
Towards a Component-Based Framework for

Developing Semantic Web Applications

Raúl Garćıa-Castro1, Asunción Gómez-Pérez1, Óscar Muñoz-Garćıa1,
and Lyndon J.B. Nixon2

1 Ontology Engineering Group, Departamento de Inteligencia Artificial
Facultad de Informática, Universidad Politécnica de Madrid, Spain

{rgarcia,asun,omunoz}@fi.upm.es
2AG Netzbasierte Informationssysteme, Freie Universität Berlin, Berlin, Germany

nixon@inf.fu-berlin.de

Abstract. For those outside the research community, to develop Seman-
tic Web applications entails real difficulty. This difficulty is due in part
to the lack of usable approaches for planning Semantic Web solutions,
even though Semantic Web tools have already reached industrial matu-
rity. We propose here the Semantic Web Framework, a component-based
framework for analysing rapidly the required components, the depen-
dencies between them, and selecting existing solutions. This approach
has been tested with a number of industrial partners, which justifies the
effort made in this direction.

1 Introduction

Semantic Web technologies are slowly but surely moving out of the borders of
the research community and reaching all types of business users, ranging from
large multinational companies to individuals. These users, when convinced of
the benefits that the Semantic Web technology provides to their problems and
processes, may want to switch from being technology consumers to technology
producers, by building their own Semantic Web-based solutions on top of exist-
ing tools and methodologies. However, when non-expert users try to plan and
develop Semantic Web solutions they currently face several obstacles:

– They do not know the types of technologies now existing nor the functionali-
ties that these provide, nor do they know what are the dependencies between
the different technologies.

– They do not know how to use the Semantic Web technology, so they cannot
reuse or include this technology into their own applications.

– They do not know whether these technologies can interoperate either be-
tween themselves or with their own technologies and, if so, how this inter-
operability can be achieved.

– They cannot accurately make decisions, such as cost or resource estimations,
when including semantic capabilities into their applications or when building
Semantic Web applications from scratch.

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 197–211, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

198 R. Garćıa-Castro et al.

Although reaching a universal agreement on how to develop a Semantic Web
application is almost impossible, facilitating the understanding and development
of Semantic Web applications by giving design guidelines through software pat-
terns and exploiting software reuse techniques is really feasible. Nowadays, to
construct applications from a collection of reusable components and frameworks
is a popular approach to software development. Components provide a number
of benefits because they simplify application development and maintenance, and
thus, they allow systems to be more adaptive and to respond rapidly to changing
requirements [1].

The Semantic Web Framework is intended to help Semantic Web application
developers design and build Semantic Web applications. This framework can be a
first step to solve the above problems, though later on it should be extended with
interface descriptions, benchmarking, interoperability tests and cost models. The
framework is a reference framework that currently provides descriptions of the
existing types of Semantic Web technologies and their functionalities, and of the
dependencies between these technologies.

Our approach involves classifying the different Semantic Web technologies
according to their functionalities and representing them as independent compo-
nents grouped under a smaller set of component groups. For each component, we
give a description of the functionalities that the component provides and then
we identify the dependencies between the different components. The level of
the descriptions is understandable enough to non-experts; additionally, with our
industry partners we have validated through use case analysis the accessibility
of the framework to non-experts, enabling them to identify rapidly the required
components with their planned Semantic Web application, thus ensuring a viable
final concept through taking component dependencies into account.

With the appropriate extensions to the framework, we expect to facilitate the
use and reuse of this technology and to avoid inconsistencies when developing
Semantic Web applications by providing further specifications and guidelines for
components.

This paper is structured as follows: Section 2 presents a brief explanation of
component-based software development, software architectures and frameworks.
Section 3 describes the commonalities of Semantic Web applications and the
related work that supports application development in this context. Section 4
focuses on the Semantic Web Framework, the components involved in it and in
the dependencies between such components. Section 5 shows how the Semantic
Web Framework is used to support real industrial use cases and to determine
their component needs and dependencies. Finally, Section 6 draws the conclu-
sions of this work and proposes future lines of research.

