
Temporal Ontology Language for Representing

and Reasoning Interval-Based Temporal
Knowledge

Sang-Kyun Kim1, Mi-Young Song1, Chul Kim1, Sang-Jun Yea1,
Hyun Chul Jang1, and Kyu-Chul Lee2

1 Korea Institute of Oriental Medicine, South Korea
{skkim,smyoung,chulnice,tomita,hcjang}@kiom.re.kr

2 Dept. of Computer Engineering, Chungnam National University, South Korea
kclee@cnu.ac.kr

Abstract. W3C Web Ontology working group has recently developed
OWL as an ontology language for the Semantic Web. However, because
OWL does not have the full-fledged semantics for temporal information,
it cannot perform reasoning about temporal knowledge. Entities in the
real world are changing according to the passage of time and new facts
are occurring due to events. If knowledge in the KBs does not have the
temporal information, it becomes incomplete and incorrect. Therefore,
we in this paper propose an ontology language TL-OWL, which extends
OWL to have the temporal semantics in order to represent and reason
the temporal information in the Semantic Web.

1 Introduction

Semantic Web has a vision that a machine understands and processes information
in web automatically by describing semantics to web. For a machine to process
information, knowledge that a machine and humans can share must be described.
Semantic Web provides knowledge on web resources by using ontology. OWL is
an ontology language for the Semantic Web that has recently been developed by
the W3C Web Ontology Working Group. However, since OWL does not have time
information, questions depending on time cannot be accurately processed.

For example, let’s assume as follows: When four cases happen, each case has
time interval x, y, u, v according to when it happens and the relation between
time interval is x before y, y overlaps u, and u before v. OWL describes each
four cases and time as individuals, and the time relationship can be connected
by property of the individuals. However, since OWL cannot perform the tran-
sitive reasoning among time relations, the relation of x before v cannot be rea-
soned. Instead, if the rule-based reasoning such as before(x,v) :- before(x,y) &
overlaps(y,u) & before(u,v), questions can be answered. However, generally, the
problem of the rule-based reasoning has known to be the semi-decidable. But if
semantics on time to ontology can be provided, the temporal reasoning based on
ontology such as x before y ∨ y overlaps u ∨ u before v → x before v is possible
without using the rule-based reasoning.

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 31–45, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

32 S.-K. Kim et al.

In artificial intelligent field, the researches [3] that represent and reason the
temporal concepts by using Temporal Description Logics that deals with time
based on Description Logics have been suggested. Researches on Temporal De-
scription Logics are classified into Point-based Description Logics [9,12] and
Interval-based Description Logics [2,4,5,10] according to how time information
can be formalized. However, it is difficult to determine which way has better ex-
pression and reasoning. In order to provide the temporal reasoning in Semantics
Web, the capability of OWL DL is needed, but both methods do not have that.

Therefore, in order to solve problems of OWL and Temporal Description Log-
ics, we propose an interval-based temporal web ontology language TL-OWL
which is extended language of OWL to have semantic on time interval.

The remainder of this paper is organized as following. In section 2, we briefly
introduce TL-ALCF . In section 3, we propose an interval-based temporal web
ontology language, TL-OWL. In section 4, we compare our work with prior
efforts for the related subjects. Finally, in section 5, we summarize this paper.

2 A Temporal Description Logic

In this section, we briefly introduce a class of interval-based temporal Descrip-
tion Logic, TL-ALCF proposed by Artale and Franconi. They show that the
subsumption problem is decidable and supply sound and complete procedures
for computing subsumption. TL-ALCF is composed by the temporal logic TL
which is able to express temporally quantified terms and the non-temporal De-
scription Logic ALCF [6] extending ALC with features (i.e., functional roles). In
this formalism an action is represented through temporal constraints on world
states where each state is a collection of properties of the world holding at a
certain time. The intended meaning of TL-ALCF is explained as the following
example.

Reserve-Flight .= �(x y) (� f x)(� m y). ((�TICKET :
Unreserved)@x � (�TICKET : Reserved)@y)

Fig. 1. Temporal dependencies of the intervals in which Reserve-Flight holds

Fig. 1 shows the temporal dependencies of the intervals in which the concept
Reserve-Flight holds. Reserve-Flight denotes any action occurring at some
interval involving a �TICKET that was once unreserved and then reserved, where
�TICKET is a parametric feature and Reserved and Unreserved are non-temporal
concepts. The parametric feature �TICKET plays the role of formal parameter of
the action, mapping any individual action of type Reserve-Flight to the ticket
to be reserved, independently from time. Temporal variables are introduced by
the temporal existential quantifier “�” – excluding the special temporal variable

Temporal Ontology Language 33

�, usually called now, and intended as the occurring time of the action type being
defined. The temporal constraints (� f x)(� m y) state that the interval denoted
by x should finish with the interval denoted by � and that � should meet y, where
f and m are Allen’s temporal relations [1] of Fig. 2.

Fig. 2. The Allen’s interval relationships

As the evaluation of concept at the interval, (�TICKET : Unreserved)@x and
(�TICKET : Reserved)@y state that �TICKET : Unreserved is qualified at x and
�TICKET : Reserved is qualified at y. In the concept description, the operator :
is the selection of feature, which is the role quantification that is interpreted as
a partial function. The following table shows the syntax of TL-ALCF . See [2]
for the detailed semantic descriptions of TL-ALCF .

