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Universitat Autònoma de Barcelona, Edifici O, Campus UAB, 08193 Bellaterra, Spain

{mferrer,ernest}@cvc.uab.cat
2 Departament d’Enginyeria Informàtica i Matemàtiques,
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Abstract. Given a set of graphs, the median graph is defined as the
graph which has the smallest sum of distances (SOD) to all the graphs
in the set. It has been proposed as a tool to obtain the representative of
such a set. In spite of its potential applications, the existing algorithms
are computationally complex and have a very limited applicability. In
this paper we propose a new approach for the exact computation of the
median graph based on graph embedding in vector spaces. Graphs are
embedded into a vector space and the median is computed in the vec-
tor domain. After that, the median graph is recovered from this median
vector. Experiments on a synthetic database show that our approach
outperforms the previous existing exact algorithms both on computa-
tion time and number of SOD computations.

1 Introduction

Given a set of graphs, the median graph [1] is defined as a graph that has the
minimum sum of distances (SOD) to all graphs in the set. It can be seen as the
representative of the set and, therefore, it has a large number of potential appli-
cations including many classical algorithms for learning, clustering and classifi-
cation. Furthermore, it can be potentially applied to any graph-based algorithm
where a representative of a set of graphs is needed. However, the computation of
the median graph is exponential both in the number of input graphs and their
size [2]. A number of algorithms have been reported in the past to compute the
median graph. Two exact approaches have been proposed in [2] and [3]. As the
computational cost of these algorithms is very high, a set of approximate algo-
rithms have also been presented in the past based on different approaches such
as genetic search [1,2], greedy algorithms [4] and spectral graph theory [5].

In this paper we propose a novel technique for the median graph computation
based on graph embedding into vector spaces. It is composed of three main steps:
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the embedding of graphs in a vector space; the median vector computation and
the recovering of the median graph from this median vector. In all these steps
we use the graph edit distance under the assumption it is computed using a
particular cost function. The use of this cost function is motivated by the fact
that it permits to relate the distance between two graphs with their mcs [6]
and to dramatically reduce the search space of the median graph as shown in
[3]. Differently of the approach presented in [3], where a suboptimal method for
median computation in the vector space is applied and the general edit distance
is used to obtain the back-transformation, our method yields to obtain exact
solutions for the median graph.

We performed a set of experiments using synthetic data and we have compared
our approach with all the existing methods for the exact median computation.
Results show that our method outperforms the existing methods both in com-
putation time and the number of SOD computations, while obtaining the same
or equivalent medians in terms of their SOD. With these results at hand, the use
of the median graph in real (although limited) applications becomes a realistic
choice.

The rest of this paper is organized as follows. In the next section we define the
basic concepts and we introduce the notation we will use later in the paper. Then,
in Section 3 we introduce in detail the concept of the median graph. In Section 4
the proposed method for the median computation is described. Section 5 reports
a number of experiments and present results achieved with our method. Finally,
in Section 6 we draw some conclusions and we point out to possible future work.

2 Basic Definitions

2.1 Graph and Subgraph

Definition 1 (Graph). Given L, a finite alphabet of labels for nodes and edges,
a graph g is defined by the four-tuple g = (V, E, μ, ν) where V is a finite set of
nodes, E ⊆ V ×V is the set of edges, μ is the node labeling function (μ : V −→ L)
and ν is the edge labeling function (ν : V × V −→ L). The number of nodes of
a graph g is denoted by |g|.

Notice that L is not constrained in any way. It can be defined as a vector space
(i.e. L = R

n) or simply as a set of discrete labels (i.e. L = {Δ, Σ, Ψ, · · · }).

Definition 2 (Subgraph). Let g1 = (V1, E1, μ1, ν1), and g2 = (V2, E2, μ2, ν2)
be two graphs. The graph g1 is a subgraph of g2, denoted by g1 ⊆ g2 if: V1 ⊆ V2,
E1 = E2 ∩ (V1 × V1), μ1(u) = μ2(u) for all u ∈ V1 and ν1(e) = ν2(e) for all
e ∈ E1.