2 Background

2.1 Component-Based Software Engineering

Reuse-based software engineering is becoming the main development approach
for business and commercial systems. One of this reuse-based approaches is

Towards a Component-Based Framework 199

Component-Based Software Engineering (CBSE), which is the process of defin-
ing, implementing and composing loosely coupled independent components into
systems [2]. In CBSE, application developers reuse components already devel-
oped and tested to build their applications in a robust and rapid way, only
knowing the component interface or contract and not knowing the details of the
component implementation or the way the component was conceived to be used.

CBSE relies on independent components that are completely specified by their
interfaces, component standards that facilitate the integration of components,
middleware that provides software support for component integration and a
development process that is geared to CBSE. According to this, the Semantic
Web Framework provides the skeleton for a specification of the independent
components needed.

A software component is a software composition unit that specifies a set of
interfaces and a set of requirements; and that can be composed with other com-
ponents independently in time and space [3].

Component-based systems have the following characteristics:

– Interoperability. Components cooperate despite differences in language, in-
terface, and execution platform.

– Distribution. Components can be hosted in different machines in a network.
– Heterogeneity. Components can be executed in different platforms or oper-

ating systems and written in different languages by different developers.
– Extensibility independence. The applications are modifiable and extensible

adding new components.
– Dynamism. Applications can evolve by component extension, extinction,

substitution, or by reconfiguring the relationships between components.

The Semantic Web Framework has been defined as a component-based
framework because Semantic Web applications possess similar characteristics
to component-based systems above presented. Furthermore, component-based
frameworks provide the features that facilitate software reuse [4]: abstraction, to
reduce and factor out details; selection, to help developers locate, compare and
select reusable software artifacts; specialisation, to particularize generic artifacts;
and integration, to combine a collection of artifacts.

2.2 Software Architectures and Frameworks

A software architecture is defined as the fundamental organization of a sys-
tem embodied in its components, their relationships to each other and to the
environment, and the principles guiding its design and evolution [5].

The objectives of software architectures are to understand and improve com-
plex application structures; to reuse application structures so as to solve similar
problems; to plan the application evolution; to analyse the application correction
and the compliance degree with respect to the initial requirements; and to allow
the study of some domain specific parts.

Software architectures are described by a) the components that realise the
computational and data storage aspects; b) the interaction between components

200 R. Garćıa-Castro et al.

during the execution; c) the patterns that describe the component composition;
and d) the restrictions imposed when applying those patterns.

Frameworks are a kind of domain-specific software architecture [6], which
define the architectural style relating the components inside a system. Further-
more, they define a set of components and their interfaces in an abstract way,
establishing the interaction rules and mechanisms between them.

Depending on the framework applicability, frameworks can be classified into
horizontal and vertical frameworks [3]. Horizontal frameworks are valid for ev-
ery application domain relative to a concrete aspect of the system (e.g., com-
munication infrastructures, user interfaces, visual environments, etc.). Vertical
frameworks are developed specifically for a concrete application domain such as
telecommunications, manufacturing, multimedia services, etc.

In this paper, the Semantic Web Framework is a horizontal framework that
constitutes an abstract reusable design represented by the components com-
monly involved in the architecture of semantic applications as well as the depen-
dencies between these components.

3 Semantic Web Applications

The Semantic Web is an extension of the current web, in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation [7]. In this context, in which the web is a network of application-
usable information, we can define a Semantic Web application as a software
application that uses or produces information for the Semantic Web.

As companies begin to perceive the benefits of semantic technologies, they
will explore how to apply this technology to build Semantic Web applications.
These applications have been characterised by different authors [8] and by events
such as the Semantic Web Challenge1 with the following features:

– Data has semantics and is represented using formal descriptions.
– Semantic data is reused, manipulated and processed.
– Data sources are heterogeneous and are owned or controlled by different

organisations.
– Applications assume an open world (i.e., the information is never complete).
– Multiple natural languages are supported.
– RDF(S) and OWL, the open standards recommended by the W3C, are used.

