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Abstract. Applications of probabilistic grammatical inference are lim-
ited due to time and space consuming constraints. In statistical lan-
guage modeling, for example, large corpora are now available and lead
to managing automata with millions of states. We propose in this article
a method for pruning automata (when restricted to tree based structures)
which is not only efficient (sub-quadratic) but that allows to dramatically
reduce the size of the automaton with a small impact on the underlying
distribution. Results are evaluated on a language modeling task.

1 Introduction

Probabilistic automata have proved to be very useful in many fields. Among
these, we can note natural language processing, e.g. machine translation [1],
character recognition [2], . . . Unfortunately, some particular tasks – such as lan-
guage modeling for speech recognition – cannot be achieved because of the time
complexity of the algorithms. For example, alergia [3], acyclic-infer [2], MDI [4],
DDSM [5], multinomial-infer [6] have a worst case quadratic complexity.

In these grammatical inference algorithms, an automaton representing the
data is built as a first step. It is then generalized using state merging operations.
In this second step, pairs of states are considered and merged if they are suffi-
ciently close to be considered equivalent. The algorithms differ in the strategy
they use to choose the pair of states to consider and by the equivalence criteria.

We propose in this article to prune the probabilistic automaton obtained in
the first step by deleting some – carefully selected – states. Our goal is to get a
much smaller automaton on which the inference will be efficient.

Of course, the pruned automaton is only an approximation of the data. The
deleted states are therefore chosen to minimize the distance between the distri-
butions before and after the pruning.

The next section provides the notations. Section 3 describes in more details
the problem we address in Sect. 4. A new algorithm is presented in Sect. 5 which
is evaluated in Sect. 6. We then conclude.
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2 Definitions and Notations

Let Σ be a finite alphabet and Σ� (resp. Σ+) be the set of all strings that can
be built from Σ, including (resp. not including) the empty string denoted by λ.
We denote Σ′ = Σ ∪ {λ}.

A language is a subset of Σ�. By convention, symbols in Σ will be denoted
by letters from the beginning of the alphabet (a, b, c, ...) and strings in Σ� will
be denoted by end of the alphabet letters (..., x, y, z).

A stochastic language D is a probability distribution over Σ�. We denote by
PD(x) the probability of a string x ∈ Σ� under the distribution D or PDA(x)
if the distribution is modeled by a syntactic machine A. The distribution must
verify

∑
x∈Σ� PD(x) = 1.

A sample S is a multi-set of strings: as samples are usually built through
sampling, one string may appear more than once. The number of times a string
x appears in S is its multiplicity and is denoted |S|x. The cardinality of sample S
is the total number of strings in the sample (each counted with its multiplicity):
|S| =

∑
x∈S |S|x. The empirical finite-support distribution associated with S

will be denoted as DS and is defined by: PDS (x) = |S|x/|S|.

2.1 Probabilistic Automata

Definition 1. A Deterministic Probabilistic Finite state Automaton Dpfa is a
tuple A=〈QA, Σ, δA, q0, pA〉, where QA is a finite set of states; q0 ∈ QA is the
initial state; Σ is the alphabet; δA : QA × Σ → QA is a transition function;
pA : QA × Σ′ → R

+ are transition probabilities such that

∀q ∈ QA,
∑

a∈Σ′

pA(q, a) = 1. (1)

For each state q, the probability pA(q, λ) is not associated with a transition. It
represents the probability that the string ends at q. Functions δA and pA are
extended recursively from Σ to Σ�.

The probability of a string s according to a Dpfa A is then defined as: PA(s) =
pA(q0, s)×pA(δA(q0, s), λ) if s �= λ and PA(λ) = pA(q0, λ) else. If (1) holds, these
probabilities define a probability distribution DA over Σ�.

For a state q, Γ+(q) is the set {a ∈ Σ : p(q, a) �= 0} of the letters labeling the
outgoing transitions. We also define the set of the descendants of q as desc(q) =
{p : there is a path from q to p in A}

⋃
{q} (we consider that q ∈ desc(q)). This

definition can be extended to a set of states D: desc(D) =
⋃

q∈D desc(q). Finaly,
the size of a Dpfa A, noted |A|, is defined as its number of states.

2.2 Probabilistic Prefix Trees

Definition 2. A probabilistic prefix tree automaton Ppta is a particular case
of Dpfa where the underlying graph (defined by the states and the non zero
probability transitions) is a tree rooted at the initial state q0.
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(b) Same Ppta with states {1, 4} deleted
and a smoothing state qs added.

