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Abstract. Today’s knowledge workers have to spend a large amount of
time and manual effort on creating, analyzing, and modifying textual
content. While more advanced semantically-oriented analysis techniques
have been developed in recent years, they have not yet found their way
into commonly used desktop clients, be they generic (e.g., word pro-
cessors, email clients) or domain-specific (e.g., software IDEs, biological
tools). Instead of forcing the user to leave his current context and use
an external application, we propose a “Semantic Assistants” approach,
where semantic analysis services relevant for the user’s current task are
offered directly within a desktop application. Our approach relies on an
OWL ontology model for context and service information and integrates
external natural language processing (NLP) pipelines through W3C Web
services.

1 Introduction

Consider the following scenarios: (1) A scientific journalist, while writing an
article on the global climate change, needs to find information on the role of
DMSP1 in the Atlantic marine biology. A Google search finds thousands of hits on
this topic, forcing our user to interrupt his writing in order to manually evaluate
the results. (2) A software developer, while editing code in his IDE, needs to
trace a method back to the requirements document in order to understand why
a certain feature was implemented. But requirements are not directly linked at
the source code level, forcing our developer to interrupt her code analysis and
switch to document retrieval and editing tools.

Both scenarios highlight two particularities of today’s desktop environments:
First, whenever dealing with textual information, users do not get any semantic
analysis support besides full-text information retrieval (and document search).
Although research in natural language processing (NLP) and text mining has
developed a large number of tools and applications within the last decade, like
1 DMSP stands for “Dimethylsulfoniopropionate” and is a component of the organic

sulfur cycle.
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machine translation, question-answering, summarization, topic detection, cluster
analysis, and information extraction [1], none of these newly developed technolo-
gies have materialized in the standard desktop tools commonly used by today’s
knowledge workers—such as email clients, software development environments
(IDEs), or word processors. This directly leads to the second observation: The
vast majority of users still relies on manual retrieval of relevant information
through an information retrieval tool or website and subsequent manual process-
ing of the (often millions of) results—forcing the user to interrupt his workflow
by leaving his current client and performing all the “natural language process-
ing” himself, before returning to his actual task.

The core idea of our Semantic Assistants approach is to take the existing
NLP frameworks, wrap concrete analysis pipelines in an OWL-based semantic
description that can be brokered through a service-oriented architecture (SOA),
and allow desktop clients to connect to this architecture with a plug-in inter-
face using Web services. The semantic analysis services, like question-answering
or summarization, then become available directly in the desktop tool used for
manipulating content. The following figure illustrates this idea:
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The user is not concerned with the implementation or integration of these ser-
vices, from his point of view he only sees context-sensitive Semantic Assistants
relevant for his task at hand.

2 Requirements Analysis

In this section, we define the requirements for our Semantic Assistants more
precisely. As stated before, the central goal is to bring semantic text analysis
support to the end user, by integrating NLP systems with desktop clients:

Requirement #0: Semantic Assistants Architecture. Provide the in-
frastructure for bringing semantic services for content analysis and development
offered by NLP systems directly to end-user clients in a context-sensitive fashion.

An immediate observation is that a number of different user groups will be in-
volved in the creation of these assistants: language engineers, software engineers,
and end users. Hence, we adopt a separation of concerns: First, there is the role
of the end user. Considering his perspective, we think about a user working with
a client program enriched through semantic services, and not knowing or car-
ing much about the underlying technology. Secondly, we adopt the perspective of
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the system integrator. His role consists of “plugging” new clients or NLP services
into our architecture. System integrators form an important user group, because
with every client and every NLP service, they add value to the overall system.
Also, this group’s requirements can be quite different from those of the end user
group. Additionally, we define the role of the language engineer, who is actually
creating and developing the semantic services, like question-answering, summa-
rization, or information extraction. However, within this paper we do not discuss
the engineering of specific language services—a topic already widely discussed in
the literature[1]—since for the integration capabilities of our approach it should
be of no concern how a language service was created. Likewise, the language engi-
neer should not need to care about whether his NLP service will be integrated or
not. Therefore, within this paper, we simply assume that NLP services exist, and
do not inquire where they came from. Finally, we assume the system perspective,
where we take care of properties desirable for the system as a whole.