In the Semantic Web, the term reuse appears not only at the data level,
as shown above, but also at the application level, because nowadays there exist
many open software from a wide range of sources that can be reused when build-
ing Semantic Web applications. At the application level, reuse follows three dif-
ferent approaches: a distributed services approach, which integrates web service
technology into their architectures; a shared memory approach, which composes
components using a shared space of common memory to communicate, as is the
case of libraries being reused inside an application; and a mixed approach, which
combines the two approaches explained before.
1 http://iswc2007.semanticweb.org/callfor/SemanticWebChallenge.asp

http://iswc2007.semanticweb.org/callfor/SemanticWebChallenge.asp

Towards a Component-Based Framework 201

3.1 Semantic Web Application Architectures

Only a few architectures for Semantic Web applications have been proposed so
far.

Mika et al. sketch a generic architecture of ontology-based applications
grounded in a call-and-return style and structured in hierarchical layers [9]. The
layers involved from bottom to top are the following: ontology, middleware and
application. The ontology layer contains the components concerned with the
creation and maintenance of the model of the application; the middleware layer
supplies common ontology-related services; and the application layer rests on the
ontology and on related services to provide some kind of ontology functionality
to an end user.

Tran et al. [10] present a service-oriented architecture also structured in hier-
archical layers: the data layer hosts any kind of data sources, including sources
different from ontological ones; the logic layer includes application-specific ser-
vices that are implemented for a particular use case and that operate on specific
object models; finally, the presentation layer hosts presentation components that
the user interacts with. These authors also classify the components inside the
logic layer into ontology services, ontology engineering services and ontology
usage services.

By contrast, the framework described in this paper is an open system and
is not divided in layers. Layered approaches, on the other hand, present several
disadvantages, such as the difficulty in structuring some systems in a layered
fashion; performance considerations when high level functions require close cou-
pling to low level implementations; and the difficulty in finding the right level of
abstraction, especially if existing systems cross several layers [11].

The two architectures presented above identify some example components
that illustrate their approaches. However, in the Semantic Web Framework we
have tried to identify exhaustively the existing semantic components of Semantic
Web applications. The 32 components we have identified in the Semantic Web
Framework cover the 16 and 21 components identified in the previous approaches.

4 The Semantic Web Framework

In this paper, the Semantic Web Framework is defined as a structure in which
Semantic Web applications can be organised and developed. The Semantic Web
Framework is guided by some general design principles that state that the Se-
mantic Web Framework should be

– Developer-oriented. Different audiences such as developers with low expertise
in Semantic Web technologies or ontology practitioners should be considered.

– Easy to understand. To facilitate the understanding and use of the Seman-
tic Web Framework, its components have been organised in dimensions ac-
cording to the major properties of the problem space that have significant
variation over Semantic Web technology.

202 R. Garćıa-Castro et al.

– Inexpensive to adopt. To develop a Semantic Web application or to upgrade
an existing application with semantic capabilities should be easy and thus,
the impact on legacy systems is minimised.

– Semantics focused. To describe only the components that provide semantic
functionalities and functionalities to manage semantics. Other components
that deal with communication, distribution, etc. have not been taken into
account to ease the integration of the components of the Semantic Web
Framework into other software architectures.

– Component based. To define some specifications of these components that
allow different implementations of them, providing each of these components
a basic functionality.

– Evolving. To extend easily the Semantic Web Framework by inserting new
components or by modifying existing ones because the Semantic Web, and
its technology, is continuously evolving.

According to the definition of software architecture presented in Section 2, if
we want to define the architecture of the Semantic Web Framework, we need to
identify its components, the interaction between them, the patterns that describe
their composition, and the restrictions to impose when applying those patterns.