From Definition 2 it follows that, given a graph g = (V, E, μ, ν), a subset V ′ ⊆ V
of its vertices uniquely defines a subgraph, called the subgraph induced by V ′.
That is, an induced subgraph of g can be obtained by removing some of its nodes
(V − V ′) and all their adjacent edges.
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2.2 Maximum Common Subgraph and Minimum Common
Supergraph

Definition 3 (Maximum Common Subgraph (mcs)). Let g1 =(V1, E1, μ1,
ν1) and g2 = (V2, E2, μ2, ν2) be two graphs. A graph g is called a common sub-
graph (cs) of g1 and g2 if there exists a subgraph isomorphism from g to g1 and
from g to g2. A common subgraph of g1 and g2 is called maximum common sub-
graph (mcs) if there exists no other common subgraph of g1 and g2 with more
nodes than g.

Definition 4 (Minimum Common Supergraph (MCS)). Let g1=(V1, E1,
μ1, ν1) and g2 = (V2, E2, μ2, ν2) be two graphs. A graph g is called a common
supergraph (CS) of g1 and g2 if there exists a subgraph isomorphism from g1 to g
and from g2 to g. A common supergraph of g1 and g2 is called minimum common
supergraph (MCS) if there exists no other common supergraph of g1 and g2 with
less nodes than g.

Definition 5 (Minimum Common Supergraph of a Set of Graphs). Let
S = {g1, g2, ..., gn} be a set of graphs. A graph gM (S) (also denoted by MCS(S))
is called a minimum common supergraph of S if {g1, g2, · · · , gn} are subgraphs
of gM (S) and there is no other common supergraph of {g1, g2, · · · , gn} with less
nodes than gM (S).

2.3 Graph Edit Distance

The graph edit distance [7,8], has been shown as one of the most widely used
methods to compute the dissimilarity between two graphs.

The basic idea behind the graph edit distance is to define the dissimilarity of two
graphs as the minimum amount of distortion required to transform one graph into
the other. To this end, a number of distortion or edit operations e, consisting of
the insertion, deletion and substitution of both nodes and edges are defined. Given
these edit operations, for every pair of graphs, g1 and g2, there exists a sequence of
edit operations, or edit path p(g1, g2) = (e1, . . . , ek) (where each ei denotes an edit
operation) that transforms g1 into g2. In general, several edit paths exist between
two given graphs. This set of edit paths is denoted by ℘(g1, g2). To quantitatively
evaluate which edit path is the best, edit costs are introduced through a cost func-
tion. The basic idea is to assign a penalty cost c to each edit operation according
to the amount of distortion it introduces in the transformation. The edit distance
d between two graphs g1 and g2, denoted by d(g1, g2), is the minimum cost edit
path that transforms one graph into the other.

Graph Edit Distance and the Maximum Common Subgraph. In this
work, we will use the graph edit distance under a particular cost function [6],
where deletions and insertions of nodes have always a cost of 1, deletions and
insertions of edges have always a cost of 0, and node and edge substitutions
take the values of 0 or ∞ depending on whether the substitution is identical or
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not, respectively. Under this cost function, the graph edit distance between two
graphs d(g1, g2) is related to their mcs as follows:

d(g1, g2) = |g1| + |g2| − 2 |mcs(g1, g2)| (1)

Although the definition of the cost function might seem quite simple, this result
demonstrates the intuitive idea that the more two graphs have in common, the
lower is their distance. Several other distances related to the mcs have been
proposed, and summarized in [9]. In the rest of the paper we will assume, that
the distance between two graphs is computed according to the Eq. (1).

3 Generalized Median Graph

Definition 6 (Generalized Median Graph). Let U be the set of graphs that
can be constructed using labels from L. Given S = {g1, g2, ..., gn} ⊆ U , the
generalized median graph ḡ of S is defined as:

ḡ = arg min
g∈U

∑

gi∈S

d(g, gi) (2)

That is, ḡ is a graph g ∈ U that minimizes the sum of distances (SOD) to all the
graphs in S. Notice that ḡ is usually not a member of S, and in general more
than one generalized median graph may exist for a given set S.

Two important aspects in the median graph computation are the distance
computation and the search space. In the general case, the search space becomes
exponential with respect to the sum of nodes of the graphs in S. Nevertheless, in
[3], it is shown that under the particular cost function introduced in Section 2.3,

Fig. 1. Review of rhombus search space
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the search space of the median graph can be drastically reduced and is composed
only of the induced subgraphs of gM (S). Figure 1 shows this search space (also
called Rhombus). At the top of the Rhombus there is the minimum common
supergraph of S, MCS(S). At the bottom, there is the empty graph ge = φ.
Inside the rhombus there are all the possible induced subgraphs of MCS(S).
Each graph in S is located in this search space. In the following we will assume
that we are working in this search space and therefore the term MCS(S) have
to be computed.

