gn

Lock(w). Before the
borrowing, u has a disjoint set of locks with all its non-interfering neighbors, i.e.,
Lock(u)∩NIN(u) = ∅. This implies that the concurrency between u and its non-
interfering neighbors is maximized. After the borrowing, we also require u not
share any lock with its non-interfering neighbors. This is satisfied if Lock(v) ∩
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LockAssignment(G)
1. Initialize Lock(u) for all u ∈ V as empty
2. Partition the graph G
3. if Gn = φ
4. assign a global lock to each critical section
5. else
6. HLB = GraphColoring(Gn)
7. HandleSerializingEdges(Gs

n)
8. LockPropagation(Eci, Gi)
9. end if
10. if HLB > |M | then
11. for each v ∈ V
12. Lock(v) =

S
i∈LS(v) Lock(i)

13. end for
14. end if

HandleSerializingEdges (Gs
n)

15. for each serializing interfering edges (u, v)
16. if Lock(u) ∩ Lock(v) = ∅
17. if borrow(u ← v) is safe
18. Lock(u) = Lock(u) ∪ Lock(v)
19. else if borrow(v ← u) is safe
20. Lock(v) = Lock(v) ∪ Lock(u)
21. else
22. HLB = HLB + 1
23. add a new lock to u and v’s lock sets
24. end if
25. end if
26. end for

LockPropagation(Eci, Gi)
27. for each (vn, vi) ∈ Eci

28. sequence = BreadthFirstSearch(Gi, vi)
29. Arbitrarily pick one lock l from vn’s lock set
30. for each v in sequence
31. Lock(v) = Lock(v) ∪ {l}
32. end for
33. end for

Fig. 4. Lock Assignment Heuristic

NIN(u) = ∅, that is, none of u’s non-interfering neighbors has u’s borrowed
lock from v. In this case we say the borrowing is “safe”, which means it does not
reduce concurrency among non-interfering critical sections.

In our example in Figure 2, in order to enforce the mutual exclusion between
CS3 and CS4, we first let CS4 borrow the lock from CS3, then Lock(CS4) =
{1, 3}. This is shown in Figure 2(f). However, this borrowing is not safe, because
one of CS4’s non-interfering neighbor CS1 would share lock 1 with it. Then we
try the alternative way. We let CS3 borrow the lock from CS4. This is illustrated
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in Figure 2(g). This borrowing is safe because Lock(CS4) ∩ NIN(CS3) = ∅,
where NIN(CS3) = {2}. Note that if neither borrowing is safe, we will introduce
a new lock and add it to both end vertices’ lock sets. The procedure of lock
borrowing is summarized in Figure 4.

The first two steps together color the SNIG Gs
n. Finally, in function

LockPropagation, we propagate the SNIG lock assignment result to the in-
terfering subgraphs Gi . The interfering subgraph Gi is connected to the non-
interfering subgraph Gn through a set of crossing edges (vn, vi), where vn ∈ Gn,
and vi ∈ Gi. Each (vn, vi) is an interfering edge, that means vi should share at
least one of vn’s lock obtained from the graph coloring. We say vn “propagate” a
lock to vi. If vi has more than one incident crossing edges, then it should inherit
locks from all its neighbors in Gn. Subsequently, vi propagates its lock set to
its neighbors in Gi. This propagation continues until every vertex in Gi inherits
locks from its neighbors. This procedure can be simply implemented as a set of
breath-first searches, with each vi at a crossing edge as the source vertex. The
algorithm is shown in Figure 4. One propagation result of our example is shown
in Figure 2(h). An important property of this lock propagation is that it does
not introduce any new lock, therefore the number of locks required to color Gi

cannot exceed the number of locks required to color the SNIG Gs
n.

The final lock assignment result is shown in Figure 2(h). We refer to the
number of locks required to color G as the Heuristic Lock Bound (HLB). We have
mentioned in the naive solution that the upper bound UB of the required locks is
the number of shared memory locations accessed in the concurrency graph G. In
some cases HLB might exceed UB, and we need to choose the smaller one from
HLB and UB for lock assignment. The MLA heuristic algorithm is summarized
in Figure 4.

The following theorems show that our MLA heuristic can preserve the mutual
exclusion between critical sections without any loss of concurrency. They also
show that lock assignment on an arbitrary concurrency graph G is optimal if the
lock assignment on SNIG of G is optimal. Detailed proofs can be found in [5].

Theorem 1. When the algorithm LockAssignment (G) terminates, any pair of
interfering critical sections in G share at least one common lock.

Theorem 2. When the algorithm LockAssignment (G) terminates, any pair of
non-interfering critical sections do not share any lock.

Theorem 3. Lock assignment on a concurrency graph G is optimal if and only
if the lock assignment on its SNIG Gs

n is optimal.

The concurrency graph partitioning runs in O(V + E) time, and the graph
coloring runs in O(V 2) time. At the worst case, the time complexity of
HandleSerializingEdges and LockPropagation are O(E ∗ V ) and O(E2 +
V ∗ E), respectively. Therefore, at the worst case the total time complexity of
LockAssignment is O(E2 + V ∗ E).
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3.3 ILP Formulation

In this section, we formulate the MLA problem as an ILP problem. Given a con-
currency graph G = (V, E), we introduce 0-1 variables fu,i to indicate whether
lock i is assigned to node u in G, 1 ≤ u ≤ |V |, and 1 ≤ i ≤ |M |, where M is the
set of shared memory locations that are accessed in all critical sections. Recall
that the number of locks given by an optimal solution cannot exceed |M |. Since
each critical section must be assigned at least one lock, we have the following
constraint:

fu,1 + fu,2 + · · · + fu,|M| ≥ 1 for all u ∈ G (1)
We use 0-1 variables li to indicate whether lock i is assigned to any critical
section, li = f1,i∨f2,i∨· · ·∨f|V |,i. This condition is represented by the following
constraints:

f1,i + · · · + f|V |,i ≥ li (2)
f1,i + · · · + f|V |,i ≤ |V | × li (3)

Next we derive conditions that ensure the lock assignment is correct and maxi-
mizes the parallelism. Recall that a lock assignment solution is correct if inter-
fering critical sections u and v share some lock, and parallelism is maximized if
non-interfering critical sections are assigned two disjoint sets of locks. Let 0-1
variable su,v,i indicate whether u and v share lock i, then su,v,i = fu,i ∧ fv,i.
This condition is imposed by the following constraints:

fu,i + fv,i ≥ 2 × su,v,i (4)
fu,i + fv,i ≤ 2 × su,v,i + 1 (5)

We use 0-1 variable su,v to indicate whether u and v share any lock. Then
su,v = su,v,1∨· · ·∨su,v,|M|. The following two constraints represent this condition:

su,v,1 + · · · + su,v,|M| ≥ su,v (6)
su,v,1 + · · · + su,v,|M| ≤ |M | × su,v (7)

Then

su,v = 1 for interfering edge (u, v) (8)
su,v = 0 for non-interfering edge (u, v) (9)

The total number of locks used is:

N = l1 + · · · + l|M| (10)

Therefore, the MLA problem is to minimize N subject to inequalities (1) to (9).

4 Experimental Results

In this section, we present two sets of experiments to evaluate our lock assign-
ment algorithm. In the first set of experiments, we compare the results produced
by our MLA heuristic with the optimal solutions based on the ILP formulation
on a set of 300 random concurrency graphs. In the second set of experiment we
evaluate the effectiveness of the MLA heuristic using Splash2 [3] benchmarks.
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4.1 Precision Evaluation

To study the precision of our MLA heuristic we implemented our ILP formu-
lation in the commercial ILP solver CPLEX, and tested the heuristic and the
ILP formulation on a set of 300 randomly generated concurrency graphs with
characteristics shown in Table 1. We limited our random concurrency graphs to
contain at most 16 nodes due to time constraints in the ILP solver. It shows that
our heuristic solution is optimal for 83.3% of tested graphs. For the remaining
16.7% of graphs our heuristic assigns more locks than the optimal solutions, and
in the worst case two more locks than optimal solutions are assigned.

We also evaluated the influence of non-interfering subgraph Gn and serializing
interfering edges Es for lock assignment. For this purpose, we showed the preci-
sion of the MLA heuristic with the increase of the relative size of non-interfering
subgraph, given by Vn/V , and with the increase of the relative number of seri-
alizing interfering edges, given by Es/E, in Figure 5(a) and (b), respectively. As
an example, Figure 5(a) shows that our MLA heuristic gives optimal solutions
to about 70% of test cases that have Vn/V = [0.6, 0.7) and sub-optimal solutions
(i.e., assign extra locks) for the remaining 30%. Figure 5(a) and (b) illustrate
that the precision of our heuristic depends on the non-interfering subgraph size
and the relative number of serializing interfering edges.

Table 1. Features of random concurrency graphs

Avg Min Max
Vertices (V ) 8.63 2 16
Edges(E) 16.73 1 53
Edge Density E/V 2 0.19 0.09 0.28
Non-interfering edges (En) 3.37 0 20
En/E 0.22 0 1
Vn/V 0.43 0 1
Serializing interfering edges 2.85 0 27
Es/E 0.10 0 0.53

(a) (b)

Fig. 5. Precision of the MLA heuristic
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Table 2. Benchmarks and lock assignment results

Application Barnes Cholesky Ocean-cont Radiosity Water-nsq
Description N-body Matrix Hydro- 3-D Water

factoring dynamics rendering molecules
Problem size 262144 tk29.O 514 × 514 largeroom 512

bodies B8 C256 batch molecules
CSs 6 7 4 37 9

CS time (1 proc) 6.29% 32.37% 0.11% 9.93% 11.54%
Lines of code 17.17 / 68 10.86 / 37 1.75 / 3 12.79 / 85 2.89 / 6

in CS (avg/max)
Funcs in CS 1 1 0 10 1

Locks assigned 3 4 4 8 7
Locks for each 1 1 1 4 1

CS (max)

4.2 Performance Study on Sun-Fire

Next we study the performance of the MLA heuristic using a set of Splash2 [3]
benchmarks listed in Table 2. Splash2 benchmarks call the Pthreads library 2,
and mutual exclusion is enforced by pthread mutex lock(<lock var>) and
pthread mutex unlock(<lock var>) functions with explicit lock variables.
For the purpose of our performance study, we manually transformed each
lock/unlock region into a critical section. We constructed the concurrency graph
for each benchmark manually, and applied the MLA algorithm to calculate the
lock assignment. The number of locks assigned to each benchmark is shown in
Table 2.

We then ran the set of benchmarks on Sunfire 10-processor 750MHz machine,
and collected two sets of data for each benchmark to evaluate our heuristics:
(1) Ts: the execution time of the benchmark when all critical sections are con-
trolled by a single lock, and (2) TMLA: the execution time of the benchmark
with lock assignment using our MLA heuristic. Figure 6 shows the performance
improvement of our lock assignment with respect to the single global lock, i.e.,
(Ts−TMLA)/Ts, running on different number of threads. Cholesky and Radiosity
have shown a performance improvement of 30.17% and 14.76%, respectively, due
to the decrease of lock contention and serialization. On the other hand, Barnes,
Ocean-cont and Water-nsq show a much lower performance improvement for
two main reasons. First, the amount of time spent on critical sections is a small
portion of the total execution time. For instance, as shown in Table 2, for Ocean-
cont, the time spent on critical sections takes only 0.11% of the total execution
time. Second, in Barnes and Water-nsq data is often organized as arrays or
complicated user-defined data structures, and is accessed in a dynamic pattern
that cannot be predicted during the compilation time. When we constructed the

2 The original Splash2 benchmarks utilize the Argonne National Laboratories (ANL)
parmacs macros for parallel constructs. We have re-configured them to call the
Pthreads library.
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Fig. 6. Performance improvement with respect to single lock

concurrency graphs we conservatively treated such arrays and user-defined data
structures as scalar units. This conservative approach may introduce “spurious”
interference among critical sections, which results in unnecessary serialization.
The unnecessary serialization will then increase lock contention among threads
during the execution time. Some more sophisticated analysis techniques such as
shape analysis [6], or dynamic conflict resolving techniques such as transactional
memory and synchronization state buffer (SSB) [7] are needed to exploit further
concurrency among critical sections in these benchmarks.

5 Related Work

Recently there has been some work on compiler based lock inference technique.
Emmi et al. [8] propose a lock allocation problem that takes a multithreaded
program annotated with atomic sections and infers a lock assignment to atomic
sections to preserve its atomicity and deadlock freedom. They formulate the
lock allocation problem as an ILP problem which minimizes the conflict cost
between atomic sections and minimizes the number of locks. No heuristic solution
is presented in their work. Our lock assignment differs from lock allocation in
the following two aspects. First, our lock assignment problem maximizes the
parallelism among critical sections using the minimum number of locks, while
the lock allocation problem uses the minimum number of locks to minimize the
conflict cost, a metric that is not clearly related with the parallelism. Second, we
present both the heuristic solution and the ILP formulation for lock assignment
problem. We use the ILP formulation to evaluate the optimality of the lock
assignment heuristic. We also use scientific applications to evaluate the lock
assignment heuristic and present performance improvement.
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Hicks et al. [9] has proposed a lock inference techniques for atomic sections,
which first determines a set of shared memory locations in the program, then
uses a “mutex inference” algorithm to infer a set of locks for each atomic section
to preserve its atomicity. The basic idea of their mutex inference algorithm is
to find the dependence relation among shared memory locations, and partition
the shared memory locations into sets according to this dependence relation.
Locks are then assigned to each memory location set. Since the mutex infer-
ence algorithm is not optimization based, it may infer more locks than our lock
assignment algorithm.

Autolocker [10] takes the programs annotated with pessimistic atomic sections
and a programmer controlled lock assignment, and infers a compiler controlled
lock assignment that is free of deadlocks and data races.

Vaziri et al. [11] proposed a data-centric synchronization approach for writ-
ing concurrent programs using atomic sets, which are a set of shared memory
locations that have “similar” data consistency properties. Accesses to fields in
an atomic set are assumed to take place atomically in “units of work”. Taken
a program with annotated atomic sets, the compiler infers units of work auto-
matically and translates them into synchronized blocks. Our work complements
Vaziri et al.’s work in that we can analyze and determine the atomic sets and
units of work using concurrency analysis and lock assignment algorithm.

Some other optimization techniques on locks have been reported. Diniz and
Rinard [12] present data lock coarsening and computation lock coarsening tech-
niques to reduce the overhead of fine-grain locks in Java programs. Choi et al. [13]
and Aldrich et al. [14] remove unnecessary synchronization from Java programs.

6 Conclusions

In this paper we proposed a lock assignment technique to simplify the mu-
tual exclusion in multithreaded programs. It takes the programs annotated with
critical sections and finds the minimum number of locks needed to enforce
mutual exclusion among interfering critical sections without any loss of concur-
rency. Experimental results are very encouraging and show that our method can
be used to improve the performance of multithreaded programs with mutual ex-
clusion by exploiting concurrency among multiple critical sections. An extension
of this work to support read/write locks is a subject for future work.
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Abstract. The move to multi-core has increased interest in parallelizing
sequential programs. Classical dependency-based techniques, although
successful for some classes of programs, often fail due to the one-sided
(conservative) approximation of program behavior. Thread-level specu-
lation enables increased parallelism by allowing out-of-order execution:
correct dependences are ensured by run-time monitoring and possible
rollbacks. Two-sided approximations of program behavior are now ac-
ceptable if the rollback ratio is kept small. We describe dynamic analy-
ses, based on representing dependencies as modular congruences, which
can be employed on-line or off-line. One, thread partitioning, efficiently
enables loop iterations to be allocated to threads (and calculates the max-
imum effective concurrency); the other, fine-grain memory partitioning,
calculates a hash function that reduces space overhead and performance
loss due to TLS-metadata-based and cache-based task interference.

1 Introduction

Thread-level speculation (tls) is a parallelization technique that allows the com-
piler to partition the program into concurrent threads even in the presence of
dependencies. While important work examines hardware tls [2, 10, 21, 22], this
paper examines higher-level analyses than the one naturally done by hardware.

Current software-tls approaches [5, 6, 18] exhibit heavy-transactional sup-
port, and can yield good speed-up when (i) the static compiler disambiguates1

enough accesses to amortize the speculation overhead, and (ii) the iteration gran-
ularity is high enough to amortize the transactional overhead related to starting
a new iteration. Their design assumes little about patterns of accesses to mem-
ory, merely that these accesses generate relatively few dependencies.

Lightweight models [16, 17] facilitate a compositional perspective to software-
tls: a coarse variable-based memory partitioning is performed first and separate
optimized (adaptive) tls models are employed on each partition to exploit reg-
ular access-patterns. In the latter’s presence these models can be very effective
even when most of the instructions require speculative support. These lightweight
models perform best when memory accesses with a partition are regular (think
linear strided), but cannot be proved so statically because (i) of perhaps few sin-
gular points and (ii) of static analysis hindrances such as: complex control-flow
1 I.e. it is provable that no transactional support is needed.

J.N. Amaral (Ed.): LCPC 2008, LNCS 5335, pp. 156–171, 2008.
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and data-structures (increased abstraction level), potential aliasing. Evidence
of these hindrances is illustrated by proposals for C language extensions that
provide a special scope that guarantees the absence of cross-iteration depen-
dencies [13]. Lightweight models require a hash function2 which aims to reduce
speculative storage without generating inter-thread conflicts.

This paper proposes a framework for dynamic analysis to guide the introduc-
tion of lightweight tls models. The main idea is to use profile runs to build pat-
terns capturing dependent iterations. This leads to two orthogonal techniques:
First, the iteration space is partitioned based on dependent statement-instance
pairs with the goal of executing dependent iterations on the same thread. Sec-
ond, the data space is partitioned into (nearly) disjoint access patterns from
threads, to produce efficient tls models’ hash-functions. While tls-related op-
timizations [2, 11, 23] have focused so far on tuning the original code to enhance
speed-up, we investigate the equally important direction of fine-tuning the tls

model according to code’s access patterns (see Section 4.3 for speed-up results).
Previous profiling solutions for tls were mainly aimed at (i) identifying suit-

able code for tls (few dependencies) and designing flexible thread-formation
schemes that delay thread-spawning to minimize violations [1, 12], (ii) inferring
linear predictors [2, 19] for scalars which are very likely to violate dependencies,
and (iii) developing tls cost-models to predict speed-up [7]. This paper’s main
contribution is to introduce (at a high-level) an address-based, set-congruence
model and algebra that, to our knowledge, is the first that attempts to:
• compute a iteration-to-thread partitioning that respects frequent dependen-

cies3 and addresses the iteration granularity need;
• identify coarse-grained memory partitions, i.e. an exhaustive set of address

ranges; access patterns for these may vary, thus assigning tls models per
partition is most effective in general;

• identify regular, fine-grained access-patterns and use them to construct the
hash functions that allow lightweight tls models to be effective (small mem-
ory overhead). The latter is sketched in Section 4 due to space constraints.

In principle, we are interested in both conservative – all events are mod-
eled, and two-sided approximation – enough events are modeled that the cost
of speculation failure is kept within cost bounds. With the latter, our analysis
is light enough to be applied both off-line and on-line (just-in-time), as desired:
the analysis is run on the profiled information corresponding to a small iter-
ation window W , and the algorithms are O(n log n) in the number of profiled
addresses. (Regularity can also be verified on a conveniently far away window.)

Comparing with static approaches [14, 15], besides the obvious more conserva-
tive (and hence imprecise) trait these exhibit, we note two interesting differences:
First, static approaches need to investigate how various loop-index variables are
combined to form an array index, hence requiring complex, relational analy-
sis. Since dynamic analysis looks directly at the accessed address, our model
is simpler (non-relational flavor) while covering the exploitable cases. Second,

2 We abuse notation here: it describes regular accesses instead of randomizing.
3 Executes dependent iterations on the same thread – enabled by in-place tls models.
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our dynamic analysis may be applied to richer containers (linked lists, trees)
than (mere) arrays as long as the memory has a regular structure; Chilimbi and
Larus’s work [3, 4] improves cache behavior by re-organizing memory to a similar
regular structure that also facilitates our dynamic analysis.

The rest of the paper is structured as follows: Section 2 provides the back-
ground, motivation, states the general problem and compares with several classi-
cal approaches. Section 3 presents how the profiling information is gathered and
introduces (formally and in detail) the thread partitioning analysis. Due to space
constraints, Section 4 only briefly sketches the memory-partitioning analysis and
presents speed-up results. Section 5 concludes the paper.

2 Background, General Problem, Related Work

This paper uses modular arithmetic significantly. We write Zn to mean the
integers (mod n) (Zn ≡ {{0, n, 2n, . . .}, {1, n + 1, 2n + 1, . . .}, . . . , {n − 1, 2n −
1, . . .}}). Elements of Zn, are referred to as cosets. This section briefly introduces
software-tls, provides the motivation and states the general problem for our two
dynamic analysis techniques, and compares them with related static approaches.

2.1 Software TLS

We give here the essential tls information required to understand this paper;
[2, 6, 18, 24] provide a more comprehensive perspective. tls exploits code regions
that expose good amount of parallelism but for which static analysis fails to guar-
antee safety. Under tls threads execute out of order, and use software/hardware
structures, referred as speculative storage, to record the necessary information to
track the inter-thread dependencies and to revert to a safe point and restart the
computation upon the occurrence of a dependency violation (rollback recovery).

The thread executing the lowest numbered iteration of all is referred to as
the master thread since it encapsulates both the correct sequential state and
control-flow; the others are speculative threads since they may consume “dirty”
values and cause rollbacks. Serial-commit tls models [5, 6, 17] isolate the spec-
ulative from the global state: each thread buffers its write-accesses, and commits
them when it becomes master, hence war and waw dependencies are implicitly
satisfied. In-place models [8, 16, 20] modify directly the program state, while still
enforcing the sequential semantics. Important differences with respect to serial
commit models are that (i) all types of dependencies (raw, war and waw) may
generate violations, but (ii) they are scalable – in number of processors that may
contribute to speed-up, and (iii) allow a more flexible iteration-to-thread parti-
tioning (threads may execute non-consecutive groups of iterations, see later).

Finally, empirical results suggest that a software-tls application requires an
iteration’s granularity to be in the range of thousands of instructions: (i) big
enough to amortize the speculative overhead corresponding to starting a new
iteration, (ii) but not too big – so that the speculative storage is kept within
reasonable bounds. As discussed in the next section, when the original loop does
not provide enough granularity, we refactor the loop in a fashion that preserves
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iterations’ execution locality. In this sense, we denote by Wmin and Wmax the
minimal, maximal bounds for the number of consecutive, original iterations that
are allowed to execute concurrently. A collateral, but important advantage of
increasing iteration granularity is that it improves load-balance among threads.

2.2 Thread Partitioning – High Level View

Given a block B forming the body of the loop for(int i=0; i<N; i++) B(i);
we would like to schedule the iterations B(i) for a multi-core processor. We
denote by P the number of processors and by C the number of threads used to
parallelize the program. (In general, maximal speed-up occurs when C ≥ P ).

We assume we have profiled a window of Wmax consecutive iterations. The
general problem addressed in Section 3 is to find a repetitive structure (π) that
defines how iterations are assigned to threads so likely dependencies are satis-
fied. π : {0, . . . , W −1} → {0, . . . , C −1} gives the mapping from W consecutive
iterations to concurrent threads. Writing as usual π−1(c) = {i | π(i) = c}, the
iterations executed by thread j are simply π−1(j). Note that C and W are also
analysis outputs; convenient values should maximize application’s available de-
gree of parallelism, keep threads well (load) balanced, and provide tls’s desired
granularity (Wmin ≤ W ≤ Wmax). With π, W and C the loop is re-written as:

parfor(t=0; t<C; t++)
for(k=0; k<N/W; k++) {

for each(j ∈ π−1(t)) B(k*W+j);
cond wait; /* required by TLS */ }

The application of tls requires loose synchronization between threads to keep
concurrency well-localized This is depicted via cond wait which preserves the
invariant that always, at most C consecutive “expanded” iterations execute con-
currently (|ki − kj| < C, 0 ≤ i, j < C, where ki is k’s value on thread i).

We give two examples to illustrate forms of B, in which we assume P =
8. The first example takes B(i) to be a[i+4] = a[i] + 2, code that features
cross-iteration dependencies of distance 4. Without considering the iteration-
granularity factor, a possible result is C = 4, W = 4 and π−1(j) = {j}, meaning
that iterations j + 4Z ≡ {j, j + 4, j + 8, ...} execute on thread j. Note that, with
this code, hardware-parallelism is only partially exploited: we use 4 threads on 8
processors. To increase the iteration granularity, we may choose W a convenient
multiple of 4, say W = 16 and have π−1(j) = {j, j + 4, j + 8, j + 12}. (The first
refactored iteration for thread 0 consists of the original iterations {0, 4, 8, 12}.)
Note however that this way of increasing iteration-granularity is only applicable
to in-place tls models, since the write-back phase of a serial-commit model
cannot be implemented in any effective way (W = 4 for the serial-commit model).

The second example takes B(i) to be a[i] = a[i] + 2, and hence corre-
sponds to (cross-iteration) dependency-free code. A possible result is C = 8, W =
8 and π−1(j) = {j} (iterations j + 8Z execute on thread j). Increasing iteration
granularity by a factor of 4, yields W = 32 and π−1(j) = {4j, 4j+1, 4j+2, 4j+3},
meaning that thread 0 executes iterations {0, 1, 2, 3, 32, 33, 34, 35, ...} and so on.
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(The first refactored iteration for thread 0 consists of the original iterations
{0, 1, 2, 3}.) This method of increasing iteration granularity is applicable to both
serial commit and in-place tls models. (The serial-commit phase operates as
expected since the new iteration is formed from consecutive original iterations.)

2.3 Exploiting Access-Patterns Via Adaptive TLS Models

Oancea and Mycroft [17] argue that rather than applying one over-arching tls

model to parallelize an application, software flexibility is, in some cases, better
exploited by combining several lightweight tls models [16, 17], each protecting
disjoint areas of memory. In principle, lightweight tls models attempt to exploit
a program’s access patterns and, where these exist, yield a very small memory
overhead and hence good performance.

For illustration, we intuitively present a simple tls technique to track raw

dependencies. Assume LdVct[] is a vector with as many entries as the size of an
array arr[] that requires speculative support. A read from arr[i] in iteration
r sets LdVct[i]=r iff r is currently the maximal iteration that has read arr[i].
A write to arr[i] by iteration w discovers a raw violation when w<LdVct[i]
since iteration LdVct[i] should have read the value written by w, but it did not.

To decrease speculative storage (LdVct) size, a (not one-to-one) hash func-
tion, of form hashs,q,Q(x) = ((x − s) quo q) rem Q can be used to map mem-
ory locations into indexes in LdVct. Now, the data space is partitioned into
equivalence-classes (x1 ∼ x2 ⇔ hash(x1) = hash(x2)), and a speculative read/
write operation is interpreted as if any locations belonging to the same equiv-
alence class may have been read/written. Although the execution soundness is
guaranteed for any such (not one-to-one) hash, good speed-up is achieved only
when the number of false-positives (hash(x1) = hash(x2) & x1 �= x2) leading to
dependence violations is small, so that the additional rollback-recovery cost is
vastly overcome by the small speculative memory-footprint and improved cache
behavior. (Naively chosen hashes will likely translate to poor performance.)

Section 4 presents at a very high-level the analysis that determines hash’s
s, q, and Q parameters. Assuming a 32-bit word, the first example in Section 2.2,
with B(i) ≡ a[i+ 4] = a[i] + 2, C = 4, W = 16 and π−1(j) = {j, j+4, j+8, j+
12}, j ∈ {0, .., 3}, yields hash(x) = ((x − s) quo 4) rem 4, where s = a quo 4,
and a stands for the start address of array a. One can verify that hash(x) ≡ i,
for all addresses x accessed by thread i. Similarly, the second example, with
B(i) ≡ a[i] = a[i] + 2, C = 8, W = 32 and π−1(j) = {4j, 4j + 1, 4j + 2, 4j +
3}, j ∈ {0, .., 7}, yields hash(x) = ((x − s) quo 16) rem 8. One can verify that
thread i accesses addresses that map to i via hash.

We can thus introduce speculation via a very small memory-overhead (the
load/store vectors that track dependencies have sizes 4 and 8 for the two cases).
Moreover, since a thread repetitively accesses the same index of LdVct (and
different threads access different indexes) in the dependency tracking-structure
we can obtain a cache-ideal layout of speculative storage.
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2.4 Comparison with Static Analysis Techniques

The classical (static) treatment depends on the assumption that the loop-body
B is simple in terms of (i) control flow – typically no conditionals, (ii) access-
patterns – linear indexing, and (iii) used data-structures – basic type arrays,
and (iv) provable no-aliasing. Where one of these does not hold, dependence
analysis is likely to indicate sequential execution even on a multi-core processor.
However, the dynamic behavior (in particular the data-dependencies) may in fact
be reasonably regular, with a perhaps small number of exceptions; tls allows the
code parallelism to be extracted while providing the safety net with respect to
these few exceptions. The dynamic analyses introduced in this paper optimizes
tls application: where strong regular behavior exists, lightweight, software-tls

models are effective even when most B’s instructions require speculative support.
Our thread-partitioning analysis, presented in Sections 2.2 and 3, most closely

resembles a form of octagonal analysis [15] but also using congruences [9]. Note
also the difference that the traditional use of octagonal congruences is for
analysing relationships between values of user variables while we analyse to de-
termine values of the iteration number appearing at the ends of a run-time
dependency (x − y = c (modM) is a octogon-type congruence).

Our address-partitioning analysis, introduced in Section 2.3 and briefly pre-
sented in Section 4, is at a high level related to Masdupuy’s analysis of trapezoid
congruences [14]. The latter is a complex framework for relational integer analy-
sis, aimed at describing multi-dimensional array indexes, that leads to “interval-
like” or “congruence-like” information when interval or congruence analysis is
relevant, respectively. We employ a similar strategy aimed at reducing hash’s
image cardinality (i.e. Q), and thus tls’s memory overhead, but we restrict our
intervals to be equal-sized, since we need a fast hash. While the introduction
has recounted several profiling-related approaches, other tls-related optimiza-
tions include data-flow algorithms for identifying “idempotent references” [11],
aggressive instruction scheduling techniques aiming at reducing the stalls asso-
ciated with scalar values [23], and other optimizations related to loop induction
variables, light thread synchronization locks, and reduction operators [2].

3 Thread Partitioning

The analysis presented in this section (i) identifies the cross-loop dependencies
that are likely to yield run-time violations, (ii) classifies dependencies into rare-
events, which can be ignored, and (frequent) repetitive-events that need to be
satisfied, and (iii) attempts to describe the iteration space via a regular structure,
in which iterations involved in cross-loop dependencies are assigned to execute
on the same thread, while maintaining the load-balance among threads. The
latter is the most efficient method of satisfying frequent dependencies.

Constructing the regular structure is more useful than merely representing
the value set of addresses at a given program point because of the need to model
dependencies. It therefore involves representing relationships between addresses
occurring at two program points in different iterations – one the source of the
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dependency and one the target. Our analysis applies to both regular and irreg-
ular, and simple and nested loops. However, for simplicity, in the following we
restrict our discussion to single loops and generalize in Section 3.6 for loop nests.

3.1 Notations, Preliminaries and Profiling Instrumentation

For simplicity, throughout the paper, we discuss our profiling and analysis tech-
niques in the context of loop parallelization, where threads concurrently execute
iterations out of the program order. However, this can be easily generalized to
any thread-partitioning, as long as partitions are numbered in a fashion that
respects the total order imposed by the sequential program’s control flow.

We assume that a simple static-analysis is performed first, to identify the
read/write accesses of memory locations that cannot be disambiguated and hence
require speculative support. We refer to the latter as speculative program points
(spp). Note that a spp is associated with either a write or a read access of
memory locations; mode : SPPdom → {r, w} represents this relation. We denote
by Adom, ISdom and SPPdom the domains of valid addresses, loop iteration space,
and spp. Hence Adom, SPPdom and ISdom ⊂ Z, where we consider iteration i to
be the ith executed iteration in sequential program order.

At run-time, we employ an instrumentation phase that, for each spp, gathers
address-iteration pairs (pia) recording which addresses were read/written by
which iterations. Hence piaq ⊂ { (a, i) | a ∈ Adom and i ∈ ISdom}, q ∈ SPPdom.

The cross-iteration dependencies that may appear at run-time can be iden-
tified by analyzing the pias corresponding to spp pairs (ppp). For example if
(a, i1) ∈ PIAq1 , (a, i2) ∈ PIAq2 , i1 < i2, mode(q1) = w, and mode(q2) = r, then
we have a true-dependence (raw) with the source being executed in iteration i1
and the sink in iteration i2. This leads to the following definitions:

Definition 1 (Dependency-Class Notation). We denote by (itsrc, itsnk, tp)
the class of run-time, cross-iteration dependencies, such that the source/sink of
the dependency (on some memory location) is executed by the iteration numbered
itsrc / itsnk, respectively, and tp ∈ {t, a, o} denotes the dependency type: true
(raw), anti (war), or output (waw). By construction we have: itsrc < itsnk.

Definition 2 (addg) . The dependency classes introduced in Definition 1 in-
duce a directed acyclic dependency graph (addg), in which nodes are iteration
numbers, and edges are directed from dependency’s source to sink and are an-
notated with the type of the dependence (t, a, o). Singleton nodes are eliminated
(they correspond to no dependency or to iteration-independent dependencies).

After (just-in-time) profiling a number of iterations, we construct for each
spp pair ((q1, q2) ∈ ppp) their associated directed acyclic dependency graph
(addg(q1,q2)), in which the singleton nodes are eliminated. Dependencies of dis-
tance greater than Wmax are trimmed out since they cannot result in run-time
violations (see cond wait in Section 2.2). This approach of constructing per-ppp
addgs as opposed to one whole-loop addg is motivated by the intuition that the
resulting addgs often correspond to simple access patterns that, in many cases,
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const int D = 4; const int B = 128; | if(cond1 || cond2) {
1 for(int i=D; i<N; i++) { | ... // PP1
2 a[i] = .... ; // PP1 | } else {
3 .... = a[i-D]; // PP2 | ... // PP2
4 if (i%8 = 1) | }
5 .... = a[i-1]; // PP3 |
6 a[i%B] = .... ; // PP4 | BECOMES
7 .... = a[i%D]; // PP5 |
8 if(highlyUnlikelyCond()) | if(cond1) {
9 .... = a[i-1]; // PP6 | ... // PP1
10 e[i] = // PP7 | } else if(cond2) {
11 e[N-i]; // PP8 | ... // PP1’
} | } else ... // PP2

(a) Motivating Example (b) Branch Normalization

Fig. 1.
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Fig. 2. addgs for Some Program Point (PP) Pairs in Figure 1

can be easily inferred and expressed through basic congruence formulas. To this
end, we assume that or conditionals have been normalized via code cloning, as
shown in Figure 1(b). The next section exemplifies our approach.

3.2 Example

The cross-iteration dependencies, for the code shown in Figure 1(a), fall in one of
two categories: (i) dependencies that, if not synchronized, will result in frequent
run-time violations, leading to poor performance, and (ii) dependencies that, at
run-time, rarely violate the sequential program semantics.

With respect to category (i), we identify three dependency-patterns that may
still allow parallelism to be effectively exploited. Typical examples are the de-
pendencies (of distances D, 1 and 1) between PP1-PP2, PP1-PP3 and PP4-PP5,
whose corresponding addgs are shown in Figure 2. The addg corresponding to
PP4-PP4, representing output-dependencies of distance 128 can be seen as the
→o arrows in in Figure 2(c), resulting in a pattern like 2(b).

Category (ii), includes for example the dependencies corresponding to ppp

PP1-PP6 and PP7-PP8. The former may cause a true-dependency of distance
1, but its sink is guarded by a condition that is highly-unlikely to evaluate to
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true. The latter ppp, if analyzed semantically, yields a group of cross-iteration,
true/anti dependencies whose distances range uniformly from N to 0. Since we
assume N � Wmax they will cause very few run-time violations, roughly when
the execution reaches the middle of the iteration space. (Note that a lightweight
profiling approach may in fact not even discover these dependencies, which is
consistent with our two-sided approximation strategy which ignores rare events.)

Ideally, we would like to fully exploit the available hardware parallelism,
while introducing no explicit synchronization. For example, on a two-processor
machine, an optimal thread-partitioning will execute iterations 0, 2, 4... on one
thread, and iterations 1, 3, 5, ... on the other. This satisfies the observed depen-
dencies without introducing any synchronization overhead, as the dependent
instructions are executed on the same thread. On a four-processor machine it
is probably better to use four threads, in which thread i executes iterations
i, i + 4, i + 8, ..., where 0 ≤ i < 4. This satisfies the dependencies in Figures 2(c)
and 2(b), while light synchronization is introduced to satisfy the dependencies
between threads 0 and 1 (those in Figures 2(a)).

3.3 Set-Congruence Model (in Z × Z)

As observed with the previous example, the addgs shown in Figure 2 have a
repetitive structure that allows parallelism to be efficiently extracted (even under
frequent dependencies). We aim at developing congruence relations such that:

– The repetitive structure is concisely and precisely described, and can be
easily identified via pattern-matching type algorithms

– They can be effectively combined yielding a parallelization strategy that
finds a good trade-off between the available code, the hardware parallelism
and the introduced synchronization.

Definition 3 (Modulo/Step Operators). Given 0≤a, b<M , where a, b, M ∈
N, we define the modulo operator <M>, intended to model Figure 2(b), and the
step operator |M>, intended to model Figure 2(a) as:

(a, b)<M> = {(x, y) | x ≡ a (mod M) and y ≡ b (mod M)} (Figure 2(b))

(a, b)|M> =
{{(a + kM, b + kM) | k ∈ N}, if a < b,
{(a + kM, b + (k + 1)M) | k ∈ N}, if a ≥ b

(Figure 2(a))

M is called characteristic. For M = 0, (a, b)<0> = (a, b)|0> = {(a, b)}. Fi-
nally, we lift the modulo/step operators (from pairs) to sets (of pairs): S<M> =
∪(a,b)∈S(a, b)<M>, where S ∈ P(ZM ×ZM ). The definition of S|M> is similar.

Note that the step operator is more precise than the modulo operator: S|M> ⊆
S<M>. For example (0, 8) ∈ (0, 0)<4> but (0, 8) /∈ (0, 0)|4>. We represent
the addg in Figure 2(a) as (0, 1)|8>, since there is no constraint that requires
iterations 0 and 9 to be executed on the same thread, for example.

Although it corresponds to anorthogonalpattern (seeSection3.5),we could rep-
resent the addg in Figure 2(c) via the modulo operator as ∪0≤i<4(i, i)<4> (the
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step operator fails to represent it since, for example, (0, 8) /∈ (0, 0)|4>). Further-
more, the addg in Figure 2(b) also requires the modulo operator (∪0≤i<4(i, i)|4>)
due to the implicit transitive closure: iterations 0 and 4, and 4 and 8 execute on the
same thread, hence iterations 0 and 8 execute on the same thread (although itera-
tions 0 and 8 are not dependent). (The transitive closure is a result of iterations 0,
4 and 8 belonging to the same addg’s connected component.)

3.4 Set-Congruence Algebra (in Z × Z)

We present now how formulas describing addg’s basic patterns are combined.
The non-relational, static analysis of integer congruence properties employs the
lattice of integer cosets to join same-variable formulas: (a1+b1Z) � (a2+b2Z) =
a1 + gcd(b1, b2)Z if gcd(b1, b2)|(a2 − a1) and Z otherwise. Applying our analysis
on the distinguished subset of Z×Z in Definition 3 results in a (practical) formula
to manipulate these descriptions.

Definition 4 (Additive Subgroup). We denote by [m]M the additive sub-
group of ZM generated by m. Note that [m]M = [g]M , where g = gcd(m, M),
since both subgroups have the same cardinality M/g and g generates m.

Assume a < b and m1 < m2. The step relation yields the invariant:
(a, b)|m1> = {(a+k∗m1, b+k∗m1) | k ∈ Z} ⊆ {(a+e+k∗m2, b+e+k∗m2) | k ∈
Z, e ∈ [m1]m2

} = ∪e∈[m1]m2
(a + e, b + e)|m2>.

The modulo relation is similar to the integer congruence unification. Denoting
m = gcd(m1, m2) ([m1]m2

≡ [m]m2
) leads to: (a, b)<m1> ⊆ (a, b)<m>. (Also

(a, b)|m1> ⊆ ∪e∈[m1]m2
(a + e, b + e)|m2> ⊆ (a, b)|m> ⊆ (a, b)<m>.)

We demonstrate now the usefulness of differentiating between step and mod-
ulo relations. Combining two congruence relations corresponds to taking the
union of the sets they represent. For the modulo relation we have: {(0, 1)}<8>∪
{(0, 1)}<18> ⊆ {(0, 1)}<2>, which implies that the program cannot be paral-
lelized (as iterations 0 and 1 modulo 2 are executed on the same thread). How-
ever, with the step relation we get: {(0, 1)}|8> ∪ {(0, 1)}|18> ⊆ S|18>, where
S = {(0, 1), (8, 9), (16, 17), (6, 7), (14, 15), (4, 5), (12, 13), (2, 3), (10, 11)}. In this
case we can run 9 concurrent threads while satisfying the observed dependencies:
thread i executes iterations S[i][0] and S[i][1] mod 18, where 0 ≤ i < 9. The
next theorem formalizes these results.

Theorem 1 (Step/Modulo Refining). Let U ⊆ P(Z × Z) be of the form
S|m>, and g = gcd(M, m). The smallest set U ′, U ⊆ U ′, of the form S′|M>
exists and is obtained when: S′ = {(x, y) | x ≡ a + e and y ≡ b + α ∗ m +
e mod M, where (a, b) ∈ S, α = 0 for a < b and 1 otherwise, and e ∈ [g]M}
For the modulo relation the set S′ can also be computed, but S′<M> ≡ S<g>.

Proof. Straightforward application of the finite additive subgroup theory.

The rest of this section gives the unification rules for the step/modulo operators:
intuitively, they aim to obtain a formula of best precision (highest degree of
parallelism) and conciseness (smallest characteristic), in this order.
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Definition 5 (Degree of Parallelism). Let lmax be the maximal number of
nodes of a connected component of the addg induced by a formula of the form
S<m>, where only iterations 0..(m−1) are considered. The degree of parallelism
of S<m> is �m/lmax�. The same holds for S|m>.

Definition 6 (Step/Modulo Unification). MS.1: S1|m>�S2<m> = (S1 ∪
S2)<m> MS.2: S1|m1> � S2<m2> = ([S1|m1>]m ∪ [S2<m2>]m)<m>, where
m ∈ {m2, gcd(m1, m2)} is the value that maximizes the degree of parallelism.
In the case of equality, take the smaller m. Similarly, combining two step rela-
tions (|>) yields a step relation. Combining two modulo relations (<>) yields a
modulo relation where the resulting characteristic is computed by taking the gcd.

3.5 Pattern Identification

Figure 2 gives three dependency patterns for a given ppp that allow speculative
parallelism to be extracted. They hence constitute the basic building-blocks of
our analysis; if no such pattern can be found then speculation is likely to be
unhelpful. While it might appear natural to merely union the addgs for each
ppp, in general this gives an addg from which is hard to extract such patterns.
Instead, we determine potential patterns for each addg and unify (�) their
set-congruence formulas as described in the previous section.

For space reasons we do not give exact pattern-matching algorithms, instead
we prefer to outline the process by (i) identifying the main pattern characteristics
such an algorithm should identify, (ii) giving the pattern’s congruence formula,
and (iii) where not already discussed, present how formula unification is achieved.

Bounded-Chain Dependency Pattern: The first basic pattern corresponds
to the one shown in Figure 2(a). An addg satisfies this pattern if (i) there are
very many connected components, each containing a small number of nodes,
l (typically 2), (ii) for any two dependencies in the same position on different
connected components pi → qi and pj → qj , mi,j = pi − qi = pj − qj , and, (iii)
denoting by m = gcd{mi,j}, the degree of parallelism ParDeg = �m/l� is big
enough – if the latter is 1 for example, parallelism cannot be extracted, since
we intend to execute the connected component’s nodes (iterations) on the same
thread. The addg is finally described by R|m>, where R ⊆ P(Zm×Zm) contains
the iteration pairs corresponding to the edges of one connected component. (By
the pattern’s definition, all connected components generate the same S.) For
example, the addg in Figure 2(a) formula is (0, 1)|8>.

Constant-Distance Dependency Pattern: The second basic pattern corre-
sponds to the one shown in Figure 2(b). An addg of l connected-components
satisfies this pattern if letting m = gcd{j − i | i → j is a dependency} then
l < m, with m big enough. The addg is then described by R<m>, where R is
the root set of the addg (i.e. nodes that are the sink of no dependency).

Periodic Merge Dependency Pattern: This pattern is shown in Figure 2(c).
An addg satisfies this pattern if there are several, consecutive nodes ([0, 3]<128>
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in Figure 2(c)) that are the source/sink of many dependencies, the structure is
repetitive, and if eliminating these nodes from the graph results in only singleton
nodes. Hence, if iterations [0, 3]<128> are executed sequentially (achieved via
synchronization barriers), then iterations ([4, 127]<128>) have no dependencies
and can be executed in parallel, out of order. Due to space constraints we do not
give the formula/unification rules for this pattern here. The intuition is that this
pattern is orthogonal with the other two, hence we unify only between instances
of this pattern: the semantics is that barriers are enforced while iterations in-
between barriers are dispatched to threads as determined by the step/modulo
unification formulas. A special case when simplification with a modulo-based
pattern is possible and desirable is when the addg of this pattern is included
in the one of the modulo-based pattern. (The addg in Figure 2(c) ⊂ {(i, i)|0 ≤
i < 4}<4>.) The unification trivially yields the modulo-based formula, thus
eliminating the (unnecessary) barrier overhead.

3.6 Further Remarks

The time complexity of the analysis proposed in this section is dominated by
the addgs construction phase, which is on average O(n log n) in the number
of profiled addresses4. Then, pattern-matching addgs to determine formulas is
linear in the number of dependencies, while unifying formulas among addgs is
cheap under the presented algebra. The order in which addg formulas are unified
is important: a state-of-art framework should aim to assign iteration to threads
such that most dependencies are resolved, while preserving the optimal degree
of parallelism. Other ppps whose unification would yield too conservative results
are synchronized (see Section 3.2). These heuristics are not discussed here.

Finally, we have discussed our analysis so far in the context of simple-loops.
To generalize to loop-nests, we represent iteration numbers in Zp, where p is
the loop’s nesting depth. We apply our analysis for the most-outermost loop, L,
of suitable tls granularity, by projecting Zp to Z, in the context of L. If the
analysis fails to give an acceptable result, we repeat it for inner loops.

4 Memory Partitioning

This section introduces at a high-level the second part of our analyses, whose
goals were stated in Section 2.3. Section 4.1 presents how memory is coarse-
grained partitioned into disjoint intervals that intuitively correspond to different
variables (e.g. arrays) whose accesses were not statically disambiguated. The
most suitable type of tls model is then chosen to protect each of these partitions
(see [17] for the software composition techniques). This partitioning facilitates
the fine-grained memory partitioning, presented in Section 4.2, by which each
individual tls model’s hash function is computed based on coarse-partition’s
access-patterns. Finally, Section 4.3 presents speed-up results.
4 Sort the per spp addresses; constructing the addg for a ppp is then linear; we then

construct only the addg corresponding to ppps whose address sets overlap.
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4.1 Building Variable-Based Memory Partitions

Figure 3(a).(I) intuitively depicts our approach. The profiling phase has yielded
the set of addresses accessed at each program point. A clustering technique is
then employed to exhaustively partition the memory into mostly-disjoint inter-
vals, where a few exceptions are allowed (e.g. the two “singular” points of PP1).

For on-line analysis, when only a window of iterations is profiled, we use
a linear formula that predicts how intervals grow. These are used to compute
interval boundaries. Note that (i) a spp may correspond to two intervals (e.g.
PP1), as it is not required that a variable is laid out contiguously in memory,
and (ii) two spps may correspond to the same interval/partition (e.g. they may
access the same variable). Also, it is preferable to split an interval I into I1 ∪
I2, when we observe that one spp repeatedly accesses only few addresses in
I (e.g. PP3 forms I1) – this allows to more aggressively adapt/optimize I2’s
tls model’s behavior (small memory overhead within very few false-positives).
For safe-languages (Java, C#) an (extra) orthogonal partitioning can be made
based on type information or other invariants guaranteeing that two spp refer
to disjoint set of addresses (although their intervals overlap).

Figure 3(a).(II) shows the analysis result for the code in Figure 1. We denote
by a and e the start address of arrays a and e. We observe that accesses of a form
three disjoint partitions: [a, a+3] for PP5, [a+4, a+127] for PP4, and [a+128, ...]
for PP1, PP2 and PP3. Accesses of e form three intervals: an increasing one start-
ing at e, a decreasing one starting at e + N and a buffer-interval in the middle.
While the first two partitions may use aggressive fine-grained partitioning, the
middle-one should use a precise partitioning (i.e. hash function is one-to-one).

Having computed the coarse-grained memory partitions, we look at their as-
sociated addgs to determine the most suitable type of tls model for them. We
keep into account that serial commit models [5, 6, 17] implicitly satisfy waw

and war dependencies, while in-place models [16] do not. Also, [17] is inefficient
in the presence of many iteration-independent raw. However, note that if the
thread partitioning requires a non-trivial characteristic (m �= 0), then only in-
place models may be employed, and only then when a serial phase5 is not needed.
5 This might still be required for scalar computation or IO operations.
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4.2 Fine-Grained Memory Partitioning

For each memory partition we apply a congruence/set analysis that attempts to
map addresses accessed by different threads into mostly disjoint (coset-based)
equivalence classes. The latter naturally induces the tls model hash function,
and effectively reduces the tls memory overhead while introducing very few
false-positives. An important consequence of this strategy is that it implicitly
optimizes the speculative-storage cache-behavior in that the same thread re-
peatedly accesses the same speculative storage elements (and different ones for
different threads) and hence requires mostly L1-cache accesses (rather than L2).