Table 1. The syntax of TL-ALCF

TL E, F → C | (non-temporal concept)
E � F | (conjunction)
E@X | (qualifier)
E[Y]@X | (substitutive qualifier)

�(X)Tc.E (existential quantifier)
Tc → (� (V) Y) | (X (V) �) | (X (V) Y) (temporal constraint)

Tc → Tc | Tc Tc
V, W → V , W | (disjunction)

b | a | m | mi | o | oi | (Allen’s relations)
s | si | d | di | f | fi | =

X, Y → x | y | z | . . . (temporal variables)

X → X | X X

ALCF C, B → A | (atomic concept)
� | ⊥ | ¬C | C �B | C �B | ∀R.C | ∃R.C |
p ↓ q | (agreement)
p ↑ q | (disagreement)
p ↑| (undefinedness)
p : C | (selection)

p, q → f | (atomic feature)
�g | (atomic parametric feature)
p ◦ q | (path)

34 S.-K. Kim et al.

3 A Temporal Web Ontology Language

We propose an interval-based temporal ontology language TL-OWL, which adds
a temporal language TL to OWL DL, where TL is the temporal part(TL) of TL-
ALCF as introduced in Sect. 2.

3.1 Requirements of TL-OWL

W3C Web Ontology Working Group has recently developed OWL which is an
ontology language for the Semantic Web. In OWL specification, OWL is defined
in two forms of syntax; First, OWL has a frame-like abstract syntax which
can be easily understood and created. Second, OWL has a RDF/XML exchange
syntax interpreted as RDF graphs since OWL is defined as an extension to RDF.
The direct model-theoretic semantic and the RDF-compatible model-theoretic
semantic are also defined to provide a formal meaning for the abstract syntax
and the exchange syntax, respectively. A mapping from the abstract syntax to
RDF graphs is defined and the two model semantics are shown to have the same
consequences on OWL ontologies that can be written in the abstract syntax.

OWL however cannot perform the temporal reasoning since it does not have
the temporal semantics as introduced in Sect. 1. The reasoning capability is usu-
ally provided in the temporal description logics [3], but all of them cannot reach
the expressivity of OWL DL. Therefore, in this paper we propose an interval-
based temporal ontology language TL-OWL(TemporaL Web Ontology Language),
which adds the temporal semantics to OWL DL.

In order to describe TL-OWL, we follow steps of the OWL specification:
First, we define a high-level abstract syntax for TL-OWL. Second, we define
two formal semantics for TL-OWL. One of these semantics is the direct model-
theoretic semantics for TL-OWL ontologies written in the abstract syntax. The
other is the RDF-compatible model-theoretic semantics as an extension of the
RDF semantics, which provides semantics for TL-OWL ontologies written in the
exchange syntax. And third, a mapping from the abstract syntax to RDF graphs
is defined and the two model theories are shown to have the same consequences
on TL-OWL ontologies. Finally, we show the reasoning in TL-OWL.

3.2 Abstract Syntax

An abstract syntax for OWL is needed since OWL is not very readable when
written as RDF triples. This abstract syntax is closer to that of a frame lan-
guage like OIL. As for a similar way with OWL, in this section, we define an
abstract syntax for TL-OWL in the form of EBNF(Extended BNF) in Table 2.
OWL syntax is not given in this table, but only OWL constructors required to
understand TL-OWL are written as an italic font.

Temporal concepts in TL-ALCF can be represented of the form: �(X)(Tc).
(Q0 � Q1@X1 � ... � Qn@Xn), where X is a set of temporal variables, Tc is
a set of temporal constraints, and (Q0 � Q1@X1 � ... � Qn@Xn) is a conjunc-
tion of qualifiers. However, there is a problem that this normal form cannot be

Temporal Ontology Language 35

Table 2. The EBNF version of an abstract syntax
y

Abstract Syntax
vID (variableID) ::= URIreference
featureID ::= URIreference
axiom ::= ‘TemporalClass(’ classID [‘Deprecated’] { annotation } temporalDescription ‘)’
axiom ::= ‘TemporalVariable(’ vID [‘Deprecated’] { annotation } { temporalRelation } ‘)’
temporalDescription ::= ‘intersectionOf(’ Qualification { Qualification } ‘)’
Qualification ::= ‘Qualification(onVariable(’ vID ‘) bindVariable(’ description ‘))’ |

‘Qualification(onVariable(’ vID ‘) onSubstitutiveVariable(’ vID ‘)
bindSubstitutiveVariable(’ description ‘))’

temporalRelation ::= ‘before(’ vID ‘)’ | ‘after(’ vID ‘)’ | ‘meets(’ vID ‘)’ | ‘metBy(’ vID ‘)’ |
‘overlaps(’ vID ‘)’ | ‘overlappedBy(’ vID ‘)’ | ‘starts(’ vID ‘)’ | ‘startedBy(’ vID ‘)’ |
‘during(’ vID ‘)’ | ‘contains(’ vID ‘)’ | ‘finish(’ vID ‘)’ | ‘finishedBy(’ vID ‘)’ | ‘equal(’ vID ‘)’

axiom ::= ‘DatatypeProperty(’ datavaluedPropertyID ... [‘Functional’ | ‘ParametricFunctional’] ... ‘)’ |
‘ObjectProperty(’ individualvaluedPropertyID ... [‘Functional’ | ‘ParametricFunctional’ |
‘InverseFunctional’ | ‘InverseParametricFunctional’] ... [‘pathOf(’ featureID featureID ‘)’] ‘)’

description ::= classID | restriction | feature | ‘intersectionOf(’ description ‘)’ |
‘unionOf(’ { description } ‘)’ | ‘complementOf(’ { description } ‘)’ | ‘oneOf(’ { individualID } ‘)’

restriction ::= ‘restriction(’ datavaluedPropertyID dataRestrictionComponent
{ dataRestrictionComponent } ‘)’ |

