Graph Classification Based on Dissimilarity
Space Embedding

Horst Bunke and Kaspar Riesen

Institute of Computer Science and Applied Mathematics, University of Bern,
Neubriickstrasse 10, CH-3012 Bern, Switzerland
{bunke,riesen}@iam.unibe.ch

Abstract. Recently, an emerging trend of representing objects by graphs
can be observed. In fact, graphs offer a powerful alternative to feature
vectors in pattern recognition, machine learning, and related fields. How-
ever, the domain of graphs contains very little mathematical structure,
and consequently, there is only a limited amount of classification algo-
rithms available. In this paper we survey recent work on graph embed-
ding using dissimilarity representations. Once a population of graphs has
been mapped to a vector space by means of this embedding procedure,
all classification methods developed in statistical pattern recognition be-
come directly available. In an experimental evaluation we show that the
proposed methodology of first embedding graphs in vector spaces and then
applying a statistical classifier has significant potential to outperform clas-
sifiers that directly operate in the graph domain. Additionally, the pro-
posed framework can be considered a contribution towards unifying the
domains of structural and statistical pattern recognition.

1 Introduction

The field of pattern recognition can be divided into two sub-fields, namely the
statistical and the structural approach. In statistical pattern recognition, pat-
terns are represented by feature vectors (x1,...,x,) € R™. The recognition pro-
cess is based on the assumption that patterns of the same class are located in a
compact region of R™. In recent years a huge amount of methods for the clas-
sification of patterns represented by feature vectors have been proposed, such
as Bayes classifier, neural network, support vector machine, and many more [IJ.
Object representations given in terms of feature vectors have a number of useful
properties. For example, object similarity, or distance, can easily be computed
by means of Euclidean distance. Yet graph-based representations, which are used
in the field of structural pattern recognition, have a number of advantages over
feature vectors. Graphs are much more powerful and flexible than vectors, as
feature vectors provide no direct possibility to describe structural relations in
the patterns under consideration. Furthermore, while the size of a graph can
be adjusted to the size and complexity of the underlying pattern, vectors are
constrained to a predefined length, which has to be preserved for all patterns
encountered in a particular application. On the other hand, a major drawback of

N. da Vitora Lobo et al. (Eds.): SSPR&SPR 2008, LNCS 5342, pp. 996-{1007], 2008.
© Springer-Verlag Berlin Heidelberg 2008

Graph Classification Based on Dissimilarity Space Embedding 997

graph representations is their lack of suitable methods for classification. This is
mainly due to the fact that some of the basic operations needed in classification
are not available for graphs.

A promising direction to overcome the lack of algorithmic tools for graph
classification is graph embedding. Basically, an embedding of graphs into a vector
space establishes access to the rich repository of algorithmic tools developed
in statistical pattern recognition. The present paper considers a new class of
graph embedding procedures which are based on dissimilarity representation
and graph edit distance computation. Originally the idea was proposed in [2]
in order to map feature vectors into dissimilarity spaces. This idea was first
generalized to string based object representation [3] and later to the domain
of graphs [A5GJ7I8I9]. Graphs from a given problem domain are mapped to
feature spaces by computing the distance to some predefined prototype graphs,
or sets of prototype graphs. The resulting distances can be used as a vectorial
representation of the considered graph.

Note that our graph embedding approach can be applied to both directed and
undirected graphs, as well as to graphs without and with labels on their nodes
and/or edges. In case there are labels on the nodes and/or edges, these labels
can be of any nature (discrete symbols, the set of integer or real numbers, or
whole attribute vectors). Even hypergraphs can be embedded with the method
described in this paper [I0]. Hence, the proposed embedding approach is more
general than other graph embedding techniques where sometimes restrictions on
the type of underlying graph are imposed (e.g. [ITI12/13]).

2 Dissimilarity Space Embeddings of Graphs

In [2] the authors claim that the concept of proximity is more fundamental than
that of a feature or a class. Furthermore, it is pointed out that in the case of
structural data (like graphs) the extraction of numerical features may be difficult
or even intractable, while proximity can directly be derived from the data using
an adequate dissimilarity model.