We are looking for hash functions of the form: hashs,q,Q(x) = ((x− s) quo q)
rem Q, because (i) they are computationally effective (especially when q and

Q are powers of 2) and (ii) they enable both an interval and congruence like
analysis, which are both useful in reducing the image cardinal Q, and hence
the speculative storage size. The hash function can be seen as an equivalence
relation among addresses: a1 ∼ a2 ⇔ hashs,q,Q(a1) = hashs,q,Q(a2). Figure 3(b)
graphically depicts this view: there are Q intervals of equal length q. All the
addresses a such that (a − s) rem (Q ∗ q) belong to the ith interval and are in
one equivalence class. This class corresponds to the union of cosets: (i ∗ q) +
QZ ∪ (i ∗ q + 1) + QZ ∪ · · · ∪ (i ∗ q + q − 1) + QZ. The use of the offset s is to
align equivalence-classes in hash0,1,Q∗q so that they can be safely collapsed by
interval formation into hashs,q,Q.

Intuitively, hash should satisfy the invariant that for any two spps that may
generate a dependency violation (e.g. at least one is a write), the addresses ac-
cessed by iterations executed on different threads correspond mainly to different
cosets of ZQ, where a few exceptions can be accommodated. In general this
problem is computationally expensive to solve; although not presented here, we
have developed a guided-search heuristic that, although does not guarantee an
optimal solution, for all practical cases we encountered, it does so and is linear
in the number of profiled addresses.

4.3 Speed-Up Results

Table 1 shows speed-up results, computed as the ratio between sequential and
parallel timings, for several applications selected from the bytemark and Sci-
Mark benchmarks (see also [16]). All the tests were performed on a SMP Sun

Table 1. Speed-ups: Sequential / Parallel Time Ratio(4 Processors)

Seq/Parallel HandPar OptROHash OptHash Naive OneToOne
IDEA DeKey 3.83 2.78 2.44 0.96 0.65
IDEA Cipher 3.87 3.22 1.44 1.11 0.95
NeuralNetBW 1.64 1.15 1.07 0.90 0.25
NeuralNetFW 2.04 1.65 1.46 0.15 0.11
SparMatMult 2.11 1.93 1.60 0.57 0.13

FFT 2.02 1.90 1.90 0.66 0.66
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machine with 8 Gb RAM memory, and four Opteron 850 processors, running
Fedora Core 4. We used the gcc3.4.4 compiler at -O2 optimization level.

The second column represents the speed-up achieved for optimal, hand-based
parallelization (no tls overhead). The third column corresponds to applying tls

via the dynamic analysis presented in this paper. We have used two tls models:
splip – an in-place model [16] and spro – the read-only model in which a read
just reads the value (no time/space overhead), while a write causes a rollback
followed by a sequential fix-up. splip models use optimized hashes.

The OptHash column refers to the case when only splip is employed, how-
ever on optimized hashes. This serves as base of comparison with the last two
columns. The column Naive refers to a naively chosen hash, in which q=s=0 and
Q is roughly the size of the range of addresses accessed by concurrent iterations.
The last column uses one-to-one hashes: q=s=0 and Q is roughly the data-space
size. (For FFT and NeuralNetFW columns 5 and 6 use roughly the same Q.)

The differences between optimized and (i) naively chosen and (ii) one-to-
one hashes are significant for all tested applications. The reasons are: (i) the
near-ideal cache behavior of optimized hashes (column 4 vs 5) and (ii) the
small(er) memory overhead. The results for IDEA DeKey and SparseMatMult
look somewhat surprising in that the differences between columns 3 and 4 are
more pronounced than in the other cases. The reason is that the read-to-write
ratio is very high (and spro is very effective). These differences also appear for
columns 4 vs 5 because the naive version suffers from read-contention (concurrent
cache eviction due to writes to tls’s meta-data), while optimized hashes do not.
A final observation is that when the application features bad cache-locality (last
two benchmarks), but still a regular behavior, we can expect to obtain close to
optimal (hand-parallelized) speed-up because the tls overhead is furthermore
amortized by the negative memory-hierarchy effects of the original program.

5 Conclusions
We have shown how dynamic analysis of addresses accessed during a loop can be
used to facilitate thread-level speculation. First, we have presented an algebra
for partitioning the iteration-space to threads such that repetitive dependencies
are resolved and rare dependencies are ignored. Second, we have used dynamic
analysis to fine-tune the tls model to exploit code access patterns, as opposed
to previous work, which has concentrated on optimizing the code for one tls

model. We achieved the latter by using coarse-grained followed by fine-grained
partitioning of the data space; now several optimized tls model instances are
employed to parallelize an application, instead of only one, over-arching model.
Finally, we have presented results that validate the utility of our analysis.
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Thread Safety through Partitions and Effect
Agreements

Nicholas D. Matsakis and Thomas R. Gross

ETH Zurich

Abstract. This paper describes a safety analysis for a multithreaded
system based upon transactional memory. The analysis guarantees that
shared data is always read and written from within a transaction, while
allowing for unsynchronized access to thread-local and (shared) read-only
data, as well as the migration of data between threads. The analysis is
based on a type and effect system for object-oriented programs called
partitions. Programmers specify a partitioning of the heap into disjoint
regions at a field-level granularity, and then use this partitioning to en-
force safety properties in their programs. Our flow-sensitive effect system
requires methods to disclose which partitions of the heap they will read
or write, and also allows them to specify an effect agreement which can
be used to limit the conditions in which a method can be called.

1 Introduction

The Java language’s traditional, lock-based model of parallel programming has
proven to be vulnerable to a number of serious problems, such as deadlock and
priority inversion. Programmers are forced into a difficult trade-off between cor-
rectness and performance. While a coarse-grained locking scheme is the easiest
to implement and verify, fine-grained locking – or even nonblocking algorithms
– is required to take full advantage of the parallel hardware.

Recent research in transactional memory [1] offers an attractive alternative.
Programmers can use atomic statements to group together operations which
must – for reasons of correctness – be executed without interruption, and the
runtime system will ensure efficient and correct execution.

As convenient as transactional memory is, it is not a panacea. One obvi-
ous problem that programmers will face is verifying that they use atomic sec-
tions consistently. For example, shared objects should only be modified within
a transaction, while thread-local and read-only objects may be used freely. Be-
cause mainstream programming languages today offer no means to controlling
aliasing, verifying that each object is used safely must be done manually and is
error-prone.

In this paper, we present a technique that guarantees consistent usage of
transactions within a program. Our work is done in the context of a Java-like
language augmented with transactional memory. It supports a number of com-
mon threading patterns, including thread-local data, read-only data, and the
transfer of objects between threads.

J.N. Amaral (Ed.): LCPC 2008, LNCS 5335, pp. 172–186, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Thread Safety through Partitions and Effect Agreements 173

Our technique is based on two new language constructs:

1. Partitions extend the type system so that it can describe aliasing at a very
fine-grained level. Programmers use partitions to expose the aliasing struc-
ture of their program. A flow-sensitive effect system then is used to determine
which partitions may be read or written by the program at different points
in time.

2. Effect agreements allow a method to constrain the effects of its caller, while
preserving modular compilation. For example, a method which hands off
data in a particular partition to a new thread may prevent its caller from
modifying that data while the new thread is executing.

The paper begins with an introduction to partitions and discusses how they are
integrated into the type system. We then discuss the effect system, and in particu-
lar effect agreements, and give a brief example which uses them to verify the thread
safety of a simple web server. Finally, we present the algorithm used to check that
effect agreements are respected and close by showing how to extend the Thread
class so as to enforce safe threading practices throughout the program.

2 Partitions at a Glance

A partition is a compile-time abstraction that describes a portion of the heap at
a field-level granularity. In other words, if we define the heap H(o, f) �→ o as a
mapping from an (object id, field) pairs to another object id, a partition is a set
of such (object id, field) pairs. Partitions are similar to memory regions, except
that we do not use them for memory management, but rather for alias tracking.

In our system, class and method definitions are parameterized by a set of
partition parameters, analogous to generic type variables. When the class is in-
stantiated or the method is invoked, each partition parameter will be mapped
to a fixed partition.

2.1 Code Example

To demonstrate how partitions are integrated into the language, Figure 1 gives
the definition of a class IntWrapper. IntWrapper has a single partition param-
eter, named P, which is indicated by the @P which follows the class name. It
contains a single field field located in the P partition, and two accessors get()
and set(). The partition of field is indicated by the @P preceding its type.

The clone() method of Figure 1 demonstrates many important points:

1. Methods can have partition parameters in addition to classes. In this case,
the values for these parameters are inferred when the method is invoked.

2. New partitions can be created via a statement like new @R, where the name
R of the fresh partition should not shadow any other partitions in scope.

3. When new instances of a class are created, concrete values must be given
for each partition parameter of the class. In this case, the expression new
IntWrapper@Q() creates an IntWrapper instance whose P partition param-
eter is bound to Q, the partition parameter of the clone() method.
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class IntWrapper @P {
// Leading @P ind ica te s t h i s f i e l d i s in pa r t i t i on P.
@P int f i e l d ;

// Primit ive types require no par t i t i on s .
int get ( ) { return f i e l d ; }
void s e t ( int i ) { f i e l d = i ; }

// Methods can be parameterized with pa r t i t i on v a r i a b l e s too .
@Q IntWrapper@Q c lone ( ) {

new @R; // demonstrate syntax to create a new pa r t i t i on
IntWrapper@Q re s = new IntWrapper@Q( ) ;
r e s . s e t ( f i e l d ) ;
return r e s ;

}
}

Fig. 1. Introductory example showing how partitions are integrated into the syntax

Although this example does not take advantage of it, it is also possible to take
the union of several partition parameters. For example, the new statement in
the clone() method could have been written new IntWrapper@(P∪Q) instead.
Taking the union of several partitions simply refers to a larger partition which
always contains every field in each of its components.

Like Java generics, JPart types are non-variant with respect to their partition
parameters. This means that two types C@P and C@Q – both of which refer to
the same class, but with different partition parameters – are not subtypes of one
another, even if P ⊆ Q. As a result, partition parameters can be referenced in
both co-variant positions, such as return types, or contra-variant positions, such
as the types of method parameters.

2.2 Growing Partitions

Data is added to a partition by creating new objects that contain fields located
in that partition. All fields exist in exactly one partition. However, when multiple
partitions are unioned together, it may not be known statically precisely which
partition a field is located in. For example, if the new statement of Figure 1
were modified to read new IntWrapper@(P∪Q), then it is not defined whether
the field field of the resulting IntWrapper instance is placed in P or Q; the type
checker must conservatively assume that it may be in either.

2.3 Disjoint Partitions

In general, we do not require that the partition parameters be bound to disjoint
partitions when a class is instantiated or a method is invoked. However, in some
cases disjoint partitions will be required by the effect checker to prove that a
program is safe. Therefore, we allow the programmer to add disjoint declarations
which name sets of partition parameters that must be mutually disjoint. An
example appears in Figure 6. Note that partitions created within the current
method are always known to be disjoint from all other partitions.
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2.4 Partition Transfer

Creating a new object is not the only way to add data to a partition. It is
also possible to change the partitioning of an existing object, so that its fields
move from one partition to another. This is called partition transfer, and it
necessitates changing the type of the object whose fields were moved to reflect
the new partitioning.

Partition transfer is denoted via a cast to a type with the new partitions. The
old partitions are determined from the type of the expression being cast. As an
example, consider the following cast:

C@P va r i a b l e = . . . ;
C@Q t r an s f e r r e d = (C@Q) va r i a b l e ;

This has the effect of transferring any field in partition P that belongs to an
object reachable from variable into the partition Q.

In the presence of aliasing, partition transfer is not type safe. This is because
there may be extant aliases to the object whose fields were transferred, and those
aliases will still have the original type. If any code should use one of those aliases,
then it would assume that the object’s fields were still in the original partition,
when in fact they have been moved.

Rather than trying to prevent aliasing, we solve this by using the effect system
to prevent the old partition from being read or written after data has been
transferred out of it. Therefore, a partition transfer from P to Q means that
P can never be used again. Although this restriction may seem draconian, it
nonetheless enables a number of usage patterns and in particular allows data to
be moved between threads.

3 Language Extensions for Parallelism

Before we proceed to discuss our effect system, it is necessary to say a few
words about the threading model which we assume. As in Java, threads are
created by creating a new instance of some subclass of the class Thread. We
have chosen to use transactional memory rather than locks as the basis for
synchronization. Furthermore, we have elected to replace Java’s join() methods
with a simpler, lexically scoped mechanism. To that end, we introduce two new
kinds of statements:

1. The atomic statement, written atomic {...}, guarantees that all of its
substatements will execute atomically, meaning without interruption by any
other thread. Atomic statements are discussed in detail in [2].

2. The forkjoin statement, written forkjoin {...}, executes its substate-
ments and dynamically tracks the set of threads which they start. Once all
substatements have executed, the forkjoin statement waits for the threads
which were started within to finish before it continues. It must wait not only
for the threads which it has directly started, but also for any threads that
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they may have transitively begun themselves. forkjoin statements are sim-
pler than Java’s mechanism join() methods, but can still express real-world
examples of Fork/Join parallelism [3,4].

4 Effects

Partitions allow the program’s data to be divided into distinct logical sections,
but the effect system regulates how those partitions may be used.

Figure 2 shows the IntWrapper class defined earlier, but with each method
annotated to show what effects it may have. Effect declarations precede each
method declaration and are part of the method’s interface. get() is annotated
with !Rd(P), as it reads a field in partition P, while set() has a corresponding
write effect. Finally, clone() has both a !Rd(P) effect, as it reads field, and a
!Wr(Q) effect, as it invokes set() on res, whose field is located in Q.

Effects are generated in two cases: dereferencing pointers and partition trans-
fers. When dereferencing a pointer, the kind of effect depends on whether the
field is read or written, and whether the modification takes place in an atomic
section. The resulting four kinds of effects are Rd(P) and Wr(P), for plain reads
and writes, and ARd(P) and AWr(P), for reads and writes which take place in
an atomic statement. In each case, the parameter P indicates the partition that
is affected, and may be either a single partition variable, or the union of sev-
eral variables. Partition transfers out of a partition P are indicated by an effect
Xfer(P).

In addition to directly modifying fields, effects may be generated indirectly
by invoking other methods. In this case, the effect checker uses the effects from
the method’s declaration to conservatively estimate the set of effects the method
invocation may have. Note that if the method invocation takes place within an
atomic section, plain Rd and Wr effects are translated into their atomic equiva-
lents.

It is the programmer’s responsibility to add annotations which declare how
a method may affect the in-scope partition parameters. The effect checker stat-
ically ensures that the method body cannot affect any partition parameter in

class IntWrapper @P {
@P int f i e l d ;

!Rd(P) int get ( ) { return f i e l d ; }
!Wr(P) void s e t ( int i ) { f i e l d = i ; }

@Q !Rd(P) !Wr(Q) IntWrapper@Q c lone ( ) {
new @R;
IntWrapper@Q re s = new IntWrapper@Q( ) ;
r e s . s e t ( f i e l d ) ;
return r e s ;

}
}

Fig. 2. The class IntWrapper which was shown before, annotated with effects
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a way that is not declared. It is not necessary to declare effects for partitions
which are created within the method.

4.1 Effect Agreements

While effect declarations allow a programmer to limit the effects a method may
have, it is sometimes useful for a method to be able to limit the effects of its
caller. For example, transferring data from a partition P to a partition Q is only
allowed when it can be guaranteed that P is not used after the transfer. If P is a
partition parameter, however, the method needs some way to convey to its caller
that it has invalidated P and that P should not be used from that point forward.

To enable these sort of guarantees, methods may be annotated with effect
agreements that constrain what can happen after a method returns. These effects
form a kind of agreement between the caller and the callee. We use a flow-
sensitive effect checker to enforce them statically.

Agreements are different from Design By Contract [5]. In DBC, methods de-
clare preconditions, which the caller must guarantee for the callee to function
properly, and postconditions, which the callee promises to bring about or main-
tain. In this way, contract obligations flow in both directions.

In contrast, all effect agreements are obligations the callee imposes on the
caller. These obligations always take the form of effects which are not permitted.
Each effect agreement has a time span that determines precisely when the events
are not permitted to occur.

In this paper, we use two different time spans for effect agreements, post and
par. A post agreement, written post -F(w)1, indicates that the effect F(w)
may not occur at any point in the program execution after the method returns.

post agreements are used to ensure the safety of partition transfer. Transfer-
ring data from a partition P to a partition Q imposes a post agreement upon
the current method, beginning at the point of transfer. The exact agreement is
post -Rd(P) -Wr(P) -ARd(P) -AWr(P) -Xfer(P). If the P partition was not
created by the current method, this may require the method to declare a similar
agreement so as to constrain its caller.

While sometimes necessary, post agreements are often stronger than is re-
quired. par (short for parallel) agreements can be used to limit the agreement
to a shorter time span. A par agreement, written par -F(w), indicates that a
parallel thread has been started which requires that no effect F(w) occurs for
the duration of its lifetime.

Generally, we do not know when a thread will finish executing, and in these
cases a par agreement is equivalent to a post agreement, as depicted graphically
in Figure 3a. In the presence of a forkjoin statement, however, the thread’s
lifetime can be bounded. This is depicted in Figure 3b, where the caller knows
that the thread will finish before or by the end of the forkjoin region.

Effect agreements are considered binding on the current thread; however, a
thread is also responsible for the behavior of any thread which it (transitively)
1 The reason we use a minus sign - and not a ! before the effect is to indicate that

agreements describe effects which are forbidden, not permitted.
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Fig. 3. A timeline demonstrating the time span to which a par effect agreement applies,
both (a) normally and (b) in the presence of a forkjoin region

starts. Therefore, if a thread T invokes a method which prohibits it from later
writing to a partition, then T may not start another thread which writes to that
same partition.

4.2 Effects and Inheritance

Because effects and effect agreements form part of the interface of a method, it is
important to describe how they interact with inheritance. Because it must be safe
for any subtype to be used where a supertype is expected, overriding methods
may not (a) have more effects than the methods they override; or (b) prohibit
effects via effect agreements which are allowed in the respective supertypes. The
type checker verifies these conditions statically.

4.3 Example: Multithreaded Server

One common multithreaded application is a server. Figure 4 shows a simple
server which has one thread listening for connections on a given port, defined by
the class ListenerThread. When a connection arrives, the server initializes an
object describing the new connection and creates a HandlerThread to handle
it. The handler is given control of the connection object and started in parallel.
From that point on, the connection object is considered thread-local data for
the handler thread, and should not be used by the listening thread anymore. In
this example, we show how the effect checker, combined with effect agreements,
can be used to verify that the connection object is safely transferred to the
new thread. In Section 6, we will expand the technique shown here into a more
general solution.

The ListenerThread class does not have any partition parameters. Instead,
within the run() method it creates a fresh partition, P, which contains the listen-
ing Socket instance. The HandlerThread class is parameterized by a single par-
tition L for it’s thread-local data. In its accept() method, the ListenerThread
creates a new partition H which it gives to each new HandlerThread to use for
its thread-local data.
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class ListenerThread
extends Thread

{
public void run ( ) {

new @P;
Socket@P socket =

new Socket@P ( ) ;
while ( true )

accept ( socket ) ;
}

!Rd(P) !Wr(P)
@P void accept ( Socket@P socket ) {

new @H;
Socket@H connect ion =

socket . accept ( ) ;
i n i t ( connect ion ) ;
new HandlerThread@H(

connect ion ) . s t a r t ( ) ;
}

!Wr(H)
@H void i n i t ( Socket@H conn )
{ . . . }

}

class HandlerThread@L
extends Thread

{
@L Socket@L connect ion ;

HandlerThread ( Socket@L c ) {
connect ion = c ;

}

!Rd(L) !Wr(L)
par −Rd(L) −Wr(L)
par −ARd(L) −AWr(L)
public void s t a r t ( )
{ . . . }

!Rd(L) !Wr(L)
public void run ( )
{ . . . }

}

Fig. 4. The skeleton of a simple server which spawns a new thread to handle each
incoming request

The error we are trying to prevent is that the ListenerThread continues to
write to the partition H after it has started the HandlerThread. To prevent this,
the HandlerThread has declared effect agreements on its start() method which
prohibits its local partition L (H, from the ListenerThread’s point of view) from
being read or written. These agreements are given par scope so that they are in
effect as long as the thread may execute.2

To verify that effect agreements are respected, the effect checker computes
what effects may occur after each statement in the method. The result of this
computation for the accept() method of ListenerThread is shown in Figure 5.

Since we are computing what events are to come, the analysis is done starting
at the end of the method and working backwards. Therefore, line 12 depicts
the initial set of effects. Because there are no effect agreements declared on
this method concerning P, we must make the conservative assumption (which
happens to be true, in this case) that data in partition P may be both read and
written in the future. Note that there no conservative assumptions are needed
for H as it is newly created in this method.

Line 10 contains the call which starts the HandlerThread. This is where we
must verify the effect agreements for start(): to do so, we compare the set
of events to come from line 11 with the forbidden events, and determine that
the method call is permitted. Since start() declares that it reads and writes

2 A sharp-eyed reader will note that, because the start() method is inherited from
Thread, HandlerThread cannot add effect agreements in this fashion. We resolve this
in Section 6 by modifying the thread class itself.
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1 !Rd(L) !Wr(P)
2 @P void accept ( Socket@P socket ) {
3 // { Rd/Wr(P) }
4 new @H;
5 // { Rd/Wr(P) Rd/Wr(H) }
6 Socket@H connect ion = socket . accept@H ( ) ;
7 // { Rd/Wr(P) Rd/Wr(H) }
8 init@H ( connect ion ) ;
9 // { Rd/Wr(P) Rd/Wr(H) }

10 new HandlerThread@H( connect ion ) . s t a r t ( ) ;
11 // { Rd/Wr(P) }
12 }

Fig. 5. The results of a flow-sensitive effect analysis of the accept() method from
Figure 4

HandlerThread’s partition parameter, we determine that H may be both read
and written at this point and add those effects to the set, yielding line 9.

From line 9 back to line 5, the effect set is unchanged because it already con-
tains reads and writes. No methods are invoked which declare an effect agree-
ment, so there is no need to check for conflicts. Finally, we reach line 4 which
creates the H partition and therefore remove the Rd/Wr(H) effects, leaving only
effects on P in line 3.

5 Effect Checker

This section describes the design of the effect checker, the module responsible
for verifying that methods properly declare any effects they may have and that
they abide by any effect agreements due to method calls or partition transfers.

5.1 Checking the Method Interface

Verifying that the method implementation obeys the bounds of its interface is
done with a standard, flow-insensitive analysis. We simply take the union of all
effects generated by any statement in the method body, and verify that, for each
effect F(P), either (a) P is a created by a new @P statement in this method, or
(b) the method declares an effect F(Q), where P ⊆ Q.

5.2 Flow-Sensitive Effect Analysis

Because effect agreements constrain the events which can occur within a spe-
cific period of time, a flow-sensitive analysis is required to check them. For this
purpose, we use an iterated analysis that propagates sets of effects around the
control flow graph until it reaches a fixed point. Similar algorithms are commonly
used for data-flow analysis in compilers [6]. Because effect agreements constrain
what happens after a method returns, we use a reverse analysis, with set union
as the confluence operator for joining multiple control flows.

The effect flow algorithm is shown as Algorithm 1. This algorithm is in fact
executed twice, once for par effect agreements and once for post agreements.
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Algorithm 1. effect-flow
OUT ← { ∅ for each block }
initialize OUT with starting assumptions
while OUT continues to change do

for all blocks b do
fsucc ← ∪(OUTb′ for each b′ ∈ successors of b)
fstmts ← the set of effects caused by any statement in b
if checking a par agreement and b terminates a basic block then

fstms ← ∅
end if
OUTb ← fsucc ∪ fstmts

end for
end while

For each basic block b, it computes a set OUTb which contains the set of effects
that could occur in the current time span. When checking post agreements,
therefore, OUTb contains the set of effects that can occur once b begins execution.
When checking par agreements, on the other hand, it contains the set of effects
that might occur in parallel with a thread that starts right before the control
flow reaches b.

Computing the OUT set for a basic block b begins by taking the union of
the OUT sets for each successor of b (except for a slight twist regarding forkjoin
statements, discussed in detail below). The effects which may occur due to state-
ments within b are then added to this set, resulting in the new value for OUTb.
This process repeats for all basic blocks until it reaches a fixed point.

5.3 Starting Conditions

To start the algorithm, the initial set of effects at the end of the method are
defined conservatively. We assume that any effect may occur which is not specif-
ically forbidden by an effect agreement of the appropriate time span. Therefore,
when performing post analysis, the starting set contains all possible effects ex-
cept those barred by some post agreement. Likewise, during the par analysis,
only those effects barred by par agreements are removed from the starting set.

5.4 forkjoin Statements

When checking par agreements, the forkjoin statement is given a special sig-
nificance. This is because it is statically known that all threads beginning within
a forkjoin statement will have terminated by the time the forkjoin statement
finishes. This means that, when checking par agreements, the basic block which
terminates the forkjoin statement may safely disregard the effects of its suc-
cessors, because it is known that they will not occur in parallel with any threads
that start within.
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6 Enforcing Thread-Safety

We can use effect agreements to ensure that a partition is never accessed by
multiple threads in an incompatible fashion. The core idea is to use the type of
the Thread object, from which all threads must derive, to guarantee that threads
only use partitions in one of several pre-approved ways.

We guarantee that all partitions the thread may access fall into one of three
categories:

1. Thread-Local partitions are read and written by the thread outside of atomic
sections. Such partitions may not be simultaneously accessedby other threads.

2. Read-Only partitions are never written by the thread and are read outside
of atomic sections. Such partitions may not be written by other threads.

3. Shared partitions are modified by multiple threads simultaneously. Accesses
to shared partitions, read or write, must take place within an atomic section.

We assume that threads are started by invoking the method start() defined
in the Thread class. The actions of a thread are defined by its run() method;
invoking run() directly, however, does not start the thread, but is merely a
normal method call that runs in the current thread.

Therefore, we can use the declared interface on the start() and run() meth-
ods to control what threads are permitted to do. The desired interface for class
Thread is shown in Figure 6. The idea is to parameterize the thread by three
partitions, S, R, and L, which contain respectively the shared, read-only, and
thread-local data that this thread may access. As we will see, the definition of
the run() and start() methods do not permit data in these partitions to be
used in any way other than those outlined above. Furthermore, because a method
must list all of its effects in its interface, we can be sure that this thread will not
affect any partitions other than S, R, or L.

To get a better understanding of the definition in Figure 6, let us examine it
piece by piece. The first line declares the partition parameters, S, R, and L, and
states that they must be mutually disjoint.

The run() method is defined on lines 3–7. The effect declarations which pre-
cede it describe how the thread is allowed to access S, R, and L. Line 3 indi-
cates that any partition may be atomically read, whereas line 4 restricts atomic
writes to shared (S) and thread-local (L) data. Line 5 allows read-only (R) and
thread-local (L) data to be read non-atomically, but only L may be modified in
a non-atomic fashion, as indicated on line 6.

The start() method is defined next. Lines 9–12 indicate that the start()
method has the same effects as the run() method. Lines 13–17 define the effect
agreement for the start() method. These agreements highlight the important
difference between start() and run(): invoking run() does not actually start a
second thread. start(), however, performs its actions in parallel with the current
thread, and therefore it has to place constraints on the current thread. Note the
use of the par time span for these effect agreements, which guarantees that the
forbidden events will not occur in parallel with this thread, though they may
occur after the thread is known to have terminated.
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1 abstract class Thread@S@R@L disjo int (S ,R,L) {
2
3 !ARd(S ∪ R ∪ L)
4 !AWr(S ∪ L)
5 !Rd(R ∪ L)
6 !Wr(L)
7 abstract void run ( ) ;
8
9 !ARd(S ∪ R ∪ L)

10 !AWr(S ∪ L)
11 !Rd(R ∪ L)
12 !Wr(L)
13 par −Wr(S ∪ R ∪ L)
14 par −Rd(S ∪ L)
15 par −AWr(R ∪ L)
16 par −ARd(L)
17 par −Xfer (S ∪ R ∪ L)
18 abstract void s t a r t ( ) ;
19
20 }

Fig. 6. The definition of legal effects for a Thread. Using these effects guarantees that
all partitions modified by a thread are used in a safe fashion.

Line 13 guarantees that the parent thread does not write non-atomically to
any partition that the child thread has access to. Line 14 guarantees that the
parent thread does not try to read non-atomically from any partition which
the child thread will be writing to. Line 15 guarantees that the parent thread
will not make atomic writes to the R or L partitions. Line 16 guarantees that
the thread-local data is not atomically read by the parent thread. Finally, line
17 guarantees that no data is transferred out of the shared, read-only, or local
partitions while the thread is active.

At first, it might seem stringent to require that every Thread class describe
their data in exactly three partitions. However, due to the possibility of using
partition expressions as parameters, this is not a real limitation. For example,
to define a thread which has a shared partition S, no read-only partition, and
two local partitions, L1 and L2, one can extend Thread@S@∅@(L1∪L2).

6.1 Example: Map Reduce

Figure 7 shows a more involved example following the well-known map reduce
pattern [7]. The map reduce pattern uses multiple threads to perform some
mapping operation on each item in an array in parallel. After all the threads
have completed, it then performs a reduce action which combines the output of
the map stage.

The example contains two classes Main and MapThread. The Main class is given
a list of objects list, contained in some partition A, and creates a MapThread
instance for each item contained within. All of the threads share access to the O
partition, which is where they will output the mapped results. They also share
read-only access to the A partition containing the input array and its items.
Finally, a new partition L is created for each thread and used to store its local
data.
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class Main {
@A !Rd(A)
void mapreduce ( List@A l i s t ) {

new @O;
List@O r e s u l t s = new List@O ( ) ;
forkjoin {

for (Object@A obj : l i s t ) {
new @L;
MapThread@O@A@L mt =

new MapThread@O@A@L( ) ;
mt . inObject = obj ;
mt . r e s u l t s = r e s u l t s ;
mt . s t a r t ( ) ;

}
}
// reduce re su l t s ,
// without atomic

}
}

class MapThread@S@R@L
extends Thread@S@R@L

{
@L Object@R inObject ;
@L List@S r e s u l t s ;

!Rd(R∪L) !Wr(L) !ARd(S) !AWr(S)
void run ( ) {

new @T;
// Map inObject to tmp :
Object@T tmp = . . . ;
// Part i t ion t rans f e r :
Object@S tmp2 = (Object@S ) tmp ;
// Add to output array :
atomic { r e s u l t s . add ( tmp2 ) ; }

}
}

Fig. 7. Map-reduce example

The MapThread’s run() method begins by creating a temporary partition, T.
It then performs its mapping operation, creating an output value tmp located
in the partition T. In order to give the main thread access to tmp, it transfers
the object into the shared partition and adds it to the output list results. The
actual modification to the shared list must take place within an atomic section.

Note that, once the MapThreads have completed, the Main class is able to
access the results array and the objects within without synchronization. This is
due to the forkjoin region, which ensures that all parallel threads have finished,
and therefore limits the scope of the effect agreements by which Main is bound.

7 Related Work

The work in this paper is in many ways a synthesis of several existing techniques,
and therefore touches on many different bodies of work. As we do not have the
space to do justice to all of it, we focus here on that which is most closely related.

Guava [8] is a dialect of Java that does not permit data races by construction.
Guava’s constructs and type system embody several safe, best practices for multi-
threaded program. In this sense, it is similar to the restrictions we placed on the
Thread class, which require that each partition be categorized into one of several
pre-approved patterns.

RccJava [9] is a static type checker for Java programs which is able to detect
race conditions. Its type system is based on locks, and the tool has been used
to verify an impressive body of existing code. Our flow-sensitive effect analysis
is able to capture patterns that they cannot, however. For example, we allow
all objects to start as thread-local when first created, but transition to a shared
state when they become reachable from another thread.

SafeJava [10] enforces the consistent use of a deadlock-free locking discipline
through their ownership type system. The locking disciple is based on the own-
ership structure, and requires that an object’s owner be locked before the object
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can be accessed. This approach entangles encapsulation and threading, which
may require that one or the other be compromised. Fine-grained locking schemes,
for example, require a flat ownership structure, which then provides weaker en-
capsulation guarantees. In contrast, our approach strives to separate the parti-
tioning structure of the program from the thread safety check.

Effect systems have a long history in the literature, beginning with the work
of Lucassen and Gifford [11]. Our treatment of effects has much in common with
other object-effect systems [12,13] and in particular with the flow-sensitive effect
system described in Contextual Effect Systems [14]. One important distinction
of our work from prior work is that we include a mechanism for the programmer
to describe not only the effects of a method, but also the potential causes of
interference between methods.

Another approach to controlling effects is through the use of capabilities,
which limit how a particular reference can be used [15,16,17]. For example, such
capabilities might prevent writes or enforce uniqueness.

Our approach to partition transfer is similar in spirit to [18], which enforces
uniqueness not by forbidding aliases, but by requiring that all aliases are dead
at the point where an object must be unique.

8 Conclusion

In this paper, we have presented partitions, an abstraction for exposing the alias
structure of a program, along with an accompanying flow-sensitive effect system
with effect agreements. We also detail how our effect system can be used to check
that a multi-threaded program uses safe patterns for its synchronization.

Our long-term goal is to give programmers a simple and expressive way to
check semantic properties of their own design. Rather than encoding a specific
notion of correctness into the type system, we aim to develop generic mecha-
nisms, such as partitions and effect agreements, that can be reused for a variety
of purposes.
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Abstract. The increasing complexity of computer architectures has
made the approach of automatically generating code that is optimized for
the target machine a growing area of interest. Examples of such systems
are library generators, such as ATLAS, SPIRAL, and FFTW. To gen-
erate optimized code without manual intervention, these systems need
to know the values of certain hardware parameters, such as the cache
size or the number of registers. Current software such as X-Ray or LM-
bench can automatically determine some of these parameters for single
processor super-scalar machines but cannot determine multi-core specific
characteristics.

In this paper, we present P-Ray, a software suite that characterizes
hardware characteristics of multi-core architectures. Such characteristics
include the number of cores that share the L2 cache, the different pro-
cessors’ interconnection topologies, and the bandwidth-to-memory. Our
experiments show that, for several different architectures tested (desktop
and server), P-Ray generates accurate results.

1 Introduction

With multi-core processors as the current dominant trend, and architectures
more complex and less documented, finding hardware specifications is becoming
increasingly difficult. Knowledge of hardware features can be useful in driving
program optimization, such as in library generators. ATLAS [8], SPIRAL [5], and
FFTW [2] are examples of known library generators. ATLAS generates linear
algebra routines (BLAS) with a focus on matrix-matrix multiplication. SPIRAL
and FFTW are similar to ATLAS, but generate signal processing libraries. An-
alytical models have been [9], and are being [1] developed for library generators
that use hardware characteristics to reduce the search time. For example, AT-
LAS will use knowledge of the L2 cache size in order to determine optimal tile
sizes for matrix-matrix multiplication.
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Programs such as X-Ray [10], the suite reported in [6], and LMbench [4] try to
address the problem of automatically finding machine characteristics, but focus
on features of uniprocessor super-scalars. To our knowledge, there is no software
designed to automatically measure parameters of multi-core machines.

In this paper, we extend the existing set of hardware characterizing software
to multi-cores to find the number of caches shared by the cores, the processors’
interconnection topologies, the effective bandwidth and block size used by the
cache coherence mechanism.

Our experimental results for three different platforms show that P-Ray gen-
erates accurate results.

The remainder of this paper is organized as follows. Section 2 provides mo-
tivating examples for our work. Section 3 presents the different hardware char-
acteristics studied. Section 4 describes our implementation requirements and
details. Section 5 summarizes the experimental environment and discusses re-
sults. Section 6 describes related work. Section 7 proposes future work. Finally
in Section 8, we summarize our work and offer concluding remarks.

2 Motivation

Multi-Threaded Matrix-Matrix Multiplication

Library generators need a detailed knowledge of the architectural features of
the machine to generate high-performance code. To show that this is the case,
we ran an implementation of matrix-matrix multiplication (C = A ∗ B) using
POSIX threads on an Intel Core 2 Quad desktop that has four cores and two
L2 caches, each cache shared by two cores. Figure 1 shows two different possible
mappings for the matrices depending on thread affinity. For this experiment,
matrix C is split into four sub-matrices, and each thread is assigned to one

  I n  L2  cache  fo r  co r e s  1  &  2   I n  b o t h  c a c h e s  I n  L2  cache  fo r  co r e s  3  &  4

Thread 3  Thread 4

 Thread 2Thread 1 

A C 

B 

(a) Inefficient mapping

A 

B 

C 
 Thread 2Thread 1 

Thread 3  Thread 4

(b) Efficient mapping

Fig. 1. Data Locality depending on thread to core affinity
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quadrant. Matrices are of size 800 × 800 each, so that they fit in memory but
not in the L2 cache. With the mapping in Figure 1(a), both matrices A and B
need to be loaded in both L2 caches. Using the mapping of Figure 1(b), matrix
B can be split so that one half goes to one L2 cache and the other half goes to
the second. Our experimental results show that an inefficient mapping can run
up to 32% slower than an efficient one. To correctly map the threads to cores as
in Figure 1(b), it was necessary to use P-Ray to obtain the ID of the cores that
share the L2 cache. Thread affinity has been used in the past to pin a thread to
a core in order to avoid its mapping to a different core (and subsequent cache
trashing) after a context switch [7]. However, in current architectures where
several cores could share a cache, thread affinity can be used to place in L2 the
data shared by two threads. In most cases, this use of thread affinity can only be
done if the programmer has the information provided by a tool such as P-Ray,
by exhaustive search of all the possibilities, or if additional operating support is
provided.

3 Targeted Characteristics

In this section, we present each part of the hardware we want to characterize
and provide a high level description of the programs we propose to do so. Imple-
mentation specifics and detailed interpretation of the produced results will be
discussed in Sections 4 and 5.

3.1 Cache Coherence Protocol Block Size

Knowing the block size used by the coherence protocol can aid the programmer
in reducing false sharing misses. Other solutions already exist to measure a cache
line size, but are slower than the one we propose. By exploiting false sharing our
solution infers the block size in a fast and simple way.

Algorithm 1. Calculate block size
measure-size(core1,core2) {
char data[MAXLSIZES]
i ← 1
while i ≤ MAXLSIZE do

Start timing
Spawn thread-work(core1,0)
Spawn thread-work(core2,i)
Wait for threads to complete
Stop timing
Print i, timing
i ← 2 ∗ i

end while
}

thread-work(core,index) {
Set-thread-affinity(core)
i ← 0
while i ≤ SAMPLES do

data[index] ← data[index] + 1
i ← i + 1

end while
}
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Fig. 2. Coherence Block Size Benchmark

Figure 2 illustrates Algorithm 1, that is used to compute the block size.
Two threads are spawned to work on a shared array of characters1. Both

threads modify the shared data in order to induce coherence traffic. The data is
also read to ensure it resides in L1: some architectures implement write-through
write-no-allocate caches2.

Thread one will always access the first element of the array. Thread two
starts accessing the second element of the array; however, with each iteration, it
accesses an element which is further apart from the first one.

At first, both threads will access the same cache line and have poor per-
formance due to false sharing; as the spacing between accesses increases, the
performance stays poor until both accessed values are on two separate cache
lines. At this point, execution time decreases drastically and we automatically
infer the coherence block size.

This algorithm can tell us the block size of different levels of cache. When the
threads are mapped to cores that share a L2, this algorithm measures the block
size of L1. However, when threads are mapped to cores that do not share a L2,
this algorithm measures the block size of L2. When we do not have information
about the mapping of a core to the caches, the second thread can be mapped to
different cores in the system. By comparing the execution times of the different
mappings, P-Ray can determine whether the block size corresponds to the L1
or L2 cache. When there is no coherency between the caches, this mechanism
cannot determine the block size.

3.2 Cache Mapping

With this program we find the number of caches at a given level on the system
and cores that share them.

For this to work, knowledge of the cache size is required for the level we are
interested in. For completeness, P-Ray includes a program to approximate it;
however cache size can also be measured with other programs [4,10]. Algorithm 2
calculates the number of caches. Each thread accesses an array approximately
sized to L2 in order to cause misses between cores that share the same cache.
This array is initialized as described in Algorithm 5 below. The first step of the
algorithm is to measure the time it took for one thread to read the elements of
this array when running in isolation. This time will be used as a reference to
interpret the results.
1 In most architectures, a character is a basic type of size 1 byte.
2 Sun Niagara T1:
http://opensparc-t1.sunsource.net/specs/OpenSPARCT1 Micro Arch.pdf

http://opensparc-t1.sunsource.net/specs/OpenSPARCT1_Micro_Arch.pdf
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Algorithm 2. Calculate cache mapping

cache-mapping(core1, core2) {
i ← 1
while i ≤ SAMPLES do

Spawn thread-work(core1,1)
Spawn thread-work(core2,2)
Wait on thread barrier
Wait for threads to complete
i ← i + 1

end while
}

thread-work(core, id) {
Set-thread-affinity (core)
Pointer p ← Initialize local data
Wait on thread barrier
Start timing
for i ← 0 to SIZE do

p ← ∗p
end for
Stop timing
if id = 1 then

Print core pair, timing
end if
}

Then, we run a similar test with two threads. Each thread sets its affinity to a
different core, initializes its workset, and waits on a barrier for the other thread.
Once both threads leave the barrier, we measure the time it takes for the threads
to read their arrays while running simultaneously. If the measured execution time
is higher than the reference time, we conclude that both threads ran on cores
that share a cache, and that performance degraded due to the worksets of the
two threads competing for cache space. If it is the same, we instead infer that
both threads ran on separate caches.

This test is run for all pairs of cores on the system. After gathering all the
results, P-Ray determines the number of caches on the system and the ID of the
cores that map to them.

3.3 Processor Mapping

Here is a solution to determine the processors’ interconnection topology.
Algorithm 3 uses two threads sharing a workset the size of the L1 cache, but

running on separate cores. This algorithm functions by having one thread that

Algorithm 3. Calculate processor mapping

thread-work1(core id2) {
Set-thread-affinity (core id2)
p ← InitData(data,size,stride)
Wait on thread barrier
}

Require: Pointer p is global
thread-work2(core id1) {
Set-thread-affinity (core id1)
Wait on thread barrier
Start timing
for i ← 0 to L1SIZE do

p ← ∗p
end for
Stop timing
Print (core id1,core id2), timing
}
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reads and modifies its workset (i.e. brings it into L1) and measuring the time it
takes for the second thread to read the data. By comparing the different access
times of all possible pairs of cores, this program will determine the different
relative distances between all cores.

3.4 Effective Bandwidth

This is the solution used to measure the available bandwidth for one core to
memory by saturating it from one or several threads. In the following description
the term “memory” will be used both for memory and caches unless otherwise
specified.

Algorithm 4. Calculate bandwidth

Iteration1() {
Start timing
for i ← 0 to N ITER do

p ← ∗p
end for
Stop timing
Print timing
}

Iteration2() {
Start timing
for i ← 0 to N ITER/2 do

p1 ← ∗p1
p2 ← ∗p2

end for
Stop timing
Print timing
}

We use an array that does pointer chaining with multiple entry points (this
data structure and its initialization are described in Algorithm 5 and Figure 3
below). The offset between two entry points is here set to the size of a memory
page. The stride between accesses is set to the smallest multiple of the page size
that avoids overlap between chains.

To target a specific level in the memory hierarchy, we control the number of
elements in the pointer chain before the loop back. We ensure that any reuse
would happen after the data was displaced from levels closer to the core. More-
over, when measuring memory bandwidth, L2 is flushed after initialization.

Single-threaded bandwidth. The first step is to measure the bandwidth to
memory for an isolated thread.

In the first iteration, the program traverses the array through a single entry
pointer, as shown by Iteration1 in Algorithm 4. The code in Iteration1 serializes
array accesses, as the access to the next element of the array cannot be issued
until the pointer load returns. The second iteration of this program traverses
the array through two entry pointers, as shown by Iteration2 in Algorithm 4.
This loop has two independent accesses that can be sent simultaneously to the
memory. However, accesses in an iteration depend on the accesses of the previous
iteration for the same pointer chain due to the loop-carried dependences for
all pointers. The program proceeds by increasing the number of independent
requests. By measuring the execution time of these loops, P-Ray can determine
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the number of requests that a core can have in-flight as well as its saturation
point.

To calculate effective bandwidth, we use the following equation: Effective
Bandwidth for program = ClockFreq∗ReadSize

CyclesPerRead , where CyclesPerRead is obtained
by dividing the Execution Cycles at any of the saturation points by the number
of iterations in our access loop. ClockFreq is the clock rate for the given core.
ReadSize is the size of the cache line being read.

Multi-threaded bandwidth. We then look at the memory bandwidth when
multiple cores are sending requests simultaneously. For that, we use Algorithm 4
in parallel over multiple threads. When considering a cache, we limit ourselves
to running the program with threads on the cores that share that cache. When
considering memory, we run the program with any number of cores in the system.

To better understand the impact of concurrent access on the bandwidth for
the targeted memory, we test different numbers of threads: we test anywhere
between two and the number of cores sharing the targeted memory.

4 Implementation

4.1 Requirements

Our software has two major requirements: i) a high resolution wall timer (e.g. on
Intel machines we use the RDTSC instruction to get timing in clock cycles [3])
and ii) library and operating system support to set thread to core affinity.

4.2 Implementation Details

Pointer chaining. The data structure used by most of our solutions is an
array of pointers where each element of the array contains the address to the
next element to access when traversing the structure. A similar data structure
has been used by X-ray [10] and LMbench [4], but we initialize it using our own
techniques.

A picture of the data structure is shown in Figure 3, and the algorithm for
its initialization is shown in Algorithm 5. The initialization algorithm takes four
arguments: i) data is a pointer to the allocated memory, ii) size is the size in
memory of the data structure, iii) stride is the distance between two consecutive

Fig. 3. Pointer chaining: General case
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accesses, iv) offset is the distance between two entry points, and v) entries is
the number of entry pointers.

Our initialization routine uses a stride larger than page size to circumvent
the hardware prefetcher and offset larger than the cache line size to prevent
consecutive entry pointers from sharing a cache line. Since some experiments
need to run for a large number of iterations, we limit the size of the array by
having the last element of the chain point back to the first element (bottom lines
of Algorithm 5).

Algorithm 5. Pointer Chaining
Init-data(data,size,stride,offset,entries)
i ← 0
while i < entries do

uoffset ← i ∗ offset
Init-entry(data,size,stride,uoffset)
i ← i + 1

end while

Init-entry(data,size,stride,offset)
i ← offset
while i ≤ size − stride do

data[i] ←&data[i + stride]
i ← i + stride

end while
data[i] ← &data[offset]

This structure has many advantages: i) it minimizes overhead, as no address
has to be computed, ii) it allows for easy ways to experiment with different access
patterns by tuning the initialization parameters, and iii) it prevents compiler
optimizations that could interfere with performance measurements.

Loop Overhead. The loop overhead should not be considered in the timing.
Thus, in order to minimize the control overhead, the main data access loops
are unrolled by a factor of 512. This value was chosen because it reduces loop
overhead without adding substantial instruction cache pressure. Additionally, we
time an empty loop to remove the control overhead from our timing. This way,
the final time reflects the actual access times.

Code Reordering. In order to prevent the compiler from performing any re-
ordering of instructions within the timed kernel, volatile data modifiers are used.
We were careful to not excessively mark every variable volatile when used outside
of timed kernels, as this can hurt performance substantially.

System Noise. To deal with the problem of system noise from the operating
system and other user applications, we take numerous timing samples and use
the minimum timed value as our result. This compensates for other programs
and daemons running on the system.

5 Evaluation

5.1 Experimental Environment

We tested on three different architectures described in Table 1.
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Table 1. Architectures tested

X86-64 Intel X86-64 Intel Core 2 Sun UltraSPARC
Xeon Harpertown Quad Kentsfield T1 Niagara

Num cores 8a 4 8 (32 threads)
Clock Rate (GHz) 2.0 2.4 1.2

L2 Cache size (MB) 6 4 3
OS (Kernel) Fedora 8 (2.6.24) Fedora 8 (2.6.24) Solaris 10
Compiler GCC 4.1.2 GCC 4.1.2 GCC 3.4.3

a Composed of two four-core chips

5.2 Experimental Results

Coherence Block Size. Figure 4 illustrates the results for Algorithm 1. On
the Intel machines (Figure 4(a) and 4(b)), the threads were mapped to cores not
sharing the L2 cache. The results show that, on the Intel machines, there is a
notable time decrease as soon as the two accesses are 64-bytes apart. From this,
we conclude that the coherence protocol on these machines uses 64-byte blocks.

On the Sun UltraSPARC T1 (Figure 4(c)), we observe that the largest per-
formance difference occurs at the 16-byte block size, which corresponds to the
size of the L1 data cache block.

To show block sizes at the different cache levels and communication laten-
cies, we evaluated different mappings of threads to cores. Figure 5 shows the
results for the Intel Harpertown architecture, which has eight cores. We first
mapped the threads to the two cores on the same dual-core. We then mapped
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Fig. 4. Coherence Block Size Results
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Fig. 5. Coherence block size and communication latency

the threads to cores on the same chip but not the same cache. Finally we mapped
the threads to cores on different chips. We see that for this machine, while the
block size is always 64-bytes, the different values of execution time show the
different communication latencies among the different cores. There is a higher
communication latency when the communicating cores are on different chips,
and the communication cost is lower when the cores are closer together.

Cache Mapping. Figure 6 illustrates the results for Algorithm 2. The results
clearly show which of the cores share a cache.
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Fig. 6. Cache Mapping
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By looking at the pairs of cores with the highest access times, we see that for
the Harpertown (Figure 6(a)), core pairs of ID (1−3),(2−4),(5−7), and (6−8)
share a cache, and for the Kentsfield (Figure 6(b)), the core pairs ID (1−2) and
(3 − 4) share a cache.

For the Sun UltraSPARC (Figure 6(c)), we see that all core pairs have the
same performance. When comparing this performance with the single thread
reference time, we realize that all core pairs perform poorly and, thus, we infer
that all cores share the same cache.

Processor Mapping. Figure 7 illustrates the results for Algorithm 3. For the
Harpertown (Figure 7(a)), we see three different distances. First, we have the
pairs of cores that are the closest. These pairs correspond to those that share
a cache in Figure 6(a): (1 − 3),(2 − 4),(5 − 7), and (6 − 8). Then we have two
groups of four cores, where communicating between pairs in a group is faster
than communicating between cores in different groups: ((1 − 3)(5 − 7)) and
((2 − 4)(6 − 8)). Those results confirm what is found on the design of the two
architectures: the machine is composed of two four-core chips, with each four-
core chip composed of two combined dual-cores. For the Kentsfield (Figure 7(b)),
we confirm that pairs of cores that share a cache communicate faster.