Therefore, this paper is focused on the identification of the components of
the Semantic Web Framework; on their classification, as stated below; and on
the main interfaces of the Semantic Web Framework components with other
components and with the environment. In a future work, we will define a concrete
specification of the interfaces and the different patterns that can be used in
Semantic Web applications.

4.1 Definition and Classification of Components

We follow the definition of component given by Szyperski [3] since a Semantic
Web Framework component is as an autonomous and modular unit with well
defined interfaces that describes a service and performs a specific functionality.
These components can be used either independently or together to develop ap-
plications for the Semantic Web; and they can be implemented using services,
program libraries or applications.

Components are usually defined by specifying some general information about
them, such as a natural language description; their interfaces, including the
functionalities that the component implements and those that it uses; and their
contracts, which are specifications added to the interface that establish use and
implementation conditions [3].

Within the Semantic Web Framework, we do not describe the component
contracts, since these will be defined in future work, but we explicitly classify
the interfaces into the functionalities that a component implements and those
that it uses. Therefore, each component is defined by the following:

– Name. The name of the component.
– Description. A high-level description of the component.

Towards a Component-Based Framework 203

Fig. 1. Components of the Semantic Web Framework

– Functionalities provided. An enumeration of the functionalities that the com-
ponent provides, specifying for each functionality the type or types of inter-
face that it has (user interface, programming interface, service interface,
hardware interface, etc.).

– Component dependencies. These include an enumeration of the functionali-
ties required by the component to work correctly and that are provided by
other components.

To classify the components of the Semantic Web Framework, we have consid-
ered the dimensions of an architecture as the major properties of the problem
space that have significant variation over Semantic Web systems, in other words,
the groups of components that provide some specific support to the architecture.
These dimensions, however, are not exhaustive; we have classified the different
components according to the main functionalities that they provide, as stated
in previous Semantic Web technology classifications [12,13].

Figure 1 presents the components that have been identified from software
currently available or under construction. The enumeration of components is
neither exhaustive nor complete, and is open to improvements and extensions.
The current components have been identified by members of the Knowledge
Web2 Network of Excellence who have great expertise in each of the dimensions.

In Figure 1, each dimension of the architecture is represented as a column
and reflects those components that provide a particular functionality to the
architecture. It should be noted that the order of the components or of the
2 http://knowledgeweb.semanticweb.org/

204 R. Garćıa-Castro et al.

Fig. 2. Dependencies of the components on the Ontology engineering dimension

dimensions in the figure does not imply any precedence or relation between
them.

The dependencies of each of these components on other components of the
framework were identified. Figure 2 shows the basic dependencies of the com-
ponents on the Ontology engineering dimension. Component dependencies are
represented graphically in the following way: when one component depends on
the functionalities of another, it is then represented with an arrow going from
the first component to the component that provides the functionalities.

Existing software that implements the components was also identified. It must
be observed that existing implementations may include the functionalities of mul-
tiple components. This is clearly seen in ontology engineering platforms, which
give support to different tasks of the ontology development process and cover
multiple components. In total, we identified 200 component implementations:
43 in the Data and Metadata Management dimension, 10 in the Querying and
Reasoning dimension, 78 in the Ontology Engineering dimension, 25 in the On-
tology Customization dimension, 10 in the Ontology Evolution dimension, 15
in the Ontology Instance Generation dimension, and 19 in the Semantic Web
Services dimension.

On the other hand, even if there is a dependency between two components
(e.g., an Ontology editor requires an Ontology repository), in the real world all
the implementations of a certain component will not be compatible with all the
implementations of the dependent component.

Next, a description of the dimensions of the Semantic Web Framework and of
the components included inside each dimension is given. The full description of
the Semantic Web Framework components, dependencies and implementations
can be found in [14].

Towards a Component-Based Framework 205

Data and Metadata Management. This dimension includes those compo-
nents that manage knowledge and data sources, such as:

– Information directory manager. It handles query distribution, manages
provider directories, identifies information providers from a query, and han-
dles the storage and access to distributed ontologies and data.

