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Abstract. Video surveillance of large facilities, such as airports, rail
stations and casinos, is developing rapidly. Cameras installed at such
locations often overlook large crowds, which makes problems such as
activity and scene understanding very challenging. Traditional activ-
ity recognition methods which rely on input from lower level processing
units dealing with background subtraction and tracking, are unable to
cope with frequent occlusions in such scenes. In this paper, we propose a
novel activity representation and recognition method that bypasses these
commonly used low level modules. We model each local spatio-temporal
patch as a dynamic texture. Using a Martin distance metric to compare
two patches based on their estimated dynamic texture parameters, we
present a method to temporally stitch together local regions to form
activity streamlines and represent each streamline by its constituent dy-
namic textures. This allows us to seamlessly perform activity recognition
without explicitly detecting individuals in the scene. We demonstrate our
method on multiple real data sets and show promising results.

1 Introduction

Activity representation and understanding in video sequences has been exten-
sively studied over the last few years. For simple activity recognition, people use
shape features to perform human movement analysis [1]. Our previous activity
recognition works can identify people walk, run, skip, etc. [2][3]. For complexity
activity recognition, people use hidden markov model, dynamic Bayesian net-
works method to inference [4][5]. However, most activity recognition methods
show poor results when a large number of people are seen occluding each other
in the scene. Surveillance videos in public areas such as airports and railway sta-
tions often contain crowded environments causing problems for most computer
vision applications. Many of these problems stem from the inability of low-level
vision algorithms (such as background subtraction, tracking, feature extraction
etc.) to deal with crowded video data set. Thus commonly seen activities such as
people moving in different directions, crowd formation and dispersal, etc. become
very hard to detect and represent reliably.

In this paper, we present a motion texture activity representation to capture
dynamic content that is not well represented by individual objects, or small
numbers of interacting objects. The types of activities can include people moving
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in different direction, crowd formation and dispersal, etc. To represent it, we use
dynamic textures for characterizing the underlying activities without requiring
the inference of objects trajectories. Dynamic texture can be viewed as sequences
of images of moving scenes that exhibit certain stationary properties in space
and time [6]. [6] showed that linear dynamic textures can be characterized as
the output of an auto-regressive moving average model. They obtain a closed
form solution for learning the parameters of a linear dynamic texture. They
demonstrated being able to extrapolate dynamic texture sequences as well as
classify them based on the learnt model. Saisan et. al [7] further extended this
work to model and recognize over 50 different dynamic textures. They evaluated
three distance measures - the Geodesic distance metric, the Martin distance
metric and Subspace angles.

Fujita et. al [9] extended the notion of a single dynamic texture spanning
the whole image to multiple dynamic textures in different regions of an im-
age. They partitioned the image into several regions, each region having its own
dynamic model. They use a distance metrics for a non-linear space, so the fea-
tures of dynamic textures are based on the impulse responses of state variables.
These responses were shown to be efficient to compute and effective for matching
purposes.

Chan et. al [8] proposed using mixtures of dynamic textures to model and
segment video sequences. They used an expectation maximization algorithm to
learn the parameters of the model and demonstrated their approach on natural
scenes and highway traffic videos. Zhao et. al [10] extended the Local Binary
Pattern operator commonly used in texture analysis to combine appearance as
well as motion information. This operator was rotation invariant and robust
to gray-scale variations making and was used to recognize dynamic textures.
Our previous works in dynamic texture is for spatial segmentation [11] for video
surveillance data.

In this paper, we first partition the whole image to multiple regions. Each
region (patch) has its own dynamic models. Second, we link multiple spatio-
temporal patches in time to form video streamlines. This consists of three
components: temporal association of patches, stop criterion for the temporal
association and streamline editing to filter out noisy links. We then aggregate
multiple streamlines in a video sequence using the Karcher mean concept [12] to
form an activity model. An extension of the Martin distance serves as a distance
metric between two activities. This allows us to recognize activities of people
and cars in different video scenarios. We demonstrate our approach on a wide
variety of scenes such as an airport data set, a subway station data set, a retail
store data set and a traffic intersection data set.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of dynamic texture modeling and presents the distance metrics that between
two dynamic texture models. Section 3 discusses activity representation and
recognition using dynamic texture. We present experimental results in Section
4. Section 5 is conclusion.
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2 Dynamic Textures

In this section, we begin by providing a brief overview of the research in dynamic
textures. The interested reader can refer the detail in [6]. For a sequence of
images, we use y(t) ∈ Rm, t = 1, ..., τ to represents pixel intensity. Doretto et
al. [6] view y(t) as a noise observation on a linear dynamic texture. Therefore,
they represent this linear dynamic texture by an auto-regressive, moving average
process with unknown input distribution:

x(t + 1) = Ax(t) + v(t),
y(t) = Cx(t) + w(t),

v(t) ∼ N(0, Q); x(0) = x0
w(t) ∼ N(0, R) (1)

where x(t) ∈ Rn is the hidden state, A ∈ Rn×n is the state transition matrix,
representing the dynamics. C ∈ Rm×n is the output matrix, v(t) is the driv-
ing input to the system, which is assumed to be Gaussian white noise, w(t) is
measurement noise.