Assume we have a labeled set of sample graphs, G = {g1,...,gn} and a graph
dissimilarity measure d(g;,g;). Note that G can be any kind of graph set. For
the sake of convenience, however, in the context of the present work we define
G to be the set of training graphs 7. After having selected a set of prototype
graphs P = {p1,...,pn} € 7, we compute the dissimilarity of a given input
graph g to each prototype p € P. Note that g can be an element of 7 or any
other graph. This leads to n dissimilarities, dy = d(g,p1),...,dn = d(g,Dn),
which can be arranged in an n-dimensional vector (d,...,d,). In this way we
can transform any graph from the training as well as any other graph set (for
instance a validation or a test set of a classification problem), into a vector of
real numbers.

Definition 1 (Graph Embedding). Let G be a finite or infinite set of graphs
and P = {p1,...,pn} C G be a set of prototypes. Then, the mapping ¢! : G —
R™ is defined as the function

998 H. Bunke and K. Riesen

905(9) = (d(gap1)7 s 7d(gapn))7

where d(g,p;) is some graph dissimilarity measure between graph g and the i-th
prototype.

Though conceptually d(g, p;) can be any kind of dissimilarity measure, the em-
bedding procedure proposed in this paper makes use of graph edit distance.
The key idea of graph edit distance is to define the dissimilarity, or distance, of
graphs by the minimum amount of distortion that is needed to transform one
graph into another [I4]. Compared to other approaches, graph edit distance is
very flexible since it can handle arbitrary graphs and any type of node and edge
labels. Furthermore, by defining costs for edit operations, the concept of edit
distance can be tailored to specific applications.

Optimal algorithms for computing the edit distance of graphs are typically
based on combinatorial search procedures that explore the space of all possi-
ble mappings of the nodes and edges of the first graph to the nodes and edges
of the second graph [I4]. A major drawback of those procedures is their com-
putational complexity, which is exponential in the number of nodes of the in-
volved graphs. However, a number of efficient suboptimal methods for graph edit
distance computation have been proposed (e.g. [15] with cubic time complex-
ity). Consequently, given n predefined prototypes the embedding of one partic-
ular graph is established by means of n distance computations with polynomial
time.

Regarding the general embedding procedure established above, a strong re-
lationship to graph kernel methods can be observed [16]. In fact, based on the
graph embedding ¢” established above, one can define a valid graph kernel &
by applying valid kernel functions defined for vectors to two graph maps in
the resulting vector space (e.g. Scalar Product, Radial Basis Function, Sigmoid
Function, ete.) [17].

3 Survey of Work on Dissimilarity Based Graph
Embedding

In this section we provide an overview of our recent work on graph embeddings
using dissimilarity representation, i.e. we recapitulate several papers addressing
different aspects of graph embedding and its applications [AI5IGI7ISII].

3.1 Prototype Selection

The embedding method described in the previous section crucially depends on
the prototypes. Therefore, an important problem to be solved is an appropriate
choice of the prototype set P = {p1,...,pn}. A good selection of n prototypes
seems to be crucial to succeed with the classification algorithm in the feature
vector space. The prototypes should avoid redundancies in terms of selection of
similar graphs, and prototypes should include as much information as possible.

Graph Classification Based on Dissimilarity Space Embedding 999

In the following six different prototype selection strategies are discussed. For a
more thorough review of the prototype selection methods we refer to [4], where
these strategies are applied to several graph data sets.

Center. The Centers prototype selector selects prototypes situated in the center
of the training set 7. This is achieved by iteratively taking the set median graph
out of the set 7. The set median graph is the graph whose sum of distances to
all other graphs in the set is minimal.

Border. The Border prototype selector selects prototypes situated at the border
of the training set 7, i.e. it iteratively takes the set marginal graph out of the
set 7. The set marginal graph is the graph whose sum of distances to all other
graphs in this set is maximal.

Random. A random selection of n prototypes from 7 is performed.

Spanning. The first prototype selected is the set median graph. Each additional
prototype selected by the Spanning prototype selector is the graph the furthest
away from the already selected prototype graphs.

k-Centers. The k-Centers prototype selector tries to adapt to the graph distri-
bution of set 7 and selects graphs that are in the center of densely populated
areas. First a k-means clustering procedure is applied to set 7. The number of
clusters to be found is equal to the number of prototypes to be selected. Once
the clusters have been established, the set median of each cluster is selected as
a prototype.