For the Niagara (figure 7(c)), results show that all cores are equidistant, which
confirms the results obtained for the cache mapping.

Effective L2 Bandwidth. Figure 8 illustrates the results for Algorithm 4.
We show data for each platform when a thread is run in isolation and when
two or more threads run concurrently. By looking at results for one thread, we
observe that, for all Intel machines, the execution time decreases as the number
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Fig. 8. Effective Bandwidth to L2 Results

Table 2. Effective Bandwidth to L2

Machine L1 Block Cycles per Access (concurrent accesses) Effective Bandwidth
GB/s

# threads 1 2 4 8 1 2 4 8
Harpertown 64B 6.18 (9) 7.54 (9) - - 19.29 15.81 - -
Kentsfield 64B 6.05 (6) 6.50 (9) - - 23.65 22.01 - -
Niagara 16B 25.00 (6) 21.66 (1) 21.64 (1) 21.66 (1) 0.71 0.83 0.83 0.83

of independent accesses that can be issued simultaneously increases. There is
a saturation point where the execution time remains constant. The smallest
number of independent accesses where the saturation point is reached tell us the
number of requests that can be served in parallel. When two or more threads run
concurrently, the bars have a similar trend but have a slightly higher execution
time.

Figure 8(d) shows the execution time for the program running without remov-
ing the loop overhead. The improvement in execution time looks like it comes
from more parallelism between memory requests. In fact, the Niagara does not
have branch prediction; the reduction in execution time is only due to the de-
crease in number of iterations (i.e. number of branches per access).

Finally Table 2 shows the bandwidth computed using the formula shown in
Section 3.4 for the different number of threads.

Effective Memory Bandwidth. Figure 9 illustrates the results for Algo-
rithm 4. For the Intel processors (Figure 9(a) and 9(b)), as the number of cores
accessing memory increases, we observe a substantial decrease in bandwidth.
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Fig. 9. Effective Bandwidth to Memory Results

Table 3. Effective Bandwidth to Memory

Machine L2 Block Cycles per Access (concurrent accesses) Effective Bandwidth
GB/s

# threads 1 2 4 8 1 2 4 8
Harpertown 64B 52.09 (8) 53.60 (8) 93.92 (9) 183.30 (9) 2.29 2.22 1.29 0.65
Kentsfield 64B 32.03 (8) 56.49 (10) 121.02 (10) - 4.47 2.53 1.18 -
Niagara 64B 111.62 (10) 107.61 (8) 108.45 (8) 110.14 (8) 0.64 0.67 0.66 0.65

On the Niagara (Figure 9(c)), we observe similar results as for the L2 cache; the
bandwidth available to the cores stays the same regardless of the number of con-
current requests. Finally, Table 3 shows the values for the effective bandwidth.

6 Related Work

As discussed in the introduction, there are other software suites such as LM-
Bench [4], Saavedra [6], and X-Ray [10] that measure architectural characteristics
and, while they focus on single core features, P-Ray focuses on multi-core specific
features. Benchmark suites like SPEC OMP3 are designed for shared memory

3 Standard Performance Evaluation Corporation. http://www.spec.org/omp

http://www.spec.org/omp
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multiprocessors. Such benchmarks only give a relative performance scale, but do
not give any information about the characteristics of the targeted system.

7 Future Work

We are looking into additional characteristics to target whith this suite. While
synchronization contention is mostly a library/OS issue, it could be a useful
feature. It would be also be beneficial to have a similar characterizing software
for heterogeneous systems such as the Cell or GPU-based architectures.

From feedback received, there is a need for these multi-core characteristics
to be found online as well as offline. This would be beneficial for projects such
as adaptable systems with dynamic hardware features[5]. If we are to do online
processing for certain characteristics, execution time will have to be addressed
to minimize the overhead of using our framework.

It would be interesting to test our software suite on additional hardware ar-
chitectures, such as IBM Power6 and Intel Itanium 2.

8 Conclusion

We have developed a suite of conceptually simple solutions that focuses on multi-
core characteristics. Our suite returns results that are in accordance with vendor
specifications when available and coherent when they are not.

The main difference between P-Ray and existing software is that P-Ray of-
fers a unique view of the system design, showing the position of the different
cache levels and relative distances between (virtual) cores in the system. With
this information at hand, a programmer has the ability to use more efficient
hardware-aware optimizations in their applications. In addition, we provide a
faster means to calculate a cache block size by exploiting false sharing. Finally,
the execution and analysis framework is extensible, allowing for the addition of
further hardware characterization.
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Abstract. As memory hierarchy becomes deeper and shared by more proces-
sors, locality increasingly determines system performance. As a rigorous and
precise locality model, reuse distance has been used in program optimizations,
performance prediction, memory disambiguation, and locality phase prediction.
However, the high cost of measurement has been severely impeding its uses in
scenarios requiring high efficiency, such as product compilers, performance de-
bugging, run-time optimizations.

We recently discovered the statistical connection between time and reuse dis-
tance, which led to an efficient way to approximate reuse distance using time.
However, not exposed are some algorithmic and implementation techniques that
are vital for the efficiency and scalability of the approximation model. This pa-
per presents these techniques. It describes an algorithm that approximates reuse
distance on arbitrary scales; it explains a portable scheme that employs memory
controller to accelerate the measure of time distance; it uncovers the algorithm
and proof of a trace generator that can facilitate various locality studies.

1 Introduction

In modern computers, memory hierarchy is becoming deeper and shared by more pro-
cessors; system performance is increasingly determined by program data locality. Reuse
distance, also called LRU stack distance, is a widely used model for locality analysis.
Compared to other locality metrics such as cache miss rate, reuse distance is hardware
independent, cross-input predictable, and more precise in characterization [7,12,20]. It
has been used in system performance analysis [6,9,10], performance prediction [12,19],
program analysis and optimizations [2, 8, 20].

On the other hand, reuse distance is also one of the most expensive locality models to
build. Despite decades of enhancement (e.g., [7,13]), the measurement still slows down
a program’s execution by hundreds of times [16]. The high cost impedes the practical
uses of reuse distance: It would make offline performance debugging and locality analy-
sis painfully slow or even infeasible for long-running applications, and prevent the uses
in runtime locality optimizations. The high cost is inherent in the definition of reuse
distance—the number of distinct data accessed between this and the previous access to
the same data item [7]. The requirement of being “distinct” implies that the measure-
ment has to recognize and filter out all the repetitive accesses in an interval, which is
often costly.

J.N. Amaral (Ed.): LCPC 2008, LNCS 5335, pp. 202–216, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Recently Shen et al. discovered the strong statistical connection between reuse dis-
tance and time distance—the number of data accessed between this and the previous
access to the same data item (e.g., the last “a” in “a b b c a” has time distance of 4).
This discovery gives rise to an algorithm that approximates reuse distance histograms
from time distance histograms. Given that time distance is much cheaper to measure,
the algorithm speeds up reuse distance measurement significantly [16].

However, it remains un-exposed how to implement the algorithm efficiently. In par-
ticular, this paper focuses on the problems on three folds.

The first is a scale problem. The algorithm described previously requires the finest
granularity of distance histograms [16]. Every bar in a histogram must have width of
1—that is, all references in a bar have to have the same reuse (or time) distance. Such
a scale requires the recording of and computation on millions of distance bars for a
typical execution, making the algorithm not applicable to long running programs. How-
ever, extending the algorithm to support histograms of arbitrary scales is challenging.
A basic extension has a too high time complexity (shown in Section 2.2). In this paper
(Section 2.3), we describe some algorithmic changes to enable the removal of redundant
computations, lowering the time complexity by orders of magnitude.

The second problem addressed in this paper is the overhead in time distance measure-
ment. Although time distance is less costly to measure than reuse distance, a straight-
forward implementation still slows down a program’s execution significantly, forming
the bottleneck in our extended scalable algorithm. This paper (Section 3) presents an
optimization that reduces the measurement overhead by more than a factor of 3 with
the help of memory management unit (MMU). The optimization differs from previ-
ous MMU-based techniques in that it avoids the direct access to system registers and
therefore is more portable.

Finally, this paper (Section 4) presents a trace generator, which produces data refer-
ence traces that satisfy the given requirement of reuse distance histograms. We are not
aware of any prior systems that offer such a function. This generator not only facilitates
the comprehensive evaluation of the reuse-distance approximation algorithm, but also
can serve as a tool for other locality studies.

2 Algorithm Design for Scalability

This section reviews the statistical connection between time distance and reuse distance,
identifies the scalability bottlenecks in a basic algorithm for reuse distance approxima-
tion, and then presents our changes to the algorithm to reduce the cost by orders of
magnitude, making the algorithm scalable to long-running programs.

2.1 Review of the Connection between Time Distance and Reuse Distance

The key connection that bridges reuse distance and time distance is the following equa-
tion [16]:

p(∆) =
∆∑

τ=1

T∑
δ=τ+1

1
N − 1

p
T
(δ), (1)
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where, p(∆) is the probability for a randomly chosen data item (e.g., a variable) of a
program to be referenced in an interval of length ∆, and p

T
(δ) is the probability for a

randomly chosen data reference to have time distance of δ. This connection suggests
that if we know all p

T
(δ)s—that is, the time distance distribution of an execution—we

will be able to compute all p(∆)s.
With p(∆), the reuse distance can be computed easily. For a reuse interval of length

∆, the probability for its reuse distance to be k in an execution is

p(k, ∆) =
(

N
k

)
p(∆)k(1 − p(∆))N−k, (2)

where, N is the total number of distinct data items in a program. The intuition behind
this equation is that p(k, ∆) is the probability for k distinct data items to appear in a
∆-long interval. This probability is like the probability to see k heads when N coins
are tossed, with each coin’s probability of showing heads to be p(∆)1. This probability
obeys a binomial distribution.

It is easy to see that, with p(k, ∆), the probability for a data reference to have reuse
distance of k is

pR(k) =
∑
∆

p(k, ∆) · pT (∆). (3)

2.2 Basic Algorithm for Approximating Reuse Distance Histograms

A program execution often conducts a large number of data references. A typical way to
concisely characterize reference locality is to use reuse distance histograms instead of
individual reuse distances [2, 7, 12, 20]. Figure 1 illustrates a reuse distance histogram.
A bar in the graph shows the fraction of the memory references whose reuse distances
are in a certain range. For the same reason, individual time distances are usually not
affordable; time distance histograms are used.

Therefore, extending the equations in Section 2.1 to handle histograms is vital for
practical uses. A straightforward way to do the extension is to consider that all the
references in a bar have the same p(∆), denoted by P (bi) (i = 1, 2, · · · , LT for a time
distance histogram that has LT bars). So, the probability for k variables to be accessed
in a reuse interval contained in bar i is

P (k, bi) =
(

N

k

)
P (bi)k(1 − P (bi))N−k.

And the probability for a random data reference in an execution to have reuse dis-
tance of k is

PR(k) =
∑

i

P (k, bi) · PT (bi).

Therefore, the key step in the extension is to compute P (bi) from a time distance
histogram. If we assume that reuse distances are in a uniform distribution inside a bar,

1 This analogy assumes that two data items are independent in terms of the probability for them
to be accessed in a given interval; this assumption has shown little influence to reuse-distance
approximation [16].
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Fig. 1. A log-scale reuse distance histogram

P (bi) can be approximated by p(
←−
bi +

−→
bi

2 ) (where
←−
bi and

−→
bi are the lower and upper

bounds of all the reuse distances in the ith bar)2. Under this assumption, P (bi) can be
computed by Equation 1 as follows:

P (bi) =

←−
bi+

−→
bi

2∑
τ=1

T∑
δ=τ+1

1
N − 1

pT (δ).

Clearly, the sum of pT (δ) can be converted to a sum of PT (bi)—the time distance
histogram.

This basic algorithm has high cost, mainly due to the calculation of P (bi) and
P (k, bi). The time complexity to compute all of P (bi)s is O(L3

T ) (recall that LT is
the number of bars in a time distance histogram), and the complexity for all P (k, bi)s is
a factorial of N . We have to lower the complexity before the algorithm can be applied
to real programs.

2.3 Scalable Algorithm

The basic algorithm contains some repetitive computations, especially in the computa-
tion of P (bi). We make two changes to the algorithm to remove the redundant compu-
tations and lower the complexity.

The first change is based on a well known fact that a binomial distribution can be
approximated by a Normal distribution. For further speedup, we use an offline generated
table to store the standard Normal distribution. The computation of P (k, bi) is reduced
to a table-lookup operation with O(1) complexity.

The second change is to decompose the computation of P (bi) into 3 sub-equations
with repetitive computations removed. The 3 sub-equations are as follows:

P (bi) = P2(bi)

/
2 +

i−1∑
j=0

P2(bj) (4)

2 This assumption is also used in the scalable algorithm; its influence to accuracy is evaluated
by the experiments in Section 5.
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P2(bi) =

⎡⎢⎣ LT∑
j=i+1

P1(bj)
−→
bi −←−

bi−→
bj −←−

bj

−→
bj−1∑
τ=

←−
bj

1
τ − 1

⎤⎥⎦
+ P1(bi)

1
−→
bi −←−

bi

−→
bi−1∑

τ=
←−
bi+1

τ −←−
bi

τ − 1
(5)

P1(bi) =
←−
bi +

−→
bi − 3

2(N − 1)
PT (bi). (6)

The detailed derivation of these sub-equations is too complex to be included in this
paper. We give a brief explanation and refer the reader to our technical report [15]. Re-

call that P (bi) can be approximated by p(
←−
bi+

−→
bi

2 )—that is, the probability for a variable

to be accessed in an interval whose length is
←−
bi +

−→
bi

2 . This probability can be viewed as
the probability for the variable’s last access prior to a random time point t to be after

t −
←−
bi +

−→
bi

2 , i.e., to be in the dark segment illustrated in Figure 2. This dark segment can

be regarded as a sequence of sub-segments3, [t−
←−
bi +

−→
bi

2 , t−←−
bi ), [t−←−

bi , t−←−−
bi−1), · · · ,

[t −←−
b1 , t). We use P2(bj) to denote the probability that the variable’s last access prior

to t occurs in a sub-segment, [t −←−−
bj−1, t −←−

bj ), which leads to Equation 4.

t-
−→
bi t-

←−
bi t-

←−−
bi−1 . . . . . . t-

←−
b1 tt-

←−
bi+

−→
bi

2

Fig. 2. Illustration of P (bi)

The probability P1(bi) in Equations 5 and 6 is the probability that for a randomly
chosen variable v, a random time-point t is in one of v’s reuse intervals whose time
distance is in range [

←−
bi ,

−→
bi ). Equations 5 and 6 come from a complex mathematical

deduction, which examines the different sections of a reuse interval and the different
relations between reuse distance and time distance histograms [15].

This extended algorithm enables two simplifications. First, through the following
commonly used mathematical approximation (m1, m2 and i are positive integers):

m2∑
i=m1

1
i
� ln

m2 + 0.5
m1 − 0.5

,

Equation 5 can be simplified to the following form:

P2(bi) �
⎡⎣ LT∑

j=i+1

P1(bj)
−→
bi −←−

bi−→
bj −←−

bj

ln

−→
bj − 1.5
←−
bj − 1.5

⎤⎦ +

P1(bi)−→
bi −←−

bi

[
−→
bi −←−

bi − 2 − (
←−
bi − 1)ln

−→
bi − 1.5
←−
bi − 0.5

]
3 This work uses logical time: the number of memory references since program starts.
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Second, Equation 4 reveals the relation between P (bi) and P (bi−1) as follows:

P (bi) = P (bi−1) +
P2(bi−1) + P2(bi)

2
.

So, given all P2(bi)s, the time complexity of obtaining all P (bi)s is O(LT ). Appar-
ently, the time complexity of computing all P2(bi)s is O(LT

2). Therefore, the com-
plexity for computing all of P (bi) is O(LT

2). With the simplification to P (k, bi) by
the first change, the time complexity of this extended algorithm is O(LT

2), orders of
magnitude lower than that of the basic algorithm.

3 Measurement Acceleration for Efficiency

To efficiently implement the approximation model, we use a portable scheme to take ad-
vantage of MMU. This scheme accelerates time distance measurement—the bottleneck
in the scalable algorithm—by more than a factor of 3.

The measurement of time distance requires detailed recording of memory references.
We use a binary instrumentation tool, PIN [11], to insert a function call for recording
the memory address after each memory reference. Algorithm 1 shows the basic imple-
mentation of the recording procedure. It first stores the accessed memory address into a
buffer and then checks if the buffer is full. When it is full, a procedure, ProcessBuffer(),
is invoked to calculate the time distances in the buffer and record them into a histogram.

Algorithm 1. Basic measurement of time distance
Procedure RecordMemAcc (address)

buffer [index++] ⇐ address;
if index == BUFFERSIZE then

ProcessBuffer ( ); // Calculate and record reuse distances and reset index to 0
end if

end

The basic implementation slows down a program’s execution significantly. To reduce
the overhead, we optimize the procedure RecordMemAcc( ) by removing the branch
and function call in it with the help of MMU. When the instrumented program starts,
through MMU, the last page of the array buffer is set to be non-writable. When the
program tries to write an address to that page, a page access violation signal is trig-
gered. In the customized signal handler, the procedure ProcessBuffer() is invoked and
the buffer index is reset. This optimization removes the necessity for buffer boundary
check, reducing procedure RecordMemAcc( ) to just one statement as shown at the top
of Algorithm 2.

Zhao et al. used memory management unit to remove similar branches in detailed
execution profile [18]. Our scheme is different in how to resume the execution in the
signal handler. The previous work resets the register that contains the buffer index to
zero so that after returning from the signal handler, the program can write to the first
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Algorithm 2. Portable MMU-based optimization for time distance measurement 1
Procedure RecordMemAcc (address)

buffer [index++] ⇐ address;
end

// Procedure to handle memory access fault
// Initially, the last page of buffer is locked
Procedure sig SEGV H (siginfo)

faultAddr ⇐ GetFaultAddress (siginfo);
if IsInLastPage(faultAddr, buffer) then

ProcessBuffer ( ); // Calculate and record reuse distances
OpenLastPage (buffer); // Open the access permission of the last page
Close2ndToLastPage (buffer); // Close the access permission of the second to last
page

else if IsIn2ndToLastPage(faultAddr, buffer) then
ProcessBuffer ( );
Open2ndToLastPage (buffer);
CloseLastPage (buffer);

else
. . .

end if
index = -1; // RecordMemAcc() will make it zero right after the current instruction
finishes

end

element of the buffer. The shortcoming of the scheme is the portability problem: The
registers that contain the buffer index may differ on different platforms.

We address that problem using a portable scheme, shown by procedure sig SEGV H
in Algorithm 2. Initially we close the permission to access the last page of buffer. The
signal handler opens the permission of the last page and closes the second to last page.
(The variable for the buffer index is reset.) The execution continues until trying to access
the second to last page of buffer. The signal handler then opens the second to last page
and closes the last page again. By using the last two pages alternatively to signal the
end of buffer, this scheme removes the necessity for modifying specific register values.

The optimization accelerates time distance measurement by 3.3 times as shown in
Section 5. The significant benefits come from three sources. First, it directly reduces the
number of instructions and branch miss predictions in the recording procedure. Second,
it reduces the overhead of the dynamic instrumentor. The instrumentor, PIN, uses a
virtual machine equipped with a just-in-time compiler for dynamic instrumentation.
Fewer instructions in the analysis code leads to fewer computations in the virtual ma-
chine. Third, the optimization enables the inlining of the recording procedure. PIN is
strict in inlining since the instrumented procedures usually have a large number of call
sites. The control flow in the basic implementation prevents PIN from inlining the pro-
cedure, causing high calling overhead. Function calls in PIN are especially expensive:
At an function call, PIN calls a bridge routine that saves all caller-saved registers, sets
up analysis routine arguments, and finally calls the target function [11].
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This scheme provides an architecture-independent way to employ MMU for code
optimization. It suggests the potential of serving as a general optimization technique
for a compiler to apply.

4 Trace Generator for Evaluation

Although this work is on measuring locality from data accesses, this section discusses
the reverse problem—how to generate data traces from locality. The initial motivation
is for the evaluation of our locality approximation model: Although the model demon-
strates high accuracy for SPEC CPU2000 benchmarks, the reuse distance histograms of
those programs fall into several categories, covering only a small portion of the entire
histogram space. The capability to generate data access traces that satisfy given local-
ity requirements is desirable: We can freely use various traces to evaluate the locality
model comprehensively. Although this capability provides conveniences for many lo-
cality studies, we are not aware of any prior explorations on it.

This work constructs a stochastic trace generator. Its inputs include a reuse distance
histogram P , and the length T and the number of distinct variables N of the trace to be
generated; its output is a data reference sequence satisfying the input requirements.

4.1 Algorithm

Algorithm 3 contains the pseudo code of the trace generator. For the purpose of clarity,
the following explanation assumes that the bars in the histograms are of unit width.

Algorithm 3. Algorithm to generate a data trace from a reuse distance histogram
Procedure GenTrace (RDH[], N, T, trace[])

// RDH[]: the given reuse distance histogram;
// N: the number of distinct data;
// T: the length of the trace to be generated;
// trace[]: the array to contain the generated trace;
BuildCH (RDH, CH); // build cumulative histogram from RDH

// fill the first N positions
for i=0 to N-1 do

trace[i] = var[i];
end for

// fill the rest
for i=N to T do

a = random();
s = findSegment (a, CH); // find the segment in CH that contains a
r = RDH[s];
trace[i] = findData (trace, r); // find the data having reuse distance of r at the end
of current trace

end for
end
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width as 1)

(b) Cumulative distribution of the his-
togram in (a)

Fig. 3. A histogram and the accumulative distribution

The first step is to construct the cumulative distribution of the given reuse distance
histogram. The probability for a data access to have reuse distance no longer than i is
calculated as Ci =

∑i
j=0 Pj , where, Pj is the probability for a data access to have

reuse distance of j—that is, the Y-axis value at reuse distance j in the reuse distance
histogram.

The second step is to fill a variable into each position in a T -element trace. The first
N positions are simply filled by all the variables. (The order does not matter.) To explain
the process of filling the remaining positions, we use the example shown in Figure 3. In
the example, there are 8 possible reuse distances 0 to 7. Their cumulative probabilities
Ci (i=0,1,. . .,7) separate the range [0, 100%] into 8 segments, [0, C0], (C0, C1)], . . .,
(C6, C7] (apparently C7 = 100%), shown on the Y-axis of the cumulative histogram.

Every time, a random number α is generated whose value is between 0 and 1. If α
falls into segment (Ci−1, Ci], the trace generator uses i as the desired reuse distance of
the current position and identifies the corresponding variable and put it into the current
position. For example, if the current data trace is “. . . a b c b c” and α is 0.05, the
segment that α falls into is (C1, C2]. Therefore, the reuse distance of the current position
should be 2. Because “a” satisfies the distance requirement, an instance of “a” is put into
the current position.

4.2 Proof of Correctness

This section outlines the proof that the trace generated by Algorithm 3 satisfies the input
requirements.

Theorem 1. In a trace generated by Algorithm 3, the statistical expectation of the num-
ber of accesses that have reuse distance of i is (T ∗ Pi) (i=0,1,. . .,N-1)—that is, the
statistical expectation of the reuse distance histogram of the generated trace is equal to
the given histogram. (T : the number of total accesses; Pi: the value of the ith bar in
the given reuse distance histogram.)

To see the correctness of the theorem, notice that the probability for α to fall into the
ith segment in the cumulative reuse distance histogram is equal to Pi. This is because
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α is uniformly distributed between 0 and 1, and the length of the ith segment is Pi.
So, if the trace generator follows Algorithm 3, the probability for a generated data to
have reuse distance of i equals Pi; the conclusion thus follows. (The proof assumes
T >> N , which holds for most program executions.)

Finding the data with reuse distance of i takes O(logN) time when we organize
the last access to each data in a binary tree. The time complexity of the whole trace
generation is therefore O(T logN).

5 Evaluation

Our evaluation platform is an Intel Xeon 2GHz processor running Fedora Core 3 Linux.
We use PIN 3.4 for instrumentation and GCC 3.4.4 (with “-O3”) as the compiler. We
employ Performance Application Programming Interface (PAPI) [3] to read hardware
performance counters.

This section first presents the benefits from the portable MMU scheme in accelerat-
ing the measurement of time distance, then reports the efficiency and accuracy of the
scalable algorithm on real programs, and finally shows the accuracy of the trace genera-
tor, along with its uses in the evaluation of the reuse distance approximation algorithm.

5.1 Time Distance Measurement

Table 1 shows the effect of the portable MMU-based optimization on time distance
measurement. The 9 benchmarks are randomly chosen from SPEC CPU2000 suite.
We use their train runs for measurement. The second column in the table contains the
reduction of the total instructions executed by the instrumented code. The optimiza-
tion reduces 60–69% instructions with an average of 66.7%. The Third column shows
that the optimization reduces branch miss prediction by 2.2–74.3% with an average of
18%. Together, the two kinds of reduction accelerate the time distance measurement by

Table 1. Optimization benefits for time distance measurement

Prog Instr. Branch miss Speedup
reduct pred reduct

(%) (%) (%)
gcc 59.7 74.3 225.7
gzip 66.4 2.6 308.0
mcf 66.5 20.9 99.2
twolf 66.8 30.8 267.0
ammp 69.2 6.5 384.1
applu 66.6 15.7 389.4
equake 69.4 3.9 354.9
mesa 67.8 4.7 522.3
mgrid 67.3 2.2 409.6
Average 66.7 18.0 328.9
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99–522% with an average of 329%. We apply this MMU-based optimization to direct
measurement of reuse distances (based on Ding and Zhong’s method [7], the fastest
tool we know), but only see 34.4% average speedup. This relatively modest speedup
is because the major bottleneck in reuse distance measurement is in the computation
of reuse distances rather than memory monitoring, whereas, the computation of a time
distance is trivial—only a single reduction operation.

5.2 Locality Approximation on SPEC ref Runs

We use the ref runs of the 9 SPEC programs to evaluate the effectiveness of the scalable
algorithm for reuse distance histogram approximation. Compared to the test and train
runs used in our previous work [16], the ref runs are over 8 times longer, including a
wider range of reuse distances, which pose more challenges to measurement efficiency.

We measure the accuracy of the reuse distance approximation on both element and
cache-line levels. On the element level, each address is a data item; on the cache-line
level, a block of consecutive memory addresses are treated as a single data item (the
block size is the width of a cache line).

The accuracy is measured on a linear scale: The width—that is, the range of reuse
distance—of each bar in the histograms is 1000. The formula to calculate the accuracy
is (1−∑

i |Ri − R̂i|/2), where, Ri is the Y-axis value of the ith bar in a real histogram,

and R̂i is for the approximated histogram. The division by 2 normalizes the accuracy
to [0,1].

As shown in Table 2, the accuracy for element reuse is 82.8% on average. Benchmark
mcf has the lowest accuracy, 42.6%, due to the unusual thin peaks on its reuse distance
histogram. The accuracy on the cache-line level is much higher, 94% for mcf, 98.6%
on average. This higher accuracy is because a data item on this level becomes larger,
and results in a smaller range of reuse distances. Most local peaks in the histograms are
therefore smoothed out. Because most uses of reuse distance requires cache-line level
information (e.g., for cache performance analysis), the occasional poor accuracy on
element reuses has little effect. Compared to the latest reuse distance measurement [7]

Table 2. Accuracy and speedup of reuse distance approximation

Prog Element Cache line
acc. (%) speedup acc. (%) speedup

gcc 89.0 21.2X 99.4 16.7X
gzip 99.0 19.0X 99.5 17.0X
mcf 42.6 8.3X 94.0 18.2X
twolf 88.2 5.9X 98.1 20.2X
ammp 95.8 14.3X 99.2 21.5X
applu 86.1 19.0X 99.2 21.4X
equake 57.6 23.7X 98.5 15.1X
mesa 97.3 26.3X 100 14.0X
mgrid 89.7 20.6X 99.6 21.5X
Average 82.8 17.6X 98.6 18.4X
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(with the MMU-based optimization), the approximation technique improves the speed
by a factor of 17.

5.3 Trace Generator

We evaluate the trace generator on reuse distance histograms of some Normal and ex-
ponential distributions, two kinds of distributions that are close to typical data reuses.
In the exponential distribution, the height of a bar at reuse distance of k is proportional
to e−0.02∗k. In the Normal distributions, we change the variance from 20 to 200; the
histograms change from a shape with thin high peaks to a flatter shape as illustrated by
Figure 4. The figure also shows the histograms of the generated traces, whose curves
fluctuate around the given histograms. In our experiments, each trace contains 50,000
references to 500 variables. To prevent histogram bins from hiding inaccuracy, we let
each bin in the histograms have width of 1.
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Fig. 4. Reuse distance histograms of two Normal distributions, along with those of the generated
traces

Table 3. Accuracy of trace generation and reuse distance approximation

Distr. Gen. acc. Approx. acc.
(%) (%)

Normal (var=20) 98.2 92.8
Normal (var=100) 96.4 96.3
Normal (var=200) 96.1 95.8
Exponential 96.0 96.9
Average 96.7 95.5
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The second column in Table 3 reports the accuracy of the trace generator, reflect-
ing the difference between the generated and the given histograms. All accuracies are
greater than 96%, demonstrating the effectiveness of the trace generator in meeting the
input requirements. The last column of the table contains the accuracy of the histograms
that are approximated by the scalable algorithm presented in Section 2.3. On average,
the accuracy is 95.5%, demonstrating the effectiveness of the algorithm in approximat-
ing reuse distance histograms of different distributions.

6 Related Work

Compiler analysis has been successful in understanding and improving locality in basic
blocks and loop nests. McKinley and Temam carefully studied various types of local-
ity within and between loop nests [14]. Cascaval presented a compiler algorithm that
measures reuse distance directly [4]. Allen and Kennedy discussed the subject compre-
hensively in their book [1]. Thabit identified data often used together based on their
access frequency [17]. Chilimbi used grammar compression to find hot data streams
and reorganized data accordingly [5].

As a locality model, reuse distance has been studied for several decades since Matt-
son et al.’s first measurement algorithm [13]. A more recent work is from Ding and
Zhong, who proposed an approximation algorithm that used dynamic tree compres-
sion [7] to reduce time complexity to O(T loglogN). Shen et al. discovered the statis-
tical connection between time distance and reuse distance, and proposed an algorithm
to approximate reuse distance from time distance [16]. This current paper exposes the
extensions to the algorithm to make it more scalable, meanwhile presenting a portable
scheme for resolving the bottleneck in the implementation of the algorithm, and de-
scribing a trace generator to facilitate the evaluation.

7 Conclusions

This paper presents a set of techniques to efficiently approximate reuse distance his-
tograms on arbitrary scales. It describes an extended algorithm that significantly re-
duces the time complexity of the basic algorithm. It exposes a portable MMU-based
optimization that accelerates time distance measurement by more than a factor of 3.
Finally, it presents a trace generator that facilitates the comprehensive evaluation of the
approximation algorithm. The output from this work will enhance the applicability of
reuse distance in practical uses, opening new opportunities for program analysis and
optimizations.
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Abstract. As the amount of on-chip cache increases as a result of
Moore’s law, cache utilization is increasingly important as the number
of processor cores multiply and the contention for memory bandwidth
becomes more severe. Optimal cache management requires knowing the
future access sequence and being able to communicate this information
to hardware. The paper addresses the communication problem with two
new optimal algorithms for Program-directed OPTimal cache manage-
ment (P-OPT), in which a program designates certain accesses as by-
passes and trespasses through an extended hardware interface to effect
optimal cache utilization. The paper proves the optimality of the new
methods, examines their theoretical properties, and shows the poten-
tial benefit using a simulation study and a simple test on a multi-core,
multi-processor PC.

1 Introduction

Memory bandwidth has become a principal performance bottleneck on modern
chip multi-processors because of the increasing contention for off-chip data chan-
nels. Unlike the problem of memory latency, the bandwidth limitation cannot
be alleviated by data prefetching or multi-threading. The primary solution is to
minimize the cache miss rate. Optimal caching is NP-hard if we consider com-
putation and data reorganization [8, 12]. If we fix the computation order and
the data layout, the best caching is given by the optimal replacement strat-
egy, MIN [2]. Since MIN cannot be implemented purely in hardware, today’s
machines use variations of LRU (least recently used) and random replacement.
This leaves room for significant improvement—LRU can be worse than optimal
by a factor proportional to the cache size in theory [14] and by a hundred folds
in practice [6].
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Recent architectural designs have added an interface for code generation at
compile time to influence the hardware cache management at run time. Beyls and
D’Hollander used the cache-hint instructions available on Intel Itanium to specify
which level of cache to load a data block into [5]. Wang et al. studied the use of
the evict-me bit, which, if set, informs the hardware to replace the block in the
cache first when space is needed [15]. The techniques improve cache utilization
by preserving the useful data in cache either explicitly through cache hints or
implicitly through the eviction of other data. The advent of collaborative cache
management raises the question of whether or not optimal cache management
is now within reach.

In the paper, we will prove that in the ideal case where the operation of each
access can be individually specified, two simple extensions to the LRU manage-
ment can produce optimal results. We will first discuss the optimal algorithm
MIN and its stack implementation OPT. We then describe a new, more efficient
implementation of OPT called OPT* and the two LRU extensions, bypass LRU
and trespass LRU, that use OPT* in off-line training and to generate annotated
traces for the two LRU extensions. We will show an interesting theoretical dif-
ference that bypass LRU is not a stack algorithm but trespass LRU is. Finally,
we will demonstrate the feasibility of program annotation for bypass LRU and
the potential improvement on a multi-core, multi-processor PC.

2 Two New Optimal Cache Management Algorithms

In this paper an access means a memory operation (load/store) at run time and
a reference means a memory instruction (load/store) in the executable binary.
An access is a hit or miss, depending whether the visited data element is in
cache immediately before the access.

The operation of an access has three parts: the placement of the visited ele-
ment, the replacement of an existing element if the cache is full, and the shift
of the positions or priorities of the other elements. The shift may or may not be
an actual action in the hardware, depending on implementation.

Following the classic model of Mattson et al. [11], we view cache as a stack
or an ordered array. The data element at the top of the array has the highest
priority and should be the last to evict, and the data element at the bottom is
the next to evict when space is needed.

The original MIN solution by Belady is costly to implement because it re-
quires forward scanning to find the cache element that has the furthest reuse [2].
Noting this problem, Mattson et al. described a two-pass stack algorithm, which
computes the forward reuse distance in the first pass and then in the second pass
maintains a priority list based on the pre-computed forward reuse distance [11].
Mattson et al. gave a formal proof the optimality in the 7-page appendix through
four theorems and three lemmata. They called it the OPT algorithm. The main
cost of OPT is the placement operation, which requires inserting an element into
a sorted list. In comparison, the cost of LRU is constant. It places the visited ele-
ment at the top of the LRU stack, which we call the Most Recently Used (MRU)
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Table 1. The time complexity of cache-management algorithms in terms of the cost
per access for placement, shift, and replacement operations. N is the length of the
trace, and M is the size of cache.

Policies Placement Cost Shift Cost Replacement Cost Optimal? Stack Alg?
MIN constant none O(N + M) for forward Yes Yes

scanning plus selection
OPT O(M) list insertion O(M) update constant Yes Yes
LRU constant none constant No Yes
OPT* O(log M) list insertion none constant Yes Yes

bypass LRU constant none constant Yes No
trespass LRU constant none constant Yes Yes

position, and it evicts the bottom element, which we call the Least Recently Used
(LRU) position.

Table 1 compares six cache-management algorithms mentioned in this paper,
where M is the cache size and N is the length of the access sequence. The first
three rows show the cost of MIN, OPT, and LRU, and the next three rows show
the algorithms we are to present: OPT*, bypass LRU, and trespass LRU. It
shows, for example, that the original OPT algorithm requires an update cost of
O(M) per data access, but OPT* needs no such update and that bypass and
trespass LRU have the same cost as LRU. Note that the cost is for the on-line
management. The two LRU extensions require running OPT* in the training
analysis. All but LRU can achieve optimal cache utilization. All but bypass
LRU are stack algorithms.

Bypass and Trespass LRU algorithms use training analysis to specify the type
of each cache access. Next we describe the three types of cache access and the
OPT* algorithm used in training.

2.1 Three Types of Cache Access

We describe the normal LRU access and define the hardware extensions for
bypass LRU access and trespass LRU access.

– Normal LRU access uses the most-recently used position for placement and
the least-recently used position for replacement
• Miss: Evict the data element Sm at LRU position (bottom of the stack)

if the cache is full, shift other data elements down by one position, and
place w, the visited element, in the MRU position (top of the stack). See
Figure 1.

• Hit: Find w in cache, shift the elements over w down by one position,
and re-insert w at the MRU position. See Figure 2. Note that search
cost is constant in associative cache where hardware checks all entries in
parallel.

– Bypass LRU access uses the LRU position for placement and the same posi-
tion for replacement. It is similar to the bypass instruction in IA64 [1] except
that its bypass demotes the visited element to LRU position when hit.
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Fig. 4. Bypass LRU at a hit: the bypass
moves S3(w) to the bottom of the stack

• Miss: Evict Sm at the LRU position if the cache is full and insert w into
the LRU position. See Figure 3.

• Hit: Find w, lift the elements under w by one position, and place w in
the LRU position. See Figure 4.

– Trespass LRU access uses the most-recently used position for placement
and the same position for replacement. It differs from all cache replacement
policies that we are aware of in that both the cache insertion and eviction
happen at one end of the LRU stack.
• Miss: Evict the data element S1 at the MRU position if the cache is not

empty and insert w in the MRU position. See Figure 5.
• Hit: If w is in the MRU position, then do nothing. Otherwise, evict

the data element S1 at the MRU position, insert w there, and shift the
elements under the old w spot up by one position. See Figure 6.

2.2 OPT* Algorithm

Given a memory access sequence, the original OPT algorithm has two passes [11]:

– First pass: Compute the forward reuse distance for each access through a
backward scan of the trace.
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– Second pass: Incrementally maintain a priority list based on the forward
reuse distance of the cache elements. The pass has two steps. First, if the
visited element is not in cache, find its place in the sorted list based on its
forward reuse distance. Second, after each access, update the forward reuse
distance of each cache element.

The update operation is costly and unnecessary. To maintain the priority list,
it is sufficient to use the next access time instead of the forward reuse distance.
At each point p in the trace, the next access time of data x is the logical time
of the next access of x after p. Since the next access time of data x changes
only at each access of x, OPT* stores a single next access time at each access
in the trace, which is the next access time of the element being accessed. OPT*
collects next access times through a single pass traversal of the trace. The revised
algorithm OPT* is as follows.

– First pass: Store the next reuse time for each access through a backward
scan of the trace.

– Second pass: Maintaining the priority list based on the next reuse time. It
has a single step. If the visited element is not in cache, find its place in the
sorted list based on its next access time.

The cost per operation is O(log M) for cache of size M , if the priority list
is maintained as a heap. It is asymptotically more efficient than the O(M) per
access cost of OPT. The difference is computationally significant when the cache
is large. While OPT* is still costly, it is used only for pre-processing and adds
no burden to on-line cache management.

2.3 The Bypass LRU Algorithm

In bypass LRU, an access can be a normal access or a bypass access, which are
described in Section 2.1. The type of each access is determined using OPT* in
the training step. To ensure optimality, the trace of the actual execution is the
same as the trace used in training analysis. For each miss in OPT*, let d be the
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element evicted and x be the last access of d before the eviction, the training
step would tag x as a bypass access. After training, the untagged accesses are
normal accesses.

The training result is specific to the cache size being used. We conjecture
that the dependence on cache size is unavoidable for any LRU style cache to
effect optimal caching. The result is portable, in the sense that the performance
does not degrade if an implementation optimized for one cache size is used on a
machine with a larger cache. A compiler may generate code for a conservative
size at each cache level or generate different versions of the code for different
cache sizes for some critical parts if not whole application. Finally, the training
for different cache sizes can be made and the access type specified for each cache
level in a single pass using OPT*.

Two examples of bypass LRU are shown in Table 2 to demonstrate the case
where the cache is managed with the same constant cost per access as LRU, yet
the result is optimal, as in OPT*.

Bypass LRU is not a stack algorithm. This is shown using a counter exam-
ple. By comparing the two sub-tables in Table 2, we see that at the first access
to e, the stack content, given in bold letters, is (e,d) in the smaller cache and
(e, c, b) in the larger cache. Hence the inclusion property does not hold and
bypass LRU is not a stack algorithm [11].

Table 2. Two examples showing bypass LRU is optimal but is not a stack algorithm

(a) cache size = 2

Trace a b c d d c e b e c d
Bypasses X X X X X X
Bypass c d c d e b b b d

LRU Stack a b c d c d e e c b
Misses 1 2 3 4 5 6 7 8
OPT* a b c d d c e b e c d
Stack a b c c d c e b b b
Misses 1 2 3 4 5 6 7 8

(b) cache size = 3

Trace a b c d d c e b e c d
Bypasses X X X
Bypass b c d c c e b e e d
LRU b c b b c e b b e
Stack a b d d b c c c b
Misses 1 2 3 4 5 6

a b c d d c e b e c d
OPT* a b c c d c e b e e
Stack a b b b b c c b b
Misses 1 2 3 4 5 6

Bypass LRU is optimal. In Figure 2, bypass LRU has the same number of
cache misses as OPT*, which is optimal. We next prove the optimality for all
traces.

Lemma 1. If the bottom element in the bypass LRU stack is last visited by a
normal access, then all cache elements are last visited by some normal accesses.

Proof. If some data elements are last visited by bypass accesses, then they appear
only at the bottom of the stack. They can occupy multiple positions but cannot
be lifted up over an element last visited by a normal access. Therefore, if the
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bottom element is last visited by a normal access, all elements in the cache must
also be. �

Theorem 1. Bypass LRU generates no more misses than OPT*. In particular,
bypass LRU has a miss only if OPT* has a miss.

Proof. We show that there is no access that is a cache hit in OPT* but a miss in
Bypass LRU. Suppose the contrary is true. Let z′ be the first access in the trace
that hits in OPT* but misses in Bypass LRU. Let d be the element accessed
by z′, z be the immediate previous access to d, and the reference trace between
them be (z, ..., z′).

The access z can be one of the two cases.

– z is a normal access. For z′ to miss in bypass LRU, there should be a miss y
in (z, ..., z′) that evicts d. From the assumption that z′ is the earliest access
that is a miss in bypass LRU but a hit in OPT*, y must be a miss in OPT*.
Consider the two possible cases of y.
• y occurs when the OPT* cache is partially full. Since the OPT* cache

is always full after the loading of the first M elements, where M is the
cache size, this case can happen only at the beginning. However, when
the cache is not full, OPT* will not evict any element. Hence this case
is impossible.

• y occurs when the OPT* cache is full. The element d is at the LRU
position before the access of y. According to Lemma 1, the bypass LRU
cache is full and the last accesses of all data elements in cache are normal
accesses. Let the set of elements in cache be T for bypass LRU and T ∗ for
OPT*. At this time (before y), the two sets must be identical. The reason
is a bit tricky. If there is an element d′ in the bypass LRU cache but not
in the OPT* cache, d′ must be replaced by OPT* before y. However,
by the construction of the algorithm, the previous access of d′ before y
should be labeled a bypass access. This contradicts to the lemma, which
says the last access of d′ (and all other elements in T ) is normal. Since
both caches are full, they must be identical, so we have T = T ∗. Finally,
y in the case of OPT* must evict some element. However, evicting any
element other than d would violate our lemma. Hence, such y cannot
exist and this case is impossible.

– z is a bypass access in Bypass LRU. There must be an access y ∈ (z, ..., z′)
in the case of OPT* that evicts d; otherwise z cannot be designated as a
bypass. However, in this case, the next access of d, z′ cannot be a cache hit
in OPT*, contradicting the assumption that z′ is a cache hit in OPT*.

Considering both cases, it is impossible for the same access to be a hit in
OPT* but a miss in bypass LRU. �

Since OPT* is optimal, we have the immediate corollary that bypass LRU has
the same number of misses as OPT* and is therefore optimal. In fact, the misses
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happen for the same accesses in bypass LRU and in OPT*. Last, we show that
Bypass LRU as a cache management algorithm has a peculiar feature.

Corollary 1. Although Bypass LRU is not a stack algorithm, it does not suffer
from Belady anomaly [3], in which the number of misses sometimes increases
when the cache size becomes larger.

Proof. OPT is a stack algorithm since the stack content for a smaller cache is
a subset of the stack content for a larger cache [11]. The number of misses of
an access trace does not increase with the cache size. Since bypass LRU has the
same number of misses as OPT*, it has the same number of misses as OPT and
does not suffer from Belady anomaly. �

2.4 The Trespass LRU Algorithm

In trespass LRU, an access can be a normal access or a trespass access. The
two obvious choices for efficient LRU stack replacement are evicting from the
bottom, as in bypass LRU just described, or evicting from the top, as in trespass
LRU. Both are equally efficient at least asymptotically. We will follow a similar
approach to show the optimality of trespass LRU. The main proof is actually
simpler. We then show an unexpected theoretical result—trespass LRU is a stack
algorithm, even though bypass LRU is not.

Similar to bypass LRU, trespass LRU uses a training step based on simulating
OPT* for the given cache on the given trace. For each miss y in OPT*, let d be
the evicted cache element and x be the last access of d before y. The training
step tags the access immediately after x as a trespass access. It is trivial to show
that such an access exists and is unique for every eviction in OPT*.

Two example executions of trespass LRU execution are shown in Table 3 for
the same trace used to demonstrate bypass LRU in Table 2.

Table 3. Two examples showing trespass LRU is optimal and is a stack algorithm
(unlike bypass LRU)

(a) cache size = 2

Trace a b c d d c e b e c d
Trespasses X X X X X X
Trespass a b c d d c e b e c d

LRU Stack c c e b b b
Misses 1 2 3 4 5 6 7 8
OPT* a b c d d c e b e c d
Stack a b c c d c e b b b
Misses 1 2 3 4 5 6 7 8

(b) cache size = 3

Trace a b c d d c e b e c d
Trespasses X X X
Trespass a b c d d c e b e c d

LRU b c c b c e b e e
Stack b b b c c b b
Misses 1 2 3 4 5 6

a b c d d c e b e c d
OPT* a b c c d c e b e e
Stack a b b b b c c b b
Misses 1 2 3 4 5 6
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Trespass LRU is Optimal. The effect of a trespass access is less direct than
that of a bypass access. We need four additional lemmata. First, from the way
trespass accesses are identified, we have

Lemma 2. If a data element w is evicted by a trespass access x, then x happens
immediately after the last access of w.

Lemma 3. If a data element is in trespass LRU cache at point p in the trace,
then the element is also in OPT* cache at p.

Proof. Assume that a data element w is in the trespass LRU cache but is evicted
from the OPT* cache. Let x be the last access of w. Consider the time of the
eviction in both cases. The eviction by trespass LRU happens right after x. Since
the eviction by OPT* cannot be earlier, there must be no period of time when
an element w is in the trespass LRU cache but not in the OPT* cache. �

Lemma 4. If a data element is evicted by a normal access in trespass LRU,
then the cache is full before the access.

This is obviously true since the normal access cannot evict any element unless
the cache is full. Not as obvious, we have the following

Lemma 5. A normal access cannot evict a data element from cache in trespass
LRU.

Proof. Assume y is a normal access that evicts data w. Let T and T ∗ be the set
of data elements in the Trespass LRU cache and the OPT* cache before access
y. By Lemma 3, T ⊆ T ∗. By Lemma 4, the Trespass LRU cache is full before
y. Then we have T = T ∗. In OPT*, y has to evict some element d ∈ T ∗. Let x
be the last access of d before y. Since Trespass LRU evicts d right after x, the
content of the cache, T and T ∗ cannot be the same unless y is the next access
after x, in which case, d is w, and y must be a trespass access. �

Theorem 2. Trespass LRU generates no more misses than OPT*. In particu-
lar, trespass LRU has a miss only if OPT* has a miss.

Proof. We show that there is no access that is a cache hit in OPT* but a miss in
trespass LRU. Suppose the contrary is true. Let z′ be the first access in the trace
that hits in OPT* but misses in Trespass LRU. Let d be the element accessed
by z′, z be the immediate previous access to d, and the reference trace between
them be (z, ..., y, ..., z′), where y is the access that causes the eviction of d in
trespass LRU.

By Lemma 5, y is a trespass access. By Lemma 2, y happens immediately
after z. Since y is a trespass after z, then the next access of d, z′ must be a miss
in OPT*. This contradicts the assumption that z′ is a hit in OPT*. Therefore,
any access that is a miss in trespass LRU must also be a miss in OPT*. �

Corollary 2. Trespass LRU has the same number of misses as OPT* and is
therefore optimal.
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Trespass LRU is a stack algorithm. Given that bypass LRU is not a stack
algorithm, the next result is a surprise and shows an important theoretical dif-
ference between trespass LRU and bypass LRU.

Theorem 3. Trespass LRU is a stack algorithm.

Proof. Assume there are two caches C1 and C2. C2 is larger than C1, and the
access sequence is Q = (x1, x2, ..., xn). Let T1(t) be the set of elements in cache
C1 after access xt and T2(t) be the set of elements in cache C2 after the same
access xt. The initial sets for C1 and C2 are T1(0) and T2(0), which are empty
and satisfy the inclusion property. We now prove the theorem by induction on t.

Assume T1(t) ⊆ T2(t) (1 ≤ t ≤ n− 1). There are four possible cases based on
the type of the access xt+1 when visiting either of the two caches. We denote
the data element accessed at time xi as D(xi).

– If xt+1 is a trespass access both in C1 and C2, we have

T1(t + 1) = T1(t) − D(xt) + D(xt+1)
⊆ T2(t) − D(xt) + D(xt+1)
= T2(t + 1)

– If xt+1 is a trespass access in C1 but a normal access in C2, then by Lemma 5,
xt+1 does not cause any eviction in cache C2 and therefore

T1(t + 1) = T1(t) − D(xt) + D(xt+1)
⊆ T2(t) + D(xt+1)
= T2(t + 1)

– The case that xt+1 is a normal access in C1 but a trespass access in C2 is
impossible. Since xt+1 is a trespass in C2, D(xt) would be evicted by some
access y in C2 using OPT*. However, xt+1 is a normal access in C1, which
means that D(xt) is in C1 after access y when using OPT*. This in turn
means that at the point of y, the inclusion property of OPT* no longer
holds and contradicts the fact that OPT* is a stack algorithm.