A system identification method can be used to estimate the dynamic texture
parameters. Let’s form a matrix Y τ

1 = [y(1), ..., y(τ)] ∈ Rm×τ for the sequence of
τ frames. To make the estimation of the dynamic texture unique, [6] let m � n
and rank(C) = n, and use canonical model CT C = In ( In is the n × n identity
matrix) to give a closed form solution by singular value decomposition Y τ

1 =
UΣV T . The estimated dynamic texture parameters of matrix C and A are

Â = ΣV T

[
0 0

Ir−1 0

]
V (V T

[
Ir−1 0

0 0

]
V )−1Σ−1,

Ĉ = U

(2)

The discrimination between two dynamic models can be calculated through
parameters A and C, since the dynamic texture is viewed as ARMA model. Sev-
eral distance matrices between dynamic textures were proposed [7][9]. For exam-
ple, the subspace angle between two dynamic textures parameters [A1, C1] and
[A2, C2] can be computed. Using these subspace angles (θi, i = 1, ..., n) , [7] used
the Martin distance as the distance between the two dynamic texture parameters.

d = ln
n∏

i=1

1
cos2(θi)

(3)

3 Activity Representation

Our proposed activity representation framework is based on the analysis of mo-
tion flow in different parts of the video sequence. This allows us to recognize
video sequence that correspond to different activities.

3.1 Motion Flow Forming

We begin by partitioning an image into overlapping rectangular regions. We
group temporally neighboring regions to form a spatio temporal volume (which
we call a patch) and consider each patch volume to be a dynamic texture. For
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example, we can use five consecutive frames to form the patch volume. The
dynamic texture parameters of the patch volume are estimated as in Section
2 and the Martin distance metric is used as a distance measure between two
dynamic textures. Patches are then connected temporally to form streamlines,
as shown in Figure 1. There are three components to streamline formation:
temporal association of the patches, a stop criterion for the temporal association
and streamline editing to remove noise.

The temporal association of patches is carried out as follows. Each patch’s
dynamic texture parameters are estimated independent of other patches in the
neighborhood. The estimation of these parameters is carried out using a five
frame sequence in the immediate future of the current frame. Temporal associa-
tion is to connect a patch at time t to a patch at time t+1 based on the distance
between the corresponding dynamic texture parameters. If the motion of objects
in the video sequence is sufficiently small, one can assume that the patch at time
t + 1 that is connected to a patch Bi(t) at time t lies in its immediate spatial
neighborhood. Thus we compute the Martin distance between patch Bi(t) and
the nine patches in the immediate spatial neighborhood at time t + 1. A patch
Bĵ(t + 1) is temporally associated with Bi(t) if,

ĵ = argmin d(DT (Bi(t)), DT (Bj(t + 1))) (4)

This procedure is continued until a stopping criterion is satisfied, resulting in a
streamline.

Next we present two stopping criteria for the streamline formation procedure.
First, if all nine neighboring patches at time t + 1 do not exhibit any motion,
one can assume that the object has either stopped moving or has left the scene.
Thus the corresponding streamline is ceased. Second, if objects overlap leading
to the occlusion of the object in consideration, the dynamic texture parameters
of all nine neighborhood patches will differ greatly with the dynamic texture
parameters of the current patch Bi(t). In particular, if d(DT (Bi(t)), DT (Bj(t +
1))) > (μ + 3δ), where μ is the mean and δ is the standard deviation of the
Martin distances calculated during the streamline formation, the corresponding
streamline is ceased.

Finally we perform streamline editing. We filter out three types of noise.
Firstly, we filter out the streamlines whose starting patch is on the boundary.
Such streamlines may join neighboring patches out of the boundaries of the
image in the next few frames, and are thus removed. Secondly, streamlines with
no significant change of coordinates are considered noisy streamlines and are
removed. These streamlines correspond to isolated movement observed in the
background. Thirdly, spurious streamlines characterized by lengths shorter than
a predefined threshold are filtered out. The resulting set of streamlines is a robust
set of streamlines that can be used for the purpose of activity recognition.

Figure 2 presents an example of streamlines formed in an occlude situation.
The upper images in Figure 2 shows three image frames at three time instants to
represent a image sequence. Two persons move towards, get occluded and then
separate. The lower image in Figure 2 present the streamlines corresponding to



Activity Representation in Crowd 111

Fig. 1. Flow forming by connecting patches using the similarity between the dynamic
texture parameters of the patches

the occluded person get divided at the time of the occlusion using the stopping
criteria described above.

3.2 Activity Recognition

The proposed activity representation uses the motion flow formed in the above
section. For example, a query sreamline Sq composes DT q

t , where DT, t = 1, ..., n
means dynamic texture parameters, including A and C. That is, the estimated
dynamic texture parameters of the patches forming a streamline can be used as
features to describe the streamline. An extension to the Martin distance serves as
a distance metric between any two streamlines. This metric is used to compare a
query streamline Sq with a streamline Sp representing activities in the training
data as follows,

d(Sq, Sp) =
1
n

n∑
t=1

d(DT q
t , DT p

t ) (5)

We perform activity recognition by comparing the distance of a query activity
(streamline) to all activities in the training database. Then we use a k-nearest
neighbor classification method to select the best match.

