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Abstract. We consider how continuous-time quantum walks can be used for
graph matching. We focus in detail on both exact and inexact graph matching,
and consider in depth the problem of measuring graph similarity. We commence
by constructing an auxiliary graph, in which the two graph to be matched are
co-joined by a layer of indicator nodes (one for each potential correspondence
between a pair of nodes). We simulate a continuous time quantum walk in par-
allel on the two graphs. The layer of connecting indicator nodes in the auxiliary
graph allow quantum interference to take place between the two walks. The in-
terference amplitudes on the indicator nodes are determined by differences in the
two walks. We show how these interference amplitudes can be used to compute
graph edit distances without explicitly determining node correspondences.

1 Introduction

The problem of determining whether a pair of graphs are isomorphic has been exten-
sively studied in the literature. Polynomial time algorithms have been given for graphs
with a number of special properties [[1441111]. Currently the best algorithm for isomor-
phism testing of general graphs is ‘Nauty’ developed by McKay [3]]. Nauty constructs
a canonical labelling of the vertices in a graph and finds generators of the graph’s auto-
morphism group. For most graphs it is extremely fast but its complexity is exponential
for some classes of graphs [[15]. Another important algorithm that carries out subgraph
isomorphism and clique detection, as well as isomorphism testing, was developed by
Ullmann [17]. The algorithm uses back-tracking to successively eliminate nodes from
the search space. When we wish to consider practical problems, however, we typically
need to be able to deal with structural errors. For this reason, inexact graph matching
must be carried out.

Quantum computing has recently attracted attention because of the potential for con-
siderable speed-ups over classical algorithms. For instance, Grover’s search algorithm
[[LO] is quadratically faster and Shor’s factorisation algorithm [16] is exponentially faster
than known classical algorithms. However, quantum algorithms also have a richer struc-
ture than their classical counterparts since they use qubits rather than bits as the basic
representational unit. This structure is exploited in Shor’s algorithm where the Fourier
transform is used to locate factors of a composite number. However, although quan-
tum computers potentially offer computational powerful tools for solving problems of
a combinatorial nature, developing algorithms that take advantage of this power has
proved elusive. This is particularly the case for problems involving graphs, and in par-
ticular the subgraph isomorphism problem.
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One route is potentially furnished by Jozsa’s algorithm which performs period find-
ing and can be generalised to solving the hidden subgroup problem [[12]]. The hidden
subgroup problem is of interest since there is a famous reduction of the graph isomor-
phism problem to it, see for example [12]. Beals was able to show how to efficiently
carry out the quantum Fourier transform on the symmetric group [3] but, despite much
attention, a quantum algorithm that uses this to efficiently solve the graph isomorphism
problem has not been found. In fact, it seems unlikely that the graph isomorphism prob-
lem will succumb to a direct attack using the quantum Fourier transform on the sym-
metric group. In a recent paper, Kempe and Shalev [9] examine which subgroups of
the symmetric group can be distinguished from the identity subgroup using the meth-
ods of quantum Fourier sampling. Ettinger and Hgyer [8] propose a quantum observ-
able for the graph isomorphism problem. However, the computational overheads are
prohibitive.

In this paper we take a different approach, based on quantum walks. These have been
introduced as quantum counterparts of random walks and a good summary is given
by Kempe [[13]. The behaviour of quantum walks is governed by unitary rather than
stochastic matrices. Quantum walks provide an approach to designing quantum algo-
rithms that lends itself more to physical intuition. By making use of the exponentially
faster hitting times that are observed for continuous-time quantum walks on graphs
[L3], Childs et al showed that it is possible to create an oracle based algorithm using a
continuous-time quantum walk that is provably exponentially faster than any possible
classical algorithm [4]].