‘restriction(’ individualvaluedPropertyID individualRestrictionComponent
{ individualRestrictionComponent } ‘)’

dataRestrictionComponent ::= ‘allValuesFrom(’ dataRange ‘)’ | ‘someValuesFrom(’ dataRange ‘)’ |
‘selectValuesFrom(’ dataRange ‘)’ | ‘value(’ dataLiteral ‘)’ | cardinality

individualRestrictionComponent ::= ‘allValuesFrom(’description‘)’ | ‘someValuesFrom(’description‘)’ |
‘selectValuesFrom(’ description ‘)’ | ‘value(’ individualID ‘)’ | cardinality

feature ::= ‘agreementOf(’ featureID featureID ‘)’ | ‘disagreementOf(’ featureID featureID ‘)’ |
‘undefinednessOf(’featureID ‘)’

represented as RDF triples. Therefore, in this paper we propose an abstract syn-
tax and a RDF/XML exchange syntax for TL-OWL, which can be represented
as RDF graphs.

TL-OWL has four axioms for TL-OWL classes and properties of TemporalClass,
TemporalVariable, DatatypeProperty, and ObjectProperty. A TemporalClass can rep-
resent a temporal concept in TL-OWL. A TemporalClass contains one or more
temporalDescriptions as properties and a temporalDescription contains a conjunc-
tion of Qualifications which bind a temporal variable and a non-temporal concept.
A bindSubstitutiveVariabledenotes a temporal substitutive qualifier which renames
the variable Y to X and supplies a way of making coreference between two tem-
poral variables. A TemporalVariable can represent the constraints among temporal
variables. The TemporalVariable is identified with a variableID and has one or more
of Allen’s temporal relations as properties, where each temporal relation can re-
fer another TemporalVariable. A DatatypeProperty and a ObjectProperty are the
axioms defined in OWL, but in TL-OWL the ObjectProperty can have the addi-
tional types of ParametricFunctional and InverseParametricFunctional, and pathOf
– a construct of the feature logic [6] – to represent a path between two featureIDs.
A DatatypeProperty can have only an additional type of ParametricFunctional.

The description of OWL can contain constructs for feature logics which con-
sist of agreementOf, disagreementOf, and undefinednessOf. A selectValuesFrom is
declared within the restriction constructor for a selection operator (:).

By using above axioms and constructors, we can see that all the interval-
based temporal concepts can be represented as the abstract syntax along with

36 S.-K. Kim et al.

preserving temporal semantics. It is easy to proof by checking the syntax of
temporal concepts inductively. For an example, the Reserve-Flight concept of
Fig. 1 can be represented to an abstract syntax as follows:

TemporalClass (ex:Reserve-Flight

intersectionOf (

Qualification (

onVariable (ex:x)

bindVariable (

restriction (

onProperty (ex:TICKET)

selectValuesFrom (ex:Unreserved)

)))

Qualification (

onVariable (ex:y)

bindVariable (

restriction (

onProperty (ex:TICKET)

selectValuesFrom (ex:Reserved)

)))))

TemporalVariable(ex:x finishedBy NOW)

TemporalVariable(ex:y metBy NOW)

Fig. 3. The abstract syntax of the Reserve-Flight concept

3.3 Direct Model-Theoretic Semantics

The direct model-theoretic semantics for TL-OWL goes directly from ontologies
in the abstract syntax to a standard model theory.

Vocabularies and Interpretations. When considering a TL-OWL ontology,
the vocabulary must include all the URI references and literals in that ontology.
The following is a definition for a TL-OWL vocabulary.

Definition 1. A TL-OWL vocabulary V consists of a set of literals VL and nine
sets of URI references, VC, VTC , VTV , VD, VI , VDP , VIP , VAP , and VO. In any
vocabulary VC , VTC , VTV , and VD are disjoint and VDP , VIP , VAP , and VOP

are pairwise disjoint. VC , the class names of a vocabulary, contains owl:Thing
and owl:Nothing. VTC , the temporal class names of a vocabulary, VTV , the tem-
poral variable names of a vocabulary, VD, the datatype names of a vocabulary,
contains the URI references for the built-in OWL datatypes and rdfs:Literal.
VAP , the annotation property names of a vocabulary, contains owl:versionInfo,
rdfs:label, rdfs:comment, rdfs:seeAlso, and rdfs:isDefinedBy. VIP , the individual-
valued property names of a vocabulary, VDP , the data-valued property names of
a vocabulary, VOP , the URI references for the built-in TL-OWL ontology prop-
erties, and VI , the individual names of a vocabulary, VO, the ontology names of
a vocabulary, do not have any required members.

Temporal Ontology Language 37

Definition 2. A datatype map D is a partial mapping from URI references to
datatypes that maps xsd:string and xsd:integer to the appropriate XML Schema
datatypes.

Definition 3. Let D be a datatype map. An abstract TL-OWL interpretation
with respect to D with vocabulary VL, VC , VTC , VTV , VD, VI , VDP , VIP , VAP ,
VO is a tuple of the form: I = 〈 R, T, EC, ER, L, S, LV 〉 where (with P being
the power set operator)
Definition. 2 is same as that of the OWL specification. Definition. 1 and Defi-
nition. 3 are similar to the definition for the OWL vocabulary and the abstract
OWL interpretation except that temporal semantics are added. Thus, in this
section we do not explain those of the OWL interpretations in details.