2.1 End User Requirements

“End users” is a very broad term, and necessarily so: we want to facilitate the
work of knowledge workers who use any kind of desktop client while working with
textual content. Word processors, email clients, PIMs and IDEs are used by a
large variety of users for numerous tasks. There should be no a priori assump-
tions; End user characters can range from secretaries to researchers to school
kids to housewives. In particular, this means that we cannot expect these users
to have any expertise in semantic technologies, language engineering, or software
engineering. The most important and obvious consequence from this observation
is the requirement to design a client-independent system architecture:
Requirement #1: Client Independence. The architecture must be open
and flexible with respect to the type of clients integrated with it.
Thus, the architecture must not be limited to any particular user group or soft-
ware type. It should even allow the connection of future clients that do not
currently exist.
Requirement #2: Context Sensitivity. Not every analysis method is suit-
able for every situation, user, or document, but can rather depend on language
capabilities (of both the users and analysis services), data formats, and the user’s
current goal and task.
In other words, Semantic Assistants must be equipped with some kind of context
model that captures the user’s context and matches it with applicable services
in order to be able to recommend helpful assistants.

2.2 System Integrator Requirements

The second group of users are system integrators: developers who integrate either
some client software or a new semantic service into our architecture. We want
to make their job as easy as possible by taking care of some important issues:
Requirement #3: Facilitate Client Integration. Clients in the form
of end-user applications or user agents partly acting on their own are the user’s
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“entry door” to our architecture. Without such clients, the architecture is rather
useless, so Requirement #3 is a very fundamental one: Allow for the integra-
tion of any client, and enable developers to do this in an effective and efficient
manner.
After all, the main reason current desktop clients do not offer sophisticated
semantic NLP services is that their integration involves taking care of many
cumbersome details, like connection settings and remote procedure calls. Fur-
ther refining this requirement, we have to take care of two details: (1) Server
Abstraction: the integrator must be shielded from low-level communication de-
tails between the client and the server. (2) Implementation of Common Client
Functionality: Many clients will most likely have to fulfill some of the same or
similar tasks, like finding available NLP services, passing text from the desk-
top client, or retrieving results from the service. To avoid duplication of these
common functions, a reusable abstraction layer should be provided to system
integrators.
Requirement #4: Facilitate NLP Service Integration. NLP services
must not be hardcoded but rather discovered on-the-fly by the architecture.
This requirement allows for new services to be plugged into the architecture,
thereby becoming immediately available to any connected end-user client. In
order words, this requires the development of service metadata, based on a formal
specification.

2.3 System Requirements

Finally, we address some additional core architectural requirements that stem
from the point of view of the “system role.” First, it is quite plausible that
clients need to have a way to provide input to the semantic services they wish
to use—otherwise, these services would have nothing to work on:
Requirement #5: Intuitive Input Passing for Clients. Allow for an
easy transfer of unstructured data from the client to the analysis service.
Language services might require individual parameters, such as the length of
a summary to be generated. Some of these parameters can be automatically
determined by the architecture (such as input/output connections), but some
should be configurable by the end user. Therefore, we have:
Requirement #6: Control of Language Services. Provide a way to
transmit parameter values from the client to the actual language processing com-
ponent(s).
In particular, the architecture must enable parameter detection, client notifica-
tion of required parameters, and handle correct value assignment of individual
parameters to language services (e.g., the length of a summary to be generated).
Requirement #7: Flexible Result Handling. The final step in the pro-
cess of invoking a language service includes taking the result or results of the
service, wrapping it up in a response message and sending that message back to
the client.
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Here, the architecture must be capable of detecting the output(s) provided by
the language services: these can be new documents, stored in a file or database,
or annotations attached to an existing or newly retrieved document. Our archi-
tecture must therefore allow for a description of these outputs along with the
description of a language service. This description has to be detailed enough so
that the architecture knows how to capture and handle the produced output.
Furthermore, to allow for a simple client-side integration, we postulate a uniform
response format that must be expressive enough to capture all the various result
forms.

2.4 Related Work

Some previous work exists in building personalized information retrieval agents,
e.g., for the Emacs text editor [2] or Microsoft Word [3]. These approaches are
typically focused on a particular kind of application (e.g., emails or word process-
ing), whereas our approach is general enough to define NLP services independent
from the end-user application through an open, client/server infrastructure.