Our contribution in this paper is to develop a means of computing graph edit distance
based on the continuous-time quantum walk. As we will show, it is also possible to con-
struct the continuous-time quantum walk so that the destructive interference takes place
continuously rather then requiring a final interference step. As the interference takes
place continuously, the interference amplitudes that we observe are reliant more di-
rectly on the differences between the two walks at all times during the walk’s evolution.
Finally, the quantum amplitudes are complex-valued rather then real-valued thus giving
a two dimensional distribution of interference amplitudes, and therefore more informa-
tion with which to calculate the assignment probabilities. We show how to compute a
measure of graph similarity using the interference amplitudes and without the need to
determine explicit node correspondences. This represents a development of our recent
work where we have a) used continuous time quantum walks to develop non-classical
extension of the commute time 7] and b) used quantum interference to compute explicit
correspondences [6].

2 The Continuous-Time Quantum Walk

The continuous-time quantum walk is a natural quantum analogue of the classical ran-
dom walk. Like the classical random walk on a graph, its state space is the set of vertices
of the graph. However, as with the discrete-time quantum walk, the probability of being
at a certain state is given by the square of the amplitude of that state, rather then just
the amplitude of the state (as is the case classically). As with the discrete-time quantum
walk, this allows destructive as well as constructive interference to take place.
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The state space for the continuous-time quantum walk on a graph, G = (V, £), is the
set of vertices, V), as is the case for the classical random walk. In addition, transitions
only occur between adjacent vertices. If the walk is at a vertex u, it moves to adjacent
vertices at a rate proportional to d(lu) . The basis states for the continuous-time quantum
walk are vectors corresponding to particular vertices, as is the case for the classical
random walk, and unlike the discrete-time quantum walk where basis states correspond
to arcs. The basis state corresponding to the walk being at w € V is written, in Dirac
notation, as |u). A general state of the walk is a complex-linear combination of these
basis states and so the state of the walk at time ¢ is given by a vector, |¢;) € CV!I, which
we write componentwise as [¢;) = ), & (t)|u).. Thus, the amplitudes v, (t) € C.

The probability of the walk being in a particular state is given by the square of the am-
plitude of that state. Let X, be the random variable giving the location of the walk at time
t. The probability of being at u € V' at time ¢ is given by Pr(X* = u) = a,af, where
o, is the complex conjugate of «,,. As the total probability must sum to unity, we have
that |a, (t)] € [0,1] forall u € V,t € RT, and > o a(t)e(t) = 1 forall t € RY.
The evolution of the state vector is given by &) =
—iL|1y).. Since the evolution of the probability vector of the
walk at time ¢ depends on the state vector of the walk (not ¢ h,
merely the probability vector), we note that unlike the classi-
cal walk, the quantum walk is not a Markov chain. Given an
initial state for the walk, |1 ), Equationlcan be solved to give

g
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[01) = e~ tEtahg). Thus, given the initial state, we can calculate
the state of the walk at an time, ¢.

3 The Auxiliary Graph

Given two graphs, G and H, an auxiliary graph, I'(G, H), is
constructed on which the walks can interfere. The auxiliary
graph consists of the original two graphs, augemented by a set
of auxiliary vertices that are used as correspondence indicators.

h; . g

Auiliary
vertices

Fig.1. The auxiliary
graph, I'(G,H),
showing the vertices
91,92,93 € Vg and
hi, hs, hs S Vu
connected by way of

Each auxiliary vertex is connected by an edge to one node in auxiliary vertices

each of the original two graphs. That is, each pair of vertices,
g € Vg and h € Vpy, one from each graph, are both adjacent to an auxiliary vertex
labelled vy 3. The auxiliary graph is symmetric with respect to interchanging its two
arguments and with respect to permutations of the vertices in either graph. A schematic
representation of its structure is shown in Figure [Tl

Let G = (Vg,€q) and H = (Vy,Ex), then I'(G, H) = (Vr,Er) and the vertex
and edge sets can be decomposed such that Vi = VaUVyUV4 and Ep = EgUEFUEA
where

Va = {vgg,.n,119: € Vo, hy € Vu}and,
SA = {{gi7v{gi7h.7'}}7 {h’j’v{gmhj}}|gi S VGv h'] S VH}

The auxiliary vertices, V4, serve to connect the two graphs and act as sites on which
the interference takes place. The auxiliary graph is similar to the association graph [2].
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However, information about the structure of the two graphs comes from incorporating
the original graphs themselves rather then through the connections between the aux-
iliary vertices, as is the case for the association graph. We delay our explanation of
how the auxiliary graph allows graph matching to be carried out until after we have
provided the mathematical details of the discrete-time quantum walk on the auxiliary
graph, which we do in the next section.

