Adversarial Pattern Classification Using
Multiple Classifiers and Randomisation

Battista Biggio, Giorgio Fumera, and Fabio Roli

Dept. of Electrical and Electronic Eng., University of Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy
{battista.biggio,fumera,roli}@diee.unica.it
http://prag.diee.unica.it

Abstract. In many security applications a pattern recognition system
faces an adversarial classification problem, in which an intelligent, adap-
tive adversary modifies patterns to evade the classifier. Several strate-
gies have been recently proposed to make a classifier harder to evade,
but they are based only on qualitative and intuitive arguments. In this
work, we consider a strategy consisting in hiding information about the
classifier to the adversary through the introduction of some randomness
in the decision function. We focus on an implementation of this strat-
egy in a multiple classifier system, which is a classification architecture
widely used in security applications. We provide a formal support to this
strategy, based on an analytical framework for adversarial classification
problems recently proposed by other authors, and give an experimental
evaluation on a spam filtering task to illustrate our findings.

1 Introduction

Pattern recognition techniques are currently applied to several security appli-
cations, like biometric personal authentication, intrusion detection in computer
networks and spam filtering [TI2/3145]. However, these kinds of application do
not fit the standard pattern classification model [6]. The main reason is that, in
these applications, a pattern classification system faces an intelligent, adaptive
adversary who engineers patterns to defeat the system itself. The machine learn-
ing community is becoming aware of the relevance of this problem, as a recent
workshop held as part of the NIPS 2007 conference showsl] To date, few works
have explicitly addressed this problem [7I89IT0]. In [9], the general issue of how
to design machine learning and pattern classification systems which are hard
to evade for an adaptive adversary was discussed. A taxonomy of attack types
for different security applications was proposed and some potential approaches
to design “evade hard” classification systems were suggested for future work.
Practical solutions for securing classification systems have been also proposed
in applications like intrusion detection in computer systems [3]. However, such

! Workshop on Machine Learning in Adversarial Environments for Computer Security,
http://nips.cc/Conferences/2007/Program/event.php?ID=615

N. da Vitora Lobo et al. (Eds.): SSPR&SPR 2008, LNCS 5342, pp. 500-509] 2008.
© Springer-Verlag Berlin Heidelberg 2008

http://nips.cc/Conferences/2007/Program/event.php?ID=615

Adversarial Pattern Classification 501

solutions are indeed based on qualitative and intuitive arguments, besides the
experimental evidence. In [7], the first attempt of developing an analytical frame-
work for these kinds of problem (named adversarial classification problems) was
made. An adversarial classification problem was formalised as a two-player game
between a classifier and an adversary, in which both players try to maximise their
expected utility by exploiting the knowledge they have about each other. In [7] it
was formally shown that an adversary-aware classifier can perform much better
than traditional adversary-unaware classifiers.

The aim of this work is to investigate and to provide a formal support to
a new technique for designing hard to evade classifiers in adversarial classifica-
tion problems, using the analytical framework developed in [7] (summarised in
Sect. 2)). Besides making a classifier adversary-aware, we consider the possibility
of introducing some randomness in the placement of the classification boundary,
which is a possible implementation of a general strategy suggested in [9], based
on hiding information about the classifier to the adversary. We analyse the ran-
domisation strategy in Sect. Bl In Sect. @] we discuss a possible implementation
using multiple classifier systems, which are widely used in security applications.
We finally give an experimental validation of our findings in Sect. [l

2 A Framework for Adversarial Pattern Classification

In [7], adversarial classification problems were formalised as two-player games.
Each player chooses in his ply the move which maximises his expected utility
(computed for that ply only, so using a greedy stlramtegylg)7 based on the knowl-
edge he has about the other player. The classifier faces a two-class problem in
which patterns can be either malicious (if they are generated by the adversary)
or innocent. Patterns are represented as n-dimensional feature vectors x in a
feature space X, and are viewed as instances of a random variable X generated
i.id. from a given distribution P(X) (without loosing generality, X is assumed
to be discrete in [7]). Class labels y are denoted with + (malicious) and — (inno-
cent). It is assumed that the adversary strategy to defeat the classifier consists in
defining at each move a function a : X — X which modifies malicious patterns
at operation phase, with the aim of making them being misclassified as innocent
by the decision function constructed by the classifier at its previous move. The
adversary can not modify malicious patterns at training phase, nor any inno-
cent pattern. We point out that this assumption holds in several, but not all
real applications (for instance, it holds in spam filtering tasks in which classifier
training is made offline on a controlled training set, while it does not hold in
some intrusion detection systems trained online). The classifier strategy consists
instead in constructing at each move a decision function y¢ : X — {+, —} which
discriminates malicious and innocent patterns, taking into account the knowl-
edge he has about modifications introduced by the adversary in his previous
move. For given a(z) and yc(z), the utility function of the adversary is defined