Targetsphere. The Targetsphere prototype selector first selects a graph g, situ-
ated in the center of 7. Next the graph gy € 7 whose distance to g. is maximum
is located. The remaining prototypes are uniformly distributed from g. to gy.
That is, the interval [0, dmaz] (dmaz = d(ge, g5)) is divided into m—1 equidistant
subintervals of width w = ‘f;L”_"f. The m — 2 graphs for which the corresponding
distances to the center graph g. are located nearest to the interval borders in
terms of edit distance are selected as prototypes.

In [4] it has been our intention to improve the accuracy achieved by nearest-
neighbor classifiers in the graph domain by the use of classifiers operating on
graph maps, i.e. vectorial representations. We applied support vector machine
(SVM) as a popular method from statistical pattern recognition and showed that
this approach outperforms the nearest-neighbor classifiers in the graph domain.
In the experiments reported in [4] it turns out that the quality of the prototype
selectors introduced above depends on the application and the underlying data.
Therefore, the question which of the prototype selectors is globally best cannot
definitely be answered. Nevertheless, there is a clear tendency that prototype
selectors that distribute the graphs more or less uniformely over the whole graph
set (Spanning, k-Centers, Targetsphere) lead to higher recognition rates.

1000 H. Bunke and K. Riesen

3.2 Prototype Reduction

The prototype selection strategies introduced above use some heuristics based
on the underlying dissimilarities in the original graph domain. Another idea to
select the members of set P is prototype reduction methods in conjunction with
nearest neighbor classifiers [I8]. These reduction schemes determine a subset
P C T such that the elements in 7 (or at least a considerable part of them) are
still correctly classified using a nearest neighbor classifier.

We use selective prototype selectors where the number of prototypes is un-
controllable [19]. These two constraints are motivated through the following con-
siderations. First, the fact that we are dealing with graphs makes the creation of
new prototypes quite difficult. Therefore, we restrict set P to include only graphs
from 7. Secondly, we want to bypass the time consuming validation of the di-
mensionality of the resulting embedding space by means of the target classifier.
Hence, we leave the determination of the number of prototypes to the prototype
selection algorithm.

Condensing (Cond). The idea of condensing a training set 7 is to iteratively
select graphs g; € 7 as prototypes until all graphs from 7 are correctly classified
using the respective prototypes. As a disadvantage, this procedure depends on
the order in which the graphs are processed.

Modified Condensing (mCond). Modified condensing overcomes the limitation
of order dependency. In this scheme we start with a basic set of prototypes
containing the set center graph (centroid) of each class. The centroid of G is
the graph for which the maximum distance to all other graphs in G is minimum.
The graphs from 7 are classified by means of this initial set of prototypes. Using
only the misclassified graphs, the class centroids are computed and subsequently
added to the existing set of prototypes. This procedure is repeated until all
graphs from 7 are correctly classified.

Editing (Edit). The basic idea of editing a training set 7 is to delete outliers from
7. For this purpose, we classify each graph g; from 7 with a 3-N N classifier. If
g; is misclassified we assume that this particular graph is an outlier and therefore
should not be included in the prototype set.

Reducing (Red). The idea of reducing is built up on condensing. First, the train-
ing set 7 is condensed to a prototype set P. Next, each prototype p; is iteratively
removed from P. The training graphs are then classified using the reduced proto-
type set P\ {p;}. If all graphs are classified correctly with this reduced prototype
set, the respective prototype is useless and can therefore be omitted. Otherwise,
the prototype is necessary and therefore kept in P.

Merging (Merg). The basic idea of merging a training set is to define two graph
sets P and Q, where initially P is empty and Q contains all training graphs from
7. First, an arbitrary graph from Q is selected as prototype, i.e. moved from Q to

Graph Classification Based on Dissimilarity Space Embedding 1001

P. Next, we consider the two closest graphs p and ¢ from P and Q, respectively.
If the class of p is not the same as that of ¢, ¢ is moved from Q to P. Otherwise,
p and ¢ are merged to p* € Q, where p* minimizes the sum of distances to p
and ¢. The accuracy of the NN classifier using P U {q} is then compared with
the accuracy when P\ {p} U{p*} is used as prototype set. Whenever the former
outperforms the latter, ¢ is moved from Q to P. Otherwise, p and ¢ are removed
from P and Q, respectively, and p* is moved from Q to P. This procedure is
repeated until no graphs are left in Q.