– If xt+1 is a normal access both in C1 and C2, then by Lemma 5, xt+1 does
not cause an eviction either in C1 or C2, and therefore

T1(t + 1) = T1(t) + D(xt+1)
⊆ T2(t) + D(xt+1)
= T2(t + 1)

From the induction hypothesis, the inclusion property holds for Trespass LRU
for all t. �

The next corollary follows from the stack property.

Corollary 3. Trespass LRU as a cache management algorithm does not suffer
from Belady anomaly [3].
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In Table 3, we have revisited the same data trace used to show that bypass
LRU was not a stack algorithm. It shows that the inclusion property holds when
trespass LRU is used. The example also shows that trespass LRU cache can
become partially empty after it becomes full. Trespass LRU keeps the visited
data element and the data elements that will be visited. When the amount of
data that have a future reuse is less than the cache size, OPT* and bypass LRU
may contain extra data elements that have no future reuse. In OPT* the extra
data do not destroy the inclusion property, but in bypass LRU they do.

2.5 Limitations

Bypass LRU and trespass LRU solve the problem of efficient on-line cache man-
agement, but their optimality depends on specifying the type of individual ac-
cesses, which is not feasible. In practice, however, a compiler can use transfor-
mations such as loop splitting to create different memory references for different
types of accesses. We will show this through an example in the next section.

Another problem is the size of program data may change in different exe-
cutions. We can use the techniques for predicting the change of locality as a
function of the input [9, 16] and use transformations such as loop splitting to
specify caching of only a constant part of the (variable-size) program data.

Throughout the paper, we use the fully associative cache as the target. The
set associative cache can be similarly handled by considering it as not just one
but a collection of fully associative sets. All the theorems about the Bypass and
Trespass LRU hold for each fully associative set, and the optimality results stay
the same, so are the stack properties.

The training analysis can also be extended naturally to tag bypass or trespass
accesses for each set. There is an additional issue of the data layout, especially
if it changes with the program input. Though we have not developed any con-
crete solutions, we believe that these problems can be approached by more so-
phisticated training, for example, pattern analysis across inputs, and additional
program transformations such as loop splitting.

Bypass LRU is better than trespass LRU because the latter is sensitive to the
order of accesses. It is possible that a trespass access is executed at an unintended
time as a result of instruction scheduling by the compiler and the out-of-order
execution by the hardware. In comparison, the effect of bypass is not sensitive
to such reordering.

3 The Potential Improvements of P-OPT

3.1 A Simulation Study

While controlling the type of each access is impractical, we may use simple
transformations to approximate bypass LRU at the program level based on the
result of training analysis. Assume the fully associative cache has 512 blocks,
and each block holds one array element. The code in Figure 7, when using
LRU, causes 10000 capacity misses among the total 29910 accesses. The minimal
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int a[1000]

for(j=1;j<=10;j++)

for(i=1;i<=997;i++)

a[i+2]=a[i-1]+a[i+1];

Fig. 7. Original Code

int a[1000]

for(j=1;j<10;j++) {
for(i=1;i<=509;i++)

a[i+2]=a[i-1]+a[i+1];

for(;i<=996;i++)

a[i+2]=a[i-1]+a[i+1];

for(;i<=997;i++)

a[i+2]=a[i-1]+a[i+1];

}

Fig. 8. Transformed Code

number of misses is half as much or, to be exact, 5392, given by OPT*. There
are three array references in the original loop. OPT* shows that the accesses by
reference a[i+1] are all normal accesses except for three accesses. The accesses
by reference a[i+2] are all normal accesses. Finally reference a[i-1] has a cyclic
pattern in every 997 accesses with about 509 normal accesses and 488 bypass
accesses in each period.

Based on the training result, we split the loop into three parts as shown in
Figure 8. In the first loop, all three references are normal references, which means
the accesses by them are all normal accesses. In the second loop, the references
a[i+1] and a[i+2] are normal references but reference a[i-1] is tagged with the
bypass bit, which means that it is a bypass reference and its accesses are all
bypass accesses. In the third loop, the references a[i+2] are normal references
but references a[i-1] and a[i+1] are bypass references. The transformed program
yields 5419 cache misses, an almost half reduction from LRU and almost to same
as the optimal result of 5392 misses. After the transformation, it looks like we
retain the first part of array a in cache but bypass the second part. Effectively
it allocates the cache to some selected data to utilize cache more efficiently.

Not all programs may be transformed this way. Random access is an obvious
one for which optimal solution is impossible. However, for regular computations,
this example, although simple, demonstrates that P-OPT with training based
bypass LRU may obtain near optimal cache performance.

3.2 A Simple But Real Test

We use a program which repeatedly writes to a contiguous area the size of which
is controlled by the input as the data size. The access has the large stride of 256
bytes so the average memory access latency is high. The second input parameter
to the program is the retainment size specifying how large piece of data should
be retained in the cache. Since the access to the rest of the data takes space
in cache, the retainment size is smaller than the cache size. Considering the
set-associativity of the cache structure, we set the retainment size to 3

4 of the
total cache size. When multiple processes are used, the total retainment size is
divided evenly among them. Our testing machine has two Core Duo chips, so
cache contention only happens when four processes run together. In that case,
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Fig. 9. Ratio of running time between using bypassing stores and using normal stores
in 4 processes. The lower the ratio is, the faster the bypassing version. The machine
has two Intel Core Duo processors, and each has two 3GHz cores and 4MB cache.

we give half of the total retainment size to each process. The running time is
measured for 50 million memory accesses.

Figure 9 shows the effect of cache bypassing running four processes. The
instruction movnti on Intel x86 processors is used to implement the cache by-
passing store. With four processes and contention for memory bandwidth, the
improvement is observed at 3.2MB and higher data sizes. The worst is 4% slow-
down at 3.8MB, the best is 24% at 4.8MB, and the average is 13%. The result is
tantalizing: the bypassing version runs with 13% less time or 15% higher speed,
through purely software changes. Our store bypassing is a heuristic that may not
be optimal. Therefore the potential improvement from bypass LRU is at least
as great, if not greater.

4 Related Work

The classic studies in memory management [2,11] and self-organizing data struc-
tures [14] considered mostly uniform data placement strategies such as LRU,
OPT, and MIN. This paper establishes a theoretical basis for selective replace-
ment strategies that are optimal yet can be implemented on-line with the same
cost as LRU. The cost of annotation is shifted to an off-line step.

The use of cache hints and cache bypassing at the program level is pioneered
by two studies in 2002. Beyls and D’Holander used a training-based analysis
for inserting cache hints [4]. By instructing the cache to replace cache blocks
that have long-distance reuses, their method obtained 9% average performance
improvement on an Intel Itanium workstation [4]. Wang et al. published a set
of compiler techniques that identified different data reuse levels in loop nests
and inserted evict-me bits for references for which the reuse distance was larger



230 X. Gu et al.

than the cache size [15]. Beyls and D’Holander later developed a powerful static
analysis (based on the polyhedral model and integer equations and called reuse-
distance equations) and compared it with training-based analysis for scientific
code [5].

Our scheme differs from the two earlier methods because bypass and trespass
LRU are designed to preserve in cache data blocks that have long-distance reuses.
Intuitively speaking, the goal of the previous methods is to keep the working
set in the cache if it fits, while our goal is to cache a part of the working set
even if it is larger than cache. At the implementation level, our method needs to
split loop iterations. Beyls and D’Holander considered dynamic hints for caching
working sets that fit in cache [5]. Qureshi et al. recently developed a hardware
scheme that selectively evicted data based on the predicted reuse distance [13].
The study showed significant benefits without program-level inputs. As a pure
run-time solution, it naturally incorporates the organization of the cache and the
dynamics of an execution, but it is also inherently limited in its predictive power.

One important issue in training based analysis is the effect of data inputs.
Fang et al. gave a predictive model that predicted the change of the locality
of memory references as a function of the input [9]. They showed on average
over 90% accuracy across program inputs for 11 floating-point and 11 integer
programs from the SPEC2K CPU benchmark suite. Their result suggested that
training based analysis can accurately capture and exploit the reuse patterns at
the memory reference level. Marin and Mellor-Crummey demonstrated the cross-
input locality patterns for larger code units such as loops and functions [10].
In addition for scientific code, compiler analysis can often uncover the reuse-
distance pattern, as demonstrated by Cascaval and Padua [7] and Beyls and
D’Holander [5], and eliminate the need of training analysis.

5 Summary

In this paper we have presented two new cache management methods, bypass
LRU and trespass LRU, which are programmable by software, require similar
hardware support as LRU, and may produce the same result as optimal cache
management. Bypass LRU is not a stack algorithm while trespass LRU is. Both
require training analysis, for which we have presented OPT*, asymptotically the
fastest implementation of optimal cache management. We have demonstrated
preliminary evidence that bypass LRU can be effectively used by a combination
of off-line training and program transformation. The better utilization of cache
has led to significant performance improvement for parallel memory traversals
on multi-core processors.
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Abstract. As hardware systems move toward multicore and multi-
threaded architectures, programmers increasingly rely on automated
tools to help with both the parallelization of legacy codes and effective
exploitation of all available hardware resources. Thread-level speculation
(TLS) has been proposed as a technique to parallelize the execution of
serial codes or serial sections of parallel codes. One of the key aspects of
TLS is task selection for speculative execution.

In this paper we propose a cost model for compiler-driven task se-
lection for TLS. The model employs profile-based analysis of may-
dependences to estimate the probability of successful speculation. We
discuss two techniques to eliminate potential inter-task dependences,
thereby improving the rate of successful speculation. We also present
a profiling tool, DProf, that is used to provide run-time information
about may-dependences to the compiler and map dynamic dependences
to the source code. This information is also made available to the pro-
grammer to assist in code rewriting and/or algorithm redesign.

We used DProf to quantify the potential of this approach and we
present results on selected applications from the SPEC CPU2006 and
SEQUOIA benchmarks.

1 Introduction

Thread-level speculation (TLS) [11, 15, 26, 28] is one technique that has been
proposed for parallelizing sequential codes to exploit parallel and multi-core ar-
chitectures. Parallelization using TLS consists of selecting regions of code to
execute in parallel, relying on the system to detect dependence violations and
re-execute the conflicting sections such that sequential execution semantics is
preserved. Typically the code regions are loop iterations and function continua-
tions. A number of researchers made the case that automatically speculating on
inner loops at the granularity of single iteration is not very effective for the ap-
plications in the SPEC CPU2006 benchmark suite, and gives little advantge over
a state-of-the-art parallelizing compiler [14]. This highlights the importance of
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task selection towards the efficacy of TLS. Task selection can be done either au-
tomatically using a compiler, or manually through programmer annotations. Liu
et al. [17] and Johnson et al. [12, 13] propose mechanisms to automatically iden-
tify most profitable tasks for speculation through profiling information [13, 17]
or empirical search [12]. On the other side of the spectrum, von Praun et al. [30]
argue for user annotation of the speculative tasks and provide a tool that can
classify program sections and recommend task placement directives.

It is obvious that programmers need tools to help them make parallelization
decisions. This includes choosing a suitable parallelization strategy for a given
application, e.g., speculative vs. non-speculative; task selection for speculation;
or algorithm restructuring to expose parallelism. We propose a new model that
uses compiler analysis and profiling to guide parallelization and task selection,
in an attempt to reach a middle ground: the compiler and tools provide as much
information as possible and prune the space, so that the user could focus on
those parts of the application that may need rewriting and algorithm redesign.

In this paper, we present a compiler-driven approach for program dependence
profiling and a cost model to identify loops suitable for TLS parallelism. One
metric used in the cost model is the distance between consecutive dependent iter-
ations [20], referred to as the independence window. If the independence window
is larger than the speculation window (the number of tasks that are potentially
executing in parallel at any point in time), the dependence does not affect TLS
effectiveness. The Independence window is a dynamic property of a loop since it
depends on the iteration schedule.

We developed a dependence profiler, referred to as DProf, to measure depen-
dence probability and independence window. Profiling can be implemented using
a dynamic binary instrumenter [29] or using compiler instrumentation. When us-
ing a binary instrumenter, program properties known to the compiler are lost
or hard to obtain at binary level; “transferring” the dependence information
from a trace to the compiler is quite involved: the binary instrumenter collects
physical addresses which need to be mapped to the variables in the program. In
Section 3, we present a compiler-based approach for dependence profiling that
overcomes these limitations. We present the dependence and independence win-
dow profile obtained by DProf for selected programs from the SPEC CPU2006
and SEQUOIA benchmarks. Both the independence window and dependence
data measured by the profiler provide useful feedback to the compiler to per-
form dependence tolerating transformations or to the programmer to restructure
algorithms for parallelism.

The main contributions of this paper are:

• A static model for TLS profitability that is used by the compiler to select
tasks for speculation;

• A compiler-driven approach for program dependence profiling;
• Two techniques – independence windows and dependence clustering – for

increasing the profitability of TLS.

The rest of the paper is organized as follows: Section 2 describes our static
model for TLS. The design of DProf is described in detail in Section 3 and its
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applications are discussed in Section 4. Previous work is discussed in Section 5.
Finally, in Section 6 we summarize with directions for future work.

2 Static Modeling of TLS Profitability

In this section we present a cost model used by the compiler to determine prof-
itable TLS code sections. There are three main factors that determine the prof-
itability of speculative execution:

1. Conflict probability (C): defines what is the probability that two speculative
tasks access the same data, and at least one is a write, such that they conflict
and the speculative execution must be squashed. The conflict probability is a
function of the data dependences in the task and of the task size. We discuss
the conflict probability in detail in Section 2.1;

2. Speculative spawn and commit overheads (O) which are system dependent
costs of speculation, for both successful and aborted execution;

3. Task sizes (Si), which determine the the fraction of useful work, as well as
influence conflict probability – the larger the size the larger the set of data
accessed, and efficiency due to load balancing issues.

A TLS section of code is profitable if the time required for parallel execution
(Tp), including the overheads, is less than the time required for serial execution
(Ts), i.e., Tp < Ts. Ts and Tp for a set of N tasks running on P processors can
be expressed as follows:

Ts =
N∑
i

Si (1)

Tp =
∑

k

N × (1 − C)k

P
(max

i
(Si) + O) (2)

Tp =
N × (1 − C)

P
(max

i
(Si) + O) +

N×C∑
i

(Si + O) (3)

The serial execution time Ts (Eqn. 1) is the sum of all tasks. The parallel
execution time Tp (Eqn. 2) takes into consideration the number of processors
and the conflict probability. Eqn. 3 is a simplified version of Eqn. 2 that uses the
following assumption: N × (1 − C) tasks can all execute in parallel (maxi(Si)
determining the parallel execution time), with no other overhead in addition to
the spawn and commit overhead O; the other N × C tasks are all serialized. Of
course, this is a conservative assumption, because within the remaining tasks
there may be independent sets of tasks, but between the overhead of spawning
a task multiple times, and the diminishing returns of executing conflicting task
versus just serializing execution, we select the latter.

The compiler may obtain the needed parameters for the model either statically
using analysis, or through profiling, as follows:
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❐ New data dependence analysis that takes into consideration dependence
probabilities; or profiling information that estimates the conflict probabil-
ity for a set of tasks;

❐ A cost model for task sizes; or profiling information that quantifies the sizes
of tasks;

❐ System latencies and overheads for TLS support.

For this paper, we explore the effectiveness of the cost model, and thus we
collect profiling information using DProf (see Section 3) that provides feedback
information on data dependences and task sizes.

2.1 Conflict Probability

We use the metric of conflict probability to determine the likelihood of the
speculation execution of a code region success. A conflict probability of 0 implies
that the region is independent of all other regions with which it has the potential
to run in parallel, while a conflict probability of 1 guarantees that a conflict will
happen and the speculation will fail. Intuitively, the larger a code region, the
higher the probability of conflict. However, there are many cases in which large
code regions are independent, e.g., iterations of DOALL loops.

The conflict probability is computed using the data dependence density met-
ric. In [29], von Praun et al. used the data dependence density metric to deter-
mine the available parallelism in an application. They argue that the amount
of exploitable parallelism in the application is dependent on the scheduling of
threads, and classified application phases into three categories: high-, medium-,
and low-dependence density. The low-dependence density regions are the most
profitable for speculation. Because we are focusing on loop iterations, and con-
sidering two dependent iterations t and s, we can simplify the data dependence
density computation from [29] and use the following formula for conflict proba-
bility:

C (t) :=

∑
∀s,has dep(t,s)

Ss

N∑
i

Si

(4)

In this paper, the conflict probability is used directly with the speculation
overheads and task sizes (Eqn. 3) to select the profitable tasks.

In addition, the compiler can also increase the probability of successful spec-
ulation by taking advantage of patterns of dependences. We present two such
techniques – the independence window and dependence clustering.

2.2 Independence Windows

An independence window is a set of consecutive iterations that are independent of
each other. Iterations in the set – the independence window – can be executed in
parallel. We call the cardinality of the set the width of an independence window.
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A(I) = A(I−4) + B(I) 

END DO

(a) (b)

5 9 13 17 21

DO I = 5, 100

Fig. 1. An example illustrating the independence window

The entire iteration space can be viewed as a partitioned set of independence
windows. Consider the loop shown in Figure 1 (a) and the corresponding itera-
tion space shown in Figure 1 (b). The loop has a loop-carried dependence with
dependence distance of 4. Therefore, every 4 iterations, marked with dashed
arrows in Figure 1 (b), can be executed in parallel. For loops with a constant
dependence distance of n, the iteration space is equally partitioned into inde-
pendence windows of width n. For irregular loops, the independence window is
a dynamic property determined by the iteration schedule.

Assuming that tasks are scheduled and retired at a uniform rate at the gran-
ularity of one iteration, a loop with an independence window of width n can
be parallelized with zero conflicts using no more than n speculative threads.
In other words, the width of independence window gives the theoretical upper
bound on the size of non-conflicting speculation.

We use the width of independence windows as a metric of dynamic parallelism,
especially for loops that do not have a uniform dependence distance. For such
loops, the width of the independence window varies across the iteration space,
e.g., due to multiple dependences occurring at different intervals. We use the
profiler to empirically determine the independence window width of such loops.
In our profiler, we compute the maximum, minimum, and average widths of
independence windows to capture dynamic widths of independence windows.

The compiler can exploit independence windows by throttling the speculation,
such that dependences are naturally satisfied. This can be accomplished by either
of the following methods:

❐ By the compiler inserting explicit synchronization, similar to the technique
described in [32]; or

❐ Providing hints to the hardware for dynamic task merging [24]; or
❐ Inserting conditional spawn instructions [8] if the hardware supports it.

2.3 Dependence Clustering

Recently it was shown that the profitability of TLS is highly sensitive to the
threading overhead [14]. The analysis assumed dynamically scheduling, wherein
iterations of a loop are allocated one at a time. Arguably, one can unroll a
loop or employ chunk scheduling, where multiple iterations are allocated either
statically or dynamically to a processor, to tolerate the high threading overhead.
On the other hand, this increases the probability that two speculative threads
conflict with each other. However, this implicitly assumes a uniform distribution
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of dependences across the iteration space: if there exists 2 dependences between
iterations i and i+1, then iterations j and j+1, where i �= j will be dependent. In
other words, the width of the independence window is “fixed”. This assumption
may not hold for loops containing conditionals, subscripted subscripts and/or
function calls. For example, let us revisit the loop shown in Figure 1. The value
of the variable i may be the same for the first 10 iterations and different in the
remaining iterations; consequently, the first ten iterations have to be executed
serially, whereas the remaining iterations can be executed in parallel. In such a
case, we say that loop-carried dependences are clustered amongst the first ten
iterations.

In general, the objective of dependence clustering is to determine, regions of
the iteration space (of a given loop) with large independence windows. If such
regions exist, then the iteration space is partitioned to isolate such regions and
these regions are subsequently parallelized via TLS.

2.4 Summary

In Figure 2 we present a pictorial view of profitability analysis of TLS. We
consider a hierarchy for non-DOALL loops. The first level filtering is done based
on the threading overhead. Specifically, non-DOALL loops with small amount of
computation in the loop body are filtered as these loops are non-tolerant (box
A in the figure) to the threading overhead. The second level filtering is done
based on conflict probability, using MinIWW (Minimum independence window
width). Loops with MinIWW = 1 are classified as non-profitable, box B1 in the
figure [14]. The rest of the loops are classified as profitable, box B2 in the figure.
Amongst the loops belonging to box A, we detect loops with high iteration
counts. Such loops can be migrated to box B via chunk scheduling; it is important
to note that these loops cannot be directly migrated to box B2 as chunk schedul-
ing may result in an increase in conflict probability. Next, amongst the loops
belonging to box B1, we detect loops with large MaxIWW (Maximum indepen-
dence window width), exemplified by the loop in 429.mcf, at implicit.c:381

Speculative
Parallelization

B2B1

CS = Chunk scheduling DC = Dependence clustering

Non−DOALL Loops

A B

ProfitableNon−Profitable

Threading Overhead

Conflict Probability

Non−Tolerant Tolerant
CS

DC

Fig. 2. Role of dependence clustering in facilitating speculative parallelization
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whose profile of independence windows is shown in Figure 8. Then, parts of the
iteration space (of such loops) with large value of MaxIWW are peeled and clas-
sified as profitable for TLS. The percentage of execution time spent in the peeled
portions of the iteration space correspond to the performance potential of TLS.
Recall that, for given a loop, the existence of independence windows with large
widths and their position in the iteration space may be dependent on the input
data set. Therefore, independence windows (with large widths) detected using a
training data set cannot be parallelized statically.

3 Design of DProf

DProf consists of two components: a compiler-driven instrumenter that selects
loops and instruments memory references for dependence profiling, and a runtime
library that logs references and profiles dynamic dependences and independence
window.

3.1 DProf Instrumenter

The instrumenter is based on the optimizing and parallelizing IBM XL (produc-
tion) compiler. The compiler first analyzes candidate loops to decide whether
they are parallel. Parallel loops are not profiled. The rest of candidate loops may
be selected for profiling based on the likelihood of the dependences detected by
the compiler and other characteristics of the loop. For instance, a loop with small
dependence distances may not be selected for profiling if static information is
sufficient to determine the loop as not a good candidate for parallelization.

For loops that are selected for profiling, the compiler transforms every memory
reference that carries may-dependences into a call profile access, and marks
the start, the end, and the backedge of a (possibly nested) loop by calls to
profile boundary.
The compiler does not instrument references to induction, reduction, and

private variables as dependences carried by these references can be eliminated
via compiler transformations. To reduce profiling time, the compiler may not
instrument references whose loop-carried dependences can be represented by
dependence distances. In this case, the dependence information is recorded by
the instrumenter and is later combined with profiled dependences to produce a
complete dependence report.

3.2 DProf Runtime Library

The runtime library profiles a set of properties for loops such as whether a given
loop is parallel, statistics of independence window size, and dependence proper-
ties such as the source, sink, and the frequency of dependences or dependence
distances.

The profiler maintains a set of read- and write-logs for each loop: Rcurr/Wcurr

for the current iteration being profiled, Rindep/Windep for iterations in the cur-
rent independence window, and Rother/Wother for iterations prior to those in



Compiler-Driven Dependence Profiling to Guide Program Parallelization 239

the current independence window. Loop data structures are kept in a stack so
that nested loops can be profiled in one pass.

For each profile access call, the profiler logs the reference to Rcurr or
Wcurr accordingly, unless the access is a read and the memory address is already
in Wcurr (i.e., the read is private to current iteration).

For each profile boundary call that marks a loop backedge, the profiler
detects loop-carried dependences by comparing Rcurr against Windep. If the in-
tersection of the two sets is not a void set, then a true dependence is detected,
and the current independence window is reset to start from the current iteration
after the sets Rindep/Windep are merged to Rother/Wother respectively. Other-
wise, the current independence window is grown by one iteration. Note that,
in this algorithm, only true dependences and dependences to references in the
latest independence window are detected.

3.3 Source Mapping

The profiler reports source-level information corresponding to the source and
sink of the dynamic dependences being profiled. Such information provides a
valuable guidance to the programmer to make parallelization decisions and even
eliminate these dependences by making source code changes.

The source-level mapping is maintained by the instrumenter which associates
each call site of profile access and profile boundary with a unique id.
The instrumenter also generates a file, which is later used by the profiler, to
map ids to its associated source-level information and other properties obtained
by the compiler. Since the instrumenter is a part of the compiler, the same
mechanism can be used to map profiled properties back to the compiler.

4 Benchmark Evaluation

We implemented DProf on top of the development code base of the IBM XL
compiler. Essentially, an instrumentation phase is added to an optimizing com-
ponent of the XL compiler called TPO that performs high-level optimization
including parallelization. The profiler is implemented as a runtime library that
is linked with the instrumented binary.

4.1 Dependence Profiling

We used DProf to study the parallelization potential of selected applications
from the SEQUOIA [1] and SPEC CPU2006 benchmarks. We profile only hot
loops that are not parallelized by the compiler. For example, three applications
from SPEC206, bwaves, libquantum, and cactusADM, are parallelized by the
compiler, and thus excluded from the study.

We focus on four applications and provide a detailed discussion of their de-
pendence profile characteristics and how they affect speculation profitability. A
summary of the dependence characteristics obtained using DProf is given in
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Table 1. Summary of dependence characteristics obtained using DProf

Benchmark Hot Function % exec Profiling Summary

lammps pair eam::compute() 90% parallel with array reduction
Neighbor::half bin newton() 8% serial due to scalar dependence

gromacs innerf.f:3932 57% inner loop parallel, outer loop serial
hmmer fast algorithm.c:119 90% both inner/outer loops are serial
mcf implicit.c:265 10% both inner/outer loops are serial

Table 1. Other applications are not profiled due to a lack of hot for-loops (while-
loops are not profiled due to limitation of the current implementation), or due
to hot loops that are obviously non-parallel (e.g., containing I/O operations).

SEQUOIA/lammps. The hottest function, pair eam::compute(), covers 90%
of the execution time. There are two hot loops in this function that exhibit
similar dependence patterns. Neither of them is parallelized by the compiler due
to inadequate pointer aliasing information.

Figure 3 shows the fragment of the first hot loop, where the outer i-loop tra-
verses a list of atoms and the inner k-loop traverses the neighbor list of each
item. Figure 4 gives the profiling report of the outer i-loop shown in Figure 3.
The loop has an average independence window of 1 iteration. The narrow inde-
pendence window is due to the tight dependence caused by read-modify-write
to rho[j] at line 191, and by the conflict between rho[i]+= at line 188 and
rho[j] += at line 191. According to these stats, if consecutive iterations of the
i-loop are scheduled as TLS tasks, then the conflict rate would be almost 100%.

164 for (i = 0; i < nlocal; i++) {

...

168 itype = type[i];

169 neighs = neighbor->firstneigh[i];

170 numneigh = neighbor->numneigh[i];

171

172 for (k = 0; k < numneigh; k++) {

173 j = neighs[k];

...

180 if (rsq < cutforcesq) {

...

188 rho[i] += ((coeff[3]*p + coeff[4])*p + coeff[5])*p+coeff[6];

189 if (newton_pair || j < nlocal) {

190 coeff = rhor_spline[type2rhor[itype][jtype]][m];

191 rho[j] += ((coeff[3]*p + coeff[4])*p +coeff[5])*p+coeff[6];

192 }

193 }

194 }

195 }

Fig. 3. Source code of 1st hot loop in pair eam::compute()

Loop <1> at line 164 has 101 invocations, average 32000 iter/invoc (min=32000, max=32000)
  The loop has minIndep = 1 maxIndep = 5 avgIndep = 1
  − Detected a true dependence with frequency of 43.7679% between "this−>rho[i]" (line# 188) and "this−>rho[j]" (line# 191) in "pair_eam.cpp"
  − Detected a true dependence with frequency of 51.4117% between "this−>rho[j]" (line# 191) and "this−>rho[i]" (line# 188) in "pair_eam.cpp"
  − Detected a true dependence with frequency of 95.7514% between "this−>rho[j]" (line# 191) and "this−>rho[j]" (line# 191) in "pair_eam.cpp"

Fig. 4. Profiling report for hot loop in pair eam::compute()
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Note that all the loop-carried dependences are between the statements of the
form rho[x] += . In other words, elements of array rho are reductions. This
loop can be parallelized by parallelizing the reduction [19], with the caveat that
the compiler analysis needs to be extended to handle different subscripts.

CPU2006/gromacs. The hottest loop in gromacs is in innerf.f at line
3932. The loop is a doubly nested and covers 57% of the total execution time.
The loop nest contains many array references through subscript arrays (e.g.,
faction(jjnr(k)-1)), thus dependences on this loop nest cannot be detected
statically. With the training input set, the inner loop has an average trip count
of 28 iterations, ranging from 1 to 173. The loop is profiled to be parallel. Con-
sequently, the loop is marked as profitable, with respect to conflict probability,
for TLS.

The outer loop has an average trip count of 1250 iterations, ranging from
4 to 13891. DProf reports 30 pairs of true dependences for this loop and an
independence window of 1 iteration. Half of the dependences have very low
frequency (less than 1%). The rest have frequencies ranging from 18% to 100%.
Figure 5 shows fragments of the loop, where all high frequency dependences
occur between line 4140 and 4154 at the bottom of the outer loop.

3932 do n=1,nri

...

ii3 = 3*iinr(n)-1

is3 = 3*shift(n)+1

3961 do k=nj0,nj1

...

4139 end do

4140 faction(ii3) = faction(ii3) + fix1 /* dep freq 51% */

4141 faction(ii3+1) = faction(ii3+1) + fiy1 /* dep freq 51% */

...

4148 faction(ii3+8) = faction(ii3+8) + fiz3 /* dep freq 51% */

4149 fshift(is3) = fshift(is3) + fix1+fix2+fix3 /* dep freq 18% */

4150 fshift(is3+1) = fshift(is3+1) + fiy1+fiy2+fiy3 /* dep freq 18% */

4151 fshift(is3+2) = fshift(is3+2) + fiz1+fiz2+fiz3 /* dep freq 18% */

4152 ggid = gid(n)+1

4153 Vc(ggid) = Vc(ggid) + vctot /* dep freq 100% */

4154 Vnb(ggid) = Vnb(ggid) + vnbto /* dep freq 100% */

4155 end do

Fig. 5. Source code of the hot loop at line 3932 in innerf.c

All high frequency dependences occur among statements with array element
reduction pattern (i.e., of the form of a[x] += ). Of them, updates to elements
of arrays Vc, Vnb, and fshift are true reductions. Updates to faction exhibit
a more complex pattern. Besides the reduction updates to elements of faction
between line 4140 and 4148, there are additional reads and writes to faction
in the inner k-loop that are not in the reduction form; however, these references
to faction lead to very low frequency conflict (1̃%) with those references to
faction between line 4140 and 4148. This means the outer loop can not be
easily parallelized by reduction handling and requires TLS support.

CPU2006/hmmer. We now illustrate the dependence profiling of the hot loop
in hmmer taken from fast algorithms.c:119. The loop covers 90% of the exe-
cution time and is shown in Figure 6. In this loop, variables mmx, dmx, xmx and
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120 for (i = 1; i <= L; i++) {

121 mc = mmx[i];

122 dc = dmx[i];

123 ic = imx[i];

124 mpp = mmx[i-1];

125 dpp = dmx[i-1];

126 ip = imx[i-1];

127 xmb = xmx[i-1][XMB];

...

134 for (k = 1; k <= M; k++) {

135 mc[k] = mpp[k-1] + tpmm[k-1]; /*flow to mc[k-1] line 143 */

136 if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;

137 if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;

138 if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;

139 mc[k] += ms[k];

140 if (mc[k] < -INFTY) mc[k] = -INFTY;

141

142 dc[k] = dc[k-1] + tpdd[k-1]; /* flow to dc[k-1] line 143 */

143 if ((sc = mc[k-1] + tpmd[k-1]) > dc[k]) dc[k] = sc;

144 if (dc[k] < -INFTY) dc[k] = -INFTY;

145

...

152 }

158 xmx[i][XMN] = -INFTY; /* flows to xmx[i-1][XMN] at line 159 */

159 if ((sc = xmx[i-1][XMN] + hmm->xsc[XTN][LOOP]) > -INFTY)

160 xmx[i][XMN] = sc;

...

189 }

Fig. 6. Source code of the loop at 456.hmmer:fast algorithm:119

265 for( ; i < trips; i++, arcout += 3 )

266 {

267 if( arcout[1].ident != FIXED )

268 {

269 arcout->head->firstout->head->arc_tmp = first_of_sparse_list;

270 first_of_sparse_list = arcout + 1;

271 }

272

273 if( arcout->ident == FIXED )

274 continue;

275

276 head = arcout->head;

277 latest = head->time - arcout->org_cost

278 + (long)bigM_minus_min_impl_duration;

279

280 head_potential = head->potential;

281

282 arcin = first_of_sparse_list->tail->arc_tmp;

283 while( arcin )

284 {

285 tail = arcin->tail;

286

287 if( tail->time + arcin->org_cost > latest )

288 {

289 arcin = tail->arc_tmp;

290 continue;

291 }

...

310 }

Fig. 7. Source code of the loop at 429.mcf:implicit.c:265

imx are declared as int**. Due to the lack of aliasing information, the compiler
can not determine the precise dependence information for references in the loop.

With the training input set, the inner loop is profiled to have a trip count
of 100 iterations, and has an independence window of 1 iteration. Two pairs of
dependences are detected for this loop on the mc and dc variables. The outer
loop has an average trip count of 491 iterations, ranging from 7 and 1328 iter-
ations. The loop also has an independence window of 1 iteration. Ten pairs of
dependences are detected with 100% conflict rate. This is an example of a loop
that is not a good candidate for speculative parallelization.
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Instance 1 Instance 2

Train Data Set Train Data Set

Reference Data Set Reference Data Set

Instance 3 Instance 4

Train Data Set Train Data Set

Reference Data Set Reference Data Set

Fig. 8. Illustration of dependence clustering
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CPU2006/mcf. The hottest loop in 429.mcf (psimplex.c:59) is a while-
loop thus is not profiled. The loop at implicit.c:265 (see Figure 7) cov-
ers 10% of the execution time. The loop is profiled to have an independence
window of 1 iteration. The profiler reports 18 pairs of dependences for this
loop. Of them, two dependences have a conflict rate of 100%, one on the vari-
able first of sparse list at lines 269 and 270 and the other between the
pointer accesses arcout->head->firstout->head->arc tmp at line 270 and
tail->arc tmp at line 289.

4.2 Determining Independent Clusters

In this subsection, we present a case study to illustrate the use of DProf to
determine independent clusters. Figure 8 shows the profile of independence win-
dows for four different instances of the loop in 429.mcf, at implicit.c:381,
using the training and reference input data sets. All the references in the loop
were instrumented, except for the variablesusp – a reduction recognized by the
compiler.

The x-axis in each subfigure of Figure 8 represents the number of independence
windows and the y-axis represents the width of an independent window. From
Figure 8 we see that parts of the iteration space have large independence window
widths. For instance, let us consider the profile shown in the second row and right
column. We note that the widths are very small towards the left of the x-axis
and is more than 7500, on an average, on the right side of the x-axis. In such
cases, we say that dependences occur in clusters. This behavior can be exploited
for speculatively parallelization, as discussed earlier in Section 2. Interestingly,
we note that the profile of independence windows varies from one instance to
another and is significantly different for the training and reference data sets.

For the hot loops we studied, however, we find that the dependence window
profile is quite regular: the loops are either fully parallel or have a constant
independence window width of 1.

5 Previous Work

Task-level speculative computation has been long proposed as a means for ex-
tracting higher levels of parallelism [3]. With the emergence of multithreaded
processors [22], many researchers have proposed the use of threads for exploiting
speculative parallelism in both hardware and software [2, 10, 23, 25].

To ensure profitable speculation, most prior work use profile-based cost mod-
els for task decomposition and selection, while others rely on hardware mecha-
nism [4, 27, 33], probabilistic static analysis (e.g., dependence probability [5]),
compiler heuristics [28] for task generation. The rest of the section will focus on
related work in software profile-based cost models, which our work belongs to.

In [7], the compiler uses dependence profile for task selection and for partition-
ning speculative loops into serial and parallel portions. The profiler tracks both
intra- and carried- true dependences for speculative loops. Carried-dependences
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are used to guide the parition of loop bodies into a serial and a parallel portion.
Since dependences originated from the serial portion do not trigger roll-back in
the parallel portion, the key part of their framework is to move source compu-
tation of frequent dependences (called violating candidate) to the serial portion
through instruction reording. A cost model is used to select the optimal loop
partition, which is based on the size of serial portion and the misspeculation
cost of the parallel portion. The latter is computed by combining re-execution
cost of individual nodes weighted by probabilities of carried-dependences (for
violating candidates) and intra-iteration dependences (for others).

In [18], the POSH compiler uses profiling for task selection. The profiler builds
a rudimental timing model for TLS execution from the sequential execution. It
assigns timestamps to each instruction as if the tasks were executed in paral-
lel, and detect task squashes by comparing timestamps of conflicting memory
accesses. The profiler does not collect individual dependence probabilities thus
runs much faster than typical dependence profiler. The compiler also partition
the loop into serial and parallel (called hoisting distance) portions. But unlike [7],
the partitioning uses static information only. Tasks are pruned based on three
independent thresholds for task size, hoisting distance, and squash benefit. The
latter also factors in prefetching benefit of squashed tasks.

In [21], the Mitosis compiler uses both dependence and edge-profiles for 1)
generating speculative precomputation slices (p-slice) and 2) selecting spawn-
ing pairs. P-slice predicts live-in values for speculative tasks and contributes
to the serial portion of the speculative execution. To minimize p-slice overhead
while maximizing the accuracy, the compiler uses dependence- and edge-profiles
to prune instructions in p-slices. To select spawning pairs, another profile an-
alyzes the sequential execution trace to model the speculative execution time
of each candidate spawning pair without considering inter-task memory con-
flicts. Instead, in this execution model, task squashes is mostly determined by
mispredication probability of p-slices.

In [13], Johnson et al. proposed an approach wherein speculative task decom-
position is modelled as a balanced min-cut problem. In this framework, edge-
and dependence profiles are used to assign weights to graph edges.

In [30], Praun et al. proposed a tool for speculative task head recommenda-
tion based on binary instrumentation. The cost model for task recommendation
is based on self length that models task sizes, dependence length that models
conflicts, and a parallelization speedup estimate.

Alias profiling has been proposed as an assist for memory disambiguation
[9, 16, 31]. Chen et al. [6] proposed a dependence profiler for speculative opti-
mizations.

6 Conclusions

This paper presents a cost model for speculative task selection and a compiler-
based approach for program dependence profiling. The dependence profiler,
DProf, measures width of independence windows to quantify dynamic paral-
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lelism in the program. We also propose dependence clustering as a technique to
exploit TLS parallelism on segments of the iteration space.

In addition to its use in task selection, DProf also reports individual de-
pendences being profiled including dependence probability and source mapping
information. This information can be fed to the compiler or the programmer to
assist code transformation or algorithmic optimizations.

We present the dependence and independence window profile obtained
through DProf for selected programs in SEQUOIA and SPEC CPU2006 bench-
mark suites. We observe that:

❐ In addition to all the loops parallelized by the compiler, only one hot loop
is profiled to be parallel in the programs being studied.

❐ There is little variability in independence window width in the hot loops
we studied. Loops are either parallel or serial with an independence window
width of 1.

❐ For loops with tight independence window, there are often a mixture of high-
and low-frequency dependences. Eliminating high-frequency dependences is
key to widening the independence window.

❐ Dependences due to complex reduction updates is one form of high-frequency
dependence that can be potentially eliminated.

As future work, we plan to provide support for dependence profiling of while
loops and enable the profiling of complex reduction patterns.

References

1. ASC Sequoia Benchmark Codes,
http://www.llnl.gov/asc/sequoia/benchmarks/

2. Bruening, D., Devabhaktuni, S., Amarasinghe, S.: Softspec: Software-based spec-
ulative parallelism. In: Proceedings of 3rd ACM Workshop on Feedback-Directed
and Dynamic Optimization (FDDO-3) (2000)

3. Burton, F.W.: Speculative computation, parallelism, and functional programming.
IEEE Trans. Computers 34(12), 1190–1193 (1985)

4. Chen, M.K., Olukotun, K.: The Jrpm system for dynamically parallelizing Java
programs. In: Proceedings of the 30th International Symposium on Computer Ar-
chitecture, pp. 434–446 (2003)

5. Chen, P.-S., Hung, M.-Y., Hwang, Y.-S., Ju, R.D.-C., Lee, J.K.: Compiler support
for speculative multithreading architecture with probabilistic points-to analysis.
In: Proceedings of the 9th Symposium on Principles and Practice of Parallel Pro-
gramming, pp. 25–36 (2003)

6. Chen, T., Dai, J.L.X., Hsu, W.-C., Yew, P.-C.: Data dependence profiling for specu-
lative optimizations. In: Proceedings of the 13th International Conference on Com-
piler Construction, Barcelona, Spain, pp. 57–72 (2004)

7. Du, Z.-H., Lim, C.-C., Li, X.-F., Yang, C., Zhao, Q., Ngai, T.-F.: A cost-driven
compilation framework for speculative parallelization of sequential programs. In:
Proceedings of the SIGPLAN 2004 Conference on Programming Language Design
and Implementation, Washington DC, USA, pp. 71–81 (2004)

http://www.llnl.gov/asc/sequoia/benchmarks/


Compiler-Driven Dependence Profiling to Guide Program Parallelization 247

8. Dubey, P., O’Brien, K., O’Brien, K., Barton, C.: Single-program speculative mul-
tithreading (SPSM) architecture. In: Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques (1995)

9. Fernández, M., Espasa, R.: Speculative alias analysis for executable code. In: Pro-
ceedings of the 11th International Conference on Parallel Architectures and Com-
pilation Techniques, Charlottesville, VA, pp. 222–231 (2002)

10. Franklin, M., Sohi, G.S.: The expandable split window paradigm for exploiting
fine-grain parallelsim. SIGARCH Comput. Archit. News 20(2), 58–67 (1992)

11. Hammond, L., Willey, M., Olukotun, K.: Data speculation support for a chip mul-
tiprocessor. In: Proceedings of 8th International Conference on Architecutral Sup-
port for Programming Languages and Operating Systems (1998)

12. Johnson, T., Eigenmann, R., Vijaykumar, T.: Speculative thread decomposition
through empirical optimization. In: Proceedings of the 12th Symposium on Prin-
ciples and Practice of Parallel Programming (2007)

13. Johnson, T.A., Eigenmann, R., Vijaykumar, T.N.: Min-cut program decomposition
for thread-level speculation. In: Proceedings of the SIGPLAN 2004 Conference on
Programming Language Design and Implementation, Washington DC, USA, pp.
59–70 (2004)

14. Kejariwal, A., Tian, X., Girkar, M., Li, W., Kozhukhov, S., Saito, H., Banerjee,
U., Nicolau, A., Veidenbaum, A.V., Polychronopoulos, C.D.: Tight analysis of the
performance potential of thread speculation using SPEC CPU 2006. In: Proceed-
ings of the 12th Symposium on Principles and Practice of Parallel Programming
(2007)

15. Krishnan, V., Torrellas, J.: Hardware and software support for speculative ex-
ecution of sequential binaries on a chip-multiprocessor. In: Proceedings of 12th
International Conference on Supercomputing (1998)

16. Lin, J., Chen, T., Hsu, W.-C., Yew, P.-C., Ju, R.D.-C., Ngai, T.-F., Chan, S.: A
compiler framework for speculative analysis and optimizations. In: Proceedings of
the SIGPLAN 2003 Conference on Programming Language Design and Implemen-
tation, pp. 289–299 (2003)

17. Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., Renau, J., Torrellas, J.: POSH:
A TLS compiler that exploits program structure. In: Proceedings of the 11th Sym-
posium on Principles and Practice of Parallel Programming (2006)

18. Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., Renau, J., Torrellas, J.: POSH:
A TLS compiler that exploits program structure. In: Proceedings of the 11th Sym-
posium on Principles and Practice of Parallel Programming, pp. 158–167 (2006)

19. Pottenger, B., Eigenmann, R.: Parallelization in the presence of generalized induc-
tion and reduction variables. In: Proceedings of 9th International Conference on
Supercomputing (1995)

20. Pugh, W.: The definition of dependence distance. Technical Report CS-TR-2292
(November 1992)
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Abstract. Problem-solving frameworks in large-scale and wide-area en-
vironments must handle connectivity issues (NATs and firewalls), main-
tain scalability with respect to connection management, accommodate
dynamic processes joining/leaving at runtime, and provide simple means
to tolerate communication/node failures. All of the above must be pre-
sented in a simple and flexible programming model. This paper designs
and implements such a framework by minimally extending distributed
object-oriented models for maximum generality and flexibility . To make
parallelism manageable, we introduce an implicit serialization semantics
on objects to relieve programmers from explicit synchronization, while
avoiding the recursion deadlock problems from which some models based
on active objects suffer. We show how this design nicely incorporate dy-
namically joining processes. In our implementation, participating nodes
automatically construct a TCP overlay so as to address connectivity and
scalability issues. We have implemented our framework, gluepy as a li-
brary for Python. For evaluation, we show on over 900 cores across 9
clusters with complex networks (involving NATs and firewalls) and pro-
cess managements (involving SSH, torque, and SGE) configurations, how
a simple branch-and-bound search application can be expressed simply
and executed easily.

1 Introduction

Grid environment is a complex environment in which to program. Resources are
large scale and distributed across multiple clusters. Connectivity among them is
restricted by NAT and firewalls. Sites run different resource management soft-
ware with different policies, and available resources change constantly during
computation. Problem-solving environments on the Grid must be designed so
the above complexities are made manageable in a simple and uniform frame-
work that alleviates the burden of the users. Thus, the following characteristics
(among others) must be addressed:
– Allow processes to simply and seamlessly communicate across sites despite

the complexity of underlying networks
– Incorporate dynamically joining processes into the computation while pro-

viding means handling of node and network failures
– A programming model to handle parallelism simply and concisely
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A common approach has been to design a framework that hides these issues.
Good examples are systems and frameworks for embarrassingly parallel appli-
cations [1,2, 3] and their extensions to express dependencies among tasks [4, 5].
They normally require no programming effort for coordination. A slightly more
general approach has been to design programming frameworks specific to cer-
tain application domains [6] and coordination models [7]. These frameworks are
perfect when the problem at hand naturally fit their model. On the other hand
however, they usually provide no or limited means for individual subtasks to
communicate with each other. Thus, implementing the coordination among sub-
tasks must frequently resort to using “out-of-band” means (e.g., file transfer,
ad-hoc CGI, etc.), making the code awkward and error-prone.

Another approach, which we pursue in this paper, is to leverage a general
programming language and conventional parallel/distributed programming con-
cepts, and minimally extend them for issues in large-scale wide-area environ-
ments. Object-oriented languages are particularly suitable for this purpose, as
they have a general and an accepted model of communication (i.e., remote
method invocation or RMI in short). Yet existing parallel RMI-enabled frame-
works [8, 9] do not sufficiently address the aforementioned issues (connectiv-
ity, scalability, and dynamic processes). Furthermore, managing parallelism and
asynchroneity with distributed objects is still not trivial, and race-conditions
and deadlocks are commonplace.

We have implemented gluepy, a Python framework with addressing these is-
sues as its primary objective and with the following contributions:

– Objects have implicit serialization semantics. Parallelism is expressed via
asynchronous procedure/method calls, using primitives commonly known as
futures [10]. Yet the semantics eliminate the need for explicit synchronization
code. The underlying execution model is still based on passive objects +
threads familiar to many programmers. Our design thus does not suffer from
the self-recursion deadlocks that some active object-based models do [9,11].

– An object signalling mechanism that provides simple means by which asyn-
chronous events, such as new process joins, may be handled. It is designed
so as to retain the comfortable programming style of using asynchronous
method invocations to manage and schedule tasks without resorting to low
level event-handling loops.

– A TCP overlay network is built among participating nodes to realize scalable
and seamless communication among all participating nodes. To incorporate
resources reachable via SSH, it can use SSH port forwarding where specified.

Our experimental platform includes nine clusters with over 900 CPU cores.
Many of them perform IP filtering to various degrees, and some only have pri-
vate addresses. It also includes an almost completely confined cluster that can
be reached only by first logging in to its gateway via SSH, then logging in to
a cluster frontend via SSH, and finally submitting jobs via a batch scheduler.
The main result of this work is a simple scripting environment that can coordi-
nate processes spread across such complex environments. We implemented and
deployed, with little effort, a combination optimization problem solver on our
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platform of over 900 CPU cores. The core of the solver is an optimized sequential
program written in C++ that won the 3rd Grid Plugtest Contest [12]. Python
code in our framework merely schedules the underlying C++ processes and ex-
changes solutions found among participating processes. The glue code is very
concise and has only 250 lines, the core of which is shown in Section 3.

This paper is organized as follows. We discuss existing problem solving frame-
works on the Grid in Section 2. In Section 3 and 4, we present the model and
the implementation of our framework. We evaluate our work in Section 5 and
conclude in Section 6.

2 Related Work

2.1 Flexible Inter-process Interactions

In order to address a large range of applications on the Grid, programming
frameworks need to provide a simple yet flexible means by which processes may
interact. In the realm of Grid enabled bash schedulers [2, 3], users can express
inter-task dependencies in a simple script file [4]. However, inter-task interaction
and communication means are limited to passing intermediate files among tasks.

The master-worker model allows close interaction between the master and its
workers in the form of tasks, and is an accepted paradigm for its simplicity [13].
As such, many frameworks specialize in this type of application [14, 15, 16, 17].
However, if the master and worker require frequent interaction, the assigned
tasks must be artificially broken into smaller sub-tasks. Some frameworks [14,16]
enable messages to be sent between the two parties, yet this often results in
cluttered code.

Satin [18] and distributed-Cilk [19] are frameworks for distributed divide-and-
conquer computation. However, the model’s applicable problem set is relatively
small, and inter-task interaction is limited to times when tasks divide and merge.