2 As explained in [7], computing the optimal strategies according to standard game
theory is intractable for a classification problem.

502 B. Biggio, G. Fumera, and F. Roli

as Ua(z,y,a,yc) = Ga(yc(x),y) — W(x,a(x)), where Ga(yc(z),y) is the gain
accrued when a pattern (z,y) is labelled as yc(z) (with Ga(—,+) > Ga(+,+),
since the adversary’s gain is higher when a malicious pattern is mislabelled as
innocent than when it is correctly classified), and W (z, a(z)) is the cost faced
to modify a pattern z to a(z) (W(x,a(x)) > 0, if a(x) # =, W(z,a(x)) =0
otherwise). The corresponding expected utility is:

ElUa(2,9,0,90)] = X (2 yexxy P(@:9)[Galyc(alz)), y) — W(z,a(z))]. (1)

Analogously, the utility function of the classifier is defined as Uc(x,y,a,yc) =
Gelyo(a(x)),y) — Zf\il Vi, where G¢(yc(x),y) is the gain defined similarly as
Ga (with Go(+,4+) > Ge(—,+), and Ge(—, —) > Ge(+,—)), and V; > 0 is the
cost of measuring the i-th feature. The expected utility is thus:

EUc(z,y,a,yc)] = Z(z,y)e/\’xy P(z,y)[Uc(yc(a(z)),y) — Ziv:l Vil. (2)

If the adversary has complete knowledge of the decision function constructed by
the classifier at the previous move [7], its optimal strategy at any given move is
the function a(x) which maximises his expected utility (I):

a(z) = argmax, e x[Ga(yo(z'), +) — W(z,2")], 3)

if y = +, while a(z) = z, if y = — (since he can modify only malicious patterns).
Note that the above a(z) amounts to choose between two alternatives. The first
one is to keep « unchanged, and the corresponding utility is Ga (+, +) (z is a ma-
licious pattern correctly classified, and there is no cost since it is not modified).
The second one is to modify it to some z’ # x. The modification with the highest
gain, denoted with z*, is the one which leads to a pattern x* misclassified as legit-
imate, with the minimum cost W (z, z*) = argmin_, ., W(z, 2’). Such modifica-
tion results in a gain equal to G (—, +) — W (x, z*). It follows that the adversary
will keep a malicious pattern z unchanged, if Ga (+,+) > Ga(—, +) — W (x, x*),
namely if the minimum cost required to evade the classifier is higher than
the corresponding increase in the gain, Ga(—,+) — Ga(+,+). Otherwise x
would be modified to the x* defined above. Analogously, under the assump-
tion that the classifier knows the modification function a(z) devised by the
adversary at his previous move, the optimal strategy of the classifier is to com-
pute at each move the decision function yc(-) which maximises its expected
utility (@).

Algorithms for computing the optimal strategies of adversary and classifier
under the above framework strongly depend on the kind of classifier, on the kinds
of feature used (for instance, on whether they are continuous or discrete), on the
kinds of modification the adversary can make to malicious patterns and on the
modification cost W(-,-). In [7], specific algorithms were derived for the case in
which the classifier is the naive Bayes. Experiments were also carried out on a
spam filtering task, using features corresponding to words in the e-mail body,
and assuming that the adversary can modify his e-mails by replacing words with
synonyms or adding new words (these are real tricks used by spammers). These

Adversarial Pattern Classification 503

experiments showed that adversary-aware classifiers can perform much better
than adversary-unaware ones designed with the traditional approach.