Selecting (Sel). Another algorithm for reducing the training set 7 is based on
the idea of related neighbors. We define g; € 7 as a related neighbor to g; € T if
g; and g; are out of the same class, and g; is nearer to g; than any other sample
gr € 7 from another class. The selection of the prototypes is now stated as
finding a small number of graphs such that each of these graph has at least one
related neighbor. In the present paper a greedy algorithm is employed seeking
for a small number of prototypes.

For a more detailed discussion on these prototype reduction schemes in con-
junction with graph embeddings we refer to [9]. Furthermore, in Section 3] an
experimental evaluation of this approach is given.

3.3 Dimensionality Reduction

In Section B and a number of prototype selection strategies have been
introduced. In the current section we describe an alternative approach where
we use all available elements from the training set as prototypes, i.e. P = 7T
and subsequently apply dimensionality reduction methods. This process is more
principled and allows us to completely avoid the problem of finding the optimal
prototype selection strategy. For dimensionality reduction, we make use of Prin-
cipal Component Analysis (PCA), Fisher’s Linear Discriminant Analysis (LDA)
[1], and kernel PCA [20].

Principal Component Analysis (PCA). PCA [I] is a linear transformation. It
seeks the projection which best represents the data. PCA is an unsupervised
method which does not take any class label information into consideration. We
first normalize the data by shifting the mean to the origin of the coordinate
system and making the variance of each feature equal to one. Then we calculate
the covariance matrix of the normalized data and determine the eigenvectors e;
and the eigenvalues \; of the covariance matrix. The eigenvectors are ordered
according to decreasing magnitude of the corresponding eigenvalues, i.e. \; >
A2 > ... > Ay > 0. The data is then represented in a new coordinate system
defined by the eigenvectors. For reducing the dimensionality of the transformed
data we retain only the n < N eigenvectors with the n highest eigenvalues.

Fisher’s Linear Discriminant Analysis (LDA). LDA [I] is a linear transfor-
mation as well. In contrast with PCA, LDA takes class label information into
account. In its original form, LDA can be applied to two-class problems only.

1002 H. Bunke and K. Riesen

However, we make use of a generalization, called Multiple Discriminant Analysis
(MDA), which can cope with more than two classes. In MDA, we are seeking the
projection of the data which best separates the classes from each other. For all
further details, we refer to [I]. Note that under this transformation the maximal
dimensionality of the transformed feature space is ¢ — 1, where ¢ is the number
of classes.

Kernel PCA. The result of a kernel function k(x,y), applied to two feature vec-
tors x and y, is equal to the result that one obtains by mapping those vectors to
a possibly infinite dimensional feature space F and computing their dot product
subsequently [I7]. This procedure offers a very elegant way to construct non-
linear extensions of linear algorithms in pattern recognition. The fundamental
observation that makes kernel theory so interesting in the field of pattern recog-
nition is that many of the algorithms (e.g. PCA [20]) can be kernelized, i.e. they
can be formulated entirely in terms of dot products. Consequently, instead of
applying PCA in the original vector space, the linear transformation is applied
in an implicit existing feature space F by substituting the dot product by an
appropriate kernel function k. This procedure is commonly referred to as the
kernel trick [17].

Experimental results and a more detailed description of these dimensional-
ity reduction strategies applied to vector space embedded graphs can be found
in [0I7]. The main finding in [6] is that the performance of a k-nearest neighbor
classifier in the graph domain, used as a reference system, can be outperformed
with statistical significance using this embedding approach. In case of classifi-
cation problems with many classes, the MDA based system is preferable, while
for a small number of classes the PCA based system is the method of choice.
Moreover, in [7] we observe that the approach with kernelized PCA outperforms
the former approach with linear PCA on most of the data sets.

3.4 Relationship to Lipschitz Embeddings

Our graph embedding approach can also be regarded as a special instance of a
Lipschitz embedding [2122] where a coordinate space is defined such that each
axis corresponds to a reference set of objects. Formally, rather than a single pro-
totype set P = {p1,...,pn} we define a set S = {P1,...,P,} that consists of n
prototype sets. The n subsets P; C 7 define the reference sets of the Lipschitz
embedding. The extended graph edit distance function between graphs and ref-
erence sets is defined as d(g, P;) = minyep,{d(g,p)}. The Lipschitz embedding
with respect to S = {P1,..., Py} is then defined as

@5 (g) = (d(g, P1), - .-, d(g, Pn))

Obviously, the range of function ¢ is a vector space where each dimension
corresponds to a subset P; C 7 and the coordinate values of the embedded
graph ¢ are the distances from g to the nearest element in P;.