Fig. 1. A Ppta and a pruned smoothed Ppta. States are labeled by their numbers
and their frequencies freqS . Dashed arrows represent smoothed transitions.

A Ppta built from a sample S (denoted PptaS) is the prefix tree built on S. Tran-
sitions which are not in the prefix tree are added as loops with zero probabilities.
Other probabilities are estimated using state frequencies: the state frequency of
q ∈ Q with respect to a sample S is defined as freqS(q) =

∑
x∈{uv∈S:δ(q0,u)=q}

|S|x. The transition probability p(q, a) is then estimated by freqS(δ(q, a))/freqS(q)
and p(q, λ) is computed in order to satisfy (1). Given this construction, the dis-
tribution induced by PptaS and DS are identical. More details on probabilistic
automata can be found in [7].

Figure 1(a) presents a Ppta built from the sample S = {a, cct, cct, cc, gatt, gat,
gat, ga, gatt}.

2.3 Smoothing Probabilistic Automata

Smoothing discrete distributions is a widely studied field (see [8] for a survey). It
has been addressed mainly in real world applications (speech recognition [8], in-
formation retrieval [9], ...) as it has shown to dramatically improve the estimate of
discrete distributions. Moreover, smoothing must be taken into account from the
theoretical point of view (see [2,10] for some links between smoothing and learnabil-
ity of probabilistic automata). We will therefore consider here smoothed automata.

When the main model cannot parse the input string, a back-off transition is
dynamically built that goes to a back-off model (an unigram model) in which
the end of the parsing is done. The probability PU (a), a ∈ Σ ∪ {λ} is estimated
by |a|/||S|| where |a| is the frequency of the letter a in S and ||S|| the total
number of symbols in S. This smoothing technique uses a parameter 0 < ε < 1.
The smoothed transition probability psmooth is estimated by:

psmooth(q, a) =

{
freq(δ(q,a))−ε

freq(q) if a ∈ Γ+(q)

K.PU (a) else
(2)

psmooth(q, λ) =

{ (freq(q)−∑
a∈Γ+(q) freq(δ(q,a)))−ε

freq(q) if p(q, λ) �= 0

K.PU (λ) if p(q, λ) = 0
(3)

where value K is chosen to ensure that (1) holds.
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In practice, to apply this smoothing, the Pptais modified in three steps:

1. a new smoothing state (called qs) is added. For all a in Σ, δ(qs, a) = qs and
for all a in Σ′, p(qs, a) = PU (a);

2. all transitions with a zero probability in the Ppta are redirected to qs;
3. the transition probability p is replaced by the smoothed one psmooth.

If this smoothing state is added to a Ppta, the resulting automaton is no
longer strictly speaking a Ppta. We call such an automaton a smoothed Ppta.
In the following, all Pptas are assumed to be smoothed.

Fig. 1(b) presents the smoothed automaton obtained after pruning states 1
and 4.

2.4 Deleting States

We will prune a given automaton A = 〈Q, Σ, δ, q0, p〉 by removing a state qd

(qd �= qs). In order to maintain a complete automaton, the incoming transi-
tions of qd are redirected to qs. After the deletion of qd, several states may
become unreachable from the initial state and are also deleted. This set of
unreachable states is denoted UA(qd). The formal definition of the automaton
Aqd

= 〈Q′, Σ, δ′, q′0, p
′〉 obtained from A by deleting qd is then: Q′ = Q\UA(qd);

δ′(q, a) = qs if δ(q, a) = qd, else δ′(q, a) = δ(q, a); q′0 = q0; p′ is the restriction of
p to Q′. Note that the obtained automaton still respects equation (1) and thus
defines a stochatic language.

The deletion operation is commutative (i.e., removing state q and then state
q′ is equivalent to removing state q′ and then state q) and we can therefore define
AD, the automaton obtained from A by deleting a set of states D.

Given an automaton A and two sets of states D and D′, if they have the same
set of descendants (i.e., desc(D) = desc(D′)), then AD = AD

′ (for instance, the
Ppta of figure 1(b) can be obtained by deleting D = {1, 4, 6} or D = {1, 4}).
In a Ppta, there is a minimal set D among those having the same descendants
({1, 4} in our example). We call this set a cut set of state and is formally defined
as a set D such that for every q, q′ in D, q /∈ desc(q′).

Next section presents the dissimilarity measure used to quantify the modifi-
cation of the distribution induced by the pruning method.