The most widely found approach for bringing NLP to an end user is the
development of a new interface (be it Web-based or a “fat client”). These appli-
cations, in turn, embed NLP frameworks for their analysis tasks, which can be
achieved through the APIs offered by frameworks such as GATE [4] or UIMA
[5]. The BioRAT system [6] targeted at biologists is an example for such a tool,
embedding GATE to offer advanced literature retrieval and analysis services.
In contrast with these approaches, we provide a service-oriented architecture to
broker any kind of language analysis service in a network-transparent way. Our
architecture can just as well be employed on a local PC as it can deliver focused
analysis tools from a service provider. For example, a commercial scientific pub-
lisher might want to offer a “related work finder” analysis service, similar to the
one presented by [7], to scientists writing research papers or proposals.

Recent work has been done in defining Web services for integrating NLP
components. In [8], a service-oriented architecture geared towards terminology
acquisition is presented. It wraps NLP components as Web services with clearly
specified interface definitions and thus allows language engineers to easily create
and alter concatenations of such components, also called processing configu-
rations. Their work is complimentary to our approach, since it addresses the
composition of NLP components into pipelines, whereas we are concerned with
semantic descriptions of existing pipelines and their integration with desktop
clients.

Close in spirit to our approach is the work performed by the Semantic Desktop
community [9]. The architectures developed in this area, like IRIS [10],2 aim
at deriving, maintaining, and exchanging semantic metadata between desktop
applications to provide better semantic support for end users. This work can
again be seen as complimentary to our approach, as the type of services offered
and their data granularity differs greatly.

2 The same holds for similar approaches, like Nepomuk, Gnowsis, or Haystack.
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3 Semantic Assistants Design

We now describe the design of our Semantic Assistants, in particular the over-
all system architecture (Section 3.1) and our ontology-based NLP service and
context model (Section 3.2).

3.1 System Architecture

An overview of our system architecture developed for the stated requirements is
shown in Fig. 1. It is based on a typical multi-tier information system design.
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Fig. 1. Architecture for integrating text analysis services and end-user clients

Tier 1: Clients. This tier has the main purpose of providing access to the
system. Typically, this will be an existing client (like a word processor or email
client), extended to connect with our architecture through a plug-in interface.
Besides facilitating access to the whole system, clients are also in part responsible
for presentation, e.g., of language service results. In addition to the actual client
applications, an abstraction layer is part of Tier 1. It shields the clients from
the server and provides common functionality for NLP services, as stipulated by
Requirement #3.
Tier 2: Presentation and Interaction. Tier 2 consists of a standard Web
server and a module labeled “NLP Service Connector” in the diagram. One
responsibility of this module is interaction, in that it handles the communica-
tion flows between the NLP framework and the Web server. Moreover, it pre-
pares language service responses, by collecting results from the NLP services
and transforming them into a format suitable for transmission to the client (Re-
quirement #7). Finally, the NLP Service Connector reads the descriptions of
the language services, and therefore “knows” the vocabulary used to write these
descriptions, as discussed in Requirement #4. In addition, our architecture can
also provide services to other (Web-based) information system, like a Wiki [11].
Tier 3: Analysis and Retrieval. Tiers 1 and 2 are the ones the user has direct
contact with. Tier 3 is only directly accessed by the NLP Service Connector. It
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contains the core functionality that we want, through Tiers 1 and 2, to bring
to the end user. Here, the semantic services reside, and the NLP subsystem in
whose environment they run (such as GATE or UIMA). Language services can
be added and removed from here as required.

Tier 4: Resources. The final tier “Resources” contains the descriptions of the
language services. These descriptions are read by the NLP Service Connector
so that it can satisfy its clients’ information needs. Whenever a new language
service is added to the architecture, its description must be added here, too
(Requirement #4). The vocabulary of these descriptions is based on an OWL
ontology using description logics (OWL-DL). Furthermore, indexed documents
as well as external documents (e.g., on the Web) count as resources.

