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Abstract. This paper shows how to extract permutation invariant graph
characteristics from the Ihara zeta function. In a previous paper, we have
shown that the Ihara zeta function leads to a polynomial characterization
of graph structure, and we have shown empirically that the coefficients of
the polynomial can be used as to cluster graphs. The aim in this paper is to
take this study further by showing how to select the most significant coef-
ficients and how these can be used to gauge graph similarity. Experiments
on real-world datasets reveal that the selected coefficients give results that
are significantly better than those obtained with the Laplacian spectrum.

1 Introduction

One of the bottlenecks in comparing graphs using graph edit distance[13] is that
its computation requires correspondence matches. This problem can be over-
come if pattern vectors composed of graph characteristics are used instead, and
similarity is measured using the distance between vectors. There are a number of
alternative characterizations available. For instance, one could use classical prop-
erties of the graph such as diameter, perimeter length or Cheeger number[4]
or normalized quantities such as the edge or triangle densities. Several possi-
bilities are offered by spectral graph theory, and these include the Laplacian
spectrum[10] or symmetric polynomials computed from the spectral matrix[16].

Recently, however Bai and Hancock have shown that the zeta function of a
graph offers an interesting means of characterizing its structure[1]. They have
demonstrated that the Rosenberg zeta function[11] is related to the Mellin mo-
ments of the heat kernel trace, and have used the moments generated by sampling
the Rosenberg zeta function to generate graph feature vectors. The zeta function
computed by Bai and Hancock is determined by the Laplacian spectrum. How-
ever, in general the zeta function of a graph can be thought of as an analogue
of the Riemann zeta function, with prime numbers replaced by prime paths[2].
In fact, the zeta function is a compact representation of information concerning
the distribution of paths and path lengths on a graph.

In is this paper, we aim to explore this relationship in a greater depth. We
turn to the Ihara zeta function. The Ihara zeta function was first detailed in [7]
and [8]. Hashimoto subsequently deduced explicit factorizations for bi-regular
bipartite graphs[6]. Bass has generalized Hashimoto’s factorization to all finite
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graphs[2]. In a recent paper we have performed a preliminary study of the Ihara
zeta function, and have shown how it can be sampled to give a permutation
invariant means of characterizing graphs[12]. However, to be rendered tractable
for real world problems the issue of how to avoid sampling the infinities at poles
and how to generate stable pattern vectors from the Ihara zeta function must be
addressed. We have shown how to overcome this problem by establishing pattern
vectors using the polynomial coefficients of the reciprocal Ihara zeta function.

The aim in this paper is to take this work one step further. In particular we
aim to study in depth the information conveyed by the individual polynomial
coefficients and their relationship to the path length structure of a graph. We
show how a reduced set of selected coefficients can be used to efficiently char-
acterize graphs, and that the Euclidean distance between vectors composed of
these coefficients can be used to approximate the edit distance between graphs.

2 The Ihara Zeta Function

In this section we review the theory of the Ihara zeta function used in our earlier
work. The Ihara zeta function of a graph can be denoted in the form of a rational
function[2]:

ZG(u) =
(
1 − u2)χ(G)

det
(
I − uA + u2Q

)−1
(1)

Here, χ(G)is the Euler Number of the graph, which is defined as the difference
between the vertex number |V (G)| and the edge number |E(G)| of the graph, i.e.
χ(G) = |V (G)|−|E(G)|, and A is the adjacency matrix of the graph. The degree
matrix D can be generated by placing the column sums as the diagonal elements,
while setting the off-diagonal elements zeros. Finally, Q is the difference of the
degree matrix D and the identity matrix I, i.e. Q = D − I.

3 Polynomial Expression

For md2 graphs, i.e. the graphs with vertex degree at least 2, it is clear-cut that
(1) can be rewritten in the form of the reciprocal of a polynomial. However, it is
difficult to compute the coefficients of the reciprocal of the Ihara zeta function
from (1) in a uniform way, except by resorting to software for symbolic calcula-
tion. To efficiently compute these coefficients, it is more convenient to transform
the form of the Ihara zeta function in (1) into a concise expression. The Ihara
zeta function can also be written in the form of determinant expression[9]

ZG(u) =
1

det(I − uT)
(2)

where T is the Perron-Frobenius Operator[15] on the oriented line graph of the
original graph, and is an 2m × 2m square matrix with dimensionality m the
number of the edges of the original graph. According to (2), the reciprocal of
the Ihara zeta function can be rewritten as:



Graph Characteristics from the Ihara Zeta Function 259

Z−1
G (u) = det(I − uT)

= (u)2mdet
(

1
u
I − T

)

= u2m[c0

(
1
u

)2m

+ c1

(
1
u

)2m−1

+ · · · + c2m−1

(
1
u

)
+ c2m]

= c0 + c1u + · · · + c2m−1u
2m−1 + c2mu2m (3)

From (3), the coefficients of the reciprocal of the Ihara zeta function can be
derived from the coefficients of the characteristic polynomial of the matrix T.
The calculation of the above coefficients can be converted to a summation of a
series of determinants[3]:

ck =
∑

( 2m
2m−k)

∣∣
∣
∣
∣
∣∣
∣

b1,1 b1,2 · · · b1,2m

b2,1 b2,2 · · · b2,2m

· · · · · · · · · · · ·
b2m,1 b2m,2 · · · b2m,2m

∣∣
∣
∣
∣
∣∣
∣

(4)

There are in total
( 2m
2m−k

)
determinants in the sum. The relevant matrix in each

determinant is created by replacing (2m− k) of the 2m diagonal elements of the
matrix T with -1 and the remaining elements in those corresponding rows and
columns with 0.