4 The Continuous-Time Quantum Walk on the Auxiliary Graph

The auxiliary graph, I'(G, H), based on the two graphs G = (Vg,€g) and H =
(Vu,Ex) was described in the previous section. In this section we describe the sim-
ulation of the continuous-time quantum walk on the auxiliary graph. The state of the
quantum walk on I” at time ¢ is given by [¢1) = >, ¢y, @u(t)|u).. The starting state
has amplitudes

d(u)

o ifu € Vg;
au(0) = ¢ =" ifu € Vy;
0 otherwise;

where C = ) d(u)? is the normalisation constant such that the probabilities

. uE VrUY H R .
sum to unity. This starting state is used rather than the more natural starting state
é if u € Vg;
~ 1 -
G, (0) = —& ifu € V.H;
0 otherwise;

where C' = /|Vg||Va/, since [1ho) = > uevy @u(0)[u) is an eigenvector of the Lapla-
cian for I" and thus a stationary state of the walk. If we were to use this starting state
then all the interference amplitudes would remain zero at all times and no information
concerning the two walks would be obtained.

4.1 Behaviour of the Walk

We how consider the behaviour of the walk on the auxiliary graph, taking separately
the cases when the graphs being compared are isomorphic and non-isomorphic.

Isomorphic Graphs. Let G' and H be two graphs such that { : V, — Vg is an
isomorphism between them.

Theorem 1. If ¢ : V, — Vg is a graph isomorphism such that h = ((g) then ay(t) =
—ay (t)

Proof. Let L be the Laplacian matrix for I' = I'(G, H) and L be the Laplacian for
I' = I'(H, G). The basis states for the walk on I" are [u) such that u € Vr and those
on I are |@) such that u € V.
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Let P be the permutation
\C:(u)> ifu e Vg;
Plu) = \gfl(u» ifu € Vy;

01¢=1(m) ¢ (o) I w € VP
andu~g € Vg, u~heVy.

The permutation P is such that L = PLPT. The starting state for the walk on [’
is 1ho) = &(Xuevs [u) — X yep, |v)) and the starting state for the walk on I is

o) = é(zuevH [u) = > veve |v)). We note that

PG = P = 3 ) = (X = 3 I =) ()

uEVH vEVq u€Va vEVH

Consider the amplitude oy (t):

ay(t) = (Gle o) = (GlePEP Hadg) = (g|Pe P o) = — (e |w) = —an (1)
)

Theorem 2. If ( : V, — Vg is a graph isomorphism such that h = ((g) then
Qg (1) =0 forallt € RT.

Proof. Letx(t)=ay,,,, (t). EquationRlgives d/dt|1p;) = —ipL|tpy). Thus, d/dtx(t) =
—i(on(t) + ag(t) — 2x(t)) = 2ipx(t), by Theorem [I The general solution is
x(t) = A;e?™. Since 2(0) = 0 we have that A; = 0, and thus a,,, ,, (t) = z(t) =
Oforallt € RT.

Non-isomorphic Graphs. We now consider the case when G and H are non-
isomorphic, but closely related graphs. In this case, in general, o, ,,(t) # 0 even
if < g,h > is a true assignment. However, the algorithm relies upon v, ,, (t) being
smaller in magnitude for true assignments than it is for false assignments. We investi-
gate whether this assumption allows successful matching to be carried out in Section[6
In the next section we consider at what point in time the interference amplitudes for the
walk should be used so that these amplitudes are most easily distinguished.