4 Exact Median Graph Via Graph Embedding

In this section we present a new embedding technique for the median graph
computation (we will assume that a set of n graphs S = {g1, g2, . . . , gn} for the
median graph computation is given), that is composed of three main steps:

– 1. Graph Embedding in a Vector Space: Each graph in S becomes a
point in an n-dimensional space. The graph edit distance is used for this
embedding.

– 2. Median Vector Computation: The median vector is computed using
the points of the first step.

– 3. Going back to the Graph Domain: The median vector is converted
back to a graph, which is taken as the median graph of S.

4.1 Graph Embedding in Vector Spaces

In order to perform the embedding step, we will use a novel procedure proposed
in [10], briefly described in the following.

Assume we have a set of training graphs T = {g1, g2, . . . , gn} and a graph
similarity measure d(gi, gj). Then, a set P = {p1, . . . , pm} ⊆ T of m prototypes
is selected from T (with m ≤ n). After that, the similarity between a given graph
of g ∈ T and every prototype p ∈ P is computed. This leads to m dissimilarity
values, d1, . . . , dm where dk = d(g, pk). These dissimilarities can be arranged in
a vector (d1, . . . , dm). In this way, we can transform any graph of the training
set T into an m-dimensional vector using the prototype set P .

We perform the graph embedding step according to this definition, but we let
the training set T and the prototype set P be the same, i.e, the set S for which the
median graph is to be computed. So, we compute the distance between every pair
of graphs in the set S. These distances are arranged in a distance matrix. Each
row/column of the matrix can be seen as an n-dimensional vector representing
one of the graphs in S. Figure 2 illustrates this procedure. In this example, it
is assumed that the first row in the matrix corresponds to the distances of the
black graph in the set to all other graphs in S.

At the end, each graph has a corresponding point (n-dimensional vector)
in the vector space. What is important to remark here is the meaning of each
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Fig. 2. Illustration of the first step (graph embedding)

position in this vector. If a vector vi corresponds to the graph gi ∈ S, then the
coordinate j (with j = 1 . . . n) of this vector is the distance from the graph gi

to the graph gj, that is d(gi, gj).

4.2 Median Vector Computation

The median vector is computed using the points obtained in the first step. Al-
though we are in a Euclidean space, the nature of the cost function, in which
only nodes insertions and deletions, each with cost 1 will occur [6], allows us
to assume a L1 metric can be used to compute the median vector. Using this
metric, the median vector can be computed by means of the Manhattan median:

Definition 7 (Manhattan Median). Given a set X = {x1, x2, . . . , xm} of m
points with xi ∈ R

n for i = 1 . . .m, the Manhattan median is defined as

Manhattan median = arg min
y∈Rn

m∑

i=1

|xi − y| (3)

where |xi − y| denotes the Manhattan distance between the points xi, y ∈ R
n.

The Manhattan median [11] is simply the median of each coordinate of the
vector, which makes the Manhattan median computation really simple.

4.3 Back to the Graph Domain

The median vector is used to go back to the graph domain and obtain the median
graph. Every component of the median vector represents the distance between
the median graph and one of the graphs in the set S (see Figure 3). In this
example, the median graph would have a distance of 2 to the graph g1 ∈ S, a
distance of 1 to the graph g2 ∈ S, and so on.

Knowing the distance from the median to one graph in S, we can draw an in-
terval in the Rhombus search space around this graph according to the distance.
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Rhombus Search Space

Set of graphs S

2 1

Median Vector

1 3

Interval for

MCS(S)

g2

|g2| + 1

|g2| − 1

g2
g3

g4

g1

Fig. 3. Interpretation of the median vector

Since in the distance we are using only insertions and deletions of nodes, and
these operations have a cost of 1, a distance k from the median to the graph gi

will imply that we would have to take into account graphs around gi with size
|gi| ± k, since a distance k will add (or remove) at most k nodes to gi. Figure 3
shows a simple situation where the set S is composed of 4 graphs. For clarity, in
this example only the interval for g2 is shown.