3.2 The Semantic Assistants Ontology

As discussed in Requirement #2, in order to be able to recommend semantic ser-
vices relevant for the user’s current task, we need to model the current context,
which includes the user’s task, available services, the artifacts involved (services,
documents, etc.) and their languages. We previously developed an upper ontol-
ogy for supporting software processes [12], which we adapted for the Semantic
Assistants setting. It includes five essential concepts that form the basis of this
upper ontology, namely Artifact, Format, User, Language, and Task :

Format

Artifact

hasFormat

Language

hasLanguage

User

knowsLanguage

Task

hasTask

Artifacts include both content (documents, Web pages, etc.) and tools (such as
an NLP tool). Formats (e.g., OWL, XML, or PDF) have been modeled separately
from languages (both natural languages and artificial languages) as they are
largely orthogonal. Users are modeled with their language capabilites and the
tasks they need to perform.

Modeling Artifacts. We can now start to extend the Artifact concept of
the upper ontology with concepts required for Semantic Assistants (Fig. 2), as
stipulated by Requirement #4. We have just mentioned Tool as a sub-concept of
Artifact, a tool possibly processing artifacts as input and producing artifacts as
output (consumesInput and producesOutput relations). Additionally, a tool may
require parameters (hasParameter relation). For Semantic Assistants, documents
are a focal point. NLP services are often language-specific, so to be able to only
offer assistants relevant for the language of a document a user is working on,
and the language(s) he understands, we make use of the hasLanguage relation.

In order to work with documents, they often must somehow be identified
and retrieved. In particular, the server must be able to pull documents from a
networked source, including the Internet. Thus, when we model such an input
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IOArtifact

Artifact

isActualArtifact isa

Tool

isProducedBy isa servesAsInputFor

Parameter

isa Document

isa

IdentifiableArtifact

isaconsumesInputproducesOutput

hasParameter

NaturalLanguageDocument

isa

Fig. 2. Modeling Artifacts in the Upper Ontology

document in our ontology, we must have a way to specify its URI (Uniform Re-
source Identifier) by which we can address it. As not only documents, but also
other artifacts like Web services have to be uniquely identified and addressed,
we introduce hasIdentifier as an optional property for artifacts. We define Iden-
tifiableArtifact as a class whose members are artifacts and have this property.
In practice, the identifier can, and often will, be a URI, but it does not have
to be. For example, if we have a set of elements with unique names, a simple
string can be enough. With hasIdentifier, we provide an important property on
the highest abstraction level, while leaving the exact semantics to the concrete
ontologies and the applications that use them.

The same tool can often produce different output (types), depending on both
how it is invoked (parameters) and the type of the input artifacts (if any). To
model this fact, we introduced a concept called IOArtifact, where information on
input and output relationships can be stored. We will show a more concrete use
of this concept in the following section, when we concretize the upper ontology.
By means of an isActualArtifact relation, we have IOArtifact individuals “point”
to Artifact individuals. They can be seen as proxies for artifacts.

Specializing the Upper Ontology. The upper ontology that we have just
introduced provides us with several concepts we need: artifacts, users, parameters,
tools, etc. However, to integrate NLP analysis tools on a semantic level, we have
to refine this abstract ontology for language services. While the overall design is
largely independent from a concrete NLP system, at this point we also introduce
concepts specific to our environment, which is based on GATE [4]. However, other
NLP subsystems (like UIMA [5]) can be integrated in a similar fashion.

To be able to offer semantic services to end users, we need to model existing
NLP analysis services, like summarization (Requirement #4). Towards this end,
we introduce new child concepts to the Tool concept, classifying language services
into two categories: IRTool and NLPTool. The semantics that we want to convey
by this separation is that an information retrieval tool (IRTool) finds documents,
but leaves them untouched, while an NLP tool processes documents and typically
generates some new artifact(s) from them. For NLP tools, input and output
natural languages can be specified, if they are language-specific. A GATEPipeline
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is an analysis service with a certain format that can perform either type (or both)
of document processing. Instances of GATEPipeline are the language services
we offer the user through our architecture.
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necessaryParameterSetting

urlGivenByParameter

Fig. 3. Additional classes introduced in the specialized ontology

To be able to invoke concrete services, we also have to extend the Artifact
concept. A GATECorpus represents a collection of documents, which typically
serves as input for a language service. GATEAnnotation instances describe the
information that language services add to a document during processing, in-
cluding their result output. GATERuntimeParameter models parameters that
control certain aspects of a GATE pipeline, and is introduced as a sub-concept
to the already existing Parameter concept. Along with these artifact types, we
have to introduce corresponding new formats (remember that artifacts are re-
quired to have a format). These are defined under the common parent concept
of GATEFormat, which is a child of the Format concept.