In the above analytical framework the hardness of evasion of a classifier is
improved by making it adversary-aware, namely modifying it according to the
knowledge on the strategy currently used by the adversary to defeat it. Although
in real tasks the assumption that both players have complete knowledge about
each other is likely to be violated, it is plausible that they can make at least
some guesses about each other parameters [7] (for instance, the adversary can
try to reverse engineer the classifier [10]). Using the same framework, in the next
section we will formally show that the hardness of evasion can also be improved
by hiding information about the decision function to the adversary.

3 Hardening Classifiers by Randomisation

An intuitive strategy for securing a classifier (namely, making it harder to evade)
is to hide information about it to the adversary. A possible implementation of
this strategy was suggested with qualitative arguments in [9]: introducing some
randomness in the placement of the classification boundary. This implementa-
tion was not further investigated in [9] or in other works, to our knowledge.
The goal of this section is to provide a more formal support to it, based on
the analytical framework of [7]. To this aim, we consider a single-shot version
of the game: first, the classifier computes its decision function yc(-) assuming
that the adversary does not modify his patterns. Then the adversary computes
the optimal modification function a(-). Our aim is to compare the performance
of both players (their expected utility) under two conditions: when the adver-
sary has complete knowledge about the decision function of the classifier, as in
[7] (named from now on the deterministic case), and when the classifier intro-
duces some randomness in it (the non-deterministic case). In the following we
will denote quantities related to the two cases with the superscripts “det” (for
“deterministic”) and “rnd” (for “randomisation”).

In the deterministic case the optimal strategy a9®*(z) is the one which max-
imises the expected value of the utility function Uget(m, y,a,yc) over the dis-
tribution P(z,y), for given yc(:) and a(-). In the considered framework, intro-
ducing randomness in the decision function means that yc(-) becomes a ran-
dom variable Yo(+) for the adversary. We denote with Ve the domain of Ye ()
(namely, the set of decision functions which the classifier can implement). Ac-
cordingly, in the non-deterministic case the expected utility has to be com-
puted with respect to the distribution P(z,y,yc(:)). This distribution can be
rewritten as P(yc(a(z))|z,y)P(z,y). Note that P(Yo(a(z)) = +|z,y) (written
in the rest of the paper as P(+|z,y) for the sake of brevity) is the probabil-
ity that the classifier chooses a decision function yc(-) such that yc(a(z)) = +
(analogously for P(Yc(a(z)) = —|z,y)). Note that such probability is given
by 3,0 (reve P(Ye() = ye(e.y) x Tlycla(@)),+], where I[a,b] = 1, if a =
b, Ila,b] = 0 otherwise. Now, taking into account that the term W(z,a(z))

504 B. Biggio, G. Fumera, and F. Roli

in () does not depend on yc(a(x)), the expected utility E[Ua] in the non-
deterministic case can be written as:

5 ety P yo(@@)[Ga (ve(a@)), y) - Wz, A())]
=D (wyexxy P@) [P(+]z,y)Ga(+,y) + P(—|z,y)Ga(—,y) — W(z, a(z))].

(4)

The term between square brackets in the second row of () is the conditional ez-

pected utility for a given pattern (z,y), taken over the distribution P(yc(a(z))]

x,y) (namely, over the possible realisations of the class boundary). In the deter-

mination of the optimal strategy it plays the same role as the utility function

Uget(z,y, a,yc) in the deterministic case, and can be denoted here as U (x, y, a):

the optimal strategy a™9(z) is the one which maximises U (z,y, a).

The two strategies a?®*(z) and a™9(x) could be different, since the latter
is chosen by maximising not the adversary’s utility function for the decision
function chosen by the classifier (which we denote now as y&(+)), but instead
its expected utility over all the possible decision functions. This means that the
adversary could make sub-optimal choices in the non-deterministic case, with
respect to the true but unknown y&(-), namely choices which would lead to a
lower overall expected utility. More precisely, it can be easily shown (see below)
that in the non-deterministic case the adversary underestimates the actual utility
of each modification which evades the classifier, while he overestimates the actual
utility of each modification which does not evade the classifier. This means that
the adversary could make too conservative choices with respect to the optimal
ones, to the extent that a™4(z) could keep unchanged some malicious pattern
x correctly classified by y& (), while a?®*(z) would allow to evade the classifier.
A simple example is shown in Fig. [l Even more, a'4(x) could modify some
malicious pattern x which evades y&(-) (and is thus kept unchanged by a¢*(z))
to a pattern x’ which is correctly classified by a™9(z).