– Ontology repository. It locally stores and accesses ontologies and instances.
– Data repository. It locally stores and accesses data and ontology annotated

data.
– Alignment repository. It handles the storage and access to distributed align-

ments.
– Metadata registry. It locally stores and accesses metadata information.

Querying and Reasoning. This dimension includes those components that
generate and process queries, such as:

– Query answering. It takes care of the logical processing of a query by pro-
viding reasoning functionalities to search results from a knowledge base.

– Semantic query processor. It takes care of the physical processing of a query
by providing functionalities to manage query answering over ontologies in
distributed sources.

– Semantic query editor. It takes care of the user interface for editing queries.

Ontology Engineering. This dimension includes those components that pro-
vide functionalities to develop and manage ontologies, such as:

– Ontology editor. It allows creating and modifying ontologies, ontology el-
ements, and ontology documentation. These functionalities include single
ontology component editing or more advanced editing, such as ontology
pruning, extension or specialization.

– Ontology browser. It allows visually browsing an ontology.
– Ontology evaluator. It evaluates ontologies, either their formal model or their

content, during the different phases of the ontology life cycle.
– Ontology learner. It acquires knowledge and generates ontologies of a given

domain through some kind of (semi)-automatic process.
– Ontology matcher. It matches two ontologies or an ontology and another data

source and outputs some alignments. Two types of ontology matchers can
be distinguished, one that generates matchings and one that uses matchings
for other tasks (merging, mediating, etc.).

Ontology Customisation. This dimension includes the components that cus-
tomize and tailor ontologies, such as:

– Ontology localization and profiling. It adapts an ontology according to some
context or some user profile.

– Ontology discovery and ranking. It finds appropriate views, versions or sub-
sets of ontologies, and ranks them according to some criterion.

206 R. Garćıa-Castro et al.

– Ontology adaptation operators. It is in charge of applying appropriate oper-
ators to the ontology in question, resulting in an ontology customized ac-
cording to some criterion.

– Ontology view customisation. It enables the user to change or amend a view
on a particular ontology to fit a particular purpose.

Ontology Evolution. This dimension includes those components that manage
the ontology evolution, such as:

– Ontology versioner. It maintains, stores and manages different versions of an
ontology.

– Ontology evolution visualizer. It visualises different versions of an ontology.
– Ontology evolution manager. It is in charge of the timely adaptation of an

ontology to the changes undergone and of the propagation of such changes
to dependent artifacts.

Ontology Instance Generation. This dimension includes those components
that generate ontology instances, such as:

– Instance editor. It allows creating and modifying manually instances of con-
cepts and of relations between such concepts in existing ontologies.

– Manual annotation. It allows the manual and the semi-automatic annotation
of digital content documents (e.g. web pages) with concepts in the ontology.
This annotation process may be assisted or guided by a machine (semi-
automatic annotation).

– Automatic annotation. It allows the automatic annotation of digital content
(e.g., web pages) with concepts in the ontology. Occurrences in the considered
content of concept instances are automatically detected and subsequently
annotated.

– Ontology populator. It automatically generates new instances in a given on-
tology from a data source.

Semantic Web Services. This dimension includes those components that
discover, select, mediate, compose, choreograph, ground, and profile semantic
web services, such as:

– Web service discoverer. It publishes and searches service registries, controls
access to registries, and distributes and delegates requests to other registries.

– Web service selector. After discovering a set of potentially useful services,
this component checks whether the services can actually fulfil the user’s
concrete goal and under what conditions.

– Web service composer. It automatically composes web services to provide
new value-added web services.

– Web service choreography engine. It uses the choreography descriptions of
the service requester and provider to drive their conversation.

– Web service process mediator. It reconciles the public process heterogeneity
that can appear during the invocation of web services.