Graph Classification Based on Dissimilarity Space Embedding 1003

In [§] two different methods to define our reference sets are applied, viz. ran-
dom selection and a more advanced technique based on k-Centers prototype se-
lection. In the random method we randomly select n subsets S = {P1,...,Pn}
each of size m. After drawing a graph ¢ from 7, g is put back such that the
same graph can have multiple occurences in P;, and can occur in different sets
P; and P; of S as well.

For the second method k-Centers prototype selection is applied on 7. This
results in n disjoint subsets P; C 7 of different size. Next, we iteratively remove
the set marginal graphs of P; until m graphs remain in P;. Note that no graphs
are removed whenever the size of a set P; is smaller than, or equal to, m. Note
that in contrast with the random selection this method leads to disjoint subsets.

From the experimental evaluation conducted in [8] one can draw the following
conclusions. A definition of the reference sets based on a more elaborated method
than random selection is preferable. Classifiers using the Lipschitz embedded
graphs outperform classification systems using the original graph edit distances.
Finally, the generalization of the Lipschitz embedding to the case where the
subsets are not necessarily singletons (m > 1) is clearly beneficial.

3.5 Multiple Classifier System

Recently, the field of multiple classifier systems has become a very active area
of research. The fundamental observation that motivates the combination of
classifiers is that the sets of patterns misclassified by different classifiers do not
necessarily heavily overlap. Hence, errors of a single classifier can be compensated
by the other classifiers of an ensemble [23]. In the case of statistical patterns,
that is, patterns represented by feature vectors, a large number of methods for
the creation and combination of classifiers have been developed over the past
years [2324125].

Regarding the graph embedding procedure proposed in this paper, if we repeat
the process of random prototype selection a number of times, we can derive
different graph subsets that can be used to map a given population of graphs to
various vector spaces. That is, we obtain n different vector sets all representing
the same graph set. For each vector set an individual classifier is trained and
thus one gets an ensemble of classifiers. Consequently, a number of methods
become available for combining the results of the individual ensemble members.
In [5] this method was tested on a number of graph data sets with different
characteristics, comming from various application domains. From the results
of our experiments, one can conclude that the classification accuracy can be
enhanced by most ensemble methods on almost all data sets.

4 Experimental Results

Lacking space we present the results for one particular graph embedding setting
only, namely the graph embedding in conjunction with the prototype reduction
schemes introduced in Section For further results achieved with the novel
graph embedding methodology, we refer to [4J56I7IS9].

1004 H. Bunke and K. Riesen

4.1 Experimental Setup

The classifier applied in the graph domain is a k-nearest-neighbor classifier. Note
that this specific classifier is basically the only classifier that is directly applicable
in the graph domain. The classifier applied to the vector space embedded graphs
©P(g) is the support vector machine (SVM) with RBF Kernel. Hence, the kernel
values are given by

kreF(9i,95) = exp (—7|leh (9:) — of (9)117)

where v > 0.

In each of our experiments we make use of three disjoint graph sets, viz. a val-
idation set, a test set and a training set. The validation set is used to determine
optimal parameter values for classification. They consist of parameter k for the
nearest neighbor classifier and the different parameters for the SVM, viz. v (RBF)
and C (weighting of the maximization of the margin and the minimization of the
error). The parameter combination that results in the lowest classification error
on the validation set is finally applied to the independent test set.

The pattern classification tasks considered in this paper involves a total of
five different graph data sets. Because of lack of space, we can give only a short
description of the data. For a more thorough description we refer to [4] where
the data sets are discussed in greater detail. Note that each of our graph sets is
divided into three disjoint subsets, viz. a training, a validation, and a test set.

The first database used in the experiments consists of graphs representing
distorted letter drawings out of 15 classes (Letter). The second data set is given
by graphs representing fingerprint images of the NIST-4 database [26] out of
the four classes arch, left, right, and whorl (Fingerprint). The third graph set
is constructed from the AIDS Antiviral Screen Database of Active Compounds
[27] (AIDS). Graphs from this data set represent molecules out of two classes
(active, inactive). The last data set consists of graphs representing webpages
[28] that originate from 20 different categories (Business, Health, Politics, ...)
(Webgraph).