EC provides meaning for URI references that are used as TL-OWL classes and
datatypes. ER provides meaning for URI references that are used as TL-OWL
properties. As for the formal semantics given in TL-ALCF , TL-OWL classes
and properties have semantics for temporal structure T such as EC: VTC →
P(T×O) and ER: VDP → P(T×O×LV), where O is URI references and LV is
the literal values. L provides meaning for typed literals. S provides meaning for
URI references that are used to denote TL-OWL individuals.

Interpretations for Constructs. EC is extended to the syntactic constructs
of qualifications, descriptions, temporal relations, features as follows:

NOW, a built-in TL-OWL temporal variable, denotes the current interval of
evaluation. The thirteen temporal relations defined as built-in TL-OWL proper-
ties can represent the temporal network between two temporal variables. The for-
mal semantics for EC and ER in TL-ALCF are defined as ECV,t,H and ERV,t,H,
where V is a variable assignment function associating an interval value to a tem-
poral variable, t is an interval, and H is a set of constraints over the assignments.
We in this paper omit the subscripts to simplify notations if there are not any
misunderstandings. We denote the domain of partial functions by dom, which
can be interpreted as a Functional type of properties.

Interpretations for Axioms. An abstract TL-OWL interpretation, I, satisfies
TL-OWL axioms in the following table. Optional parts of axioms are given in
square brackets ([...]). tri (1 ≤ i ≤ n) can be one out of the thirteen temporal
relations in TemporalVariable.

Interpretations of Ontology. The definitions for the satisfiability, consis-
tency, and entailment of TL-OWL ontology are given in this section. These
definitions will be used in Definition. 8 and Theorem. 1.

Definition 4. Let D be a datatype map. An Abstract TL-OWL interpretation,
I, with respect to D with vocabulary consisting of VL, VC , VTC , VTV , VD, VI ,
VDP , VIP , VAP , VO, satisfies a TL-OWL ontology, O, iff

1. each URI reference in O used as a class ID (temporal class ID, temporal
variable ID, datatype ID, individual ID, data-valued property ID, individual-
valued property ID, annotation property ID, annotation ID, ontology ID)
belongs to VC (VTC , VTV , VD, VI , VDP , VIP , VAP , VO, respectively);

38 S.-K. Kim et al.

2. each literal in O belongs to VL;
3. I satisfies each directive in O, except for Ontology Annotations;
4. there is some o ∈ R with 〈o,S(owl:Ontology)〉 ∈ ER(rdf:type) such that for

each Ontology Annotation of the form Annotation(p v), 〈o,S(v)〉 ∈ ER(p)
and that if O has name n, then S(n) = o; and

5. I satisfies each ontology mentioned in an owl:imports annotation directive of
O.

Definition 5. A collection of abstract TL-OWL ontologies and axioms and facts
is consistent with respect to datatype map D iff there is some interpretation I
with respect to D such that I satisfies each ontology and axiom and fact in the
collection.

Definition 6. A collection O of abstract TL-OWL ontologies and axioms and
facts entails an abstract TL-OWL ontology or axiom or fact O’ with respect to
a datatype map D if each interpretation with respect to map D that satisfies each
ontology and axiom and fact in O also satisfies O’.

3.4 Mapping to RDF Graphs

We in this section provide a mapping from the abstract syntax to the exchange
syntax for TL-OWL. Further, in Sect. 3.5 we show that this mapping preserves
the meaning of TL-OWL ontologies.

The exchange syntax for TL-OWL is RDF/XML and the meaning of a TL-
OWL ontology in RDF/XML is determined from the RDF graph that results
from the RDF parsing of the RDF/XML document. The way of translating
a TL-OWL ontology in abstract syntax form into the exchange syntax is by
giving a transformation of each directive into a collection of RDF triples. Ta-
ble reftable:Triples gives the transformation rules that transform the abstract
syntax of Table 3 and Table 4 to the TL-OWL exchange syntax. The left col-
umn of the table is an abstract syntax, the center column is its transformation
into triples, and the right column is an identifier for the main node of the trans-
formation. Repeating components are listed using ellipses, as in Qualification1

... Qualificationn. Optional portions are enclosed in square brackets. The triples
in the transformation rules that may or may not be generated are indicated by
flagging with [opt]. Some transformations in the table are for directives. Other
transformations are for parts of directives. Thus, the transformation rules for
the directives call for other rules for components of the directive.

Table 3. Interpretations for Constructs

Abstract Syntax Interpretations
NOW EC(NOW) is a current interval
before(x) {[u1,v1] ∈ T | EC(x)=[u2,v2] implies v1 < u2}
other temporal relations
qualification(x bindVariable(c)) EC(c), t=V(x)
qualification(x y bindSubstitutiveVariable(c)) EC(c), H=H∪{y→V(x)}
restriction(p selectValuesFrom(e)) {x ∈ domp | ER(p)(x) ∈ EC(e)}
agreementOf(p q) {x ∈ domp ∩ domq | ER(p)(x) = ER(q)(x)}
disagreementOf(p q) {x ∈ domp ∩ domq | ER(p)(x) �= ER(q)(x)}
undefinednessOf(p) O \ domp