2.5 Kullback-Leibler Divergence

The dissimilarity between two distributions will be evaluated through the
Kullback-Leibler divergence [11]:

KL(D, D′) = −
∑

x∈Σ�

D(x) log
D(x)
D′(x)

(4)

Although this divergence is not a metric, some nice properties hold, e.g. it is
positive and it bounds the L1 distance from above [12]. The divergence is not
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symmetric. One of the distribution thus takes the role of a reference one. In term
of information theory, KL(D, D′) represents the number of bits one must pay by
coding messages drawn according to D using an optimal code derived from D′.
In our case, the distribution represented by the Ppta will serve as the reference.

3 Problems Setting

Depending on the application, the Ppta can be very large (e.g., several million
states). When processing these models (e.g., applying a grammatical inference
algorithm, or using such model as is), the size of the model can be problematic
(most of inference algorithms have a quadratic complexity). A reduction of the
size of the model is thus needed.

We follow an approach consisting in doing lossy compression: we want to find
a trade-off between the size of the automaton and divergence. We define the loss
function between two automata A and A′ by:

L(A, A′) =
KL(A, A′)

| |A| − |A′| | . (5)

In our case, the automaton A′ is obtained from A by deleting some states.
We will focus on two optimization problems:

1. Find the cut set of states D such that L(A, AD) is minimal.
2. In the previous problem, there is no control on the number of deleted states.

In practice, we want to delete a significant number of states. The second
problem is thus to find the optimal cut set of states D with the constraint
that the total number of deleted states |desc(D)| is above a given threshold.

4 Problems Solutions

In this section, the goal is to find efficiently the optimal set of states D. Given a
sample S, the algorithm will proceed in two steps: first build the PptaS and then
find the set D. In order to be efficient even with large automata, the numerator
of (5) must be computed efficiently.

4.1 Computing the Divergence between Two Automata

Carrasco [13] proposed an efficient way to compute the divergence between two
distributions when they are represented by two Dpfa A = 〈Q, Σ, δ, q0, p〉 and
A′ = 〈Q′, Σ, δ′, q′0, p′〉. The computation of KL(A, A′) is made by summing state
divergences:

KL(A, A′) =
∑

q∈Q

∑

q′∈Q′

kl(q, q′) with kl(q, q′) = cq,q′
∑

a∈Σ′

p(q, a) log
p(q, a)
p′(q′, a)

(6)
and
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cq,q′ =
∑

x∈Lq,q′

p(q0, x) where Lq,q′ = {x ∈ Σ� : δ(q0, x) = q ∧ δ′(q′0, x) = q′} (7)

If A and A{q1,q4} are the automata of the running example, we have L7,7 =
{gat}, L6,qs = {cct}, L5,2 = ∅, c7,7 = pA(q0, gat) = 5−ε

9 × 5−ε
5 × 4−ε

5 (where ε is
the smoothing parameter, see (2), Sect. 2.3).

Equation (6) is very general and applicable to any automata. Its computation
complexity is O(|A|.|A′|.|Σ|) times the complexity of the computation of the
coefficients cq,q′ . In his paper, Carrasco gives an iterative method that converges
to the values of these coefficients.

4.2 Pruning Automata

In this section, (6) is simplified in the case where A′ = AD for some set of states
D. The automaton A = 〈Q, Σ, δ, q0, p〉 is a complete Dpfa with a smoothing (or
unigram) state denoted by qs. We consider the deletion of a set of states D of A
(qs /∈ D). The resulting Dpfa is AD = 〈Q′, Σ, δ′, q′0, p′〉.

Lemma 1
KL(A, AD) =

∑

q∈desc(D)

kl(q, qs) (8)

The (omitted) proof of this lemma is based on the fact that most of the kl(q, q′)
are zero because either c(q, q′) = 0 or p(q, a) = p′(q′, a). The complexity of
computing KL(A, AD) is therefore less than O(|A|.|Σ|) times the complexity
of the computation of the coefficients cq,qs . However, we still need to find the
optimal set of states D, and it is of course not possible to test all subsets of Q.

Another important point is that, in a Ppta, cq,qs does not depend on the
set of deleted states D and therefore neither does kl(q, qs). It means that it is
possible to compute kl(q, qs) for all q and then consider several possibilities for
the cut set of states D without recomputing the kl values.

4.3 Solutions of the Optimization Problems

Given a cut set of states D and following (8), the loss function is now

L(A, AD) =
KL(A, AD)
|A| − |AD| =

∑
q∈desc(D) kl(q, qs)

|desc(D)| (9)

which is the average value of kl(q, qs) on all deleted states q ∈ desc(D).One can
easily shows that the optimal cut set of states D (for our first problem) consists
of only one state: the state qopt that minimizes the average kl of its descendants.
The whole set of deleted states is therefore limited to the branch desc(qopt).