4.2 Reference Systems

Two reference systems are used to compare the performance of the proposed
graph embedding procedure with. Similarly to our novel approach, both refer-
ence systems make use of an SVM. The first reference system uses a similarity
kernel directly derived from the edit distances [29] (referred to as GED). That
is, for this reference method no explicit graph embedding is conducted but the
dissimilarites are merely turned into kernel values (g, g;) = —d(g:,g;)*. The
second reference system interprets all distances to the whole training set 7 as a
vectorial description, i.e. the graphs are explicitly embedded but no attempts are
made to reduce the number of prototypes (referred to as All). For this reference
system an RBF kernel is applied to the vector space embedded graphs, too.

Graph Classification Based on Dissimilarity Space Embedding 1005

4.3 Results and Discussion

In Table [l the classification results of all reference systems and the proposed
approach using all prototype reduction schemes are given. Comparing the re-
sults of our novel approach with the results achieved by the first reference sys-
tem (GED), we observe the following. On the Webpage data the first reference
method outperforms all other systems. On this particular data set, the trans-
formation of the edit distances into kernel values seems to be the best choice.
However, on the three remaining data sets it is beneficial to use the embedding
approach rather than the direct transformation. On the Letter data the SVM
based on the merged prototypes performes better than the first reference system
and on the AIDS and Fingerprint data even all reduction schemes lead to better
classification accuracies than the similarity kernel. Note that 12 out of 13 im-
provements, but only 5 out of 11 deteriorations, compared to the first reference
system are statistically significant.

Regarding the results achieved by the second reference system (All), we ob-
serve that our approach using prototype reduction outperforms this reference
system on all data sets (at least with one of the proposed reduction schemes).
Hence, besides the speed-up in computation, it is beneficial for achieving a higher
recognition rate to use prototype reduction for embedding rather than using the
whole training set as prototypes.

Comparing the prototype reduction schemes against each other, one can con-
clude that the merging approach performs generally best. On three out of four
data sets this reduction scheme leads to the overall best classification result (in-
cluding the reference methods). On the other hand, condensing and modified
condensing lead on three data sets to the lowest recognition rate among the
prototype reduction approaches.

Table 1. Experimental Results

Ref. System Proposed Method
Data Set GED All Cond mCond Edit Red Merg Sel
Letter 92.27 91.73 91.73 91.47 92.00 92.00 92.53 92.00
AIDS 93.60 97.20 97.13 97.53 97.20 97.20 98.27 97.20

Fingerprint 79.35 82.10 81.60 81.75 81.70 82.10 82.80 82.30
Webpage 84.62 82.44 82.44 83.21 76.92 82.95 81.15 81.03

5 Conclusions

Although graphs have a higher representational power than feature vectors, there
is a lack of methods for pattern classification using graph representations. By
contrast, a large number of methods for classification have been proposed for
object representations given in terms of feature vectors. The present paper in-
troduces a novel graph embedding procedure in order to bridge the gap between
structural and statistical pattern recognition. These graph embeddings make
explicit use of graph edit distance and can therefore deal with various kinds of

1006 H. Bunke and K. Riesen

graphs (labelled, unlabelled, directed, undirected, etc.). The basic idea of the
embedding procedure is to describe a graph by means of n dissimilarities to a
predefined prototype set or to sets of prototypes. That is, a graph g is mapped
explicitly to the n-dimensional real space R™ by arranging the distances of g
to all of the n prototypes, or n prototype sets, as a vector. We show that the
embedding process can be controlled by different prototype selectors or by well-
known dimensionality reduction algorithms. Furthermore, the proposed graph
embedding process lends itself to a method for the automatic generation of clas-
sifier ensembles. From the results of our experiments presented in the present
paper as well as in other contributions, one can conclude that the classification
accuracy can be statistically significantly enhanced by all embedding methods
compared to reference systems directly operating in the graph domain.

Acknowledgements

This work has been supported by the Swiss National Science Foundation (Project
200021-113198/1).