To prove the above assertion, consider any malicious pattern z (y = +)
and any modification ' which evades the classifier, namely y&(z') = —. The
adversary’s expected gain for z’ is P(+|z,+)Ga(+,+) + P(—|z,+)Ga(—, +),
while the true gain is Ga(—,+). Since Gao(—,+) > Ga(+,+), it follows that
Ud(z, +,2") < Ut (z, +,2', y&(2')), namely the adversary underestimates the
true utility of modifying = to 2’. Instead, if 2’ is correctly classified (y& () = +),
then the expected gain is the same as above, while the true gain is Ga(+, +). It
follows that U (x, +,2') > UL (z, +,2', y&(2")), namely the adversary over-
estimates the true utility of modifying = to z'.

To sum up, we formally showed under the framework of [7] that randomising
the decision boundary makes a classifier harder to evade, since the lack of infor-
mation about the exact position of the decision boundary leads the adversary to
make too conservative or too risky choices when deciding whether and how to
modify a malicious pattern. One could raise the objection that in real tasks the
adversary hardly ever has complete knowledge about the classifier decision func-
tion, and thus in practice it always acts in the non-deterministic case. However
the above analysis can be easily extended to this case, to show more gener-
ally that the classifier can benefit by increasing the level of uncertainty of the

Adversarial Pattern Classification 505

Yc1
s Gp(-+) =5
Gp(+4) =Gp(+-) =Gpl--) =0
R W(x,x'y) =3
RSN W(x,x'2) =6

P(-Ix,+)=1 P(-Ix,+)=0.5 P(-Ix,+)=0

Fig.1. Example of the non-optimality of the adversary’s strategy in the non-
deterministic case, for a given malicious pattern x in a 2-D feature space, assum-
ing that the adversary’s cost function is proportional to the Euclidean distance:
W (z,x") = |x — 2'|. The classifier chooses between two equiprobable decision functions
yo, and yc, (both labelling patterns lying on the right as malicious), in a 2-D feature
space. According to ([B)), in the deterministic case (when the adversary knows which de-
cision function is used), the optimal strategy for x requires to choose between keeping
z unchanged (with a gain of Ga(+,+)) and modifying it to z} (if yc, is used, with a
gain Ga(—,+) — W(x,z1)) or to x4 (if yc, is used, with a gain Ga(—,+) — W (z,z5)),
being z} and x5 the minimum cost modifications of x which allow to evade the cor-
responding decision function. If the adversary’s gain and cost functions are the ones
shown on the right, the optimal strategy against yc, is to modify z to z, while against
Yo, is to keep = unchanged. In the non-deterministic case, patterns in the dark gray
area are labeled as — by both yc, and yc,, while patterns in the white area are labeled
as +: accordingly, P(—|,z,+) equals 1 in the former area and 0 in the latter. Patterns
in the light gray area are labeled as — by yc, only. Since yc, and yc, are equiprob-
able, P(—|,z,4+) = 0.5 in that area. The optimal strategy in the non-deterministic
case is to modify z to the pattern z’ which maximises the conditional expected utility
P(+|z,+)Ga(+,+) + P(—|z,+)Ga(—,+) — W(z,). This requires to choose between
keeping x unchanged, modifying it to z} or modifying it to x5 (any other choice has
a higher cost but the same gain as one of these three choices). The best choice is to
keep x unchanged. This means that the adversary’s strategy in the non-deterministic
case is optimal, only if the decision function is yc,. Otherwise the non-deterministic
strategy does not allow to evade the classifier, while the deterministic strategy would
have evaded it.

adversary, even starting from a non-zero uncertainty level (that is, by making
yc(+) still “more random”). On the other hand, it should be taken into account
that an excessive randomisation could lead to select a classifier with a poor per-
formance, to the extent that the advantage attained by hiding information to the
adversary is lost. A trade-off is thus necessary between these two factors. Finally,
we point out that randomisation can be viewed as a strategy to further improve
the hardness of evasion of an adversary-aware classifier. Indeed, the analysis of
the randomisation strategy can be extended to the repeated version of the game
(when players continue to move indefinitely), allowing the classifier to retrain
his set of decision functions according to the knowledge about the adversary’s
strategy a™™d(z) (not reported here due to lack of space).