Preliminary experiments showed that this branch is often reduced to only one
state in practice. Since our goal is to delete a significant number of states, we
will focus on the second problem in which we want to delete at least nb states. It
can be solved with a recursive algorithm. For each subtree of the Ppta (rooted
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in q) and for all 0 ≤ i ≤ nb, the algorithm computes the optimal cut set of states
D(q, i) ⊆ desc(q) to delete with the constraints that |desc(D(q, i))| > i and
L(A, AD(q,i)) is minimal. However, this algorithm has a complexity O(nb.|A|.|Σ|)
which is too high for large Ppta and large values of nb (we want to be able to
have nb of the order of |A|). We present a heuristic in the next section.

5 Algorithm and Complexity

We focus here on our second problem, i.e., to find a cut set of states D =
{q1, .., qk} such that:

– |desc(D)| > nb;

– D minimizes L(A, AD) =
∑

1≤i≤k |desc(qi)|.v(qi)
|desc(D)| with v(qi) =

∑
q∈desc(qi)

kl(q,qs)
|desc(qi)|

which is the weighted average of the v(qi) with weights |desc(qi)|.

If the qi could be chosen without constraints in Q, this problem could be solved
by:

1. For each state q ∈ Q, compute v(q) and |desc(q)| (these values can be com-
puted in time O(|A|) using a recursive traversal of the Ppta);

2. Construct a list L =< q1, ... > by sorting the states q in increasing order of
v(q) in time O(|A|. log |A|) (notice that the first element of this list is qopt,
the solution of the first problem);

3. Take the shortest prefix < q1, ..., qk > of L such that the sum of the weights
of q1,...,qk is greater than nb.

4. Take {q1, ..., qk} as D.

This algorithm is optimal and has complexity O(|A|. log |A|). However, in our
problem, the set D must be a cut set of states, i.e., there cannot exist two states
p and q in D such that p ∈ desc(q). Our heuristic is to replace the third and
fourth steps by:

3’. Take the shortest prefix < q1, ..., qk > of L such that, when considering in
this prefix only the states that are not descendant of one another, the sum of
their weights is greater than nb. This can be done in time O(|A|) by marking
each descendant of each state qi and summing only the weights of the non
marked states.

4’. Take the non marked states of this prefix as D.

The complexity of this algorithm is therefore O(|A|. log |A|).

6 Experimentations

We will evaluate the pruning first by analyzing the increment of the KL w.r.t. the
number of states pruned. Then we measure its impact on grammatical inference
by comparing the result of the inference when started from a pruned Ppta and
from a non-pruned Ppta.
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6.1 KL Behavior with Respect to the Number of States Pruned

In order to evaluate the quality of the pruning procedure, the second algorithm is
used to compute a cut set of state D for different pruning thresholds nb (minimal
number of states to delete).

Figure 2 presents the divergence KL(A, AD) with respect to nb. The input
Ppta A has 868,851 states (built on the wall street journal task, see section
6.3). We expect the KL to increase monotonically. It is however noticeable that
it is almost flat up to 400,000 states pruned (that is 46% of the automaton’s
states). The pruning is in practice efficient as it takes less than 20 seconds on
a recent PC machine1 (including Input/Output time). This value is negligible
with respect to the 91 hours needed for the inference on the whole learning set
(see table Sect. 6.3).

This means that the distribution DAD
represented by the pruned automaton

is close to the distribution represented by A even when a large number of the
states are deleted. We thus expect to be able to use the pruned model AD as a
replacement for the Ppta A built with the full training sample.

6.2 Evaluation Measure

We will evaluate the pruning method in the context of language modeling. In many
probabilist grammatical inference algorithms [3,4,5,6], a Ppta is built from a sam-
ple as a first step of the inference. It is then generalized by merging equivalent
states. The algorithms differ in the way equivalence of states is considered.

These algorithms are evaluated through the ability of the resulting automata
to parse new strings, that is by the per symbol log-likelihood of strings x belonging
to a test sample S according to its underlying distribution:

1 The machine used is a linux box with a 3 Ghz processor and 1 GB of memory.
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LL(S) =

⎛

⎝− 1
‖S‖

∑

x∈S

|S|x
|x|∑

i=1

log pA(δA(q0, x1x2...xi−1, xi)

⎞

⎠

where xi is the i-th symbol of x and |S|x its multiplicity in S. This average
log-likelihood is related to the KL divergence between an unknown target dis-
tribution and the hypothesis by considering the test sample as the empirical
estimates of the unknown distribution [11].