In our proposal, we argue in favor of distributed object oriented programming.
Communication is made transparent in the form of RMIs, and objects may invoke
upon each other. By utilizing asynchronous invocations with futures, processes
may freely interact with each other while taking advantage of the simplicity of
method invocations.

2.2 Managing Parallelism for Distributed Objects

Extending an exisiting object oriented programming language for distributed
computing is a popular approach. With Java, Ibis RMI [8] and ProActive [9],
with Python, DisPyte [20] are notable examples. In these frameworks, parallel is
expressed via asynchronous RMIs. However, this often results in race-conditions,
making it necessary to use mutual exclusion. The active object [9] model takes
an approach such that each object has a dedicated thread for execution, yet this
can easily induce deadlocks (e.g.: recursive calls).

We propose a novel synchronization semantics for objects where at most 1
thread can operate on an object at any given time. When a thread performs
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an invocation on the object, it must first acquire its ownership. This implicitly
achieves mutual exclusion. However, when the owner thread blocks in the object’s
context, the ownership is temporarily released, thus preventing deadlocks.

2.3 Handling Process Joins/Failures with Ease

On Grid scale computing, where resources fluctuate constantly, it is paramount
that handling of process joins and leaves is made simple for the user. Satin [18],
which utilizes the divide-and-conquer model, transparently re-executed lost sub-
tasks while handling load balancing via Random Work-Stealing [21]. However,
it is difficult to extend this approach beyond the divide-and-conquer model.

Master-worker frameworks like Jojo2 [14] handle worker joins/leaves via event
handlers. This necessitates low-level event-driven loops with explicit mutual ex-
clusions; thus cluttering the code and rendering it hard to understand.

We propose, in conjunction with our synchronization semantics, a signaling
mechanism for each object, which unblocks an arbitrary thread blocking in the
object’s context. Thus it is possible to handle asynchronous events such as node
joins while adhering to our implicit synchronization semantics. Additionally,
process failures are abstracted as exceptions to method invocations. This widely
accepted semantics nicely integrates failures into conventional programming.

2.4 Resolving Connectivity on the Grid

Realizing communication on the Grid, where connectivity is limited by NATs
and firewalls, in a scalable manner is a difficult task. PadicoTM [22] enables
distributed computing using CORBA on various network hardware, yet does
not take connectivity issues into account. ProActive [9] requires users to hand
write descriptor files that specify connectable points, yet this is a high burden
on the user. SmartSockets [23] attempts to establish connectivity on the Grid by
transparently attempting various methods to establish TCP connection(s). How-
ever, none of the above take connection scalability into account, which becomes
increasingly important with hundreds of coordinating processes.

We propose to construct an overlay network over which communication is
routed transparently. Each processes establishes a small number of connections,
and address the connection scalability issue. Connectivity is achieved by a high
probability via our overlay construction scheme.

3 The Programming Model

In this section, we present a distributed object-oriented framework that operates
in a NAT/firewall-prone environment with dynamically joining/leaving nodes.
To the user, we provide a seamless view of the underlying environment, and
present a set of simple interfaces by which nodes may communicate via RMIs,
new nodes may join, and failing nodes are detected.

Like other distributed object-oriented frameworks, our model provides remote
objects and communication among them are abstracted in the form of RMIs [8,9].
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However, we address a number of topics important to Grid-enabled programming
that were not, or only partially discussed before.

3.1 Synchronization and Asynchronous Event Handling

In the context of parallel computing, parallel and asynchronous RMIs are crucial.
Yet, manipulating asynchronous RMIs is still a non-trivial task. Some imple-
mentations allow the users to define callbacks for when the results are available.
However, this requires using locks to handle critical data. To resolve this issue,
there are future primitives that allow the invoking thread to block for results
when they become necessary; the invoking thread may perform other computa-
tion in the mean time. Its advantage is that a single thread is in control of the
entire flow, and the transition from sequential programming is natural.

This does not resolve the issue on the RMI handler’s standpoint. Since a
remote object may receive an incoming invocation handled by an independent
thread at any time, the programmer must use locks for objects that might receive
incoming RMIs. To resolve this problem, some models [9] have implemented ac-
tive objects where there is a dedicated thread for each object. The dedicated
thread handles all incoming RMIs sequentially. However, this model easily cre-
ates deadlocks when an RMI handler also is an RMI invoker.

Yet another issue arises when the program has to handle asynchronous events,
such as new node joins. The RMI-based model alone cannot handle these events.
One possible approach is to handle RMI callbacks, node failures, and node joins
all in one single event driven loop, like in many other master-worker frameworks.
The obvious advantage is that a single control thread does all operations, elimi-
nating locks and conditional variables. However the programmer must take care
so that event handlers do not block, and the natural flow derived from sequential
programming is completely lost.

We summarize the qualities favorable in a distributed object-oriented model.

– provides future primitives for expressing parallelism
– allows objects to be accessed mutually exclusively without explicit locks
– avoids unpleasant deadlocks induced by implicit serialization semantics above
– may handle asynchronous events without low-level event handling models

In the proposed model, at most one thread may run on an object at a time;
the thread implicitly acquires the object’s ownership for the duration. However,
if this thread blocks while in the scope of a method, it temporarily releases
the ownership, and another pending thread is permitted to run. When there are
more than one pending thread, an arbitrary thread is scheduled, and acquires the
ownership. We supply future primitives by which threads may block for results.
Finally, we provide a signaling mechanism for each object, by which a thread
blocking on future primitives in the object’s context is made to unblock.

When an asynchronous RMI is performed, the invocation returns immediately
with a future object. To do an RMI fib on an object foo, do the following.

future = foo.fib.future(args)
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In order to obtain the results for the asynchronous RMI, we do

result = future.get()

If the results are not available, the call will block until they are. For scheduling, it
is also very common that one waits for an array of future objects simultaneously,
until any result becomes ready. To this end, we provide a global wait primitive
that takes a list of future objects, blocks until at least one of the futures’ results
are available, and returns a list of futures whose results are available.

ready = wait(futures)

Finally, each object is provided with a signaling primitive invoked by

obj.signal()

This forcefully unblocks a thread that is blocking on wait in the object’s context.
If no threads are blocking at that time, the next thread that calls on wait in its
context will be woken. The woken thread will contest for and reaquire the object
ownership, after which the unblocked wait primitive will return None.

This serialization semantics eliminates the need for explicit locking. This is
similar to that of active objects, adopted in some object-based languages [9]. Ac-
tive objects, however, easily lead to an unpleasant behavior called self-recursion
deadlocks. In contrast, our model allows another thread to run on an object when
the current thread blocks in the midst of a method execution (a synchronous
RMI, call on wait, or future.get). This property prevents deadlocks due to
such recursive calls. With respect to atomicity, a thread is guaranteed to have
exclusive control in between potentially blocking operations. Thus, the object’s
state may be modified without worrying about races.

Furthermore, a special method signal allows to unblock a thread currently
waiting on the object. This is similar to the semantics of UNIX signals, which
unblocks threads blocking on some I/O system calls (e.g., read). This can be
used to wake a blocking thread for handling of some event(s).

3.2 Failure Semantics and Bootstrapping Nodes

For RMI failures and object lookups, we utilize the semantics widely accepted
in existing RMI frameworks. Node failures are commonplace on the Grid, and
simple means for handling them must be presented to the programmer. To this
end, node failures are abstracted as exceptions for RMIs to objects on failed
nodes. The user may catch such exceptions for failure handling. Aside from
uncaught application-level exceptions in an RMI, when any of the below failures
occur during an RMI, a RemoteException is raised on the caller side. In all cases,
they may be handled by the invoker to perform recovery or evasive measures in
the regular Python semantics.

1. The communication route between the caller and the callee nodes is broken
2. The callee node fails during execution
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Another crucial issue for Grid-computing with dynamically joining nodes is
bootstrapping a node. In distributed object-oriented models, this translates to
obtaining the first reference to a remote object. In our framework, any remote
object may be published with a human readable string name as follows:

object.register("any_name")

A process may obtain a reference to a published object using the name.

ref = RemoteRef("any_name")

This way, the newly joining node may obtain the reference to an existing object
and thus join the computation by notifying existing members of its joining.

3.3 Sample Code

Using our programming model, one can easily implement applications using dy-
namic processes. We show one of such examples in Figure 1(a), a simple yet
complete template for master-worker applications. The master initiates work on
each worker, and results are collected using futures. The code can accommodate
node joins using the signal primitive. Node failures are handled by catching ex-
ceptions. It is noteworthy that locks are not necessary, and that by using futures,

c l a s s M a s t e r :
d e f _ _ i n i t _ _ ( s e l f , j o b s ) :

s e l f . n o d e s = [ ]
s e l f . j o b s = j o b s

d e f n o d e J o i n ( s e l f , n o d e ) :
s e l f . n o d e s . a p p e n d ( n o d e )
s e l f . s i g n a l ( ) # n o t i f y j o i n

d e f r u n ( s e l f ) :
a s s i g n e d = {}
w h i l e T r u e :

# d i s p a t c h w o r k t o a v a i l a b l e w o r k e r s

w h i l e l e n ( s e l f . n o d e s )>0
a n d l e n ( s e l f . j o b s )>0:

n o d e = s e l f . n o d e s . p o p ( )
j o b = s e l f . j o b s . p o p ( )
# a s y n c h r o u s R M I t o w o r k e r

f = n o d e . w o r k . f u t u r e ( j o b )
a s s i g n e d [ f ] = ( n o d e , j o b )

# w a i t f o r a n y r e s u l t s

r e a d y s = w a i t ( a s s i g n e d . k e y s ( ) )

# i f g o t s i g n a l , l o o p b a c k

i f r e a d y s == N o n e : c o n t i n u e

# r e a d r e a d y r e s u l t s

f o r f i n r e a d y s :
n o d e , j o b = a s s i g n e d . p o p ( f )
t r y :

p r i n t ”done : ” , f . g e t ( )
s e l f . n o d e s . a p p e n d ( n o d e )

e x c e p t R e m o t e E x c e p t i o n , e :
# i n c a s e o f a f a u l t , r e r u n j o b

s e l f . j o b s . a p p e n d ( j o b )

c l a s s W o r k e r :
d e f w o r k ( s e l f , j o b ) :

# d o w o r k o n j o b . . .

r e t u r n r e s u l t s

d e f r u n ( s e l f , m a s t e r n a m e ) :
# o b t a i n r e f e r e n c e t o m a s t e r a n d j o i n

m a s t e r = R e m o t e R e f ( m a s t e r n a m e )
m a s t e r . n o d e J o i n ( s e l f )

c l a s s M a s t e r :
d e f _ _ i n i t _ _ ( s e l f , j o b s ) :

s e l f . j o b s = j o b s

s e l f . w o r k e r s = [ ]
s e l f . t a b s = {}
s e l f . l o c k = L o c k ( ) # f o r m u t e x

# i n v o k e d o n n e w e v e n t w i t h a r g . e

d e f h a n d l e E v e n t ( s e l f , e ) :
# n e e d m u t u a l e x c l u s i o n

s e l f . l o c k . a c q u i r e ( )
t r y :

# g i v e j o b t o n e w n o d e

i f e . t y p e == N E W _ N O D E :
n o d e = e . n o d e

# g i v e n e w j o b , i f a n y

i f l e n ( s e l f . j o b s ) > 0 :
j o b = s e l f . j o b s . p o p ( )
s e l f . t a b s [ n o d e ] = j o b

s e l f . g i v e J o b ( n o d e , j o b )
e l s e :

s e l f . w o r k e r s . a p p e n d ( n o d e )

# h a n d l e r e s u l t a n d g i v e - o u t a n e w j o b

e l i f e . t y p e == J O B _ D O N E :
p r i n t ”done : ” , e . r e s u l t

n o d e = e . n o d e

# g i v e n e w j o b , i f a n y

i f l e n ( s e l f . j o b s ) > 0 :
j o b = s e l f . j o b s . p o p ( )
s e l f . t a b s [ n o d e ] = j o b

s e l f . g i v e J o b ( n o d e , j o b )
e l s e :

s e l f . w o r k e r s . a p p e n d ( n o d e )

# re - e n q u e l o s t j o b o n n o d e f a i l u r e

# d o n o t re - e n q u e u e w o r k e r

e l i f e . t y p e == F A I L U R E :
n o d e = e . n o d e

j o b = s e l f . t a b s . p o p ( n o d e )
s e l f . j o b s . a p p e n d ( j o b )

f i n a l l y :
s e l f . l o c k . r e l e a s e ( )

a. The core for a simple Master-Worker Program. b. Master-Program template in
Classes for the Master and the Worker are shown. a typical master-worker framework

Fig. 1. Sample Code and Comparison with typical master-worker framework
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the master’s flow resembles that of a sequential program. With the active object
model, where locks are also unnecessary, maintaining this flow is impossible as
the master object is in method run the entire time; workers will never have a
chance to run nodeJoin. In comparsion, Figure 1(b) shows the code for a typi-
cal master-worker framework. A handler, independently invoked on each event,
has to branch of each event type, and the loop must perform explicit mutual
exclusion. The event-driven code also destroys natural sequential flow of control.

3.4 Discussion

In our object semantics, atomic blocks do not encompass an entire method block,
but rather between potentially blocking operations within a method. Yet we
believe this is acceptable semantics. Atomic sections in real life applications
are very short (e.g., checking if a given value exists in a map before insertion).
Moreover, users are aware of blocking operations in advance (synchronous RMIs,
access to futures, calling wait). Also, as common practice, it is not favorable to
design atomic blocks such that they encompass blocking operations.

In the semantics however, livelocks may still occur, like in cases where a thread
infinitely loops in a method without blocking. This is arguably as hard to debug
as deadlocks. Currently, we defer this as future work.

Our signal mechanism sends the signal to objects rather than to threads. This
design decision was motivated by the fact that in a distributed non-active object
model, threads are ephemeral existences only used to gain parallelism. Thus, the
programmer is more concerned about interacting with objects, than threads.

Finally, our model can address a wide range of applications beyond the master-
worker model shown in the sample code. For example, more P2P-like applications
like distributed island-GA applications, where each node performs GA and peri-
odically do crossovers with other peer nodes, can also be easily expressed using
RMIs to each other’s object.

4 Implementation

In the following section, we will discuss how we implemented our framework
to cope with the physical issues of a Grid environment. In particular, we had
to resolve three issues: point-to-point communication in a WAN setting (NATs,
firewalls), allowing nodes to join with ease, tolerating abrupt node failures.

4.1 Overlay Network Construction

In our framework, to realize point-to-point communication among all nodes, we
automatically construct an overlay using TCP connections. Each participating
node establishes connections with a small number of nodes chosen at random
(about 10 connections). Analysis has shown that such a scheme will create a con-
nected graph of all participating nodes with high probability [24]. However, some
cluster completely filter incoming and outgoing packets, and thus there are no
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means by which these resources may be connected. For these exceptional cases,
we automatically perform SSH portforwarding over which TCP connections are
forcefully established. Only for these cases, we require the user to specify the
points between which SSH portforwarding is done. However, we view this as a
very rare case and only requires one line in a configuration file.

Over this overlay, we implement a routing layer adapted from a reactive rout-
ing protocol, AODV [25]. It adapts well to dynamic graph changes and fits our
setting where nodes join and leave at will; the lazy routing path construction
does not entail broadcast storms in face of high churn. The routing metric is the
RTT latency for each TCP link.

4.2 Dynamic Node Join

For nodes to join the computation, it must first become connected with the
overlay. In order to do so, it needs a set of bootstrap peer node information,
or endpoints, with which it will first connect. In a TCP overlay, this entails
obtaining a set of initial (IP, port) pairs. We implemented an endpoint server
that all nodes access before joining. Each node obtains a set of endpoints. It then
adds its own endpoint to the server so that other nodes may connect to itself.
We provide a number of options for this server. One is an HTTP server. The
other is a server built on top of GXP1 [26], a Grid shell. Using GXP, one may
log into hundreds of remote servers via SSH and execute commands on them in
parallel. It also provides a mechanism with which all nodes may communicate
via SSH tunnels. Because all communication is done via SSH, this mechanism
can be used even for resources that are not accessible by any other means.

4.3 RMI Fault Detection

In our context of an overlay network, a communication route between 2 points
may constitute more than 1 TCP connection, and thus is not trivial to detect
RMI faults. We assume that when a node fails, it closes all established TCP
connections. For our implementation, an RMI is realized by two protocol mes-
sages, the RMI Request and the RMI Return message. Additionally, each RMI is
identified by a globally unique id, an RMIID. In the implementation, we define
an RMI to have failed if either the RMI handler node fails, or if any of the TCP
connections that the RMI Request message has traversed fails.

On method invocation, an RMI Request Message is sent towards the object
hosting node. As a node forwards the message, it creates a path pointer for the
RMIID along the connection to the forwarded node.

After the method invocation has been handled by the object hosting node, an
RMI Return Message is returned towards the invoker. The message is forwarded
along the path on which the RMI Request message came. As it follows the path
in reverse, all intermediate nodes erase the path pointer for the RMIID.

When a node fails, all nodes connected to it will detect a connection failure.
Each node finds out if any RMI path pointer exists along the failed connection.
1 http://www.logos.ic.i.u-tokyo.ac.jp/gxp/
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Fig. 2. The left and right figures show how an RMI Request and Return messages are
sent along connections. The center figure depicts what would happen if an intermediate
connection is lost.

If such a pointer exists, the node deletes the pointer and sends an RMI Return
message carrying a failure exception, back along the stored path. By doing so,
the intermediate node can notify the RMI invoker of the RMI failure, and the
path created by the RMI Request message is effectively torn down. An image of
the entire process is shown in Figure 2.

5 Evaluation

By using the program shown in Figure 1(a) as the base, we have implemented
a number of master-worker type applications. In this section, we provide some
micro-benchmarks to evaluate our overlay performance. We also evaluate its
ability and effectiveness to run in a Grid environment with dynamic resources
fluctuations. First, we explain the setup of our experimental environment. In
Figure 3, we show the clusters used for our evaluations. Most cluster nodes are
Core2Duo 2.13GHz, except for kototoi and mirai and hiro (Xeon 2.33GHz),
istbs (Xeon 2.4GHz), and tsubame (Dual Core Opteron 2.4GHz). It is notewor-
thy that each cluster has different network administration settings. For example,
due to the NAT configuration, most nodes in cluster kyoto and imade are not
accessible from outside. Clusters kototoi have global IPs, yet due to the firewall
at the gateway router, no incoming connections can be accepted. However, we
were able to utilize all nodes in all clusters without any manual configuration;
our bootstrapping scheme in Section 4.2 automatically bootstrapped all nodes to
the peer-to-peer overlay. Exceptions are cluster istbs and tsubame, in which all
its incoming and outgoing packets on most ports are filtered for security reasons.
In order to utilize the two clusters, we enabled configurations for ssh forwarding
from one gateway node in each cluster to a node in cluster hongo; all other nodes
in the cluster connected to the gateway node within its cluster.

5.1 Micro-benchmark

We present our framework’s microbenchmarks on our overlay, in particular, its
latency overhead and its performance with data-intensive operations. We utilize
clusters chiba, hongo, kototoi, hiro, imade, kyoto, and mirai. From a node in
cluster chiba, we made RMIs on objects located on each of the other nodes. We
show the latency of a ping()method, a no-op, of selected nodes from each cluster
(denoted by clusterXXX) in Figure 4(a). The actual RTT value is paired to show
the ideal minimum. Most nodes were reached within 3 hops on the overlay. The
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intra-cluster latency for cluster chiba was ˜150[us]. The hop latency overhead
amounts to roughly 1.5[ms], sufficiently small for inter-cluster communication.

We do the same operation using the send_data() method, which is a no-op
that takes 1 argument, and see the throughput of the data transfer. As its ar-
gument, we pass a long string of 100[MB]. The throughput is computed from
the method completion time and is shown in Figure 4(b). The arguments have
to be serialized (throughput: 78[MB/s]) for communication, and this reduces
the maximum throughput for 1Gbit Ethernet links (overlapping serialization
and sending would prevent the maximum throughput to drop to 40[MB/s], this
remains to be our future work). The maximum possible point to point through-
put, that accounts for serialization, calculated from iperf is paired to show the
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ideal maximum. For nodes where 1Gbit Ethernet is available, a value close to
this is obtained. imade, kyoto, mirai have gateway switches of only 100Mbit.
imade and kyoto have particularly anemic bandwidth where even iperf registers
3.5[MB/s]. Within the same cluster, some nodes have much lower throughput
(e.g., chiba103, hongo102, kototoi001). This is because these nodes take multiple
hops on the overlay, and the store-and-forward routing diminishes the through-
put on each hop.

We submit 10,000 invocations of a send_and_wait() method, same as
send_data() but additionally sleeps 1[s], in a master-worker style to see the
parallelism throughput when the argument size varies. This measures our frame-
work’s tolerance to parallelly handling jobs with large input data. We show the
speed-up for 710 cores in Figure 4(c). The speed-up drops dramatically from
around 50[KB]. This is expected as the master’s maximum bandwidth(40[MB/s])
becomes saturated from the size of 56[KB] with 710 workers.

5.2 Fault-Tolerance

We evaluated our framework’s ability to handle dynamic node insertions and
failures. A single Master object dynamically distributes 10,000 tasks to Worker
objects. For node addition, we used the method described in Section 4.2. For node
failures, we simply killed the processes on nodes abruptly without warning. No
tasks were lost during this experiment. We give the time series for the number
of Workers running, and the number of tasks allocated by the Master to each
Worker in Figure 4(d). The figure shows that as the number of workers fluctuates,
the master schedules the tasks accordingly. The failure detection latency was in
the order of milliseconds. All fault detection is done at the programmer level
by detecting faults as exceptions as in Figure 1(a). Moreover, it is noteworthy
that all participating nodes are interconnected on a TCP overlay and direct
connection is not necessary for fault-detection due to the scheme in Section 4.3.

5.3 Real-Life Application

Many real-life distributed applications require parallel tasks to interact with each
other. An example of such applications is a problem solver that uses branch-and-
bound. In these applications, it is imperative that all parallel solvers share the
latest bound information for efficient computation; these are applications that
require periodic communication among nodes. Such applications are impossible
to express in programmingless frameworks where inter-task communication is
not permitted, or in divide-and-conquer type frameworks where communication
is limited to immediate parent and children tasks. As discussed in [13], such
applications can be expressed naturally in master-worker models, but there are
virtually no frameworks that can handle the hostile network environment (NATs,
firewalls, and IP filtering) in our experimental settings.

As our case study, we have taken on one such problem, the Permutation
Flowshop Scheduling Problem. (P-FSP). P-FSP is a problem where n jobs have
to be processed on m machines in the same order. This problem entails finding a
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Fig. 5. Evaluation of the Permutation Flowshop Solver

schedule which minimizes the makespan (execution time) with proof. The solver
does parallel branch and bound in a master-worker model, where each worker
receives a small section of the search space.

When a worker first joins, it first receives a task to solve. The worker and the
master periodically (every 60 seconds) exchange bound information used for the
branch-and-bound. When a worker finishes or aborts its given task, the master
gives it its next task. The flow is expressed in Figure 5(a).

Because the computation would take months(perhaps years), fault-tolerance
was a crucial part of the design. The master and the worker programs, which
won the 3rd Grid Plugtest Competition [12], had already been implemented in
C++. We used our framework to serve as the glue to integrate the two and
deploy it on our platform. The code in Python took merely about 250 lines.

We ran the program on three different configurations: 168, 569, and 948 cores.
The only necessary network configuration, in the 948 core case, was to specify
the SSH portforwarding settings for clusters istbs and tsubame, which took a
mere 6 lines. The rest of the deployment was taken care of automatically and
successfully created a connected graph of all processes.

We present an evaluation using a relatively small randomly generated problem
instance of (n = 28, m = 20). To measure the performance of our framework,
rather than of the algorithm, we calculated the computation efficiency as C

NT ,
where N , T , and C resepctively denote the core count, the completion time,
and the cummuative computation time across all cores. The results are shown
in Figure 5(b). With 948 cores across 9 sites, 88% efficiency is maintained.

6 Conclusion

We have presented a programming framework that aims at simple and flexi-
ble programming in a Grid environment with limited network connectivity, dy-
namic node joins, and node failures. We provide simplicity, without the loss of
generality, by extending a widely accepted object-oriented language, Python for
wide-area parallel computing. Parallelism is expressed in the form of RMIs with
the aid of futures for a natural transition from sequential programs. Accesses to
objects are implicitly serialized without the fear of deadlocks, effectively elimi-
nating locks. We provide simple means to add nodes to ongoing computation,
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as well as to tolerate node failures without jeopardizing the computation. We
automatically construct a TCP overlay and realize transparent communication
among nodes even in the face of NATs and firewalls.

Taking a branch-and-bound optimization application as an example, we
showed that our framework enables quick and effective development of parallel
applications in large Grid environments with 900 cores, despite network hin-
drances like NATs and firewalls. A prototype for gluepy is currently available
from its homepage: http://www.logos.ic.i.u-tokyo.ac.jp/˜kenny/gluepy.
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Abstract. Compacting garbage collector (GC) is widely used due to its good 
properties of in-place collection and heap de-fragmentation. In addition, it sup-
ports fast bump-pointer allocation and provides good access locality. Most 
known commercial JVM or CLR implementations use compaction algorithm in 
certain garbage collection scenarios, such as in full heap or mature object space 
collections. LISP2 compactor is one of the best-known GC algorithms. As 
multi-core architecture prevails, several efficient parallel compactors have been 
proposed. Nevertheless, there is no parallel LISP2 compactor available that can 
preserve all the sliding properties of its sequential counterpart. That is, to com-
pact live data in-place into a single contiguous region in one end of the heap 
while maintaining the original object order. In this paper, we propose a fully 
parallel LISP2 compactor that keeps all the sliding properties. We also prove the 
correctness of the design. This parallel LISP2 compactor is fully parallel because 
all of its four phases are parallelized and the workloads are well balanced among 
the collector threads. The compactor supports fall-back compaction and adjust-
able boundaries that help deliver the best performance. We have implemented the 
parallel LISP2 compactor in Apache Harmony, a product-quality open source 
Java SE implementation. We evaluate and discuss the design on an Intel 8-core 
platform with representative benchmark. 

Keywords: Garbage collector, compactor, parallelization. 

1   Introduction 

Garbage collection is a key component in managed runtime systems such as the run-
time engines of Java, C# and scripting languages. In current known commercial JVM 
and CLR implementations, compacting garbage collector is unavoidably utilized in 
certain scenarios because of its advantages. For example, compacting GC reduces the 
heap fragmentation by packing data together while eliminating the unusable areas in 
between. This improves both heap space utilization and data locality. By leaving the 
free space contiguous, compacting GC also allows fast bump-pointer allocation. Fi-
nally, compacting GC can preserve the original object order in the heap as before the 
compaction, which is believed to have the best memory access locality. 

The LISP2 compactor [3][6] has additional benefits. It does not rely on underlying 
OS virtual memory support, and it compacts the heap in-place without requiring sig-
nificant extra space for collection, such as the block offset table used in some other 
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compactors. One special benefit that is nonexistent in other compactors is that, the 
LISP2 compactor compacts the heap in the granularity of individual object, which 
provides good chances for individual object manipulations on the fly, such as to add or 
remove some data fields of the interested objects. 

Although there have been several parallel compactors proposed [4][1][8][13], only 
one [4] tried to parallelize the LISP2 compactor, which partitions the heap into multiple 
regions, so that multiple GC threads (called collectors) can collect them independently 
in parallel. The problem with that compactor is that, it cannot compact the live data into 
a single contiguous region at one end of the heap, but leaves multiple object groups, one 
for every two neighboring partitions. This is a huge drawback to the original LISP2 
compactor. Moreover, in that compactor, how to partition the heap pre-determines the 
available parallelism. The number of partitions strictly decides how many collectors 
can work in parallel, and the live data amount in a partition decides the work load of the 
collector assigned to that partition. The overall loads of the collectors are not dy-
namically balanced. 

In this paper, we propose a fully parallel LISP2 compactor, all of whose phases are 
parallelized with balanced loads among the collectors. Furthermore this parallel com-
pactor preserves all the good properties of LISP2 compactor. 

1.1   Overview of LISP2 Compactor 

The core algorithm of the LISP2 compactor consists of following phases for a collection: 

Phase 1: Live object marking. This phase traces the heap from root set and marks all 
the live objects; 

Phase 2: Object relocating. This phase computes the new address of every live ob-
ject, and installs this value into the object header; 

Phase 3: Reference fixing. This phase adjusts all the reference values in the live 
objects to point to the referenced objects’ new locations; 

Phase 4: Object moving. This phase copies the live objects to their new locations. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1. Live object marking

2. Object relocating

3. Reference fixing

4. Object moving

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 7 85 9 106 11 12 13 14 15 16

1 2 3 4 5 6

1 2 3 4 5 6

 

Fig. 1. Phases of LISP2 compactor (An object is represented as a cell, and a live object is in dark 
color. Object reference is represented as an arrow pointing from the containing object to the 
referenced object. The numbers are the addresses of the objects, and the underscored numbers 
refer to the new target addresses of the objects.) 
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Fig. 1 illustrates the phases of the LISP2 compactor1. 

In our experiments with the typical benchmarks, the four phases take similar exe-
cution time. That means, all of them should be parallelized in order to achieve good 
performance. In our design, we parallelize the four phases in four different ways ac-
cording to the phase behavior while preserving the sliding properties. 

The rest of the paper is organized as follows. Section 2 gives an overview of the 
parallel LISP2 compactor. Then we describe the design in details in Section 3. Section 
4 introduces how we apply the parallel compactor into a real JVM to support adjustable 
boundaries. Section 5 evaluates and discusses the design with SPECJBB2005 bench-
mark. We discuss the related work in Section 5, and summarize the work in Section 6. 

2   Design of Parallel LISP2 Compactor 

In this section, we give an overview of the parallel LISP2 compactor design. We dis-
cuss the design phase by phase. 

2.1   Live Object Marking 

The phase of live object marking is to traverse the object connection graph. The par-
allelism granularity is naturally a node in the graph, i.e., an object. Although the par-
allelization properties for this phase have been studied by GC community for years, 
there are still a couple of design decisions to make for a GC algorithm. 

Firstly, we need to decide the representation of the marking status of an object. A 
separate mark bit table requires atomic operations for marking, while marking the ob-
ject header requires scanning the heap to find the marked objects. We choose to mark 
the object header due to its low overhead compared to that of atomic operations. 

We also need to balance the loads of the marking tasks among multiple collectors. 
The idea is to assign the marking tasks evenly to the collectors at runtime, thus 
achieving dynamic load balance. After comparing the techniques of pool sharing, work 
stealing and task-pushing [14], we adopt the task-pushing technique because it can 
avoid atomic operations. Task-pushing composes a data-flow network between multi-
ple collectors through task queues, as shown in Fig. 2. 

Last thing to decide for parallel marking is the traversal order in the object connec-
tion graph. Since the live objects spread across the heap, it is possible that one traversal 
order has better access locality than another. Our experience is that the depth-first order 
has the best locality. 

For the parallel LISP2 compactor, the live object marking phase traces the object 
connection graph in depth-fist order and marks object header with task-pushing load 
balance mechanism. Since the marking phase is common and studied in many different 
GC algorithms, we will not discuss it in the following text, but focus on other phases. 

 
                                                           
1 Actually in our implementation there is an extra final phase that restores the object header in-

formation, which was replaced by a forwarding pointer in the object relocating phase. This 
phase takes negligible time compared to other phases and is not necessarily inherent to the 
LISP2 compactor algorithm. So we do not discuss it in this paper. 



 A Fully Parallel LISP2 Compactor with Preservation of the Sliding Properties 267 

T1

T2

T3

m ark -s ta cks qu e ue s
co l lec to rs

 

Fig. 2. Task-pushing load balance (The dotted directed lines represent how the collectors push 
and pull the marking tasks through the queues. Normally the queues length is just one, which is 
virtually a shared variable between two collectors.) 

2.2   Object Relocating 

This phase computes the objects’ target locations, without really moving the objects. 
Since the new addresses decide where and how to move the objects, this phase is criti-
cal for the correctness and efficiency of the algorithm.  

The new addresses of the live objects must ensure the preservation of their original 
heap order. To guarantee the correctness, one collector should never overwrite another 
collector’s useful data. At the same time, we should decide a suitable parallel granu-
larity for runtime efficiency. 

Data races could exist between multiple collectors if they happen to compute the 
target address of the same object, or to relocate different objects to the same target 
address. We have to use atomic operations to eliminate the possible races in this phase. 
It is natural to use a group of objects as the parallelization granularity to avoid exces-
sive atomic operations. In our design, we use heap block for the purpose. The heap is 
partitioned into fixed-size blocks, and each block has a block header for its metadata, 
i.e., block base address, block ceiling address, the state of the block, etc. The amount of 
metadata is a constant that is independent of the block size. 

Only two atomic operations are needed for one block in the phase: one for taking the 
ownership of the block as a compacting source block, and the other for taking the 
ownership of the block as a compacting target block. 

To ensure the correctness of the runtime execution process, we use a block state 
transition graph to guide the collectors to select proper blocks. More details will be 
discussed in Section 3. 

2.3   Reference Fixing 

Once the new address of an object is computed and stored in the object header, it is easy 
to parallelize the reference fixing phase. Each collector simply grabs a group of objects  
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(a block) in the heap and updates all the references in it as thread local data. This can be 
achieved by incrementing a global block index (or address) atomically. Since this phase 
is inherently highly parallelizable, we will not discuss it further in the following text. 

2.4   Object Moving 

To move the live objects in parallel is not as easy as to fix the references. The problem 
is due to the potential races between multiple collectors when they move objects from a 
source block to a target block. For example, they might write into a same target block, 
or write into a target block whose objects have not been moved away yet. The latter 
case happens when one collector’s target block is another collector’s source block.  

In the object relocating phase, source block is used for the threads’ synchronization 
control. That is, the collectors atomically grab the source blocks according to the heap 
order, and compute the target addresses of the live objects in the source block. Here in 
the object moving phase, we use the target block to control the moving. That is, only 
when a collector holds a block’s ownership, can it move data to this block. The problem 
is how to guarantee that the data in the block has been moved away already before it is 
taken as a target block. A counter (target_count) is used for each block to solve the 
problem. As a source block, a block’s live objects might be copied to more than one 
target blocks; target_count records the number of its target blocks. The value is set in 
the phase of object relocating. After that phase, there are three possible values for 
target_count: 

1. For most blocks, target_count value is one, meaning all data from one block has 
been moved to a single target block. 

2. Some blocks have their target_counts with value two, meaning part of the block data 
has been moved to one block, and the remaining part to another block.  

3. There are also many blocks with value 0 in target_count. This happens when there 
are no live objects in those blocks.  

During the object moving phase, target_count of a block is decremented by one 
when it finishes its data movement to one target block. When the target_count becomes 
zero, it means this block has no data left for moving, and it is ready to be used as a target 
block, i.e., a collector can move data from a source block into this block. 

Since we use target block to control the parallel data moving, when a collector grabs 
the ownership of a target block, it should be able to find all of its source blocks. This 
requires a source_list for each block, which links all its source blocks. target_count and 
source_list jointly support the parallel object moving. More details will be discussed in 
Section 3. It should be noted that these two data structures require only two words in 
every block header, hence negligible space overhead. 

2.5   Phases Composition 

With all the phases parallelized, the last thing is to compose the phases into a complete 
collection process. This is straightforward in our design. Since the four phases are 
almost independent, we simply insert a barrier between two phases, where a new phase 
is only started after the old phase has finished. 
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There are some data passed from one phase to another: 

1. Before the object relocating phase, the live objects have mark bit set in their object 
headers; then the collectors can iterate the heap to find all the live objects and 
compute their new locations; 

2. The reference fixing phase needs the mark bit set as well, in order to find all the live 
objects to fix their references; 

3. target_count and source_list should be set before the object moving phase. They are 
prepared in the relocating phase. 
After the moving phase, all these information are useless and can be cleared. 

3   Parallelization Implementation 

In previous section we have discussed the parallelization design. In this section we 
describe how we implement the design in details, and we focus on the phases of object 
relocating and object moving. 

3.1   Object Relocating Implementation 

During the compaction process, each block has two roles: It is a source block whose 
data are moved to new locations; it is also a target block where other live data are 
moved into. In the object relocating phase, each thread always holds a target block and 
a source block for target address computing. For each live object in the source block, 
the collector computes its target address in the target block. When the target block has 
no enough space, the collector grabs next target block. When the source block has no 
more live objects, the collector grabs another source block until all the blocks have 
been visited. Then the collector terminates its execution for this phase. When all the 
collectors finish the phase, they pass the barrier and enter next phase. 

This phase decides if the following properties can be kept: 

1. Order preservation: The blocks must be grabbed in heap order, and the objects’ 
original order in the blocks is kept; 

2. Compaction: The target addresses are contiguous in the heap; 
3. Load balance: No collector is idle if there are remaining blocks for object relocating; 
4. Parallel efficiency: The collectors do not conduct any redundant work except that 

required for object relocating. 

To achieve the goals, the key idea is to use a state transition graph for each block to 
guide the relocating process. Each block is assigned with one of the following four states: 

Block States Meaning 

UNHANDLED Initial state of all blocks (neither a source block nor a 
target block.) 

IN_COMPACT Objects are under target addresses computation (i.e., 
the block is a source block) 

COMPACTED Objects’ target addresses have been computed  

TARGET The block is a target block. 
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The collectors operate on the blocks according to the state transition graph shown in 
Fig. 3. And the state transition rules are given below. 
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Fig. 3. Block state transition graph 

Executing in parallel, each collector grabs from the heap a source block and a target 
block according to the heap address order. The rules for block state transitions are: 

1. All the blocks are UNHANDLED at the beginning. 
2. The collectors compete for an UNHANDLED source block in the heap order. If a 

block is grabbed, its state is set IN_COMPACT. Other failing collectors continue to 
compete for next source block in the heap order. 

3. When a source block finishes all its objects relocating, its state is set to be 
COMPACTED, and the thread continues to grab a new source block. 

4. At the same time, all the collectors compete for a target block in the heap order that 
is COMPACTED. If a block is grabbed, its state is set to be TARGET. 

5. If a collector fails to grab a COMPACTED block in the heap order before its own 
source block, the thread uses its source block as its target block, and sets its state 
from IN_COMPACT to TARGET. 

During the process, target_count and source_list are created and maintained ac-
cordingly. 

Fig. 4 gives an example illustrating the source-lists built after the phase. In the fig-
ure, block #4 as a source block stays in both the source-lists of block #1 and #4, so the 
target-count of block #4 is 2, while that of block #9 is 1. 

Based on the rules, we prove that the target address of any live object is no bigger 
than its original address in Theorem 1 below. This is a requirement for the paralleliza-
tion correctness of the compactor algorithm.  
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Fig. 4. source-list built in the object relocating phase 

Theorem 1. After the object relocating phase, the target address of a live object is no 
bigger than its original address. 

Proof. According to the state transition graph, a source block has IN_COMPACT state 
(transitioned from the UNHANDLED state); and a target block has TARGET state 
(transitioned from either COMPACTED or IN_COMPACT state). We prove the theo-
rem in the following two cases depending on the target block state transition. 

Case 1:  A target block becomes TARGET from COMPACTED state. This means 
the collector can grab the target block before reaching to its own source block in heap 
address order, so a live object’s target address in the destination block must be smaller 
than its original address in the source block; 

Case 2: A target block becomes TARGET from IN_COMPACT state. This means the 
collector uses its own source block for the target block, i.e., the same block acts as both 
source and target block. In this case, the target address of a live object must be no bigger 
than its original address, since there are normally dead objects in the block, and the live 
objects are “moved” downwards to the block start. If there are no dead objects, the target 
address is the same as its original address. In this case, the object is not moved. 

These two cases cover all the situations, so the theorem is proved.                          

3.2   Object Moving Implementation 

After the phase of fixing object references, the collectors are ready to move the live 
objects to their new locations. It is the phase doing the real compaction. The basic idea 
is similar to the object relocating phase, i.e., the collector always holds a source block 
and a target block; but the roles are flipped for the source and target blocks. In the re-
locating phase, the collectors’ synchronization is mainly controlled by the grabbing of 
the source block ownership, while in this phase, that is done though the grabbing of the 
target block ownership. 
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We use a shared global variable current_target for the central control, which repre-
sents the last target block in the heap order that has been grabbed by the collectors. The 
algorithm is as following: 

1. Set current_target to be the first block in the heap. (Use CT to represent cur-
rent_target.) 

2. Each collector Ti atomically picks up a source block SBi from the source-list of CT, 
and copies live objects from SBi to their new addresses in CT; 

3. When a collector finishes copying all the live objects in SBi to CT, it atomically decre-
ments the target-count of SBi and picks up another source block from CT’s source-list. 
(Note since block SBi can be the source block of more than one target blocks, the col-
lector actually only copies those live objects that have target addresses in CT. The 
reaming live objects in SBi will be copied when their targeted block is processed.) 

4. When the source blocks in CT’s source-list are run out, the collector looking for a 
source block chooses a new target block as CT according to the rules below, and 
loops back to Step 2.  
When a collector is looking for a new block as CT, an eligible candidate has to sat-

isfy either of the following conditions: 
• The block’s target-count is 0; (It means all live objects in it have been copied 

already.) 
• The block’s target-count is 1 while the first block in its source-list is itself. 

With the rules, we prove in Theorem 2 that this phase never introduces race condi-
tion, i.e., no live object is overwritten before it is copied to a new location. This guar-
antees the correctness of the parallel compaction. 

Theorem 2. In object moving phase, no live data are overwritten before they have been 
copied to their new locations. 

Proof. According to the current_target block eligibility conditions, we prove the theo-
rem in two cases: 

Case 1: If the block’s target-count is 0, all its live data have been copied or the block 
has no live data. This is a trivial case; 

Case 2: When its target-count is 1 and the first block in its source-list is itself, it will 
be taken as the source block of itself. According to Theorem 1, the target address of 
every live object in this block is no bigger than its original address. When the data are 
copied to their new locations within the same block by a single thread, it is assured that 
no data loss can happen if the data are copied in order. When all the live data in this 
block are copied, Case 2 becomes Case 1, which has been proven already. 

These two cases cover all the situations, so the theorem is proved.                           

To illustrate the object moving phase, we give an example in Fig. 5 based on the 
source-lists built in Fig. 4. The target blocks are taken one by one in the heap order, and 
the source blocks are also taken one by one in the source-lists of the target blocks. All 
the collectors keep busy in the process. 

Up to this point, we have described the design and implementation of the proposed 
parallel compactor. Note that the parallelization algorithms used for the four phases are  
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Fig. 5. Object moving phase illustration 

not closely inter-dependent, i.e., as long as the necessary data for later phases are 
prepared by the earlier phases as described in subsection 2.5, the implementations are 
not constrained by what are described here. Actually we have implemented the phases 
of live object marking and object relocating in different ways in Apache Harmony.  

We also want to emphasize that the number of collectors is configurable. A user can 
decide the number according to the heap size and/or the available number of cores. He 
or she can also choose to use different number of collectors for different phases. The 
option has also been implemented in Apache Harmony. 

4   The Compactor Algorithm in Real GC 

The parallel LISP2 compactor can be used as a standalone collector, or work with other 
collection algorithms. In this section, we describe how we use it in a real GC to support 
fallback compaction [9], and to support adjustable space boundaries. 

4.1   Applied in a Generational GC 

When it is used in a generational GC, the parallel LISP2 compactor is commonly used 
for major collections due to its in-place compaction advantages. Minor collections are 
usually conducted by a copying collector implementing semi-space or partial-forward 
algorithms.  

As shown in Fig. 6, in a typical generational GC, the heap is partitioned into two 
parts, mature object space (MOS) and nursery object space (NOS). In order to achieve 
the best performance with a fixed-size heap, NOS size should be as big as possible to 
utilize as much the available free space. So we want to leave as small as possible the 
reserved free space in MOS for NOS copying. We should be able to adjust the boundary  
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NOS MOS 
 

Fig. 6. LISP2 compactor applied in generational GC 

between MOS and NOS for the purpose. This has two requirements on the parallel 
LISP2 compactor:  

1. It should always compact the live objects to the low end of MOS space, leaving a big 
contiguous free space to NOS; 

2. When the reserved free space in MOS cannot accommodate all the NOS survivors in 
a minor collection, the collection can fallback to a major collection on the fly. 

The first requirement can be satisfied trivially since it is one of the compactor’s 
properties. The second requirement demands additional support from the compactor.  

When a fallback happens, some NOS survivors have already been forwarded to 
MOS, some are still in NOS. Those forwarded survivors have two copies in the heap: 
the new copy in MOS and the original copy in NOS, resulting in an inconsistent heap 
state. To make it consistent, when the compactor marks an object in the live object 
marking phase, it checks if the object has been forwarded. If it has been forwarded, the 
collector only marks the new copy. Meanwhile, it updates any references to the old 
copy to point to the new one. Then after the live object marking phase, there would be 
no references pointing to the old copies, and heap consistency is maintained. The 
phases afterwards can be executed as usual. 

4.2   The Compactor with a LOS Collector 

In some GC designs, large objects are managed separately in a large object space 
(LOS). Fig. 7 is a typical heap layout that has LOS area. LOS is put at the low end 
because it is common to put NOS to the high end of the heap. (NOS is in the non-LOS 
part here. When there is MOS, MOS stays between LOS and NOS. MOS and NOS 
together are called non-LOS.) When LOS is fully occupied by large objects, a major 
collection is triggered. 

Non-LOS LOS 
 

Fig. 7. LISP2 compactor with LOS 

To leave little free space in LOS may trigger frequent expensive major collections, 
while too much free space reserved in LOS may waste the space. We need to support an 
adjustable boundary between LOS and non-LOS (called LOS-boundary). But since the 
compactor compacts live objects to the low end of non-LOS starting from the bound-
ary, extra supports are needed for such an adjustment. 

Fortunately, the parallel LISP2 compactor can support adjustable LOS-boundary if 
we know the new boundary value before the compaction. The idea is to specify the new 
boundary as the logical start address of the non-LOS area, as illustrated in Fig. 8. When  
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Fig. 8. Adjustable boundary with LOS 
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Fig. 9. Apply the compactor in Apache Harmony 

shifting the boundary to non-LOS side, we logically connect the areas between the old 
boundary and the new boundary to the high end of non-LOS area; then the compaction 
can be done as usual starting from the new boundary. The original low end area is 
compacted to the high end of non-LOS. On the other hand, if we want to shift the 
boundary to LOS side, we set the first target block starting from the new boundary, then 
we can compact non-LOS as usual. 

With the techniques described here, we can use the parallel LISP2 compactor to 
achieve good performance in a product-quality GC in Apache Harmony, which has the 
heap layout as shown in Fig. 9. The boundaries between LOS, MOS, and NOS can be 
adjusted at runtime to get highest heap utilization. 

5   Evaluations and Discussions 

We implemented the parallel LISP2 compactor in Apache Harmony and it is in the 
current main trunk source tree. To evaluate the design and implementation, we col-
lected the data with SPECJBB2005 on an 8-core platform with Intel Core 2 2.8GHz 
processors. We ran the benchmark using 1GB heap size by default. 

5.1   Scalability 

We collected the GC total pause time and the time spent in different phases as shown in 
Fig. 10. In the experiments, we specified to use the original sequential and the parallel 
LISP2 compactor for the collections. The parallel compactor ran with 2, 4, 8 collectors. 

It is seen from the figure that the overall pause time has been reduced steadily from 
100% to 70%, 43% and 27% respectively. Fig. 10 also gives the speedups of the phases, 
which in average are 1.4x, 2.3x, and 3.7x respectively with 2, 4, 8 collectors. 
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Fig. 10. GC time and speedups in phases with SPECJBB2005 

Although the results above are good enough according to our experience in parallel 
GC, there are still opportunities for improvements. For example, in the object relo-
cating and object moving phases, every source and target block requires an atomic 
operation to acquire. Almost all the blocks that have live data have been acting as 
source and target block once, so the number of the atomic operations is proportional to 
the number of blocks. It can be reduced if we use a bigger block size. The current block 
size is set to be 32KB, which is quite small compared to some other GCs. 

5.2   Adjustable Boundaries 

As we described in Section 4, our parallel LISP2 compactor can adjust its boundaries 
adaptively. We collected data to show the importance of this support for SPECJBB2005’s 
performance, as shown in Fig. 11. 

The current GC in Apache Harmony has two different NOS collection algorithms. 
One is the semi-space collector; the other is the partial-forward collector. To demon-
strate the effectiveness of the adjustable boundaries, we let the NOS collector to simply 
copy the survivors in NOS to MOS in minor collections. In Fig. 11, we can see that the  
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Fig. 11. SPECJBB2005 performance with different NOS sizes 
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adaptive NOS size can achieve better performance than all of other fixed NOS size 
settings. For example, it is almost 5x better than that of 8MB NOS size.  

We can not demonstrate the effectiveness of the adjustable LOS boundary with 
SPECJBB2005, because it is not large object intensive. 

6   Related Work 

LISP2 compactor is known for its simplicity, but its parallelization is not straightfor-
ward if we want to keep the sliding properties, such as the contiguous free space, object 
order preservation, in-place collection, and object-level compaction granularity. 

To the authors’ knowledge, Flood et al. [4] is the only previous work trying to par-
allelize LISP2 compactor. Their collector pre-partitions the heap into a number of in-
dependent regions, and compacts them separately in parallel within the regions. The 
resulted free space is noncontiguous. This is a big loss of the LISP2 compactor’s ad-
vantages, although they can alternate the compacting direction for each region so as to 
form [(n+1)/2] contiguous free areas. Nonetheless, their work achieved rather good 
scalability with SPECJBB and Javac applications. The speedups were around ~5x on 
8-processor platform. 

There are a couple of other non-LISP2 compactors proposed by the community. The 
threaded reference compactor suggested by Morris [10] and Jonkers [7] is inherently 
sequential due to its nature of scanning the heap back and forth to build the threaded 
reference in the heap order. 

Abuaiadh et al [1] proposed a three-phase parallel compactor that uses a block-offset 
array and mark-bit table to record the live objects moving distance in blocks. When it 
moves the objects in the granularity of a heap block, it wastes about 3% space col-
lecting SPECJBB. When it moves live objects in the granularity of individual object, 
the compaction time is increased by more than ~30%. 