4 Pattern Vectors Using Coefficients as Feature
Components

To establish pattern vectors from the Ihara zeta function for the purposes of ma-
chine learning, one approach is to consider taking function samples as elements.
However, if this strategy is adopted then there is the danger of sampling at
poles, and these give rise to infinities. Hence, pattern vectors consisting of func-
tion samples are potentially unstable since the distribution of poles is unknown
beforehand.

To overcome this problem, we note that the coefficients of the reciprocal of the
Ihara zeta function do not give rise to infinities. These coefficients are essentially
descriptors of graph structures. As long as G is a simple graph, a) the coefficients
c3, c4, and c5 are respectively the negative of twice the number of triangles,
squares, and pentagons in G, b) c6 is the negative of twice the number of
hexagons in G plus 4 times the number of pairs of edge disjoint triangles plus
twice the number of pairs of triangles with a common edge, and c) c7 is the
negative of twice the number of heptagons in G plus 4 times the number of edge
disjoint pairs of one triangle and one square plus twice the number of pairs of
one triangle and one square that share a common edge[14]. The highest order
coefficient is associated with the number of edges incident to vertex vi, i.e. the
node degree d(vi):

c2m = (−1)χ(G)
∏

vi∈V

(d(vi) − 1) (5)
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The set of coefficients can play the role of pattern vectors for clustering, not only
because of their immunity to the distribution of the poles, but also due to their
ability to characterize the graph structures.

Although the full set of coefficients associated with a graph can be used to
construct a pattern vector, only a subset of the coefficients contribute signif-
icantly. Some coefficients may be redundant and others may reduce the effec-
tiveness of machine learning algorithms. We thus need to select the subset of
salient coefficients, i.e. those that take on distinct values for different classes
and exhibit small distinctiveness within class variation. To do this, we compute
the between-class scatter Sb =

∑M
i=1 Ni(c̄k,i − c̄k)2 and the within-class scatter

Sw =
∑M

i=1
∑

ck,i,j∈Ci
(ck,i,j − c̄k,i)2 of the individual coefficients, where c̄k is

the mean of all the ck samples, c̄k,i is the mean of the ck samples in class Ci,
Ni is the number of the ck samples in class Ci and M is the total number of
classes. We then use the criterion function J = (Sb + Sw)/Sw to evaluate the
performance of individual coefficients. Individual coefficients which give a large
contribution to the criterion function are the most significant.

5 Experiment

5.1 Synthetic Graphs

We commence by investigating the relationship between the edit distance and
the Euclidean distance between vectors of Ihara coefficients. We begin with a set
of randomly generated md2 graphs. The seed graph for the set has 100 vertices

(a) House Sequences

(b) COIL Datasets

Fig. 1. Datasets for Experiments
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(a) Unselected Coefficients
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(b) Laplacian Spectrum
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(c) Selected Coefficients
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Fig. 2. Feature Distance
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Fig. 3. Criterion Function Value

and 300 edges. The remainder of the graphs in the set are obtained by deleting
the edges of the seed graph (indexed from 1 to 30). At each level of editing,
100 trials are performed and the edges deleted are chosen randomly, subject to
preserving the md2 constraint. We compare the Euclidean distance between the
Ihara coefficients with the both the edit distance and the distance between Lapla-
cian spectra. In our experiments, we compute the Ihara coefficients using (4) and
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(b) c4
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Fig. 4. Coefficients from COIL

(5), constructing a pattern vector in the form vG = [c3 c4 c5 c6 c7 ln(|c2m|)]T .
The final component of the pattern vector is scaled in a logarithmic manner for
the purpose of avoiding high order oscillations. The Lapalacian spectral pattern
vectors are formed by taking the second smallest through to the seventh small-
est eigenvalues of graph Laplacian as components. The experimental results are
shown in Fig.2. Fig.2(a) shows the distance between coefficient pattern vectors
from the seed graph and the edited graph as a function of the edit distance,
i.e. the number of edges deleted. The relative standard deviation (RSD) is also
shown as an error bar. The coefficient distance generally follows the edit dis-
tance. Fig.2(b) shows the Laplacian spectral distance as well as the correspond-
ing RSD as a function of the edit distance (but scaled differently to Fig.2(a)).
From Fig.2(a) and Fig.2(b) it is clear that the dynamic range of the coefficient
feature distance is much larger than that of the spectral distance for correspond-
ing edit distance. Thus the coefficients are more sensitive to graph edits than
the Laplacian spectra. To evaluate how reliable the coefficient distance and the
spectral distance predict the edit distance, we plot their RSD as a function of
edit distance in Fig.2(d). The RSD of the coefficient distance is larger than that
of the spectral distance. This means that the Laplacian spectra are more stable
than the coefficients under graph edits.
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(a) Laplacian Spectrum on Houses
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(b) Laplacian Spectrum on COIL
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(c) Unselected Coefficients on Houses
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(d) Unselected Coefficients on COIL