506 B. Biggio, G. Fumera, and F. Roli

4 FEvade Hard Multiple Classifiers Based on
Randomisation Strategy

In real tasks the randomisation approach described in Sect. Bl can be imple-
mented in several ways. It is important to understand that in the considered
framework introducing randomness means preventing the adversary from hav-
ing exact knowledge about one or more parameters involved in the design of
the decision function. This can be achieved, for instance, tuning the classifier
to a training set unknown by the adversary, or using some randomly selected
parameter in the training phase (like the initial weights of a neural network).
We propose here a specific implementation based on the use of MCSs. The rea-
son is that MCSs turn out to be particularly suited in security applications as
an alternative to the approach based on a “monolithic” classifier [2I3/1]. They
are typically used for fusing classifiers each trained on a distinct feature-vector
representation of patterns. The main motivations are derived from the field of
classifier ensembles. It is indeed known that, if different sets of heterogeneous
and loosely correlated features are available (as happens for IDSs), combining
the outputs of different classifiers trained on different feature sets can be more
effective than designing a single classifier in the feature space made up of all
the available features (see for instance [II]). Moreover, if the overall number
of features is large, such a single classifier would be more prone than a clas-
sifier ensemble to the so-called curse of dimensionality problem. Besides this,
the MCS architecture is exploited (although often implicitly) in many commer-
cial and open source spam filters and intrusion detection systems. Such kinds
of system are usually made up of a set of independent modules which process
a given subset of features, often focused on specific characteristics of malicious
or innocent patterns, and provide a score denoting the likelihood that the input
pattern is malicious. The final decision is then taken by fusing the scores with
some combining function.

In this context, we point out that randomisation can be easily implemented
exploiting one of the several techniques for constructing classifier ensembles,
which are indeed based on randomisation like, for instance, bagging [12] and the
random subspace method [I3]. A concrete example of a security system with an
MCS architecture is the SpamAssassin spam filter, in which filtering modules
are provided with a default scoring system and the final decision is taken by
thresholding the sum of the scores. However the user can modify the weights
assigned to each module, for instance by tuning them to a given training set of
legitimate and spam e-mails. Randomisation can be easily implemented here as
the choice of a particular set of weights different than the default one. In sect.
we will present an experimental evaluation of the randomisation approach based
on MCSs on a spam filtering task, using the SpamAssassin filter as the classifier.

5 Experimental Results

In this section we give an experimental evaluation on a spam filtering task of the
effectiveness of class boundary randomisation for making a classifier harder to

Adversarial Pattern Classification 507

evade. We used the publicly available TREC 2007 data setE‘ made up of 25,220
legitimate and 50,199 spam e-mails. We used SpamAssassin as the classifier in its
default configuration (all the available 619 different filtering rules were used, with
their default scoring, and the decision threshold on the sum of the scores was set
to 5), except for the embedded naive Bayes classifier, which was trained on the
first 10,000 e-mails of the data set (in chronological order). We assumed that the
adversary knew the decision threshold and the score produced by each module
for any malicious pattern x. The randomisation was implemented as described in
Sect. 3 by assigning different weights to each module. The weights were obtained
using a support vector machine (SVM) classifier with linear kernel, trained on
the scores produced by each filtering rule on 1,000 e-mails randomly drawn
using the bootstrap technique from the 10,001st to 20,000th e-mails of the data
set (the training set size of 1,000 was chosen since it provided a good trade-off
between the uncertainty level of the adversary and the discriminant capability of
the classifier). We computed 100 different sets of weights, and assumed that the
classifier can choose one of them with identical probability. We also assumed that
the adversary knew each set of weights and the fact that they are equiprobable.