Temporal Ontology Language 39

Table 4. Interpretations for Axioms

Abstract Syntax Interpretations
TemporalClass(c q1 ... qn) EC(c) = EC(q1) ∩ ... ∩ EC(qn)
TemporalVariable(c tr1 ... trn) EC(c) = ER(tr1) ∪ ... ∪ ER(trn)
DatatypeProperty(p ... [ParametricFunctional]) [ER(p) is parametric functional]
ObjectProperty(p ... [ParametricFunctional]) [ER(p) is parametric functional]
[InverseParametricFunctional]) [ER(p) is inverse parametric functional]
[pathOf(x y]) [〈u,v〉 ∈ ER(x) ∩ 〈v,w〉 ∈ ER(y) implies

〈u,w〉 ∈ ER(p), u∈domx, v∈domy]

Table 5. Transformation to Triples

Abstract Syntax (and
sequences) - S

Transformation - T(S)
Main

Node -
M(T(S))

vID vID rdf:type tl:TemporalVariable . vID
featureID featureID rdf:type owl:FunctionalProperty . featureID

featureID rdf:type tl:ParametricFunctionalProperty [opt] . featureID
Qualification(vID C) :x rdf:type tl:Qualification . :x

:x rdf:type rdfs:Class [opt] .
:x tl:onVariable T(vID) .
:x tl:bindVariable T(C) .

Qualification(vID1 vID2 C) similar :x
restriction(ID :x rdf:type owl:Restriction . :x
selectValuesFrom(selection)) :x rdf:type rdfs:Class . [opt]

:x owl:onProperty T(ID) .
:x tl:selectValuesFrom T(selection) .

TemporalClass(classID classID rdf:type tl:TemporalClass .
[Deprecated] classID rdf:type rdfs:Class [opt] .
annotation1 ... annotationm [classID rdf:type owl:DeprecatedClass .]
Qualification1 ... Qualificationn classID T(annotation1) ... classID T(annotationm) .

classID owl:intersectionOf T(SEQ Quantification1 ...
Quantificationn) .

TemporalVariable(classID classID rdf:type tl:TemporalVariable .
[Deprecated] classID rdf:type rdfs:Class [opt] .
annotation1 ... annotationm [classID rdf:type owl:DeprecatedClass .]
temporalRelation1 ... classID T(annotation1) ... classID T(annotationm) .
temporalRelationn classID owl:unionOf T(SEQ temporalRelation1 ...

temporalRelationn) .
ObjectProperty(ID ID rdf:type owl:ObjectProperty .
[Deprecated] ID rdf:type rdf:Property . [opt]
annotation1 ... annotationm [ID rdf:type owl:DeprecatedProperty .]
[ParametricFunctional| ID T(annotation1) ... ID T(annotationm) .
InverseParametricFunctional] [ID rdf:type tl:ParametircFunctional .]
pathOf(featureID1 featureID2) [ID rdf:type tl:InverseParametircFunctional .]
...) [ID tl:pathOf T(SEQ featureID1 featureID2) .]

...
DatatypeProperty(ID similar
agreementOf(featureID1 :x rdf:type rdfs:Class .
featureID2) :x tl:agreementOf T(SEQ featureID1 featureID2) . :x
disagreementOf(featureID1 similar :x
undefinednessOf(featureID) similar :x
before(vID1 vID2) vID1 rdf:type tl:temporalVariable .

vID2 rdf:type tl:temporalVariable .
vID1 before vID2 .

other temporal relations

The Reserve-Flight concept in an abstract syntax form can be transformed
into RDF graphs by using the above transformation rules. The following is the
exchange syntax of the Reserve-Flight concept in the form of RDF/XML.

<tl:TemporalClass rdf:about="#Reserve-Flight">

<owl:intersectionOf rdf:parseType="Collection">

40 S.-K. Kim et al.

<tl:Qualification>

<tl:onVariable rdf:resource="#x"/>

<tl:bindVariable>

<owl:Restriction>

<owl:onProperty rdf:resource="#TICKET"/>

<tl:selectValuesFrom rdf:resource="#Unreserved"/>

</owl:Restriction>

</tl:bindVariable>

</tl:Qualification>

<tl:Qualification>

<tl:onVariable rdf:resource="#y"/>

<tl:bindVariable>

<owl:Restriction>

<owl:onProperty rdf:resource="#TICKET"/>

<tl:selectValuesFrom rdf:resource="#Reserved"/>

</owl:Restriction>

</tl:bindVariable>

</tl:Qualification>

</owl:intersectionOf>

</tl:TemporalClass>

<tl:TemporalVariable rdf:about="#x">

<tl:finishedBy rdf:resource="#tl:NOW"/>

</tl:TemporalVariable>

<tl:TemporalVariable rdf:about="#y">

<tl:metBy rdf:resource="#tl:NOW"/>

</tl:TemporalVariable>

Fig. 4. The RDF/XML representation of the Reserve-Flight concept

3.5 RDF-Compatible Model-Theoretic Semantics

The model-theoretic semantics for TL-OWL is defined as an extension of the
RDF semantics. There is a correspondence between the direct model-theoretic
semantics for the abstract syntax and the semantics defined in this section. As
a way noted in the OWL specification, if any conflict should ever arise between
these two forms, then the direct model-theoretic semantics takes precedence.

From the RDF semantics and the OWL semantics, for V a set of URI refer-
ences and literals containing the RDF and RDFS vocabulary and D a datatype
map, a D-interpretation of V is a tuple I = 〈RI, TI, PI, EXTI, SI, LI, LVI〉. RI

is the domain of discourse. TI is the time intervals of I, PI is a subset of RI, the
properties of I. EXTI is used to give meaning to properties, and is a mapping
from PI to P(RI × RI). SI is a mapping from URI references in V to their de-
notations in RI. LI is a mapping from typed literals in V to their denotations in
RI. LVI is a subset of RI that has literal values.