We mentioned earlier that output formats can change depending on both
parameters passed to a tool (like a GATE pipeline) and its input document,
which led to the introduction of the IOArtifact concept. To allow our architecture
to automatically retrieve the obtained result and deliver it to the end user, we
introduce the GATE OutputArtifact. Instances of GATE OutputArtifact have
a property necessaryParameterSetting, thus connecting an output artifact to a
certain parameter value. This parameter value is represented through an instance
of a newly introduced concept called ParameterValuePair.

4 Implementation

We now discuss selected aspects of the current implementation of our archi-
tecture and briefly describe the process of integrating new (desktop) clients in
Section 4.5.
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4.1 Language Service Description and Management

We start discussing the implementation from the status quo, a common
component-based NLP framework—in our case, GATE [4]. The NLP subsystem
allows us to load existing language services, provide them with input documents
and parameters, run them, and access their results. The GATE framework’s API
also permits to access all the artifacts involved in this process (documents, gram-
mars, lexicons, ontologies, etc.). Language services take the form of (persistent)
pipelines or applications in GATE, which are composed of several sequential
processing resources or PRs. As mentioned in Section 2, creating a language
service (e.g., for summarization or question-answering) is the responsibility of a
language engineer, and need not further concern us here.

Our ontology described in the previous section has been implemented using
OWL-DL.3 For each deployed language service, the corresponding entries in
the Semantic Assistants ontology need to be created and stored on the server-
side (Fig. 1, Tier 4). This permits us to dynamically find, load, parametrize,
and execute available language services, based on the user’s current task and
language capabilities (this is further discussed in Section 4.4). Additionally, the
ontology contains all information needed to to locate and retrieve the result(s)
delivered (Requirement #7).

4.2 Web Services

Thus far, we can search, load, parametrize, and execute language services. How-
ever, all input/output channels are still local to the context of the NLP frame-
work’s process. To make NLP services available in a distributed environment, we
have to add network capabilities, which we achieve using Web services, a standard
defined by the W3C:4 “A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL5). Other systems in-
teract with the Web service in a manner prescribed by its description using SOAP6

messages, typically conveyed using HTTP with an XML serialization in conjunc-
tion with other Web-related standards.” In essence, a requester agent has to know
the description of a Web service to know how to communicate with it, or, more ac-
curately, with the provider agent implementing this Web Service. It can then start
to exchange SOAP messages with it in order to make use of the functionality of-
fered by the service. Provider agents are also referred to as Web service endpoints.
Endpoints are referenceable resources to which Web service messages can be sent.
Within our architecture (Fig. 1), the central piece delivering functionality from
the NLP framework as a Web service endpoint is the NLP Service Connector. Our
implementation makes use of the Web service code generation tools that are part
of the Java 6 SDK and the Java API for XML-Based Web services (JAX-WS).7

3 OWL Web Ontology Language Guide, http://www.w3.org/TR/owl-guide/
4 Web Services Architecture, see http://www.w3.org/TR/ws-arch/
5 Web Services Description Language (WSDL), see http://www.w3.org/TR/wsdl
6 Simple Object Access Protocol, see http://www.w3.org/TR/soap/
7 Java API for XML-Based Web Services (JAX-WS), see https://jax-ws.dev.java.net/

http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap/
https://jax-ws.dev.java.net/
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With all necessary artifacts in place, we can now generate and publish the Web
service. The JAX-WS API provides convenient functions for this, so that, with two
lines of source code (comments not counted), we can start a Web server integrated
with the Java environment, and publish the Web service at an address of our choice:
// Create SSB instance
SemanticServiceBroker agent = new SemanticServiceBroker();
// Publish SSB instance as Web service endpoint
Endpoint endpoint = Endpoint.publish("http://localhost/...", agent);