There may be many streamlines labeled with the same activity category in
the training data. Instead of performing an exhaustive search over every train-
ing data, which is time consuming, we present a method to aggregate multi-
ple streamlines in each class of the training database to form one representative
streamline. Thus the number of comparisons that must be made to classify a
query streamline will equal the number of categories in the training dataset. Since
the dynamic texture parameters are not defined in a Euclidean space, a simple
mean calculation cannot be used to aggregate multiple streamlines. Instead, in
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Fig. 2. upper images are an example of overlapping movement; lower image is the
formed streamlines, the overlapped object is divided into two parts according to the
stop criteria

this paper we use the Karcher mean concept to aggregate multiple streamlines
into a representative set of dynamic texture parameters Srep given by,

rep(t) = argmin
k

∑
j

d(DT (Bk(t)), DT (Bj(t))) (6)

for j �= k, t = 1, ..., n (7)

where d(·) denotes the Martin distance given by Equation (3).
We perform activity recognition using the nearest neighbor classification by

comparing the distance between the query streamline Sq with the representative
streamline Srep for each activity category in the training data.

4 Experimental Results

In this section, we present experimental results for the proposed activity repre-
sentation and recognition method. All the experiments were conducted on a PC
with an Intel Core2, 2.4 GHz processor and 2GB RAM.

Dataset : the experiments were conducted on video sequences from various real
dataset. First, we have airport dataset collected at an airport. This dataset is
also used in our previous paper [12]. Second, we downloaded the public dataset,
i-Lid dataset1 [13], which consists of video sequences collected from surveillance
cameras overlooking a subway station. Third, we downloaded the UCF dataset
from [14]. We used two sets of videos from this dataset: the retail escalator video
sequences and the vehicle traffic video sequences.
1 http://www.elec.qmul.ac.uk/staffinfo/andrea/avss2007 ss challenge.html
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For each dataset, we selected n video sequences with k different activities.
Activities in every video sequence were manually labeled to form the ground
truth. Half the sequences were used for training, and the other half for testing.
The training video sequences were utilized to obtain representative streamlines
for the different activities as given in Section 3.2. The performance of the system
is given by the classification accuracy of all streamlines in the video sequences
used for testing.

Table 1 gives the performance of the proposed method on the airport dataset.
This consists of two major activities: people moving towards the camera (down)
and away from the camera (up). The training data includes 12 down-streamlines
and 18 up-streamlines. The test data includes 74 down-streamlines and 161 up-
streamlines. Table 1 shows the classification accuracy for the two activities.

Table 1. Classification accuracy - Airport dataset

Activity Down Up
Down 97% 3%
Up 0% 100%

Table 2. Classification accuracy - Subway dataset

Activity Down Up Left Right
Down 97% 0% 3% 0%
Up 0% 76% 24% 0%
Left 15% 0% 85% 0%
Right 0% 0% 0% 100%

Fig. 3. Activity recognition shown for sample frames from the subway dataset
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Fig. 4. Activity recognition shown for sample frames from the UCF retail escalator
dataset. The red and green arrows denote the two major motion patterns observed in
the video sequences. The corresponding color coded patches denote the labels outputted
by our system.

Fig. 5. Activity recognition shown for sample frames from the UCF traffic dataset. The
red and green arrows denote the two major motion patterns. The corresponding color
coded patches denote the outputted activity labels. The small resolution of objects in
the scene causes some patches to be erroneously classified.

There are four major activities involved in the video sequences of the subway
dataset- moving left, moving right, moving up, and moving down. Figure 3 shows
a few frames from the subway dataset with the recognized activities. The training
data included 17 down-streamlines, 18 up-streamlines, 19 left-streamlines and 13
right-streamlines. The test data included the following streamlines: 38 down, 153
up, 100 left and 44 right. Table 2 shows the classification accuracy matrix using
the subway dataset.

The UCF data set is a challenging dataset with a larger number of object in
the scene. Figure 4 shows a few sample frames of the activity recognition results
on the retail escalator set of videos. Figure 5 presents the activity recognition
results on the vehicle traffic set of videos from the dataset.
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5 Conclusion

Activity representation and recognition in video surveillance is a very impor-
tant area which has been received a lot attention from researchers. The high
density environment is very common in video surveillance data, where the tra-
jectory based activity representation which needs track individual person first
work poorly in this environment. We present a novel activity recognition method
using dynamic textures. We first partition image sequences into patches. Then
we form motion flow by temporally connecting the patch in the current frame to
the patch in the next frame. Activity representation is from the dynamic texture
features extracted from the streamline. We use various real data set to test the
proposed method. The experimental results show good performance for activ-
ity recognition. In the future, we are going to perform more complex activity
representation and recognition under this direction.
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