Towards a Component-Based Framework 207

– Web service grounding. It is responsible for web service communication.
– Web service profiling. It creates web service profiles based on their execution

history.
– Web service registry. It registers semantic web services.

5 Use Cases

In order to check the viability of use of the Semantic Web Framework by non-
experts from the industry, we selected some of the use cases from Knowledge
Web and carried out face-to-face interviews with industry members. Then, a few
days before the meeting, we sent them a copy of the Semantic Web Framework
specification to read. When the meeting was held, they had the opportunity to
raise any questions about the framework they had encountered. Then, their use
case was analysed according to the required components. This analysis was led
by the industry partner while the Knowledge Web researcher’s function was to
help the industry partner understand the functioning of the components.

We found out that even before being prompted by the researcher, the indus-
try partners were able to identify most of the components required by their use
case and were able to intuitively understand the dependency diagrams, leading
to avoidance of inconsistencies (e.g., recognizing that they had forgotten to ex-
plicitly add a certain component). In total, 8 use cases were analysed with the
Semantic Web Framework. Here we show only one of those use cases, but the
reader can find them all in [14].

5.1 Semantic Aggregation of News Stories

We chose a use case from the technology provider Neofonie GmbH3. Neofonie
represents the typical case of a small company with an interest in deploying
semantic solutions to improve their technology offer and better their competi-
tiveness. They have a general knowledge of what semantic technologies are, but
lack expert knowledge to successfully evaluate and deploy the technology. We
illustrate the framework with their use case as we consider this an ideal scenario
for our work to support industry in better modelling of semantic solutions for
their needs, the necessary first step before further evaluation and deployment of
the technology.

The selected use case deals with the provision of an aggregated news service
able to provide business clients with accurate search, thematic clustering, clas-
sification of news stories, and e-mail notification of stories of interest. The news
sources used are not just the main news feeds and media outlets but also press
releases, announcements on websites and other “alternative” sources.

The result of the analysis is shown in Figure 3, which presents the compo-
nents of the Semantic Web Framework that can support this use case and their
dependencies. This analysis could be performed within the company based on a
reading of the component descriptions and dependencies, with the final diagram
resulting from a briefer meeting with an expert to clarify open issues.
3 http://www.neofonie.de

http://www.neofonie.de

208 R. Garćıa-Castro et al.

Fig. 3. Components and dependencies for the use case

In order to achieve all of the goals proposed in the business use case, the
system could use the following Semantic Web Framework components:

– The Ontology repository, the Data repository, the Alignment repository and
the Metadata registry store all the data necessary for the use case: the on-
tologies used for each source, the instance data extracted from these sources
and the alignments that have been created between each source ontology.

– The Query answering, the Semantic query processor and the Semantic query
editor provide both the user interface support for formulating the query and
displaying the results and the system-intern support for performing the query
across the aligned instance data and extracting the results.

– The ontologies for representing the data of each source are semi-automatically
created using ontology learning techniques through the Ontology learner
component. The initial ontology extraction is refined with the Ontology
browser component to view the ontology and the Ontology editor compo-
nent to complete the ontology manually.

– It is possible that with the use of the system over time, the ontologies will
need to be revised as new concepts or properties gain relevance. Hence, the
Ontology versioner component may be employed at a later stage in the sys-
tem. Likewise, in the ontology extraction part, extracted terms may overlap
with those of existing ontologies for related domains such as politics, sport
etc. Given the existence of an ontology that represents terms from a cer-
tain source, knowledge extraction can take place. Instance data is generated
through semi-automatic annotation approaches with the Automatic anno-
tation component, the Manual annotation component for adding semantic
data to news sources, and the Ontology population component.