References

1. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley-Interscience,
Hoboken (2000)

2. Pekalska, E., Duin, R.: The Dissimilarity Representation for Pattern Recognition:
Foundations and Applications. World Scientific, Singapore (2005)

3. Spillmann, B., Neuhaus, M., Bunke, H., Pekalska, E., Duin, R.: Transforming
strings to vector spaces using prototype selection. In: Yeung, D.-Y., Kwok, J.T.,
Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 41009,
pp. 287-296. Springer, Heidelberg (2006)

4. Riesen, K., Neuhaus, M., Bunke, H.: Graph embedding in vector spaces by means
of prototype selection. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS,
vol. 4538, pp. 383-393. Springer, Heidelberg (2007)

5. Riesen, K., Bunke, H.: Classifier ensembles for vector space embedding of graphs.
In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 220-230.
Springer, Heidelberg (2007)

6. Riesen, K., Bunke, H.: Reducing the dimensionality of dissimilarity space embed-
ding graph kernels. Engineering Applications of Artificial Intelligence Engineering
Applications of Artificial Intelligence (accepted, 2008)

7. Riesen, K., Bunke, H.: Non-linear transformations of vector space embedded
graphs. In: 8th International Workshop on Pattern Recognition in Information
Systems (accepted, 2008)

8. Riesen, K., Bunke, H.: On Lipschitz embeddings of graphs. In: 12th International
Conference on Knowledge-Based and Intelligent Information & Engineering Sys-
tems (accepted, 2008)

9. Riesen, K., Bunke, H.: Dissimilarity based vector space embedding of graphs using
prototype reduction schemes (submitted)

10. Bunke, H., Dickinson, P., Kraetzl, M.: Theoretical and algorithmic framework for
hypergraph matching. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617,
pp. 463-470. Springer, Heidelberg (2005)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Graph Classification Based on Dissimilarity Space Embedding 1007

Luo, B., Wilson, R., Hancock, E.: Spectral embedding of graphs. Pattern Recog-
nition 36(10), 2213-2223 (2003)

Wilson, R., Hancock, E., Luo, B.: Pattern vectors from algebraic graph theory.
IEEE Trans. on Pattern Analysis ans Machine Intelligence 27(7), 1112-1124 (2005)
Robles-Kelly, A., Hancock, E.: A Riemannian approach to graph embedding. Pat-
tern Recognition 40, 1024-1056 (2007)

Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recognition Letters 1, 245-253 (1983)

Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image and Vision Computing (accepted, 2008)
Gartner, T., Lloyd, J., Flach, P.: Kernels and distances for structured data. Ma-
chine Learning 57(3), 205-232 (2004)

Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge (2004)

Bezdek, J., Kuncheva, L.: Nearest prototype classifier designs: An experimental
study. Int. Journal of Intelligent Systems 16(12), 1445-1473 (2001)

Kim, S., Oommen, B.: A brief taxonomy and ranking of creative prototype reduc-
tion schemes. Pattern Analysis and Applications 6, 232-244 (2003)

Scholkopf, B., Smola, A., Miiller, K.R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation 10, 1299-1319 (1998)

Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert spaces.
Israel Journal of Mathematics 52(1-2), 46-52 (1985)

Hjaltason, G., Samet, H.: Properties of embedding methods for similarity searching
in metric spaces. IEEE Trans. on Pattern Analysis ans Machine Intelligence 25(5),
530-549 (2003)

Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. John Wi-
ley, Chichester (2004)

Breiman, L.: Bagging predictors. Machine Learning 24, 123-140 (1996)

Freund, Y., Shapire, R.: A decision theoretic generalization of online learning and
application to boosting. Journal of Computer and Systems Sciences 55, 119-139
(1997)

Watson, C., Wilson, C.: NIST Special Database 4, Fingerprint Database. National
Institute of Standards and Technology (1992)

DTP, AIDS antiviral screen (2004),

http://dtp.nci.nih.gov/docs/aids/aids data.html

Schenker, A., Bunke, H., Last, M., Kandel, A.: Graph-Theoretic Techniques for
Web Content Mining. World Scientific, Singapore (2005)

Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and
Kernel Machines. World Scientific, Singapore (2007)

http://dtp.nci.nih.gov/docs/aids/aids_data.html

	Graph Classification Based on Dissimilarity Space Embedding
	Introduction
	Dissimilarity Space Embeddings of Graphs
	Survey of Work on Dissimilarity Based Graph Embedding
	Prototype Selection
	Prototype Reduction
	Dimensionality Reduction
	Relationship to Lipschitz Embeddings
	Multiple Classifier System

	Experimental Results
	Experimental Setup
	Reference Systems
	Results and Discussion

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