The set of classes CI is defined as CI = {x ∈ RI | 〈x,SI(rdfs:Class)〉 ∈ EXTI

(SI(rdf:type)) ∧ 〈TI,x〉 ∈ CI}, and the mapping CEXTI from CI to P(RI) is
defined as CEXTI(c) = {x ∈ RI | 〈x,c〉 ∈ EXTI(SI(rdf:type)) ∧ 〈TI,x〉 ∈ CI}.

Temporal Ontology Language 41

Definition 7. Let D be a datatype map that includes datatypes for rdf:XML Lit-
eral, xsd:integer and xsd:string. ATL-OWL interpretation, I =〈RI , TI , PI , EXTI,
SI , LI , LVI 〉, of a vocabulary V, where V includes the RDF and RDFS vocabular-
ies, is a D-interpretation of V that satisfies all the constraints in this section.

The following tables from Table 6 to Table 10 give the constraints of TL-OWL di-
rectives and constructs for the RDF-compatible model-theoretic semantics with
the D-interpretation.

Table 6. Conditions concerning parts of TL-OWL universe and syntactic categories

If E is
then

Note
SI(E)∈ CEXTI(SI(E))= and

tl:TemporalClass CI ITC ITC ⊆ CI
This defines ITC as the set of TL-OWL
classes

tl:TemporalVariable ITV ITV ⊆ CI
This defines ITV as the set of TL-OWL
temporal variables

tl:Qualification CI ITQ ITQ ⊆ CI
This defines ITQ as the set of TL-OWL
qualifications

Table 7. Characteristics of TL-OWL classes and properties

If E is then if e ∈ CEXTI(SI(E)) then Note

tl : TemporalClass CEXTI(e) ⊆ IOT
Instances of TL-OWL classes are TL-
OWL individuals.

tl : TemporalVariable CEXTI(e) ⊆ T
TL-OWL temporal variables are time in-
tervals.

If E is
then c ∈ CEXTI(SI(E)) iff c ∈

IOOP ∪ IODP and
Note

tl : Parametric-
FunctionalProperty

〈x,y1〉, 〈x,y2〉 ∈ EXTI(c) implies y1
= y2, independently from time

Both individual-valued and datatype
properties can be parametric functional
properties.

If E is
then c ∈ CEXTI(SI(E)) iff c ∈

IOOP and
Note

tl : InverseParametric-
FunctionalProperty

〈x1,y〉, 〈x2,y〉 ∈ EXTI(c) implies x1
= x2, independently from time

Individual-valued properties can be in-
verse parametric functional properties.

Table 8. Conditions on TL-OWL restrictions and qualifications

If
then x ∈ IOR, y ∈ IOC ∪ IDC, p ∈ IOOP ∪

IODP, and CEXTI(x) =
〈x,y〉 ∈ EXTI(SI(tl:selectValuesFrom)) ∧ {u∈domp | EXTI(p)(u)∈CEXTI(y)}
〈x,p〉 ∈ EXTI(SI(owl:onProperty))

If
then z ∈ ITQ, d ∈ IOC ∪ IDC, x,y ∈ ITV, and

CEXTI(z) =
〈z,d〉 ∈ EXTI(SI(tl:bindVariable)) ∧ {u∈IOT | u∈CEXTI(d), t = V(x)}
〈z,x〉 ∈ EXTI(SI(tl:onVariable))
〈z,d〉 ∈ EXTI(SI(tl:bindSubstitutiveVariable)) {u∈IOT | u∈CEXTI(d), H = H∪{y→V(x)}}
∧ 〈z,x〉 ∈ EXTI(SI(tl:onVariable)) ∧
〈z,y〉 ∈ EXTI(SI(tl:onSubstitutiveVariable))

Table 9. Conditions on TL-OWL features

If E is then 〈x,y〉 ∈ EXTI(SI(E)) iff

tl : agreementOf
x∈IOC, y is a sequence of p,q over IOOP ∪ IODP, CEXTI(x)={u ∈ domp
∩ domq | EXTI(p)(u) = EXTI(q)(u)}

tl : disagreementOf
x∈IOC, y is a sequence of p,q over IOOP ∪ IODP, CEXTI(x)={u ∈ domp
∩ domq | EXTI(p)(u) �= EXTI(q)(u)}

tl : undefinednessOf x∈IOC, y is a partial function over IOOP ∪ IODP, CEXTI(x)=IOT-domp

tl : pathOf
x∈IOOP, y is a sequence of p,q over IOOP, and u∈domp and v∈domq,
〈u,v〉 ∈ EXTI(p) ∩ 〈v,w〉 ∈ EXTI(q) implies 〈u,w〉 ∈ EXTI(x)

42 S.-K. Kim et al.

Table 10. Conditions on TL-OWL temporal relations

If E is then x ∈ CEXTI(SI(E)) iff
tl : NOW CEXTI(x) is the current interval

If E is 〈x,y〉 ∈ EXTI(SI(E)) iff
tl : before CEXTI(x)=[u1,v1] ∧ CEXTI(y)=[u2,v2] implies v1 < u2
other temporal relations

We now show that the two model theories, the direct model-theoretic seman-
tics from Sect. 3.3 and the RDF-compatible model-theoretic semantics from this
section, have the same consequences on TL-OWL ontologies that can be written
in the abstract syntax.