Towards a Component-Based Framework 209

– Finally, two approaches to searching can be considered. In one, queries are
expressed in terms of one ontology and, at run time, they are mapped into
the other ontologies of the sources; then they are executed across the dif-
ferent source data and the results are combined at the end. However, this
approach is very resource intensive at query time. The other approach con-
sidered is that, given that we update the source data only periodically, it
makes better sense to transform all source data into a core ontology, which
can be built from the merge of all source ontologies. Then, we first gener-
ate alignments between the source ontologies and a core ontology using the
Ontology matcher component. These alignments need manual proofing and
correction. The alignments also help refine the core ontology. Given now a
core ontology and alignments to the individual source ontologies, mediators
can be generated for the transformation of instance data from any source
in terms of the core ontology. Hence a core ontology is maintained against
which the queries are executed.

5.2 Results from Use Cases

The findings of the eight selected use cases reveal that some of the components,
namely, the Ontology repository, the Data repository and the Metadata registry,
are used in all the use cases. Other components, such as the Alignment repos-
itory, the Query answering, the Semantic query processor, the Ontology editor,
the Ontology browser, the Ontology view customization, the four components of
the Ontology evolution dimension, and the Ontology matcher are used in almost
all the use cases. On the other hand, some other components, namely, the Infor-
mation directory manager, the Ontology evaluator, the Ontology discovery and
ranking, the Ontology adaptation operators, the Instance editor and all the com-
ponents of the Semantic Web Service dimension are not used in the use cases
or almost not used. These findings can serve as an indicator of those fields of
research that should be focused on to meet more readily industrial requirements
on Semantic Web applications.

Another benefit of this analysis is that the industry members had a basis
for choosing which existing Semantic Web tools could be directly re-used in
their applications. For each identified component, we provide a list of existing
implementations.

Our dependency diagrams are a first step towards a formal analysis of the
overall design, where the industry partner can prove whether all dependencies
between components are taken into account. In future work, this will be sup-
ported further by specifications of component interfaces and reports on compo-
nent interoperability.

6 Conclusion and Future Work

The Semantic Web Framework is intended to help developers build Semantic
Web applications and to diminish development costs. This work is a first step

210 R. Garćıa-Castro et al.

to provide the foundation for large-scale development of Semantic Web applica-
tions; it presents a first definition of the Semantic Web Framework and describes
the existing types of Semantic Web technology, their functionalities, and the de-
pendencies between these technologies.

Although the Semantic Web Framework is useful as a reference and helps
reusing existing technology, Semantic Web application developers will still have
to develop their applications and their functionalities.

Immediate uses of the Semantic Web Framework include the identification
of the components needed for a Semantic Web application in the software de-
sign phase or the identification of existing implementations of components to
be reused. In these cases, having descriptions of the Semantic Web Framework
components and their implementations in a machine-processable form can help
automate these tasks.

Future work includes providing sets of compatible tools from the components
which are already implemented by existing tools. Therefore, the Semantic Web
Framework will provide not just single component implementations but also
groups of already-interoperable implementations.

We will extend the usability of the framework by providing evaluations and
benchmarks of component implementations, interoperability testing between
components and cost/benefit models for Semantic Web application development.

Another line of work is to realise the Semantic Web Framework as an in-
frastructure of semantic focused services so they can be used in the context
of a Service Oriented Architecture when semantic functionalities are needed.
This will require to develop specifications of the component interfaces, of their
interactions, and to develop the middleware needed to adapt the interface spec-
ifications to the concrete implementations API. These developments will allow
utility computing for semantic resources, i.e., to organise semantic resources so
that they may be accessed when needed, just like traditional utilities such as
gas, water, or electricity [15].

Within the NeOn project (IST-2005-027595) we are creating a methodology
to support the rapid prototyping and development of a new generation of large
scale, complex, semantic applications. The overall goal of this methodology is
to ensure that economically viable solutions will appear on the market and
help application developers to build Semantic Web applications from scratch
or by including semantic components into traditional information systems. In
this context, the Semantic Web Framework constitutes the starting point of the
NeOn methodology that will take into account the existing methods for building
component-based software as for example the described in [16].