4.2 Measuring the Interference Amplitudes

The algorithm that we propose uses a set of interference amplitudes, corresponding
to the set of possible vertex-vertex assignments, in order to carry out graph matching.
For exact graph matching the point during the evolution of the walk at which we use
the interference amplitudes, vy, ,, (1), g € Vg, h € Vg, is not important. We know
that v, ,, (t) = 0 forall t € RT if < g,h > is a true assignment, and it is highly
improbable that if < g,h > is a false assignment then a,, ,, (1) will be exactly at
some particular 7 but not at other times. Thus, we base our choice of 7 on how well it
will allow inexact graph matching to be carried out.
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Fig. 2. The probabilities associated with the interference states for a particular vertex (left) and
for just the interference state for the true assignments (right). Note the difference in scale on the
y-axis.

Fig. 3. The distributions of the interference amplitudes for a pair of non-isomorphic graphs, G
and H,att =0.1,t = 1.0, 7 = t = 1.3 and ¢t = 4.0. The probabilities for the interference states
associated with a particular vertex g € V are shown in Figure2l

Let G and H be a pair of non-isomorphic, related graphs. The probabilities for the
set of | V| interference states associated with a particular vertex g € V¢ are shown in
Figure[2l The distribution of the complete set of interference amplitudes at various times
during the evolution of the walk are shown in Figure[3l We note that the probabilities for
the false assignments have similar periods. In comparison, the probability for the true
assignment continues to increase with time as the differences in the states of the two
walks increase. Thus we select 7 such that the variance of the real part of the distribution
of all interference amplitudes is at its first maximum. This corresponds to ¢ = 1.3 in
FiguresPland[3l

We chose this value of 7 since at this time the interference amplitudes for the false
matches are all close to their local maxima. Thus the separation between the true and
false interference amplitudes should be at its greatest. Since the periods for the proba-
bilities for the false assignments are not exactly the same, the subsequent maxima are
not as close in terms of the times at which they are obtained. Additionally, as ¢ increases
the probabilities for the true assignments continue to increase, thus they are most easily
distinguished at the first maximum. We will henceforth refer to a,,, ,, (T) as the inter-
ference amplitude for g € Vg and h € V), and will denote it by a~ (g, h), or simply «
if it is unimportant to which pair of vertices it refers.

5 A Distance Measure from the Interference Amplitudes

Let 2 = {|a"(g:,h;)|> : i € Vg, hj € Vu} be the squared magnitudes of the set
of interference amplitudes for the two graphs. Further, let §2)y,,| (where G is the graph
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with the fewest amplitudes if [Vg| # |Vu|) be the smallest |V¢| elements of 2. We
define d(G, H) to be the variance of {2y, divided by the variance of (2:

d(G, H) = Vaii“r(i'!‘;j').

Theorem 3. IfG = H thend(G,H) =0

Proof. If G = H then there exists an isomorphism, { : Vg — Vpg. Thus, for each
g € Vg we have, by Theorem Pl o~ (g,((g)) = 0, for all ¢ € R™. Therefore there
are at least |Vg| assignment amplitudes equal to zero, hence var(§2)y,,|) = 0 and so
d(G,H) = 0.

Note that we only need calculate the set of interference amplitudes in order to calculate
d(G, H), we need not compute the correspondence match between the graphs. As we
will show in the experimental section, the variance of the smallest interference ampli-
tudes are closely related to the edit distance between graphs.

6 Experiments

We now consider the proposed graph distance measure, firstly on synthetic graphs and
secondly on graphs obtained from real-world data. Figure ] shows plots of the distance
measure as functions of the amount of noise. The left-hand panel in Figure [ shows the
distance measure averaged over the graphs with different numbers of vertices. It can be
seen that the relationship between the distance measure and the amount of noise is close
to linear. The right-hand panel in Figure 4| shows the distance measure as a function of
noise for graphs with different numbers of vertices. The distance d increases steadily as
the level of noise is increased for all the graphs.

We now explore the use of the distance measure for graphs derived from real world
image data. For this we take images from the COIL database and construct Delaunay
triangulations. We consider 12 different objects from the database with view angles be-
tween 0° and 45°. Firstly, we consider the distance measure’s ability to form trajectories
of the graphs, ordering them according to the view angle. Secondly, we analyse the ef-
fectiveness of the distance measure for graph clustering. Examples of views of each
of the images used together with their Delaunay triangulations are shown in Figure

o
0 005 01 o015 02 025 03 035 04 o
Fraction of noise

Fig. 4. [Left: The distance measure as a function of the amount of noise averaged over graphs
with between 10 and 50 vertices. Right: As a function of the amount of noise for graphs with
between 10 and 50 vertices.
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Fig. 5. Example COIL Images

Note that the images are represented by un-attributed, un-weighted graphs—all the
information is represented in the connectivity structure of the Delaunay triangulations.