Definition 8. Let K and Q be collections of RDF graphs and D be a datatype
map. Then K TL-OWL entails Q with respect to D iff every TL-OWL interpre-
tation with respect to D (of any vocabulary V that includes the RDF and RDFS
vocabularies and the TL-OWL vocabulary) that satisfies all the RDF graphs in
K also satisfies all the RDF graphs in Q. K is TL-OWL consistent iff there
is some TL-OWL interpretation that satisfies all the RDF graphs in K.

Theorem 1. Let O and O’ be collections of TL-OWL ontologies and axioms
and facts in abstract syntax form. Given a datatype map D that maps xsd:string
and xsd:integer to the appropriate XML Schema datatypes and that includes the
RDF mapping for rdf:XMLLiteral, then O entails O’ with respect to D if and
only if the translation of O TL-OWL entails the translation of O’ with respect
to D.

Proof (sketch): This theorem can be proved by a structural induction for all of
directives and constructs, but the description of its complete proof is too long.
Therefore, in this paper we only introduce the outline of the proof due to the
restriction of pages.

Given a datatype map D, a separated TL-OWL vocabulary is defined into
a set of URI references V’ = VO + VC + VTC + VTV + VD + VI + VOP
+ VDP + VAP + VXP. The translation of the separated TL-OWL vocabulary
T(V’) consists of all the triples of the form
v rdf:type owl:Ontology. v ∈ VO, v rdf:type owl:Class. v ∈ VC, v rdf:type
tl:TemporalClass. v ∈ VTC, v rdf:type tl:TemporalVariable. v ∈ VTV, v rdf:type
rdfs:Datatype. v ∈ VD, v rdf:type owl:Thing. v ∈ VI, v rdf:type owl:Object
Property. v ∈ VOP, v rdf:type owl:DatatypeProperty. v ∈ VDP, v rdf:type
owl:AnnotationProperty. v ∈ VAP, v rdf:type owl:OntologyProperty. v ∈ VXP.

Further, a collection of TL-OWL ontologies, axioms, and facts in abstract
syntax form, O, with a separated vocabulary is defined with the new notion of
a separated vocabulary V = VO + VC + VTC + VTV + VD + VI + VOP
+ VDP + VAP + VXP, where all URI references used as ontology names are
taken from VO, class IDs are taken from VC, temporal class IDs are taken from
VTC, temporal variable IDs are taken from VTV, datatype IDs are taken from
VD, individual IDs are taken from VI, individual-valued property IDs are taken

Temporal Ontology Language 43

from VOP, data-valued property IDs are taken from VDP, annotation property
IDs are taken from VAP, and ontology property IDs are taken from VXP.

Then the above theorem can be paraphrased as the following : Let O and O’
be collections of TL-OWL ontologies, axioms, and facts in abstract syntax form.
Then O direct entails O’ if and only if T(O) TL-OWL entails T(O’).

In order to prove this theorem, first, we inductively check whether all the
constructs of descriptions and qualifications and all the directives of Tempo-
ralClass, TemporalVariable, ObjectProperty and DatatypeProperty satisfy the
above theorem.

Suppose O entails O’. Let I be a TL-OWL DL interpretation that satisfies
T(O). Then from the above structural induction, there is some direct interpre-
tation I’ such that for any abstract TL-OWL ontology or axiom or fact X over
V’, I satisfies T(X) iff I’ satisfies X. Thus I’ satisfies each ontology in O. Because
O entails O’, I’ satisfies O’, so I satisfies T(O’). Thus T(K),T(V’) TL-OWL DL
entails T(Q). Conversely, suppose T(O) TL-OWL DL entails T(O’). Let I’ be an
direct interpretation that satisfies K. Then from the above structural induction,
there is some TL-OWL DL interpretation I such that for any abstract TL-OWL
ontology X over V’, I satisfies T(X) iff I’ satisfies X. Thus I satisfies T(O). Be-
cause T(O) TL-OWL DL entails T(O’), I satisfies T(O’), so I’ satisfies O’. Thus
O entails O’. Consequently, by the correspondence of two semantics, we can
conclude that O direct entails O’ if and only if T(O) TL-OWL entails T(O’)

3.6 Reasoning in TL-OWL

Artale and Franconi present a subsumption reasoning for TL-ALCF . The cal-
culus is based on the idea of separating the inference on the temporal part(TL)
from the inference on the DL part(ALCF). This is achieved by first looking
for a normal form of concepts. The normalization procedure generates a com-
pleted existential form of the form: �(X)Tc.(Q0�Q1@X1� ...�Qn@Xn), where
each Q is a non-temporal concept, X is a set of temporal variable and Tc is a
set of temporal constraints. Thanks to the completed existential form, concept
subsumption in TL-ALCF can be reduced to concept subsumption between non-
temporal concepts and to subsumption between temporal constraint networks,
i.e., a labeled directed graph 〈X, Tc, Q@X〉, where arcs are labeled with a set of
arbitrary temporal relationship and nodes are labeled with non-temporal con-
cepts. Moreover, Artale and Franconi show that the subsumption problem in
TL-ALCF can be reduced to the subsumption between ALCF concepts, i.e.,
the non-temporal part (see Theorem 7.11 in [2]).

The temporal description logic to formalize TL-OWL is TL-SHOIN (D),
which extends the non-temporal part(ALCF) of TL-ALCF to SHOIN (D). By
this extension this logic can have the expressivity of OWL DL. Moreover, if the
completed existential form for TL-SHOIN (D) can be shown by the normaliza-
tion procedure, the reduction of TL-ALCF can be also used in TL-SHOIN (D).