Given that it was unfeasible to devise real modifications to the e-mails, tailored
to each of the 619 filtering rules, we choose to simulate the effects of modifications
by assuming that the adversary can arbitrarily reduce the score of each module.
More precisely, let us denote with x; the feature-vector representation of a given
e-mail used by the i-th filtering rule, and with s;(z;) the corresponding default
score. We assumed that the adversary can modify any given spam e-mail x; to
any x; corresponding to any feasible value of the score such that s;(z;) < sl(axg)ﬁ
(note, however, that a modification is actually made by the adversary only if
its cost is lower than the utility gain, as explained in Sect. [2]). This simplifying
assumption is in favour of the adversary, since we are not setting any constraint
on how it can modify real spam e-mails. Given that it was also difficult to
estimate the cost of modifications (or at least their relative difficulty) which allow
to reduce the scores of the different modules, the modification cost W;(z;, x})
for each module was assumed to be equal to the difference between the scores
si(z;) and s;(x}) (which is always non-negative). Thus the total cost W (x,z')
is given by Zf’g [si(z;) — si(x})]. This is based on the reasonable assumption,
in absence of more precise information, that attaining a higher score reduction
requires a higher cost.

The experiments were made using the single-shot game setting explained in
Sect. Bl Training the classifier corresponds to choose one out of the 100 weight
sets. In the deterministic case, the adversary knows which weight set was chosen,
and thus the corresponding decision function, and computes its optimal strategy
ad°t(.) against that function. In the non-deterministic case, he has to compute
the optimal strategy a™9(z) based on the distribution P(yc|z,y) (see (@)). He
evaluates such distribution based on the knowledge that one of the 100 possible

3http://plg.uwaterloo.ca/~gvcormac/treccorpus07/
4 Note that almost all SpamAssassin filtering modules output discrete scores, often
binary-valued.

http://plg.uwaterloo.ca/~gvcormac/treccorpus07/

508 B. Biggio, G. Fumera, and F. Roli

Table 1. First row: SpamAssassin results on the 55,419 testing e-mails are shown
for reference. Rows 2 and 3: average and standard deviation (between parentheses) of
the expected utility of the adversary (E[Ua]) and of the classifier (E[Uc]), and of the
percentage of false positive (F'P) and false negative (F'N) error rates. The superscripts
‘det’ and ‘rnd’ denote respectively the deterministic and non-deterministic case. Second
row: the adversary does not modify malicious instances. Third row: the adversary
modifies malicious instances according to the optimal strategy.

E[UA]%t E[UA™ E[Uc]? E[Uc]™! FN*Y(%) FN™Y(%) FP (%)
0.49 - 0.65 - 9.78 - 0.15
0.05 (0.04) - 1.67 (0.38) - 0.97 (0.81) - 0.69 (0.37)
0.98 (0.13) 0.56 (0.05) 1.30 (0.41) 1.46 (0.38) 19.55 (2.56) 11.21(1.05) 0.69 (0.37)

and equiprobable weight sets was chosen. Note that, in our experimental setting,
computing the optimal strategy amounts to evaluating, for each set of scores
s = (s1(z1),- .., S610(T619)) corresponding to a given e-mail, the maximum of
Uget(s,s’) and Uid(s,s’) (defined in Sect.) for all possible combinations of
score values of the filtering rules[] We then computed the performance of both
players both in the deterministic and non-deterministic case as their average
expected utility over the 100 possible decision functions, evaluated on the last
55,419 e-mails of the data set (the ones not used for training). The optimal
strategy of the adversary was computed on the same 55,419 e-mails. We used the
following utility functions: Go(—,4) = 5,Ga(+,+) = Ga(—,+) = Ga(—,—) =
0 (namely, the adversary gains 5 if it evades the classifier, and 0 if a spam e-mail
is correctly classified, or whatever happens to legitimate e-mails), Go(—,+) =
—1,Gc(+,—) = —100,Gc(+,4+) = Ge(—, —) = 1 (namely, the classifier looses
1 for misclassifying a spam e-mail as legitimate, he looses 100 for misclassifying
a legitimate e-mail as spam, and gains 1 for correct classifications, taking into
account the fact that in spam filtering false positive errors are much more costly
than false negative ones. According to the above G, the SVM classifier used for
determining the weights of the filtering rules was trained with imbalanced error
costs (1 for false negative and 100 for false positive errors). We did not consider
the cost the classifier faces for measuring features, given that it was a constant
term in these experiments.