4.3 The Client-Side Abstraction Layer (CSAL)

We have just published a Web service endpoint, which means that the server
of our architecture is in place. On the client side, our client-side abstraction
layer (CSAL) is responsible for the communication with the server. This CSAL
offers the necessary functionality for clients to detect and invoke brokered lan-
guage services. The implementation essentially provides a proxy object (of class
SemanticServiceBroker), through which a client can transparently call Web
services. A code example, where an application obtains such a proxy object and
invokes the getAvailableServices method on it to find available language
analysis services, is shown below:
// Create a factory object
SemanticServiceBrokerService service = new SemanticServiceBrokerService();
// Get a proxy object, which locally represents the service endpoint (= port)
SemanticServiceBroker broker = service.getSemanticServiceBrokerPort();
// Proxy object is ready to use. Get a list of available language services.
ServiceInfoForClientArray sia = broker.getAvailableServices();

4.4 Dynamic Assistant Generation

The ontology described in Section 3.2 contains the information needed to dynam-
ically find, load, parametrize, and execute available language services, based on
user’s current task and language capabilities. In our implementation, it is queried
using Jena’s SPARQL8 interface, using the context information delivered by the
client plug-in, in order to recommend applicable Semantic Assistants.

For example, when a recommendation request is received, with a context
object saying the user knows English and German, the generated SPARQL query
should restrict the available services to those that deliver English or German as
output language. A simplified version of such a generated query is shown below:

SELECT ?x ?name
WHERE { ?x sa:hasGATEName ?name .

{?x cu:hasFormat sa:GATECorpusPipeline_Format} . {
{?x sa:hasOutputNaturalLanguage cu:en} UNION

{?x sa:hasOutputNaturalLanguage cu:de}}
}

Once the SPARQL query has been generated, it is passed to the OntModel
instance containing the language service descriptions. The results are then re-
trieved from this object, converted into the corresponding client-side versions,
and returned to the client.
8 SPARQL Query Language for RDF, see http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-sparql-query/
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4.5 Client Integration

After describing the individual parts of our architecture’s implementation, we
now show how they interact from the point of view of a system integrator adding
Semantic Assistants to a client application. The technical details depend on the
client’s implementation: If it is implemented in Java (or offers a Java plug-in
framework), it can be connected to our architecture simply by importing the
CSAL archive, creating a SemanticServiceBrokerService factory, and calling
Web services through a generated proxy object. After these steps, a Java-enabled
client application can ask for a list of available language services, as well as invoke
a selected service. The code examples shown above demonstrate that a developer
can quite easily integrate his application with our architecture, without having
to worry about performing remote procedure calls or writing network code.

A client application developer who cannot use the CSAL Java archive still has
access to the WSDL description of our Web service. If there are automatic client
code generation tools available for the programming language of his choice, the
developer can use these to create CSAL-like code, which can then be integrated
into or imported by his application.

5 Application

In this section, we present a real-world application scenario for our architecture:
the integration of Semantic Assistants into a word processor.

5.1 The OpenOffice.org Writer Plug-In

Word processor applications are one of the primary tools of choice for many users
when it comes to creating or editing content. Thus, they are an obvious candidate
for our approach of bringing advanced NLP support directly to end users in form
of Semantic Assistants. We selected the open source OpenOffice.org9 application
Writer for integration. With its plug-in framework, extensions can easily be
added to any OpenOffice.org application.

Following the steps described in Section 4.5, we developed a Java plug-in
for Writer that offers the functionality to connect with our architecture, in-
quire about available language services, offers additional dialogs for selecting
services and setting required parameters, and handles passing of input docu-
ments and NLP results. Depending on the selected language service, either the
full document a user is working on can be sent to the language service, or only
a highlighted text segment. On the back-end, we integrated some of the lan-
guage services we developed for other projects, which include index generation,
automatic summarization, and question-answering (focused summarization).

Our plug-in creates a new menu entry “Semantic Assistants,” as shown in
Fig. 4. In this menu, the user can inquire about available services, which are
selected based on the client (here Writer) and the available languages, as de-
scribed in Section 4.4. The dynamically generated list of available services is then
9 Open source office suite OpenOffice.org, see http://www.openoffice.org/

http://www.openoffice.org/
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Fig. 4. “Semantic Assistants” menu entry in OpenOffice.org Writer

presented to the user, together with a brief description, in a separate window.
The user can then select an assistant and execute it. In case the service requires
additional parameters, such as the length of a summary to be generated, they
are detected by our architecture through the OWL-based service description and
requested from the user through an additional dialog window.