Most steps of the normalization procedure shown in TL-ALCF is for the tem-
poral part so that it can be sufficient that only simple form1 of TL-SHOIN (D)

1Artale calls a negation normal form to a simple form.

44 S.-K. Kim et al.

is defined to obtain the completed existential form for TL-SHOIN (D). We de-
fine the simple form excluding those of TL-ALCF as follows. These are similar to
simple forms presented in [7] and the simple form of TL-ALCF is also presented
in Fig. 14 of [2].

¬ � nR.C → � (n + 1)R.C ¬∃T.d → ∀T.¬d
¬ � (n + 1)R.C → � nR.C ¬∀T.d → ∃T.¬d
¬ � 0R.C → C � ¬C

As for TL-ALCF case, without loss of generality, the normalization proce-
dure for TL-SHOIN (D) reduces the subsumption problem in TL-SHOIN (D)
to the subsumption between SHOIN (D) concepts. It can be also shown that
a TL-SHOIN (D) concept in completed existential form, 〈X, Tc, Q@X〉, is sat-
isfiable if and only if the non-temporal concepts labeling each node in X are
satisfiable. Moreover, following the above reduction, the subsumption problem
of TL-SHOIN (D) is decidable because that of SHOIN (D) is decidable. The
proof is similar to the one for TL-ALCF (see Proposition 7.8 and Theorem 7,11
in [2]) and we here do not mention it because it is straightforward.

4 Related Work

OWL-Time ontology [13] has recently been proposed to describe the temporal
contents of Web pages as well as the temporal properties of Web services. The
OWL-Time was formerly the DAML-Time and is currently published as the
status of W3C working draft. The ontology provides a vocabulary to represent
the topological relations among instants and intervals, along with information
about duration and datetime. It is also shown how the ontology can be used
within OWL-S by several examples. OWL-Time however is not an ontology
language, but a time ontology based on OWL. It therefore have to use the rule-
based reasoning to solve the problem as introduced in Sect. 1.

[11] and [8] present a new temporal ontology language based on OWL, which
is a similar approach to ours. In order to represent time and temporal aspects
such as change in ontologies, they introduce time slices (the temporal parts of
an individual) and fluents (properties that hold between timeslices) and define
their semantics based on Description Logic. They however do not show the formal
reasoning algorithm such as subsumption and entailment. We can not also be
convinced that the reasoning for the language is decidable.

5 Conclusions

OWL as an ontology language for Semantic Web can represent and reason the
knowledge for information resources on web. It however cannot perform the
reasoning for temporal information, since OWL cannot represent the temporal
semantics. Therefore, we propose an interval-based temporal ontology language
TL-OWL, which can represent and reason time information on Semantic Web. In

Temporal Ontology Language 45

order to formalize TL-OWL the abstract and the exchange syntax of TL-OWL
and their model semantics are defined. These two semantics are also shown to
have the same consequences on TL-OWL ontologies that can be written in the
abstract syntax. Finally, we show that the resoning in TL-OWL is decidable.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. In: Communications
of the ACM, vol. 26(11), pp. 832–843. ACM, New York (1983)

2. Artale, A., Franconi, E.: A Temporal Description Logic for Reasoning about Ac-
tions and Plans. Journal of Artificial Intelligence Research 9, 463–506 (1998)

3. Artale, A., Franconi, E.: A Survey of Temporal Extensions of Description Logics.
Annals of Mathematics and Artificial Intelligence 4(1), 171–210 (2001)

4. Bettini, C.: Time dependent concepts: Representation and reasoning using tempo-
ral description logics. Data & Knowledge Engineering 22(1), 1–38 (1997)

5. Halpern, J.Y., Moses, Y.: A Propositional Modal Logic of Time Intervals. Journal
of ACM 38(4), 935–962 (1991)

6. Hollunder, B., Nutt, W.: Subsumption Algorithms for Concept Languages, Tech-
nical Research Report RR-90-04, DFKI, Germany (1990)

7. Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: Proc. of the
19th International Joint Conference on Artificial Intelligence, pp. 448–453 (2005)

8. Milea, V., Frasincar, F., Kaymak, U., Noia, T.: An OWL-based Approach Towards
Representing Time in Web Information Systems. In: Proc. of the 4th International
Workshop of Web Information Systems Modeling Workshop, pp. 791–802 (2007)

9. Schild, K.D.: Combining terminological logics with tense logic. In: Proc. of the 6th
Portuguese Conference on Artificial Intelligence (1993)

10. Schmiedel, A.: A temporal terminological logic. In: Proc. of the AAAI 1990, pp.
640–645 (1990)

11. Welty, C., Fikes, R., Makarios, S.: A Reusable Ontology for Fluents in OWL. In:
Proc. of the International Conference on Formal Ontology in Information Systems,
pp. 226–236 (2006)

12. Wolter, F., Zakharyaschev, M.: Temporalizing description logics, Frontiers of Com-
bining Systems. Studies Press-Wiley, Chichester (1999)

13. W3C Working Draft, Time Ontology in OWL (2006),
http://www.w3.org/TR/owl-time

http://www.w3.org/TR/owl-time

	Temporal Ontology Language for Representing and Reasoning Interval-Based Temporal Knowledge
	Introduction
	A Temporal Description Logic
	A Temporal Web Ontology Language
	Requirements of TL-OWL
	Abstract Syntax
	Direct Model-Theoretic Semantics
	Mapping to RDF Graphs
	RDF-Compatible Model-Theoretic Semantics
	Reasoning in TL-OWL

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