Kermany and Petrank [8] proposed the Compressor that requires two phases to 
compact the heap; Wegiel and Krintz [13] designed the Mapping Collector with nearly 
one phase. Both approaches depend on the virtual memory support from underlying 
operating system. The former one leverages the memory protection support to copy and 
adjust pointer references on a fault, and the latter one releases the physical pages that 
have no live data. 

7   Summary 

In this paper, we design and develop a fully parallel LISP2 compactor that compacts the 
live objects to a contiguous area in one end of the heap. It preserves all the sliding 
properties of the sequential LISP2 compactor. This parallel LISP2 compactor is fully 
parallel because all of its phases are parallelized. We have proved the correctness, 
implemented the parallel LISP2 compactor in Apache Harmony and evaluated it with a 
representative benchmark. Our result demonstrates that the collector can achieve 3.7x 
speedup on an 8-core platform (before the compactor is fully tuned). 
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Our current work and next step is to continue the fine tuning and leverage the com-
pactor in a JIT-assisted GC, where the JIT can help in object allocation and release. We 
are also investigating how to reduce the sequential part in the GC implementation 
hence to achieve better scalability. 
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Abstract. Programming paradigms are designed to express algorithms
elegantly and efficiently. There are many parallel programming para-
digms, each suited to a certain class of problems. Selecting the best
parallel programming paradigm for a problem minimizes programming
effort and maximizes performance. Given the increasing complexity of
parallel applications, no one paradigm may be suitable for all compo-
nents of an application. Today, most parallel scientific applications are
programmed with a single paradigm and the challenge of multi-paradigm
parallel programming remains unmet in the broader community.

We believe that each component of a parallel program should be pro-
grammed using the most suitable paradigm. Furthermore, it is not suf-
ficient to simply bolt modules together: programmers should be able
to switch between paradigms easily, and resource management across
paradigms should be automatic. We present a pre-existing adaptive run-
time system (ARTS) and show how it can be used to meet these chal-
lenges by allowing the simultaneous use of multiple parallel programming
paradigms and supporting resource management across all of them. We
discuss the implementation of some common paradigms within the ARTS
and demonstrate the use of multiple paradigms within our feature-
rich unstructured mesh framework. We show how this approach boosts
performance and productivity for an application developed using this
framework.

1 Introduction

A parallel programming paradigm defines how concurrent tasks in a parallel
program access data and interact with each other and how those interactions are
expressed by the programmer. Such paradigms are created to address the needs
of specific classes of problems in parallel computing, making implementations
easier to develop. A programmer often develops a parallel algorithm with a
certain parallel programming paradigm in mind. Programmers have a wide range
of paradigms to choose from, such as message passing (e.g. MPI), shared address
spaces (e.g. Global Arrays[28], UPC[9], OpenMP[7], HPF[11]), message-driven
(active messages, actors, Charm++) and stream processing. This variety exists
because not all paradigms are suitable for all problems. Choosing the correct
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paradigm for an application yields benefits in terms of lower programming effort,
elegant, easily maintained code, and better performance.

As parallel applications become increasingly complex with multiple
constituent algorithms, no single paradigm is suitable for all the different parts of
an application. Most programmers currently choose a paradigm that is suitable
for the bulk of the application and force the rest into the same paradigm. This
results in reduced programmer productivity via inelegant code, potentially more
errors, longer development time and lower maintainability. It can also result in
poor performance when the inherent parallelism in the problem could be more
naturally and fully expressed in some other paradigm.

Developing each application component with the most suitable paradigm
would require a multi-paradigm parallel programming system in which differ-
ent paradigms can be tightly coupled. In such a system, the application would
allow different paradigms to be used concurrently. In addition, the components
of an application would not be restricted to a single paradigm, nor would com-
ponents of a certain paradigm be restricted to a subset of the physical processor
space. Without a tightly coupled multi-paradigm environment, performance and
productivity are adversely affected when software components cannot be cleanly
expressed within one paradigm. Moreover, this multi-paradigm system should
enable resource management across all the paradigms on all the processors. This
is important for scaling applications to even moderately sized machines, since
resource management issues like computational load imbalance and communica-
tion bottlenecks are often the biggest roadblocks to scaling.

A programmer faces further challenges when selecting a non-mainstream
paradigm that may be ideally suited to her problem. There is a huge barrier
to entry for alternative paradigms caused by the relative dominance of MPI. In
the absence of decisive performance benefits, the best way for new models to
gain traction is to interoperate cleanly with existing models, both to allow the
use of existing libraries and to facilitate reuse of new code.

2 Background

Approaches to multi-paradigm parallel programming roughly fall into four cat-
egories: 1) multi-paradigm parallel languages; 2) extensions to existing parallel
programming models; 3) interoperability libraries; and 4) run-time systems.

Multi-paradigm parallel programming languages have primitives that let a
user take advantage of different paradigms in a tightly coupled fashion. One
major disadvantage of this approach is that existing software implemented in
various paradigms is difficult or impossible to reuse, and conversely, software
developed in such languages may not be reusable in other applications developed
with other languages. As an example of a multi-paradigm language, mpC[23] is
a C superset that provides network objects to describe data and communication
layouts in a parallel environment. It supports both task and data parallelism
and enables both computation and communication optimizations.
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Extensions to parallel programming models enhance existing models to al-
low the use of additional paradigms. Efforts to merge OpenMP and MPI such
as Extended OpenMP (EOMP) [30] and MPI+OpenMP [6] fall into this cate-
gory. Codes developed using mixed-mode techniques have been quite successful
in some cases [29] Most extensions involve only two paradigms without a general
framework for adding more. Moreover, different paradigms are often executed
as different processes or kernel threads, increasing the cost of switching between
paradigms. Although MPI+OpenMP attempts dynamic load balancing by mov-
ing OpenMP threads among processes [6], it is restricted to moving them among
processors on the same node and cannot do truly global resource management.

Interoperability libraries provide interfaces between systems that implement
different parallel models. Fortran M uses MPCL (message-passing compatibility
library) to interface with other message passing libraries and HPF [12]. Here,
the freedom to use multiple paradigms is marred by the additional complexity
of the interface. Fortan M tackles the resource management issues by allowing
access to its resource management facilities through MPCL. Other attempts to
bolt multiple paradigms together, such as PVM with Solaris Threads, resulted
in poor performance and undue code complexity [25].

Parallel Adaptive Run-time Systems (ARTS) attempt to provide the set of
tools that are required to implement different parallel programming models.
Existing models and languages can be implemented on top of such a run-time
system and can interoperate using a common substrate. ARTS provide resource
management capabilities common to all models, thereby relieving the program-
mer of this task. TPVM[10] was an early extension to PVM that implemented
a thread-oriented, event-driven run-time and the notion of virtual processors. It
consistently outperformed PVM in several experiments.

Our approach relies on Converse [19], an ARTS which fully realizes the
tightly coupled interoperability of multiple paradigms. Converse meets many
of the goals mentioned in a recent report from Berkeley [3], including the need for
models to be independent of the number of processors, and it alleviates cognitive
load on programmers by performing automatic resource management.

3 A Multi-paradigm Runtime System

Object-based virtualization [18] is a flexible approach to implementing a variety
of interoperable programming paradigms. It encourages the decomposition of a
computation into a large number of interacting objects called virtual processors
(VPs). The task of mapping VPs to physical processors is handled by the ARTS,
which can change the mapping at run-time by migrating VPs between processors.
The ARTS is also responsible for message delivery between VPs. A scheduler on
each processor selects which local VP executes next. The scheduler is message-
driven and only schedules VPs that have pending messages.

Object-based virtualization does not dictate the paradigm used within a VP,
so different VPs may use different paradigms. Converse [19] provides the
tools for implementing different paradigms in a message-driven system with
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object-based VPs. Apart from providing a scheduler on each processor, Con-

verse also provides a messaging framework with primitives for point-to-point
communication and multicasts, and methods for handling a message on the re-
ceiving processor. Converse also offers user-level threads[32] with low context
switch overhead and the ability to migrate threads between processors. Local
Converse threads share the scheduler with incoming messages.

Fig. 1. The Converse ARTS allows multi-
ple VPs with different paradigms on the same
processor

Programming paradigms de-
veloped using the Converse

ARTS give programmers the
ability to efficiently compose
independently-developed com-
ponents into a single applica-
tion or higher-level component.
Components developed using
separate paradigms can over-
lap their execution in time and
over processors. Since multi-
paradigm VPs share the same
address space on a processor,
a flow of control can switch
paradigms cheaply via function
calls or local messages within a processor. Therefore different paradigms imple-
mented on Converse can be tightly coupled within a single application.

Numerous models have already been implemented on the Converse ARTS.
These include the message-passing model via Adaptive MPI, the message-driven
model via Charm++, and a phase-based distributed shared memory model called
Multi-phase shared arrays (MSA). Figure 1 shows VPs using these models while
sharing the same processor. Similarly, global address space languages are sup-
ported via an implementation of ARMCI. An orchestration model called
Charisma allows for clear expression of control and data flows between serial
components.

Object-based virtualization enables a number of performance benefits such as
adaptive overlap of computation and communication [18], dynamic
measurement-based runtime load balancing [31] and dynamic communication op-
timizations [22]. Since all paradigms in an application use Converse, resource
management need not be limited to one paradigm. For example, 1) the load
balancer takes into account work loads of the VPs belonging to all paradigms
while trying to balance load; 2) if two VPs using different paradigms send each
other many small messages, the communication optimization library can merge
these into fewer larger messages.

Charm++ and MPI have both been described extensively, and their rela-
tive merits and deficiencies have been explored [2,4,13,14,20,26]. Therefore we
will not describe them further except to say that both have proven suitable
for developing complex parallel applications. Charm++ is implemented on top
of Converse, and AMPI [17] is an implementation of MPI on Converse.
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Together with Multiphase Shared Array (MSA), a simple shared memory model
which we will now describe, these models make up the bulk of our unstructured
meshing framework.

MSA consists of shared arrays that can change between three possible access
modes. An MSA array can be constructed from any user-specified type. The
lifetime of an MSA array is divided into phases, with all threads accessing the
array in the same access mode during each phase. Phase boundaries are marked
by synchronization. The phase based nature of MSA programs means that they
can never have deadlocks or race conditions. The three possible access modes
(shown in Figure 2) are:

(a) Read only mode (b) Write by one mode (c) Accumulate mode

Fig. 2. The three different access modes of a MSA array

Read-only mode: All threads can only read from the MSA array during this
phase. Each element can be read by multiple threads.

Write-by-one mode: In this mode, all threads are permitted to write to the
MSA array, but no element can be written to by multiple threads.

Accumulate mode: All threads can update the MSA array and multiple
threads can update a single element. For each element, the data provided by
different threads is accumulated using a user defined associative commutative
operation such as addition, multiplication, max, set union and set intersection.

MSA represents a compromise between the convenience of a global address
space and the performance and correctness problems associated with unfettered
access to shared data [5]. The restrictions imposed by the access phases allow
for more efficient communication while also preventing common shared memory
programming hazards. MSA has proven useful in codes varying from matrix
multiplication to distributed hashtables to molecular dynamics and has provided
significant advantages to parallel programmers across many problem domains.

The Converse runtime has also been used to implement a variety of other
parallel programming paradigms. One example is Charisma [15], an orchestration
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language that lets the programmer specify the control and macro data flows of
a parallel program separately from the sequential portions. Charisma is built on
top of Charm++. The user expresses the global message flow in the orchestration
code without fragmenting it among all the different types of objects in a com-
plicated parallel application. The orchestration code can express all commonly
used communication patterns, including point-to-point, broadcast, multicast, re-
ductions, scatter and gather. The sequential portions are normal C++ code. A
Charisma program can be combined with any library written using one of the
parallel programming paradigms supported by the Converse runtime system.

Aggregate Remote Memory Copy Interface (ARMCI) [27] supports high per-
formance remote memory copy on multiple platforms. It offers blocking and
non-blocking versions of data transfer operations, synchronization operations
and memory allocation and deallocation routines. ARMCI is used as the foun-
dation for a number of global address space languages such as Global Arrays [28]
and Co-Array Fortran [8]. ARMCI is implemented on the ARTS by encapsulat-
ing each ARMCI process within a threaded Charm object [16]. The ARTS can
perform intelligent resource management for any application using ARMCI.

4 ParFUM: An Example of Multi-paradigm
Programming

ParFUM [24] is a framework for the parallelization of unstructured mesh ap-
plications. It provides the programmer with a rich set of features such as mesh
partitioning, communication between mesh partitions, mesh adaptivity, mesh
locking, collision detection and data transfer. Due to the complexity of these fea-
tures, each was implemented in the parallel paradigm most suited to it. These
differences in paradigm are largely hidden from the user, to whom the appli-
cation appears to be completely within the message-passing style. We describe
some of these features and our programming model choices for their implemen-
tation below. We also discuss situations in which multiple parallel programming
paradigms were used to provide a single feature.

In ParFUM, each mesh partition is associated with a single VP, and a driver
routine is invoked by each of these VPs. In most applications, mesh nodes and
elements (collectively, entities) along partition boundaries require data from

Fig. 3. An unpartitioned
mesh

entities on neighboring partitions to compute lo-
cal solutions. ParFUM provides functionality for
adding local read-only copies of remote entities, or
ghosts, to the partition boundary. A single collective
ParFUM call updates all ghost entities with data
from the original entities on neighboring partitions.

ParFUM also provides synchronization primi-
tives to update the values of shared nodes during
a simulation. The user code in the driver routine is
typically written in a message passing style with blocking ghost update calls
and synchronization routines such as barriers and reductions, and makes use of
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adaptivity and locking mechanisms which use the message-driven style in a man-
ner transparent to the programmer. As a result, both serial codes and pre-
existing MPI codes can be easily modified to use the ParFUM library and its
features.

4.1 Mesh Partitioning

Step 1: Compute a mapping of elements to partitions that produces approx-
imately balanced partitions and minimizes the number of boundary elements.
We start with an arbitrary mapping as an input to PARMETIS [21], a third-
party MPI library for parallel partitioning that we use without modification via
AMPI. As shown in Step 1 in Figure 4, PARMETIS takes in the connectivity
of the mesh elements and produces a mapping of elements to partitions. Here
multi-paradigm programming enables us to use a library developed by subject
matter experts without having to re-implement it in another paradigm.

Fig. 4. Steps to partition a mesh

ParFUM divides the entities of a se-
rial mesh into one partition per VP, using
a memory-efficient parallel partitioner to
handle large meshes with large numbers
of partitions. Figure 3 shows a simple 2D
mesh with triangular elements that is to
be partitioned between two VPs. We use
this simple mesh to illustrate the parallel
partition algorithm:

Step 2: Create partitions and send
them their entity data. This is easy for
elements because the mapping tells us
exactly which partition each element be-
longs to. However, a node belongs to all
partitions with an element adjacent to
that node (for e.g.. n1 and n4 belong to
both partitions in the example in Fig-
ure 4), so a node’s ownership information
is scattered across an unknown number
of VPs on different processors. Collect-
ing this information is simplified with a
global table indexed by VP which stores
all nodes owned by that VP’s partition.
This Partition-to-Node table has a list of
nodes for each VP. Step 2 in Figure 4
shows that for each element, its nodes are
added to the Partition-to-Node table at the entry for the element’s partition (the
partition to which PARMETIS has mapped this element in Step 1), with dupli-
cate nodes being deleted.

Thus, in the first phase of this step the Partition-to-Node table is populated
by all the VPs and in the second phase it is read by each VP. MSA, with its
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separate accumulate and read modes, is ideally suited for this. The Partition-
to-Node table is implemented as a MSA array of node lists in accumulate mode.
A message passing implementation would have been more complex since a VP
does not know how many nodes to expect from other VPs. Before passing the
nodes, each VP would have to tell all the others how many to expect. This would
lead to less readable code, higher communication, and poorer performance.

Step 3: Find the nodes shared between different pairs of partitions. This can
be calculated by creating a global table (called the Node-to-Partition table) that
maps each node to all the partitions to which it belongs. As shown in Step 3 of
Figure 4, for every node owned by a VP, the VP adds itself to the node’s entry.
After all the VPs have finished writing to the table, each VP looks at the entry
each of its nodes to determine the other partitions sharing that node. This lets
ParFUM build up a list of nodes shared by every pair of neighboring partitions.
MSA is an ideal fit for Step 3 for the same reasons as in Step 2.

4.2 Mesh Adaptivity

ParFUM implements two types of mesh adaptivity: incremental and bulk mesh
modification. Both approaches provide low-level primitives for edge bisect, flip,
and edge contract operations. In the incremental case, these are self-contained
parallel primitive operations that leave the mesh in a consistent state, updating
all ghost layers and adjacencies as needed. The faster, lightweight bulk operations
currently under development in ParFUM perform en masse mesh modifications
before updating the ghost layers and adjacencies.

These primitives lock the affected mesh entities so that multiple operations
can simultaneously modify adjacent areas of the mesh, using the ParFUM locking
functionality described earlier. Once the affected region of the mesh is locked,
modification of the mesh can proceed.

An example of the edge bisect primitive is shown in Figure 5. When such
an operation takes place across a partition boundary, as shown by the thicker

Fig. 5. Parallel edge bisection

line in the figure, the communication is very
localized and specific. In (a), we highlight
an element that we wish to bisect along its
longest edge, which happens to be on the
boundary between partitions A and B. The
first step is to lock the region of the mesh
that will be modified. This is shown in (b)
which highlights the original element, the
neighbor across the edge to be split, and one
adjacent element for each of these (which will
need to have adjacency data updated). Lock-
ing requires the first element to send a mes-
sage to all the affected elements and then
suspend to wait for a response about the suc-
cess or failure of the lock. If locking is suc-
cessful, two new elements and a node will
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then be added by the operation. The new node will bisect the longest edge, and
the two new elements will be along the new edge created between the new node
and the node n in (b). This new topology is shown in (c). Because the node
is shared, a record must be made of it on both partitions A and B. The bisect
is performed on the first side of the edge to be bisected, and all information
about the new element and node on that side is then transmitted to the adja-
cent element on partition B. This side completes the second half of the operation,
updating all relevant adjacency data, and in return sends information about the
new element created back to partition A where the adjacency of the new element
is updated. In (d), the lightly shaded elements have connectivity and adjacency
updates performed on them, while the darker shaded elements are new elements
added to the mesh.

Due to the unpredictable nature of modification messages, it is impossible for
a partition to predict when one of its neighbors will invoke adaptivity functions.
To accomplish this with MPI, we would need a polling loop consisting of a wild
card receive. Once a message is received, its type is checked and it is processed
accordingly. This amounts to a re-implementation of some capabilities of the
Converse scheduler. However, the message-driven paradigm is ideally suited for
this problem. The receiving partition does not need to expect incoming messages
and processes messages as they are received.

Charm++ is excellently suited to adaptivity algorithms, as operations are con-
fined to regions of the mesh determined by the state of the solution at a particular
point in time. These problems are highly irregular and dynamic, and as such are
also a perfect match for the virtualization capabilities provided by Charm++.
Having multiple partitions per processor makes load balancing straightforward
when refinement over particular partitions increases their load. Mesh adaptivity
is achieved in ParFUM by associating a special type of chare array, called a
bound array, with the AMPI VPs. Thus, each partition has a chare array el-
ement associated with it which performs the message-driven aspects of mesh
adaptivity. The “bound” aspect of these elements means that when migration
takes place, a VP is bound to its associated chare array element such that they
always migrate together.

5 Multi-paradigm Applications

ParFUM has been used to develop a number of parallel unstructured mesh
applications [24]. These applications utilize the many features provided by Par-

FUM for faster development and better performance. Since each component of
ParFUM was written using the paradigm or paradigms most suitable for it,
ParFUM applications are examples of multi-paradigm parallel programming.

For example, TentPitcher is a novel algorithm for solving hyperbolic systems
via the Spacetime Discontinuous Galerkin (SDG) method developed at the Cen-
ter for Process Simulation and Design at UIUC [1]. In converting this algorithm
to run in parallel, we made extensive use of the multi-paradigm capabilities of
ParFUM.
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This algorithm operates on a triangular mesh. Rather than picking a timestep
interval and advancing each vertex in time by that interval, TentPitcher performs
local solutions by choosing a single vertex at a local time minimum and moving
it as far forward in time as possible based on causality constraints and error
estimates. The result is a highly asynchronous algorithm in which many local
solutions may be computed independently, with no global synchronization.

To efficiently solve problems with sharp features, such as shock propagation,
high degrees of mesh refinement and coarsening are required. However, since this
algorithm has no explicit timestepping, there is no natural opportunity to glob-
ally modify the mesh, as is standard practice in parallel adaptive finite element
codes. In addition, typically only small areas of the mesh require modification
and the vast majority of elements are unaffected, so doing global adaptivity will
hurt performance. Therefore, we must perform all mesh modifications locally.
Adaptivity operations like this are well suited to a Charm++ approach, where
the programmer can send a lock/unlock or adaptivity messages and invoke the
appropriate function on another partition.

This code mingles parallel programming paradigms with ease. MPI calls are
used for bulk communication such as checkpointing and output, while Charm++
is utilized for locking and adaptive operations. Multiple paradigms coexist trans-
parently, even within a single function. This leaves the programmer free to use
whatever paradigm is most suitable at a very fine granularity, rather than choos-
ing which paradigm is suitable at an application level.

6 Conclusions

Developing parallel software involves additional complexity over sequential soft-
ware. The ability to develop modules in the most suitable parallel programming
paradigm and to reuse them in applications that incorporate multiple paradigms
improves programming productivity. The complex, adaptive multi-physics appli-
cations of the future require sophisticated and automated resource management.
A multi-paradigm adaptive run-time system (ARTS) provides such support.

We demonstrated such an ARTS, called Converse, that allows multiple work
units on each processor and interleaves their execution based on availability of
remote data and messages. These abilities are crucial to our goal of efficiently
supporting tightly coupled multi-paradigm interoperability in a parallel pro-
gramming environment. The utility of this approach was illustrated by 1) de-
scribing multiple paradigms implemented using our ARTS, and 2) showcasing
a parallel unstructured mesh framework and two associated applications that
leverage this multi-paradigm interoperability.

ARTS also have positive implications for new parallel programming
paradigms. In order for new paradigms to come into use, programmers need
to 1) hear about them, 2) learn how to use them, 3) find an implementation of
them, and 4) not sacrifice re-usability of their code should they choose to adopt
them. Incorporating new paradigms directly on the Converse ARTS lowers the
barrier to entry for the adoption of new paradigms by satisfying three of those
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criteria, providing the knowledge of and access to new paradigms in a way that
will make them most immediately usable and subsequently re-usable in future
codes.

We believe this approach is essential for productive and efficient parallel pro-
gramming, particularly for the complex applications and petascale computing
environments of the near future. We have been advancing the ARTS approach
for over a decade, and hope that many new paradigms will be developed with it.
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17. Huang, C., Zheng, G., Kumar, S., Kalé, L.V.: Performance evaluation of adaptive
MPI. In: Proceedings of ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming 2006 (March 2006)
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Abstract. Conventional iterative solvers for partial differential equa-
tions impose strict data dependencies between each solution point and
its neighbors. When implemented in OpenMP, they repeatedly execute
barrier synchronization in each iterative step to ensure that data de-
pendencies are strictly satisfied. We propose new parallel annotations
to support an asynchronous computation model for iterative solvers.
At the outermost level, the ASYNC REDUCTION keyword is used
to annotate the iterative loop as a candidate for asynchronous execu-
tion. The ASYNC REGION contains inner loops which may be anno-
tated by ASYNC DO or ASYNC REDUCTION. If the compiler accepts
the ASYNC REGION designation, it converts the iterative loop into
a parallel section executed by multiple threads which divide the itera-
tions of each ASYNC DO or ASYNC REDUCTION loop and execute
them without having to synchronize through a conventional barrier. We
present experimental results to show the benefit of using ASYNC loop
constructs in multigrid methods and an SOR-preconditioned CG solver.

1 Introduction

Many important applications use iterative solvers to solve partial differential
equations (PDE’s). It has been found for quite some time that there exist a
class of iterative solvers which are allowed to follow a loose data dependence
relationship between each data point and its neighbors [3,4,7]. Under such an
asynchronous computation model, the update of a data point does not need
to strictly depend on the most updated values of its neighbors. Instead, Some
older values of its neighbors can be used before the newest values become avail-
able. It may take more iterations for an asynchronous algorithm to converge or
to achieve the same numerical accuracy as its synchronous counterpart. How-
ever, when implemented on parallel systems, especially those of a large size,
the asynchronous algorithms suffer less from the interconnect latency than their
conventional counterparts.

Unfortunately, current parallel languages and language extensions (such as
OpenMP [5]) do not effectively support the asynchronous computation model.
When implemented with OpenMP parallel annotations, for example, an iterative
solver typically has a sequential outermost loop containing a number of paral-
lel inner loops. Each parallel loop annotation implies a barrier synchronization
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point at the end of the loop, where all processors must meet before simultane-
ously proceeding to the next statement. Such barrier synchronization, executed
repeatedly in each iterative step, dictates the conventional strict synchronous
computation model, at the expense of performance penalty due to the inter-
connect latency. Barriers also severely limit the compiler’s ability to generate
efficient machine code.

In this paper, we propose three new loop annotations, called ASYNC DO,
ASYNC REDUCTION, and ASYNC REGION, respectively. At the outer-
most level, the ASYNC REGION keyword is used to annotate the iterative
loop as a candidate for asynchronous execution. If the compiler accepts the
ASYNC REGION designation, it converts the iterative loop into a parallel sec-
tion executed by multiple threads. Embedded in ASYNC REGION are inner
loops which may be annotated by ASYNC DO or ASYNC REDUCTION, pos-
sibly accompanied by ordinary OpenMP parallel DO loops and sequential loops.
If the ASYNC REGION designation is accepted by the compiler, the threads
will divide the iterations of each ASYNC DO or ASYNC REDUCTION loop
and execute them without having to synchronize through a conventional barrier.
The threads will also divide the iterations of an ordinary OpenMP parallel DO
loop, but they will synchronize through a barrier. An OpenMP parallel section
(such as parallel DO) embedded in ASYNC REGION does not cause spawning
a new set of threads, because ASYNC REGION at the outer level is already
executed by multiple threads.

Comparing to directly implementing asynchronous algorithm using P-threads
or existing OpenMP loop constructs, the iterative solver written with the pro-
posed new constructs gives the compiler the flexility to decide whether to imple-
ment the annotated candidates in the asynchronous manner. The programmer
does not need to commit the iterative solver to the asynchronous execution
model. We present experimental results to show the benefit of using ASYNC
loops in 2D and 3D multigrid methods as well as an SOR-preconditioned conju-
gate gradient linear system solver.

2 ASYNC Loops

ASYNC DO Loops. ASYNC DO annotates a DO loop whose iterations can
be executed in parallel by multiple processors without barrier synchronization.
However, it is different from an OpenMP parallel DO with a nowait label, as will
be clear later. Its syntax, analogous to that of an OpenMP parallel DO loop, is
in the form of !$ASYNC DO parallel clause, where parallel clause takes the same
form and meaning as its counterpart in OpenMP sans the reduction clause [5].
Figure 1 shows an example on how to annotate parallel loops by ASYNC DO.
When the shown ASYNC DO is embedded in an ASYNC REGION accepted by
the compiler, it will be transformed by the compiler into an iteration-partitioned
loop shown in Figure 2. Notice the absence of barrier synchronization.

ASYNC REDUCTION. The ASYNC REDUCTION is supported by a re-
laxed barrier tree structure which allows a thread, depending on its thread ID,
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!$ASYNC_DO default(shared)

!$ private(i1,i2,i3,u1,u2)

do i3=2,n3-1

do i2=2,n2-1

do i1=1,n1

u1(i1) = u(i1,i2-1,i3)

> + u(i1,i2+1,i3)

> + u(i1,i2,i3-1)

> + u(i1,i2,i3+1)

u2(i1) = u(i1,i2-1,i3-1)

> + u(i1,i2+1,i3-1)

> + u(i1,i2-1,i3+1)

> + u(i1,i2+1,i3+1)

enddo

do i1=2,n1-1

r(i1,i2,i3) = v(i1,i2,i3)

> - a(0) * u(i1,i2,i3)

> - a(1) * (u(i1-1,i2,i3)

> + u(i1+1,i2,i3)

> + u1(i1))

> - a(2) * (u2(i1)

> + u1(i1-1)

> + u1(i1+1))

> - a(3) * (u2(i1-1)

> + u2(i1+1))

enddo

enddo

enddo

Fig. 1. An ASYNC DO loop inside
MG residual calculation subroutine

z_low = (my_id * bz(k)) + 1

z_high = (my_id + 1) * bz(k)

if(my_id .eq. 0) z_low = 2

if(my_id .eq. (total_threads - 1))

z_high = n3 - 1

do i3 = z_low, z_high

do i2=2,n2-1

do i1=1,n1

u1(i1) = u(i1,i2-1,i3)

> + u(i1,i2+1,i3)

> + u(i1,i2,i3-1)

> + u(i1,i2,i3+1)

u2(i1) = u(i1,i2-1,i3-1)

> + u(i1,i2+1,i3-1)

> + u(i1,i2-1,i3+1)

> + u(i1,i2+1,i3+1)

enddo

do i1=2,n1-1

r(i1,i2,i3) = v(i1,i2,i3)

> - a(0) * u(i1,i2,i3)

> - a(1) * (u(i1-1,i2,i3)

> + u(i1+1,i2,i3)

> + u1(i1))

> - a(2) * (u2(i1)

> + u1(i1-1)

> + u1(i1+1))

> - a(3) * (u2(i1-1)

> + u2(i1+1))

enddo

enddo

enddo

Fig. 2. A synchronization-relaxed loop gen-
erated from ASYNC DO annotation

to deposit its partial term of the reduction result in the tree and continue its exe-
cution without obtaining the newly computed value. Figure 3 shows an example
with eight threads. Threads are numbered 0 through 7 and every dot represents
a lock structure. Once a pair of threads arrive at the appropriate lock (if one gets
there first, it waits for the other), the left-sibling thread proceeds up the tree
with the new information deposited by both threads, and the other thread is
released and allowed to continue execution. Using this structure, we can greatly
reduce the amount of blocking time of threads.

The ASYNC REDUCTION annotation is analogous to an OpenMP paral-
lel DO loop with a reduction clause, but with the relaxed barrier tree re-
placing the strict barrier. Figure 4 shows an example of a loop annotated by
ASYNC REDUCTION. When embedded in an ASYNC REGION accepted by
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Fig. 3. A relaxed barrier tree structure

!$ASYNC_REDUCTION(+:d)

do j=1, lastcol-firstcol+1

d = d + p(j)*q(j)

enddo

converted to

temp = 0.d0

do j = low_limit, high_limit

temp = temp + p(j)*q(j)

enddo

call logbarrier(my_id, temp, d, 0)

Fig. 4. A loop converted from
ASYNC REDUCTION
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the compiler, this loop will be transformed into an iteration-partitioned loop
with a call to a runtime routine logbarrier which implements the relaxed bar-
rier tree.

ASYNC REGION. The ASYNC REGION directive defines the lexical scope
of the iterative solver and, by default, this scope has two barrier synchronization
points, one at the entrance and the other at the exit. Within this scope, parallel
threads partition the ASYNC DO and ASYNC REDUCTION loop iterations
by following the “owner computes” rule such that, every time they reenter these
loops, each thread will modify the same array sections as the last time.

Algorithm 1 provides a general template for writing an iterative solver us-
ing the asynchronous loops. The notation !$a parallel loop header in the algo-
rithm could mean !$ASYNC DO, !$ASYNC REDUCTION, or any conventional
OpenMP parallel construct. The iterative loop annotated by ASYNC REGION

Algorithm 1. A General Template of Using ASYNC Loops
1: !$ASYNC REGION
2: DO ITER = 1, number iter
3: !$a parallel loop header
4: a parallel loop body
5: . . .
6: !$a parallel loop header
7: a parallel loop body
8: . . .
9: !$a parallel loop header

10: a parallel loop body
11: . . .
12: END DO ITER

will be transformed by the compiler into an OpenMP parallel section (!$OMP
parallel) to be executed by a number of parallel threads. Within the asyn-
chronous region, an ASYNC DO loop is transformed by the compiler into
a DO loop whose iteration ranges are determined by the thread ID, as il-
lustrated previously in Figure 2. No barrier synchronization is inserted. An
ASYNC REDUCTION loop is transformed into a DO loop that computes a
partial reduction before invoking the relaxed barrier synchronization routine to
add the partial term to the final result, as illustrated in Figure 4. A conventional
OpenMP parallel DO or reduction loop will be transformed into a DO loop as
stipulated in the OpenMP standard, with conventional barrier synchronization
inserted. Sequential loops and statements within the ASYNC REGION will be
enclosed in a segment annotated by the !$OMP master directive to indicate that
they are executed by the master thread only. At this point it should become clear
to readers that one cannot implement asynchronous algorithms in OpenMP by
simply adding the nowait label to a parallel DO loop.

It is important for the compiler to align the iteration ranges of the DO loops
converted from the inner parallel loops (ASYNC or OpenMP) such that no two
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threads write into the same array sections. This requires the compiler to perform
array data flow analysis which has been studied quite extensively by previous
work [8,10,11] and will be omitted in this paper due to space limitation. If the
compiler is unable to perform the necessary array dataflow analysis for a par-
ticular asynchronous region, the ASYNC REGION annotation will be ignored.
An ASYNC DO loop will be treated as an ordinary OpenMP parallel DO loop
and an ASYNC REDUCTION loop will be treated as an ordinary OpenMP
reduction loop.

3 Benchmark Study

In this section, we introduce two benchmarks, namely MG and preconditioned
CG, from the 2003 release of the NAS OpenMP parallel benchmarks (version 3.2)
[1,9]. The MG program belongs to the class of iterative methods which use relax-
ation methods [12]. The CG program belongs to the class using Krylov subspace
methods [12]. The Krylov subspace methods are known to benefit greatly from
preconditioning, in terms of both numerical accuracy and computation efficiency.

Algorithm 2. Multigrid V-Cycle with Full Synchronization
1: DO iter = 1, number iter
2: for i = hmax...h0, i = i/2 do
3: !$OMP parallel do
4: Coarsen residual: ri = Ii

i/2r
i/2

5: end for
6: !$OMP parallel do
7: Zero: uh0 = 0
8: !$OMP parallel do
9: Smooth: uh0 = uh0 + Srh0

10: for i = 2...hmax/2, i = 2i do
11: !$OMP parallel do
12: Zero: ui = 0
13: !$OMP parallel do
14: Prolongate: ui = I

i/2
i ui/2

15: !$OMP parallel do
16: Calculate Residual: ri = ri − Aui

17: !$OMP parallel do
18: Smooth: ui = ui + Sri

19: end for
20: !$OMP parallel do
21: Prolongate: uhmax = I

hmax/2
hmax

uhmax/2

22: !$OMP parallel do
23: Calculate Residual: rhmax = rhmax − Auhmax

24: !$OMP parallel do
25: Smooth: uhmax = uhmax + Srhmax

26: END DO ITER
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Relaxation methods such as SOR have been found to be effective preconditioners,
We wrote a simple SOR preconditioner for CG.

MG Using ASYNC Loops. The MG program implements a multigrid method
to solve the Poisson problem ∇u2 = v with periodic boundary conditions. The
benchmark places -1 and +1 values at twenty random grid points each, and
zeros elsewhere. Each iteration consists of a full V-cycle [12]. We also derived a
two-dimensional version of MG for a 2D grid size, but the algorithm remained
the same. The high level organization of MG in OpenMP can be illustrated
by the code skeleton in Algorithm 2. In the actual OpenMP code, the !$OMP
annotations are within the subroutines shown in the algorithm such that within
each subroutine call, one or more !$OMP parallel DO loops are executed, forcing
a strict data flow.

To relax the data flow constraints, we annotate the entire iterative solver by
ASYNC REGION (which will then be converted to an OpenMP parallel sec-
tion as discussed previously, suppose we decide that the asynchronous model is

Algorithm 3. Multigrid V-Cycle with ASYNC DO loops
1: !$ASYNC REGION
2: DO iter = 1, number iter
3: for i = hmax...h0, i = i/2 do
4: !$ASYNC DO
5: Coarsen residual: ri = Ii

i/2r
i/2

6: end for
7: !$ASYNC DO
8: Zero: uh0 = 0
9: !$ASYNC DO

10: Smooth: uh0 = uh0 + Srh0

11: for i = 2...hmax/2, i = 2i do
12: !$ASYNC DO
13: Zero: ui = 0
14: !$ASYNC DO
15: Prolongate: ui = I

i/2
i ui/2

16: !$Barrier
17: !$ASYNC DO
18: Calculate Residual: ri = ri − Aui

19: !$ASYNC DO
20: Smooth: ui = ui + Sri

21: end for
22: !$ASYNC DO
23: Prolongate: uhmax = I

hmax/2
hmax

uhmax/2

24: !$Barrier
25: !$ASYNC DO
26: Calculate Residual: rhmax = rhmax − Auhmax

27: !$ASYNC DO
28: Smooth: uhmax = uhmax + Srhmax

29: END DO ITER
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beneficial). A careful analysis of the numerical property of the solver suggests
that all but two of the synchronization points can be safely removed without
severely slowing the convergence. The necessary synchronization points occur
immediately after the prolongation operation, but before the residual calcula-
tion. Hence, we change all embedded OpenMP parallel DO loops to ASYNC DO
loops. As discussed previously, the ASYNC DO loops will result in a partition
of the parallel loop iterations, but without implied barrier synchronization. We
reinsert barriers immediately before the residual calculation. Figures 1 and 2 (in
Section 2) show details for the residual calculation loop. The high-level organi-
zation of the ASYNC REGION is shown in the code skeleton in Algorithm 3
below.

The reinserted synchronization points are necessary because, if stale values
are used from the interpolated grid, the residual will undoubtedly be higher.
Once this higher residual is applied to correct the grid, the difference (in norm)
of the current grid to the previous one will also be larger. This error will prop-
agate through each V-cycle iteration, so that the residual will continue to grow
indefinitely after a few iterations. The smoothing operation exists to even out
sharp differences in the residual, but the effects of a larger magnitude of residual
values in general will still exist. Our experiments without the reinserted barriers
have turned out poor numerical accuracies and hence confirmed the necessity of
these synchronization points.

3.1 SOR-Preconditioned CG Using ASYNC Loops

A preconditioned conjugate gradient method is given in Algorithm 4 below [12].
Preconditioning a system of linear equations is a way to transform the original
system into one that is likely to be easier to solve with an iterative solver.
Both the efficiency and robustness of iterative techniques can be improved by
a good preconditioner. The number of iterations to execute CG are expected
to be reduced after preconditioning. The preconditoner M (in steps 1 and 6) is
chosen such that M−1 is a good approximation of A−1. Also, the system Mz = r
needs to be much easier to solve than the original system Ax = b, for example,
using Jacobi, Gauss-Seidel, or Successive Overrelaxation. Here, we apply the
preconditioner M to the system Ax = b from the left, i.e. M−1Ax = M−1b.

Algorithm 4. Preconditioned Conjugate Gradient
1: Compute r0 = b − Ax0, z0 = M−1r0, p0 = z0

2: for j = 0, 1, ... until convergence do
3: αj = (rj , zj)/(Apj , pj)
4: xj+1 = xj + αjpj

5: rj+1 = rj − αjApj

6: zj+1 = M−1rj+1

7: βj = (rj+1, zj+1)/(rj , zj)
8: pj+1 = zj+1 + βjpj

9: end for
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Notice in statement 6 of algorithm 4, we compute z = M−1r = M−1(b−Ax) =
M−1b − M−1Ax. Thus z represents the residual of the transformed system.

The CG benchmark from NAS estimates the smallest eigenvalue in magnitude
of a matrix A using the inverse power method with shifts. During each iteration,
a solution of a system of the form Ax = b is obtained by calling a CG subrou-
tine. Because here the CG method is being used as a solver inside of another
iterative method, it is invoked a fixed number of times. The input matrix is of
dimension 14000, and the conjugate gradient method is stopped when the resid-
ual norm falls below 10−8. We implemented a point successive overrelaxation
(SOR) scheme to serve as a preconditioner for CG. Because the structure of the
input matrix is symmetric positive definite but random, the point SOR solver is
an appropriate preconditioner. The preconditioner is stopped when the residual
norm is less than 10−6.

4 Experimental Results

We performed experiments by running the chosen benchmarks on a Sun E10000
which has 54 Ultrasparc II processors (each clocked at 400 Megahertz) and 56 GB
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Fig. 5. Comparison between strict and relaxed data flow models with MG. (a) Run-
ning time using standard 3D grid (b) Parallel speedups (c) Final residual norms (d)
Convergence Rates.
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Fig. 6. (a) Running time of MG using a 2D grid (b) Parallel speedup (c) Final residual
norms (d) Convergence rates

of memory. For each data set, tests were run on a differing number of processors,
ranging from 1 to 32 in powers of two. With the exception of the residual vs. the
number of iterations, all performance data reported here is an average over 10
runs. Since we are still exploring the range of applications for ASYNC loops, the
conversion from such loops to OpenMP codes is currently performed manually.

3D Multigrid. We first use a 256 x 256 x 256 grid size with 4 iterations for
the MG benchmark, in order to be consistent with the original benchmark spec-
ification for class A problems. Figures 5(a)-5(c) compare the performance and
residual after executing four iterations, while figure 5(d) shows that both versions
approach convergence at the same rate in the number of iterations shown.

After just four iterations, a satisfactory residual has been reached. We see
that the speedup behavior of the relaxed version is superior to that of the orig-
inal OpenMP version, in particular with more than eight threads. In addition,
although the final residual values are slightly higher than that of the original ver-
sion, the residuals for the relaxed version are approximately of the same order
of magnitude in comparison.

2D Multigrid. To further study the performance, we use a 512 x 512 grid size
for the two dimensional problem. Figures 6(a)-6(c) compare the performance and
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Fig. 7. Comparison of methods with SOR-preconditioned CG (a) Running times (b)
Parallel speedups (c) Number of iterations of first invocation of SOR preconditioner

residual after executing 30 iterations, and figure 6(d) shows that both versions
approach convergence at the same rate in the number of iterations given. The
results also show that the original version performs quite poorly in terms of
parallel speedup. The relaxed version clearly performs better.

SOR-Preconditioned CG. We tested the use of SOR as a preconditioner
embedded in the basic conjugate gradient method (see Algorithm 4). The SOR
preconditioner was run both in its original OpenMP version with strict data flow
and in the ASYNC DO version with relaxed data flow. Figures 7(a) and 7(b)
show that the parallel speedups of the relaxed version are much improved over
the original version. It is not yet clear why the original version experiences a
jump in the running time for four threads. One might observe that the relaxed
data flow causes the preconditioner to converge in a greater number of iterations,
as figure 7(c) demonstrates. Even as such, the improvement in efficiency over the
original version is quite significant.
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5 Related Work

To the best of our knowledge, this work is the first to propose parallel language
constructs to identify loops for execution based on asynchronous algorithms.
Although the asynchronous model could be implemented using P-threads or
existing OpenMP directives, it would not give the same flexility to the compiler
as our scheme does, and the way the program is composed would be more tedious
and more error-prone to modify. A considerable amount of prior work, on the
other hand, has been conducted on theories of asynchronous iterative algorithms
in the past decades [3,4,7]. Most publications seem to have focused on developing
general convergence criteria and tightening convergence conditions, although
several have devoted themselves to specific iterative methods such as Jacobi,
Gauss-Seidel and SOR [2,3,6]. We have not found prior experimentation with
mutigrid methods using asynchronous algorithms, which we have presented in
this paper. Applying the general theory of asynchronous computation model to
a concrete iterative numerical method remains a nontrivial problem.

6 Conclusion

The number of processors in parallel computers have been steadily increased in
recent years. The largest computational clusters now boast over ten thousand
processors. Interprocessor data communication is therefore becoming a more
serious performance bottleneck. We have proposed three kinds of ASYNC loop
constructs to support the asynchronous computation model for iterative solvers,
which, when applied successfully, can significantly reduce data communication
overhead. The experimental results with 3D and 2D MG benchmarks and with
SOR-preconditioned CG benchmark show excellent improvement of the ASYNC
versions over the conventional OpenMP versions of these parallel programs in
terms of the parallel execution efficiency. Moreover, the convergence rate has
remained approximately the same. While these results are highly encouraging, we
observe that deciding which synchronization points to remove remain a nontrivial
task which involves careful consideration of the numerical properties of the given
iterative solver. We believe that the proposed new loop constructs make it easier
for programmers to implement and fine tune asynchronous algorithms.

For our future work, we will further investigate other asynchronous algorithms
and hope to see sufficient successes to motivate a full implementation of the
proposed ASYNC loops in a parallelizing compiler.
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Abstract. The Standard Template Adaptive Parallel Library (stapl) is
a high-productivity parallel programming framework that extends C++
and stl with unified support for shared and distributed memory par-
allelism. stapl provides distributed data structures (pContainers) and
parallel algorithms (pAlgorithms) and a generic methodology for extend-
ing them to provide customized functionality. To improve productivity
and performance, it is essential for stapl to exploit third party libraries,
including those developed in programming languages other than C++. In
this paper we describe a methodology that enables third party libraries
to be used with stapl. This methodology allows a developer to spec-
ify when these specialized libraries can correctly be used, and provides
mechanisms to transparently invoke them when appropriate. It also pro-
vides support for using stapl pAlgorithms and pContainers in external
codes. As a concrete example, we illustrate how third party libraries,
namely BLAS and PBLAS, can be transparently embedded into stapl

to provide efficient linear algebra algorithms for the stapl pMatrix, with
negligible slowdown with respect to the optimized libraries themselves.

1 Introduction

Parallel programming is becoming mainstream due to the increased availability
of multiprocessor and multicore architectures and the need to solve larger and
more complex problems. To help programmers address the difficulties of parallel
programming, we are developing the Standard Template Adaptive Parallel Li-
brary (stapl) [1,15,16,18]. stapl is a parallel C++ library with functionality
similar to stl, the ANSI adopted C++ Standard Template Library [14] that
provides a collection of basic algorithms, containers and iterators that can be
used as high-level building blocks for sequential applications.
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stapl consists of a set of components that include pContainers,
pAlgorithms, views, pRanges, and a run-time system (see Figure 1).
pContainers, the distributed counterpart of stl containers, are provided to
the users as shared memory, thread-safe, concurrent, extendable, and compos-
able objects. pContainer data can be accessed using views which can be seen
as generalizations of stl iterators that represent sets of data elements and are
not necessarily related to the data’s physical location, e.g., a row-major view
of a matrix that is stored in column major order. Generic parallel algorithms
(pAlgorithms) are written in terms of views, similar to how stl algorithms
are written in terms of iterators. Intuitively, pAlgorithms are expressed as task
graphs (called pRanges), where each task consists of a work function and views
representing the data on which the work function will be applied. stapl relies
on the run-time system (RTS) and its communication library ARMI (Adaptive
Remote Method Invocation [17]) to abstract the low-level hardware details of
the specific architectures.

An important goal of stapl is to provide a high productivity environment
for developing applications that can execute efficiently on a wide spectrum of
parallel and distributed systems. A key requirement for this is that stapl must
be interoperable with third party libraries and programs. First, stapl programs
must be able to take advantage of well known, trusted, highly optimized ex-
ternal libraries such as BLAS [13], PBLAS [5,6], LAPACK [2], parMETIS [12],
etc. Second, it is equally important for a programming tool like stapl to pro-
vide the ability to be used by other packages, including programs written in
other languages (e.g., FORTRAN). For example, stapl must provide interfaces
to make pAlgorithms callable on third party data structures, such as FOR-
TRAN/MPI distributed matrices. In this paper, we present a methodology for
making stapl interoperable with external libraries and programs. We describe
how to specialize pAlgorithms to use third party libraries, and how to invoke
pAlgorithms from other programming languages. Our strategy exploits unique
features of pContainers and views that provide generic access to data and of
pAlgorithms that allows them to be specialized to use optimized third party
libraries when possible.

Since pAlgorithms are defined in terms of views, the same pAlgorithm can
be used with multiple pContainers each with arbitrary physical distributions.
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However, the genericity provided by views can complicate the use of third party
libraries. For example, the PBLAS library [5,6] for matrix multiplication re-
quires that the data be of a PBLAS recognized type (e.g., float) and laid out
in local memory in contiguous chunks and in a block-cyclic manner across the
processes executing the parallel application. Thus, a generic matrix multiplica-
tion pAlgorithm can only be specialized to use PBLAS if the data corresponding
to the pAlgorithm input views can be shown to already satisfy these proper-
ties, or can be efficiently converted to do so. Our methodology for optimizing
pAlgorithm performance is designed to address these problems. We do this by
providing algorithm developers the tools to describe the problem input condi-
tions under which tuned external libraries can legally be called and the mecha-
nisms to properly invoke them.

We illustrate the process by showing how third party libraries, namely BLAS
and PBLAS, can be transparently embedded into stapl to provide efficient
pAlgorithms for the pMatrix, a pContainer providing two-dimensional random
access dense arrays with customizable data distributions. We also describe how
pAlgorithms can be used by external codes. Our results on two architectures, a
640 processor IBM RS/6000 with dual Power5 processors and a 19,320 processor
Cray XT4, show that generic pAlgorithms operating on pMatrices can be: (i)
specialized to exploit BLAS and PBLAS and provide performance comparable to
the optimized libraries themselves, and (ii) used by external codes with minimal
overhead.

2 Related Work

The interoperability of software components and libraries is a broad field of study
in software engineering. For the purposes of this paper, we will focus our discus-
sion of related work to research covering library integration for high performance
computing as well as recent work for library development and composition done
within the context of generic programming in C++.

Breuer et al. [3] employ the current generic programming mechanisms in C++
to invoke external eigensolver routines on their distributed graph data structure.
Specifically, their graph is mapped to the eigensolver’s matrix concept via an
adapter code module.

In [7], Edjlali et al. present Meta-Chaos to address the interoperability prob-
lem in a parallel environment. The approach is to define an application indepen-
dent, linearized data layout that the various software components must use. It
is useful for cases where the expected and actual layout of a data structure are
very different.