Once invoked, the language service is executed asynchronously by our archi-
tecture, allowing the user to continue his work (he can even execute additional
services). Note that all low-level details of handling language services, such as
metadata lookup, parametrization, and result handling, are hidden from the
client plug-in through our client-side abstraction layer.

5.2 Example Use Case

One direct use case of our Semantic Assistants is to satisfy information needs of
a knowledge worker. As motivated in Section 1, language services can deliver fo-
cused analysis results directly within the client—here a word processor—needed
to perform a task, rather than interrupting the user’s workflow by forcing him
to perform an external (Web) search.

Let us go back to the example scenario stated in the introduction: a scien-
tific journalist who is writing a report on the global climate change and needs
information on the role of “DMSP in the Atlantic marine biology.” Using our
Semantic Assistants, he can simply highlight this phrase in the editor and select
the “Web Retrieval Summarizer.” This is a compound assistant that performs

Fig. 5. The result of the “Web Retrieval Summarizer” Semantic Assistant, answering
the user’s question, is presented as a new Writer document
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two tasks: In a first step, a selected number of hits from a Yahoo! search using
the highlighted phrase is retrieved to build a corpus on-the-fly. This corpus is
then fed into the multi-document summarizer ERSS [13] to produce a summary
answering the question(s) (a so-called focused summary). All these actions are
performed in the background, allowing the user to continue with other parts of
his report. When the summary is ready, the architecture notifies the plug-in,
which then presents the generated summary in a new window (Fig. 5). The user
can now inspect the result, refine it, and continue with other parts of the report.

6 Conclusions and Future Work

In this paper, we presented the idea of “Semantic Assistants” that aim to help
users dealing with the proverbial information overload. In particular, we ad-
dress end-users that need to find, analyze, or write any kind of textual content.
The central idea of our work is that such support should be offered directly
integrated into the clients users are accustomed to when working on natural
language data: their email clients, Web browsers, word processors or editors.
Thus, instead of offering analysis services through a Web interface or custom-
build applications, we propose to integrate them directly into end-user clients
by means of a service-oriented architecture, based on W3C Web services. An
important design goal of our architecture is that it should be as easy as possible
to integrate existing clients through plug-in frameworks on the user side, and
new semantically-oriented NLP services on the server side.

Our work is the first that aims to bring existing NLP analysis services directly
to end users. We believe this is an important goal as there have been numerous
advances in the areas of NLP and text mining over the last decade—but none
of the newly developed tools have yet found their way into today’s desktop
environments. Rather, in order to find and process content, users still have to
leave their application of choice and perform an external (desktop or Internet)
search, forcing a mentally expensive context-switch. In our paradigm, desktop
applications can directly react to the user’s need for retrieving and analyzing
content by offering semantically-oriented services, such as question-answering or
summarization, within the same interface. We achieve this by adding a layer of
“semantic glue” using an OWL-DL context and service ontology that permits
us to connect the existing, but so far separated, worlds of desktop applications
and NLP frameworks in a way that brings added value to end users.

Our implementation shows that these ideas can be implemented with cur-
rent, off-the-shelf tools and open standards. A first practical evaluation of our
approach, by integrating a major open source application, the OpenOffice.org
Writer program, proves that the Semantic Assistants concept can be deployed
on a contemporary desktop environment. Future user studies will need to be
performed to evaluate the impact of such services on the completion of prede-
fined tasks; however, this will obviously highly depend on the selected type of
client, the tasks, and the deployed language services and must therefore not be
confused with the evaluation of our architecture and ontology model as such.
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Obviously, many extensions are still possible throughout the architecture, but
the one most beneficial to end users will be the development of new client plug-
ins, bringing further semantic support to, e.g., email clients (searching for rel-
evant information and providing answers to questions), software development
environments (linking code to its documentation and offering support when mod-
ifying either side), or domain-specific tools (like for biologists or architects).

We believe that bringing the existing, hard-won advances in natural lan-
guage processing, like question-answering, summarization, or opinion mining,
to a larger user base will have significant impact on the fields of NLP, semantic
desktop research, and software engineering work. Users can directly benefit from
a large number of developed technologies that so far have been limited to expert
users and proprietary commercial applications. The developed architecture will
be made available under an open source license, which we hope will foster a
vibrant ecosphere of client plug-ins.
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