Acknowledgements

Thanks to the collaborators in the definition of the Semantic Web Framework
components: S. Costache, S. Dasipoulou, Y. Ding, M. Dzbor, J. Euzenat, M.
Kaczmarek, F. Lécué, D. Maynard, V. Novacek, R. Palma, R. Piskac, M.C.
Suárez-Figueroa, and D. Zyskowski. This work is partially supported by a FPI

Towards a Component-Based Framework 211

grant from the Spanish Ministry of Education (BES-2005-8024), by the IST
project Knowledge Web (FP6-507482), by the CICYT project Infraestructura
tecnológica de servicios semánticos para la web semántica (TIN2004-02660), and
by the InnoProfile-Corporate Semantic Web project funded by the German Fed-
eral Ministry of Education and Research (BMBF) and the BMBF Innovation
Initiative for the New German Länder - Entrepreneurial Regions. Thanks to
Rosario Plaza for reviewing the grammar of this paper.

References

1. Oberle, D.: Semantic Management of Middleware. Semantic Web and Beyond
(2006)

2. Sommerville, I.: Software Engineering, 8th edn. International Computer Science
Series. Addison-Wesley, Reading (2007)

3. Szyperski, C.: Component Software, Beyond Object Oriented Programming.
Addison-Wesley, Reading (1998)

4. Krueger, C.W.: Software Reuse. ACM Comput. Surveys 24, 131–183 (1992)
5. IEEE: IEEE Std 1471-2000. IEEE Recommended Practice for Architectural De-

scription of Software-Intensive Systems. IEEE (2000)
6. Traz, W.: DSSA frequently asked questions. ACM Software Engineering Notes 19,

52–56 (1994)
7. Berners-Lee, T., Handler, J., Lassila, O.: The Semantic Web. Scientific American

(2001)
8. Motta, E., Sabou, M.: Next generation semantic web applications. In: Mizoguchi,

R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 24–29.
Springer, Heidelberg (2006)

9. Mika, P., Akkermans, H.: D1.2 Analysis of the State-of-the-Art in Ontology-based
Knowledge Management. Technical report, SWAP Project (2003)

10. Tran, T., Haase, P., Lewen, H., Muñoz-Garćıa, Ó., Gómez-Pérez, A., Studer, R.:
Lifecycle-Support in Architectures for Ontology-Based Information Systems. In:
Proceedings of the 6th International Semantic Web Conference, pp. 508–522 (2007)

11. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline, 1st edn. Prentice Hall, Englewood Cliffs (1996)

12. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering.
Springer, Heidelberg (2003)

13. Davies, J., Studer, R., Warren, P. (eds.): Semantic Web Technologies - trends and
research in ontology-based systems. John Wiley & Sons, Chichester (2006)

14. Garćıa-Castro, R., Muñoz-Garćıa, O., Suárez-Figueroa, M., Gómez-Pérez, A.,
Costache, S., Maynard, D., Dasiopoulou, S., Palma, R., Novacek, V., Lécué, F.,
Ding, Y., Kaczmarek, M., Piskac, R., Zyskowski, D., Euzenat, J., Dzbor, M., Nixon,
L., Léger, A., Vitvar, T., Zaremba, M., Hartmann, J.: D1.2.5 Architecture of the
Semantic Web Framework v2. Technical report, Knowledge Web (2007)

15. Pulier, E., Taylor, H.: Understanding Enterprise SOA. Manning (2006)
16. Cheesman, J., Daniels, J.: UML Components. A Simple Process for Specifying

Component-Based Software. Component Software Series. Addison-Wesley, Reading
(2001)

	Towards a Component-Based Framework for Developing Semantic Web Applications
	Introduction
	Background
	Component-Based Software Engineering
	Software Architectures and Frameworks

	Semantic Web Applications
	Semantic Web Application Architectures

	The Semantic Web Framework
	Definition and Classification of Components

	Use Cases
	Semantic Aggregation of News Stories
	Results from Use Cases

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