Jarvi et al. [10] adapt the flood-fill algorithm in Adobe’s generic image library
to use the Boost graph library’s sequential graph algorithms. This work uses a
compiler that implements a prototype of the C++0x concept proposal [9]. They
show that with minimal changes to either existing code base, concepts can adapt
data structures from the image library to reuse generic Boost graph algorithms.
This static (i.e., compile-time) adaptation incurs no runtime overhead.
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Many active parallel language and library projects list interoperability as a
key design goal, and some give the specification of calling conventions for the
invocation of mainstream language (e.g., FORTRAN) libraries. However, it does
not appear that much development effort has yet been spent demonstrating
how the various projects’ constructs can be used to promote code reuse and
interoperability.

3 The pMatrix pContainer

In this section we briefly describe the pMatrix, a pContainer that implements a
two-dimensional dense array. We concentrate on the aspects necessary to present
our interoperability methodology. More details about the pContainer framework
can be found in [15,16].

The declaration of a pMatrix requires the following template arguments:
template <VType,Major=Row,BlocksMajor=Row,Partition=Default,Traits
=Default > class p matrix;
The VType defines the type of elements stored in a pMatrix. A pMatrix is
partitioned into sub-matrices (components) as specified by a partition class
that defines in which sub-matrix each element of the pMatrix is stored. A total
order over the elements of the matrix is defined by the Major and BlocksMajor
types which specify the order among and within, respectively, the sub-matrices;
the majors can be Row or Column.

Each sub-matrix is stored in a location, which is assumed to have exe-
cution capabilities, e.g., a location can be identified with a process address
space. The mapping between sub-matrices and locations is performed by a
partition-mapper (defined in the Traits template argument). Hence, together
the partition and partition-mapper define a data distribution in stapl. This
can define a location/processor grid, as in [5]. For the pMatrix, we provide a
generic block cyclic data distribution which can be customized to obtain other
partitions, such as blocked, blocked row-wise, or blocked column-wise.

The pContainer framework is designed to allow the reuse of existing con-
tainers. This is supported by a component interface that can be implemented
by pContainer developers as a light wrapper around their existing containers.
For example, for pMatrix we support sub-matrices implemented as MTL [8],
Blitz++ [19], or malloc allocated buffers.

The interface of the sub-matrix component must provide methods to allocate
and manipulate the data and iterators to natively access the elements, which en-
ables optimized data access for specialized pAlgorithms. Another interface re-
quirement is to flag if the iteration order provided by the sub-matrix component
iterators is the same as iterating through memory (e.g., is contiguously stored
=true/false). This is necessary, for example, when the data of the sub-matrix
component has to be passed to external libraries like BLAS.

A view over a pMatrix is a two-dimensional random access array typically
representing an arbitrary sub-matrix of the pMatrix. A view can be partitioned
into sub-views using a partition and a partition-mapper. A sub-view is
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in every respect a view. The default view provided by a pMatrix matches the
partition and the mapping of the pMatrix data. This view provides the most
efficient data access since all the elements in a sub-view are in the same physical
location. Starting from the default view, the user can obtain other views, such
as views over a sub-matrix, views over rows (columns), views that provide the
transpose, or views with an arbitrary block cyclic partition.

4 pAlgorithms

pAlgorithms in stapl are specified as task graphs, where tasks are function
objects (called workfunctions) that operate on views passed to them as argu-
ments. Typically the workfunctions express the computation as operations on
iterators over views. stapl provides parallel versions of the stl algorithms,
pMatrix algorithms, and pGraph algorithms, that operate on linearized views,
pMatrix views and pGraph views, respectively.

Once the workfunction has been specified, the views passed as arguments may
have to be rearranged to match the algorithmic requirements. This step is called
view alignment. The workfunctions have traits that can specify requirements of
the algorithm, e.g., the return type of the work function, the reduction operator
to be used on it, the way the input views are accessed, such as read-only (R),
write-only (W), or read-write (RW), etc. The latter traits are used by stapl to
allocate tasks to locations to improve performance.

stapl provides support for querying and exploiting locality of views. Since
a view describes a logical layout and partition of the data of a pContainer,
accessing a data element through a view can involve a remote memory access
which, in general, adds some overhead, even to local accesses. To mitigate this
potential performance loss, stapl can verify if a given view (i) is completely
contained in a single address space, and (ii) if its iteration space is the same
as the pContainer’s layout. Based on what conditions are matched, accesses to
the data in the views can be optimized. For this reason, the views that are
actually passed to the workfunctions may be of a type different than the one
originally specified. For instance, it may be a local view, whose data is in the
local address space. This mechanism is exploited by the specializations described
in the next section.

We now provide a pAlgorithm for matrix-matrix multiplication called
p matrix multiply general that given a view of an m × k matrix A and one
of a k × n matrix B, computes A × B in the view of an m × n matrix C. The
algorithm rearranges the input views corresponding to A, B, and C as blocked
matrices, where blocks are compatible for matrix multiplication and accessed in
column-major. The tasks of the algorithm perform the block-by-block multipli-
cations necessary to compute the final result. A sketch of the workfunction is
provided in Figure 2. The triple loop algorithm is written to access the views
according to the view’s major to exploit possible locality/access opportunities.

Note the typedefs in the class public interface that define the type of access
performed in the views. Each view in the argument list has a corresponding
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struct mat_mult_wf {
typedef void result_type; // workfunction returns void
// vA and vB are read-only, vC is write-only
typedef access_list<R,R,W> view_access_types;

template<class ViewA, class ViewB, class ViewC>
void operator()(ViewA& vA, ViewB& vB, ViewC& vC) {

// Triple loop rearranged to exploit possible locality
for(size_t j = 0; j < cols_of_B; ++j)

for(size_t k = 0; k < rows_of_B; ++k)
for(size_t i = 0; i < rows_of_C; ++i)
vC(i,j) += vA(i,k) * vB(k,j);

}
};

Fig. 2. Example of workfunction for p mat mul algorithm showing traits for return type
and access type of arguments (R for read-only, W for write only), and the templated
function operator

flag indicating if it is read-only (R), write only (W), or read-write (RW). These
access specifications are used to decide where the tasks will be executed, how
the data will be accessed during the execution of the algorithm, and what types
of optimizations can be applied.

5 Interoperability for Linear Algebra Computations

In this section, we describe our methodology for interoperability between stapl’s
pAlgorithms and other libraries. Here, we apply it to parallel matrix multipli-
cation; however, the approach is general and indicative of how other code bases
interact with stapl. We first look at how p matrix multiply transparently
invokes PBLAS and BLAS routines when a set of compile time and runtime
constraints are satisfied. We show how these constraints are specified and subse-
quently enforced. Finally, we show how an application not written in stapl can
invoke p matrix multiply through an interface provided by the pMatrix.

Algorithm 1. p matrix multiply(A, B, C)
1. if input conforms to PBLAS then
2. call PBLAS
3. else
4. decision = redistribute | general
5. if decision == redistribute then
6. p copy A,B, C to temporary PBLAS conformable storage
7. call PBLAS
8. p copy temporary result to C
9. else

10. call general matrix multiply (use BLAS in sequential sections if possible)
11. end if
12. end if
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template<typename ViewMatA,typename ViewMatB,typename ViewMatC> void
p_matrix_multiply(ViewMatA& vA, ViewMatB& vB, ViewMatC& vC) {

algorithm_impl::pdblas_conformable<ViewMatA, ViewMatB, ViewMatC> check_conformability;
if (check_conformability<COLUMN_MAJOR, COLUMN_MAJOR, COLUMN_MAJOR>(vA, vB, vC) ||

check_conformability<COLUMN_MAJOR, ROW_MAJOR, COLUMN_MAJOR>(vA, vB, vC) {
p_matrix_mult_pblas(vA, vB, vC);

} else {
p_matrix_multiply_general(vA,vB,vC);

}
}

Fig. 3. Specializing the p matrix multiply algorithm

5.1 Optimizing p matrix multiply with PBLAS and BLAS

Algorithm 1 shows pseudocode for p matrix multiply. First, the input is
tested to determine if PBLAS can be called. If it cannot, the algorithm may
employ an approach outlined in [18] to temporarily redistribute the data so
that it is amenable to PBLAS invocation. This has been shown [6] to of-
ten be the best approach (assuming memory is available). Otherwise, stapl’s
p matrix multiply general, described in the previous section, is invoked and
BLAS is used in serialized sections of the computation when the input conforms
to BLAS interfaces.

Specializing the Parallel Computation. For brevity, we only show the test for
invoking pdgemm, the PBLAS routine for double precision data. Specializations for
other types follow the same approach. The conditions to use pdgemm are partially
tested at compile time and partially at runtime. The conditions are the following:
1) the type of the data elements has to be double, 2) the input views, after align-
ing, have the property that each sub-view is contained in a single address space,
3) the partition of the pMatrices has to be block-cyclic and the majors of the
blocks andwithin the blocks have tobe the same, 4) the partition-mappersdefine
a common computing grid for all the matrices, and 5) that the block parameters
of the distributions make the three matrices distributions compatible with what
pdgemm requires. The latter conditions depend on the type of the major of the ma-
trices, and a proper invocation of pdgemm has to be picked up to cover the eight
combinations of the transposition flags for A, B, and C.

Figure 3 shows the specialization of p matrix multiply to invoke PBLAS.
The code shows only the condition checking for two specializations, one when the
input pMatrices will be passed as-is to pdgemm, and another when the transpo-
sition flag for matrix B has to be set appropriately since B is stored row-major
and pdgemm accepts by default column-major. check comformability checks
all the conditions listed above. The template parameters are used to select the
proper set of checks for condition 5.

Specializing the Sequential Computation. For BLAS, we use a different
approach than PBLAS for algorithm customization. There is still a runtime con-
straint for BLAS conformability. It shares the requirement with PBLAS that
the subviews refer only to elements on the execution location (contiguous stor-
age and traversal sequence requirements are checked statically as shown below).
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The runtime check, however, is not explicitly located within the sequential work-
function but instead is implicitly performed by stapl before each workfunction
invocation. The workfunction invocation can determine the result of this test by
checking whether the types of the views passed to it are local views (see Sec-
tion 4). This approach employs additional C++ language constructs to provide
a more structured approach to incremental algorithm specialization. It allows
new cases to be added over time without the need to modify existing code.

This relies on C++’s class template partial specialization mechanisms and
the enable if [11] template utility. Partial specialization allows one to define
a primary template (i.e., the general matrix multiplication algorithm) which
is used unless a template specialization is defined which is a better fit for the
given template arguments (i.e., view types). enable if allows us to specify when
a specialization is appropriate to use based on type traits, by exploiting the
Substitution failure is not an error (SFINAE) condition in C++.

struct matmul_wf {
//function operator invoked by STAPL task graph
template<typename VA, typename VB, typename VC>
void operator()(VA& vA, VB& vB, VC& vC) {

mat_mult_algorithm<VA, VB, VC> algorithm;
algorithm(vA, vB, vC);

}

//Define nested class template struct mat_mult_algorithm
//and specialize behavior as desired.

//The generic (default) algorithm
template<typename VA, typename VB, typename VC, typename Enable = void>
struct mat_mult_algorithm {

void operator()(VA& vA, VB& vB, VC& vC)
{ ... } // General algorithm

};

//1st specialization
template<typename VA, typename VB, typename VC>
struct mat_mult_algorithm<VA, VB, VC,

typename enable_if<and_<dblas_capable_view_set<VA, VB, VC>
column_major<VA>, native_traveral<VA>,
column_major<VB>, native_traveral<VB>,
column_major<VC>, native_traveral<VC>

> >::type > {
void operator()(VA& vA, VB& vB, VC& vC)
{ ... } // Setup matrix descriptors and CALL BLAS dgemm

};

//2nd specialization
template<typename VA, typename VB, typename VC>
struct mat_mult_algorithm<VA, VB, VC,

typename enable_if<and_<dblas_capable_view_set<VA, VB, VC>
column_major<VA>, native_traveral<VA>,
column_major<VB>, transposed_native_traveral<VB>,
column_major<VC>, native_traveral<VC>

> >::type > {
void operator()(VA& vA, VB& vB, VC& vC)
{ ... } // Setup matrix descriptors and CALL BLAS dgemm

};
};

Fig. 4. Specializing the matrix multiplication workfunction to use BLAS
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Note that our workfunction’s function operator forwards the input views to a
nested class template for execution. This is because only class templates (and not
function templates) support partial specialization in C++. As with PBLAS spe-
cialization, the approach used to specialize the sequential matrix multiplication
will also benefit from new concept features likely to be part of the next language
standard.

Figure 4 shows the pseudo-code for BLAS specialization.
dblas capable view set checks, at compile time, if data is local and contiguous
in memory. BLAS assumes matrices are stored in a column-major fashion.
Hence, with these guarantees, it can be invoked directly with its standard
parameters. The second specialization is similar, but handles the case when a
column-major view of B represents a transposed traversal over the container’s
native order (i.e., the container is row-major). Here, the transposition flag must
be set for matrix B when invoking the BLAS dgemm routine.

5.2 External Invocation of p matrix multiply

stapl supports the use of pAlgorithms by applications that have been devel-
oped outside stapl by providing a wrapper function for each pAlgorithm. The
wrapper accepts pointers to the calling program’s data instead of the views
required by the pAlgorithm interface, and then constructs a pContainer for
each argument using a special constructor that explicitly takes pre-allocated
memory. The views obtained from these pContainers are then passed to the
stapl pAlgorithm. The pAlgorithm transparently accesses the external data
through the view interface. When the pAlgorithm returns, the destructors of
the pContainers do not attempt to free the memory since they are aware that
it is externally managed, and control is passed back to the calling application.

6 Experimental Results

In this section, we present experimental results to evaluate the performance of
our specialization methodology. We run experiments on two different architec-
tures: a 640 processor IBM RS/6000 with dual Power5 processors available at
Texas A&M University (called P5-cluster), and a 19,320 processors Cray XT4
at NERSC (called CRAY-cluster). More extensive results are available in [4].

The first set of experiments compares the performance of the stapl

p matrix multiply algorithm in the case where PBLAS specialization can be
used (stapl-PBLAS line) with a direct invocation of PBLAS (PBLAS line). We
also show the performance of a FORTRAN/MPI program that allocates the data
and invokes the stapl matrix multiplication algorithm (FORTRAN-stapl). The
results are shown in Figure 5(a) for P5-cluster, and Figure 5(b) for CRAY-

cluster. The plots show the speed-up with respect to running PBLAS sequen-
tially on P5-cluster, and with respect to 64 processors on CRAY-cluster

(to fit the large input in memory). The plots show that the overhead of the run-
time check to determine if the PBLAS specialization can be invoked is negligible
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Fig. 5. Comparison of speed-ups for a direct PBLAS invocation (PBLAS), a PBLAS
specialized stapl pAlgorithm (stapl-PBLAS), and a FORTRAN/MPI program in-
voking a stapl pAlgorithm (FORTRAN-PBLAS). Results are shown for two architec-
tures/data sizes: (a) P5-cluster with 8192×8192 matrices and (b) CRAY-cluster

with 16384×16384 matrices. The baseline is direct PBLAS.
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Fig. 6. P5-cluster with 8192×8192 matrices: (a) Speedups of the unspecialized (Gen-
eral) and BLAS specialized (BLAS) versions of the algorithm, and (b) speed-ups of the
BLAS specialized workfunction when varying the number of components per location

up to a thousand processors. For larger processor counts, for which the actual
multiplication takes less than a second, stapl exhibits a visible overhead. The
knee in Figure 5(b) arises since pdgemm does not scale as well if the number of
processors is not a perfect square.

As mentioned in Section 3, the partition of a pContainer is decoupled from its
actual distribution across the address spaces (locations) of the processes carrying
out the computation (done by the partition-mapper). Thus, more than one
pContainer component can be placed into a single address space. Since PBLAS
forbids the use of such a data layout, when the number of sub-matrices is greater
than the number of locations, then the runtime check for using PBLAS fails and
the specialization for using BLAS within the workfunction is then tested.
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Next we analyze the performance of the BLAS specialization. Figure 6(a)
shows the speed-ups of the stapl algorithm when no specialization is used (Gen-
eral line) and when the BLAS specialization is used (BLAS line). The baseline is
the execution time of the matrix-matrix multiplication algorithm implemented
in the workfunction of Figure 2. The performance of the unspecialized algorithm
is dramatically slower than the BLAS specialization, showing that major per-
formance gains are possible by using highly optimized third party libraries. The
general algorithm starts exhibiting super-linear speed-up for 32 processors, when
data fits in cache. The plots include the execution of PBLAS whenever the data
layout allows us to use it, using the same baseline for the speed-up. It can be seen
that the performance of the BLAS specialized algorithm is comparable to the
PBLAS specialized algorithm, which is an interesting result from a productivity
point of view.

Finally, Figure 6(b) shows the speed-up achieved by the BLAS specialized
workfunction with respect to the execution of PBLAS on one processor. The
plots report three experiments varying the number C of components per loca-
tion (for C = 1 we forced the BLAS specialization to be invoked instead of
PBLAS). We show results for perfect square processor grids, since this allows us
to make fair comparisons. As can be seen, the speed-up decreases as the number
of components increases. This is due to the increased number of memory copies
and communications executed by the algorithm.

7 Conclusion

In this paper, we addressed the problem of interoperability in stapl. We showed
how stapl can take advantage of third party parallel and sequential libraries
by combining compile time and runtime checks. We illustrated the methodol-
ogy by implementing a matrix-matrix multiplication algorithm that can exploit
the availability of PBLAS and BLAS when the proper conditions are met. Our
results show that the overhead of specialization is negligible, and, when proper
specialization can be utilized, that stapl performance is comparable to that of
PBLAS. We also showed how stapl can be used by other languages by provid-
ing the proper constructors for pContainers to embed foreign data structures
within stapl with negligible overhead.
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Abstract. Sensitivity Analysis (SA) is a novel compiler technique that
complements, and integrates with, static automatic parallelization anal-
ysis for the cases when program behavior is input sensitive. SA can ex-
tract all the input dependent, statically unavailable, conditions for which
loops can be dynamically parallelized. SA generates a sequence of suf-
ficient conditions which, when evaluated dynamically in order of their
complexity, can each validate the dynamic parallel execution of the cor-
responding loop. While SA’s principles are fairly simple, implementing
it in a real compiler and obtaining good experimental results on bench-
mark codes is a difficult task. In this paper we present some of the most
important implementation issues that we had to overcome in order to
achieve a fairly successful automatic parallelizer. We present techniques
related to validating dependence removing transformations, e.g., privati-
zation or pushback parallelization, and static and dynamic evaluation of
complex conditions for loop parallelization. We concern ourselves with
multi-version and parallel code generation as well as the use of specu-
lative parallelization when other, less costly options fail. We present a
summary table of the contributions of our techniques to the successful
parallelization of 22 industry benchmark codes. We also report speedups
and parallel coverage of these codes on two multicore based systems and
compare them to results obtained by the Ifort compiler.

1 Introduction

1.1 Automatic Parallelization - Current State of the Art

The recent introduction of multi-core based architectures to the mass market
has brought program parallelization of the existing code base to the forefront. In
fact, there seems to be a degree of urgency from the part of the major vendors to
enable their users to exploit the coarser level parallelism offered by these new mi-
cros with their existing software base. Parallelizing compilers are a key enabling
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technology in this domain because they offer the advantage of automation and
thus high productivity.

Parallelizing compilers must focus, at least as a necessary first step, on discov-
ering which loops can be executed in parallel (ideally as a doall). Data depen-
dence analysis techniques as simple as the GCD test [16] and as sophisticated
as the Omega test [8] have been employed to statically prove the independence
of memory references within a loop. After some limited success it had become
clear that sparse, dynamic programs could not be automatically parallelized
using these static techniques alone because their memory reference pattern is
input dependent. The proposed solution was dynamic (run-time) analysis with
the advantage of high accuracy (most symbolic data is instantiated) but with
the drawback of run-time overhead. The dynamic approach has taken two direc-
tions: (a) a continuation of the static compilation analysis at run-time, and (b) a
memory reference trace based analysis approach. In the first approach, symbolic
expressions that could not be evaluated statically are postponed for run-time
evaluation which then decides the (in)dependence of a loop. For example, if the
static analysis cannot conclusively perform a standard data dependence test, e.g.,
a GCD test, because some of its parameters can be evaluated, we can always
perform it at run-time when all information becomes available. In the second ap-
proach, more general and better suited for codes using indirection, the memory
references are recorded and analyzed at run-time either before a loop is executed
(inspector–executor mode [15]) or after an optimistic (speculative) parallel ex-
ecution [11]. The complexity of this method is proportional to the number of
dynamic references and thus is potentially expensive.

Overall, the static and run-time approaches to automatic parallelization have
progressed independently without significant integration. Partial, but insuffi-
cient, static analysis was not used effectively to simplify run-time analysis. An
improvement over this state of the technology was presented in [12]. Instead of
performing a reference-based test, the technique, named Hybrid Analysis, uses
an aggregated reference representation and performs dynamic analysis using set
and interval operations very similar to those performed statically by a compiler.
This often results in a significant reduction of run-time overhead.

A step further in automatic parallelization has been the re-formulation of the
loop independence analysis into sufficient conditions (predicates) for which a loop
can be parallelized. These conditions represent the sensitivity of parallelization
to some input (dynamic) conditions. For example, in [9] the authors showed some
limited examples of how sufficient predicates could be extracted by simplifying
Presburger formulas with uninterpreted function symbols. These predicates are
returned to the programmer for evaluation (for interactive compilation). Further
research [2,5,6,12] showed how to extract simple scalar conditions from relatively
simple array data dependence predicates for a limited number of cases.

We have used a similar approach and recently presented Sensitivity Analysis
(SA) [13] as a general framework to analyze memory references and used it to
extract parallel loops from sequential programs. SA seamlessly bridges static
and dynamic analysis of memory references. When the compiler cannot draw
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definitive conclusions about interesting properties of a memory reference pat-
tern, SA can generate a set of sufficient conditions which, when evaluated, can
(in)validate these interesting properties. Examples of such interesting properties
are (in)dependent memory references, privatizable references, reductions, etc.

1.2 Automatic Parallelization with Sensitivity Analysis

In [12,13] we have shown how our compiler using SA is able to extract most avail-
able loop level parallelism from various benchmark codes using a mix of advanced
static analysis and aggressive optimizations that are validated dynamically with
minimal overhead. This has resulted in fairly good speedups. In [12,13] we have
explained with some detail how the overall SA framework functions. However,
obtaining good results requires us to apply and refine many general techniques
that together contribute to good speedups.

For example, we mentioned that SA generates a set of sufficient conditions
that can be evaluated dynamically and validate parallelization. However, the
work (run-time overhead) involved in the dynamic evaluation of these predicates
can vary greatly. Thus an ordering of their evaluations from simple to complex
is crucial (somewhat similar to evaluating complex predicates) for obtaining
good performance. In fact, based on performance models we can stop evaluating
predicates if the effort outweighs the benefit of parallelization.

Further examples are simple algorithm substitution transformations. Ex-
changing a serial reduction with a parallel one can enable the parallelization
of large loops. These transformations have to be proven correct though, and,
in the case of complex or input sensitive memory reference patterns, this may
not be possible statically. We use the same SA approach to generate dynamic
conditions to validate parallelizing code transformations.

Contribution. In this paper we present some important aspects describing how
the general framework of Hybrid Analysis (presented elsewhere [12,13]) has been
used and implemented in our parallelizing compiler (which is a derivative of the
UIUC-Polaris compiler).

2 A Brief Introduction to Sensitivity Analysis

The Memory Reference Representation
There are three main concepts in our analysis. First, we introduce a powerful
memory reference representation, the USR (uniform set representation). It was
described in detail in [12] under the name RT LMAD. In essence it can represent
memory references of a program as an expression whose leafs are sets of LMADs
(linear memory access descriptors) or enumerated sets of references which are
composed (internal nodes of the expressions) through program operations (con-
ditionals, loops, subroutine calls, etc.) A crucial advantage of this representation
is that it is closed under composition - it can represent any memory reference
pattern symbolically, at program level. When USRs cannot be evaluated to the
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exact sets of addresses they represent at compile time, they can be embedded in
the generated code and computed at run time, in the presence of actual input
values. However, in most cases we do not need to compute the actual memory
reference pattern, but rather prove a relation, which is generally easier.

Memory Reference Aggregation and Classification
The second concept in SA is memory reference aggregation, which ensures scala-
bility of interprocedural analysis at the cost of losing dependence direction infor-
mation. Memory references are aggregated bottom up on the Control Dependence
Graph (CDG) within a subroutine, and on the call graph inter-procedurally.

The process starts at leaf CDG nodes, which are simple statements. The set
of memory locations read and written by the statement is computed from the
statement type and symbolic expressions. This set is parameterized by symbolic
variables referenced by the statement.

The sets corresponding to successive statements are then computed using set
union, intersection and difference. All these operations are performed on USRs
[12]. Special nodes in the CDG require more elaborate set operations, all of which
are well defined and closed on USRs: predication, union across iteration space
and symbolic translation.

These simple, node-local transformations on the CDG are applied repeatedly
until the memory reference pattern has been completely summarized across the
whole program.

Dependence Relations Based on Reference Summary Sets
While summarizing references, we also classify them into three disjoint sets [2]:
Read Only (RO), Write First (WF) and Read Write (RW). They represent the
specific data flow information needed for dependence analysis. The RO summary
set records all memory locations only read (not written) within a section of code,
the WF summary set records all memory locations that are written first and then
possibly read and written, and the RW summary set records all other memory
locations referenced from within a context. Computing the RO, WF and RW sets
requires only the USR operations discussed in the previous section. An example
is given in Fig. 1.

Every time we reach a loop header in the aggregation process, we compute
the cross iteration data dependence relations. If there are no dependences, then
all the loop iterations can be executed in parallel. This is the most effective
automatic parallelization method, as it scales with the number of iterations,
thus it is likely to remain efficient as the underlying hardware evolves towards a
larger number of processing units.

1 . . . = A(6 : 1 5 )
2 A(1 : 1 0 ) = . . .
3 . . .

RO = [6 : 15], WF = ∅, RW = ∅
RO = ∅, WF = [1 : 10], RW = ∅
RO = [11 : 15], WF = [1 : 5], RW = [6 : 10]

Fig. 1. Memory reference classification example
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To express cross iteration dependence relations, we compute the set of memory
locations that are referenced in two different iterations, and are written in at
least one. At this point in the analysis, we have already computed ROi, WFi

and RWi, the per iteration reference sets.
One such dependence set is

DS = ∪n
i=1ROi

⋂
∪n

i=1WFi

Similar dependence sets are expressed for combinations of RO, RW and WF
sets [12]. If we prove DS = ∅, then no cross-iteration dependences may exist.

Sensitivity of Dependence Relations to Parameters
Finally, the third concept used in SA is the transformation of the USRs rep-
resenting the aggregated memory references into a Sensitivity Graph (SG),
i.e., a boolean expression representing the parallelization conditions.

In many cases, proving the dependence set empty is trivial. It often results
from a set intersection such as [1 : 10] ∩ [11 : 20], which evaluates to ∅ through
symbolic calculus, at compile time. In other cases, proving the dependence set
empty is not possible at compile time either because it depends on input data,
e.g., DS = [1 : n] ∩ [m : 100] or because the relation is just too complicated for
the compiler to evaluate.

We build SGs from dependence equations based on USRs by using a divide and
conquer approach, which, at each step, breaks the dependence equation DS = ∅
into several simpler equations based on set identities [13]. For instance, equation
A∪B = ∅ is broken into A = ∅ and B = ∅. This algorithm is applied recursively
until we reach equations involving only intervals, such as [m : n] ∩ [p : q]. Such
equations are translated into simple predicates based on bound comparison, e.g.,
n < p or q < m.

We then extract a minimal (modulo the symbolic calculus capabilities of the
compiler) run time check that guarantees that the loop is parallel. We then
generate parallel code predicated by this condition. We use the SG [13] repre-
sentation for these conditions. When they cannot be evaluated at compile time
to a boolean value, they are embedded in the generated code and evaluated at
run time, in the presence of actual values.

The aggregation and equation solving processes can deal with multidimen-
sional strided reference patterns. In some cases, the divide and conquer process
cannot extract a precise predicate from a dependence equation. In such cases, we
approximate sets with predicated multidimensional strided intervals, and con-
tinue the analysis with affine sets, which are easier to compare. The predicates
are added to the dependence condition. We can afford to make up optimistic,
speculative predicates, since they are verified at run time through SG evaluation.

3 Engineering an Automatic Parallelizer

In the previous section we have provided an overview of the general approach to
parallelization: We aggregate and, at the same time classify memory references
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(WF, RO, RW) at the program level into a set representation (USR) and then
formulate the independence condition DS = ∅ (empty dependence set). Then,
the compiler verifies the conditions for which this equation holds true by recur-
sively descending on the equation DS = ∅ and, using boolean logic, generating
a conjunction (OR) of simpler equations. Some of these equations can be proven
true for all inputs, i.e., statically true, and others result in some constraints
for the equation to be true. From these constraints (conditions) the compiler
generates predicates (code) that are evaluated at run-time and can validate the
parallelization of a loop. The constraints are expressed as sets of expressions
which can be represented as a graph, the sensitivity graph (SG). This method
was presented as SA (sensitivity analysis) [13].

Parallelism enhancing transformations. Our overall goal is to uncover as
much parallelism (doall type only) as possible and exploit it when beneficial.
To this we apply our SG based technique not only to prove that the original
loops in a program are independent but also to validate code transformations
that increase the intrinsic amount of parallelism. We will show how we can use
our SA to perform powerful dependence removing transformations, e.g.,
reduction parallelization, pushback parallelization and array privatization. These
are not new techniques, but the use of SA in their implementation makes them
more powerful, i.e., more often successful.

Efficient Run-time Evaluation of Parallelization Conditions. After ap-
plying the dependence removing transformations the compiler needs to generate
efficient parallel code. The outcome of the static Sensitivity Analysis may be the
SG (sensitivity graph) which may be varying degree of complexity and which
needs to be efficiently evaluated dynamically. It is important to perform the
dynamic evaluation efficiently because this evaluation represents pure overhead.
The novelty of our implementation lies in the way we generate efficient code for
this dynamic validation.

We will present some of the more important aspects of this process, e.g., the
generation of predicates that pre-validate parallel loop execution and the use of
speculation and post execution validation. Sometimes we cannot extract a con-
dition that can be evaluated before a loop is executed because it depends on the
computed data. (There may be a cycle between address and data computation).
In this case, we have to resort to speculative execution [11]. This invokes other
efficiency issues such as checkpointing (if used). Here too we use our program
representation and SA to improve performance.

It is worth mentioning that our entire analysis framework is interprocedural.
For the evaluation of USRs at run-time we have developed a library to which we
generate calls. Similarly, when we employ LRPD we use a specialized library.

Let us now take a closer look at some powerful techniques.

3.1 Transformations to Remove Dependences

Conditional and Selective Array Privatization. Array privatization can
be complex and expensive. In general, it means allocating a private array in
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each thread of execution. This replication can become quite costly if the array
is big. In the most general case it is required to first copy-in from the shared
array and then, after processing, copy-out the last value written. These two
operations (copy-in and copy-out last value) can be very expensive because they
do not scale. Thus we optimize them by performing selective copy-in and last
value copy-out. In the case of relatively sparsely referenced arrays this can save
significant time.

We can use USRs to express these in/out sets precisely in a general way and
thus improve performance. Briefly, here is our approach:

By the time we reach a loop header, we have already classified all memory
locations referenced within each iteration i into disjoint sets (USRs) ROi, WFi

and RWi. Using only set operations, we put together the following descriptors
as per-iteration USRs.

USR to privatize = WFi ∩ (∪k �=iWFk) (1)
USR to copy in = ROi ∪ RWi (2)

USR to copy out = WFi − (∪n
k=i+1WFi) (3)

In practice, we compute a single USR for the iteration space of each thread,
or a single USR for the whole iteration space of the loop. The formulas assume
that we have already proved that ∪n

i=1WFi

⋂∪n
i=1(ROi ∪ RWi) = ∅, which we

do as part of solving the dependence equation. This essentially means that the
only dependences left can be eliminate by privatizing overlaps of WFi across
iterations on different threads.

The first descriptor contains the set of memory references that must be priva-
tized because they are written to in at least two iterations. We chose to generate
an OpenMP PRIVATE directive whenever this USR is not provably empty at
compile time. This means we are possibly allocating too much private storage,
since sometimes not all the elements in the array must be privatized. However,
the alternative is to use an indirection table for just those locations that must
be privatized, which introduces both complexity and overhead.

Although we privatize entire arrays, we perform selective and conditional copy
in. Only those locations that are read before being written inside the loop are
used in a memory copy operation from the shared object to the private copies.
They are only copied if it turns out, at run time, that the values are needed inside
the loop, based on actual control flow predicates. We wrote a simple memcpy
like routine that uses a USR to control which locations get copied.

Conditional and Selective Array Reduction. Although implementations
vary greatly, array reduction conceptually starts with an initialization of all the
elements participating in the reduction with the null element of the reduction
operator. The loop is then executed in parallel. Upon exit from the parallel sec-
tion, elements updated by more than one thread are merged using the reduction
operation. We use USRs to describe the extent of the initialization and merge
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phases, and wrote simple library routines that use USRs to control the exact
locations that are initialized and merged respectively.

USR to initialize = USR to reduce = ∪n
i=1

[
RWi ∩

(∪i−1
k=1RWk

)]
(4)

Conditional Parallelization of Pushback Sequences. We have shown [14]
how to recognize sequences of pushback operations that can be parallelized by
using private storage, which simply need to be copied at the end of the loop to a
specific location of the shared array. We use USRs WFi to describe the extent of
the writes to private storage, and a library function to perform the actual copies
(the same used for copy in and copy out).

Not only do they get relocated efficiently, but this makes the transformation
more general, since USRs can describe arbitrarily complex patterns. Previously,
only pushback sequences made of contiguous locations could be parallelized.

3.2 Sensitivity Graph (SG) Evaluation

The outcome of the static Sensitivity Analysis may be either a definitive answer
at compile time or the Sensitivity Graph (SG), a boolean expression that needs
to be efficiently evaluated at run-time. It represents a conjunction (logic OR)
of sufficient conditions which all can validate a loop to be parallel (including
the associated dependence removing transformations). The SG can be of various
complexities. They can be a:

a Boolean expression that can be evaluated in constant time.
b Boolean expression that can be evaluated in time proportional to some fraction

of the size of the program data. For example, a triply nested loop with
iteration spaces N,M,K can be parallelized by performing N (or N*M or
K*N) work. This situation arises many times when aggregation works well
in only some of the dimensions of the analyzed data structures.

c Boolean expression that can be evaluated in time proportional to data size.

In this latter case (c), some of the transformations of the equations (DS = ∅)
involving the globally aggregated USRs into simpler ones has failed. This can
happen when the recursive simplification of the DS = ∅ equation is not very
successful or, in an extreme example, when the code uses indirection arrays. In
effect, we need to generate code to dynamically evaluate the USR’s (which can
be seen as a program slice). The compiler will generate code for the evaluations

Logical
Expressions

Sorted
Intervals

USR
Evaluation

LRPD

Independent Dependent

Pass Pass Pass Pass Fail

Fail Fail Fail

Fig. 2. Cascade of sufficient run time tests in increasing order of complexity
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of these conditions and sort them in order of their estimated complexity (similar
to the predicate of a branch condition). For illustration purposes, we have named
the resulting code a cascade of sufficient conditions (Fig. 2).

There are four types of run time operations involved in the evaluation of the
SG: (1) evaluation of elementary conditional expressions (constant time), (2)
interval trees (some fraction of data size, simple operations), (3) actual evaluation
of USRs (fraction of data size, complex operations) and comparison to the empty
set and (4) reference-by-reference LRPD [11]. The estimated complexity of these
tests ranges from O(1) tests as the one in Fig. 3 to O(n) dynamic reference
instrumentation as is the case in Fig. 4. The evaluation of USRs at run time
generally consists of fewer, but more complex operations than the reference-
by-reference LRPD. In some cases they may either degenerate into inefficient
enumerations or take conservative decisions that can lead to false negatives.
The LRPD test has overhead proportional to the dynamic reference count, but
is optimal for cases where aggregation and equation inversion are not possible
(Fig. 4). It is always applicable, precise, and has a more predictable complexity.
Perhaps the most important aspect of the “heavy” methods (USR evaluation
or LRPD test) is that they have to be performed in parallel so that the overall
obtained speedup scales with the number of processors.

There are two ways to validate parallel execution: Before the loop execution
(similar to an inspector) or after its execution. In the latter case we have to use
speculative execution [11].

In most cases, we can adopt either method and (hopefully) select the most effi-
cient one. The correct choice involves a more complex cost model which is beyond
the scope of this discussion. Presently, we choose speculation over pre-verification
only if (1) a parallel inspector cannot be extracted (see next section) or (2) if
we cannot extract a light inspector (a slice made of only scalar definitions). The
actual test code generation consists of a syntax-based translation from the SG
grammar to Fortran.

1 Read ∗ , n
2 Do j = 1 , n
3 A( j ) = A( j +100)
4 EndDo 100:100+n

U

Empty?

1:n

n<101

Write Read

1 Read ∗ , n
2 I f (n<101) Then
3 Parallel Loop
4 Else
5 Sequen t i a l Loop
6 EndIf

Fig. 3. Example of an input-sensitive memory reference pattern and corresponding
code after parallelization

1 Read ∗ , (p ( j ) , j =1 ,100) ,
( q ( j ) , j =1 ,100)

2 Do j = 1 , 100
3 A(p( j ) ) = A(q ( j ) )
4 EndDo

U

p(j) q(j)

Empty

U

j=1,100 j=1,100

U

Fig. 4. A Hybrid Analysis extreme: in general, no test can solve this problem faster
than the reference-by-reference LRPD test
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In both cases, we reuse the test results by means of inspector hoisting, SG and
USR common subexpression recognition, and run time test result memoization.
We apply loop invariant hoisting to USRs and SGs by performing aggressive
invariance analysis on their sets of input variables. Invariance problems on USRs
resulting from subscripted subscripts are formulated as dependence problems on
the subscript arrays, which are solved by the same SA algorithm applied to the
subscript array. This is achieved by representing the exact referenced memory
regions of the subscript array as USRs themselves, and thus identifying the exact
subregion of the subscript array that affects the shape or size of the memory
pattern on the host array. An interesting problem arises when a more expensive
test such as LRPD can be hoisted out of a loop, but a simpler O(1) version is
loop variant. At this time we (simplistically) hoist tests as far away as possible
and build cascades from tests at the same loop nesting level.

Even when we cannot hoist tests out of their loops, by transforming reference
based tests into simple boolean operations, we reduce the run time overhead
by a constant but significant factor. For instance, in MDG/INTERF do1000,
switching from reference based test to SGs improved the speedup on 4 threads
from 1.5 to 3.3. (Scalability did not change). There are three main reasons for
this improvement. First, simple SGs evaluation require very little extra memory,
in most cases a few scalar variables. The code we insert consists of accumulation
of conditions such as indep = indep.AND.x > 0. Second, we insert the code at
the earliest common postdominator of the SSA definition sites of the operands.
Since in most cases there is just one operand other than the dependence decision
accumulator, we insert code right after that operand is written to, which gives
excellent temporal locality. If the definition is an unconditional scalar assign-
ment, the operand is likely to be in a register. Also, simple SGs only perform
logic operations. In contrast, the LRPD and USR run time libraries, even highly
optimized, may use large amounts of extra memory and execute bookkeeping
operations including loads/stores, branches and sub-word manipulation.

3.3 Speculative Execution

Sometimes we cannot extract a condition that can be evaluated before a loop is
executed because it depends on the computed data. (There is a cycle between
address and data computation). In this case, we have to resort to speculative
execution [11]. This invokes other efficiency issues such as checkpointing (if used).
We identified previously the conditional pushback sequence pattern, which is
perhaps the simplest such example. Other cases are more complex and do not
follow a preset pattern. It should be noted that even when the dependence
relation can be precomputed before the loop it may be worth executing the
loop in parallel speculatively in order to reduce the overhead. A more detailed
discussion about these choices can be found in [7].

If speculative parallelization is necessary, we take advantage of our novel rep-
resentation and SA techniques to reduce overheads. We can compute the exact
extent (as a USR) of memory that must be either saved at a checkpoint before
the speculative loop, or committed from private speculative storage after the
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loop. The actual memory operations are implemented as calls to our selective
memory copy routine used for copy in, copy out and pushback parallelization.

3.4 The Value Evolution Graph and Pushback Sequences

The Value Evolution Graph (VEG) [14] can represent the data flow in recur-
rences used as array indices which have no closed form solutions. The graphs
are pruned based on control dependence predicates and produce tighter value
ranges than abstract interpretation methods. These value ranges and their re-
lations (overlapping, mutual exclusive) are used throughout our analysis, when
building USRs and when extracting SGs.

Additionally, VEGs can be used to detect monotonic reference patterns in
the code text. Unlike previous pattern recognition methods, we can analyze par-
tially aggregated and classified memory descriptors (USRs). This single generic
approach both extends and unifies in a single framework most cases which were
previously solved using various, different, pattern matching techniques. It allows
for the parallelization of important classes of memory reference patterns, e.g.,
sequences of pushback operations with complex footprints.

4 Experimental Results

Our experiments show that our techniques extract almost all the available par-
allelism at the highest granularity possible, which results in significant speedups
on 22 codes from the PERFECT and various SPEC benchmark suites.

Table 1. Automatic parallelization coverage and speedups. PERFECT and
SPEC92/95 speedups were measured on a 2-way Intel Core Duo. SPEC2000/2006
speedups were measured on an 8-way Sun server with 4 AMD dual core processors.

Coverage Speedup
Suite Polaris/SA Intel Polaris/SA Intel
PERFECT 95% 14% 1.51 1.02
SPEC92/95 98% 29% 1.44 1.10
SPEC2000/2006 88% 62% 2.87 1.66

Table 2. Parallelization coverage breakdown (a) between compile time and run time
(b) as contribution of each compiler technique. The coverages in (b) overlap because
parallelizing some loops required several techniques. Coverage is measured as the per-
centage of the original sequential execution time that was parallelized.

Technique PERFECT SPEC
CT 58.00 87.25
RT: Speculative 11.90 1.42
RT: Non-Speculative 26.60 4.08
Total 95.50 92.75

Technique PERFECT SPEC
SG: Simple Expressions 20.10 2.08
SG: Interval Trees 9.20 0.00
SG: LRPD 3.00 1.42
SG: USR Evaluation 13.80 4.08
Hybrid Priv, Red 12.60 0.50
VEG 12.80 0.91
Pushback Recognition 9.60 0.92

(a) (b)
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Table 3. Run time tests actually executed to decide whether the dependence structure
on array MX prohibits or allows parallelization of loop DYFESM/MXMULT do10. %S
represents the time spent in the test as a percentage of the execution time of the loop.

Test Type Accuracy Success % S
Parallel/Sequential Simple Expression Sufficient Fail 0.005

USR Evaluation Necessary&Sufficient Pass 0.025
Indep. Update/Reduct. Simple Expression Sufficient Fail 0.005

USR Evaluation Necessary&Sufficient Fail 0.030
Indep. Write/Priv. Interval Trees Necessary&Sufficient Pass 0.005

Table 4. Loop parallelization in PERFECT codes. % = percentage of total application
execution time. DD Test = type of data dependence test required (CT = compile time,
RT = run time, SE = simple logical expressions, IT = interval trees, UE = USR
evaluation, LRPD = LRPD run time test) Priv = type of privatization required (A
= array privatization). Red = type of reduction required. PB = pushback required.
IP = loop contains subprogram calls. EX = execution type (IE = nonspeculative,
SP = speculative execution). Intel = parallelized automatically by the Intel Compiler
(version 9.1, -parallel -par threshold100).

Code Loop % DD Test Priv Red PB IP EX Intel
ADM RUN do20,...,100 44 RT:SE,UE CT,A - -

√
IE -

D*DTZ do30 31 CT CT,A CT -
√

- -
DKZMH do20,50 11 CT CT,A - -

√
- -

WCONT do40 5 CT CT,A CT -
√

- -
ARC2D STEPF* do* 29 CT CT - - - -

√
*PENT* do* 14 CT CT - - - -

√
FILERX do15 14 RT:SE,UE CT,A - - - IE -
RHS* do* 10 CT CT - - - -

√
TK* do1 8 CT CT - - - - -

BDNA ACTFOR do240,500 89 CT CT,A CT - - - -
DYFESM MXMULT do10 73 RT:IT,UE RT:IT,A RT:IT,UE -

√
IE -

SOLVH do20 9 RT:SE RT:IT,A - -
√

IE -
FORMR0 do20 7 RT:IT,UE RT:IT,A RT:IT,UE -

√
IE -

SOLXDD do4,10,30,50 9 RT:IT RT:IT,A RT:IT -
√

IE -
FLO52 *FLUX* do* 55 CT CT - - - -

√
PSMOO do40,80 21 CT CT - - - - -
EULER do* 15 CT CT CT - - -

√
MDG INTERF do1000 93 RT:SE CT,A CT -

√
SP -

POTENG do2000 6 CT CT,A CT -
√

- -
OCEAN FTRVMT do109 41 RT:SE CT - - - IE -

IN do10 15 CT - - - - - -
OUT do10 15 CT - - - - - -
CSR,RCS do20 7 CT CT - - - - -
ACAC,SCSC do30,40 6 CT CT,A - - - - -

SPEC77 GLOOP do1000 48 CT CT,A CT -
√

- -
GWATER do1000 24 RT:LRPD CT,A CT -

√
SP -

SICDKD do1000 4 CT CT,A - -
√

- -
TRACK EXTEND do400 50 CT CT,A -

√ √
- -

FPTRAK do300 46 CT CT,A -
√ √

- -
NLFILT do300 2 RT:LRPD CT,A - -

√
SP -

TRFD OLDA do100 67 CT CT,A - - - - -
OLDA do300 28 CT CT,A - - - - -
INTGRL do140 3 RT:IT RT:IT,A - - - IE -

Table 1 presents full application speedups, measured by dividing the sequential
execution time of the whole application by its parallel execution time including
the runtime overhead, if any.
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Table 5. Loop parallelization in SPEC codes. (Legend in Table 4.).

Code Loop % DD Test Priv Red PB IP EX Intel
APPLU JACL* do#1 34 CT CT - - - - -

RHS do#1,2,3,4 20 CT CT - - - -
√

APSI RUN do* 25 RT:SE,UE CT,A - -
√

IE -
D*DTZ do40 40 CT CT,A CT -

√
- -

DKZMH do30,60 12 CT CT,A - -
√

- -
WCONT do40 6 CT CT,A CT -

√
- -

HYD do20 5 CT CT CT - - - -
MGRID RESID do600 52 CT CT - - - -

√
PSINV do600 27 CT CT - - - -

√
RPRJ3 do100 7 CT CT - - - -

√
INTERP do400,800 8 CT CT - - - -

√
COMM3 do100,200,300 5 CT CT - - - - -

SWIM SHALLOW do3500 48 CT CT CT - - - -
CALC1 do100 14 CT CT - - - -

√
CALC2 do200 17 CT CT - - - -

√
CALC3 do300 19 CT CT - - - -

√
WUPWISE MULDEO do100,200 47 CT CT,A - -

√
- -

MULDOE do100,200 46 CT CT,A - -
√

- -
HYDRO2D FILTER do* 42 CT CT - - - -

√
FCT do* 18 CT CT - - - -

√
ARTDIF do* 14 CT CT - - - -

√
TRANS* do* 12 CT CT - - - -

√
TISTEP do* 6 CT CT - - - -

√
S1,S2 do100 4 CT CT - - - - -

MATRIX300 LBMK14 do20 13 CT CT - - - - -
SGEMM do* 86 CT - - -

√
- -

MDLJDP2 FRCUSE do20 76 CT CT CT -
√

- -
FRCBLD do20 11 CT CT CT

√ √
- -

POSTFR do* 8 CT CT CT - - - -
PREFOR do* 5 CT CT - - - - -

NASA7 VPETST do110 26 CT CT - -
√

- -
GMTTST do120 24 RT:UE CT - -

√
IE -

CFFT2D* do130,150 17 RT:LRPD CT - - - SP -
BTRTST do120 10 CT CT - -

√
- -

CHOTST do120 9 CT CT - -
√

- -
EMIT do5 6 CT RT:IT,A - - - IE -

ORA MAIN do9999 99 CT CT CT -
√

- -
SWM256 CALC1 do100 31 CT CT - - - -

√
CALC2 do200 38 CT CT - - - -

√
CALC3 do300 30 CT CT - - - -

√
TOMCATV MAIN do100/2,120/2,60,... 96 CT CT CT - - -

√

Two main factors are behind these good speedups: high granularity and high
coverage. The VEG, the USR and SG are all interprocedural and flow sensi-
tive (though they use approximations), which makes our analysis apply to large
program slices, resulting in higher granularity. Our hybrid approach pushed cov-
erage over 90%. It also increased granularity significantly, since many outer loops
could be proved parallel only at run time. A detailed discussion of the speedup
numbers can be found in [13].

Table 2 presents the effect of each technique towards our goal of achieving
highest parallelization coverage possible. It is important to note that our hybrid
framework solves the parallelization problems uniformly at both compile-time
and run-time, using SGs. The techniques presented in this paper contribute
substantially to the coverage and granularity of parallelization. Comprehensive
reports for a large set of loops are available at: http://parasol.tamu.edu/
compilers/ha. An interesting case is loop MXMULT do10, which accounts for

http://parasol.tamu.edu/compilers/ha
http://parasol.tamu.edu/compilers/ha
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73% of the sequential execution time on DYFESM. This loop contains an array
MX which shows multiple patterns on different subsections. The first part of the
array is only written to, while the last part is a reduction. The write section is
fully independent, but this is not known until run time. The reduction section is
only proven a proper reduction (not an independent update) at run time. Table 3
presents our run time tests, their dynamic outcomes and their relative overhead
for this loop.

Tables 4 and 5 show the occurrence of each static and dynamic dependence
test, privatization, reduction, pushback, and speculative parallelization in various
benchmark programs.