Figure [6] shows the average of our graph distance as a function of the difference in
angle between the views from which the graphs were obtained. The distance between
a graph and itself (that is, when the angular distance is zero) is guaranteed to be zero
by Theorem [3] The difference in the distance measure between a pair of graphs with
zero angular distance (between the images) and 5° is significantly larger than any other
change in distance for a 5° change in angular distance. This shows that the distance
measure distinguishes most strongly between pairs of isomorphic graphs and pairs of
graphs that are related but non-isomorphic than it does between closely related and
distantly related non-isomorphic graphs. Such behaviour reflects the understanding that
there is a clear distinction between isomorphic graphs and non-isomorphic graphs but a
less clear distinction (and hence a smaller change in graph distance) between ‘closely’
and ‘less closely’ related graphs.

We now turn our attention to the ability of the dis- or
tance measure to distinguish between different sets 0s
of graphs and so allow graph clustering to be car- 0s
ried out. We look at the ability of the distance mea- £
sure to cluster two distinct sets of graphs. That is,
we take two sets of graphs at a time, carry out di- o2
mensionality reduction on the matrix of distances be-
tween them and embed them in 2D space. We then o s o e m o e m W
look at whether the two clusters are linearly sepa-
rable, and what proportion of the graphs in each set Fig-6. Distance Measure versus
have another graph from the same set as their nearest Angular Distance for COIL Graphs
neighbour.

We take two sets of graphs, each corresponding to views of a different object, each
set containing 10 graphs. We form the matrix of distances between all these graphs to
give a 20 by 20 matrix of distances. We then perform MDS on this matrix of distances to
produce a 2D embedding of the graphs, where one data point corresponds to one graph.
Table[T shows the number of times the clusters of graphs for each of the 132 pairings of
the objects are linearly separable when the two sets of graphs are embedded using MDS.
It also shows the proportion of times that the nearest neighbour for a particular graph
in the cluster is a graph derived from the same image as it was. Looking at the second
column, we see that in over half of the cases the two clusters are linearly separable.
The third column shows the total number of graphs in each set for which its nearest
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Table 1. Clustering results of graphs derived from images from COIL. The number of clusters
that are linearly separable and the mean number of graphs whose nearest neighbour is from the
same set, averaged over all of the clusters.

Object Number of clusters Nearest neighbour
linearly separable (out of 11) from same set (out of 10)
1 6 9.1
2 7 8.5
3 4 8.4
4 4 7.9
5 7 9.2
6 8 9.5
7 7 8.9
8 10 9.7
9 3 8.2
10 6 8.7
11 6 8.8
12 6 8.7
Mean 6.2 8.8
W .1 15 R
H :ﬂ: i ’ >. i ‘ n‘

Fig. 7. The matrix of distances between individual graphs (left) and the average distances between
sets of graphs (right). Completely black indicates a distance of 0, the lighter the grey the greater
the distance.

neighbour is from the same set, averaged over the 11 clusterings carried out for each
object. The mean for all the different sets is 8.8 out of a possible 10 indicating that the
distance measure distinguishes successfully between graphs from different sets.

Figure [7] shows the matrix of distances between pairs of graphs and the mean dis-
tances between the sets of graphs. The smallest distances between graphs (left-hand
plot, those closest to black in the figure) lie closest to the diagonal, these are the pairs
of graphs representing images of the same objects and with a small angular distance
between them.

7 Conclusions

We have suggested a distance measure based on the interference of the continuous-
time quantum walk . The measure is computed by taking the variance of the smallest n
interference amplitudes (where n is the number of vertices) and normalising by dividing
by the variance of the whole distribution. Our experiments showed that this measure
performed well.
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