Once the intervals are set, we choose only the smallest interval and its corre-
sponding graph (this corresponds to the graphs 2 or 3 in Figure 3). The median is
chosen as the graph with minimum SOD only in this interval. With this approach
the search space is reduced to only this interval (grey part in Fig. 4).

Rhombus Search Space

2 1

Median Vector

1 3

Interval for g2g2

|g2| + 1

|g2| − 1

Fig. 4. Explored part of the search space (grey part)
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5 Experimental Setup

In this section, we will compare our algorithm (referred as EE) with the mul-
timatch algorithm (referred as MM) and the exact algorithm presented in [3]
(referred as ER). The experiments consisted of the computation of several gen-
eralized median graphs using different number of graphs in each computation.
For each median, the elapsed time and the number of SOD computations needed
to compute it were recorded. In these experiments, the graph dataset was com-
posed of graphs that represent capital letters [10]. From the original set composed
by 15 letters, we only used a subset of 6 letters L, V, N, T, K and M. Then,
from each original model, we manually generated 4 distorted instances. There-
fore, our dataset is composed of 30 elements and 6 classes. Each class represents
a letter and contains 5 different instances of each letter. Table 5 shows the orig-
inal letters in the first row and the four distorted letters in the rest of the rows.
Notice that, in the distorted letters, some lines have been erased or moved their
position, but the number of terminal point has been kept unchanged. The let-
ters are represented by graphs as follows. The straight lines are represented by
edges and the terminal points of the lines by the nodes. Nodes are labelled by
a two-dimensional attribute that represents the position (x,y) of the terminal
point. Edges have no attributes.

Table 1. Original models (first row), some distorted models (other rows)

The results for both the computation time and the SOD computations re-
quired as a function of the total number of nodes in S are shown in Figures 5(a)
and 5(b), respectively. Notice that the results are the mean values obtained for
all sets S having the same number of nodes. Although the median vector com-
putation yields the optimal median, the back-transformation is not proven to
really give us a true median graph. However, in all our experiments we obtained
optimal medians.

First of all it is important to remark that, due to the high computational
requirements, the MM approach could only be applied to sets of graphs whose
sum of nodes is 12, while the ER and EE approaches could be applied to all the
sets. In addition, both figures show a substantial improvement of the EE and
ER algorithms with respect to the MM approach. It is important to remark
that the EE approach clearly outperforms the ER algorithm. The results show
that while for the ER algorithm, the computation time for sets of graphs with
25 nodes is around 18 seconds, the EE algorithm only needs less than 3 seconds.
Similar results can be observed for the number of SOD computations. For the
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Fig. 5. Computation time (a) and number of SOD computations (b) as a function of
the total number of nodes of the graphs in S

ER algorithm this number grows up to 500 SOD computations (for sets of graphs
with 25 nodes), while for the EE algorithm it is only 75 in the same case.

As a final conclusion, we can say that with the embedding approach for the
median graph computation we are able to obtain exact solutions for the median
graph with relatively large sets of graphs with a low computation time. This
suggests this method may extend the exact median graph computation to real
(although limited) applications.

6 Conclusions

The median graph has been shown as a good choice to obtain a representative
of a set of graphs, which has many potential applications in pattern recognition
and related areas. Nevertheless, it suffers from a large complexity.

In this paper we have presented a new technique for the exact median graph
computation based on graph embedding into vector spaces. This procedure is
composed of three steps: the embedding of graphs into a real vector space, where
each graph becomes a point in this space; the median vector computation using
these points; the recovering of the median graph from the median vector. Al-
though this technique can be used in many ways, we have particularized it to
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the exact median graph computation assuming the distance between graphs is
carried out using the graph edit distance and a particular cost function. Under
these conditions, the search space for the median graph computation can be
drastically reduced and this technique is used to obtain exact solutions for the
median graph.

Experiments made on a synthetic database show that our method clearly
outperforms the previous existing methods for the exact median graph compu-
tation both in the computation time and the number of graph distances needed
to obtain the median.

The proposed technique has permit us to extend the median graph computa-
tion to more realistic (although limited) sets of graphs. This situation opens the
door to the application of the median graph to more complex problems, such as
classification or clustering tasks.
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2. Münger, A.: Synthesis of prototype graphs from sample graphs. Diploma Thesis,
University of Bern (in German) (1998)

3. Ferrer, M.: Theory and algorithms on the median graph. application to graph-based
classification and clustering. PhD Thesis, Universitat Autònoma de Barcelona
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