5 Conclusions

In this paper we have presented some of the more important issues involved
in the implementation of the novel Sensitivity Analysis framework in our Po-
laris derived automatic paralleling compiler. We have shown that our powerful
USR representation and our sensitivity analysis technique is useful not only in
detecting independent loops but also in applying parallelism enhancing trans-
formations (e.g, reduction and pushback parallelization, privatization). We have
further shown that SA generates a flexible cascade of sufficient conditions applied
in order of their estimated execution time complexity. Thus we allow a flexible
cost-benefit analysis between the benefits of parallelization and the effort to ob-
tain it. We further present the impact of our methods on 22 benchmark codes
and report speedups that compare quite well with existing commercial compil-
ers. These good results are due to our ability to uncover and efficiently exploit
large granularity parallelism.
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Abstract. This paper presents a new technique to optimize locality of irregular
programs by leveraging parallelism on a massive many-core architecture – IBM
Cyclops64 (C64). The key idea is to achieve Just-In-Time Locality which ensures
that data are available locally for computation to use. The proposed percolation
model for Just-In-Time Locality moves data proactively close to the computation
and organizes the data layout such that locality is exploited effectively. The perco-
lation model opens a door for exploiting locality through parallelism, which is an
advantage of the future many-core architecture. We implemented the percolation
strategy in the context of two irregular applications on C64. Our experimental
results are very encouraging and we get an order of magnitude improvement in
performance of irregular applications. We also drastically improve the scalability
of the applications that we studied.

1 Introduction

Emerging future microprocessor chip technology unveils a new generation of many-
core chip architecture that may contain 100 to 1,000 processing cores. In order to im-
prove the performance and scalability of large-scale applications computer architects,
system software designers and application scientists are realizing that they must work
closely together to investigate how to exploit the computational power of such new
many-core architecture. At a high level there are two kinds of applications—“regular
applications” where data access and control flow follow regular and (statically) pre-
dictable patterns, and “irregular applications” where data access and control flow have
statically (and often even dynamically) unpredictable patterns. Many irregular applica-
tions are often implemented using complex pointer data structures such as graph and
queue, and recursive control flow is often used to traverse and manipulate such complex
pointer data structures. It is difficult and often impossible to capture the data access pat-
terns at compilation time for such applications. For architectures that support memory
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hierarchy, unpredicatable data access patterns often lead to higher off-chip memory ac-
cess latency, which in turn can degrade the performance and scalability of such irregular
applications.

The current threading library (e.g., Pthreads), a combination of compiler directives
and libraries (e.g., OpenMP) and optimistic parallelization [1, 2, 3] were not designed
to support programming for tolerating off-chip latency, or to handle efficient allocation
and movement of data across hierarchy levels. It is often the case that in the underline
thread execution model, a thread is enabled and activated as soon as all data and control
dependencies are satisfied. Such thread execution models may do well for regular ap-
plications, where there is an inherent memory locality in the application. Unfortunately,
irregular applications often do not have inherent memory locality and so the weaker
model often performs poorly.

In this paper we exploit several characteristics of IBM Cyclops64 (C64) architec-
ture [4] and its runtime threading model to drastically improve the scalability and per-
formance of irregular applications. Our runtime threading model consists of two phases:
(1) memory access phase and (2) computation phase. These two phases are orchestrated
using Just-In-Time Locality and percolation model in such a way that we can amortize
the latency of accessing non-local data across multiple hardware threads. The main
contributions of this paper are as follows:

– We highlight the basic notion of Just-In-Time Locality - that has been studied con-
ceptually in our past work on percolation model under the HTMT project [12, 14]
to improve and exploit data locality in irregular applications. We show how to in-
terleave computation and memory access such that a thread is enabled only when
all of its data, control, and locality constraints are satisfied. To hide the latency of
memory access we overlap and pipeline the computation phase and the memory
access phase across multiple cores or hardward threads.

– We describe percolation programming technique to optimize two important irregu-
lar applications—the betweenness centrality algorithm and the dynamic program-
ming algorithm.

– We have implemented our approach on C64 and using our approach we obtained
a performance improvement of 4-50 times for betweenness centrality and of 1-2
times for dynamic programming.

The rest of the paper is organized as follows: In section 2, we propose the percolation
programming technique in detail. Section 3 discusses how to program irregular program
with percolation. Section 4 evaluates the performance of applying percolation model to
two irregular applications – betweenness centrality and dynamic programming on a
many-core chip architecture. In section 5, we discuss the existing related techniques.
Finally, section 6 concludes this paper.

2 Percolation Model and Just-In-Time Locality

In this section we describe some of the key ideas behind our percolation model by
exploiting some of the key characteristics of C64 architecture [4].
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2.1 C64 Architecture

C64 is a many-core chip architecture that employs a large number of hardware thread
units (processing cores), half as many floating point units, (on-chip) SRAM memory
banks, an interface to the off-chip DDR SDRAM memory and bidirectional inter-chip
routing ports. The C64 chip has no data cache and features a three-level memory hier-
archy (Scratchpad memory, on-chip SRAM, off-chip DRAM). A portion of each thread
unit’s corresponding on-chip SRAM bank is configured as the scratchpad memory.
Therefore, the thread unit can access its own scratchpad memory with very low la-
tency through a “backdoor”, which provides a fast temporary storage to exploit locality
under software control. The remaining portion of each on-chip SRAM bank, together,
forms the on-chip global memory that is uniformly addressable from all thread units.
There are 4 off-chip memory controllers connected to 4 off-chip DRAM banks.

C64 incorporates efficient support for thread level execution. For instance, a thread
can stop executing instructions for a number of cycles or indefinitely; and when asleep
it can be woken up by another thread through the execution of a special instruction
(casing a direct hardware interrupt). All the thread units within a chip connect to a 16-
bit signal bus, which provides a means to efficiently implement barriers. C64 provides
no resource virtualization mechanism: the thread execution is non-preemptive and there
is no hardware virtual memory manager. The former means the OS will not interrupt
the user thread running on a thread unit unless the user explicitly specifies a termination
or an exception inside C64 chip that is visible to the programmer. From a programming
model perspective such non-preemptiveness implies that it is important not to stall an
execution of a thread once it is scheduled on to a hardware thread unit. In the rest of
this section we will describe our percolation model that avoids such unnecessary stalls
of running threads.

2.2 Percolation for Just-In-Time Locality

In our percolation threading model a thread has to satisfy two requirements before it
can be enabled and ready to run: (i) data/control dependencies have to be satisfied and
(ii) locality constraints have to be satisfied. The latter requirement essentially enforces
that all data referenced by a thread should be local before a thread can be scheduled
to run on a hardware thread unit. We represent a program as a directed acyclic task
graph, where each node is a task, and a direct arc between two nodes represents a
precedence relation between tasks. For regular programs, a user (or a compiler) can
often automatically identify computation and memory access tasks, and schedule them
such that the latency of memory accesses incurred by the memory access/movement
tasks are tolerated. But for an irregular program like graph traversal, it is often difficult
to automatically identify task level parallelism and their data access patterns to perform
such latency tolerant scheduling statically. One solution is to let the users explicitly
specify the task level parallelism. Recall that a necessary condition for a task to become
enabled is that all data required by a (computation) task have been produced, and all
control dependences are satisfied. In a task graph, a node s (i.e., a task) is enabled if all
its predecessor nodes have completed and the required data and control dependences
have be satisfied. We call a task that satisfies data and control dependence requirements
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as being logically enabled. In our percolation model it is not sufficient for a logically
enabled task to run. A logically enabled task often cannot immediately run since the data
may still be in off-chip memory hierarchy or in the local memory of other cores. We
introduce locality constraints in addition to data and control dependence requirements
to overcome the latency gap through memory hierarchy. We call a logically enabled
task as locality enabled if it also satisfies locality constraints. For a task to be locality
enabled all data referenced by the task should become local before a task can begin
execution. The locality requirement ensures that the corresponding code and data of
the candidate task are resident in the same level of memory hierarchy where it is to be
enabled.

C64 also supports explicit memory hierarchy and so we use multigrain parallelism
to improve performance and scalability of applications. Coarse-grained parallelism is
used to enable a thread at coarse-grain level where data and control dependencies are
satisfied, and fine-grain parallelism is used to enable a thread at fine-grain level when
locality constraint is satisfied. The coarse-grain tasks reflect logical parallelism in the
user program. It is easy to map each task to an independent thread (core) if the de-
pended data is available in a shared memory space. Our percolation model creates ad-
ditional fine-grain parallelism within each coarse-grain task. It is important to note that
our percolation-based multi-grain parallelism is different from conventional multi-grain
parallelism techniques that are used to combine task and data parallelism [5]. The fine-
grain parallel tasks in the percolation model are exploited as separating memory access
from computation operations within a coarse-grain task. The advantages of separating
memory from computation are: (1) in addition to the fine-grain parallelism, we can
also pipeline the different phases of memory access and computation tasks to hide the
overhead of memory access, and (2) it provides an opportunity to elaborate the mem-
ory access tasks so that they are aware of memory hierarchy and transform non-linear
memory access with high latency to linear memory access with low latency. A separate
memory access task may reorganize (gather) the dispersed references in advance in the
pipeline of tasks. Within memory hierarchy, the tasks for locality requirement may in-
volve either collecting the data toward the cores where the task is enabled, called inward
percolation, or sending/migrating the data away from the cores, called outward perco-
lation. A percolation task scheduler causes the data to meet the corresponding threads
just in time at the vicinity of the cores where the computation task is to be carried out.

2.3 Discussion

The key idea behind percolation model is to bring data close to computation just in
time so that the computation thread can run to completion. For non-preemptive thread
units such as in C64, it is important to reduce the number of stalls during execution.
In percolation model rather than delaying or suspending a thread during execution, we
avoid scheduling such threads that do not have locality constraints satisfied. Percolation
model is closely related to prefetching, except that in prefetching, prefetch instructions
are inserted within a thread that is ready to be scheduled, and the hope is that at the time
the thread needs the data it will be available for use. Often prefetching instructions are
either inserted too soon (in which case the prefetched data is evicted from the cache) or
too late. In both cases the corresponding thread will stall the (non-preemptive) thread
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unit on which it is running. Since C64 has no caches nor does it support preemptive
hardware thread units, delaying or suspending active threads or prefetching is not well
suited to improve performance and scalability of applications.

3 Percolation Programming

In this section, we discuss in detail two irregular applications (betweenness central-
ity with graph traversal in SSCA2 [6] and non-serial polyadic dynamic programming
(DP) [7]) and show how to program them for percolation. There are three parts to per-
colation programming: (1) Collect data from non-contiguous locations just in time to
obtain Just-In-Time Locality in the on-chip memory for the computation phase; (2)
Compute the relevant information based on Just-In-Time Locality on-chip data; and (3)
Finally, map the information thus computed back to off-chip memory. The first and last
phase form the memory tasks and are mapped to helper threads by the runtime sys-
tem. The second phase is the main computation phase that is mapped to a computation
thread. Due to space limitation, we only present the pesudo code of SSCA2. It is im-
portant to keep in mind that the memory tasks and computation tasks are pipelined by
the runtime system to reduce the critical path. Also, it is upto the programmer to create
coarse grain parallelism (that includes multiple computation tasks and memory tasks)
depending on what is being computed within the application.

3.1 Percolation Programming for SSCA2

In this section we describe our percolation programming for SSCA2. Recall that there
are two phases in SSCA2: the BFS phase (See Figure 1) and BT phase [6]. To simplify
the presentation we only describe the percolation programming for the BFS phase.The
first step in percolation programming is to identify the memory tasks. Let us denote the
set of the vertices that is being extended in the current queue (the ith level of BFS tree)
as Vi = {vi1, vi2, ..., vik}. Let Nj = {wj1, wj2, ..., wjkj}, 1 ≤ j ≤ k denote the neigh-
boring set of vertices of a vertex vij . According to the algorithm, the unvisited neighbor
vertices w (d[w] = −1) is added to the current queue and the vertices that is being
extended in the shortest path (d[w] = d[v] + 1) is added to the set of predecessor P [w].
Note that the layout of these Nj in the adjacency array may be non-contiguous and have
variable stride. Note that if we compact all the neighbors in one level into one large set:
UNi =

⋃
1≤j≤n Nj , the compacted non-contiguous memory region can be considered

as a contiguous linear array so that it is easy to partition it among parallel threads. In
our implementation, we do not explicitly perform such a compaction operation in the
off-chip memory, but inside we use the Just-In-Time Locality principle.

The inward percolation consists of computing the start address and size of the neigh-
boring vertices region in adjacency array of each vertex, and collecting neighboring
vertices that is dispersed in the off-chip memory address (adjacency array) into a con-
tiguous on-chip memory address. We also collect the corresponding elements in d, σ
into a contiguous on-chip memory address. Notice that there is a producer-consumer
relationship between the collection of neighboring vertcies and collection of d, σ. Also,
the memory references of d, σ are discrete because the distribution of the neighboring
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1 BFS ( i n t v ) {
2 i n t dv = d [ v ] ; / / l e n g t h o f t h e s h o r t e s t pa th
3 i n t s igmav = sigma [ v ] ; / / t h e number o f t h e s h o r t e s t pa th
4 f o r ( i = 0 ; i < NumEdges [ v ] ; i ++) {
5 w = A d j a c e n t [ i n d e x [ v ]+ i ] ;
6 i f ( d [w] < 0) {
7 d [w] = dv + 1 ;
8 s igma [w] = 0 ;
9 }

10 i f ( d [w] = dv + 1)
11 sigma [w] = sigmav + 1 ;
12 }
13 }

Fig. 1. The sequential BFS codes without percolation

vertices obeys a law of power in a scale free graph. Due to this property of scale-free
graph we believe that the thread speculation techniques are not effective in practice.
Once we compute the relevant information (d, σ) we write them back to off-chip mem-
ory using yet another memory task.

The complete parallel percolation program for BFS phase is shown in Figure 2. Once
the programmer defines the coarse-grain parallel tasks the runtime system automatically
divides these tasks into multiple sub-tasks and pipelines them. Obviously, the depen-
dence between the sub-tasks is inherited from that specified in the user program. In
order to achieve the pipeline of computation, inward and outward memory tasks, the
union set UNi is partitioned into multiple sub-blocks. When computation tasks are pro-
cessing the data in block i, inward percolation memory tasks gather the data in block
i + 1 and the outward percolation memory tasks scatter the results that are generated
using the data in block i − 1.

3.2 Percolation Programming for DP

The dynamic programming (DP) algorithm in RNA secondary structure prediction [8]
belongs to a type of non-serial polyadic dynamic programming [7]. We can use a simple
recursive formulation to represent the computation:

m[i, j] =
{

mini≤k<j{m[i, j], m[i, k] + m[k + 1, j]} 0 ≤ i < j < n
a(i) i = j

(1)
The irregular behavior comes from the non-consecutive data dependence and irregular
iteration domain which is a triangular space. Basically, we could use a blocking strategy
to fill the matrix. In [9], the computation of a block is decomposed into combination
of the depended blocks. According to the dependence, the computational sequence of
blocks is from down to up and from left to right in the matrix, and each block depends
on the blocks on both the same row and the same column. When both A(0, 1) and
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1 /∗ t h r e e p i p e l i n e d phase : ( 1 ) o f f −c h i p memory read ;
2 ( 2 ) compuat ion ( a c c e s s i n g on−c h i p memory ) ;
3 ( 3 ) o f f −c h i p memory w r i t e . ∗ /
4 BFS ( i n t v ) {
5 i n t o f f s e t = 0 ;
6 i n t t u r n = 0 ;
7 i n t dv = d [ v ] ;
8 i n t s igmav = sigma [ v ] ;
9 SPAWN TASK{

10 f o r ( i = 0 ; i < b u f f s i z e ; i ++)
11 b u f f [ t u r n ] [ i ] = A d j a c e n t [ i n d e x [ v ]+ o f f s e t + i ] ;
12 o f f s e t += b u f f s i z e ;
13 t u r n ˆ= 1 ; } ;
14 BARRIER WAIT ( ) ;
15 whi le ( o f f s e t < NumEdges [ v ] ) {
16 / / 1 . o f f −c h i p memory read
17 SPAWN TASK{
18 f o r ( i = 0 ; i < b u f f s i z e ; i ++)
19 b u f f [ t u r n ] [ i ] = A d j a c e n t [ i n d e x [ v ]+ o f f s e t + i ] ;
20 o f f s e t += b u f f s i z e ;
21 t u r n ˆ= 1 ; } ;
22 SPAWN TASK{
23 f o r ( i = 0 ; i < b u f f s i z e ; i ++) {
24 w = b u f f 1 [ i ] ;
25 b u f f 2 [ t u r n ] [ i ] = d [w ] ;
26 b u f f 3 [ t u r n ] [ i ] = sigma [w ] ;
27 }
28 t u r n ˆ= 1 ; } ;
29 / / ( 2 ) . compuat ion ( a c c e s s i n g on−c h i p memory ) ;
30 SPAWN TASK{
31 f o r ( i = 0 ; i < b u f f s i z e ; i ++) {
32 i f ( b u f f 2 [ t u r n ] [ i ] < 0) {
33 b u f f 2 [ t u r n ] [ i ] = dv +1;
34 b u f f 3 [ t u r n ] [ i ] += 0 ;
35 }
36 i f ( b u f f 2 [ t u r n ] [ i ] == dv +1)
37 b u f f 3 [ t u r n ] [ i ] += sigmav ;
38 }
39 t u r n ˆ= 1 ; } ;
40 / / ( 3 ) . o f f −c h i p memory w r i t e
41 SPAWN TASK{
42 f o r ( i = 0 ; i < b u f f s i z e ; i ++) {
43 w = b u f f [ t u r n ] [ i ] ;
44 d [w] = b u f f 2 [ i ] ;
45 sigma [w] = b u f f 3 [ i ] ;
46 }
47 t u r n ˆ= 1 ; } ;
48 BARRIER WAIT ( ) ;
49 }
50 }

Fig. 2. BFS codes with percolation on IBM C64
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A(1, 3) are combined to calculate A(0, 3), an ideal memory layout should look like:
A(0, 1) is row-wise and A(1, 3) is column-wise. One strategy of block data layout is
to store each block as both row wise and as column wise array layout. However, this
doubles the memory usage which is not practical. We assume that the matrix is stored
as a row-wise linear array. Thus, the stride of accesses in different row or column within
each block is not constant.

According to the data dependence, the computation of block A(i, j) needs to access
other blocks A(i, i), A(i, i + 1), ..., A(i, j − 1) and A(i + 1, j), A(i + 2, j), ..., A(j, j).
For example the program accesses < A(0, 0), A(0, 3) >, < A(0, 1), A(1, 3 >, <
A(0, 2), A(2, 3) > and < A(0, 3), A(3, 3) > during the calculation of A(0, 3). We
assume that the triangular DP matrix is stored as a linear array in off-chip memory.
The percolation transformation is responsible to transform the non-contiguous access
of a block into a contiguous access in on-chip memory. When a block A(i, j) is com-
puting, the percolation threads gather the non-contiguous elements in off-chip memory
into multiple contiguous space in on-chip memory, then scatter the results to the cor-
responding locations in off-chip memory. The pipeline achieves Just-In-Time Locality,
and the percolated data will be used immediately by the computation task. The un-
used data will never exist in on-chip memory at that time even if the spatial locality
of cache mechanism is satisfied. For the example of computing block A(0, 2), when
the program is percolating block A(1, 2) into on-chip memory, a conventional spatial
locality optimization strategy or speculation may load the elements in block A(1, 3).
Obviously, the current computation does not need A(1, 3) at all. Since C64 provides
user programmable scratchpad, the runtime system ensures that such unnecessary data
is not loaded into the on-chip memory.

4 Evaluation

We have implemented Just-In-Time Locality and percolation for the two programs in
our many-core architecture C64 execution-driven simulation platform. The toolchain
on C64 consists of an optimized GCC compiler, a thread execution runtime systems
TNT [10] (Pthread-like) and a TNT-based OpenMP [11]. In this section we present our
empirical results and compare them with the corresponding OpenMP programs on C64.

4.1 Empirical Results for SSCA2 with Percolation

For SSCA2 we represent the problem size in term of S, where the number of vertices
is 2S. Comparing the result with the OpenMP implementation, we can see that the
percolation process shows a significant performance and scalability improvements (see
Figure 3). Figure 4 illustrates the performance and scalability as we increase the number
of threads for three different scales (i.e., the problem size). Using our approach we
achieve almost linear speedups for all test cases when the number of threads is less than
32. For the test case with a problem size S = 8, the performance stops increasing when
the number of threads reaches 128 because the number of available parallel sub-tasks is
less than the number of hardware thread units. However, we improve the performance
when the problem size is increased, i.e for S = 9 and 10. The degree of a vertex
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determines the amount of parallelism that we can exploit. In percolation programming
we leverage multi-grain parallelism to reduce the number of idle threads. On the other
hand the maximum degree of a vertex is 64 for problem size S = 8. So the available



340 G. Tan, V.C. Sreedhar, and G.R. Gao

parallelism for this small problem size leads to a smaller performance on 128 threads.
For S = 9 and 10, where the maximum vertex degrees are 94 and 348, we further
improve the performance and scalability of the application.

4.2 Empirical Results for DP with Percolation

In order to highlight the advantage of separation of computation from memory oper-
ations, we compared with the performance of a baseline program implemented with
directly blocking algorithm by OpenMP. As shown in Figure 5(a) and 5(b), the re-
constructed program with percolation reduces the execution time for matrix sizes of
2048×2048 and 4096×4096. The effect of percolation for DP is not so significant with
that for SSCA2. Note that in the implementation of DP we use blocking technique to
re-organize the DP matrix so that it shows more inherent locality, which can not be ob-
served in the irregular execution of SSCA2. Further, our percolation program improves
the scalability slightly. Figure 6 reports the absolute speedup achieved by percolation
and OpenMP programs.

5 Related Work

The percolation model has its deep root in the HTMT execution model proposed well
over a decade ago as the basis of the world first (to the best of our knowledge) petaflops
architect project [12]. The concept of percolation was developed early under HTMT
project, and was first exposed in [13, 14]. Unlike the HTMT time, The work reported
here is partly motivated by the challenging technology trend of modern large-scale
many-core chip technology, and driven by the productive software technology avail-
able to us that is not available during HTMT project due to resource limitations.

In our parallel pipelining algorithm we overlap computation task with memory task.
The concept of overlapping computation with I/O, network, and other long latency
operations is an old concept. Prefetching techniques [15, 16, 17] and thread specula-
tion [1, 18, 19] also use such overlapping concept. Most previous work on prefetch-
ing also focused on moving data (mostly contiguous data) from main memory to local
memory (either to register or cache) prior to execution. In the previous prefetching or
speculation, conceptually computation threads ”pull” the data locally using prefetch in-
structions. In our method the local data determines which computation thread is ready
to execute. In other words, data that is local to a core will ”pull” computation thread to
execute on the core. In prefetching there is no control on how much data to prefetch—
prefetching too much or too less data can impact the performance. Besides, previous
works do not discuss the impact of prefetching in the context of massive multithreading
many-core. A variant of thread level speculation uses dependences by monitoring the
reads and writes to memory locations. In producer-cosumer loop iterations, the specu-
lative execution leads to a violation of dependence, then must roll back.

There have been several work on the optimization of irregular programs on parallel
architectures. Recently Erez et.al [20] performed a comprehensive study of 4 irregular
scientific computing applications on a streaming processor. Both their work and ours
share the streaming programming style of gather-compute-scatter. The way to gather
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data ahead makes our approach different from theirs. In [20] the streaming processor
uses a DMA-style transfer, our approach utilizes the ample hardware thread units, where
to hide the overhead of transformation is easier and requires less hardware cost.

6 Conclusion

Both computer architects and system developers is yet to evaluate the new many-core
architectural features and show how such features can be effectively exploited when
executing challenging irregular applications like graph traversal and dynamic program-
ming in practice. This paper introduces Just-In-Time Locality and percolation model for
improving the locality of irregular applications on C64 many-core architecture. How-
ever, our percolation model is not uncontroversial. For example, we did not discuss the
role of ”reusability” of data to be percolated. It is obvious that we should try to give
higher priority to data that can have better reuse. Another is connection to load balanc-
ing: one obviousely need to coordinate the percolation (and Just-In-Time Locality) with
the place where a thread is likely to be scheduled for execution. In an irregular code,
we cannot expect load is evenly distributed among the processing cores - and runtime
coordination of data movement and load balancing should be smooth. We can imagine
cases where not all cores in a 100+ core chip can be kept usually busy all the time - as
our experience has been for C64. In this case, some of the idle cores should be employ-
eed to assist the percolation and coordination - an interesting research topic by its own
right. Finally one fair doubt is the impact on percolation model on programmability - a
question that does not has a short answer and we will have to leave it for future work.
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Abstract. Dense linear algebra kernels such as matrix multiplication
have been used as benchmarks to evaluate the effectiveness of many au-
tomated compiler optimizations. However, few studies have looked at
collectively applying the transformations and parameterizing them for
external search. In this paper, we take a detailed look at the optimiza-
tion space of three dense linear algebra kernels. We use a transformation
scripting language (POET) to implement each kernel-level optimization
as applied by ATLAS. We then extensively parameterize these optimiza-
tions from the perspective of a general-purpose compiler and use a stand-
alone empirical search engine to explore the optimization space using
several different search strategies. Our exploration of the search space
reveals key interaction among several transformations that must be con-
sidered by compilers to approach the level of efficiency obtained through
manual tuning of kernels.

1 Introduction

Compiler optimizations have often targeted the performance of linear algebra
kernels such as matrix multiplication. While issues involved in optimizing these
kernels have been extensively studied, difficulties remain in terms of effectively
combining and parameterizing the necessary set of optimizations to consistently
achieve the level of portable high performance as achieved manually by compu-
tational specialists through low-level C or assembly programming. As a result,
user applications must invoke high-performance domain-specific libraries such
as ATLAS [10] to achieve a level of satisfactory efficiency. ATLAS produces ex-
tremely efficient linear algebra kernels through a combination of domain/kernel
specific optimization, hand-tuned assembly, and an automated empirical tuning
system that uses direct timing to select the best implementations for various
performance-critical kernels. Libraries such as ATLAS are necessary because
native compilers can rarely provide a similar level of efficiency, either because
they lack domain-specific knowledge about the input application or because they
cannot fully address the massive complexity of modern architectures.

To improve the effectiveness of conventional compilers, many empirical tuning
systems have been developed in recent years [1,4,8,9,11,14]. These systems have
demonstrated that search-based tuning can significantly improve the efficacy of
many compiler optimizations. However, most research in this area has focused
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on individual or a relatively small set of optimizations. Few have collectively pa-
rameterized an extensive set of optimizations and investigated the interactions
among them. One impediment to parameterizing a large class of transformations
is that, as yet, we have no standard representation for parameterized optimiza-
tions and their search spaces. Because of this, most tuning systems consist of
highly specialized code optimizers, performance evaluators and search engines.
Hence, exploring a larger search space comes with the burden of implement-
ing additional parameterized transformations. This extra overhead has, to some
degree, limited the size of the search space investigated by any one tuning sys-
tem. In this paper, we describe a system in which we interface a parameterized
code transformation engine with an independent search engine. We show that
by leveraging the complementary strengths of these two modules we are able to
explore the search space of a large collection of transformations.

While most compilers understand well the collection of code optimizations
that are required to achieve high performance, it is often the details in combining
and collectively applying the optimizations that determine the overall efficiency
of the optimized code. In our previous work [12], we have used POET, a transfor-
mation scripting language, to implement all the kernel-level optimizations as ap-
plied by ATLAS for three dense linear algebra kernels: gemm, gemv, and ger. Our
previous work has achieved comparable, and sometimes superior, performance to
those of the best hand-written assembly within ATLAS [12]. The previous work,
however, utilized kernel-specific knowledge obtained from ATLAS when apply-
ing the optimizations and when searching for the best-performing kernels. In this
paper, we extensively parameterize the optimization spaces from the perspective
of a general-purpose compiler. We then use an independent search engine to ex-
plore this parameter space to better understand the delicate interplay between
transformations. Such interactions must be considered by a compiler when com-
bining and orchestrating different program transformations to approach a similar
level of efficiency as achieved by ATLAS. The contributions of this paper include:

1. parameterization of an extensive set of optimizations that need to be con-
sidered by a general-purpose compiler to achieve high performance;

2. integration of an independent search engine and a program transformation
engine;

3. empirical exploration of the search space that reveals key interaction among
optimizations.

2 Related Work

A number of successful empirical tuning systems provide efficient library imple-
mentations for important scientific domains, such as those for dense and sparse
linear algebra [3,5], signal processing [6,7] and tensor contraction [2]. POET [12]
targets general-purpose applications beyond those targeted by domain-specific
research and complements domain-specific research by providing an efficient
transformation engine that can make existing libraries more readily portable
to different architectures.
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Several general-purpose autotuning tools can iteratively re-configure well-
known optimizations according to performance feedback of the optimized code
[1,4,8,9,11,14]. Both POET and the parameterized search engine described in
this paper can be easily integrated with many of these systems. POET supports
existing iterative compilation frameworks by providing an output language for
parameterizing code optimizations for empirical tuning.

The work by Yotov et al. [13] also studied the optimization space of the
gemm kernel in ATLAS. However, their work used the ATLAS code genera-
tor to produce optimized code. Because the ATLAS code generator is carefully
designed by computational specialists based on both architecture- and kernel-
specific knowledge, the optimization space they investigated does not represent
the same degrees of freedom that a general-purpose compiler must face. In con-
trast, we use the POET language to parameterize the different choices typically
faced by general-purpose compilers and investigate the impact and interactions
of the different optimization choices.

3 Orchestration of Optimizations

Fig. 1. POET transformation engine

We used a transformation
scripting language named
POET to implement an exten-
sive set of optimizations neces-
sary to achieve the highest level
of efficiency for several ATLAS
kernels [12]. As shown in Fig. 1,
a POET transformation engine
includes three components: a
language interpreter, a trans-
formation library, and a col-
lection of front-end definitions
which specialize the transfor-
mation library for different pro-
gramming languages such as C,
C++, FORTRAN, or Assem-
bly. The transformation engine
takes as input an optimization script from an analyzer (in our case, a developer)
and a set of parameter configurations from a search driver. An optimized code is
output as the result, which is then empirically tested and measured by the search
driver until a satisfactory implementation is found. For more details, see [12].

The optimization scripts that we developed for the ATLAS kernels have been
parameterized to reflect the degrees-of-freedom that a model-driven compiler
must face when orchestrating general-purpose optimizations. The optimizations
focus on the efficient management of registers and arithmetic operations and are
invoked by higher-level routines in ATLAS after cache-level optimizations have
already been applied by ATLAS. Fig. 2 shows the reference implementations of
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void ATL_USERMM(int M,
int N,int K,double alpha,
const double *A, int lda,
const double *B, int ldb,
double beta, double *C,
int ldc) {
int i, j, l;
for (j=0; j<N; j+=1) {
for (i=0; i<M; i+=1) {

C[j*ldc+i] =
beta*C[j*ldc+i];

for (l=0;l<K;l+=1) {
C[j*ldc+i]+=
A[i*lda+l]*B[j*ldb+l];

} } }
}(a) gemm kernel

void ATL_dgemvT(int M,
int N,double alpha,
const double *A, int lda,
const double *X,int incX,
double beta,double *Y,
int incY) {
int i, j;
for (i=0; i<M; i+=1) {

Y[i] = beta * Y[i];
for (j=0;j<N;j+=1) {

Y[i] +=
A[i*lda+j]*X[j];

} }
}

(b) gemv kernel

void ATL_dger(int M,
int N, double alpha,
const double *X,int incX,
const double *Y,int incY,
double *A, int lda) {
int i, j;
for (j=0; j<N; j+=1) {

for (i=0;i<M;i+=1) {
A[j*lda+i] +=

X[i]*Y[j*incY];
}

}
}

(c) ger kernel

Fig. 2. Reference implementations of ATLAS kernels

various ATLAS kernels. The corresponding higher-level routines perform identi-
cal computations but operate on larger matrices that may not fit in cache and
perform cache blocking (for matrix multiplication, data copying is additionally
applied to matrices A and B) before invoking the kernel implementations.

ATLAS has specialized each kernel implementation to take advantage of the
known blocking strategy. We used optimization scripts to similarly specialize our
kernel implementations. Our future work will use POET to integrate cache-level
blocking directly with low-level kernel optimizations.

Our optimizations include two groups: register reuse optimizations (loop
unroll&jam and scalar replacement) and arithmetic optimizations(SSE vector-
ization, strength reduction, loop unrolling, and memory prefetch). Our optimiza-
tions were carefully orchestrated to avoid introducing any inefficiency.

3.1 Register Reuse Optimizations

We applied two optimizations, unroll-and-jam and scalar replacement, to pro-
mote register reuse. Fig. 3 shows the result of applying unroll-and-jam and scalar
replacement to the gemm kernel in Fig. 2(a). For gemv and ger (shown in Fig. 2(b)
and (c)), we similarly applied unroll-and-jam to the outer loops, and scalar re-
placement to all the matrix/vector accesses.

We parameterized the optimizations with an unroll factor for each loop and
the ordering between the two optimizations. For example, the optimizations for
gemm (Fig 2(a)) were parameterized with three parameters: uJ (unroll factor
for loop J), uI (unroll factor for loop I), and permuteReg (the ordering between
unroll-and-jam and scalar replacement for different matrices). In Fig. 3, the
code on the left shows the result of applying unroll-and-jam followed by scalar
replacement to all matrices; the code on the right shows the result of reverting
the ordering of unroll-and-jam with scalar replacement for matrices A and B.

Most tuning systems treat loop unroll factors as part of the empirical search
space. However, few systems (including ATLAS) have used empirical tuning to
determine the ordering between optimizations. Most model-driven compilers per-
form unroll-and-jam before scalar-replacement, which is the right decision in a
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void ATL_USERMM(const int M, const int N, const int K,
const double alpha,const double *A,const int lda,
const double *B,const int ldb,const double beta,
double *C, const int ldc)

{
int i, j, l; double *pA0, *pA00, *pB0,*pB00,*pC0,*pC00;
pB0=B; pC0=C;
for (j = 0; j < NB; j += 2) {

pA0 = A; pC00=pC0;
for (i = 0; i < MB; i += 2) {

c_buf_0_0=*pC00; c_buf_1_0=*(pC00+ldc); c_buf_0_1=*(pC00+1); c_buf_1_1=*(pC00+ldc+1);
c_buf_0_0 = beta * c_buf_0_0; c_buf_1_0 = beta * c_buf_1_0;
c_buf_0_1 = beta * c_buf_0_1; c_buf_1_1 = beta * c_buf_1_1;
pA00=pA0; pB00=pB0;
for (l = 0; l < KB; l +=1) { | if A,B scalarRepl is done first

----------------------------------- --------------------------------------------
| a_buf_0 = *pA00; | | a_buf_0 = *pA00; b_buf_0=*pB00; |
| a_buf_1 = *(pA00+KB); | | c_buf_0_0 += a_buf_0 * b_buf_0; |
| b_buf_0 = *pB00; | | a_buf_0 = *pA00; b_buf_0=*(pB00+KB); |
| b_buf_1 = *(pB00+KB); | | c_buf_1_0 += a_buf_0 * b_buf_0; |
| c_buf_0_0 += a_buf_0 * b_buf_0;| ==>| a_buf_0 = *(pA00+KB); b_buf_0=*pB00; |
| c_buf_1_0 += a_buf_0 * b_buf_1; | | c_buf_0_1 += a_buf_0 * b_buf_0; |
| c_buf_0_1 += a_buf_1 * b_buf_0;| | a_buf_0 = *(pA00+KB); b_buf_0=*(pB00+KB);|
| c_buf_1_1 += a_buf_1 * b_buf_1; | | c_buf_1_1 += a_buf_0 * b_buf_0; |
----------------------------------- --------------------------------------------
pA00+=1; pB00+=1;

}
*pC00=c_buf_0_0; *(pC00+ldc)=c_buf_1_0; *(pC00+1)=c_buf_0_1; *(pC00+ldc+1)=c_buf_1_1;
pA0 += KB; pC00 += 1;

}
pB0 += KB; pC00+=ldc;

}
}

Fig. 3. gemm optimized with unroll&jam, scalar replacement, and strength reduction

majority of situations. However, as shown in Fig. 3, unroll-and-jam significantly
increased the number of different memory locations accessed at each iteration of
loop l. These memory references subsequently require a large number of scalar
variables during scalar replacement. For example, if we set the unroll factors to
be 12 for loop I in Fig. 3 then a total of 12 scalar variables will be required for
matrix A. The large number of scalar variables could potentially disrupt regis-
ter allocation at a later stage and cause performance break-down. In contrast, if
scalar replacement for matrices A and B are applied before unroll-and-jam, scalar
variables are reused across different iterations of the original loop, reducing regis-
ter pressure. However, if scalar replacement is always performed first, the reuse
of scalar variables could create artificial dependences that disrupt instruction
scheduling at a later stage. Scalar replacement can also disable subsequent ap-
plication of unroll-and-jam, and the repetitive load of the scalar variables can be
a source of inefficiency. We believe that performing unroll-and-jam before scalar
replacement is the correct decision in most cases. However, we parameterized
their ordering for the purpose of empirically investigating their interaction.

3.2 SSE Vectorization

Some Intel and AMD processors provide specialized floating point SSE regis-
ters that allow two double-precision or four single-precision floating point values
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to be operated simultaneously, potentially doubling or quadrupling the peak
MFLOPS of a computer. SSE vectorization therefore could significantly boost
the performance of user applications.

We implemented SSE vectorization support in POET and applied it to all
three kernels where architecture allows. Before applying the optimization, all
floating-point operations need to be translated into three-address code, a SSE
register must be allocated to each floating-point scalar variable, and an innermost
loop must be identified to be vectorized. Our POET optimization scripts applies
SSE vectorization to all kernels based on kernel-specific knowledge about their
dependence constraints. All required knowledge, however, can be automatically
discovered by a compiler via loop dependence analysis. We parameterized SSE
vectorization with two parameters: the number of available SSE registers and
the size (length) of each SSE register. These parameters can be automatically
determined when an application is ported to a new architecture. The optimiza-
tion is automatically turned off if there are not enough SSE registers to vectorize
the given code.

3.3 Strength Reduction and Loop Unrolling

To promote efficiency of arithmetic operations, two additional optimizations,
strength reduction and loop unrolling, need to be applied to the result of SSE
vectorization. Strength reduction significantly reduces the cost of matrix/vector
references inside loops. Loop unrolling ensures that sufficient number of instruc-
tions are available to support pipelining of different functional units. Both opti-
mizations need to be applied after SSE vectorization because both could disable
the vectorization of loops. Fig. 3 shows the result of applying strength-reduction
to gemm. For microprocessors that offer hardware support for dynamic schedul-
ing of instructions, strength reduction combined with loop unrolling could be
sufficient for satisfactory instruction-level efficiency.

We parameterized both optimizations with two parameters: the unroll factor
for the innermost loop, and the ordering between the two transformations. Using
Fig. 3 as example, if unrolling of loop l is performed after strength reduction, the
pointer induction variables (e.g., pA00,pB00) introduced by strength reduction
are incremented more frequently (every iteration of the original loop) than nec-
essary (every iteration of the unrolled loop). In contrast, applying loop unrolling
before strength reduction may cause the pointer induction variables (e.g., pA00)
to be incremented only once in the unrolled loop but by a much larger offset
(e.g., by 288 instead of by 1 or 2). We have parameterized the ordering of these
two optimizations to study their interactions.

3.4 Memory Prefetch

The last optimization that we performed on the kernels is memory prefetch,
which loads data ahead of time so that the latency of memory operations can be
hidden when possible. Memory prefetch can reduce the cost of memory accesses
only if the memory bandwidth is not already saturated. It is therefore necessary
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to selectively prefetch only those data that will be used in the near future just
enough time ahead.

The POET library allows us to insert prefetch instructions in a variety of loca-
tions. We have thus parameterized each prefetch optimization with two decisions:
where to insert prefetch instructions, and what data to prefetch. For example,
for gemm, prefetch is parameterized with three configurations: prefetch at each
iteration of loop I the next cache block of matrix A; prefetch at each iteration of
loop J the vector of matrix B accessed in the next iteration of loop J; prefetch
at each iteration of loop J the vector of matrix C accessed in the next iteration
of loop J. Different prefetch configurations can also be combined to accomplish
the best effect.

4 A Parameterized Search Engine for Automatic Tuning

We designed and implemented a parameterized search engine (PSEAT) to nav-
igate optimization search spaces with greater flexibility and efficiency. In most
existing autotuning systems the search module is tightly coupled with the trans-
formation engine. PSEAT is designed to work as an independent search engine
and provides a search API that can be used by other autotuning frameworks.
This section discusses design features of PSEAT and its integration with POET.

100 # maximum number of program evaluations
3 # number of dimensions in the search space
R 1 16 # range : 1 .. 16
P 4 # permutation : sequence length 4
E 2 8 16 # enumerated : two possible value 8 and 16

Fig. 4. Example configuration file for PSEAT

Input. Input to PSEAT is a configuration file that describes the search space
of optimization parameters. Fig. 4 shows an example configuration file. The
syntax for describing a search space is fairly simple. Each line in the config-
uration file describes one search dimension. A dimension can be one of three
types: range (R), permutation (P) or enumerated (E). range is used to specify
numeric transformation parameters such as tile sizes and unroll factors. permu-
tation specifies a transformation sequence and is useful when searching for the
best phase-ordering. An enumerated type is a special case of the range type. It
can be used to describe a dimension where only a subset of points are feasible
within a given range. An example of an enumerated type is the prefetch dis-
tance in software prefetching. In addition, PSEAT supports inter-dimensional
constraints for all three dimension types. For example, if the unroll factor of
an inner loop needs to be smaller than the tile size of an outer loop then this
constraint is specified using a simple inequality within the configuration file.

Information specific to a search algorithm is specified elsewhere. For example,
for simulated annealing the alpha and beta factors for each dimension is specified



350 Q. Yi and A. Qasem

in a separate file. The parameters for the search algorithm have been deliber-
ately kept separate to make the search space representation more general. Both
the configuration file and the search parameter file can be written by hand or
automatically generated by a transformation engine. This feature facilitates the
use of PSEAT with model-based search strategies.

Program Evaluation. The procedure for program evaluation (compile-run-
measure) depends on a number of factors and is usually different for different
platforms and applications. Hence, incorporating a module for program evalua-
tion makes the search engine less portable. To address this problem, we moved
the task of program evaluation away from the search engine and into a set of
scripts that are bundled together with PSEAT. These scripts are, to a great de-
gree, self-customizing. They probe a particular machine, a la ATLAS, to gather
necessary information for program evaluation. The scripts then interpret the
output from the search module and deliver the data in the desired format to
the tool responsible for applying the transformations. Once the program has
been evaluated, a script gathers the performance data and feeds it to the search
engine. In integrating PSEAT with POET we used the scripts to transform the
search engine output to a command line configuration that POET can recognize.
We used ATLAS timers to measure the performance of the kernels and PSEAT
scripts to extract the relevant performance data.

Search Algorithm. PSEAT implements a number of search strategies includ-
ing genetic algorithm, direct search, window search, taboo search, simulated
annealing and random search. We include random in our framework as a bench-
mark search strategy. A search algorithm is considered effective only if it does
better than random on a given search space.

5 Experimental Results

Our previous work has already compared the performance of POET-optimized
kernels with those of ATLAS and the Intel icc compiler [12]. The goal of this
study is to take a more extensive look at the optimization space of dense linear
algebra kernels (dgemm, dgemv and dger). We ran experiments on two plat-
forms. The configurations for these two machines are presented in Table 1(a).
Each experiment is repeated three times and the mean from these three runs is
reported.

Table 1(b) describes the optimization search space for the three kernels. Num-
ber of search dimensions is eight for dgemm and seven for dgemv and dger (dgemv
and dger have one fewer loop to unroll than dgemm). PERM1 covers the or-
dering of four transformations: unroll-and-jam and scalar replacement of three
different matrices/vectors (A,B,C for gemm; A,X,Y for dgemv/dger). The range
of feasible values for PERM1 is between 0 and 23 (4! − 1), which covers all
valid permutations of the four transformations. PERM2 covers the ordering of
two transformations and hence works as a binary dimension. The values for the
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Table 1. Experimental design

Core 2 Duo Opteron
Proc. 2.2 GHz Intel 2.2 GHz AMD

Core 2 Duo Dual Core
SSE# 16 16
L1 32 KB, 2-way 64 KB, 2-way

64 Byte/line 64 Byte/line
L2 4 MB, 4-way 1 MB, 2-way

64 Byte/line 64 Byte/line
Com- gcc 4.0.1 gcc 4.0.1
piler

(a) Experimental platforms

Parameter Type Description Values
MU R unroll factor for loop M 1-M/2
NU R unroll factor for loop N 1-N/2
KU R unroll factor for loop K 1-K/2
PF R memory prefetch 1-5
SSENO E number of SSE registers (0,8,16)
SSELEN E length of SSE registers (8,16)
PERM1 P ordering of unroll&jam and scalar

replacement for A,B/X,C/Y
0-23

PERM2 P ordering of strength reduction
and inner-loop unrolling

0-1

(b) Search spaces

unroll factors are between 1 and one-half of the loop iteration numbers. The soft-
ware prefetching parameter (PF) has five different values that determine which
and where array references are prefetched. The search spaces for all three kernels
are fairly large even by empirical tuning standards. For example, for a 100x100
matrix the 8-dimensional search space for dgemm will have over 120 million
feasible points!

5.1 Search Strategy Comparison

We explore the search spaces using three different search strategies: simulated
annealing (anneal), direct search (direct) and random search (random). Fig. 5
shows performance of the three strategies on two platforms. Each figure shows the
best performance achieved as we progressively increase the number of program
evaluations. To make the comparison fair, the initial point is picked randomly
and the same initial point is used for all search strategies.

From these figures, anneal has a clear advantage over the other two search
strategies. It discovers the best value in all but one of the six cases. Because
direct converges to a local minima much sooner than anneal, it often does not
discover the best value, but it does discover good values more quickly. Given that
reducing the number of program evaluations is a key consideration for effective
autotuning, direct might well be the search strategy of choice for these kernels.
The performance of all three strategies also tend to level-off after a certain
number of evaluations. This indicates that large regions in the search space may
have very little performance variation. Therefore, model-guided pruning can help
make the searches more efficient.

5.2 Search Space Exploration

We performed exhaustive search on various cross-sections of each search space to
gain insight into their characteristics. This section summarizes our key findings.

SSE and PERM1: Our experiments reveal a strong interaction between SSE
vectorization and the order in which unroll-and-jam and scalar replacement are
applied. Fig. 6 shows the effect on dgemm performance on the Core2Duo and
Opteron as we vary the SSE and PERM1 parameters. Each figure displays the
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Search Strategy Comparison on C2D (dgemm)
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Fig. 6. SSE-PERM1 interaction for dgemm

linearized value of SSE and PERM1 along the x-axis (i.e., each x-value corre-
sponds to a pair of values: one for SSE and one for PERM1). There is a clear
indication that irrespective of the value of PERM1, vectorization has a positive
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Fig. 7. dgemm performance sensitivity

effect on performance. The best performance on both platforms is achieved when
the value along the x-axis is between 25-26, which correspond to the cases where
SSE is activated and PERM1 is [SA,UJ,SB,SC] and [SA,UJ,SC,SB], respectively.
On these values, the relative ordering of unroll-and-jam and scalar replacement
opens up additional opportunities for vectorization. This interplay is somewhat
subtle and may not be apparent to a general-purpose compiler that uses only
static heuristics to analyze the program. Picking the right values for the two pa-
rameters in question can lead to almost a factor of two performance improvement
for dgemm on the Core2Duo.

PERM1 and PERM2: Fig. 7 shows performance sensitivity as the relative or-
dering of unroll-and-jam and scalar replacement for different matrices is changed.
As expected, the ordering has a significant impact on performance, The best
ordering occurs when unroll-and-jam is performed after scalar replacement of
references in matrix A but before scalar replacement of matrix C and matrix B.
This ordering is different from the one that we manually picked in our previ-
ous work [12], where we speculated that applying scalar-replacement of B after
unroll-and-jam may increase the register pressure too much to create problems
on some architectures. However, as it turns out, both these machines are capable
of handling the excess register pressure. These results point out the limitations
of static analysis and reiterate the need for empirical tuning.

Our experiments also show that the ordering of strength reduction and inner
loop unrolling has very little impact on performance. On both platforms we
observe very similar performance for both orderings of transformations.
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6 Conclusions

This paper examines the optimization space of three linear algebra kernels by
combining a program transformation engine with an empirical search tool. Our
system is flexible and portable and is a small step towards better integration of
existing autotuning systems. Our exploration of the search space show significant
interaction among several transformations. In particular, the interaction between
SSE vectorization and the ordering of unroll-and-jam and scalar replacement had
not been revealed in any of the previous studies. The results of this study can be
utilized by general-purpose compilers to orchestrate the set of transformations
discussed in this paper to achieve improved performance.

References

1. Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G., O’Boyle, M., Thom-
son, J., Toussaint, M., Williams, C.: Using machine learning to focus iterative
optimization. In: International Symposium on Code Generation and Optimization,
2006 (CGO 2006), New York, NY (2006)

2. Baumgartner, G., Auer, A., Bernholdt, D.E., Bibireata, A., Choppella, V., Co-
ciorva, D., Gao, X., Harrison, R.J., Hirata, S., Krishnamoorthy, S., Krishnan, S.,
Lam, C.-C., Lu, Q., Nooijen, M., Pitzer, R.M., Ramanujam, J., Sadayappan, P.,
Sibiryakov, A.: Synthesis of high-performance parallel programs for a class of ab
initio quantum chemistry models. Proc. IEEE, Special Issue on Program Genera-
tion, Optimization, and Adaptation 93(2) (2005)

3. Bientinesi, P., Gunnels, J.A., Myers, M.E., Quintana-Orti, E., van de Geijn, R.:
The science of deriving dense linear algebra algorithms. ACM Transactions on
Mathematical Software 31(1), 1–26 (2005)

4. Chen, C., Chame, J., Hall, M.: Combining models and guided empirical search to
optimize for multiple levels of the memory hierarchy. In: CGO, San Jose, CA, USA
(March 2005)

5. Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Petitet, A., Vuduc, R., Whaley,
C., Yelick, K.: Self adapting linear algebra algorithms and software. Proc. IEEE,
Special Issue on Program Generation, Optimization, and Adaptation 93(2) (2005)

6. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE,
Special Issue on Program Generation, Optimization, and Adaptation 93(2) (2005)
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