The expected utilites and the false positive and false negative error rates
are reported in Table [l together with the results of the default SpamAssassin
configuration for reference. The second row shows values corresponding to the
deterministic case (average and standard deviation over the 100 sets of weights),
when the adversary does not modify malicious patterns. The third row shows the
values corresponding to the deterministic case (averaged as explained above) and
the non-deterministic case (average and standard deviation over the 100 sets of
weights). It can be seen that, in the deterministic case, the expected utility of the
adversary exhibits a very large increase attained by modifying malicious pattern

5 It was possible to carry out an exhaustive search, as most SpamAssassin filtering
modules have binary scores.

Adversarial Pattern Classification 509

at operation phase. This is mirrored by a reduction in the expected utility of
the classifier. The average false negative error rate gives a more clear picture:
it raises from 0.97% to 19.55% (note that the false positive error rate does not
change, since the adversary modifies only malicious patterns, and the classifier
is never retrained). Instead, when the classifier randomises the decision function,
the expected utility of the adversary drops to about half the value attained in the
deterministic case, and the same happens to the false negative error rate, while
the expected utility of the classifier increases to a value in the middle between the
ones achieved in the deterministic case, with and without the adversary reaction.
We point out that this are pessimistic results for the classifier, for two reasons.
First, we assumed that the adversary knew the exact distribution of the decision
function, P(yc|z,y), while in a real setting he can only estimate it. Second, we
computed the adversary’s optimal strategy on testing e-mails.

We can conclude that these experiments support the analytical results de-
rived in Sect. B} based on the analytical framework in [7], showing that hiding
information to the adversary through the randomisation of the decision function
can improve the hardness of evasion of a classifier. Our results also show that
randomisation can be naturally implemented in a MCS architecture.

References

1. Ross, A.A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer,
Heidelberg (2006)

2. Giacinto, G., Roli, F., Didaci, L.: Fusion of multiple classifiers for intrusion detec-
tion in computer networks. Pattern Recognition Letters 24, 1795-1803 (2003)

3. Perdisci, R., Gu, G., Lee, W.: Using an ensemble of one-class svm classifiers to
harden payload-based anomaly detection systems. In: Proc. Int. Conf. Data Mining
(ICDM), pp. 488-498. IEEE Computer Society, Los Alamitos (2006)

4. Sahami, M., Dumais, S., Heckerman, D., Horvitz, E.: A bayesian approach to fil-
tering junk e-mail. AAAI Tech. Rep. WS-98-05, Madison, Wisconsin (1998)

5. Haindl, M., Kittler, J., Roli, F. (eds.): MCS 2007. LNCS, vol. 4472. Springer,
Heidelberg (2007)

6. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Chichester
(2000)

7. Dalvi, N., Domingos, P., Mausam, Sanghai, S., Verma, D.: Adversarial classifica-
tion. In: Proc. ACM Int. Conf. Knowledge Discovery Data Mining, pp. 99-108
(2004)

8. Globerson, A., Roweis, S.T.: Nightmare at test time: robust learning by feature dele-
tion. In: Proc. Int. Conf. Mach. Learn., vol. 148, pp. 353-360. ACM, New York (2006)

9. Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learn-
ing be secure? In: ASTACCS 2006: Proc. ACM Symp. Information, computer and
communications security, pp. 16-25. ACM, New York (2006)

10. Lowd, D., Meek, C.: Adversarial learning. In: Proc. ACM Int. Conf. Knowledge
Discovery Data Mining (KDD), pp. 641-647 (2005)

11. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE Trans.
Pattern Analysis and Machine Intelligence 20(3), 226-239 (1998)

12. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123-140 (1996)

13. Ho, T.K.: The random subspace method for constructing decision forests. IEEE
Trans. Pattern Analysis and Machine Intelligence 20(8), 832-844 (1998)

	Adversarial Pattern Classification Using Multiple Classifiers and Randomisation
	Introduction
	A Framework for Adversarial Pattern Classification
	Hardening Classifiers by Randomisation
	Evade Hard Multiple Classifiers Based on Randomisation Strategy
	Experimental Results
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