The test sample perplexity PP (S) is most commonly used for evaluating lan-
guage models. It is given by PP (S) = 2LL(S). The minimal perplexity PP = 1
is reached when the next symbol xi is always predicted with probability 1 from
the current state qi (i.e. p(δ(q0, x1...xi−1), xi) = 1) while PP = |Σ| corresponds
to random guessing from an alphabet of size |Σ|.

6.3 The Wall Street Journal Task

The data used are drawn from the Wall Street Journal database, a large syntacti-
cally annotated corpus subdivided in 25 sections. We followed the preprocessing
used by [14]: Sections 0 to 20 were used as the training set (962,612 words),
sections 21 and 22 were used as a development set (48,024 words) and sections
23 and 24 serve as the test (101,189 words). Digit numbers were replaced by a
unique character. Following [14], the 10,000 most frequent words were kept and
the remainder were transformed in a unique symbol unknown. In order to make
the data more realistic for a speech to text task, the punctuation was removed
and the words transformed in their lower case form. The average length of the
sentences is 22 words and the size of Σ is around 10000.

We applied the pruning algorithm on the Ppta built on the whole training
set (868,851 states) with different levels of pruning (number of deleted states
ranging from 100K to 600K). The MDI [4] algorithm is then applied on each
of these pruned Pptas. The MDI algorithm depends on a parameter α that
controls the generalization rate. To choose the value of this parameter, several
inferences were performed on each Ppta with α ranging from 0.00008 to 0.01.
The value that gives the best perplexity on the development set is chosen. The
following table gives the best value of α and the total time spent to compute all
automata for all values of α.

Then, the best automaton (corresponding to the best value of α) is evaluated
by its perplexity computed on the test set (see table). The size of this best
automaton is also given (# states post inference).

Test set results of the inference using pruned Ppta

% states pruned 0 11% 23% 35% 46 % 57% 69%
# states pruned (×1000) 0 100 200 300 400 500 600
α (×10−4) 2 2 2 2 2 1 1
Total time (h) 91 72 61 47 60 20 8
PPMDI(test) 549 550 564 547 564 567 568
# states post inference 451 463 458 422 434 1989 1863
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7 Discussion

As can be seen in the above table, the test set perplexity of the inferred model
does not change significantly up to a pruning level of 35% of the states. This is
consistent with Fig. 2. We can also notice that the pruning has little influence
over the size of the inferred automaton (at least for pruning levels below 46%).

It is worth stressing that the optimal value of the parameter α at different
pruning thresholds does not change a lot. The pruning can thus be used to esti-
mate the optimal parameter α in a less demanding situation. Only one inference
will then be done on the full Ppta using the optimal setting of the pruned one.

Related work : language modeling is classically done using n-grams. As the
size of the corpora increases, increasing the size of n improves the prediction.
Unfortunately, the size of the model dramatically increases in n. In [15] Stolcke
proposed to prune the n-gram model using an entropy based criterion similar
to ours. As it is applied on n-gram, such a pruning will remove the estimation
of part of sentences and not end of sentences as we do. Another main difference
is the length of the removed chunk. In our case, the size of the chunk we can
remove is not bounded as with n-gram. If a very long sentence appears once, our
pruning method will remove the whole branch, which will not be the case with
n-gram.

Regarding the prediction performances, we need to mention that the MDI al-
gorithm is outperformed by the unpruned trigram model that obtains a test set
perplexity of 1652. Many improvements can nevertheless be achieved at the gram-
matical inference level: use another algorithm [5,6,16], or use preprocessing tech-
niques (e.g. word clustering [17], bagging [18]) or post-processing techniques (e.g.
combining
automata [5]).

8 Conclusion and Further Work

We presented in this article an efficient way to prune a smoothed Ppta. We
showed that we can dramatically reduce the size of the automaton keeping a
great similarity between the distributions represented by the original automa-
ton and the pruned one. We then showed, on a reasonable language modelling
task, that the pruning can be seen as a preprocessing technique before applying
grammatical inference algorithm. The performance of the learning algorithm is
not changed up to a pruning level of 35% of the states of the initial automaton.

From a theoretical view point, we intend to study pruning of general automata,
which leads to both computational and theoretical problems, since the efficient
computation of Aq is more complicated to achieve in the general case. From
the practical point of view, it is of great interest since the pruning could be
applied as a post-processing step after the inference, leading to smaller models
that perform similarly.
2 The trigram considered here used a Kneyser-Ney smoothing [8].
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