−400 −300 −200 −100 0 100 200 300 400 500
−10

−5

0

5

10

15  

First Eigenvector

 

S
ec

on
d 

E
ig

en
ve

ct
or

CMU
MOVI
Chalet

(e) Selected Coefficients on Houses
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(f) Selected Coefficients on COIL

Fig. 5. Clustering Performance

5.2 Visual Clustering

We apply the pattern vectors composed of Ihara coefficients to two graph datasets
used previously in the work of Bai and Hancock. The first set of graphs are ex-
tracted from three sequences of images of model houses (referred to as the CMU,
MOVI and chalet sequences in Fig.1(a)). The second set of graphs are extracted
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Fig. 6. Rand Index

from images of the objects in COIL database (Fig.1(b)). We first extract cor-
ner points using the Harris detector. Then we establish Delaunay graphs based
on these corner points as nodes. The pattern vectors are formed as explained in
Section 5.1. We perform PCA on the pattern vectors to embed them into a 3-
dimensional space. We then locate the clusters using K-means method.

Table 1. Rand Indices

(a) (b) (c) (d) (e) (f) (g)
House 0.82 0.71 0.83 0.73 0.73 0.83 0.40
COlL 0.99 0.84 0.98 0.79 0.79 0.80 0.66

Table 1 gives the Rand indices obtained when clustering is attempted using
different features. The methods are (a) the Laplacian spectrum (second smallest
eigenvalue through to the seventh samllest eignevalues), (b) the Rosenberg zeta
function used by Bai and Hancock sampled at the integer values 1 to 6, (c) the
Ihara zeta function sampled over the range from 0.001 to 0.006 with interval 0.001,
(d) the Ihara zeta function sampled over the range from 0.01 to 0.06 with interval
0.01, (e) the Ihara zeta function sampled over the range from 0.11 to 0.16 with in-
terval 0.01 and (f) the Ihara zeta function sampled over the range from 0.1 to 0.6
with interval 0.1. The clusters are located using the K-means method. In Table 1
we can see that the proposed method outperforms the Rosenberg zeta function,
and is comparable with the Laplacian spectrum. The final three columns in Table
1 indicate the performance of pattern vectors constructed by sampling the Ihara
zeta function. If the samples are appropriately chosen, then this method is com-
parable with the use of the coefficients. However, when function is sampled in the
proximity of poles, the clustering performance deteriorates.

Finally, we explore which combination of coefficients gives the best perfor-
mance. To do this, we select the coefficients according to the criterion introduced
in Section 4.2. We select 3 objects for each of which 10 sample images are used as
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training data to compute the criterion function value. Fig.3 shows the criterion
function values for the coefficients extracted from the two datasets. The first and
last coefficients offer more discrimination than the middle ones. This is because
the remaining coefficients provide no significantly increase in information over
c3, c4 and c2m since they are determined by the number of triangles and squares
in the graph and the node degrees. This information can be fully represented
by c3, c4 and c2m. Based on this feature selection analysis we work with the
pattern vector vGs = [c3 c4 ln(|c2m|)]T . The three components of vGs extracted
from the first 4 objects in the COIL dataset are shown in Fig.4 as a function of
view numbers. Each line in a plot represents the coefficient extracted from one
object. The lines in each plot are well separated thus indicating that the three
coefficients are sufficient to distinguish different object classes. Fig.2(c) shows
the feature distance computed using the three selected coefficients as a function
of the edit distance. Compared with Fig.2(a), the selected coefficients are more
linear with the edit distance than the unselected coefficients. From Fig.2(d), it
is clear that although the unselected coefficients are less stable than the graph
spectra, the selected coefficients offer best stability. We apply the pattern vectors
of a) Laplacian spectra, b) unselected Ihara coefficients and c) selected Ihara co-
efficients to both the house sequences and the first four objects in COIL dataset.
Fig.4 shows the clustering results obtained by performing PCA on the pattern
vectors. The selected coefficients outperform both the Laplacian spectra and the
unselected coefficients,and give clusters with better separation.

We then confine our attention to the COIL dataset, and evaluate the clustering
performance obtained with different numbers of object classes. After performing
PCA on the pattern vectors, we locate the clusters using the K-means method
and calculate the Rand index. The Rand index for each pattern vector is plotted
as a function of class number in Fig.4. The selected coefficients gives the best
performance and the Laplacian spectra the poorest performance.

6 Conclusion

In this paper, we show how to construct pattern vectors for graph characteri-
zation using the Ihara zeta function. We compute polynomial coefficients using
the reciprocal of the Ihara zeta function. We construct pattern vectors by per-
forming feature selection on the coefficients. Unlike the samples of the Ihara zeta
function, the coefficients are not prone to singularities due to poles. The method
outperforms the Laplacian spectrum both in terms of stability and in clustering
performance on md2 graphs.
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